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Abstract

In the first chapter, I build a New Keynesian asset pricing model with optimal monetary

policy and Epstein-Zin preferences that accounts for some of the stylized facts concerning

the term structures of equity and bond risk premia. The model-implied term structure

of equity risk premia and its volatility are downward sloping, the term structure of bond

risk premia is upward sloping, and the term structure of Sharpe ratios on dividend strips

is downward sloping. Under Epstein-Zin preferences, the central bank amplifies short- and

long-run productivity shocks to maximize surprise utility in an optimal monetary policy

setting by making the output gap procyclical with respect to these shocks. The output gap

gradually falls after a positive short- or long-run productivity shock so short-horizon output

and dividends are more procyclical than medium-horizon output and dividends. Under the

optimal monetary policy, the weight on the difference between inflation and its target in the

loss function is large so inflation closely tracks the inflation target, which is persistent and

responds negatively to long-run productivity shocks. This makes long-horizon price levels

more countercyclical than short-horizon price levels with respect to the long-run productivity

shock.

In the second chapter, I propose a model of sovereign credit risk within a monetary union

and quantify the costs associated with entering such a union. The monetary authority sets

the inflation rate for the monetary union to maximize an objective function consisting of the

sum of the total values of each sovereign, while being constrained to keep the volatility of

inflation low. Countercyclical monetary policy reduces the real value of debt in bad times

through a higher inflation rate and increases it in good times through a lower inflation rate,

allowing sovereigns a mechanism to hedge their nominal liabilities. The effectiveness of this

mechanism is reduced in a monetary union as there is a single inflation rate for the entire

union, and shocks to the real asset value of each sovereign are imperfectly correlated. Using

data from the Eurozone, the calibration exercise determines the portion of credit spreads

due to the loss of flexibility in monetary policy associated with joining a monetary union.
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Additionally, the model generates economically significant increases in credit spreads and

Arrow-Debreu prices of default for most countries and reductions in welfare for all countries

in a monetary union when compared with the counterfactual of each sovereign conducting

its own independent monetary policy.

In the third chapter, I present a heterogeneous-agent incomplete markets asset pricing

model that accounts for many of the features of the nominal term structure of interest rates.

There is a single state variable, termed household risk, that drives the conditional cross-

sectional moments of household consumption growth and generates a countercyclical time-

varying price of risk. Yields on nominal and real bonds are obtained in closed form and are

affine in the state variable. Real yields are procyclical, nominal yields are countercyclical,

the real term structure is downward sloping, and the nominal term structure is upward

sloping. When calibrated to moments of consumption and dividend growth, the risk-free

rate, market return, price-dividend ratio, and inflation, the model is able to produce realistic

means and volatilities for nominal bond yields. The model is also able to account for the

negative skewness and excess kurtosis of nominal bond yield changes and the failure of the

expectations hypothesis with coefficients very similar to those in the data.

iii



Contents

1 Optimal Monetary Policy under Recursive Preferences and the Term Struc-

ture of Equity and Bond Risk Premia 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Representative Household’s Problem . . . . . . . . . . . . . . . . . . 6

1.2.2 Intermediate Goods Firms’ Problem . . . . . . . . . . . . . . . . . . . 7

1.2.3 Optimal Monetary Policy Problem . . . . . . . . . . . . . . . . . . . 11

1.2.4 Mechanism Generating Downward Sloping Term Structure of Equity

Risk Premia and Upward Sloping Term Structure of Bond Risk Premia 14

1.3 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Prices of Zero-Coupon Nominal Bonds, Dividend Strips, and Return on Equity 19

1.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

A.1 Solve for Normalized Value Function . . . . . . . . . . . . . . . . . . 44

A.2 Real and Nominal Pricing Kernels . . . . . . . . . . . . . . . . . . . . 44

A.3 Price-Dividend Ratio and Return on Equity . . . . . . . . . . . . . . 45

A.4 Algorithm for Optimal Monetary Policy Problem . . . . . . . . . . . 46

A.5 Derivation of the New Keynesian Phillips Curve . . . . . . . . . . . . 47

A.6 Derivation of the Welfare-Based Quadratic Loss Function . . . . . . . 51

A.7 Derivation of the Per Period Utility Constraint . . . . . . . . . . . . 53

A.8 Eliminating Ut − U∗ from the loss function . . . . . . . . . . . . . . . 54

A.9 Term Structure of Consumption Risk Premia . . . . . . . . . . . . . . 55

iv



2 Sovereign Credit Risk in a Monetary Union 56

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.2.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.2.2 Sovereign Debt Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.2.3 Sovereign Wealth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.2.4 Optimal Default Boundary . . . . . . . . . . . . . . . . . . . . . . . . 67

2.2.5 Optimal Level of Debt . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.2.6 Risk-Neutral Probabilities of Sovereign Default and Credit Spreads . 68

2.2.7 Optimal Monetary Policy Problem . . . . . . . . . . . . . . . . . . . 69

2.3 Comparative Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.5 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

B.1 Nominal Exchange Rate, Nominal Pricing Kernel, and Nominal Cash-

flow Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

B.2 Risk-Neutral Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

B.3 Asset Values of the Representative Firm and Government . . . . . . . 98

3 A Heterogeneous-Agent Incomplete Markets Model of the Term Structure

of Interest Rates 99

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.2.1 Specification of the Economy . . . . . . . . . . . . . . . . . . . . . . 103

3.2.2 Exogenous Inflation Process . . . . . . . . . . . . . . . . . . . . . . . 107

3.3 Model Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

v



3.3.1 Real Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.3.2 Nominal Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.4 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.5.1 Implications for the Term Structure . . . . . . . . . . . . . . . . . . . 112

3.5.2 Long Rate Regressions . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.5.3 Implications for the Time Series of xt . . . . . . . . . . . . . . . . . . 116

3.5.4 Higher Order Moments of Nominal Bond Yield Changes . . . . . . . 117

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

C Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

C.1 Parameters of the Wealth-Consumption Ratio and λ . . . . . . . . . 132

C.2 Derivations of Solutions for Real and Nominal Bond Prices . . . . . . 132

C.3 Derivation of Long Rate Regression Coefficients . . . . . . . . . . . . 134

vi



Chapter 1

Optimal Monetary Policy under

Recursive Preferences and the Term

Structure of Equity and Bond Risk

Premia
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1.1 Introduction

A number of papers have recently documented the fact that the term structure of equity

risk premia is downward sloping. It has been well known in the literature for decades that

the term structure of nominal bond yields and risk premia is upward sloping. Additionally,

van Binsbergen and Koijen (2016) also find that the term structure of volatility of equity

risk premia is downward sloping and the term structure of Sharpe ratios for dividend strips

is downward sloping. Reconciling these stylized facts within a DSGE framework has been

particularly challenging. To my knowledge, the only paper that addresses the downward slop-

ing term structure of equity risk premium puzzle within such a framework has been Lopez,

Lopez-Salido, and Vazquez-Grande (2015) who employ a New Keynesian habit-formation

model in which countercyclical marginal costs make short-run dividends more procyclical

after a technology shock and short-run inflation more countercyclical. They are able to

achieve a downward sloping term structure of equity risk premia, an upward sloping term

structure of nominal bond yields, and a upward sloping term structure of real bond yields.

They cannot, however, reproduce the downward sloping term structure of Sharpe ratios on

dividend strips. This paper is an attempt to address these puzzles in a New Keynesian

framework with Epstein-Zin preferences, and optimal monetary policy. While the model

cannot generate an upward sloping term structure of real bond risk premia, it can generate a

downward sloping term structure of equity risk premia, an upward sloping term structure of

nominal bond risk premia, a downward sloping term structure of Sharpe ratios on dividend

strips, and a downward sloping term structure of volatility of equity risk premia.

In this paper, I propose a parsimonious New Keynesian asset pricing model in which

the central bank minimizes a quadratic loss function which is consistent with the Epstein-

Zin preferences of households. It is important to note that the quadratic loss function is

not optimal in the Ramsey sense, but is optimal from the timeless perspective of Woodford

(2003), allowing for time-invariant solutions for inflation and the output gap. In addition

to containing the square of inflation as well as the square of the output gap, the optimal
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monetary policy loss function under Epstein-Zin preferences contains a new term: the square

of utility surprises. Whether the central bank wants to maximize or minimize these utility

surprises depends on the level of risk aversion of the representative household. I allow the

weights to deviate from their optimal values, which are determined by the deep parameters

of the model, in alternative calibrations in order to explore the macro and asset pricing

implications of alternative monetary policy regimes in the spirit of the prevailing monetary

policy literature. Under the baseline calibration, weights take on their optimal value. The

addition of this term means that inflation and the output gap respond to short- and long-run

productivity shocks. Optimal monetary policy under recursive preferences has significantly

different implications for the term structure of equity risk premia when compared with the

optimal policy under power utility preferences. The new term is responsible for generating

a downward sloping term structure of equity risk premia through its amplification of short-

and long-run productivity shocks on consumption. A negative weight on the square of utility

surprises in the loss function induces the central bank to make the output gap procyclical

with respect to short- and long-run productivity shocks. The output gap declines back to its

steady-state value after a short- or long-run productivity shock making short-horizon output

and dividends more procyclical than medium-horizon output and dividends. A standard

monetary policy quadratic loss function containing only the square of inflation and the output

gap cannot account for this stylized fact. Under the optimal policy, the difference between

inflation and its target will be procyclical with respect to short- and long-run productivity

shocks, but the large weight on inflation in the loss function means that inflation closely

follows its target. The inflation target is persistent and countercyclical with respect to

long-run productivity shocks to account for the upward sloping term structure of bond risk

premia.

Epstein-Zin preferences allow for separate parameterization of risk aversion and intertem-

poral elasticity of substitution. I employ Epstein-Zin preferences with a logarithmic spec-

ification over consumption implying an intertemporal elasticity of substitution equal to 1

3



similar to Tallarini (2000) and more recently, Swanson (2015). The business cycle moments

are only affected by the intertemporal elasticity of substitution, whereas risk premia are

governed by the risk aversion parameter. With traditional power utility, a high risk aversion

parameter is needed to match risk premia, which implies a low intertemporal elasticity of

substitution, leading to counterfactual business cycle implications. These preferences have

several convenient features from a computational perspective: they allow for the normalized

value function to be solved for exactly, the optimal monetary policy loss function to be ex-

pressed in a simple quadratic form, and the solutions to bond and equity yields fit in the affine

class of term structure models prevalent in the literature. The return on equity at different

horizons is also affine in the state variables upon applying a log-linear approximation.

This paper lies at the intersection of several major strands of the finance literature. Term

structure models of nominal bond yields that are built on macroeconomic foundations include

Wachter (2006); Gallmeyer, Hollifield, Palomino, and Zin (2007); Bansal and Shaliastovich

(2012); Piazzesi and Schneider (2006); Palomino (2012); Bekaert, Cho, and Moreno (2010);

and Rudebusch and Swanson (2012). Wachter (2006) and Bansal and Shaliastovich (2012)

study the term structure implications of Campbell and Cochrane’s (1999) habit formation

model and Bansal and Yaron’s (2004) model with generalized recursive preferences and long

run risk, respectively. Piazessi and Schneider (2006) look at the special case of generalized

recursive preferences with a unit intertemporal elasticity of substitution. Gallmeyer, Holli-

field, Palomino, and Zin (2007) allow for monetary policy via a Taylor rule to endogenously

determine inflation and therefore, the term structure, in a model with recursive preferences.

Palomino (2012); Tanaka (2012); Bekaert, Cho, and Moreno (2010); and Rudebusch and

Swanson (2012) build New Keynesian asset pricing models to study the term structure of

interest rates. Asset pricing models that provide a unified framework to fit the term struc-

ture of nominal bond yields and equity returns have emerged recently and include Burkhardt

and Hasseltoft (2012); David and Veronesi (2013); Campbell, Pflueger, and Viceira (2014);

Song (2016); and Swanson (2015). Burkhardt and Hasseltoft (2012), David and Veronesi
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(2013); Campbell, Pflueger, and Viceira (2014); and Song (2016) are able to account for

the changing correlation between stock and bond returns that has occurred over the past

half century. Swanson (2015) shows that a New Keynesian asset pricing model with re-

cursive preferences can account for nominal bond, real bond, equity, and defaultable bond

data moments in a unified framework. However, none of the papers mentioned above ad-

dress the term structure of equity risk premia. Lettau and Wachter (2011); Croce, Lettau,

and Ludvigson (2015); Lopez, Lopez-Salido, and Vazquez-Grande (2015); Ai, Croce, Dier-

cks and Li (2013); Belo, Collin-Dufresne and Goldstein (2015); Marfé (2015); Marfé (2017);

and Doh and Wu (2016) address the downward sloping term structure of equity risk pre-

mia. Lettau and Wachter (2011) directly specify a stohastic discount factor and are able

to match the upward sloping term structure of interest rates in addition to the downward

sloping term structure of equity premia. Croce, Lettau, and Ludvigson (2014) introduce

a bounded rationality limited information model in which the representative consumer is

unable to distinguish between short-run and long-run consumption risks. Ai, Croce, Diercks

and Li (2013) build a production-based asset pricing model with heterogeneous exposure to

productivity shocks across capital vintages and an endogenous stock of growth options. Belo,

Collin-Dufresne and Goldstein (2015) modify dividend dynamics so that leverage ratios are

stationary. Hasler and Marfé (2015) build a model with rare disasters followed by recovery

that generates higher risk premia for short horizon equity returns. Marfé (2017) considers

a model in which labor rigidities affect dividend dynamics and the price of short-run risk.

Doh and Wu (2016) employ a quadratic asset pricing model with long run risks in which

processes for macro variables are endogenously determined functions of risk factors.

The remainder of this paper will proceed as follows. In section 2, I discuss the New

Keynesian asset pricing model with Epstein-Zin preferences and optimal monetary policy.

In section 3, I show how to solve for the dynamics of the output gap, inflation, and the

normalized value function in this setting. In section 4, I derive nominal bond and dividend

strip prices and the return on equity in this framework and provide details on the calibration
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of the model. In section 5, I document the sources of data used to calculate the empirical

moments. In section 6 and 7, I discuss the calibration and results of the model, respectively.

In section 8, I conclude the paper and give some possible directions for future work.

1.2 Model

1.2.1 Representative Household’s Problem

Time in the model is discrete and continues forever. There is a representative household with

recursive preferences as in Epstein and Zin (1989) and Weil (1989). The utility function of the

representative household over consumption, Ct, and labor, Nt, can be expressed recursively

in the following way:

Ut = log(Ct) + ϕ0 log(1−Nt) +
β

σ
log(Et[exp(σUt+1)]), (1.1)

where ϕ0 is the preference parameter for leisure, σ = (1−β)(1−ϕ)
1+ϕ0

, ϕ governs relative risk

aversion, and β is the discount factor. The coefficient of relative risk aversion is RRA = ϕ+ϕ0

1+ϕ0
.

Consumption is measured in units of final goods. This specification of recursive preferences

follows Tallarini (2000) and imposes an elasticity of intertemporal substitution of 1. As

ϕ → 1, the utility function specified above reduces to time-additive expected utility. For

values of ϕ > 1, the representative household is more risk averse than in the expected utility

case and the opposite is true for values of ϕ < 1.

As is standard in the New Keynesian literature, the aggregate consumption good, Ct, is

defined as a CES aggregate of intermediate consumption goods:

Ct ≡
[∫ 1

0

Ct(j)
ε−1
ε dj

] ε
ε−1

(1.2)

where j is the index and ε > 1 is the price elasticity of demand of each intermediate good.

The household is endowed with a unit of time, which it can allocate to either leisure, Lt,
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or labor, Nt. The aggregate labor supply is used to produce intermediate goods, Nt =∫ 1

0
Nt(j)dj, where Nt(j) is the labor supply used to produce each individual intermediate

good j. Therefore, it must be the case that Lt +Nt = 1. Markets are complete in the model

and the representative household owns shares in the intermediate goods firms, so the budget

constraint of the representative household is

Ct + Et

[
Qt,t+1

Bt+1

Pt+1

]
≤ WtNt

Pt
+

∫ 1

0

Dt(j)dj − Tt +
Bt

Pt
(1.3)

where Bt+1 is the portfolio of nominal state contingent claims in the complete contingent

claims market, Qt,t+1 is the real stochastic discount factor for calculating the real value at

time t of one unit of consumption at t+ 1, Wt is the nominal wage rate, Tt is the real lump

sum tax, and Dt(j) is real dividend income from each intermediate goods firm j. The price

index, Pt, is defined as

Pt ≡
[∫ 1

0

Pt(j)
1−εdj

] 1
1−ε

(1.4)

and is derived from the profit maximization problem of the final goods firm. The intratempo-

ral optimality condition that comes from equating the marginal rate of substitution between

consumption and labor for the representative household with the real wage is

ϕ0Ct
1−Nt

=
Wt

Pt
. (1.5)

1.2.2 Intermediate Goods Firms’ Problem

Each intermediate goods producer produces intermediate goods according to a constant

returns to scale production function in labor with a common productivity shock, At:

Yt(j) = AtNt(j). (1.6)
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The log of productivity growth, ∆at = at − at−1, follows the following stochastic process:

∆at = zt−1 + σaε
a
t (1.7)

where

zt = ρzzt−1 + σzε
z
t . (1.8)

Long-run risk in productivity growth is a relatively recent development in the asset pricing

literature. Croce (2014) employs long-run risk in productivity to match the equity premium

in a production-based model. Long-run risk in productivity will translate directly into long-

run risk in consumption growth in my model. Intermediate goods producers face a common

wage, Wt, and act to minimize total cost by choosing the quantity of labor, Nt(j), subject

to the constraint of producing enough to meet demand:

min
Nt(j)

WtNt(j) (1.9)

subject to

AtNt(j) ≥
(
Pt(j)

Pt

)−ε
Yt. (1.10)

The nominal marginal cost derived from the first-order condition is

NMCt =
Wt

At
. (1.11)

The New Keynesian Phillips curve is derived from the optimization problem of interme-

diate goods firms facing Calvo (1983) staggered pricing frictions. The intermediate goods

firm j solves the following maximization problem:

max
Pt(j)

Et

[
∞∑
T=t

ωT−tQt,T

(
PT (j)

PT
YT (j)− WTNT (j)

PT

)]
, (1.12)

where ω is the probability that a firm cannot change its prices in a given period, independent
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of the last time when the firm last changed its price. The maximization is subject to the

constraints of the demand function for its good, the production function, and real marginal

cost, respectively:

YT (j) =

(
PT (j)

PT

)−ε
YT , (1.13)

YT (j) = ATNT (j), (1.14)

and

MCT =
WT

ATPT
. (1.15)

Firms that cannot change their prices utilize an indexation scheme where the firms index

according to a time-varying inflation target following a first-order autoregressive process set

by the central bank each period:

logPT (j) = logPT−1(j) + π∗T , (1.16)

where

π∗t = π∗ + wt (1.17)

and

wt = ρwwt−1 + σwε
w
t + σw,zε

z
t . (1.18)

Similar to Dew-Becker (2011), the inflation target responds to innovations in expected pro-

ductivity growth. This feature turns out to be essential in generating an upward sloping

nominal term structure of interest rates and an upward sloping term structure of nominal

bond risk premia. With σw,z < 0 and ρw close to 1, the central bank will drive the inflation

target down persistently in response to a positive shock to long-run productivity growth,

creating more countercyclical inflation at long horizons than at short horizons. Since the

process for the inflation target is persistent and agents prefer early resolution of uncertainty

under the baseline calibration, the inflation risk premium will be higher at longer horizons,
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leading to an upward sloping nominal term structure of interest rates. The solution to the

maximization problem in equation 1.12 is

Pt(j) = µ

Et

[
∞∑
T=t

ωT−tQt,TP
ε
T e

(1+π∗t+1+...+π∗T )(−ε)MCTYT

]
Et

[
∞∑
T=t

ωT−tQt,TP
ε−1
T e(1+π∗t+1+...+π∗T )(1−ε)YT

] , (1.19)

where µ = ε
ε−1

is the monopolistic markup over marginal cost under no Calvo pricing frictions

and MCT is the real marginal cost. Since there is no capital accumulation, the representative

household consumes all output produced by the final goods firm:

Yt = Ct. (1.20)

Therefore, equation 1.20 can be expressed in logs as

yt = ct, (1.21)

which is the market clearing condition in the economy. Output can be calculated by utilizing

the intratemporal optimality condition in equation 1.5, noting that yt = ct and MCt = Wt

PtAt
,

and log-linearizing:

yt = − log(1 + ϕ0µ) + at +
ϕ0µ

1 + ϕ0µ
[mct − log(µ−1)]. (1.22)

Flexible price output, the output in the absence of Calvo pricing frictions, can be deter-

mined by solving the above maximization problem for intermediate goods firms with ω = 0.

Noticing that under flexible prices, all firms will change their prices in every period, implies

Pt(j) = Pt, ∀j, so that the real marginal cost must equal µ−1. Plugging mct = log(µ−1) into

the above expression for output yields

yft = − log(1 + ϕ0µ) + at. (1.23)
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The log output gap, xt, is defined as

xt ≡ yt − yft . (1.24)

The solution to the intermediate firms’ maximization problem can be log-linearized and

expressed in terms of the output gap as the New Keynesian Phillips Curve:

πt − π∗t = κxt + βEt[πt+1 − π∗t+1], (1.25)

where κ =
(1−ωβ)(1−ω)( 1

µ
+ϕ0)

ωϕ0
. The New Keynesian Phillips Curve under Epstein-Zin prefer-

ences is identical to the standard one derived under power utility, as demonstrated by Levin

(2008). See Appendix A.5 for a derivation of the New Keynesian Phillips curve.

