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Abstract

Mixed-integer programming provides a natural framework for modeling optimization prob-
lems which require discrete decisions. Valid inequalities, used as cutting-planes and cutting-
surfaces in integer programming solvers, are an essential part of today’s integer program-
ming technology. They enable the solution of mixed-integer programs of greater scale and
complexity by providing tighter mathematical formulations of the feasible solution set.
This dissertation presents new structural results on general-purpose valid inequalities for
mixed-integer linear and mixed-integer conic programs.

Cut-generating functions are a priori formulas for generating a cut from the data of
a mixed-integer linear program. This concept has its roots in the work of Gomory and
Johnson from the 1970s. It has received renewed attention in the past few years. Gomory
and Johnson studied cut-generating functions for the corner relaxation, which is obtained
by ignoring the nonnegativity constraints on the basic variables in a tableau formulation.
We consider models where these constraints are not ignored. In our first contribution, we
generalize a classical result of Gomory and Johnson characterizing minimal cut-generating
functions in terms of subadditivity, symmetry, and periodicity. Our analysis also exposes
shortcomings in the usual definition of minimality in our general setting. To remedy
this, we consider stronger notions of minimality and show that these impose additional
structure on cut-generating functions. A stronger notion than the minimality of a cut-
generating function is its extremality. While extreme cut-generating functions produce
powerful cutting-planes, their structure can be very complicated. Gomory and Johnson
identified a “simple” class of extreme cut-generating functions for the corner relaxation of
a one-row integer linear program by showing that continuous, piecewise linear, minimal
cut-generating functions with only two distinct slope values are extreme. In our second
contribution, we establish a similar result for a one-row problem which takes the nonnega-
tivity constraint on the basic variable into account. In our third contribution, we consider a
related model where only nonbasic continuous variables are present. Conforti, Cornuéjols,
Daniilidis, Lemaréchal, and Malick recently showed that not all cutting-planes can be ob-
tained from cut-generating functions in this framework. They also conjectured a natural
condition under which cut-generating functions might be sufficient. In our third contri-
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bution, we prove that this conjecture is true. This justifies the recent research interest in
cut-generating functions for this model.

Despite the power of mixed-integer linear programming, many optimization problems of
practical and theoretical interest cannot be modeled using a linear objective function and
constraints alone. Next, we turn to a natural generalization of mixed-integer linear pro-
gramming which allows nonlinear convex constraints: mixed-integer conic programming.
Disjunctive inequalities, introduced by Balas in the context of mixed-integer linear pro-
gramming in the 1970s, have been a principal ingredient to the practical success of integer
programming in the last two decades. In order to extend our understanding of disjunctive
inequalities to mixed-integer conic programming, we pursue a principled study of two-term
disjunctions on conic sets. In our fourth contribution, we consider two-term disjunctions
on a general regular cone. A result of Kılınç-Karzan indicates that conic minimal valid
linear inequalities are all that is needed for a closed convex hull description of such sets.
First we characterize the structure of conic minimal and tight valid linear inequalities for
the disjunction. Then we develop structured nonlinear valid inequalities for the disjunction
by grouping subsets of valid linear inequalities. We analyze the structure of these inequali-
ties and identify conditions which guarantee that a single such inequality characterizes the
closed convex hull of the disjunction. In our fifth and sixth contributions, we specialize our
earlier results to the cases where the regular cone under consideration is a direct product
of second order cones and nonnegative rays and where it is the positive semidefinite cone.
These cases deserve attention because of their importance for mixed-integer second-order
cone and mixed-integer semidefinite programming. We identify conditions under which our
valid convex inequalities can be expressed in computationally tractable forms and present
techniques to generate low-complexity relaxations when these conditions are not satisfied.
In our final contribution, we provide closed convex hull descriptions for homogeneous two-
term disjunctions on the second-order cone and general two-term disjunctions on affine
cross-sections of the second-order cone, extending the aforementioned results in two di-
rections. Our results yield strong convex disjunctive inequalities which can be used as
cutting-surfaces in generic mixed-integer conic programming solvers.
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Chapter 1

Introduction

1.1 Mixed-Integer Linear Programming
Mixed-integer linear programming is a natural framework for modeling optimization prob-
lems which require discrete decisions. In a mixed-integer linear program, we optimize a
linear function of the decision variables over a set defined by linear equations, nonnega-
tivity constraints, and integrality constraints on a subset of the decision variables. To be
precise, a mixed-integer linear program (MILP) is a problem of the form

minimize d>x (1.1a)
subject to Ax = b, (1.1b)

x ∈ Rn
+, (1.1c)

xj ∈ Z ∀j ∈ J, (1.1d)

where A is anm×n rational matrix, d and b are rational vectors of appropriate dimensions,
and J ⊂ {1, . . . , n}. The set of feasible solutions to (1.1) is

CI = {x ∈ Rn
+ : Ax = b, xj ∈ Z ∀j ∈ J}.

In this section we give a short overview of mixed-integer linear programming. For a more
detailed introduction to the topic, the reader is referred to the excellent textbooks [46, 93,
97].

The modeling flexibility of mixed-integer linear programming allows many problems
of practical and theoretical interest to be cast as mixed-integer linear programs. The
real-world impact of mixed-integer linear programming can be seen in almost every sector
of business from healthcare to energy, as well as in science and engineering. Although
mixed-integer linear programming is NP-hard in general, the last two decades have seen

3
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4 Chapter 1: Introduction

a tremendous improvement in our ability to solve mixed-integer linear programs. State-
of-the-art integer programming solvers such as CPLEX [1], Gurobi [2], and Xpress [4] can
routinely handle problems of scale and complexity that was considered impossible in the
1990s. This improvement is a result of significant advances in our understanding of linear
and mixed-integer linear programs, together with the availability of increased computing
power [31]. Therefore, further theoretical study of mixed-integer linear programming has
the potential to bring problems that remain challenging for today’s technology within the
power of computation in the future.

Arguably, the most successful approach to solving mixed-integer linear programs relies
on a combination of two algorithmic ideas, branch-and-bound and cutting-planes. This
approach, which is termed branch-and-cut, exploits the fact that linear programming is
both theoretically and practically well-understood. To this end, one considers the natural
continuous relaxation of (1.1) which is obtained after dropping the integrality constraints
(1.1d) from the formulation (1.1):

minimize d>x (1.2a)
subject to Ax = b, (1.2b)

x ∈ Rn
+. (1.2c)

The problem (1.2) is a linear program and can be solved efficiently. Its set of feasible
solutions C = {x ∈ Rn

+ : Ax = b} is a polyhedron. With slight abuse of terminology, we
also call C the continuous relaxation of CI . The problem (1.2) is indeed a relaxation of
(1.1); its optimal value yields a lower bound on the optimal value of (1.1). Furthermore, if
the optimal solution x∗ to (1.2) satisfies the integrality constraints (1.1d), it is the optimal
solution to (1.1). However, the optimal solution x∗ is often fractional and does not satisfy
the integrality constraints. In order to make progress towards finding an optimal solution
to (1.1), it then becomes necessary to exclude the fractional solution x∗ from consideration
and work with tighter relaxations of (1.1). Branch-and-bound and cutting-planes represent
two strategies towards achieving this outcome.

The branch-and-bound method prescribes a systematic tree search of the feasible so-
lution set CI . The algorithm searches for the optimal solution to (1.1) as it successively
divides C into smaller sets. At the root node of the search tree, the continuous relaxation
(1.2) is solved and the optimal solution x∗ is found. If x∗ satisfies the integrality constraints
(1.1d), the optimal solution to (1.1) has been found and the algorithm stops. Otherwise,
C is split into polyhedral subsets C1, . . . ,Ck whose union contains the set CI , but not the
fractional solution x∗. The procedure is repeated in each of the subsets C1, . . . ,Ck. Fig-
ure 1.1 illustrates this branching step: The two sets, C1 and C2, are created by requiring
that an integer-constrained variable, say x, takes values that are less than or equal k in
C1 and greater than or equal to k + 1 in C2, for some integer k. The sets C1 and C2 are
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depicted in dark blue. The branch-and-bound method also takes advantage of information
obtained from the linear programs min{d>x : x ∈ Ci} to guide its search: Because the
optimal value of the linear program min{d>x : x ∈ Ci} provides a lower bound on that
of min{d>x : x ∈ Ci, xj ∈ Z ∀j ∈ J}, the algorithm discards a subset Ci if the optimal
value of min{d>x : x ∈ Ci} is too large.

C2

C1

x
*

d

Figure 1.1: The branch-and-bound method for MILPs.

The cutting-plane method strives to strengthen the mathematical description of C with
new linear inequalities that are satisfied by all feasible solutions in CI . Such an inequality
is said to be a valid inequality for CI . In the cutting-plane method, first the continuous
relaxation (1.2) is solved. If the optimal solution x∗ to (1.2) satisfies the integrality con-
straints (1.1d), the optimal solution to (1.1) has been found. Otherwise, one has to find a
linear inequality which is valid for CI but strictly separates the fractional solution x∗ from
CI . Such a valid inequality is called a cutting-plane, or a cut. The addition of this cutting-
plane to the description of C leads to a tighter approximation of CI , and the procedure is
repeated. In Figure 1.2, the set C is depicted in dark blue, whereas the halfspace associated
with a recently-added cutting-plane is depicted in light red. Note that this cutting-plane
separates x∗ from CI . The intersection of the blue and red regions corresponds to the new
strengthened formulation.

Although a classical result in integer programming states that the mixed-integer linear
program (1.1) can be solved after adding a finite number of cutting-planes to the continuous
relaxation (1.2) and thus after a finite number of iterations of the cutting-plane method
[87], it is commonly observed that algorithms that rely solely on the cutting-plane method
do not perform well in practice. Combining cutting-planes and branch-and-bound in a
branch-and-cut framework, on the other hand, can be highly effective. This approach has
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d

x
*

Figure 1.2: The cutting-plane method for MILPs.

been the principal solution method in mixed-integer linear programming computation since
the 1990s and is used in today’s leading integer programming solvers.

1.2 Mixed-Integer Conic Programming
A natural generalization of mixed-integer linear programming is mixed-integer conic pro-
gramming. Let E be an n-dimensional Euclidean space which has the inner product 〈·, ·〉.
Any such space (E, 〈·, ·〉) is isomorphic to (Rn, >); in order to keep the notation simple and
similar to (1.1), we assume here that E = Rn and 〈α, x〉 = α>x. A mixed-integer conic
program (MICP) is a problem of the form

minimize d>x (1.3a)
subject to Ax = b, (1.3b)

x ∈ K, (1.3c)
xj ∈ Z ∀j ∈ J, (1.3d)

where K ⊂ Rn is a regular (closed, convex, full-dimensional, and pointed) cone, A is an
m× n real matrix, d and b are real vectors of appropriate dimensions, and J ⊂ {1, . . . , n}.
Examples of regular cones include the nonnegative orthant Rk

+ =
{
x ∈ Rk : xj ≥ 0 ∀j ∈

{1, . . . , k}
}
, the second-order cone Lk =

{
x ∈ Rk :

√
x2

1 + . . .+ x2
k−1 ≤ xk

}
, the pos-

itive semidefinite cone Sk+ =
{
x ∈ Rk×k : x> = x, a>x a ≥ 0 ∀a ∈ Rk

}
, and their

direct products. Mixed-integer linear programming is the special case of mixed-integer
conic programming where K = Rn

+. Other important special cases of mixed-integer conic
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programming include mixed-integer second-order cone programming, where K is a direct
product of second-order cones and nonnegative rays, and mixed-integer semidefinite pro-
gramming, where K is the positive semidefinite cone. The set of feasible solutions to (1.3)
is

CI = {x ∈ K : Ax = b, xj ∈ Z ∀j ∈ J}.
The natural continuous relaxation of (1.3) is obtained after dropping the integrality con-
straints (1.3d):

minimize d>x (1.4a)
subject to Ax = b, (1.4b)

x ∈ K. (1.4c)
The problem (1.4) is a conic program. It generalizes linear, second-order cone, and semidefi-
nite programs and can be solved efficiently in these cases [28, 36]. The continuous relaxation
of CI is C = {x ∈ K : Ax = b}, an affine cross-section of the cone K.

Despite the power of mixed-integer linear programming, many optimization problems of
practical and theoretical interest cannot be modeled using a linear objective function and
constraints alone. The possibility of using general conic constraints and integer variables
allows mixed-integer conic programming significant representation power. Even without
recourse to integer variables, second-order cone and semidefinite programs model a wide
range of problems [7, 28, 36]. Considering additional discrete decisions in these models
or explicitly requiring some of the existing variables to be integers leads to mixed-integer
second-order cone and mixed-integer semidefinite programs. On the one hand, second-order
cone and positive semidefinite cone constraints are used to capture inherent nonlinear re-
lationships between the decision variables in application areas such as power distribution
network design and control [72, 102], queuing system design [59], production scheduling
[6], data clustering [37, 98], sparse learning [94], and least-squares estimation with inte-
ger inputs [67]. On the other hand, mixed-integer second-order cone and mixed-integer
semidefinite programs arise as the robust or stochastic counterparts of mixed-integer linear
programs in optimization under uncertainty. Some application areas in this context in-
clude capital budgeting [105], portfolio optimization [74, 86], telecommunications network
design [68], supply chain network design [12], and truss topology design [109]. The surveys
[26, 29] contain further examples of mixed-integer conic programming applications. In
addition, it is well-known that semidefinite programming formulations provide strong con-
vex relaxations for hard combinatorial optimization problems such as maximum cut and
maximum stable set [85]. Reintroducing the integrality constraints into these relaxations
yields exact mixed-integer conic programming formulations. Therefore, a good understand-
ing of mixed-integer conic programming can also be particularly relevant to combinatorial
optimization.
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The potential of mixed-integer conic programming has compelled significant attention
from researchers and practitioners in the last few years. Leading integer programming
solvers such as CPLEX [1], Gurobi [2], MOSEK [3], and Xpress [4] have responded to
this interest with new and expanded features for handling mixed-integer conic programs.
However, the development of practical solution methods for mixed-integer conic programs
has remained a challenge. Today’s mixed-integer conic programming technology is based to
a great extent on algorithms for solving general mixed-integer convex programs and employ
a combination of two techniques: branch-and-bound and linear outer approximation. See
[26] for a detailed account. The branch-and-bound method can be generalized from mixed-
integer linear to mixed-integer conic programming in a straightforward fashion. At the
root node of the branch-and-bound tree, the continuous relaxation (1.4) is solved and the
optimal solution x∗ is found. If x∗ does not satisfy the integrality constraints (1.3d), the
set C is split into smaller sets C1, . . . ,Ck and the algorithm continues its search at each
subset. Figure 1.3 illustrates the procedure. Note that, as described, this method requires
the solution of a conic program at every node of the search tree. In linearization-based
methods, on the other hand, the mixed-integer conic program is reduced to a mixed-integer
linear program. A linear outer approximation to C is created and maintained dynamically,
and the resulting mixed-integer linear program is solved via branch-and-bound and cutting-
planes. While these techniques have their advantages, the theory of valid inequalities for
mixed-integer conic programs is relatively underdeveloped. In particular, generic branch-
and-bound methods for mixed-integer conic programs are not equipped with powerful
valid inequalities which can be used to strengthen the mathematical description of C in a
branch-and-cut framework. This places today’s technology for solving mixed-integer conic
programs at a position where mixed-integer linear programming technology was more than
two decades ago. On a related note, the inherent nonlinear structure of general mixed-
integer conic programs exposes a possible shortcoming of the cutting-plane approach. It is
no longer guaranteed that these problems can be solved to optimality after the addition of a
finite number of linear inequalities. This raises a possible need and potential for nonlinear
valid inequalities which can be represented in computationally tractable forms and used as
cutting-surfaces. The development and practical implementation of such cutting-surfaces
in mixed-integer conic programming solvers is a topic of active research.

1.3 Outline of the Dissertation
In the cutting-plane method to mixed-integer linear programming, we first solve the contin-
uous relaxation of a problem. If the optimal solution to the continuous relaxation does not
satisfy the integrality constraints, a cutting-plane which separates this fractional solution
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Figure 1.3: The branch-and-bound method for MICPs.

from the set of integer-feasible solutions is generated and added to the problem formu-
lation. Consider the optimal simplex tableau of the continuous relaxation. Let {xi}ni=1,
{sj}kj=1, and {yj}mj=1 denote the basic, nonbasic continuous, and nonbasic integer variables
in this simplex tableau, respectively. Then the tableau has the form

x =f +RCs+RIy, (1.5a)
x ∈ Zp+ × Rn−p

+ , (1.5b)
s ∈ Rk

+, (1.5c)
y ∈ Zm+ , (1.5d)

where RC = [r1
C . . . r

k
C ] and RI = [r1

I . . . r
m
I ] are real matrices of dimension n×k and n×m

respectively and f ∈ Rn
+. The optimal solution to the continuous relaxation is the basic

solution associated with this simplex tableau, which is x = f , s = 0, y = 0 in our notation.
If f ∈ Zp × Rn−p, then this solution satisfies all integrality constraints. Otherwise, we
would like to generate a cutting-plane that eliminates this fractional solution.

In Chapters 2, 3, and 4, we study this problem in a more general light. Let S ⊂ Rn be
a nonempty closed set and f ∈ Rn \ S. We consider the model

x =f +RCs+RIy, (1.6a)
x ∈ S, (1.6b)
s ∈ Rk

+, (1.6c)
y ∈ Zm+ . (1.6d)

The basic solution associated with this tableau, x = f , s = 0, y = 0, is still not feasible
in this framework. For a better mathematical description of the set of feasible solutions,
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we would like to generate a cutting-plane which separates the infeasible basic solution
from the set of feasible solutions. In particular, we would like to be able to generate a
cutting-plane for every realization of the matrices RI and RC . This motivates the concept
of “cut-generating functions”: Consider S and f fixed. We say that functions ψ, π : Rn →
R form a cut-generating function pair (ψ, π) for (1.6) if the inequality ∑k

j=1 ψ(rjC)sj +∑m
j=1 π(rjI)yj ≥ 1 holds for all feasible solutions (x, s, y) to (1.6) for every choice of k,

m, RC , and RI . Notice that this inequality cuts off the basic solution x = f , s = 0,
y = 0. While even the claim that cut-generating functions exist may sound bold in the
first place, such functions underlie the theory of cutting-planes in mixed-integer linear
programming. Some of the most powerful general-purpose cutting-planes are obtained in
this framework. Note that the nonnegativity constraints (1.6c) and (1.6d) on the nonbasic
variables impose a natural hierarchy on cut-generating function pairs for (1.6). A cut-
generating function pair (ψ, π) is said to be minimal if there does not exist a cut-generating
function pair (ψ′, π′) distinct from (ψ, π) such that ψ(r) ≥ ψ′(r) and π(r) ≥ π′(r) for all
r ∈ Rn. Gomory and Johnson [63, 64] and Johnson [75] studied cut-generating function
pairs for (1.6) when S = Zp × Rn−p. They characterized minimal cut-generating functions
in terms of subadditivity, symmetry, and periodicity [63, 75]. Bachem, Johnson, and
Schrader [13] presented a similar characterization for the case S = {0}. The case S =
Zp+ × Rn−p

+ is of particular interest because of its relation to (1.5) above. In Chapter 2 we
generalize existing characterizations of minimal cut-generating functions to the case where
S ⊂ Rn is a nonempty closed set which does not contain f . Our analysis also exposes
shortcomings in the usual definition of minimality for this general case. In response,
we consider stronger notions of minimality and demonstrate how they impose additional
structure on cut-generating functions under varying assumptions on the set S. This chapter
is based on joint work with Gérard Cornuéjols [106].

In Chapter 3 we consider the model (1.6) with only integer nonbasic variables:

x =f +RIy, (1.7a)
x ∈ S, (1.7b)
y ∈ Zm+ . (1.7c)

A cut-generating function for (1.7) is defined as before: A function π : Rn → R is a
cut-generating function for (1.7) if the inequality ∑m

j=1 π(rjI)yj ≥ 1 holds for all feasible
solutions (x, y) to (1.7) for every choice ofm and RI . A cut-generating function π : Rn → R
is minimal if there does not exist a cut-generating function π′ distinct from π such that
π(r) ≥ π′(r) for all r ∈ Rn. A stronger notion than the minimality of a cut-generating
function is its extremality: A cut-generating function π is said to be extreme if any two
cut-generating functions π1, π2 satisfying π = 1

2π1 + 1
2π2 must also satisfy π = π1 = π2.

While extreme cut-generating functions produce powerful cutting-planes, their structure



April 15, 2016
DRAFT

1.3. Outline of the Dissertation 11

can be very complicated. In the case S = Z and f ∈ R \ Z, Gomory and Johnson [64, 65]
identified a “simple” class of extreme cut-generating functions for (1.7) by showing that
continuous, piecewise linear, minimal cut-generating functions with only two distinct slope
values are extreme. In Chapter 3, we establish a similar result for the case S = Z+ and
f ∈ R+ \ Z+. This chapter is based on joint work with Gérard Cornuéjols [106].

In Chapter 4 we consider the model (1.6) with only continuous nonbasic variables:

x =f +RCs, (1.8a)
x ∈ S, (1.8b)
s ∈ Rk

+. (1.8c)

As before, a function ψ : Rn → R is a cut-generating function for (1.8) if the inequality∑k
j=1 ψ(rjC)sj ≥ 1 holds for all feasible solutions (x, s) to (1.8) for every choice of k and

RC . Conforti et al. [47] showed that cut-generating functions for (1.8) enjoy significant
structure. However, they also gave an example showing that not all cutting-planes c>s ≥ 1
can be obtained from cut-generating functions in the framework (1.8). They conjectured
that cut-generating functions might be sufficient under the natural condition S − f ⊂
coneRC , where coneRC represents the cone generated by the columns of RC . In Chapter 4,
we prove that this conjecture is true. This justifies the recent research interest in cut-
generating functions for (1.8). This chapter is based on joint work with Gérard Cornuéjols
and Laurence Wolsey [51].

Cut-generating functions provide a means for separating the fractional optimal solution
of the continuous relaxation of a mixed-integer linear program from the set of its feasible
solutions. An alternative (and complementary) solution to the same problem comes from
the disjunctive programming perspective of Balas [15]. Consider again the optimal simplex
tableau (1.5). Suppose the optimal solution x = f , s = 0, y = 0 does not satisfy the
integrality constraints (1.5b). Then there exists an integer basic variable, say x1, whose
current value f1 is not an integer. Because any integer-feasible solution must satisfy either
x1 ≤ bf1c or x1 ≥ df1e, the disjunction x1 ≤ bf1c ∨ x1 ≥ df1e can be used to remove the
fractional solution x = f , s = 0, y = 0 from the continuous relaxation while maintaining
all feasible solutions to the mixed-integer linear program. More generally, the integrality
constraints on the variables imply linear two-term disjunctions c>1 x ≥ c1,0 ∨ c>2 x ≥ c2,0 on
the continuous relaxation. When the two halfspaces defined by c>1 x ≥ c1,0 and c>2 x ≥ c2,0
are opposing and disjoint, such two-term disjunctions are called split disjunctions. As an
example, the disjunction x1 ≤ bf1c ∨ x1 ≥ df1e mentioned above is a split disjunction. An
inequality which is valid for a disjunction on the continuous relaxation of a mixed-integer
linear program is called a disjunctive inequality [14].

In Chapters 5, 6, 7, and 8, we turn to mixed-integer conic programming. Disjunctive
inequalities have been a principal ingredient in the practical success of mixed-integer linear
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programming in the last two decades. In order to extend our understanding of disjunctive
inequalities to mixed-integer conic programming, we follow a principled study of two-term
disjunctions on conic sets. In Chapter 5 we consider the disjunction c>1 x ≥ c1,0 ∨ c>2 x ≥ c2,0
on a general regular cone K ⊂ E. Associated with such a disjunction, we define the sets

Ci = {x ∈ K : c>i x ≥ ci,0} for i ∈ {1, 2}. (1.9)

Sets of the form C1 ∪ C2 provide fundamental relaxations for mixed-integer conic pro-
grams. Convex inequalities that are valid for C1 ∪ C2 can be used as general-purpose
cutting-surfaces in mixed-integer conic programming solvers. To derive the strongest such
cutting-surfaces, we study the closed convex hull of C1 ∪ C2. It is a well-known fact from
convex analysis that the closed convex hull of any set can be described with valid linear
inequalities alone. A result of Kılınç-Karzan [80] indicates, however, that conic minimal
valid linear inequalities are all that is needed for a closed convex hull description of C1∪C2.
In the first part of Chapter 5, we characterize the structure of conic minimal and tight
valid linear inequalities for C1 ∪ C2. In the second part, we develop structured nonlinear
valid inequalities for C1 ∪C2 by grouping subsets of valid linear inequalities through conic
programming duality. This yields a family of convex valid inequalities which collectively
describe the closed convex hull of C1 ∪ C2 in the space of the original variables. We for-
mulate the general form of these inequalities and analyze their structure in detail. Under
certain conditions on the choice of disjunction, we can show that a single inequality from
this family defines the closed convex hull of C1 ∪ C2. These conditions are satisfied, for
example, in the case of split disjunctions. This chapter is based on joint work with Fatma
Kılınç-Karzan [83, 84, 108].

In Chapters 6 and 7, we specialize the results of Chapter 5 to the cases where K is
a direct product of second-order cones and nonnegative rays and where K is the positive
semidefinite cone, respectively. These cases deserve attention because of their importance
for mixed-integer second-order cone and mixed-integer semidefinite programming. In Chap-
ter 6 we develop closed-form expressions for the nonlinear inequalities of Chapter 5 in the
case where K is a direct product of second-order cones and nonnegative rays. These in-
equalities can always be represented in second-order cone form in a lifted space with few
additional variables. In the case where K is a single second-order cone, the additional vari-
ables can be eliminated if the disjunction satisfies a certain disjointness condition, yielding
a valid second-order cone inequality for C1∪C2 in the space of the original variables. As a
consequence of our results in Chapter 5, the closed convex hull of C1∪C2 can be described
with a single convex inequality for certain disjunctions. In general, however, a complete
description may require every inequality from our family of valid convex inequalities. In
the case where K is a single second-order cone, we outline a procedure to reach explicit
closed convex hull descriptions of C1 ∪ C2. Our results on two-term disjunctions on a
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single second-order cone generalize related results on split disjunctions from the literature
[8, 89]. Chapter 6 is based on joint work with Fatma Kılınç-Karzan [83, 84]. In Chap-
ter 7 we develop closed-form expressions for the nonlinear inequalities of Chapter 5 in the
case where K is the positive semidefinite cone. For a class of elementary disjunctions, we
demonstrate that these inequalities can be expressed in a simple second-order conic form.
For more general disjunctions, we present several techniques to generate low-complexity
convex inequalities that are valid for C1∪C2. Chapter 6 is based on joint work with Fatma
Kılınç-Karzan [108].

In Chapter 8 we consider homogeneous two-term disjunctions on the second-order cone
and general two-term disjunctions on affine cross-sections of the second-order cone. First,
we show that a convex inequality of the form developed in Chapter 6 defines the convex
hull of homogeneous two-term disjunctions on the second-order cone. Second, we show
that such an inequality can characterize the closed convex hull of two-term disjunctions on
affine cross-sections of the second-order cone under certain conditions. These conditions
are satisfied in particular by all two-term disjunctions on ellipsoids and paraboloids, a
large class of two-term disjunctions on hyperboloids, and all split disjunctions on all cross-
sections of the second-order cone. The inequalities can be represented in second-order cone
form in the space of the original variables if the disjunctions satisfy certain disjointness
conditions in either case. Our results generalize the related results on specific classes of two-
term disjunctions on cross-sections of the second-order cone from the literature [27, 52, 89].
This chapter is based on joint work with Gérard Cornuéjols [107].

The remainder of this dissertation assumes a fundamental knowledge of optimization
theory. Explicit references to specific results are provided as needed. The necessary back-
ground on integer programming, conic programming, and convex analysis can be found in
the textbooks [46], [28], and [69, 96], respectively.
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Chapter 2

Minimal Cut-Generating Functions
for Integer Variables

Acknowledgments. This chapter is based on joint work with Gérard Cornuéjols [106].

2.1 Introduction

2.1.1 Motivation
An ongoing debate in integer linear programming centers on the value of general-purpose
cuts (Gomory cuts are a famous example) versus facet-defining inequalities for special
problem structures (for example, comb inequalities for the traveling salesman problem).
Both have been successful in practice. In this chapter we focus on the former type of
cuts, which are attractive for their wide applicability. Nowadays, state-of-the-art integer
programming solvers routinely use several classes of general-purpose cuts. Recently, there
has been a renewed interest in the theory of general-purpose cuts. This was sparked by a
beautiful paper of Andersen, Louveaux, Weismantel, and Wolsey [9] on 2-row cuts which
illuminated their connection to lattice-free convex sets. This line of research focused on cut
coefficients for the continuous nonbasic variables in a tableau form, and lifting properties
for the integer nonbasic variables [17, 21, 35, 44, 47, 53, 54]. Decades earlier, Gomory
and Johnson [63, 64] and Johnson [75] had studied cut coefficients for the integer nonbasic
variables directly. Although their characterization involves concepts that are not always
easy to verify algorithmically (such as subadditivity), it provides a useful framework for
the study of cutting-planes. Jeroslow [73], Blair [32], and Bachem, Johnson, and Schrader
[13] extended the work of Gomory and Johnson on minimal cuts for the corner relaxation
to general integer linear programs. In this chapter we pursue the study of general-purpose

15
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cuts in integer programming, further extending the framework introduced by Gomory and
Johnson. Our focus is also on the cut coefficients of the integer variables.

Consider a pure integer linear program and the optimal simplex tableau of its linear
programming relaxation. We select n rows of the tableau, corresponding to n basic variables
{xi}ni=1. Let {yj}mj=1 denote the nonbasic variables. The tableau restricted to these n rows
is of the form

x =f +
m∑
j=1

rjyj, (2.1a)

x ∈ Zn+, (2.1b)
yj ∈ Z+ ∀j ∈ {1, . . . ,m}, (2.1c)

where f ∈ Rn
+ and rj ∈ Rn for all j ∈ {1, . . . ,m}. We assume f /∈ Zn; therefore, the basic

solution x = f , y = 0 is not feasible. We would like to generate cutting-planes that cut off
this infeasible solution.

A function π : Rn → R is a cut-generating function for (2.1) if the inequality∑m
j=1 π(rj)yj ≥ 1 holds for all feasible solutions (x, y) to (2.1) for any possible number

m of nonbasic variables and any choice of nonbasic columns rj. Gomory and Johnson
[63, 64] and Johnson [75] characterized such functions for the corner relaxation of (2.1)
which relaxes x ∈ Zn+ to x ∈ Zn. They also introduced the infinite group relaxation

x =f +
∑
r∈Rn

ryr, (2.2a)

x ∈ Zn, (2.2b)
yr ∈ Z+ ∀r ∈ Rn, (2.2c)
y has finite support, (2.2d)

as a master model for all corner relaxations. Here an infinite-dimensional vector is said to
have finite support if it has a finite number of nonzero entries.

Let S ⊂ Rn be any nonempty subset of the Euclidean space. Here we consider the
following generalization of the Gomory-Johnson model:

x =f +
∑
r∈Rn

ryr, (2.3a)

x ∈ S, (2.3b)
yr ∈ Z+ ∀r ∈ Rn, (2.3c)
y has finite support. (2.3d)

This flexibility in the choice of S ⊂ Rn makes (2.3) a relevant model for i) integer convex
and conic programs, and ii) integer programs with complementarity constraints, as well
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as integer linear programs; see [47, Section 1.1]. The Gomory-Johnson model (2.2) is the
special case of (2.3) where S = Zn. The model of Bachem et al. [13] corresponds to
the case S = {0}. The case where S = Zn+, or more generally where S ⊂ Rn is the set of
integer points in a full-dimensional rational polyhedron, is of particular interest in integer
linear programming due to its connection to (2.1) above. It is a main focus of this chapter.
In the context of mixed-integer linear programming, the model (2.3) with continuous as
well as integer variables is also interesting; we will discuss it in Section 2.3.4 (where we
allow continuous basic variables) and Section 2.5 (where we also allow continuous nonbasic
variables).

Note that (2.3) is nonempty since for any x̄ ∈ S, the solution x = x̄, yx̄−f = 1, and
yr = 0 for all r 6= x̄ − f is feasible. In the remainder of the chapter, we assume that
f ∈ Rn \ S. Therefore, the basic solution x = f , y = 0 is not a feasible solution of
(2.3). We are interested in valid inequalities for (2.3) that cut off the above infeasible basic
solution.

We can generalize the notion of cut-generating function as follows. A function π :
Rn → R is a cut-generating function for (2.3) if the inequality ∑r∈Rn π(r)yr ≥ 1 holds for
all feasible solutions (x, y) to (2.3). For example, the function that takes the value 1 for all
r ∈ Rn is a cut-generating function because every feasible solution of (2.3) satisfies yr ≥ 1
for at least one r ∈ Rn. When S = Zn+, we recover the earlier definition of a cut-generating
function for (2.1).

A key feature that distinguishes the cut-generating functions for model (2.3) from
those that were studied by Gomory and Johnson for model (2.2) is that they need not be
nonnegative even if we assume continuity. In fact, they can take any real value, positive
and negative, as the following examples illustrate.
Example 2.1. Consider the model (2.3) where n = 1, 0 < f < 1, and S = Z+. Cornuéjols,
Kis, and Molinaro [50] showed that, for 0 < α ≤ 1, the following family of functions
π1
α : R→ R are cut-generating functions:

π1
α(r) = min

{
r − bαrc

1− f ,
−r
f

+ dαre(1− αf)
αf(1− f)

}
.

Note that when α = 1, the function π1
1(r) = min

{
r−brc
1−f ,

dre−r
f

}
is the well-known Gomory

function. This function is periodic and takes its values in the interval [0, 1]. However, when
α < 1, this is not the case any more: The function π1

α takes all real values between −∞
and +∞ and is not periodic in the usual sense. See Figure 2.1.

The next example is mostly of theoretical interest. It illustrates another property of
model (2.3) that does not arise in the Gomory-Johnson model (2.2).
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0

1

-1 −f rr

π1
1

-1 0 1

1

−f1/α

for α < 1π1
α

1

Figure 2.1: Two cut-generating functions: π1
α for some α < 1 and π1

1.

Example 2.2. Consider the model (2.3) where n = 1, f > 0, and S = {0}. In this case, the
model (2.3) reduces to the constraints ∑r∈R ryr = −f , yr ∈ Z+ for r ∈ R, and y has finite
support. For any α ≤ − 1

f
< 0, the linear function π2

α : R → R defined as π2
α(r) = αr is a

cut-generating function. This can be seen by observing that ∑r∈R π
2
α(r)yr = ∑

r∈R(αr)yr =
α
∑
r∈R ryr = −αf ≥ 1 for any y feasible to (2.3).

2.1.2 Related Work
In this section we give a brief overview of some existing work. We comment on the con-
nections between our results and other results from the literature further throughout the
chapter.

Gomory and Johnson [63, 64] introduced the infinite group relaxation (2.2) as a master
framework for research into general-purpose cutting-planes in integer linear programming.
It has since then become a central problem in integer programming and a fertile ground
for research. The reader is referred to the excellent surveys [22, 23, 45, 95] for extensive
accounts of classical as well as recent results on the infinite group relaxation and its variants.
In their seminal papers [63, 75], Gomory and Johnson investigated minimal cut-generating
functions for (2.2); these are cut-generating functions π such that there does not exist
a cut-generating function π′ distinct from π which satisfies π(r) ≥ π′(r) for all r ∈ Rn.
Gomory and Johnson characterized minimal cut-generating functions for (2.2) in terms
of subadditivity, periodicity with respect to Zn, and a certain symmetry condition. See
Section 2.3.3 for a precise statement. Bachem et al. [13] provided a similar characterization
for the model (2.3) in the special case S = {0}.

In a parallel stream of literature, Jeroslow and Blair considered valid inequalities for an
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integer linear program with fixed data. In this framework, minimality of a valid inequality
is defined for the particular problem instance under consideration, rather than for a master
problem or a class of problems. Jeroslow [73] characterized minimal valid inequalities for
integer linear programs with bounded feasible regions in terms of their value functions.
Blair [32] extended this characterization to integer linear programs with rational data.
Johnson [76] analyzed minimal valid inequalities for disjunctive sets. In all of these models,
the set of feasible solutions is contained in the nonnegative orthant, and the minimality of
a valid inequality is defined with respect to the nonnegative orthant as well. Recently, on
a model for disjunctive conic programs, Kılınç-Karzan [80] generalized this notion broadly
by defining and analyzing the minimality of a valid inequality with respect to an arbitrary
regular cone which contains the feasible solution set. She also showed that these conic
minimal inequalities describe the closed convex hull of the disjunctive conic set together
with the cone constraint under a technical condition.

2.1.3 Notation and Terminology
Let Z++ be the set of strictly positive integers. For k ∈ Z++, we let [k] = {1, . . . , k}.
For i ∈ [n], we let ei denote the i-th standard unit vector in Rn. We let clV and convV
represent the closure and closed convex hull of a set V ∈ Rn, respectively. We use recV
and linV to refer to the recession cone and lineality space of a closed convex set V ⊂ Rn,
respectively.

We say that a function π : Rn → R is subadditive if π(r1) + π(r2) ≥ π(r1 + r2) for all
r1, r2 ∈ Rn; it is symmetric or satisfies the symmetry condition if π(r) + π(−f − r) = 1 for
all r ∈ Rn; it is periodic with respect to Zn if π(r) = π(r + w) for all r ∈ Rn and w ∈ Zn;
and it is nondecreasing with respect to S ⊂ Rn if π(r) ≤ π(r+w) for all r ∈ Rn and w ∈ S.

2.1.4 Outline of the Chapter
Minimal Cut-Generating Functions

Throughout the chapter, we consider the model (2.3) under the running assumption that
S 6= ∅. We say that a cut-generating function π′ for (2.3) dominates another cut-generating
function π if π ≥ π′, that is, π(r) ≥ π′(r) for all r ∈ Rn. A cut-generating function π is
minimal if there is no cut-generating function π′ distinct from π that dominates π. When
n = 1, S = Z+, and 0 < f < 1, the cut-generating functions π1

α of Example 2.1 are minimal
[50]. Later in Section 2.1.4, we will show that the linear cut-generating functions π2

α of
Example 2.2 are also minimal. The following theorem shows that minimal cut-generating
functions for (2.3) indeed always exist when S 6= ∅. This result also appears in a recent
paper of Basu and Paat [17].
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Theorem 2.1. Every cut-generating function for (2.3) is dominated by a minimal cut-
generating function.

Proof. Let π be a cut-generating function for (2.3). Denote by Π the set of cut-generating
functions π′ that dominate π. Let {π`}`∈L ⊂ Π be a nonempty family of cut-generating
functions such that for any pair `′, `′′ ∈ L, we have π`′ ≤ π`′′ or π`′ ≥ π`′′ . To prove the
claim, it is enough to show according to Zorn’s Lemma (see, e.g., [42]) that there exists a
cut-generating function that is a lower bound on {π`}`∈L.

Define the function π̄ : Rn → R ∪ {−∞} as π̄(r) = inf`{π`(r) : ` ∈ L}. Clearly, the
function π̄ is a lower bound on {π`}`∈L. We show that it is a cut-generating function for
(2.3). First we prove that π̄ is finite everywhere. Choose x̄ ∈ S. For any r̄ ∈ Rn, let ȳ
be defined as ȳr̄ = 1, ȳx̄−f−r̄ = 1, and ȳr = 0 otherwise. The solution (x̄, ȳ) is feasible
to (2.3). Then for any ` ∈ L, the cut-generating function π` satisfies ∑r∈Rn π`(r)ȳr =
π`(r̄) + π`(x̄− f − r̄) ≥ 1. Moreover, we have π` ≤ π because π` ∈ Π; hence,

π`(r̄) ≥ 1− π`(x̄− f − r̄) ≥ 1− π(x̄− f − r̄).

Therefore, π̄(r̄) ≥ 1 − π(x̄ − f − r̄). This shows that π̄(r) is finite for all r ∈ Rn. That
is, π̄ : Rn → R. Now consider any feasible solution (x, y) of (2.3). Note that {π`}`∈L is
a totally ordered set, π̄ is finite everywhere, and only a finite number of the terms yr are
nonzero. Combining these facts, we can write

∑
r∈Rn

π̄(r)yr =
∑
r∈Rn

inf
`
{π`(r) : ` ∈ L} yr = inf

`

∑
r∈Rn

π`(r)yr : ` ∈ L

 ≥ 1.

This proves that π̄ is a cut-generating function.

Theorem 2.1 shows that there always exists a minimal cut-generating function which
separates the infeasible basic solution x = f , y = 0 from the feasible solutions to (2.3).
Hence, when we search for a cut-generating function which will separate x = f , y = 0, we
can restrict our attention to minimal cut-generating functions without any loss of generality.

When S = Zn, cut-generating functions are traditionally assumed to be nonnegative.
In this setting, Gomory and Johnson showed that a function π : Rn → R+ is a minimal
cut-generating function if and only if π(0) = 0, π is subadditive, symmetric, and periodic
with respect to Zn [45, 63, 75]. However, for general S ⊂ Rn, Examples 2.1 and 2.2 show
that minimal cut-generating functions do not necessarily satisfy periodicity with respect
to Zn, nor symmetry. We define a new condition, which we call the generalized symmetry
condition, to replace symmetry and periodicity in the characterization of minimal cut-
generating functions for (2.3). A function π : Rn → R is said to satisfy the generalized
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symmetry condition if

π(r) = sup
x,k

{
1− π(x− f − kr)

k
: x ∈ S, k ∈ Z++

}
for all r ∈ Rn. (2.4)

The functions π1
α and π2

α of Examples 2.1 and 2.2 satisfy the generalized symmetry condi-
tion. We briefly outline the proof in each case.
Example 2.1 continued. Consider the function π1

α of Example 2.1. The inequality
k̄π1

α(r̄) + π1
α(x̄ − f − k̄r̄) ≥ 1 holds for any r̄ ∈ R, k̄ ∈ Z++, and x̄ ∈ Z+ because π1

α is
a cut-generating function [50] and the solution x = x̄, yr̄ = k̄, yx̄−f−k̄r̄ = 1, and yr = 0
otherwise is feasible to (2.3). Hence, π1

α(r) ≥ 1
k
(1−π1

α(x− f − kr)) for all r ∈ R, k ∈ Z++,
and x ∈ Z+. Furthermore, the graph of π1

α is symmetric relative to the point (−f/2, 1/2).
In other words, the symmetry condition holds: π1

α(r) = 1 − π1
α(−f − r) for all r ∈ R.

Therefore, for all r ∈ R, we have

π1
α(r) = 1− π1

α(−f − r) ≤ sup
x,k

{
1− π1

α(x− f − kr)
k

: x ∈ Z+, k ∈ Z++

}
≤ π1

α(r).

This shows that π1
α satisfies the generalized symmetry condition.

Example 2.2 continued. Consider the function π2
α of Example 2.2. Because S = {0},

the term x disappears from (2.4). Using α ≤ −1
f
, for any r ∈ R we can write

sup
k∈Z++

{
1− π2

α(−f − kr)
k

}
= αr + sup

k∈Z++

1 + αf

k
= αr = π2

α(r).

This shows that π2
α satisfies the generalized symmetry condition.

Our main result about minimal cut-generating functions for (2.3) is the following the-
orem which holds for any nonempty S ⊂ Rn. This result will be proved in Section 2.2.
Theorem 2.2. Let π : Rn → R. The function π is a minimal cut-generating function
for (2.3) if and only if π(0) = 0, π is subadditive and satisfies the generalized symmetry
condition.

Strengthening the Notion of Minimality

The notion of minimality that we defined above can be unsatisfactory for certain choices
of S ⊂ Rn. We illustrate this in the next proposition and remark.
Proposition 2.3. If a cut-generating function for (2.3) is linear, then it is minimal.
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Proof. Let π be a linear cut-generating function for (2.3). By Theorem 2.1, there exists a
minimal cut-generating function π′ such that π′ ≤ π. By Theorem 2.2, π′ is subadditive and
π′(0) = 0. For any r ∈ Rn, the inequality π′ ≤ π implies π(r) + π(−r) ≥ π′(r) + π′(−r) ≥
π′(0) = 0 = π(r) + π(−r) where the last equality follows from the linearity of π. Hence,
π′ = π.

Linear cut-generating functions are closely related to linear inequalities that strictly
separate f from S. To see this, let α ∈ Rn, and consider a linear function π : Rn → R such
that π(r) = α>r. For any (x, y) feasible to (2.3), we have ∑r∈Rn π(r)yr = ∑

r∈Rn α
>ryr =

α>(x − f). Thus, π is a cut-generating function for (2.3) if and only if α>(x − f) ≥ 1 is
valid for S.
Remark 2.4. For a minimal cut-generating function π, it is possible that the inequality∑
r∈Rn π(r)yr ≥ 1 is implied by an inequality ∑r∈Rn π

′(r)yr ≥ 1 arising from some other
cut-generating function π′. Indeed, for n = 1, f > 0, and S = {0}, consider again
the cut-generating functions π2

α of Example 2.2 with α ≤ − 1
f
. These are minimal by

Proposition 2.3. However, the inequalities |α|f ∑r∈R
−r
f
yr ≥ 1 generated from π2

α for
α < − 1

f
are implied by the inequality ∑r∈R

−r
f
yr ≥ 1 generated for α = − 1

f
.

This shortfall in the traditional definition of minimality was also noted in [80, Example
7]. Thus, it makes sense to define a stronger notion of minimality as follows: A cut-
generating function π′ for (2.3) implies another cut-generating function π via scaling if
there exists β ≥ 1 such that π ≥ βπ′. Note that when the function π′ is nonnegative, this
notion is identical to the notion of domination introduced earlier; however, the two notions
are distinct when π′ can take negative values. A cut-generating function π is restricted
minimal if there is no cut-generating function π′ distinct from π that implies π via scaling.
This notion was the one used by Jeroslow [73], Blair [32], and Bachem et al. [13]; they
just called it minimality. In this chapter we call it restricted minimality to distinguish it
from the notion of minimality introduced in Section 2.1.4. The next proposition shows
that restricted minimal cut-generating functions are the minimal cut-generating functions
which enjoy an additional “tightness” property.
Proposition 2.5. A cut-generating function π for (2.3) is restricted minimal if and only
if it is minimal and infx{π(x− f) : x ∈ S} = 1.

The proof of this proposition will be presented at the end of Section 2.2.
The next proposition shows that there always exists a restricted minimal cut-generating

function which separates the infeasible basic solution x = f , y = 0 from the feasible solu-
tions to (2.3). As a corollary, we obtain that restricted minimal cut-generating functions
always exist.
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Proposition 2.6. Every cut-generating function for (2.3) is implied via scaling by a re-
stricted minimal cut-generating function.

Proof. Let π be a cut-generating function. Let µ = infx,y{
∑
r∈Rn π(r)yr :

(x, y) satisfies (2.3)}; note that µ ≥ 1. Define π′ = π
µ
. The function π′ is also a cut-

generating function, and it satisfies infx,y{
∑
r∈Rn π

′(r)yr : (x, y) satisfies (2.3)} = 1. By
Theorem 2.1, there exists a minimal cut-generating function π∗ that dominates π′. The
function π∗ implies π via scaling since µπ∗ ≤ µπ′ = π. We claim that π∗ is restricted
minimal. First note that infx,y{

∑
r∈Rn π

∗(r)yr : (x, y) satisfies (2.3)} = 1. Now consider
β ≥ 1 and a cut-generating function π∗∗ such that π∗ ≥ βπ∗∗. We must have β = 1 since
infx,y{

∑
r∈Rn π

∗∗(r)yr : (x, y) satisfies (2.3)} ≥ 1. Then because π∗ is minimal, we get
π∗∗ = π∗. This proves the claim.

