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Abstract

This dissertation focuses on examining �rms�operational decisions under the in�uence of

government regulation, including the regulation of anti-trust agencies and environmental pro-

tection agencies.

In the �rst chapter, I investigate a merger between price-setting newsvendors in an oligopolis-

tic market. It is well-known that inventory pooling can greatly reduce inventory costs in a cen-

tralized distribution system because it helps reduce aggregate demand uncertainty. Although

such statistical economies of scale are important bene�ts of a retail merger, the extant literature

models cost savings from a merger only through reduction in a post-merger �rm�s marginal cost.

In this paper, I develop a model of a retail merger under uncertain demand that distinguishes

between cost savings from conventional economies of scale and those from statistical economies

of scale. I show that these two sources of cost savings have substantially di¤erent impacts on

�rms�decisions in a post-merger market. Speci�cally, and contrary to the existing theory of

mergers developed under deterministic demand, I �nd that although inventory pooling enables

the post-merger �rm to achieve cost savings, it always induces �rms to raise their prices, and

that marginal cost reduction induces �rms to lower their prices only when it is substantial �

consequently, larger marginal cost reduction can bene�t even nonparticipant �rms when it in-

duces the post-merger �rm to raise its price. Finally, even if a merger induces all �rms to raise

their prices, it can still improve expected consumer welfare by increasing �rms�service levels

under uncertain demand.

In the second chapter, I investigate �rms�development and adoption decisions of green tech-

nology. This work is motivated by the observation that while enforcing a stricter standard on

a pollutant, a government agency often takes into account the proportion of �rms that are able

to meet the new standard (I refer to this proportion as a �capability index�). Despite this fact,

existing research assumes that a government agency might move to a stricter standard regard-

less of the industry�s capability index. Additionally, the literature also assumes that a �rm�s

bene�t from developing a new green technology to reduce pollution is deterministic. By con-

trast, I develop a novel model in which the probability of enforcing a stricter standard increases

with the capability index, and in which the bene�t of a new green technology is uncertain and

correlated for all �rms. Thus, one �rm�s adoption decision can a¤ect the adoption decisions of
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other �rms through enforcement interactions with the government (via the capability index),

requiring a �rm to conjecture on other �rm�s decisions using its own payo¤ information. Given

the interactions among �rms�decisions and the correlated uncertain payo¤s, I use the global

game framework to analyze this model; this framework was recently developed in economics

to analyze similar problems. My analysis shows that regulation based on a capability index,

compared with regulation that ignores it, has a substantially di¤erent impact on �rms�deci-

sions for new green technology development. The latter e¤ectively motivates a �rm to develop

a green technology when the �rst-mover advantage of that technology is high. Regulation based

on the capability index, on the other hand, works well when the �rst-mover advantage is low.

Surprisingly, I also �nd that the uncertainty about the bene�t of the technology can promote

a �rm�s development of a green technology.

In the third chapter, I examine �rms�quality and variety decisions after a merger. Exist-

ing research focuses mainly on price changes in mergers, and predicts that the cost synergies

achieved in mergers bene�t consumers because cost synergies can reduce prices. By analyzing

a merger in a market where �rms sell vertically-di¤erentiated goods, I show that cost syner-

gies achieved in a merger might also induce merging �rms to reduce their product variety and

quality levels. Such reductions can be harmful to consumers, even when a merger reduces the

prices of all products.
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Chapter 1

Newsvendor Mergers

1.1 Introduction
Potential bene�ts of mergers and acquisitions (M&As) are manifold. Through M&As, �rms

could increase their revenues by utilizing stronger market power, and achieve cost savings by

utilizing economies of scale and improving operational e¢ ciency. M&As have been an important

aspect of management strategy in modern economies �26,409 M&As that were worth 1.9 trillion

dollars occurred in 2013 (WilmerHale 2014). Our focus in this paper is on studying the e¤ects

of a horizontal merger between retailers in an oligopolistic market.

In a retail business, price is a natural strategic variable in competing against other retailers.

In their seminal study, Deneckere and Davidson (1985) show that in the absence of cost syn-

ergies, a merger of price-setting retailers will induce both merging and nonparticipant �rms to

raise their prices: by determining prices jointly that were set independently prior to the merger,

merging parties will raise their prices, and this initial price increase will be followed by price

increase of their competitors; the merging parties then further raise their prices, and so on until

all prices in the market will have risen, and all �rms will be better o¤.

Since mergers that lead to such price increase will be unlikely to be approved by antitrust

authorities, merging �rms often argue that they can achieve cost savings through the merger,

which in turn will be passed on to consumers. Several empirical studies (e.g., Houston et

al. 2001, DeLong 2003) suggest that operating synergies are the most important determinant

of successful M&As. According to Bascle et al. (2008), cost e¢ ciency is the main rationale

behind more than 70% of M&As. Because a post-merger �rm can pool its resources at the

two retail outlets that were managed independently prior to the merger, cost savings from a

merger can come from pooling inventory as well as from conventional economies of scale (e.g.,
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lower procurement cost from higher purchasing power, lower R&D cost, lower cost of capital)

as illustrated in the following examples:

� �Zipcar agreed to sell itself to Avis Budget Group Inc., for about $500 million . . . Avis

expects the deal to lower the companies�combined costs by $50 million to $70 million a year.

Mr. Nelson [CEO of Avis] said the synergies were tied to three components: lower �eet costs,

better �eet utilization and increased revenue ... The deal would allow Avis to reduce the number

of cars at Zipcar locations during the week, but also to use Avis�s excess weekend inventory to

meet Zipcar�s strong weekend demand.�(Kell 2013)

��Hertz would acquire Dollar Thrifty for about $2.3 billion in cash . . . they expect the merger�s

synergies to include annual savings of $65.6 million in �eet costs, in part through sharing of

vehicles across rental brands.�(Sawyers 2012)

Savings in inventory costs from a merger are also substantial in various other industries such as

auto dealerships (Gattorna et al. 1998), o¢ ce-supply stores such as O¢ ce Depot and O¢ ceMax

(O¢ ce Depot 2013), and airline industry (Seidenman and Spanovich 2011).

In the operations literature (e.g., Eppen 1979, Corbett and Rajaram 2006), it is well-known

that inventory pooling can greatly reduce inventory costs in a centralized distribution system be-

cause it helps reduce aggregate demand uncertainty. While such statistical economies of scale

are important bene�ts of a retail merger, the extant literature on mergers (e.g., Williamson

1968, Farrell and Shapiro 1990, Cho 2014) models cost synergies only through reduction in a

post-merger �rm�s marginal cost; in other words, prior models of mergers treat both statisti-

cal economies of scale and conventional economies of scale in the same manner. A primary

reason for this modeling choice is that researchers have analyzed the e¤ects of a merger under

deterministic demand, whereas a careful examination of statistical economies of scale requires

a merger analysis under uncertain demand. Under uncertain demand, a merger analysis be-

comes more complex because �rms use inventory as well as price as their strategic variables.

Nevertheless, a retail business always entails uncertainty in consumer demand, and therefore de-

mand uncertainty has been one of the most fundamental features in the literature of operations

management (OM).

The objective of this paper is to study the e¤ects of a merger on �rms�prices and expected

pro�ts as well as consumer welfare under uncertain demand. Speci�cally, we consider a merger

of two �rms in an oligopolistic market in which �rms determine their prices and inventory

levels under uncertain demand. In the OM literature, such �rms are often called price-setting

competitive �newsvendors.�Our focus is on examining the following three e¤ects of a merger.

First, the �collusion e¤ect�arises due to the ability of a post-merger �rm to set its prices jointly

at the two retail outlets which were independent prior to the merger. Second, a merger creates
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the �pooling e¤ect�when a post-merger �rm can manage its inventory in a centralized manner.

In order to save its inventory cost by utilizing statistical economies of scale, a post-merger �rm

may manage a single safety stock in a central warehouse that serves two retail outlets or in two

warehouses by allowing transshipment between them. Third, the �synergy e¤ect�exists when

a post-merger �rm can reduce its marginal cost; for example, a post-merger �rm may spread

�xed costs over a larger number of sales units through economies of scale or reduce the cost of

capital from lower securities and transaction costs.

Our analysis highlights the important role of demand uncertainty and inventory pooling in

evaluating a retail merger. As discussed above, the existing literature models cost savings from a

merger through marginal cost reduction under deterministic demand, and it does not distinguish

inventory cost savings due to statistical economies of scale from marginal cost reduction. The

conventional wisdom that cost savings from a merger will drive �rms�prices down has been

proven by many economists �notably, Williamson (1968), Perry and Porter (1985) and Farrell

and Shapiro (1990), and it has been regarded as the de facto standard result in the theory

of mergers (see Whinston 2007 for a comprehensive review). As a result, �rms justify their

proposed mergers by emphasizing that their cost savings will be passed on to consumers, and

it appears that antitrust agency views such cost savings positively (c.f. Horizontal Merger

Guidelines of the U.S. Department of Justice and the Federal Trade Commission). However,

our results indicate that neither marginal cost reduction (from conventional economies of scale)

nor inventory cost savings (from statistical economies of scale) will always induce �rms to

lower their prices. Furthermore, although both conventional and statistical economies of scale

enable merging �rms to reduce their expected costs, their impacts on �rms�prices and expected

pro�ts are substantially di¤erent. Counter-intuitively, consumer price is more likely to rise

after a merger when the bene�t of pooling is more signi�cant, and larger cost synergies from

a merger can bene�t nonparticipant �rms. Contrary to the previous literature studied under

deterministic demand, we �nd that even if a merger induces all �rms to raise their prices, it

can still improve expected consumer welfare by increasing �rms�service levels.

The rest of this paper is organized as follows. In §2 we review the related literature. In §3

we describe our pre-merger model. In §4 we present our post-merger model and analysis. In

§5 we study several extensions of our base model. We conclude our paper in §6. Proofs are

presented in Appendix A.

1.2 Related Literature
In this section, we �rst review the economic theory of a merger, and then we review the re-

lated operations management (OM) literature on competitive models of newsvendors, inventory
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pooling, operational models of mergers, and cooperative networks.

Economists and antitrust agency have long studied mergers, in particular focusing on how

a merger a¤ects price. Stigler (1950) considers the formation of a cartel among �rms that

make a collusive decision in a competitive market, and he shows that a cartel is not stable

because an increase of a market price will bene�t external �rms more than cartel members.

To explain the observed formation of cartels or mergers in practice, starting from Williamson

(1968), economists have taken into account cost synergies of mergers that may induce merging

�rms to lower their prices. Most notably, Farrell and Shapiro (1990) show that if the amount

of marginal cost reduction from a merger exceeds a certain threshold, then price will fall after

a merger. Whereas these papers and their subsequent extensions adopt the Cournot model of

quantity competition among homogeneous goods (e.g., see a comprehensive review by Whinston

2007), Deneckere and Davidson (1985) analyze a merger in a di¤erentiated market where �rms

engage in price competition. The analysis of a merger in such a market is particularly important

because �rms, especially retailers, are often price-setters, and the nature of price competition is

di¤erent from quantity competition (e.g., Vives 1999). For this reason, numerous papers have

constructed their models by building on Deneckere and Davidson (1985), including Werden and

Froeb (1994) and Davidson and Ferrett (2007). Since our work deals with retail mergers, we

use Deneckere and Davidson (1985) as our benchmark model of deterministic demand. To the

best of our knowledge, our paper is the �rst that evaluates a merger under uncertain demand

and characterizes statistical economies of scale from a merger. Contrary to the existing results

in this literature, our results show that marginal cost reduction from conventional economies

of scale induces merging �rms to lower their prices only when they are su¢ ciently large, and

that larger statistical economies of scale always induce both merging and nonparticipant �rms

to raise their prices.

In order to evaluate the e¤ect of a merger under uncertain demand, we need a benchmark in

which �rms compete before the merger takes place. For this benchmark, our paper builds on the

OM literature that studies competition among newsvendors. Traditional research on newsven-

dor models considers a monopolistic �rm�s decision on inventory under uncertain demand, while

taking demand and price as given exogenously. A major extension to this traditional approach

is to consider a monopolistic newsvendor who sets its price and inventory simultaneously (e.g.,

Petruzzi and Dada 1999, Kocab¬y¬ko¼glu and Popescu 2011). Another important extension is to

introduce competition among newsvendors (e.g., Lippman and McCardle 1997, Netessine and

Rudi 2003). While these papers focus on the inventory decisions of competitive newsvendors,

Zhao and Atkins (2008) consider a more general case in which each competitive newsvendor

determines both price and inventory simultaneously. Our paper builds on Zhao and Atkins
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(2008) for the pre-merger model, and examines the e¤ect of a merger between two competitive

newsvendors on merging �rms, nonparticipant �rms, and consumers.

Research on inventory pooling has a long tradition in operations management. The seminal

paper by Eppen (1979) considers a multi-location newsvendor problem with normal demand

at each location. He shows that inventory costs in a centralized system increase with the cor-

relation between uncertain demands in di¤erent locations. Numerous extensions have followed

Eppen (1979), including among others: a decentralized system with one manufacturer and mul-

tiple retailers owned and operated by a single entity who can transship inventory between them

(Dong and Rudi 2004), arbitrary dependence structure with non-normal distributions (Corbett

and Rajaram 2006), capacity-sharing joint ventures (Roels et al. 2012), and procurement con-

tracts between two buyers and one common supplier (Hu et al. 2013). While these papers

consider the centralization of inventory among warehouses of a single �rm or among monopolis-

tic �rms, Anupindi and Bassok (1999) and Wang and Gerchak (2001) analyze the centralization

of inventory in a supply chain with one supplier and two competitive retailers, and compare

its performance with the decentralized system. There are two important di¤erences between

these papers and our work. First, whereas the previous papers consider the centralization of

inventory (or stocking decisions) of all retailers in a market, in the context of a merger, such

complete centralization will create a monopolist, and hence will not be approved a priori by

antitrust authorities. Instead, a merger usually involves only two �rms, and it a¤ects other

nonparticipant �rms in an oligopoly market � in this sense, a merger may be referred to as

partial centralization. The essence of a merger analysis is to examine the competitive reactions

of nonparticipant �rms to the proposed merger, which in turn a¤ect the decision of the post-

merger �rm, and so on; hence, the merger analysis is substantially di¤erent from the previous

analyses that compare centralization with decentralization. Second, these papers assume �xed

consumer prices of all retailers, but consider stock-out substitution among retailers (i.e., a frac-

tion of consumers who do not �nd the good at their local retailers look for the good at other

retailers). In contrast, a central question in the analysis of a merger is how a merger a¤ects

consumer price. Therefore, in our work, we consider a price-setting competitive newsvendor

model as our pre-merger model, which itself is hard to analyze. To maintain tractability, we

assume initially that �rms compete only through prices, while examining stock-out substitution

in a later extension numerically.

Despite the importance of mergers in practice, there is scant literature on mergers in the OM

literature. Prior research in this literature mainly focuses on quantifying operating synergies

from a merger in monopolistic markets (e.g., Gupta and Gerchak 2002, Nagurney 2009) or on

vertical integration under deterministic demand (e.g., Corbett and Karmarkar 2001, Lin et al.
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2014). Recently, Cho (2014) studies a horizontal merger in a multitier decentralized supply

chain in which �rms engage in quantity competition at each tier. He characterizes the impact

of a merger at one tier on strategic decisions of �rms at di¤erent tiers of the supply chain.

Unlike Cho (2014) who considers a deterministic setting, the main research question of the

current paper is to characterize the impact of demand uncertainty and inventory pooling in a

merger of price-setting �rms. Di¤erent from the analytical papers reviewed above, Zhu et al.

(2011) empirically study the e¤ects of a horizontal merger on the �nancial and inventory-related

performance of �rms. Although they discuss the potential impact of demand uncertainty on

�rms�performance, they develop their hypotheses mainly from Deneckere and Davidson (1985)

who characterize only the collusion e¤ect under deterministic demand. Our paper complements

their empirical work by providing theoretical results about the collusion, pooling and synergy

e¤ects of a merger under uncertain demand.

Lastly, in another stream of research, researchers use cooperative game theory to study

the formation of resource-pooling or inventory-transshipment coalitions among �rms. In this

literature, �rms maintain their independence but consider forming coalitions to obtain synergies

or to reduce �nancial risk (e.g., Kemahl¬o¼glu-Ziya and Bartholdi 2011, Fang and Cho 2014,

Huang et al. 2015). This literature focuses primarily on examining how stable coalitions can

be formed by allocating the bene�t from collaboration to independent �rms appropriately. In

contrast, the bene�t from a merger need not be allocated between merging �rms, since merging

�rms become a single entity after the merger. Our focus is on analyzing the e¤ect of a merger

on prices, expected pro�ts, and consumer welfare, provided that such a merger occurs.

1.3 Pre-Merger Model and Analysis
Consider n symmetric �rms that sell products through di¤erent retail locations. Let pi denote

the price of �rm i (= 1; 2; :::; n), p =(p1; :::; pn) denote the price vector, and p�i=(p1; :::; pi�1; pi+1; :::; pn)

denote the price vector of all �rms but �rm i. The demand of �rm i is Di (p) = Li(p) + e"i,
where Li(p) is the deterministic part of the demand and e"i is the random part of the demand.

Following our benchmark model of deterministic demand in Deneckere and Davison (1985), we

assume

Li(p) = a� bpi + 
 
1

n

nP
j=1

pj � pi

!
; (1.1)

where a (> 0) is the deterministic demand when all �rms�prices are zero, and b (> 0) captures

the sensitivity of demand to �rm i�s own price pi. The parameter  (� 0) captures competition
among �rms in the following sense. When  is close to zero, competition among �rms is low, so

that the di¤erence between a �rm�s own price and other �rms�prices has little impact on the
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demand; whereas when  is large, competition is intense. We assume that e" = (e"1;e"2; :::;e"n) fol-
lows a multivariate normal distribution N (0;

P
), where

P
represents the covariance structure

of demand with V ar(e"i) = �2i = �2. We denote by �(�) and �(�) the density and the cumulative
distribution function of the standard normal random variable, respectively. To ensure positive

demand, we require a >> � so that Pr(a + e"i < 0) � 0. Each �rm i incurs a marginal cost

wi = w. We assume there is no salvage value for unsold goods.

Each �rm i decides its price pi and inventory qi simultaneously with other �rms before the

random demand is realized. Let qi = Li(p) + yi, where yi is �rm i�s safety stock to hedge

against demand uncertainty. As in Petruzzi and Dada (1999) and Zhao and Atkins (2008), it

can be shown that a game with decision variables (pi; qi) is equivalent to a game with decision

variables (pi; yi). With (pi; yi) as decision variables, a �rm�s strategy set can be unbounded. To

ensure the compactness of a �rm�s strategy set for the existence of Nash equilibrium, we assume

pi 2
�
p; p
�
and yi 2 [�y; y], where p > w, and p and y are su¢ ciently large numbers that do not

constrain �rms�decisions. Given p�i, �rm i chooses pi and yi to maximize its expected pro�t

given as

�i(p; yi) = (pi � w)Li(p)� wyi � piE (e"i � yi)+ = (pi � w)Li(p)� wyi � pi�R�yi
�

�
; (1.2)

where R (x) =
R1
x (u�x)�(u)du is the standard normal loss function and the expected lost sale

of �rm i having safety stock yi is given as E (e"i � yi)+ = R1yi (u� yi)�(u=�)� du = �R
�yi
�

�
. Since

there are no lost sales under deterministic demand, for convenience, we de�ne �R
� y
�

�
= 0 when

� = 0. Let �di (p) = (pi�w)Li(p) and ci (pi; yi) = wyi+pi�R
�yi
�

�
, representing the pro�t from

the deterministic demand and the expected cost caused by demand uncertainty, respectively.

Then �i(p; yi) = �di (p)�ci (pi; yi). Note that �ci (pi; yi) can also be interpreted as the expected
pro�t of a newsvendor who faces the demand of e"i. In our subsequent analysis, we will focus
on the case in which all �rms earn positive expected pro�ts.

Following Netessine and Rudi (2003) and Zhao and Atkins (2008), we can show that a unique

pure-strategy Nash equilibrium exists under a certain condition (see Lemma A1 in Appendix).

The symmetric equilibrium price ppre1 = ppre2 = ::: = ppren is the unique solution of the following

equation:

�
�
2b+

n� 1
n



�
ppre1 � �R

�
��1

�
1� w

ppre1

��
+ a+

�
b+

n� 1
n



�
w = 0: (1.3)

The equilibrium safety stock ypre1 = ypre2 = ::: = ypren is equal to ���1 (1� w=ppre1 ) ; and it is

also unique. The corresponding expected pro�t of �rm i in equilibrium is denoted by �prei .

Before proceeding to our post-merger analysis, we remark on our assumptions and later
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extensions. First, we consider symmetric �rms in the pre-merger market in §§3-4, while ex-

tending the analysis to asymmetric �rms in §5.1. Our analysis in §§3-4 enables us to isolate

the e¤ect of demand uncertainty on the celebrated result of Deneckere and Davison (1985) who

also consider symmetric �rms in the pre-merger market, and to compare the e¤ect of a merger

on merging �rms with that on nonparticipant �rms. Second, we assume that random demands

follow a multivariate normal distribution, which is widely used in the literature that studies

the e¤ect of inventory pooling (e.g., Eppen 1979, Anupindi and Bassok 1999, Dong and Rudi

2004, Hu et al. 2013). Even in this case, no closed-form expressions for pprei ; yprei and �prei
exist, and our subsequent analysis deals with the implicit functions such as (1.3) that de�ne

these equilibrium outcomes. Nevertheless, we show in §5.2 that our results hold under a more

general class of distributions. In §5.3, we consider a demand model with a general uncertainty

structure. Lastly, in §5.4, we examine the impact of stock-out substitution on our results.

1.4 Post-Merger Model and Analysis
In §4.1, we present our post-merger model, and describe the collusion, pooling and synergy

e¤ects of a merger. We then characterize these e¤ects of a merger on �rms�prices and expected

pro�ts in §4.2, and on �rms�service levels and expected consumer welfare in §4.3.

1.4.1 Post-Merger Model
Suppose �rm 1 and �rm 2 in the pre-merger market described in §3 have merged. We refer to

these two �rms that are merged as the merging �rms. When the two merging �rms become

a single �rm in the post-merger market, we refer to this �rm as the post-merger �rm, while

referring to the other �rms as the nonparticipant �rms. We index the post-merger �rm by

i = m, and the nonparticipant �rms by i = 3; 4; :::; n. We consider an oligopolistic market with

n � 3 because a merger that creates a monopolist (i.e., n = 2) is unlikely to be approved by

antitrust authorities.

The post-merger �rm faces the demand of Lm(p) +e"m, where Lm(p) = L1 (p) +L2 (p) rep-
resents the deterministic part of the demand and e"m represents the random part of the demand.
The random part e"m is given as e"m = e"1+e"2. Since the linear combination of the components of
the multivariate normal random vector e" is normally distributed, e"m follows N (0; �m) ; where

�m represents the post-merger �rm�s aggregate volatility of the uncertain demand. Letting �

(2 [�1; 1]) denote the correlation coe¢ cient between e"1 and e"2, we obtain �m = �
p
2 + 2�.

Prior to the merger, �rm 1 and �rm 2 set prices p1 and p2 at their respective retail outlet

independently, whereas the post-merger �rm can set its prices p1 and p2 collusively at these

two retail outlets. We call the e¤ect of such price collusion on equilibrium as the �collusion

e¤ect.�To examine the collusion e¤ect, we assume that the post-merger �rm maintains their
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two retail outlets after the merger �the same assumption is made by Deneckere and Davidson

(1985) and subsequent extensions (e.g., Werden and Froeb 1994, Davidson and Ferrett 2007).

In addition to setting its prices at two retail outlets collusively, the post-merger �rm may also

manage its inventories at these two locations in a centralized manner. We model this �pooling

e¤ect�by allowing the post-merger �rm to sell the same product at both retail outlets and to use

a single safety stock ym to hedge against the aggregate demand volatility �m. This is essentially

the same as the centralization of inventory in the literature (e.g., Eppen 1979, Anupindi and

Bassok 1999, Wang and Gerchak 2001, Corbett and Rajaram 2006). In contrast, when each

retail outlet sells a di¤erent product and/or manages its stock separately even after the merger,

there is no pooling e¤ect. This corresponds to the centralization of stocking decisions in the

literature (as compared to the centralization of physical inventory) (e.g., Netessine and Rudi

2003, Netessine and Zhang 2005).1 We can prove that this case is identical to the special case

when the post-merger �rm pools its inventories under perfectly-correlated demand (i.e., � = 1)

so that �m = 2�. In the presence of the pooling e¤ect (i.e., � < 1), when the demands of the

two merging �rms are highly correlated (i.e., high �), the post-merger �rm faces high demand

volatility �m due to the low pooling e¤ect.

The post-merger �rm often achieves cost synergies by utilizing economies of scale. Following

the common approach in the merger literature (e.g., see Cho (2014) and references therein),

we model the �synergy e¤ect� of a merger by reducing the marginal cost of the post-merger

�rm from w to wm (2 (0; w]). Let s � w�wm
w (2 [0; 1)) denote a percentage of marginal cost

reduction after a merger. When s = 0, there is no synergy e¤ect. When s > 0; the synergy

e¤ect exists, and as s increases, the merger entails larger cost synergies. The synergy level

s is an aggregate measure for cost synergies from various areas of operations, marketing and

administration, and its estimation often requires an industry-speci�c detailed analysis.

As in the pre-merger market, each �rm i (= m; 3; 4; :::; n) in the post-merger market decides

its price pi and inventory qi simultaneously before the random demand is realized. The post-

merger �rm decides its prices p1 and p2 as well as its safety stock ym to maximize its expected

pro�t �m, which can be expressed similarly to (1.2) as follows:2

�m(p; ym) = (p1 � wm)L1(p) + (p2 � wm)L2(p)� wmym � (p1 + p2)
�m
2
R

�
ym
�m

�
: (1.4)

1 In other words, the pooling e¤ect does not exist when two merging �rms sell two distinct products after the
merger. Although this is quite plausible for a merger of manufacturers, it may not be common for a merger of
retailers, which is the main focus of this paper.

2As is common in the literature, we do not consider a �xed cost of a merger. However, we can easily incorporate
this cost into (1.4). Since the �xed cost does not a¤ect the functional characteristic of �m, it has no impact on
subsequent analyses.
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Let �dm(p) = (p1�wm)L1(p)+(p2�wm)L2(p) and cm (p1; p2; ym) = wmym+(p1 + p2) �m2 R
�
ym
�m

�
,

so that �m(p; ym) = �dm(p) � cm (p1; p2; ym). The expected pro�t of nonparticipant �rm i

(= 3; 4; :::; n) remains the same as �i(p; yi) given in (1.2). Similar to the pre-merger mar-

ket, we can show that equilibrium prices ppostm (where ppost1 = ppost2 = ppostm ) and ppost3 (where

ppost3 = ppost4 = ::: = ppostn ) are the unique solutions that satisfy two �rst-order conditions,

while safety stocks in equilibrium are yposti = ���1(1� w=pposti ) for nonparticipant �rm i and

ypostm = �m�
�1(1 � wm=ppostm ) for the post-merger �rm. The corresponding expected pro�t of

�rm i is �posti for i = m; 3; 4; :::; n.

1.4.2 Post-Merger Analysis: Price and Expected Pro�t
The prior literature on a merger of price-setting �rms focuses on the collusion e¤ect of the

merger under deterministic demand. In this section, we will �rst investigate the collusion e¤ect

under uncertain demand. We then examine the impact of two sources of cost savings for a

post-merger �rm �namely, inventory pooling and cost synergies �on �rms�prices and expected

pro�ts. Lastly, by combining the collusion, pooling and synergy e¤ects of a merger, we examine

the aggregate e¤ect of a merger on �rms�prices and expected pro�ts.

To isolate the impact of demand uncertainty on the collusion e¤ect, we examine the same

setting as Deneckere and Davidson (1985) except that �rms face uncertain demand in our model.

In this special case, no pooling and synergy e¤ects exist; i.e., a post-merger �rm decides on its

prices at its two retail outlets, but the merger entails no cost savings through inventory pooling

or marginal cost reduction (i.e., � = 1 and wm = w).

Lemma 1.1 When � = 1 and wm = w; the collusion e¤ect of a merger leads to the following

results:

(a) The post-merger price of any �rm is higher than its pre-merger price (i.e., ppostm > ppre1 and

pposti > pprei for i = 3; 4; :::; n). In addition, the price of the post-merger �rm is higher than that

of a nonparticipant �rm (i.e., ppostm > pposti for i = 3; 4; :::; n).

(b) The post-merger expected pro�t of any �rm is higher than its pre-merger expected pro�t

(i.e., 12�
post
m > �pre1 and �posti > �prei for i = 3; 4; :::; n). Furthermore, the post-merger expected

pro�t of a merging �rm is lower than that of a nonparticipant �rm (i.e., 12�
post
m < �posti for any

i = 3; 4; :::; n).

Lemma 1.1 shows that the price collusion of the merging parties induces all �rms to raise their

prices and thereby earn higher expected pro�ts. These results verify that the collusion e¤ect

of a merger on prices and pro�ts under deterministic demand remains valid under uncertain

demand. This suggests that the nature of competition that drives these results is una¤ected

by demand uncertainty. Speci�cally, a merging �rm has an incentive to raise its price after
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Figure 1-1: The Pooling E¤ect of a Merger on (a) Prices and (b) Expected Pro�ts. (Note. The
following parameter values are used: n = 3, a = 1, b = 0:6,  = 0:5; w = wm = 0:5, and
� = 0:3: These values are motivated by the U.S. rental car industry; see Appendix B.)

the merger because its higher price has a positive externality on the other merging party.

The increased prices of the merging �rms in turn bene�t nonparticipant �rms by raising their

demands (see (1.1)). Consequently, nonparticipant �rms also raise their prices after the merger.

However, they raise prices less so than the post-merger �rm due to the (technical) reason that a

nonparticipant �rm�s best response function to the merged �rm�s price is upward sloping with

a slope less than one (see Appendix).

Having characterized the collusion e¤ect of a merger under uncertain demand, we next

examine how inventory pooling and cost synergies a¤ect post-merger equilibrium. Since a

merger always enables merging parties to collude on their prices, we examine these e¤ects in the

presence of the collusion e¤ect. We �rst examine the pooling e¤ect and then the synergy e¤ect.

As discussed in §4.1, the post-merger �rm faces the aggregate volatility in its total demand,

�m = �
p
2 + 2�; which is increasing in the correlation coe¢ cient � between the demands of two

merging �rms. Thus, when � is low (resp., high), �m is low (resp., high) due to the high (resp.,

low) pooling e¤ect.

Proposition 1.1 For any wm 2 (0; w]; the inventory pooling of a post-merger �rm a¤ects post-
merger equilibrium as follows:

(a) The post-merger price of any �rm i, pposti (i = m; 3; 4; :::; n), is decreasing in �.

(b) The post-merger expected pro�t of any �rm i, �posti (i = m; 3; 4; :::; n), is decreasing in �.

Proposition 1.1(a) states that as the pooling e¤ect becomes more substantial with lower �

(i.e., the post-merger �rm faces a lower aggregate volatility), the post-merger �rm charges a

higher price; see Figure 1-1(a). Because the post-merger �rm saves its inventory cost from
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pooling inventories, one might anticipate that such cost savings will be passed on to consumers

through reduced prices. In fact, the existing theory of mergers developed under deterministic

demand posits that marginal cost reduction through cost synergies will induce �rms to reduce

their prices (see §2). However, our result indicates that although inventory pooling enables the

post-merger �rm to achieve cost savings, it always induces �rms to raise their prices.

We can explain this result as follows. In order to prove that ppostm decreases with �m as

well as � (since �m = �
p
2 + 2�), we apply the implicit function theorem to two �rst-order

conditions for ppostm and ppost3 , and obtain the following after simpli�cations (see the proof):

dppostm

d�m
=

� @2�m(p;�m)
@p1@�m

���
p=ppost

@
@ppostm

�
@�m(p;�m)

@p1

���
p=ppost

�
+ @

@ppost3

�
@�m(p;�m)

@p1

���
p=ppost

�
dppost3

dppostm

: (1.5)

In (1.5), the �rst term in the denominator captures the shape of the post-merger �rm�s pro�t

function �m with respect to its own price, and the second term captures the competitive dy-

namics between post-merger and nonparticipant �rms. Using Lemma 1.1 (as well as Lemma

A1 in Appendix that shows 0 < dppost3 =dppostm < 1), we show in the proof that the denom-

inator of (1.5) is negative. Thus, it su¢ ces to show that the numerator of (1.5) is posi-

tive: i.e., @2�m
@p1@�m

= @2�dm
@p1@�m

� @2cm
@p1@�m

< 0 at p = ppost, which follows from @2�dm
@p1@�m

= 0 and
@2cm
@p1@�m

= R(��1(1 � wm=ppostm )) > 0 at p = ppost. Note that the numerator is computed for

�xed prices of all nonparticipant �rms, and hence it is consistent with the result of the price-

setting monopolistic newsvendor models (cf. Mills 1959, Petruzzi and Dada 1999). Its intuition

is as follows. Although demand volatility �m does not a¤ect the pro�t from the deterministic de-

mand, �dm, it does a¤ect the expected cost due to demand uncertainty, cm. It can be shown that

cm increases with price p
post
m as well as volatility �m. The result that @2cm=@p1@�m

��
p=ppost

> 0

suggests that the marginal cost of a higher demand volatility �m increases with price ppostm

because the lost revenue due to demand uncertainty increases with price ppostm . Likewise, the

marginal cost of a higher price ppostm increases with volatility �m because more demand will be

lost with a higher volatility �m. Taken as a whole, considering the impact of �m on its own

expected pro�t �m as well as the competitive response of nonparticipant �rms, the post-merger

�rm raises its price in equilibrium when facing a lower �m. In response to the increased price

of the post-merger �rm, as discussed earlier in Lemma 1.1(a), nonparticipant �rms raise their

prices as well.

Proposition 1.1(b) shows, as expected, that a post-merger �rm will obtain a higher expected

pro�t by pooling its inventories. One might expect that the cost advantage of the post-merger

�rm may hurt its competitors. In contrast to this �rst intuition, Proposition 1.1(b) shows that
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Figure 1-2: The Synergy E¤ect of a Merger on Prices under Uncertain Demand at (a) � = 0,
(b) � = 0:5, and (c) � = 1: (Note. The same parameter values are used as in Figure 1 except
� = 0:5.)

the high pooling e¤ect also bene�ts nonparticipant �rms. This happens because the increased

price of the post-merger �rm will allow nonparticipant �rms to raise their prices as well, and

to earn higher expected pro�ts. Although the pooling e¤ect bene�ts both post-merger and

nonparticipant �rms, Figure 1-1(b) illustrates that the pooling e¤ect is more bene�cial to a

merging �rm than a nonparticipant �rm, and hence when � is su¢ ciently low, a merging �rm

earns a higher expected pro�t than that of a nonparticipant �rm. This is contrary to the

result of Deneckere and Davidson (1985) who show that a merger is always more bene�cial to

a nonparticipant �rm under deterministic demand.

We next examine the impact of marginal cost reduction from merger synergies on post-

merger equilibrium. Although both inventory pooling and cost synergies enable a post-merger

�rm to reduce its expected cost, the following proposition shows that the synergy e¤ect on post-

merger equilibrium di¤ers substantially from the pooling e¤ect presented earlier in Proposition

1.1.

Proposition 1.2 For any � 2 [�1; 1]; there exists a threshold s(1) 2 [0; 1), which is nonde-
creasing in �m with s(1) = 0 at �m = 0, such that:

(a) The post-merger price of any �rm i; pposti (i = m; 3; 4; :::; n), is decreasing in s if and only

if s > s(1).

(b) The expected pro�t of the post-merger �rm, �postm , is always increasing in s, whereas the

expected pro�t of a nonparticipant �rm, �posti (i = 3; 4; :::; n), is decreasing in s if and only if

s > s(1):

Proposition 1.2(a) states that larger cost synergies of a merger do not necessarily induce �rms
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to lower their prices under uncertain demand. This bears important implications for antitrust

policies, since �rms often use cost synergies to justify their proposed merger to antitrust au-

thorities. Note that this result is not obtained under deterministic demand (since s(1) = 0) as is

the case in the existing literature. This result can be explained similarly to Proposition 1.1(a).

In particular, ppostm decreases with s if and only if @2�m=@p1@wm > 0 at p = ppost, which is

proven by showing that:

@2�dm
@p1@wm

����
p=ppost

= b+ 
n� 2
n

> 0;
@2cm
@p1@wm

����
p=ppost

=
�mwm

2�
�
��1

�
1� wm

ppostm

���
ppostm

�2 � 0:
(1.6)

Under deterministic demand with �m = 0, the expected cost cm is zero, so is @2cm=@p1@wm.

In this case, since @2�m=@p1@wm > 0, p
post
m decreases with s. This means that without demand

uncertainty, cost synergies enable the post-merger �rm to lower its price. However, under

uncertain demand with �m > 0, observe from (1.6) that @2cm=@p1@wm > 0, and consequently

@2�m=@p1@wm can be either positive or negative. Proposition 1.2(a) provides the necessary

and su¢ cient condition for @2�m=@p1@wm < 0 at the equilibrium point, so that ppostm increases

with s. This condition requires that the synergy level s is lower than the threshold s(1).3 The

threshold s(1) is nondecreasing with the aggregate demand volatility �m. This implies that

when the post-merger �rm faces a higher demand volatility, it is more likely to observe the

counter-intuitive result that ppostm increases with s; see Figure 1-2. The same condition applies

to nonparticipant �rms as well, since nonparticipant �rms change their prices in the same

direction as the post-merger �rm (see Lemma 1.1(a)).

Interestingly, Proposition 1.2(b) shows that when the post-merger �rm achieves larger cost

synergies, nonparticipant �rms can (but not always) also earn higher expected pro�ts. We can

explain this result in the same manner as the non-monotonic change of the post-merger prices

in Proposition 1.2(a). Although the price of a post-merger �rm changes non-monotonically

with the synergy level s, Proposition 1.2(b) shows that as the synergy level s increases, the

post-merger �rm earns larger expected pro�t. This result is intuitive and also holds for the case

under deterministic demand.