According to the definition of the output gap and the market clearing condition,

∆ct = ∆at + ∆xt. (1.26)

I follow Abel (1990) in letting dividend growth be a levered claim on consumption growth

with leverage parameter δ. There is also risk in dividend growth, εdt+1, that is uncorrelated

with all other shocks in the model and therefore, uncorrelated with consumption growth.

This source of risk is captured by the second term on the right hand side in the expression

below:

∆dt+1 = δ∆ct+1 + σdε
d
t+1. (1.27)

1.2.3 Optimal Monetary Policy Problem

Deriving the loss function for the optimal monetary policy problem can be simplified by

rewriting the utility function of the representative consumer as

Ut = log(Ct) + ϕ0 log(1−Nt)−
β

σ
log(Mt,t+1) + βUt+1, (1.28)
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where Mt,t+1 = exp(σUt+1)
Et[exp(σUt+1)]

. The second-order approximation of Mt,t+1 is Mt,t+1 ≈ 1 +

M̂t,t+1+ 1
2
M̂2

t,t+1, where M̂t,t+1 = σ(Ut+1−U−Et[Ut+1−U ]) is the log-deviation of Mt,t+1 about

its steady-state value and U is the steady-state value of Ut. Expressing the lifetime utility

function as an infinite sum starting at t = 0, substituting in the second-order approximation

for Mt,t+1, and taking the expectation, I obtain

∞∑
t=0

βtE−1[log(Ct) + ϕ0 log(1−Nt)]−
1

σ

∞∑
t=0

βt+1E−1

[
1

2
M̂2

t,t+1

]
. (1.29)

Following Woodford (2003), the second-order approximation to the first sum can be expressed

in terms of the square of inflation and the output gap, as well as a linear term in the output

gap due to the distorted steady-state. I assume that the optimal monetary policy problem

is solved under the timeless perspective of Woodford (2003), so there is a pre-commitment

and I am able to obtain a time-invariant solution. Therefore, the second summation must

be shifted back one time period:

− 1

µ

∞∑
t=0

βtE−1

[
(1− µ)xt +

(
1− µ+

1

ϕ0µ

)
x2
t

2
+
ε

γ

(πt − π∗t )2

2

]
− σ

∞∑
t=0

βtE−1

[
(Ut − Et−1[Ut])

2

2

]
, (1.30)

where γ = (1−ωβ)(1−ω)
ω

. See Appendix A.6 for a derivation of the welfare-based quadratic

loss function. Since there is no subsidy to offset the distorted steady-state induced by

monopolistic competition (µ > 1), there is a linear term in xt in the expression. The

size of the steady-state distortion is measured by the parameter ν, which represents the

wedge between the marginal product of labor and the marginal rate of substitution between

consumption and hours evaluated at the steady-state. Formally, ν is defined as follows:

−MC = MPN(1− ν), (1.31)
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whereMC andMPN are the steady-state values of the marginal rate of substitution between

consumption and labor and the marginal product of labor, respectively. In this model, there

is no subsidy to correct the distortion due to firms’ market power in the final goods market

so ν = 1 − 1
µ
. Since ν has the same order of magnitude as fluctuations in the output

gap or inflation for the chosen value of ε, the steady-state distortion can be assumed to be

”small” and the minimization problem can be solved directly without appealing to more

complex methods. See Gaĺı (2008) for details. Therefore, the steady-state distortion affects

the first-order moments of inflation and the output gap but has no effect on higher-order

moments.

I obtain a quadratic loss function in xt−x∗, πt−π∗t , and Ut−U∗−Et−1[Ut−U∗]. I rewrite

equation 1.30 as a loss function with weights λx, λπ, and λU on the square of the deviation

of output gap from its target, inflation from its target, and utility surprises, respectively:

−1

2

∞∑
t=0

βtE−1

[
λx(xt − x∗)2 + λπ(πt − π∗t )2 + λU(Ut − U∗ − Et−1[Ut − U∗])2

]
. (1.32)

The welfare-based loss function has λx = 1
µ
− 1 + 1

ϕ0µ2
, λπ = ε

γµ
, λU = σ, and x∗ =

1− 1
µ

2λx
. The

sign of λU in the welfare-based loss function will change based on whether the representative

household is more risk averse than in the power utility case (σ < 0) or less risk averse (σ > 0).

Setting arbitrary weights provides flexibility in fitting macro and asset pricing moments, and

can provide insight into the relative importance of each of the monetary policy objectives in

determining the slope of the term structure of interest rates and equity.

The first constraint for the optimal monetary policy problem is the New Keynesian

Phillips Curve and the second is the log-linearized equation for lifetime utility:

Ut − U∗ = at + νxt + βEt[Ut+1 − U∗]. (1.33)

The details of this derivation are shown in Appendix A.7. If there is a subsidy that offsets the
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distorted steady-state such that µ = 1, there will be no role for monetary policy in affecting

the magnitude of utility surprises so the last term will drop out of the loss function. In the

case of power utility, σ = 0, the representative household is indifferent to utility surprises

and the last term again drops out of the loss function. Ut−U∗ can then be eliminated from

the loss function so that the only endogenous variables to solve for are πt−π∗t and xt and the

minimization problem can be solved with respect to a single constraint: the New Keynesian

Phillips Curve. I demonstrate how this is done in Appendix A.8.

1.2.4 Mechanism Generating Downward Sloping Term Structure

of Equity Risk Premia and Upward Sloping Term Structure

of Bond Risk Premia

The mechanism that amplifies the procyclicality of short-duration dividends relative to

medium-duration dividends can be seen intuitively by examining the expression for utility

surprises:

Ut − U∗ − Et−1[Ut − U∗] = ν
∞∑
k=0

βk {Et[xt+k]− Et−1[xt+k]}+
σaε

a
t

1− β
+

βσzε
z
t

(1− β)(1− βρz)
.

The first term on the right hand side is the impact of a time t output gap surprise on surprise

utility. The time t output gap surprise is a linear combination of time t innovations to short-

and long-run productivity. The weights are determined endogenously as part of the optimal

monetary policy problem. The second and third terms are the impact of time t innovations

to short-run productivity and long-run productivity on surprise utility, respectively. When

λU < 0, the central bank likes surprise movements in utility, and will act to amplify these

surprises. In the case of a positive shock to short- or long-run productivity, the central bank

will amplify the shock with a positive shock to the output gap. By the definition of the

output gap and the market clearing condition, ct = at + xt, up to a constant. Therefore,

a positive shock to short- or long-run productivity leads to a positive shock to the output
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gap, ultimately leading to a positive shock to consumption. Dividends are a levered claim

on consumption. Accordingly, a positive shock to short- or long-run productivity leads

to a positive shock to dividends as well when λU < 0. Since under the optimal policy

the output gap is stationary, it decreases sluggishly back to its steady-state value after a

positive short- or long-run productivity shock. Therefore, medium-horizon dividend strips

will be less procyclical than short-horizon strips, leading to an initially downward sloping

term structure of equity risk premia. The persistent nature of the long-run productivity

shock dominates at long horizons making long-horizon consumption more procyclical with

respect to the long-run productivity shock than medium-horizon consumption. Since the

difference between inflation and its target, πt − π∗t , is the discounted present value of future

output gaps according to the New Keynesian Phillips Curve, there will be a positive shock

to the difference between inflation and its target upon the realization of a positive shock

to short- or long-run productivity. Therefore, since πt − π∗t is stationary, this will have the

effect of making long-horizon price levels minus target price levels, Pt−P ∗t , more procyclical

than short-horizon price levels minus target price levels.

The opposite is true when λU > 0: the central bank dislikes surprise movements in utility,

and will act to offset these surprises, so a positive shock to short- or long-run productivity

results in a negative shock to the output gap and a negative shock to the difference between

inflation and its target. Whether a positive shock to short- or long-run productivity results

in a positive or a negative shock to consumption (or dividends), depends on if the positive

impact of the shock on at is larger or if the negative impact of the shock on xt is larger,

respectively. For relatively small values of λU > 0 (the threshold values will be different

depending on whether the short- or long-run shock is under consideration), the former effect

dominates, and the latter effect dominates for relatively large values. For sufficiently large

λU > 0, short-horizon dividend strips are more countercyclical than long-horizon strips,

leading to a steeply upward sloping term structure of equity. Long-horizon price levels minus

target price levels are more countercyclical than short-horizon price levels minus target price

15



levels for λU > 0.

There are two important opposing forces driving the slope of the nominal term structure

of interest rates. When λU < 0, the central bank drives πt − π∗t and short- and long-run

productivity shocks in the same direction, making πt − π∗t procyclical with respect to these

shocks. However, the downward movement of the inflation target upon a positive long-

run productivity shock makes the inflation target countercyclical with respect to long-run

productivity shocks. Under the optimal policy, the weight on (πt−π∗t )2 is extremely large, so

πt− π∗t has very little exposure to short- or long-run productivity shocks, virtually negating

the first force. The latter force is therefore dominant under an optimal policy. Another way

of saying this is that inflation closely tracks its target under an optimal policy. Given the high

persistence of the inflation target and the preference for the early resolution of uncertainty,

long-horizon bond yields will be particularly sensitive to shocks to the inflation target. Since

shocks to the inflation target are countercyclical with respect to consumption, long-horizon

nominal bonds will have higher inflation risk premiums than short-horizon nominal bonds

implying an upward sloping term structure of bond risk premia.

1.3 Solution

To my knowledge, there is no closed form solution available for the optimal monetary policy

problem due to the addition of the utility surprise term in the quadratic loss function.

Following the solution method in Debortoli, Maih, and Nunes (2012), the optimal monetary

policy problem can be written in the form:

s̃′−1V s̃
′
−1 + d = min

{s̃t}∞t=0

E−1

∞∑
t=0

βts̃′tWs̃′t (1.34)

such that

A−1s̃t−1 + A0s̃t + A1Ets̃t+1 +Bεt = 0. (1.35)

16



The Langrangean for the optimal monetary policy problem is

L ≡ E−1

∞∑
t=0

βt[s̃′tWs̃t + λ̃′t−1β
−1A1s̃t + λ̃′t(A−1s̃t−1 + A0s̃t +Bεt)], (1.36)

where λ̃−1 = 0 and s̃−1 is given. εt is an I.I.D. vector of standard normal random variables

that are mutually uncorrelated. λ̃−1 is set to 0 so that there is no time-inconsistency in

the optimality conditions. The solution to the Lagrangean can be written recursively by

expanding the state vector to include the Lagrange multiplier vector λ̃t. The solution to the

problem will then be

χ̃t =

s̃t
λ̃t

 =

H̃s̃s̃ H̃s̃λ̃

H̃λ̃s̃ H̃λ̃λ̃


s̃t−1

λ̃t−1

+

G̃s̃

G̃λ̃

 εt.
The first-order conditions for the Langrangean are

∂L
∂λ̃t

= A0s̃t + A1Ets̃t+1 + A−1s̃t−1 +Bεt = 0 (1.37)

and

∂L
∂s̃t

= 2Ws̃t + A′0λ̃t + β−1A′1λ̃t−1 + βA′−1Etλ̃t+1 = 0. (1.38)

Upon plugging the conjectured solution in for the conditional expectations above, the linear

rational expectations system defined by the two first-order conditions can be solved by the

method of undetermined coefficients. The algorithm used is detailed in Appendix A.4.

Extracting the constant term from the state vector and removing from the state vector

and Lagrange multiplier vector those variables which are redundant (facilitates computation

of first and second moments of the expanded state vector since H̃ is not invertible), the
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solution can be written as

χt =

st
λt

 = c+

Hss Hsλ

Hλs Hλλ


st−1

λt−1

+

Gs

Gλ

 εt.
The final expanded state vector is χ′t = [st λt]

′ = [∆at πt − π∗t xt wt zt λPCt ]′, where λPCt is

the Lagrange multiplier on the Phillips Curve constraint.

Once the dynamics of the output gap are solved for, the normalized value function can

be solved for exactly. Using the transformation log(Vt) = Ut(1 − β), the utility function of

the representative consumer can be written as

Vt = [Ct(1−Nt)
ϕ0 ]1−βEt[V

σ/(1−β)
t+1 ]β(1−β)/σ. (1.39)

Letting Γt = Ct(1−Nt)
ϕ0 , dividing both sides by Γt, and taking logs, this can be written in

a form that facilitates an exact calculation of the normalized value function by a guess and

verify method:

vt − γt =
β(1− β)

σ
logEt

{
exp

[
(vt+1 − γt+1 + ∆γt+1)

σ

1− β

]}
. (1.40)

I conjecture that vt − γt = F0 + F ′1χt and ∆γt+1 = G0 + G′1χt+1 + G′2χt and solve for the

coefficients by plugging into the above equation. The expressions for the coefficients can be

found in Appendix A.1.
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1.4 Prices of Zero-Coupon Nominal Bonds, Dividend

Strips, and Return on Equity

The real pricing kernel in the economy is

Qt,t+1 = β

(
Ct
Ct+1

)(
Vt+1

Et[V
σ/(1−β)
t+1 ](1−β)/σ

) σ
1−β

, (1.41)

consistent with the preferences of the representative household. The log real pricing kernel

is

qt,t+1 = log(β)−∆ct+1+
σ

1− β
(vt+1−γt+1+∆γt+1)−logEt

{
exp

[
σ

1− β
(vt+1 − γt+1 + ∆γt+1)

]}
.

(1.42)

The nominal pricing kernel isQ$
t,t+1 = Qt,t+1

1
Πt+1

, so that q$
t,t+1 = qt,t+1−πt+1. More concisely,

qt,t+1 = −Ω0 − Ω′1χt+1 − Ω′2χt (1.43)

and

q$
t,t+1 = −Ω$

0 − Ω′$1 χt+1 − Ω′$2 χt. (1.44)

The expressions for Ω0, Ω1, Ω2, and their nominal counterparts can be found in Appendix

A.2.

The model fits in the affine framework popular in the term structure of interest rates

literature. I extend this framework to the term structure of equity as well. Let P $
n,t be the

time t price of a zero-coupon nominal bond that has a unit payoff (in nominal terms) in n

periods. Conjecturing that the prices of nominal bonds are exponentially affine in the state

variables, P $
n,t = exp(−A$

n − B′$n χt), the coefficients A$
n and B$

n can be calculated using a

guess and verify method by plugging into the Euler equation

P $
n,t = Et[Q

$
t,t+1P

$
n−1,t+1]. (1.45)
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The coefficients are defined recursively as

A$
n = Ω$

0 + A$
n−1 + Ω′$1 c−

1

2
(Ω′$1 +B′$n−1)GG′(Ω$

1 +B$
n−1) +B′$n−1c (1.46)

and

B′$n = B′$n−1H + Ω′$1 H + Ω′$2 . (1.47)

Accounting for the fact that P $
0,t = 1, A$

0 = B′$0 = 0. The yield to maturity on a nominal

bond is defined as

y$
n,t = − 1

n
logP $

n,t =
1

n
(A$

n +B′$n χt). (1.48)

The gross one-period holding period return on a nominal bond is

R$
n,t+1 =

P $
n−1,t+1

P $
n,t

. (1.49)

Let P d
n,t be the time t price of a dividend strip that pays the aggregate dividend, Dt, in

n periods. In solving for the prices of dividend strips, it is beneficial from a computational

perspective to scale the price by the aggregate dividend at time t to eliminate Dt as an

additional state variable. Conjecturing that the prices of dividend strips scaled by the

aggregate dividend are exponentially affine in the state variables,
P dn,t
Dt

= exp(−Adn − B′dn χt),

the coefficients Adn and Bd
n can be calculated using a guess and verify method by plugging

into the Euler equation
P d
n,t

Dt

= Et

[
Qt,t+1

P d
n−1,t+1

Dt+1

Dt+1

Dt

]
. (1.50)

The coefficients are defined recursively as

Adn = Ω0+Adn−1+[Ω′1−δ(e′1+e′3)]c−1

2
[Ω′1−δ(e′1+e′3)+B′dn−1]GG′[Ω1−δ(e′1+e′3)+Bd

n−1]+B′dn−1c−
1

2
σ2
d

(1.51)

and

B′dn = [B′dn−1 + Ω′1 − δ(e′1 + e′3)]H + Ω′2 + δe′3. (1.52)

20



The yield on equity is defined by van Binsbergen, et al. (2014) as

ydn,t = − 1

n
log

P d
n,t

Dt

=
1

n
(Adn +B′dn χt). (1.53)

A plot of mean equity yields over different horizons, n, is the equity yield curve, defined in

an analagous way to the nominal bond yield curve. The gross one-period holding period

return on a dividend strip is then

Rd
n,t+1 =

P d
n−1,t+1

P d
n,t

=
P d
n−1,t+1/Dt+1

P d
n,t/Dt

Dt+1

Dt

, (1.54)

so the continuously compounded return on a dividend strip is rdn,t+1 = logRd
n,t+1.

The gross return on the market is Rd
t+1 =

P dt+1+Dt+1

P dt
. Log-linearizing the expression for

the gross return, the continuously compounded return on the market can be expressed as

rdt+1 = κ0 + κ1zt+1 − zt + δ∆ct+1 + σdε
d
t+1, (1.55)

where pdt is the log price-dividend ratio and κ1 = exp(p̄d)

1+exp(p̄d)
and κ0 = log(1 + exp(p̄d))−κ1p̄d

are linearization constants that must be solved for endogenously. Guessing that pdt =

ξ0 + ξ′1χt, the coefficients ξ0 and ξ1 can be solved for by plugging into the Euler equation

Et[e
qt,t+1+rdt+1 ] = 1. (1.56)

The expressions for the coefficients can be found in Appendix A.3. The linearization con-

stants κ0 and κ1 are still functions of p̄d. p̄d can be determined by solving a fixed point

problem, evaluating the expanded state vector at its unconditional mean.

Sharpe ratios of nominal bond and dividend strip returns for one-period holding period
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returns on the n-period security are defined as

SRi
n =

E[rin − rf ]
σ[rin]

(1.57)

for i = $, d. A term structure of Sharpe ratios for nominal bonds or equity can then be

defined by looking at Sharpe ratios over different horizons, n.

1.5 Data

Annual data from 1930-2016 on real personal consumption expenditures, the personal con-

sumption expenditures price index, and net corporate profits before tax come from the St.

Louis Federal Reserve FRED website. Real gross domestic product and real potential gross

domestic product are only available over the time period from 1949-2016. Annual data from

1930-2016 on dividend yields and nominal returns on the S&P 500 index are taken from

Robert Shiller’s website. The annualized yield on the one month Treasury bill comes from

CRSP. Consumption growth is the log first difference of real personal consumption expendi-

tures and inflation is the log first difference of the personal consumption expenditures price

index. The output gap is the log difference of real gross domestic product and real potential

gross domestic product. The log price-dividend ratio is the log of the inverse of the dividend

yield. The equity premium is the difference between the nominal return on the S&P 500

index and the return on the one month Treasury bill. The summary statistics for macro

moments and asset pricing moments are given in Tables 1.1 and 1.2, respectively.

1.6 Calibration

Parameters are calibrated at the quarterly frequency. The parameters of the model are

Θ = {β, ϕ, ϕ0, ε, ω, δ, σa, ρz, σz, π
∗, ρw, σw, σw,z}. (1.58)
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The parameters {β, ϕ0, ε, ω, δ} have values that are fairly uncontroversial in the asset pricing

and New Keynesian literature. The discount factor, β, is set to 0.985 so the annualized real

interest rate is 1.41%, well in line with previous literature. The preference parameter for

leisure, ϕ0, is set to 2.9, taken from Tanaka (2012). The price elasticity of demand, ε = 11,

implies a monopolistic markup, µ, for intermediate goods firms of 1.1. This value is consistent

with estimates from Smets and Wouters (2007) and Altig et al. (2011). The Calvo parameter,

ω is set to 0.7, which implies an average duration for prices of 3.33 quarters, slightly lower

than the value of 0.75 in Christiano, Trabandt, and Walentin (2010). Consistent with Lettau

et al. (2008), I calibrate the leverage parameter, δ, to be 4.5. This value is slightly higher

than the value used by Bansal and Yaron (2004) of 3.

I set the persistence and the standard deviation of the long-run productivity shock to be

ρz = 0.99, slightly higher than the value of 0.98 chosen by Diercks (2015). Following Croce

(2014), the standard deviation of the long-run productivity shock is 0.25 times the standard

deviation of the short-run productivity shock, σz = 0.25 × σa. The standard deviation of

the short-run productivity shock is chosen to match the volatility of consumption growth in

the data. The standard deviation of the short-run shock is set to be σa = 0.001244. The

standard deviation of the short-run dividend shock is set to σd = 0.0642. This parameter

is calibrated to match the volatility of dividend growth. The equity premium is extremely

sensitive to the the choice of ρz, since stocks prices reflect the price of a claim to an infinite

stream of dividends, which are defined as a multiple of consumption in each period. In the

model, ∆dt+1 = δ(zt + σaε
a
t+1 + ∆xt+1) + σdε

d
t+1, so the persistence of long-run productivity

is very important for the magnitude of the equity premium.

Target inflation, π∗, is set to 0. The persistence of the inflation target, ρw, is set to 0.999.