In the case S = {0}, Bachem et al. [13] showed that restricted minimal cut-generating
functions satisfy the symmetry condition. This can be generalized as in the next theorem.
Theorem 2.7. Let K ⊂ Rn be a closed convex cone and S = K ∩ (Zp × Rn−p). Let
π : Rn → R. The function π is a restricted minimal cut-generating function for (2.3) if
and only if π(0) = 0, π is subadditive, nondecreasing with respect to S ⊂ Rn, and satisfies
the symmetry condition.

This theorem will be proved in Section 2.3.
The notion of minimality can be strengthened even further if we take into consideration

the linear inequalities that are valid for S ⊂ Rn. Let α>(x− f) ≥ α0 be a valid inequality
for S. Because f+∑r∈Rn ryr = x ∈ S for any (x, y) feasible to (2.3), such a valid inequality
can be translated to the space of the nonbasic variables y as ∑r∈Rn α

>ryr ≥ α0. We
say that a cut-generating function π′ for (2.3) implies another cut-generating function π
for (2.3) if there exists a valid inequality α>(x − f) ≥ α0 for S and β ≥ 0 such that
α0 + β ≥ 1 and π(r) ≥ α>r + βπ′(r) for all r ∈ Rn. This definition makes sense because
if ∑r∈Rn π

′(r)yr ≥ 1 is a valid inequality for (2.3), then ∑
r∈Rn π(r)yr ≥

∑
r∈Rn α

>ryr +
β
∑
r∈Rn π

′(r)yr ≥ α0 + β ≥ 1 is also valid for (2.3). When the closed convex hull of
S ⊂ Rn is equal to the whole of Rn, the only inequalities that are valid for S are those that
have α = 0 and α0 ≤ 0; in this case, a cut-generating function may imply another only via
scaling. However, the two notions may be different when conv(S) ( Rn. We say that a cut-
generating function π is strongly minimal if there does not exist a cut-generating function
π′ distinct from π that implies π. Note that strongly minimal cut-generating functions are
restricted minimal. Indeed, if π is a cut-generating function that is not restricted minimal,
there exists a cut-generating function π′ 6= π and β ≥ 1 such that π ≥ βπ′; but then π′

implies π by taking α = 0 and α0 = 0 which shows that π is not strongly minimal. For a
fixed integer programming instance, the three definitions of minimality that we explore in



April 15, 2016
DRAFT

24 Chapter 2: Minimal Cut-Generating Functions for Integer Variables

this chapter can be seen from the perspective of [80]. We comment on this connection in
the appendix to this chapter. In the setting of infinite relaxations, our results demonstrate
how strengthening the notion of minimality imposes additional structure on cut-generating
functions for (2.3). See also [80, Remark 7] for a related discussion.

In Section 2.4.1, we prove the following theorem about strongly minimal cut-generating
functions for (2.3) when S = Zp+ × Rn−p

+ .
Theorem 2.8. Let S = Zp+ × Rn−p

+ and f ∈ Rn
+ \ S. Let π : Rn → R. The function π is a

strongly minimal cut-generating function for (2.3) if and only if π(0) = 0, π(−ei) = 0 for
all i ∈ [p] and lim supε→0+

π(−εei)
ε

= 0 for all i ∈ [n] \ [p], π is subadditive and satisfies the
symmetry condition.

In Section 2.4.2, we give an example showing that strongly minimal cut-generating
functions do not always exist. On the other hand, when S ⊂ Rn is a full-dimensional poly-
hedron, we can show that there always exists a strongly minimal cut-generating function
which separates the infeasible basic solution x = f , y = 0 from the feasible solutions to
(2.3). As a corollary, this shows that strongly minimal cut-generating functions always
exist in this case.
Theorem 2.9. Suppose the closed convex hull of S ⊂ Rn is a full-dimensional polyhedron.
Let f ∈ conv S. Then every cut-generating function for (2.3) is implied by a strongly
minimal cut-generating function.

The proof will be given in Section 2.4.2.
Section 2.5 extends some of the earlier results to a mixed-integer model where nonbasic

continuous and nonbasic integer variables are both present.

2.2 Characterization of Minimal Cut-Generating
Functions

In this section, we characterize minimal cut-generating functions for (2.3) under the basic
assumption that S 6= ∅. In the next three lemmas, we state necessary conditions that are
satisfied by all minimal cut-generating functions.
Lemma 2.10. If π is a minimal cut-generating function for (2.3), then π(0) = 0.

Proof. Suppose π(0) < 0, and let (x̄, ȳ) be a feasible solution of (2.3). Then there exists
some k̄ ∈ Z++ such that π(0)k̄ < 1 − ∑r∈Rn\{0} π(r)ȳr since the right-hand side of the
inequality is a constant. Define ỹ as ỹ0 = k̄ and ỹr = ȳr for all r 6= 0. Note that (x̄, ỹ)
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is a feasible solution of (2.3). This contradicts the assumption that π is a cut-generating
function since ∑r∈Rn π(r)ỹr < 1. Thus, π(0) ≥ 0.

Let (x̄, ȳ) be a feasible solution of (2.3), and consider ỹ defined as ỹ0 = 0 and ỹr = ȳr
for all r 6= 0. Then (x̄, ỹ) is a feasible solution of (2.3). Now define the function π′ as
π′(0) = 0 and π′(r) = π(r) for all r 6= 0. Observe that ∑r∈Rn π

′(r)ȳr = ∑
r∈Rn π(r)ỹr ≥ 1

where the inequality follows because π is a cut-generating function. This implies that π′
is also a cut-generating function for (2.3). Since π is minimal and π′ ≤ π, we must have
π = π′ and π(0) = 0.

The proof of the next lemma is similar to the one presented by Gomory and Johnson
[63] for the case S = Z and Johnson [75] for the case S = Zn. It is included here for the
sake of completeness.
Lemma 2.11. If π is a minimal cut-generating function for (2.3), then π is subadditive.

Proof. Let r1, r2 ∈ Rn. We need to show π(r1) + π(r2) ≥ π(r1 + r2). This inequality holds
when r1 = 0 or r2 = 0 by Lemma 2.10.

Assume now that r1 6= 0 and r2 6= 0. Define the function π′ as π′(r1+r2) = π(r1)+π(r2)
and π′(r) = π(r) for r 6= r1 + r2. We show that π′ is a cut-generating function. Since π is
minimal, it then follows that π(r1 + r2) ≤ π′(r1 + r2) = π(r1) + π(r2).

Consider any feasible solution (x̄, ȳ) to (2.3). Define ỹ as ỹr1 = ȳr1 + ȳr1+r2 , ỹr2 =
ȳr2 + ȳr1+r2 , ỹr1+r2 = 0, and ỹr = ȳr otherwise. Note that ỹ is well-defined since r1 6= 0
and r2 6= 0. It is easy to verify that ỹ has finite support, ỹr ∈ Z+ for all r ∈ Rn, and∑
r∈Rn rỹr = ∑

r∈Rn rȳr. These together show that (x̄, ỹ) is a feasible solution of (2.3).
Furthermore, we have ∑r∈Rn π

′(r)ȳr = ∑
r∈Rn π(r)ỹr which is greater than or equal to 1

since π is a cut-generating function. This proves that π′ is a cut-generating function.

The next lemma shows that all minimal cut-generating functions satisfy the generalized
symmetry condition (2.4). A similar argument appears in the proof of the main result of
[13] for the case S = {0}.
Lemma 2.12. If π is a minimal cut-generating function for (2.3), then it satisfies the
generalized symmetry condition.

Proof. Let r̄ ∈ Rn. For any x̄ ∈ S and k̄ ∈ Z++, define ȳ as ȳr̄ = k̄, ȳx̄−f−k̄r̄ = 1, and
ȳr = 0 otherwise. Since (x̄, ȳ) is feasible to (2.3) and π is a cut-generating function for
(2.3), we have π(r̄) ≥ 1

k̄
(1 − π(x̄ − f − k̄r̄)). Then the definition of supremum implies

π(r̄) ≥ supx,k
{

1
k
(1 − π(x − f − kr̄)) : x ∈ S, k ∈ Z++

}
. Note that the value on the right-

hand side is bounded from above since π is a real-valued function and the left-hand side is
finite.
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Let the function ρ : Rn → R be defined as ρ(r) = supx,k
{

1
k
(1 − π(x − f − kr)) : x ∈

S, k ∈ Z++
}
. Note that π ≥ ρ by the first part. Now suppose π does not satisfy the

generalized symmetry condition. Then there exists r̃ ∈ Rn such that π(r̃) > ρ(r̃). Define
the function π′ as π′(r̃) = ρ(r̃) and π′(r) = π(r) for all r 6= r̃. Consider any feasible
solution (x̃, ỹ) to (2.3). If ỹr̃ = 0, we get ∑r∈Rn π

′(r)ỹr = ∑
r∈Rn π(r)ỹr ≥ 1. Otherwise,

ỹr̃ ≥ 1 and we have π′(r̃)ỹr̃ +∑
r∈Rn\{r̃} π

′(r)ỹr ≥ 1−π(x̃− f − ỹr̃r̃) +∑
r∈Rn\{r̃} π(r)ỹr ≥ 1

where we use π′(r̃) = ρ(r̃) ≥ 1
ỹr̃

(1 − π(x̃ − f − ỹr̃r̃)) to obtain the first inequality and
the subadditivity of π and ∑r∈Rn\{r̃} rỹr = x̃ − f − ỹr̃r̃ to obtain the second inequality.
Thus, π′ is a cut-generating function for (2.3). Since π′ ≤ π and π′(r̃) = ρ(r̃) < π(r̃), this
contradicts the minimality of π.

We now prove Theorem 2.2 stated in the introduction.
Theorem 2.2. Let π : Rn → R. The function π is a minimal cut-generating function
for (2.3) if and only if π(0) = 0, π is subadditive and satisfies the generalized symmetry
condition.

Proof. The necessity of these conditions has been proven in Lemmas 2.10, 2.11, and 2.12.
We now prove their sufficiency.

Assume that π(0) = 0, π is subadditive and satisfies the generalized symmetry con-
dition. Since π(0) = 0, the generalized symmetry condition implies π(x̄ − f) ≥ 1 for
all x̄ ∈ S by taking r = 0, x = x̄, and k = 1 in (2.4). We first show that π is
a cut-generating function for (2.3). To see this, note that any feasible solution (x̄, ȳ)
for (2.3) satisfies ∑r∈Rn rȳr = x̄ − f , and using the subadditivity of π, we can write∑
r∈Rn π(r)ȳr ≥ π(∑r∈Rn rȳr) = π(x̄− f) ≥ 1.
If π is not minimal, then by Theorem 2.1, there exists a minimal cut-generating function

π′ such that π′ ≤ π and π′(r̄) < π(r̄) for some r̄ ∈ Rn. Let ε = π(r̄) − π′(r̄). Because
π satisfies the generalized symmetry condition, there exists x̄ ∈ S and k̄ ∈ Z++ such
that π(r̄) − ε

2 ≤
1
k̄
(1 − π(x̄ − f − k̄r̄)). Rearranging the terms and using π′ ≤ π and

π(r̄)− π′(r̄) = ε, we obtain

1 ≥ k̄
(
π(r̄)− ε

2

)
+ π

(
x̄− f − k̄r̄

)
≥ k̄

(
π′(r̄) + ε

2

)
+ π′

(
x̄− f − k̄r̄

)
which implies k̄π′(r̄) + π′(x̄ − f − k̄r̄) < 1. This contradicts the hypothesis that π′ is a
cut-generating function because the solution x = x̄, ȳr̄ = k̄, ȳx̄−f−k̄r̄ = 1, and ȳr = 0
otherwise is feasible to (2.3).

Next we state two properties of subadditive functions that will be used later in the
chapter. The first lemma below shows that if the supremum is achieved in the generalized
symmetry condition, it must be achieved for k = 1.
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Lemma 2.13. Let π : Rn → R be a subadditive function that satisfies the generalized
symmetry condition. Suppose r ∈ Rn is a point for which the supremum in (2.4) is achieved.
Then the supremum is achieved when k = 1, that is, π(r) = 1 − π(x − f − r) for some
x ∈ S.

Proof. Consider a vector r ∈ Rn for which the supremum in (2.4) is achieved. Namely,
there exists x ∈ S and k ∈ Z++ such that π(r) = 1

k
(1− π(x− f − kr)). This equation can

be rewritten as
kπ(r) + π(x− f − kr) = 1. (2.5)

We also have

kπ(r) + π(x− f − kr) = π(r) + (k − 1)π(r) + π (x− f − kr) ≥ π(r) + π(x− f − r) ≥ 1

where the first inequality follows from the subadditivity of π and the second from π(r) ≥
1− π(x− f − r) by the generalized symmetry condition. Using (2.5), we see that equality
holds throughout. In particular, π(r) + π(x− f − r) = 1. Thus, the supremum in (2.4) is
achieved when k = 1.

For a subadditive function π : Rn → R, we have π(r) ≥ π(kr)
k

for all r ∈ Rn and
k ∈ Z++. Hence, π(r) ≥ supk∈Z++

π(kr)
k

. In fact, we have π(r) = supk∈Z++
π(kr)
k

because
equality holds for k = 1. When π(r) = lim supk∈Z++,k→∞

π(kr)
k

for some r ∈ Rn, a result of
Bachem et al. [13] shows that π is actually linear in k ∈ Z++.
Lemma 2.14 (Bachem, Johnson, and Schrader [13]). If a subadditive function π : Rn → R
satisfies π(r) = lim supk∈Z++,k→∞

π(kr)
k

for some r ∈ Rn, then π(kr) = kπ(r) for all k ∈
Z++.

We close this section with a proof of Proposition 2.5 which was stated in the introduc-
tion.
Proposition 2.5. A cut-generating function π for (2.3) is restricted minimal if and only
if it is minimal and infx{π(x− f) : x ∈ S} = 1.

Proof. If π is a cut-generating function, we have π(x̄− f) ≥ 1 for any x̄ ∈ S. To see this,
note that the solution x = x̄, yx̄−f = 1, and yr = 0 for all r 6= x̄− f is feasible to (2.3) and
the inequality ∑r∈Rn π(r)yr ≥ 1 reduces to π(x̄− f) ≥ 1.

To prove the “only if” part, let π be a restricted minimal cut-generating function.
Then there does not exist any cut-generating function π′ 6= π that implies π via scaling
by β ≥ 1. By taking β = 1, we note that no cut-generating function π′ 6= π dominates
π. Thus, π is minimal. Let ν = infx{π(x − f) : x ∈ S}. By the above observation, we
have ν ≥ 1. Suppose ν > 1, and let π′ = π

ν
. For any feasible solution (x, y) to (2.3),
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we have ∑r∈Rn π
′(r)yr = 1

ν

∑
r∈Rn π(r)yr ≥ 1

ν
π(∑r∈Rn ryr) = 1

ν
π(x − f) ≥ 1 where the

first inequality follows from the subadditivity of π (Theorem 2.2) and the second from
the definition of ν. Therefore, π′ is a cut-generating function. Since π′ is distinct from
π and implies π via scaling, this contradicts the hypothesis that π is restricted minimal.
Therefore, ν = infx{π(x− f) : x ∈ S} = 1.

For the converse, let π be a minimal cut-generating function such that infx{π(x− f) :
x ∈ S} = 1. Suppose π is not restricted minimal. Then there exists a cut-generating
function π′ 6= π that implies π via scaling. That is, there exists β ≥ 1 such that π ≥ βπ′.
Because π is minimal, we must have β > 1, but then infx{π′(x−f) : x ∈ S} = 1

β
infx{π(x−

f) : x ∈ S} < 1. This implies that there exists x ∈ S such that π′(x−f) < 1, contradicting
the choice of π′ as a cut-generating function.

2.3 Specializing the Set S
In this section, we turn our attention to sets S ⊂ Rn that arise in the context of integer
programming. The majority of the results in this section consider S = C∩(Zp×Rn−p) where
C ⊂ Rn is a closed convex set and p is an integer between 0 and n. The case p = n and
C = Rn

+ is of particular interest since it corresponds to the pure integer linear programming
case. At the other extreme, when p = 0 and C is a closed convex cone, we recover the
infinite relaxation of a mixed-integer conic programming model studied by Morán, Dey,
and Vielma [91]. In their model, Morán, Dey, and Vielma presented an extension of the
duality theory to mixed-integer conic programs and showed that subadditive functions that
are nondecreasing with respect to C can generate all valid inequalities under a technical
condition.

2.3.1 The Case S = C ∩ (Zp × Rn−p) for a Convex Set C
We first show that when S ⊂ Rn is the set of mixed-integer points in a closed convex set, a
function that satisfies the generalized symmetry condition is monotone in a certain sense.
Let K be a closed convex cone and L be a linear subspace in Rn. Recall that a function
π : Rn → R is nondecreasing with respect to K ∩ (Zp × Rn−p) if π(r) ≤ π(r + w) for all
r ∈ Rn and w ∈ K ∩ (Zp × Rn−p). We say that the function π is periodic with respect to
L ∩ (Zp × Rn−p) if π(r) = π(r + w) for all r ∈ Rn and w ∈ L ∩ (Zp × Rn−p). Note that
when L = Rn and p = n, this definition of periodicity reduces to the earlier definition of
periodicity with respect to Zn.
Proposition 2.15. Let C ⊂ Rn be a closed convex set, S = C∩ (Zp ×Rn−p), and f ∈ Rn.
If π : Rn → R satisfies the generalized symmetry condition, then it is nondecreasing with
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respect to rec(C) ∩ (Zp ×Rn−p). In particular, it is periodic with respect to lin(C) ∩ (Zp ×
Rn−p).

Proof. Suppose π satisfies the generalized symmetry condition. Then for any r ∈ Rn and
ε > 0, there exist xε ∈ S and kε ∈ Z++ such that 1

kε
(1− π(xε − f − kεr)) > π(r)− ε. Let

w ∈ rec(C)∩ (Zp×Rn−p). Observing that xε + kεw ∈ C∩ (Zp×Rn−p) = S, condition (2.4)
implies

π(r + w) ≥ 1
kε

(1− π ((xε + kεw)− f − kε(r + w))) = 1
kε

(1− π(xε − f − kεr)) > π(r)− ε.

Taking limits of both sides as ε ↓ 0, we get π(r+w) ≥ π(r). The second statement follows
from the observation that w,−w ∈ rec(C)∩(Zp×Rn−p) if w ∈ lin(C)∩(Zp×Rn−p). In this
case, repeating the same argument with both w and −w gives us the equality necessary to
establish the periodicity of π.

Proposition 2.16. Let C ⊂ Rn be a closed convex set, S = C∩ (Zp ×Rn−p), and f ∈ Rn.
Let X ⊂ S be such that S = X + (rec(C) ∩ (Zp × Rn−p)). The function π : Rn → R
satisfies the generalized symmetry condition if and only if it is nondecreasing with respect
to rec(C) ∩ (Zp × Rn−p) and satisfies the condition

π(r) = sup
x,k

{
1− π(x− f − kr)

k
: x ∈ X, k ∈ Z++

}
for all r ∈ Rn. (2.6)

Proof. Suppose π satisfies the generalized symmetry condition. By Proposition 2.15, π is
nondecreasing with respect to rec(C)∩ (Zp×Rn−p). Let r ∈ Rn and ε > 0. For any x ∈ X
and k ∈ Z++, we have kπ(r) + π(x − f − kr) ≥ 1. Because π satisfies the generalized
symmetry condition, there exist xε ∈ S and kε ∈ Z++ such that kεπ(r) + π(xε− f − kεr) <
1+kεε. Let x̄ ∈ X be such that xε ∈ x̄+(rec(C)∩(Zp×Rn−p)). Because π is nondecreasing
with respect to rec(C)∩(Zp×Rn−p), we get kεπ(r)+π(x̄−f−kεr) ≤ kεπ(r)+π(xε−f−kεr) <
1 + kεε. This shows that π satisfies (2.6).

To prove the converse, suppose π is nondecreasing with respect to rec(C)∩ (Zp×Rn−p)
and satisfies (2.6). Let r ∈ Rn and ε > 0. For any x ∈ S and k ∈ Z++, there exists
x̄ ∈ X such that x ∈ x̄ + (rec(C) ∩ (Zp × Rn−p)) and we have kπ(r) + π(x − f − kr) ≥
kπ(r) + π(x̄− f − kr) ≥ 1. Furthermore, there exist xε ∈ X ⊂ S and kε ∈ Z++ such that
π(r)− ε < 1

kε
(1− π(xε − f − kεr)). This shows that π satisfies the generalized symmetry

condition.

When the set X in the statement of Proposition 2.16 can be chosen finite, condition
(2.6) further implies that

∀r ∈ Rn ∃xr ∈ X such that π(r) = sup
k

{
1− π(xr − f − kr)

k
: k ∈ Z++

}
. (2.7)
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A finite set X satisfying the hypothesis of Proposition 2.16 exists for two choices of un-
bounded sets S ⊂ Rn which are important in integer programming. When S ⊂ Rn is the
set of pure integer points in a rational (possibly unbounded) polyhedron, the existence of
such a finite set X follows from Meyer’s Theorem and its proof [87]. When S ⊂ Rn is the
set of mixed-integer points in a closed convex cone K, one can simply let X = {0}. Then
(2.6) can be stated as

π(r) = sup
k

{
1− π(−f − kr)

k
: k ∈ Z++

}
for all r ∈ Rn. (2.8)

In general, (2.8) is a weaker requirement than symmetry on subadditive functions. How-
ever, the next proposition shows that (2.8) implies symmetry if the supremum is achieved
for all r ∈ Rn.
Proposition 2.17. Let π : Rn → R be a subadditive function.

i. Let X ⊂ S be a finite set, and suppose π satisfies (2.7). Fix r ∈ Rn, and choose xr ∈ X
as in (2.7). The supremum in (2.7) is attained if and only if π(r) +π(xr−f − r) = 1.

ii. Suppose π satisfies (2.8). Fix r ∈ Rn. The supremum in (2.8) is attained if and only
if π(r)+π(−f−r) = 1. Furthermore, the supremum in (2.8) is attained for all r ∈ Rn

if and only if π satisfies the symmetry condition.

Proof. We prove statement (i) first. Fix r ∈ Rn, and choose xr ∈ X as in (2.7). Suppose
the supremum on the right-hand side of (2.7) is attained. Let k∗ ∈ Z++ be such that
1
k∗

(1 − π(xr − f − k∗r)) ≥ 1
k
(1 − π(xr − f − kr)) for all k ∈ Z++. Because π satisfies

(2.7), we have π(r) ≥ 1 − π(xr − f − r) and π(r) = 1
k∗

(1 − π(xr − f − k∗r)). Using the
subadditivity of π, we can write

1 = k∗π(r)+π(xr−f−k∗r) = π(r)+(k∗−1)π(r)+π(xr−f−k∗r) ≥ π(r)+π(xr−f−r) ≥ 1.

This shows π(r)+π(xr−f−r) = 1. To prove the converse, suppose π(r)+π(xr−f−r) = 1.
Then 1− π(xr − f − r) = π(r) = supk{ 1

k
(1− π(xr − f − kr)) : k ∈ Z++} which shows that

the supremum is attained for k = 1. This concludes the proof of statement (i).
Statement (ii) follows from statement (i) by noting that (2.8) is equivalent to (2.7) with

X = {0}. In this case, xr ∈ X in (2.7) is necessarily equal to zero for any r ∈ Rn. Let r ∈
Rn. By statement (i), the supremum in (2.8) is attained if and only if π(r)+π(−f−r) = 1.
If the supremum is attained for all r ∈ Rn, then π(r) +π(−f − r) = 1 for all r ∈ Rn, which
is the symmetry condition on π.

Proposition 2.18. Let X ⊂ S be a finite set, and let π : Rn → R be a subadditive function
such that π(0) = 0 and π satisfies (2.7). Fix r ∈ Rn, and choose xr ∈ X as in (2.7). If the
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supremum in (2.7) is not attained, then

π(r) = lim sup
k∈Z++,k→∞

π(kr)
k

= lim sup
k∈Z++,k→∞

−π(−kr)
k

.

Furthermore, π(kr) = kπ(r) for all k ∈ Z++.

Proof. Fix r ∈ Rn, and choose xr ∈ X as in (2.7). Suppose the supremum in (2.7) is not
attained. Since π satisfies (2.7), π(r) ≥ 1

k
(1 − π(xr − f − kr)) for all k ∈ Z++. It follows

that π(r) ≥ lim supk∈Z++,k→∞
1
k
(1−π(xr−f −kr)). Let ε = π(r)− lim supk∈Z++,k→∞

1
k
(1−

π(xr − f − kr)), and suppose ε > 0. By the definition of limit supremum, there exists
k0 ∈ Z++ such that π(r) − ε

2 ≥
1
k
(1 − π(xr − f − kr)) for all k ≥ k0. It follows that the

supremum in (2.7) must be attained for some k < k0, a contradiction. Therefore, ε = 0.
Using π(0) = 0 and the subadditivity of π, we can write

π(r) = lim sup
k∈Z++,k→∞

1− π(xr − f − kr)
k

= lim sup
k∈Z++,k→∞

−π(xr − f − kr)
k

≤ lim sup
k∈Z++,k→∞

−π(−kr) + π(−xr + f)
k

= lim sup
k∈Z++,k→∞

−π(−kr)
k

≤ lim sup
k∈Z++,k→∞

π(kr)
k
≤ π(r).

In particular, π(r) = lim supk∈Z++,k→∞
π(kr)
k

= lim supk∈Z++,k→∞
−π(−kr)

k
. It follows from

Lemma 2.14 that π(kr) = kπ(r) for all k ∈ Z++.

When the set X in the statement of Proposition 2.16 is finite, we can obtain a sim-
plified version of (2.6) in which the double supremum over x and k is decoupled through
Propositions 2.17 and 2.18.
Corollary 2.19. Let C ⊂ Rn be a closed convex set, S = C ∩ (Zp × Rn−p), and f ∈ Rn.
Let X ⊂ S be a finite set such that S = X + (rec(C) ∩ (Zp × Rn−p)). Let π : Rn → R be a
subadditive function such that π(0) = 0. The function π satisfies the generalized symmetry
condition if and only if it is nondecreasing with respect to rec(C)∩(Zp×Rn−p) and satisfies
the condition

π(r) = max
{

max
x∈X
{1− π(x− f − r)}, lim sup

k∈Z++,k→∞

−π(−kr)
k

}
for all r ∈ Rn. (2.9)

Proof. By Proposition 2.16, it will be enough to show that π satisfies (2.6) if and only
if it satisfies (2.9). Suppose π satisfies (2.6). Fix r ∈ Rn. By (2.6), we have π(r) ≥
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maxx∈X{1 − π(x − f − r)}. By the subadditivity of π, π(r) ≥ lim supk∈Z++,k→∞
π(kr)
k
≥

lim supk∈Z++,k→∞
−π(−kr)

k
. The “only if” part then follows from Propositions 2.17 and 2.18

by observing that X is finite and π satisfies (2.7). To prove the “if” part, suppose π satisfies
(2.9). Fix r ∈ Rn. Observe that (2.9) implies π(r) ≥ 1 − π(x − f − r) for all x ∈ X. By
the subadditivity of π, kπ(r) + π(x − f − kr) ≥ π(r) + π(x − f − r) ≥ 1 for all x ∈ X
and k ∈ Z++. In particular, π(r) ≥ supx,k

{
1
k
(1 − π(x − f − kr)) : x ∈ X, k ∈ Z++

}
. If

there exists xr ∈ X such that π(r) = 1 − π(xr − f − r), then (2.7) holds for that xr. If
π(r) = lim supk∈Z++,k→∞

−π(−kr)
k

, then (2.7) holds for any x ∈ X since

lim sup
k∈Z++,k→∞

1− π(x− f − kr)
k

≥ lim sup
k∈Z++,k→∞

1− π(x− f)− π(−kr)
k

= lim sup
k∈Z++,k→∞

−π(−kr)
k

= π(r).

In either case, condition (2.6) is satisfied.

2.3.2 The Case S = K ∩ (Zp × Rn−p) for a Convex Cone K
In this section, we consider the case where S ⊂ Rn is the set of mixed-integer points in a
closed convex cone K. The following theorem recapitulates the results of Theorem 2.2 and
Proposition 2.16 for this case.
Theorem 2.20. Let K ⊂ Rn be a closed convex cone and S = K ∩ (Zp × Rn−p). Let
π : Rn → R. The function π is a minimal cut-generating function for (2.3) if and only if
π(0) = 0, π is subadditive, nondecreasing with respect to S, and satisfies (2.8).

When S = K ∩ (Zp × Rn−p) for a closed convex cone K, we can choose X = {0}
in Corollary 2.19. Then (2.8) in the statement of Theorem 2.20 can be replaced
without any loss of generality with (2.9) which now reads π(r) = max

{
1 − π(−f −

r), lim supk∈Z++,k→∞
−π(−kr)

k

}
for all r ∈ Rn. This condition simplifies further to just

π(r) = 1− π(−f − r), the symmetry condition, when we consider restricted minimal cut-
generating functions. This will be proved next in Theorem 2.7, which was already stated
in the introduction. Theorem 2.7 generalizes to S = K ∩ (Zp × Rn−p) a result of Bachem
et al. [13] for the case S = {0}.
Theorem 2.7. Let K ⊂ Rn be a closed convex cone and S = K ∩ (Zp × Rn−p). Let
π : Rn → R. The function π is a restricted minimal cut-generating function for (2.3) if
and only if π(0) = 0, π is subadditive, nondecreasing with respect to S, and satisfies the
symmetry condition.
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Proof. We first prove the “if” part. Assume π(0) = 0, π is subadditive, nondecreasing with
respect to S, and satisfies the symmetry condition. Since condition (2.8) is a weaker re-
quirement than symmetry, it follows from Theorem 2.20 that π is a minimal cut-generating
function. Because π is nondecreasing with respect to S, we have π(x− f) ≥ π(−f) for all
x ∈ S. Furthermore, by taking r = −f , the symmetry condition implies π(−f) = 1. It
follows that min{π(x− f) : x ∈ S} = π(−f) = 1. Then by Proposition 2.5, π is restricted
minimal.

We now prove the “only if” part. Assume that π is a restricted minimal cut-
generating function. By Proposition 2.5, π is a minimal cut-generating function and
satisfies infx{π(x − f) : x ∈ S} = 1. Since π is minimal, Theorem 2.20 implies that
π(0) = 0, π is subadditive, nondecreasing with respect to S, and satisfies (2.8). Because
π is nondecreasing with respect to S ⊂ Rn, we have π(−f) = infx{π(x− f) : x ∈ S} = 1.
Now suppose that there exists r̄ ∈ Rn such that π(r̄) > 1 − π(−f − r̄). Letting
X = {0} and using Proposition 2.17(i), we see that the supremum in (2.8) is not at-
tained. By Proposition 2.18, π(kr̄) = kπ(r̄) for all k ∈ Z++. By the subadditivity of
π, π(−f + k(f + r̄)) + (k − 1)π(−f) ≥ π(kr̄) = kπ(r̄) for all k ∈ Z++. Rearrang-
ing terms and using π(−f) = 1, we get k(1 − π(r̄)) ≥ 1 − π(−f + k(f + r̄)). Thus,
1− π(r̄) ≥ 1

k
(1− π(−f + k(f + r̄))) for all k ∈ Z++. This implies

1− π(r̄) ≥ sup
k

{
1− π(−f − k(−f − r̄))

k
: k ∈ Z++

}
= π(−f − r̄)

where the equality follows from (2.8). This contradicts the hypothesis that π(r̄) > 1 −
π(−f − r̄).

Let K1,K2 ∈ Rn be two closed convex cones such that K2 ⊂ K1. Because K2 ⊂ K1,
every cut-generating function for (2.3) when S = K1 ∩ (Zp × Rn−p) is a cut-generating
function for (2.3) when S = K2 ∩ (Zp × Rn−p). However, it is rather surprising that every
restricted minimal cut-generating function for (2.3) when S = K1 ∩ (Zp × Rn−p) is also a
restricted minimal cut-generating function for (2.3) when S = K2 ∩ (Zp×Rn−p). A similar
statement is also true for minimal cut-generating functions. We show this in the next
proposition.
Proposition 2.21. Let K1,K2 ∈ Rn be two closed convex cones such that K2 ⊂ K1. If π is
a (restricted) minimal cut-generating function for (2.3) when S = K1∩ (Zp×Rn−p), then π
is also a (restricted) minimal cut-generating function for (2.3) when S = K2∩ (Zp×Rn−p).

Proof. We prove the statement for the case of restricted minimality only. A similar claim
on minimal cut-generating functions follows by using Theorem 2.20 instead of Theorem 2.7.
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Assume π is a restricted minimal cut-generating function for (2.3) when S = K1 ∩
(Zp × Rn−p). By Theorem 2.7, π(0) = 0, π is subadditive, nondecreasing with respect
to K1 ∩ (Zp × Rn−p), and satisfies the symmetry condition. Because K2 ⊂ K1, π is also
nondecreasing with respect to K2 ∩ (Zp × Rn−p). Therefore, again by Theorem 2.7, π is a
restricted minimal cut-generating function for (2.3) when S = K2 ∩ (Zp × Rn−p).

In particular, Proposition 2.21 implies that a (restricted) minimal cut-generating func-
tion for (2.3) when S = Zp×Rn−p is still (restricted) minimal for (2.3) when S = Zp+×Rn−p

+ ,
and a (restricted) minimal cut-generating function for (2.3) when S = Zp+ × Rn−p

+ is still
(restricted) minimal for (2.3) when S = {0}. We focus on the cases S = Zp × Rn−p and
S = Zp+ × Rn−p

+ in the next two sections.

2.3.3 The Case S = Zp × Rn−p

Gomory and Johnson [63] and Johnson [75] characterized minimal cut-generating functions
for (2.2) in terms of subadditivity, symmetry, and periodicity with respect to Zn. In this
section, we relate our Theorems 2.7 and 2.20 to their results.

For the model (2.2), Theorem 2.20 states that a function π : Rn → R is a minimal
cut-generating function if and only if π(0) = 0, π is subadditive, periodic with respect to
Zn, and satisfies (2.8). For the same model, Theorem 2.7 shows that π is restricted minimal
if and only if it satisfies the symmetry condition as well as the conditions for minimality
above. In the context of model (2.2), cut-generating functions are conventionally required
to be nonnegative; therefore, the minimal ones take values in the interval [0, 1] only. (See
[45, 63, 75].) While the above implications of Theorems 2.7 and 2.20 hold without this
additional assumption, the notions of minimality and restricted minimality coincide for
nonnegative cut-generating functions for (2.2). To see this, note that any nonnegative
minimal cut-generating function π for (2.2) satisfies π(−f) ≥ 1 because 0 ∈ S and π(−f) ≤
1 because it takes values in [0, 1] only. The periodicity of π with respect to Zn then implies
minx{π(x−f) : x ∈ Zn} = π(−f) = 1. It follows from Proposition 2.5 that any nonnegative
minimal cut-generating function for (2.2) is in fact restricted minimal. Hence, by taking
K = Rn and p = n in the statement of Theorem 2.7, we can recover the well-known result
of Gomory and Johnson on nonnegative minimal cut-generating functions for (2.2).
Theorem 2.22 (Gomory and Johnson [63], Johnson [75]). Let π : Rn → R+. The function
π is a minimal cut-generating function for (2.2) if and only if π(0) = 0, π is subadditive,
symmetric, and periodic with respect to Zn.

Note that when S = Zp × Rn−p, a minimal cut-generating function π : Rn → R for
(2.3) has to be periodic with respect to Zp × Rn−p by Theorem 2.20. In particular, the
value of π cannot depend on the last n − p entries of its argument. This shows a simple
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bijection between minimal cut-generating functions for S = Zp and those for S = Zp×Rn−p:
Let projRp : Rn → Rp denote the orthogonal projection onto the first p coordinates. The
function π′ : Rp → R is a minimal cut-generating function for S = Zp if and only if
π = π′ ◦ projRp is a minimal cut-generating function for S = Zp × Rn−p. Using the same
arguments, one can also show that such a bijection exists between restricted minimal cut-
generating functions for S = Zp and those for S = Zp × Rn−p.

2.3.4 The Case S = Zp+ × Rn−p
+

In this section, we focus on the case where S = Zp+×Rn−p
+ which is of particular importance

in integer linear programming. We simplify the statement of Theorems 2.7 and 2.20 for
this special case exploiting the fact that Rn

+ has the finite generating set {ei}ni=1. However,
we first prove a simple lemma.
Lemma 2.23. Let π : Rn → R be a subadditive function. For any α > 0 and r ∈ Rn,
π(αr)
α
≤ lim supε→0+

π(εr)
ε

.

Proof. Consider ε = α
k
for k ∈ Z++. We have kπ(α

k
r) ≥ π(αr) by the subadditivity of π.

Thus, π(αr)
α
≤ π(α

k
r)

α
k

. Letting k → +∞, this implies π(αr)
α
≤ lim supε→0+

π(εr)
ε

.

Proposition 2.24. Let π : Rn → R be a subadditive function such that π(0) = 0. The
function π is nondecreasing with respect to Zp+ × Rn−p

+ if and only if π(−ei) ≤ 0 for all
i ∈ [p] and lim supε→0+

π(−εei)
ε
≤ 0 for all i ∈ [n] \ [p].

Proof. Suppose π is nondecreasing with respect to Zp+ × Rn−p
+ . Because π(0) = 0, π has

to have π(−ei) ≤ 0 for all i ∈ [p] and lim supε→0+
π(−εei)

ε
≤ 0 for all i ∈ [n] \ [p]. Now

suppose π(−ei) ≤ 0 for all i ∈ [p] and lim supε→0+
π(−εei)

ε
≤ 0 for all i ∈ [n] \ [p]. For any

w ∈ Zp+×Rn−p
+ , using the subadditivity of π and Lemma 2.23 with α = wi for i ∈ [n] \ [p],

we can write

π(−w) ≤
n∑
i=1

π(−wiei) ≤
p∑
i=1

wiπ(−ei) +
n∑

i=p+1
wi lim sup

ε→0+

π(−εei)
ε

≤ 0.

Thus, for any r ∈ Rn and w ∈ Zp+ × Rn−p
+ , π(r + w) ≥ π(r) − π(−w) ≥ π(r). This shows

that π is nondecreasing with respect to Zp+ × Rn−p
+ .

Theorem 2.20 and Proposition 2.24 thus show the following: A function π : Rn → R is
a minimal cut-generating function for (2.3) when S = Zp+ × Rn−p

+ if and only if π(0) = 0,
π(−ei) ≤ 0 for all i ∈ [p] and lim supε→0+

π(−εei)
ε
≤ 0 for all i ∈ [n] \ [p], π is subadditive

and satisfies (2.8). Similarly, Theorem 2.7 and Proposition 2.24 show the following.
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Theorem 2.25. Let S = Zp+ × Rn−p
+ and π : Rn → R. The function π is a restricted

minimal cut-generating function for (2.3) if and only if π(0) = 0, π(−ei) ≤ 0 for all i ∈ [p]
and lim supε→0+

π(−εei)
ε
≤ 0 for all i ∈ [n] \ [p], π is subadditive and satisfies the symmetry

condition.

2.4 Strongly Minimal Cut-Generating Functions
The following example illustrates the distinction between restricted minimal and strongly
minimal cut-generating functions.
Example 2.3. Consider the model (2.3) where n = 1, 0 < f < 1, and S = Z+. The
Gomory function π1

1(r) = min
{
r−brc
1−f ,

dre−r
f

}
is a cut-generating function in this setting

[62]. For any α ≥ 0, we define perturbations of the Gomory function as π3
α(r) = αr +

(1 + αf)π1
1(r). One can easily verify that π3

α(0) = 0 and π3
α(−1) = −α ≤ 0. Furthermore,

π3
α is symmetric and subadditive since π1

1 is. By Theorem 2.25, π3
α is a restricted minimal

cut-generating function. However, for α > 0, π3
α is not strongly minimal because it is

implied by the Gomory function π1
1.

When f /∈ conv S, any valid inequality that strictly separates f from S can be used to
cut off the infeasible solution x = f , y = 0. Therefore, when we analyze strongly minimal
cut-generating functions, our focus will be on the case f ∈ conv S.
Lemma 2.26. Suppose f ∈ conv S. Let π be a (restricted) minimal cut-generating function
for (2.3). Any cut-generating function for (2.3) that implies π is also (restricted) minimal.

Proof. We will prove the claim for the case of restricted minimality only. The proof for
minimality is similar.

Let π be a restricted minimal cut-generating function for (2.3). Let π′ be a cut-
generating function that implies π. Then there exist a valid inequality α>(x − f) ≥ α0
for S and β ≥ 0 such that α0 + β ≥ 1 and π(r) ≥ βπ′(r) + α>r for all r ∈ Rn. Because
f ∈ conv S, the inequality α>(x − f) ≥ α0 is also valid for x = f . Hence, α0 ≤ 0, and
β ≥ 1. We claim that π′ is restricted minimal.

Let π̄′ be a restricted minimal cut-generating function that implies π′ via scaling. Such
a function π̄′ always exists by Proposition 2.6. Then there exists ν ≥ 1 such that π′ ≥ νπ̄′.
By Proposition 2.5 and Theorem 2.2, π̄′ is subadditive. We first show that π̄ : Rn → R,
defined as π̄(r) = βπ̄′(r) + α>r

ν
, is also a cut-generating function. Indeed, for any feasible

solution (x, y) to (2.3), we can use the validity of α>(x−f) ≥ α0 for S and the subadditivity
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of π̄′ to write
∑
r∈Rn

π̄(r)yr =
∑
r∈Rn

α>r

ν
yr+β

∑
r∈Rn

π̄′(r)yr ≥
α>(x− f)

ν
+βπ̄′(x−f) ≥ α0

ν
+β ≥ α0 +β ≥ 1.

Therefore, π̄ is a cut-generating function. Because ν ≥ 1, so is νπ̄. Furthermore, for all
r ∈ Rn, we have

νπ̄(r) = α>r + βνπ̄′(r) ≤ α>r + βπ′(r) ≤ π(r). (2.10)
Since π is a restricted minimal cut-generating function, νπ̄ = π̄ = π, ν = 1, and equality
holds throughout (2.10). In particular, the first inequality in (2.10) is tight. Using this,
ν = 1, and β ≥ 1, we get π̄′ = π′. This proves that π′ is restricted minimal.

The next proposition characterizes strongly minimal cut-generating functions as a cer-
tain subset of restricted minimal cut-generating functions.
Proposition 2.27. Suppose S ⊂ Rn is full-dimensional and f ∈ conv S. Let π : Rn →
R. The function π is a strongly minimal cut-generating function for (2.3) if and only if
it is a restricted minimal cut-generating function for (2.3) and for any valid inequality
α>(x− f) ≥ α0 for S such that α 6= 0, there exists x∗ ∈ S such that π(x∗−f)−α>(x∗−f)

1−α0
< 1.

Proof. We first prove the “only if” part of the statement. Let π be a strongly minimal
cut-generating function for (2.3). It follows by setting α = 0 and α0 = 0 in the definition
of strong minimality that π is restricted minimal. In particular, it is subadditive by The-
orem 2.2 and Proposition 2.5. Suppose there exists a valid inequality α>(x − f) ≥ α0

for S such that α 6= 0 and π(x−f)−α>(x−f)
1−α0

≥ 1 for all x ∈ S. Because f ∈ conv S, we
must have α0 ≤ 0. Define the function π′ : Rn → R by letting π′(r) = π(r)−α>r

1−α0
. We

claim that π′ is a cut-generating function. To see this, first note that π′ is subadditive
because π is. Also, π′(x − f) ≥ 1 for all x ∈ S by our hypothesis. Then for any feasible
solution (x, y) to (2.3), we can write ∑r∈Rn π

′(r)yr ≥ π′(∑r∈Rn ryr) = π′(x−f) ≥ 1. Thus,
π′ is indeed a cut-generating function for (2.3). Furthermore, it is not difficult to show
that π′ is distinct from π. Consider x̄ ∈ S such that α>(x̄ − f) > α0; such a point exists
because S is full-dimensional. Because π is a cut-generating function, π(x̄− f) ≥ 1. Then
π′(x̄− f) = π(x̄−f)−α>(x̄−f)

1−α0
< π(x̄− f) because α>(x̄− f) > α0 ≥ α0π(x̄− f). Finally, note

that π′ implies π since π(r) ≥ (1 − α0)π′(r) + α>r for all r ∈ Rn. Because π′ is distinct
from π, this contradicts the strong minimality of π.

Now we prove the “if” part. Let π be a restricted minimal cut-generating function for
(2.3). Suppose that for any valid inequality α>(x − f) ≥ α0 for S such that α 6= 0, there
exists x∗ ∈ S such that π(x∗−f)−α>(x∗−f)

1−α0
< 1. Let π′ be a cut-generating function that

implies π. Then there exists a valid inequality µ>(x− f) ≥ µ0 and ν ≥ 0 for S such that
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µ0 + ν ≥ 1 and π(r) ≥ νπ′(r) + µ>r for all r ∈ Rn. Note that µ0 ≤ 0 because f ∈ conv S.
We will show π′ = π, proving that π is strongly minimal. First suppose µ 6= 0. Then by our
hypothesis, there exists x∗ ∈ S such that 1 > π(x∗−f)−µ>(x∗−f)

1−µ0
≥ νπ′(x∗−f)

1−µ0
. Rearranging the

terms, we get π′(x∗ − f) < 1−µ0
ν
≤ 1. This contradicts the fact that π′ is a cut-generating

function because the solution x = x∗, yx∗−f = 1, and yr = 0 otherwise is feasible to (2.3).
Hence, we can assume µ = 0. Then we actually have π ≥ νπ′ for some ν ≥ 1. Because π
is restricted minimal, it must be that π′ = π.

2.4.1 Strongly Minimal Cut-Generating Functions for S = Zp+ ×
Rn−p

+

The main result of this section is Theorem 2.8 which was already stated in the introduction.
Theorem 2.8. Let S = Zp+ × Rn−p

+ and f ∈ Rn
+ \ S. Let π : Rn → R. The function π is a

strongly minimal cut-generating function for (2.3) if and only if π(0) = 0, π(−ei) = 0 for
all i ∈ [p] and lim supε→0+

π(−εei)
ε

= 0 for all i ∈ [n] \ [p], π is subadditive and satisfies the
symmetry condition.

Proof. Let π be a restricted minimal cut-generating function. By Theorem 2.25 and Propo-
sition 2.27, it will be enough to show that π(−ei) = 0 for all i ∈ [p] and lim supε→0+

π(−εei)
ε

=
0 for all i ∈ [n] \ [p] if and only if, for any valid inequality α>(x− f) ≥ α0 for Zp+ × Rn−p

+

such that α 6= 0, there exists x∗ ∈ Zp+ × Rn−p
+ such that π(x∗−f)−α>(x∗−f)

1−α0
< 1.