Finally, by combining Lemma 1.1 with Propositions 1.1 and 1.2, we examine the aggregate

(collusion, pooling and synergy) e¤ect of a merger, and compare pre-merger equilibrium with

3 Intuitively, when a post-merger �rm decides on its price p1, it considers a tradeo¤ between a marginal gain
in a deterministic pro�t from increasing p1 and a marginal gain from hedging against uncertainty by reducing
p1. It turns out that the former is increasing linearly with wm, while the latter is increasing convexly with wm.
Thus, when wm is high, a small reduction of wm has a larger impact on the marginal gain from hedging against
uncertainty.
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Figure 1-3: The Aggregate E¤ect of a Merger on: (a) Prices and (b) Expected Pro�ts. (Note.
The same parameter values are used as in Figure 1 except � = 0:9 to better illustrate s(2) and
s(3).)

post-merger equilibrium. See Figure 1-3 for illustration.

Proposition 1.3 For any � 2 [�1; 1] and wm 2 (0; w]; there exist thresholds s(2) 2 (s(1); 1]
and s(3) 2 [0; s(2)] such that:
(a) The post-merger price of any �rm is higher than its pre-merger price (i.e., ppostm > ppre1 and

pposti > pprei for i = 3; 4; :::; n) if and only if s < s(2): The price of the post-merger �rm is higher

than that of a nonparticipant �rm (i.e. ppostm > pposti for i = 3; 4; :::; n) if and only if s < s(2):

Furthermore, s(2) is nonincreasing in �:

(b) The post-merger expected pro�t of a merging �rm is higher than its pre-merger expected pro�t

(i.e., 12�
post
m > �pre1 ) for any s, whereas the post-merger expected pro�t of a nonparticipant �rm

is higher than its pre-merger expected pro�t (i.e., �posti > �prei for i = 3; 4; :::; n) if and only if

s < s(2). Moreover, the post-merger expected pro�t of a merging �rm is higher than that of a

nonparticipant �rm (i.e. 1
2�

post
m > �posti for i = 3; 4; :::; n) if s > s(3):

Proposition 1.3(a) states that a merger will cause �rms�prices to drop only when the synergy

level s is higher than s(2). This result combines the collusion e¤ect (which causes prices to

rise as shown in Lemma 1.1(a)), the pooling e¤ect (which causes prices to rise as shown in

Proposition 1.1(a)), and the synergy e¤ect (which causes prices to drop only when s > s(1) as

shown in Proposition 1.2(a)). Since the synergy e¤ect causes prices to drop only when s > s(1),

even in the absence of the pooling e¤ect, the threshold s(2) in Proposition 1.3(a) is higher than

s(1). It is also possible that s(2) = 1, implying that a merger will increase �rms�prices for any

synergy level s. This extreme case may happen when the pre-merger marginal cost w is so low

that further reduction of the marginal cost from synergies does not outweigh the collusion and
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pooling e¤ects of the merger on prices. Proposition 1.3(a) also reveals that when the synergy

level is so high that the merger decreases prices (i.e., s > s(2)), the price of the post-merger

�rm becomes lower than the price of nonparticipant �rms; see Figure 1-3(a).

In addition, Proposition 1.3(a) shows that the threshold s(2) is nondecreasing in �. This

happens because the pooling e¤ect drives prices upward as shown in Proposition 1.1(a). This

result suggests that as the pooling e¤ect becomes more signi�cant, larger cost synergies are

required for prices to drop after a merger. Therefore, ceteris paribus, consumer price is less

likely to rise after a merger in an industry where �rms�uncertain demands are highly correlated

(e.g., household furniture, home appliances, and motor vehicle dealerships, where demand is

closely related to business cycles (Berman and P�eeger 1997)).

Since the post-merger �rm bene�ts from each of the collusion, pooling and synergy e¤ects,

a merger will increase the expected pro�t of a merging �rm (Proposition 1.3(b)). On the

other hand, a merger will increase the expected pro�t of a nonparticipant �rm only when the

merger induces all �rms to raise their prices. This is consistent with our previous lemma and

propositions. As illustrated in Figure 1-3(b), when the synergy level s is larger than s(3), the

expected pro�t of a merging �rm exceeds that of a nonparticipant �rm.

1.4.3 Post-Merger Analysis: Service Level and Expected Consumer Welfare
So far we have focused on the e¤ect of a merger on �rms�prices and their expected pro�ts,

following the tradition of prior work on mergers studied under deterministic demand. However,

when demand is uncertain, �rms determine their stocking levels which can a¤ect the availability

of products to consumers. In this section, we examine how the pooling and synergy e¤ects of

a merger a¤ect �rms�service levels and ultimately expected consumer welfare.

Following the convention of the operations management literature, we de�ne �rm i�s service

level li as its in-stock probability: li = Pr (Di � qi) = Pr (e"i � yi) = � (yi=�i). The following
proposition shows the pooling and synergy e¤ects of a merger on �rms�service levels (in the

presence of the collusion e¤ect), and compares service levels between pre-merger and post-

merger markets.

Proposition 1.4 (a) For any �xed wm 2 (0; w], the post-merger service levels of all �rms, lpostm

and lposti (i = 3; 4; :::; n), are decreasing in �.

(b) For any �xed � 2 [�1; 1], the service level of the post-merger �rm, lpostm , is always increasing

in s, whereas the service level of a nonparticipant �rm, lposti (i = 3; 4; :::; n), is increasing in s

if and only if s < s(1) (where s(1) is de�ned in Proposition 2)

(c) The service level of the post-merger �rm is always higher than its pre-merger service level

(i.e., lpostm > lpre1 ). The service level of a nonparticipant �rm is higher than its pre-merger

16



service level (i.e. lposti > lprei for i = 3; 4; :::; n) if and only if s < s(2) (where s(2) is de�ned in

Proposition 3).

Proposition 1.4(a) shows that when the pooling e¤ect of a merger is signi�cant with low �,

�rms raise their service levels. To understand this result, recall from §4.1 that the optimal

safety stock is yposti = �i�
�1
�
1� wi=pposti

�
, at which the service level is lposti = 1 � wi=pposti .

Because a higher pooling e¤ect (i.e., a lower �) raises all �rms�prices pposti (i = m; 3; 4; :::; n)

for any �xed wi (Proposition 1(a)), it also raises their service levels l
post
i (i = m; 3; 4; :::; n):

With a higher service level, a �rm�s lost sales are decreased; i.e., E (Di � qi)+ = �iR
�
��1 (li)

�
is decreasing with li.

Unlike the pooling e¤ect, the synergy e¤ect a¤ects the service level of the post-merger

�rm lpostm = 1 � wm=ppostm via changes in both wm and ppostm . When the synergy level s is

signi�cant with s > s(1); the result is not straightforward because a higher s means a lower wm

but it induces the post-merger �rm to lower its price ppostm (cf. Proposition 2). It turns out

that the price drop is always less than the cost reduction (i.e., dppostm =dwm < 1; see the proof of

Proposition 1.4(b)), so the service level lpostm increases for any synergy level s. For nonparticipant

�rm i (i = 3; 4; :::; n), the synergy e¤ect a¤ects its service level lposti = 1�wi=pposti only through

a change in its price pposti . Since pposti increases with the synergy level s if and only if s < s(1)

(cf. Proposition 2), so does lposti .

The aggregate e¤ect (collusion, pooling and synergy e¤ects) of a merger on a �rm�s service

level is shown in Proposition 1.4(c). It always increases the post-merger �rm�s service level,

but it increases the nonparticipant �rm�s service level only when the synergy level is low (i.e.,

s < s(2)).

This result raises an interesting point. When the synergy level s < s(2), a merger not only

induces all �rms to raise their prices (cf. Proposition 3(a)), but also induces all �rms to raise

their service levels. The former a¤ects consumer negatively, whereas the latter a¤ects consumers

positively. Note that the latter e¤ect exists only when demand is uncertain. A similar trade-o¤

also exists when s > s(2) because consumers will bene�t from lower prices as well as a higher

service level of a post-merger �rm, but hurt from a lower service level of nonparticipant �rms.

Then how can we measure the overall impact of a merger on consumers? Now we propose

expected consumer welfare as the aggregate measure that antitrust agency and other interested

parties may use in evaluating a merger. As compared to the standard approach of computing

consumer welfare as an area under the demand curve of a single �rm, special care must be

taken to account for price-competing oligopoly as well as for potential stock-outs. We derive

expected consumer welfare in the following two steps. First, we present the consumer utility
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function of a representative consumer that leads to our demand function in the oligopolistic

market. Second, we use this utility function to de�ne expected consumer welfare that takes

into account potential stock-outs.

Following Shubik (1980), we can show that the following utility function of a representative

consumer generates the demand function Di = Li (p) + e"i (where Li (p) is given in (1)):
u (D) =

nX
i=1

8<:1 + 
nb

b+ 

�
a+ e"i � 1

2
Di

�
+



nb (b+ )

nX
j 6=i

�
a+ e"j � 1

2
Dj

�9=;Di; (1.7)

where D= (D1; D2; :::; Dn)
T denotes a consumption bundle. In (1.7), the �rst term in the

bracket represents the (direct) marginal utility from the product sold by �rm i (hereinafter,

product i in short), and the second term in the bracket is the marginal utility from substitution.

Total expected consumer welfare (or surplus) from the consumption bundle is denoted by

E[cs (D)], which is the sum of expected consumer surplus from product i, E[csi (D)]; i.e.,

E[cs (D)] =
nP
i=1
E[csi (D)]. To derive csi (D) ; we consider two di¤erent cases. In the �rst

case when a realization of random demand component e"i is smaller than or equal to safety
stock yi = �i�

�1 (li), all demand will be satis�ed. In this case, by substituting the demand

Di = Li (p)+e"i to (1.7) and then subtracting the price paidPn
i=1 piDi, we obtain the following

ex-post consumer surplus:

csi (D) = csi (p;e") = 1

2

8<:1 + 
nb

b+ 
(a+ e"i) + 

nb (b+ )

nX
j 6=i

(a+ e"j)� pi
9=; fLi (p) + e"ig : (1.8)

In the second case when a realization of e"i is greater than yi, some demand will be lost. Similar
to the monopoly case of Cohen et al. (2014) and Ovchinnikov and Raz (2015), we assume that

customers are �rst-come-�rst-served, so that every customer faces the same probability of not

getting a product, fLi (p) + yig = fLi (p) + e"ig. In this case, the ex-post consumer surplus is
given as csi (p;e"i) fLi (p) + yig = fLi (p) + e"ig. Putting the two cases together, we can express
the expected consumer surplus from product i, E[csi (p;e")], as follows:

E [csi (p;e")] = Z �i�
�1(li)

�1

Z 1

�1
� � �
Z 1

�1
csi (p; ") f (") d"1 � � � d"i�1d"i+1 � � � d"nd"i (1.9)

+

Z 1

�i��1(li)

Z 1

�1
� � �
Z 1

�1
csi (p; ")

Li + �i�
�1 (li)

Li + "i
f (") d"1 � � � d"i�1d"i+1 � � � d"nd"i;

where f (") = e�"
0��1"=2=(2�)n=2=j�j1=2 is the n-dimensional joint density of the multivariate

normal random variable e" and � is its covariance matrix. After a merger between �rms 1 and
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Figure 1-4: The Aggregate E¤ect of a Merger on: (a) Prices, (b) Service Levels, and (c)
Expected Consumer Welfare. (Note. The same parameter values are used as in Figure 3.)

2, csm (p; ") in (1.9) needs to be integrated over the aggregate uncertain component, ("1+ "2):

Using the total expected consumer welfare E[cs (D)] de�ned above, we now examine the

aggregate impact of a merger on consumers (which essentially combines all the e¤ects we have

examined separately, including the collusion, pooling and synergy e¤ects on prices and service

levels of both post-merger and nonparticipant �rms).

Proposition 1.5 Suppose b � (n�2)�w
n�(��1(lpost3 ))(ppost3 )

2 . Then there exists a threshold s(cs) 2�
0; s(2)

�
such that for any s > s(cs), the expected consumer welfare after a merger, E[cspost], is

greater than that before the merger, E[cspre].

The existence of the threshold s(cs) is intuitive. As discussed above, when s > s(2), consumers

bene�t from lower prices of all �rms and a higher service level of a post-merger �rm, although

they hurt from a lower service level of nonparticipant �rms. When the synergy level s is

su¢ ciently high, the former positive e¤ect outweighs the latter negative e¤ect. However, as

compared to the earlier result in Proposition 3(a) that s(2) is nonincreasing in �, we observe

s(cs) as well as E[cspost] change non-monotonically in �. This is because the high pooling e¤ect

hurts consumers through increased prices, but at the same time it bene�ts consumers through

increased service levels. More importantly, even if a merger induces all �rms to raise their

prices, it can still improve expected consumer welfare by increasing �rms�service levels. This

is illustrated in Figure 1-4 when the synergy level s falls between s(cs) and s(2).4

4The technical condition given in Proposition 1.5 is a su¢ cient condition for s(cs) � s(2), which is observed
in all of our extensive numerical experiments with the following parameter values: n=3, a=1, b 2{0.1,0.6,1,2},
 2{0.1,0.5,1,2}, w 2{0.1,0.2,0.3,0.4,0.5}, � 2{0.05,0.1,0.3,0.5} and � 2{0,0.2,0.4,0.6,0.8,1}. These scenarios
include a set of the parameter values used in Figure 1, and also cover various possible scenarios.
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The main takeaway from the above analysis is as follows. The extant literature has mea-

sured the impact of a merger on consumers via price changes, assuming consumer demand is

deterministic. In reality, consumer demand is fundamentally uncertain. Our result indicates

that under uncertain demand, it is crucial to take into account how a merger a¤ects consumers

via �rms�service levels as well as their prices.

1.5 Extensions
This section examines four extensions of our base model. In §5.1, we consider asymmetric �rms

in a pre-merger market. In §5.2, we extend our results to non-normal distributions. In §5.3,

we analyze a demand model with a general uncertainty structure. Lastly, in §5.4, we analyze

the impact of stock-out substitution on mergers. For brevity, we focus on the pooling e¤ect of

a merger on prices and the synergy e¤ect on nonparticipants�pro�ts. The e¤ects on service

levels and expected consumer welfare can also be shown similarly.

1.5.1 Asymmetric Firms
So far we have analyzed a merger in the pre-merger market in which �rms are symmetric. Such

a merger results in asymmetric competition between a post-merger �rm and nonparticipant

�rms in the post-merger market. In this section, we examine the impact of a merger in the

pre-merger market in which �rms are asymmetric, and we demonstrate that our main results

continue to hold.

Consider a pre-merger market in which �rms di¤er in demand and cost parameters. Specif-

ically, �rm i (= 1; 2; � � � ; n) faces its demand Di (p) = Li(p) + e"i, where Li(p) = ai � bipi +
(
Pn
j=1 pj=n� pi) and e" = (e"1;e"2; � � � ;e"n) follows a multivariate normal distribution N (0;P)

with V ar(e"i) = �2i ; and �rm i incurs a marginal cost wi. We consider a situation where

�rms sell homogeneous products, and di¤erentiation among �rms occurs at the retail level due

to the reasons such as locations, consumer characteristics, and store characteristics. After a

merger between �rms 1 and 2, the deterministic part of the post-merger �rm�s demand becomes

Lm(p) = L1 (p)+L2 (p), assuming that two retail outlets maintain their di¤erentiation. As be-

fore, we measure the pooling e¤ect of a merger in terms of the correlation coe¢ cient � betweene"1 and e"2. Unlike the symmetric case, the post-merger �rm may set two di¤erent prices at retail
outlets 1 and 2 in equilibrium, so we denote �rm i�s post-merger price by pposti for i = 1; 2; :::; n

(instead of using subscript m). As for the synergy e¤ect, when �rms are symmetric in the

pre-merger market, in §4 we have de�ned the synergy level as s � (w�wm)=w. However, when
asymmetric �rms compete in the pre-merger market, merging �rms�marginal costs w1 and w2

may di¤er, so we re�ne our previous de�nition of s to s � (minfw1; w2g � wm)=minfw1; w2g:
The synergy level s is non-negative when the marginal cost of the post-merger �rm wm is at
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least as small as minfw1; w2g. Note that when w1 and w2 are di¤erent, a merger leads to a
change in the marginal cost of at least one merging �rm. For this reason, we cannot isolate the

collusion e¤ect from the synergy e¤ect as we did in Lemma 1.1 for the symmetric case. The

following corollary shows that the pooling and synergy e¤ects of a merger in the pre-merger

market of asymmetric �rms are consistent with those in the pre-merger market of symmetric

�rms.

Corollary 1.1 (a) For any �xed wm 2 (0; w], all post-merger prices pposti (i = 1; 2; :::; n) are

decreasing in �.

(b) For any �xed � 2 [�1; 1], there exists a threshold s(1)asym 2 [0; 1) such that a nonparticipant
�rm�s pro�t �posti (i = 3; 4; :::; n) as well as all post-merger prices pposti (i = 1; 2; :::; n) is

increasing in s if s < s(1)asym.

1.5.2 Non-Normal Distributions
In this section, we consider a case in which the demand of a �rm follows a general distribution.

We denote by f(�) and F (�) the density of e"i with E (e"i) = 0 and its cumulative distribution

respectively, and we denote by fm(�) and Fm(�) the density of e"m = e"1 + e"2 and its cumulative
distribution. In the pre-merger market, the expected pro�t of �rm i can be expressed as:

�i(p; yi) = (pi � w)Li(p) � wyi � piRf (yi), where Rf (yi) �
R1
yi
(t� yi) f (t) dt represents the

expected lost sales of �rm i having safety stock yi. Similarly, the expected pro�t of the post-

merger �rm is given as �m(p; ym) = (p1�wm)L1(p)+(p2�wm)L2(p)�wmym� p1+p2
2 Rfm (ym).

We next present the de�nition of dispersive ordering and a failure rate (e.g., see Müller and

Stoyan 2002), and then use these properties to generalize our results in §4.

De�nition (a) A random variable X is smaller than Y in dispersive ordering, written as

X �disp Y , if F�1 (�2) � F�1 (�1) � G�1 (�2) � G�1 (�1) for all 0 < �1 < �2 < 1, where F

and G are the distribution functions of X and Y , respectively.

(b) Let X be a random variable with density f and cumulative distribution F . The failure rate

of X is de�ned as h (x) = f (x) =f1�F (x)g. The random variable X has an increasing failure

rate (IFR) if h (x) is increasing for all x such that F (x) < 1.5

Corollary 1.2 (a) Let e"m and e�m be two random variables with E [e"m] = E[e�m] = 0. Let pposti

or bpposti (i = m; 3; 4; :::; n) be the equilibrium price of �rm i when the post-merger �rm faces

5Dispersive ordering and an IFR have the following relation. Let X be a random variable with support on
(a;1) where a � �1. For any t 2 (a;1), let Xt = [X � tjX � t] denote the residual life time. The following
statements are equivalent (Pellerey and Shaked 1997): (i) X has an IFR; (ii) Xt �disp X for all t; (iii) Xt �disp Xs

for all s < t.
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random demand component e"m or e�m, respectively. Then, e"m �disp e�m implies pposti � bpposti .

(b) If e"m follows an IFR distribution, then there exists a threshold s(1)non 2 [0; 1] such that a
nonparticipant �rm�s pro�t �posti (i = 3; 4; :::; n) as well as all post-merger prices pposti (i =

m; 3; 4; :::; n) is increasing in s if and only if s < s(1)non.

Corollary 1.2(a) generalizes the pooling e¤ect of a merger presented earlier in Proposition 1.1(a).

The condition e"m �disp e�m implies that the expected lost sales Rfm
�
F�1m (1� wm=pm)

�
(=

2@cm=@p1) is smaller for a less dispersive demand. Because a marginal loss from raising a price

is lower for a less dispersive demand, the post-merger �rm charges a higher price in equilibrium,

which is followed by an increase in prices of nonparticipant �rms. This is consistent with

Proposition 1(a), since a larger �; or equivalently a larger �m under a normally distributed

demand, results in a more dispersive e"m. Corollary 1.2(b) shows that the synergy e¤ect of
a merger presented earlier in Proposition 1.2 holds for an IFR distribution which includes

many commonly used distributions such as normal, uniform, gamma and Weibull (with a shape

parameter greater than 1 for gamma and Weibull); see, e.g., Kocab¬y¬ko¼glu and Popescu (2011).

1.5.3 Demand Function with a General Uncertainty Structure
In this section, we consider a more general model in which �rm i�s demand is Di (p) = Li(p)+

�i(p)e"i, where Li(p) is given in (1.1), �i(p) = ���pi+�( 1n nP
j=1

pj�pi) (� � 0; � � 0 and � � 0),

and e" = (e"1;e"2; :::;e"n) follows a multivariate normal distribution with E (e"i) = 0 and V ar (e"i) =
1. This model takes the following two commonly-used models in the literature as special cases:

(1) when (�; �) = (0; 0), Di (p) = Li(p) + �e"i, which is the additive demand function in the
main body with � = �; and (2) when (�; �) = (b�=a; �=a), Di (p) = Li(p)(1 + �e"i=a), which
is a multiplicative demand function.6 After a merger between �rm 1 and �rm 2 takes place,

the post-merger �rm faces the demand of Dm (p) = L1(p) + L2(p) + �1(p)e"1 + �2(p)e"2.
Corollary 1.3 (a) For any �xed wm 2 (0; w] and � � 0, there exists a threshold b� (� 0) such
that if � < b�, all post-merger prices pposti (i = m; 3; 4; :::; n) are decreasing in �.

(b) Suppose  > ��
�
��1

�
1� w

ppost3

���
1� w

ppost3

��1
: Then, for any �xed � 2 [�1; 1], there

exists a threshold s(1)gen 2 [0; 1) such that a nonparticipant �rm�s pro�t �posti (i = 3; 4; :::; n) as

well as all post-merger prices pposti (i = m; 3; 4; :::; n) is increasing in s if and only if s < s(1)gen.

6Young (1978) and Petruzzi and Dada (1999) use a similar demand function for a monopoly case: D (p) =
L (p) + � (p)e". Since we analyze an oligopoly model, we replace the price p with a vector of prices of all �rms,
p. To be consistent with the main body, we assume that Li(p) is given in (1.1), and that �i (p) takes a similar
form to Li (p).
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Figure 1-5: The Pooling E¤ect of a Merger under a General Uncertainty Model. (Note. The
same parameter values are used as in Figure 1.)

Corollary 1.3(a) shows that the pooling e¤ect of a merger on �rms� prices is the same as

that in our base model as long as the impact of demand uncertainty on price sensitivity is

su¢ ciently small (i.e., � and � are small). See Figure 1-5 for illustration, in which the lower left

corner at (�; �) = (0; 0) corresponds to the additive demand case and the upper right corner

at (�; �) = (b�=a; �=a) corresponds to the multiplicative demand case. The intuition from

this result is as follows. To hedge against the risk of uncertainty due to high �, in the additive

case, a post-merger �rm wants to reduce its price to decrease the coe¢ cient of variance without

a¤ecting the variance; whereas in the multiplicative case, a post-merger �rm wants to increase

its price to reduce the variance without a¤ecting the coe¢ cient of variance (cf. Petruzzi and

Dada 1999). When � and � are su¢ ciently small, the e¤ect of controlling the coe¢ cient of

variance dominates the e¤ect of controlling the variance, hence inducing a post-merger �rm

to decrease its price with � as in the additive case. Next, Corollary 1.3(b) shows that the

non-monotonic relationship between post-merger �rm�s prices pposti and the synergy level s is

preserved in the general demand model. Consequently, when synergy level s is small, larger

cost synergies from a merger bene�t nonparticipant �rms. The condition on  guarantees that

a higher price of a merging �rm has a positive externality on a nonparticipant �rm as in the

base model.7

7A demand function with additive uncertainty is more amenable to modeling consumer behavior from stock-
out substitution as we discuss next in §5.4. It is also worth noting that a demand function with multiplicative
uncertainty does not satisfy the conditions necessary to guarantee utility maximization by a representative
consumer (Krishnan 2010), and hence it cannot be used for welfare analysis in §4.3.
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Figure 1-6: Under Stock-Out Substitution: (a) the Pooling E¤ect on Prices, (b) The Synergy
E¤ect on Prices, and (c) The Synergy E¤ect on Expected Pro�ts.

1.5.4 Stock-Out Substitution
This section examines the case in which a fraction of consumers who do not �nd a product at

their local retailers look for the product at other retailers. We follow the standard approach

of modeling this stock-out substitution (Netessine and Rudi 2003, Zhao and Atkins 2008, and

references therein) by assuming that a part of excess demand is reallocated to other retailers in

deterministic proportions, and that the sales is lost if reallocated demand cannot be satis�ed.

Then, the total demand of �rm i is the sum of its original demand and a fraction of lost demands

from other �rms; i.e., bDi �p;y�i� = Li(p)+e"i+ �
n�1

P
j 6=i
(Dj � qj)+, where � (� 1) is a fraction

of the excess demand from �rm j spilled to other �rms, and �
n�1

P
j 6=i
(Dj � qj)+ is referred to

as �spill demand.�Random variable bDi is the sum of n random variables �a normal e"i and
(n � 1) truncated normal �

n�1 (Dj � qj)
+ for j 6= i �which are correlated with each other

in a complex manner. Thus the analytical characterization of even pre-merger equilibrium

is intractable (Netessine and Rudi 2003, Zhao and Atkins 2008). For this reason, we study

stock-out substitution numerically.

We �rst examine how stock-out substitution a¤ects the pooling e¤ect of a merger. Figure

1-6(a) uses the same parameter values as in Figure 1-1 except � = 0:2. By comparing these two

�gures, we observe that under stock-out substitution inventory pooling continues to induce all

�rms to raise their prices (i.e., ppostm and ppost3 decrease with �): This is because the main driver

for the pooling e¤ect (i.e., the demand volatility of the post-merger �rm is increasing with �)

exists with or without stock-out substitution. Although the correlation between �rms�demands

does not a¤ect pre-merger equilibrium in Figure 1-1, we observe in Figure 1-6(a) that ppre1 is

decreasing with � under stock-out substitution. To understand this result, suppose that � is
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high. Then when the demand of one �rm, say �rm 1, is high, there is a high chance that the

demands of the other �rms are also high. In this case, when the other �rms experience stock-

outs, it is likely that �rm 1 also experiences a stock-out and cannot satisfy the spill demand

from the other �rms. As a result, higher � reduces the expected spill demand a �rm can satisfy.8

Therefore, with higher �, �rms compete more intensely by reducing their prices.

We next examine how stock-out substitution a¤ects the synergy e¤ect of a merger. Figure

1-6(b)-(c) use the same parameter values as in Figure 1-2 except � = 0:2. From these two

�gures, we observe that the synergy e¤ect on the post-merger �rm is consistent in both cases

with or without stock-out substitution: larger cost synergies increase the post-merger �rm�s

price only when s is lower than a certain threshold (denoted by s(1)sub in Figure 1-6(b)), although

it always increases the post-merger �rm�s expected pro�t. For the nonparticipant �rm, when s

is small, �post3 increases with s, con�rming that larger cost synergies can bene�t non-participant

�rms. However, unlike Proposition 1.2 (showing that without stock-out substitution ppost3 and

�post3 decrease in s if and only if s > s(1)), Figure 1-6(b)-(c) show that ppost3 and �post3 can

decrease in s even when s < s(1)sub. We can explain this result intuitively as follows. With larger

cost synergies, the post-merger �rm increases its safety stock, which not only reduces its own

expected lost sales due to stock-outs, but also reduces its spill demand to the nonparticipant

�rm. Therefore, with stock-out substitution, larger cost synergies create an additional force

that induces the nonparticipant �rm to charge a lower price and to stock less, causing �post3 to

be decreasing in s further.

1.6 Conclusion
M&As have been employed by many �rms as major strategies to create competitive advantages.

Not only does a merger enable merging parties to cooperate with each other in their decision-

making, but also to achieve cost savings by improving operational e¢ ciencies. Whether such

competitive advantages created by a merger will bene�t consumers is a central concern of

antitrust agency. Popular defensive arguments used by �rms have been that merger synergies

will lower the cost of a post-merger �rm and thus be ultimately passed on to consumers.

Whereas the existing theory of mergers has been supportive of those arguments, this paper

shows they are not necessarily true.

While building on the competitive models established in the rich literature on mergers, our

8Higher � also increases V ar( bD1), since V ar( bD1) = V ar(e"1) + �2

4

3P
j=2

V ar((e"j � yj)+) +

�
3P

j=2

Cov(e"1; (e"j � yj)+) + �2

2
Cov((e"2 � y2)+ ; (e"3 � y3)+), where both Cov(e"1; (e"j � yj)+) and

Cov((e"2 � y2)+ ; (e"3 � y3)+) are increasing in �.
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model features two novel operational elements: uncertain demand and statistical economies of

scale. Clearly, a retail business entails uncertainty in consumer demand, and therefore demand

uncertainty has been one of the most fundamental features in the literature of operations

management. Under uncertain demand, a merger can create statistical economies of scale by

reducing the aggregate volatility of combined demands in addition to conventional economies

of scale that lead to marginal cost reduction. Such statistical economies of scale allow a post-

merger �rm to reduce inventory costs by managing their stocks in a centralized manner.

Our analysis shows that cost savings from statistical economies of scale have substantially

di¤erent impacts on �rms�prices and expected pro�ts as compared to cost savings from conven-

tional economies of scale. First, we �nd that statistical economies of scale (i.e., pooling e¤ect)

indeed reduce the expected cost of a post-merger �rm (hence increasing its expected pro�t), but

contrary to a common belief, they always induce both post-merger and nonparticipant �rms to

raise their prices. Second, although the existing theory has shown that cost synergies due to

conventional economies of scale (i.e., synergy e¤ect) lead to price reduction under determinis-

tic demand, our analysis shows that this is no longer true under uncertain demand. When a

post-merger �rm faces highly uncertain demand or its cost synergies are not signi�cant, it is

better o¤ raising its price. Interestingly, larger cost synergies of a post-merger �rm can bene�t

nonparticipant �rms when accompanying a price increase. Finally, when a post-merger �rm

can utilize both conventional and statistical economies of scale, consumer price is less likely

to rise after a merger in the industries that exhibit higher correlation among �rms�uncertain

demands. Furthermore, a merger may induce �rms to raise their service levels, and ultimately

bene�t consumers even if prices are increased.

We have considered various extensions of our base model and analysis. However, due to

inherent complexity of analyzing competitive price-setting newsvendors and their mergers, we

have made some simplifying assumptions such as a linear demand function, no supply chain

consideration, and a single product with no economies of scope. Relaxing these assumptions

will enrich our �ndings, but the incorporation of these features may require simpli�cation of

other parts. Our results also provide several important theoretical �ndings that may be tested

empirically.
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Chapter 2

Green Technology Development and

Adoption: Competition, Regulation,

and Uncertainty �A Global Game

Approach

2.1 Introduction
When a government agency considers tightening a standard on a pollutant, it usually takes into

account the proportion of �rms in the industry that are able to meet the new standard. For

example, in a regulatory impact analysis of proposed greenhouse gas (GHG) emission standards,

the United States Environmental Protection Agency (EPA) stated the following (EPA 2012):

�the vast majority of technology we project as being utilized to meet the GHG standards is

commercially available and already being used to a limited extent across the �eet, although

far greater penetration of these technologies into the �eet is projected as a result of both the

MYs [model years] 2012-2016 rule and this �nal rule.�The Tier 3 Gasoline Sulfur Standard is

another example of industry capability in�uencing regulation. This standard requires gasoline

sold in the U.S. to have an annual average of no more than 10 parts per million of sulfur.

When proposing the Tier 3 Standard, the EPA demonstrated its feasibility by claiming that

40 out of 108 gasoline re�neries were already able to meet this standard (EPA 2014a). Such

consideration is not just a recent development: in early 1999, BP Amoco announced that it

would lower the sulfur level in its gasoline in 40 cities around the world; it is believed that

this encouraged the EPA to set tougher standards (Kendall and Grossman 1999), as later that
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year the EPA proposed the Tier 2 Gasoline Standard, which required a 90% reduction of the

sulfur level in gasoline by 2004. This pattern of looking at early technology adopters before

mandating universal adoption is also common in other parts of the world. For example, in

Europe, newer emission control technologies became mandatory only after their feasibility had

been demonstrated in practice by early adopters (Faiz et al. 1996).

We call the proportion of �rms within an industry who are currently able to meet a proposed

stricter standard the industry�s �capability index.� A higher capability index indicates that

more �rms have the technology to meet the standard, thereby potentially encouraging the

government agency to tighten regulations. This relationship between capability and potential

future regulation can in turn a¤ect �rms�decisions on technology adoption: if a �rm expects

that many other �rms will adopt a new technology to reduce a pollutant, the �rm is also likely

to adopt this new technology because mandated adoption is more likely, and may be more

costly. For example, after the Tier 3 Gasoline Sulfur Standard became e¤ective, re�neries that

had not met the standard were required to purchase credits to o¤set their pollution until they

updated their technology to bring them into full compliance with the standard (EPA 2014b). As

a result, regulation which considers an industry�s capability index makes �rms�actions strategic

complements.

Despite the fact that regulation often takes industry capability into account, there has been

disappointingly little research on evaluating the impact of the interrelation of capability and

regulation on �rms�adoption decisions: existing research assumes that government agencies

move to stricter standards with �xed probabilities regardless of industry capability (e.g., Farzin

and Kort 2000 and Kraft and Raz 2015). Under this assumption of �xed regulation probabilities,

�rms� actions are no longer strategic complements, and an important driving force behind

�rms�decisions may be missed. In addition, most existing research assumes that the bene�ts of

adopting new green technologies to reduce pollutants are deterministic (e.g., Baker and Shittu

2006 and Kraft et al. 2013). In practice, the bene�t of a new technology is often highly

uncertain � a �rm is not likely to know the precise payo¤ of a new technology before it is

developed. We aim to provide insight into how the uncertainty of a new technology�s payo¤

and the strategic complementarity induced by regulation based on industry capability jointly

a¤ect �rms�incentives to develop or adopt a new green technology.

Speci�cally, we consider three factors that may a¤ect a �rm�s decision to innovate or adopt

a green technology: the bene�ts from the technology, the costs of developing, adopting and
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using this technology, and other �rms�decisions. The bene�ts of a green technology are often

the primary incentive for a �rm to innovate or adopt it. For example, Steve Percy, the former

Chairman and CEO of BP America, Inc., summarized the bene�ts from a proactive sustain-

ability move by BP as follows: �an enhanced reputation that provided exclusive access through

partnerships and relationships to new ideas, natural resources, business opportunities, the best

employees, and probably most importantly, a seat at the public policy table,� �market share

gains from attracting customers with concerns about the environment,� and �reduced risks

from unforeseen liabilities [primarily regulatory �nes]� (Percy 2013). All of these bene�ts are

highly uncertain, although the sources of uncertainty are di¤erent: the uncertainty concerning

an enhanced reputation and demand gain is primarily due to the market and the new green

technology itself, whereas the uncertainty of the reduced risks from regulatory �nes stems from

the uncertainty of government regulation. Our model captures these bene�ts, distinguishing

between the two di¤erent types of bene�t uncertainty. The costs of a green technology also

consist of two parts: a �xed cost of developing or adopting it, and typically a higher production

cost caused by using the new green technology, since a greener product is often more expensive

to produce. For example, when BP Amoco promised to reduce the sulfur level in its gasoline in

1999, they estimated that such a reduction would increase production costs by 5 or 6 cents per

gallon (Kendall and Grossman 1999). Finally, other �rms�decisions play an important role in

a �rm�s decision process. On the one hand, as more �rms adopt the new technology, the repu-

tation enhancement and demand gain for a particular �rm become smaller. In this case, other

�rms�adoption decisions discourage a �rm from adopting the new technology; �rms�actions

exhibit strategic substitutability. On the other hand, as more �rms adopt the new technology,

the probability of the government enforcing a stricter standard will increase, yielding a higher

incentive to adopt a new technology so as to avoid a higher cost of later adoption. In this case,

�rms�actions exhibit strategic complementarity.

To analyze �rms�adoption decisions in equilibrium, taking into account these complex inter-

actions, we utilize the global game framework recently developed in economics. This framework

is appropriate for addressing two important features of our model: the strategic complemen-

tarity among �rms�actions and the uncertainty concerning the new green technology�s payo¤.

Because of the strategic complementarity, a �rm must take into account other �rms�actions

when deciding its own action. And, due to uncertainty, �rms do not know the payo¤ of adopt-

ing the technology exactly; instead, they observe noisy private signals about the payo¤. These
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noisy private signals imply that a �rm cannot predict other �rms�actions exactly; the best it

can do is to use its own private signal to form a belief on other �rms�signals since the other

�rms are considering the same technology. Since every �rm acts based on its belief on other

�rms�signals, in order to conjecture on other �rms�actions a �rm must also form a belief on

other �rms�beliefs (on other �rms�signals), a belief on other �rms�belief on other �rms�beliefs,

and so on. When all �rms rely on such higher-order beliefs to decide their actions, an equi-

librium can be reached in a global game. Crucially, global games di¤er from typical Bayesian

games in which �rms�signals are independently distributed: In such Bayesian games one�s own

signal does not reveal any information about other �rms�signals. Thus higher-order beliefs do

not play an important role in those games (see, e.g., Morris and Shin 2003 for a more detailed

discussion).

Our analysis highlights the importance of taking into account the interplay of industry

capability and uncertainty about a new green technology�s payo¤ in a �rm�s development de-

cision. We �nd that regulation that considers industry capability, compared with regulation

that ignores it, more e¤ectively motivates a �rm to develop a new green technology when the

�rst-mover advantage from developing this new technology is small. Therefore, for an industry

in which �rms can easily catch up with a new technology (thus reducing a �rm�s �rst-mover

advantage), a government agency may wish to use the regulation scheme that considers industry

capability to encourage innovation. Surprisingly, we also �nd that uncertainty of the payo¤ can

help promote a �rm�s development of a new green technology when competition is intense and

the �rst-mover advantage is small, or when competition is mild and the �rst-mover advantage

is large. Finally, we �nd that more stringent regulation (which implies a higher probability

of enforcing a stricter standard for a given capability index) encourages more �rms to adopt

a green technology once the technology becomes available, but may discourage a �rm from

developing it in the �rst place when facing intense competition. Therefore, for an industry

with intense competition, a government agency should caution against enforcing too stringent

regulation that may sti�e innovation.

The rest of this paper is organized as follows. In §2 we review the related literature. In

§3 we describe our model. In §4 we analyze the equilibrium behaviors of all �rms. In §5 we

compare our �ndings in §4 with two benchmarks: the case in which a government agency might

enforce a stricter standard with a �xed probability, and the case in which the bene�t of the

new technology is common knowledge. In §6 we study two extensions of our base model. We
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conclude our paper in §7. Proofs are presented in the Appendix.