Many papers assume a unit root for the inflation target and my calibration is consistent with

those studies. The exposure of the inflation target to long-run productivity shocks, σw,z, is

set to equal the standard deviation of idiosyncratic inflation target shocks, σw, but have the

opposite sign, consistent with Dew-Becker (2014). He estimates that half of the variance
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of innovations to the inflation target is accounted for by long-run productivity shocks. The

exposure of the inflation target to long-run productivity shocks is negative in order to account

for the upward sloping term structure of bond risk premia. These parameters are set to match

the volatility of inflation in the data.

Tallarini (2000) shows that the relative risk aversion with this specification of Epstein-Zin

utility is RRA = ϕ+ϕ0

1+ϕ0
. As shown in Swanson (2013), the presence of labor in the utility

function allows households to better insure themselves against shocks. A number of studies

employing Epstein-Zin preferences with unit intertemporal elasticity of substitution in a

DSGE framework have estimated and calibrated the level of risk aversion to match both the

term premium and equity premium. Rudebusch and Swanson (2012) estimate a value of 110,

Dew-Becker (2014) estimates a value of 23, Swanson (2015) uses a value of 60, Piazzesi and

Schneider (2006) use a value of 57, and Tallarini (2000) uses a value of 50. I use a value for

ϕ of 100, implying a coefficient of relative risk aversion of 26.38. The baseline calibration is

given in Table 1.3. The model-implied macro and asset pricing moments are given in Tables

1.4 and 1.5, respectively.

The parameters λx, λπ, and λU are functions of the deep parameters of the household’s

utility function, Calvo parameter, and monopolistic markup over marginal cost as shown

earlier. I can tweak these parameters from their optimal values to examine the effects of

various types of non-optimal monetary policy. In an optimal monetary policy setting for the

given calibration of the model, the weights on inflation, the output gap, and surprise utility in

the loss function are λoptimalπ = 75.15, λoptimalx = 0.19, and λoptimalU = −0.38. These will be the

weights used in the baseline calibration. The weight on inflation is two orders of magnitude

larger than the weights on the output gap and surprise utility under the optimal policy . The

first set of figures, Figures 1 to 5, plot the impulse response functions for macro variables to

short- and long-run productivity shocks, excess returns on dividend strips and nominal bonds,

the term structure of Sharpe ratios on dividend strips, and the term structure of volatilities

of excess returns on dividend strips and nominal bonds under the optimal monetary policy
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(λπ = λoptimalπ , λx = λoptimalx , λU = λoptimalU ). The second set of figures, Figures 6-10, repeats

the plots above for the case in which all deep parameters are kept the same as in the baseline

calibration and the weights on inflation and the output gap are kept at their optimal levels

(λπ = λoptimalπ , λx = λoptimalx ), but the weight on utility surprises is λU = 0. In the second set

of figures, I explore the implications for the term structure of equity and bond risk premia of

a policy in which central banks are only concerned with stabilizing inflation and the output

gap and show why it is necessary to account for utility surprises in the loss function to

account for the downward sloping term structure of equity risk premia. In this case, the

divine coincidence result holds and inflation will equal its target and the output gap will

equal its steady-state value as the central bank does not face a trade-off between the goals

of inflation and output gap stabilization.

The properties of the term structure of consumption risk premia are explored in Appendix

A.9.

1.7 Results

For the purposes of clarity, the impulse response functions for short- and long-run productiv-

ity shocks are normalized so the steady-state value of each variable is 0. The results from the

impulse response functions for the short-run productivity shocks show that for λU = λoptimalU

and for λU < 0, more generally, there is a positive shock to the difference between inflation

and its target, the output gap, and consumption upon a positive short-run productivity

shock at t = 0 and each quantity eventually decreases until it reaches its steady-state value

as t → ∞. The price level is relatively insensitive to short-run productivity shocks. These

plots show that in this case, short-horizon consumption is more procyclical with respect

to short-run productivity shocks than long-horizon consumption. The same is true for the

difference between inflation and its target. The inflation target does not respond to short-

run productivity shocks so the impulse response function is flat. In the case of long-run
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productivity shocks, the situation is different. Upon a positive long-run productivity shock,

there is a positive shock to the difference between inflation and its target, the output gap,

and consumption at t = 0. The difference between inflation and its target and the output

gap decrease until they reach their steady-state values as t→∞. The price level decreases

in a monotone fashion upon a long-run productivity shocks so long horizon price levels are

more countercyclical with respect to the long-run productivity shock than are short-horizon

price levels. However, consumption initially decreases then starts increasing as t → ∞. In

this case, short-horizon and long-horizon consumption are more procyclical with respect to

the long-run productivity shock than medium-horizon consumption. The inflation target

decreases initially in response to the long-run productivity shock and increases back to its

steady-state value very slowly as the persistence of the inflation target is very close to 1. The

difference between inflation and its target is more procyclical at short horizons than long

horizons with respect to long-run productivity shocks, mirroring the results for the short-run

productivity shock.

For values of λU < 0 that are sufficiently negative, the short end of the term structure

of equity slopes downward while the long end of the term structure slopes upward. This

is similar to the U-shaped term structure of equity generated by models such as Ai, Croce,

Diercks, and Li (2013); Marfé (2017); and Lopez, Lopez-Salido, and Vazquez-Grande (2015)

to name a few. The non-monotone nature of the term structure of equity in my model is due

to the long-run productivity shock. When λU < 0, the presence of the utility surprise term in

the quadratic loss function induces the central bank to maximize utility surprises and expose

the output gap positively to innovations in short- and long-run productivity. The output

gap is procyclical with respect to short- and long-run productivity. This combined with the

gradual fall of the output gap to its equilibrium value generates the initial downward sloping

nature of the term structure by making shorter horizon dividend strips more procyclical

than longer horizon dividend strips. The upward sloping long end of the term structure of

equity is due to the persistent long-run productivity shock that generates long-run risk in
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long horizon dividend strips due to investors’ preference for early resolution of uncertainty

under a standard calibration of the model. Therefore, short-run productivity shocks induce

a monotone decreasing term structure of equity and long-run productivity shocks induce

a U-shaped term structure of equity for sufficiently negative values of λU . The larger the

magnitude of λU < 0, the more pronounced the initial downward slope is and the more the

long end flattens out. Alternatively, for values of λU > 0, the term structure of equity is

positively sloped. For increasing values of λU > 0, the slope increases as the equity risk

premia on short-horizon dividend strips decreases more rapidly than the risk premia on

long-horizon dividend strips.

For λU = 0, the output gap and inflation do not respond to short- and long-run produc-

tivity shocks. Therefore, short-horizon consumption and long-horizon consumption are as

procyclical as one another with respect to short-run productivity. However, short-horizon

consumption is less procyclical than long-horizon consumption with respect to long-run pro-

ductivity shocks due to the persistence of the long-run productivity shock generating long-run

risk in long horizon dividend strips. In contrast to the situation for λU < 0, short-run pro-

ductivity shocks induce a flat term structure of equity risk premia and long-run productivity

shocks induce an upward sloping term structure of equity risk premia.

Rudebusch and Swanson (2012) generate a positive and time-varying term premium in

a New Keynesian model with Epstein-Zin preferences and a Taylor rule with a time-varying

inflation target by using a third-order approximation to the equilibrium conditions. Tanaka

(2012) generates a positive term premium with Epstein-Zin preferences by employing Blan-

chard and Gaĺı (2007) style wage rigidities which creates a new trade-off in the NKPC for

a central bank conducting optimal monetary policy. By adding the utility surprise term to

the quadratic loss function, my model could generate a positive term premium if λU > 0.

However, as this is not consistent with optimal monetary policy or a downward sloping term

structure of equities, it is necessary to add a time-varying inflation target to the model. This

is not a panacea, though, as a negative λU can generate considerable procyclicality in the
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inflation process depending on the value of λπ. With relatively large λπ, the central bank

places a high weight on insulating inflation from productivity shocks. In an optimal policy

setting, the relative weight placed on inflation stabilization vs. output gap stabilization is

approximately 400 given my calibration and is large for any reasonable calibration. There-

fore, the only significant shock driving inflation in the model is the shock to the inflation

target. Since the inflation target is very persistent and households have a preference for the

early resolution of uncertainty, long horizon nominal bonds will be more risky than short

horizon nominal bonds leading to an upward sloping term structure of excess returns on

nominal bonds.

A novel contribution of my model is its ability to generate a downward sloping term

structure of Sharpe ratios on dividend strips and nominal bonds when λU = λoptimalU . Van

Binsbergen and Koijen (2016) document this phenomena and show that standard asset

pricing models cannot reproduce this empirical regularity. The model-implied term structure

of Sharpe ratios on dividend strips and nominal bonds for the cases in which λU = λoptimalU

and λU = 0 are shown in Figures 1.4 and 1.9, respectively. When λU = 0, the term structure

of Sharpe ratios on dividend strips is upward sloping. The model also generates a downward

sloping term structure of volatilities of excess returns on dividend strips when λU = λoptimalU .

These results are shown for the cases in which λU = λoptimalU and λU = 0 in Figures 1.5

and 1.10, respectively. When λU = 0, the term structure of volatilities on excess returns on

dividend strips is upward sloping.

Given the parsimonious and highly stylized nature of the model, it does a good job in

fitting macro, nominal bond, and equity moments. The volatilities of consumption growth,

dividend growth, and inflation are matched with the data and the model-implied means and

standard deviations of the equity premium and the log price-dividend ratio are in line with

the data. The means and first-order autoregressive coefficients of consumption growth and

dividend growth are not matched with the data. The average quarterly (non-annualized)

Sharpe ratio of 0.16 under the baseline calibration matches up well with the value of 0.15 in
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Uhlig (2007).

Since the model is calibrated at a quarterly frequency and the data is expressed on an

annualized basis, the means of log growth rates and returns are multiplied by 4 and the

standard deviations are multiplied by 2 to arrive at annualized figures.

Empirical evidence supports the fact that the output gap responds procyclically to total

factor productivity (TFP) shocks and that inflation responds countercyclically to TFP shocks

in a manner consistent with the behavior of the central bank under the optimal monetary

policy in the model. The series for TFP is available annually over the time period from 1950-

2014. TFP growth is defined as the log first difference of the series for TFP. The annual

correlation between the output gap and TFP growth over this time period is 0.19 and the

annual correlation between inflation and TFP growth -0.34.

1.8 Conclusion

In this paper I have shown that a downward sloping term structure of equity risk premia is an

outcome of a central bank practicing optimal monetary policy in an Epstein-Zin setting. The

central bank responds to short- and long-run productivity shocks, making the output gap

procyclical with respect to these shocks. The procyclicality of the output gap makes short-

horizon dividends more procyclical than medium-horizon dividends. In a standard monetary

policy loss function in which the central bank is concerned with inflation and output gap

stabilization, the output gap and inflation do not respond to short- and long-run productivity

shocks. Therefore, a standard loss function cannot account for a downward sloping term

structure of equity risk premia. The model is parsimonious and highly stylized but can

account for a variety of other term structure regularities documented by van Binsbergen and

Koijen (2016) including an upward sloping term structure of bond risk premia, a downward

sloping term structure of Sharpe ratios on dividend strips, and a downward sloping term

structure of volatility of excess returns on dividend strips. In future work, I would like to
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utilize a medium-scale New Keynesian model in the the vein of Smets and Wouters (2007)

and do a structural estimation of the model.
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Table 1.1: Summary Statistics for Macro Moments

Inflation, π Output Gap,

x

Consumption

Growth, ∆c

Dividend

Growth, ∆d

Standard Deviation 3.64 2.09 2.94 18.46

AR(1) Coefficient 0.75 0.62 0.39 -0.21

Summary statistics for macro moments. Standard deviations and AR(1) coefficients are
in annual terms and standard deviations are in percentage terms. The data for inflation,
consumption growth, and dividend growth spans 1930-2016. The data for the output gap
spans 1949-2016.

Table 1.2: Summary Statistics for Asset Pricing Moments

rm − rf pd

Mean 5.75 3.37

Standard Deviation 15.30 0.46

Summary statistics for asset pricing moments. Data on returns is in annualized and percent-
age terms. The log price-dividend ratio mean and standard deviation are in natural units.
The data for the equity premium and price-dividend ratio spans 1930-2016.
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Table 1.3: Baseline Calibration (λπ = λoptimalπ , λx = λoptimalx , λU = λoptimalU )

β (discount factor) 0.985

ϕ (risk aversion parameter) [implied RRA] 100 [26.38]

ϕ0 (leisure preference parameter) 2.9

ε (price elasticity of demand) 11

ω (Calvo parameter) 0.7

δ (leverage) 4.5

σa (standard deviation of short-run productivity

shock)

0.001242

ρz (persistence of long-run productivity shock) 0.99

σz (standard deviation of long-run productivity

shock)

0.25× 0.001244

σd (standard deviation of dividend growth shock) 0.0643

π∗ (mean inflation target) 0

ρw (persistence of inflation target) 0.999

σw (standard deviation of inflation target shock) 0.000574

σw,z (exposure of inflation target to long-run pro-

ductivity shock)

-0.000574

λπ (weight on inflation in loss function) 75.15

λx (weight on the output gap in loss function) 0.19

λU (weight on utility surprise in loss function) -0.38
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Table 1.4: Model-Implied Macro Moments

Inflation, π Output Gap,

x

Consumption

Growth, ∆c

Dividend

Growth, ∆d

Standard Deviation 3.64 2.15 2.94 18.46

AR(1) Coefficient 0.96 2.80E-5 0.038 0.038

Model-implied macro moments. Standard deviations are annualized and in percentage terms
and AR(1) coefficients are in annual terms.

Table 1.5: Model-Implied Asset Pricing Moments

rm − rf pd

Mean 5.38 2.68

Standard Deviation 16.52 0.29

Model-implied statistics for asset pricing moments. Data on returns is annual and in per-
centage terms. The log price-dividend ratio mean and standard deviation are annualized
and in natural units.
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Figure 1.1: Impulse-response functions for macro variables to one standard deviation short-
run productivity shock at t = 0. (λπ = λoptimalπ , λx = λoptimalx , λU = λoptimalU )
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Figure 1.2: Impulse-response functions for macro variables to one standard deviation long-
run productivity shock at t = 0. (λπ = λoptimalπ , λx = λoptimalx , λU = λoptimalU )
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Figure 1.3: Model-implied term structure of expected excess returns on dividend strips,
E[rdn − rf ], and nominal bonds, E[r$

n − rf ]. (λπ = λoptimalπ , λx = λoptimalx , λU = λoptimalU )
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Figure 1.4: Model-implied term structure of Sharpe ratios on dividend strips, SRd
n. (λπ =

λoptimalπ , λx = λoptimalx , λU = λoptimalU )
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Figure 1.5: Model-implied term structure of volatilities of excess returns on dividend strips,
std(rdn− rf ), and on nominal bonds, std(r$

n− rf ). (λπ = λoptimalπ , λx = λoptimalx , λU = λoptimalU )
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Figure 1.6: Impulse-response functions for macro variables to one standard deviation short-
run productivity shock at t = 0. (λπ = λoptimalπ , λx = λoptimalx , λU = 0)
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Figure 1.7: Impulse-response functions for macro variables to one standard deviation long-
run productivity shock at t = 0. (λπ = λoptimalπ , λx = λoptimalx , λU = 0)
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Figure 1.8: Model-implied term structure of expected excess returns on dividend strips,
E[rdn − rf ], and nominal bonds, E[r$

n − rf ]. (λπ = λoptimalπ , λx = λoptimalx , λU = 0)
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Figure 1.9: Model-implied term structure of Sharpe ratios on dividend strips, SRd
n. (λπ =

λoptimalπ , λx = λoptimalx , λU = 0)
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Figure 1.10: Model-implied term structure of volatilities of excess returns on dividend strips,
std(rdn − rf ), and on nominal bonds, std(r$
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[27] Andrew T Levin, J David López-Salido, Edward Nelson, and Tack Yun. Macroecono-

metric Equivalence, Microeconomic Dissonance, and the Design of Monetary Policy.

Journal of Monetary Economics, 55:S48–S62, 2008.

[28] Pierlauro Lopez, David Lopez-Salido, and Francisco Vazquez-Grande. Nominal Rigidi-

ties and the Term Structures of Equity and Bond returns. Working Paper, 2015.
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Appendixes

A.1 Solve for Normalized Value Function

First, I solve for the coefficients G0, G1, and G2 in the expression ∆γt+1 = G0+G′1χt+1+G′2χt:

∆γt+1 = ∆ct+1 + ϕ0∆lt+1

= ∆at+1 + ∆xt+1 −
ϕ0N

1−N
∆nt+1

= ∆at+1 + ∆xt+1 −
ϕ0N

1−N
∆xt+1

=

[
e′1 +

(
1− ϕ0N

1−N

)
e′3

]
χt+1 −

(
1− ϕ0N

1−N

)
e′3χt,

implying that G0 = 0, G′1 = e′1 +
(
1− ϕ0N

1−N

)
e′3, and G′2 = −

(
1− ϕ0N

1−N

)
e′3.

The coefficients F0 and F1 can be solved for by conjecturing that vt−γt = F0 +F ′1χt and

plugging into equation 1.40:

F0 + F ′1χt =
β(1− β)

σ
Et

[
(F0 + F ′1χt+1 +G0 +G′1χt+1 +G′2χt)

σ

1− β

]
+
β(1− β)

σ

1

2
vart

[
(F0 + F ′1χt+1 +G0 +G′1χt+1 +G′2χt)

σ

1− β

]
=
β(1− β)

σ

[
(F0 + F ′1c+ F ′1Hχt +G0 +G′1c+G′1Hχt +G′2χt)

σ

1− β

]
+
β(1− β)

σ

1

2

[
σ2

(1− β)2
(F ′1 +G′1)GG′(F1 +G1)

]
,

implying that F0 = β
1−β

[
G0 + (F ′1 +G′1)c+ 1

2
σ

1−β (F ′1 +G′1)GG′(F1 +G1)
]

and F ′1 = β(G′1H+

G′2)(I − βH)−1.

A.2 Real and Nominal Pricing Kernels

The real pricing kernel is

qt,t+1 = −Ω0 − Ω′1χt+1 − Ω′2χt, (A.59)
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where Ω0 = − log(β) + 1
2

σ2

(1−β)2
(F ′1 + G′1)GG′(F1 + G1), Ω′1 = e′1 + e′3 − σ

1−β (F ′1 + G′1), and

Ω′2 = −e′3 + σ
1−β (F ′1 +G′1)G. The nominal pricing kernel is defined as q$

t,t+1 = qt,t+1 − πt+1:

q$
t,t+1 = −Ω$

0 − Ω′$1 χt+1 − Ω′$2 χt, (A.60)

where Ω$
0 = − log(β)+π∗+ 1

2
σ2

(1−β)2
(F ′1+G′1)GG′(F1+G1), Ω′$1 = e′1+e′3+e′2+e′4− σ

1−β (F ′1+G′1),

and Ω′$2 = −e′3 + σ
1−β (F ′1 +G′1)G.

A.3 Price-Dividend Ratio and Return on Equity

Conjecturing that pdt = ξ0 + ξ′1χt and plugging the expression for rdt+1 in equation 1.55 and

qt,t+1 into the Euler equation Et[e
qt,t+1+rdt+1 ] = 1:

Et[exp(−Ω0 − Ω′1χt+1 − Ω′2χt + κ0 + κ1pdt+1 − pdt + δ∆ct+1 + σdε
d
t+1)] = 1

=⇒ Et[exp(−Ω0 − Ω′1χt+1 − Ω′2χt + κ0 + κ1(ξ0 + ξ′1χt+1)− ξ0 − ξ′1χt + δ(e′1 + e′3)χt+1

− δe′3χt + σdε
d
t+1)] = 1

=⇒ [−Ω′1 + κ1ξ
′
1 + δ(e′1 + e′3)]H − Ω′2 − ξ′1 − δe′3 = 0

and

1

2
[−Ω′1 + κ1ξ

′
1 + δ(e′1 + e′3)]GG′[−Ω1 + κ1ξ1 + δ(e1 + e3)] +

1

2
σ2
d − Ω0 + κ0

+ κ1ξ0 − ξ0 = 0.

I solve the two equations above for ξ0 and ξ1: ξ′1 = [(−Ω′1+δ(e′1+e′3))H−Ω′2−δe′3](I−κ1H)−1

and ξ0 = 1
1−κ1{

1
2
[−Ω′1 +κ1ξ

′
1 + δ(e′1 + e′3)]GG′[−Ω1 +κ1ξ1 + δ(e1 + e3)] + [−Ω′1 +κ1ξ

′
1 + δ(e′1 +

e′3)]c+ 1
2
σ2
d − Ω0 + κ0}.