We first prove the “if” part of the statement above. Because π is restricted minimal,
Theorem 2.25 implies that π(−ei) ≤ 0 for all i ∈ [p], lim supε→0+

π(−εei)
ε
≤ 0 for all i ∈

[n]\[p], π is subadditive and symmetric. The symmetry condition implies in particular that
π(−f) = 1. Suppose in addition that for any valid inequality α>(x−f) ≥ α0 for Zp+×Rn−p

+

with α 6= 0, there exists x∗ ∈ Zp+×Rn−p
+ such that π(x∗−f)−α>(x∗−f)

1−α0
< 1. Let α ∈ Rn be such

that αi = −π(−ei) for all i ∈ [p] and αi = − lim supε→0+
π(−εei)

ε
for all i ∈ [n] \ [p]. Note

that α is well-defined since π is subadditive and π(−ei) ≤ lim supε→0+
π(−εei)

ε
= −αi ≤ 0

for all i ∈ [n] \ [p] by Lemma 2.23. Now consider the inequality α>(x− f) ≥ −α>f which
is valid for all x ∈ Zp+ × Rn−p

+ because α ∈ Rn
+. Note that for any x ∈ Zp+ × Rn−p

+ , we can
write

π(x− f)− α>x = π(x− f) +
p∑
i=1

π(−ei)xi +
n∑

i=p+1
lim sup
ε→0+

π(−εei)
ε

xi

≥ π(x− f) +
p∑
i=1

π(−ei)xi +
n∑

i=p+1
π(−eixi) ≥ π(−f) = 1
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by using Lemma 2.23 and the subadditivity of π to obtain the first and second inequality,
respectively. Because α, f ∈ Rn

+ and π(x− f)− α>x ≥ 1 for any x ∈ Zp+ × Rn−p
+ , we have

π(x−f)−α>(x−f)
1+α>f ≥ 1 for any x ∈ Zp+ × Rn−p

+ . Then by our hypothesis, we must have α = 0.
We now prove the “only if” part. Via Theorem 2.25, the restricted minimality of π

implies that π(−ei) ≤ 0 for all i ∈ [p], lim supε→0+
π(−εei)

ε
≤ 0 for all i ∈ [n] \ [p], and π is

subadditive. Suppose in addition that π(−ei) = 0 for all i ∈ [p] and lim supε→0+
π(−εei)

ε
= 0

for all i ∈ [n] \ [p]. Let α>(x − f) ≥ α0 be a valid inequality for Zp+ × Rn−p
+ such that

π(x−f)−α>(x−f)
1−α0

≥ 1 for all x ∈ Zp+ × Rn−p
+ . We are going to show α = 0. First observe

that because the inequality α>(x − f) ≥ α0 is valid for all x ∈ Zp+ × Rn−p
+ , we must have

α ∈ Rn
+ and α0 ≤ 0. Define the function π′ : Rn → R by letting π′(r) = π(r)−α>r

1−α0
. Then

π′ is subadditive because π is. Furthermore, π′(x − f) ≥ 1 for all x ∈ Zp+ × Rn−p
+ by our

choice of the inequality α>(x − f) ≥ α0. These two observations imply that π′ is a cut-
generating function because for any solution (x, y) feasible to (2.3), we have∑r∈Rn π(r)yr ≥
π(x− f) ≥ 1. Furthermore, π′ implies π by definition. It follows from Lemma 2.26 that π′
is also restricted minimal. Then by Theorem 2.25, 0 ≥ π′(−ei) = π(−ei)+αi

1−α0
= αi

1−α0
for all

i ∈ [p] and

0 ≥ lim sup
ε→0+

π′(−εei)
ε

= αi
1− α0

+ 1
1− α0

lim sup
ε→0+

π(−εei)
ε

= αi
1− α0

for all i ∈ [n] \ [p]. Together with α ∈ Rn
+ and α0 ≤ 0, this implies α = 0.

Example 2.4. Theorem 2.8 implies in particular that the cut-generating functions π1
α of

Example 2.1 are strongly minimal. On the other hand, none of the minimal cut-generating
functions π2

α of Example 2.2 are strongly minimal. Indeed, for f > 0, the inequality
α(x − f) ≥ 1 is valid for S = {0} when α ≤ − 1

f
. Therefore, setting α0 = 1 and β = 0 in

the definition of implication shows that π2
α is implied by the trivial cut-generating function

π0 that takes the value 1 for all r ∈ R. Note that π0 is not minimal since it does not satisfy
Lemma 2.10.

2.4.2 Existence of Strongly Minimal Cut-Generating Functions
We observe that Theorem 2.8 is stated for a rather special set S ⊂ Rn. One issue is
the existence of strongly minimal cut-generating functions for a general set S ⊂ Rn. In
particular, in Example 2.2, no strongly minimal cut-generating function exists despite the
existence of minimal and restricted minimal cut-generating functions. We show this in the
next proposition.
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Proposition 2.28. No strongly minimal cut-generating function exists for the model of
Example 2.2.

Proof. Let π be a cut-generating function for the model of Example 2.2. We will show that
π cannot be strongly minimal. That is, we will show that there exists a cut-generating
function π′ 6= π such that π′ implies π.

Let 0 < β < 1, α0 = 1− β > 0, and α = α0
−f < 0. Note that α(x− f) ≥ α0 is valid for

S = {0}. Define the function π′ by letting π′(r) = π(r)−αr
β

. Suppose π′ = π. This implies
π(r) = r

−f for r ∈ R, but we showed in Example 2.4 that such a linear function is implied
by the trivial cut-generating function π0. Therefore, π cannot be strongly minimal in this
case. Hence, we may assume π′ 6= π. We will show that π′ is a cut-generating function.
Since π′ implies π, this will prove that π is not strongly minimal. For every feasible solution
(x, y), we have ∑r∈R π(r)yr ≥ 1 and ∑r∈R ryr = −f . By the definition of π′, we can write∑
r∈R π

′(r)yr = 1
β
(∑r∈R π(r)yr − α

∑
r∈R ryr) ≥ 1

β
(1 + αf) = 1

β
(1 − α0) = 1. Thus, π′ is a

cut-generating function.

Next we prove Theorem 2.9 stated in the introduction.
Theorem 2.9. Suppose the closed convex hull of S ⊂ Rn is a full-dimensional polyhedron.
Let f ∈ conv S. Then every cut-generating function for (2.3) is implied by a strongly
minimal cut-generating function.

Proof. Let π be a cut-generating function for (2.3). By Proposition 2.6, there exists a
restricted minimal cut-generating function π0 that implies π via scaling. By Proposition 2.5
and Theorem 2.2, π0 is subadditive. Furthermore, π0(x − f) ≥ 1 for all x ∈ S. Consider
an explicit description of the closed convex hull of S ⊂ Rn with t linear inequalities:
conv(S) = {x ∈ Rn : αi

>(x − f) ≥ αi0 ∀i ∈ [t]}. Note that αi0 ≤ 0 for all i ∈ [t] because
f ∈ conv S. Let λ∗0 = 0. We define a finite sequence of functions {πi}ti=1 iteratively as
follows:
A. Given πi−1, let λ∗i be the largest value λi that satisfies πi−1(x−f)−λiαi

>(x−f)
1−λiαi0

≥
1 for all x ∈ S.

B. Define the function πi by letting πi(r) = πi−1(r)−λ∗i α
i>r

1−λ∗i α
i
0

.

Claim 1. For all i ∈ {0, . . . , t}, λ∗i ≥ 0 and πi is a restricted minimal cut-generating
function.

We prove the claim by induction. The claim holds for i = 0. Assume that it holds for
i = j−1 where j ∈ [t]. Note that λ∗j is well-defined because the closed convex hull of S ⊂ Rn

is full-dimensional and there exists xj ∈ S such that αj>(xj−f) > αj0. Furthermore, λ∗j ≥ 0
because πj−1(x − f) ≥ 1 for all x ∈ S. The function πj is a subadditive cut-generating
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function because it satisfies πj(x − f) ≥ 1 for all x ∈ S and πj−1 is subadditive by
Proposition 2.5 and Theorem 2.2. Moreover, πj is restricted minimal by Lemma 2.26
because it implies πj−1 by definition and πj−1 is restricted minimal. This concludes the
proof of Claim 1.
Claim 2. For all i ∈ [t] and x ∈ S, πi(x− f) ≤ πi−1(x− f).

Indeed, for all i ∈ [t] and x ∈ S, we can write

πi(x− f) = πi−1(x− f)− λ∗iαi
>(x− f)

1− λ∗iαi0
≤ πi−1(x− f)− λ∗iαi0

1− λ∗iαi0
≤ πi−1(x− f).

The first inequality above follows from the validity of αi>(x − f) ≥ αi0 for S, the second
inequality follows from αi0 ≤ 0 and the fact that πi−1(x − f) ≥ 1 for all x ∈ S. This
concludes the proof of Claim 2.
Claim 3. For all i ∈ [t] and λ > 0, there exists x ∈ S such that πi(x−f)−λαi>(x−f)

1−λαi0
< 1.

To see this, fix i ∈ [t] and suppose that the claim is not true. Then there exists λ > 0
such that

1 ≤ πi(x− f)− λαi>(x− f)
1− λαi0

=
πi−1(x−f)−λ∗i α

i>(x−f)
1−λ∗i α

i
0

− λαi>(x− f)
1− λαi0

= πi−1(x− f)− (λ∗i + λ(1− λ∗iαi0))αi>(x− f)
1− (λ∗i + λ(1− λ∗iαi0))αi0

for all x ∈ S. Because λ(1 − λ∗iαi0) > 0, we get λ∗i + λ(1 − λ∗iαi0) > λ∗i which contradicts
the maximality of λ∗i . This concludes the proof of Claim 3.
Claim 4. For all i ∈ [t] and λ ∈ Ri

+ \ {0}, there exists x ∈ S such that
πi(x−f)−

∑i

`=1 λ`α
`>(x−f)

1−
∑i

`=1 λ`α
`
0

< 1.

We have already proved this for i = 1 in Claim 3. Assume now that the claim holds
for i = j − 1 ∈ [t− 1]. Let λ ∈ Rj

+ \ {0}. If λj = 0, we can write

πj(x− f)−∑j
`=1 λ`α

`>(x− f)
1−∑j

`=1 λ`α
`
0

≤ πj−1(x− f)−∑j−1
`=1 λ`α

`>(x− f)
1−∑j−1

`=1 λ`α
`
0

< 1.

Here we have used Claim 2 to obtain the first inequality and the induction hypothesis to
obtain the second inequality. If λj > 0, we get

πj(x− f)−∑j
`=1 λ`α

`>(x− f)
1−∑j

`=1 λ`α
`
0

≤ πj(x− f)−∑j−1
`=1 λ`α

`
0 − λjαj

>(x− f)
1−∑j−1

`=1 λ`α
`
0 − λjα

j
0

< 1
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by using Claim 3 to obtain the second inequality. This concludes the proof of Claim 4.
By Claim 1, πt is a restricted minimal cut-generating function. Furthermore, πt implies

π0. By Proposition 2.27, to prove that πt is strongly minimal, it is enough to show that
for any valid inequality α>(x− f) ≥ α0 for S such that α 6= 0, there exists x ∈ S such that
π(x−f)−α>(x−f)

1−α0
< 1. Let α>(x − f) ≥ α0 be any valid inequality for S such that α 6= 0.

We have α0 ≤ 0 because f ∈ conv S. By Farkas’ Lemma, there exists λ ∈ Rt
+ \ {0} such

that α = ∑t
`=1 λ`α

` and ∑t
`=1 λ`α

`
0 ≥ α0. By Claim 4 above, there exists x ∈ S such that

πt(x− f)−∑t
`=1 λ`α

` < 1−∑t
`=1 λ`α

`
0 ≤ 1− α0. Proposition 2.27 now implies that πt is

strongly minimal.

2.5 Minimal Cut-Generating Functions for Mixed-
Integer Programs

We now turn to mixed-integer linear programming. As before, it is convenient to work
with an infinite model:

x =f +
∑
r∈Rn

rsr +
∑
r∈Rn

ryr, (2.11a)

x ∈ S, (2.11b)
sr ∈ R+ ∀r ∈ Rn, (2.11c)
yr ∈ Z+ ∀r ∈ Rn, (2.11d)
s, y have finite support. (2.11e)

As earlier, we assume that ∅ 6= S ⊂ Rn. We will also need to assume that f ∈ Rn is not in
the closure of S, that is, f /∈ cl S.

Two functions ψ, π : Rn → R are said to form a cut-generating function pair if the
inequality ∑

r∈Rn ψ(r)sr + ∑
r∈Rn π(r)yr ≥ 1 holds for every feasible solution (x, s, y) of

(2.11). Cut-generating function pairs can be used to generate cutting-planes in mixed-
integer linear programming by simply restricting the above inequality to the vectors r that
appear as nonbasic columns.

Note that the assumption f 6∈ cl S is needed for the existence of ψ in cut-generating
function pairs (ψ, π). Suppose for example that S = R \ {f}. Let r̄ ∈ R \ {0} and ε > 0.
Then the solution x = f + εr̄, y = 0, sr̄ = ε, and sr = 0 for all r 6= r̄ is feasible to (2.11).
Therefore, in any cut-generating function pair (ψ, π) for (2.11), the function ψ : R → R
would have to satisfy ∑

r∈R π(r)yr + ∑
r∈R ψ(r)sr = εψ(r̄) ≥ 1. This, however, implies

ψ(r̄) ≥ 1
ε
for all ε > 0, contradicting ψ(r̄) ∈ R.
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The definitions of minimality, restricted minimality, and strong minimality extend read-
ily to cut-generating function pairs for the model (2.11). A cut-generating function pair
(ψ′, π′) for (2.11) dominates another cut-generating function pair (ψ, π) if ψ ≥ ψ′ and
π ≥ π′, implies (ψ, π) via scaling if there exists β ≥ 1 such that ψ ≥ βψ′ and π ≥ βπ′, and
implies (ψ, π) if there exists β ≥ 0 and a valid inequality α>(x− f) ≥ α0 for S such that
α0 +β ≥ 1, ψ(r) ≥ βψ′(r)+α>r, and π(r) ≥ βπ′(r)+α>r for all r ∈ Rn. A cut-generating
function pair (ψ, π) is minimal (resp. restricted minimal, strongly minimal) if it is not
dominated (resp. implied via scaling, implied) by a cut-generating function pair other than
itself. As for the model (2.3), strongly minimal cut-generating function pairs for (2.11)
are restricted minimal, and restricted minimal cut-generating function pairs for (2.11) are
minimal.

The following theorem extends Theorem 2.1, Proposition 2.6, and Theorem 2.9 to
the model (2.11). The proof of each claim is similar to the proof of its aforementioned
counterpart for the model (2.3) and is therefore omitted.
Theorem 2.29.

i. Every cut-generating function pair for (2.11) is dominated by a minimal cut-generating
function pair.

ii. Every cut-generating function pair for (2.11) is implied via scaling by a restricted
minimal cut-generating function pair.

iii. Suppose the closed convex hull of S ⊂ Rn is a full-dimensional polyhedron. Let f ∈
conv S. Then every cut-generating function pair for (2.11) is implied by a strongly
minimal cut-generating function pair.

Next we state two simple lemmas which will be used in the proof of Theorem 2.32. We
omit a complete proof of Lemma 2.30. Its first claim follows from the observation that for
any cut-generating function pair (ψ, π), the related pair (ψ, π′) where π′ is the pointwise
minimum of ψ and π is a cut-generating function pair that dominates (ψ, π). Its second
claim has a similar proof to that of Lemma 2.11. The reader is referred to [45] for the
proof of Lemma 2.30 in the case S = Zn, which remains valid for general S ⊂ Rn.
Lemma 2.30. Let (ψ, π) be a minimal cut-generating function pair for (2.11). Then

i. π ≤ ψ,
ii. ψ is sublinear, that is, subadditive and positively homogeneous.

Lemma 2.31. Let ψ, π : Rn → R. If π is a cut-generating function for (2.3), ψ is
sublinear, and ψ ≥ π, then (ψ, π) is a cut-generating function pair for (2.11).

Proof. Let (x̄, s̄, ȳ) be a feasible solution of (2.11), and let r̄ = ∑
r∈Rn rs̄r. Note that

(x̄, ỹ), where ỹr̄ = ȳr̄ + 1 and ỹr = ȳr for r 6= r̄, is a feasible solution to (2.3). Then
π(r̄) + ∑

r∈Rn π(r)ȳr = ∑
r∈Rn π(r)ỹr ≥ 1 because π is a cut-generating function for (2.3).
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Using the sublinearity of ψ and ψ ≥ π, we can write ∑r∈Rn ψ(r)s̄r + ∑
r∈Rn π(r)ȳr ≥

ψ(r̄) +∑
r∈Rn π(r)ȳr ≥ π(r̄) +∑

r∈Rn π(r)ȳr ≥ 1. This shows that (ψ, π) is a cut-generating
function pair for (2.11).

Gomory and Johnson [63] characterized minimal cut-generating function pairs for (2.11)
when S = Z. Johnson [75] generalized this result as follows: Consider ψ, π : Rn → R. The
pair (ψ, π) is a minimal cut-generating function pair for (2.11) when S = Zn if and only if
π is a minimal cut-generating function for (2.3) when S = Zn and ψ satisfies

ψ(r) = lim sup
ε→0+

π(εr)
ε

for all r ∈ Rn. (2.12)

In the next result, we give similar characterizations of minimal, restricted minimal, and
strongly minimal cut-generating function pairs for (2.11). Our proof follows the proofs in
[45, 75] for similar results on minimal cut-generating function pairs in the case S = Zn.
Theorem 2.32. Let ψ, π : Rn → R.

i. The pair (ψ, π) is a (restricted) minimal cut-generating function pair for (2.11) if and
only if π is a (restricted) minimal cut-generating function for (2.3) and ψ satisfies
(2.12).

ii. Suppose S ⊂ Rn is full-dimensional and f ∈ conv S. The pair (ψ, π) is a strongly
minimal cut-generating function pair for (2.11) if and only if π is a strongly minimal
cut-generating function for (2.3) and ψ satisfies (2.12).

Proof. We will prove the statement (ii) only. The proof of statement (i) is similar.
We first prove the “only if” part. Suppose (ψ, π) is a strongly minimal cut-generating

function pair for (2.11). Because (ψ, π) is minimal, we have that ψ ≥ π and ψ is sublinear
by Lemma 2.30. Furthermore, π is a cut-generating function for (2.3) since for any feasible
solution (x̄, ȳ) to (2.3), there exists a feasible solution (x̄, s̄, ȳ) to (2.11) such that s̄r = 0
for all r ∈ Rn, and ∑r∈Rn π(r)ȳr = ∑

r∈Rn ψ(r)s̄r + ∑
r∈Rn π(r)ȳr ≥ 1. We claim that π

is a strongly minimal cut-generating function for (2.3). Suppose not. Then there exists a
cut-generating function π′ 6= π, a valid inequality α>(x − f) ≥ α0 for S, and β ≥ 0 such
that α0 + β ≥ 1 and π(r) ≥ βπ′(r) + α>r for all r ∈ Rn. Because f ∈ conv S, α0 ≤ 0 and
β ≥ 1. Define the function ψ′ : Rn → R by letting ψ′(r) = ψ(r)−α>r

β
. The pair (ψ′, π′) is a

cut-generating function pair for (2.11). To see this, first note that ψ′ is sublinear because
ψ is. Furthermore, ψ′ ≥ π′ because ψ′(r) = ψ(r)−α>r

β
≥ π(r)−α>r

β
≥ π′(r) for all r ∈ Rn.

It then follows from Lemma 2.31 that (ψ′, π′) is a cut-generating function pair. Because
π′ 6= π and (ψ′, π′) implies (ψ, π), this contradicts the strong minimality of (ψ, π). Thus,
π is a strongly minimal cut-generating function for (2.3). In particular, π is minimal, and
subadditive by Theorem 2.2.
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Define the function ψ′′ : Rn → R by letting ψ′′(r) = lim supε→0+
π(εr)
ε

. We first show
that ψ′′ is well-defined, that is, it is finite everywhere, and that ψ′′ ≤ ψ. By Lemma 2.30,
π ≤ ψ and ψ is sublinear. Thus, for all ε > 0 and r ∈ Rn, we have

−ψ(−r) = −ψ(−εr)
ε

≤ −π(−εr)
ε

≤ π(εr)
ε
≤ ψ(εr)

ε
= ψ(r).

The second inequality above holds because π(r) + π(−r) ≥ π(0) = 0 for all r ∈ Rn by the
subadditivity of π. This implies

−ψ(−r) ≤ ψ′′(r) = lim sup
ε→0+

π(εr)
ε
≤ ψ(r),

which proves both claims since ψ is real-valued.
It is easy to verify from the definition of ψ′′ that it is sublinear. Furthermore, π ≤ ψ′′

by Lemma 2.23. It then follows from Lemma 2.31 that (ψ′′, π) is a cut-generating function
pair for (2.11). Because the cut-generating function pair (ψ, π) is minimal and ψ′′ ≤ ψ, we
get ψ = ψ′′, proving that ψ satisfies (2.12).

We now prove the “if” part. Suppose π is a strongly minimal cut-generating function
for (2.3) and ψ satisfies (2.12). Note that ψ is sublinear by definition and ψ ≥ π by
Lemma 2.23. It follows from Lemma 2.31 that (ψ, π) is a cut-generating function pair
for (2.11). Let (ψ′, π′) be a cut-generating function pair that implies (ψ, π). We will
show ψ′ = ψ and π′ = π, proving that (ψ, π) is strongly minimal. Let (ψ′′, π′′) be a
minimal cut-generating function pair that dominates (ψ′, π′). By the choice of (ψ′, π′),
there exist a valid inequality α>(x − f) ≥ α0 and β ≥ 0 such that α0 + β ≥ 1 and
ψ(r) ≥ βψ′(r) +α>r ≥ βψ′′(r) +α>r, π(r) ≥ βπ′(r) +α>r ≥ βπ′′(r) +α>r for all r ∈ Rn.
Furthermore, α0 ≤ 0 and β ≥ 1 because f ∈ conv S. By the “only if” part of statement
(i), π′′ is a minimal cut-generating function for (2.3) and ψ′′(r) = lim supε→0+

π′′(εr)
ε

for all
r ∈ Rn. The function π′′ implies π. By the strong minimality of π, we have π′′ = π. Then
π(r) ≥ βπ(r)+α>r for all r ∈ Rn. Let x̄ ∈ S be such that α>(x̄−f) > α0; such a point exists
because S ⊂ Rn is full-dimensional. If β > 1, then π(x̄ − f) ≤ −α>(x̄−f)

β−1 < −α0
β−1 ≤ 1 which

contradicts the fact that π is a cut-generating function. Hence, we can assume β = 1. Then
α>r ≤ 0 for all r ∈ Rn; therefore, α = 0. Using α = 0 and β = 1, we get π = π′′ ≤ π′ ≤ π
and ψ′′ ≤ ψ′ ≤ ψ. Finally, note that ψ′′(r) = lim supε→0+

π′′(εr)
ε

= lim supε→0+
π(εr)
ε

= ψ(r)
for all r ∈ Rn. This shows ψ′′ = ψ′ = ψ and concludes the proof.

Example 2.5. Let n = 1, S = Z+, and 0 < f < 1. We consider the classical Gomory
function ψ(r) = max

{
−r
f
, r

1−f

}
for the continuous nonbasic variables. In the spirit of [53],

the trivial lifting of ψ can be defined as

π5(r) = inf
x∈Z+
{ψ(r + x)} .
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Note that π5 coincides with the Gomory function π1
1(r) = min

{
r−brc
1−f ,

dre−r
f

}
of Example 2.1

on the negative points and with ψ on the nonnegative points. Using standard techniques,
one can verify that (ψ, π5) is a cut-generating function pair for (2.11). Nevertheless, (ψ, π5)
is not a minimal pair. To prove this, it is enough by Theorem 2.32 and Proposition 2.16 to
show that π5 does not satisfy (2.8) and hence is not a minimal cut-generating function for
(2.3). Indeed, note that π5(1) = 1

1−f , whereas π
5(−f − k) = 1 for all k ∈ Z++. Therefore,

π5(1) = 1
1−f 6= 0 = sup

{
1
k
(1− π5(−f − k)) : k ∈ Z++

}
which violates (2.8).

2.6 Appendix
In this appendix, we consider the integer program

x =f +
m∑
j=1

rjyj, (2.13a)

x ∈ S, (2.13b)
yj ∈ Z+ ∀j ∈ [m], (2.13c)

where S ⊂ Rn is a nonempty set and f /∈ S. Let us say that an inequality π′>y ≥ 1 valid for
(2.13) implies another valid inequality π>y ≥ 1 if there exists an inequality α>(x−f) ≥ α0
valid for S and β ≥ 0 such that π ≥ βπ′ +R>α and α0 + β ≥ 1. We show how this notion
can be seen as dominance with respect to a cone in a lifted space [80]. Let us define

K =
{(

t

y

)
∈ Rm+1

+ :
(

t

tf +∑m
j=1 r

jyj

)
∈ cone

(
1
S

)}
.

Then a point (x, y) satisfies (2.13) if and only if (1, x, y) satisfies

x =ft+
m∑
j=1

rjyj, (2.14a)

x ∈ S, (2.14b)
yj ∈ Z+ ∀j ∈ [m], (2.14c)(
t

y

)
∈ K, (2.14d)

t = 1. (2.14e)
The system (2.14) is an exact reformulation of (2.13). Therefore, π>y ≥ 1 is valid for
(2.13) if and only if π>y ≥ t is valid for (2.14). Furthermore, an inequality π′>y ≥ 1 valid
for (2.13) implies another valid inequality π>y ≥ 1 if and only if βπ′>y ≥ βt dominates
π>y ≥ t with respect to K for some β ≥ 0.
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Chapter 3

Extreme Cut-Generating Functions
for the One-Row Problem

Acknowledgments. This chapter is based on joint work with Gérard Cornuéjols [106].

3.1 Introduction

3.1.1 Motivation
Let S ⊂ Rn be a nonempty subset of the Euclidean space. In this chapter, as in Chapter 2,
we consider the infinite relaxation

x =f +
∑
r∈Rn

ryr, (3.1a)

x ∈ S, (3.1b)
yr ∈ Z+ ∀r ∈ Rn, (3.1c)
y has finite support. (3.1d)

The model (3.1) generalizes Gomory and Johnson’s infinite group relaxation [63, 64, 75],
which corresponds to the case S = Zn, and a model studied by Bachem, Johnson, and
Schrader [13], which corresponds to the case S = {0}. The reader is referred to Section 2.1
for a related discussion. In Chapter 2 we characterized minimal cut-generating functions
for (3.1) under different notions of minimality and assumptions on the structure of S. A
yet stronger notion than the minimality of a cut-generating function is its extremality: A
cut-generating function π is said to be extreme if any two cut-generating functions π1, π2
satisfying π = 1

2π1 + 1
2π2 must also satisfy π = π1 = π2. In this chapter we investigate

extreme cut-generating functions for (3.1). We focus on the one-row problem where n = 1.

47
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The structure of extreme cut-generating functions can be very complicated. Construct-
ing extreme cut-generating functions for (3.1), or even verifying that a given cut-generating
function is extreme for (3.1), often requires ad hoc techniques. For the case S = Z, Gomory
and Johnson [64, 65] established the Two-Slope Theorem which identifies an interesting
class of “simple” extreme cut-generating functions. We state this result next. Recall that,
when S = Z, cut-generating functions must be nonnegative over the rationals, and they
are usually assumed to be nonnegative on the whole real line.
Assumption 3.1. When S = Z, all cut-generating functions π satisfy π ≥ 0, that is,
π(r) ≥ 0 for all r ∈ R.

Let I ⊂ R be a compact interval of the real line. We say that a function π : I → R is
piecewise linear if there are finitely many values min I = r0 < r1 < . . . < rt = max I such
that π(r) = ajr + bj for some aj, bj ∈ R at each one of the open intervals (rj−1, rj). The
piecewise linear function π is continuous if and only if π(r0) = a1r0 + b1, π(rt) = atrt + bt,
and π(rj) = ajrj + bj = aj+1rj + bj+1 for j ∈ {1, . . . , t− 1}.
Theorem 3.1 (Gomory-Johnson Two-Slope Theorem [64, 65]). Let S = Z and f ∈ R \Z.
Suppose Assumption 3.1 holds. Let π : R → R be a minimal cut-generating function for
(3.1). If the restriction of π to the interval [0, 1] is a continuous piecewise linear function
with only two slopes, then π is extreme.

Despite their simplicity, two-slope cut-generating functions produce powerful cutting-
planes. Gomory mixed-integer inequalities [62], which are among the most effective cutting-
planes in mixed-integer linear programming [31], are generated by two-slope functions.
Motivated by the success of two-slope cut-generating functions in the case S = Z, in this
chapter we prove a similar result for the case S = Z+.

It follows from the definition of extremality that extreme cut-generating functions are
minimal [63, 75]. In Section 3.2 we show that extreme cut-generating functions for (3.1)
must in fact be strongly minimal. In Section 3.3 we prove a Two-Slope Theorem for extreme
cut-generating functions for (3.1) when S = Z+, in the spirit of the Gomory-Johnson Two-
Slope Theorem for S = Z. A similar extension of the Two-Slope Theorem has recently
appeared in [104].

3.1.2 Notation and Terminology
Let Q and Z++ be the set of rational numbers and strictly positive integers, respectively.
For k ∈ Z++, we let [k] = {1, . . . , k}. We let convV represent the closed convex hull of a
set V ∈ Rn.

We define the minimality, restricted minimality, and strong minimality of a cut-
generating function as in Chapter 2. A cut-generating function π′ for (3.1) dominates
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another cut-generating function π if π ≥ π′, implies π via scaling if there exists β ≥ 1 such
that π ≥ βπ′, and implies π if there exists β ≥ 0 and a valid inequality α>(x − f) ≥ α0
for S such that α0 + β ≥ 1 and π(r) ≥ βπ′(r) + α>r for all r ∈ Rn. A cut-generating
function π is minimal (resp. restricted minimal, strongly minimal) if it is not dominated
(resp. implied via scaling, implied) by a cut-generating function other than itself. We say
that a function π : Rn → R is subadditive if π(r1) + π(r2) ≥ π(r1 + r2) for all r1, r2 ∈ Rn;
it is symmetric or satisfies the symmetry condition if π(r) + π(−f − r) = 1 for all r ∈ Rn;
and it is nondecreasing with respect to S ⊂ Rn if π(r) ≤ π(r+w) for all r ∈ Rn and w ∈ S.

3.2 Two Results for General S
The results of this section hold for general nonempty S ⊂ Rn. We also assume f ∈ conv S
since otherwise any linear inequality which strictly separates f from S can be used to
cut off the infeasible solution x = f , y = 0. The following result shows that extreme
cut-generating functions must in fact be strongly minimal; see Gomory and Johnson [63],
Johnson [75], and Kılınç-Karzan [80] for analogous results.
Lemma 3.2. Suppose f ∈ conv S. Any extreme cut-generating function for (3.1) is
strongly minimal.

Proof. We prove the contrapositive, namely, any cut-generating function that is not
strongly minimal cannot be extreme. Let π be a cut-generating function for (3.1) that
is not strongly minimal. Then there exist a cut-generating function π′ 6= π, a valid in-
equality α>(x− f) ≥ α0 for S, and β ≥ 0 such that α0 + β ≥ 1 and π(r) ≥ α>r + βπ′(r)
for all r ∈ Rn. Because f ∈ conv S, we must have α0 ≤ 0, and β ≥ 1. We divide the rest
of the proof into two cases. In each case, we exhibit cut-generating functions π1, π2 that
are distinct from π and satisfy π = 1

2π1 + 1
2π2.

Case i: α0 + β > 1. Let δ > 0 be such that α0 + β = 1 + δ. Let π1 and π2 be de-
fined as π1 = 1

1+δπ and π2 = 1+2δ
1+δ π. It is easy to check that π = 1

2π1 + 1
2π2. Fur-

thermore, π1 and π2 are distinct from π since for any x ∈ S, π1(x − f) 6= π(x − f)
and π2(x − f) 6= π(x − f). We show that π1 and π2 are indeed cut-generating func-
tions. Let (x, y) be a feasible solution to (3.1) so that f + ∑

r∈Rn ryr = x ∈ S. Then∑
r∈Rn π1(r)yr ≥ 1

1+δ (
∑
r∈Rn α

>ryr + β
∑
r∈Rn π

′(r)yr) ≥ 1
1+δ (α

>(x − f) + β) ≥ α0+β
1+δ = 1.

Similarly, ∑r∈Rn π2(r)yr = 1+2δ
1+δ

∑
r∈Rn π(r)yr ≥ 1+2δ

1+δ > 1. Thus, π1 and π2 are cut-
generating functions.
Case ii: α0 + β = 1. Let π1 and π2 be defined as π1 = π′ and π2 = π + (π − π′). It is
again easy to see that π = 1

2π1 + 1
2π2. The function π1 is a cut-generating function that

is distinct from π by hypothesis. Furthermore, π2 is distinct from π because π1 is distinct
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from π. We show that π2 is a cut-generating function. Note that α0 +β = 1; hence, π2(r) =
π(r) + (π(r)− (α0 +β)π′(r)) = π(r) + ((π(r)−βπ′(r))−α0π

′(r)) ≥ π(r) + (α>r−α0π
′(r))

for all r ∈ Rn. For any feasible solution (x, y) to (3.1), we can write ∑r∈Rn π2(r)yr ≥∑
r∈Rn π(r)yr+∑r∈Rn α

>ryr−α0
∑
r∈Rn π

′(r)yr ≥
∑
r∈Rn π(r)yr+α>(x−f)−α0 ≥ 1 where

the second inequality is obtained by using α0 ≤ 0. Thus, π2 is a cut-generating function.

Recall that any minimal cut-generating function π for (3.1) is subadditive by Theo-
rem 2.2. Thus, π(r1) + π(r2) ≥ π(r1 + r2) for all r1, r2 ∈ Rn. We denote by E(π) the set
of all pairs (r1, r2) for which this inequality is satisfied at equality.
Lemma 3.3. Suppose S is full-dimensional and f ∈ conv S. Let π be a strongly minimal
cut-generating function for (3.1). Suppose there exist cut-generating functions π1 and π2
such that π = 1

2π1 + 1
2π2. Then π1 and π2 are strongly minimal cut-generating functions

and E(π) ⊂ E(π1) ∩ E(π2).

Proof. We first prove that π1 and π2 are strongly minimal cut-generating functions. Sup-
pose π1 is not strongly minimal. Then there exists a cut-generating function π′1 6= π1,
a valid inequality α>(x − f) ≥ α0 for S, and β ≥ 0 such that α0 + β ≥ 1 and
π1(r) ≥ βπ′1(r) + α>r for all r ∈ Rn. Because f ∈ conv S, α0 and β ≥ 1. Define the
function π′ : Rn → R as π′ = β

β+1π
′
1 + 1

β+1π2. The function π′ is a cut-generating func-
tion because it is a convex combination of two cut-generating functions. Furthermore,
π(r) = 1

2π1(r) + 1
2π2(r) ≥ β

2π
′
1(r) + 1

2π2(r) + 1
2α
>r = β+1

2 π′1(r) + 1
2α
>r for all r ∈ Rn. Be-

cause the linear inequality 1
2α
>(x− f) ≥ α0

2 is valid for S, β+1
2 ≥ 0, and β+1

2 + α0
2 ≥ 1, the

function π′ implies π. If α = 0 and β = 1, then π′ = 1
2π
′
1 + 1

2π2 and π′ 6= π because π′1 6= π1.
If α = 0 and β > 1, then π ≥ β+1

2 π′. For any x ∈ S, we have π(x−f) > π′(x−f) because π′
is a cut-generating function and π′(x− f) ≥ 1. If α 6= 0, then there exists x̄ ∈ S such that
α>(x̄ − f) > α0. Such a point x̄ exists because S is full-dimensional. Then we can write
π(x̄−f) ≥ β+1

2 π′(x̄−f)+ 1
2α
>(x̄−f) > β+1

2 π′(x̄−f)+ α0
2 ≥ π′(x̄−f)+ α0+β−1

2 ≥ π′(x̄−f)
by using π′(x̄−f) ≥ 1 and α0+β ≥ 1 to obtain the third and fourth inequality, respectively.
In all three cases, π′ 6= π which contradicts the strong minimality of π.

Now let (r1, r2) ∈ E(π). Because π1 and π2 are minimal cut-generating functions, they
are subadditive by Theorem 2.2. Then

π(r1 + r2) = π(r1) + π(r2) = 1
2(π1(r1) + π1(r2)) + 1

2(π2(r1) + π2(r2))

≥ 1
2π1(r1 + r2) + 1

2π2(r1 + r2) = π(r1 + r2).

This shows that the inequality above must in fact be satisfied as an equality and πj(r1) +
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πj(r2) = πj(r1 + r2) for j ∈ [2]. Equivalently, (r1, r2) ∈ E(π1) ∩ E(π2). Hence, E(π) ⊂
E(π1) ∩ E(π2).

3.3 The One-Row Problem for S = Z+

The main purpose of this section is to prove a Two-Slope Theorem for extreme cut-
generating functions for (3.1) when S = Z+, in the spirit of the Gomory-Johnson Two-Slope
Theorem for S = Z. We assume that f ∈ R+ \ Z+.

When S = Z+, any cut-generating function for (3.1) must take nonnegative values at
nonnegative rationals because minimal cut-generating functions are subadditive and take
nonnegative values at nonnegative integers. In the remainder, we restrict our attention to
cut-generating functions for (3.1) that take nonnegative values at all nonnegative points.
This is satisfied in particular by cut-generating functions that are left or right-continuous
on the nonnegative halfline. Therefore, we make the following assumption.
Assumption 3.2. When S = Z+, all cut-generating functions π satisfy π(r) ≥ 0 for all
r ≥ 0.

This assumption means, in particular, that a cut-generating function π is extreme if and
only if it cannot be written as π = 1

2π1 + 1
2π2 where π1 and π2 are distinct cut-generating

functions satisfying Assumption 3.2. We now state the main result of this section.
Theorem 3.4 (Two-Slope Theorem). Let S = Z+ and f ∈ R+ \ Z+. Suppose Assump-
tion 3.2 holds. Let π : R → R be a strongly minimal cut-generating function for (3.1). If
the restriction of π to any compact interval is a continuous piecewise linear function with
at most two slopes, then π is extreme.

Theorem 3.4 implies, for example, that the cut-generating functions π1
α of Example 2.1

are extreme.
The proof of Theorem 3.4 will go through two lemmas.

Lemma 3.5. Let S = Z+ and f ∈ R+ \ Z+. Let π : R → R be a minimal cut-generating
function for (3.1). If the restriction of π to any compact interval is a continuous piecewise
linear function, then there exist 0 < ε ≤ min{f − bfc, dfe − f} and s− < 0 < s+ such that
π(r) = s−r for r ∈ [−ε, 0] and π(r) = s+r for r ∈ [0, ε].

Proof. Suppose π is a minimal cut-generating function for (3.1). By Theorem 2.20, π(0) =
0 and π is subadditive. Together with π(0) = 0, the continuity and piecewise linearity of π
imply that there exist 0 < ε ≤ min{f −bfc, dfe− f} and s−, s+ ∈ R such that π(r) = s−r
for r ∈ [−ε, 0] and π(r) = s+r for r ∈ [0, ε]. Because π is a cut-generating function for
(3.1), it must satisfy π

(
bfc − f

)
≥ 1 and π

(
dfe − f

)
≥ 1. The subadditivity of π then
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implies kπ
(
bfc−f
k

)
≥ π

(
bfc − f

)
≥ 1 and kπ

(
dfe−f
k

)
≥ π

(
dfe − f

)
≥ 1 for all k ∈ Z++.

For k large enough, bfc−f
k
∈ [−ε, 0] and dfe−f

k
∈ [0, ε]. This proves s− < 0 < s+.

A fundamental tool in the proof of Theorem 3.4 will be the Interval Lemma, as was
already the case in the proof of Gomory and Johnson’s Two-Slope Theorem [64, 65]. The
Interval Lemma has numerous variants (see, for example, Aczél [5], Kannappan [78], Dey
et al. [55], and Basu et al. [20]). Below we give another variant which is well-suited
to our needs in proving Theorem 3.4 because it only assumes a function that is bounded
from below on a finite interval. This condition is known to be equivalent to the classical
continuity assumption in the literature on Cauchy’s additive equation; see Kannappan [78,
Theorem 1.2]. We include a proof of our Interval Lemma here for the sake of completeness.
Our proof follows the approach of [20]. Interval lemmas are usually stated in terms of a
single function, but they can also be worded using three functions; this variant is known
as Pexider’s additive equation (see, for example, Aczél [5] or Basu, Hildebrand, and Köppe
[22]). We state and prove our lemma in this more general form.
Lemma 3.6 (Interval Lemma). Let a1 < a2 and b1 < b2. Consider the intervals A =
[a1, a2], B = [b1, b2], and A + B = [a1 + b1, a2 + b2]. Let f : A → R, g : B → R, and
h : A + B → R. Assume that f is bounded from below on A. If f(a) + g(b) = h(a + b)
for all a ∈ A and b ∈ B, then f , g, and h are affine functions with identical slopes in the
intervals A, B, and A + B, respectively.

Proof. The lemma will follow from several claims about the functions f , g, h.
Claim 1. Let a ∈ A, and let b ∈ B, ε > 0 be such that b+ ε ∈ B. For all k ∈ Z++ such that
a+ kε ∈ A, we have f(a+ kε)− f(a) = k[g(b+ ε)− g(b)].

For ` ∈ [k], we have f(a + `ε) + g(b) = h(a + b + `ε) = f(a + (` − 1)ε) + g(b + ε) by
the hypothesis of the lemma. This implies f(a+ `ε)− f(a+ (`− 1)ε) = g(b+ ε)− g(b) for
` ∈ [k]. Summing all k equations, we obtain f(a + kε) − f(a) = k[g(b + ε) − g(b)]. This
concludes the proof of Claim 1.

Let ā, ā′ ∈ A be such that ā′ − ā ∈ Q and ā′ > ā. Define c = f(ā′)−f(ā)
ā′−ā .

Claim 2. For all a, a′ ∈ A such that a′ − a ∈ Q, we have f(a′)− f(a) = c(a′ − a).
Assume without any loss of generality that a′ > a. Choose a positive rational ε such

that ā′ − ā = p̄ε for some integer p̄, a′ − a = pε for some integer p, and b1 + ε ∈ B. From
Claim 1, we have

f(ā′)− f(ā) = p̄[g(b1 + ε)− g(b1)] and f(a′)− f(a) = p[g(b1 + ε)− g(b1)].

Dividing the first equality by ā′ − ā = p̄ε and the second by a′ − a = pε, we obtain
f(a′)− f(a)

a′ − a
= g(b1 + ε)− g(b1)

ε
= f(ā′)− f(ā)

ā′ − ā
= c.
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Thus, f(a′)− f(a) = c(a′ − a). This concludes the proof of Claim 2.
Claim 3. For all a ∈ A, f(a) = f(a1) + c(a− a1).

Let δ(x) = f(x) − cx. We show that δ(a) = δ(a1) for all a ∈ A to prove the claim.
Because f is bounded from below on A, δ is bounded from below on A as well. Let M be
a number such that δ(a) ≥M for all a ∈ A.

Suppose for a contradiction that there exists some a∗ ∈ A such that δ(a∗) 6= δ(a1). The
lower bound on δ implies δ(a1), δ(a∗) ≥ M . Let D = max{δ(a1), δ(a∗)}. Let N ∈ Z++
be such that N |δ(a∗) − δ(a1)| > D −M . By Claim 2, δ(a1) = δ(a) and δ(a∗) = δ(a′) for
all a, a′ ∈ A such that a1 − a and a∗ − a′ are rational. If δ(a∗) < δ(a1), choose ā, ā′ ∈ A
such that ā < ā′, δ(a1) = δ(ā), δ(a∗) = δ(ā′), ā + N(ā′ − ā) ∈ A, and b1 + (ā′ − ā) ∈ B.
Otherwise, choose ā, ā′ ∈ A such that ā < ā′, δ(a1) = δ(ā′), δ(a∗) = δ(ā), ā+N(ā′− ā) ∈ A,
and b1 + (ā′ − ā) ∈ B. In either case we have ā < ā′ and δ(ā) > δ(ā′). Furthermore, the
choices of ā, ā′, and N imply

N [δ(ā′)− δ(ā)] = −N |δ(ā′)− δ(ā)| = −N |δ(a∗)− δ(a1)| < M −D.

Let ε = ā′ − ā. By Claim 1,

δ(ā+Nε)− δ(ā) = N [δ(b1 + ε)− δ(b1)] = N [δ(ā+ ε)− δ(ā)] = N [δ(ā′)− δ(ā)].

Combining this with the previous inequality, we obtain

δ(ā+Nε)− δ(ā) = N [δ(ā′)− δ(ā)] < M −D.

Because δ(ā) ≤ max{δ(a1), δ(a∗)} = D, this yields δ(ā+Nε) < M −D+ δ(ā) < M which
contradicts the choice of M . This concludes the proof of Claim 3.
Claim 4. For all b ∈ B, g(b) = g(b1) + c(b− b1).

Let k be the smallest positive integer such that k(a2 − a1) ≥ b − b1, and let ε =
b−(b1+(k−1)(a2−a1)). For all ` ∈ [k−1], we have g(b1+`(a2−a1))−g(b1+(`−1)(a2−a1)) =
f(a1 +(a2−a1))−f(a1) = c(a2−a1) by Claim 1. Similarly, g(b)−g(b1 +(k−1)(a2−a1)) =
g(b1 + (k− 1)(a2− a1) + ε)− g(b1 + (k− 1)(a2− a1)) = f(a1 + ε)− f(a1) = cε by Claim 1.
Summing all k equations, we obtain g(b)− g(b1) = cε+ c(k− 1)(a2− a1) = c(b− b1). This
concludes the proof of Claim 4.

Finally, let w ∈ A+B, and let a ∈ A, b ∈ B be such that w = a+ b. By the hypothesis
of the lemma and by Claims 3 and 4, we have h(w) = f(a) + g(b) = f(a1) + c(a − a1) +
g(b1) + c(b− b1) = h(a1 + b1) + c(w − (a1 + b1)).

We are now ready to prove Theorem 3.4. Our proof follows the proof outline of the
original Gomory-Johnson Two-Slope Theorem for S = Z [65].
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Proof of Theorem 3.4. Let I be a compact interval of the real line containing
[
b−fc, 1

]
. By

Lemma 3.5, there exist 0 < ε ≤ min{f−bfc, dfe−f} and s− < 0 < s+ such that π(r) = s−r
for r ∈ [−ε, 0] and π(r) = s+r for r ∈ [0, ε]. Thus, s− and s+ are the two slopes of π.
Assume without any loss of generality that the slopes of π are distinct in the consecutive
intervals delimited by the points min I = r−q < . . . < r−1 < r0 = 0 < r1 < . . . < rt = max I.
It follows that π has slope s+ in interval [ri, ri+1] if i is even and slope s− if i is odd.

Consider cut-generating functions π1, π2 such that π = 1
2π1 + 1

2π2. By Lemma 3.3, π1
and π2 are strongly minimal cut-generating functions. By Theorem 2.8, π, π1, and π2 are
symmetric and satisfy π(0) = π1(0) = π2(0) = 0 and π(−1) = π1(−1) = π2(−1) = 0. The
symmetry condition implies in particular that π(−f) = π1(−f) = π2(−f) = 1.

We are going to obtain the theorem as a consequence of several claims.
Claim 1. In intervals [ri, ri+1] with i even, π1 and π2 are affine functions with positive
slopes s+

1 and s+
2 , respectively.