2.2 Related Literature
We �rst review the literature discussing the impact of government regulation on �rms�envi-

ronmental decisions, and then we discuss the literature on technology adoption under network

e¤ects. We �nally present the literature related to global games.

Research in the impact of government regulation on �rms� environmental decisions has

received signi�cant attention recently. The issues studied in this literature include mandatory

disclosure (e.g., Kalkanci et al. 2014), allocation of emission responsibilities (e.g., Granot et al.

2014), and �nancial incentives such as taxes and subsidies (e.g., Tarui and Polasky 2005, Krass

et al. 2013, Cohen et al. 2014, and Sunar and Plambeck 2016). Innes and Bial (2002) and Puller

(2006) examine how a �rm can in�uence regulation to increase its rivals�compliance costs and

thereby gain competitive advantages. Our model incorporates such competitive advantages

into the bene�t of a new green technology, and furthermore also studies the crucial role of

uncertainty in the technology�s bene�t and e¤ects of regulation.

Our work is particularly related to a stream of research that analyzes the impact of reg-

ulatory uncertainty on �rms�environmental decisions. Farzin and Kort (2000) study how an

uncertain tax rate increase a¤ects �rms�adoption of more e¢ cient pollution abatement tech-

nologies, Baker and Shittu (2006) study a �rm�s R&D response to an uncertain carbon tax, Kraft

et al. (2013) investigate a monopolist�s decision to replace potentially hazardous substances in

anticipation of possible regulation, and Kraft and Raz (2015) study �rms�replacement decisions

for potentially hazardous substances under competition and potential government regulation.

Finally, Hoen et al. (2015) study the impact of an uncertain future emission price on a mo-

nopolist�s investment decision regarding a cleaner technology and production capacity decision.

Like these works, our paper also investigates how uncertainty of government regulation a¤ects

�rms�environmental decisions. However, whereas prior work assumes that the probability of

government regulation is �xed, our model incorporates the fact that such a probability often

increases with industry capability. We �nd that the consideration of industry capability in

regulation can make a �rm more likely to develop a new green technology when the �rst-mover

advantage from the technology is low. In addition, whereas most prior work assumes that the

bene�ts of adopting new technologies are deterministic, we model the uncertainty of these ben-

e�ts, �nding�counterintuitively�that this uncertainty can actually promote development of a
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green technology.

Our work is also related to the literature on technology adoption under network e¤ects in

economics and operations management. Network e¤ects arise when a user�s utility increases

with the number of other users, as is the case for technology standards. There is extensive liter-

ature on various issues related to network e¤ects, including compatibility choices for products

(e.g., Katz and Shapiro 1986, Regibeau and Rockett 1996, and references therein), coordination

failures (see Farrell and Klemeperer 2007 for a summary of the literature), and price competition

(e.g., Argenziano 2008 and references therein). Our consideration of strategic complementar-

ity among �rms�decisions in developing or adopting a new technology places us within this

framework. However, di¤erent from the previous literature, our focus is on the e¤ect of regu-

latory uncertainty on �rms�investment decisions; government regulation is seldom studied in

this literature.

The notion of global games was originally de�ned by Carlsson and van Damme (1993);

they refer to global games as games of incomplete information in which players receive noisy

private signals about a fundamental of the real world, and decide their actions based on their

correlated signals. They solve a two-player global game in which players�actions are strategic

complements, showing that uncertainty about the payo¤s leads to a unique equilibrium because

of players�consideration of higher-order beliefs. Morris and Shin (1998) extend global games to

the case of a continuum of players, and Morris and Shin (2005) extend global games to the case

in which players�actions are strategic substitutes. Karp et al. (2007) analyze a problem in which

players�actions are strategic complements in one region, and strategic substitutes in the other

region. Global games have been used to analyze various problems of decentralized coordination

among players, including �nancial crises (Angeletos and Werning 2006), accounting standards

comparison (Plantin et al. 2008), network analysis (Argenziano 2008), and business cycles

(Schaal and Taschereau-Dumouchel 2014). In operations management, Chen and Tang (2015)

apply the related concept of higher-order beliefs to study the economic values of private and

public information in farmers�production process. To the best of our knowledge, our paper is

among the �rst papers that apply the theory of global games to sustainable operations. The

use of the global game framework enables us to analyze �rms�decisions when both strategic

complementarity and substitutability are co-present, due to government regulation and �rms�

competition, respectively.
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2.3 Model
We consider a game of incomplete information between a leading �rm and multiple other fol-

lowing �rms. We assume a continuum of �rms indexed by the interval [0; 1]. This assumption

is common in the literature on global games; it is reasonable in our context in which a govern-

ment agency�s decision is based on consideration of an entire industry consisting of many �rms.

For example, there are about 40 car brands in the U.S. in 2008 (Marks 2008), and the EPA

considered 108 gasoline re�neries when proposing the Tier 3 Gasoline Sulfur Standard (EPA

2014).

The game proceeds as follows: In period 1, a leading �rm decides whether to develop a new

green technology, which enables the �rm to reduce a certain pollutant in its product. If the

technology is not developed, the game ends. If it is developed, the game proceeds to period

2 in which other �rms decide whether to adopt this technology. In period 3, a government

agency announces whether to enforce a stricter standard on the pollutant. The enforcement

of the stricter standard occurs with a probability which increases with the proportion of �rms

that have installed this technology, i.e., the industry�s capability index. Once the new regula-

tion is enforced, those �rms that have installed the technology can meet the stricter standard

immediately, while the rest of the �rms have to incur extra cost to adopt the technology. The

sequence of decisions and events is illustrated in Figure 2-1.

We next present the details of our model in each period: In period 1 the leading �rm,

denoted as �rm 1, has an opportunity to develop a new green technology. Let a1 denote �rm

1�s action: a1 = 1 if �rm 1 chooses to develop the new technology, or a1 = 0 otherwise. If the

�rm chooses to develop the new technology (i.e., a1 = 1), then it incurs a �xed cost f1 (> 0),

while also enjoying the �rst-mover advantage over other �rms. The existence of the �rst-mover

advantage is evident in the example of BP mentioned in §1 (Percy 2013): �BP believed that

if it were to move proactively on the topic, it would be much more valuable to be the �rst

rather than second, especially in terms of the reputational bene�ts.�Let � (� 0) denote the

expected payo¤ from the �rst-mover advantage.1 In addition, �rm 1 privately observes a signal

about the bene�t of the new green technology during period 2, at which time other �rms as

followers can also adopt the technology. We assume that �rm 1�s payo¤ during period 2 is

1We focus on uncertainty in the value of the new technology as well as uncertainty in regulation, while
abstracting away from uncertainty in various other dimensions such as lead time and development cost. Our
model could be extended to include these, but its analysis would be much more complicated.
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Figure 2-1: Sequence of Decisions and Events

given as � � b�, where b (� 0) captures the competition intensity and � (2 [0; 1]) represents

the proportion of �rms that adopt this technology in period 2, i.e., the capability index. The

unknown parameter �, called a �fundamental�of the new technology, represents the maximum

payo¤ �rm 1 can get from the new technology if no other �rms adopt the technology in period

2. Firm 1 cannot observe � directly, but instead it observes a noisy private signal x1 = � + e"1,
where e"1 is distributed uniformly on [��; �] with � > 0 (� is common knowledge). We assume
that �rm 1�s prior belief on � is very noisy such that �rm 1 relies fully on its signal x1 to

estimate �. Such a prior is often called an �improper prior.�Note that x1 as well as � can be

negative, meaning that the technology can cause a loss to �rm 1�s pro�t. If �rm 1 decides not

to develop the new technology (i.e., a1 = 0), the game ends.2

In period 2, if �rm 1 has developed the technology in period 1 (i.e., a1 = 1), each �rm i

(2 [0; 1)) decides whether to adopt the new green technology (ai = 1) or not (ai = 0). If ai = 1,

then �rm i (2 [0; 1)) incurs a cost fL (> 0), while receiving the payo¤ of � � b� during period

2. Like �rm 1, �rm i (2 [0; 1)) observes a noisy private signal xi = �+e"i, where e"i is uniformly
2This implies that a stricter standard will not be enforced if there is no extant green technology to meet the

elevated standard. In §6, we consider a case in which a stricter standard may still be enforced even if a new
green technology has not been developed. We show that our �ndings continue to hold in this case.
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distributed on [��; �] with � > 0. All e"i are mutually independent as well as independent of e"1.
If ai = 0, then �rm i (2 [0; 1)) receives zero payo¤ during this period.

In period 3, a government agency enforces a stricter standard on the pollutant with a

probability �r, where � is the capability index and r is a positive constant. Since � 2 [0; 1];

the larger r is, the less likely the new standard is to be enforced. We refer to the probability

�r as the �regulation probability.�Firms�payo¤s di¤er depending on whether or not the new

regulation is enforced: �rms who have installed the new technology, including both �rm 1

(who developed the new technology in period 1) and any �rm i 2 [0; 1) who adopted the new

technology in period 2 receive mH when the new regulation is enforced, and mL when it is

not. We assume that these payo¤s are non-positive (i.e., mH � 0 and mL � 0), since it is

typically more costly to reduce the pollutant (see §1). In addition, we assume that these �rms

receive lower payo¤s in the absence of the more stringent standard (i.e., mL � mH) because

their production costs would typically be higher than those of their competitors who have not

installed the green technology.3 Such a cost disadvantage to those �rms who have installed the

green technology does not exist when the new regulation is enforced, because then all �rms

must install the green technology.4

Next we consider the period-3 payo¤s of the �rms who have not installed the new technology.

If the stricter standard is not enforced, then these �rms�payo¤s are zero. This is consistent

with our earlier assumption that a �rm�s payo¤ is zero during period 1 or 2 when the green

technology is not installed. On the other hand, if the new regulation is enforced, these �rms

must adopt the new green technology at a cost fH in order to meet the stricter standard. We

assume that the cost of this later adoption is no less than that in period 2 (i.e., fH � fL).5 For

example, as mentioned in §1, after the Tier 3 Gasoline Sulfur Standard became e¤ective, the

re�neries that could not meet the new standard had to purchase credits to o¤set their pollution

until they became fully compliant (EPA 2014b). Once these �rms install the new technology,

they will earn the same payo¤mH as other �rms who have previously installed the technology.

3Our model can be extended to the case in which mL � mH � 0, indicating that the production cost using
a green technology is lower than that using a conventional technology. In this case the only cost of installing a
green technology is a �xed cost, and the problem becomes much simpler than the one we analyze.

4 In periods 1 and 2, the potential cost disadvantage of a �rm who has installed the green technology can be
captured in � and �, respectively.

5We assume fH � fL for consistency with observations in practice. Relaxing this constraint will not change
the intuitions of our results because there is an additional force that incentivizes early adoption: An early adopter
will receive a higher payo¤ in period 3 with new regulation than that without new regulation (i.e., mH � mL).
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Table 1 Summary of Notation

Symbol De�nition

ai Firm i�s action (2 f0; 1g)

�i Firm i�s total expected payo¤

ui Firm i�s gain from developing or adopting the new technology

� Firm 1�s expected payo¤ from the new technology during period 1 (� 0)

� Firm�s maximum payo¤ from the new technology during period 2 (2 R)

b Competition intensity (� 0)

� Proportion of �rms that adopt the technology (i.e., capability index) (2 [0; 1])

r Regulation probability parameter (> 0)

�r Probability that a stricter standard will be enforced (i.e., regulation probability)

xi Firm i�s private signal about �e"i Noise term in xi which is uniformly distributed on [��; �]

f1 Firm 1�s cost for developing the new technology in period 1 (> 0)

fL Cost of �rm i (6= 1) for adopting the new technology in period 2 (> 0)

fH Cost of �rm i (6= 1) for adopting the new technology in period 3 (� fL)

mL Payo¤ of �rms having the new technology installed during period 3 if the stricter

standard is not enforced

mH Payo¤ of all �rms during period 3 if the stricter standard is enforced (mL � mH � 0)

Based on our model described above, we now derive �rm i�s total expected payo¤�i (ai; �; �) :

For any given � and �, if �rm i (2 [0; 1)) adopts the new green technology in period 2

(i.e., ai = 1 in period 2), then its total expected payo¤ is given as �i (1; �; �) = �fL + � �

b� + �rmH + (1� �r)mL; and if �rm i chooses ai = 0, its total expected payo¤ is given as

�i (0; �; �) = �
r (mH � fH). Thus, the expected gain from adopting the technology, ui(�; �), is

ui(�; �) � �i (1; �; �)� �i (0; �; �) = � � b�+ �r (fH �mL)� (fL �mL) : (2.1)

Since �rm i can use its private signal xi to estimate � and �, we can also write ui(�; �) as a

function of xi, ui (xi) : Firm i will adopt the technology (i.e., ai = 1) if and only if ui (xi) � 0.

Similarly, we can derive �rm 1�s total expected payo¤ �1 (a1; �; �), and then write u1 (�; �) as
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follows:

u1(�; �) � �1 (1; �; �)� �1 (0; �; �) = �+ � +mL � f1 � b�+ �r (mH �mL) : (2.2)

Firm 1 will develop the new green technology in period 1 if and only if u1(�; �) = u1 (x1) � 0:

Table 1 summarizes our notation.

2.4 Equilibrium Analysis
In this section we analyze �rms�decisions in equilibrium. We derive a perfect Bayesian equi-

librium as follows. In §4.1, assuming that the new green technology has been developed, we

�rst analyze the decision of �rm i (2 [0; 1)) regarding the adoption of the new green technology

in period 2. In §4.2, we then analyze the decision of the leading �rm 1 regarding whether to

develop the new green technology in period 1. For convenience, we use superscripts (1) and (2)

to denote periods 1 and 2, respectively.

2.4.1 Period 2: Adoption of the New Green Technology

In this section we examine the conditions under which �rm i (2 [0; 1)) adopts the new green

technology developed by �rm 1. We analyze the game among a continuum of �rms using the

global game framework. The basic idea of a global game (e.g., see Carlsson and van Damme

1993 and Morris and Shin 2003) is as follows: When the fundamental � is uncertain, �rm i uses

its private signal xi = � + e"i to form its belief on the fundamental. Since all �rms�signals are

correlated, �rm i also uses its signal to form its belief on every other �rm�s signal. As every �rm

forms a belief on other �rms�signals, in order to estimate other �rms�actions, �rm i must also

form a belief on other �rms�beliefs, a belief on other �rms�beliefs on other �rms�beliefs, and

so on. When all �rms rely on such �higher-order�beliefs to decide their actions, an equilibrium

can be reached.

In addition to the correlated signals among �rms, our setting has the unique feature that

there exist both strategic complementarity and strategic substitutability among �rms�adoption

decisions. Strategic complementarity exists because as more �rms adopt the technology (i.e.,

capability index � increases), the new regulation is more likely to be enforced, and �rms that

have adopted the technology will earn higher payo¤ in period 3 under the new regulation than

in the case without new regulation (i.e., mH � mL). In addition, later adoption may be more

costly (i.e., fH � fL). For �rm i 2 [0; 1), the magnitude of complementarity is captured in (2.1)
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by fH �mL as the coe¢ cient of �r. At the same time, strategic substitutability exists because

as more �rms adopt the technology, the marketing and sales e¤ect of the green technology�

through reputation enhancement� will be reduced. This is captured in our model as a �rm�s

payo¤ in period 2, � � b�, decreases with �.

We now present �rms�adoption decisions in equilibrium, and discuss the factors that a¤ect

their decisions.

Lemma 2.1 There exists threshold �(2) (� 0) such that if � � �(2), there exists a pure-strategy

equilibrium. The threshold �(2) is nondecreasing with b and nonincreasing with fH � mL. In

this equilibrium, �rm i (2 [0; 1)) adopts the green technology if and only if xi � x(2), where

x(2) = 1
2b+ fL �

rmL+fH
r+1 .

Lemma 2.1 provides a su¢ cient condition for the existence of a pure-strategy equilibrium (� �

�(2)). To understand the intuition for this condition, we �rst discuss the scenario in which there

exists no equilibrium. The nonexistence of a pure-strategy equilibrium is common for games in

which strategic substitutability is present among more than two players (see, e.g., Vives 2000).

Similarly, in our model when the substitutability e¤ect is su¢ ciently strong, there does not

exist a pure-strategy equilibrium. When a �rm expects that all other �rms would adopt the

technology, the �rm may be better o¤ not to adopt it under a strong substitutability e¤ect.

Likewise, when a �rm expects that no other �rms would adopt the technology, the �rm may be

better o¤ to adopt it. As a result, in this case, there exists no pure-strategy equilibrium. This

suggests that in order to ensure the existence of a pure-strategy equilibrium, the substitutability

e¤ect needs to be moderate.

We can show that the magnitude of the substitutability e¤ect increases with b and decreases

with �: When the competition intensity b is large, the substitutability e¤ect is strong because

�rm i�s payo¤ in period 2 is very sensitive to other �rms�decisions. When the level of uncertainty

captured by � is large, �rm i�s signal is a very noisy indicator of other �rms�signals. As a result,

�rm i�s belief of other �rms�decisions does not change much as �rm i�s signal changes, and

hence it does not have a large impact on �rm i�s decision. Moreover, the substitutability e¤ect

can be mitigated by the complementarity e¤ect, which increases with fH � mL as discussed

above. Taken together, when the substitutability e¤ect is small with large � or small b, or when

the complementarity e¤ect is large with large fH�mL, there exists a pure-strategy equilibrium.

In the rest of the paper, we assume the conditions in Lemma 2.1 is satis�ed such that there

38



exists a pure-strategy equilibrium.6

When a pure-strategy equilibrium exists, Lemma 2.1 shows that �rms will adopt the tech-

nology if and only if their privately observed signal about the technology�s fundamental is

su¢ ciently large (i.e., xi � x(2)). Such a strategy is referred to as a �switching� strategy

around x(2) in the literature on global games. From the expression of x(2), we observe that x(2)

increases with b, fL, and r, and that it decreases with mL and fH . This can be interpreted

as follows. Firms are more likely to adopt the green technology (i.e., x(2) is lower) when: (i)

competition among �rms is less intense (i.e., smaller b); (ii) the �xed cost of adopting the

technology in period 2 is lower (i.e., lower fL); (iii) the likelihood of the new regulation being

enforced in period 3 is higher (i.e., smaller r); (iv) the competitive disadvantage in period 3

from higher marginal cost is lower (i.e., less negative mL); and (v) the penalty due to late

adoption in period 3 is larger (i.e., higher fH).

2.4.2 Period 1: Development of the New Green Technology

In this section we analyze the leading �rm 1�s decision regarding whether to develop the new

green technology. Similar to other �rms�adoption decisions in period 2, we characterize �rm

1�s decision as a function of its private signal x1 about the technology�s fundamental �. A

higher signal x1 indicates a higher fundamental � in expectation, which increases the maximum

payo¤ in period 2. In addition, a higher signal x1 a¤ects the substitutability e¤ect and the

complementarity e¤ect: With a higher fundamental �, other �rms�signals xi for i 2 [0; 1) are

more likely to be higher as well. This implies from Lemma 2.1 that more �rms can be expected

to adopt the technology in period 2 (i.e., the capability index � will increase), decreasing �rm

1�s payo¤ in period 2, � � b�. This substitutability e¤ect creates a negative incentive for �rm

1 to develop the new green technology. However, a higher capability index � also creates a

positive incentive for �rm 1 due to the complementarity e¤ect: With a higher � it is more likely

that the new regulation will be enforced in period 3. Under the new regulation, �rm 1 will earn

a higher payo¤mH , rather than mL without the new regulation. In (2.2), the complementarity

e¤ect is captured by (mH �mL)�
r.

In order to characterize these two e¤ects on �rm 1�s decision, we �rst examine the case in

6The value of �(2) is within a reasonable range: for example, from the expression for �(2) in the Appendix
(B.2), it is easy to show �(2) � b=2. Moreover, when the e¤ects of substitutability and complementarity are of
similar magnitude, �(2) is generally smaller than 0:2b. When the e¤ect of complementarity is strong, indicating
that government regulation plays an important role, �(2) can be close to zero.
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which only the substitutability e¤ect is present. This e¤ect can be isolated by settingmH = mL.

Next, we study the case in which only the complementarity e¤ect exists by setting b = 0. Lastly,

by combining both e¤ects, we examine the aggregate e¤ect on �rm 1�s decision.

The Substitutability E¤ect

We �rst consider the case in which only the substitutability e¤ect exists, setting mH = mL.

Firm 1 will develop the new green technology if and only if the expected gain from this technol-

ogy u1 (x1) � 0: Since u1 (x1) depends on the capability index �, we �rst derive the expression

for � using Lemma 2.1. From Lemma 2.1, any other �rm i (2 [0; 1)) will adopt the technology

when it observes its signal xi (= �+e"i) higher than x(2). Thus, for any given �, we can express
� as follows:

� =

8>>><>>>:
0 if � < x(2) � �;
�+��x(2)

2� if x(2) � � � � � x(2) + �;

1 if � > x(2) + �:

(2.3)

Since �rm 1�s signal is x1 = � + e"1, where e"1 is uniformly distributed on [��; �], the posterior
distribution of the fundamental � is uniformly distributed on [x1 � �; x1 + �] for any given x1.

We show in the Appendix that for any given x1, the posterior distribution of xi (= � + e"i) is
a symmetric triangular distribution on [x1 � 2�; x1 + 2�]. Using this property, we can derive

the following expression for u1 (x1) from (2.2) and (2.3) (see the proof of Proposition 2.1 for

details):

u1 (x1) =

8>>>>>>><>>>>>>>:

�f1 + �+mL + x1 if x1 � x(2) � 2�;

�f1 + �+mL + x1 � b
2

�
x1�x(2)+2�

2�

�2
if x(2) � 2� < x1 < x(2);

�f1 + �+mL + x1 � b
2

�
1�

�
x1�x(2)
2�

�2�
� b

�
x1�x(2)
2�

�
if x(2) � x1 < x(2) + 2�;

�f1 + �+mL + x1 � b if x1 � x(2) + 2�:
(2.4)

In (2.4), �f1 + � is the sum of the development cost and the expected payo¤ from the �rst-

mover advantage during period 1. Since mH = mL, the expected payo¤ during period 3 is mL

regardless of whether or not the new regulation will be enforced. Next, x1 represents expected

value of the �rst term of the payo¤ � � b� during period 2 because the posterior distribution

of � is uniformly distributed on [x1 � �; x1 + �]. The last term in (2.4) is the expected value of

�b�, capturing the substitutability e¤ect: It is zero if x1 � x(2) � 2� (because � = 0), and it is
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�b if x1 � x(2) + 2� (because � = 1); in the two middle intervals of x1 in (2.4), � 2 (0; 1).

We can further examine the impact of a greater signal x1 on �rm 1�s incentive by computing

du1 (x1) =dx1 as follows:

du1 (x1)

dx1
=

8>>>>>><>>>>>>:

1 if x1 � x(2) � 2�;

1� b
2�

�
x1�x(2)+2�

2�

�
if x(2) � 2� < x1 < x(2);

1� b
2�

�
2��x1+x(2)

2�

�
if x(2) � x1 < x(2) + 2�;

1 if x1 � x(2) + 2�:

(2.5)

As we can see from (2.5), if � � b=2, then du1 (x1) =dx1 � 0 for every interval of x1 (as illustrated

in Figure 2-2(a)), whereas if � < b=2, then u1 (x1) �rst increases, then decreases, and �nally

increases again with x1 (as illustrated in Figure 2-2(b)). This means that for large enough

uncertainty (� � b=2), the expected gain from development for �rm 1 is nondecreasing in the

expected bene�t. Surprisingly, if uncertainty is small (� < b=2), there may be regions in which

a larger expected bene�t reduces the incentive for �rm 1 to develop the technology.

We now explain the intuition behind the shape of u1 (x1). A higher signal about the fun-

damental (x1) has two e¤ects on �rm 1�s payo¤ in period 2, (�� b�): it increases the expected

value of the fundamental (E[�]), and it creates the substitutability e¤ect by increasing the ca-

pability index (�). The marginal e¤ect of a higher signal on the former is constant (i.e., the

�rst term of du1 (x1) =dx1 in (2.5) is the constant 1), whereas the marginal e¤ect on the latter

varies with x1 (i.e., the second term of du1 (x1) =dx1 in (2.5), if it exists, is a function of x1).

This latter e¤ect depends on how the expected value of the capability index � changes with

x1, which in turn depends on the relative value of x1 compared to x(2) as shown in (2.5). This

is because the proportion of other �rms i 2 [0; 1) who will adopt the technology in period 2

(i.e., capability index �) depends on �rm 1�s signal x1, as the posterior distribution of xi is a

symmetric triangular distribution on [x1 � 2�; x1 + 2�], as mentioned above.

Speci�cally, (2.5) illustrates the following three cases. First, when �rm 1�s signal is very

low (i.e., x1 < x(2) � 2�), �rm 1 believes that other �rms will not observe signals higher than

the threshold x(2); and thus � = 0 by Lemma 1. In this case, there is no substitutability

e¤ect, and �rm 1�s expected gain from the technology, u1 (x1) ; increases with x1. Second,

when �rm 1�s signal is close to other �rms�adoption threshold x(2) (i.e., x(2) � 2� � x1 � x(2)

or x(2) � x1 � x(2) + 2�), �rm 1 believes that some �rms will observe signals higher than
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Figure 2-2: Firm 1�s Expected Gain from Developing the Technology when: (a) � > b=2, (b)
� < b=2 and � > �H , and (c) � < b=2 and �L < � < �H .

the threshold x(2); and thus � > 0. In this case an increase of x1 is likely to increase � by

causing more �rms to observe signals larger than x(2). The marginal e¤ect of a higher signal on

substitutability is particularly large when x1 is close to x(2) and the density of xi is less di¤use

(which happens when the level of uncertainty captured by � is lower) due to larger probability

mass centered around x(2) in the triangular distribution of xi: As a result, when � < b=2 and x1

is su¢ ciently close to the threshold x(2), the marginal e¤ect of a higher signal on substitutability

is dominant, and the expected gain u1 (x1) decreases with x1. Lastly, when �rm 1�s signal is

very high (i.e., x1 > x(2) + 2�), �rm 1 believes that other �rms will also observe high signals,

and hence all �rms will adopt the technology, resulting in � = 1. In this case, a higher x1 will

not change �, so u1 (x1) again increases with x1.

This property of u1 (x1) leads to the following proposition that characterizes �rm 1�s equi-

librium decision.

Proposition 2.1 In the case of mH = mL, the following results hold in equilibrium:

(a) If � � b
2 , then There exists threshold x

(1)
subs such that �rm 1 develops the green technology

if and only if x1 � x(1)subs. If � <
b
2 , then there exist real numbers �subs; �subs; x

(1)
subs, y

(1)
subs, and

z
(1)
subs (where �subs � �subs and x

(1)
subs � y

(1)
subs � z

(1)
subs) such that: (i) when � < �subs or � > �subs,

�rm 1 develops the green technology if and only if x1 � x(1)subs; and (ii) when �subs � � � �subs,

�rm 1 develops the green technology if and only if x1 2 [x(1)subs; y
(1)
subs] [ [z

(1)
subs;1).

(b) The thresholds x(1)subs and z
(1)
subs are nonincreasing with r, and the threshold y

(1)
subs is nonde-
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creasing with r.

Proposition 2.1(a) makes explicit how uncertainty about the fundamental of the technology (�)

a¤ects �rm 1�s strategy. When the fundamental � of the new technology is highly uncertain

(i.e., � � b=2), the �rm�s expected gain is increasing with its signal about the fundamental (x1).

Therefore, when �rm 1 observes a su¢ ciently high signal, it will undertake the development of

the new green technology. This equilibrium strategy takes the same form (a switching strategy)

as that of the following �rms�adoption decisions (See Lemma 2.1).

By contrast, when the level of uncertainty about the fundamental � is moderate (i.e., � <

b=2), �rm 1�s equilibrium strategy can take two di¤erent forms depending on the magnitude of

the �rst mover advantage in period 1 (�). Recall from (2.4) that the expected payo¤ u1 (x1)

increases with �. When the �rst-mover advantage is very large (� > �subs), �rm 1�s strategy

is again a switching strategy because u1 (x1) crosses zero only once as illustrated in Figure

2-2(b). The intuition for the case when � is very small (� < �subs) is similar. However, when

the �rst-mover advantage is moderate (�subs � � � �subs), �rm 1 develops the technology in

equilibrium when it observes a moderate signal between x(1)subs and y
(1)
subs or a su¢ ciently high

signal above z(1)subs. In this case, as illustrated in Figure 2-2(c), u1 (x1) crosses zero three times

due to the substitutability e¤ect. This illustrates our counterintuitive result that a higher signal

on the technology�s fundamental may not necessarily lead �rm 1 to develop the technology.

Proposition 2.1(b) characterizes the impact of r on �rm 1�s incentive to develop the new

green technology. Recall that the smaller r is, the more likely the new standard is to be

enforced. The result that x(1)subs and z
(1)
subs are nonincreasing in r and y

(1)
subs is nondecreasing in

r implies that a larger chance of a stricter standard being enforced discourages development

of the new green technology. Interestingly, this result is contrary to Lemma 2.1 which shows

that a greater chance of the stricter standard being enforced encourages other �rms to adopt

the green technology later. With a smaller r, the regulation probability increases faster with

�, and the substitutability e¤ect, which creates a negative incentive for �rm 1, becomes more

pronounced.

The Complementarity E¤ect

Next we consider the case in which only the complementarity e¤ect exists by setting b = 0,

while mH > mL. Following the same procedure as in the �rst case, we can obtain du1 (x1) =dx1
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as follows:

du1 (x1)

dx1
=

8>>>>>><>>>>>>:

1 if x1 < x(2) � 2�;

1 + (mH�mL)
2�

�
x1�x(2)+2�

2�

�r
if x(2) � 2� � x1 < x(2);

1 + (mH�mL)
2�

n
1�

�
x1�x(2)
2�

�ro
if x(2) � x1 � x(2) + 2�;

1 if x1 > x(2) + 2�:

(2.6)

As in the �rst case, if x1 < x(2) � 2� or x1 > x(2) + 2�, then du1 (x1) =dx1 = 1 because the

capability index � = 0 or � = 1, respectively. In the two middle intervals of x1 in (2.6), the

second term of du1 (x1) =dx1 captures the marginal e¤ect of a higher signal on complementarity,

which decreases with �. The intuition is similar to that in §4.2.1. Since mH > mL, it is easy to

see that du1 (x1) =dx1 > 0 for any x1. This means that as �rm 1 observes a higher signal x1, it

anticipates that more �rms will adopt the technology. This in turn will increase the likelihood

of the new regulation being enforced under which �rm 1 will have a higher payo¤mH than mL

under the current regulation. As a result, in equilibrium, �rm 1 chooses a switching strategy

around a threshold x(1)comp as stated in the following proposition.

Proposition 2.2 In the case of b = 0, the following results hold in equilibrium:

(a) There exists threshold x(1)comp such that �rm 1 develops the green technology if and only if

x1 � x(1)comp.

(b) The threshold x(1)comp is nondecreasing with r.

Contrary to Proposition 2.1(a), Proposition 2.2(a) shows that there exists a single threshold

x
(1)
comp that determines �rm 1�s strategy in equilibrium. Moreover, Proposition 2.2(b) suggests

that the impact of r on the �rm�s incentive to develop the new green technology is opposite

to that in Proposition 2.1(b): When the complementarity e¤ect exists, a larger chance of the

stricter standard being enforced incentivizes �rm 1 to develop the new green technology, whereas

it discourages �rm 1 from doing so in the presence of the substitutability e¤ect.

The Aggregate E¤ect

By combining the results stated in Propositions 2.1 and 2.2, we �nally derive the following

equilibrium for the general case in which both substitutability and complementarity e¤ects are

present (i.e., b � 0 and mH � mL).
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Proposition 2.3 (a) Proposition 2.1(a) continues to hold (with thresholds �aggr, �aggr, x
(1)
aggr,

y
(1)
aggr, and z

(1)
aggr replacing �subs, �subs, x

(1)
subs, y

(1)
subs, and z

(1)
subs, respectively) except that the

condition � � b
2 is replaced with � � �

(1) where �(1) is a real number lower than b
2 , and �

(1) is

nondecreasing with b and nonincreasing with mH �mL.

(b) There exists b(x) (resp., b(z)) such that the thresholds x(1)aggr (resp., z
(1)
aggr) is nonincreasing

with r if and only if b > b(x) (resp., b > b(z)). There exists b(y) such that the thresholds y(1)aggr is

nondecreasing with r if and only if b > b(y).

When both complementarity and substitutability are present, a larger signal x1 a¤ects the

expected value of the fundamental, the complementarity e¤ect, and the substitutability e¤ect.

The marginal e¤ect of a higher signal on the fundamental does not depend on the level of

uncertainty, whereas its e¤ect on substitutability and complementarity decreases with the level

of uncertainty (see our discussion in §4.2.1 and §4.2.2). When the level of uncertainty is large,

the former e¤ect dominates the latter two, and the expected gain u1 (x1) increases with the

signal x1. In this case, �rm 1�s strategy is a switching strategy.

But when the level of uncertainty is small, the marginal e¤ects of a higher signal on sub-

stitutability and complementarity are large. In this case, �rm 1�s signal is a very informative

indicator of other �rms�signals, and �rm 1�s belief on other �rms�decisions changes signi�cantly

as �rm 1�s signal changes. In this situation, there are two cases to consider: First, when the

marginal e¤ect of a higher signal on complementarity dominates that on substitutability (which

happens when mH � mL is large and r is small), the expected gain u1 (x1) always increases

with the signal x1, resulting in �(2) = 0. In this case, �rm 1�s strategy is again a switching

strategy (similar to Proposition 2.2(a)). Second, when the marginal e¤ect of a higher signal

on substitutability dominates that on complementarity, the negative impact of substitutability

can make �rm 1�s expected gain u1 (x1) change non-monotonically with x1. In this case, similar

to Proposition 2.1(a) (when complemenatrity was assumed to be zero), �rm 1 may develop the

technology if it observes a signal in two separate regions. However, the threshold �(1) is smaller

than the threshold b=2 in Proposition 2.1(a) because the negative impact of substitutability is

mitigated by the positive impact of complementarity in the aggregate model.

Proposition 2.3(b) combines the results of Proposition 2.1(b) and Proposition 2.2(b). As

discussed earlier, a greater chance of the stricter standard being enforced (i.e., a lower r) dis-

courages �rm 1 from developing the new green technology under substitutability, whereas it
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encourages the �rm to do so under complementarity. When both e¤ects are present, Proposi-

tion 2.3(b) shows that when the competition intensity b is su¢ ciently large, the former substi-

tutability e¤ect outweighs the latter complementarity e¤ect. In this case, the innovation of a

new green technology can be encouraged if the government agency can make �rms believe that

the probability of regulation is small (r is large).

2.5 Comparisons with Two Benchmarks
In this section we compare our results derived in §4 under uncertain payo¤s and regulation based

on a capability index with two benchmarks: the case in which a stricter standard is enforced

with a �xed probability, and the case in which the fundamental of the new green technology is

common knowledge to every �rm.

2.5.1 Comparison with Regulation Independent of a Capability Index

To study the impact of government consideration of industry capability on �rms�decisions,

we compare regulation that considers industry capability with regulation that ignores it. To

model regulation that ignores industry capability, we assume the government agency enforces

a stricter standard with a �xed probability p (2 (0; 1)). In this case, there is a possibility that

the stricter standard will be enforced even if no �rms adopt the technology in period 2. All

other assumptions remain the same as in the base model. Following a procedure similar to that

in §4, we can characterize the equilibrium in this case as follows:

Lemma 2.2 Suppose that the regulation probability is p. Then there exists a pure-strategy

equilibrium if � � b=2. In equilibrium the following results hold:

(a) Firm i (2 [0; 1)) adopts the green technology in period 2 if and only if xi � bx(2), wherebx(2) = 1
2b+ fL � (1� p)mL � pfH :

(b) There exists threshold bx(1) such that �rm 1 develops the green technology if and only if

x1 � bx(1).
Lemma 2.2(a) shows that �rms�equilibrium strategies in period 2 take a similar form to those

under regulation which considers industry capability, although the value of the threshold is

di¤erent from that of the corresponding threshold in our base model. Also, in both cases,

su¢ ciently large levels of uncertainty are required for the existence of an equilibrium, because

the impact of strategic substitutability needs to be su¢ ciently small to ensure the existence

of an equilibrium. We know from §4.1 that for our base model the impact of substitutability
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decreases with � and it can be mitigated by strategic complementarity. But for the �xed

probability model, due to the absence of complementarity under regulation ignoring industry

capability, the threshold (b=2) for uncertainty is larger than that (�(2)) under regulation which

considers industry capability.

Lemma 2.2(b) shows that �rm 1�s equilibrium strategy is a switching strategy for the �xed

probability model. Recall from part (a) that when � � b=2, a pure-strategy equilibrium exists in

period 2. In this case, �rm 1�s expected gain always increases with the signal x1. The intuition

is similar to that of Proposition 2.3(a) when � � �(1).

We next compare a �rm�s incentive to develop the new green technology under regulation

which considers industry capability with that under regulation which ignores industry capability.

To this end, we compare the threshold bx(1) in Lemma 2.2 with x(1)aggr in Proposition 2.3, assuming
that both regulation settings are equally good at motiving �rms to adopt the new technology in

period 2: Because the thresholds bx(2) and x(2) in period 2 are functions of p and r, respectively,
we choose values of p and r such that the two thresholds are the same. Given that both

regulation schemes are equally e¤ective in period 2, the following proposition establishes a

condition under which one is more e¤ective in period 1 than the other.

Proposition 2.4 There exists threshold b� such that x(1)aggr � bx(1) if and only if � � b�.
Proposition 2.4 shows that when the �rst-mover advantage � is small, regulation that considers

industry capability is more e¤ective in incentivizing �rm 1 to develop the new green technology.

When the �rst-mover advantage � is small, �rm 1 needs larger payo¤s in periods 2 and 3 to

earn positive expected gain in total. When �rm 1 observes a large signal x1, other �rms are

also likely to observe large signals. As a result, the capability index � is likely to be high,

cutting �rm 1�s payo¤ in period 2. But under regulation which considers industry capability,

the probability of regulation is also likely to be high because it increases with the capability

index. In this case there is a high probability that �rm 1�s cost disadvantage in period 3 will be

eliminated due to mandatory adoption. Therefore, regulation that considers industry capability

works better when the �rst-mover advantage � is small.