45



A.4 Algorithm for Optimal Monetary Policy Problem

For a given guess of the matrix H̃, the law of motion for χ̃t can be used to calculate the

following conditional expectations:

Ets̃t+1 = H̃s̃s̃s̃t + H̃s̃λ̃λ̃t (A.61)

and

Etλ̃t+1 = H̃λ̃s̃s̃t + H̃λ̃λ̃λ̃t. (A.62)

Substitute these expressions into the first-order conditions 1.37 and 1.38 to obtain

Γ0

s̃t
λ̃t

+ Γ1

s̃t−1

λ̃t−1

+ Γεεt = 0,

where

Γ0 ≡

 A0 + A1H̃s̃s̃ A1H̃s̃λ̃

2W + βA′−1H̃λ̃s̃ A′0 + βA′−1H̃λ̃λ̃

 ,

Γ1 ≡

A−1 0

0 β−1A′1

 ,
and

Γε ≡

B
0

 .
The law of motion is then s̃t

λ̃t

 = −Γ−1
0 Γ1

s̃t−1

λ̃t−1

− Γ−1
0 Γεεt.
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The remaining step is to verify whether this law of motion corresponds to the initial guess,

H = −Γ−1
0 Γ1. If not, the guess-and-verify procedure is repeated until convergence. The

algorithm can be summarized succinctly in four steps:

1. Using a guess, H̃guess, calculate the values of Γ0 and Γ1.

2. Calculate H̃ = −Γ−1
0 Γ1.

3. Check whether ‖H̃ − H̃guess‖ < ε for some distance measure ‖.‖ and ε > 0. I employ

the Frobenius norm, which is defined as ‖A‖2 = trace(AA′). If the guess and solution

have converged, proceed to the next step. Otherwise, update H̃guess = H̃, and repeat

steps 1-3 until convergence.

4. Calculate G̃ = −Γ−1
0 Γε.

Once the law of motion of χ̃t has been solved for, variables in the expanded state vector

which are redundant can be removed to form the law of motion for χt.

A.5 Derivation of the New Keynesian Phillips Curve

Using the definition of nominal marginal cost in equation 1.37, the profit maximization

problem for the intermediate goods firm in equation 1.38 can be written as

max
Pt(j)

[
∞∑
T=t

ωT−tQt,T

(
PT (j)

PT
YT (j)− NMCTYT (j)

PT

)]
.

Plugging in the demand function for its own good, the above expression can be rewritten as

max
Pt(j)

[
∞∑
T=t

ωT−tQt,T

(
PT (j)

PT

(
Pt(j)e

(1+π∗t+1+...+π∗T )

PT

)−ε
−MCT

(
Pt(j)e

(1+π∗t+1+...+π∗T )

PT

)−ε)]
.
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The first-order condition for the intermediate goods firm is then

Pt(j) = µ

Et

[
∞∑
T=t

ωT−tQt,TP
ε
T e

(1+π∗t+1+...+π∗T )(−ε)MCTYT

]
Et

[
∞∑
T=t

ωT−tQt,TP
ε−1
T e(1+π∗t+1+...+π∗T )(1−ε)YT

] .

Using the fact thatQt,t+1 = β Ct
Ct+1

Mt,t+1, Mt,t+1 = exp(σUt+1)
Et[exp(σUt+1)]

, Qt,T = Qt,t+1Qt+1,t+2...QT−1,T ,

and Mt,T = Mt,t+1Mt+1,t+2...MT−1,T and the fact that the right side of the above equation

has no dependence on j, the first-order condition can be written as

P#
t = µ

Et

[
∞∑
T=t

(ωβ)T−tMt,TP
ε
T e

(1+π∗t+1+...+π∗T )(−ε)MCT

]
Et

[
∞∑
T=t

(ωβ)T−tMt,TP
ε−1
T e(1+π∗t+1+...+π∗T )(1−ε)

] ,

where the superscript # denotes the optimal reset price of any firm. The numerator can be

written recursively as

Z1,t = MCtP
ε
t + ωβEt[Mt,t+1Z1,t+1e

−επ∗t+1 ]

and the denominator can be written recursively as

Z2,t = P ε−1
t + ωβEt[Mt,t+1Z2,t+1e

(1−ε)π∗t+1 ].

The previous two equations can then be written as

z1,t =
Z1,t

P ε
t

= MCt + ωβEt[Mt,t+1z1,t+1e
−επ∗t+1eεπt+1 ]

and

z2,t =
Z2,t

P ε−1
t

= 1 + ωβEt[Mt,t+1z2,t+1e
(ε−1)π∗t+1eπt+1(1−ε)].
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Now, the reset price expression can be expressed as

P#
t = µPt

z1,t

z2,t

.

The equation describing the evolution of prices in the Calvo setting is

Pt = [ωΠ
∗(1−ε)
t Pt−1(j)1−ε + (1− ω)P

#(1−ε)
t ]

1
1−ε . (A.63)

Dividing both sides by Pt−1 and raising both sides to the power 1− ε, I obtain the following

expression:

Π1−ε
t = ωΠ

∗(1−ε)
t + (1− ω)Π

#(1−ε)
t .

Using the fact that Πt = Π#
t = Π∗t in the stochastic steady-state, log-linearizing the above

equation about the stochastic steady-state, I obtain:

πt − π∗t = (1− ω)(π#
t − π∗t ).

Dividing both sides of the reset price expression by Pt−1e
π∗t and utilizing the equation above

relating the inflation rate to the reset inflation rate, the previous equation can be written as

e(πt−π∗t )( ω
1−ω ) = µ

z1,t

z2,t

.

Taking logs of both sides and taking the log-linear approximation of the right hand side, I

obtain

ω

1− ω
(πt − π∗t ) = log(µ) + log(z1) +

1

z1

(z1,t − z1)− log(z2)− 1

z2

(z2,t − z2)

=
z1,t − z1

z1

− z2,t − z2

z2

,
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where z1 = µ−1

1−ωβ and z2 = 1
1−ωβ . The next step is to log-linearize z1,t and z2,t:

z1,t − z1

z1

=
1

z1

(MCt − µ−1) +
ωβ

z1

Et[z1,t+1 − z1] + ωβεEt[πt+1 − π∗t ]

and

z2,t − z2

z2

=
ωβ

z2

Et[z2,t+1 − z2] + ωβ(ε− 1)Et[πt+1 − π∗t ].

Subtracting the second equation from the first, I obtain

z1,t − z1

z1

− z2,t − z2

z2

= (1− ωβ)

(
MCt − µ−1

µ−1

)
+ ωβEt

[
z1,t+1 − z1

z1

]
− ωβEt

[
z2,t+1 − z2

z2

]
+ ωβEt[πt+1 − π∗t+1].

Using the fact that ω
1−ω (πt− π∗t ) = z1,t−z1

z1
− z2,t−z2

z2
, the above expression can be rewritten as

ω

1− ω
(πt − π∗t ) = (1− ωβ)

(
MCt − µ−1

µ−1

)
+ ωβ

ω

1− ω
Et[πt+1 − π∗t+1] + ωβEt[πt+1 − π∗t+1].

This expression can be simplified to obtain the New Keynesian Phillips Curve:

πt − π∗t =
(1− ωβ)(1− ω)

ω

MCt − µ−1

µ−1
+ βEt[πt+1 − π∗t+1].

Using the definition of the output gap, the New Keynesian Phillips Curve can be expressed

in terms of the output gap instead of real marginal cost:

πt − π∗t =
(1− ωβ)(1− ω)(µ−1 + ϕ0)

ωϕ0

xt + βEt[πt+1 − π∗t+1].
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A.6 Derivation of the Welfare-Based Quadratic Loss

Function

The first summation in equation 1.29 is

∞∑
t=0

βtE−1[log(Ct) + ϕ0 log(1−Nt)]. (A.64)

The second-order approximation of the first term in the summation, log(Ct), is

log(Ct) = log(Yt)

= log

(
Yt

Y f
t

)
+ log

(
Y f
t

)
= log(Xt) + log

(
Y f
t

)
≈ xt +

1

2
x2
t − log(1 + ϕ0µ) + at + ...

Using the fact that Yt = AtNt
∆t

, where ∆t is the price dispersion, the second-order approxima-

tion of the second term in the summation, ϕ0 log(1−Nt), is

ϕ0 log(1−Nt) = ϕ0 log

(
1− ∆tYt

At

)
= ϕ0 log

(
1− ∆tXtY

f
t

At

)

= ϕ0 log(1−N)− ϕ0N

1−N
(Xt − 1)− ϕ0N

1−N
(∆t − 1)− 1

2

ϕ0N
2

(1−N)2
(Xt − 1)2 + ...

≈ ϕ0 log(1−N)− 1

µ

(
xt +

1

2
x2
t

)
− 1

µ
δt −

1

2

1

ϕ0µ2
x2
t + ...
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Price dispersion, ∆t, is defined as

∆t ≡
∫ 1

0

(
Pt(j)

Pt

)−ε
dj

= (1− ω)

(
P#
t

Pt

)−ε
+ ω

(
Πt

Π∗t

)ε
∆t−1.

Using equation A.63 to express
P#
t

Pt
in terms of the inflation rate, the expression for price

dispersion can be written as

∆t = (1− ω)

[
1− ω

(
Πt
Π∗

)ε−1

1− ω

] −ε
1−ε

+ ω

(
Πt

Π∗t

)ε
∆t−1

Taking the second-order log-linear approximation of the above expression, the log of price

dispersion, δt, can then be expressed recursively as

δt = ωδt−1 +
ωε

2(1− ω)
(πt − π∗t )2.

Iterating backwards, the log price dispersion at time t can be expressed in terms of the sum

of squared deviations of inflation from its target:

δt = ωt+1δ−1 +
ωε

2(1− ω)

t∑
j=0

ωt−j(πj − π∗j )2.

Therefore,

∞∑
t=0

βtδt =
∞∑
t=0

βt[ωt+1δ−1 +
ωε

2(1− ω)

t∑
j=0

ωt−j(πj − π∗j )2]

=
ωδ−1

1− ωβ
+

ωε

2(1− ω)

∞∑
t=0

t∑
j=0

βtωt−j(πj − π∗j )2

=
ωδ−1

1− ωβ
+

ωε

2(1− ω)(1− ωβ)

∞∑
t=0

βt(πt − π∗t )2.
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A.7 Derivation of the Per Period Utility Constraint

The lifetime utility function of the representative consumer is expressed recursively in equa-

tion 1.1 as

Ut = log(Ct) + ϕ0 log(1−Nt) +
β

σ
log(Et[exp(σUt+1)]).

The first-order approximation of the first term can be rewritten in terms of the output gap

and productivity:

log(Ct) = log(Yt)

= log

(
Yt

Y f
t

)
+ log

(
Y f
t

)
= log(Xt) + yft

= xt − log(1 + ϕ0µ) + at + ...

The first-order approximation of the second term is

ϕ0 log(1−Nt) = ϕ0 log

(
1− Yt∆t

At

)
= ϕ0 log

(
1− XtY

f
t ∆t

At

)

= ϕ0 log

(
1− ∆tXt

1 + ϕ0µ

)
= ϕ0 log(1−N)− ϕ0N

1−N
(Xt − 1) + ...

= ϕ0 log

(
ϕ0µ

1 + ϕ0µ

)
− 1

µ
xt + ...

The first-order approximation of the third term is

β

σ
log(Et[exp(σUt+1)]) = βU + βEt[Ut+1 − U ] + ...
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The log-linearized utility function can then be written as

Ut = −(1 + ϕ0) log(1 + ϕ0µ) + ϕ0 log(ϕ0µ) + at +

(
1− 1

µ

)
xt + βEt[Ut+1].

By subtracting from Ut the value, U∗, I am able eliminate the constant terms from the above

expression:

Ut − U∗ = at +

(
1− 1

µ

)
xt + βEt[Ut+1 − U∗].

U∗ is related to the steady-state value of lifetime utility, U , as follows:

U∗ = U −

(
1− 1

µ

)
x∗

1− β
,

where

U =
ϕ0 log(ϕ0µ)− (1 + ϕ0) log(1 + ϕ0µ) +

(
1− 1

µ

)
x∗

1− β
.

A.8 Eliminating Ut − U ∗ from the loss function

The log-linearized expression for lifetime utility can be expressed as the discounted sum of

future productivity shocks and output gaps as follows:

Ut − U∗ = Et

[
∞∑
k=0

βk(at+k + νxt+k)

]

= νEt

[
∞∑
k=0

βkxt+k

]
+

at
1− β

+
βzt

(1− β)(1− βρz)
.

The New Keynesian Phillips Curve can similarly be expressed as the discounted sum of

future output gaps:

πt − π∗t = κEt

[
∞∑
k=0

βkxt+k

]
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Therefore,

Ut − U∗ =
ν

κ
(πt − π∗t ) +

at
1− β

+
βzt

(1− β)(1− βρz)

and

Ut − U∗ − Et−1[Ut − U∗] =
ν

κ
(πt − π∗t ) +

at
1− β

+
βzt

(1− β)(1− βρz)
− ν

κβ
(πt−1 − π∗t−1)

− at−1

1− β
− βzt−1

(1− β)(1− βρz)
+
νxt−1

β
.

A.9 Term Structure of Consumption Risk Premia

The price-consumption ratio is constant as in other long-run risks models such as Bansal

and Yaron (2004) when the intertemporal elasticity of substitution is 1 as the intertemporal

substitution effect is cancelled out by the wealth effect. Therefore, the term structure of

consumption risk premia is flat. I plot the term structure of consumption risk premia under

the baseline calibration below.
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Chapter 2

Sovereign Credit Risk in a Monetary

Union
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2.1 Introduction

In this paper I build a structural model of sovereign credit risk in which a monetary

authority of a monetary union (such as the European Central Bank) faces the problem

of reducing the real burden of debt in bad times and increasing it in good times through

inflation across multiple countries in a monetary union with less than perfect correlations

in output. In the presence of deadweight losses due to default, sovereigns have an incentive

to inflate away a portion of their nominal debt in bad states and deflate in good states.

In a monetary union, the central monetary authority has one policy instrument with

which to reduce the real burden of debt in these bad states. This policy instrument is

the inflation rate, which must be identical across countries given the assumption of an

international investor. Even without the assumption of an international investor, although

there will be different inflation rates in each country, the monetary authority will have

one degree of freedom in adjusting inflation across the monetary union. With less than

perfect correlations in output across the countries comprising the monetary union, the

central monetary authority of a monetary union will be less effective in its goal of avoiding

default through strategic inflation than it would be in the case of a single country with

complete control over its own monetary policy. The ability of a country with control over

its own monetary policy to more effectively avoid default using strategic inflation results

in lower credit spreads and Arrow-Debreu default prices for most countries. For countries

with high volatility real asset values, credit spreads and Arrow-Debreu default prices

will be higher when these countries conduct their own independent monetary policy since

they are better able to hedge their nominal liabilities and optimally increase debt-to-GDP

levels in this regime.

My objective in this paper is to quantify the fraction of sovereign credit spreads of

Eurozone countries that can be attributed to loss of flexibility in monetary policy inherent

in joining a monetary union. I call this the monetary union risk premium as a fraction of
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credit spreads. For most countries, this quantity will be positive, but for countries with

high volatility real asset values, it will be negative. I also aim to quantify the costs in

terms of welfare reduction posed by a loss of flexibility in monetary policy, specifically

how the benefits of debt and expected losses in default change when comparing a country

in a monetary union with the counterfactual of the country conducting its own monetary

policy. Additionally, I show how Arrow-Debreu default prices and 10-year default rates

change as a function of the monetary arrangement. More broadly speaking, the paper

answers the question of how monetary policy interacts with the optimal sovereign capital

structure problem and how the nature of the monetary arrangement can have significant

implications for this interaction. This paper does not consider the benefits of entering a

monetary union, including reduced transaction costs and exchange rate stability. Thus, it

makes no claims on whether it is beneficial for a specific country to enter into a monetary

union. A model in which sovereigns trade off the benefits and costs of entering a monetary

union would be needed to make such claims.

This paper lies at the intersection of several strands of the macroeconomics and finance

literature. It builds on an extensive literature studying default in a structural context.

The majority of these papers examine the asset pricing implications of the risk of default

at the level of the firm. Merton (1974) was the first to apply a contingent claims analysis to

the pricing of equity and debt claims. His model allows default to occur only at maturity.

Black and Cox (1976) extended Merton’s model to allow default before maturity, and

is the first so-called first passage model of default. Leland (1994) incorporated the tax

benefits and default costs of debt to create a trade-off model in which firms choose the

optimal coupon level of debt and default boundary. Leland and Toft’s (1996) model

improved on Leland’s original model by allowing for optimal maturity choice as well as

choosing the optimal amount of debt to issue.

In the international macroeconomics literature, Eaton and Gersovitz (1981) and Bulow

and Rogoff (1989) laid the foundations for research into why sovereigns lend and default.
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Arellano (2008), Arellano and Ramanarayanan (2012), and Yue (2010) continue their

work and analyze the dynamics of credit spreads in dynamic stochastic general equilibrium

models in which governments default strategically in the best interest of households. More

recently, Hur, Kondo, and Perri (2017) extend Arellano’s model and show that the co-

movement of inflation and domestic consumption growth affects real interest rates and

the likelihood of debt crises.

In the finance literature, there are a number of papers that have applied the ma-

chinery of contingent claims analysis to study sovereign default in a structural context.

Gibson and Sundaresan (2001) endogenize the default trigger by building in a bargaining

game between sovereigns and creditors. Credit risk premiums reflect this fact. Bodie,

Gray, and Merton (2007) build a Merton-type model for the corporate, financial, house-

hold, and sovereign sectors of the economy and specify the interconnections between sec-

tors. Andrade (2009) relates emerging market expected stock returns to sovereign yields.

Jeanneret (2015) considers the optimal capital structure of the sovereign by building a

Leland-type tradeoff model for sovereigns in which a sovereign trades off the returns it can

earn on domestic investments by issuing debt and the costs of default. He then extracts

a time series for the sovereign asset value using local stock prices and determines the

model-implied credit spread. Chernov (2016) builds a sovereign contingent claims model

to determine whether US CDS spreads reflect the risk of fiscal default, a state in which

the budget balance cannot be restored by raising taxes or eroding the real value of debt

by raising inflation.

This paper also builds upon the previous sovereign credit risk literature by considering

the fact that unlike the optimal capital structure problem for firms, which takes inflation

as given so firms have no control over the real value of nominal liabilities, sovereigns have

the ability to affect the real values of nominal government debt through the strategic use

of inflation. To my knowledge, it is the first paper to so. Papers which consider the effect

of inflation on corporate default are Bhamra, Fisher, and Kuehn (2011) and Kang and
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Pflueger (2015). These papers address how monetary policy and inflation can have effects

on the real economy outside the sticky price paradigm of the New Keynesian literature.

Additionally, this paper adds to the literature on optimal monetary policy. New

Keynesian optimal monetary policy models were summarized by Clarida, Gertler, and Gaĺı

(1999). This line of research mostly focuses on how inflation and the output gap should

respond to cost-push shocks so as to minimize a quadratic loss function derived from the

welfare of a representative agent. However, these papers do not consider deadweight losses

in sovereign default as a possible motivation to use inflation strategically to avoid default.

In the remainder of this paper, I will introduce the model in section 2, analyze the

comparative statics in section 3, go over the data sources in section 4, calibrate the model

in section 5, discuss the results in section 6, and finally, conclude in section 7 with some

suggestions for future work.

2.2 Model

2.2.1 Environment

I consider the case of an N country monetary union. The following presentation of the

model does not presume that the parameters are symmetric across countries.

I assume that capital markets are frictionless, complete, and investors have perfect

information on the state of the economy. Additionally, time is continuous and goes on

forever. Superscripts and subscripts i = 1, ..., N will index the country being referred

to and nominal quantities will be denoted with a star. I consider N sovereign countries

with infinite lifespans. Each country is constituted of a representative unlevered firm as

in Jeanneret (2015), which generates an infinite stream of operating income in nominal

terms of Y i,∗ and the government imposes a tax rate of τi on the operating income of the

representative firm so that the sovereign receives an infinite stream of nominal cashflows,

60



τiY
i,∗ at every instant. Each representative firm’s nominal asset value, V i,∗, is the value

of the claim on this infinite stream of nominal cashflows so the discounted value of the

government’s fiscal revenues is τiV
i,∗. The real operating cashflows of the each country’s

representative firm evolve according to the following geometric Brownian motion:

dY i
t

Y i
t

= µidt+ σidW
i
t (2.1)

= µidt+ σiλidXt + σi

√
1− λ2

i dZ
i
t (2.2)

where W i
t is a standard Brownian motion under the physical measure, and µi and σi

are the expected growth rate and volatility of operating cashflows, respectively. The

Brownian motion driving the cashflow process of the home representative firm, W i
t =

λiXt +
√

1− λ2
iZ

i
t , is comprised of a aggregate component Xt, a country-specific compo-

nent Zi
t , and is constructed so the correlation between W i

t and Xt is corr(W i
t , Xt) = λi.

Xt and each Zi
t are standard Brownian motions which are uncorrelated with all other

primitive shocks in the economy. The specification of shocks follows a one factor model,

so the only source of covariance between the real cashflows of each country’s representa-

tive firms is the aggregate shock. The correlation between the driving Brownian motions

of countries i and j is corr(W i
t ,W

j
t ) = λiλj. Financial markets are integrated and all

assets are priced by the same international investor. The model is partial equilibrium and

the real pricing kernel of the international investor is specified exogenously as

dMt

Mt

= −rdt− θdXt, (2.3)

where r is the international real risk-free rate and θ is the market price of risk on the

aggregate component of the real cashflow process of the representative firm. The country-

specific component of the Brownian motion driving the cashflow process of each country’s

representative firm is not priced by the international investor since it is diversifiable risk
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in the sense that the international investor is risk-averse over international output which

is the sum of the outputs of a large number of countries. The real risk-free rate is the

same across all maturities so the real term structure is flat. Since all the countries under

consideration are in Europe, international in the context of this model is European. The

aggregate shock is an aggregate European shock and the price of risk will be the Sharpe

ratio of a broad index of European companies spanning the entire Eurozone.