Let i ∈ {−q, . . . , t − 1} even. Let 0 < ε ≤ r1 be such that ri + ε < ri+1. Define
A = [0, ε], B = [ri, ri+1 − ε]. Then A + B = [ri, ri+1]. Note that the slope of π is s+ in
all three intervals and π(a) + π(b) = π(a + b) for all a ∈ A and b ∈ B. By Lemma 3.3,
π1(a) + π1(b) = π1(a+ b) and π2(a) + π2(b) = π2(a+ b) for all a ∈ A and b ∈ B. Consider
either j ∈ {1, 2}. The function πj is a cut-generating function, so πj(a) ≥ 0 for all a ∈ A
by Assumption 3.2. Lemma 3.6 implies that πj is an affine function with common slope
s+
j in all three intervals A, B, and A+B. Because πj is a minimal cut-generating function,
it is subadditive and satisfies kπj

(
dfe−f
k

)
≥ πj

(
dfe − f

)
≥ 1 for all k ∈ Z++. Choosing k

large enough ensures dfe−f
k
∈ A and kπj

(
dfe−f
k

)
= s+

j

(
dfe − f

)
≥ 1. This shows s+

j > 0
and concludes the proof of Claim 1.
Claim 2. In intervals [ri, ri+1] with i odd, π1 and π2 are affine functions with negative slopes
s−1 and s−2 , respectively.

The proof of the claim is similar to the proof of Claim 1. One only needs to choose
the intervals A, B, and A + B slightly more carefully while using Lemma 3.6. Let i ∈
{−q, . . . , t − 1} odd. Let 0 < ε ≤ −r−1 be such that ri + ε < ri+1 and ε ≤ r1. Define
A = [−ε, 0], B = [ri+ε, ri+1]. Then A+B = [ri, ri+1]. Consider either j ∈ {1, 2}. Because πj
is a minimal cut-generating function, it is subadditive and satisfies πj(a) ≥ −πj(−a) = s+

j a
for all a ∈ A. Thus, πj is minorized by a linear function and bounded from below on A.
Now using Lemmas 3.3 and 3.6, we see that πj is an affine function with common slope
s−j in all three intervals A, B, and A + B. The negativity of s−j then follows from this, the
subadditivity of πj, πj(0) = 0, and πj

(
bfc − f

)
≥ 1. This concludes the proof of Claim 2.

Claims 1 and 2 show that π1 and π2 are continuous functions whose restrictions to the
interval I are piecewise linear functions with two slopes.
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Claim 3. s+ = s+
1 = s+

2 , s− = s−1 = s−2 .
Define L+

−1 and L+
−f as the sum of the lengths of intervals with positive slope contained

in [−1, 0] and [−f, 0], respectively. Define L−−1 and L−−f as the sum of the lengths of
intervals with negative slope contained in [−1, 0] and [−f, 0], respectively. Note that
L+
−f , L

−
−f , L

+
−1, L

−
−1 are all nonnegative, L+

−1 + L−−1 = 1, and L+
−f + L−−f = f . Since π(0) =

π1(0) = π2(0) = 0, π(−f) = π1(−f) = π2(−f) = 1, and π(−1) = π1(−1) = π2(−1) = 0,
the vectors (s+, s−), (s+

1 , s
−
1 ), (s+

2 , s
−
2 ) all satisfy the system

L+
−1σ

+ + L−−1σ
− = 0,

L+
−fσ

+ + L−−fσ
− = −1.

Note that (L+
−1, L

−
−1) 6= 0 because L+

−1 + L−−1 = 1. Suppose the constraint matrix of the
system above is singular. Then the vector (L+

−f , L
−
−f ) must be a multiple λ of (L+

−1, L
−
−1).

However, this is impossible because the system has a solution (s+, s−) and the right-hand
sides of the two equations would have to satisfy 0λ = −1. Therefore, the constraint matrix
is nonsingular and the system must have a unique solution. This implies s+ = s+

1 = s+
2

and s− = s−1 = s−2 , concluding the proof of Claim 3.
The functions π, π1, and π2 are continuous piecewise linear functions which have the

same slope in each interval [ri, ri+1] of I. Therefore, π(r) = π1(r) = π2(r) for all r ∈ I.
Because I can be chosen to be any compact interval that contains

[
b−fc, 1

]
, we have

π = π1 = π2.

Example 3.1. In Theorem 3.4, the cut-generating function π is assumed to be “strongly
minimal”. This assumption cannot be weakened to “minimal” or “restricted minimal” as
illustrated by the following example. For 0 < f < 1 and α ≥ 1, consider the function
π4
α : R→ R defined by

π4
α(r) =


αr

1−f , for r ≥ 0,
−r
f
, for − f < r < 0,

1 + α(r+f)
1−f , for r ≤ −f.

The above function π4
α is a continuous piecewise linear function with only two slopes

(see Figure 3.1). Furthermore, αr
1−f ≤ π4

α(r) ≤ 1 + α(r+f)
1−f for all r ∈ R. We claim that

i. π4
α is a restricted minimal cut-generating function for (3.1),

ii. π4
α is neither strongly minimal nor extreme when α > 1.

As a consequence of Theorem 2.25, to prove (i), it suffices to show that π4
α(0) = 0,

π4
α(−1) ≤ 0, π4

α is subadditive and symmetric. The first two properties are straightforward
to verify. We prove that π4

α is subadditive, that is, π4
α(r1) + π4

α(r2) ≥ π4
α(r1 + r2) for all

r1, r2 ∈ R. We may assume r1 ≤ r2.
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0

1

-1

−f r

π4
α

1

Figure 3.1: The restricted minimal cut-generating function π4
α has only two slopes but is

not extreme.

- If r1 ≤ −f , then π4
α(r1) + π4

α(r2) ≥ 1 + α(r1+f)
1−f + αr2

1−f = 1 + α(r1+r2+f)
1−f ≥ π4

α(r1 + r2).
- If r1 > −f and r1 +r2 < 0, then π4

α(r1)+π4
α(r2) ≥ −r1

f
+ −r2

f
= −(r1+r2)

f
≥ π4

α(r1 +r2).
- If r1 + r2 ≥ 0, then π4

α(r1) + π4
α(r2) ≥ αr1

1−f + αr2

1−f = π4
α(r1 + r2).

Thus, π4
α is subadditive. Furthermore, π4

α is symmetric since the point (−f/2, 1/2) is a
point of symmetry in the graph of the function.

To prove (ii), note that for any α > 1, π4
α(−1) < 0. It follows from Theorem 2.8 that

π4
α is not strongly minimal and from Lemma 3.2 that π4

α is not extreme. Indeed, for any
α > 1, π4

α can be written as π4
α = 1

2π
4
α−ε + 1

2π
4
α+ε, where both functions π4

α−ε and π4
α+ε are

restricted minimal cut-generating functions if we choose 0 < ε ≤ α− 1.
Finally, we observe that when α = 1, the conditions of Theorem 2.8 are satisfied. This

implies that π4
α is strongly minimal in this case and therefore extreme by Theorem 3.4.
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Chapter 4

Sufficiency of Cut-Generating
Functions

Acknowledgments. This chapter is based on joint work with Gérard Cornuéjols and
Laurence Wolsey [51].

4.1 Introduction

4.1.1 Motivation
Let S′ ⊂ Rn be a nonempty closed set such that 0 /∈ S′. In this chapter, we consider the
model

X = X(R, S′) = {s ∈ Rk
+ : Rs ∈ S′}, (4.1)

where R = [r1, . . . , rk] is a real n × k matrix. The model (4.1) has been studied in
[47, 76, 80]. It arises in integer programming when studying Gomory’s corner relaxation
[63, 66] or the relaxation proposed by Andersen, Louveaux, Weismantel, and Wolsey [9].
It also arises in other optimization problems such as complementarity problems [77]. As in
Chapters 2 and 3, in the framework (4.1) the goal is to generate inequalities that are valid
for X but not for the origin. Such cutting planes are well-defined [47, Lemma 2.1] and can
be written as

c>s ≥ 1. (4.2)

Let S′ ⊂ Rn be a given nonempty closed set such that 0 /∈ S′. The set S′ is assumed
to be fixed in this paragraph. A function ρ : Rn → R is a cut-generating function for
X(R, S′) if it produces the coefficients cj = ρ(rj) of a cut (4.2) valid for X(R, S′) for any
choice of k and R = [r1, . . . , rk]. Conforti et al. [47] show that cut-generating functions

57
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enjoy significant structure, generalizing earlier work in integer programming [18, 54]. For
instance, the minimal ones are sublinear and are closely related to S′-free neighborhoods
of the origin. We say that a closed, convex set is S′-free if it contains no point of S′ in its
interior. For any minimal cut-generating function ρ, there exists a closed, convex, S′-free
set V ⊂ Rn such that 0 ∈ intV and V = {r ∈ Rn : ρ(r) ≤ 1}. A cut (4.2) with coefficients
cj = ρ(rj) is called an S′-intersection cut in this chapter.

Now assume that both S′ and R are fixed. Noting X ⊂ Rk
+, we say that a cutting plane

c>s ≥ 1 dominates b>s ≥ 1 if cj ≤ bj for all j ∈ {1, . . . , k}. A natural question is whether
every cut (4.2) that is valid for X is dominated by an S′-intersection cut. Conforti et al.
provide an affirmative response to this question under the condition that coneR = Rn; see
[47, Theorem 6.3]. However, they also give an example which demonstrates that it is not
always the case. This example has the peculiarity that S′ contains points that cannot be
obtained as Rs for any s ∈ Rk

+. Conforti et al. [47] propose the following open problem:
Assuming S′ ⊂ coneR, is it true that every cut (4.2) that is valid for X(R, S′) is dominated
by an S′-intersection cut? The main theorem of this chapter shows that this is indeed the
case.
Theorem 4.1. Let X(R, S′) ⊂ Rk be a nonempty set defined as in (4.1). Suppose S′ ⊂
coneR. Then any valid inequality c>s ≥ 1 separating the origin from X(R, S′) is dominated
by an S′-intersection cut.

Earlier, for the case n = 2, Cornuéjols and Margot [49] showed that every valid cut (4.2)
for X(R, S′) is dominated by an S′-intersection cut for all choices of R when S′ = b+Zn for
some b ∈ Rn\Zn; see [49, Theorem 3.1]. Zambelli [110] generalized this result to arbitrary n.
Conforti et al. [43] showed that a similar statement is true for Gomory’s corner polyhedron.
We note that any valid cut (4.2) must have c ∈ Rk

+ in all of these settings because the
recession cone of the closed convex hull of X(R, S′) equals the nonnegative orthant. Dey
and Wolsey [54] extended these results to the case where S′ = P ∩ (b + Zn) for some
b ∈ Rn \Zn and a rational polyhedron P ⊂ Rn; see [54, Proposition 3.7]. Our Theorem 4.1
further extends them to the case where S′ ⊂ Rn is an arbitrary nonempty closed set such
that 0 /∈ S′. More recently, Theorem 4.1 has been generalized in [81, 82]. These papers
build upon the earlier results of [76, 80] on minimal inequalities for disjunctive sets.

The remainder of the chapter is organized as follows: In Section 4.2 we prove Theo-
rem 4.1. Section 4.3 elaborates on the geometric intuition behind the proof and illustrates
its construction with an example.
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4.1.2 Notation and Terminology
For a positive integer `, we let [`] = {1, . . . , `}. For j ∈ [k], we let ej ∈ Rk denote the
j-th standard unit vector. We let convV, coneV, and spanV represent the convex hull,
conical hull, and linear span of a set V ⊂ Rn, respectively. We use linV and recV to refer
to the lineality space and recession cone of a closed convex set V ⊂ Rn, respectively. The
polar cone of V ⊂ Rn is V◦ = {r ∈ Rn : r>x ≤ 0 ∀x ∈ V}. The dual cone of V ⊂ Rn is
V∗ = −V◦.

A function ρ : Rn → R ∪ {+∞} is said to be positively homogeneous if ρ(λx) = λρ(x)
for all λ > 0 and x ∈ Rn, and subadditive if ρ(x1) + ρ(x2) ≥ ρ(x1 + x2) for all x1, x2 ∈ Rn.
Moreover, ρ is sublinear if it is both positively homogeneous and subadditive. Sublinear
functions are known to be convex. For a nonempty set V ⊂ Rn, the support function of V
is the function σV : Rn → R ∪ {+∞} defined as σV(r) = supx∈V r>x. It is not difficult to
show that σV = σconvV. Support functions of nonempty sets are sublinear. For an in-depth
treatment of sublinearity and support functions, the reader is referred to [69, Chapter
C]. Given a closed, convex neighborhood V ⊂ Rn of the origin, a representation of V is
any sublinear function ρ : Rn → R such that V = {r ∈ Rn : ρ(r) ≤ 1}. Minkowski’s
gauge function is a representation of V, but there can be other representations when V is
unbounded. S′-intersection cuts are generated by representations of closed, convex, S′-free
neighborhoods of the origin.

4.2 Proof of Theorem 4.1
Our proof of Theorem 4.1 will use several lemmas. Throughout this section we assume
that X 6= ∅ and c>s ≥ 1 is a valid inequality separating the origin from X.
Lemma 4.2. Let X ⊂ Rk be a nonempty set defined as in (4.1). Consider a valid inequality
c>s ≥ 1 for X. If u ∈ Rk

+ and Ru = 0, then c>u ≥ 0. Equivalently, c ∈ Rk
+ + ImR>.

Proof. Let s̄ ∈ X. Note that R(s̄ + tu) = Rs̄ ∈ S′ and s̄ + tu ≥ 0 for all t ≥ 0. By the
validity of c, we have c>(s̄ + tu) ≥ 1 for all t ≥ 0. Observing tc>u ≥ 1 − c>s̄ and letting
t → +∞ implies c>u ≥ 0 as desired. Because u is an arbitrary vector in Rk

+ ∩ KerR, we
can write c ∈ (Rk

+ ∩KerR)∗. The equality (Rk
+ ∩KerR)∗ = Rk

+ + ImR> follows from the
facts (Rk

+)∗ = Rk
+, (KerR)∗ = ImR>, and Rk

+ + ImR> is closed (see [96, Cor. 16.4.2]).

Given the valid inequality c>s ≥ 1, we now construct a sublinear function hc : Rn →
R ∪ {+∞} that produces a valid inequality ∑k

j=1 hc(rj)sj ≥ 1 which dominates c>s ≥ 1.
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Let

hc(r) = min c>s (4.3a)
Rs = r, (4.3b)
s ≥ 0. (4.3c)

The function hc is used here in analogy with the proof of Theorem 1 in [110]; see also
Lemma 3.1 in [19] and Theorem 2.3 in [47]. This function was also studied in its primal
form in [32, 73] and in its dual form in [76, 80] because of its connection with minimal
valid inequalities for the set X corresponding to a fixed matrix R.
Remark 4.3. Suppose the hypotheses of Lemma 4.2 are satisfied. Let hc : Rn → R ∪
{+∞} be defined as in (4.3).

i. hc(rj) ≤ cj for all j ∈ [k].
ii. hc(r) ≥ 1 for all r ∈ S′.

Proof. The first claim follows directly from the observation that ej ∈ Rk is feasible to the
linear program (4.3) associated with r = rj. To prove the second claim, let r ∈ S′. If the
linear program (4.3) associated with r = r is infeasible, hc(r) = +∞ ≥ 1. Otherwise, any
feasible solution s̄ to this linear program satisfies s̄ ∈ X and c>s̄ ≥ 1 by the validity of
c>s ≥ 1. Hence, hc(r) ≥ 1.

Lemma 4.4. Let X ⊂ Rk be a nonempty set defined as in (4.1). Consider a valid
inequality c>s ≥ 1 for X. Let hc : Rn → R ∪ {+∞} be defined as in (4.3).

i. hc = σP where P = {y ∈ Rn : R>y ≤ c}.
ii. The function hc is piecewise-linear and sublinear. Furthermore, it is finite on coneR.

Proof. The dual of (4.3) is
max r>y

R>y ≤ c.
(4.4)

By Lemma 4.2, c = c′ + c′′ where c′ ∈ Rk
+ and c′′ ∈ ImR>. Because c′′ ∈ ImR>, there

exists y′′ ∈ Rn such that R>y′′ = c′′ ≤ c. Hence, y′′ ∈ P which shows that the dual linear
program (4.4) is always feasible and strong duality holds. This shows that hc = σP and hc
is indeed a sublinear function.

The linear program (4.3) is feasible if and only if r ∈ coneR. Hence, hc(r) < +∞ for
r ∈ coneR and hc(r) = +∞ for r ∈ Rn \ coneR. The conclusion that hc is finite on coneR
follows from hc = σP > −∞. We now show that hc is piecewise-linear. Let r ∈ coneR. Let
W be a finite set of points for which P = convW + recP. Observe that recP = (coneR)◦
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and r>u ≤ 0 for all u ∈ recP. Thus, r>(w + u) ≤ r>w for all w ∈ convW and u ∈ recP,
which implies

σP(r) = sup
p∈P

r>p ≤ σconvW(r) = sup
w∈convW

r>w = σW(r).

Since W ⊂ P implies σW ≤ σP, we have σP(r) = σW(r). Therefore, hc(r) = σP(r) =
σW(r) = maxw∈W r>w where the last equality follows from the finiteness of W. This and
the fact that coneR is polyhedral imply that hc is piecewise-linear.

Lemma 4.4 implies in particular that hc(0) = 0.
Proposition 4.5. Theorem 4.1 holds when coneR = Rn.

Proof. In this case hc is finite everywhere. Let Vc = {r ∈ Rn : hc(r) ≤ 1}. The set Vc is
a closed, convex neighborhood of the origin because hc is sublinear and finite everywhere,
and hc(0) = 0. Because the Slater condition is satisfied with hc(0) = 0, we have intVc =
{r ∈ Rn : hc(r) < 1} (see, e.g., [69, Prop. D.1.3.3]). Then Vc is also S′-free since hc(r) ≥ 1
for all r ∈ S′ by Remark 4.3(ii). The function hc is a cut-generating function because
it represents the closed, convex, S′-free neighborhood of the origin Vc by definition, and∑k
j=1 hc(rj)sj ≥ 1 is an S′-intersection cut that can be obtained from Vc. By Remark 4.3(i),

hc(rj) ≤ cj for all j ∈ [k]. This shows that the S′-intersection cut ∑k
j=1 hc(rj)sj ≥ 1

dominates c>s ≥ 1.

We now consider the case where coneR ( Rn. We want to extend the definition of
hc to the whole of Rn and show that this extension is a cut-generating function. We will
first construct a function h′c such that i) h′c is finite everywhere on spanR, ii) h′c coincides
with hc on coneR. If rank(R) < n, we will further extend h′c to the whole of Rn by letting
h′c(r) = h′c(r′) for all r ∈ Rn, r′ ∈ spanR, r′′ ∈ (spanR)⊥ such that r = r′ + r′′. Our
proof of Theorem 4.1 will show that this procedure yields a function h′c that is the desired
extension of hc.

Let r0 ∈ − ri(coneR) where ri(·) denotes the relative interior. Note that this guarantees
cone(R ∪ {r0}) = spanR since there exist ε > 0 and d = rank(R) linearly independent
vectors a1, . . . , ad ∈ spanR such that −r0 ± εai ∈ coneR for all i ∈ [d] which implies
±ai ∈ cone(R ∪ {r0}). Now we define c0 as

c0 = sup
r ∈ coneR
α > 0

hc(r)− hc(r − αr0)
α

. (4.5)

Lemma 4.6. Let X ⊂ Rk be a nonempty set defined as in (4.1). Consider a valid inequality
c>s ≥ 1 for X. Let hc : Rn → R ∪ {+∞} be defined as in (4.3). The value c0, defined as
in (4.5), is finite.
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Proof. Any pair r ∈ coneR and α > 0 yields a lower bound on c0: Our choice of r0 ensures
r − αr0 ∈ coneR and c0 ≥ hc(r)−hc(r−αr0)

α
. To get an upper bound on c0, consider any

r̃ ∈ coneR and α̃ ≥ 0. Observe that r̃ − α̃r0 ∈ coneR. By Lemma 4.4, hc(r̃ − α̃r0) =
σP(r̃ − α̃r0) where P = {y ∈ Rn : R>y ≤ c}. Let W be a finite set of points for which
P = convW + recP. Because recP = (coneR)◦, we have (r̃− α̃r0)>u ≤ 0 for all u ∈ recP.
This implies σP(r̃ − α̃r0) = σW(r̃ − α̃r0), and we can write

c0 = sup
r ∈ coneR
α > 0

σW(r)− σW(r − αr0)
α

≤ sup
r ∈ coneR
α > 0

σW(αr0)
α

= σW(r0),

where we have used the sublinearity of σW in the inequality and the second equality. The
conclusion follows now from the fact that W is a finite set.

Remark 4.7. Suppose the hypotheses of Lemma 4.6 are satisfied. If we scale r0 by a
positive scalar λ, then c0 is scaled by λ as well.

Proof. This follows from hc(r)−hc(r−αλr0))
α

= λhc(r/λ)−hc(r/λ−αr0))
α

(positive homogeneity of
hc) and the fact that r ∈ coneR if and only if r/λ ∈ coneR.

Proposition 4.8. Let X(R, S′) ⊂ Rk be a nonempty set defined as in (4.1). Consider a
valid inequality c>s ≥ 1 for X(R, S′). Let hc : Rn → R ∪ {+∞} be defined as in (4.3).
Let r0 ∈ − ri(coneR), and let c0 be defined as in (4.5). Then c0s0 + c>s ≥ 1 is a valid
inequality for X([r0, R],S′).

Proof. Let (s̄0, s̄) ∈ X([r0, R], S′) and r = r0s̄0 +Rs̄ ∈ S′. Then

c0s̄0 + c>s̄ ≥ c0s̄0 +
k∑
j=1

hc(rj)s̄j ≥ c0s̄0 + hc(Rs̄) = c0s̄0 + hc(r − s̄0r0),

where the first inequality follows from Remark 4.3(i) and the second from the sublinearity
of hc. Using the definition of c0 and applying Remark 4.3(ii), we conclude c0s̄0 + c>s̄ ≥
c0s̄0 + hc(r − s̄0r0) ≥ hc(r) ≥ 1.

We define the function h′c on spanR by

h′c(r) = min c0s0 + c>s
r0s0 +Rs = r,
s0 ≥ 0, s ≥ 0.

(4.6)

The function h′c is real-valued, piecewise-linear, and sublinear on spanR as a consequence
of Lemma 4.4 applied to the matrix [r0, R] and the inequality c0s0 + c>s ≥ 1 which is valid
for X([r0, R],S′) by Proposition 4.8.
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Lemma 4.9. Let X ⊂ Rk be a nonempty set defined as in (4.1). Consider a valid inequality
c>s ≥ 1 for X. Let hc, h′c : Rn → R ∪ {+∞} be defined as in (4.3) and (4.6), respectively.
The function h′c coincides with hc on coneR.

Proof. It is clear from the definitions (4.3) and (4.6) that h′c ≤ hc on spanR. Let r ∈ coneR
and suppose h′c(r) < hc(r). Then there exists (s̄0, s̄) satisfying r0s̄0 +Rs̄ = r, s̄ ≥ 0, s̄0 > 0,
and c0s̄0 + c>s̄ < hc(r). Rearranging the terms and using Remark 4.3(i), we obtain

c0 <
hc(r)− c>s̄

s̄0
≤
hc(r)−

∑k
j=1 hc(rj)s̄j
s̄0

.

Finally, the sublinearity of hc and the observation that Rs̄ = r − r0s̄0 give

c0 <
hc(r)−

∑k
j=1 hc(rj)s̄j
s̄0

≤ hc(r)− hc(Rs̄)
s̄0

= hc(r)− hc(r − r0s̄0)
s̄0

.

This contradicts the definition of c0 and proves the claim.

Lemma 4.9 and Remark 4.3 yield the following corollary.
Corollary 4.10. Let X ⊂ Rk be a nonempty set defined as in (4.1). Consider a valid
inequality c>s ≥ 1 for X. Let h′c : Rn → R ∪ {+∞} be defined as in (4.6).

i. h′c(rj) ≤ cj for all j ∈ [k].
ii. Suppose S′ ⊂ coneR. Then h′c(r) ≥ 1 for all r ∈ S′.
If rank(R) < n, we extend the function h′c defined in (4.6) to the whole of Rn by letting

h′c(r) = h′c(r′) for all r ∈ Rn, r′ ∈ spanR, r′′ ∈ (spanR)⊥ such that r = r′ + r′′. (4.7)

Note that this extension preserves the sublinearity of h′c.

Proof of Theorem 4.1. Let h′c be defined as in (4.6) and (4.7), and let V′c = {r ∈ Rn :
h′c(r) ≤ 1}. Observe that V′c is a closed, convex neighborhood of the origin because h′c is
sublinear and finite everywhere, and h′c(0) = 0. Furthermore, intV′c = {r ∈ Rn : h′c(r) < 1}
by the Slater property h′c(0) = 0. This implies that V′c is also S′-free since h′c(r) ≥ 1 for
all r ∈ S′ by Corollary 4.10(ii). The function h′c is a cut-generating function because
it represents V′c, and

∑k
j=1 h

′
c(rj)sj ≥ 1 is an S′-intersection cut. By Corollary 4.10(i),

h′c(rj) ≤ cj for all j ∈ [k]. This shows that the S′-intersection cut ∑k
j=1 h

′
c(rj)sj ≥ 1

dominates c>s ≥ 1.
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4.3 Constructing the S′-Free Convex Neighborhood of
the Origin

Here we give a geometric interpretation for the proof of Theorem 4.1 and explicitly describe
the S′-free neighborhood of the origin V′c = {r ∈ Rn : h′c(r) ≤ 1} in terms of the vectors
r1, . . . , rk.

As in Section 4.2, we let c>s ≥ 1 be a valid inequality separating the origin from X.
Assume without any loss of generality that the vectors r1, . . . , rk have been normalized so
that cj ∈ {0,±1} for all j ∈ [k]. Define the sets J+ = {j ∈ [k] : cj = +1}, J− = {j ∈
[k] : cj = −1}, and J0 = {j ∈ [k] : cj = 0}. Let C = conv({0} ∪ {rj : j ∈ J+}) and
K = cone({rj : j ∈ J0 ∪ J−} ∪ {rj + ri : j ∈ J+, i ∈ J−}). Let A = C + K. Defining hc as
in (4.3), one can show A = {r ∈ Rn : hc(r) ≤ 1}.

When coneR 6= Rn, the origin lies on the boundary of A. This happens in the example
of Figure 4.1. In the proof of Theorem 4.1, we overcame the difficulty occurring when
coneR 6= Rn by extending hc into a function h′c which is defined on the whole of Rn and
coincides with hc on coneR. The geometric counterpart is to extend the set A into a set
A′ that contains the origin in its interior. Let r0 ∈ − ri(coneR) and let c0 be as defined in
(4.5). When c0 6= 0, scale r0 so that c0 ∈ {±1} (this is possible by Remark 4.7). Introduce
r0 into the relevant subset of [k] according to the sign of c0: If c0 = +1, let J′+ = J+ ∪ {0},
J′0 = J0, and J′− = J−; if c0 = 0, let J′+ = J+, J′0 = J0 ∪ {0}, and J′− = J−; and if c0 = −1,
let J′+ = J+, J′0 = J0, and J′− = J− ∪ {0}. Finally, let C′ = conv({0} ∪ {rj : j ∈ J′+}),
K′ = cone({rj : j ∈ J′0 ∪ J′−} ∪ {rj + ri : j ∈ J′+, i ∈ J′−}), and

A′ = C′ + K′ + (spanR)⊥. (4.8)

The example below illustrates this procedure for the cases c0 = +1 and c0 = −1.
Example 4.1. Let R = [r1, r2, r3] be a 2×3 real matrix where r1 = (1, 3), r2 = (1.5, 1.5),
and r3 = (2,−1). Let c ∈ R3 where c1 = c2 = +1 and c3 = −1. The shaded region in
Figure 4.1 is the set A. In Figure 4.2 we add the vector r0 = (−5,−1) to the collection
of vectors {r1, r2, r3}. The new vector r0 has c0 = +1. Its addition expands A to the set
A′ that is depicted. In Figure 4.3 we add the vector r0 = (−4,−5) with c0 = −1 to the
original collection and again obtain A′.

The following proposition shows that the function h′c defined in (4.6) and (4.7) repre-
sents the set A′ defined in (4.8) above.
Proposition 4.11. Let X ⊂ Rk be a nonempty set defined as in (4.1). Consider a valid
inequality c>s ≥ 1 for X. Let h′c : Rn → R ∪ {+∞} be defined as in (4.6) and (4.7). Let
A′ ⊂ Rn be defined as in (4.8). Then A′ = {r ∈ Rn : h′c(r) ≤ 1}.
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Proof. Let V′c = {r ∈ Rn : h′c(r) ≤ 1}. Note that V′c is convex by the sublinearity
of h′c. We have h′c(rj) ≤ cj = 1 for all j ∈ J′+, h′c(rj) ≤ cj ≤ 0 for all j ∈ J′0 ∪ J′−,
and h′c(rj + ri) ≤ h′c(rj) + h′c(ri) ≤ cj + ci = 0 for all j ∈ J′+ and i ∈ J′−. Moreover,
h′c(r) = h′c(r+r′) for all r ∈ Rn and r′ ∈ (spanR)⊥ by the definition of h′c. Hence, C′ ⊂ V′c,
K′ ⊂ recV′c, and (spanR)⊥ ⊂ linV′c, which together give us A′ = C′+K′+(spanR)⊥ ⊂ V′c.

To prove the converse, let r ∈ Rn be such that h′c(r) ≤ 1. We need to show r ∈ A′.
We consider two distinct cases: h′c(r) ≤ 0 and 0 < h′c(r) ≤ 1. First, let us suppose
h′c(r) ≤ 0. Then the definition of h′c implies that there exist (s̄0, s̄) ∈ R × Rk and r′ ∈
(spanR)⊥ such that (s̄0, s̄) ≥ 0, ∑j∈J′+ s̄j −

∑
i∈J′− s̄i ≤ 0, and r0s̄0 +Rs̄ = r− r′. Consider

the cone F = {(s̄0, s̄) ≥ 0 : ∑
j∈J′+ s̄j −

∑
i∈J′− s̄i ≤ 0} defined by the first two sets of

inequalities. The extreme rays of F have all their components equal to 0 except for one or
two components. Therefore, it is easy to verify by inspection that F is generated by the
rays {ej : j ∈ J′0 ∪ J′−} ∪ {ej + ei : j ∈ J′+, i ∈ J′−}. This shows r ∈ K′ + (spanR)⊥ ⊂ A′.
Now suppose 0 < h′c(r) ≤ 1. Then there exist (s̄0, s̄) ∈ R × Rk and r′ ∈ (spanR)⊥ such
that (s̄0, s̄) ≥ 0, 0 < ∑

j∈J′+ s̄j−
∑
i∈J′− s̄i ≤ 1, and r0s̄0 +Rs̄ = r−r′. Define s̄ji = s̄i

s̄j∑
j∈J′+

s̄j

for all i ∈ J′− and j ∈ J′+. These values are well-defined since 0 ≤ ∑
i∈J′− s̄i <

∑
j∈J′+ s̄j.

Observe that ∑j∈J′+ s̄
j
i = s̄i and r0s̄0 +Rs̄ = ∑

j∈J′+(s̄j −
∑
i∈J′− s̄

j
i )rj +∑

i∈J′−
∑
j∈J′+ s̄

j
i (ri +

rj) + ∑
j∈J′0 s̄jrj. We have ∑j∈J′+(s̄j −

∑
i∈J′− s̄

j
i ) = ∑

j∈J′+ s̄j −
∑
i∈J′− s̄i ≤ 1 together with

s̄j −
∑
i∈J′− s̄

j
i > 0 which is true for all j ∈ J′+ because ∑i∈J′− s̄

j
i = s̄j

∑
i∈J′−

s̄i∑
j∈J′+

s̄j
< s̄j. Hence,∑

j∈J′+(s̄j −
∑
i∈J′− s̄

j
i )rj ∈ C′. Moreover, ∑i∈J′−

∑
j∈J′+ s̄

j
i (ri + rj) + ∑

j∈J′0 s̄jr
j ∈ K′. These

yield r ∈ C′ + K′ + (spanR)⊥ = A′.

As a consequence, the set A′ can be used to generate an S′-intersection cut that domi-
nates c>s ≥ 1. Indeed, the proof of Theorem 4.1 shows that V′c = {r ∈ Rn : h′c(r) ≤ 1} is
a closed, convex, S′-free neighborhood of the origin. Proposition 4.11 shows that A′ = V′c.
Therefore, ∑k

j=1 h
′
c(rj)sj ≥ 1 is an S′-intersection cut obtained from A′.
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r1

r2

r3

+r3r2

+r3r1

A

Figure 4.1: The set A for Example 4.1.

r1

r2

r3

+r3r2

+r3r1

r0

+r3r0

A'

Figure 4.2: The set A is expanded to A′
after the addition of r0 = (−5,−1).

r1

r2

r0

+r3r2

+r3r1

+r0r2

+r0r1

r3

A'

Figure 4.3: The set A is expanded to A′
after the addition of r0 = (−4,−5).
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Chapter 5

Two-Term Disjunctions on Regular
Cones

Acknowledgments. This chapter is based on joint work with Fatma Kılınç-Karzan [84,
108]. A preliminary version of [84] appeared in [83].

5.1 Introduction

5.1.1 Motivation
Let E be a finite-dimensional Euclidean space equipped with the inner product 〈·, ·〉. Let
K ⊂ E be a regular (full-dimensional, closed, convex, and pointed) cone. In Chapters 5, 6,
7, and 8, we consider non-convex sets which result from the application of a linear two-term
disjunction on a set of the form

C = {x ∈ K : Ax = b}, (5.1)

where A : E → Rm is a linear map and b ∈ Rm. Specifically, we consider a disjunction
〈c1, x〉 ≥ c1,0 ∨ 〈c2, x〉 ≥ c2,0 on C. In reference to the disjunction, we define the sets

Ci = {x ∈ C : 〈ci, x〉 ≥ ci,0} for i ∈ {1, 2}. (5.2)

The purpose of this chapter is to analyze the structure of the closed convex hull of the
disjunctive conic set C1∪C2 under minimal assumptions on the structure of K. We provide
linear and nonlinear valid inequalities which explicitly describe this closed convex hull in
the space of the original variables. We also develop various techniques for constructing
low-complexity convex relaxations of C1 ∪ C2 in the same space.

67
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Sets of the form C1∪C2 are at the core of convex optimization based solution methods
to conic programs with integrality requirements on the variables and other types of non-
convex constraints. In the context of mixed-integer conic programs (MICPs), integrality
conditions are naturally relaxed into disjunctions satisfied by all feasible solutions; convex
inequalities that are valid for the resulting non-convex sets can then be added to the
problem formulation to obtain a tighter description of the integer hull. Such inequalities
are known as disjunctive inequalities [14]. We comment further on the use of disjunctive
inequalities in the solution of MICPs in Section 5.1.2. In addition, two-term disjunctions
are closely related to non-convex sets defined by rank-two quadratics of the form

X = {x ∈ E : (c1,0 − 〈c1, x〉)(c2,0 − 〈c2, x〉) ≤ 0}.

For instance, given that there does not exist any point x ∈ K which satisfies both 〈c1, x〉 ≥
c1,0 and 〈c2, x〉 ≥ c2,0 strictly, a two-term disjunction on K can be represented using the
set X: C1 ∪ C2 = K ∩ X. We explore this relationship further in Section 5.2.2.

A conic program is the problem of optimizing a linear function over the intersection of
a regular cone with an affine subspace. An MICP is a conic program where some decision
variables are constrained to take integer values. In the special case where the regular cone
which underlies the problem is a nonnegative orthant, MICPs reduce to mixed-integer linear
programs (MILPs). The combined representation power of integer variables and conic con-
straints makes MICPs an attractive framework for modeling optimization problems which
require discrete decisions. Following the development of stable and efficient algorithms for
solving second-order cone programs and semidefinite programs, MICPs with second-order
cone and positive semidefinite cone constraints have received significant attention in the
recent years. These problems find applications in optimization under uncertainty as well
as in engineering design and statistical learning. The reader is referred to Section 1.2 for a
discussion of the applications of MICPs. Motivated by these applications, in Chapters 6,
7, and 8 we place special emphasis on the cases where K is the nonnegative orthant, the
second-order cone, the positive semidefinite cone, or one of their direct products.

5.1.2 Related Work
Disjunctive inequalities, introduced in the early 1970s in the context of MILPs [14], are a
main ingredient of today’s successful integer programming technology. In their most gen-
eral form, disjunctive inequalities are inequalities that are valid for disjunctions on a convex
relaxation of an integer program. Despite their simplicity, the most powerful disjunctions
in integer programming are split disjunctions of the form 〈c1, x〉 ≥ c1,0 ∨ 〈c2, x〉 ≥ c2,0
where the inequalities 〈c1, x〉 ≥ c1,0 and 〈c2, x〉 ≥ c2,0 define opposing, disjoint halfs-
paces. Disjunctive inequalities derived using split disjunctions are called split inequali-
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ties [48]. Some of the most well-known families of cutting-planes for MILPs are split
inequalities: Chvátal-Gomory inequalities [41, 61], Gomory mixed-integer inequalities [62],
mixed-integer rounding inequalities [92], lift-and-project inequalities [16]. . . More general
two-term disjunctions are used for complementarity problems [77, 101] and integer pro-
grams with non-convex quadratic constraints [24, 39]. When K is the nonnegative orthant,
Bonami et al. [34] characterized the closed convex hull of C1∪C2 with a finite set of linear
inequalities. There has been a lot of recent interest in extending the theory of disjunctive
inequalities from the setting of MILPs to that of MICPs. Stubbs and Mehrotra [99, 100]
generalized lift-and-project inequalities to mixed-integer convex programs with 0-1 vari-
ables. Çezik and Iyengar [40] investigated Chvátal-Gomory inequalities for pure-integer
conic programs and lift-and-project inequalities for mixed-integer conic programs with 0-
1 variables. Kılınç, Linderoth, and Luedtke [79] and Bonami [33] suggested improved
methods for generating lift-and-project inequalities for mixed-integer convex programs.
Atamtürk and Narayanan [11] presented a method to lift a valid conic inequality for a
low-dimensional restriction of a mixed-integer conic set into a valid conic inequality for the
actual mixed-integer set.

The set C1 ∪ C2 exemplifies the simplest form of a disjunctive conic set, as defined
by Kılınç-Karzan [80]. In this model, the underlying cone K of the disjunctive conic set
determines a hierarchy for valid linear inequalities in terms of their dominance relations.
Kılınç-Karzan studied valid linear inequalities which are minimal with respect to this hier-
archy and showed that these inequalities generate the associated closed convex hulls under
a mild technical condition which is also satisfied in our setup. Bienstock and Michalka
[30] studied the characterization and separation of linear inequalities which are valid for
the epigraph of a convex, differentiable function restricted to a non-convex domain. While
a regular cone, which provides the base convex set for our disjunctions in Chapters 5, 6,
and 7, can be seen as the epigraph of a convex function, this function is not differentiable.
On the other hand, certain cross-sections of the second-order cone, which we consider in
Chapter 8, correspond to epigraphs of convex, differentiable functions. Nevertheless, we
note that in both cases two-term disjunctions on the domain of these functions are more
limited than those we analyze.

As a special class of MICPs, mixed-integer second-order cone programs (MISOCPs)
have received particular attention. Atamtürk and Narayanan [10] extended mixed-integer
rounding inequalities to MISOCPs. See also [103] for a generalization of this to mixed-
integer p-order cone programs. Drewes [56] analyzed Chvátal-Gomory and lift-and-project
inequalities for MISOCPs. Drewes and Pokutta [57, 58] devised a lift-and-project cutting-
plane framework for MISOCPs with a special structure. In the last few years, several
authors investigated the problem of representing the closed convex convex hull of a two-
term disjunction on the second-order cone or one of its affine cross-sections in the space
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of the original variables with closed-form convex inequalities. Dadush et al. [52] and An-
dersen and Jensen [8] derived split inequalities for ellipsoids and the second-order cone,
respectively. Modaresi et al. extended this work on split disjunctions to essentially all
cross-sections of the second-order cone in [89] and studied their relationship with extended
formulations and conic mixed-integer rounding inequalities in [90]. Belotti et al. [25]
studied the families of quadratic surfaces that have fixed intersections with two given hy-
perplanes and showed that these families can be described by a single parameter. Building
on this, in [27] they identified a procedure for constructing two-term disjunctive inequal-
ities under the assumptions that C1 ∩ C2 = ∅ and the sets {x ∈ C : 〈c1, x〉 = c1,0} and
{x ∈ C : 〈c2, x〉 = c2,0} are bounded.

Recently, results about two-term disjunctions on the second-order cone and its cross-
sections have been extended to intersections of the second-order cone or its affine cross-
sections with a single homogeneous quadratic [38, 88]. To the best of our knowledge, none
of the papers from the existing literature provide closed convex hull characterizations of
two-term disjunctions on the positive semidefinite cone in the space of the original variables.

5.1.3 Notation and Terminology
In this chapter, we consider a finite-dimensional Euclidean space E equipped with the
inner product 〈·, ·〉. If E is a direct product E = ∏p

j=1 Ej of lower-dimensional Euclidean
spaces Ej, we define 〈·, ·〉 as the sum of individual inner products 〈·, ·〉j on Ej. We assume
that Rn is equipped with the inner product 〈α, x〉 = α>x. The (standard) Euclidean
norm ‖ · ‖ : E → R on E is defined as ‖x‖ =

√
〈x, x〉. For any positive integer k, we let

[k] = {1, . . . , k}. For i ∈ [n], we let ei be the i-th unit vector in Rn.
Throughout the chapter, we consider a regular cone K ⊂ E. In the case where E =∏p

j=1 Ej, if each Kj ⊂ Ej is a regular cone for each j ∈ [p], then the direct product
K = ∏p

j=1 Kj is also a regular cone in E. The dual cone of V ⊂ E is V∗ = {α ∈ E :
〈x, α〉 ≥ 0 ∀x ∈ V}. The dual cone K∗ of a regular cone K is also regular, and the dual of
K∗ is K itself. If K = ∏p

j=1 Kj, then K∗ = ∏p
j=1(Kj)∗. Given a set V ⊂ E, we let convV,

convV, intV, and bdV denote the convex hull, closed convex hull, topological interior,
and boundary of V, respectively. We use recV to refer to the recession cone of a closed
convex set V.

5.1.4 Outline of the Chapter
The remainder of this chapter is organized as follows: In Section 5.2 we introduce the basic
elements of our study. In Section 5.2.1 we define the sets C1 and C2 and identify the setup
for our analysis with Conditions 5.1 and 5.2. Condition 5.1 is a natural assumption for this



April 15, 2016
DRAFT

5.1. Introduction 71

study, whereas Condition 5.2 is only needed in results which provide complete closed convex
hull characterizations of C1 ∪ C2. We discuss the pathologies that arise in the absence of
Condition 5.2 in Section 5.3.3. In Section 5.2.2, we establish a connection between two-
term disjunctions on C and non-convex sets C ∩ X defined by simple quadratics; we show
that this connection carries over to convex hulls of these sets as well.

In Section 5.3 we consider two-term disjunctions on a general regular cone K. It is
a well-known fact from convex analysis that the closed convex hull of C1 ∪ C2 can be
described with linear inequalities alone. However, the set of linear inequalities that are
valid for C1 ∪ C2 is typically very large, and only a small subset of these are needed in
a description of the closed convex hull of C1 ∪ C2 besides the cone constraint x ∈ K. In
Section 5.3.1, for a two-term disjunction on a regular cone K, we identify and characterize
the structure of a subset of strong valid linear inequalities which, along with the cone
constraint x ∈ K, are sufficient to describe the closed convex hull of C1 ∪ C2. These
inequalities are tight on C1∪C2 and K-minimal in the sense defined in [80]. We term such
linear inequalities “undominated” in this chapter. In Section 5.3.2 we identify and study
certain cases where the characterization of undominated valid linear inequalities can be
refined further.

In Section 5.4 we develop structured nonlinear valid inequalities for the sets under
consideration through conic programming duality. In Section 5.4.1, we consider two-term
disjunctions on a regular cone K. We formulate the general form of a family of convex
inequalities that are valid for C1 ∪ C2 and explore their structure in detail. The refined
linear inequality characterization of Section 5.3.2 guarantees that a single convex inequality
from this family characterizes the closed convex hull of C1 ∪ C2 under certain conditions.
In Section 5.4.2, using the connection established in Section 5.2.2 between two-term dis-
junctions and non-convex sets defined by rank-two quadratics, we develop convex valid
inequalities and closed convex hull descriptions for sets of the form K∩X. In Section 5.4.3
we show how the results of Section 5.4.1 can be strengthened when C1 and C2 satisfy a
certain disjointness condition.

We note that our results on disjunctions on regular cones easily extend to disjunctions
on homogeneous cross-sections of regular cones if we work in the linear subspace which
defines the cross-section.
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5.2 Preliminaries

5.2.1 Two-Term Disjunctions on Convex Sets
Let C ⊂ E be defined as in (5.1). In this section we start our analysis of the set C1 ∪ C2
and its closed convex hull, where C1 and C2 are defined as in (5.2). We first describe some
conditions which will simplify our analysis of the closed convex hull of C1 ∪ C2.

The inequalities 〈c1, x〉 ≥ c1,0 and 〈c2, x〉 ≥ c2,0 can always be scaled so that their
right-hand sides are 0 or ±1. Therefore, from now on we assume c1,0, c2,0 ∈ {0,±1} for
convenience. Furthermore, conv(C1 ∪ C2) = C2 when C1 ⊂ C2, and conv(C1 ∪ C2) = C1
when C1 ⊃ C2. In both cases, the closed convex hull of C1 ∪ C2 has an immediate
description. In the remainder we assume C1 6⊂ C2 and C1 6⊃ C2.
Condition 5.1. C1 6⊂ C2 and C1 6⊃ C2.

In particular, Condition 5.1 implies C1,C2 6= ∅ and C1,C2 6= C. Condition 5.1 has
a simple implication which we state next. The lemma extends ideas from Balas [15] to
disjunctions on more general convex sets.
Lemma 5.1. Let C ⊂ E be a convex set. Consider Ci = {x ∈ C : 〈ci, x〉 ≥ ci,0} for
i ∈ {1, 2}. Suppose C1 and C2 satisfy Condition 5.1.

i. The set C1 ∪ C2 is not convex unless C1 ∪ C2 = C,
ii. If C is closed and pointed, then conv(C1∪C2) = conv(C+

1 ∪C+
2 ) where C+

1 = C1+recC2
and C+

2 = C2 + recC1.

Proof. To prove (i), suppose C1∪C2 ( C and pick x0 ∈ C\(C1∪C2). Also, pick x1 ∈ C1\C2
and x2 ∈ C2 \ C1. Let x′ be the point on the line segment between x0 and x1 such that
〈c1, x

′〉 = c1,0. Similarly, let x′′ be the point between x0 and x2 such that 〈c2, x
′′〉 = c2,0.

Note that x′ /∈ C2 and x′′ /∈ C1 by the convexity of C\C1 and C\C2. Then a point that is
a strict convex combination of x′ and x′′ is in the convex hull of C1∪C2 but not in C1∪C2.