Proposition 2.4 bears important policy implications. A government agency�s consideration

of industry capability can e¤ectively motivate a �rm to develop a green technology only when

the �rst-mover advantage is small. Such �rst-mover advantage is typically small, for example,

if other �rms can catch up with the technology quickly. For example, as mentioned in §1, BP
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Amoco announced that it would lower the sulfur level in its gasoline in 40 cities in 1999. A few

months later, Koch Petroleum followed BP by announcing that they would also sell gasoline

with lower sulfur levels (Koch 1999). In this case the �rst-mover advantage was small, so our

result suggests that regulation based on industry capability may work better for motivating

green technology development in this case. A few months later, Koch Petroleum followed BP

by announcing that they would also sell gasoline with lower sulfur level.

2.5.2 Comparison with the Case of Complete Information

Suppose the fundamental of the new green technology (�) is common knowledge to every �rm.

In this case of complete information, we can show, similarly to Lemma 1, that if b > fH �mL

there exists no pure-strategy Nash equilibrium in period 2 for � 2 (fL �mL; b� fH + fL). In

the remainder of this section, we thus focus on the case in which b � fH �mL.7

Lemma 2.3 When � is common knowledge to every �rm, the following results hold in equilib-

rium:

(a) In period 2, every �rm adopts the new technology if and only if � � �(2) = fL+minf�mL; b�

mHg.

(b) If b < mH �mL or � 2 (�1; f1�fL][ [f1�fL+ b� (mH �mL) ;1), then there exists �(1)

such that �rm 1 develops the green technology if and only if � � �(1). Otherwise, there exist �(0)

and �(1) (where �(1) � �(2) � �(0)) such that �rm 1 develops the green technology if and only

� 2
h
�(1); �(2)

i
[ [�(0);1).

Having characterized the equilibrium under complete information, we now compare it with

that of our base model under incomplete information. For brevity, we focus on comparing the

threshold �(1) in Lemma 2.3 with x(1)aggr in Proposition 2.3. The comparison between other

thresholds can be done similarly.

Proposition 2.5 The threshold for x1 in the incomplete information case is strictly smaller

than that in the complete information case (i.e., x(1)aggr < �(1)) if r < maxfb= (mH �mL) ; 1g

and one of the following conditions is satis�ed:

(i) b < mH �mL and f1 � fL � b+mH �mL � � < f1 � fL � 1
2b+

fH�mL
r+1 + 2�;

7We show in the proof of Lemma 2.3(a) that when � 2 [b� fH + fL; fL �mL], two pure-strategy symmetric
equilibria exist. In this case, we follow the convention of the literature (e.g., Katz and Shapiro 1986) that �rms
choose the equilibrium that maximizes their payo¤s.
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(ii) b > mH �mL and f1 � fL + b
2 �mH +mL +

fH�mL
r+1 � 2� < � � f1 � fL;

(iii) b = mH �mL and f1 � fL � 1
2b+

fH�mL
r+1 � 2� < � < f1 � fL � 1

2b+
fH�mL
r+1 + 2�.

Proposition 2.5 suggests that uncertainty surrounding the fundamental of the new green tech-

nology can incentivize �rm 1 to develop the new green technology (i.e., x(1)aggr < �(1)). This

occurs under condition (i), (ii), or (iii) with su¢ ciently small r. Note that under complete

information, a capability index is either 0 or 1; every �rm observes the same fundamental �,

and hence follows the same strategy in period 2. By contrast, under incomplete information, a

capability index can be any value between 0 and 1 because �rms observe di¤erent signals about

�. This uncertainty can encourage �rm 1 to develop the new technology.

To gain deeper understanding of Proposition 2.5, we examine �rm 1�s expected gain when

it observes a signal x1 = �(1) in our base model: If �rm 1�s expected gain is positive for the

signal x1 = �(1), then �rm 1 develops the technology under incomplete information, whereas

�rm 1 is indi¤erent between developing and not developing the technology under complete

information. In this case, uncertainty encourages �rm 1 to develop the technology (i.e., x(1)aggr <

�(1)). Firm 1�s expected gain depends on a capability index, which drives the substitutability

and complementarity e¤ects. When the capability index is 0, both e¤ects are 0. When the

capability index is 1, the substitutability e¤ect can be smaller than, greater than, or equal to

the complementarity e¤ect. Those three scenarios correspond to conditions (i), (ii), and (iii) in

Proposition 2.5, respectively.

Under the condition on � in (i), when �rm 1 observes � = �(1) under complete information,

it expects that no �rms will adopt the technology due to low bene�ts (hence, � = 0). However,

when it observes a signal x1 = �(1) under incomplete information, it expects that some �rms may

observe su¢ ciently high signals and adopt the technology (hence, � > 0). Under the condition

b < mH �mL in (i) and the condition r < maxfb= (mH �mL) ; 1g, the substitutability e¤ect is

smaller than the complementarity e¤ect for any positive �. As a result, �rm 1 expects higher

expected gain under incomplete information because of a possibly positive capability index.

This higher expected gain caused by uncertainty encourages �rm 1 to develop the technology.

The intuition for condition (ii) is similar. Under the condition on � in (ii), when �rm 1

observes � = �(1) under complete information, it expects that all �rms will adopt the technol-

ogy (hence, � = 1); but when it observes a signal x1 = �(1) under incomplete information,

it expects that some �rms will observe su¢ ciently low signals, and they will not adopt the
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technology (hence, � < 1). Under the condition b > mH � mL in (ii) and the condition

r < maxfb= (mH �mL) ; 1g, the substitutability e¤ect is larger than the complementarity ef-

fect for high �, and the di¤erence between the two e¤ects is the largest at � = 1 (which is the

case under complete information). Since � < 1 under incomplete information, �rm 1 expects

higher expected gain in this case.

The intuition for condition (iii) is slightly di¤erent. Under the condition on � in (iii),

�rm 1 expects 0 < � < 1 when it observes a signal x1 = �(1) under incomplete information.

Under the condition b = mH �mL in (iii) and the condition r < maxfb= (mH �mL) ; 1g, the

substitutability e¤ect is smaller than the complementarity e¤ect for any � 2 (0; 1) (which is

the case under incomplete information), and these two e¤ects are equal for � = 0 or � = 1

(which is the case under complete information). So �rm 1 expects higher expected gain under

incomplete information.

In summary, uncertainty is likely to encourage �rm 1�s development decision if the comple-

mentarity e¤ect is strong and �rm 1 observes low payo¤ signals for period 2 (conditions (i) and

(iii)), or if the substitutability e¤ect is strong and �rm 1 observes high payo¤ signals (condition

(ii)). Furthermore, in all the three conditions the ranges of � become larger as � becomes larger,

indicating that a larger level of uncertainty is more likely to encourage the development of a

green technology in these scenarios.

2.6 Extensions
This section examines two extensions of our base model. In §6.1, we consider a case in which

a government agency might enforce a new regulation even if there is no technology available to

meet the standard. In §6.2, we consider a case in which �rm 1 licenses the technology to other

�rms.

2.6.1 Positive Regulation Probability in the Absence of Industry Capability

Our base model presented in §3 assumes that the regulation probability is �r: This means that

if �rm 1 does not develop the new green technology, no �rms will adopt the technology (hence

� = 0), and consequently the government agency will not enforce the new regulation. This

captures the government�s common reluctance to signi�cantly disrupt industry.

However, there may be urgent environmental and health situations (such as forbidding toxic

additives in food or replacing carcinogenic dyes in clothes) for which a government agency may

not be willing to wait until a leading �rm in an industry develops a new green technology
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(although the presence of such a technology is likely to encourage regulation). In such settings

we can model the regulation probability as p0 + (1� p0)�r where p0 (2 [0; 1)) represents the

probability the government agency will enforce a stricter standard even when a new green

technology has not been developed. With this change in the regulation probability, we can

revise equations (2.1) and (2.2) as follows:

ui(�; �) = � � b�+ �r (1� p0) (fH �mL) + (1� p0)mL � fL + p0fH ; (2.7)

u1(�; �) = �+ � + (1� p0)mL � f1 � b�+ �r (1� p0) (mH �mL) : (2.8)

It is easy to see that (2.7) and (2.8) have the same functional forms as (2.1) and (2.2), respec-

tively. As a result, although the speci�c values of thresholds now depend on the new parameter

p0, all the qualitative insights obtained in §4 and §5 continue to hold.

2.6.2 Licensing of the Technology

Our base model presented in §3 assumes that �rm 1 does not receive additional revenue from

licensing its green technology to other �rms. However, if the technology were patented, it

is plausible that �rm 1 would receive additional revenue from licensing, proportional to the

number of �rms who adopt the technology. Thus, this can be modeled by adding s� to �rm

1�s revenue, where s is a positive constant, representing the maximum expected revenue from

possible licensing fees. In this case, �rm i�s adoption cost fL or fH includes the possibility of

paying a fee to �rm 1. With this additional possibility, we can revise equation (2.2) as follows:

u1(�; �) = �+ � +mL � f1 � (b� s)�+ �r (mH �mL) : (2.9)

It is easy to see that (2.9) has the same functional form as (2.2). Thus, although the speci�c

values of thresholds depend on the new parameter s, our qualitative insights continue to hold.

2.7 Conclusion
A government agency�s potential regulatory action is an important driving force for �rms to de-

velop and adopt a new green technology. Existing research assumes that a government agency�s

action is independent of industry capability, and that the bene�t of the new technology is

known. In practice, however, a government agency often takes into account industry capability,

and �rms face uncertainty in the technology�s bene�ts. In this case �rms�decisions exhibit both
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strategic substitutability (because the marketing bene�t of a new green technology decreases

as more �rms adopt it) and complementarity (because the stricter standard is more likely to

be enforced as more �rms adopt it). We develop a novel model that captures these realistic

features, and examines how they a¤ect �rms�development and adoption decisions.

Our analysis shows that regulation that considers an industry�s capability index�compared

with regulation that ignores it�can more e¤ectively motivate development of a new green tech-

nology when the �rst-mover advantage from the technology is low. Therefore, for an industry

in which �rms can easily catch up with a new technology (thus reducing a �rm�s �rst-mover

advantage), regulation that considers industry capability should be considered to encourage

innovation. Our analysis further shows that in a setting in which industry capability a¤ects

regulation, uncertainty concerning the new technology�s bene�ts can help motivate a �rm to

develop the new technology, because this uncertainty might soften competition or increase the

probability of regulation. Finally, our �ndings bear important policy implications about the

stringency of regulation (the probability of enforcing a stricter standard for a given capability

index): More stringent regulation encourages more �rms to adopt a green technology once it

is invented, but may discourage a �rm from developing it if the competition intensity is high.

Therefore, for an industry with intense competition, a government agency may wish to enforce

regulation with mild stringency to encourage innovation.
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Chapter 3

Horizontal Mergers in

Vertically-Di¤erentiated Markets

3.1 Introduction
Mergers and acquisitions are a very important part in today�s business world. Many companies

expect to increase competitiveness through M&As and regard M&As as core strategies. As

a result, mergers are extremely common in practice �20,409 M&As occurred in 2013, worth

1.9 trillion dollars (WilmerHale 2014). Our focus in this paper is on studying the e¤ects of a

horizontal merger.

Despite their popularity among �rms, mergers often raise concerns for antitrust agencies.

Antitrust agencies are worried that a merger may reduce competition in a market and harm

consumer welfare. Speci�cally, after a merger, reduced competition may raise prices, reduce

qualities and varieties of products in that market. For example, in Horizontal Merger Guide-

lines, the U.S. Department of Justice and the Federal Trade Commission state the following:

�Enhanced market power can also be manifested in non-price terms and conditions that ad-

versely a¤ect customers, including reduced product quality, reduced product variety....�

Indeed, merger-induced quality and variety changes are widely observed in practice. For

example, Song (2015) shows that the quality level of Compaq�s PC product line improved at a

much slower speed than its competitors after the merger of HP and Compaq; i.e., the merged

�rm repositioned Compaq�s product line to a lower quality level. Another example is about the

merger of two CPU manufacturers. In late 1990s, VIA Technology, a Taiwanese manufacturer
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of integrated circuits, bought Centaur Technology and Cyrix, two low-end CPU manufacturers

that competed with Intel and AMD. After the acquisitions, VIA only sold products based on

designs from Centaur Technology.

Although it is quite common for mergers to cause quality and variety changes, there has

been little research on evaluating their impacts on consumers. Most existing merger literature

regards prices as the indicator of consumer welfare, and focuses solely on price changes. We aim

to bridge this gap by studying �rms�optimal product repositioning decisions after a merger,

and analyzing how such decisions would a¤ect consumer welfare.

Speci�cally, we study a merger of two �rms in a vertically-di¤erentiated market. In the

market all customers prefer higher qualities, but their willingness to pay for higher qualities is

di¤erent. Before the merger, each �rm o¤ers a single product with di¤erent quality. After the

merger, all �rm can change their qualities. Besides, the post-merge �rm (the �rm created by

the merger of two �rms) can either continue to o¤er two products to cover more customers, or

o¤er a single product to achieve cost reduction through economies of scale.

Our analysis highlights the importance of considering �rms� product repositioning when

evaluating the impacts of a merger. As discussed above, most existing merger literature uses

prices as the single indicator of whether a merger will harm consumers (e.g., Williamson 1968

and Whinston 2007). However, we �nd that a merger may decrease consumer welfare even if it

induces the post-merger �rm to reduce prices. This is because the post-merger �rm reduces its

product qualities to achieve lower costs. Although such lower costs reduce prices, the quality

reduction harms consumer welfare and its negative impact outweigh the positive impact of

lower prices. This �nding is consistent with the empirical study in Song (2015). He shows that

the price drop of Compaq products after the merger of HP and Compaq was primarily caused

by quality reduction of Compaq products. In addition, it is a conventional wisdom that cost

reduction generated by mergers can always bene�t consumers. This result has been proven by

many economists (e.g., see a comprehensive review by Whinston 2007), and has been regarded

as the standard result in the theory of mergers. Indeed, many �rms justify their proposed

mergers by claiming that they can pass on cost savings to consumers. However, we �nd that

cost reduction for the post-merge �rm may not always bene�t consumers when �rms quality

and variety decisions are considered. Although cost reduction can reduce the post-merger �rm�s

price, it may also change the post-merger �rm�s decision from o¤ering two products to o¤ering

a single product. Such product variety reduction can be harmful to consumers if the cost
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reduction is not su¢ ciently high.

The rest of this paper is organized as follows. In §2 we review the related literature. In §3

we describe our pre-merger model. In §4 we describe the post-merger model and analyze the

equilibrium in the post-merger market. We conclude our paper in §5. Proofs are presented in

the Appendix.

3.2 Literature Review

In this section, we �rst review economic literature on mergers, then review literature on vertical

di¤erentiation and product variety.

Mergers have always been a hot research topic for antitrust agencies and economists. The

main focus is on whether a merger will increase consumer price and harm consumers. Stigler

(1950) uses a Cournot model to analyze the formation of a cartel and shows that prices will

increase due to such formation. Starting from Williamson (1968), economists have taken into

account cost synergies generated mergers that may lower prices, and focus on the trade-o¤

between reduced competition and lower costs (e.g., see a comprehensive review by Whinston

2007). Di¤erent from these papers based on Cournot competition, Deneckere and Davidson

(1985) analyze a merger using a Bertrand competition model. The price competition among

�rms is more suitable for the analysis of retailer mergers because retailers are often price setters

and the nature of their competition is very di¤erent from quantity competition in a Cournot

model. For this reason, many researchers analyze mergers based on the model in Deneckere

and Davidson (1985), such as Werden and Froeb (1994) and Davidson and Ferrett (2007). In

these papers, prices are the only indicator of whether consumer welfare is harmed by mergers,

whereas in our model, consumer welfare is a¤ected by prices, qualities, and the number of

products. We show that prices alone are not su¢ cient to determine the impact of a merger. It

is possible that consumer welfare is harmed even if the post-merger �rm reduces its prices after

a merger.

There has been little research on product repositioning after a merger. The very few papers

are about product repositioning in horizontally-di¤erentiated markets based on the Hotelling

model. Gandhi et al. (2008) study mergers between �rms competing by choosing price and

location analytically. They show that location repositioning greatly mitigates the anticompet-

itive e¤ects of the merger. Berry and Walfogel (2001), Sweeting (2010), and Sweeting (2013)
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analyze mergers in the radio industry empirically and �nd evidence of product repositioning.

These papers focus on mergers in markets where products are horizontally-di¤erentiated. In

such markets, consumers�preference di¤ers based on their travel costs to di¤erent locations. So

at the same prices, some consumers may prefer one product, while others may prefer another.

Our paper is fundamentally di¤erent from these papers because we study mergers in markets

where products are vertically-di¤erentiated with di¤erent qualities. In our model, all consumers

prefer products with higher qualities if the prices are the same. There is very little merger re-

search in this area. We only �nd one empirical paper by Song (2015) which analyzes the merger

of HP and Compaq in the consumer PC market. Song (2015) shows that the PC market is

clearly vertically-di¤erentitated, with HP in the middle-end and Compaq in the lower-middle

end. However, due to lack of analytical research, Song (2015) uses Gandhi et al. (2008), which

is based on horizontal di¤erentiation, as his analytical benchmark. Our paper bridge the gap

between merger literature and vertical di¤erentiation literature and complements

Our model is based on vertical di¤erentiation. The model of vertically di¤erentiated model

was �rst developed by Mussa and Rosen (1978). A number of papers extended this model

(e.g., Shaked and Sutton 1982, Bonanno 1986). Moorthy (1988) studies a duopoly in which

the marginal cost is a quadratic function of quality. We adopt this model as our benchmark to

model the pre-merger market.

Our research is related to product variety because in our model the merging �rms may

stop producing a product from one merging �rm. There are comprehensive reviews by Ho and

Tang (1998) and Kok et al. (2008). The main di¤erence between our paper and this stream of

research is that we consider the impact of merger on product variety.

3.3 Pre-Merger Model

Our model is based on classical models of vertical di¤erentiation. On the demand side, all

consumers prefer more of a characteristic called "quality". However, their willingness to pay

for the quality is di¤erent. We use � to represent the consumer�s willingness to pay. A type-�

consumer�s utility of buying a product with quality q at price p is �q � p. If �q � p is smaller

than zero, the consumer will choose not to buy the product and get zero utility. We assume � is

uniformly distributed over [0; �] at unit density. Consumers can observe the product qualities

and prices before they make purchase decisions. Each consumer will either buy one unit of
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product that maximize her utility, or choose not to buy any product if none of the products

could provide her with positive utility.

On the supply side, we assume there are three �rms in the market, indexed by i, i = 1, 2, and

3. Each �rm o¤ers one product. They try to maximize their pro�ts. The competition occurs in

two stages. In the �rst stage, �rm i chooses a quality qi (qi � 0) simultaneously. In the second

stage, after observing the qualities of other �rms, �rm decides its price pi simultaneously with

other �rms. We assume �rms choose prices after they choose quality level because usually prices

are easier to change than qualities. For any chosen quality qi, the marginal cost of producing

one unit of this product is �q2i , where � > 0 is the cost coe¢ cient. The quadratic function form

re�ects the increasing marginal cost, and it has been widely used in literature (e.g., ....). We

assume there is no �xed cost because �xed cost has no e¤ect on the pre-merger equilibrium as

long as each �rm�s pro�t is higher than the �xed cost.

Without loss of generality, we assume q1 � q2 � q3. Denote by q
pre
i , pprei , and �prei the

equilibrium quality, price, and pro�t of �rm i, respectively. Denote by wpre the equilibrium

consumer welfare in equilibrium. We can show in equilibrium qpre1 > qpre2 > qpre3 , ppre1 > ppre2 >

ppre3 , and �pre1 > �pre2 > �pre3 (see Lemma A1 in Appendix).

3.4 Post-Merger Model and Analysis

We focus our analysis on the case in which �rm 2 and �rm 3 merge to compete with �rm 1.

The analysis on cases with other merging �rms can be obtained similarly. We provide such

analysis in Online Appendix. We use �rm m to refer to the new �rm that is created by the

merger, which we referred to as the post-merger �rm. Firm m may either choose to continue

producing two products with qualities q2 and q3, or choose only to produce a single product

with quality qm. If �rm m only produces one product, it can achieve marginal cost reduction

through economies of scale. Denote by s (2 (0; 1]) the percentage of cost reduction. Firm m�s

marginal cost of producing a product with quality qm is � (1� s) qm.

Next, we �rst investigate the case in which �rm m produces two products. We then examine

the case in which �rm m produces only one product. We �nally compare these two cases to

analyze �rm m�s variety decision.

We compare the post-merger equilibrium in the case in which �rm m produces two products

with the pre-merger equilibrium in the following proposition. We use the super script (2) to
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denote the equilibrium in this case.

Proposition 3.1 (Firm m produces two products) When �rm m produces two products, there

exists a unique Nash equilibrium in the post-merger market. In equilibrium:

(a) The post-merger quality of any product is lower than its pre-merger quality; i.e., q(2)i < qprei ,

i = 1; 2; 3.

(b) The post-merger price of product 1 is higher than its pre-merger price, whereas the post-

merger price of products 2 and 3 are lower than their pre-merger price, respectively; i.e., p(2)1 >

ppre1 , and p(2)i < pprei , i = 2; 3:

(c) Firm 1�s post-merger pro�t is higher than its pre-merger pro�t; i.e., �(2)1 > �pre1 . Firm

m�s post-merger pro�t is higher than the sum of �rm 2�s and �rm 3�s pre-merger pro�ts; i.e.,

�
(2)
m > �pre1 + �pre2 .

(d) The post-merger consumer welfare is lower than the pre-merger consumer welfare; i.e.,

w(2) < wpre.

Proposition 3.1(a) shows that after a merger, all �rms reduce their qualities. In the pre-

merger market, �rm 2 competes with both �rm 1 and �rm 3. In the post-merger market, �rm

2 and �rm 3 become one �rm and do not compete with each other. The post-merger �rm only

competes with �rm 1. Therefore, it reduces its product qualities to further di¤erentiate its

products from �rm 1�s. Since its competitiors�qualities become lower, �rm 1 also reduces its

quality.

Proposition 3.1(b) shows that after a merger, the post-merger �rm reduces its prices, but the

nonparticipant �rm (�rm 1) increases its price. Since the post-merger �rm reduces its qualities,

it incurs lower marginal costs for products 2 and 3 (�s2i , i = 2; 3) which enable it to reduce its

prices. Although the reduced competition intensity can cause �rm m to increase it price, such

e¤ect is outweighed by the e¤ect of lower marginal costs. However, the quality reduction is not

very large for �rm 1. So the e¤ect of a lower marginal cost �s21 cannot outweigh the e¤ect of

the reduced competition intensity. As a result, �rm 1 increases its price after a merger.

Proposition 3.1(c) and Proposition 3.1(d) show that a merger increases �rms�pro�ts, but

harms consumer welfare due to reduced competition.

When �rm m only produces one product, clearly the equilibrium outcomes depend on the

synergy level. We investigate how �rms� decisions and other market outcomes change with
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the synergy level s in the following proposition. We use the super script (1) to denote the

equilibrium in this case.

Proposition 3.2 When �rm m produces a single product in the post-merger market, there

exists a unique Nash equilibrium. In equilibrium:

(a) The qualities of both products (q(1)1 and q(1)m ) are increasing with s.

(b) The prices of both products (p(1)1 and p(1)m ) are increasing with s.

(c) Firm 1�s post-merger pro�t (�(1)1 ) is decreasing with s, whereas �rm m�s post-merger pro�t

(�(1)m ) is increasing with s.

(d) The post-merger consumer welfare (w(1)) is increasing with s.

When it becomes cheaper for the post-merger �rm to produce higher-quality products, the

post-merger �rm increases its product qualities; facing the higher qualities from its competitior,

�rm 1 also increases its quality, as shown in Proposition 3.2(a). Proposition 3.2(b) shows that

since all �rms increases their qualities, they also increase their prices to match their qualities.

Proposition 3.2(c) shows that cost reduction of the post-merger �rm is bene�cial to the post-

merger �rm, but the cost advantage of the post-merger �rm is harmful to �rm 1. Proposition

3.2(d) shows that cost reduction of the post-merger �rm is bene�cial to consumers because it

induces all �rms to increase their qualities. So when �rm m only produces one product,

By combining the results above, we can analyze �rmm�s decision and its impact on consumer

welfare in the following proposition.

Proposition 3.3 There exists thresholds s(�) < s(w) such that the following results hold:

(a) Firm m produces one product if and only if s � s(�).

(b) The consumer welfare in the case in which �rm m produces one product is greater than that

in the case in which �rm m produces two products (i.e., w(1) > w(2)) if and only if s > s(w).

When the post-merger �rm�s pro�t produces two products, its pro�t and the consumer

welfare do not depend on the synergy level s. When it produces one product, its pro�t and the

consumer welfare increase with s, as shown in Proposition 3.2. So there exists thresholds s(�)

and s(w) such that �(1)m > �
(2)
m if and only if s > s(�), and w(1) > w(2) if and only if s > s(w).

What is interesting is that s(�) < s(w). When s � s(�), the post-merger �rm produces two

products, and the consumer welfare is w(2). When s(�) < s < s(w), the post-merger �rm only

produces one product, and the consumer welfare changes to w(1). Notice that in this interval of
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s, consumers prefer two products from the post-merger �rm because w(1) < w(2). As a result,

when s increases from the interval
�
0; s(�)

�
to the interval

�
s(�); s(w)

�
, consumer welfare actually

decreases. In other words, cost reduction generated by the merger actually harm consumers.

3.5 Conclusion

Although merger-induced quality and variety changes are widely observed in the business world,

there has been little research on evaluating the impact of such changes on consumers. This

paper bridges this gap in literature by analyzing mergers in vertically-di¤erentiated markets.

Our analysis highlights the importance of taking into account potential quality and variety

changes when evaluating potential mergers. A merger may induce the post-merger �rm to

reduce prices, but still harm consumers because it can reduce product qualities. This analytical

�nding is consistent with the empirical �nding in Song (2015). Furthermore, we �nd that cost

reduction generated by mergers do not always bene�t consumers. Cost reduction may cause

the post-merger �rm to reduce the number of products it o¤ers. As a result, consumer welfare

may be hurt because of the smaller number of available products.
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Appendix A

Supplements to Chapter 1

A.1 Proofs of Main Results
We use superscript � to denote a �rm�s best response to the other �rms�prices. For example,

the joint best response price of all nonparticipant �rms to the post-merger �rm�s price pm is

denoted by p�3 (pm).

Lemma A1 Suppose the following condition is satis�ed:

2b+
n� 2
n

 � �w2

�(��1
�
1� w

p

�
)p3

> 0: (A.1)

(a) 0 < dp�3=dpm < 1; 0 < dp
�
m=dp3 < 1 and d�

�
3=dpm > 0:

(b) There exists a unique pure-strategy Nash equilibrium in the pre-merger market in which the

symmetric equilibrium prices ppre1 = ppre2 = : : : = ppren are the unique solution of (1.3).

(c) There exists a unique pure-strategy Nash equilibrium in the post-merger market in which

ppost1 = ppost2 = ppostm and ppost3 = ppost4 = : : : = ppostn are the unique solutions of the following

equations:

a�
�
b+ 

n� 2
n

��
2ppostm � wm

�
+ 

n� 2
n

ppost3 � �m
2
R

�
��1

�
1� wm

ppostm

��
= 0; (A.2)

a�
�
2b+

n+ 1

n


�
ppost3 +

�
b+

n� 1
n



�
w + 

2

n
ppostm � �R

 
��1

 
1� w

ppost3

!!
= 0: (A.3)

Proof of Proposition 1.1. (a)We compute dp
post
m
d�m

and dppost3
d�m

by applying the implicit function

theorem to (A.2) and (A.3) as follows:

"
dppostm
d�m
dppost3
d�m

#
= �J�1 �

264 @
@�m

�
@�m(p;�m)

@p1

���
p=ppost

�
@

@�m

�
@�3(p)
@p3

jp=ppost
�

375 = �J�1 �
24 @2�m(p;�m)

@p1@�m

���
p=ppost

0

35 ;
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where J�1 =

266664
@

@ppost3

�
@�3(p)
@p3

���
p=ppost

�
� @
@ppost3

�
@�m(p;�m)

@p1

���
p=ppost

�
� @
@ppostm

�
@�3(p)
@p3

���
p=ppost

�
@

@ppostm

�
@�m(p;�m)

@p1

���
p=ppost

�
377775

@

@p
post
m

�
@�m(p;�m)

@p1

���
p=ppost

�
@

@p
post
3

�
@�3(p)
@p3

���
p=ppost

�
� @

@p
post
3

�
@�m(p;�m)

@p1

���
p=ppost

�
@

@p
post
m

�
@�3(p)
@p3

���
p=ppost

� :
Substituting J�1 into above and using dp

post
3

dppostm
= � @

@ppostm

�
@�3(p)
@p3

���
p=ppost

�
= @
@ppost3

�
@�3(p)
@p3

���
p=ppost

�
;

we can simplify dppostm
d�m

and dppost3
d�m

into

dppostm

d�m
=

� @2�m(p;�m)
@p1@�m

���
p=ppost

@
@ppostm

�
@�m(p;�m)

@p1

���
p=ppost

�
+ @

@ppost3

�
@�m(p;�m)

@p1

���
p=ppost

�
dppost3

dppostm

and
dppost3

d�m
=
dppost3

dppostm

dppostm

d�m
:

(A.4)
We now show dppostm

d�m
< 0 by examining its denominator and numerator, respectively. To com-

pute the denominator of dp
post
m
d�m

, we use (A.2) and dR(t)
dt = �(t)�1, getting @

@ppostm

�
@�m(p;�m)

@p1

���
p=ppost

�
=

�2
�
b+  n�2n

�
+ �mw2m

2�

�
��1

�
1� wm

p
post
m

��
(ppostm )3

< 0, and @
@ppost3

�
@�m(p;�m)

@p1

���
p=ppost

�
= n�2

n  > 0. Us-

ing (A.1), we can show @
@ppostm

�
@�m(p;�m)

@p1

���
p=ppost

�
+ @

@ppost3

�
@�m(p;�m)

@p1

���
p=ppost

�
< 0. Because

dppost3 =dpm < 1 from Lemma A1(a), @
@ppostm

�
@�m(p;�m)

@p1

���
p=ppost

�
+ @
@ppost3

�
@�m(p;�m)

@p1

���
p=ppost

�
dppost3

dppostm
<

0. To compute the numerator of dppostm
d�m

, we �rst �nd the expression of �m (p) = �dm (p) �
cm (p1; p2). By substituting ym = �m�

�1
�
1� 2wm

p1+p2

�
, L1(p) and L2(p) into �dm (p) and

cm (p1; p2; ym) in (1.4) respectively, we have

�dm (p) =
2P
i=1
(pi � wm)

(
a� (b+ n� 1

n
)pi +



n

nP
j 6=i
pj

)
; and (A.5)

cm (p1; p2) = wm�m�
�1
�
1� 2wm

p1 + p2

�
+
p1 + p2
2

�mR

�
��1

�
1� 2wm

p1 + p2

��
: (A.6)

From (A.5), @
2�dm(p;�m)
@�m@p1

= 0. From (A.6), by using dR(t)
dt = �(t)� 1 we obtain @2cm(p1;p2;�m)

@�m@p1
as

follows:
@2cm(p1;p2;�m)

@�m@p1
= @

@�m

(
wm�m

@��1
�
1� 2wm

p1+p2

�
@p1

� p1+p2
2 �m

2wm
p1+p2

@��1
�
1� 2wm

p1+p2

�
@p1

+
�mR

�
��1

�
1� 2wm

p1+p2

��
2

)
= 1

2R
�
��1

�
1� 2wm

p1+p2

��
> 0:

Thus, � @2�m(p;�m)
@p1@�m

���
p=ppost

= �@2�dm(p;�m)
@�m@p1

+ @2cm(p1;p2;�m)
@�m@p1

> 0: Finally, because the denom-

inator of dp
post
m
d�m

is negative and its numerator is positive, we get dppostm
d�m

< 0; hence dppostm
d� =

�p
2+2�

dppostm
d�m

< 0.

Lastly, dp
post
3
d�m

=
dppost3

dppostm

dppostm
d�m

< 0 because dppostm
d�m

< 0 from above and dppost3 =dpm > 0 from
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Lemma A1(a). So dppost3
d� = �p

2+2�

dppost3
d�m

< 0.

(b) We �rst prove d�postm =d� < 0. From (1.4), we can write

d�postm
d� =

�
@�postm
@p1

+ @�postm
@p2

�
dppostm
d� + @�postm

@ym
dypostm
d� + @�postm

@� +
dppost3
d�

nP
j=3

@�postm
@pj

= @�postm
@� +

dppost3
d�

nP
j=3

@�postm
@pj

;

since @�postm
@p1

= @�postm
@p2

= 0 and @�postm
@ym

= 0 at (p1; p2; ym) = (ppostm ; ppostm ; ypostm ) (by Envelop

Theorem). From (1.4), using R (t) = � (t) � t (1� � (t)) and dR(t)
dt = �(t) � 1; we have

@�postm
@pj

= 2
n (p

post
m �wm) and @�postm

@� = � ppostm �p
2+2�

R
�
ypostm
�m

�
�ppostm �m

d
d�R

�
ypostm
�m

�
= � ppostm �p

2+2�
�(y

post
m
�m

).

Finally, substituting @�
post
m
@pj

and @�postm
@� into d�

post
m
d� , we obtain d�postm

d� = � ppostm �p
2+2�

�(y
post
m
�m

)+ 2
n (p

post
m �

wm) (n� 2) dp
post
3
d� < 0, where the inequality is due to dppost3 =d� < 0 from part (a). Next,

d�post3 =d� = (d�post3 =dpm)(dp
post
m =d�) < 0 because d�post3 =dpm > 0 by Lemma A1(a) and

dppostm =d� < 0 by part (a). �

Proof of Proposition 1.2. (a)We focus on proving that dppostm =ds < 0 if and only if s > s(1);

and that s(1) is nondecreasing in �m with s(1) = 0 at �m = 0. Then the result about p
post
3 follows

easily: dppost3 =ds = (dppost3 =dpm)(dp
post
m =ds) < 0 if and only if s > s(1) because dppost3 =dpm > 0

from Lemma A1(a) and dppostm =ds < 0 if and only if s > s(1). The proof proceeds in three steps.

In step 1, we get the expression of dppostm =dwm. In step 2, we prove there exists a unique w
(1)
m

such that dppostm =dwm > 0 if and only if wm < w
(1)
m . In step 3, we use w

(1)
m to compute s(1).

Step 1: Similar to Proposition 1.1(a), we apply the implicit function theorem to obtain

dppostm

dwm
=

� @2�m(p;wm)
@p1@wm

���
p=ppost

@
@ppostm

�
@�m(p;wm)

@p1

���
p=ppost

�
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@ppost3

�
@�m(p;wm)

@p1

���
p=ppost

�
dppost3

dppostm

: (A.7)

Since the denominator of (A.7) is negative (cf. the proof of Proposition 1.1(a)), dp
post
m
dwm

has the

same sign as @
2�m(p;wm)
@p1@wm

���
p=ppost

= @2�dm(p;wm)
@wm@p1

���
p=ppost

� @2cm(p1;p2;�m)
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���
p=ppost

, where @
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=
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n  from (A.5) and @2cm(p1;p2;�m)

@�m@p1
= �mwm

2�
�
��1

�
1� 2wm

p1+p2

��
f(p1+p2)=2g2

from (A.6) and dR(t)
dt =

�(t)� 1. Thus;

@2�m(p;wm)

@p1@wm

����
p=ppost

= b+
n� 2
n

 � �m
�
2h

�
��1

�
1� wm

ppostm

��
ppostm

��1
; (A.8)

where h (t) = � (t) = f1� � (t)g is the failure rate of a standard normal variable.
Step 2: We can show the existence and uniqueness of w(1)m by proving the three statements:

(i) when wm ! 0, @
2�m(p;wm)
@p1@wm

���
p=ppost

> 0, (ii) when wm is su¢ ciently large,
@2�m(p;wm)
@p1@wm

���
p=ppost

<

0, and (iii) d
�
@2�m(p;wm)
@p1@wm

���
p=ppost

�
=dwm < 0 when

@2�m(p;wm)
@p1@wm

���
p=ppost

= 0. Then from (i) and
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(ii), there exists at least one w(1)m , and the value of w
(1)
m is determined by @2�m(p;wm)

@p1@wm

���
p=ppost

= 0.

In addition, from (iii) w(1)m is unique because @2�m(p;wm)
@p1@wm

���
p=ppost

can cross zero only once

as wm increases. To show how w
(1)
m changes with �m, we compute d�m=dw

(1)
m . By solving
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���
p=ppost

= 0 from (A.8), we have �m = 2
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���
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,

where the �rst term is negative due to h0
�
��1

�
1� w

(1)
m

ppostm

��
> 0 and the second term is zero

due to dppostm
dwm

���
wm=w

(1)
m

= 0: Therefore, dw(1)m =d�m < 0.

Step 3: If w < w
(1)
m , then dp

post
m =dwm > 0 and dppostm =ds < 0 for any wm � w. We

de�ne s(1) = 0 in this case. If w � w
(1)
m , then we de�ne s(1) =

�
w � w(1)m

�
=w. In this case,

dppostm =ds < 0 if and only if s > s(1). Since dw(1)m =d�m < 0, ds(1)=d�m > 0 in this case. Since

w
(1)
m solves @2�m(p;wm)

@p1@wm

���
p=ppost

= 0, from (A.8), s(1) is the maximum of 0 and the unique s that

solves b+ n�2
n  � �m

n
2h
�
��1

�
1� w(1�s)

ppostm

��
ppostm

o�1
= 0.

(b) d�post3
ds = dppostm

ds
d�post3
dpm

< 0 if and only if s > s(1) because d�post3
dpm

> 0 by Lemma A1(a) and
dppostm
ds < 0 if and only if s > s(1) by part (a). In the rest of the proof, we prove d�

post
m
ds > 0 for all

s by showing d�postm
dwm

< 0 for all wm in each of the following two cases: (case I) dp
post
m =dwm � 0,

and (case II) dppostm =dwm > 0.