Nominal quantities are real quantities multiplied by P i
t , the price level in country i.

The price level process in country i follows the geometric Brownian motion

dP i
t

P i
t

= ai,0dt+ ai,XdXt +
N∑
j=1

ai,jdZ
j
t , (2.4)

where the coefficient vector ai = [ai,0, ai,X , ai,1, ..., ai,N ]′ is a constant vector. The coeffi-

cients are determined endogenously as part of the optimal monetary policy problem, the

details of which are given in the next section. The nominal pricing kernel in each country

is M i,∗
t = Mt

P i
t
. By an application of Ito’s lemma, the nominal pricing kernel in country i

is found to follow the process

dM i,∗
t

M i,∗
t

= −r∗i dt− (θ + ai,X)dXt −
N∑
j=1

ai,jdZ
j
t , (2.5)

where r∗i = r + ai,0 − θai,X − a2
i,X −

∑N
j=1 a

2
i,j is the nominal risk-free rate in country i.

The term θai,X is the risk premium investors demand for inflation risk created by the

aggregate shock. Note that there is no inflation risk premium for the country-specific

shocks.

What is the nature of the restrictions imposed on the price level processes of each

country by membership in a monetary union? In a complete markets setting, the nominal

exchange rate between countries i and j is the ratio of their nominal pricing kernels,

Si,jt =
M∗,j

t

M∗,i
t

=
P i
t

P j
t

. An application of Ito’s rule shows that the nominal exchange rate
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follows the geometric Brownian motion

dSi,jt

Si,jt
=

(
ai,0 − aj,0 + a2

j,X +
N∑
k=1

a2
j,k − ai,Xaj,X −

N∑
k=1

ai,kaj,k

)
dt+ (ai,X − aj,X)dXt

+
N∑
k=1

(ai,k − aj,k)dZk
t . (2.6)

In a monetary union, the nominal exchange rate stays constant between any two pairs of

countries i and j, imposing the restriction dSi,jt = 0. The implication is that the coefficient

vectors of the price level processes of each country must be the same: ai = aj ∀i, j. There

is one inflation rate for all countries in the monetary union. This result corresponds to

the special case in which the real pricing kernels are identical across countries. If it were

not the case that the real pricing kernels were the same, the price level processes would

differ. From this point on, I drop the country-specific subscripts for the price level process

and the nominal pricing kernel.

The nominal cashflow process for the representative firm of country i is Y i,∗
t = YtP

i,∗
t ,

and by another application of Ito’s lemma follows the process

dY i,∗
t

Y i,∗
t

=

(
µi + a0 + σiλiaX + σi

√
1− λ2

i ai

)
dt+(σiλi+aX)dXt+

(
σi

√
1− λ2

i + ai

)
dZi

t

+
N∑

j=1(j 6=i)

ajdZ
j
t . (2.7)

Under the nominal risk-neutral measure, Q∗, the nominal cashflow process can be shown

to follow

dY i,∗
t

Y i,∗
t

=

[
µi − θ(σiλi + aX) + a0 − a2

X −
N∑
j=1

a2
j

]
dt+ (σiλi + aX)dXQ

∗

t

+

(
σi

√
1− λ2

i + ai

)
dZi,Q∗

t +
N∑

j=1(j 6=i)

ajdZ
j,Q∗

t . (2.8)
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The drift and volatility of the nominal cashflow process under the nominal risk-neutral

measure will be important later so I define them as µ̃∗i = µi − θ(σiλi + aX) + a0 − a2
X −∑N

j=1 a
2
j and σ∗i =

√
(σiλi + aX)2 + (σi

√
1− λ2

i + ai)2 +
∑N

j=1(j 6=i) a
2
j , respectively. See

Appendixes B.1 and B.2 for details on the above derivations. The volatility is minimized

at aX = −σiλi, ai = −σi
√

1− λ2
i , and aj = 0 for all j 6= i. This illustrates a fundamental

problem of the monetary authority in a monetary union. With one inflation rate for a

group of countries, the monetary authority is less effective in hedging its nominal liabilities.

The nominal asset value of the representative firm of country i is

V i,∗
t = EQ

∗

t

[∫ ∞
t

e−r
∗TY i,∗

T dT

]
(2.9)

=
Y i,∗
t

r∗ − µ̃∗i
. (2.10)

The present value of fiscal revenues of country i can then be calculated as

V i,∗
g,t = EQ

∗

t

[∫ ∞
t

e−r
∗T τiY

i,∗
T dT

]
(2.11)

=
τiY

i,∗
t

r∗ − µ̃∗i
. (2.12)

See Appendix B.3 for the details of these calculations. The restriction r∗ > µ̃∗i ensures

that present values are finite. Therefore, V i,∗
g,t = τV i,∗

t and the present value of fiscal

revenues of each country follow the same process as the nominal asset value and nominal

cashflow process of the representative firm. This fact allows us to take the nominal asset

value process of the representative firm as a proxy for the present value of fiscal revenues

of the sovereign when performing the calibration. From this point on, I will work with

the nominal asset value process of the representative firm.
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2.2.2 Sovereign Debt Pricing

Country i issues an infinite maturity nominal debt contract, with level Di,∗(V i,∗) and

continuous coupon Ci,∗. Sovereigns are allowed to strategically default on their debt. The

government defaults at time T iD = inf{t ≥ 0|V i,∗
t ≤ V i,∗

D } when the nominal asset value of

the sovereign falls to the default threshold. By Ito’s lemma, the value of perpetual debt

for country i satisfies the partial differential equation

1

2
(σ∗i )

2(V i,∗)2Di,∗
V V + µ̃∗iV

i,∗Di,∗
V + Ci,∗ = r∗i V

i,∗, (2.13)

where Di,∗
V and Di,∗

V V are first and second derivatives of sovereign debt value with respect

to nominal asset value. When the nominal asset value tends approaches infinity, the value

of sovereign debt should approach the value of nominal risk-free debt. Additionally, when

the nominal asset value approaches the default threshold, the government and its lenders

restructure the debt contract and agree to a reduction φi ∈ [0, 1] in debt service. These

two conditions define the boundary conditions for solving the PDE. In mathematical terms

the first and second conditions are

lim
V i,∗→∞

Di,∗(V i,∗) =
Ci,∗

r∗
(2.14)

and

lim
V i,∗→V i,∗

D

Di,∗(V i,∗) =
(1− φi)Ci,∗

r∗
(2.15)

Therefore, the value of sovereign debt as defined by the boundary conditions above is

Di,∗(V i,∗) = EQ
∗

[∫ T i
D

0

Ci,∗e−r
∗tdt

]
+ EQ

∗

[∫ ∞
T i
D

(1− φi)Ci,∗e−r
∗tdt

]
(2.16)

=
Ci,∗

r∗

[
1− φi

(
V i,∗

V i,∗
D

)ξi]
, (2.17)
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where ξi = −1
(σ∗

i )2

(
µ∗i −

(σ∗
i )2

2
+

√(
µ∗i −

(σ∗
i )2

2

)2

+ 2(σ∗i )
2r∗

)
< 0 and V i,∗

D is an exoge-

nously given default boundary. The value P i
D = φi

(
V i,∗

V i,∗
D

)ξi
is the Arrow-Debreu price of

default, which is defined as P i
D ≡ EQ

∗
[e−rT

i
D ], and has the interpretation of the price of a

claim on 1 euro conditional on future default.

Sovereign debt issuance generates economic value, allowing the government to earn a

return on domestic investment r∗i,g. However, an increase in the level of debt raises the

probability of default. In a situation where default is costly, a rise in the probability of

default matters when determining the optimal level of debt. If default occurs, the level

of firm income drops by a fraction γ ∈ [0, 1]. Therefore, sovereigns weigh the costs and

benefits of issuing debt when deciding how much debt to issue.

2.2.3 Sovereign Wealth

As in Jeanneret (2015), sovereign wealth is defined as the present value of fiscal revenues

net of the present value of future debt payments taking into account the benefits and

costs of debt issuance. Sovereign wealth W i,∗(V i,∗) is then defined as

W i,∗(V i,∗) = EQ
∗
[∫ ∞

0

(τiY
i,∗
t − Ci,∗)e−r

∗tdt

]
+ αiD

i,∗(V i,∗) + EQ
∗

[∫ ∞
T i
D

Ci,∗φie
−r∗tdt

]
(2.18)

− EQ∗

[∫ ∞
T i
D

γiτiY
i,∗
t e−r

∗tdt

]

= τiV
i,∗ − γiτiV i,∗

D

(
V i,∗

V i,∗
D

)ξi
+

(αi − 1)Ci,∗

r∗

[
1− φi

(
V i,∗

V i,∗
D

)ξi]
, (2.19)

where αi = EQ
∗
[
∫∞

0
r∗i,ge

−r∗tdt] =
r∗i,g
r∗

is the discounted benefit of issuing one unit of debt.

The first term in equation 2.18 above represents the present value of fiscal revenues net

of debt payments. The second term is the incentive sovereigns have to issue an additional
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unit of debt. The third and fourth terms are the benefits and costs for the sovereign of

defaulting on its debt.

2.2.4 Optimal Default Boundary

So far I have assumed the default boundary is exogenously given and have solved for the

value of debt and sovereign wealth given an arbitrary default boundary. I now endogenize

the default policy of the government. Households are the eventual future beneficiaries of

sovereign wealth so the government should choose a default policy to maximize sovereign

wealth such that the smooth-pasting condition ∂W i,∗(V i,∗)
∂V i,∗ |V i,∗=V i,∗

D
= τi(1− γi) is satisfied.

The optimal default boundary is found to be

V i,∗,opt
D =

Ci,∗φi(αi − 1)ξi

τir∗γi(1− ξi)
. (2.20)

The higher the gain from restructuring upon default, Ci,∗φi, the more willing the sovereign

is to default and the higher the default boundary. The higher the economic costs of default,

γi, the less willing sovereigns will be to default and the lower the default boundary.

2.2.5 Optimal Level of Debt

The next step is to endogenize the coupon rate, Ci,∗, to maximize the total value,

T i,∗(V i,∗) = W i,∗(V i,∗) +Di,∗(V i,∗), of the sovereign at t = 0. The total value of sovereign

i is the sum of sovereign wealth (equation 2.19) and the value of debt (equation 2.17):

T i,∗(V i,∗) = τiV
i,∗ − γiτiV i,∗

D

(
V i,∗

V i,∗
D

)ξi
+
αiC

i,∗

r∗

[
1− φ

(
V i,∗

V i,∗
D

)ξi]
. (2.21)

The second term on the right hand side of equation 2.21 is the expected loss in default for

the sovereign and the third term is the benefits of debt. The sovereign solves the following
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optimization problem to determine the optimal coupon rate:

Ci,∗ = arg max
Ci,∗>0

T i,∗(V i,∗
0 ) = arg max

Ci,∗>0

W i,∗(V i,∗
0 ) +Di,∗(V i,∗

0 ) (2.22)

=
τiV

i,∗
0 r∗i γi(1− ξi)
φi(αi − 1)ξi

(
φi(α− ξi)

αi

)1/ξi

. (2.23)

The optimal coupon rate is increasing in initial nominal asset value and the benefits of

issuing debt. It is increasing in the economic costs of default as the higher the economic

costs of default, the lower the default boundary and it is decreasing in the expected debt

reduction upon default since the higher the expected debt reduction, the higher the default

boundary.

2.2.6 Risk-Neutral Probabilities of Sovereign Default and Credit

Spreads

The risk-neutral probability of sovereign default for country i before time T is

P

(
inf

0≤t≤T
V i,∗
t ≤ V i,∗

D |V
i,∗

0 > V i,∗
D

)
= Φ

 log
(
V i,∗
D

V i,∗
0

)
− (µ̃∗i − .5(σ∗i )

2)T

σ∗i
√
T


+

(
V i,∗
D

V i,∗
0

)−ξi−1

Φ

 log
(
V i,∗
D

V i,∗
0

)
+ (µ̃∗i − .5(σ∗i )

2)T

σ∗i
√
T

 , (2.24)

where Φ() is the cumulative distribution function of a standard normal. Sovereign credit

spreads are a measure of the market’s perception of default risk. The above expression is

the risk-neutral probability of sovereign default because the drift, µ̃∗i , is the drift under the

risk-neutral measure. The physical default probability before time T would be identical

to the above expression except that µ̃∗i would be replaced by µ∗i . The credit spread for the

defaultable consol bond issued by the sovereign is the difference between the yield on this
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bond and the yield on a nominal risk-free consol bond. The nominal risk-free bond is still

subject to inflation risk but is free from default risk. Credit spreads on the defaultable

consol issued by country i can be written as

CS(V i,∗) ≡ Ci,∗

Di,∗(V i,∗)
− r∗. (2.25)

At the optimal coupon level and default boundary, this expression can be expressed in

closed form in terms of the deep parameters of the model:

CS(V i,∗) = r∗

 1

1− αi

αi−ξi

(
V i,∗

V ∗
0

)ξi − 1

 . (2.26)

2.2.7 Optimal Monetary Policy Problem

The determination of the optimal default boundary and the coupon rate have so far taken

inflation as given. The last step is for the monetary authority is to solve the optimal

monetary policy problem to determine the coefficient vector a = [a0, aX , a1, ..., aN ]′ of

the price level process. The monetary authority commits to a mean inflation rate of

a0 so it takes the drift coefficient as given. Therefore, it is necessary to determine the

remaining N + 1 coefficients. The directive of the monetary authority is to maximize an

objective function consisting of the sum of the total values of the sovereigns comprising

the monetary union, weighted by the relative weight that the monetary authority puts on

each sovereign, where weights are proportional to the fraction of output contributed by

each country to the total output of the entire monetary union. The monetary authority

will be constrained in this maximization problem to keep the volatility of inflation below

a certain threshold value. It solves the optimal policy problem under commitment, that

is, it chooses the coefficient vector at t = 0 and cannot reoptimize at a later date. This is

opposed to discretionary monetary policy, in which the monetary authority can reoptimize
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at future dates. The optimal monetary policy problem can be written succinctly as

aopt = arg max
σP<σ̄P

N∑
i=1

δiT
i,∗(V i,∗

0 ), (2.27)

where σP =
√
a2
X +

∑N
j=1 a

2
j and σ̄P > 0. Without loss of generality, let the weights

satisfy
∑N

i=1 δi = 1. The problem above is highly nonlinear, but can be solved relatively

quickly for N < 10. The computational time increases rapidly for higher dimensional

cases.

2.3 Comparative Statics

To gain some intuition about the optimization problem solved by the monetary authority,

it is instructive to see how varying the coefficient vector of the price level process changes

the benefits of debt issuance, the expected loss in default, the Arrow-Debreu prices of

default, and the monetary policy objective function in a simple two country model. The

countries are completely symmetric in terms of parameters in the following plots. The

plots show how the quantities vary with aX , a1, and a2. However, I do allow the weights

on the total values of each country in the monetary policy objective function to differ,

where specified.

Figure 2.1 plots the Arrow-Debreu prices of default for countries 1 and 2 vs. aX . The

Arrow-Debreu prices of default for both countries 1 and 2 are increasing in aX . Both

countries share this aggregate shock, so offsetting it through countercyclical inflation will

reduce the volatility of the shock to the nominal asset value of both countries, reducing

the Arrow-Debreu price of default.

Figure 2.2 plots the benefits of debt for countries 1 and 2 vs. aX . The benefits of

debt are decreasing then increasing in aX . Why is this so? For intermediate values of

aX , increasing aX has negligible effects on the risk-neutral drift but increases volatility,
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leading to lower values for defaultable debt. For large positive values of aX , the risk-

neutral drift is decreasing rapidly in aX and the volatility is increasing rapidly in aX ,

so that the Arrow-Debreu price of default is increasing rapidly in aX . The nominal-risk

free rate falls, however, at large values of aX , leading to a steep increase in the value of

nominal risk-free debt. The value of defaultable debt is the value of nominal risk-free

debt times one minus the Arrow-Debreu price of default. The increase in the value of

the nominal risk-free debt outpaces the increase in the Arrow-Debreu price of default for

values of aX in this range.

Figure 2.3 plots the expected loss in default for countries 1 and 2 vs. aX . The

expected loss in default is the product of the default boundary and the Arrow-Debreu

price of default, up to a constant multiple, so we need to understand how the default

boundary changes with aX . The curve for the optimal default boundary has the same

basic shape as the curve for benefits to debt since the sovereign would like to set a low

default boundary when default is likely and a high default boundary when it is not,

except when nominal risk-free rates are so low that optimal coupon levels are very high

despite the high levels of default risk, implying that a reduction in debt service through

default would be strategically advantageous. The decreasing default boundary dominates

the increasing Arrow-Debreu prices of default for intermediate values of aX , so there is a

slight negative slope to the curve for expected default loss in this range. For large positive

values of aX , both the default boundary and Arrow-Debreu prices of default are increasing

so the expected loss in default increases rapidly for these aX .

I plot only country 1’s Arrow-Debreu prices of default, benefits of debt, and expected

loss in default vs. the coefficients for the country-specific shocks in Figures 2.4, 2.5, and

2.6, respectively. The results for country 2 will be symmetric. For the coefficients of the

country-specific shocks, a1 and a2, the Arrow-Debreu prices of default of each country

are minimized at negative values of the coefficient of their own country-specific shock and

at zero for the coefficient of the other country’s country-specific shock. Why are Arrow-
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Debreu prices of default minimized at less negative values for the own country-specific

shock than the aggregate shock? There are two reasons for this. The first is that in

this calibration the volatility of the aggregate shock is larger than the volatility of the

country-specific shock: σ1λ1 > σ1

√
1− λ2

1. The second reason is that making aX more

negative has a first-order impact on increasing the risk-neutral drift µ̃i through the term

−θaX , whereas this term is not present for the own country-specific shock.

The benefits of debt follow the same pattern as the Arrow-Debreu prices of default,

being maximized at negative values for the coefficient of own country-specific shocks and

at zero for the coefficient of the other country’s country-specific shock. The debt benefit

curves here are different than the one for aX since changes in the coefficients of the

country-specific shocks have only a second-order impact on the value of nominal risk-free

debt through the nominal risk-free rate. The plots for expected losses in default mirrors

the one for the optimal default boundary, which has a similar shape to the benefits to

debt plot: high at low Arrow-Debreu prices of default and low at high Arrow-Debreu

prices of default.

The monetary policy objective function for the case in which the weights are asymmet-

ric (δ1 = 2, δ1 = 1) is plotted vs. aX and the coefficients for the country-specific shocks

in Figures 2.7 and 2.8, respectively. Examining the monetary policy objective function

where the weights are asymmetric, it is clear that the country with the higher weight

will benefit from more countercyclical inflation in its own country-specific shock than the

country with the lower weight on it. In a real world context, this means that smaller

countries will bear more of the costs of the loss of flexibility in monetary policy when it

comes to joining a monetary union and will pay these costs through a more pronounced

reduction in total sovereign value and increase in credit spreads when compared to the

counterfactual of the country conducting its own independent monetary policy than will

be the case for larger countries. Countries 1 and 2 both benefit equally from counter-

cyclical inflation in the aggregate shock. The objective function decreases with increasing
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aX up to a point, then increases. This is due to a discount rate effect as discussed ear-

lier. The nominal risk-free rate falls to a low level for high aX , leading to a significant

increase in the value of the benefits of debt. This effect outweighs the reduction in total

sovereign value caused by the increased volatility in the nominal asset value process of

the representative firm for aX in this range. For any reasonable calibration, however, the

imperative for the monetary authority to keep the volatility of inflation low will dictate

that the optimal value of aX is negative.

Asymmetries in the parameter values can also affect the degree to which monetary

policy is skewed to benefit one country at the expense of another even in the case of the

weights on both countries in the objective function being equal (δ1 = δ2 = 1). Asym-

metries in the volatility of the real cashflow processes of the representative firms of each

country, σi, have the greatest impact, all other parameters equal. The country with the

lower volatility will benefit more from membership in a monetary union as the monetary

authority makes inflation more countercyclical with respect to the country-specific shock

of the lower volatility country. This seems counterintuitive, but can be understood by

the fact that total sovereign value is higher for the country with the lower volatility so

it takes precedence in a monetary policy objective function which is the sum of the total

values of each sovereign. Asymmetries in drift, µi, have a much less noticeable impact.

2.4 Data

I will focus on the time period from 2005-2016 for a sample of eight Eurozone countries

including Austria, Belgium, Finland, France, Germany, Italy, the Netherlands, and Spain.

These countries collectively account for 92% of total Eurozone output, and represent the

eight largest Eurozone countries in terms of output. Quarterly data on 10 year sovereign

yields comes from the St. Louis Fred database. To calculate credit spreads, it is necessary

to identify a risk-free instrument denominated in Euros. The standard practice is to
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assume German bonds are free of default risk. Therefore, credit spreads are calculated by

subtracting the yield on the 10 year German bond from the yield on the 10 year bonds

of each country. Therefore, German bonds by definition have credit spreads of zero.

Summary statistics for credit spreads are shown in Table 2.1 for the period from 2005-

2016. Quarterly data on real GDP for the eight Eurozone countries and Harmonized Index

of Consumer Prices data also come from the St. Louis Fred database. Average annual

Eurozone GDP growth is measured as the annualized (×4) log difference in quarterly

GDP. The annual volatility of European GDP growth is measured as the annualized

(×
√

4) volatility of the log difference in quarterly GDP. Annual inflation volatility is

measured as the annualized volatility of the log difference in the quarterly Harmonized

Index of Consumer Prices.