Now we prove (ii). Corollary 9.1.2 in [96] implies C+
1 and C+

2 are closed and recC+
1 =

recC+
2 = recC1 + recC2 because C is pointed. The inclusions C1 ⊂ C+

1 and C2 ⊂ C+
2

imply that conv(C1 ∪ C2) ⊂ conv(C+
1 ∪ C+

2 ). Furthermore, the convex hull of C+
1 ∪ C+

2 is
closed by Corollary 9.8.1 in [96] since C+

1 and C+
2 have the same recession cone. Hence,

conv(C1 ∪ C2) ⊂ conv(C+
1 ∪ C+

2 ). We claim conv(C1 ∪ C2) = conv(C+
1 ∪ C+

2 ). Let x+ ∈
conv(C+

1 ∪ C+
2 ). Then there exist u1 ∈ C1, v2 ∈ recC2, u2 ∈ C2, and v1 ∈ recC1 such that

x+ ∈ conv{u1 +v2, u2 +v1}. To prove the claim, it is enough to show that u1 +v2, u2 +v1 ∈
conv(C1 ∪ C2). Consider the point u1 + v2 and the sequence{(

1− 1
k

)
u1 + 1

k
(u2 + kv2)

}∞
k=1

.
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For any k > 0, we have u1 ∈ C1 and u2 + kv2 ∈ C2. Therefore, the sequence above is
contained in the convex hull of C1 ∪ C2. Furthermore, it converges to u1 + v2 as k → ∞
which implies u1 + v2 ∈ conv(C1 ∪C2). A similar argument shows u2 + v1 ∈ conv(C1 ∪C2)
and proves the claim.

We also use the following additional technical condition in some of our results.
Condition 5.2. C1 and C2 are strictly feasible. That is, the sets C1∩ intK and C2∩ intK
are nonempty.

Throughout the chapter, we are interested in sets C1 and C2 which are defined as in
(5.2). If c1,0, c2,0 ∈ {0,±1} and the sets C1 and C2 satisfy Conditions 5.1 and 5.2, we say
that C1 and C2 satisfy the basic disjunctive setup.

5.2.2 Intersection of a Convex Set with Non-Convex Rank-Two
Quadratics

In this section we consider the set C ∩ X where

X = {x ∈ E : (c1,0 − 〈c1, x〉)(c2,0 − 〈c2, x〉) ≤ 0} (5.3)

is a non-convex set defined by a rank-two quadratic inequality. As in Section 5.2.1, we
can assume without any loss of generality that c1,0, c2,0 ∈ {0,±1}. Under a disjointness
assumption, the two-term disjunction 〈c1, x〉 ≥ c1,0 ∨ 〈c2, x〉 ≥ c2,0 on C can be written
as the intersection of C with the non-convex set X. We discuss this connection further in
Section 5.4.3.

Note that X = X1 ∪ X2 where

X1 = {x ∈ E : 〈c1, x〉 ≥ c1,0, 〈c2, x〉 ≤ c2,0},
X2 = {x ∈ E : 〈c1, x〉 ≤ c1,0, 〈c2, x〉 ≥ c2,0}.

Associated with X,C ⊂ E, we define the sets C+
i ,C−i ⊂ E where

C+
i = {x ∈ C : 〈ci, x〉 ≥ ci,0}, C−i = {x ∈ C : 〈ci, x〉 ≤ ci,0} for i ∈ {1, 2}. (5.4)

Then C∩X1 = C+
1 ∩C−2 and C∩X2 = C−1 ∩C+

2 . Furthermore, C∩X equals the intersection
of C+

1 ∪C+
2 and C−1 ∪C−2 . In Proposition 5.2 below, we show that the convex hull of C∩X

equals the intersection of the convex hulls of C+
1 ∪ C+

2 and C−1 ∪ C−2 .
Proposition 5.2. Let C ⊂ E be a convex set. Let X ⊂ E and C+

i ,C−i ⊂ E be defined as
in (5.3) and (5.4), respectively.
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i. conv(C ∩ X) = conv(C+
1 ∪ C+

2 ) ∩ conv(C−1 ∪ C−2 ).
ii. If C is closed, then conv(C ∩ X) = conv(C+

1 ∪ C+
2 ) ∩ conv(C−1 ∪ C−2 ).

Proof. First we prove (i). Because C ∩X = (C+
1 ∪C+

2 ) ∩ (C−1 ∪C−2 ), we immediately have
conv(C ∩X) ⊂ conv(C+

1 ∪C+
2 ) ∩ conv(C−1 ∪C−2 ). If conv(C+

1 ∪C+
2 ) ∩ conv(C−1 ∪C−2 ) = ∅,

then we have equality throughout. Let x ∈ conv(C+
1 ∪C+

2 )∩ conv(C−1 ∪C−2 ). We will show
x ∈ conv(C∩X). If x ∈ X, then we are done, because conv(C+

1 ∪C+
2 )∩conv(C−1 ∪C−2 ) ⊂ C.

Hence, we assume x /∈ X. Then x ∈ T+ ∪T− where T+ = {x ∈ E : 〈c1, x〉 > c1,0, 〈c2, x〉 >
c2,0} and T− = {x ∈ E : 〈c1, x〉 < c2,0, 〈c2, x〉 < c2,0}.

Consider the case where x ∈ T+. The case for x ∈ T− is similar. Because x ∈ T+, we
have 〈c1, x〉 > c1,0 and 〈c2, x〉 > c2,0. Because x ∈ conv(C−1 ∪ C−2 ), there exists x1, x2 ∈
C−1 ∪ C−2 such that x ∈ conv{x1, x2}. We claim x1, x2 ∈ X. Suppose not. Then x1 ∈ T−
or x2 ∈ T−. In the first case, x1 satisfies 〈c1, x1〉 < c1,0 and 〈c2, x1〉 < c2,0, whereas
x2 ∈ C−1 ∪ C−2 implies that x2 satisfies at least one of 〈c1, x2〉 ≤ c1,0 or 〈c2, x2〉 ≤ c2,0.
This contradicts x ∈ T+. The case where x2 ∈ T− is analogous and leads to the same
conclusion.

Now we prove (ii). The inclusion conv(C ∩ X) ⊂ conv(C+
1 ∪ C+

2 ) ∩ conv(C−1 ∪ C−2 )
follows from statement (i). As in the proof of statement (i), we can assume conv(C+

1 ∪
C+

2 ) ∩ conv(C−1 ∪ C−2 ) 6= ∅. Let x ∈ conv(C+
1 ∪ C+

2 ) ∩ conv(C−1 ∪ C−2 ). We will show
x ∈ conv(C∩X). Because x ∈ C, it is enough to consider x /∈ X. Suppose x ∈ T+. Because
x ∈ conv(C−1 ∪C−2 ), there exists a sequence {ui}∞i=1 ⊂ conv(C−1 ∪C−2 ) which converges to x.
The subsequence {ui}∞i=1∩T+ is infinite, contained in conv(C+

1 ∪C+
2 )∩conv(C−1 ∪C−2 ), and

also converges to x. By statement (i), this subsequence is also contained in conv(C ∩ X).
Therefore, x ∈ conv(C ∩ X).

5.3 Properties of Valid Linear Inequalities for Dis-
junctions on Regular Cones

In the rest of this chapter, we consider the case where the description of C contains an
empty set of linear equations. In other words, we let C = K. With this, the sets C1 and
C2 take the form

Ci = {x ∈ K : 〈ci, x〉 ≥ ci,0} for i ∈ {1, 2}. (5.5)

The main purpose of this section is to characterize the structure of undominated valid
linear inequalities for C1 ∪C2. As before, we assume that C1 and C2 satisfy Condition 5.1
and each inequality 〈ci, x〉 ≥ ci,0 has been scaled so that ci,0 ∈ {0,±1}. For some results,
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we also require C1 and C2 to satisfy Condition 5.2. When this is the case, we say that C1
and C2 satisfy the basic disjunctive setup.

Under Condition 5.2, the sets C1 and C2 always have nonempty interior. Note that the
set Ci is always strictly feasible when it is nonempty and ci,0 ∈ {±1}. Therefore, we need
Condition 5.2 to supplement Condition 5.1 only when c1,0 = 0 or c2,0 = 0. We note that
Condition 5.2 is primarily needed for sufficiency results, that is, explicit closed convex hull
characterizations, and even in the absence of Condition 5.2, our techniques yield convex
valid inequalities for C1∪C2. We evaluate the necessity of Condition 5.2 for our sufficiency
results with an example in Section 5.3.3.

The next lemma obtains a natural consequence of Condition 5.1 through conic duality.
Lemma 5.3. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (5.5).
Suppose Condition 5.1 holds. Then the following system of inequalities in the variable β1
is inconsistent:

β1 ≥ 0, β1c1,0 ≥ c2,0, c2 − β1c1 ∈ K∗. (5.6)

Similarly, the following system of inequalities in the variable β2 is inconsistent:

β2 ≥ 0, β2c2,0 ≥ c1,0, c1 − β2c2 ∈ K∗. (5.7)

Proof. Suppose there exists β∗1 satisfying (5.6). For all x ∈ K, this implies 〈c2− β∗1c1, x〉 ≥
0 ≥ c2,0 − β∗1c1,0. Then any point x ∈ C1 satisfies β∗1〈c1, x〉 ≥ β∗1c1,0 and therefore,
〈c2, x〉 ≥ c2,0. Hence, C1 ⊂ C2 which contradicts Condition 5.1. The proof for the
inconsistency of (5.7) is similar.

5.3.1 Undominated Valid Linear Inequalities
It is well-known that the closed convex hull of any set can be described with valid linear
inequalities alone (see, e.g., [69, Theorem 4.2.3]). In this section, using the special structure
of the set C1 ∪C2, we show that a subset of strong valid linear inequalities is sufficient for
a description of the closed convex hull of C1∪C2. Besides being smaller in size, this subset
of linear inequalities also has a particular structure which is instrumental in the derivation
of the nonlinear valid inequalities in Chapter 6.

A valid linear inequality 〈µ, x〉 ≥ µ0 for a nonempty set S ⊂ K is said to be tight if
infx{〈µ, x〉 : x ∈ S} = µ0 and strongly tight if there exists x∗ ∈ S such that 〈µ, x∗〉 = µ0.
A valid linear inequality 〈ν, x〉 ≥ ν0 for a strictly feasible set S ⊂ K is said to dominate
another valid linear inequality 〈µ, x〉 ≥ µ0 if there exists β > 0 such that (µ−βν, µ0−βν0) ∈
(K∗ × −R+) \ {(0, 0)}. A valid linear inequality 〈µ, x〉 ≥ µ0 is said to be undominated if
there does not exist another valid linear inequality 〈ν, x〉 ≥ ν0 such that (µ− ν, µ0 − ν0) ∈
(K∗×−R+) \ {(0, 0)}. This notion of domination is closely tied with the conic minimality
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definition of [80] which says that a valid linear inequality 〈µ, x〉 ≥ µ0 is minimal with
respect to the cone K, or K-minimal, if there does not exist another valid linear inequality
〈ν, x〉 ≥ ν0 such that (µ − ν, µ0 − ν0) ∈ (K∗ \ {0}) × −R+. In particular, a valid linear
inequality for C1 ∪ C2 is undominated in the sense considered here if and only if it is K-
minimal and tight on C1∪C2. Kılınç-Karzan [80] defines and studiesK-minimal inequalities
for disjunctive conic sets of the form {x ∈ K : Ax ∈ S} where S ⊂ Rm is an arbitrary
nonempty set, A : E→ Rm is a linear map, and K ⊂ E is a regular cone. Our set C1 ∪C2
can be represented in this form asx ∈ K :

(
〈c1, x〉
〈c2, x〉

)
∈
(
c1,0 + R+

R

)⋃(
R

c2,0 + R+

).
Because C1 ∪ C2 is full-dimensional under Condition 5.2, [80, Proposition 2] implies that
the extreme rays of the convex cone of valid linear inequalities

{(µ, µ0) ∈ E× R : 〈µ, x〉 ≥ µ0 ∀x ∈ C1 ∪ C2}

are either K-minimal, or they are implied by the cone constraint x ∈ K. It is also not
difficult to show that these extreme rays have to be tight valid linear inequalities. Hence,
undominated valid linear inequalities can produce an outer description of the closed convex
hull of C1 ∪ C2, together with the cone constraint x ∈ K.

Because C1 and C2 satisfy Condition 5.2, the strong duality theorem of conic program-
ming implies that an inequality 〈µ, x〉 ≥ µ0 is valid for C1 ∪ C2 if and only if there exist
α1, α2, β1, and β2 such that (µ, µ0, α1, α2, β1, β2) satisfies

µ = α1 + β1c1, µ = α2 + β2c2,

β1c1,0 ≥ µ0, β2c2,0 ≥ µ0,

α1 ∈ K∗, β1 ∈ R+, α2 ∈ K∗, β2 ∈ R+.

(5.8)

Consider (µ, µ0, α1, α2, β1, β2) which satisfies (5.8). If µ0 < β1c1,0 and µ0 < β2c2,0, the
inequality 〈µ, x〉 ≥ µ0 is not tight on C1 ∪ C2. Any such inequality is dominated by
〈µ, x〉 ≥ min{β1c1,0, β2c2,0} which has a larger right-hand side. Furthermore, when β1 = 0
or β2 = 0, the inequality 〈µ, x〉 ≥ µ0 is implied by the cone constraint x ∈ K. Therefore,
any inequality 〈µ, x〉 ≥ µ0 which is valid for and tight on C1∪C2 and not implied by x ∈ K
is characterized by a tuple (µ, µ0, α1, α2, β1, β2) that satisfies

µ = α1 + β1c1, µ = α2 + β2c2,

min{β1c1,0, β2c2,0} = µ0,

α1 ∈ K∗, β1 ∈ R+ \ {0}, α2 ∈ K∗, β2 ∈ R+ \ {0}.
(5.9)
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In Proposition 5.5 below, we show that this system can be strengthened significantly when
we consider undominated valid linear inequalities. We first prove a simple lemma.
Lemma 5.4. Let K ⊂ E be a regular cone. Let r ∈ E.

i. There exist α1, α2 ∈ K∗ such that α1 − α2 = r.
ii. Consider α1, α2 ∈ K∗ such that α1 − α2 = r. Suppose r /∈ ± intK∗. Then there exist

α′1, α
′
2 ∈ bdK∗ such that α′1 − α′2 = r, α1 − α′1 ∈ K∗, and α2 − α′2 ∈ K∗.

Proof. First we prove statement (i). The dual coneK∗ is also a regular cone. Let e ∈ intK∗.
Then there exists ε > 0 such that e + B(ε) ⊂ K∗ where B(ε) = {x ∈ E : ‖x‖ ≤ ε}. Let
r ∈ E. Then ε

‖r‖r ∈ B(ε). Hence, e + ε
‖r‖r ∈ K∗. After scaling, we obtain ‖r‖

ε
e + r ∈ K∗,

which implies that r can be written as the difference of some point in K∗ and ‖r‖
ε
e.

If r ∈ bdK∗, let α′1 = r and α′2 = 0. If r ∈ − bdK∗, let α′1 = 0 and α′2 = r. In either
case, α′1 and α′2 satisfy the claims of the lemma. Now consider the case r /∈ ±K∗. The
rays α1 and α2 must be distinct and nonzero. Let ε1 ≥ 0 be such that α2 − ε1α1 ∈ bdK∗.
Let ε2 ≥ 0 be such that (1 − ε1)α1 − ε2(α2 − ε1α1) ∈ bdK∗. Here the scalars ε1 and ε2
are well-defined because K∗ is pointed. The points α′1 = (1 − ε1)α1 − ε2(α2 − ε1α1) and
α′2 = (1− ε2)(α2 − ε1α1) satisfy the claims of the lemma.

Proposition 5.5. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in
(5.5). Suppose C1 and C2 satisfy the basic disjunctive setup. Then, up to positive scal-
ing, any undominated valid linear inequality for C1 ∪ C2 has the form 〈µ, x〉 ≥ µ0 with
(µ, µ0, α1, α2, β1, β2) satisfying

µ = α1 + β1c1, µ = α2 + β2c2,

min{β1c1,0, β2c2,0} = µ0,

α1 ∈ bdK∗, β1 ∈ R+ \ {0}, α2 ∈ bdK∗, β2 ∈ R+ \ {0}.
(5.10)

Proof. Let 〈ν, x〉 ≥ ν0 be a valid inequality for C1 ∪ C2. Then there exist α1, α2, β1, and
β2 such that (ν, ν0, α1, α2, β1, β2) satisfies (5.8). If (ν, ν0, α1, α2, β1, β2) does not satisfy
(5.9), then it is dominated. Hence, we can assume without any loss of generality that
(ν, ν0, α1, α2, β1, β2) satisfies (5.9). Let r = β2c2−β1c1. If r /∈ ± intK∗, then the inequality
〈ν, x〉 ≥ ν0 is either equivalent to or dominated by the inequality 〈µ, x〉 ≥ ν0 where µ =
α′1 + β1c1 = α′2 + β2c2 for α′1 and α′2 chosen as in Lemma 5.4(ii). In the remainder of the
proof, we consider the case r ∈ ± intK∗. We will show that the inequality 〈ν, x〉 ≥ ν0 is
either equivalent to or dominated by an inequality 〈µ, x〉 ≥ ν0 which satisfies (5.10).

Suppose r ∈ intK∗; the analysis for the case r ∈ − intK∗ is similar. By Lemma 5.3 and
taking β1, β2 > 0 into account, we conclude i) β2c2,0 > β1c1,0, and ii) α1 = α2 + r ∈ intK∗.
Statement (i) further implies ν0 = β1c1,0. There are two cases that we need to consider:
α2 6= 0 and α2 = 0.
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First suppose α2 6= 0. Let α′1 = r, α′2 = 0, and µ = ν − α2. Then the inequality
〈µ, x〉 ≥ ν0 is valid for C1 ∪ C2 because (µ, ν0, α

′
1, α

′
2, β1, β2) satisfies (5.8). Furthermore,

〈µ, x〉 ≥ ν0 dominates 〈ν, x〉 ≥ ν0 since ν − µ = α2 ∈ K∗ \ {0}.
Now suppose α2 = 0. Then α1 = r ∈ intK∗. If ν0 > 0, then c2,0 > 0 as well. In

this case, we must have c2 /∈ −K∗; otherwise, Condition 5.2 is violated. Let ε > 0 be
such that α′1 = α1 − εc2 ∈ bdK∗. Here the scalar ε is well-defined because c2 /∈ −K∗.
We define β′2 = β2 − ε and µ = ν − εc2. If ν0 < 0, we can assume c2 /∈ K∗; otherwise,
the inequality 〈ν, x〉 ≥ ν0 is implied by the cone constraint x ∈ K. Let ε > 0 be such
that α′1 = α1 + εc2 ∈ bdK∗. The scalar ε is well-defined because c2 /∈ K∗. We define
β′2 = β2 + ε′ and µ = ν + ε′c2. In either case, Lemma 5.3 shows that β′2c2,0 > β1c1,0
since β′2c2 − β1c1 = α′1 ∈ K∗. Furthermore, the inequality 〈µ, x〉 ≥ ν0 is valid for C1 ∪ C2

because (µ, ν0, α
′
1, α2, β1, β

′
2) satisfies (5.10). It dominates 〈ν, x〉 ≥ ν0 because µ = β′2

β2
ν

which satisfies β′2 < β2 when ν0 > 0 and β′2 > β2 when ν0 < 0. In the case ν0 = 0, we
can assume c2 /∈ ±K∗; otherwise, either Condition 5.2 is violated or 〈ν, x〉 ≥ ν0 is implied
by the cone constraint x ∈ K. Let ε > 0 be such that α′1 = α1 + εc2 ∈ bdK∗. We define
β′2 = β2 + ε and µ = ν + εc2. Then the inequality 〈µ, x〉 ≥ ν0 is a positive multiple of
〈ν, x〉 ≥ ν0. Furthermore, (µ, ν0, α

′
1, α2, β1, β

′
2) satisfies (5.10).

Any tuple (µ, µ0, α1, α2, β1, β2) satisfying (5.10) must also satisfy r = β2c2 − β1c1 /∈
± intK∗ since having r ∈ ± intK∗ contradicts either α1 = α2 + r ∈ bdK∗ or α2 = α1− r ∈
bdK∗. For ease of exposition in the remainder of this section, let us define the scalar
µ0(β1, β2) = min{β1c1,0, β2c2,0}. Let us also define the sets

B = {(β1, β2) ∈ R2 : β1, β2 > 0, β2c2 − β1c1 6∈ ± intK∗}, (5.11)
M′(β1, β2) = {µ ∈ E : ∃α1, α2 ∈ bdK∗, µ = α1 + β1c1 = α2 + β2c2}. (5.12)

Proposition 5.5 implies the following result.
Corollary 5.6. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (5.5).
Suppose C1 and C2 satisfy the basic disjunctive setup. Then the closed convex hull of
C1 ∪ C2 is

conv(C1 ∪ C2) = {x ∈ K : 〈µ, x〉 ≥ µ0(β1, β2) ∀µ ∈M′(β1, β2), (β1, β2) ∈ B} .

The system (5.10) is homogeneous in the tuple (µ, µ0, α1, α2, β1, β2). Therefore, in an
undominated valid inequality 〈µ, x〉 ≥ µ0, we can assume without any loss of generality
that the whole tuple has been scaled by a positive real number so that β1 = 1 or β2 = 1.
Proposition 5.7. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in
(5.5). Suppose C1 and C2 satisfy the basic disjunctive setup. Then, up to positive scal-
ing, any undominated valid linear inequality for C1 ∪ C2 has the form 〈µ, x〉 ≥ µ0 with



April 15, 2016
DRAFT

5.3. Properties of Valid Linear Inequalities 79

(µ, µ0, α1, α2, β1, β2) satisfying one of the following systems:

(i)

µ = α1 + β1c1,

µ = α2 + c2,

β1c1,0 ≥ c2,0 = µ0,

α1, α2 ∈ bdK∗,
β1 ∈ R+ \ {0}, β2 = 1,

(ii)

µ = α1 + c1,

µ = α2 + β2c2,

β2c2,0 ≥ c1,0 = µ0,

α1, α2 ∈ bdK∗,
β2 ∈ R+ \ {0}, β1 = 1.

(5.13)

Keeping c1,0, c2,0 ∈ {0,±1} in mind, observe that the first of the two systems in (5.13) is
infeasible when c2,0 > c1,0 and the second is infeasible when c1,0 > c2,0. Therefore, in these
cases it is enough to consider only one of these systems. When c1,0 = c2,0 however, one may
need valid linear inequalities that are associated with either of the two systems in (5.13)
for a description of the closed convex hull of C1 ∪ C2. Still, for this case Proposition 5.7
implies that any undominated valid linear inequality for C1∪C2 can be written in the form
〈µ, x〉 ≥ µ0 where µ0 = c1,0 = c2,0.

Proposition 5.7 can be used to strengthen the statement of Corollary 5.6 as follows.
Let r = c2 − β1c1. First, note that any tuple (µ, µ0, α1, α2, β1, β2) satisfying the first
system in (5.13) must also satisfy r /∈ ± intK∗ since having r ∈ ± intK∗ contradicts either
α1 = α2 + r ∈ bdK∗ or α2 = α1 − r ∈ bdK∗. Analogously, any tuple (µ, µ0, α1, α2, β1, β2)
satisfying the second system in (5.13) must also satisfy c1 − β2c2 /∈ ± intK∗. Let us define
the sets

B1 = {β1 > 0 : β1c1,0 ≥ c2,0, c2 − β1c1 6∈ ± intK∗}, (5.14a)
B2 = {β2 > 0 : β2c2,0 ≥ c1,0, β2c2 − c1 6∈ ± intK∗}. (5.14b)

Now Proposition 5.7 implies the following result.
Corollary 5.8. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (5.5).
Suppose C1 and C2 satisfy the basic disjunctive setup. Then the closed convex hull of
C1 ∪ C2 is

conv(C1 ∪ C2) =
{
x ∈ K : 〈µ, x〉 ≥ c2,0 ∀µ ∈M′(β1, 1), β1 ∈ B1,

〈µ, x〉 ≥ c1,0 ∀µ ∈M′(1, β2), β2 ∈ B2

}
.

5.3.2 When Does a Single (β1, β2) Pair Suffice?
In this section we continue to study the closed convex hull of C1 ∪C2. The main result of
this section is Theorem 5.9, which shows that under certain conditions the closed convex
hull of C1 ∪ C2 has a simpler outer description than the one given in Corollary 5.8.
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Theorem 5.9. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (5.5).
Suppose C1 and C2 satisfy the basic disjunctive setup. Let µ0 = min{c1,0, c2,0}. Suppose
one of the conditions below holds:

i. The points c1, c2 ∈ E satisfy c1 ∈ K∗ or c2 ∈ K∗.
ii. The convex hull of C1 ∪ C2 is closed and c1,0 = c2,0 ∈ {±1}.

Then the closed convex hull of C1 ∪ C2 is

conv(C1 ∪ C2) = {x ∈ K : 〈µ, x〉 ≥ µ0 ∀µ ∈M′(1, 1)} .

Theorem 5.9 is a consequence of several lemmas, which refine the results of Section 5.3.1
on the structure of undominated valid linear inequalities for C1 ∪ C2. These lemmas are
the subject of the next two sections.

The Recession Cones of C1 and C2

The lemma below shows that the statement of Proposition 5.7 can be strengthened sub-
stantially when c1 ∈ K∗ or c2 ∈ K∗. Note that ci ∈ K∗ implies recCi = K in either
case.
Lemma 5.10. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (5.5).
Suppose C1 and C2 satisfy the basic disjunctive setup. Suppose c1 ∈ K∗ or c2 ∈ K∗. Let
µ0 = min{c1,0, c2,0}. Then, up to positive scaling, any undominated valid linear inequality
for C1 ∪ C2 has the form 〈µ, x〉 ≥ µ0 where µ ∈M′(1, 1).

Proof. Having ci ∈ K∗ implies recCi = K. If c1,0 ≤ 0 or c2,0 ≤ 0, then Lemma 5.1 shows
conv(C1 ∪ C2) = K. In this case all valid inequalities for C1 ∪ C2 are implied by the cone
constraint x ∈ K, and the claim holds trivially because there are no undominated valid
inequalities. Thus, we only need to consider the case c1,0 = c2,0 = 1.

Assume without any loss of generality that c2 ∈ K∗. Consider an undominated valid
inequality 〈ν, x〉 ≥ ν0 for C1 ∪ C2. Up to positive scaling, it satisfies the conditions of
Proposition 5.7. Hence, i) ν0 = c1,0 = c2,0 = 1, and ii) there exist α1, α2, β1, and β2
such that (ν, 1, α1, α2, β1, β2) satisfies one of the two systems in (5.13). In particular, this
implies ν = α1 + β1c1 = α2 + β2c2 ∈ K∗ and min{β1, β2} = 1. Let r = β2c2 − β1c1.
By Lemma 5.3, we also have r /∈ ±K∗. We will show that the inequality 〈ν, x〉 ≥ 1 is
dominated if ν /∈ M′(1, 1). If β1 = β2 = 1, then ν ∈ M′(1, 1). We divide the rest of the
proof into the following two cases: β1 > β2 and β1 < β2.

First suppose β1 > β2. Then β2 = 1 and ν = α1 + β1c1 = α2 + c2. Having α2 = 0
contradicts r /∈ ±K∗; therefore, we assume α2 6= 0. Let ε′ be such that 0 < ε′ ≤ β1−1

β1
.

We define α′1 = (1 − ε′)α1 + ε′c2, β′1 = (1 − ε′)β1, α′2 = (1 − ε′)α2, and µ = ν − ε′α2.



April 15, 2016
DRAFT

5.3. Properties of Valid Linear Inequalities 81

The inequality 〈µ, x〉 ≥ 1 is valid for C1 ∪ C2 because (µ, 1, α′1, α′2, β′1, 1) satisfies (5.8).
Furthermore, it dominates 〈ν, x〉 ≥ 1 since ν − µ = ε′α2 ∈ K∗ \ {0}.

Now suppose β2 > β1 = 1. Observe that the tuple (ν, 1, α1, α2 + (β2 − 1)c2, 1, 1) also
satisfies (5.8). Having α1 = 0 contradicts r /∈ ±K∗; therefore, we assume α1 6= 0. In the
case α2 + (β2 − 1)c2 ∈ intK∗, we can find a valid inequality that dominates 〈ν, x〉 ≥ 1 by
subtracting a positive multiple of α1 from µ as in the proof of Proposition 5.5. Otherwise,
α2 + (β2 − 1)c2 ∈ bdK∗ which implies that ν ∈ M′(1, 1) since ν = α1 + c1 = (α2 + (β2 −
1)c2) + c2.

The Topology of the Convex Hull

When c1,0 = c2,0 ∈ {±1}, the characterization of Proposition 5.7 can be strengthened
similarly for the family of undominated valid linear inequalities which are tight on both
C1 and C2.
Lemma 5.11. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (5.5).
Suppose C1 and C2 satisfy the basic disjunctive setup. Suppose µ0 = c1,0 = c2,0 ∈ {±1}.
Then, up to positive scaling, any undominated valid linear inequality for C1 ∪ C2 which is
tight on both C1 and C2 has the form 〈µ, x〉 ≥ µ0 where µ ∈M′(1, 1).

Proof. Let 〈µ, x〉 ≥ µ0 be an undominated valid inequality for C1 ∪ C2 that is tight on
both C1 and C2. Using Proposition 5.7, we can assume that µ0 = c1,0 = c2,0 and there
exist α1, α2, β1, and β2 such that (µ, µ0, α1, α2, β1, β2) satisfies one of the two systems in
(5.13). In particular, either β1 = 1 and β2µ0 ≥ µ0, or β2 = 1 and β1µ0 ≥ µ0. In any case,
min{β1µ0, β2µ0} = µ0. We will show β1 = β2 = 1.

Consider the following pair of minimization problems

inf
x
{〈µ, x〉 : x ∈ C1} and inf

x
{〈µ, x〉 : x ∈ C2},

and their duals

sup
δ,γ
{δµ0 : µ = γ + δc1, γ ∈ K∗, δ ≥ 0} and sup

δ,γ
{δµ0 : µ = γ + δc2, γ ∈ K∗, δ ≥ 0}.

The pairs (α1, β1) and (α2, β2) are feasible solutions to the first and second dual problems,
respectively. Because the inequality 〈µ, x〉 ≥ µ0 is tight on both C1 and C2, the optimal
values of both minimization problems are µ0. Then we must have β1µ0 ≤ µ0 and β2µ0 ≤ µ0
by duality. This implies β1µ0 = β2µ0 = µ0 and β1 = β2 = 1.

Next, we identify an important case where the family of tight inequalities specified in
Lemma 5.11 is rich enough to describe the closed convex hull of C1 ∪ C2 completely.
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Proposition 5.12. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (5.5).
Suppose C1 and C2 satisfy the basic disjunctive setup. Suppose the convex hull of C1∪C2 is
closed. Then undominated valid linear inequalities which are strongly tight on both C1 and
C2 are sufficient to describe the convex hull of C1 ∪ C2, together with the cone constraint
x ∈ K.

Proof. Suppose the convex hull of C1 ∪ C2 is closed. When conv(C1 ∪ C2) = K, no new
inequalities are needed for a description of the convex hull of C1∪C2; hence, the claim holds
trivially. Therefore, assume conv(C1∪C2) ( K. We prove that given u ∈ K\conv(C1∪C2),
there exists an undominated valid inequality which separates u from the convex hull of
C1 ∪ C2 and which is strongly tight on both C1 and C2.

Let v ∈ int(conv(C1 ∪ C2)) \ (C1 ∪ C2). Note that such a point exists since otherwise,
we have int(conv(C1 ∪ C2)) ⊂ C1 ∪ C2, which implies conv(C1 ∪ C2) ⊂ C1 ∪ C2 from the
closedness of C1 ∪ C2. By Lemma 5.1, this is possible only if C1 ∪ C2 = K which we have
already ruled out. Let 0 < λ < 1 be such that w = (1−λ)u+λv ∈ bd(conv(C1∪C2)). Then
w ∈ K\(C1∪C2) by the convexity of K\(C1∪C2) = {x ∈ K : 〈c1, x〉 < c1,0, 〈c2, x〉 < c2,0}.
Because w ∈ conv(C1 ∪ C2), there exist x1 ∈ C1, x2 ∈ C2, and 0 < κ < 1 such that
w = κx1 + (1− κ)x2. Furthermore, by Corollary 5.6, the fact that w ∈ bd(conv(C1 ∪C2))
implies that there exists an undominated valid inequality 〈µ, x〉 ≥ µ0 for C1 ∪ C2 such
that 〈µ,w〉 = µ0. Because 〈µ,w〉 = κ〈µ, x1〉 + (1 − κ)〈µ, x2〉 = µ0, 〈µ, x1〉 ≥ µ0, and
〈µ, x2〉 ≥ µ0, it must be the case that 〈µ, x1〉 = 〈µ, x2〉 = µ0. Thus, the inequality
〈µ, x〉 ≥ µ0 is strongly tight on both C1 and C2. The only thing that remains is to show
that 〈µ, x〉 ≥ µ0 separates u from the convex hull of C1 ∪ C2. To see this, observe that
u = 1

1−λ(w − λv) and that 〈µ, v〉 > µ0 since v ∈ int(conv(C1 ∪ C2)). Hence, we conclude
〈µ, u〉 = 1

1−λ(〈µ,w〉 − λ〈µ, v〉) < µ0.

We now give the proof of Theorem 5.9, which we stated at the beginning of this section.

Proof of Theorem 5.9. Consider an inequality 〈µ, x〉 ≥ µ0 where µ ∈ M′(1, 1) and µ0 =
min{c1,0, c2,0}. This inequality is valid for C1 ∪ C2 because there exist α1, α2 ∈ K∗ such
that the tuple (µ, µ0, α1, α2, 1, 1) satisfies (5.8). Furthermore, Lemmas 5.10 and 5.11 and
Proposition 5.12 show that all undominated valid linear inequalities for C1 ∪ C2 have this
form. The result follows.

Proposition 5.12 demonstrates the close relationship between the closedness of the con-
vex hull of C1 ∪ C2 and the sufficiency of valid linear inequalities which are tight on both
C1 and C2. This motivates us to understand better the cases where the convex hull of
C1 ∪ C2 is closed.

The convex hull of C1∪C2 is always closed when c1,0 = c2,0 = 0 (see, e.g., [96, Corollary
9.1.3]) or when C1 and C2 are defined by a split disjunction (see Dadush et al. [52,
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Lemma 2.3]). In Proposition 5.13 below, we generalize the result of Dadush et al.: We
give a sufficient condition for the convex hull of C1 ∪ C2 to be closed and show that this
condition is almost necessary. In Corollary 5.14, we show that the sufficient condition of
Proposition 5.13 can be rewritten in a more specialized form using conic duality when the
base set is the regular cone K.
Proposition 5.13. Let C ⊂ E be a closed, convex, and pointed set. Let Ci = {x ∈ C :
〈ci, x〉 ≥ ci,0} for i ∈ {1, 2}. Suppose C1 and C2 satisfy Condition 5.1. If

{r ∈ recC : 〈c2, r〉 = 0} ⊂ {r ∈ recC : 〈c1, r〉 ≥ 0} and
{r ∈ recC : 〈c1, r〉 = 0} ⊂ {r ∈ recC : 〈c2, r〉 ≥ 0},

(5.15)

then the convex hull of C1 ∪ C2 is closed. Conversely, if
i. there exists r∗ ∈ recC such that 〈c1, r

∗〉 < 0 = 〈c2, r
∗〉 and the problem infx{〈c2, x〉 :

x ∈ C1} is solvable, or
ii. there exists r∗ ∈ recC such that 〈c2, r

∗〉 < 0 = 〈c1, r
∗〉 and the problem infx{〈c1, x〉 :

x ∈ C2} is solvable,
then the convex hull of C1 ∪ C2 is not closed.

Proof. Let C+
1 = C1 + recC2 and C+

2 = C2 + recC1. We have conv(C1 ∪C2) ⊂ conv(C1 ∪
C2) = conv(C+

1 ∪C+
2 ) by Lemma 5.1. We will show conv(C+

1 ∪C+
2 ) ⊂ conv(C1∪C2) to prove

that the convex hull of C1∪C2 is closed when (5.15) is satisfied. Let x+ ∈ C+
1 . Then there

exist u1 ∈ C1 and v2 ∈ rec(C2) such that x+ = u1+v2. If 〈c2, v2〉 > 0, then there exists ε ≥ 1
such that x+ + εv2 ∈ C2 and we have x+ ∈ conv(C1 ∪C2). Otherwise, 〈c2, v2〉 = 0, and by
the hypothesis, 〈c1, v2〉 ≥ 0. This implies x+ ∈ C1, and thus C+

1 ⊂ conv(C1∪C2). Through
a similar argument, one can show C+

2 ⊂ conv(C1 ∪C2). Hence, C+
1 ∪C+

2 ⊂ conv(C1 ∪C2).
Taking the convex hull of both sides yields conv(C+

1 ∪ C+
2 ) ⊂ conv(C1 ∪ C2).

For the converse, suppose condition (i) holds, and let x∗ ∈ C1 be such that 〈c2, x
∗〉 ≤

〈c2, x〉 for all x ∈ C1. Note that 〈c2, x
∗〉 < c2,0 since otherwise, C1 ⊂ C2. Pick δ > 0 such

that x′ = x∗+δr∗ /∈ C1. Then x′ /∈ C2 too because 〈c2, x
′〉 = 〈c2, x

∗〉 < c2,0. For any 0 < λ <
1, x1 ∈ C1, and x2 ∈ C2, we can write 〈c2, λx1+(1−λ)x2〉 ≥ λ〈c2, x

∗〉+(1−λ)c2,0 > 〈c2, x
′〉.

Hence, x′ /∈ conv(C1∪C2). On the other hand, x′ ∈ C+
1 ⊂ conv(C+

1 ∪C+
2 ) = conv(C1∪C2)

where the last equality follows from Lemma 5.1.

Corollary 5.14 shows that the sufficient condition of Proposition 5.13 can be rewritten
in a more specialized form using conic duality when the base set is the regular cone K.
Corollary 5.14. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (5.5).
Suppose C1 and C2 satisfy the basic disjunctive setup. If there exist β1, β2 ∈ R such that
c1 − β2c2 ∈ K∗ and c2 − β1c1 ∈ K∗, then the convex hull of C1 ∪ C2 is closed.
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Proof. Suppose there exist β1, β2 ∈ R such that c1−β2c2 ∈ K∗ and c2−β1c1 ∈ K∗. Consider
the following minimization problem

inf
u
{〈c1, u〉 : 〈c2, u〉 = 0, u ∈ K}

and its dual
sup
δ
{0 : c1 − δc2 ∈ K∗}.

Because β2 is a feasible solution to the dual problem, we have 〈c1, u〉 ≥ 0 for all u ∈ K such
that 〈c2, u〉 = 0. Similarly, one can use the existence of β1 to show that the second part of
(5.15) holds too. Then by Proposition 5.13, the convex hull of C1 ∪ C2 is closed.

Lemma 5.11 allows us to simplify the characterization (5.10) of undominated valid
linear inequalities which are tight on both C1 and C2 in the case c1,0 = c2,0 ∈ {±1}. The
next proposition shows the necessity of the condition c1,0 = c2,0 in the statement of this
lemma. Unfortunately, when c1,0 6= c2,0, undominated valid linear inequalities are tight on
exactly one of the two sets C1 and C2.
Proposition 5.15. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (5.5).
Suppose C1 and C2 satisfy the basic disjunctive setup. If c1,0 > c2,0, then any undominated
valid linear inequality for C1 ∪ C2 is tight on C2 but not on C1.

Proof. Every undominated valid inequality has to be tight on either C1 or C2; other-
wise, we can just increase the right-hand side to obtain a dominating valid inequality.
By Proposition 5.7, undominated valid inequalities are of the form 〈µ, x〉 ≥ µ0 where
(µ, µ0, α1, α2, β1, β2) satisfies the first system in (5.13). In particular, we have β1 > 0,
β1c1,0 ≥ c2,0, and µ0 = c2,0. Now consider the following minimization problem

inf
u
{〈µ, u〉 : u ∈ C1}

and its dual
sup
δ
{δc1,0 : µ− δc1 ∈ K∗, δ ≥ 0}.

Note that β1 is a feasible solution to the dual problem. The set C1 is strictly feasible by
Condition 5.2, so strong duality applies to this pair of conic optimization problems. The
dual problem admits an optimal solution δ∗ which satisfies δ∗ ≥ β1 > 0 because c1,0 ≥ 0.
Then

sign{δ∗c1,0} = sign{c1,0} = c1,0 > c2,0 = µ0.

Hence, the inequality 〈µ, x〉 ≥ µ0 cannot be tight on C1.

This result, when combined with Proposition 5.12, yields the following corollary.
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Corollary 5.16. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (5.5).
Suppose C1 and C2 satisfy the basic disjunctive setup. Suppose c1,0 > c2,0. If conv(C1 ∪
C2) 6= K, then the convex hull of C1 ∪ C2 is not closed.

Proof. Suppose the convex hull of C1 ∪ C2 is closed, and let x ∈ K \ conv(C1 ∪ C2).
By Proposition 5.12, there exists an undominated valid linear inequality which cuts off
x from the convex hull of C1 ∪ C2 and is tight on both C1 and C2. This contradicts
Proposition 5.15.

5.3.3 Revisiting Condition 5.2
Consider C1 and C2 defined as in (5.5). When Ci is nonempty and ci,0 ∈ {±1}, it is
not difficult to show that Ci has to be strictly feasible. Therefore, Condition 5.2 is not
needed when, for instance, C1 and C2 are nonempty sets defined by a split disjunction
which excludes the origin. Indeed, the only situation where Condition 5.2 may be needed
in addition to Condition 5.1 occurs when c1,0 = 0 or c2,0 = 0. Note that in such a case,
linear inequalities that satisfy system (5.8) (or (5.10)) are still valid for the closed convex
hull of C1 ∪ C2; they may just not be sufficient to define it completely. We next give an
example which shows that Condition 5.2 is necessary to establish the sufficiency of the
linear inequalities that satisfy (5.8) (or (5.10)) when c1,0 = c2,0 = 0.

Let E = R3 and K = L3. Consider the disjunction x1 − x3 ≥ 0 ∨ −x1 − x3 ≥ 0
(c1 = e1− e3, c2 = −e1− e3, c1,0 = c2,0 = 0) on L3. Note that c1, c2 ∈ − bdL3, and C1 and
C2 are the rays generated by e1 +e3 and −e1 +e3, respectively. Therefore, conv(C1∪C2) =
{x ∈ L3 : x2 = 0} and x2 ≥ 0 is a valid inequality for C1 ∪ C2. However, letting µ = e2 in
(5.8), we see that any α1 which satisfies µ = α1 + β1c1 for some β1 ∈ R cannot be in L3

because α1 = −β1e
1 + e2 + β1e

3 /∈ L3.

5.4 Nonlinear Inequalities with Special Structure
Let K ⊂ E be a regular cone. In this section we continue to study the closed convex hull
of C1 ∪C2, where C1 and C2 are defined as in (5.5). Consider a pair (β1, β2) ∈ B. For this
pair, we let

µ0(β1, β2) = min{β1c1,0, β2c2,0}.
Let us also define the set

M(β1, β2) = {µ ∈ E : ∃α1, α2 ∈ K∗, µ = α1 + β1c1 = α2 + β2c2}.

Recall from (5.8) that, for µ ∈ M(β1, β2), an inequality 〈µ, x〉 ≥ µ0(β1, β2) is always
valid for C1 ∪ C2, regardless of whether or not C1 and C2 satisfy the basic disjunctive
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setup. When, however, C1 and C2 satisfy the basic disjunctive setup, Corollary 5.6 has the
following simple consequence.
Remark 5.17. Let K ⊂ E be a regular cone. Consider C1 and C2 defined as in (5.5).
Suppose C1 and C2 satisfy the basic disjunctive setup. Then the closed convex hull of
C1 ∪ C2 is given by

conv(C1 ∪ C2) = {x ∈ K : 〈µ, x〉 ≥ µ0(β1, β2) ∀µ ∈M′(β1, β2), (β1, β2) ∈ B}
= {x ∈ K : 〈µ, x〉 ≥ µ0(β1, β2) ∀µ ∈M(β1, β2), (β1, β2) ∈ B} .

In this section, for given (β1, β2) ∈ B, we develop structured valid nonlinear inequalities
for C1 ∪ C2 by grouping the linear inequalities 〈µ, x〉 ≥ µ0(β1, β2) associated with all
µ ∈ M(β1, β2). Let (β1, β2) ∈ B. A point x ∈ E satisfies 〈µ, x〉 ≥ µ0(β1, β2) for all
M(β1, β2) if and only if it satisfies

inf
µ∈M(β1,β2)

〈µ, x〉 ≥ µ0(β1, β2). (5.16)

Theorem 5.9 demonstrates that there are important cases where an inequality of the form
(5.16) associated with a single pair (β1, β2) ∈ B provides a complete description of the closed
convex hull of C1 ∪ C2. However, in general (5.16) is a convex inequality which is derived
from a relaxation 〈β1c1, x〉 ≥ µ0(β1, β2) ∨ 〈β2c2, x〉 ≥ µ0(β1, β2) of the original disjunction
on the cone K. Somewhat contrary to intuition, inequalities (5.16) obtained from such
weaker disjunctions are sometimes necessary for a complete description of the closed convex
hull of C1 ∪ C2. With this understanding, from now on we consider (β1, β2) ∈ B fixed.
Letting di = βici for i ∈ {1, 2} and suppressing the arguments of M(β1, β2) and µ0(β1, β2),
we concentrate our analysis on the closed convex hull of D1 ∪ D2 where

Di = {x ∈ K : 〈di, x〉 ≥ µ0} for i ∈ {1, 2}. (5.17)

Given C1 and C2 which satisfy the basic disjunctive setup, the sets D1 and D2 always satisfy
Condition 5.2 because D1 ⊃ C1 and D2 ⊃ C2. However, they may violate Condition 5.1.
When this is the case, the convex hull of D1∪D2 is equal to one of D1 or D2. Therefore, we
are primarily interested in cases where D1 and D2 also satisfy Condition 5.1. By Lemma 5.3,
this can happen only if d2 − d1 /∈ ±K∗. Therefore, while studying convex relaxations for
D1 ∪D2 in subsequent sections, we sometimes state our results under the assumption that
r = d2 − d1 /∈ ±K∗.

In Sections 5.4.1 and 5.4.3, we study the general form of (5.16) under various assump-
tions on the structure of D1 and D2.
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5.4.1 Inequalities for Two-Term Disjunctions
In this section we consider sets D1 and D2 which are defined as in (5.17). Let M = {µ ∈ E :
∃α1, α2 ∈ K∗, µ = α1 +d1 = α2 +d2}. As discussed in Section 5.2.1, any point x ∈ D1∪D2
satisfies

inf
µ∈M
〈µ, x〉 ≥ µ0, (5.18)

regardless of whether or not D1 and D2 satisfy the basic disjunctive setup. Furthermore,
whenever D1 and D2 satisfy the conditions of Theorem 5.9, an inequality of the form (5.18)
describes the closed convex hull of D1 ∪ D2. Our main purpose here is to investigate
the general form of this inequality under minimal assumptions on the structure of K.
This generality will enable us to establish results about disjunctions on direct products of
second-order cones and the positive semidefinite cone in Chapters 6 and 7.

Throughout this section, we denote r = d2−d1 ∈ E. We start with a simple observation
which yields an alternate representation of the disjunction 〈d1, x〉 ≥ µ0 ∨ 〈d2, x〉 ≥ µ0.
Remark 5.18. A point x ∈ E satisfies the disjunction 〈d1, x〉 ≥ µ0 ∨ 〈d2, x〉 ≥ µ0 if and
only if it satisfies

|〈r, x〉| ≥ 2µ0 − 〈d1 + d2, x〉. (5.19)
The next proposition states (5.18) in an alternate form.