(Case I) From (1.4), d�
post
m

dwm
=
�
@�postm
@p1

+ @�postm
@p2

�
dppostm
dwm

+ @�postm
@ym

dypostm
dwm

+ @�postm
@wm

+
dppost3
dwm

nP
j=3

@�postm
@pj

=

@�postm
@wm

+
dppost3
dpm

dppostm
dwm

nP
j=3

@�postm
@pj

; where @�postm
@p1

= @�postm
@p2

= 0 and @�postm
@ym

= 0 at (p1; p2; ym) =

(ppostm ; ppostm ; ypostm ) by Envelop Theorem. By computing @�postm
@pj

and @�postm
@wm

from (1.4) and substi-

tuting them into d�postm
dwm

; we get d�
post
m

dwm
= �qpostm + 2 n�2n (ppostm � wm)dp

post
3
dpm

dppostm
dwm

< 0; where the

inequality is due to qpostm > 0, dp
post
m
dwm

� 0 by the premise, and dppost3
dpm

> 0 by Lemma A1(a).

(Case II) Suppose that wm is reduced by dwm (> 0). Let p
post
3 � dp3; ppostm � dpm, ypostm � dym

and �postm � d�m denote new equilibrium outcomes associated with the change of dwm: Let

�0m denote the post-merger �rm�s expected pro�t at the new marginal cost wm � dwm when

pm = p
post
m �dpm, p3 = p4 = ::: = pn = ppost3 �dp3, and ym = ypostm . Note that �0m � �

post
m �d�m

because ym = y
post
m is chosen instead of ym = y

post
m � dym. In order to prove d�postm

dwm
< 0, we will

show �0m > �
post
m , so that �postm � d�m � �0m > �

post
m . From (1.4), we can compute �postm ; �0m and

then �0m � �
post
m as follows:

�postm = (ppostm � wm)Lpostm � wmypostm � pm�mR
�
ypostm
�m

�
;

�0m =
n
ppostm � wm + (dwm � dpm)

on
Lpostm + 2bdpm +

n�2
n 2 (dpm � dp3)

o
�(wm � dwm) ypostm
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�
�
ppostm � dpm

�
�mR

�
ypostm
�m

�
;

�0m � �
post
m =

n
ppostm � wm + (dwm � dpm)

o�
2bdpm +

n�2
n 2 (dpm � dp3)

	
+(dwm � dpm)Lpostm + ypostm dwm + �mR

�
ypostm
�m

�
dpm

> (dwm � dpm)Lpostm + ypostm dwm + �mR
�
ypostm
�m

�
dpm

=
�
Lpostm + ypostm

�
dwm +

n
�mR

�
ypostm
�m

�
� Lpostm

o
dpm;

where the inequality follows from dppostm
dwm

> 0 by the premise, dp
post
m
dwm

< 1 from step 2 of part (a),

and dppost3
dpm

< 1 by Lemma A1(a). Using dwm > dpm > 0, we can simplify this inequality into

�0m��
post
m >

n
ypostm + �mR

�
ypostm
�m

�o
dpm: Finally, we complete the proof by showing that y

post
m �

��mR
�
ypostm
�m

�
: Since ym�(ym � e"m)+ = e"m�(e"m � ym)+, ym = E (ym � e"m)+�E (e"m � ym)+ :

Using E (ym � e"m)+ � 0 and E (e"m � ym)+ = �mR(ym=�m), ypostm � ��mR
�
ypostm
�m

�
: �

Proof of Proposition 1.4. (a) dlpostm
d� = @lpostm

@ppostm

dppostm
d� = wm

(ppostm )
2
dppostm
d� : Since dppostm

d� < 0 from

Proposition 1(a), we get dl
post
m
d� < 0. Similarly, we can prove dlpost3

d� < 0.

(b) dlpostm
dwm

= � 1
ppostm

+ wm

(ppostm )
2
dppostm
dwm

=
�
wm
ppostm

dppostm
dwm

� 1
�

1
ppostm

: Since wm < ppostm and dppostm
dwm

< 1

from the proof of Proposition 2(a), dl
post
m
dwm

< 0. Therefore, dl
post
m
ds = dlpostm

dwm
dwm
ds = dlpostm

dwm
(�w) > 0.

Next, dl
post
3
ds = w

(ppost3 )
2

dppost3
ds > 0 if and only if s < s(1) from Proposition 2(a).

(c) Since lpostm decreases with � and increases with s, it su¢ ce to show lpostm > lpre1 at � = 1 and

s = 0, which follows directly from lpostm = 1�w=ppostm , lpre1 = 1�w=ppre1 and ppostm > ppre1 at � = 1

and s = 0. Since lpost3 = 1 � w=ppost3 increases with ppost3 , the result follows from Proposition

3(a).�

Proof of Proposition 1.5. A sketch of the proof is as follows. We �rst �nd a lower bound of
E[cspost], denoted by E[cslbd]. We then show E[cslbd] > E [cspre] at s = s(2) and that E

�
cslbd

�
increases with s for s 2 [s(2); 1). Therefore, there exists a threshold s(cs) 2

�
0; s(2)

�
such that

E[cspost] > E [cspre] for any s > s(cs): �

Proof of Corollary 1.1. We provide a sketch of the proof for part (a). The proof of part
(b) follows a similar procedure. We �rst get the n �rst-order conditions for the post-merger

�rm: @�m
@p1

= 0, @�m@p2 = 0, and @�i
@pi

= 0, i = 3; 4; : : : ; n. Using the implicit function theorem

and the Cramer�s rule, we obtain dpposti
d� = � jJ�i j = jJ j, where J is the Jacobian matrix of the n

�rst-order conditions, and J�i is the matrix formed by replacing the ith column of J with the

vector ( @
2�m
@p1@�

���
p=ppost

; @
2�m
@p2@�

���
p=ppost

; 0; :::; 0)T . We can show that the sign of jJ j is (�1)n. In

addition, we can show that @2�m
@p1@�

���
p=ppost

< 0 and @2�m
@p1@�

���
p=ppost

< 0, and thus the sign of jJ�i j

is also (�1)n. So dpposti
d� = � jJ�i j = jJ j < 0. �
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Proof of Corollary 1.2. We provide a sketch of the proof for part (a). We compare @�m=@p1
for the same price vector under two di¤erent demands e"m and e�m. We show that if the post-
merger �rm keeps its prices constant but chooses its safety stock optimally, then the expected

lost sales is smaller for the less dispersive demand e"m. This results in a larger @�m=@p1 for the
less dispersive demand. Consequently, if the prices are set at the equilibrium point for the more

dispersive demand (resulting in @�m=@p1 = 0 for this demand), then @�m=@p1 > 0 for the less

dispersive demand. The rest of the proof follows the procedure similar to the proof of Lemma

1.1(a). The proof of part (b) follows the procedure similar to the proof of Proposition 1.2(a).

�

A.2 Parameter Values Used in Figures
The parameter values used in our numerical examples are motivated by the U.S. rental car

market. In Figure 1-1, we used the following parameter values: n = 3, a = 1, b = 0:6,  = 0:5;

w = 0:5, and � = 0:3. We use n = 3 to re�ect the number of major rental car companies in the

U.S. (i.e., Hertz, Avis and Enterprise). We used the normalized value of a = 1 for the demand

intercept. The parameters b and  are related to the price sensitivity of a �rm�s demand to

its own price and other competitors� prices. According to McCarthy (1996), the own price

elasticity for the US auto market is between �1:06 and �1:85, and the cross price elasticity is
between 0:28 and 0:86. We chose the values of b and  to yield the own price elasticity of �1:64
and the cross price elasticity of 0:59, which are consistent with McCarthy (1996). We chose

w = 0:5 to yield a pro�t margin of 42% in the pre-merger market. From the quarterly �nancial

reports of Hertz, we found that its gross pro�t margin was between 37% and 50% from 2006

to 2013. The pro�t margin in our numerical example is in the middle of this range. We used

� = 0:3 to add moderate uncertainty to demand.

Figure 1-2 is plotted over di¤erent levels of synergy s for a �xed value of �. For illustration,

we provide three di¤erent �gures for � = 0, 0:5 and 1, respectively. The case when � = 1 can

be viewed as a benchmark case in which �rm 1 and �rm 2 maintain separate inventories after

their merger. Other parameter values are the same as in Figure 1-1 except � = 0:5. We used a

larger � to better illustrate the property that s(1) is nondecreasing with �m.

A.3 Supplemental Materials

Proof of Lemma A1. (a) We �rst prove 0 < dp�3=dpm < 1. Substituting the optimal safety
stock yi = ���1

�
1� w

pi

�
to (1.2), computing the derivative with respect to pi, and setting

p3 = ::: = pn = p
�
3 and p1 = p2 = p

�
m yield:

�
�
2b+ n+1

n 
�
p�3 � �R

�
��1

�
1� w

p�3

��
+ 2

n pm + a+
�
b+ n�1

n 
�
w = 0;

which implicitly de�nes p�3 (pm). Using the implicit function theorem, we obtain
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dp�3
dpm

=
2

n

8<:
�
2b+

n+ 1

n


�
� �w2

�
�
��1

�
1� w

p�3

��
(p�3)

3

9=;
�1

; (A.9)

where we have used (A.12). To prove 0 < dp�3=dpm < 1, we �nally show�
2b+

n+ 1

n


�
� �w2

�
�
��1

�
1� w

p�3

��
(p�3)

3
>
2

n
: (A.10)

To show that (A.10) holds, we use (A.1), and rewrite it as follows by adding 3
n to both sides

of (A.1): �
2b+

n+ 1

n


�
� �w2

�(��1
�
1� w

p

�
)p3

>
3

n
� 2

n
:

Because p�3 � p, (A.10) holds if �w2

�
�
��1

�
1�w

p

��
p3
is decreasing with p. By using the failure rate of

a standard normal variable h (t) = � (t) = f1� � (t)g, we can express �w2

�
�
��1

�
1�w

p

��
p3
as follows:

�w2

�
�
��1

�
1�w

p

��
p3
=

�
n
1��

�
��1

�
1�w

p

��o
w

�
�
��1

�
1�w

p

��
p2

= �w

h
�
��1

�
1�w

p

��
p2
;

which is decreasing with p because h (t) is increasing with t for the standard normal distribution.

Similarly, we can obtain the following equation that de�nes p�m (p3) implicitly:

�2
�
b+  n�2n

�
pm � �m

2 R
�
��1

�
1� wm

pm

��
+  n�2n p3 + a+

�
b+  n�2n

�
wm = 0;

and obtain dp�m
dp3

as follows: dp�m
dp3

=
 n�2

n

2(b+ n�2n )��mw2m
n
2�
�
��1

�
1�wm

p�m

��
(p�m)

3
o�1 : We prove 0 <

dp�m=dp3 < 1 by using the following inequality that can be proven similarly to (A.10):

2

�
b+ 

n� 2
n

�
� �mw

2
m

2�
�
��1

�
1� wm

p�m

��
(p�m)

3
> 

n� 2
n

: (A.11)

Lastly, we prove d��3=dpm > 0. Observe from (1.2) that �3 depends on the prices of all

�rms, so that d�3
dpm

= @�3
@p3

dp3
dpm

+ @�3
@y3

dy3
dpm

+
nP
j=4

@�3
@pj

@pj
@pm

+ @�3
@pm

: When (p3; y3) are chosen optimally

to (p�3; y
�
3); the two terms in

d�3
dpm

are zero (by Envelop Theorem). Since p�3 = ::: = p�n, we

can rewrite d�3
dpm

as follows: d��3
dpm

=
nP
j=4

@��3
@pj

dp�j
dpm

+
@��3
@pm

=
dp�3
dpm

nP
j=4

@��3
@pj

+
@��3
@pm

: Finally, using

@�3
@pj

= (p3 � w) n (for j = 4; :::; n) and
@�3
@pm

= (p3 � w)2n from (1.2), we can simplify d��3
dpm

into
d��3
dpm

=
�
n�3
n 

dp�3
dpm

+ 2
n

�
(p�3 � w), which is positive because dp�3=dpm > 0 and p�3 > w.
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(b) For a given pi, from (1.2) we can compute a unique optimal safety stock y�i = ��
�1 (1� w=pi).

Given this optimal safety stock, �rm i only needs to make a price decision; i.e., �rm i�s strategy

space can be reduced to
�
p; p
�
with price as the single decision variable. The original game

can be reduced to a game with price as the only decision variable. By using this new game,

we complete the rest of the proof in three steps. In step 1, we show there exists a Nash equi-

librium in this new game. In step 2, we show that this Nash equilibrium is unique with ppre1
as the equilibrium price for each �rm. In step 3, we show the original game also has a unique

equilibrium with ppre1 as the equilibrium price and ypre1 = ���1 (1� w=ppre1 ) as the equilibrium

safety stock for each �rm.

Step 1: To show the existence, we need to show that �i (p) is concave in pi. Substituting the

optimal safety stock y�i = ��
�1 (1� w=pi) back into (1.2), we obtain �i(p) = (pi � w)Li(p)�

w���1 (1� w=pi) � pi�R
�
��1 (1� w=pi)

�
. By using (A.12), we compute its second order

derivative as follows: @2�i
@p2i

= �2
�
b+ n�1

n 
�
+ �w2

�
�
��1

�
1� w

pi

��
p3i
. Comparing this equation with

(A.1), we obtain that 2
�
b+ n�1

n 
�
� 2b + n�2

n  and �w2

�
�
��1

�
1� w

pi

��
p3i
< �w2

�
�
��1

�
1�w

p

��
p3
(since

�w2

�
�
��1

�
1� w

pi

��
p3i
is decreasing with pi as shown in the proof of Lemma A1(a)), and thus @

2�i
@p2i

< 0.

Therefore, �i (p) is concave in pi. In addition, the strategy space
�
p; p
�
is compact. So there

exists a pure-strategy Nash equilibrium. Note from (1.2) that pi = p or pi = p yields non-

positive expected pro�ts for su¢ ciently small p or su¢ ciently large p, respectively, and thus it

cannot be optimal. So the optimal price must be a interior solution of the �rst-order condition.

Step 2: We �rst use the contraction mapping theorem to prove the uniqueness. We then

prove ppre1 is the equilibrium price. By using the contraction mapping theorem, Cachon and

Netessine (2004) show that if
���@2�i@p2i

��� > P
j 6=i

��� @2�i@pi@pj

���, then there exists a unique Nash equilib-
rium. From the expression of �i(p), we obtain @2�i

@pi@pj
= 

n and @2�i
@p2i

= �2
�
b+ n�1

n 
�
+

�w2

�
�
��1

�
1� w

pi

��
p3i
< 0, where the inequality is due to concavity proved in step 1. So we need

to show
���@2�i@p2i

����P
j 6=i

��� @2�i@pi@pj

��� = �2b+ n�1
n 

�
� �w2

�
�
��1

�
1� w

pi

��
p3i
> 0. Following a procedure similar

to step 1, we can show that (A.1) ensures this inequality holds, hence the uniqueness of the

Nash equilibrium. Therefore, equilibrium prices is the solution of (1.3), which is obtained by

computing @�i(p)
@pi

from the expression of �i(p), and then setting p
pre
1 = ppre2 = ::: = ppren . To

prove the solution of (1.3) is unique, it su¢ ces to show that the left side of (1.3), denoted by

f1 (p
pre
1 ), is decreasing in ppre1 . We can compute f 01 (p) = �(2b + n�1

n ) + �w2

�
�
��1

�
1�w

p

��
p3
< 0,

where the inequality follows from (A.1).

Step 3: It is easy to verify that pprei = ppre1 and yprei = ���1 (1� w=ppre1 ) is a Nash

equilibrium for the original game. In order to prove the uniqueness of the Nash equilibrium,

from the index theory (page 48 in Vives 1999), it su¢ ces to show that the determinant of the
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Jacobian matrix of @�i@pi
and @�i

@yi
has the sign of (�1)2n whenever @�i@pi

= 0 and @�i
@yi

= 0. By using

(1.2), we can calculate the elements of the Jacobian matrix J (which is a 2n by 2n matrix)

as follows: for i; j � n and i 6= j, Ji;i = @2�i
@p2i

= �2(b + n�1
n ), Ji;j = @2�i

@pi@pj
= 1

n, Ji;i+n =
@2�i
@pi@yi

= 1 � �
�yi
�

�
, Ji;j+n = @2�i

@pi@yj
= 0, Ji+n;i = @2�i

@yi@pi
= 1 � �

�yi
�

�
, Ji+n;j = @2�i

@yi@pj
= 0,

Ji+n;i+n =
@2�i
@y2i

= �pi
� �
�yi
�

�
, and Ji+n;j+n = @2�i

@yi@yj
= 0. By using y�i = ���1 (1� w=pi)

at @�i
@yi

= 0, we can simplify the Jacobian matrix J as follows: J =

"
J1 J3

J3 J2

#
, where the

elements of J1 are given as (J1)i;i = �2(b + n�1
n ) and (J1)i;j =

1
n for i 6= j and i; j � n,

J2 is an n by n diagonal matrix with the ith diagonal element equal to �pi
� �
�
��1

�
1� w

pi

��
,

and J3 is an n by n diagonal matrix with the ith diagonal element equal to w=pi. Using

row and column operations, we can compute jJ j as follows: jJ j =
����� J1 � J3J�12 J3 0

0 J2

����� =��J1 � J3J�12 J3
�� � jJ2j. Since J2 is an n by n diagonal matrix with the ith diagonal element

equal to �pi
� �
�
��1

�
1� w

pi

��
, the sign of jJ2j is (�1)n. From the expression of J1, J2 and

J3, we obtain
�
J1 � J3J�12 J3

�
i;i
= �2(b + n�1

n ) + �w2

�
�
��1

�
1� w

pi

��
p3i
< 0 (the inequality has

been shown in step 1), and
�
J1 � J3J�12 J3

�
i;j
= 1

n > 0 for i 6= j. In addition, we compute

the following:
����J1 � J3J�12 J3

�
i;i

��� � nP
j 6=i

����J1 � J3J�12 J3
�
i;j

��� = (2b + n�1
n ) � �w2

�
�
��1

�
1� w

pi

��
p3i
.

Following the same procedure as in step 1, we can show that from (A.1),
����J1 � J3J�12 J3

�
i;i

����
nP
j 6=i

����J1 � J3J�12 J3
�
i;j

��� > 0. Therefore, J1 � J3J�12 J3 is a diagonally dominant matrix with

negative diagonal values and its sign is (�1)n. So the sign of jJ j =
��J1 � J3J�12 J3

�� � jJ2j is
(�1)2n.
(c) The proof proceeds similarly to the proof of part (b) as follows.

Step 1. The proof for �rm 3 to �rm n is similar to part (b). To prove �m(p) = (p1 �
wm)L1(p)+(p2�wm)L2(p)�wm�m��1

�
1� 2wm

p1+p2

�
�(p1 + p2) �m2 R

�
��1

�
1� 2wm

p1+p2

��
(which

is obtained by substituting ym = �m��1
�
1� 2wm

p1+p2

�
to (1.4)) is jointly-concave in p1 and p2,

we need to show that r2p1;p2�m(p) is negative de�nite. We can compute

r2p1;p2�m(p) =

2664
�2
�
b+ n�1

n 
�
+ �mw2m

4�
�
��1

�
1� 2wm

p1+p2

���
p1+p2
2

�3 2
n +

�mw2m

4�
�
��1

�
1� 2wm

p1+p2

���
p1+p2
2

�3
2
n +

�mw2m

4�
�
��1

�
1� 2wm

p1+p2

���
p1+p2
2

�3 �2
�
b+ n�1

n 
�
+ �mw2m

4�
�
��1

�
1� 2wm

p1+p2

���
p1+p2
2

�3

3775 :
For this symmetric matrix, to ensure that it is negative de�nite, we only need to show that it

is diagonally dominant; i.e., 2
�
b+ n�2

n 
�
� �mw2m

2�
�
��1

�
1� 2wm

p1+p2

���
p1+p2
2

�3 > 0. Similar to step 1 in
part (b), this inequality follows directly from (A.1).
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Step 2. The proof for �rm 3 to �rm n is similar to part (b). For the post-merger �rm, we need

to show
���@2�m@p21

��� > P
j 6=1

��� @2�m@p1@pj

���. We compute @2�m@p21
and @2�m

@p1@pj
as follows: @

2�m
@p21

= �2
�
b+ n�1

n 
�
+

�mw2m

4�
�
��1

�
1� 2wm

p1+p2

���
p1+p2
2

�3 , @2�m
@p1@p2

= 2
n +

�mw2m

4�
�
��1

�
1� 2wm

p1+p2

���
p1+p2
2

�3 , and @2�m
@p1@pj

= 
n for j 6= 1; 2.

So we obtain a su¢ cient condition for
���@2�m@p21

��� > P
j 6=1

��� @2�m@p1@pj

���: �2b+ n�2
n 

�
� �mw2m

2�
�
��1

�
1� 2wm

p1+p2

���
p1+p2
2

�3 >
0. Following a procedure similar to the proof of Lemma A1(a), we can show that the left-hand

side of this inequality is increasing in p1 and p2, and decreasing in wm and �m. Since p1,

p2 > p, wm � w and �m=2 � �, we can use the bounds of wm, �m, p1 and p2 to get the

su¢ cient condition for this inequality: 2b+ n�2
n  � �w2

�
�
��1

�
1�w

p

��
p3
> 0, which is exactly (A.1).

Step 3. The proof follows the same procedure as in the proof of part (b). �

Proof of Lemma 1.1. (a) The proof proceeds in two steps. First, we show @�m(p)
@p1

jp1=p2=:::=pn=ppre1
>

0, implying that if all �rms charge the pre-merger equilibrium price ppre1 in the post-merger

market, then the post-merger �rm has an incentive to raise its price. Second, we prove

ppre1 < ppost3 < ppostm .

First, substituting ym = �m�
�1
�
1� 2w

p1+p2

�
, L1(p) and L2(p) in (1.1) into �m(p; ym) in

(1.4), we obtain the expression for �m(p): Then, using (1.3) and the following result:

dR
�
��1

�
1� w

p

��
dp

=

�
�

�
��1

�
1� w

p

��
� 1
� d��1 �1� w

p

�
dp

= � w2

�
�
��1

�
1� w

p

��
p3
;

(A.12)

we obtain @�m(p)
@p1

after simpli�cation as follows: @�m(p)@p1
=
�
2b+ n�1

n 
�
(ppre1 � p1)+ 

n

nP
j=2

(pj � p1)+


n (p2 � w) + �R

�
��1

�
1� w

ppre1

��
� �R

�
��1

�
1� 2w

p1+p2

��
: Substituting p1 = p2 = p3 = ::: =

pn = p
pre
1 into @�m(p)

@p1
yields @�m(p)@p1

= 1
n (p

pre
1 � w) > 0.

Next, suppose the post-merger �rm raises its price to a new price p(1)m = ppre1 +�p
(1)
m with

�p
(1)
m > 0 such that @�m(p)=@p1jp1=p2=p(1)m ;p3=p4=:::=pn=p

pre
1

= 0. (Note that such p(1)m exists,

since �m(p) is jointly-concave in p1 and p2.) Since 0 < dp�3=dpm < 1 by Lemma A1(a), all

nonparticipant �rms raise their prices to p(1)3 = ppre3 + �p
(1)
3 with 0 < �p

(1)
3 < �p

(1)
m . In

response to p(1)3 , the post-merger �rm will raise its price again to p(2)m = p
(1)
m + �p

(2)
m , where

0 < �p
(2)
m < �p

(1)
3 (since 0 < dp�m=dp3 < 1 by Lemma A1(a)). This process continues until pm

and p3 converge to p
post
m and ppost3 respectively in equilibrium. Since 0 < �p(j)3 < �p

(j)
m in every

stage j, equilibrium prices will satisfy ppre1 < ppost3 < ppostm .

(b)We �rst prove �postm =2 > �pre1 . Let �mj(p1;p2;ym)=(ppre1 ;ppre1 ;2ypre1 ) denote the post-merger �rm�s

expected pro�t when (p1; p2; ym) = (p
pre
1 ; ppre1 ; 2ypre1 ) and pi = p

post
i for i = 3; 4; :::; n. From �m

in (1.4) and �i in (1.2), we can express �mj(p1;p2;ym)=(ppre1 ;ppre1 ;2ypre1 ) and �
pre
1 respectively as

follows:
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�mj(p1;p2;ym)=(ppre1 ;ppre1 ;2ypre1 ) = 2(p
pre
1 �w)

n
a� bppre1 +  n�2n

�
ppost3 � ppre1

�o
�2wypre1 �2ppre1 �R

�
ypre1
�

�
;

�pre1 = (ppre1 � w) (a� bppre1 )� wypre1 � ppre1 �R
�
ypre1
�

�
:

Then, we can compute 12�mj(p1;p2;ym)=(ppre1 ;ppre1 ;2ypre1 )��
pre
1 = (ppre1 �w) n�2n

�
ppost3 � ppre1

�
> 0;

where the inequality is due to ppre1 > w and ppost3 > ppre1 from part (a). Since �postm �
�mj(pm;ym)=(ppre1 ;2ypre) (because (p

post
m ; ypostm )maximize �m given that pi = p

post
i for i = 3; 4; :::; n),

�postm =2 > �pre1 .

Next, we prove �post3 > �pre1 . Let �3j(p3;y3)=(ppre1 ;ypre1 ) denote �rm 3�s post-merger expected

pro�t when (p3; y3) = (p
pre
1 ; ypre1 ) and pi = p

post
i for i = m; 4; 5; :::; n. We can then show

�3j(p3;y3)=(ppre1 ;ypre1 ) � �
pre
1 = (ppre1 � w)

n
 n�3n

�
ppost3 � ppre1

�
+  2n

�
ppostm � ppre1

�o
> 0;

where the inequality is due to ppre1 > w, ppost3 > ppre1 and ppostm > ppre1 from part (a). Since

�post3 � �3j(p3;y3)=(ppre1 ;ypre1 ); �
post
3 > �pre1 .

Finally, we prove �post3 > �postm =2. Let �3j(p3;y3)=(ppostm ;ypostm =2) denote �rm 3�s post-merger

expected pro�t when (p3; y3) = (ppostm ; ypostm =2) and pi = pposti for i = m; 4; 5; :::; n. Then, we

can compute �3j(p3;y3)=(ppostm ;ypostm =2) �
1
2�

post
m = (ppostm � w) 1n

�
ppostm � ppost3

�
> 0; where the

inequality is due to ppostm > ppost3 by part (a). Since �post3 � �3j(p3;y3)=(ppostm ; 1
2
ypostm ), �

post
3 >

�postm =2. �

Detailed Proof of Proposition 1.2. (a) The proofs of statements (i), (ii) and (iii) are
presented below. To prove (i), we note from (A.8) that as wm ! 0; @2�m(p;wm)

@p1@wm

���
p=ppost

!

b+ n�2
n  > 0: To prove (ii), we will show that dppostm =dwm < 1 such that when wm is su¢ ciently

large, (1� wm
ppostm

)! 0 and h
�
��1

�
1� wm

ppostm

��
! 0. Thus, from (A.8), @

2�m(p;wm)
@p1@wm

���
p=ppost

< 0

when wm is su¢ ciently large. We can compute the expression of dp
post
m =dwm in (A.7) as follows:

dppostm
dwm

=
(b+n�2

n
)��m

�
2h

�
��1

�
1� wm

p
post
m

��
ppostm

��1
(2b+n�2

n
)��m

�
2h

�
��1

�
1� wm

p
post
m

��
ppostm

��1
wm

p
post
m

+n�2
n


�
1� dp

post
3
dpm

� ;

which is smaller than 1 because b > 0, wm < p
post
m and dppost3 =dpm < 1 from Lemma A1(a). To

prove (iii), we compute d
�
@2�m(p;wm)
@p1@wm

���
p=ppost

�
=dwm as follows:

d

(
@2�m(p;wm)
@p1@wm

����
p=ppost

)
dwm

=
@

(
@2�m(p;wm)
@p1@wm

����
p=ppost

)
@wm

+
@

(
@2�m(p;wm)
@p1@wm

����
p=ppost

)
@ppostm

dppostm
dwm

:

From (A.7), when @2�m(p;wm)
@p1@wm

���
p=ppost

= 0, dppostm =dwm = 0. Substituting dp
post
m =dwm = 0 and

the expression in (A.8) to the above equation, we obtain the following after simpli�cation:
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d

(
@2�m(p;wm)
@p1@wm

����
p=ppost

)
dwm

= �
�mh0

�
��1

�
1� wm

p
post
m

��
2(ppostm )

2
h2
�
��1

�
1� wm

p
post
m

��
�

�
��1

�
1� wm

p
post
m

�� < 0;

where the inequality is due to h0
�
��1

�
1� wm

ppostm

��
> 0 because the normal distribution has an

increasing failure rate. �

Proof of Proposition 1.3. (a) The proof proceeds in three steps. First, we show ppostm >

ppost3 > ppre1 when s = 0 for all �. Second, we prove the existence of s(2). Finally, we prove that

s(2) is nonincreasing with �.

First, by Lemma 1.1(a), ppostm > ppost3 > ppre1 when s = 0 and � = 1. By Proposition 1.1(a),

dppostm =d� < 0 and dppost3 =d� < 0. In addition, since dppost3 =d� = (dppost3 =dpm)dp
post
m =d� and

0 < dppost3 =dpm < 1 by Lemma A1(a),
���dppost3 =d�

��� < ���dppostm =d�
���. So ppostm > ppost3 > ppre1 when

s = 0 and � � 1.
Second, we consider the following two di¤erent cases: (Case I) @�m@p1 jp1=p2=p3=:::=pn=ppre1

� 0
when wm ! 0, and (Case II) @�m@p1 jp1=p2=p3=:::=pn=ppre1

< 0 when wm ! 0:

(Case I) Following the same procedure as in the proof of Lemma 1.1(a), we can show that when

s ! 1 (wm ! 0), ppostm � ppost3 � ppre1 if @�m@pm
jpm=p3=:::=pn=ppre1

� 0. Since ppostm > ppost3 > ppre1
when s = 0, and both ppostm and ppost3 either decrease with s or �rst increase and then decrease

with s by Proposition 1.2(a), ppostm > ppre1 and ppost3 > ppre1 for any 0 � s < 1. In addition,

dppost3 =ds = (dppost3 =dpm)(dp
post
m =ds), where 0 < dppost3 =dpm < 1 by Lemma A1(a); consequently���dppostm

ds

��� > ���dppost3
ds

��� : Therefore, ppostm > ppost3 for any s. If we set s(2) = 1, the result stated is

satis�ed.

(Case II) Following the same procedure as in the proof of Lemma 1.1(a), we can show that when

s ! 1 (wm ! 0), ppostm < ppost3 < ppre1 if @�m@pm
jpm=p3=:::=pn=ppre1

< 0. Since ppostm > ppost3 > ppre1
when s = 0 and ppostm < ppost3 < ppre1 when s! 1, there exists s(2) 2 (0; 1) such that ppostm = ppre1
at s = s(2). In addition, by substituting ppostm = ppre1 into (A.3), we can verify ppost3 = ppre1
at s = s(2). By Proposition 1.2(a), if s(1) = 0, ppostm and ppost3 decrease with s, and otherwise

they �rst increase with s when s < s(1) and then decrease with s when s > s(1). Furthermore,���dppostm
ds

��� > ���dppost3
ds

��� as shown in case I. Therefore, ppostm > ppre1 ; ppost3 > ppre1 and ppostm > ppost3 if

and only if s < s(2), where s(2) (> s(1)) is unique.

Finally, we prove that s(2) is nonincreasing with � for each of the two cases considered above.

(Case I) As shown above, if @�m@pm
jpm=p3=:::=pn=ppre1

� 0 when wm ! 0, then s(2) = 1. After sub-

stituting the optimal safety stock ym = �m��1 (1� 2w= (p1 + p2)) into (1.4) and di¤erentiating
it with respect to p1, we obtain

@�m(p)

@p1
jp1=p2=p3=:::=pn=ppre1

= a�bppre1 �
�
b+ 

n� 2
n

�
(ppre1 �wm)�

1

2
�mR

�
��1

�
1� wm

ppre1

��
:

(A.13)
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Since lim
wm!0

@�m(p)
@pm

jpm=p3=:::=pn=ppre1
= �

�
2b+  n�2n

�
ppre1 + a � 0 is independent of �, s(2) = 1

for any � in this case.

(Case II) De�ne w(2)m such that s(2) = (w � w
(2)
m )=w. We prove dw(2)m =d�m > 0, which

implies ds(2)=d� < 0 because �m = �
p
2 + 2�. Since ppostm = ppost3 = ppre1 at s = s(2);

@�m(p)
@pm

jpm=p3=:::=pn=ppre1
= 0 at s = s(2). Di¤erentiating both sides of @�m(p)@pm

jpm=p3=:::=pn=ppre1
=

0 (see (A.13)) with respect to �m and setting wm = w
(2)
m result in

dw
(2)
m

d�m
= 1

2R
�
��1

�
1� w

(2)
m

ppre1

��8<:b+ n�2
n  � �mw

(2)
m

2�

�
��1

�
1�w

(2)
m

p
pre
1

��
(ppre1 )

2

9=;
�1

:

To complete the proof by showing dw(2)m =d�m > 0; it su¢ ces to show b+n�2
n  > �mw

(2)
m

2�

�
��1

�
1�w

(2)
m

p
pre
1

��
(ppre1 )

2
.

Since s(2) > s(1) (see above), by Proposition 1.2(a), dppostm =dwm > 0 at s = s(2): From (A.7)

and (A.8), dppostm =dwm > 0 implies b + n�2
n  > �mw

(2)
m

2�

�
��1

�
1� w

(2)
m

p
post
m

��
(ppostm )

2
. Since ppostm = ppre1 at

s = s(2), the result follows.

Taken in sum, s(2) is determined as follows. From (A.13), if lim
wm!0

@�m(p)
@pm

jpm=p3=:::=pn=ppre1
=

�
�
2b+  n�2n

�
ppre1 +a � 0 (i.e., case I), then s(2) = 1. Otherwise s(2) is the unique s that solves

the following equation:

a� bppre1 �
�
b+  n�2n

�
fppre1 � w (1� s)g � 1

2�mR
�
��1

�
1� w(1�s)

ppre1

��
= 0:

(b) We �rst compare �postm =2 and �pre1 . Since �postm =2 > �pre1 when s = 0 and � = 1 by Lemma

1.1(b), �postm increases with s by Proposition 1.2(b), and �postm decreases with � by Proposition

1.1(b), �postm =2 > �pre1 for any 0 � s < 1 and � � 1.
Next, we compare �post3 and �pre1 . Since ppostm = ppost3 = ppre1 at s = s(2) by part (a),

�post3 = �pre1 at s = s(2) by (1.2). Since �post3 > �pre1 when s = 0, �post3 increases (resp.,

decreases) with s when s < s(1) (resp., s > s(1)) and s(1) < s(2), �post3 < �pre1 if and only if s >

s(2).

Finally, let us compare �postm =2 and �post3 . We consider the following two cases: (case I)

There does not exist any s in [0; 1) such that �postm =2 = �post3 , and (case II) There exists at least

one s 2 [0; 1) such that �postm =2 = �post3 .

(Case I) In this case, either �postm =2 > �post3 for all s 2 [0; 1), or �postm =2 < �post3 for all s 2 [0; 1).
We set s(3) = 0 for the �rst case, and s(3) = 1 for the second case. The second case is only

possible if s(2) = 1. This is because �postm =2 > �pre1 = �post3 at s = s(2) if s(2) < 1.

(Case II) De�ne s(3) as the largest s that satis�es �postm =2 = �post3 . (Note that multiple s�s may

satisfy �postm =2 = �post3 because �post3 may �rst increase with s and then decrease with s from

Proposition 1.2; see our discussion in the main body.) The result that �postm =2 > �post3 if s > s(3)
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(where s(3) < s(2)) follows from the following earlier results: (i) �postm =2 > �pre1 = �post3 at

s = s(2); and (ii) �postm is increasing with s 2
�
s(2); 1

�
, and �post3 is decreasing with s 2

�
s(2); 1

�
because of Proposition 1.2(b) and s(1) < s(2) from part (a).

Taken in sum, s(3) is the maximum of 0 and the largest s that solves the following equation:n
ppostm � w (1� s)

on
a�

�
b+ n�2

n 
�
ppostm + n�2

n ppost3

o
�w (1� s) �m2 �

�1
�
1� w(1�s)

ppostm

�
� ppostm

�m
2 R

�
��1

�
1� w(1�s)

ppostm

��
=
n
ppost3 � w

on
a�

�
b+ 2

n
�
ppost3 + 2

np
post
m

o
�w���1

�
1� w

ppost3

�
�ppost3 �R

�
��1

�
1� w

ppost3

��
;

where the left-hand side is the expression of �postm =2 obtained by substituting wm = w (1� s)
and ypostm = �m�

�1
�
1� w (1� s) =ppostm

�
to (1.4), and the right-hand side is the expression of

�post3 obtained by substituting ypost3 = ���1
�
1� w=ppost3

�
to (1.2). �

Derivation of the demand from the utility function. We derive the demand function
Di = Li (p) + e"i (where Li (p) is given in (1)) from the utility function of a representative

consumer given in (1.7). The representative consumer determines her consumption bundle D

that maximizes her utility gain: u (D)�
nP
i=1
piDi. The �rst order conditions for this maximiza-

tion problem are @u (D) =@Di � pi = 0 for i = 1; 2; : : : ; n, which can be obtained from (1.7) as

follows:

@u (D)

@Di
� pi =

1 + 
nb

b+ 
(a+ e"i �Di) + 

nb (b+ )

nX
j 6=i

(a+ e"j �Dj)� pi = 0: (A.14)

Now we solve for n unknown Di (i = 1; 2; : : : ; n) from n �rst order conditions. By adding

all �rst order conditions and rearranging terms, we obtain
nP
j=1

(a+ e"j �Dj) = b nP
j=1

pj . Substi-

tuting this expression into (A.14) yields

1

b+ 
(a+ e"i �Di) + 

n (b+ )

nX
j=1

pj � pi = 0:

From this equation, we can solve for Di as follows:

Di(p;e"i) = a+ e"i + 
n

nX
j=1

pj � (b+ ) pi = a� bpi + 

0@ 1
n

nX
j=1

pj � pi

1A+ e"i: � (A.15)

Derivation of the consumer surplus function. Total consumer surplus is the utility the
representative consumer derives from the consumption bundle less the money spent on the

consumption, so cs(p;D) = u (D) �
nP
i=1
piDi. Substituting the expression of u (D) given in
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(1.7) into cs(p;D) yields

cs(p;D) =
nX
i=1

241 + 
nb

b+ 

�
a+ e"i � 1

2
Di

�
+



nb (b+ )

nX
j 6=i

�
a+ e"j � 1

2
Dj

�35Di � nX
i=1

piDi

=
nX
i=1

241 + 
nb

b+ 
(a+ e"i) + 

nb (b+ )

nX
j 6=i

(a+ e"j)� 1

2 (b+ )

0@Di + 

nb

nX
j=1

Dj

1A� pi
35Di:

(A.16)

To simplify (A.16), we compute Di +

nb

nP
j=1

Dj using the expression of Di in (A.15) as follows:

Di +


nb

nX
j=1

Dj

= a+ e"i � bpi + 
0@ 1
n

nX
j=1

pj � pi

1A+ 

nb

nX
j=1

(
a+ e"j � bpj +  1

n

nX
k=1

pj � pj

!)