2.5 Calibration

In the following section, I lay out the baseline calibration, which will be used to determine

the fraction of credit spreads that can be attributed to membership in a monetary union.

The model is calibrated at an annual frequency. First, I will calibrate the parameters

which will be constant across all countries. I normalize V ∗0 = 100 without loss of gener-

ality. The relative size and importance of each country in the monetary policy objective

function is captured by the δi parameters. The real risk-free interest rate, r, is taken to

be 2% annually, consistent with the asset pricing literature. The return on government

investment, r∗g , is estimated by Jeanneret (2015) to average out to 0.26% for European

countries using a nominal risk-free rate of 3.52%, implying an α = 0.074. I use α instead

of r∗g directly since the nominal risk-free rate is endogenous in my model and decreasing

the nominal risk-free rate through inflation would artificially increase α. The parameter,

λ, specifying the correlation of the driving Brownian motions of the real cashflow pro-

cesses of the representative firms with the aggregate shock is determined by the fact that
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the average pairwise correlation of quarterly real GDP growth in my sample of Eurozone

countries over the period from 2005-2016 is 0.72. Then since all countries are symmetric in

this parameter value, it must be the case that λ =
√

0.72 = 0.85. The matrix showing the

pairwise correlation in GDP growth for every country in the sample is shown in Table 2.3.

The expected loss, φ, to debtholders upon default is set at 0.60 according to the market

convention for the quotation of sovereign credit default swap contracts. The corporate

tax rate, τ = 0.30, is taken from Jeanneret (2015). The value of the expected economic

contraction upon default, γ = 0.05, is taken from Jeanneret (2015) and Mendoza and

Yue (2012). This parameter has minor effects on credit spreads and other quantities of

interest. The market price of aggregate risk, θ = 0.15, is set to the Sharpe ratio of the

MSCI European Index, a broad index comprised of large and medium cap stocks across 15

developed markets in Europe. The volatility of inflation constraint, σ̄P , is set to 0.0167,

matching the annual volatility of the growth in the Harmonized Index of Consumer Prices

over the period from 2005-2016. I assume the monetary authority commits to a mean

inflation rate of 0 so a0 = 0. This parameter does not play an important role in the

analysis.

Finally, it is necessary to calibrate country-specific parameters. Chen (2013) argues

that government revenue is perfectly correlated with GDP but is more volatile. In my

setup, with government revenue coming from the taxation of a representative firm, this

means that the real cashflow process of the representative firm will be perfectly correlated

with GDP but more volatile than it. I also impose the additional restriction that the drift

of the cashflow process of the representative firm is the same as the mean of real GDP

growth, µi = µi,GDP . The drift of the real cashflow process of the representative firm

of each country is the average of annual real GDP growth over the sample period. The

volatility of the real cashflow process of the representative firm is a multiple, mi, of the

volatility of real GDP growth in the sample, σi = miσi,GDP . I choose mi for each country

in order to match the level of credit spreads in that particular country. I match these
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spreads assuming that the country conducts its own monetary policy since to match these

spreads in a monetary union, I would need knowledge of the other countries’ mi’s. As a

result, the level of credit spreads of the countries assuming a monetary union arrangement

will not match the levels in the data, but will be close. Since my objective is to estimate

the fraction of credit spreads attributable to loss of flexibility in monetary policy in a

monetary union, matching the exact level of credit spreads is not essential. The final

set of parameters to calibrate are the δi, the weights on the total value of each sovereign

in the monetary policy objective function. The weights are determined by finding the

relative contribution to total output, as defined by the total output of the eight countries

in the sample, that each individual country makes averaged over the time period under

consideration. The mean and volatility of GDP growth of each country as well as the mi,

σi, and δi are shown in Table 2.4.

2.6 Results

In the following tables, I compare the benefits of debt, expected losses in default, credit

spreads, Arrow-Debreu prices of default, and 10-year default probabilities for the case

in which the countries are assumed to be in a monetary union and the counterfactual

case in which they are assumed to conduct their own independent monetary policies. I

also calculate the monetary union risk premium as a fraction of credit spreads. First,

I examine the baseline calibration, then provide a discussion of the quantitative results

given in Tables 2.5 through 2.8.

In Table 2.5, we can see that there is a reduction in welfare across the board from being

a member of a monetary union compared to the counterfactual of each country conducting

its own monetary policy. The country that would benefit the least, in percentage terms,

in a transition from a monetary union to an independent monetary policy (Table 2.6) is

Belgium. Italy and Spain are the two countries that would benefit the most, in percentage
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terms, in transitioning. This is due to the high volatility of the nominal asset value

processes for the representative firms of Italy and Spain and the volatility reducing benefits

of an independent monetary policy regime.

The results for credit spreads and Arrow-Debreu prices of default support the previ-

ous findings and are shown in Tables 2.7 and 2.8. Both Italy’s and Spain’s credit spreads

and Arrow-Debreu prices of default would increase the most, in percentage terms, in

transitioning from a monetary union arrangement to an independent monetary policy

arrangement. At first blush, this seems to contradict the welfare results given above.

However, in a transition to an independent monetary policy, Italy and Spain would op-

timally take on much more debt, as they would benefit the most from the reduction in

volatility that comes with an independent monetary policy regime. Upon optimally issu-

ing additional debt, credit spreads and Arrow-Debreu prices of default would increase. In

fact, these are the only two countries that would experience an increase in credit spreads

and Arrow-Debreu prices of default in transitioning to an independent monetary policy.

For the rest of the countries in the sample, the volatility reduction afforded by transition-

ing to an independent monetary policy is not great enough to encourage the sovereign to

issue significantly more debt. Instead, the reduction in volatility will lead to lower credit

spreads and Arrow-Debreu prices of default. Italy and Spain would also experience the

biggest increase in 10-year default probabilities as a result of transitioning.

Finland’s and the Netherland’s credit spreads and Arrow-Debreu prices of default

would decrease the most, in percentage terms, in a transition. However, their 10-year

default probabilities would increase. The marked difference in results between the Arrow-

Debreu prices of default and the 10-year default probabilities for Finland and the Nether-

lands can be chalked up to the fact that the low volatility of the real asset value processes

of Finland and the Netherlands make volatility reduction more apparent in the long run,

whereas for countries with higher volatilities, this reduction will be more apparent over

shorter horizons. This is due to the fact that the expected survival time for a low volatility
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countries is longer than than the expected survival time for a high volatility country. Bel-

gium and France would see the biggest decreases, in percentage terms, in 10-year default

probabilities.

The monetary union risk premium as a fraction of credit spreads is defined as the credit

spread assuming the country is in a monetary union minus the credit spread assuming it

conducts its own monetary policy divided by the credit spread assuming the country is

in a monetary union. The monetary union risk premium is the risk premium investors

demand on sovereign debt due to loss of flexibility in monetary policy associated with

entering a monetary union. The results are shown in Figure 2.8. The credit spreads of

Finland and the Netherlands have the highest monetary union risk premium as a fraction

of spreads and Italy and Spain have the lowest. In fact, the risk premium is negative for

Italy and Spain. From these results it is clear that the countries which are most hurt by

membership in the monetary union are also the countries with the lowest monetary union

risk premium as a fraction of credit spreads: Italy and Spain. These two countries are also

the least credit-worthy countries in the sample. Conversely, the countries that are hurt

the least by monetary union membership are Belgium and France. However, the countries

that have the highest monetary union risk premium as a fraction of credit spreads are the

two most credit-worthy countries in the sample: Finland and the Netherlands.

Belgium and France, due to their higher volatilities, take on more debt than Finland

and the Netherlands in a transition from a monetary union to an independent monetary

policy leading to a less pronounced reduction in credit spreads and a lower monetary union

risk premium as a fraction of credit spreads. From the discussion above, a consistent

pattern emerges: a country with a higher volatility issues more debt in a transition from

a monetary union arrangement to an independent monetary policy arrangement, causing

them to benefit more from an independent monetary policy than an otherwise similar

country with a lower volatility.
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2.7 Conclusion

This paper studies a structural model of sovereign credit risk in a monetary union in

which the inflation rate is endogenously chosen to maximize an objective function of

the weighted sum of the total values of each sovereign. Inflation reduces the real value

of nominal debt in bad times and increases it in good times. Therefore, when default

is costly, inflation serves as an important part of the capital structure problem of the

sovereign. In a monetary union, the effectiveness of this hedging mechanism is reduced

since the nominal asset values of the representative firms in each country have imperfectly

correlated shocks. The weights correspond to the relative contribution of each country to

the output of the monetary union. The model provides estimates on how transitioning

from a monetary union to conducting independent monetary policy affects the benefits of

debt, expected losses in default, credit spreads, Arrow-Debreu prices of default, and 10-

year probabilities of default. The model also quantifies the monetary union risk premium

as a fraction of credit spreads. These estimates range from −4.6% to 11.8% of credit

spreads, depending on the country under consideration. The countries with the highest

monetary union risk premium as a fraction of spreads are Finland and the Netherlands and

those with the lowest are Italy and Spain. Keep in mind, however, that these estimates

do not consider the benefits that joining a monetary union has on output, including lower

transaction costs and exchange rate stability.

There are many possibilities to extend the model in this paper to explore the trade-off

between entering a monetary union and retaining control of monetary policy. A benefit

of entering a monetary union might be decreased transaction costs for trading and lower

exchange rate volatility between member countries and a cost would be the decreased

flexibility in setting inflation rates explored in this paper. Quantifying the benefits of

decreased transaction costs and lower exchange rate volatility is a challenging direction

for future work in this area.
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Table 2.1: Credit Spread Summary Statistics (2005-2016)

N Mean (bp) St. Dev. (bp) Min Max

Austria 48 38 31 0 122

Belgium 48 61 55 4 253

Finland 48 25 18 -4 80

France 48 40 32 2 135

Germany 48 0 0.00 0 0

Italy 48 148 121 14 468

Netherlands 48 25 17 0 67

Spain 48 142 136 1 507
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Table 2.2: Calibration of Parameters Constant Across Countries

V ∗0 α λ φ τ γ θ σ̄P

100 0.074 0.85 0.60 0.30 0.05 0.15 0.0167

Table 2.3: Quarterly Correlation in GDP growth 2005-2016

Austria Belgium Finland France Germany Italy Netherlands Spain

Austria 1 0.75 0.61 0.77 0.76 0.76 0.59 0.53

Belgium 1 0.66 0.78 0.75 0.84 0.63 0.62

Finland 1 0.74 0.83 0.72 0.78 0.57

France 1 0.85 0.77 0.53 0.93

Germany 1 0.75 0.72 0.94

Italy 1 0.73 0.86

Netherlands 1 0.75

Spain 1

Table 2.4: Calibration of Country-Specific Parameters

µi,GDP = µi σi,GDP mi σi = miσi,GDP δi

Austria 0.0133 0.0151 16.03 0.2420 0.034

Belgium 0.0122 0.0115 27.33 0.3143 0.042

Finland 0.0060 0.0279 6.20 0.1730 0.022

France 0.0092 0.0100 23.97 0.2397 0.23

Germany 0.0147 0.0192 5.2E-5 1E-6 0.30

Italy -0.0020 0.0153 31.51 0.4820 0.19

Netherlands 0.0129 0.0146 12.82 0.1871 0.072

Spain 0.0090 0.0139 34.90 0.4851 0.12

88



Table 2.5: Benefits of Debt and Expected Losses in Default (×104)

Ben. of Debt

-Exp. Loss

in Def.

(m.u.)

Ben. of Debt

-Exp. Loss

in Def.

(ind.)

Ben. of Debt

(m.u.)

Ben. of Debt

(ind.)

Exp. Loss

in Def.

(m.u.)

Exp. Loss

in Def.

(ind.)

Austria 58.803 74.943 187.001 213.496 128.198 138.553

Belgium 39.164 44.642 159.886 165.031 120.722 120.389

Finland 96.432 130.353 247.543 297.819 151.111 167.466

France 55.955 70.635 182.338 206.470 126.383 135.835

Italy 58.211 96.972 360.366 658.307 302.155 561.335

Netherlands 99.905 135.623 252.879 305.291 152.974 169.668

Spain 53.345 85.914 323.027 565.103 269.681 480.189

Table 2.6: % Change in Benefits of Debt and Expected Losses in Default in Transitioning

From a Monetary Union to an Independent Monetary Policy

% Change

Ben. of Debt

-Exp. Loss in Def.

% Change

Ben. of Debt

% Change

Exp. Loss in Def.

Austria 27.5 14.2 8.1

Belgium 14.0 3.2 -0.3

Finland 35.2 20.3 10.8

France 26.2 13.2 7.5

Italy 66.6 82.7 85.8

Netherlands 35.8 20.7 10.9

Spain 61.1 74.9 78.1
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Table 2.7: Credit Spreads, Arrow-Debreu Prices of Default, 10-Year Default Probabilities

Credit

Spreads

in bp (m.u.)

Credit

Spreads

in bp (ind.)

A-D Price

of Def. (m.u.)

A-D Price

of Def. (ind.)

10-year

Def. Prob.

in % (m.u.)

10-year

Def. Prob.

in % (ind.)

Austria 42 38 0.290 0.246 0.005717 0.005320

Belgium 65 61 0.411 0.359 0.1252 0.08905

Finland 29 25 0.209 0.171 5.905E-5 6.409E-5

France 44 40 0.301 0.256 0.004334 0.003757

Italy 142 148 0.691 0.771 18.23 32.73

Netherlands 28 25 0.204 0.167 4.175E-4 5.365E-4

Spain 136 142 0.673 0.753 15.46 27.80

Table 2.8: Monetary Union Risk Premium as a Fraction of Credit Spreads and % Change

in Credit Spreads, Arrow-Debreu Prices of Default, and 10-Year Probabilities of Default

in Transitioning From a Monetary Union to an Independent Monetary Policy

Monetary Union

Risk Premium

as Fraction of

Credit Spread in %

% Change

Credit Spreads

% Change

A-D Price of Def.

% Change

10-year Def. Prob.

Austria 9.0 -9.0 -15.1 -6.9

Belgium 6.9 -6.9 -12.7 -28.9

Finland 11.5 -11.5 -18.2 8.5

France 8.7 -8.7 -15.0 -13.3

Italy -4.6 4.6 11.6 79.5

Netherlands 11.8 -11.8 -18.1 28.5

Spain -4.7 4.7 11.9 79.8
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Appendix

B.1 Nominal Exchange Rate, Nominal Pricing Ker-

nel, and Nominal Cashflow Process

The nominal exchange rate between countries i and j is expressed in differential form by

applying Ito’s lemma to Si,jt =
M i,∗

t

Mj,∗
t

=
P i
t

P j
t

.

dSi,jt

Si,jt
=
dP i

t

P i
t

− dP j
t

P j
t

+
d[P j, P j]t

(P j
t )2

− d[P i, P j]t

P i
tP

j
t

= ai,0dt+ ai,XdXt +
N∑
k=1

ai,kdZ
k
t − aj,0dt− aj,XdXt −

N∑
k=1

aj,kdZ
k
t +

(a2
j,X +

∑N
k=1 a

2
j,k)(P

j
t )2dt

(P j
t )2

− (ai,Xaj,X +
∑N

k=1 ai,kaj,k)P
i
tP

j
t

P i
tP

j
t

=

(
ai,0 − aj,0 + a2

j,X +
N∑
k=1

a2
j,k − ai,Xaj,X −

N∑
k=1

ai,kaj,k

)
dt+ (ai,X − aj,X)dXt

+
N∑
k=1

(ai,k − aj,k)dZk
t .

Recognizing that in a monetary union the exchange rate is constant through time for

each pair of countries i and j, the country-specific subscripts can be dropped from the

price level process. The nominal pricing kernel can then be written in differential form

by applying Ito’s lemma to the expression M∗
t = Mt

Pt
, the real pricing kernel divided by
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the price level.

dM∗
t

M∗
t

=
dMt

Mt

− dPt
Pt

+
d[P, P ]t
P 2
t

− d[M,P ]t
MtPt

= −rdt− θdXt − a0dt− aXdXt −
N∑
j=1

ajdZ
j
t +

(a2
X +

∑N
j=1 a

2
j)P

2
t dt

P 2
t

+
θaXMtPtdt

MtPt

= −

(
r + a0 − θaX − a2

X −
N∑
j=1

a2
j

)
dt− (θ + aX)dXt −

N∑
j=1

ajdZ
j
t .

The nominal cashflow process for the representative firm of country i can similarly be

expressed in differential form by applying Ito’s lemma to Y i,∗
t = PtY

i
t .

dY i,∗
t

Y i,∗
t

=
dPt
Pt

+
dY i

t

Y i
t

+
dPtdY

i
t

PtY i
t

= (a0dt+ aXdXt +
N∑
j=1

ajdZ
j
t ) + (µidt+ σidW

i
t ) +

(σiλiaX + σi
√

1− λ2
i ai)PtY

i
t dt

PtY i
t

=

(
µi + a0 + σiλiaX + σi

√
1− λ2

i ai

)
dt+

(
σi

√
1− λ2

i + ai

)
dZi

t + (σiλi + aX)dXt

+
N∑

j=1(j 6=i)

ajdZ
j
t

B.2 Risk-Neutral Measure

Given the exogenously specified process for the nominal pricing kernel, the risk-neutral

dynamics of the nominal cashflow process of the representative firm in each country can

be derived. The nominal pricing kernel, M∗
t , evolves according to

dM∗
t

M∗
t

= −r∗dt− (θ + aX)dXt −
N∑
j=1

ajdZ
j
t .
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The density process for the risk-neutral measure is defined as

dξ∗t
ξ∗t

= Et

[
dQ∗

dP

]
.

The density process and the pricing kernel are related by

ξ∗t = B∗tM
∗
t

where

B∗t = er
∗t

is the time t price of the nominal risk-free bond. B∗0 has been normalized to 1. Applying

Ito’s lemma to the expression for the density process, I obtain

dξ∗t = B∗t dM
∗
t + dB∗tM

∗
t

= B∗t (−r∗M∗
t dt− (θ + aX)M∗

t dXt −
N∑
j=1

ajM
∗
t dZ

j
t ) + r∗B∗t dtM

∗
t

= −(θ + aX)B∗tM
∗
t dXt −

N∑
j=1

ajB
∗
tM

∗
t dZ

j
t .

I now replace M∗
t with

ξ∗t
B∗

t
and divide through by ξ∗t to obtain the expression

dξ∗t
ξ∗t

= −(θ + aX)dXt −
N∑
j=1

ajdZ
j
t .

By the Girsanov Theorem, the new Brownian motions under the risk-neutral measure are

given by

dXQ
∗

t = dXt + (θ + aX)dt
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and

dZj,Q∗

t = dZj
t + ajdt.

for all j between 1 and N . The risk-neutral dynamics of the nominal cashflow process of

the representative firm of country i can be derived now as

dY i,∗
t

Y i,∗
t

=

(
µi + a0 + σiλiaX + σi

√
1− λ2

i ai

)
dt+ (σiλi + aX)dXt +

(
σi

√
1− λ2

i + ai

)
dZi

t

+
N∑

j=1(j 6=i)

ajdZ
j
t

=

(
µi + a0 + σiλiaX + σi

√
1− λ2

i ai

)
dt+ (σiλi + aX)[dXQ

∗

t − (θ + aX)dt]

+

(
σi

√
1− λ2

i + ai

)
(dZi,Q∗

t − aidt) +
N∑

j=1(j 6=i)

aj(dZ
j,Q∗

t − ajdt)

=

[
µi − θ(σiλi + aX) + a0 − a2

X −
N∑
j=1

a2
j

]
dt+ (σiλi + aX)dXQ

∗

t +

(
σi

√
1− λ2

i + ai

)
dZi,Q∗

t

+
N∑

j=1(j 6=i)

ajdZ
j,Q∗

t .
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B.3 Asset Values of the Representative Firm and

Government

The nominal asset value of the representative firm of country i, which is the present value

of nominal cashflows can be calculated as

V i,∗
t = Et

[∫ ∞
t

M∗
TY

i,∗
T dT

]
=

∫ ∞
t

Et[M
∗
TY

i,∗
T ]dT

=

∫ ∞
t

EQ
∗

t [e−r
∗tY i,∗

T ]dT

=

∫ ∞
t

Y i,∗
t e−(r∗−µ̃∗i )TdT

=
Y i,∗
t

r∗ − µ̃∗i
.

Similarly, the nominal asset value of the government of country i is the present value of

the tax revenues of the representative firm:

V i,∗
g,t = Et

[∫ ∞
t

M∗
T τiY

i,∗
T dT

]
=

∫ ∞
t

Et[M
∗
T τiY

i,∗
T ]dT

=

∫ ∞
t

EQ
∗

t [e−r
∗tτiY

i,∗
T ]dT

=

∫ ∞
t

τiY
i,∗
t e−(r∗−µ̃∗i )TdT

=
τiY

i,∗
t

r∗ − µ̃∗i
.

