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Abstract

My research employs theoretical modeling and quantitative analysis to study the interaction
between market frictions and risks in the areas of Banking and Asset Pricing. Specifically, I
examine how frictions in contracting and search affect systemic risk and asset prices.

Sparked by the recent crisis, linkages among financial firms are identified as a major source
of systemic risk. In chapter one, “Distress Dispersion and Systemic Risk in Networks,”
I present a model in which the cross-sectional dispersion of financial distress endogenously gen-
erates inefficiencies in network formation, creating excessive systemic risk. Financial firms face
costly liquidation and strategically trade assets, thereby forming links. A link with a distressed
firm can be socially costly as it increases system-wide liquidation risk. The model reveals that,
when the dispersion of distress is high, the network composition is distorted in two ways: there
are too many links with distressed firms and too few risk sharing links among non-distressed
firms. The inefficiency arises from an externality due to contract incompleteness in the bilateral
trades. Using insights from the model, I discuss policy implications for financial stability. I
also show empirical evidence that the distress dispersion across financial firms provides a novel
indicator for systemic risk.

Similar to the financial system, the interactions between frictions and risks also apply to the
labor market. In chapter two, “Asset Pricing with Dynamic Labor Contracts,” I study
asset prices in a two-agent production economy in which the worker has private information
about her labor productivity. The shareholder offers an incentive compatible long-term labor
contract, which partially insures the worker against labor income risk. I compare the model’s
performance to settings with a competitive labor market, and with static labor contracts. My
model successfully matches both asset returns data and business-cycle features, including a
countercyclical and high equity premium, a low risk-free rate, procyclical labor input, and
countercyclical labor share. The results highlight that the dynamic contracting feature in labor
relations is quantitatively important in determining asset prices.

Risk allocation implied by labor market frictions also affects asset prices at the cross section.
In the data, sorting firms according to their loadings on the aggregate vacancy-unemployment
ratio, defined as the labor market tightness, generates a spread in future returns of 6% annually.
To rationalize the finding, in chapter three, we propose “A Labor Capital Asset Pricing
Model” (joint with Lars-Alexander Kuehn and Mikhail Simutin) and show that labor search
frictions are an important determinant of the cross section of equity returns. In this partial
equilibrium labor market model, heterogeneous firms make dynamic employment decisions facing
labor search frictions. The insight is that loadings on labor market tightness proxy for priced
time variation in the efficiency of the aggregate matching technology. Firms with low loadings are
more exposed to adverse matching efficiency shocks and require higher expected stock returns.

i



Acknowledgements

I am deeply indebted to my advisors, Burton Hollifield and Lars-Alexander Kuehn, for their
continuous guidance, encouragement, and key contributions to the improvement of my research.
They each set great role models of a curious learner, a rigorous scholar, and an excellent writer
that I can aspire to be. Profound gratitude also goes to my committee members Laurence
Ales, Chester Spatt, and Pierre Liang for their very generous feedback and support. For many
interesting and helpful discussions, I would like to thank faculty and fellow PhD students at Tep-
per: Andres Bellofatto, Cedric Ehouarne, Brent Glover, Rick Green, Nicolas Petrosky-Nadeau,
Bryan Routledge, Maxime Roy, Stefano Sacchetto, David Schreindorfer, Duane Seppi, Chris
Sleet, Stephen Spear, Chris Telmer, Benjamin Tengelsen, Ying Xu, Sevin Yeltekin, Ariel Zetlin-
Jones, Ronghuo Zheng. I also would like to thank Lawrence Rapp for making life easier for me
at Carnegie Mellon.

Finally, I want to dedicate the thesis to my parents and my husband Andrea, for always
believing and supporting me. This journey would not have been possible without them.

ii



Contents

Abstract i

1 Distress Dispersion and Systemic Risk in Networks 4
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Network Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Payoffs and Firm Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Bilateral Prices and Asset Swaps . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 The Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Network Inefficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Optimal Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Excess Distress Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Risk Sharing Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 The Key Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 The Distress Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 Measures of Inefficiency and Dispersion . . . . . . . . . . . . . . . . . . . 20
4.2 Comparative Statics: dispersion, inefficiency, and network composition . . 21

5 Policy Implications on the Acquisitions of Distressed Firms . . . . . . . . . . . . 24
5.1 Acquisition Tax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Ex post Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Empirical Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Model Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A Technical Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.1 Notation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.2 Optimal Risk Sharing Allocation . . . . . . . . . . . . . . . . . . . . . . . 42
A.3 Multiple Equilibria for N ≥ 5 . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.4 Full Contingent Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.5 Extension with Government Bailout . . . . . . . . . . . . . . . . . . . . . 47

B Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
B.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
B.2 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
B.3 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1



B.4 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
B.5 Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
B.6 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B.7 Proof of Proposition 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
B.8 Proof of Corollary 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
B.9 Proof of Proposition 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

C Additional Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2 Asset Pricing with Dynamic Labor Contracts 69
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.2 Recursive Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.3 Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.4 Asset Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.1 Parameter Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2 Comparison of Model Performance . . . . . . . . . . . . . . . . . . . . . . 81

4 Persistence of Public Shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.1 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.2 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.3 Proof of Proposition 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B Numerical Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3 A Labor Capital Asset Pricing Model 94
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.2 Labor Market Tightness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.3 Portfolio Sorts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2.4 Robustness of Portfolio Sorts . . . . . . . . . . . . . . . . . . . . . . . . . 101
2.5 Fama-MacBeth Regressions . . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.6 Industry-Level Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.1 Revenue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.2 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.3 Wages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.4 Firm Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.5 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.6 Approximate Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.7 Equilibrium Risk Premia . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.2 Aggregate and Firm-Level Moments . . . . . . . . . . . . . . . . . . . . . 114
4.3 Equilibrium Forecasting Rules . . . . . . . . . . . . . . . . . . . . . . . . 115
4.4 Cross-Section of Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

2



4.5 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
B Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
C Computational Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3



Chapter 1

Distress Dispersion and Systemic
Risk in Networks

1 Introduction

The interconnectedness of financial institutions is a key feature of the modern financial system.