=
�
1 +



nb

�
(a+ e"i) + 

nb

nX
j 6=i

(a+ e"j)� (b+ ) pi:
Finally, after substituting the above expression of Di +


nb

nP
j=1

Dj and the expression of Di in

(A.15) into (A.16), we obtain the following after simpli�cation:

cs (p;e") = 1

2

nX
i=1

241 + 
nb

b+ 
(a+ e"i) + 

nb (b+ )

nX
j 6=i

(a+ e"j)� pi
35 fLi (p) + e"ig : �

Detailed Proof of Proposition 1.5. When s(2) = 1, it is possible E[cspost] < E[cspre]

for all s < 1. In this case, we de�ne s(cs) = 1. When s(2) < 1, we prove the existence of

s(cs) 2 [0; s(2)) in the following three steps. In step 1, we obtain a lower bound of E[cspost],
denoted by E

�
cslbd

�
. In step 2, we show E[cslbd] > E[cspre] at s = s(2). In step 3, we show

that E
�
cslbd

�
increases with s in [s(2); 1).

Step 1. Since E
�
cspost

�
= (n� 2)E

�
cs3
�
ppost;e"��+E �csm �ppost;e"��, we �rst �nd the ex-

pressions of E
�
cs3
�
ppost;e"�� and E �csm �ppost;e"�� to �nd a lower bound of E �cspost�. To �nd

the expression of E
�
cs3
�
ppost;e"��, we simplify cs3 �ppost;e"� into cs3 (p;e") = v3 (p3;e") fL3 (p) + e"3g ;
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where v3 (p3;e") and its expected value are de�ned from (1.8) as follows:

v3 (p3;e") =
1

2 (b+ )

8<:�1 + 

nb

�
(a+ e"3) + 

nb

nX
j 6=3

(a+ e"j)� (b+ ) p3
9=; ; (A.17)

E [v3 (p3;e")] =

Z 1

�1

Z 1

�1
: : :

Z 1

�1
v3 (p3; ") f (") d" =

a� bp3
2b

: (A.18)

Let z3 = ��1
�
lpost3

�
. Using (1.9), (A.17) and (A.18), we can write E

�
cs3
�
ppost;e"�� as follows:

E
�
cs3
�
ppost;e"�� =

Z �z3

�1

Z 1

�1
� � �
Z 1

�1
v3

�
ppost3 ; "

��
L3
�
ppost

�
+ "3

	
f (") d"�3d"3

+

Z 1

�z3

Z 1

�1
� � �
Z 1

�1
v3

�
ppost3 ; "

��
L3
�
ppost

�
+ �z3

	
f (") d"�3d"3:

=
a� bppost3

2b
L3
�
ppost

�
+

Z �z3

�1

Z 1

�1
� � �
Z 1

�1
v3

�
ppost3 ; "

�
"3f (") d"�3d"3

+

Z 1

�z3

Z 1

�1
� � �
Z 1

�1
v3

�
ppost3 ; "

�
�z3f (") d"�3d"3; (A.19)

where "�3 = ("1; "2; "4; : : : "n). We next simplify the second and third terms in (A.19). Let

f3 ("3) and f3;j ("3; "j) denote the marginal density of "3 and the joint density of ("3; "j), re-

spectively. Then substituting (A.17) into the second term in (A.19) yieldsZ �z3

�1

Z 1

�1
� � �
Z 1

�1
v3

�
ppost3 ; "

�
"3f (") d"�3d"3 (A.20)

=
1

2

Z �z3

�1

(�a
b
� p3

�
"3 +

�
1 + 

nb

�
(b+ )

"23

)
f3 ("3) d"3 +



2nb (b+ )

nX
j 6=3

Z �z3

�1

Z 1

�1
"3"jf3;j ("3; "j) d"jd"3

=
1 + 

nb

2 (b+ )
�2 f� (z3)� z3� (z3)g �

a� bp3
2b

�� (z3) +


2nb (b+ )

nX
j 6=3

Z �z3

�1

Z 1

�1
"3"jf3;j ("3; "j) d"jd"3;

where the last equality is due to
R �z3
�1 "3f3 ("3) d"3 = �� (z3) and

R �z3
�1 "

2
3f3 ("3) d"3 = �

2 f� (z3)� z3� (z3)g.
To calculate the second term in (A.20), we let eu3 = e"3=� and euj = (e"j � �e"3)=�. We have
E [eu3] = E [euj ] = 0, V ar [eu3] = 1, and V ar [euj ] = 1 � �2. In addition, since Cov (eu3; euj) =
Cov (e"3;e"j) =�2 � �Cov (e"3;e"3) =�2 = 0, eu3 and euj are independent. So we can calculate the
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integral in the second term of (A.20) as follows:

Z �z3

�1

Z 1

�1
"3"jf3;j ("3; "j) d"jd"3 = �

2

Z z3

�1

Z 1

�1
u3 (uj + �u3)� (u3)

�

�
ujp
1��2

�
p
1� �2

dujdu3

= �2�

Z z3

�1
u23� (u3) du3

Z 1

�1

�

�
ujp
1��2

�
p
1� �2

duj = �
2� f� (z3)� z3� (u3)g ;

where the equality is due to
R1
�1 uj

�

�
ujp
1��2

�
p
1��2

duj = E [euj ] = 0. By substituting this into (A.20),
we can simplify the second term in (A.19) as follows:Z �z3

�1

Z 1

�1
� � �
Z 1

�1
v3

�
ppost3 ; "

�
"3f (") d"�3d"3

= �a� bp
post
3

2b
�� (z3) +

�
1 + 

nb

�
2 (b+ )

�2 f� (z3)� z3� (z3)g+
(n� 1) �2� f� (z3)� z3� (z3)g

2nb (b+ )
:

Similarly, we can simplify the third term in (A.19) as follows:Z 1

�z3

Z 1

�1
� � �
Z 1

�1
v3

�
ppost3 ; "

�
�z3f (") d"�3d"3

=
a� bppost3

2
�z3 f1� � (z3)g+

�
1 + 

nb

�
2 (b+ )

�2z3� (z3) +
(n� 1) �2�z3� (z3)

2nb (b+ )
:

So we can rewrite (A.19) as follows after combining terms:

E
�
cs3
�
ppost;e"�� =

a� bppost3

2b

�
L3
�
ppost

�
� �� (z3) + �z3 f1� � (z3)g

�
+
�2� (z3)

2 (b+ )

�
1 +



nb
+
(n� 1) �

nb

�
=

a� bppost3

2b

�
L3
�
ppost

�
� �R (z3)

	
+
�2� (z3)

2 (b+ )

n
1 +



nb
+


nb
(n� 1) �

o
; (A.21)

where the last equality is due to R (z3) = � (z3)� z3 f1� � (z3)g.
We next �nd the expression of E

�
csm

�
ppost;e"��. Letting p1 = p2 = pm, we can write

csm (p; ") as

csm (p;e") = cs1 (p;e") + cs1 (p;e")
=

1

2 (b+ )

2X
i=1

e"i fLi (p) + e"ig+ 1
2

8<:ab + 

nb (b+ )

nX
j=1

e"j � pm
9=;

2X
i=1

fLi (p) + e"ig
=

e"21 + e"22
2 (b+ )

+
e"1 + e"2
4 (b+ )

Lm (p) +
1

2

8<:ab + 

nb (b+ )

nX
j=1

e"j � pm
9=; fLm (p) + e"1 + e"2g ;
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where the last equality is due to L1 (p) = L2 (p) = Lm (p) =2. Let e"m = e"1+e"2 and e�m = e"1�e"2.
We can show that e"m and e�m are independent, and that the correlation coe¢ cient between e"m
and e"j (j � 3) is 2�p

2+2�
. Substituting these new variables into the above equation and noting

that e"21 + e"22 = 1
2e"2m + 1

2
e�2m, we obtain

csm (p;e") = e�2m
4 (b+ )

+
1

2

8<:ab � pm + e"m
2 (b+ )

�
1 +

2

nb

�
+

nX
j=3

e"j
nb (b+ )

9=; fLm (p) + e"mg :
(A.22)

Let zm = ��1
�
lpostm

�
. Since e�m and e"m are independent, the expected value of the �rst term

in (A.22) can be expressed as

1
4(b+)

R1
�1 �

2
m

�
�

�m
�
p
2�2�

�
�
p
2�2� d�m

(R �mzm
�1

�("m)
�m

d"m +
R1
�mzm

Lm+�mzm
Lm+"m

�
�
"m
�m

�
�m

d"m

)
= �2(2�2�)

4(b+)

n
� (zm) +

R1
zm

Lm+�mzm
Lm+�mt

� (t) dt
o
.

The second term in (A.22) is similar to csi (p;e") in (1.8), so we can obtain its expected value
similarly to E

�
cs3
�
ppost;e"��. Putting them together, we can write E �csm �ppost;e"�� as follows

(where we use the correlation coe¢ cient of 2�p
2+2�

between e"m and e"j):
E
�
csm

�
ppost;e"�� =

�2 (2� 2�)
4 (b+ )

�
� (zm) +

Z 1

zm

Lm + �mzm
Lm + �mt

� (t) dt

�
+
�2 (2 + 2�) � (zm)

�
1 + 

nb

�
2 (b+ )

+
�� (zm)

2 (b+ )

(n� 2) �
p
2 + 2� 2�p

2+2�

nb
+
a� bppostm

2b

�
Lm
�
ppost

�
� �mR (zm)

	
=

�2 (1� �)
2 (b+ )

Z 1

zm

Lm + �mzm
Lm + �mt

� (t) dt+
a� bppostm

2b

�
Lm
�
ppost

�
� �mR (zm)

	
+
�2� (zm)

b+ 

n
1 +



nb
+


nb
(n� 1) �

o
: (A.23)

De�ne E
�
cslbdm

�
= E

�
csm

�
ppost;e"��� �2(1��)

2(b+)

R1
zm

Lm+�mzm
Lm+�mt

� (t) dt (< E
�
csm

�
ppost;e"��). From

(A.23) we get

E
h
cslbdm

i
=
a� bppostm

2b

�
Lm
�
ppost

�
� �mR (zm)

	
+
�2� (zm)

b+ 

n
1 +



nb
+


nb
(n� 1) �

o
: (A.24)

Finally, we let E
�
cslbd

�
= E

�
cslbdm

�
+ (n� 2)E

�
cs3
�
ppost;e"��. Then E �cslbd� � E �cspost� =

E
�
csm

�
ppost;e"��+ (n� 2)E �cs3 �ppost;e"��.
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Step 2. Following the same procedure as in the calculation of E
�
cs3
�
ppost;e"��, we can

express E [cs1 (ppre;e")] as follows:
E [cs1 (p

pre;e")] = a� bppre1
2b

�
L1 (p

pre)� �R
�
��1 (lpre1 )

�	
+

�2lpre1
2 (b+ )

n
1 +



nb
+


nb
(n� 1) �

o
:

(A.25)

Note that E [cspre] = nE [cs1 (ppre;e")]. Using ppost = ppre and lpost3 = lpre3 at s = s(2), we can

compute E
�
cslbd

�
� E [cspre] from (A.21), (A.24) and (A.25) as

E
h
cslbd

i
� E [cspre] =

�2
�
lpostm � lpre1

�
b+ 

n
1 +



nb
+


nb
(n� 1) �

o
+
a� bppre1
2b

�
2�R

�
��1 (lpre1 )

�
� �mR

�
��1

�
lpostm

��	
� 0;

where the inequality is due to lpostm > lpre1 at s = s(2) and 2� � �m.
Step 3. We can express

dE[cslbd]
ds as follows:

dE[cslbd]
ds =

dE[cslbd]
dppostm

dppostm
ds +

@E[cslbd]
@lpostm

@lpostm
@s : Since

dppostm
ds < 0 and @lpostm

@s > 0 for s � s(2), if
dE[cslbd]
dppostm

< 0 and
@E[cslbd]
@lpostm

> 0, then
dE[cslbd]

ds > 0 for

s � s(2): Below we �rst prove that @E[cs
lbd]

@lpostm
> 0 and then derive a condition for

dE[cslbd]
dppostm

< 0:

Since
@E[cslbd]
@lpostm

=
@E[cslbd]
@zm

dzm
dlpostm

and dzm
dlpostm

= 1
�(zm)

> 0, it su¢ ces to show
@E[cslbd]
@zm

> 0 for
@E[cslbd]
@lpostm

> 0. From E
�
cslbd

�
= E

�
cslbdm

�
+ (n� 2)E

�
cs3
�
ppost;e"�� and (A.24), we get

@E[cslbd]
@zm

=
@E[cslbdm ]
@zm

= a�bppostm
2b �mf1� � (zm)g+ �2�(zm)

b+

�
1 + 

nb +

nb (n� 1) �

	
> 0:

We next derive a condition for
dE[cslbd]
dppostm

< 0. Since E
�
cslbd

�
= E

�
cslbdm

�
+(n� 2)E

�
cs3
�
ppost;e"��,

we can express dE
�
cslbd

�
=dppostm as follows:

dE
�
cslbd

�
dppostm

=
@E
�
cslbdm

�
@ppostm

+ (n� 2)
@E
�
cs3
�
ppost;e"��

@ppostm

+
@E
�
cslbdm

�
@ppost3

dppost3

dppostm

(A.26)

+(n� 2)
@E
�
cs3
�
ppost;e"��

@ppost3

dppost3

dppostm

+ (n� 2)
@E
�
cs3
�
ppost;e"��

@lpost3

@lpost3

@ppost3

dppost3

dppostm

:
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To simplify
dE[cslbd]
dppostm

; we next derive
@E[cslbdm ]
@ppostm

;
@E[cslbdm ]
@ppost3

,
@E[cs3(ppost;e")]

@ppost3

and
@E[cs3(ppost;e")]

@ppostm
: From

(A.24), we get

@E
�
cslbdm

�
@ppostm

= �1
2

�
Lm
�
ppost

�
� �mR (zm)

	
� a� bp

post
m

b

�
b+

n� 2
n



�
; (A.27)

@E
�
cslbdm

�
@ppost3

=
a� bppostm

b

n� 2
n

: (A.28)

Similarly, from (A.21) we can compute

@E
�
cs3
�
ppost;e"��

@ppost3

= �1
2

�
L3
�
ppost

�
� �R (z3)

	
� a� bp

post
3

2b

�
b+

2

n


�
; (A.29)

@E
�
cs3
�
ppost;e"��

@ppostm

=


nb

�
a� bppost3

�
: (A.30)

Using (A.27) and (A.30), we can show that the �rst two terms in (A.26) are negative because

@E[cslbdm ]
@ppostm

+
(n�2)@E[cs3(ppost;e")]

@ppostm
=

�1
2

�
Lm
�
ppost

�
� �mR (zm)

	
�
�
a� bppostm

�
� n�2

n 
�
ppost3 � ppostm

�
< 0;

where the inequality is due to ppostm � ppost3 for s � s(2). Furthermore, since 0 < dppost3

dppostm
< 1,

@E[cslbdm ]
@ppostm

+ (n� 2) @E[cs3(p
post;e")]

@ppostm
�
�
@E[cslbdm ]
@ppostm

+ (n� 2) @E[cs3(p
post;e")]

@ppostm

�
dppost3

dppostm
< 0.

Using this inequality, we can get an upper bound of
dE[cslbd]
dppostm

from (A.26):

dE[cslbd]
dppostm

��
@E[cslbdm ]
@ppostm

+
@E[cslbdm ]
@ppost3

+ (n� 2)
�
@E[cs3(ppost;e")]

@ppostm
+

@E[cs3(ppost;e")]
@ppost3

+
@E[cs3(ppost;e")]

@lpost3

@lpost3

@ppost3

��
dppost3

dppostm
:

Thus,
dE[cslbd]
dppostm

< 0 if the following condition holds:

@E[cslbdm ]
@ppostm

+
@E[cslbdm ]
@ppost3

+ (n� 2)
�
@E[cs3(ppost;e")]

@ppostm
+

@E[cs3(ppost;e")]
@ppost3

+
@E[cs3(ppost;e")]

@lpost3

@lpost3

@ppost3

�
< 0:

By substituting (A.27), (A.28), (A.29), and (A.30), this condition can be further simpli�ed into

2
�
a� bppostm

�
�1
2
�mR (zm)+(n� 2)

n�
a� bppost3

�
� �
2
R (z3)

o
> (n� 2)

@E
�
cs3
�
ppost;e"��

@lpost3

@lpost3

@ppost3

:

(A.31)
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The left-hand side of (A.31) satis�es the following:

2
�
a� bppostm

�
� 1
2�mR (zm)+(n� 2)

n�
a� bppost3

�
� �

2R (z3)
o
> n

�
a� bppost3

�
� n�

2 R (z3)

� n
2

�
a� bppost3

�
;

where the �rst inequality is due to ppost3 � ppostm and zm > z3 (because l
post
m > lpost3 ) for s � s(2),

and the second inequality is due to L3
�
ppost

�
� �R (z3) > 0 and L3

�
ppost

�
= a � bppost3 �

2
n

�
ppost3 � ppostm

�
� a�bppost3 : The right-hand side of (A.31) is smaller than

(n�2)�(a�bppost3 )w

2b�(��1(lpost3 ))(ppost3 )
2

because from (A.21)

@E
�
cs3
�
ppost;e"��

@lpost3

=
a� bppost3

2b

�w

�
�
��1

�
lpost3

��
ppost3

+
�2

2 (b+ )

n
1 +



nb
+


nb
(n� 1) �

o

�

�
a� bppost3

�
�

2b�
�
��1

�
lpost3

�� �
�
a� bppost3

�
�
�
1� w

ppost3

�
2b�

�
��1

�
lpost3

�� +
�2

2 (b+ )

�
1 +



b

�

=

�
a� bppost3

�
�

2b�
�
��1

�
lpost3

�� � �
n�
a� bppost3

��
1� w

ppost3

�
� ��

�
��1

�
lpost3

��o
2b�

�
��1

�
lpost3

��
�

�
a� bppost3

�
�

2b�
�
��1

�
lpost3

�� ;
where the �rst inequality is due to � � 1, and the second inequality is due to a � bppost3 �
L3
�
ppost

�
for s � s(2) and

�post3 = L3
�
ppost

� �
ppost3 � w

�
� w���1

�
lpost3

�
� ppost3 �R

�
��1

�
lpost3

��
= ppost3

n
L3
�
ppost

� �
1� w

ppost3

�
� w

ppost3

���1
�
lpost3

�
� �R

�
��1

�
lpost3

��o
= ppost3

n
L3
�
ppost

� �
1� w

ppost3

�
� ��

�
��1

�
lpost3

��o
> 0:

By using the bounds of the left- and right-hand sides of (A.31), we �nally have the following

su¢ cient condition for (A.31): b � (n�2)�w
n�(��1(lpost3 ))(ppost3 )

2 . �

Detailed Proof of Corollary 1.1. Before we prove (a) and (b), we �rst derive the condition
for the existence of a unique Nash equilibrium in the post-merger market. To do so, we �rst

obtain n �rst-order conditions on prices. We then compute the Jacobian matrix J of the

left-hand side of the �rst-order conditions. We �nally use J to obtain the conditions for the

existence of a unique Nash equilibrium.

We can express the expected pro�ts of a nonparticipant �rm i (i = 3; 4; :::; n) and the

post-merger �rm respectively as follows:
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�i(p; yi) = (pi � wi)

8<:ai � �bi + n�1
n 

�
pi +


n

X
j 6=i

pj

9=;� wiyi � pi�iR� yi�i�, and
�m(p; ym) =

2X
j=1

(pi�wm)

8<:ai � �bi + n�1
n 

�
pi +


n

X
j 6=i

pj

9=;�wmym�(p1k1 + p2k2)�mR� ym�m� ;
where k1 (> 0) (resp., k2) represents a portion of lost sales at location 1 (resp., location 2) with

k1 + k2 = 1. From the expression above, we can compute the �rst-order conditions on ym and

yi, and obtain the optimal safety stock for a given price vector p: y�m = �m�
�1
�
1� wm

pm

�
and

y�i = �i�
�1
�
1� wi

pi

�
, where pm = p1k1 + p2k2. Substituting y�m and y�i into �m(p; ym) and

�3(p; y3) above, we obtain

�m(p) =
2X
j=1

(pi � wm)

8<:ai �
�
bi +

n� 1
n



�
pi +



n

X
j 6=i

pj

9=;
� �mwm��1

�
1� wm

pm

�
� pm�mR

�
��1

�
1� wm

pm

��
, and (A.32)

�i(p) = (pi � wi)

8<:ai �
�
bi +

n� 1
n



�
pi +



n

X
j 6=i

pj

9=;� wi��1
�
1� wi

pi

�
� pi�iR

�
��1

�
1� wi

pi

��
:

(A.33)

We compute the �rst-order conditions for p1, p2, and pi (i > 2) respectively as:

a1 �
�
b1 +

n� 1
n



�
(2p1 � wm) +

2

n
p2 +



n

X
j 6=1;2

pj �


n
wm � k1�mR

�
��1

�
1� wm

pm

��
= 0;

(A.34)

a2 �
�
b2 +

n� 1
n



�
(2p2 � wm) +

2

n
p1 +



n

X
j 6=1;2

pj �


n
wm � k2�mR

�
��1

�
1� wm

pm

��
= 0;

(A.35)

ai � 2
�
bi +

n� 1
n



�
pi +



n

X
j 6=i

pj +

�
bi +

n� 1
n



�
wi � �iR

�
��1

�
1� w

pi

��
= 0: (A.36)
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We then compute the Jacobian matrix J for these �rst-order conditions and get the following

expressions for Ji;j :

J1;1 =
@2�m(p)

@p21
= �2

�
b1 +

n� 1
n



�
+ k21

�mw
2
m

�
�
��1

�
1� wm

pm

��
p3m

; (A.37)

J2;1 = J1;2 =
@2�m(p)

@p1@p2
=
2

n
+ k1k2

�mw
2
m

�
�
��1

�
1� wm

pm

��
p3m

; (A.38)

J2;2 =
@2�m(p)

@p22
= �2

�
b2 +

n� 1
n



�
+ k22

�mw
2
m

�
�
��1

�
1� wm

pm

��
p3m

; (A.39)

Ji;i =
@2�i(p)

@p2i
= �2

�
bi +

n� 1
n



�
+

�iw
2
i

�
�
��1

�
1� wi

pi

��
p3i

; i > 2; (A.40)

Ji;j =
@2�i(p)

@pi@pj
=
1

n
; i > 2 and j 6= i; (A.41)

Ji;j =
@2�m(p)

@pi@pj
=
1

n
; i � 2 and j > 2: (A.42)

To ensure the expected pro�t of �rm i is concave in pi, we require Jii < 0. In addition, to

ensure there exists a unique Nash equilibrium, we require that J is diagonally dominant; i.e.,

jJi;ij >
X
j 6=i

jJi;j j (Cachon and Netessine 2004). We can verify Ji;j > 0 for i 6= j. So the condition

simpli�es to
nX
j=1

Ji;j < 0. Substituting the expression for Ji;j , we get the following conditions:

�
�
2b1 +

n�2
n 

�
+ k1

�mw2m

�
�
��1

�
1�wm

pm

��
p3m
< 0;

�
�
2b2 +

n�2
n 

�
+ k2

�mw2m

�
�
��1

�
1�wm

pm

��
p3m
< 0;

�
�
2bi +

n�1
n 

�
+

�iw
2
i

�
�
��1

�
1�wi

p3

��
p3i
< 0 fori > 2:

(a)We �rst prove dpposti =d� < 0 (i = 1; 2; : : : ; n). We then prove d�posti =d� < 0 (i = 3; 4; : : : ; n).

Using the implicit function theorem and the Cramer�s rule, we obtain dpposti =d� = � jJ�i j = jJ j,
where J�i is the matrix formed by replacing the ith column of J with the vector (

@2�m(p;�)
@p1@�

���
p=ppost

;

@2�m(p;�)
@p2@�

���
p=ppost

; 0; :::; 0)T . This vector is obtained by di¤erentiating the �rst-order conditions

with respect to �. We next show that the signs of jJ j and jJ�i j are both (�1)
n such that

dpposti =d� < 0. Since J is symmetric and strictly diagonally dominant with negative diagonal

elements, the sign of jJ j is (�1)n. To obtain the sign of jJ�i j, we use column expansion and
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obtain

jJ�i j =
@2�m(p;�)

@p1@�

����
p=ppost

(�1)i+1 jM1;ij+
@2�m(p;�)

@p2@�

����
p=ppost

(�1)i jM2;ij ; (A.43)

whereMj;i is a matrix formed by deleting the jth row and ith column of J . We then use (A.43)

to obtain the signs of jJ�1 j, jJ
�
2 j and jJ

�
i j, i = 3; :::n, respectively.

To show that the sign of jJ�1 j is (�1)
n, from (A.43) we will show @2�m(p;�)

@p1@�

���
p=ppost

< 0

and @2�m(p;�)
@p2@�

���
p=ppost

< 0, and the signs of jM1;1j and jM2;1j are (�1)n�1 and (�1)n, respec-

tively. From (A.34) and (A.35), we obtain @2�m(p;�)
@p1@�

���
p=ppost

= �k1 �1�2�m
R
�
��1

�
1� wm

ppostm

��
< 0

and @2�m(p;�)
@p2@�

���
p=ppost

= �k2 �1�2�m
R
�
��1

�
1� wm

ppostm

��
< 0. Since M1;1 is a matrix formed

by deleting the �rst row and �rst column of J , M1;1 is symmetric and diagonally domi-

nant with negative diagonal values. So the sign of jM1;1j is (�1)n�1. Finally, we compute

jM2;1j =

����������
J1;2 J1;3 � � � J1;n

J3;2 J3;3 � � � J3;n
...

...
. . .

...

Jn;2 Jn;3 � � � Jn;n

����������
. We substitute Ji;j = 1

n for i 6= j, i > 2 from (A.41), and

Ji;j =
1
n for i � 2, j > 2 from (A.42) into the expression of jM2;1j and get the following:

jM2;1j =

�����������

J1;2

n � � � 

n


n J3;3

. . .
...

...
. . . . . . 

n


n

. . . 
n Jn;n

�����������

=

���������������

J1;2

n


n � � � 

n

0 J3;3 � 
nJ1;2


n


n

�
1� 

nJ1;2

�
� � � 

n

�
1� 

nJ1;2

�
... 

n

�
1� 

nJ1;2

� . . . . . .
...

...
...

. . . . . . 
n

�
1� 

nJ1;2

�
0 

n

�
1� 

nJ1;2

�
� � � 

n

�
1� 

nJ1;2

�
Jn;n � 

nJ1;2

n

���������������

= J1;2

�������������

J3;3 � 
nJ1;2


n


n

�
1� 

nJ1;2

�
� � � 

n

�
1� 

nJ1;2

�

n

�
1� 

nJ1;2

� . . . . . .
...

...
. . . . . . 

n

�
1� 

nJ1;2

�

n

�
1� 

nJ1;2

�
� � � 

n

�
1� 

nJ1;2

�
Jn;n � 

nJ1;2

n

�������������
;

where the second equality is obtained by multiplying the �rst row with � 
nJ1;2

and adding the

product to the other rows, and the last equality is obtained from column expansion. We obtain

J1;2 > 0 from (A.38). In order to obtain the sign of jM2;1j from the above expression, we will
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show that the following symmetric matrix is diagonally dominant with negative diagonal values

such that the sign of its determinant is (�1)n�2:266666664

J3;3 � 
nJ1;2


n


n

�
1� 

nJ1;2

�
� � � 

n

�
1� 

nJ1;2

�

n

�
1� 

nJ1;2

� . . . . . .
...

...
. . . . . . 

n

�
1� 

nJ1;2

�

n

�
1� 

nJ1;2

�
� � � 

n

�
1� 

nJ1;2

�
Jn;n � 

nJ1;2

n

377777775
.

To do so, we will show Ji;i� 
nJ1;2


n +(n� 3)


n

�
1� 

nJ1;2

�
< 0 and 

n

�
1� 

nJ1;2

�
> 0 such that���J3;3 � 

nJ1;2

n

��� > (n� 3) n �1� 
nJ1;2

�
. Since 

nJ1;2
< 1 from (A.38), we obtain 

n

�
1� 

nJ1;2

�
>

0. Since J is diagonally dominant with negative diagonal values, Ji;i+(n� 1) n = Ji;i+
X
j 6=i

Ji;j <

0 for i � 3, where the equality is from (A.41). Adding both sides � 
nJ1;2


n � 2


n � (n� 3)


n


nJ1;2

results in Ji;i � 
nJ1;2


n + (n� 3)


n

�
1� 

nJ1;2

�
< � 

nJ1;2

n � 2


n � (n� 3)


n


nJ1;2

< 0 because

J1;2 > 0 from (A.38).

Following the same procedure as in the case of jJ�1 j, we can show that the sign of jJ
�
2 j is also

(�1)n.
Finally, from (A.43) we show that the sign of jJ�i j, i � 3, is (�1)

n by proving that the signs

of jM1;ij and jM2;ij are (�1)n+i and (�1)n+i�1, respectively. We compute M1;i as follows:

M1;i =

26666666666664

J2;1 J2;2 � � � J2;i�1 J2;i+1 � � � J2;n
...

...
. . .

...
...

...
...

Ji�1;1 Ji�1;2 � � � Ji�1;i�1 Ji�1;i+1 � � � Ji�1;n

Ji;1 Ji;2 � � � Ji;i�1 Ji;i+1 � � � Ji;n

Ji+1;1 Ji+1;2 � � � Ji+1;i�1 Ji+1;i+1 � � � Ji+1;n
...

...
...

...
...

. . .
...

Jn;1 Jn;2 � � � Jn;i�1 Jn;i+1 � � � Jn;n

37777777777775
:

By switching the (i� 1)th row with the row above it (i� 2) times, we obtain

jM1;ij = (�1)i�2

������������������

Ji;1 Ji;2 � � � Ji;i�1 Ji;i+1 � � � Ji;n

J2;1 J2;2 � � � J2;i�1 J2;i+1 � � � J2;n
...

...
. . .

...
...

...
...

Ji�1;1 Ji�1;2 � � � Ji�1;i�1 Ji�1;i+1 � � � Ji�1;n

Ji+1;1 Ji+1;2 � � � Ji+1;i�1 Ji+1;i+1 � � � Ji+1;n
...

...
...

...
...

. . .
...

Jn;1 Jn;2 � � � Jn;i�1 Jn;i+1 � � � Jn;n

������������������
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= (�1)i

��������������������


n


n � � � � � � � � � � � � 

n

J2;1 J2;2

n

. . . . . . � � �
...


n


n

. . . . . . . . . . . .
...

...
...

. . . Ji�1;i�1
. . . . . .

...
...

...
. . . . . . Ji+1;i+1

. . .
...

...
...

. . . . . . . . . . . . 
n


n


n � � � � � � � � � 

n Jn;n

��������������������

;

where the last equality is obtained by substituting Jk;j = 1
n for k 6= j, k > 2 from (A.41), and

Jk;j =
1
n for k � 2, j > 2 from (A.42). By multiplying the �rst row by �1 and adding this

product to the other rows, we can simplify the above equation to the following equation:

jM1;ij = (�1)i

�������������������


n


n � � � � � � � � � � � � 

n

J2;1 � 
n J2;2 � 

n 0 � � � � � � � � � 0

0 0
. . . . . . . . . . . .

...
...

...
. . . Ji�1;i�1 � 

n

. . . . . .
...

...
...

. . . . . . Ji+1;i+1 � 
n

. . .
...

...
...

. . . . . . . . . . . . 0

0 0 � � � � � � � � � 0 Jn;n � 
n

�������������������

= (�1)i n

�����������������

J2;2 � 
n 0 � � � � � � � � � 0

0
. . . . . . . . . . . .

...
...

. . . Ji�1;i�1 � 
n

. . . . . .
...

...
. . . . . . Ji+1;i+1 � 

n

. . .
...

...
. . . . . . . . . . . . 0

0 � � � � � � � � � 0 Jn;n � 
n

�����������������

� (�1)i
�
J2;1 � 

n

�

�������������������


n


n � � � � � � � � � � � � 

n

0 J3;3 � 
n 0 � � � � � � � � � 0

... 0
. . . . . . . . . . . .

...
...

. . . . . . Ji�1;i�1 � 
n

. . . . . .
...

...
. . . . . . . . . Ji+1;i+1 � 

n

. . .
...

...
. . . . . . . . . . . . . . . 0

0 � � � � � � � � � � � � 0 Jn;n � 
n

�������������������
= (�1)i

8<: 
n

nY
k=2;k 6=i

�
Jk;k � 

n

�
� 

n

�
J2;1 � 

n

� nY
k=3;k 6=i

�
Jk;k � 

n

�9=; ;
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where the second equality is from column expansion. Since Jk;k� 
n < Jk;k < 0 and J2;1�


n > 0

from (A.38), the sign of jM1;ij is (�1)n+i�2 from the above expression. Similarly, we can show

that the sign of jM2;ij is (�1)n+i�1.
(b) We prove dpposti =ds > 0 if s < s

(1)
asym in three steps. First, following the same procedure

as in the proof of part (a), we can show that if @2�m(p;wm)
@p1@wm

���
p=ppost

and @2�m(p;w)
@p2@wm

���
p=ppost

are

both negative, then dpposti =dwm < 0. Second, we show that there exists a w(1)m such that
@2�m(p;wm)
@p1@wm

���
p=ppost

and @2�m(p;w)
@p2@wm

���
p=ppost

are both negative if wm > w
(1)
m . To do so, we obtain

the expressions of @
2�m(p;wm)
@p1@wm

���
p=ppost

and @2�m(p;w)
@p2@wm

���
p=ppost

by di¤erentiating (A.34) and (A.35)

with respect to wm:

@2�m(p;wm)

@p1@wm

����
p=ppost

=

�
b1 +

n� 2
n



�
� k1�mwm

�
�
��1

�
1� wm

ppostm

���
ppostm

�2 ; and (A.44)

@2�m(p;wm)

@p2@wm

����
p=ppost

=

�
b2 +

n� 2
n



�
� k2�mwm

�
�
��1

�
1� wm

ppostm

���
ppostm

�2 : (A.45)

Following the same procedure as in the proof of Proposition 1.2(a), we can show that when wm is

su¢ ciently large, �mwm

�
�
��1

�
1�wm

pm

��
p2m
becomes su¢ ciently large such that @2�m(p;wm)

@p1@wm

���
p=ppost

< 0

and @2�m(p;wm)
@p2@wm

���
p=ppost

< 0 from (A.44) and (A.45). Let w(1)m be the largest wm that satis�es

maxf @
2�m(p;wm)
@p1@wm

���
p=ppost

; @
2�m(p;wm)
@p2@wm

���
p=ppost

g = 0. For any wm > w(1)m , @
2�m(p;wm)
@p1@wm

���
p=ppost

< 0

and @2�m(p;wm)
@p2@wm

���
p=ppost

< 0, and thus dpposti =dwm < 0. Finally, we use w
(1)
m to calculate s(1)asym.

If w(1)m � min fw1; w2g, we de�ne s(1)asym = 0. If w(1)m < min fw1; w2g, we de�ne s(1)asym =

(min fw1; w2g � w(1)m )=min fw1; w2g. So dpposti =ds > 0 if s < s(1)asym:

Finally, we prove d�posti =ds > 0 (i = 3; 4; : : : ; n) if s < s
(1)
asym. We can write d�

post
i =ds

as follows: d�posti
ds =

nX
j=1

@�posti

@ppostj

dppostj

ds . Since pposti is chosen optimally, @�posti =@pposti = 0. In

addition, we get @�posti =@ppostj = 
n(p

post
i �wi) (j 6= i) from (A.33). Substituting the expressions

of @�posti =@pposti and @�posti =@ppostj (j 6= i) into the expression of d�posti =ds, we get the following:

d�posti
ds = 

n(p
post
i � wi)

nX
j 6=i

dppostj

ds < 0,

where the inequality is due to pposti > wi and dp
post
j =ds < 0 if s < s(1)asym from above. �

Detailed Proof of Corollary 1.2. (a) Denote by fe"m (�) and fe�m (�) the density functions
of e"m and e�m, respectively. Denote by Fe"m (�) and Fe�m (�) the distribution functions of e"m ande�m, respectively. Denote by �e"m and �e�m the expected pro�ts of the post-merger �rm when
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facing e"m and e�m, respectively. The proof proceeds in the following two steps. First, we obtain
the expression for

@�e"m (p)
@p1

jp=bppost , where bppost = �bppostm ; bppostm ; bppost3 ; :::; bppostn

�
is the equilibrium

price vector when the post-merger �rm faces e�m. Second, we prove @�e"m (p)
@p1

jp=bppost � 0 ife"m �disp e�m. Therefore, if the post-merger �rm faces random demand e"m, but all �rms charge
the equilibrium prices for random demand e�m (i.e., bpposti , i = m; 3; 4; :::; n), then the post-merger

�rm has an incentive to raise its price. Then following the same procedure as in the proof of

Lemma 1.1(a), we obtain pposti � bpposti .