Proposition 5.19. Let K ⊂ E be a regular cone. A point x ∈ E satisfies (5.18) if and
only if it satisfies

fK,r(x) ≥ 2µ0 − 〈d1 + d2, x〉 (5.20)
where fK,r : E→ R ∪ {−∞} is defined as

fK,r(x) = inf
α1,α2
{〈α1 + α2, x〉 : α1 − α2 = r, α1, α2 ∈ K∗} (5.21)

= max
ρ
{〈r, ρ〉 : x− ρ ∈ K, x+ ρ ∈ K}. (5.22)

Proof. Consider (5.18). Note that

inf
µ
{〈µ, x〉 : µ ∈M} = inf

µ,α1,α2
{〈µ, x〉 : µ = α1 + d1, µ = α2 + d2, α1, α2 ∈ K∗}

= 1
2〈d1 + d2, x〉+ 1

2 inf
α1,α2

{
〈α1 + α2, x〉 : α1 − α2 = r,

α1, α2 ∈ K∗

}

= 1
2〈d1 + d2, x〉+ 1

2fK,r(x).

Therefore, (5.18) is equivalent to (5.20). Lemma 5.4(i) shows that there always exist
α̂1, α̂2 ∈ K∗ such that α̂1− α̂2 = r. Hence, (5.21) is always feasible. Indeed, this minimiza-
tion problem is strictly feasible because, for any e ∈ intK∗, we have α̂1 + e, α̂2 + e ∈ intK∗
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and (α̂1 + e)− (α̂2 + e) = r. Therefore, the strong duality theorem of conic programming
applies, and the dual problem (5.22) is solvable whenever the optimal value of (5.21) is
bounded from below.

Next, we make a series of immediate observations on the function fK,r(x).
Remark 5.20. Let K ⊂ E be a regular cone. Fix r ∈ E.

i. As a function of x, −fK,r(x) is the support function of a nonempty set (see (5.21)).
Therefore, it is closed and sublinear. Furthermore, the value of −fK,r(x) is finite if
and only if x ∈ K.

ii. The function fK,r(x) satisfies fK,r(x) ≥ |〈r, x〉| for any x ∈ K. If x is an extreme ray
of K, then fK,r(x) = |〈r, x〉|.

Proof. We only prove statement (ii). Let x ∈ K. Both x and −x are feasible solutions
to (5.22). Therefore, fK,r(x) ≥ |〈r, x〉|. Now suppose x is an extreme ray of K. Let
ρ ∈ E be any feasible solution to (5.22). We show ρ ∈ conv{x,−x}. First, note that
1
2(x − ρ) + 1

2(x + ρ) = x. Because x is an extreme ray of K, there must exist λ1, λ2 ≥ 0
such that x − ρ = λ1x and x + ρ = λ2x. It follows that ρ = (1 − λ1)x = (λ2 − 1)x and
λ1 + λ2 = 2, which completes the proof of the claim.

Remark 5.20(i) immediately implies the convexity of the inequality (5.20) because its
right-hand side is a linear function of x.

Recall from Remark 5.18 that (5.19) provides an exact representation of the disjunction
〈d1, x〉 ≥ µ0 ∨ 〈d2, x〉 ≥ µ0. Remark 5.20 shows that fK,r(x) is a concave function of x
which satisfies fK,r(x) ≥ |〈r, x〉| for any x ∈ K. Replacing the term |〈r, x〉| on the left-
hand side of (5.19) with any such function would define a convex relaxation of D1 ∪ D2
inside the cone K. However, fK,r(x) is a “tight” concave overestimator of the function
x 7→ |〈r, x〉| : E→ R over K: It satisfies fK,r(x) = |〈r, x〉| whenever x is an extreme ray of
K. This indicates that an extreme ray x ∈ K satisfies (5.20) if and only if x ∈ D1 ∪ D2.
Furthermore, if the sets D1 and D2 satisfy the conditions of Theorem 5.9, the inequality
(5.20) defines the closed convex hull of D1 ∪ D2.
Remark 5.21. Let K ⊂ E be a regular cone. Fix x ∈ K.

i. As a function of r, fK,r(x) is the support function of a bounded set which contains the
origin (see (5.22)). Therefore, it is nonnegative, finite-valued, and sublinear.

ii. As a function of r, fK,r(x) is symmetric with respect to the origin, that is, fK,r(x) =
fK,−r(x) for any r ∈ E.

Remark 5.22. Let K ⊂ E be a regular cone. Let x ∈ K.
i. If r ∈ K∗, then fK,r(x) = 〈r, x〉; if −r ∈ K∗, then fK,r(x) = 〈−r, x〉. Thus, fK,r(x) =
|〈r, x〉| if r ∈ ±K∗.
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ii. If r /∈ ±K∗, then fK,r(x) = f ′K,r(x) where f ′K,r : E→ R ∪ {−∞} is defined as

f ′K,r(x) = inf
α1,α2
{〈α1 + α2, x〉 : α1 − α2 = r, α1, α2 ∈ bdK∗} . (5.23)

Proof. We only prove statement (ii). The inequality fK,r(x) ≤ f ′K,r(x) follows from the
observation that the feasible solution set of the minimization problem (5.23) is a restriction
of the feasible solution set of the minimization problem (5.21). The inequality fK,r(x) ≥
f ′K,r(x) follows from Lemma 5.4(ii) and the hypothesis x ∈ K.

Remark 5.22(ii) shows that, when r /∈ ±K∗, the variables α1, α2 in the minimization
problem (5.21) can be restricted to the boundary of the cone K∗ without changing the
optimal value of the problem. Note that this conclusion parallels the necessary conditions
for undominated valid linear inequalities obtained in Proposition 5.5.

We can use Proposition 5.19 together with Remarks 5.20(i) and 5.21(i) to build simple
convex inequalities for D1 ∪ D2 as follows.
Remark 5.23. Let K ⊂ E be a regular cone. Fix r ∈ E. For any r1, . . . , r` ∈ E such
that r = ∑`

i=1 ri, we have ∑`
i=1 fK,ri(x) ≥ fK,r(x). Therefore, the inequality ∑`

i=1 fK,ri(x) ≥
2µ0 − 〈d1 + d2, x〉 is a relaxation of (5.20). Furthermore, note from Remark 5.20(i) that
each function fK,ri(x) is a concave function of x; hence, the resulting inequality is convex.

Remark 5.23 suggests a general procedure for developing convex inequalities for D1∪D2
which might have nicer structural properties than (5.20). Furthermore, it allows great
flexibility in the choice of the decomposition r = ∑`

i=1 ri. For certain choices of r1, . . . , r` ∈
E, the relaxation suggested in Remark 5.23 has the interpretation of relaxing the underlying
disjunction. We comment more on this interpretation in Section 7.2.4. Next we consider
an immediate application of the procedure outlined in Remark 5.23 which gives valid linear
inequalities for D1 ∪ D2 as a consequence of Remark 5.22(i).
Remark 5.24. Let K ⊂ E be a regular cone. Fix r ∈ E. By Lemma 5.4, there exists
r+, r− ∈ K∗ such that r = r+ − r−. Remark 5.21(i) shows that fK,r(x) ≤ fK,r+(x) +
fK,−r−(x) = fK,r+(x) + fK,r−(x). Moreover, because r+, r− ∈ K∗, Remark 5.22(i) implies
fK,r+(x) = 〈r+, x〉 and fK,r−(x) = 〈r−, x〉. Finally, using Proposition 5.19, we conclude
that any x ∈ D1 ∪ D2 satisfies the linear inequality

〈r+ + r−, x〉 ≥ 2µ0 − 〈d1 + d2, x〉. (5.24)

Note that any possible choice of r+, r− ∈ K∗ satisfying r = r+ − r− leads to a different
inequality of the form (5.24). Given a two-term disjunction and a point x ∈ K that is
desired to be cut off, we can select the best possible inequality of the form (5.24) via a conic
optimization problem.
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Remark 5.25. Let K ⊂ E and K ⊂ E be regular cones such that K ⊃ K. Then K∗ ⊂ K∗,
and for any x, r ∈ E, we have fK,r(x) ≥ fK,r(x).

The monotonicity result from Remark 5.25 can be useful when one would like to develop
structured convex relaxations of D1 ∪ D2 by replacing K with a regular cone K ⊃ K such
that an expression for fK,r(x) is readily available.
Remark 5.26. Let E = ∏p

j=1 Ej be a direct product of finite-dimensional Euclidean spaces.
Suppose K = ∏p

j=1 Kj and each Kj ⊂ Ej is a regular cone. Then

fK,r(x) =
p∑
j=1

inf
αj1,α

j
2

{
〈αj1 + αj2, x

j〉j : αj1 − αj2 = rj, αj1, α
j
2 ∈ (Kj)∗

}
=

p∑
j=1

fKj ,rj(xj).

Under the hypotheses of Remark 5.26, let us define the following sets with respect to
r = (r1, . . . , rp) ∈ E:

P+=
{
j ∈ [p] : −rj ∈ (Kj)∗

}
, P−=

{
j ∈ [p] : rj ∈ (Kj)∗

}
, P◦=

{
j ∈ [p] : rj /∈ ±(Kj)∗

}
. (5.25)

Next we state a consequence of Proposition 5.19 and Remarks 5.22(i) and 5.26.
Proposition 5.27. Let E = ∏p

j=1 Ej be a direct product of finite-dimensional Euclidean
spaces. Suppose K = ∏p

j=1 Kj and each Kj ⊂ Ej is a regular cone. Define the sets P+, P−,
and P◦ as in (5.25).

i. A point x ∈ K satisfies (5.20) if and only if it satisfies∑
j∈P◦

fKj ,rj(xj) +
∑
j∈P◦
〈dj1 + dj2, x

j〉j + 2
∑
j∈P+

〈dj1, xj〉j + 2
∑
j∈P−
〈dj2, xj〉j≥2µ0. (5.26)

ii. A point x ∈ K satisfies (5.26) if and only if there exist zj ∈ R, j ∈ [p], such that

fKj ,rj(xj) ≥ |2zj − 〈dj1 + dj2, x
j〉| ∀j ∈ [p], (5.27a)

p∑
j=1

zj ≥ µ0. (5.27b)

Furthermore, for each j ∈ [p], (5.27a) is equivalent to[
fKj ,rj(xj)

]2
− 〈rj, xj〉2j ≥ 4(zj − 〈dj1, xj〉j)(zj − 〈dj2, xj〉j). (5.28)

Proof. Statement (i) follows directly from Proposition 5.19 and Remarks 5.22(i) and 5.26.
Fix x ∈ K. The “if” part of statement (ii) is clear. To show the “only if” part, let
z̄j = 1

2(fKj ,rj(xj) + 〈dj1 + dj2, x
j〉j) for each j ∈ [p]. Recall from Remark 5.21(i) that each
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fKj ,rj(xj) is finite and nonnegative. Then 2z̄j − 〈dj1 + dj2, x
j〉j = fKj ,rj(xj) ≥ 0. Hence,

(z̄1, . . . , z̄p) satisfies (5.27).
To finish the proof, we show that (5.27a) is equivalent to [fKj ,rj(xj)]2 − 〈rj, xj〉2j ≥

4(zj − 〈dj1, xj〉j)(zj − 〈dj2, xj〉j) for any zj ∈ R. The nonnegativity of fKj ,rj(xj) implies

fKj ,rj(xj) ≥ |2zj − 〈dj1 + dj2, x
j〉j| ⇔

[
fKj ,rj(xj)

]2
≥ (2zj − 〈dj1 + dj2, x

j〉j)2

⇔
[
fKj ,rj(xj)

]2
− 〈rj, xj〉2j ≥ 4(zj − 〈dj1, xj〉j)(zj − 〈dj2, xj〉j).

Remark 5.28. Under the hypotheses of Proposition 5.27, Remark 5.22(i) shows that
fKj ,rj(xj) = |〈rj, xj〉| for j ∈ P+ ∪ P−. Therefore, (5.27a) simplifies to 〈dj1, xj〉 ≥ zj ≥
〈dj2, xj〉 for j ∈ P+ and to 〈dj2, xj〉 ≥ zj ≥ 〈dj1, xj〉 for j ∈ P−. Hence, the auxiliary
variables zj, j ∈ P+ ∪ P−, can be eliminated from (5.27) after setting them equal to their
corresponding upper bounds.

The next remark recovers a well-known result about disjunctions on the nonnegative
orthant, as a consequence of Remark 5.28.
Remark 5.29. Let E = Rp and K = Rp

+. Note that Rp
+ is a decomposable cone: It can

be seen as a direct product ∏p
j=1 Kj where Kj = R+ for all j ∈ [p]. Then Remark 5.22(i),

together with the fact that rj ∈ ±R+ for all j ∈ [p], implies fRp+,r(x) = ∑p
j=1 |rjxj| =∑p

j=1 |rj|xj for all x ∈ Rp
+. Proposition 5.19 shows that the inequality ∑p

j=1 |rj|xj ≥ 2µ0 −
〈d1 + d2, x〉 is valid for D1 ∪ D2. This inequality can be further simplified into

p∑
j=1

max
{
dj1, d

j
2

}
xj ≥ µ0.

5.4.2 Inequalities for Intersections with Rank-Two Non-Convex
Quadratics

In this section, we consider sets of the form K ∩ F where K ⊂ E is a regular cone and
F ⊂ E is a non-convex set defined by a rank-two quadratic inequality:

F = {x ∈ E : (µ0 − 〈d1, x〉)(µ0 − 〈d2, x〉) ≤ 0}. (5.29)

We will show how the results of Sections 5.2.2 and 5.4.1 can be combined to build convex
relaxations and convex hull descriptions for K ∩ F.

As in the previous section, we denote r = d2 − d1 ∈ E. We start with a simple
observation on an alternate representation of F, which parallels Remark 5.18.
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Remark 5.30. A point x ∈ E satisfies (µ0 − 〈d1, x〉)(µ0 − 〈d2, x〉) ≤ 0 if and only if it
satisfies

|〈r, x〉| ≥ |2µ0 − 〈d1 + d2, x〉| (5.30)

The following result is a consequence of Remark 5.21(ii) and Propositions 5.2 and 5.19.
Proposition 5.31. Let K ⊂ E be a regular cone. Consider F ⊂ E defined as in (5.29).
Let D+

i = {x ∈ K : 〈di, x〉 ≥ µ0} and D−i = {x ∈ K : 〈di, x〉 ≤ µ0} for i ∈ {1, 2}.
i. Any point x ∈ K ∩ F satisfies

fK,r(x) ≥ |2µ0 − 〈d1 + d2, x〉|. (5.31)

ii. Suppose conv(D+
1 ∪ D+

2 ) = K or the sets D+
1 and D+

2 satisfy the conditions of Theo-
rem 5.9. Suppose also that conv(D−1 ∪ D−2 ) = K or the sets D−1 and D−2 satisfy the
conditions of Theorem 5.9. Then

conv(K ∩ F) = {x ∈ K : fK,r(x) ≥ |2µ0 − 〈d1 + d2, x〉|} . (5.32)

Proof. Note that K ∩ F = (D+
1 ∪ D+

2 ) ∩ (D−1 ∪ D−2 ). Using Proposition 5.19 for D+
1 ∪ D+

2
and D−1 ∪ D−2 shows that the inequalities fK,r(x) ≥ 2µ0 − 〈d1 + d2, x〉 and fK,−r(x) ≥
−2µ0 + 〈d1 + d2, x〉 are both valid for K ∩ F. By Remark 5.21(ii), fK,−r(x) = fK,r(x) for
any r ∈ E and x ∈ K. Therefore, the two inequalities together are equivalent to (5.31).
Under the hypotheses of statement (ii), we have

conv(D+
1 ∪ D+

2 ) = {x ∈ K : fK,r(x) ≥ 2µ0 − 〈d1 + d2, x〉} and
conv(D−1 ∪ D−2 ) = {x ∈ K : fK,−r(x) ≥ −2µ0 + 〈d1 + d2, x〉} .

Then Proposition 5.2 shows (5.32).

The next proposition shows that the linear inequality in (5.27) can be replaced with a
linear equality when we consider the intersection ofK with a rank-two non-convex quadratic
instead of a two-term disjunction.
Proposition 5.32. Let E = ∏p

j=1 Ej be a direct product of finite-dimensional Euclidean
spaces. Suppose K = ∏p

j=1 Kj and each Kj ⊂ Ej is a regular cone. A point x ∈ K satisfies
(5.31) if and only if there exist zj ∈ R, j ∈ [p], such that (5.27a) (or, equivalently (5.28))
holds together with ∑p

j=1 z
j = µ0.

Proof. Fix x ∈ K. The “if” part follows from the triangle inequality. To show the “only
if” part, recall from Proposition 5.27(ii) that x satisfies fKj ,rj(xj) ≥ 2µ0 − 〈dj1 + dj2, x

j〉 if
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and only if there exist tj1 ∈ R, j ∈ [p], such that

fKj ,rj(xj) ≥ |2tj1 − 〈dj1 + dj2, x
j〉| ∀j ∈ [p], (5.33a)

p∑
j=1

tj1 ≥ µ0. (5.33b)

Furthermore, x satisfies fKj ,rj(xj) ≥ −2µ0 + 〈dj1 + dj2, x
j〉 if and only if there exist tj2 ∈ R,

j ∈ [p], such that

fKj ,rj(xj) ≥ | − 2tj2 + 〈dj1 + dj2, x
j〉| ∀j ∈ [p], (5.34a)

−
p∑
j=1

tj2 ≥ −µ0. (5.34b)

Let 0 ≤ δ ≤ 1 such that δ∑p
j=1 t

j
1 − (1 − δ)∑p

j=1 t
j
2 = µ0. For all j ∈ [p], we also define

zj = δtj1 − (1 − δ)tj2. Then ∑p
j=1 z

j = µ0. For any j ∈ [p], combining (5.33a) and (5.34a)
with weights δ and 1− δ, we have

fKj ,rj(xj) ≥ δ|2tj1 − 〈dj1 + dj2, x
j〉|+ (1− δ)| − 2tj2 + 〈dj1 + dj2, x

j〉|
= δ|2tj1 − 〈dj1 + dj2, x

j〉|+ (1− δ)|2tj2 − 〈dj1 + dj2, x
j〉|

≥ |2zj − 〈dj1 + dj2, x
j〉|,

where the second inequality holds because the function z 7→ |2z− 〈dj1 + dj2, x
j〉| : R→ R is

convex. This completes the proof of the first part. Finally, we note that the equivalence
of (5.27a) to

[
fKj ,rj(xj)

]2
− 〈rj, xj〉2j ≥ 4

(
zj − 〈dj1, xj〉j

)(
zj − 〈dj2, xj〉j

)
can be shown as in

the proof of Proposition 5.27.

We close this section by presenting a result which complements the relation between
convex hulls of non-convex quadratic sets of form K ∩ F and the associated disjunctions
given in Proposition 5.31. In particular, we show that given a structured and explicit char-
acterization of the closed convex hull of F∩K, we can obtain a convex hull characterization
of D1 ∪ D2 even when the disjointness assumption is violated.
Proposition 5.33. Let K ⊂ E be a regular cone. Consider D1,D2 ⊂ E defined as in (5.17)
and F ⊂ E defined as in (5.29). Let g(x) : E → R ∪ {−∞} be an upper semi-continuous,
concave function such that g(x) ≥ 0 for any x ∈ K and K ∩ F ⊂ {x ∈ K : g(x) ≥
|2µ0 − 〈d1 + d2, x〉|}.

i. Any point x ∈ D1 ∪ D2 satisfies the convex inequality

g(x) ≥ 2µ0 − 〈d1 + d2, x〉. (5.35)
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ii. If conv(K ∩ F) = {x ∈ K : g(x) ≥ |2µ0 − 〈d1 + d2, x〉|}, then

conv(D1 ∪ D2) = {x ∈ K : g(x) ≥ 2µ0 − 〈d1 + d2, x〉} . (5.36)

Proof. Note that D1∪D2 = (K∩F)∪ (D1∩D2). Our hypotheses ensure that any x ∈ K∩F
satisfies (5.35). Moreover, for any x ∈ D1∩D2, we have 0 ≥ 2µ0−〈d1 +d2, x〉. Then (5.35)
is valid for D1 ∩ D2 because g(x) is nonnegative for x ∈ K.

Statement (i), together with the concavity of g(x), shows that (5.35) is valid for the
convex hull of D1 ∪ D2. The continuity of g(x) implies the validity of (5.35) for the
closed convex hull of D1 ∪ D2. If conv(D1 ∪ D2) = K, then (5.35) is redundant. Suppose
conv(D1 ∪ D2) 6= K. Assume for contradiction that there exists x̄ ∈ K satisfying (5.35)
but x̄ /∈ conv(D1 ∪ D2). Then x̄ /∈ conv(K ∩ F) as well; thus g(x̄) < |2µ0 − 〈d1 + d2, x̄〉|.
Combining this with (5.35), we arrive at

|2µ0 − 〈d1 + d2, x̄〉| > g(x̄) ≥ 2µ0 − 〈d1 + d2, x̄〉,

which implies 0 > 2µ0−〈d1 +d2, x̄〉. Then at least one of 0 > µ0−〈d1, x̄〉 or 0 > µ0−〈d2, x̄〉
must hold. Hence, x̄ ∈ D1 ∪ D2, contradicting the assumption x̄ /∈ conv(D1 ∪ D2). This
proves the relation stated in (5.36).

5.4.3 Inequalities for Disjoint Two-Term Disjunctions
As in Section 5.4.1, we consider sets D1 and D2 defined as in (5.17). In this section, we
assume {x ∈ K : 〈d1, x〉 > µ0, 〈d2, x〉 > µ0} = ∅. Whenever this is the case, we say that D1
and D2 satisfy the disjointness condition. Such sets D1 and D2 are naturally associated with
rank-two quadratic constraints: In particular, under the disjointness condition, D1 ∪D2 =
K ∩ F where F is defined as in (5.29). Therefore, we can immediately use the results of
Section 5.4.2 in this case. Specifically, we have the following result.
Corollary 5.34. Let K ⊂ E be a regular cone. Consider D1 and D2 defined as in (5.17).

i. Let x ∈ K be such that 〈d1, x〉 ≤ µ0 ∨ 〈d2, x〉 ≤ µ0. Then x satisfies (5.20) if and only
if it satisfies (5.31).

ii. Suppose D1 and D2 satisfy the disjointness condition. Then a point x ∈ K satisfies
(5.20) if and only if it satisfies (5.31).

Proof. We first prove statement (i). Let x ∈ K be such that 〈d1, x〉 ≤ µ0 ∨ 〈d2, x〉 ≤ µ0.
Then x satisfies the inequality fK,−r(x) ≥ −2µ0 + 〈d1 +d2, x〉. Recall from Remark 5.21(ii)
that fK,−r(x) = fK,r(x) for any r ∈ E. Hence, x satisfies (5.20) if and only if it satisfies
(5.31).

Under the disjointness condition, any point x ∈ K satisfies the disjunction 〈d1, x〉 ≤
µ0 ∨ 〈d2, x〉 ≤ µ0. The result follows from statement (i).
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5.5 Conclusion
In this chapter we have considered two-term disjunctions on a regular cone K and inter-
sections of a regular cone K with rank-two non-convex quadratics. These sets provide
fundamental non-convex relaxations for conic programs with integrality requirements and
other types of non-convex constraints. We have characterized the structure of undominated
valid linear inequalities for two-term disjunctions on K and developed a general theory for
constructing closed convex hull descriptions and low-complexity relaxations of such sets in
the space of the original variables. These relaxations can be used to strengthen the natural
continuous relaxations of MICPs.

In Chapters 6 and 7, we consider the cases where K is a direct product of second-order
cones and nonnegative rays and where K is the positive semidefinite cone, respectively.
Building upon the theory we have developed in this chapter, we investigate how we can de-
rive closed-form structured nonlinear valid inequalities and closed convex hull descriptions
for two-term disjunctions on K in these particular cases.
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Chapter 6

Convex Hulls of Disjunctions on
Second-Order Cones

Acknowledgments. This chapter is based on joint work with Fatma Kılınç-Karzan [84].
A preliminary version appeared in [83].

6.1 Introduction

6.1.1 Motivation
Let Lk =

{
x ∈ Rk :

√
x2

1 + . . .+ x2
k−1 ≤ xk

}
denote the k-dimensional second-order cone.

In this chapter we consider general two-term disjunctions on direct products of second-
order cones and nonnegative rays. To be precise, let K ⊂ Rn be defined as K = ∏p1+p2

j=1 Kj

where Kj = Lnj for j ∈ {1, . . . , p1} and Kj = R+ for j ∈ {p1 + 1, . . . , p1 + p2}. Associated
with a disjunction 〈c1, x〉 ≥ c1,0 ∨ 〈c2, x〉 ≥ c2,0 on K, we define the sets

Ci = {x ∈ K : 〈ci, x〉 ≥ ci,0} for i ∈ {1, 2}. (6.1)

The purpose of this chapter is to provide an explicit outer description of the closed convex
hull of C1 ∪ C2 with closed-form convex inequalities in the space of the original variables.
To this end, we specialize the results of Chapter 5 to our setting. In the greater part of
this chapter, we focus on the case where K is a single second-order cone. We note that,
although we consider two-term disjunctions on K in this chapter, our results also extend
to two-term disjunctions on sets of the form {x ∈ Rn : Ax − b ∈ K} where the matrix A
has full row rank through the affine transformation discussed in [8].

The reader is referred to Section 5.1.2 for a detailed discussion of disjunctive inequalities
in mixed-integer conic programming. Prior to our study, similar results which characterize

97
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the convex hulls of two-term disjunctions on a single second-order cone appeared in [8,
89]. Nevertheless, our work is set apart from [8, 89] by the fact that we study two-term
disjunctions on the second-order cone in full generality and do not restrict our attention
to split disjunctions, which are defined by parallel hyperplanes. Our analysis shows that
the resulting convex hulls can turn out to be significantly more complex in the absence of
this assumption. Furthermore, our proof techniques originate from the conic programming
duality perspective of Chapter 5 and are completely different from what was employed in
the aforementioned papers.

Chapter 8 extends the results of this chapter in two directions: First, we show that
a convex inequality of the form developed in this chapter can describe the convex hull of
homogeneous two-term disjunctions on the second-order cone. Second, we show that such
an inequality can characterize the closed convex hull of two-term disjunctions on affine
cross-sections of the second-order cone under certain conditions. Similar and complemen-
tary results on describing the convex hull of intersections of the second-order cone or its
affine cross-sections with a single homogeneous quadratic have recently been obtained in
[38, 88].

6.1.2 Notation and Terminology
We assume that Rn is equipped with the standard inner product 〈α, x〉 = α>x. The
standard (Euclidean) norm ‖ · ‖2 : Rn → R on Rn is defined as ‖x‖2 =

√
〈x, x〉.

For any positive integer k, let [k] = {1, . . . , k}. In this chapter, we consider a regular
cone K ⊂ Rn such that K = ∏p1+p2

j=1 Kj where Kj = Lnj for j ∈ [p1] and Kp1+j = R+
for j ∈ [p2]. The dual cone of V ⊂ Rn is V∗ = {α ∈ Rn : 〈x, α〉 ≥ 0 ∀x ∈ V}. We
remind the reader that K is self-dual, that is, the dual cone of K is again K itself. We let
convV, convV, and spanV represent the convex hull, closed convex hull, and linear span
of a set V ⊂ Rn, respectively. We let intV, and bdV represent the topological interior and
boundary of V ⊂ Rn, respectively. We use recV to refer to the recession cone of a closed
convex set V. For i ∈ [n], we let ei be the i-th unit vector in Rn, and for a vector x ∈ Rn,
we use x̃ to denote the subvector x̃ = (x1; . . . ;xn−1).

Throughout the chapter, we consider sets C1 and C2 of the form (6.1). If c1,0, c2,0 ∈
{0,±1} and the sets C1 and C2 satisfy Conditions 5.1 and 5.2, we say that C1 and C2
satisfy the basic disjunctive setup. If {x ∈ K : 〈c1, x〉 > c1,0, 〈c2, x〉 > c2,0} = ∅, we say
that C1 and C2 satisfy the disjointness condition.
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6.1.3 Outline of the Chapter
The set C1 ∪C2, the object of our analysis in this chapter, is a special case of that studied
in Chapter 5. In this chapter, we build upon the results of Chapter 5 and characterize the
closed convex hull of C1 ∪ C2 with closed-form nonlinear inequalities.

Define B = {(β1, β2) ∈ R2 : β1, β2 > 0, β2c2 − β1c1 6∈ ± intK∗} as in (5.11). Let
(β1, β2) ∈ B and µ0(β1, β2) = min{β1c1,0, β2c2,0}. Proposition 5.19 shows that any point
x ∈ C1 ∪ C2 satisfies the convex inequality

fK,β2c2−β1c1(x) ≥ 2µ0(β1, β2)− 〈β1c1 + β2c2, x〉 (6.2)

Furthermore, when C1 and C2 satisfy the basic disjunctive setup, Remark 5.17 and Propo-
sition 5.19 guarantee that

conv(C1 ∪ C2) = {x ∈ K : fK,β2c2−β1c1(x) ≥ 2µ0(β1, β2)− 〈β1c1 + β2c2, x〉 ∀(β1, β2) ∈ B} .

In Section 6.2.1, we study the fundamental case where K is a single second-order cone. We
develop an equivalent closed-form expression for (6.2) and show that it admits a second-
order cone representation in a lifted space with one additional variable. Under a certain
disjointness condition, the additional variable in the second-order cone representation of
(6.2) can be eliminated, leading to a valid second-order cone inequality in the space of the
original variables. In Section 6.2.2, we extend these results to the case where K is a direct
product of multiple second-order cones and nonnegative rays. Throughout Section 6.2,
we also investigate the relationship of two-term disjunctions on K with non-convex sets
defined by rank-two quadratics.

In Section 6.3, we seek to provide an explicit closed convex hull description of C1 ∪C2
in the case where K is a single second-order cone. As a simple consequence of Theorem 5.9,
Proposition 5.19, and our analysis in Section 6.2, we show that the closed convex hull of
C1 ∪C2 can be described with a single closed-form convex inequality for certain choices of
disjunction on K. For general two-term disjunctions, we outline a procedure to reach closed
convex hull descriptions in Section 6.3.2. We illustrate our results with three examples.

6.2 Disjunctions on Direct Products on Second-Order
Cones

In this section, we consider a fixed (β1, β2) ∈ B. Let di = βici for i ∈ {1, 2} and µ0 =
min{β1c1,0, β2c2,0}. As in Section 5.4, we consider the relaxed disjunction 〈d1, x〉 ≥ µ0 ∨
〈d2, x〉 ≥ µ0 on K. We concentrate our analysis on the sets D1 and D2 where

Di = {x ∈ K : 〈di, x〉 ≥ µ0} for i ∈ {1, 2}. (6.3)
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If the sets D1 and D2 satisfy the disjointness condition, then D1∪D2 = F∩K where F ⊂ Rn

is a non-convex set defined by a rank-two quadratic of the form

F = {x ∈ Rn : (µ0 − 〈d1, x〉)(µ0 − 〈d2, x〉) ≤ 0} . (6.4)

Throughout this section, we denote r = d2 − d1. We are mainly interested in sets D1 and
D2 which satisfy Condition 5.1. This implies r /∈ ±K in our analysis.

6.2.1 Disjunctions on a Single Second-Order Cone
Let K = Ln. In this section we develop closed-form convex inequalities for the set D1∪D2,
where D1 and D2 are defined as in (6.3). We specialize Propositions 5.19 and 5.31 to this
setting in Theorem 6.3. This result is based on the following lemma.
Lemma 6.1. For any r /∈ ±Ln and x ∈ Ln, we have

fLn,r(x) =
√
〈r, x〉2 + (‖r̃‖2 − r2

n)(x2
n − ‖x̃‖2). (6.5)

Proof. Let r /∈ ±Ln and x ∈ Ln. Recall from Remark 5.22(ii) that

fLn,r(x) = f ′Ln,r(x) = inf
α1,α2
{〈α1 + α2, x〉 : α1 − α2 = r, α1, α2 ∈ bdLn}.

Because r /∈ ±Ln, Moreau’s decomposition theorem implies that there exist orthogonal
nonzero vectors α∗1, α∗2 ∈ bdLn such that r = α∗1 − α∗2. Thus, the minimization problem
above is feasible. Defining a new variable π = α1 + α2, we can rewrite fLn,r(x) as

fLn,r(x) = inf
π
{〈π, x〉 : ‖π̃ + r̃‖2 = πn + rn, ‖π̃ − r̃‖2 = πn − rn}

Let P = {π ∈ Rn : ‖π̃ + r̃‖2 = πn + rn, ‖π̃ − r̃‖2 = πn − rn}. Note that

P = {π ∈ Rn : ‖π̃ + r̃‖2 = ‖π̃ − r̃‖2 + 2rn, ‖π̃ − r̃‖2 = πn − rn}.

After taking the square of both sides of the first equation above, noting r /∈ ±Ln, and
replacing the term ‖π̃ − r̃‖2 with πn − rn, we arrive at

P =
{
π ∈ Rn :

〈(
r̃

−rn

)
, π

〉
= 0, ‖π̃ − r̃‖2 = πn − rn

}
.

Then we have

fLn,r(x) = inf
π

{
〈π, x〉 :

〈(
r̃

−rn

)
, π

〉
= 0, ‖π̃ − r̃‖2 = πn − rn

}
.
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Unfortunately, the optimization problem stated above is non-convex due to the second
equality constraint. We show below that the natural convex relaxation for this problem is
tight. Indeed, consider the relaxation

inf
π

{
〈π, x〉 :

〈(
r̃

−rn

)
, π

〉
= 0, ‖π̃ − r̃‖2 ≤ πn − rn

}

The feasible region of this relaxation is the intersection of a hyperplane with a second-
order cone shifted by the vector r. Any solution which is feasible to the relaxation but
not the original problem can be expressed as a convex combination of solutions feasible
to the original problem. Because we are optimizing a linear function, this shows that the
relaxation is equivalent to the original problem. Thus, we have

fLn,r(x) = inf
π

{
〈π, x〉 :

〈(
r̃

−rn

)
, π

〉
= 0, π − r ∈ Ln

}
.

Consider α∗1 and α∗2 defined at the beginning of the proof. Note that r̃>(α̃∗1 + α̃∗2)− rn(α̃∗1 +
α̃∗2) = 0. The minimization problem in the last line above is feasible since π∗ = 2α∗2 + r
is a feasible solution. Indeed, it is strictly feasible since α∗1 + α∗2 is a recession direction
of the feasible region and belongs to the interior of Ln. Hence, the optimal value of the
minimization problem is equal to that of its dual problem. Furthermore, the dual problem
is solvable whenever it is feasible. Then

fLn,r(x) = max
ρ,τ

{
〈r, ρ〉 : ρ+ τ

(
r̃

−rn

)
= x, ρ ∈ Ln

}

= max
τ

{
〈r, x〉 − τ

(
‖r̃‖2

2 − r2
n

)
: x− τ

(
r̃

−rn

)
∈ Ln, ρ ∈ Ln

}
.

There will be an optimal solution to the problem above on the boundary of the feasible
region. Because ‖r̃‖2

2 − r2
n > 0, an optimal solution to this problem is

τ− =
〈r, x〉 −

√
〈r, x〉2 + (‖r̃‖2

2 − r2
n)(x2

n − ‖x̃‖2
2)

‖r̃‖2
2 − r2

n

.

The conclusion (6.5) follows.

The following remark shows that the conclusion of Lemma 6.1 still holds when r ∈
± bdLn.
Remark 6.2. Suppose r ∈ ± bdLn. Remark 5.22(i) shows that, for any x ∈ Ln, we have
fLn,r(x) = |〈r, x〉| =

√
〈r, x〉2 + (‖r̃‖2 − r2

n)(x2
n − ‖x̃‖2).
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Lemma 6.1 and Remark 6.2 yield the following result.
Theorem 6.3. Let K = Ln. Suppose r /∈ ± intLn. Then a point x ∈ Ln satisfies (5.20) if
and only if it satisfies√

〈r, x〉2 + (‖r̃‖2 − r2
n)(x2

n − ‖x̃‖2) ≥ 2µ0 − 〈d1 + d2, x〉. (6.6)

Similarly, a point x ∈ Ln satisfies (5.31) if and only if it satisfies√
〈r, x〉2 + (‖r̃‖2 − r2

n)(x2
n − ‖x̃‖2) ≥ |2µ0 − 〈d1 + d2, x〉|. (6.7)

As a result of Theorem 6.3 and Proposition 5.19, the inequality (6.6) provides a convex
relaxation for D1 ∪ D2 in the space of the original variables. In addition, if D1 and D2
satisfy the conditions of Theorem 5.9, the inequality (6.6) and the cone constraint x ∈ Ln
together characterize the closed convex hull of D1 ∪D2. Recall from Corollary 5.34 that, if
D1 and D2 satisfy the disjointness condition, a point x ∈ Ln satisfies (5.20) if and only if it
satisfies (5.31). Thus, in the case of disjoint disjunctions, the inequalities (6.6) and (6.7)
are equivalent. On the other hand, by Theorem 6.3 and Proposition 5.31(i), any point
x ∈ F ∩ Ln satisfies (6.7), where F ⊂ Rn is defined as in (6.4). Moreover, if F satisfies the
conditions of Proposition 5.31(ii), then (6.7) produces the closed convex hull of F ∩ Ln.
Remark 6.4. Let K = Ln. Consider D1 and D2 defined as in (6.3). The inequality (6.6)
has a simple geometrical meaning when the sets D1 and D2 satisfy the disjointness condi-
tion. Consider a point x ∈ Rn which is on the hyperplane defined by 〈d1, x〉 = µ0. Then
the disjointness condition implies 〈d2, x〉 ≤ µ0. Replacing 〈d1, x〉 with µ0 on both sides of
(6.6), we can see that when r = d2− d1 /∈ ±Ln, such a point x satisfies (6.6) if and only if
x ∈ ±Ln. Similarly, a point x which is on the hyperplane defined by 〈d2, x〉 = µ0 satisfies
(6.6) if and only if x ∈ ±Ln. Thus, the region defined by (6.6) has the same cross-section
as ±Ln at the hyperplanes defined by the equations 〈d1, x〉 = µ0 and 〈d2, x〉 = µ0.

In the next two results, we show that (6.6) and (6.7) have simple second-order cone
representations.
Lemma 6.5. Suppose r /∈ ±Ln. Then a point x ∈ Ln satisfies (6.6) if and only if there
exists z ≥ µ0 such that(

‖r̃‖2
2 − r2

n

) (
x2
n − ‖x̃‖2

2

)
≥ 4(z−〈d1, x〉)(z−〈d2, x〉). (6.8)

Similarly, a point x ∈ Ln satisfies (6.7) if and only if it satisfies (6.8) together with z = µ0.

Proof. Lemma 6.1 shows

[fLn,r(x)]2 − 〈r, x〉2 =
(
‖r̃‖2

2 − r2
n

) (
x2
n − ‖x̃‖2

2

)
.

Then the two claims follow from Propositions 5.27(ii) and 5.32(ii), respectively.
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Proposition 6.6. Suppose r /∈ ±Ln. For any z ∈ R, a point x ∈ Ln satisfies (6.8) if and
only if it satisfies (

‖r̃‖2
2 − r2

n

)
x− 2(z − 〈d1, x〉)

(
r̃

−rn

)
∈ Ln. (6.9)

Proof. Fix z ∈ R. Because r /∈ ±Ln, any point x ∈ Ln satisfies (6.8) if and only if it
satisfies (

‖r̃‖2
2 − r2

n

)2 (
x2
n − ‖x̃‖2

2

)
− 4

(
‖r̃‖2

2 − r2
n

)
(z−〈d1, x〉)(z−〈d2, x〉) ≥ 0.

The left-hand side of this inequality is identical to the following quadratic form which has
a single positive eigenvalue:((

‖r̃‖2
2 − r2

n

)
xn + 2(z − 〈d1, x〉)rn

)2
−
∥∥∥(‖r̃‖2

2 − r2
n

)
x̃− 2(z − 〈d1, x〉)r̃

∥∥∥2

2
.

For ease of exposition, let us define the functions A,B : Rn → R as

A(x) =
∥∥∥(‖r̃‖2

2 − r2
n

)
x̃− 2(z − 〈d1, x〉)r̃

∥∥∥
2

and B(x) =
(
‖r̃‖2

2 − r2
n

)
xn + 2(z − 〈d1, x〉)rn.

We have just shown that a point x ∈ Ln satisfies (6.8) if and only if it satisfies A(x)2 ≤
B(x)2. To finish the proof, we show that x ∈ Ln satisfies either A(x) + B(x) > 0 or
A(x) = B(x) = 0. Suppose A(x) + B(x) ≤ 0 for some x ∈ Ln. Using the triangle
inequality, we can write

0 ≥ A(x) + B(x)
=
∥∥∥(‖r̃‖2

2 − r2
n

)
x̃− 2(z − 〈d1, x〉)r̃

∥∥∥
2

+
(
‖r̃‖2

2 − r2
n

)
xn + 2(z − 〈d1, x〉)rn

≥ −
(
‖r̃‖2

2 − r2
n

)
‖x̃‖2 + 2|z − 〈d1, x〉| ‖r̃‖2 +

(
‖r̃‖2

2 − r2
n

)
xn − 2|z − 〈d1, x〉||rn|

=
(
‖r̃‖2

2 − r2
n

)
(xn − ‖x̃‖2) + 2|z − 〈d1, x〉| (‖r̃‖2 − |rn|) .

Because x ∈ Ln and r /∈ ±Ln, the last expression above must be equal to zero. Hence,
‖x̃‖2 = xn and 〈d1, x〉 = z. This implies A(x) + B(x) = (‖r̃‖2

2 − r2
n)(‖x̃‖2 + xn) which is

strictly positive unless x = 0, but then A(x) = B(x) = 0.

Remark 6.7. Suppose the hypotheses of Proposition 6.6 are satisfied. Changing the roles
of d1 and d2, the proof of Proposition 6.6 can be repeated to show that a point x ∈ Ln
satisfies (6.8) if and only if it satisfies

(
‖r̃‖2

2 − r2
n

)
x+ 2(z − 〈d2, x〉)

(
r̃

−rn

)
∈ Ln.
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The following is a consequence of Proposition 6.6 and Corollary 5.34.
Corollary 6.8. Let K = Ln. Consider D1 and D2 defined as in (6.3). Suppose r /∈ ±Ln.

i. Let x ∈ Ln be such that 〈d1, x〉 ≤ µ0 ∨ 〈d2, x〉 ≤ µ0. Then x satisfies (6.6) if and only
if it satisfies (

‖r̃‖2
2 − r2

n

)
x− 2(µ0 − 〈d1, x〉)

(
r̃

−rn

)
∈ Ln. (6.10)

ii. Suppose D1 and D2 satisfy the disjointness condition. Then a point x ∈ Ln satisfies
(6.6) if and only if it satisfies (6.10).

6.2.2 Extension to Direct Products of Second-Order Cones
Corollary 6.9 extends Theorem 6.3 to the case where K ⊂ Rn is a direct product of multiple
second-order cones and nonnegative rays.
Corollary 6.9. Let K ⊂ Rn such that K = ∏p1+p2

j=1 Kj where Kj = Lnj for j ∈ [p1] and
Kp1+j = R+ for j ∈ [p2]. Let

P+
1 =

{
j ∈ [p1] : −rj ∈ Lnj

}
, P−1 =

{
j ∈ [p1] : rj ∈ Lnj

}
, P◦1=

{
j ∈ [p1] : rj /∈ ±Lnj

}
.

i. A point x ∈ K satisfies (6.6) if and only if it satisfies∑
j∈P◦1

fLnj ,rj(x
j) +

∑
j∈P◦1

〈dj1 + dj2, x
j〉j

+ 2
∑
j∈P+

1

〈dj1, xj〉j + 2
∑
j∈P−1

〈dj2, xj〉j + 2
p1+p2∑
j=p1+1

max
{
dj1, d

j
2

}
xj ≥ 2µ0 (6.11)

where fLnj ,rj(xj) =
√
〈rj, xj〉2j +

(
‖r̃j‖2 − (rjnj)2

)(
(xjnj)2 − ‖x̃j‖2

)
for j ∈ P◦1.

ii. A point x ∈ K satisfies (6.11) if and only if there exist zj ∈ R, j ∈ P◦1, such that

(
‖r̃j‖2 − (rjnj)

2
)
xj − 2

(
zj − 〈dj1, xj〉j

)( r̃j

−rjnj

)
∈ Lnj ∀j ∈ P◦1, (6.12a)

∑
j∈P◦1

zj +
∑
j∈P+

1

〈dj1, xj〉j +
∑
j∈P−1

〈dj2, xj〉j +
p1+p2∑
j=p1+1

max
{
dj1, d

j
2

}
xj ≥ µ0. (6.12b)

Proof. Fix x ∈ K. Proposition 6.1, together with Proposition 5.27 and Remarks 5.29
and 5.22(i), shows that the inequality (5.20) reduces to (6.11). To show statement (ii),
consider Proposition 5.27(ii). Remark 5.28 shows that the auxiliary variables zj can be
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eliminated from (5.27) for j ∈ P+
1 ∪ P−1 . Furthermore, as discussed in Lemma 6.5 and

Proposition 6.6, the inequalities
[
fLnj ,rj(xj)

]2
−〈rj, xj〉2j ≥ 4

(
zj −〈dj1, xj〉j

)(
zj −〈dj2, xj〉j

)
can be represented in second-order conic form as (6.12a) for j ∈ P◦1. Hence, (5.27) reduces
to (6.12).

6.3 Describing the Closed Convex Hull
In this section, we consider the set C1 ∪ C2, where C1 and C2 are defined as in (6.1) and
K = Ln. We assume that C1 and C2 satisfy the basic disjunctive setup. The main purpose
of this section is to use the results of Section 6.2.1 to provide a complete closed convex
hull description of C1 ∪ C2. We first state the following corollary of Proposition 5.19,
Remark 5.20, and Theorem 6.3.
Corollary 6.10. Let K = Ln. Consider C1 and C2 defined as in (6.1) and B defined as in
(5.11). Let (β1, β2) ∈ B and µ0(β1, β2) = min{c1,0, c2,0}. Any point x ∈ C1 ∪ C2 satisfies

fLn,β2c2−β1c1(x) ≥ 2µ0(β1, β2)− 〈β1c1 + β2c2, x〉 (6.13)

where fLn,r(x) =
√
〈r, x〉2 + (‖r̃‖2 − r2

n)(x2
n − ‖x̃‖2). Furthermore, this inequality defines a

convex region inside the second-order cone.

6.3.1 When does a Single Convex Inequality Suffice?
The following result is a consequence of Theorems 5.9 and 6.3.
Corollary 6.11. Let K = Ln. Consider C1 and C2 defined as in (6.1). Suppose C1 and C2
satisfy the basic disjunctive setup. Let µ0 = min{c1,0, c2,0}. Suppose one of the conditions
below holds:

i. The points c1, c2 ∈ Rn satisfy c1 ∈ Ln or c2 ∈ Ln.
ii. The convex hull of C1 ∪ C2 is closed and c1,0 = c2,0 ∈ {±1}.

Then the closed convex hull of C1 ∪ C2 is

conv(C1 ∪ C2) = {x ∈ Ln : fLn,c2−c1(x) ≥ 2µ0 − 〈c1 + c2, x〉} .

where fLn,r(x) =
√
〈r, x〉2 + (‖r̃‖2 − r2

n)(x2
n − ‖x̃‖2).