According to these equations, it is clear that V i,∗
g,t = τiV

i,∗
t =

τiY
i,∗
t

r∗−µ̃∗i
and the nominal

asset value of the government, the nominal asset value of the representative firm, and the

nominal cashflows of the representative firm all follow the same GBM.
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Chapter 3

A Heterogeneous-Agent Incomplete

Markets Model of the Term

Structure of Interest Rates
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3.1 Introduction

Recently, Constantinides and Ghosh (2013), hereafter referred to as CG, demonstrated

that a heterogeneous-agent incomplete markets asset pricing model, in which agents have

recursive preferences, and a single state variable, termed household risk, that drives con-

ditional cross-sectional moments of relative household consumption growth can account

for many key features of equity markets. In the model, consumption and dividend growth

are deliberately modeled as i.i.d. processes in order to demonstrate that their results

do not depend on predictability of consumption and dividend growth processes, as long

run risks models such as Bansal and Yaron (2004) do. Beeler and Campbell (2012) pro-

vide criticism of long run risk models, showing that predictability of consumption and

dividend growth is limited in U.S. data. Although both the volatility and third central

moment of the cross-sectional distribution are countercyclical, it is primarily the counter-

cyclical behavior of the third central moment that accounts for the low risk-free rate and

price-dividend ratio and high equity premium in recessions. This paper applies the asset

pricing model of CG to the term structure of interest rates, and investigates whether or

not it can match the means, volatilities, and cyclical properties of interest rates in the

data, in particular of nominal interest rates. We also test whether the model generates

time-varying expected excess returns on nominal bonds, accounting for the failure of the

expectations hypothesis.

The empirical underpinnings of the CG model rely on results by Brav, Constantinides,

and Geczy (2002), Cogley (2002), and Guvenen, Ozkan, and Song (2012). Brav, Constan-

tinides, and Geczy show that a stochastic discount factor calculated as the weighted

average of individual households’ marginal rates of substitution can rationalize the eq-

uity premium with low levels of relative risk aversion. Since the equity premium is not

explained with an SDF calculated as the per capita marginal rate of substitution, there

is evidence of incomplete consumption insurance. Cogley calibrated a model with incom-
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plete consumption insurance that recognizes the cross-sectional variance and skewness of

household consumption growth and finds that both the cross-sectional variance and skew-

ness are weakly correlated with stock returns and generate equity premia of 2 percent or

less at low degrees of risk aversion. Guvenen, Ozkan, and Song find that the skewness,

not the volatility of idiosyncratic earnings shocks is strongly countercyclical by using a

confidential dataset from the U.S. Social Security Administration which contains a na-

tionally representative panel of millions of earnings histories for 10% of all U.S. males

from 1978-2010.

The model is able to account for several of the empirical regularities observed in

the term structure literature, such as deviations from the expectations hypothesis. The

failure of the expectations hypothesis, which requires risk premia on bonds to be constant

(zero), is documented by Campbell and Shiller (1991) and Fama and Bliss (1987). Their

findings indicate that risk premia on bonds are time-varying. The model of CG generates

time-varying risk premia through its household risk variable, accounting for the failure of

the expectations hypothesis. The expectations hypothesis is tested by running long-rate

regressions

y$
n−1,t+1 − y$

n,t = αn + βn
1

n− 1

(
y$
n,t − y$

1,t

)
+ error

where y$
n,t = − 1

n
log(P $

n,t) and P $
n,t is the price of a nominal bond with maturity n. If

the expectations hypothesis were to hold, βn = 1 for all n, but Campbell and Shiller

show that βn < 1 and in fact is negative and decreasing in n. The model in this paper

replicates these findings. Additionally, the model generates a downward sloping real

yield curve on average, which is supported by empirical evidence on U.K. index-linked

bonds as documented by Evans (1998) and Piazzesi and Schneider (2006). Data for U.S.

index-linked bonds indicate a positively sloped term structure but the data dates back to

only 1997 and the market was very illiquid during the early years. The model’s nominal

yield curve is upward sloping on average, an observation that holds robustly in the data.

101



Real yields in the model are procyclical, consistent with empirical findings of Chapman

(1997). The countercyclical nature of nominal yields is inconsistent with Fama (1990) but

consistent with de Lint and Stolin (2003) and Ang et al. (2007).

This work is very similar in spirit to Wachter (2006) and Bansal and Shaliastovich

(2012) in that it takes an asset pricing model linked to macroeconomic fundamentals

and examines its implications for the term structure of interest rates. Wachter employs

Campbell and Cochrane’s (1999) external habit formation model to generate a time-

varying price of risk. In her model, nominal bonds depend on past consumption growth

through habit and on expected inflation. Bansal and Shaliastovich employ Bansal and

Yaron’s (2004) long run risk model and add in uncertainty in the long-run expectation of

inflation to generate time-varying expected excess returns on nominal bonds. They show

that their model quantitatively captures the documented bond predictability features in

the data. The strength of this paper relative to these other two papers is twofold. The first

strength is that it uses a calibration for the real side of the economy that is consistent with

equity return data. Wachter and Bansal and Shaliastovich must use a different calibration

for their term structure papers than the original models of Campbell (1999) and Bansal

(2004) that were fit to equity return data. The second, and perhaps more important

strength, is that the time series of the state variable driving the conditional moments of

relative household consumption growth is directly observable from the data in this model.

This allows a simple way to verify whether the results of an estimation of the model is

consistent with the properties of the underlying macro variables.

Despite the fact that yields implied by the model are driven only by a single state

variable which drives conditional cross-sectional moments of relative household growth

and inflation, the implied nominal risk-free rate and yield spread capture many of the

short and long-run fluctuations of their data counterparts. The purpose of this paper is

to determine the implications for the term structure of interest rates of a model which

captures features of equity returns, and in that context, it does a good job as it retains all
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of the attractive features of the original Constantinides and Ghosh (2013) paper including

a low risk-free rate, high equity premium, procyclical price-dividend ratio and risk-free

rate, and countercyclical expected market return; and further, it produces realistic means

and volatilities of bond yields and accounts for the failure of the expectations hypothesis.

The second section introduces the model, the third section presents the solution of

the model, the fourth section discusses the calibration of the model, the fifth section

describes the results and some of implications of the model for the pricing of real and

nominal bonds, and the fifth section provides some concluding comments.

3.2 Model

3.2.1 Specification of the Economy

The specification of the economy follows CG. The economy is an exchange economy with

a single nondurable consumption good. There are an arbitrary number of securities in

positive or zero net supply. However, there are no markets for trading households’ wealth

portfolios, so the market is incomplete in this setting. The traded securities in positive

net supply is defined as the ”market” and the market pays a net dividend Dt at time t and

has ex-dividend price Pt, and a normalized supply of one unit. Households are endowed

with an equal number of market shares initially but can trade in these shares afterwards.

Aggregate consumption is denoted by Ct, log consumption will be ct ≡ log(Ct), and

consumption growth is ∆ct+1 ≡ ct+1 − ct. Aggregate consumption growth is IID normal:

∆ct+1 = µ+σaεt+1, where εt ∼ N(0, 1). Note that by construction, aggregate consumption

growth is uncorrelated with business cycles.

Aggregate labor income is defined as It = Ct − Dt. There are an infinite number of

households normalized to one. Household i is endowed with labor income Ii,t = δi,tCt−Dt,
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where

δi,t = exp

[
t∑

s=1

{(
j

1/2
i,s σθi,s − ji,sσ2/2

)
+
(
ĵ

1/2
i,s σ̂θ̂i,s − ĵi,sσ̂2/2

)}]
. (3.1)

The exponent contains two terms: the first captures shocks related to the business cycle.

The single state variable in our model ωt drives the business cycle through ji,s which is

exponentially distributed with P [ji,s = n] = e−ωsωns /n!, n = 0, 1, ...∞, E [ji,s] = ωs, and

independent of all other primitive random variables. θi,s ∼ N(0, 1) is an IID random

variable independent of all other primitive random variables. Thus, j
1/2
i,s σθi,s − ji,sσ

2/2

are normal, conditional on the realization of ji,s with volatility j
1/2
i,s σ. The second captures

idiosyncratic shocks and is defined identically to the first term with the difference being

that ω̂ is a constant instead of a state variable.

In this setting, household income shocks are permanent. Since the number of house-

holds is infinite and income shocks are symmetric across households, we can apply a law

of large numbers and show that It = Ct −Dt. Also, with this specification of household

income and symmetric and homogeneous household preferences, households choose not

to trade so that household consumption is Ci,t = Ii,t + Dt = δi,tCt. More details will be

provided later in this subsection about how it is proven that no-trade is an equilibrium

in this economy.

For convenience, define the variable xt in terms of ωt as xt ≡
(
eγ(γ−1)σ2/2 − 1

)
ωt. The

calibration of CG limits γ > 1, implying xt > 0. There is a one-to-one mapping from

xt to ωt, so the dynamics of xt will be specified in place of ωt. xt follows a square root

process:

xt+1 = xt + κ (x̄− xt) + σx
√
xtεx,t+1 (3.2)

where εx,t+1 ∼ N(0, 1), IID and independent of all primitive random variables. x̄ > 0 and

2κx̄ > σ2
x so the Feller condition is satisfied. Note that in discrete time, the square root

process can still become negative even if the Feller condition holds. The autocorrelation

of xt is 1 − κ so the autocorrelation of real and nominal bond yields will be 1 − κ since
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bond yields are affine in xt. The volatility of household risk is countercyclical and this

accounts for the fact that the variance of bond yields are higher in recessions.

The state variable ωt and therefore xt can be viewed as a household risk variable in

the context of our model. The logarithm of relative household consumption growth is

log

(
Ci,t+1/Ct+1

Ci,t/Ct

)
= log(δi,t+1)−log(δi,t) = j

1/2
i,t+1σθi,t+1−ji,t+1σ

2/2+ĵ
1/2
i,t+1σ̂θ̂i,t+1−ĵi,t+1σ̂

2/2

(3.3)

with conditional first moment (µ1) and conditional second and third central moments

(µc,2 and µc,3):

µ1

(
log

(
Ci,t+1/Ct+1

Ci,t/Ct

)
|ωt+1

)
= −σ2ωt+1/2− σ̂2ω̂/2 (3.4)

µc,2

(
log

(
Ci,t+1/Ct+1

Ci,t/Ct

)
|ωt+1

)
=
(
σ2 + σ4/4

)
ωt+1 +

(
σ̂2 + σ̂4/4

)
ω̂ (3.5)

µc,3

(
log

(
Ci,t+1/Ct+1

Ci,t/Ct

)
|ωt+1

)
= −

(
3σ4/2 + σ6/8

)
ωt+1 −

(
3σ̂4/2 + σ̂6/8

)
ω̂ (3.6)

Note that an increase in household risk results in an increase in the variance and a more

negative skewness of the cross-sectional distribution of household consumption growth. A

high level of household risk is therefore associated with recessions.

Households’ preferences have a recursive structure:

Ui,t =
{

(1− δ)C1−1/ψ
i,t + δ (Et [Ui,t+1])

1−1/ψ
1−γ

} 1
1−1/ψ

(3.7)

where δ is the subjective discount factor, γ is the coefficient of relative risk aversion, ψ is

the elasticity of intertemporal substitution, and θ ≡ 1−γ
1−1/ψ

. Epstein and Zin (1989) show

that the SDF of household i is

Mi,t+1 = exp

(
θ log δ − θ

ψ
∆ci,t+1 + (θ − 1)ri,c,t+1

)
(3.8)
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where ∆ci,t+1 ≡ ci,t+1 − ci,t and ri,c,t+1 ≡ log
(
Pi,c,t+1+Ci,t+1

Pi,c,t

)
is the log return on the ith

household’s private valuation of its wealth portfolio.

Let Pi,c,t be the price of the ith household’s private valuation of its wealth portfolio

and Zi,c,t ≡ Pi,c,t/Ci,t, and zi,c,t ≡ log(Zi,c,t). CG prove by induction in their Appendix

B that the wealth-to-consumption ratio is a function of only the state variable ωt so

that zi,c,t = zc,t and each household’s private valuation of any security other than the

households’ wealth portfolios is common so that no trade is an equilibrium. They then

conjecture that zc,t is an affine function of xt, zc,t = A0 +A1xt, and log-linearize the SDF,

obtaining two equations determining A0 and A1. See Appendix D of CG for a derivation.

Households’ common SDF is given by

Mt+1 = exp
{
θ log δ + ω̂

(
eγ(γ+1)σ̂2/2 − 1

)
− γ∆ct+1 + (θ − 1)[h0 + h1A0 − (A0 + A1xt)] + λxt+1

}
(3.9)

where h0, h1, A0, A1, and λ can be found in Appendix C.1.

Letting Rt+1 be the real return on a real asset, Rt+1 satisfies the standard Euler

equation

Et[Mt+1Rt+1] = 1 (3.10)

where Mt+1 is the real pricing kernel. It follows from the above equation that the price

of risk can be written as

Et[Rt+1 −Rf,t]

σt[Rt+1]
= −ρt(Mt+1, Rt+1)

σt[Mt+1]

Et[Mt+1]
. (3.11)

Using the fact that Mt+1 is lognormal based on time-t information in our model,

Et[Rt+1 −Rf,t]

σt[Rt+1]
= −ρt(Mt+1, Rt+1)

√
eγ2σ2

a+λ2σ2
xxt − 1. (3.12)

Since high household risk is associated with recessionary periods, the maximum Sharpe
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ratio, the ratio of volatility of the stochastic discount factor to its mean, varies counter-

cyclically. Since real bonds will be affine functions of xt, ρt(Mt+1, Rt+1) will be nonzero so

that risk premia on real bonds will vary through time. This will provide the mechanism

through which the failure of the expectations hypothesis will be achieved, since a similar

argument will apply when the nominal pricing kernel is substituted for the real pricing

kernel on the right hand side of equation 3.11 and the returns on the left side are nominal

returns on nominal bonds.

Note that the interpretation of the variable xt as a variable associated with recessions

when high and good times when low depends crucially on the parameter λ being greater

than 0. If λ > 0, assets that have high payoffs when xt+1 is low will command a positive

risk premium and assets that have high payoffs when xt+1 is high will have a negative risk

premium. The opposite will be the case if λ < 0: assets that have high payoffs when xt+1

is low will have a negative risk premium and assets that have high payoffs when xt+1 is

high will command a positive risk premium.

3.2.2 Exogenous Inflation Process

In order to model nominal bonds, it is necessary to specify a process for inflation. Inflation

is modeled as an exogenous process. Letting Pt denote the price level, pt ≡ log(Pt), log

inflation will be πt+1 ≡ pt+1 − pt. It is assumed that log inflation follows the process

πt+1 = η0 + η1xt+1 + σπεπ,t+1 (3.13)

where επ,t+1 is independent of all other primitive random variables in the economy. The

process for inflation is an affine function of household risk and a zero-mean normal random

variable. The process for inflation is exposed to all underlying sources of uncertainty in

the economy so there will be an inflation risk premium associated with household risk.

If η1 > 0, there will be a positive inflation risk premium and the opposite is true for
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η1 < 0. It should be noted that the nth order autocorrelation of πt+1 is equal to the nth

order autocorrelation of xt+1 in this specification. I choose not to introduce another state

variable in order to maintain the parsimony of the model.

3.3 Model Solution

In this section, prices and yields are calculated for nominal and real bonds. Prices and

yields will be obtained in closed form, with prices exponential affine in the state variable

and yields affine in the state variable. The model fits into the Duffie and Kan (1996)

class of affine term-structure models, translated into discrete time by Backus, Foresi, and

Telmer (2001). Let P r
n,t denote the real price of a real bond maturing in n periods and P $

n,t

denote the nominal price of a nominal bond. The real return on an n-period real bond

is Rn,t =
P rn−1,t+1

P rn,t
with rn,t ≡ log(Rn,t) and the nominal return on an n-period nominal

bond is R$
n,t =

P $
n−1,t+1

P $
n,t

with r$
n,t ≡ log(R$

n,t). Additionally, the real yield on a real bond is

yn,t = − 1
n

log(P r
n,t) and the nominal yield on a nominal bond is y$

n,t = − 1
n

log(P $
n,t).

3.3.1 Real bonds

Bond prices are determined recursively using the Euler equation 3.10, for real bonds this

will be

P r
n,t = Et[Mt+1P

r
n−1,t+1] (3.14)

with Mt+1 being defined in equation 3.9. When n = 0, the real bond is worth one unit

of the consumption good, so P r
0,t = 1. Closed form expressions for real bond prices are

obtained by conjecturing and verifying that P r
n,t = eWn+Vnxt . In this way, a recursive

relationship between the coefficients is obtained so that bond prices can be calculated for
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n = 1, 2, . . . The results of the calculation are

Wn = θ log δ+ω̂
(
eγ(γ+1)σ̂2/2 − 1

)
−γµ+

1

2
γ2σ2

a+(θ−1)(h0+h1A0−A0)+Wn−1+κx̄(λ+Vn−1)

(3.15)

Vn = −(θ − 1)A1 + (1− κ)(λ+ Vn−1) +
1

2
(λ+ Vn−1)2σ2

x (3.16)

with W0 = 0 and V0 = 0. Details can be found in Appendix C.2. Real yields will be

yn,t = −Wn+Vnxt
n

. Accordingly, the real risk-free in this economy can be calculated by

noting that rf,t = r1,t = y1,t. Therefore, this will be

rf,t = −θ log δ − ω̂
(
eγ(γ+1)σ̂2/2 − 1

)
+ γµ− 1

2
γ2σ2

a − (θ − 1)(h0 + h1A0 − A0)− κx̄λ

−
[
−(θ − 1)A1 + (1− κ)λ+

1

2
λ2σ2

x

]
xt. (3.17)

Since there is positive autocorrelation in the log of the real stochastic discount factor due

to the positive autocorrelation of xt, the real term structure is downward sloping.

3.3.2 Nominal bonds

The equation for nominal bonds can be formulated by noting that the pricing relationship

for real bond prices, equation 3.14, must hold for real prices of nominal bonds. Therefore,

the following equation is obtained:
P $
n,t

Pt
= Et

[
Mt+1

P $
n−1,t+1

Pt+1

]
. When n = 0,

P $
0,t

Pt
= 1

Pt
. This

can be rewritten as

P $
n,t = Et

[
Mt+1

Pt
Pt+1

P $
n−1,t+1

]
(3.18)

with P $
0,t = 1. The nominal pricing kernel in this economy is M$

t+1 = Mt+1
Pt
Pt+1

=

Mt+1e
−πt+1 . Closed form expressions for nominal bond prices can be obtained by con-

jecturing and verifying that P $
n,t = eW

$
n+V $

n xt . Again, a recursive relationship between the
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coefficients is obtained. The results are

W $
n = θ log δ + ω̂

(
eγ(γ+1)σ̂2/2 − 1

)
− γµ+

1

2
γ2σ2

a + (θ − 1)(h0 + h1A0 − A0) +W $
n−1

+ κx̄(λ+ V $
n−1 − η1)− η0 +

1

2
σ2
π (3.19)

V $
n = −(θ − 1)A1 + (1− κ)(λ+ V $

n−1 − η1) +
1

2
(λ+ V $

n−1 − η1)2σ2
x (3.20)

with W $
0 = 0 and V $

0 = 0. Again, the details can be found in Appendix C.2. Nominal

yields will be y$
n,t = −W $

n+V $
n xt

n
.The nominal risk-free rate can be calculated by noting that

r$
f,t = r$

1,t = y$
1,t. The result of the calculation is

r$
f,t = −θ log δ−ω̂

(
eγ(γ+1)σ̂2/2 − 1

)
+γµ−1

2
γ2σ2

a−(θ−1)(h0+h1A0−A0)−κx̄(λ−η1)+η0−
1

2
σ2
π

−
[
−(θ − 1)A1 + (1− κ)(λ− η1) +

1

2
(λ− η1)2σ2

x

]
xt. (3.21)

This expression can be rewritten as

r$
f,t = rf,t + κx̄η1 + η0 −

1

2
σ2
π −

[
−(1− κ)η1 +

(
1

2
η2

1 − λη1

)
σ2
x

]
xt

= rf,t + Et[πt+1] + λη1σ
2
xxt −

1

2
σ2
π −

1

2
η2

1σ
2
xxt.

(3.22)

The last two terms on the second line of the right hand side of the above equation are

adjustments for Jensen’s inequality. In our calibration, it will turn out that λ > 0 and

η1 > 0 so the third term is the inflation risk premium due to household risk that the

nominal risk-free rate carries relative to the real risk-free rate because inflation is high

when the economy is in a recessionary period and low when the economy is doing well,

thereby implying that nominal bonds have low payoffs in bad times and high payoffs

in good times. The slope of the real pricing kernel will depend on whether η1 is larger

than, smaller than, or equal to λ. If η1 > λ, the nominal pricing kernel will have negative
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autocorrelation and the nominal term structure will slope upwards, however, if η1 < λ, the

nominal pricing kernel will have positive autocorrelation and the nominal term structure

will slope downwards. In the case that η1 = λ, the nominal term structure will be flat

across all maturities.

3.4 Calibration

The parameters of aggregate consumption growth (µ and σa), household income shocks

(σ, σ̂, and ω̂), the state variable (κ, x̄, and σx), and the preference parameters (δ, γ,

and ψ) are the same as those used in CG for their quarterly estimation, 1947:Q1-2009:Q4

detailed in their Table 4. By using the same parameters, the model retains all of the

attractive properties of the original model laid out in CG and can account for many

features of the nominal term structure. The goal of this paper, after all, is to examine

the implications of a model, which is calibrated primarily to match equity returns, when

applied to the term structure of interest rates. CG estimate the parameters of their model

using GMM to match the following twelve moments: the mean and variance of aggregate

consumption growth, dividend growth, and market return; and the mean, variance, and

autocorrelation of the real risk free rate and market-wide price-dividend ratio.