We �rst get the expression of
@�e"m (p)
@p1

jp=bppost . Following the same procedure as in the proof
of Lemma 1.1(a), we get

@�e"m (p)
@p1

�
@�e�m (p)
@p1

= 1
2Re�m

�
F�1Re�m

�
1� 2wm

p1+p2

��
� 1

2Re"m
�
F�1Re"m

�
1� 2wm

p1+p2

��
,

where Re"m (ym) = R1ym (t� ym) fe"m (t) dt and Re�m (ym) = R1ym (t� ym) fe�m (t) dt. Since bppost is
the equilibrium price vector when the post-merger �rm faces the demand e�m, @�e�m (p)@p1

jp=bppost =
0. So from the above equation we obtain

@�e"m (p)
@p1

jp=bppost = @�e"m (p)
@p1

jp=bppost � @�e�m (p)
@p1

jp=bppost
= 1

2Re�m
�
F�1Re�m

�
1� wmbppostm

��
� 1

2Re"m
�
F�1Re"m

�
1� wmbppostm

��
:

We next show thatRe"m
�
F�1e"m (z)

�
� Re�m

�
F�1e�m (z)

�
for any 0 < z < 1 such that

@�e"m (p)
@p1

jp=bppost
� 0 from the above equation. Note that from the de�nition of lost sales Re"m

�
F�1e"m (z)

�
=R1

F�1e"m (z)
n
t� F�1e"m (z)

o
fe"m (t) dt and Re�m

�
F�1e�m (z)

�
=
R1
F�1e�m (z)

n
t� F�1e�m (z)

o
fe�m (t) dt. Let X =

e"m � F�1e"m (z) and Y = e�m � F�1e�m (z). Denote by FX (�) and FY (�) the distribution functions
of X and Y , respectively. Denote by fX (�) and fY (�) the density functions of X and Y , re-

spectively. Then Re"m
�
F�1e"m (z)

�
=
R1
0 tfX (t) dt and Re�m

�
F�1e�m (z)

�
=
R1
0 tfY (t) dt. Using

integration by parts, we can rewrite Re"m
�
F�1e"m (z)

�
and Re�m

�
F�1e�m (z)

�
as Re"m

�
F�1e"m (z)

�
=R1

0 f1� FX (t)g dt and Re�m
�
F�1e�m (z)

�
=
R1
0 f1� FY (t)g dt. So we obtain Re"m

�
F�1e"m (z)

�
�

Re�m
�
F�1e�m (z)

�
=
R1
0 fFY (t) � FX (t)gdt: We next show FY (t) � FX (t) for t � 0 so that

Re"m
�
F�1e"m (z)

�
� Re�m

�
F�1e�m (z)

�
� 0. From the de�nition of X and Y , we obtain FX (0) =

FY (0) = z. Let u = FY (t). Then FY (t) � FX (t) for t � 0 is equivalent to u � FX
�
F�1Y (u)

�
for u 2 [z; 1). This inequality is equivalent to F�1X (u) � F�1Y (u) because F�1X (�) is an in-
creasing function. Since FX (0) = FY (0) = z, we obtain F�1X (z) = F�1Y (z) = 0. Then

F�1X (u) � F�1Y (u) , F�1X (u)�F�1X (z) � F�1Y (u)�F�1Y (z). From the de�nition of dispersive

ordering, this inequality holds if X �disp Y . Since the dispersive order is location-invariant,e"m �disp e�m implies X �disp Y from the de�nitions of X and Y .
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(b) Following the same procedure as in the proof of Proposition 1.2(a), we can show that dp
post
m
dwm

has the same sign as @
2�m(p;wm)
@p1@wm

jp=ppost and

@2�m(p;wm)

@p1@wm
jp=ppost = b+ 

n� 2
n

� 1

2ppostm hm

�
F�1m

�
1� wm=ppostm

�� ; (A.46)

where hm (�) is the failure rate for e"m. We consider two cases: (i) 1=2hm �F�1m �
1� wm=ppostm

��
ppostm

> b+  n�2n at wm = w, and (ii) 1=2hm
�
F�1m

�
1� wm=ppostm

��
ppostm � b+  n�2n at wm = w.

In case (i), at wm = w, from (A.46) @
2�m(p;wm)
@p1@wm

< 0 and thus dppostm =dwm < 0. As wm

decreases, ppostm increases and hm
�
F�1m

�
1� wm=ppostm

��
also increases because e"m has an in-

creasing failure rate. If the upper bound of the failure rate is not su¢ ciently large, then the last

term in (A.46), 1=2ppostm hm

�
F�1m

�
1� wm=ppostm

��
, is smaller than b+ n�2n ; so that @

2�m(p;wm)
@p1@wm

remains negative. In this case, ppostm increases with s for all s 2 [0; 1], so we set s(1)non = 1.

If the failure rate has a su¢ ciently large upper bound, then as wm becomes su¢ ciently small,

hm

�
F�1m

�
1� wm=ppostm

��
becomes su¢ ciently large such that 1=2ppostm hm

�
F�1m

�
1� wm=ppostm

��
< b+ n�2n and @2�m(p;wm)

@p1@wm
jp=ppost > 0 from (A.46). There exists a w

(1)
m such that @

2�m(p;wm)
@p1@wm

jp=ppost =
0 and dppostm =dwm = 0 at wm = w

(1)
m . Following the same procedure as in the proof of Propo-

sition 1.2(a), we can show that this w(1)m is unique. We de�ne s(1)non =
�
w � w(1)m

�
=w, and

dppostm =ds > 0 if and only if s < s(1)non.

In case (ii), when wm = w, @2�m(p;wm)
@pm@wm

> 0 and dppostm =dwm > 0. Following the same

procedure as in the proof of Proposition 1.2(a), we can show that dppostm =dwm can cross zero

only once from negative to positive as wm decreases from wm = w. Since dppostm =dwm > 0

at wm = w, dppostm =dwm > 0 for all wm � w: Therefore, s(1)non = 0 and dppostm =ds < 0 for any

s > s
(1)
non = 0:

Following the same procedure as in the proof of d�posti =ds > 0 (i = 3; 4; : : : ; n) in Corollary

1.1(b), we can prove d�posti =ds > 0 if and only if s < s(1)non. �

Proof of Corollary 1.3. Before we prove part (a), we derive conditions for the existence

and uniqueness of a pure-strategy equilibrium in the post-merger market. Following the same

procedure as in the proof of Lemma A1(c), we need the following conditions for nonparticipant

�rms: @2�i(p)
@p2i

< 0, @2�i(p)
@pi@pj

> 0, and
���@2�i(p)@p2i

��� > P
j 6=i

���@2�i(p)@pi@pj

���, i = 3; : : : ; n and j 6= i, and

the following conditions for the post-merger �rm @2�m(p)
@p2i

< 0, @
2�m(p)
@pi@pj

> 0 , and
���@2�m(p)@p2i

��� >P
j 6=i

���@2�m(p)@pi@pj

���, i = 1; 2 and j 6= i. We �rst analyze the conditions for nonparticipant �rms, and
then analyze the conditions for the post-merger �rm.
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For nonparticipant �rm i, let its inventory qi = Li (p) + �i(p)yi. Then �i(p; yi) = (pi �
w)Li(p) � w�i(p)yi � pi�i(p)R (yi). Using the �rst-order condition on yi, it is easy to get the
optimal y�i = �

�1 (1� w=pi). Substituting this into �i(p; yi) results in

�i (p) = (pi � w)Li(p)� �i(p)
�
w��1

�
1� w

pi

�
+ piR

�
��1

�
1� w

pi

���
: (A.47)

We can compute @�i(p)
@pi

as follows:
@�i(p)
@pi

= Li(p)�
�
b+ n�1

n 
�
(pi � w) +

�
� + n�1

n �
�n
w��1

�
1� w

pi

�
+ piR

�
��1

�
1� w

pi

��o
��i(p)R

�
��1

�
1� w

pi

��
:

From the expression of @�i(p)@pi
above, we can compute @2�i(p)

@p2i
and @2�i(p)

@pi@pj
as follows:

@2�i(p)
@p2i

= �2
�
b+ n�1

n 
�
+ 2

�
� + n�1

n �
�
R
�
��1

�
1� w

pi

��
+ �i(p)w

2

�
�
��1

�
1� w

pi

��
p3i
, and

@2�i(p)
@pipj

= 
n �

�
nR
�
��1

�
1� w

pi

��
:

Using the above expressions, we obtain the following su¢ cient conditions for @2�i(p)
@p2i

< 0,
@2�i(p)
@pi@pj

> 0 for j 6= i, and
���@2�i(p)@p2i

��� > P
j 6=i

���@2�i(p)@pi@pj

���:
�
2b+

n� 1
n



�
�
�
2� +

n� 1
n

�

�
R

�
��1

�
1� w

pi

��
� �i(p)w

2

�
�
��1

�
1� w

pi

��
p3i

> 0; and

(A.48)

 � �R
�
��1

�
1� w

pi

��
> 0: (A.49)

For the post-merger �rm, we can express its expected pro�t as

�m (p) = (p1 � wm)L1(p) + (p2 � wm)L2(p)�
q
�21(p) + �

2
2(p) + 2��1(p)�2(p)�

wm�
�1
�
1� 2wm

p1 + p2

�
+
p1 + p2
2

R

�
��1

�
1� 2wm

p1 + p2

���
: (A.50)

Using the above expression, we can obtain the conditions for @2�m(p)
@p2i

< 0, @
2�m(p)
@pi@pj

> 0 , and���@2�m(p)@p2i

��� > P
j 6=i

���@2�m(p)@pi@pj

���, i = 1; 2 and j 6= i. By setting p1 = p2 = pm in equilibrium, we obtain
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the following conditions:�
2b+

n� 2
n



�
�
�
2� +

n� 2
n

�

� p
2 + 2�

2
R

�
��1

�
1� wm

pm

��
�

p
2 + 2��1(p)w

2
m

2�
�
��1

�
1� wm

pm

��
p3m

> 0;

(A.51)

 � 1
2

p
2 + 2��R

�
��1

�
1� wm

pm

��
> 0: (A.52)

Following the same procedure as in the proof of Lemma A1(a), we can show that Lemma

A1(a) still holds: 0 < dp�3=dpm < 1 and 0 < dp
�
m=dp3 < 1.

(a) We prove the following two statements before we prove our main result: (i) dp
post
m
d� has the

same sign for all � 2 [�1; 1], and (ii) ppostm is increasing with � at � = 1.

To prove (i), it su¢ ces to show the following statement (iii): if dp
post
m
d� = 0 for some � 2 [�1; 1],

then dppostm
d� = 0 for all � 2 [�1; 1]. The reason is as follows. Suppose the sign of dp

post
m
d� changes

with �. Then there exist �1 and �2 (�1; �2 2 [�1; 1] and �1 6= �2) such that
dppostm
d� > 0 for �1

and dppostm
d� � 0 for �2. By continuity, there must exists �0 2 [�1; 1] such that dppostm

d� = 0. By

statement (iii), this implies that dp
post
m
d� = 0 for all � 2 [�1; 1]. This contradicts the premise that

dppostm
d� > 0 for �1. Therefore, the sign of

dppostm
d� cannot change with �:

We �rst �nd the expression of dp
post
m
d� . We can compute the �rst-order conditions @�m(p)@p1

���
p=ppost

=

0 and @�3(p)
@p3

���
p=ppost

= 0 from (A.50) and (A.47) respectively as follows:

a�
�
b+

n� 2
n



�
ppostm +

(n� 2) 
n

ppost3 �
�
b+

n� 2
n



�
(ppostm � wm)

�
p
2 + 2�

2

�
��

�
� +

n� 2
n

�

�
ppostm +

� (n� 2)
n

ppost3

�
R

�
��1

�
1� wm

ppostm

��
+

p
2 + 2�

2

�
� +

n� 2
n

�

��
wm�

�1
�
1� wm

ppostm

�
+ ppostm R

�
��1

�
1� wm

ppostm

���
= 0; (A.53)

�
�
b+

n� 1
n



�
(ppost3 � w) + 2

n
ppostm �

�
��

�
� +

2

n
�

�
ppost3 +

2�

n
ppostm

�
R

 
��1

 
1� w

ppost3

!!

+a�
�
b+

2

n


�
ppost3 +

�
� +

n� 1
n

�

�(
w��1

 
1� w

ppost3

!
+ ppost3 R

 
��1

 
1� w

ppost3

!!)
= 0:

(A.54)
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Following the same procedure as in the proof of Proposition 1.1(a), we obtain the following:

dppostm

d�
=

� @2�m(p;�)
@p1@�

���
p=ppost

@
@ppostm

�
@�m(p;�)
@p1

���
p=ppost

�
+ @

@ppost3

�
@�m(p;�)
@p1

���
p=ppost

�
dppost3

dppostm

: (A.55)

By using (A.53) and (A.54), we can simplify the denominator of the above expression as follows:

�2
�
b+

n� 2
n



�
+ 2

�
� +

n� 2
n

�

� p
2 + 2�

2
R

�
��1

�
1� wm

ppostm

��
+

p
2 + 2��1(p

post)w2m

2�
�
��1

�
1� wm

ppostm

���
ppostm

�3 + n� 2n
�
 � �

p
2 + 2�

2
R

�
��1

�
1� wm

ppostm

���
dppost3

dppostm

:(A.56)

To show that the expression in (A.56) is negative, we add n�2
n � n�2

n

p
2+2�
2 �R

�
��1

�
1� wm

pm

��
to both sides of (A.51) and obtain the following:

2
�
b+ n�2

n 
�
� 2

�
� + n�2

n �
� p2+2�

2 R
�
��1

�
1� wm

pm

��
�

p
2+2��1(ppost)w2m

2�
�
��1

�
1�wm

pm

��
p3m

> (n�2)
n � (n�2)�

n

p
2+2�
2 R

�
��1

�
1� wm=ppostm

��
> 0;

where the last inequality follows from (A.52). Since dppost3

dppostm
< 1 from Lemma A1(a), the above

inequality can be rewritten as:

2
�
b+ n�2

n 
�
� 2

�
� + n�2

n �
� p2+2�

2 R
�
��1

�
1� wm

pm

��
�

p
2+2��1(ppost)w2m

2�
�
��1

�
1�wm

pm

��
p3m

>
n
(n�2)
n � (n�2)�

n

p
2+2�
2 R

�
��1

�
1� wm=ppostm

��o
dppost3

dppostm
;

which implies the expression in (A.56), the denominator of dp
post
m
d� in (A.55), is negative. There-

fore, from (A.55), dp
post
m
d� has the same sign as @2�m(p;�)

@pm@�

���
p=ppost

, which can be computed from

(A.53) as follows:

@2�m(p;�)

@p1@�

����
p=ppost

= � 1

2
p
2 + 2�

�
�� 2

�
� +

n� 2
n

�

�
ppostm +

n� 2
n

�ppost3

�
R

�
��1

�
1� wm

ppostm

��
+

1

2
p
2 + 2�

�
� +

n� 2
n

�

�
wm�

�1
�
1� wm

ppostm

�
: (A.57)

Next, using the expression of @
2�m(p;�)
@pm@�

���
p=ppost

, which has the same sign as dp
post
m
d� ; we show

that if there exists �0 2 [�1; 1] such that dp
post
m
d� = 0 at � = �0; then

dppostm
d� = 0 for all � 2 [�1; 1].

Note that ppostm , ppost3 , and �0 are the solution of �rst-order conditions (A.53) and (A.54), and
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@2�m(p;�)
@p1@�

���
p=ppost

= 0. From (A.57), @
2�m(p;�)
@p1@�

���
p=ppost

= 0 can be written as

�
�
�� 2

�
� +

n� 2
n

�

�
ppostm +

n� 2
n

�ppost3

�
R

�
��1

�
1� wm

ppostm

��
+

�
� +

n� 2
n

�

�
wm�

�1
�
1� wm

ppostm

�
= 0: (A.58)

Using (A.58), we can rewrite the �rst-order condition (A.53) as

a� 2
�
b+

n� 2
n



�
ppostm +

(n� 2) 
n

ppost3 +

�
b+

n� 2
n



�
wm +

p
2 + 2�

2

@2�m(p;�)

@p1@�

����
p=ppost

= a� 2
�
b+

n� 2
n



�
ppostm +

(n� 2) 
n

ppost3 +

�
b+

n� 2
n



�
wm = 0: (A.59)

Notice that � does not appear in (A.54), (A.58) or (A.59). Therefore, ppostm and ppost3 do not

depend on �, while satisfying @2�m(p;�)
@p1@�

���
p=ppost

= 0 for any �. This implies that dp
post
m
d� = 0 and

dppost3
d� =

dppost3

dppostm

dppostm
d� = 0 for all � 2 [�1; 1].

We prove (ii) by following the same procedure as in the proof of Proposition 1.1(a). First,

we apply the implicit function theorem to the �rst-order conditions @�m(p)
@p1

���
p=ppost

= 0 and

@�3(p)
@p3

���
p=ppost

= 0, and get the following expressions:

24 dppostm
d�

dppost3
d�

35 = �J�1 �
264 @

@�

�
@�m(p;�)
@p1

���
p=ppost

�
@
@�

�
@�3(p;�)
@p3

jp=ppost
�
375 ;

where J is de�ned in Proposition 1(a). Next, we show that J�1 < 0, @
@�

�
@�m(p;�)
@p1

���
p=ppost

�
> 0

and @
@�

�
@�3(p;�)
@p3

jp=ppost
�
> 0 such that dppostm

d� > 0. From the �rst-order conditions in (A.53)

and (A.54), we compute all the elements of J at � = 1 as follows:

J1;1 = �2
�
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n 
�
+2
�
� + n�2

n �
�
R
�
��1

�
1� wm

ppostm

��
+

n
��(�+n�2

n
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�(n�2)
n

ppost3

o
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�

�
��1

�
1� wm

p
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m

��
(ppostm )

3
;

J2;2 = �
�
2b+ n+1

n 
�
+
�
2� + n+1

n �
�
R
�
��1

�
1� w

ppost3

��
+
f��(�+ 2

n
�)ppost3 + 2�

n
pmgw2

�

�
��1

�
1� w

p
post
3

��
(ppost3 )

3
;

J1;2 =
(n�2)
n � (n�2)�

n R
�
��1

�
1� wm

ppostm

��
; and

J2;1 =
2
n �

2�
n R

�
��1

�
1� w

ppost3

��
.

By following the same procedure as in the analysis of the sign of dp
post
m
d� in the proof of statement

(i), from (A.48), (A.49), (A.51) and (A.52), we obtain �J2;2 > J2;1 > 0 and �J1;1 > J1;2 >
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0. So J�1 = 1
J2;2J1;1�J1;2J2;1

"
J2;2 �J1;2
�J2;1 J1;1

#
< 0. We compute @

@�

�
@�m(p;�)
@p1

���
p=ppost

�
and

@
@�

�
@�3(p;�)
@p3

jp=ppost
�
from the �rst-order conditions in (A.53) and (A.54) as follows:

@
@�

�
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���
p=ppost

�
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�
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It is easy to verify that @
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�
@�m(p;�)
@pm

���
p=ppost

�
> 0 and @

@�

�
@�3(p;�)
@p3

jp=ppost
�
> 0.

Using statements (i) and (ii), we next prove that there exists a threshold b� for a �xed
� such that dppostm

d� < 0 if � < b�. The result for dppost3
d� follows because dppost3

d� =
dppost3

dppostm

dppostm
d�

where dppost3

dppostm
> 0 (as Lemma A1(a) still holds). Since we have shown that dppostm

d� has the

same sign as @2�m(p;�)
@pm@�

���
p=ppost

in the proof of (i), and the sign of dp
post
m
d� is independent of �

from statement (i), we only need to show that there exists a threshold b� such that if � < b�;
@2�m(p;�)
@p1@�

���
p=ppost;�=1

< 0. If @2�m(p;�)
@p1@�

���
p=ppost;�=1

� 0 at � = 0 (which happens when � is

su¢ ciently large), the result holds when setting b� = 0: In the rest of the proof, we focus on

the case when @2�m(p;�)
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< 0 at � = 0. For this case, it su¢ ces to show that if � is
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> 0. From the �rst-order condition in (A.53), we

can compute @2�m(p;�)
@p1@�

���
p=ppost;�=1

as

@2�m(p;�)

@p1@�

����
p=ppost;�=1

= �1
4

�
��

�
� +

n� 2
n

�

�
ppostm +

n� 2
n

�ppost3

�
R

�
��1

�
1� wm

ppostm

��
+
1

4

�
� +

n� 2
n

�

��
wm�

�1
�
1� wm

ppostm

�
+ ppostm R

�
��1

�
1� wm

ppostm

���
:

(A.60)

We will show that @2�m(p;�)
@p1@�

���
p=ppost;�=1

> 0 for a su¢ ciently large � in each of the two cases:

(Case I ) ppostm � ppost3 ; and (Case II ) ppostm < ppost3 .

(Case I ) De�ne the following function:
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Since ppostm � ppost3 , @
2�m(p;�)
@p1@�

���
p=ppost;�=1

� g1
�
ppost; �

�
. In the remainder, we show that dg1d� is

greater than a positive constant, so that g1
�
ppost; �

�
> 0 for a su¢ ciently large �. From the

expression of g1
�
ppost; �

�
we obtain
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De�ne the right-hand side of the above inequality as g2
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The expression of dg2d� is the same as
dg1
d� in (Case I). Thus, for a su¢ ciently large �,
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(b) Following the same procedure as in the proof of part (a), we can show that the sign of
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. If @2�m(p;wm)
@pm@wm

���
p=ppost

� 0 at wm = w, then we can

show that dp
post
m
ds < 0 for all s > 0, hence s(1)gen = 0. If
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As wm ! 0, the second term approaches zero, and the �rst and third terms are positive, so
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p=ppost

> 0. Thus, there exists w(1)m such that @2�m(p;wm)
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= 0 at wm = w
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m .
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Following the same procedure as in the proof of Proposition 1.2(a), we can show that ppostm

is increasing with wm if and only if wm < w
(1)
m . De�ne s

(1)
gen = (w � w(1)m )=w. Then ppostm is

increasing with s if and only if s < s(1)gen.

Following the same procedure as in the proof of d�posti =ds < 0 (i = 3; 4; : : : ; n) in Corollary

2.3(b), we can write d�posti =ds as follows: d�posti
ds =

nX
j 6=i

@�posti

@ppostj

dppostj

ds . Since we have shown

dppostj

ds > 0 if s < s(1)gen, we need to show
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> 0 (j 6= i) to prove d�posti
ds < 0. From (A.47) we
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By using R (t) = � (t)� t f1� � (t)g, we can simplify the above equation as follows:
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)�1, @�
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> 0. �
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Appendix B

Supplements to Chapter 2

B.1 Proofs for Main Results

Proof of Lemma 2.1. We prove that a switching strategy around x(2) is an equilibrium by

showing that if all �rms but �rm i follow this switching strategy, then �rm i�s best response is

to follow this switching strategy. (In Lemma O1 of Online Appendix, we show how we derive

this strategy using the argument of higher-order beliefs.)

We �rst derive �rm i�s expected gain ui (xi) as a function of xi; and then show that ui (xi) � 0

if and only if xi � x(2). For notational convenience, de�ne �i � xi�x(2)
2� . Given that every other

�rm follows a switching strategy around x(2), we can use the expressions of � in (2.3) and

integrate ui (�; �) in (2.1) to get the expression of ui (xi). When xi < x(2) � 2�, we get � = 0

and ui (xi) = xi � (fL �mL). When x(2) � 2� � xi � x(2), we obtain the following expression

of ui (xi):

ui (xi) =

Z xi��

xi��

�

2�
d� � (fL �mL) +

1

2�

Z xi+�

x(2)��

(
(fH �mL)

 
� + �� x(2)

2�

!r
� b� + �� x

(2)

2�

)
d�

= xi � (fL �mL) +

Z x1+2��x
(2)

2�

0
f�b�+ (fH �mL)�

rg d�; (B.1)

where the equality is obtained by changing the integration variable from � to � = �+��x(2)
2� . By

using �i =
xi�x(2)
2� (which is between �1 and 0 because x(2)� 2� � xi � x(2)), we rewrite ui (xi)

in (B.1) as:

ui (�i) = x
(2) + 2��i � (fL �mL) +

R 1+�i
0 f�b�+ (fH �mL)�

rg d�:

Similarly, when x(2) < xi � x(2) + 2�, we obtain

97



ui (�i) = x
(2) + 2��i � (fL �mL) +

R 1
�i
f�b�+ (fH �mL)�

rg d�+ �i (fH �mL � b).

When xi > x(2) + 2�, we obtain ui (xi) = xi � b.

Next, we prove ui (xi) � 0 if and only if xi � x(2) by showing: (i) ui
�
x(2)

�
= 0, and

(ii) if � � �(2), then ui (xi) is nondecreasing with xi. To prove (i), from (B.1), we obtain

ui
�
x(2)

�
= x(2) � (fL �mL) � 1

2b +
fH�mL
r+1 : By substituting x(2) = 1

2b + fL �
rmL+fH
r+1 into

ui
�
x(2)

�
; we get ui

�
x(2)

�
= 0: To prove (ii), we derive conditions for dui (xi) =dxi � 0 in each

interval of xi, and express those conditions as � � �(2): When xi < x(2) � 2� or xi > x(2) + 2�,

it is easy to show dui (xi) =dxi = 1 > 0. When x(2) � 2� � xi � x(2), we analyze the sign of

dui (�i) =d�i because dui (xi) =dxi = 2�dui (�i) =d�i where � > 0. In preparation, we compute
dui
d�i

= 2� � b (1 + �i) + (fH �mL) (1 + �i)
r, d
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�
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is decreasing with �i 2 [�1; 0], so dui
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2 . Following the same procedure as above, when x(2) < xi � x(2) + 2�, we
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� 0 as follows: � � b�(fH�mL)
2 if r � min
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dxi

� 0 for any xi if � � �(2), where

�(2) =

8>>>><>>>>:
b�(fH�mL)

2 �
n

b
r(fH�mL)

o 1
r�1 b

2

�
1� 1

r

�
if r < min

n
1; b
fH�mL

o
;

max
n
0; b�(fH�mL)

2

o
if min

n
1; b
fH�mL

o
� r � max

n
1; b
fH�mL

o
;n

b
r(fH�mL)

o 1
r�1 b

2

�
1� 1

r

�
if r > max

n
1; b
fH�mL

o
:

(B.2)

We show that �(2) in (B.2) is nondecreasing with b and nonincreasing with fH �mL in Online

Appendix (Lemma O2). �

Proof of Proposition 2.1. Since x1 = �+e"1, for any given x1, the posterior distribution of �
is a uniform distribution on [x1 � �; x1 + �]. Since e"i is independent of e"1, it is also independent
of �. Thus, xi = � + e"i is a sum of two uniformly distributed random variables that are
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independent. Using convolution, we can show that the posterior distribution of xi for any given

x1 is a symmetric triangular distribution on [x1 � 2�; x1 + 2�]. Using this result, we next prove

(a) and (b).

(a) Following the same procedure as in the proof of Lemma 2.1, we obtain the expression of

u1 (x1) in (2.4), and the expression of @u1@x1
in (2.5). We next consider two cases: � � b=2 and

� < b=2.

For the case of � � b=2, from (2.5) @u1@x1
� 0. So u1 crosses zero only once. Let x(1)subs be the

solution of u1 (x1). Then u1 (x1) > 0 if and only if x1 > x
(1)
subs.

For the case of � < b=2, we will �rst prove that u1 increases with x1, then decreases with x1,

and �nally increases with x1 again. We then compare the local maximum and minimum of u1

with 0 to determine �rm 1�s decision. First, we show the shape of u1 on
�
x(2) � 2�; x(2)

�
. From

(2.5), @u1
@x1

���
x1=x(2)�2�

> 0, @u1
@x1

���
x1=x(2)

< 0, and @2u1
@x21

= � b
(2�)2

< 0 when x(2) � 2� � x1 < x(2).

Therefore, There exists xM1 2
�
x(2) � 2�; x(2)

�
such that at x1 = xM1 ,

@u1
@x1

= 0 and u1 (x1)

achieves its local maximum u1(x
M
1 ). Solving

@u1
@x1

= 0 in this case yields xM1 = x(2) � 2�+ (2�)2

b .

Substituting this expression to (2.4) we obtain u1(xM1 ) = ��f1+x(2)�2�+ 2�2

b : Similarly, from

(2.5) we get @u1@x1

���
x1=x(2)

< 0, @u1@x1

���
x1=x(2)+2�

> 0, and @2u1
@x21

= b
(2�)2

> 0 when x(2) � x1 � x(2)+2�.

So There exists xm1 2
�
x(2); x(2) + 2�

�
such that at x1 = xm1 ,

@u1
@x1

= 0 and u1 (x1) achieves its

local minimum value u1 (xm1 ) = �� f1 + x(2) + 2�� b� 2�2

b :

We next analyze three cases: (Case I) u1(xM1 ) < 0, (Case II) u1 (xm1 ) > 0, and (Case III)

u1 (x
m
1 ) � 0 and u1(xM1 ) � 0.

(Case I) From the expression of u1(xM1 ), u1(x
M
1 ) < 0 when � < �x(2) + 2� + f1 � mL. Let

�subs = �x(2)+2�+f1�mL. Then u1(xM1 ) < 0 if and only if � < �subs. In this case, given that

the local maximum u1(x
M
1 ) < 0, u1 (x1) can cross zero once in the interval (x

m
1 ;1). Denote by

x
(1)
subs the solution of u1 (x1) = 0. Then u1 (x1) > 0 if and only if x1 > x

(1)
subs.

(Case II) Similar to (Case I), we can show u1 (xm1 ) > 0 when � > �subs, where �subs = �x(2) �

2�+ fL+ b+
2�2

b �mL. There exists x
(1)
subs < x

m
1 such that u1 (x1) > 0 if and only if x1 > x

(1)
subs.

(Case III) Similarly, u1 (xm1 ) � 0 and u1(xM1 ) � 0 when �subs � � � �subs. We can prove that

There exists x(1)subs, y
(1)
subs, and z

(1)
subs (x

(1)
subs � xM1 � y(1)subs � xm1 � z

(1)
subs) such that u1 (x1) � 0 if

and only if x1 2 [x(1)subs; y
(1)
subs] [ [z

(1)
subs;1).

(b) In order to compute dx
(1)
subs
dr , we apply the implicit function theorem to the equation

u1 (x1) = 0 and obtain the following: dx
(1)
sub
dr = � @u1=@r

@u1=@x1

���
x1=x

(1)
subs

. From the proof of part
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(a), @u1
@x1

���
x1=x

(1)
subs

> 0 and dx(1)

dr has the same sign as � @u1
@r

���
x1=x

(1)
subs

. We examine the sign of

@u1
@r

���
x1=x

(1)
subs

in the following four cases: (Case I) x(1)subs < x
(2)� 2�, (Case II) x(2)� 2� � x(1)subs �

x(2), (Case III) x(2) < x(1)subs � x(2) + 2�, and (Case IV) x
(1)
subs > x

(2) + 2�.

(Cases I and IV) From (2.4), we obtain @u1
@r = 0. So

dx
(1)
sub
dr = 0 and x(1)sub is independent of r.

(Case II) From (2.4) and x(2) = 1
2b + fL �

fH
r+1 in Lemma 2.1, we obtain

@u1
@r = @u1

@x(2)
@x(2)

@r =

b
2�

�
x1�x(2)+2�

2�

�
fH

(r+1)2
> 0. So dx

(1)
sub
dr < 0.

(Case III) Similar to Case II, we obtain @u1
@r =

b
2�

n
1�

�
x1�x(2)
2�

�o
fH

(r+1)2
> 0. So dx

(1)
sub
dr < 0:

Following the same procedure, we can prove the results for y(1)subs and z
(1)
subs: �

Proof of Proposition 2.2. Following the same procedure as in the proof of Lemma 2.1, we

obtain the expression of @u1@x1
in (2.6). We can verify that @u1@x1

> 0 in all intervals. So u1 crosses

zero only once. Let x(1)comp be the solution of u1 (x1) = 0. Then u1 (x1) > 0 if and only if

x1 > x
(1)
comp.

(b) The proof follows the same procedure as in the proof of Proposition 2.1(b). �

Proof of Proposition 2.3. (a) Similar to the proof of Proposition 2.1(a), we can show that

there are two cases. In the �rst case, u1 (x1) is nondecreasing with x1, and There exists threshold

x
(1)
aggr such that u1 (x1) > 0 if and only if x1 > x

(1)
aggr. In the second case, u1 (x1) �rst increases

with x1, then decreases with x1, and �nally increases with x1 again. In this case, there exists

xM1 < xm1 such that u1 (x1) achieves a local maximum at xM1 and a local minimum at xm1 . If

u1
�
xM1
�
< 0 or u1 (xm1 ) > 0, then there exists threshold x

(1)
aggr such that u1 (x1) > 0 if and only if

x1 > x
(1)
aggr. If u1

�
xM1
�
� 0 and u1 (xm1 ) � 0, then there exists x

(1)
aggr � xM1 � y(1)aggr � xm1 � z

(1)
aggr

such that u1 (x1) � 0 if and only if x1 2 [x(1)aggr; y(1)aggr] [ [z(1)aggr;1). We let �aggr be the value

of � such that u1
�
xM1
�
= 0 if � = �aggr, and �aggr be the value of � such that u1 (x

m
1 ) = 0 if

� = �aggr. Then u1
�
xM1
�
� 0 and u1 (xm1 ) � 0 if and only if �aggr � � � �aggr.

Finally, we show in Online Appendix (Lemma O3) that the �rst case (respectively, the

second case) occurs if � � �(1) (respectively, � < �(1)), where �(1) is given as follows:

�(1) =

8>>>><>>>>:
1
2 fb� (mH �mL)g �

n
b

r(mH�mL)

o 1
r�1 b

2

�
1� 1

r

�
if r < min

n
1; b
mH�mL

o
;

max
�
0; 12 fb� (mH �mL)g

	
if min

n
1; b
mH�mL

o
� r � max

n
1; b
mH�mL

o
;n

b
r(mH�mL)

o 1
r�1 b

2

�
1� 1

r

�
if r > max

n
1; b
mH�mL

o
:
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Similar to Lemma 2.1, we can show that �(1) is nondecreasing with b and nonincreasing with

mH �mL.

(b) As in the proof of Proposition 2.1(b), we can show that dx
(1)
aggr

dr has the same sign as

� @u1
@r

���
x1=x

(1)
aggr

. We examine the sign of @u1
@r

���
x1=x

(1)
aggr

in the following four cases: (Case I)

x
(1)
aggr < x(2) � 2�, (Case II) x(2) � 2� � x

(1)
aggr � x(2), (Case III) x(2) < x

(1)
aggr � x(2) + 2�, and

(Case IV) x(1)aggr > x(2) + 2�.

(Cases I and IV) From (B.8), @u1@r = 0. So
dx

(1)
aggr

dr = 0 and x(1)aggr is independent of r.

(Case II) From (B.10) and x(2) = 1
2b+ fL �

rmL+fH
r+1 in Lemma 2.1, we obtain the following:

du1
dr =

@u1
@r +

@u1
@x(2)

@x(2)

@r + du1
d�1

@�1
@x(2)

@x(2)

@r

= (1+�1)
r+1

h
� (mH �mL) (1 + �1)

r�1
n
1+�1
r+1 � (1 + �1) ln (1 + �1) +

fH�mL

2�(r+1)

o
+ 1

2�
(fH�mL)b

r+1

i
:

Let b(x) = (mH �mL)
�
1 + �aggr

�r�1�2�(1+�aggr)
fH�mL

� 2�(r+1)(1+�aggr)
fH�mL

ln
�
1 + �aggr

�
+ 1

�
, where

�aggr =
x
(1)
aggr�x(2)

2� . Finally, from the above equation, we get du1dr > 0, and thus
dx

(1)
aggr

dr < 0 if and

only if b > b(x):

(Case III) Similar to (Case II), we can show that dx
(1)
aggr

dr < 0 if and only if b > b(x), where

b(x) = mH�mL
1��aggr

�
2�(1��r+1aggr)
fH�mL

+
2�(r+1)�r+1aggr

fH�mL
ln �aggr + 1� �raggr

�
.

Following the same procedure, we can prove the results for y(1)aggr and z
(1)
aggr. �

Proof of Lemma 2.2. (a) Following the same procedure as in the proof of Lemma 2.1, we

show that if all �rms but �rm i follow a switching strategy around bx(2), then �rm i�s best

response is to follow this switching strategy as well. Similar to Lemma 2.1, we �rst derive the

expected gain bui (xi) when other �rms follow a switching strategy around bx(2). We can show
that if � � b=2, then bui �bx(2)� = 0, and bui (xi) is nondecreasing with xi. Thus bui (xi) > 0 if and
only if xi > bx(2).
(b) Following the same procedure as in the proof of Lemma 2.1, we obtain the expression of
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bu1 (x1) as follows:

bu1 (x1) =

8>>>>>>>>>><>>>>>>>>>>:

�� f1 +mL + p (mH �mL) + x1 if x1 < bx(2) � 2�;
�� f1 +mL + p (mH �mL) + x1 � b

2

�
x1�bx(2)+2�

2�

�2
if bx(2) � 2� � x1 < bx(2);

�� f1 +mL + p (mH �mL) + x1

� b
2

�
1�

�
x1�bx(2)
2�

�2�
� b

�
x1�bx(2)
2�

� if bx(2) � x1 � bx(2) + 2�;
�� f1 +mL + p (mH �mL) + x1 � b if x1 > bx(2) + 2�:

(B.3)

The rest of the proof follows the same procedure as in the proof of Proposition 2.1. �

Proof of Proposition 2.4. We �rst solve for the value of r that results in x(2) = bx(2). Noting
that x(2) = 1

2b+ fL�
rmL+fH
r+1 from Lemma 2.1 and bx(2) = 1

2b+ fL+ (1� p) (�mL)� pfH from

Lemma 2.2(a), we solve x(2) = bx(2) and obtain r = 1=p� 1.
To compare x(1)aggr and bx(1), we compare u1 (x1) in (B.8) and bu1 (x1) in (B.3) for x1 = bx(1)

given that r = 1=p � 1. If u1(bx(1)) � bu1(bx(1)) = 0, then x(1)aggr � bx(1) because u1 (x1) � 0 for

x1 � x(1)aggr. To compare u1(bx(1)) and bu1(bx(1)), we compute u1(bx(1))� bu1(bx(1)) using (B.3) and
the expression of u1(x1) in the proof of Proposition 2.3:

u1

�bx(1)��bu1 �bx(1)� =
8>>>>>>>><>>>>>>>>:

�p (mH �mL) if bx(1) < bx(2) � 2�;
p (mH �mL)

��
1 + bx(1)�bx(2)

2�

� 1
p � 1

�
if bx(2) � 2� � bx(1) < bx(2);

(mH �mL)
� bx(1)�bx(2)

2�

��
1� p

� bx(1)�bx(2)
2�

� 1
p
�1
�

if bx(2) � bx(1) � bx(2) + 2�;
(1� p) (mH �mL) if bx(1) > bx(2) + 2�:

(B.4)

From (B.4) u1(bx(1)) � bu1(bx(1)) = 0 if mH = mL. In this case x
(1)
aggr = bx(1). We next examine

the case in which mH > mL. From (B.4) u1(bx(1)) � bu1(bx(1)) < 0 if bx(1) < bx(2) � 2�, and
u1(bx(1))�bu1(bx(1)) > 0 if bx(1) > bx(2)+2�. We next show that d�u1 �bx(1)�� bu1 �bx(1)�	 =dbx(1) � 0
such that there exists x(p) such that u1(bx(1)) � bu1(bx(1)) � 0 if and only if bx(1) � x(p). From

(B.4) we get the following:
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dfu1(bx(1))�bu1(bx(1))g
ddbx(1) =

8>>>>>>><>>>>>>>:

0 if bx(1) < bx(2) � 2�;
mH�mL

2�

�
1 + bx(1)�bx

2�

� 1
p
�1

if bx(2) � 2� � bx(1) < bx(2);
mH�mL

2�

�
1�

� bx(1)�bx(2)
2�

� 1
p
�1
�

if bx(2) � bx(1) � bx(2) + 2�;
0 if bx(1) > bx(2) + 2�:

We can verify d
�
u1
�bx(1)�� bu1 �bx(1)�	 =dbx(1) � 0 for any bx(1).