Corollary 6.11 shows that, under certain conditions, the closed convex hull of C1 ∪ C2
is completely described with a single inequality of the form (6.6), in addition to the cone
constraint x ∈ Ln. Nevertheless, it is easy to construct instances where these hypotheses
are not satisfied. We explore these cases further in Section 6.3.2.
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Let us consider the case µ0 = c1,0 = c2,0 ∈ {0,±1}. In this case Lemma 5.3 implies
r = c2 − c1 /∈ ±Ln. Suppose also that the sets C1 and C2 satisfy i) the conditions of
Corollary 6.11, and ii) the disjointness condition. Statement (i) holds, for instance, when
the sets C1 and C2 are defined by a split disjunction which excludes the origin; in this
case µ0 = 1 and the convex hull of C1 ∪ C2 is closed according to Corollary 5.14. The
disjointness condition also holds for split disjunctions. Then Corollary 6.11 indicates that
the closed convex hull of C1 ∪ C2 is completely characterized by the inequality

fLn,r(x) ≥ 2µ0 − 〈c1 + c2, x〉, (6.14)

together with the cone constraint x ∈ Ln. Furthermore, Corollary 6.8 shows that any
x ∈ Ln satisfies (6.14) if and only if it satisfies(

‖r̃‖2
2 − r2

n

)
x− 2(c1,0 − 〈c1, x〉)

(
r̃

−rn

)
∈ Ln.

We formulate this conclusion into Corollary 6.12 below. This recovers the related results
of [8, 89] on split disjunctions on the second-order cone. Note that, in the case of split
disjunctions, C1 and C2 satisfy the basic disjunctive setup if they satisfy Condition 5.1 and
c1,0 = c2,0 = 1.
Corollary 6.12. Consider C1 and C2 defined by a split disjunction 〈t1`, x〉 ≥ c1,0 ∨
〈t2`, x〉 ≥ c2,0 on Ln such that t1 > 0 > t2 and C1 ∪ C2 ( Ln. Suppose C1 and C2
satisfy Condition 5.1 and c1,0, c2,0 ∈ {0,±1}. If c1,0 = c2,0 = 1, then

conv(C1 ∪ C2) =
{
x ∈ Ln : (t1 − t2)

(
‖˜̀‖2

2 − `2
n

)
x+ 2(1− 〈t1`, x〉)

( ˜̀
−`n

)
∈ Ln

}
.

Otherwise, conv(C1 ∪ C2) = Ln.
Corollaries 6.8 and 6.11 recover the results of [8, 89] for split disjunctions on the cone

the second-order cone and extend them significantly to more general two-term disjunctions.
Theorem 8.6 in Chapter 8 complements Corollary 6.11 and shows that a single inequality
of the form (6.6) always defines the convex hull of a homogeneous two-term disjunction on
the second-order cone as long as C1 and C2 satisfy the basic disjunctive setup.

Examples where a Single Inequality Suffices

Example 6.1. As an application of Corollary 6.12, consider the split disjunction 4x1 ≥
1 ∨ −x1 ≥ 1 on the second-order cone L3. Corollary 6.12 states that in this case the convex
hull of C1 ∪ C2 is the set of points x ∈ L3 that satisfy the second-order cone inequality

5x+ 2(1− 4x1)e1 ∈ L3.
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Figures 6.1(a) and (b) show the disjunctive set C1∪C2 and the second-order cone inequality
which is introduced to convexify C1 ∪ C2, respectively.

(a) C1 ∪ C2 (b) Conic quadratic inequality describ-
ing the convex hull of C1 ∪ C2

Figure 6.1: Sets associated with the split disjunction 4x1 ≥ 1 ∨ −x1 ≥ 1 on L3.

Example 6.2. Consider the cone L3 and the disjunction x3 ≥ 1 ∨ x1 + x3 ≥ 1 (c1 = e3,
c2 = e1 + e3, c1,0 = c2,0 = 1). Note that c1, c2 ∈ L3 in this example. Hence, we can use
Corollary 6.11 to characterize the closed convex hull:

conv(C1 ∪ C2) =
{
x ∈ L3 :

√
x2

3 − x2
2 ≥ 2− (x1 + 2x3)

}
.

Figures 6.2(a) and (b) depict the disjunctive set C1 ∪C2 and the associated closed convex
hull, respectively. In order to give a better sense of the convexification operation, we
plot the points added to C1 ∪ C2 to generate the closed convex hull in Figure 6.2(c). We
note that in this example the disjointness condition that was required in Corollary 6.8(ii)
is violated. Nevertheless, the inequality that we provide is still intrinsically related to
the second-order cone inequality (6.10) of Corollary 6.8: The sets described by the two
inequalities coincide in the region outside C1∩C2 as a consequence of Corollary 6.8(i). We
display the corresponding cone for this example in Figure 6.2(d). Note that the resulting
second-order cone inequality is in fact not valid for some points in C1 ∩ C2.
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6.3.2 When are Multiple Convex Inequalities Needed?
As Proposition 5.15 hints, there are cases where a single inequality of the form (6.5) is
not sufficient to define the closed convex hull of C1 ∪ C2. In this section, we study these
cases when K = Ln and outline a procedure to find closed-form expressions describing the
closed convex hull of C1 ∪ C2. We first state the following consequence of Corollary 5.8
and Theorem 6.3. The sets B1 and B2 are defined as in (5.14).
Corollary 6.13. Let K = Ln. Consider C1 and C2 defined as in (6.1). Suppose C1 and
C2 satisfy the basic disjunctive setup. Then the closed convex hull of C1 ∪ C2 is

conv(C1 ∪ C2) =
{
x ∈ Ln : fLn,c2−β1c1(x) ≥ 2c2,0 − 〈β1c1 + c2, x〉 ∀ β1 ∈ B1,

fLn,β2c2−c1(x) ≥ 2c1,0 − 〈c1 + β2c2, x〉 ∀ β2 ∈ B2

}
.

where fLn,r(x) =
√
〈r, x〉2 + (‖r̃‖2 − r2

n)(x2
n − ‖x̃‖2).

Consider β1 ∈ B1 and β2 ∈ B2. Let x ∈ Ln. For ease of notation, let us define the
functions R,P ,Q : Ln → R as

R(x) = 〈c1, x〉2 + (‖c̃1‖2
2 − c2

1,n)(x2
n − ‖x̃‖2

2),
P(x) = 〈c1, x〉〈c2, x〉+ (c̃>1 c̃2 − c1,nc2,n)(x2

n − ‖x̃‖2
2),

Q(x) = 〈c2, x〉2 + (‖c̃2‖2
2 − c2

2,n)(x2
n − ‖x̃‖2

2).

With these definitions, we have

R(x)β2
1 − 2P(x)β1 +Q(x)=〈c2 − β1c1, x〉2+

(
‖c̃2 − β1c̃1‖2

2 − (c2,n − β1c1,n)2
) (
x2
n − ‖x̃‖2

2

)
,

Q(x)β2
2 − 2P(x)β2 +R(x)=〈β2c2 − c1, x〉2+

(
‖β2c̃2 − c̃1‖2

2 − (β2c2,n − c1,n)2
) (
x2
n − ‖x̃‖2

2

)
.

We further define the functions tx1 : B1 → R and tx2 : B2 → R as

tx1(β1) = β1〈c1, x〉+ fLn,c2−β1c1(x) = β1〈c1, x〉+
√
R(x)β2

1 − 2P(x)β1 +Q(x),

tx2(β2) = β2〈c2, x〉+ fLn,β2c2−c1(x) = β2〈c2, x〉+
√
Q(x)β2

2 − 2P(x)β2 +R(x).

Through these definitions and Corollary 6.13, we reach

conv(C1 ∪ C2) =
{
x ∈ Ln : tx1(β1) ≥ 2c2,0 − 〈c2, x〉 ∀β1 ∈ B1,

tx2(β2) ≥ 2c1,0 − 〈c1, x〉 ∀β2 ∈ B2

}

=
{
x ∈ Ln : infβ1∈B1 t

x
1(β1) ≥ 2c2,0 − 〈c2, x〉,

infβ2∈B2 t
x
2(β2) ≥ 2c1,0 − 〈c1, x〉

}
. (6.15)
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It follows that, for any given x ∈ Ln, we can check whether x ∈ conv(C1 ∪ C2) by cal-
culating the optimal value of the problems on the left-hand side of the inequalities in
(6.15). Furthermore, whenever the minimizer β∗1 = β∗1(x) of infβ1∈B1 t

x
1(β1) exists and

can be expressed parametrically in terms of c1, c2, and x, one can replace the inequal-
ity infβ1∈B1 t

x
1(β1) ≥ 2c2,0 − 〈c2, x〉 in (6.15) with tx1(β∗1) ≥ 2c2,0 − 〈c2, x〉. Similarly, one

can define the minimizer β∗2 = β∗2(x) and replace infβ2∈B2 t
x
2(β2) ≥ 2c1,0 − 〈c1, x〉 with

tx2(β∗2) ≥ 2c1,0 − 〈c1, x〉. We illustrate this procedure on an example in the next section.

Example where Multiple Inequalities are Needed

Example 6.3. Consider the cone L3 and the disjunction −x2 ≥ 0 ∨ −x3 ≥ −1 (c1 =
−e2, c1,0 = 0, c2 = −e3, c2,0 = −1). Since c1,0 > c2,0, Proposition 5.15 implies that
any undominated valid linear inequality for C1 ∪ C2 will be tight on C2 but not on C1.
Therefore, we follow the approach outlined at the beginning of this section. Noting that
c2 − β1c1 ∈ − intL3 for 0 ≤ β1 < 1 and c2 − β1c1 6∈ ± intL3 for β1 ≥ 1, we obtain
B1 = [1,∞). For β1 = 1, c2 − β1c1 ∈ − bdL3; Remark 5.22 indicates that x2 ≤ 1 is a valid
linear inequality for C1 ∪ C2. It is also clear in this example that B2 = ∅.

Since we are interested in cutting off only points x ∈ L3 such that x2 ≤ 1 and x /∈
conv(C1 ∪ C2), consider x ∈ L3 such that 0 < x2 ≤ 1 and x3 > 1. The hypotheses x ∈ L3

and x2 > 0 imply x3 − |x1| > 0. In this setup we have

R(x) = x2
3 − x2

1,

P(x) = x2x3,

Q(x) = x2
1 + x2

2.

The resulting tx1 is a convex function of β1 and has a critical point at

β̂1 = β̂1(x) = P(x)
R(x) −

〈c1, x〉
R(x)

√√√√P(x)2 −Q(x)R(x)
〈c1, x〉2 −R(x)

= x2x3

x2
3 − x2

1
+ x2

x2
3 − x2

1

√√√√x2
2x

2
3 − (x2

1 + x2
2)(x2

3 − x2
1)

(−1)(x2
3 − x2

1 − x2
2)

= x2x3 + |x1|x2

x2
3 − x2

1
= x2

x3 − |x1|
,

where the last equation uses the fact that x ∈ L3 and thus x3 > 1.
For any x ∈ L3 such that x2 ≤ x3 − |x1|, we have β̂1 ≤ 1. By the convexity of tx1 ,

the minimum of tx1 occurs at β∗1 = max
{
β̂1, 1

}
= 1. As discussed above, the inequality

tx1(1) ≥ 2c2,0 − 〈c2, x〉 reduces to the linear inequality x2 ≤ 1. Moreover, for any x ∈ L3
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such that x2 ≥ x3 − |x1|, we have β̂1 ≥ 1. For such points, β∗1 = β̂1 and tx1(β∗1) =
|x1| − x2

2(x3+|x1|)
x2

3−x
2
1

= |x1| − x2
2

x3−|x1| . Therefore, for all x ∈ L3 such that 0 < x2 ≤ 1, x3 > 1,
and x2 ≥ x3 − |x1|, we can impose the inequality tx1(β̂1) ≥ 2c2,0 − 〈c2, x〉 which translates
into |x1| − x2

2
x3−|x1| ≥ −2 + x3 in this example. Using 0 < x2 ≤ 1 and x3 − |x1| > 0, we can

rewrite this inequality as
√

1−max{0, x2}2 ≥ 1 + |x1| − x3. Putting this together with
x2 ≤ 1, we arrive at

conv(C1 ∪ C2) =
{
x ∈ L3 : tx1(β1) ≥ −2 + x3 ∀β1 ∈ [1,∞)

}
=

{
x ∈ L3 : x2 ≤ 1,

√
1−max{0, x2}2 ≥ 1 + |x1| − x3

}
,

where both inequalities are convex on R3. In fact, both inequalities are second-order cone
representable in a lifted space as expected.

In Figures 6.3(a) and (b), we plot the disjunctive set C1∪C2 and its closed convex hull,
respectively. The closed convex hull is obtained by imposing various convex inequalities
of the form (6.6), each corresponding to d1 = β1c1, d2 = c2, and a different value of
β1 ∈ B1, on L3. In Figure 6.3(c) we show the second-order cone counterparts (6.10) of
these inequalities. Note that these inequalities are not necessarily valid for all points in
C1 ∪C2 because the disjointness condition is not satisfied; however, they describe how the
boundary of the closed convex hull of C1 ∪C2 is formed outside C1 ∪C2. In Figure 6.3(d)
we show the cross-section of C1 ∪ C2 and the regions defined by the second-order cone
inequalities (6.10) at x3 = 4.
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(a) C1 ∪ C2 (b) conv(C1 ∪ C2)

(c) conv(C1 ∪ C2) \ C1 ∪ C2 (d) Underlying cone generating the
convex inequality

Figure 6.2: Sets associated with the disjunction x3 ≥ 1 ∨ x1 + x3 ≥ 1 on L3.
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(a) C1 ∪ C2 (b) The closed convex hull of C1 ∪
C2

(c) Underlying cones generating the con-
vex inequalities

(d) Cross-section at x3 = 4

Figure 6.3: Sets associated with the disjunction −x2 ≥ 0 ∨ −x3 ≥ −1 on L3.
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Chapter 7

Low-Complexity Relaxations and
Convex Hulls of Disjunctions on the
Positive Semidefinite Cone

Acknowledgments. This chapter is based on joint work with Fatma Kılınç-Karzan [108].

7.1 Introduction

7.1.1 Motivation
Let Sn denote the space of symmetric n× n matrices with real entries. In this chapter, we
study two-term disjunctions on the positive semidefinite cone Sn+ = {X ∈ Sn : a>X a ≥
0 ∀a ∈ Rn}. Consider the disjunction 〈D1, X〉 ≥ µ0 ∨ 〈D2, X〉 ≥ µ0. With respect to this
disjunction, we define the sets

Di =
{
X ∈ Sn+ : 〈Di, X〉 ≥ µ0

}
for i ∈ {1, 2}. (7.1)

In addition, we consider the intersection F ∩ Sn+ where F ⊂ Sn is a non-convex set defined
by a rank-two quadratic constraint of the form

F = {X ∈ Sn : (µ0 − 〈D1, X〉)(µ0 − 〈D2, X〉) ≤ 0} . (7.2)

As in Chapter 6, the purpose of this chapter is to provide convex relaxations for D1∪D2 and
F∩Sn+ with structured nonlinear valid inequalities in the space of the original variables. In
particular, we are interested in inequalities which explicitly characterize the closed convex
hulls of these sets whenever possible. Whenever we consider the sets D1 and D2, we are

113
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primarily interested in the cases where D1 and D2 satisfy Condition 5.1. Hence, we assume
R = D2 −D1 /∈ ±Sn+ when necessary.

While the class of disjunctions we consider in this chapter is more limited than those
we analyzed in Chapters 5 and 6, we note that such disjunctions appear as relaxations of
more general two-term disjunctions. Furthermore, convex inequalities that are obtained
from sets of the form D1 ∪D2 can be used to derive closed convex hull characterizations of
general two-term disjunctions; see Chapter 6.

The reader is referred to Section 5.1.2 for a detailed discussion of disjunctive inequalities
in mixed-integer conic programming. To the best of our knowledge, none of the papers
from the existing literature provide closed-form inequalities which describe closed convex
hulls of two-term disjunctions on the positive semidefinite cone in the space of the original
variables.

7.1.2 Notation and Terminology
In this chapter, we distinguish between the elements of Rn and Sn: We denote the elements
of Rn with lowercase letters and the elements of Sn with uppercase letters. With this
notation, we have Sn =

{
X ∈ Rn×n : X> = X

}
. We assume that Sn is equipped with

the Frobenius inner product 〈A,X〉 = Tr(AX). The Frobenius norm ‖ · ‖F : Sn → R on
Sn is defined as ‖X‖F =

√
〈X,X〉. The `-1 norm ‖ · ‖1 : Rn → R on Rn is defined as

‖x‖1 = ∑n
i=1 |xi|.

For any positive integer k, let [k] = {1, . . . , k}. Given a matrix A ∈ Rn×n, we let λ(A)
denote the vector of the eigenvalues of A arranged in nonincreasing order and λi(A) denote
its i-th eigenvalue. If A ∈ Sn, then the eigenvalues of A are real. Furthermore, A ∈ Sn is
positive semidefinite (resp. positive definite) if and only if λi(A) ≥ 0 (resp. λi(A) > 0) for
all i ∈ [n]. The dual cone of V ⊂ Sn is V∗ = {A ∈ Sn : 〈X,A〉 ≥ 0 ∀X ∈ V}. We remind
the reader that the positive semidefinite cone is self-dual, that is, its dual is equal to itself.
Given a matrix A ∈ Rn×n and J ⊂ [n], we let A[J] denote the principal submatrix of A
whose rows and columns are indexed by the elements of J. We let In ∈ Sn represent the
n× n identity matrix. For i ∈ [n], we let ei be the i-th unit vector in Rn,

Throughout this chapter, we consider sets D1 and D2 defined as in (7.1). If µ0 ∈ {0,±1}
and the sets D1 and D2 satisfy Conditions 5.1 and 5.2, we say that D1 and D2 satisfy the
basic disjunctive setup. If {X ∈ Sn+ : 〈D1, X〉 > µ0, 〈D2, X〉 > µ0} = ∅, we say that D1
and D2 satisfy the disjointness condition.
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7.1.3 Outline of the Chapter
In Section 7.2 we specialize the results of Section 5.4 to the case where K is the positive
semidefinite cone. In Section 7.2.1, we introduce a linear transformation which simplifies
our analysis of the sets D1 ∪D2 and F∩Sn+. In Section 7.2.2, we consider general two-term
disjunctions on the positive semidefinite cone and investigate the structure of the convex
inequalities developed in Section 5.4 in this setting. In Section 7.2.3, we identify a class of
elementary disjunctions where these inequalities can be expressed in a simple second-order
conic form. For more general disjunctions, we present several techniques to generate low-
complexity convex inequalities that are valid for C1 ∪ C2. Although, we do not explicitly
focus on affine cross-sections of regular cones, our approach immediately leads to valid
convex (or conic) inequalities for two-term disjunctions applied to those sets. We comment
on such extensions in Section 7.3.

7.2 Disjunctions on the Positive Semidefinite Cone

7.2.1 A Transformation to Simplify Disjunctions
Let R = D2 −D1. In this section, we establish a linear correspondence which reduces the
closed convex hull description of any two-term disjunction on Sn+ to the closed convex hull
description of an associated disjunction for which the matrix R = D2−D1 is diagonal. We
first prove the following more general result.
Proposition 7.1. Let A : Sn → Rm be a linear map. Consider C1,C2 ⊂ Sn defined as
Ci = {X ∈ Sn+ : AX = b, 〈Ci, X〉 ≥ ci,0}. Let Q ∈ intSn+ and U ∈ Rn×n be a diagonal
matrix and an orthogonal matrix, respectively. Define the linear map A′ : Sn → Rm as
A′X = AUQXQU>. Define the matrices C ′i = QU>CiUQ and the sets C′i = {X ∈ Sn+ :
A′X = b, 〈C ′i, X〉 ≥ ci,0} for i ∈ {1, 2}. Then

i. Ci = UQC′iQU> for i ∈ {1, 2},
ii. conv(C1 ∪ C2) = UQ conv(C′1 ∪ C′2)QU>.
iii. conv(C1 ∪ C2) = UQ conv(C′1 ∪ C′2)QU>.

Proof. First we prove (i). Note that Ci = UQ−1C ′iQ
−1U> for i ∈ {1, 2}. We can write

Ci =
{
X ∈ Sn+ : AX = b, 〈Ci, X〉 ≥ ci,0

}
=
{
UQY QU> ∈ Sn+ : AUQY QU> = b,

〈
UQ−1C ′iQ

−1U>, UQY QU>
〉
≥ ci,0

}
=
{
UQY QU> : A′Y = b, 〈C ′i, Y 〉 ≥ ci,0, Y ∈ Sn+

}
= UQC′iQU>.
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The third equality above uses the observation that UQY QU> ∈ Sn+ if and only Y ∈ Sn+,
which is true because QU> is a nonsingular matrix.

Statement (ii) follows from (i) and the observation that convex combinations are invari-
ant under the linear transformationsX 7→ UQXQU> : Sn → Sn andX 7→ Q−1U>XUQ−1 :
Sn → Sn. Statement (iii) follows from (ii) and the observation that the linear transforma-
tions X 7→ UQXQU> : Sn → Sn and X 7→ Q−1U>XUQ−1 : Sn → Sn are continuous.

Corollary 7.2. Let A : Sn → Rm be a linear map. Consider C,X ⊂ Sn defined as
C = {X ∈ Sn+ : AX = b} and X = {X ∈ Sn : (c1,0 − 〈C1, X〉)(c2,0 − 〈C2, X〉) ≤ 0}.
Let Q ∈ intSn+ and U ∈ Rn×n be a diagonal matrix and an orthogonal matrix, respectively.
Define the linear map A′ : Sn → Rm as A′X = AUQXQU>, the matrices C ′i = QU>CiUQ,
and the sets C′ = {X ∈ Sn+ : A′X = b} and X′ = {X ∈ E : (c1,0−〈C ′1, X〉)(c2,0−〈C ′2, X〉) ≤
0}. Then

i. conv(C ∩ X) = UQ conv(C′ ∩ X′)QU>.
ii. conv(C ∩ X) = UQ conv(C′ ∩ X′)QU>.

Proof. For i ∈ {1, 2}, let C+
i = {X ∈ C : 〈Ci, X〉 ≥ ci,0} and C−i = {X ∈ C : 〈Ci, X〉 ≤

ci,0}. Similarly, define (C+
i )′ = {X ∈ C′ : 〈C ′i, X〉 ≥ ci,0} and (C−i )′ = {X ∈ C′ : 〈C ′i, X〉 ≤

ci,0}. Then C∩X = (C+
1 ∪C+

2 )∩ (C−1 ∪C−2 ) and C′∩X′ = ((C+
1 )′∪ (C+

2 )′)∩ ((C−1 )′∪ (C−2 )′).
To prove statement (i), note that

conv(C ∩ X) = conv(C+
1 ∪ C+

2 ) ∩ conv(C−1 ∪ C−2 )
= UQ

[
conv((C+

1 )′ ∪ (C+
2 )′) ∩ conv((C−1 )′ ∪ (C−2 )′)

]
QU>

= UQ conv(C′ ∩ X′)QU>.

The first and third equalities above hold as a result of Proposition 5.2; and the second
equality follows from Proposition 7.1(ii). Statement (ii) follows similarly from the same
results.

Remark 7.3. Based on Proposition 7.1, we can assume without any loss of generality
that the matrices D1, D2 ∈ Sn which define the sets D1 and D2 are such that the matrix
R = D2 − D1 is diagonal with diagonal elements from {0,±1} sorted in nonincreasing
order. To see this, consider the eigenvalue decomposition of R = UΛU> where U ∈ Rn×n

is an orthogonal matrix and Λ ∈ Sn is a diagonal matrix whose entries are the eigenvalues
of R sorted in nonincreasing order. Let Q ∈ intSn+ be the diagonal matrix with diagonal
entries Qii = 1√

|Λii|
if Λii is nonzero and Qii = 1 otherwise. By Proposition 7.1(iii), we

have conv(D1 ∪ D2) = UQ conv(D′1 ∪ D′2)QU> where D′i =
{
X ∈ Sn+ : 〈D′i, X〉 ≥ µ0

}
and

D′i = QU>DiUQ for i ∈ {1, 2}. Furthermore, R′ = D′2 − D′1 = QU>RUQ = QΛQ is a
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diagonal matrix with diagonal elements from {0,±1} sorted in nonincreasing order. When
D1 and D2 satisfy Condition 5.1, Lemma 5.3 implies R /∈ ±Sn+, in which case R′ has at
least one diagonal entry equal to 1 and one diagonal entry equal to -1. Analogously, based
on Corollary 7.2, we can assume that the matrices D1, D2 ∈ Sn which define F are such
that the matrix R = D2 − D1 is diagonal with diagonal elements from {0,±1} sorted in
nonincreasing order.

In order to simplify the presentation of certain results in the rest of the chapter, we
sometimes make the assumption that R is a diagonal matrix whose diagonal elements
are from {0,±1} and sorted in nonincreasing order. Proposition 7.1, Corollary 7.2, and
Remark 7.3 show that this assumption is without any loss of generality.

7.2.2 General Two-Term Disjunctions on the Positive Semidefi-
nite Cone

We specialize Propositions 5.19 and 5.31 to disjunctions on the positive semidefinite cone
in Theorem 7.5. This result is based on the following lemma.
Lemma 7.4. For any R ∈ Sn and X ∈ Sn+, we have fSn+,R(X) =

∥∥∥λ(X1/2RX1/2
)∥∥∥

1
.

Proof. The dual cone of Sn+ is again Sn+. Hence, by Proposition 5.19, we have

fSn+,R(X) = max
P

{
〈R,P 〉 : X − P ∈ Sn+, X + P ∈ Sn+

}
.

First consider the case X ∈ intSn+. Then there exists a matrix X1/2 ∈ intSn+ such that
X = X1/2X1/2. A matrix P ∈ Sn satisfies X − P ∈ Sn+ and X + P ∈ Sn+ if and only if it
satisfies In−X−1/2PX−1/2 ∈ Sn+ and In+X−1/2PX−1/2 ∈ Sn+. Therefore, after introducing
a new variable Q = X−1/2PX−1/2, we can write

fSn+,R(X) = max
Q

{
〈R,X1/2QX1/2〉 : In −Q ∈ Sn+, In +Q ∈ Sn+

}
= max

Q

{〈
X1/2RX1/2, Q

〉
: In −Q ∈ Sn+, In +Q ∈ Sn+

}
= max

Q

{〈
X1/2RX1/2, Q

〉
: ‖λ(Q)‖∞ ≤ 1

}
=
∥∥∥λ(X1/2RX1/2

)∥∥∥
1
.

Now consider the more general case X ∈ Sn+. For ε > 0, let Xε = X +
εIn. Then Xε ∈ intSn+ and λi

(
(Xε)1/2

)
=

√
λi(X) + ε for all i ∈ [n]. Further-

more, limε↓0

∥∥∥(Xε)1/2R(Xε)1/2 − X1/2RX1/2
∥∥∥
F

= 0. The function A 7→ ‖λ(A)‖1 :
Sn → R is convex and finite everywhere; therefore, it is continuous. It follows that
limε↓0

∥∥∥λ((Xε)1/2R(Xε)1/2
)∥∥∥

1
=

∥∥∥|λ(X1/2RX1/2
)∥∥∥

1
. On the other hand, according to
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Remark 5.20, the function −fSn+,R(X) is a closed convex function of X; therefore,
limε↓0 fSn+,R(Xε) = fSn+,R(X) (see, for instance, [69, Proposition B.1.2.5]). Putting these
together, we get

fSn+,R(X) = lim
ε↓0

fSn+,R(Xε) = lim
ε↓0

∥∥∥λ((Xε)1/2R(Xε)1/2
)∥∥∥

1
=
∥∥∥λ(X1/2RX1/2

)∥∥∥
1
.

We note that, for any R ∈ Sn and X ∈ Sn+, the eigenvalues of X1/2RX1/2 are real
because it is real symmetric. Lemma 7.4 implies the following result.
Theorem 7.5. Let K = Sn+. Then a point X ∈ Sn+ satisfies (5.18) if and only if it satisfies∥∥∥λ(X1/2RX1/2

)∥∥∥
1
≥ 2µ0 − 〈D1 +D2, X〉. (7.3)

Similarly, a point X ∈ Sn+ satisfies (5.31) if and only if it satisfies∥∥∥λ(X1/2RX1/2
)∥∥∥

1
≥ |2µ0 − 〈D1 +D2, X〉|. (7.4)

Theorem 7.5 and Proposition 5.19 indicate that (7.3) is a convex inequality that is
valid for D1 ∪ D2, where D1,D2 ⊂ Sn+ are defined as in (7.1). Furthermore, if D1 and D2
satisfy the conditions of Theorem 5.9, the inequality (7.3) describes the closed convex hull
of D1∪D2, together with the cone constraint X ∈ Sn+. If D1 and D2 satisfy the disjointness
condition, then Corollary 5.34 shows that a point X ∈ Sn+ satisfies (7.3) if and only if it
satisfies (7.4). On the other hand, Theorem 7.5 and Proposition 5.31(i) indicate that (7.4)
provides a convex relaxation for F∩ Sn+, where F ⊂ Sn is defined as in (7.2). Furthermore,
if F satisfies the conditions of Proposition 5.31(ii), then (7.4) describes the closed convex
hull of F ∩ Sn+.

The lemma below can be used to simplify the term
∥∥∥λ(X1/2RX1/2

)∥∥∥
1
on the left-hand

side of (7.3); we refer to [71, Theorem 1.3.22] for a proof of this result.
Lemma 7.6. Let A ∈ Rm×n and B ∈ Rn×m with m ≤ n. Then the n eigenvalues of BA
are the m eigenvalues of AB together with n−m zeroes.
Corollary 7.7. For any R ∈ Sn and X ∈ Sn+, we have λ

(
X1/2RX1/2

)
= λ(RX). In

particular:
i. The eigenvalues of RX are real.
ii. fSn+,R(X) = ‖λ(RX)‖1.

Corollary 7.8. Let R ∈ Sn and X ∈ Sn+. Suppose R is diagonal with diagonal elements
from {0,±1} sorted in nonincreasing order. Let supp(R) ⊂ [n] be the set of indices of the
nonzero elements of the diagonal of R. Then
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i. The eigenvalues of R[supp(R)]X[supp(R)] are real,
ii.

fSn+,R(X) =
∥∥∥λ(X[supp(R)]1/2R[supp(R)]X[supp(R)]1/2)

∥∥∥
1

=
∥∥∥λ(R[supp(R)]X[supp(R)])

∥∥∥
1
.

Proof. Let t+, t−, and t0 be the number of diagonal elements of R which are equal to +1,
−1, and 0, respectively. Then t+ + t− = | supp(R)|. Let P ∈ Rn×(t++t−) be the matrix
whose i-th row is ei if i ∈ [t+], ei−t0 if i ∈ [n] \ [t+ + t0], and the zero vector otherwise.
Then R = PR[supp(R)]P> and

X1/2RX1/2 = X1/2PR[supp(R)]P>X1/2.

Note that the eigenvalues of X1/2PR[supp(R)]P>X1/2 are real because it is real
symmetric. By Lemma 7.6, the n eigenvalues of X1/2PR[supp(R)]P>X1/2 are the
t+ + t− eigenvalues of R[supp(R)]P>XP = R[supp(R)]X[supp(R)] together with
t0 zeroes. Noting X[supp(R)] ∈ St++t−

+ and applying Lemma 7.6 again, we see
that the eigenvalues of R[supp(R)]X[supp(R)] are the same as the eigenvalues of
X[supp(R)]1/2R[supp(R)]X[supp(R)]1/2.

We use the next result in the proof of Lemma 7.10, which provides an alternate repre-
sentation of

∥∥∥λ(X1/2RX1/2
)∥∥∥

1
.

Lemma 7.9. Let R ∈ Sn and X ∈ Sn+. The number of positive (resp. negative) eigenvalues
of X1/2RX1/2 is less than or equal to the number of positive (resp. negative) eigenvalues
of R.

Proof. Consider the eigenvalue decomposition of X = UxDxU
>
x with an orthogonal matrix

Ux and a diagonal matrix Dx. Note λ(X1/2RX1/2) = λ(D1/2
x UxRU

>
x D

1/2
x ). Let Ix be a

diagonal matrix which has (Ix)ii = (Dx)ii if (Dx)ii > 0 and (Ix)ii = 1 if (Dx)ii = 0. Let
Px be a diagonal matrix which has (Px)ii = 1 if (Dx)ii > 0 and (Ix)ii = 0 if (Dx)ii = 0.
Then D1/2

x UxRU
>
x D

1/2
x = Px(I1/2

x UxRU
>
x I

1/2
x )Px. The matrix I1/2

x UxRU
>
x I

1/2
x has the same

inertia as R because I1/2
x Ux is nonsingular. Because Px(I1/2

x UxRU
>
x I

1/2
x )Px is a principal

submatrix of I1/2
x UxRU

>
x I

1/2
x , we deduce the result from Cauchy’s interlacing eigenvalue

theorem.

Lemma 7.10. Let R ∈ Sn and X ∈ Sn+. Suppose R /∈ ±Sn+ and it is diagonal with diagonal
elements from {0,±1} sorted in nonincreasing order. Let n+ = max{k : Rkk = 1},
n− = min{k : Rkk = −1}, and J = {(i, j) : 1 ≤ i ≤ n+, n− ≤ j ≤ n}. Then∥∥∥λ(X1/2RX1/2

)∥∥∥
1

=
√
〈R,X〉2 − 4

∑
(i,j)∈J

λi
(
X1/2RX1/2

)
λj
(
X1/2RX1/2

)
.
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Proof. Note that 〈R,X〉 = Tr(RX) = ∑n
i=1 λi(RX) = ∑n

i=1 λi
(
X1/2RX1/2

)
where the last

equality follows from Corollary 7.7. Furthermore, X1/2RX1/2 has at most n+ positive and
at most n− n− + 1 negative eigenvalues because of Lemma 7.9. Hence, we can write

∥∥∥λ(X1/2RX1/2
)∥∥∥2

1
− 〈R,X〉2 =

∥∥∥λ(X1/2RX1/2
)∥∥∥2

1
−
( n∑
i=1

λi
(
X1/2RX1/2

))2

=
[
n+∑
i=1

λi
(
X1/2RX1/2

)
−

n∑
i=n−

λi
(
X1/2RX1/2

)]2

−
[
n+∑
i=1

λi
(
X1/2RX1/2

)
+

n∑
i=n−

λi
(
X1/2RX1/2

)]2

= −4
[
n+∑
i=1

λi
(
X1/2RX1/2

)][ n∑
i=n−

λi
(
X1/2RX1/2

)]

= −4
∑

(i,j)∈J
λi
(
X1/2RX1/2

)
λj
(
X1/2RX1/2

)
.

The result follows from the nonnegativity of
∥∥∥λ(X1/2RX1/2

)∥∥∥
1
.

Lemmas 7.4 and 7.10, along with Propositions 5.27(ii) and 5.32(ii), have the following
consequence.
Corollary 7.11. Suppose R /∈ ±Sn+ and it is diagonal with diagonal elements from {0,±1}
sorted in nonincreasing order. Let n+ = max{k : Rkk = 1}, n− = min{k : Rkk = −1},
and J = {(i, j) : 1 ≤ i ≤ n+, n− ≤ j ≤ n}. Then a point X ∈ Sn+ satisfies (7.3) if and
only if there exists z ≥ µ0 such that

−
∑

(i,j)∈J
λi
(
X1/2RX1/2

)
λj
(
X1/2RX1/2

)
≥ (z−〈D1, X〉)(z−〈D2, X〉). (7.5)

Similarly, a point X ∈ Sn+ satisfies (7.4) if and only if it satisfies (7.5) together with z = µ0.

Proof. Lemmas 7.4 and 7.10 show

[fSn+,R(X)]2 − 〈R,X〉2 = ‖λ(X1/2RX1/2)‖2
1 − 〈R,X〉2

= −
∑

(i,j)∈J
λi
(
X1/2RX1/2

)
λj
(
X1/2RX1/2

)
.

Then the two claims follow from Propositions 5.27(ii) and 5.32(ii), respectively.
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7.2.3 Elementary Disjunctions on the Positive Semidefinite Cone
Although it provides a closed-form equivalent for (5.18) in the case of disjunctions on the
positive semidefinite cone, (7.3) can pose challenges from a computational perspective. In
this section, we identify a class of two-term disjunctions for which (7.3) can be exactly
represented in a tractable form.

We say that the disjunction 〈D1, X〉 ≥ µ0 ∨ 〈D2, X〉 ≥ µ0 is elementary when the
matrix R = D2 − D1 ∈ Sn has exactly one positive and one negative eigenvalue. In
this section we consider sets D1,D2 ⊂ Sn+ which are defined by an elementary disjunction
〈D1, X〉 ≥ µ0 ∨ 〈D2, X〉 ≥ µ0. By Remark 7.3, we assume without any loss of generality
that R is diagonal and has exactly one positive entry R11 = 1 and one negative entry
Rnn = −1. In this case, using Lemma 7.9, the matrix X1/2RX1/2 has at most one positive
and at most one negative eigenvalue for any X ∈ Sn+. The largest and smallest eigenvalues
of X1/2RX1/2 are

λ1
(
X1/2RX1/2

)
= 1

2

(
X11 −Xnn +

√
(X11 −Xnn)2 + 4(X11Xnn −X2

1n)
)
, (7.6a)

λn
(
X1/2RX1/2

)
= 1

2

(
X11 −Xnn −

√
(X11 −Xnn)2 + 4(X11Xnn −X2

1n)
)
. (7.6b)

Hence, Lemma 7.4 and Theorem 7.5 reduce to the statement below for elementary disjunc-
tions on the positive semidefinite cone.
Corollary 7.12. Suppose R = D2 − D1 is a diagonal matrix with exactly one
positive entry R11 = 1 and one negative entry Rnn = −1. Then fSn+,R(X) =√

(X11 −Xnn)2 + 4(X11Xnn −X2
1n) for any X ∈ Sn+. Furthermore, a point X ∈ Sn+ satis-

fies (7.3) if and only if it satisfies√
(X11 −Xnn)2 + 4(X11Xnn −X2

1n) ≥ 2µ0 − 〈D1 +D2, X〉. (7.7)

Proof. The proof follows from noting that ‖λ(X1/2RX1/2)‖1 = λ1(X1/2RX1/2) −
λn(X1/2RX1/2) where λ1(X1/2RX1/2) and λn(X1/2RX1/2) are as in (7.6).

Corollary 7.11 leads to equivalent second-order cone representations for (7.7) in the
case of both disjoint and non-disjoint disjunctions.
Theorem 7.13. Suppose R = D2−D1 is a diagonal matrix with exactly one positive entry
R11 = 1 and one negative entry Rnn = −1. Then a point X ∈ Sn+ satisfies (7.3) if and only
if there exists z ≥ µ0 such that

X[{1, n}]− (z − 〈D1, X〉)R[{1, n}] ∈ S2
+. (7.8)
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Similarly, a point X ∈ Sn+ satisfies (7.4) if and only if it satisfies (7.8) together with z = µ0.
Furthermore, the inequality (7.8) can be represented as a second-order cone constraint.

Proof. Fix X ∈ Sn+. The first part of Corollary 7.11 shows that X satisfies (7.3) if and
only if there exists z ≥ µ0 such that

(X11Xnn −X2
1n) ≥ (z − 〈D1, X〉)(z − 〈D2, X〉).

This inequality can be rewritten as

[X11Xnn −X2
1n] ≥ (z − 〈D1, X〉)(z − 〈D1, X〉 − 〈R,X〉)

⇔ [X11Xnn −X2
1n] ≥ (z − 〈D1, X〉)2 − (z − 〈D1, X〉)[X11 −Xnn]

⇔ X11Xnn + (z − 〈D1, X〉)[X11 −Xnn]− (z − 〈D1, X〉)2 −X2
1n ≥ 0

⇔ [X11 − (z − 〈D1, X〉)] [Xnn + (z − 〈D1, X〉)]−X2
1n ≥ 0. (7.9)

The left-hand side of (7.9) is equal to the determinant of the matrix(
X11 − (z − 〈D1, X〉) X1n

X1n Xnn + (z − 〈D1, X〉)

)
.

This matrix equals X[{1, n}]− (z − 〈D1, X〉)R[{1, n}] which also appears in (7.8).
To finish the proof, we show that the diagonal elements of the matrix on the left-hand

side of (7.8) are nonnegative for any X ∈ Sn+ and z ∈ R which satisfy (7.9). That is,
we show X11 − (z − 〈D1, X〉) ≥ 0 and Xnn + (z − 〈D1, X〉) ≥ 0. When X and z satisfy
〈D1, X〉 = z, the hypothesis that X ∈ Sn+ implies this immediately. Therefore, we can
assume 〈D1, X〉 6= z. Note that (7.9) implies

[X11 − (z − 〈D1, X〉)] [Xnn + (z − 〈D1, X〉)] ≥ 0.

Because 〈D1, X〉 6= z and X11, Xnn ≥ 0 for X ∈ Sn+, at least one of the terms in the
product above is positive; this also implies the nonnegativity of the other term. Hence,
(7.9) is equivalent to (7.8) for any X ∈ Sn+ and z ∈ R.

The second part of Corollary 7.11 shows that X satisfies (7.4) if and only if it satisfies
(7.8) together with z = µ0.

Remark 7.14. Suppose the hypotheses of Theorem 7.13 are satisfied. Reversing the roles of
D1 and D2 in the proof of Theorem 7.13, the inequality (7.8) can be equivalently represented
as

X[{1, n}] + (z − 〈D2, X〉)R[{1, n}] ∈ S2
+.
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7.2.4 Low-Complexity Inequalities for General Two-Term Dis-
junctions

In this section, in a spirit similar to Remark 5.24, we study structured conic inequalities
valid for two-term disjunctions on Sn+. Section 7.2.3 showed that (7.3) admits an exact
second-order cone representation when we consider elementary disjunctions on the posi-
tive semidefinite cone. However, the structure of (7.3) can be more complicated in the
case of general two-term disjunctions. In this section, we introduce and discuss simpler
conic inequalities which provide good relaxations to (7.3) at a significantly lower cost of
computational complexity.

Relaxing the Inequality

We are going to use a classical result from matrix analysis to arrive at the results of this
section. We state this result as Lemma 7.15 below; see [71, Theorem 1.2.16] for a proof.
Lemma 7.15. Let A ∈ Rn×n. Then∑

1≤i<j≤n
det(A[{i, j}]) =

∑
1≤i<j≤n

λi(A)λj(A).

Using Lemma 7.15, we prove the following result.
Lemma 7.16. Let R ∈ Sn and X ∈ Sn+. Suppose R /∈ ±Sn+ and R is diagonal with diagonal
elements from {0,±1} sorted in nonincreasing order. Let n+ = max{k : Rkk = 1},
n− = min{k : Rkk = −1}, and J = {(i, j) : 1 ≤ i ≤ n+, n− ≤ j ≤ n}. Then∑

(i,j)∈J
det(X[{i, j}]) ≥ −

∑
(i,j)∈J

λi
(
X1/2RX1/2

)
λj
(
X1/2RX1/2

)
. (7.10)

Proof. Let Y = RX. From Corollary 7.7, λ(Y ) = λ(X1/2RX1/2); therefore, the right-hand
side of (7.10) is exactly equal to −∑(i,j)∈J λi(Y )λj(Y ). Define the sets J+ = {(i, j) : 1 ≤
i < j ≤ n+} and J− = {(i, j) : n− ≤ i < j ≤ n}. Note that det(Y [{i, j}]) = det(X[{i, j}])
if (i, j) ∈ J+ ∪ J−, det(Y [{i, j}]) = − det(X[{i, j}]) if (i, j) ∈ J, and det(Y [{i, j}]) = 0
otherwise. Furthermore, Y has at most n+ positive and at most n − n− + 1 negative
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eigenvalues. Then∑
(i,j)∈J

det(X[{i, j}]) = −
∑

(i,j)∈J
det(Y [{i, j}])

= −
∑

1≤i<j≤n
det(Y [{i, j}]) +

∑
(i,j)∈J+

det(Y [{i, j}]) +
∑

(i,j)∈J−
det(Y [{i, j}])

= −
∑

1≤i<j≤n
λi(Y )λj(Y ) +

∑
(i,j)∈J+

det(X[{i, j}]) +
∑

(i,j)∈J−
det(X[{i, j}])

= −
∑

(i,j)∈J
λi(Y )λj(Y ) +

[ ∑
(i,j)∈J+

det(X[{i, j}])−
∑

(i,j)∈J+

λi(Y )λj(Y )
]

+
[ ∑

(i,j)∈J−
det(X[{i, j}])−

∑
(i,j)∈J−

λi(Y )λj(Y )
]
.

In order to reach (7.10), we show∑
(i,j)∈J+

det(X[{i, j}]) ≥
∑

(i,j)∈J+

λi(Y )λj(Y ), (7.11a)
∑

(i,j)∈J−
det(X[{i, j}]) ≥

∑
(i,j)∈J−

λi(Y )λj(Y ). (7.11b)

Let P+ ∈ Sn+ be the diagonal matrix with diagonal entries P+
ii = 1 if i ∈ [n+] and

zero otherwise. Let P− ∈ Sn+ be the matrix P− = P+ − R. Define X+ = P+XP+ and
X− = P−XP−. Then X+, X− ∈ Sn+. Furthermore, X+ (resp. X−) has at most n+ (resp.
n− n− + 1) nonzero (positive) eigenvalues. We first prove (7.11a). Note that∑

(i,j)∈J+

det(X[{i, j}]) =
∑

1≤i<j≤n
det(X+[{i, j}]) =

∑
1≤i<j≤n

λi(X+)λj(X+)

=
∑

(i,j)∈J+

λi(X+)λj(X+),

where the second equation follows from Lemma 7.15 and the last one from the fact that
X+ has at most n+ positive eigenvalues. From (P+)2 = P+ and Lemma 7.6, we have
λ(X+) = λ(P+XP+) = λ(P+X) = λ(X1/2P+X1/2). From Corollary 7.7, we have
λ(Y ) = λ(X1/2RX1/2). Note X1/2P+X1/2 − X1/2RX1/2 = X1/2P−X1/2 ∈ Sn+; hence,
λ(X1/2P+X1/2) ≥ λ(X1/2RX1/2). Note from Lemma 7.9 that X1/2RX1/2 has at most
n − n− + 1 negative eigenvalues; hence, the largest n+ eigenvalues of X1/2RX1/2 are all
nonnegative. Then we have ∑(i,j)∈J+ λi(X+)λj(X+) ≥ ∑

(i,j)∈J+ λi(Y )λj(Y ) because the
first n+ coordinates of both λ(X+) and λ(Y ) are nonnegative and λ(X+) ≥ λ(Y ). This
proves (7.11a). The proof of (7.11b) follows in a similar manner.
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Remark 7.17. Suppose the hypotheses of Lemma 7.16 are satisfied. Then Remark 5.20(ii)
and Lemmas 7.4, 7.10, and 7.16 imply that, for any X ∈ Sn+, we have√

〈R,X〉2 + 4
∑

(i,j)∈J
det(X[{i, j}]) ≥ ‖λ(X1/2RX1/2)‖1 ≥ |〈R,X〉|.

If the rank of X ∈ Sn+ is one, then det(X[{i, j}) = 0 for all (i, j) ∈ J; therefore, both
inequalities above hold at equality.