The parameters of the inflation process η0, η1, and σπ are chosen to match the level

of the nominal term structure, the nominal term premium (the difference between the

yield of the 5 year nominal bond and the 3 month nominal bond), and the volatility of

inflation in the data. I then compare these results with the results of a linear regression

of inflation on the time series of xt extracted from the data. The time series for xt can

be derived from the time series of conditional moments of the distribution of relative

household consumption growth. The data for relative household consumption growth

comes from the CEX database and is available at a quarterly frequency over the time

period from 1982-2009. Inflation is the log first difference of quarterly observations of
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the consumer price index over the same time period. Table 3.1 displays the results of

the regression of inflation on household risk and table 3.2 displays all of the parameter

values for the calibration used in our model solution. In the regression, the coefficient on

xt is 0.315 and the residual has a standard deviation of 0.006 and in the calibration the

coefficient on xt is 0.455 and the standard deviation of the residual is 0.004.

In comparison to Wachter (2006) and Bansal and Shaliastovich (2012), I am able to

demonstrate empirically and directly the covariance of inflation with the state variable

responsible for generating an upward sloping term structure. There is a positive and

significant relationship between inflation and household risk (xt) as shown in the regression

results. The standard errors are corrected for heteroskedasticity and autocorrelation as in

Newey and West (1987). The residuals from the regression show no sign of autocorrelation

or heteroskedasticity. The results from the regression are close to the parameters needed

to match term structure moments, giving strong evidence for the validity of the model.

In the next version of this paper, a full GMM estimation will be done whereby the

parameters of the inflation process will be estimated jointly with all the other parameters

and moments from the term structure.

3.5 Results

3.5.1 Implications for the Term Structure

Real yields for the 3 month and 5 year zero-coupon bond are plotted as a function of

the state variable, xt, in Figure 3.1. Real yields are procyclical. During recessions,

households have a precautionary savings motive due to incomplete insurance markets for

idiosyncratic labor shocks. This precautionary savings effect drives down real interest

rates. The opposite is true in good times: households will borrow against future income.

Real yield spreads (difference between the 5 year and 3 month yield) are procyclical,
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becoming more negative during recessions and less negative during good times.

The same plot is made for nominal yields in Figure 3.2. Nominal yields are counter-

cyclical. The precautionary savings effect also drives down nominal interest rates during

recessions just as it does for real bonds, but simultaneously there is another opposing

effect at work for nominal bonds: inflation is high during recessions so investors demand

compensation for expected inflation plus a premium for bearing inflation risk. This com-

pensation for expected inflation plus the premium for bearing inflation risk overcomes the

precautionary savings effect to make nominal yields higher in recessions. The opposite

is again true in good times. Nominal yield spreads are countercyclical, becoming more

positive during recessions and less positive during good times.

The real yield curve is downward sloping because long bonds provide a hedge against

uncertainty in the future state of the economy. If the persistence of xt were increased, the

real yield curve would have a more negative slope because long bonds would be even more

valuable as a hedge due to increased uncertainty over the future state of the economy

from a shock to household risk today since the effect of these shocks would not die out as

quickly. Accordingly, the real yield curve would be less negatively sloped if the persistence

of xt were decreased. The real yield curve is plotted for the unconditional mean of xt (x̄)

and the 25% quantile, median, and 75% quantile of the stationary distribution of xt. The

quantiles of the stationary distribution are found via simulation.

The nominal yield curve is upward sloping because the effect of the inflation risk

premium increases with the maturity of the bond. This occurs because inflation is a

persistent process, implying that near term inflation will be known with a high degree of

certainty whereas inflation far into the future will be more uncertain. Therefore, inflation

risk premiums are higher at longer maturities. The nominal yield curve is also plotted for

the unconditional mean of xt (x̄) and the 25% quantile, median, and 75% quantile of the

stationary distribution of xt. Table 3.3 details the data and model-generated means and

volatilities for the 3 month, 1 year, 2 year, 3 year, 4 year, and 5 year zero-coupon nominal
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and real bond yields.

The model slightly underpredicts mean nominal yields over the intermediate maturities

of the term structure, having a convex shape rather than the concave shape observed in

the data. The volatilities of the model generated nominal yields are less than in the data

at the short end but get closer at the long end as the volatilities of the model generated

yields increase in bonds’ time to maturity whereas volatilities of yields in the data actually

decrease in bonds’ time to maturity. The model generated yields on nominal bonds are

higher than those for real bonds at all maturities. Expected inflation of 2.10% annually

is mostly responsible for this fact, but the inflation risk premium due to household risk

is equal to λη1σ
2
xxt. When evaluated at the unconditional mean of xt, x̄, this premium is

equal to 0.036% quarterly or 0.14% in annual terms.

3.5.2 Long Rate Regressions

Long rate regressions of the form

y$
n−1,t+1 − y$

n,t = constant + βn
1

n− 1

(
y$
n,t − y$

1,t

)
+ error (3.23)

were carried out as in Campbell and Shiller (1991) to test the hypothesis of constant risk

premia on bonds, also known as the generalized expectations hypothesis. If risk premia

are constant, the coefficient βn = 1 and αn = 0 for all n. To see why this is so, using the

definitions of returns and yields,

r$
n,t = y$

n,t − (n− 1)
(
y$
n−1,t+1 − y$

n,t

)
. (3.24)
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After rearranging terms and taking expectations on both sides, the following equation is

obtained:

Et

[
y$
n−1,t+1 − y$

n,t

]
=

1

n− 1

(
y$
n,t − y$

1,t

)
− 1

n− 1
Et

[
r$
n,t − y$

1,t

]
(3.25)

The second term on the right side of the above equation is the scaled risk premium on

the n-period bond. A regression of changes in yield spreads on the scaled yield spread

will produce a coefficient of one, only if the third term is constant. In other words, only

if the risk premium on the n-period bond is constant. Based on equation 3.12, this asset

pricing model should generate time-varying risk premia on bonds, resulting in a failure of

the expectations hypothesis. Of course, matching the coefficients obtained from running

regressions on actual yields will be the real test of the model.

Campbell and Shiller (1991) find a coefficient that is negative at all maturities and

significantly different from one. The same regression run on nominal bond yields in the

data for the period beginning in the second quarter of 1952 and ending in the fourth

quarter of 2009, and the results are very similar to the findings of Campbell and Shiller

(1991). In particular, there are decreasing coefficients across maturities with the regres-

sion coefficients being negative at all maturities. The coefficient βn can be determined

analytically since yields are available in closed form and are affine in the state variable

xt. The calculations are given in Appendix C.3.

βn =
−nV $

n−1(1− κ) + (n− 1)V $
n

n
(
V $

1 − V $
n

n

) (3.26)

The slope of the regression coefficients across maturities is decreasing in the data. The

model is able to replicate this stylized fact. Taking the partial derivative of the above
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expression with respect to n:

∂βn
∂n

=
V $
n [(1− κ)V $

n−1 − V $
n ]

n2
(
V $

1 − V $
n

n

)2 , (3.27)

and using the fact that V $
n < 0 for all n and V $

n < V $
n−1, the expression on the right hand

side of the above equation is negative for all values of n. This implies that the coefficients

are negative across all maturities and decreasing as observed in the data. The results

in Figure 3.5 provide support for time-varying risk premia on nominal bonds generated

by our model. The coefficients from the regression are close to −3 at the short end of

the term structure and are decreasing in time to maturity and decrease to about −3.5

at the five year maturity. The simulated nominal bond yields from the model show a

larger departure from the expectations hypothesis than the data does. The same long-

rate regression is run on model-generated data from real bond yields to determine whether

the failure of the expectations hypothesis holds for real bonds as well, supporting the fact

that real risk premia are time-varying in the model as well. The coefficients for the long

rate regressions on real bonds are of the exact same form as in equation 3.26 with nominal

coefficients being replaced by their real counterparts. Using the fact that Vn > 0 for all n

and Vn > Vn−1, the coefficients are negative and decrease with maturity. The results from

these regressions are plotted in Figure 3.6. Interestingly, the coefficients are obtained in

the real case are very similar to those obtained in the nominal case.

3.5.3 Implications for the Time Series of xt

In the section introducing the model, we note that an increase in xt results in an increase

in the variance and a more negative skewness of the cross-sectional distribution of rel-

ative household consumption growth. As mentioned in CG, data on relative household

consumption growth is available only for the period from quarter one of 1982 to quarter
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four of 2009. They plot the skewness and volatility of the distribution of relative house-

hold consumption growth over this time period in Figure 3.8, showing that the volatility

increases slightly during the recessions in the early 1980s and 1990s, but shows no ap-

preciable increase during the recessions of the 2000s. The skewness of the distribution,

however, becomes substantially more negative during recessions. There is also a strong

overall trend of skewness becoming less negative over the entire period from quarter one

of 1982 to quarter four of 2009.

In Figure 3.7, the time series data for log inflation and the time series for xt are plotted

for the period from 1982:Q1-2009:Q4. From this plot, it is easy to see the source of the

inflation risk premium due to household risk in the model. Inflation is highest when

household risk is high. The positive correlation between inflation and household risk is

especially pronounced during the late 1980s and early 1990s, implying large inflation risk

premiums during these periods and high term premiums in correspondence with term

structure data from that period. It is less pronounced in the 2000s, which corresponds

with the low inflation risk premiums and low term premiums observed in the data at that

time.

3.5.4 Higher Order Moments of Nominal Bond Yield Changes

Piazzesi (2010) finds that changes in nominal bond yields have negative skewness and

excess kurtosis across all maturities from one month to five years for data from 1964-

2001. In a shorter subsample from 1990-2001, the skewness and kurtosis effects disappear

and nominal bond yield changes are more Gaussian. In my model, nominal bond yield

changes have a negative skewness and excess kurtosis driven by the fact that the household

risk state variable follows a discrete time square root process which has a skewed and

leptokurtic stationary distribution. Had the state variable followed a process with a

stationary distribution that had 0 skewness and a kurtosis of 3, such as a simple AR(1)
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process, yield changes would also have had 0 skewness and a kurtosis of 3. In Table

3.4, I list the skewness and kurtosis of nominal bond yield changes for bonds of different

maturities up to 5 years. These moments were determined via simulation.

3.6 Conclusion

This paper presents a heterogeneous-agent incomplete markets asset pricing model and

applies it to calculate the term structure of nominal and real interest rates. The model is

calibrated to capture many of the features of equity returns, and as such, all parameters

not related to the inflation process are fit to equity return data. Despite this, the model

is able to account for a number of empirical regularities concerning the term structure

including the downward sloping real term structure, the upward sloping nominal term

structure, procyclical real yields, and countercyclical nominal yields. The model also

closely matches the means and volatilities of 3 month, 1 year, 2 year, 3 year, 4 year, and

5 year nominal zero-coupon bond yields. It can also quantitatively match the negative

skewness and excess kurtosis of nominal bond yield changes and the failure of the expec-

tations hypothesis in the data by generating a countercyclical time-varying risk premium

on nominal and real bonds.
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Dependent variable:

πt

xt 0.315∗∗∗

(0.043)

Constant 0.004∗∗∗

(0.001)

Observations 111
R2 0.108
Adjusted R2 0.099
Residual Std. Error 0.006 (df = 109)
F Statistic 13.12∗∗∗ (df = 1; 109)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.1: Regression of inflation (πt) on household risk (xt) and a constant term for
quarterly data over the period from 1982 to 2009. Standard errors are heteroskedasticity
and autocorrelation consistent as in Newey and West (1987).
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Calibration
γ 12.59
ψ 1.11
δ 0.990
µ 0.007
σa 0.006
κ 0.039
x̄ 0.010
σx 0.028
σ 0.030
σ̂ 0.030
ω̂ 0.986
η0 0.005245
η1 0.455
σπ 0.004259

Table 3.2: Parameter values used in our solution of the model. All but the last three
parameters for the inflation process are taken directly from Table 4 of CG. CG estimate
the parameters of their model using GMM to match the following twelve moments: the
mean and variance of aggregate consumption growth, dividend growth, and market return;
and the mean, variance, and autocorrelation of the real risk free rate and market-wide
price-dividend ratio. The last three parameters are parameters of the inflation process
and are chosen to match the level of the term structure, the term premium, and the
volatility of inflation.

Maturity Mean Std dev
Real Nominal Data Real Nominal Data

1 0.93 4.99 4.99 0.86 1.06 2.93
4 0.83 5.12 5.37 0.91 1.12 2.93
8 0.67 5.30 5.57 0.99 1.22 2.88
12 0.50 5.50 5.74 1.08 1.32 2.81
16 0.31 5.73 5.88 1.19 1.43 2.77
20 0.08 5.97 5.97 1.30 1.55 2.72

Table 3.3: Means and standard deviations of continuously compounded zero-coupon
bond yields in the model and in the data. Yields are in annual percentages. Maturity is
in quarters. Data for zero-coupon bond yields is quarterly and begins in the third quarter
of 1952 and ends in the last quarter of 2009.

Maturity 1 quarter 4 quarters 8 quarters 12 quarters 16 quarters 20 quarters
Skewness -0.419 -0.419 -0.419 -0.419 -0.419 -0.419
Kurtosis 6.21 6.21 6.21 6.21 6.21 6.21

Table 3.4: Skewness and kurtosis of model-generated nominal bond yield changes across
different maturities.
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Figure 3.1: Real yields as a function of household risk The 3 month and 5 year
real yields as a function of the state variable, xt. Real yields and real yield spreads are
procyclical.
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Figure 3.2: Nominal yields as a function of household risk The 3 month and 5 year
nominal yields as a function of the state variable, xt. Nominal yields and nominal yield
spreads are countercyclical.
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Figure 3.3: Real yield curve The model generated real yield curve for maturities ranging
from 3 months to 5 years, plotted at the unconditional mean of xt, x̄, and the 25% quantile,
median, and 75% quantile of the stationary distribution of xt.
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Figure 3.4: Nominal yield curve The model generated nominal yield curve for matu-
rities ranging from 3 months to 5 years, plotted at the unconditional mean of xt, x̄, and
the 25% quantile, median, and 75% quantile of the stationary distribution of xt.

127



Maturity (quarters)
4 6 8 10 12 14 16 18 20

C
o

e
ff

ic
ie

n
ts

 β
n

-5

-4

-3

-2

-1

0

1

2
Long rate regressions (nominal yields)

Model
Data
Expectations Hypothesis

Figure 3.5: Testing the generalized expectations hypothesis on nominal yields
The results from running the regression y$

n−1,t+1 − y$
n,t = αn + βn

1
n−1

(
y$
n,t − y$

1,t

)
+ error

using simulated data on nominal bond yields. The dotted line denote coefficients implied
by the model, the dashed line denotes coefficients implied by the data, and the solid
denotes the coefficients if the expectations hypothesis were to hold.
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Figure 3.6: Testing the generalized expectations hypothesis on real yields The
results from running the regression yn−1,t+1 − yn,t = αn + βn

1
n−1

(yn,t − y1,t) + error using
simulated data on real bond yields. The dotted line denote coefficients implied by the
model and the solid denotes the coefficients if the expectations hypothesis were to hold.
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Figure 3.7: Inflation and household risk variables (1982:Q1-2009:Q4). Inflation is
the log first order difference of the CPI and household risk is derived from the conditional
moments of the distribution of household consumption growth. Each of the variables is
in natural units.
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Figure 3.8: Cross-sectional skewness and volatility of household consumption
growth (1982:Q1-2009:Q4). Calculated from the CEX index using quarterly cross-
sectional data.
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Appendix

C.1 Parameters of the Wealth-Consumption Ratio

and λ

CG conjecture that zc,t = A0 + A1xt and determine that A0 and A1 must satisfy the

following two equations:

θ log δ+(1−γ)µ+(1−γ)2σ2
a/2+

(
eγ(γ−1)σ̂2/2 − 1

)
ω̂+θ(h0+h1A0−A0)+(1+θh1A1)κx̄ = 0

−A1θ + (1 + θh1A1)(1− κ) + (1 + θh1A1)2σ2
x/2 = 0.

Since z̄c = A0+A1x̄, h0 ≡ log (ez̄c + 1)−zch1, and h1 ≡ ez̄c

ez̄c+1
, the parameters h0 and h1 are

determined in terms of A0 and A1. A fixed point problem must be solved to determine z̄c,

so that the parameters h0, h1, A0, and A1 can be calculated. The all-important parameter,

λ =
eγ(γ+1)σ2/2 − 1

eγ(γ−1)σ2/2 − 1
+ (θ − 1)h1A1.

C.2 Derivations of Solutions for Real and Nominal

Bond Prices

To solve for real bond prices, conjecture that P r
n,t = eWn+Vnxt and substitute this expres-

sion into equation 3.14, and substitute the equation for the households’ common SDF 3.9

into equation 3.14 as well to obtain

eWn+Vnxt = Et[exp{θ log δ+ω̂
(
eγ(γ+1)σ̂2/2 − 1

)
−γ∆ct+1+(θ−1)[h0+h1A0−(A0+A1xt)]+λxt+1}

+Wn−1 + Vn−1xt+1]. (C.28)
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The right hand side can be expressed as

exp
{
θ log δ + ω̂

(
eγ(γ+1)σ̂2/2 − 1

)
+ (θ − 1)[h0 + h1A0 − (A0 + A1xt)] +Wn−1

}
× Et[e

−γ∆ct+1 ]Et[e
(λ+Vn−1)xt+1 ] (C.29)

once the variables known at time t are taken out of the conditional expectation and the

independence of xt+1 and ∆ct+1 is recognized. Since e(λ+Vn−1)xt+1 and e−γ∆ct+1 are both

conditionally lognormal, we know that

Et[e
−γ∆ct+1 ] = e−γµ+ 1

2
γ2σ2

a (C.30)

and

Et[e
(λ+Vn−1)xt+1 ] = exp

{
(λ+ Vn−1)[xt + κ(x̄− xt)] +

1

2
(λ+ Vn−1)2σ2

xxt

}
. (C.31)

Substituting equation C.30 and equation C.31 into equation C.29 and matching the coef-

ficient of xt and the constant with the left side of equation C.28 will yield equations 3.15

and 3.16.

To solve for nominal bond prices, conjecture that P $
n,t = eW

$
n+V $

n xt . Also, note that

Pt
Pt+1

= e−πt+1 . Substitute both of these expressions into equation 3.18 along with the

households’ common SDF equation equation 3.9 to obtain

eW
$
n+V $

n xt = Et[exp
{
θ log δ + ω̂

(
eγ(γ+1)σ̂2/2 − 1

)
− γ∆ct+1 + (θ − 1)[h0 + h1A0 − (A0 + A1xt)] + λxt+1

}
− η0 − η1xt+1 − σπεπ,t+1 +W $

n−1 + V $
n−1xt+1]. (C.32)
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The right hand side can be expressed as

exp

{
θ log δ + ω̂

(
eγ(γ+1)σ̂2/2 − 1

)
+ (θ − 1)[h0 + h1A0 − (A0 + A1xt)] +W $

n−1 − η0 +
1

2
σ2
π

}
Et[e

−γ∆ct+1 ]Et[e
(λ+V $

n−1−η1)xt+1 ] (C.33)

once the variables known at time t are taken out of the conditional expectation and the

joint independence of xt+1 and ∆ct+1 is recognized. Since e(λ+V $
n−1−η1)xt+1 and e−γ∆ct+1

are conditionally lognormal, we can write

Et[e
−γ∆ct+1 ] = e−γµ+ 1

2
γ2σ2

a (C.34)

and

Et[e
(λ+V $

n−1−η1)xt+1 ] = exp

{
(λ+ V $

n−1 − η1)[xt + κ(x̄− xt)] +
1

2
(λ+ V $

n−1 − η1)2σ2
xxt

}
.

(C.35)

Substituting equation C.34 and equation C.35 into the right hand side of equation C.32

and matching the coefficient on xt and the constant with the left side of the equation

yields equations 3.19 and 3.20.

C.3 Derivation of Long Rate Regression Coefficients

The long-rate regression coefficients of equation 3.23 are defined as follows:

βn =
cov
(
y$
n−1,t+1 − y$

n,t,
1

n−1

(
y$
n,t − y1,t

))
var

(
1

n−1
(y$
n,t − y1,t)

) .
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First, I evaluate the numerator of the right hand side of the equation above:

cov

(
y$
n−1,t+1 − y$

n,t,
1

n− 1

(
y$
n,t − y1,t

))
=

cov

(
−
W $
n−1 + V $

n−1xt+1

n− 1
+
W $
n + V $

n xt
n

,
1

n− 1

(
−W

$
n + V $

n xt
n

+W $
1 + V $

1 xt

))

= cov

((
−
V $
n−1

n− 1
(1− κ) +

V $
n

n

)
xt,

1

n− 1

(
−V

$
n

n
+ V $

1

)
xt

)

=

(
−
V $
n−1

n− 1
(1− κ) +

V $
n

n

)
1

n− 1

(
−V

$
n

n
+ V $

1

)
var(xt).

The denominator is evaluated next:

var

(
1

n− 1

(
−V

$
n

n
+ V $

1

)
xt

)
=

1

(n− 1)2

(
−V

$
n

n
+ V $

1

)2

var(xt).

Dividing the numerator by the denominator, I arrive at equation 3.23.

135