We �nally change the condition bx(1) � x(p) to a condition on � using the implicit function
theorem. Note that bx(1) is the solution of bu1 (x1) = 0 and bu1 (x1) increases linearly with � from
(B.3). By the implicit function theorem, dbx1d� = � @bu1=@�

@bu1=@x1
���
x1=bx(1) < 0 because bu1 (x1) increases

with x1 at x1 = bx(1). So there exists b� such that bx(1) � x(p) if and only if � � b�. �

Proof of Lemma 2.3. (a) We provide a sketch of proof here, while providing the detailed

proof in Online Appendix. First, by analyzing the case in which �rm i chooses ai = 0 given that

aj = 0 (j 6= 1; i), we obtain the following: ai = 0 (i 6= 1) is an equilibrium if � < fL�mL. Next,

by analyzing the case in which �rm i chooses ai = 1 given that aj = 1 (j 6= 1; i), we obtain the

following: ai = 1 (i 6= 1) is an equilibrium if � > b � fH + fL. Finally, for b � fH + fL � � �

fL �mL, since both equilibria are possible, we choose the equilibrium that maximizes �rms�

total payo¤s and obtain the following: ai = 1 if � � �(2), where �(2) = fL+min f�mL; b�mHg.

(b) We �rst examine �rm 1�s decision when � = 1 or � = 0, respectively. In the case of � = 1

(which occurs when � � �(2)), from (2.2), �1 (1; �; 1)��1 (0; �; 1) = �+ �� f1� b+mH . De�ne

�(a) � f1 � � + b �mH (the threshold of � when all other �rms adopt the technology). Then

�1 (1; �; 1) � �1 (0; �; 1) = � � �(a). So a1 = 1 if and only if � � �(a). Similarly, in the case of

� = 0 when � < �(2), a1 = 1 if and only if � � �(n) � f1 � ��mL (the threshold of � when no

other �rms adopt the technology).

We analyze two cases: (Case I) b � mH � mL (such that �(a) � �(n)), and (Case II)

b < mH �mL (such that �(a) < �(n)). Combining the conditions in (Case I) and (Case II), we

can get the conditions speci�ed in Lemma 2.3.

(Case I) We plot the relative positions of �(2), �(n), and �(a) in Figure B-1. Figures B-1(a)

corresponds to the scenario in which �(2) � �(n). Note that a1 = 1 if one of the following

two conditions is met: (i) no other �rms adopt the technology (� = 0) and � � �(n), or (ii)

all other �rms adopt the technology (� = 1) and � � �(a). Using the relative position of �(a)

with respect to interval [�(2);1) (in which � = 1) shown in Figure B-1(a), we can obtain the
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Figure B-1: The Relative Positions of �(2), �(n), and �(a) when: (a) �(2) � �(n), (b) �(n) < �(2) <
�(a), and (c) �(2) � �(a).

following: a1 = 1 if and only if � � �(1), where �(1) = �(a). Similarly, for the scenario in

which �(n) < �(2) < �(a), a1 = 1 if and only if � 2 [�(1); �(2)] [ [�(0);1), where �(1) = �(n)

and �(0) = �(a). Using the expressions of �(2), �(n), and �(a), we can simplify the condition

�(n) < �(2) < �(a) as follows: f1 � fL < � < f1 + b+mL �mH � fL. Similarly, for the scenario

in which �(2) � �(a), a1 = 1 if and only if � � �(1), where �(1) = �(n).

(Case II) Following the same procedure as in (Case I), we obtain the following: a1 = 1 if and

only if � � �(1), where �(1) = �(a) if �(2) � �(a); �(1) = �(2) if �(a) < �(2) < �(n); and �(1) = �(n)

if �(2) � �(n). �

Proof of Proposition 2.5. We provide a sketch of proof here, while providing the detailed

proof in Online Appendix. The proof focuses on the case in which b < mH �mL. The case

in which b = mH �mL or b > mH �mL can be proved similarly. We examine three scenarios

shown in Figure B-1. For each scenario, similar to the proof of Proposition 2.4, we analyze

the condition for u1(�(1)) � 0 to get a su¢ cient condition for x(1)aggr � �(1) because u (x1) < 0

for any x1 < x
(1)
aggr. We �rst obtain the values of u1(�(1)) on boundary points x(2) � 2� and

x(2)+2�, and then analyze the changing patterns of u1(�(1)) in the following intervals to get the

condition for u1(�(1)) � 0: (�1; x(2)� 2�),
�
x(2) � 2�; x(2) + 2�

�
, and (x(2)+2�;1). We �nally

combine the conditions in all scenarios to derive the su¢ cient condition in the Proposition 2.5.

�

B.2 Supplemental Materials

This online appendix provides the detailed proofs that are omitted in Appendix.

Lemma O1 If r � 1 and b � r(fH � mL), then the equilibrium described in Lemma 2.1 is

unique.
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Proof. Before we proceed to the proof, we �rst prove ui(�; �) in (2.1) is increasing with � and

nondecreasing with �. From (2.1), @ui (�; �) =@� = 1 and thus ui(�; �) is increasing with �. In

addition, we can get @ui (�; �) =@� = �b + r (fH �mL)�
r�1. Since 0 � � � 1, r � 1, and

b � r(fH �mL), we have @ui (�; �) =@� � 0 and thus ui(�; �) is nondecreasing with �.

We prove the argument in 3 steps. In step 1, we will prove by induction that a strategy

survives n rounds of iterated deletion of strictly dominated strategies if and only if

ai (xi) =

8<: 0 if xi < x(n);

1 if xi > x(n):
(B.5)

In step 2, we prove x(n+1) � x(n) and x(n+1) � x(n) such that as n!1, x(n) ! x and x(n) ! x.

In step 3, we �nally prove x = x = x(2) such that the switching strategy around x(2) is the only

strategy that survives iterated deletion of strictly dominated strategy.

Step 1: We �rst prove the statement holds for x(0) and x(0). Let x(0) = b + (fL �mL) + �.

Since xi = �+e"i and e"i is uniformly distributed on [��; �], for any xi > x(0), � > b+(fL �mL)

and from (2.1) ui(�; �) > �r (fH �mL) � 0. So ai = 1 for xi > x(0). Similarly, we let

x(0) = fL � fH � � and get the following: ai = 0 if xi < x(0).

We next prove that a strategy that survives n + 1 rounds of iterated deletion of strictly

dominated strategies is in the form of (B.5); i.e., if �rm i knows that other �rms follow a

strategy in the form of (B.5) with thresholds x(n) and x(n), then �rm i�s best response should

be in the form of (B.5) with thresholds x(n+1) and x(n+1). Note that �rm i expects aj = 1

(j 6= i) for xj > x(n), and aj = 0 (j 6= i) for xj < x(n). Firm i is not sure �rm j�s strategy

for x(n) � xj � x(n). So the lowest value of � is achieved when aj = 0 for x(n) � xj � x(n).

Since ui(�; �) is nondecreasing with �, �rm i expects the lowest gain in this case. It is easy

to see that in this case other �rms follow a switching strategy around x(n). De�ne u�i (xi; x)

the expected value of ui (�; �) given that �rm i observes xi and any other �rm will follow a

switching strategy around x. Then u�i
�
xi; x

(n)
�
is the lower bound of �rm i�s expected gain.

If u�i
�
xi; x

(n)
�
> 0, then �rm i chooses ai = 1. Let x(n+1) be the solution of u�

�
xi; x

(n)
�
= 0.

Following a similar procedure to that in the proof of Lemma 2.1, we can show that u�
�
xi; x

(n)
�

is increasing with xi. So ai = 1 for any xi > x(n+1). Similarly, u�i
�
xi; x

(n)
�
is the upper bound

of �rm i�s expected gain. Let x(n+1) be the solution of u�
�
xi; x

(n)
�
= 0. Then ai = 0 for any

xi < x
(n+1).
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Step 2: We prove x(n+1) � x(n) and x(n+1) � x(n) by induction. Since we have shown that

u� (xi; x) increases with xi and u�
�
x(1); x(0)

�
= 0, we need to show u�

�
x(0); x(0)

�
� 0 to prove

x(1) � x(0). Following a similar procedure to that in the proof of Lemma 2.1, we get

u� (x; x) = x� (fL �mL)�
1

2
b+

fH �mL

r + 1
: (B.6)

Using x(0) = b + (fL �mL) + � we get u�
�
x(0); x(0)

�
= 1

2b +
fH�mL
r+1 + � > 0. Similarly, we get

x(1) � x(0).

We next show x(n+1) � x(n) given that x(n) � x(n�1). Following a similar procedure

to that in the proof of Lemma 2.1, we can show that u� (xi; x) is decreasing with x. Since

u�
�
x(n); x(n�1)

�
= 0 and x(n) � x(n�1), we get u�

�
x(n); x(n)

�
� 0. Since u� (xi; x) increases

with xi, u�
�
x(n+1); x(n)

�
= 0, and u�

�
x(n); x(n)

�
� 0, we get x(n+1) � x(n). Similarly, we obtain

the following: x(n+1) � x(n) given that x(n) � x(n�1).

Step 3: As n ! 1, x(n) ! x and x(n) ! x, where u� (x; x) = 0 and u� (x; x) = 0. From (B.6)

we can show that x(2) is the unique solution to u� (x; x) = 0. Thus x = x = x(2). �

Remark. The proof of Lemma O1 uses an argument of iterated deletion of strictly dominated

strategies. This argument was used in Morris and Shin (2003) to derive a unique equilibrium

when only strategic complementarity among �rms is present. This process can also be viewed

as a process in which �rm i considers its higher-order beliefs to eliminate possible strategies.

First, �rm i considers its own signal and gets a strategy speci�ed by (B.5) with thresholds x(0)

and x(0). Then by considering its belief that all other �rms follow a strategy speci�ed by (B.5)

with thresholds x(0) and x(0), �rm i re�nes its strategy and gets a strategy speci�ed by (B.5)

with thresholds x(1) and x(1). Next by considering its belief about other �rms�strategy with

x(1) and x(1), �rm i gets a strategy with thresholds x(1) and x(1). This process continues and

�nally �rm i gets a switching strategy with a threshold x(2).

We use an argument of iterated deletion of strictly dominated strategies to derive the equi-

librium strategy in Lemma 2.1 (a switching strategy around x(2)) and prove the uniqueness of

this equilibrium under the condition r � 1 and b � r(fH �mL). We show in Lemma 2.1 that

this switching strategy continues to be an equilibrium strategy for every �rm under a more

general condition. Similarly, Karp et al. (2007) proved that every �rm following a switching

strategy is an equilibrium in a one-period setting with both strategic complementarity and

substitutability.
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Lemma O2 The threshold �(2) is nondecreasing with b and nonincreasing with (fH �mL).

Proof. In the proof we focus on proving that �(2) is nondecreasing with b. The statement �(2)

is nonincreasing with fH �mL can be proven similarly. To prove �(2) is nondecreasing with b,

we �rst prove d�(2)=db � 0 in all intervals speci�ed in (B.2). We then prove �(2) at the boundary

point b = r (fH �mL).

First, from (B.2) we calculate d�(2)=db as follows:

d�(2)

db
=

8>>>>>>><>>>>>>>:

1
2 �

1
2

n
b

r(fH�mL)

o 1
r�1

if r < min
n
1; b
fH�mL

o
;

0 if b
fH�mL

� r � 1 and b � fH �mL;

1
2 if 1 � r � b

fH�mL
and b > fH �mL;

1
2

n
b

r(fH�mL)

o 1
r�1

if r > max
n
1; b
fH�mL

o
:

(B.7)

When r < min
n
1; b
fH�mL

o
, b
r(fH�mL)

> 1 and 1
r�1 < 0; so

n
b

r(fH�mL)

o 1
r�1

< 1 and d�(2)

db > 0

in (B.7). When r � min
n
1; b
fH�mL

o
, from (B.7) d�

(2)

db � 0. Taken together, d�(2)=db � 0 in all

intervals.

Next, we prove that �(2) is continuous in b at b = r (fH �mL). We consider three cases:

(Case I) r < 1, (Case II) r = 1, and (Case III) r > 1.

(Case I) As b increases from b � r (fH � fL) to b > r (fH � fL), from (B.2) the expression of

�(2) changes from 0 to b�(fH�mL)
2 �

n
b

r(fH�mL)

o 1
r�1 b

2

�
1� 1

r

�
. We can show as b! r (fH � fL)

from the right side, b�(fH�mL)
2 �

n
b

r(fH�mL)

o 1
r�1 b

2

�
1� 1

r

�
! 0. So �(2) is continuous in b.

(Case II) As b increases from b � fH � fL to b > fH � fL, from (B.2) the expression of �(2)

changes from 0 to b�(fH�mL)
2 . It is easy to verify �(2) is continuous at b = fH � fL.

(Case III) As b increases from b � r (fH � fL) to b > r (fH � fL), from (B.2) the expression of

�(2) changes from
n

b
r(fH�mL)

o 1
r�1 b

2

�
1� 1

r

�
to b�(fH�mL)

2 . We can verify �(2) is continuous at

b = r (fH � fL). �

Lemma O3 If � � �(1), where �(1) is given in the proof of Proposition 2.3(a), then u1 (x1)

increases with x1. Otherwise u1 (x1) �rst increases with x1, then decreases with x1, and �nally

increases with x1 again.

Proof. Following the same procedure as in the proof of Lemma 2.1, we obtain the expression
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of u1 (x1) as follows:

u1 (x1) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

�� f1 + x1 +mL if x1 < x(2) � 2�;

�� f1 + x1 +mL � b
2

�
1 + x1�x(2)

2�

�2
+ (mH�mL)

r+1

�
1 + x1�x(2)

2�

�r+1 if x(2) � 2� � x1 � x(2);

�� f1 + x1 +mL � b
2

�
1�

�
x�x(2)
2�

�2�
+ (mH�mL)

r+1

�
1�

�
x�x(2)
2�

�r+1�
+ (mH �mL � b)

�
x1�x(2)
2�

� if x(2) � x1 � x(2) + 2�;

�� f1 + x1 +mH � b; if x1 > x(2) + 2�:
(B.8)

For the �rst and last intervals of x1, it is easy to observe that u1 (x1) is increasing with x1.

We focus our analysis on the two middle intervals. Let �1 =
x1�x(2)
2� . Then �1 2 [�1; 0] for

x(2) � 2� � x1 � x(2), and �1 2 [0; 1] for x(2) � x1 � x(2) + 2�. Let

u1 (�1) =

8>>><>>>:
�+ x(2) + 2��1 +mL � fL � b

2 (1 + �1)
2 + (mH�mL)

r+1 (1 + �1)
r+1 if �1 � 0;

�+ x(2) + 2��1 +mL � fL � b
2

�
1� �21

�
+ mH�mL

r+1

�
1� �r+11

�
�fb� (mH �mL)g �r+11

if �1 > 0:

(B.9)

Then from (B.8) we get u1 (x1) = u1 (�1) and
du1
dx1

= 1
2�
du1(�1)
d�1

for x(2) � 2� � x1 � x(2) + 2�

(corresponding to �1 � �1 � 1). We calculate the �rst, second, and third order derivatives of

u1 (�1) as follows:

du1 (�1)

d�1
=

8<: 2�� b (1 + �1) + (mH �mL) (1 + �1)
r if �1 � 0;

2�+ b�1 � (mH �mL) �
r
1 + (mH �mL)� b if �1 > 0;

(B.10)

d2u1 (�1)

d�21
=

8<: �b+ r (mH �mL) (1 + �1)
r�1 if �1 � 0;

b� r (mH �mL) �
r�1
1 if �1 > 0;

(B.11)

d3u1 (�1)

d�31
=

8<: r (r � 1) (mH �mL) (1 + �1)
r�2 if �1 � 0;

�r (r � 1) (mH �mL) �
r�2
1 if �1 > 0:

(B.12)

We next discuss three cases: (Case I) r = 1, (Case II) r > 1, and (Case III) r < 1.

(Case I) From (B.10), du1(�1)
d�1

is linear in �1. In addition,
du1(�1)
d�1

= du1(1)
d�1

= 2� > 0 and
du1(0)
d�1

= 2� � b + (mH �mL). There are two cases regarding the sign of du1(0)
d�1

. First, if

� � b�(mH�mL)
2 (which implies 2�� b+ (mH �mL) � 0), then du1(�1)

d�1
� 0 for any �1 2 [�1; 1],
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and du1(x1)
dx1

� 0 in this case. Second, if � < b�(mH�mL)
2 , then du1(0)

d�1
< 0, and du1(�1)

d�1
decreases

from positive to negative, and then increases from negative to positive. In this case, u1 (x1) �rst

increases with x1, then decreases with x1, and �nally increases with x1 again. The condition

for the monotonic change of u1 (x1) is � � b�(mH�mL)
2 .

(Case II) We need to compare the minimum value of du1(�1)d�1
with 0 to determine the shape of

u1 (x1). From (B.12), d
3u1(�1)
d�31

> 0 for �1 � 0 and
d3u1(�1)
d�31

< 0 for �1 > 0. So
du1(�1)
d�1

is convex

in �1 for �1 � 0 and concave in �1 for �1 > 0. We can show that there exists a minimum value

of du1(�1)d�1
on (�1; 0]. To get this minimum value, we solve d2u�1 (�1)

d�21
= 0 from (B.11) and get

�
(1)
1 =

n
b

r(mH�mL)

o 1
r�1 � 1.

If �(1)1 � 0 (which happens when b
r(mH�mL)

� 1), then du1(�1)
d�1

achieves its minimum value

du1
�
�
(1)
1

�
d�1

= 2� �
n

b
r(mH�mL)

o 1
r�1

b
�
1� 1

r

�
. If � � 1

2

n
b

r(mH�mL)

o 1
r�1

b
�
1� 1

r

�
(which implies

du1
�
�
(1)
1

�
d�1

� 0), then du1(�1)
d�1

� 0 for any �1 2 [�1; 1] and u1 (x1) increases with x1. If � <

1
2

n
b

r(mH�mL)

o 1
r�1

b
�
1� 1

r

�
(which implies

du1
�
�
(1)
1

�
d�1

< 0), we can show that du1(�1)
d�1

changes

from positive to negative, and then from negative to positive for �1 2 [�1; 1] using
du1(�1)
d�1

=

du1(1)
d�1

= 2� > 0 and the fact that du1(�1)d�1
is convex in �1 for �1 � 0 and concave in �1 for �1 > 0.

In this case, u1 (x1) �rst increases with x1, then decreases with x1, and �nally increases with

x1 again.

If �(1)1 > 0 (which happens when b
r(mH�mL)

> 1), then du1(�1)
d�1

achieves its minimum value
du1(0)
d�1

= 2� � b + (mH �mL). So we get the condition for
du1(�1)
d�1

� 0 is � � b�(mH�mL)
2 . The

rest of the proof is similar to case in which �(1)1 � 0.

(Case III) Similar to (Case II), we get the conditions for the monotonic change of u1 (x1) as

follows: b
r(mH�mL)

� 1 and � � b�(mH�mL)
2 � 1

2

n
b

r(mH�mL)

o 1
r�1

b
�
1� 1

r

�
, or b

r(mH�mL)
< 1 and

� � b�(mH�mL)
2 .

Finally, by combining all the conditions in (Case I), (Case II), and (Case III), we can prove

that if � � �(1), u1 (x1) increases with x1, where the expression of �(1) is given in the proof of

Proposition 2.3(a). �

Detailed Proof of Lemma 2.3(a). For the case in which �rm i expects none of other �rms to

adopt the technology (� = 0), by (2.1), �i (1; �; 0)��i (0; �; 0) = ��(fL �mL). If � < fL�mL,

then �i (1; �; 0) < �i (0; �; 0) ; so ai = 0 for i 6= 1 in equilibrium. For the case in which �rm

i expects all other �rms to adopt the technology (� = 1), by (2.1), �i (1; �; 1) � �i (0; �; 1) =
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� � (b� fH + fL). Thus, if � � b � fH + fL; ai = 1 for all i 6= 1 in equilibrium. Putting the

conditions together, we �nd that: (i) ai = 0 is the unique equilibrium when � < b � fH + fL;

(ii) ai = 1 is the unique equilibrium when � > fL �mL; and (iii) both ai = 1 and ai = 0 can

be an equilibrium when b� fH + fL � � � fL �mL.

We next �nd the equilibrium that maximizes �rms�total payo¤s when b � fH + fL � � �

fL �mL. Similar to §3, we can obtain �i (1; �; 1) = �fL + � � b+mH , and �i (0; �; 0) = 0. So

ai = 1 if �i (1; �; 1) � �i (0; �; 0), which can be simpli�ed to � � fL+b�mH . Since fH � 0 � mH ,

fL + b�mH � b� fH + fL. But either fL �mL � fL + b�mH or fL �mL < fL + b�mH is

possible. De�ne �(2) � fL +min f�mL; b�mHg : Then ai = 1 if and only if � � �(2). �

Detailed Proof of Proposition 2.5. Similar to the procedure in the proof of Proposition 2.4,

we analyze the condition for u1
�
�(1)
�
� 0 to get a su¢ cient condition for x(1)aggr � �(1) because

u (x1) < 0 for any x1 < x
(1)
aggr. We further simplify the su¢ cient condition to the conditions in

the Proposition 2.5.

We �rst get a su¢ cient condition for u1
�
�(1)
�
� 0. In this proof, we focus on the case in

which b < mH �mL. Conditions when b > mH �mL or b = mH �mL can be derived similarly.

For the case in which b < mH �mL, we consider the following cases: (Case I) �(2) � �(n), (case

II) �(a) < �(2) < �(n), and (case III) �(2) � �(a).

(Case I) Let �(�) = �(1)�x(2)
2� : Using �(1) = �(n) from Lemma 2.3(b) and u1 (x1) in (B.8), we can

express u1
�
�(1)
�
as follows:

u1

�
�(�)
�
=

8>>>>>>>>><>>>>>>>>>:

0 �(�) < �1;
(mH�mL)

r+1

�
�(�)
�r+1 � b

2

�
�(�)
�2 �1 � �(�) � 0;

mH�mL
r+1

n
1�

�
�(�)
�r+1o� b

2

n
1�

�
�(�)
�2o

+ f(mH �mL)� bg �(�)
0 < �(�) � 1;

mH �mL � b �(�) > 1:

(B.13)

When �(�) < �1, u1
�
�(�)
�
= 0; when �(�) > 1, u1

�
�(�)
�
= mH � mL � b > 0. Following

the same procedure as in the proof of Proposition 2.3(a), we can show that u1
�
�(�)
�
changes

with �(�) in one of the following ways: (i) When r < b= (mH �mL), u1
�
�(�)
�
�rst increases

with �(�), and then decreases with �(�); (ii) When b= (mH �mL) � r � 1, u1
�
�(�)
�
increases

with �(�); and (iii) When r > 1, u1
�
�(�)
�
�rst decreases with �(�), and then increases with

�(�) (see Lemma O4 for the proof). So if r � 1 and �(�) > �1, then u1
�
�(�)
�
� 0. Using
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�(�) = �(1)�x(2)
2� , �(1) = �(n) and the expression of x(2) in Lemma 2.1, we rewrite �(�) > �1 as

follows: � < f1 � fL � 1
2b+

fH�mL
r+1 + 2�.

(Case II) Similar to (Case I), we can show a su¢ cient condition for u1
�
�(�)
�
> 0 is �(�) � 1,

which can be rewritten as 12b�mH +
rmL+fH
r+1 � 2�.

(Case III) Similar to (Case I), we can show that u1
�
�(�)
�
� 0 for any �(�) if r � b= (mH �mL),

and u1
�
�(�)
�
� 0 for any �(�) � �1 and �(�) > 1.

We get a su¢ cient condition on � and r from (Case I): � < f1 � fL � 1
2b +

fH�mL
r+1 + 2�

and r � 1. In addition, using the expressions of �(2) and �(n) from the proof of Lemma 2.3, we

rewrite the condition for this case, �(2) � �(n), to the following: � � f1 � fL +mH �mL � b.

The �nal su¢ cient condition we get is f1�fL+mH �mL� b � � < f1�fL� 1
2b+

fH�mL
r+1 +2�.

�

Lemma O4 The function u1
�
�(�)
�
changes with �(�) 2 [�1; 1] in one of the following ways:

(i) if r < min f1; b= (mH �mL)g, then u1
�
�(�)
�
�rst increases with �(�), and then decreases

with �(�);

(ii) if min f1; b= (mH �mL)g � r � max f1; b= (mH �mL)g, then u1
�
�(�)
�
changes monoton-

ically with �(�);

(iii) if r > max f1; b= (mH �mL)g, then u1
�
�(�)
�
�rst decreases with �(�), and then increases

with �(�).

Proof. In the proof we focus on the case in which b < mH�mL. The case in which b = mH�mL

or b > mH �mL can be proved similarly.

We can calculate du1
d�(�)

and d2u1

d(�(�))
2 from (B.13) as follows for �1 � �(�) � 1:

du1
�
�(�)
�

d�(�)
=

8<: �b
�
1 + �(�)

�
+ (mH �mL)

�
1 + �(�)

�r �1 � �(�) � 0;

b�(�) � (mH �mL)
�
�(�)
�r
+ (mH �mL � b) 0 < �(�) � 1;

, and(B.14)

d2u1
�
�(�)
�

d
�
�(�)
�2 =

8<: �b+ r (mH �mL)
�
1 + �(�)

�r�1 �1 � �(�) � 0;

b� r (mH �mL)
�
�(�)
�r�1

0 < �(�) � 1:
(B.15)

We next examine the following three cases: (Case I) r < b= (mH �mL), (Case II) b= (mH �mL) �

r � 1, and (Case III) r > 1.

(Case I) For �1 � �(�) � 0, from (B.15) it is easy to show d2u1

d(�(�))
2 changes from positive

to negative when �(�) increases from �1 to 0. Since from (B.14) du1(�1)
d�(�)

= 0 and du1(0)

d�(�)
=
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�b + (mH �mL) > 0,
du1(�(�))
d�(�)

� 0. For 0 < �(�) � 1, from (B.15) it is easy to show that
d2u1

d(�(�))
2 changes from negative to positive when �(�) increases from 0 to 1. Since du1(0)

d�(�)
=

�b + (mH �mL) > 0 and du1(1)

d�(�)
= 0, we get that du1

d�(�)
changes from positive to negative for

0 < �(�) � 1. Taken together, du1
d�(�)

changes from positive to negative when �(�) increases from

�1 to 1. So u1
�
�(�)
�
�rst increases with �(�), and then decreases with �(�).

(Case II) For �1 � �(�) � 0, from (B.15) it is easy to show
d2u1(�(�))
d(�(�))

2 � 0. Since du1(�1)
d�(�)

= 0

and du1(0)

d�(�)
= �b + (mH �mL) > 0,

du1(�(�))
d�(�)

� 0. For 0 < �(�) � 1, from (B.15) it is easy to

show
d2u1(�(�))
d(�(�))

2 � 0. Since du1(0)

d�(�)
= �b + (mH �mL) > 0 and

du1(1)

d�(�)
= 0,

du1(�(�))
d�(�)

� 0. Taken

together, du1
d�(�)

� 0 for �1 � �(�) � 1. So u1
�
�(�)
�
increases with �(�).

(Case III) For �1 � �(�) � 0, from (B.15) it is easy to show d2u1

d(�(�))
2 changes from negative to

positive when �(�) increases from �1 to 0. Since du1(�1)
d�(�)

= 0 and du1(0)

d�(�)
= �b+(mH �mL) > 0,

du1
d�(�)

changes from negative to positive when �(�) increases from �1 to 0. For 0 < �(�) � 1, from

(B.15) it is easy to show that
d2u1(�(�))
d(�(�))

2 changes from positive to negative when �(�) increases

from 0 to 1. Since du1
d�(�)

���
�(�)=0

> 0 and du1
d�(�)

���
�(�)=1

= 0, we get that du1
d�(�)

� 0. Taken together,
du1
d�(�)

changes from negative to positive for �1 < �(�) � 1. So u1
�
�(�)
�
�rst decreases with �(�),

and then increases with �(�). �
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Appendix C

Supplements to Chapter 3

To simplify our analysis, we denote by qi = ai�=�, i = 1, 2, and 3.

Lemma A1 there exists a unique Nash equilibrium in the post-merger market. In equilibrium:

(a) qpre1 = 0:4324�=�, qpre2 = 0:2803�=�, qpre3 = 0:1602�=�.

(b) ppre1 = 0:2191�
2
=�, ppre2 = 0:09912�

2
=�, ppre3 = 0:04115�

2
=�.

(c) �pre1 = 0:006785�
3
=�, �pre2 = 0:006292�

3
=�, �pre3 = 0:003496�

3
=�.

(d) wpre = 0:06370�
3
=�.

Proof. (a) We �rst obtain the expression of �i. We then solve for the equilibrium backwards:

we �rst solve for the equilibrium prices for given qualities; we then solve for the equilibrium

qualities.

To get the expression of �1, we need to derive the demand of product 1. A consumer

buys product 1 other than product 2 if and only if �q1 � p1 � �q2 � p2, which simpli�es to

� � p2�p2
q1�q2 .

1 So the demand of product 1 is � � p2�p2
q1�q2 and the pro�t of �rm 1 is given as �1 =�

p1 � �q21
�
(� � p1�p2

q1�q2 ). Similarly, �2 =
�
p2 � �q22

�
(p1�p2q1�q2 �

p2�p3
q3�q3 ), and �3 =

�
p3 � �q23

� p2�p3
q3�q3 .

We then solve for equilibrium prices for given qualities. For given q1 and q2, we obtain the

following: @�21=@p
2
1 = �2=(q1� q2) < 0. So the optimal p1 must satisfy @�1=@p1 = 0. Similarly,

the optimal p2 and p3 must satisfy @�2=@p2 = 0 and @�3=@p3 = 0, respectively. We calculate

1The case....
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@�i=@pi and write the three equations (@�i=@pi = 0, i = 1; 2; 3) as follows:

� � 2p1 � p2 � �q
2
1

q1 � q2
= 0;

p1 � 2p2 + �q22
q1 � q2

� 2p2 � �q
2
2 � p3

q2 � q3
= 0;

p2 + �q
2
3 � 2p3

q2 � q3
� 2p3 � �q

2
3

q3
= 0:

By substituting qi = ai�=� into the above equations, we can solve for pi as follows:

p1 =
�
2

�

a31(4a2 � a3)� 3a21a2a3 � a22a3(2a2 + a3) + a1a2(2a22 + a23) + (a1 � a2)(4a1a2 � a1a3 � 3a2a3)
2 (a1(4a2 � a3)� a2(a2 + 2a3))

;(C.1)

p2 =
�
2
a2
�

a21(a2 � a3)� a2a3(2a2 + a3) + a1(2a22 + a23) + (a1 � a2)(a2 � a3)
a1(4a2 � a3)� a2(a2 + 2a3)

; (C.2)

p3 =
�
2
a3
�

a21(a2 � a3)� 3a2a3(a2 + a3) + 2a1a2(a2 + 2a3) + (a1 � a2)(a2 � a3)
a1(4a2 � a3)� a2(a2 + 2a3)

: (C.3)

We next solve for equilibrium qualities. We substitute (C.1), (C.2), and (C.3) into the

expression of �i and obtain the following after simpli�cation:

�1 =
�
3

�

(a1 � a2)
4(a1(4a2 � a3)� a2(a2 + 2a3))2

(C.4)�
a21(4a2 � a3)� a2a3(2a2 + a3 � 3) + a1

�
2a22 + a3 � 2a2(2 + a3)

	�2
�2 =

(a1 � a2)a22(a1 � a3)(a2 � a3)(�1� a1 + a2 + a3)2
4(a1(4a2 � a3)� a2(a2 + 2a3))2

�
3

�
; (C.5)

�3 =
a2(a2 � a3)a3(a21 + a1(1 + 2a2 � 2a3)� a2(1 + a3))2

4(a1(4a2 � a3)� a2(a2 + 2a3))2
�
3

�
: (C.6)

Using above equations, we calculate @�i=@pi, solve @�i=@pi = 0, and get the only solution that

results in positive �i: a1 = 0:4324, a2 = 0:2803, and a3 = 0:1602. We �nally verify this solution

is a Nash equilibrium. Using (C.1), we can verify that when a2 = 0:2803 and a3 = 0:1602, �rm

1 achieves its maximum pro�t by choosing a1 = 0:4324. Similarly, we can verify �rm 2�s best

response to a1 = 0:4324 and a3 = 0:1602 is to choose a2 = 0:2803, and �rm 3�s best response

to a1 = 0:4324 and a2 = 0:2803 is to choose a3 = 0:1602. So in equilibrium, q
pre
1 = 0:4324�=�,

qpre2 = 0:2803�=�, qpre3 = 0:1602�=�.

(b) We can prove the result using (C.1), (C.2), and (C.3) and a1 = 0:4324, a2 = 0:2803, and
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a3 = 0:1602.

(c) We can prove the result using (C.4), (C.5), and (C.6) and a1 = 0:4324, a2 = 0:2803, and

a3 = 0:1602.

(d) We can calculate the consumer welfare as follows:

wpre =
R (ppre2 �ppre3 )=(qpre2 �qpre3 )

ppre3 =qpre3
(�qpre3 � ppre3 ) d� +

R (ppre1 �ppre2 )=(qpre1 �qpre2 )

(ppre2 �ppre3 )=(qpre2 �qpre3 )
(�qpre2 � ppre2 ) d�

+
R �
((ppre1 �ppre2 )=(qpre1 �qpre2 ) (�q

pre
1 � ppre1 ) d�

= 0:06370�
3
=�. �

Proof of Proposition 3.1. In the post-merger market, �rm m�s pro�t is given as �m =�
p2 � �q22

�
(p1�p2q1�q2 �

p2�p3
q3�q3 ) +

�
p3 � �q23

� p2�p3
q3�q3 . So the �rst order conditions for prices in the

second stage are as follows: @�1=@p1 = 0, @�m=@p2 = 0, and @�m=@p3 = 0; the �rst order

conditions for qualities in the �rst stage are as follows: @�1=@q1 = 0, @�m=@q2 = 0, and

@�m=@q3 = 0. Following similar steps as in the proof of Lemma A1, we can obtain the following:

q
(2)
1 = 0:4208�=�, q(2)2 = 0:2198�=�, q(2)3 = 0:1099�=�, p(2)1 = 0:2313�

2
=�, p(2)2 = 0:08457�

2
=�,

p
(2)
3 = 0:03625�

2
=�, �(2)1 = 0:01464�

3
=�, �(2)m = 0:01319�

3
=�, and w(2) = 0:04925�

3
=�. By

comparing the results with Lemma A1, we can prove Proposition 3.1. �

Proof of Proposition 3.2. We �rst solve for the equilibrium prices for given qualities. Fol-

lowing similar steps as in the proof of Lemma A1, we solve @�1=@p1 = 0 and @�m=@p2 = 0,

and obtain the following:

p1 =
�
�
2q21 + (1� s) q22

	
+ 2 (q1 � q2) �

4q1 � q2
q1;

p2 =
�q1 fq1 + 2 (1� s) q2g+ (q1 � q2) �

4q1 � q2
q2:

We next substitute the above equations into the expression of �1 and �m and obtain the

following:

�1 =

�
�
�
2q21 � q1q2 � (1� s)q22

	
+ 2(�q1 + q2)�

�2
(q1 � q2)(4q1 � q2)2

q21;

�2 =

�
�
�
q21 � 2(1� s)q1q2 + (1� s)q22

	
+ (q1 � q2)�

�2
(q1 � q2)(4q1 � q2)2

q1q2:

Unfortunately, there is no close-form solution for @�1=@q1 = 0 and @�m=@q2 = 0. Notice that

usually the synergy level s is small, we �rst solve the equilibrium at s = 0, and then use the
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Taylor expansion at s = 0 to approximate results.2 To do so, we �rst solve @�1=@q1 = 0 and

@�m=@q2 = 0 at s = 0 and obtain q1 = 0:4098�=� and q2 = 0:1994. We then use the Taylor

expansion to the third order and obtain the following:

q
(1)
1 =

�
0:4098 + 0:01733s+ 0:3728s2 + 1:1411s3

�
�=�; (C.7)

q
(1)
2 = (0:1994 + 0:2536s+ 0:4624s2 + 1:7415s3)�=�: (C.8)

Using the above equations, we can calculate prices, pro�ts and consumer welfare as follows:

p
(1)
1 =

�
0:2267 + 0:0793s+ 0:2219s2 + 0:9912s3

�
�
2
=�;

p
(1)
2 =

�
0:0750 + 0:0968s+ 0:2014s2 + 0:8852s3

�
�
2
=�;

�
(1)
1 =

�
0:0164� 0:0285s� 0:0601s2 � 0:0071s3

�
�
3
=�;

�(1)m = (0:0121 + 0:0185s+ 0:0487s2 + 0:0061s3)�
3
=�;

w(1) = (0:0470 + 0:0339s+ 0:0596s2 + 0:0068s3)�
3
=�:

Using the above equations, we can prove Proposition 3.2. �

Proof of Proposition 3.3. (a) Firm m produces one products if and only if �(2)m � �
(1)
m .

Using the expressions of �(2)m and �(1)m in Proposition 3.1 and Proposition 3.2, respectively, we

obtain the following: �(1)m � �(2)m if and only if s � 5:2%. We de�ne s(�) = 5:2%.

(b) Using �(2)m and �(1)m in Proposition 3.1 and Proposition 3.2, respectively, we obtain the

following: w(1) � w(2) if and only if s � 6:0%. We de�ne s(w) = 6:0%.

(c) Using w(pre) and w(1) in Lemma A1 and Proposition 3.2, we obtain the following: w(1) � w(2)

if and only if s � 31:4%. We de�ne s(pre) = 31:4%. �

2Our numerical...
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