An appealing feature of (7.3) is that any rank-one matrix X ∈ Sn+ satisfies (7.3) if
and only if X ∈ D1 ∪ D2. Recall Remark 5.20 and the ensuing discussion. Next we use
Remark 7.17 to construct a relaxation of (7.3) which shares the same feature.
Proposition 7.18. Suppose R /∈ ±Sn+ and it is diagonal with diagonal elements from
{0,±1} sorted in nonincreasing order. Let n+ = max{k : Rkk = 1}, n− = min{k : Rkk =
−1}, and J = {(i, j) : 1 ≤ i ≤ n+, n− ≤ j ≤ n}. Let gSn+,R : Sn → R∪{−∞} be defined as

gSn+,R(X) =


√
〈R,X〉2 + 4∑(i,j)∈J det(X[{i, j}]) if X ∈ Sn+,
−∞ otherwise.

i. Any point X ∈ Sn+ which satisfies (7.3) also satisfies

gSn+,R(X) ≥ 2µ0 − 〈D1 +D2, X〉. (7.12)

Similarly, any point X ∈ Sn+ which satisfies (7.4) also satisfies

gSn+,R(X) ≥ |2µ0 − 〈D1 +D2, X〉|. (7.13)

ii. Any point X ∈ Sn+ satisfies (7.12) if and only if there exists z ≥ µ0 such that n+∑
i=1

Xii − (z − 〈D1, X〉)
  n∑

j=n−
Xjj + (z − 〈D1, X〉)

 ≥ ∑
(i,j)∈J

X2
ij, (7.14a)

n+∑
i=1

Xii − (z − 〈D1, X〉) ≥ 0,
n∑

j=n−
Xjj + (z − 〈D1, X〉) ≥ 0. (7.14b)

Similarly, any point X ∈ Sn+ satisfies (7.13) if and only if it satisfies (7.14) together
with z = µ0. Furthermore, (7.14) can be represented as a single second-order cone
constraint.
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Proof. By Remark 7.17, gSn+,R(X) ≥ fSn+,R(X) for all X ∈ Sn+. Then statement (i) follows
from Theorem 7.5. As in Proposition 5.27(ii), we can show that a point X ∈ Sn+ satisfies
(7.12) if and only if there exists z ≥ µ0 such that[

gSn+,R(X)
]2
− 〈R,X〉2 ≥ 4(z − 〈D1, X〉)(z − 〈D2, X〉). (7.15)

Similarly, as in Proposition 5.32(ii), we can show that a point X ∈ Sn+ satisfies (7.13) if
and only if it satisfies (7.15) together with z = µ0. We show that (7.15) can be represented
as (7.14). The inequality (7.15) is identical to ∑(i,j)∈J det(X[{i, j}]) ≥ (z − 〈D1, X〉)(z −
〈D2, X〉). Following steps similar to those in the proof of Theorem 7.13, we rewrite it as∑

(i,j)∈J
det(X[{i, j}]) ≥ (z − 〈D1, X〉)(z − 〈D1, X〉 − 〈R,X〉)

⇔
∑

(i,j)∈J
[XiiXjj −X2

ij] ≥ (z − 〈D1, X〉)2 − (z − 〈D1, X〉)
 n+∑
i=1

Xii −
n∑

j=n−
Xjj


⇔

 n+∑
i=1

Xii − (z − 〈D1, X〉)
  n−∑

j=1
Xjj + (z − 〈D1, X〉)

− ∑
(i,j)∈J

X2
ij ≥ 0.

The final form is the same as (7.14a). Furthermore, as in the proof of Theorem 7.13, we
can show ∑n+

i=1 Xii− (z−〈D1, X〉) ≥ 0 and ∑n
j=n− Xjj + (z−〈D1, X〉) ≥ 0 for any X ∈ Sn+

and z ∈ R satisfying (7.14a). Observing that the inequalities (7.14) can be written as a
rotated second-order cone constraint completes the proof.

Remark 7.19. We note that, under the hypotheses of Proposition 7.18, the inequal-
ity (7.12) defines a convex region in Sn+. To see this, note that the set of points satisfying
(7.12) and X ∈ Sn+ is precisely the projection of the set of points satisfying (7.14) and
X ∈ Sn+ onto the space of X variables. Because projection of a convex set is convex, this
immediately proves the convexity of the region defined by (7.12) inside Sn+.
Remark 7.20. We note that the results of Section 7.2.3 immediately follow from Proposi-
tion 7.18 because in the particular case of elementary disjunctions, (7.10) holds at equality.
This can be seen by noting that J+ = J− = ∅ in the proof of Lemma 7.16. Therefore, in
the case of elementary disjunctions, (7.12) does not only define a relaxation of (7.3); it is
also equivalent to (7.3). Despite this connection, we have opted to keep Section 7.2.3 due
to its more transparent derivation.
Example 7.1. Consider the split disjunction −1

2(X11 + X22 − X33) ≥ 1 ∨ 1
2(X11 +

X22 − X33) ≥ 1 on S3
+. The sets D1 and D2 are defined as in (7.1) with D1 =
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−1
2

((
e1
)(
e1
)>

+
(
e2
)(
e2
)>
−
(
e3
)(
e3
)>)

, D2 = −D1, and µ0 = 1. Proposition 7.18(ii)
shows that the inequalities[1

2(X11 +X22 +X33)− 1
] [1

2(X11 +X22 +X33) + 1
]
≥ X2

13 +X2
23,

1
2(X11 +X22 +X33)− 1 ≥ 0, 1

2(X11 +X22 +X33) + 1 ≥ 0

are valid for D1∪D2. Furthermore, these inequalities can be represented as the second-order
cone constraint 

2X13
2X23

2
X11 +X22 +X33

 ∈ L4. (7.16)

Let G denote the region defined by (7.16). Figure 7.1 shows the intersection of various
two-dimensional linear spaces with D1∪D2, S3

+, and G. Each two-dimensional linear space
has the form W = {xππ> + yψψ> : (x, y) ∈ R2} where π, ψ ∈ R3 are chosen such that
π1 =

√
5

2 , ψ3 =
√

2, and the remaining components of π and ψ are random numbers from
the interval [−1, 1]. The intersection of W with S3

+ corresponds to the nonnegative orthant
in the (x, y) space. Each image depicts the intersection of W with D1 ∪ D2 (blue meshed
area) and G (red unmeshed area) in the (x, y) space.

We remind the reader that (7.16) is valid for all of D1 ∪ D2 and not just D1 ∪ D2 ∩W.
Hence, even in the cases where conv(D1 ∪ D2) = S3

+ ∩ G, we cannot in general expect to
have conv((D1 ∪ D2) ∩W) = S3

+ ∩G ∩W.
In the next remark, we discuss how we can utilize our results for elementary disjunctions

in the light of Remark 5.24 to build structured relaxations of (7.3).
Remark 7.21. Suppose R /∈ ±Sn+ is a diagonal matrix with diagonal elements from {0,±1}
sorted in nonincreasing order. Let R+, R− ∈ Sn+ and R1, . . . , R` /∈ ±Sn+ be such that
R = R+ −R− +∑`

k=1Rk and rank(Rk) = 2. Remark 5.23 indicates that any X ∈ D1 ∪D2
satisfies the convex inequality

fSn+,R+(X) + fSn+,−R−(X) +
∑̀
k=1

fSn+,Rk(X) ≥ 2µ0 − 〈D1 +D2, X〉.

Note that, for any X ∈ Sn+, fSn+,R+(X) = 〈R+, X〉 and fSn+,−R−(X) = 〈R−, X〉. Now, for
each k ∈ [`], consider the eigenvalue decomposition of Rk = UkDkU

>
k , and define Qk ∈

intSn+ as in Remark 7.3. Then J = QkU
>
k RkUkQk is a diagonal matrix with exactly one
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Figure 7.1: Sets associated with the disjunction −1
2(X11 +X22−X33) ≥ 1 ∨ 1

2(X11 +X22−
X33) ≥ 1 on S3

+.

positive entry J11 = 1 and exactly one negative entry Jnn = −1. Furthermore, Lemmas 7.4
and 7.6 show

fSn+,Rk(X) =
∥∥∥λ(RkX

)∥∥∥
1

=
∥∥∥λ(J(Q−1

k U>k XUkQ
−1
k )

)∥∥∥
1

= fSn+,J
(
Q−1
k U>k XUkQ

−1
k

)
.

The function fSn+,J(·) has the form given in Corollary 7.12. It follows that any inequality
constructed through this approach admits a second-order conic representation in a lifted
space. We note that there is a lot of flexibility in the choice of the matrices R+, R−, and
Rk and each selection will lead to a different valid inequality.
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Relaxing the Disjunction

Another approach to using our results on elementary disjunctions for arbitrary two-term
disjunctions might be through relaxing the underlying disjunction. To illustrate this point,
consider a disjunction 〈D1, X〉 ≥ µ0 ∨ 〈D2, X〉 ≥ µ0. Let R+, R− ∈ Sn+ be such that
R′ = R − R+ + R− /∈ ±Sn+ and has rank two. Define D′1 = D1 + R− and D′2 = D2 + R+.
The matrices D′1 and D′2 define a relaxation 〈D′1, X〉 ≥ µ0 ∨ 〈D′2, X〉 ≥ µ0 of the original
disjunction because any X ∈ Sn+ satisfying 〈Di, X〉 ≥ µ0 also satisfies 〈D′i, X〉 ≥ µ0 for
i ∈ {1, 2}. Therefore, any inequality valid for the relaxed disjunction is also valid for the
original. Because R′ /∈ ±Sn+ and has rank two, it has exactly one positive and one negative
eigenvalue. The relaxed disjunction is elementary, and the results of Section 7.2.3 can
be used to derive structured nonlinear valid inequalities for D1 ∪ D2. In particular, this
approach leads to the inequality

fSn+,R′(X) ≥ 2µ0 − 〈D′1 +D′2, X〉 = 2µ0 − 〈D1 +D2, X〉 − 〈R+ +R−, X〉
⇐⇒ 〈R+ +R−, X〉+ fSn+,R′(X) ≥ 2µ0 − 〈D1 +D2, X〉
⇐⇒ fSn+,R+(X) + fSn+,−R−(X) + fSn+,R′(X) ≥ 2µ0 − 〈D1 +D2, X〉.

We note, however, that the inequality above can also be obtained through the approach
outlined in Remark 7.21. Therefore, the approach of Remark 7.21 is a more powerful
method to build structured relaxations of (7.3).

7.3 Conclusion
In this chapter we have considered two-term disjunctions on the positive semidefinite cone
and intersections of the positive semidefinite cone with rank-two non-convex quadratics.
We have developed structured nonlinear valid inequalities for such sets by building upon
the results of Section 5.4.

In Chapter 8 we extend the results of Chapter 6 to affine cross-sections of the second-
order cone. Nonetheless, studying the closed convex hulls of disjunctions on cross-sections
of general regular cones remains a topic of future research. Our results in Chapters 5 and
7 immediately extend to cases where the base convex set is the intersection of a regular
cone K with homogeneous half-spaces through [38, Lemma 5] (or its generalization given in
[70, Lemma 3.6]) and to cases where it corresponds to certain cross-sections of K through
[38, Lemma 7]. Particular cross-sections of the positive semidefinite cone deserve specific
interest from the point of view of combinatorial optimization. For instance, in the case of
the maximum cut problem, it is well-known that the elliptope {X ∈ Sn+ : Xii = 1 ∀i ∈ [n]}
provides a good outer approximation to the cut polytope, which is the convex hull of
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(±1) characteristic vectors of all cuts in a complete graph on n vertices. Goemans and
Williamson [60] used this observation to develop the approximation algorithm with the
best known approximation guarantee for the maximum cut problem. Furthermore, the
elliptope provides a valid integer programming formulation for the maximum cut problem
in the sense that any X ∈ {±1}n×n in the elliptope corresponds to the characteristic vector
of a cut. On this cross-section of the positive semidefinite cone, we can easily transform
any two-term disjunction into an elementary disjunction. Thus, the results of Section 7.2.3
can be relevant. We hope that these results will be instrumental to the development of
more practical algorithms for maximum cut and other hard combinatorial problems.
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Chapter 8

Convex Hulls of Disjunctions on
Cross-Sections of the Second-Order
Cone

Acknowledgments. This chapter is based on joint work with Gérard Cornuéjols [107].

8.1 Introduction

8.1.1 Motivation
In Chapter 6 we derived a family of convex inequalities which collectively describe the
closed convex hull of a general two-term disjunction on the second-order cone and identified
conditions which ensure that a single inequality from this family is sufficient for the convex
hull description. The purpose of this chapter is similar: In this chapter, we consider general
two-term disjunctions on an affine cross-section of the second-order cone:

C = {x ∈ Ln : Ax = b} (8.1)

As before, associated with a disjunction c>1 x ≥ c1,0 ∨ c>2 x ≥ c2,0, we define the sets

Ci = {x ∈ C : 〈ci, x〉 ≥ ci,0} for i ∈ {1, 2}.

In order to derive the tightest convex inequalities that can be obtained from the disjunction
C1 ∪ C2, we study the closed convex hull of C1 ∪ C2. In particular, we are interested in
convex inequalities that may be added to the description of C to obtain a characterization
of the closed convex hull of C1 ∪ C2. Our starting point is the results of Chapter 6 about

131
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two-term disjunctions on the second-order cone. We extend the main result of Chapter 6 to
cross-sections of the second-order cone. Such cross-sections include ellipsoids, paraboloids,
and hyperboloids as special cases.

The reader is referred to Section 5.1.2 for a detailed discussion of disjunctive inequalities
in mixed-integer conic programming. Prior to our study, similar results about two-term
disjunctions on cross-sections of the second-order cone appeared in [27, 52, 89]. Our results
generalize the work of [52, 89], which considered only split disjunctions on cross-sections
of the second-order cone, and the work of [27], which analyzed the closed convex hull of
C1 ∪C2 under the assumptions that C1 ∩C2 = ∅ and the sets {x ∈ C : 〈c1, x〉 = c1,0} and
{x ∈ C : 〈c2, x〉 = c2,0} are bounded. Our results show that the associated convex hulls
can be significantly more complicated in the absence of these assumptions. Similar and
complementary results on describing the convex hull of intersections of the second-order
cone or its affine cross-sections with a single homogeneous quadratic have recently been
obtained in [38, 88].

8.1.2 Notation and Terminology
We assume that Rn is equipped with the standard inner product 〈α, x〉 = α>x. The
standard (Euclidean) norm ‖ · ‖2 : Rn → R on Rn is defined as ‖x‖2 =

√
〈x, x〉. The dual

cone of V ⊂ Rn is V∗ = {α ∈ Rn : 〈x, α〉 ≥ 0 ∀x ∈ V}. We remind the reader that the
second-order cone is self-dual, that is, its dual is equal to itself. Throughout the chapter,
we let convV, convV, coneV, and spanV represent the convex hull, closed convex hull,
conical hull, and linear span of a set V ⊂ Rn, respectively. We let intV, bdV, and dimV
represent the topological interior, boundary, and dimension of V, respectively. We use
recV to refer to the recession cone of a closed convex set V. Given a vector u ∈ Rn, we let
ũ = (u1; . . . ;un−1) denote the subvector obtained by dropping its last entry.

8.1.3 Outline of the Chapter
In Section 8.2 we show that the set C can be assumed to be the intersection of a lower-
dimensional second-order cone with a single hyperplane. In Section 8.3 we provide a
complete convex hull description of homogeneous two-term disjunctions on the (whole)
second-order cone. In Section 8.4 we prove the main result of this chapter, Theorem 8.8,
which characterizes the closed convex hull of C1∪C2 with a single convex inequality under
certain conditions. We end the chapter with two examples which illustrate the applicability
of Theorem 8.8.
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8.2 Intersection of the Second-Order Cone with an
Affine Subspace

In this section, we show that the set C can be assumed to be the intersection of a lower-
dimensional second-order cone with a single hyperplane. Let W = {x ∈ Rn : Ax = b} so
that C = Ln ∩W. We are going to use the following lemma to simplify our analysis.
Lemma 8.1. Let V be a p-dimensional linear subspace of Rn. The intersection Ln ∩ V is
either the origin, a half-line, or a bijective linear transformation of Lp.

See Section 2.1 of [25] for a similar result. We do not give a formal proof of Lemma 8.1
but just note that it can be obtained by observing that the second-order cone is the conic
hull of a (one dimension smaller) sphere, and that the intersection of a sphere with an
affine space is either empty, a single point (when the affine space intersects the sphere but
not its interior), or a lower dimensional sphere of the same dimension as the affine space
(when the affine space intersects the interior of the sphere).

Lemma 8.1 implies that, when b = 0, C is either the origin, a half-line, or a bijective
linear transformation of Ln−m. The closed convex hull of C1 ∪ C2 can be described easily
when C is a single point or a half-line. Furthermore, the problem of characterizing the
closed convex hull of C1 ∪ C2 when C is a bijective linear transformation of Ln−m can be
reduced to that of convexifying an associated two-term disjunction on Ln−m. Chapter 6
contains a detailed study of closed convex hulls of two-term disjunctions on the second-
order cone.

In the remainder, we focus on the case b 6= 0. Note that, whenever this is the case,
we can permute and normalize the rows of (A, b) so that its last row reads (a>m, 1), and
subtracting a multiple of (a>m, 1) from the other rows if necessary, we can write the remain-
ing rows of (A, b) as (Ã, 0). Therefore, we can assume without any loss of generality that
all components of b are zero except the last one. Isolating the last row of (A, b) from the
others, we can then write

W =
{
x ∈ Rn : Ãx = 0, a>mx = 1

}
.

Let V = {x ∈ Rn : Ãx = 0}. By Lemma 8.1, Ln∩V is the origin, a half-line, or a bijective
linear transformation of Ln−m+1. Again, the first two cases are easy and not of interest in
our analysis. In the last case, we can find a matrix D whose columns form an orthonormal
basis for V and define a nonsingular matrix H such that {y ∈ Rn−m+1 : Dy ∈ Ln} =
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HLn−m+1. Then we can represent C equivalently as

C =
{
x ∈ Ln : x = Dy, a>mx = 1

}
= D

{
y ∈ Rn−m+1 : Dy ∈ Ln, a>mDy = 1

}
= D

{
y ∈ Rn−m+1 : y ∈ HLn−m+1, a>mDy = 1

}
= DH

{
z ∈ Ln−m+1 : a>mDHz = 1

}
.

The set C = Ln ∩W is a bijective linear transformation of {z ∈ Ln−m+1 : a>mDHz =
1}. Furthermore, the same linear transformation maps any two-term disjunction on {z ∈
Ln−m+1 : a>mDHz = 1} to a two-term disjunction on C and vice versa. Thus, without any
loss of generality, we can assume m = 1. Under this assumption, we can rewrite (8.1) as

C =
{
x ∈ Ln : a>x = 1

}
. (8.2)

In the remainder, we study the problem of describing the closed convex hull of C1 ∪ C2
where

Ci = {x ∈ C : 〈ci, x〉 ≥ ci,0} for i ∈ {1, 2}. (8.3)

In Section 8.4 we show that, under certain conditions, the closed convex hull of C1 ∪ C2
can be described with a single second-order cone inequality, together with the constraint
x ∈ C.

8.3 Homogeneous Disjunctions on the Second-Order
Cone

In this section, we analyze the convex hull of a homogeneous two-term disjunction 〈c1, x〉 ≥
0 ∨ 〈c2, x〉 ≥ 0 on the second-order cone. Associated with this disjunction, we define the
sets

Ki = {x ∈ Ln : 〈ci, x〉 ≥ 0} for i ∈ {1, 2}. (8.4)

Note that each set Ki is a relaxation of the set Ci, considered in the previous section. The
main result of this section characterizes the convex hull of K1 ∪K2. Note that K1 and K2
are closed, convex, pointed cones; therefore, the convex hull of K1 ∪ K2 is always closed
(see, e.g., [96, Corollary 9.1.3]).

Consider sets K1 and K2, which are defined as in (8.4) and which satisfy the basic
disjunctive setup. By Condition 5.1, we have K1,K2 ( Ln, and by Condition 5.2, we have
that K1 and K2 are full-dimensional. This implies ci /∈ ±Ln, or equivalently ‖c̃i‖2 > c2

i,n,
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for i ∈ {1, 2}. After scaling c1 and c2 with appropriate positive scalars if necessary, we
may assume without any loss of generality that

‖c̃1‖2 − c2
1,n = ‖c̃2‖2 − c2

2,n = 1. (8.5)

In the remainder, we let r = c2 − c1 and N = ‖r̃‖2 − r2
n.

Remark 8.2. Consider K1 and K2 defined as in (8.4). Suppose K1 and K2 satisfy Con-
dition 5.1. Then we have r = c2 − c1 /∈ ±Ln. Indeed, r ∈ Ln implies that 〈r, x〉 ≥ 0
for all x ∈ Ln, and this implies K2 ⊂ K1; similarly, −r ∈ Ln implies K1 ⊂ K2. Hence,
N = ‖r̃‖2 − r2

n > 0.
We recall the following results from Chapter 6 which will be useful in proving the results

of this chapter. The first result is a restatement of Corollary 6.10 for the disjunction K1∪K2
under consideration.
Corollary 8.3. Consider K1 and K2 defined as in (8.4). Suppose K1 and K2 satisfy
Condition 5.1. Any point x ∈ K1 ∪K2 satisfies√

〈r, x〉2 +N (x2
n − ‖x̃‖2) ≥ 〈−c1 − c2, x〉. (8.6)

Furthermore, this inequality defines a convex region inside the second-order cone.

Proof. The fact that K1 and K2 satisfy Condition 5.1 implies r = c2 − c1 /∈ ±Ln. The
hypotheses of Corollary 6.10 are satisfied after setting β1 = β2 = 1. The result follows.

The next proposition shows that (8.6) can be written in second-order cone form inside
the second-order cone except in the region where both clauses of the disjunction are strictly
satisfied. It is a restatement of Remark 6.7 and Corollary 6.8.
Proposition 8.4. Consider K1 and K2 defined as in (8.4). Suppose K1 and K2 satisfy
Condition 5.1. Let x′ ∈ Ln be such that 〈c1, x

′〉 ≤ 0 ∨ 〈c2, x
′〉 ≤ 0. Then the following

statements are equivalent:
i. x′ satisfies (8.6).
ii. x′ satisfies the second-order cone inequality

Nx− 2〈c1, x〉
(
−r̃
rn

)
∈ Ln. (8.7)

iii. x′ satisfies the second-order cone inequality

Nx+ 2〈c2, x〉
(
−r̃
rn

)
∈ Ln. (8.8)
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Remark 8.5. When c1 and c2 satisfy (8.5), the inequalities (8.7) and (8.8) describe cylin-
drical second-order cones whose lineality spaces contain span

{(
−r̃
rn

)}
. To see this, note

that
N = 2− 2(c̃>1 c̃2 − c1,nc2,n) = 2

〈
c1,

(
−r̃
rn

)〉
= −2

〈
c2,

(
−r̃
rn

)〉
.

Recall that c1 and c2 can always be scaled so that they satisfy (8.5) when C1 and C2
satisfy Condition 5.2. The next theorem is the main result of this section. It shows that
(8.6), together with the constraint x ∈ Ln, characterizes the convex hull of K1∪K2 when c1
and c2 satisfy (8.5). Because this assumption is without any loss of generality, Theorem 8.6
complements the results of Section 6.3.1, settling the case for two-term disjunctions on the
second-order cone when c1,0 = c2,0 = 0 in (6.1).
Theorem 8.6. Consider K1 and K2 defined as in (8.4). Suppose K1 and K2 satisfy the
basic disjunctive setup. Suppose also that c1 and c2 are scaled so that they satisfy (8.5).
Then

conv(K1 ∪K2) = {x ∈ Ln : x satisfies (8.6)} . (8.9)

Proof. Let D denote the set on the right-hand side of (8.9). We already know from Corol-
lary 8.3 that (8.6) is valid for the convex hull of K1 ∪ K2. Hence, conv(K1 ∪ K2) ⊂ D.
Let x′ ∈ D. If x′ ∈ K1 ∪ K2, then clearly x′ ∈ conv(K1 ∪ K2). Therefore, suppose
x′ ∈ Ln \ (K1 ∪K2) is a point that satisfies (8.6). By Proposition 8.4, x′ satisfies

Nx′ − 2〈c1, x
′〉
(
−r̃
rn

)
∈ Ln and Nx′ + 2〈c2, x

′〉
(
−r̃
rn

)
∈ Ln.

We will show that x′ belongs to the convex hull of K1 ∪K2.
By Remarks 8.2 and 8.5, 0 < N = 2

〈
c1,
(
−r̃
rn

)〉
= −2

〈
c2,
(
−r̃
rn

)〉
. Let

α1 = 〈c1,−x′〉〈
c1,
(
−r̃
rn

)〉 , α2 = 〈c2,−x′〉〈
c2,
(
−r̃
rn

)〉 ,
x1 = x′ + α1

(
−r̃
rn

)
, x2 = x′ + α2

(
−r̃
rn

)
.

(8.10)

It is not difficult to see that 〈c1, x1〉 = 〈c2, x2〉 = 0. Furthermore, x′ ∈ conv{x1, x2} because
α2 < 0 < α1. Therefore, the only thing we need to show is x1, x2 ∈ Ln. By Remark 8.5,
we have

N
(
−r̃
rn

)
− 2

〈
c1,

(
−r̃
rn

)〉(
−r̃
rn

)
= N

(
−r̃
rn

)
+ 2

〈
c2,

(
−r̃
rn

)〉(
−r̃
rn

)
= 0.
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Hence, we reach

Nx1 − 2〈c1, x1〉
(
−r̃
rn

)
= Nx′ − 2〈c1, x

′〉
(
−r̃
rn

)
∈ Ln and

Nx2 + 2〈c2, x2〉
(
−r̃
rn

)
= Nx′ + 2〈c2, x

′〉
(
−r̃
rn

)
∈ Ln.

Now observing that 〈c1, x1〉 = 〈c2, x2〉 = 0 and N > 0 shows x1, x2 ∈ Ln. This proves
x1 ∈ K1 and x2 ∈ K2.

In the next section, we will show that the inequality (8.6) can also be used to charac-
terize the closed convex hull of C1 ∪ C2 when C1 and C2 are as in (8.3).

8.4 Disjunctions on Cross-Sections of the Second-
Order Cone

8.4.1 The Main Result
Consider the set C defined as in (8.2) and the sets C1 and C2 defined as in (8.3). The
set C is an ellipsoid when a ∈ intLn, a paraboloid when a ∈ bdLn, a hyperboloid when
a /∈ ±Ln, and empty when a ∈ −Ln. In this section, we prove the main result of this
chapter, Theorem 8.8, which characterizes the closed convex hull of C1 ∪ C2 under some
mild conditions.

In the rest of this chapter, we assume C1 and C2 satisfy the basic disjunctive setup. This
assumption is useful later when we use Corollary 8.3 whose proof relies on conic duality. By
Condition 5.1, we have C1,C2 ( C, and by Condition 5.2, we have dimC1 = dimC2 = n−1.
We also assume, without any loss of generality, that c1,0 = c2,0 = 0; note that this can
always be ensured by subtracting a multiple of 〈a, x〉 = 1 from 〈ci, x〉 ≥ ci,0 if necessary.
With this assumption, the hypothesis that C1 and C2 satisfy the basic disjunctive setup
implies ci /∈ ±Ln, or equivalently ‖c̃i‖2 > c2

i,n, for i ∈ {1, 2}. As in the previous section,
we assume that c1 and c2 have been scaled by positive scalars so that they satisfy (8.5).

Consider the relaxations K1 and K2 of C1 and C2 to the whole second-order cone:

Ki = {x ∈ Ln : 〈ci, x〉 ≥ 0} for i ∈ {1, 2}.

Clearly, K1 and K2 satisfy the basic disjunctive setup because C1 and C2 do. Define N
and r as in Section 8.3 using c1 and c2. Noting that K1 and K2 satisfy the basic disjunctive
setup and c1 and c2 satisfy (8.5), all results of Section 8.3 hold for K1 and K2. In particular,
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Corollary 8.3 implies that the inequality (8.6) is valid for the closed convex hull of C1∪C2.
In Theorem 8.8, we are going to show that (8.6) is also sufficient to describe the closed
convex hull of C1 ∪ C2 when the sets C1 and C2 satisfy certain conditions. The proof of
Theorem 8.8 requires the following technical lemma.
Lemma 8.7. Consider C1 and C2 defined as in (8.3) for c1,0 = c2,0 = 0. Suppose C1 and
C2 satisfy the basic disjunctive setup, Suppose also that c1 and c2 are scaled so that they
satisfy (8.5). Assume

〈
a,
(
−r̃
rn

)〉
6= 0, and let x∗ = (−r̃rn)

〈a,(−r̃rn)〉 . Let x′ ∈ C \ (C1 ∪ C2) satisfy
(8.6).
a. If

〈
a,
(
−r̃
rn

)〉
> 0, then 〈c1, x

′ − x∗〉 < 0. If in addition

(a+ cone{c1, c2}) ∩ Ln 6= ∅, or (−a+ cone{c1, c2}) ∩ Ln 6= ∅, or
(−a+ cone{c2}) ∩ −Ln 6= ∅,

(8.11)

then 〈c2, x
′ − x∗〉 ≥ 0.

b. If
〈
a,
(
−r̃
rn

)〉
< 0, then 〈c2, x

′ − x∗〉 < 0. If in addition

(a+ cone{c1, c2}) ∩ Ln 6= ∅, or (−a+ cone{c1, c2}) ∩ Ln 6= ∅, or
(−a+ cone{c1}) ∩ −Ln 6= ∅,

(8.12)

then 〈c1, x
′ − x∗〉 ≥ 0.

Proof. By Remarks 8.2 and 8.5, we have N = 2
〈
c1,
(
−r̃
rn

)〉
= −2

〈
c2,
(
−r̃
rn

)〉
> 0. From this,

we get

Nx∗ − 2〈c1, x
∗〉
(
−r̃
rn

)
= 1〈

a,
(
−r̃
rn

)〉 (N − 2
〈
c1,

(
−r̃
rn

)〉)(
−r̃
rn

)
= 0, (8.13)

Nx∗ + 2〈c2, x
∗〉
(
−r̃
rn

)
= 1〈

a,
(
−r̃
rn

)〉 (N + 2
〈
c2,

(
−r̃
rn

)〉)(
−r̃
rn

)
= 0. (8.14)

Furthermore, a>x′ = a>x∗ = 1.
a. Having x′ /∈ C1 implies 〈c1, x

′〉 < 0. Furthermore, it follows from
〈
c1,
(
−r̃
rn

)〉
= N

2 > 0
that

〈c1, x
∗〉 =

〈
c1,
(
−r̃
rn

)〉
〈
a,
(
−r̃
rn

)〉 > 0.

Thus, we get 〈c1, x
′ − x∗〉 < 0.
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Now suppose (a + cone{c1, c2}) ∩ Ln 6= ∅. Then there exist λ ≥ 0 and 0 ≤ θ ≤ 1 such
that a+ λ(θc1 + (1− θ)c2) ∈ Ln. The point x′ does not belong to either C1 or C2 and
satisfies (8.6). By Proposition 8.4, it satisfies (8.8) as well. Using (8.14), we can write

N (x′ − x∗) + 2〈c2, x
′ − x∗〉

(
−r̃
rn

)
∈ Ln. (8.15)

Because Ln is self-dual, we get

0 ≤
〈
a+ λ(θc1 + (1− θ)c2),N (x′ − x∗) + 2〈c2, x

′ − x∗〉
(
−r̃
rn

)〉

= 2〈c2, x
′ − x∗〉

〈
a,

(
−r̃
rn

)〉
+ λ

〈
θc1 + (1− θ)c2,N (x′ − x∗) + 2〈c2, x

′ − x∗〉
(
−r̃
rn

)〉

= 2〈c2, x
′ − x∗〉

〈
a,

(
−r̃
rn

)〉
− λθ

〈
r,N (x′ − x∗) + 2〈c2, x

′ − x∗〉
(
−r̃
rn

)〉

+ λ〈c2, x
′ − x∗〉

(
N + 2

〈
c2,

(
−r̃
rn

)〉)

= 2〈c2, x
′ − x∗〉

〈
a,

(
−r̃
rn

)〉
− λθ

〈
r,N (x′ − x∗) + 2〈c2, x

′ − x∗〉
(
−r̃
rn

)〉

= 2〈c2, x
′ − x∗〉

〈
a,

(
−r̃
rn

)〉
− λθN〈r, x′ − x∗〉 − 2λθ〈c2, x

′ − x∗〉
〈
r,

(
−r̃
rn

)〉

= 2〈c2, x
′ − x∗〉

〈
a,

(
−r̃
rn

)〉
+ λθN〈c1 + c2, x

′ − x∗〉

=
(

2
〈
a,

(
−r̃
rn

)〉
+ λθN

)
〈c2, x

′ − x∗〉+ λθN〈c1, x
′ − x∗〉

using 〈a, x′ − x∗〉 = 0 to obtain the first equality, N + 2
〈
c2,
(
−r̃
rn

)〉
= 0 to obtain the

third equality, and
〈
−r,

(
−r̃
rn

)〉
= N to obtain the fifth equality. Now it follows from

2
〈
a,
(
−r̃
rn

)〉
+ λθN > 0, 〈c1, x

′ − x∗〉 < 0, and λθN ≥ 0 that 〈c2, x
′ − x∗〉 ≥ 0.

Now suppose (−a + cone{c1, c2}) ∩ Ln 6= ∅. Let λ ≥ 0 and 0 ≤ θ ≤ 1 be such that
−a + λ(θc1 + (1 − θ)c2) ∈ Ln. By Proposition 8.4, x′ satisfies (8.7), and using (8.13),
we can write

N (x′ − x∗)− 2〈c1, x
′ − x∗〉

(
−r̃
rn

)
∈ Ln.

As before, because Ln is self-dual, we get

0 ≤
〈
−a+ λ(θc1 + (1− θ)c2),N (x′ − x∗)− 2〈c1, x

′ − x∗〉
(
−r̃
rn

)〉
.
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The right-hand side of this inequality is identical to(
2
〈
a,

(
−r̃
rn

)〉
+ λ(1− θ)N

)
〈c1, x

′ − x∗〉+ λ(1− θ)N〈c2, x
′ − x∗〉.

It follows from 2
〈
a,
(
−r̃
rn

)〉
+ λ(1− θ)N > 0, 〈c1, x

′ − x∗〉 < 0, and λ(1− θ)N ≥ 0 that
〈c2, x

′ − x∗〉 ≥ 0.
Finally suppose (−a+ cone{c2}) ∩ −Ln 6= ∅. Let θ ≥ 0 be such that −a+ θc2 ∈ −Ln.
Then using (8.15), we obtain

0 ≥
〈
−a+ θc2,N (x′ − x∗) + 2〈c2, x

′ − x∗〉
(
−r̃
rn

)〉

= −2〈c2, x
′ − x∗〉

〈
a,

(
−r̃
rn

)〉
+ θ〈c2, x

′ − x∗〉
(
N + 2

〈
c2,

(
−r̃
rn

)〉)

= −2〈c2, x
′ − x∗〉

〈
a,

(
−r̃
rn

)〉
.

It follows from
〈
a,
(
−r̃
rn

)〉
> 0 that 〈c2, x

′ − x∗〉 ≥ 0.

b. If
〈
a,
(
−r̃
rn

)〉
< 0, then

〈
a,−

(
−r̃
rn

)〉
> 0. Since −

(
−r̃
rn

)
=
(

c̃2 − c̃1
−c2,n + c1,n

)
, part (b) follows

from part (a) by interchanging the roles of C1 and C2.

In the next result we show that the inequality (8.6) is sufficient to describe the closed
convex hull of C1 ∪ C2 when conditions (8.11) and (8.12) hold.
Theorem 8.8. Consider C1 and C2 defined as in (8.3) for c1,0 = c2,0 = 0. Suppose the
sets C1 and C2 satisfy the basic disjunctive setup and the vectors c1 and c2 satisfy (8.5).
Suppose also that one of the following conditions is satisfied:
a.
〈
a,
(
−r̃
rn

)〉
= 0.

b.
〈
a,
(
−r̃
rn

)〉
> 0 and (8.11) holds.

c.
〈
a,
(
−r̃
rn

)〉
< 0 and (8.12) holds.

Then the closed convex hull of C1 ∪ C2 is

conv(C1 ∪ C2) =
{
x ∈ C :

√
〈r, x〉2 +N (x2

n − ‖x̃‖2) ≥ 〈−c1 − c2, x〉
}
. (8.16)
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Proof. Let D denote the set on the right-hand side of (8.16). The inequality (8.6) is valid for
the closed convex hull of C1 ∪C2 by Corollary 8.3. Hence, conv(C1 ∪C2) ⊂ D. Let x′ ∈ D.
If x′ ∈ C1 ∪ C2, then clearly x′ ∈ conv(C1 ∪ C2). Therefore, suppose x′ ∈ C \ (C1 ∪ C2) is
a point that satisfies (8.6). By Proposition 8.4, it satisfies (8.7) and (8.8) as well. We are
going to show that in each case x′ belongs to the closed convex hull of C1 ∪ C2.
a. Suppose

〈
a,
(
−r̃
rn

)〉
= 0. By Remarks 8.2 and 8.5, N = 2

〈
c1,
(
−r̃
rn

)〉
= −2

〈
c2,
(
−r̃
rn

)〉
> 0.

Define α1, α2, x1, and x2 as in (8.10). It is not difficult to see that 〈a, x1〉 = 〈a, x2〉 = 1
and 〈c1, x1〉 = 〈c2, x2〉 = 0. Furthermore, x′ ∈ conv{x1, x2} because α2 < 0 < α1. One
can show that x1, x2 ∈ Ln using the same arguments as in the proof of Theorem 8.6.
This proves x1 ∈ C1 and x2 ∈ C2.

b. Suppose
〈
a,
(
−r̃
rn

)〉
> 0 and (8.11) holds. Let x∗ = (−r̃rn)

〈a,(−r̃rn)〉 . Then by Lemma 8.7, we
have 〈c1, x

′ − x∗〉 < 0 and 〈c2, x
′ − x∗〉 ≥ 0.

First, suppose 〈c2, x
′ − x∗〉 > 0, and let

α1 = 〈c1,−x′〉
〈c1, x′ − x∗〉

, α2 = 〈c2,−x′〉
〈c2, x′ − x∗〉

,

x1 = x′ + α1(x′ − x∗), x2 = x′ + α2(x′ − x∗).
(8.17)

As in part (a), 〈a, x1〉 = 〈a, x2〉 = 1, 〈c1, x1〉 = 〈c2, x2〉 = 0, and x′ ∈ conv{x1, x2}
because α1 < 0 < α2. To show x1, x2 ∈ Ln, first note Nx∗ − 2〈c1, x

∗〉
(
−r̃
rn

)
= Nx∗ +

2〈c2, x
∗〉
(
−r̃
rn

)
= 0 as in (8.13) and (8.14). Using this and 〈c1, x1〉 = 〈c2, x2〉 = 0, we get

Nx1 = Nx1 − 2〈c1, x1〉
(
−r̃
rn

)
= (1 + α1)

(
Nx′ − 2〈c1, x

′〉
(
−r̃
rn

))
,

Nx2 = Nx2 + 2〈c2, x2〉
(
−r̃
rn

)
= (1 + α2)

(
Nx′ + 2〈c2, x

′〉
(
−r̃
rn

))
.

Clearly, 1 + α2 > 0; hence, Nx2 ∈ Ln. Furthermore,

1 + α1 = 〈c1,−x∗〉
〈c1, x′ − x∗〉

=
−
〈
c1,
(
−r̃
rn

)〉
〈
a,
(
−r̃
rn

)〉
〈c1, x′ − x∗〉

= −N
2
〈
a,
(
−r̃
rn

)〉
〈c1, x′ − x∗〉

> 0,

where we have used the relationships N > 0,
〈
a,
(
−r̃
rn

)〉
> 0, and 〈c1, x

′ − x∗〉 < 0
to reach the inequality. It follows that Nx1 ∈ Ln as well. Because N > 0, we get
x1, x2 ∈ Ln. This proves x1 ∈ C1 and x2 ∈ C2.
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Now suppose 〈c2, x
′ − x∗〉 = 0. Define α1 and x1 as in (8.17). All of the arguments

that we have just used to show α1 < 0 and x1 ∈ C1 continue to hold. Using Nx∗ +
2〈c2, x

∗〉
(
−r̃
rn

)
= 0, we can write

N (x′ − x∗) = N (x′ − x∗) + 2〈c2, x
′ − x∗〉

(
−r̃
rn

)
∈ Ln.

Because N > 0, we get x′−x∗ ∈ Ln. Together with 〈c2, x
′−x∗〉 = 0 and 〈a, x′−x∗〉 = 0,

this implies x′− x∗ ∈ recC2. Then x′ = x1−α1(x′− x∗) ∈ C1 + recC2 because α1 < 0.
The claim now follows from the fact that the last set is contained in the closed convex
hull of C1 ∪ C2 (see, e.g., [96, Theorem 9.8]).

c. Suppose
〈
a,
(
−r̃
rn

)〉
< 0 and (8.12) holds. Since −

(
−r̃
rn

)
=
(

c̃2 − c̃1
−c2,n + c1,n

)
, part (c)

follows from part (b) by interchanging the roles of C1 and C2.

The following result shows that when C is an ellipsoid or a paraboloid, the closed convex
hull of any two-term disjunction can be obtained by adding an inequality of the form (8.6)
to the description of C.
Corollary 8.9. Consider C1 and C2 defined as in (8.3) for c1,0 = c2,0 = 0. Suppose C1
and C2 satisfy the basic disjunctive setup. Suppose also that c1 and c2 satisfy (8.5). If
a ∈ Ln, then (8.16) holds.

Proof. The result follows from Theorem 8.8 after observing that conditions (8.11) and
(8.12) are trivially satisfied for any c1 and c2 when a ∈ Ln.

The case of a split disjunction is particularly relevant in the solution of mixed-integer
second-order cone programs, and it has been studied by several groups recently, in partic-
ular Dadush et al. [52], Andersen and Jensen [8], Belotti et al. [27], and Modaresi et al.
[89]. Theorem 8.8 has the following consequence for split disjunctions on C.
Corollary 8.10. Consider C1 and C2 defined by a split disjunction 〈t1`, x〉 ≥ `1,0 ∨
〈t2`, x〉 ≥ `2,0 on C such that t1 > 0 > t2 and C1 ∪ C2 ( C. Suppose C1 and C2 sat-
isfy the basic disjunctive setup. Then (8.16) holds for

ci = ti`− `i,0a√
‖ti ˜̀− `i,0ã‖2

2 − (ti`n − `i,0an)2
for i ∈ {1, 2}.
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Proof. First note Ci = {x ∈ C : 〈ti`, x〉 ≥ `i,0} = {x ∈ C : 〈ci, x〉 ≥ 0} for i ∈
{1, 2}. For the given split disjunction, we have C1 ∪ C2 ( C only if `1,0

t1
> `2,0

t2
. Let

λi =
(√
‖ti ˜̀− `i,0ã‖2

2 − (ti`n − `i,0an)2
)−1

for i ∈ {1, 2}. Also, let θ1 = −t2
λ1(t1`2,0−t2`1,0) and

θ2 = t1
λ2(t1`2,0−t2`1,0) . Then

a+ θ1c1 + θ2c2 = a+ −t2(t1`− `1,0a)
t1`2,0 − t2`1,0

+ t1(t2`− `2,0a)
t1`2,0 − t2`1,0

= 0 ∈ Ln.

The result now follows from Theorem 8.8 after observing that θ1, θ2 > 0 implies that
conditions (8.11) and (8.12) are satisfied.

We say that the sets C1 and C2 satisfy the disjointness condition when {x ∈ C :
〈c1, x〉 > 0, 〈c2, x〉 > 0} = ∅. Under this condition, Proposition 8.4 says that (8.6) can be
expressed in second-order cone form and directly implies the following result.
Corollary 8.11. Consider C1 and C2 defined as in (8.3) for c1,0 = c2,0 = 0. Suppose the
sets C1 and C2 satisfy the basic disjunctive setup.

i. Let x ∈ C be such that 〈c1, x〉 ≤ 0 ∨ 〈c2, x〉 ≤ 0. Then x satisfies (8.6) if and only if
it satisfies (8.7) (or, equivalently (8.8)).

ii. Suppose that C1 and C2 satisfy the disjointness condition, the vectors c1 and c2 satisfy
(8.5), and the conditions of Theorem 8.8 hold. Then the closed convex hull of C1∪C2
is

conv(C1 ∪ C2) =
{
x ∈ C : Nx− 2〈c1, x〉

(
−r̃
rn

)
∈ Ln

}

=
{
x ∈ C : Nx+ 2〈c2, x〉

(
−r̃
rn

)
∈ Ln

}
.

Remark 8.12. Conditions (8.11) and (8.12) are directly related to the sufficient conditions
which guarantee the closedness of the convex hull of a two-term disjunction on a regular
cone, explored in Chapter 5. In particular, one can show using Corollary 5.14 that the
convex hull of a disjunction `>1 x ≥ `1,0 ∨ `>2 x ≥ `2,0 on the second-order cone is closed if

i. `1,0 = `2,0 ∈ {±1} and there exists 0 < µ < 1 such that µ`1 + (1− µ)`2 ∈ Ln, or
ii. `1,0 = `2,0 = −1 and `1, `2 ∈ − intLn.

In our present context, exploiting conditions (i) and (ii) after letting `i = a + θici and
`i,0 = 1 (or, `i = −a+ θici and `i,0 = −1) for some θi > 0 leads to (8.11) and (8.12).

8.4.2 Two Examples
In this section we illustrate Theorem 8.8 with two examples.
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A Two-Term Disjunction on a Paraboloid

Example 8.1. Consider the disjunction −2x1 − x2 − 2x4 ≥ 0 ∨ x1 ≥ 0 on the paraboloid
C = {x ∈ L4 : x1 + x4 = 1}. Let C1 = {x ∈ C : −2x1 − x2 − 2x4 ≥ 0} and C2 =
{x ∈ C : x1 ≥ 0}. Noting that C is a paraboloid and C1 and C2 are disjoint, we can use
Corollary 8.11 to characterize the closed convex hull of C1 ∪ C2 with a second-order cone
inequality:

conv(C1 ∪ C2) =

x ∈ C : 3x+ x1


−3
−1
0
2

 ∈ L4


Figure 8.1 depicts the paraboloid C in mesh and the disjunction C1 ∪ C2 in blue. The
second-order cone disjunctive inequality added to convexify this set is shown in red.

Figure 8.1: Sets associated with the disjunction −2x1 − x2 − 2x4 ≥ 0 ∨ x1 ≥ 0 on the
paraboloid C = {x ∈ L4 : x1 + x4 = 1}.

A Two-Term Disjunction on a Hyperboloid

Example 8.2. Consider the disjunction −2x1−x2 ≥ 0 ∨
√

2x1−x3 ≥ 0 on the hyperboloid
C = {x ∈ L3 : x1 = 2}. Let C1 = {x ∈ C : −2x1−x2 ≥ 0} and C2 = {x ∈ C :

√
2x1−x3 ≥
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0}. Note that in this setting

〈
a,

(
−r̃
rn

)〉
= 1

10

〈 1
0
0

 ,
 −2

√
5 + 5

√
2

−
√

5
−5

〉 > 0,

but none of the conditions (8.11) are satisfied. The second-order cone inequality

(5 + 2
√

10)x+ (
√

2x1 − x3)

 −2
√

5 + 5
√

2
−
√

5
−5

 ∈ L3 (8.18)

of Theorem 8.8 is valid for C1 ∪C2 but not sufficient to characterize its closed convex hull.
Indeed, the inequality x2 ≤ 2 is valid for the closed convex hull of C1∪C2 but is not implied
by (8.18). Figure 8.2 depicts the hyperboloid C in mesh and the disjunction C1 ∪ C2 in
blue. The second-order cone disjunctive inequality (8.18) is shown in red.

Figure 8.2: Sets associated with the disjunction −2x1 − x2 ≥ 0 ∨
√

2x1 − x3 ≥ 0 on the
hyperboloid C = {x ∈ L3 : x1 = 2}.
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