Linkages are formed by a diverse range of transactions and contracts that connect firms to each

other. A growing literature identifies these linkages as a major source of systemic risk (e.g. Allen

and Gale (2000), Caballero and Simsek (2013), Brunnermeier (2009), and Acemoglu, Ozdaglar,

and Tahbaz-Salehi (2015)). The insights are evident in the financial crisis: initial losses caused

the financial distress of a few firms, which then spread via the links that connect the distressed

firms with otherwise healthy ones, resulting in systemic failures. Yet, these studies analyze

contagion in given network structures and do not consider firms’ strategic formation of links.

In this paper, I focus on endogenous linkage formation which allows firms to strategically

build connections for profit and risk diversification purposes. A recent literature examines link-

age formation among homogeneous firms and concludes that either over- or under-connections

prevail in the financial system (e.g. Castiglionesi and Navarro (2011) and Farboodi (2014)).1

In contrast, this paper studies the linkage formation among firms differing in financial distress

levels. Such framework provides novel implications for efficiency and systemic risk by generating

over- and under-connections simultaneously.

I show that the endogenously formed network features inefficiencies and leads to systemic

risk as measured by the probability of joint failures. A link between two non-distressed firms

creates gains from risk-sharing, whereas a link with a distressed firm can be socially costly as it

increases systemic risk through balance sheet interdependence. I find that, when the dispersion

of distress is high, the network composition is distorted in two ways: there are too many links

with distressed firms and too few risk-sharing links among non-distressed firms. The inefficiency

arises as firms write bilateral contracts that are not contingent on the entire network structure.

1For example, Castiglionesi and Navarro (2011) show that decentralized network is under-connected when
counterparty risk is high. Farboodi (2014) illustrates over-connection in an endogenous core-periphery network.
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Hence, the non-distressed firms have incentives to link with distressed firms for profit, while

failing to internalize negative spillovers. Such inefficient network generates contagion and loss in

risk-sharing, creating excessive systemic risk. By embedding heterogeneity as a new dimension

of links, my model provides unique predictions on the efficiency of network composition.

In my model, financial firms face costly liquidation risks and strategically trade assets,

thereby forming a network. There are a finite number of firms financed by short-term debt

and each invests in a long-term asset. A random fraction of the asset is liquid and can be used

to repay debt. As in Allen, Babus, and Carletti (2012), if the amount of liquid asset falls short

of the debt level, a costly liquidation is triggered.2 To hedge the idiosyncratic liquidation risk,

firms can strategically enter into bilateral forward contracts to trade liquid assets. A two-sided

link in a network is formed when both parties decide to purchase a fraction of each other’s liquid

asset claims. Firms differ ex ante in how liquid the asset is expected to be, which generates the

key feature of the model: cross-sectional heterogeneity in financial distress levels. Differences

in asset liquidity also implies a price of trade in each contract. Motivated by the incomplete

contracts literature, I assume that prices in the bilateral trades are not contingent on the entire

network structure. Specifically, I consider local contingency, that is, prices are contingent on

which firms the two parties directly trade with. Given the network formed, the liquid asset

holding of a firm depends not only on who its direct counterparties are, but rather on the en-

tire network structure.3 As a benchmark for efficiency, I solve for the optimal network that

minimizes total bank liquidations.

The pairwise stable network formed in equilibrium can be inefficient relative to the optimal

benchmark: there can be excess links with distressed firms and insufficient risk-sharing links

among non-distressed firms. When distress dispersion is high across firms, the optimal network

requires that the non-distressed firms form risk-sharing links and that the most distressed firm

be isolated. In comparison, the equilibrium network with four or more firms shows that the

distressed firm is always connected with the most liquid firm. The suboptimal link between the

liquid and the distressed firm (“distress link” hereafter) transmits risky assets in the network

and leads to systemic risk, measured by the probability that all firms fail at the same time.

The inefficiency is caused by network externalities. Linking with a distressed firm potentially

avoids liquidation, thus is ex ante profitable for the most liquid firm. However, when a firm is

too distressed, linking with it can be socially costly because it contaminates the balance sheets of

others in the network. Hence a liquid firm forming a distress link imposes a network externality,

as distressed assets are then shared jointly by all connected firms. The distress link increases the

risk of contagion, which in turn reduces risk-sharing participation among non-distressed firms.

As such, two forces reinforce and lead to inefficiency: the transmission of distressed assets that

should have been isolated and the insufficient risk-sharing among non-distressed firms.

2A firm with a low level of liquid asset has difficulty in repaying short-term debt and hence is distressed.
3Following Cabrales, Gottardi, and Vega-Redondo (2014), I model this balance sheet interdependence as an

iterative swap process which represents asset securitization.
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The necessary ingredients for the externalities are interconnectedness, distress heterogeneity,

and local contingency. Interconnectedness transmits risky assets, thereby enabling spillovers.

Firm heterogeneity generates distress dispersion and different incentives to form links. When

there are only two firms or multiple identical firms, there is no externality. However, when there

are trades between multiple firms differing in distress levels, the most liquid firm can profit from

trading with the distressed firm and can shift risks away to its direct and indirect counterparties;

hence, the most liquid firm has a greater incentive to link with the distressed firm than is socially

desirable. But interconnectedness and heterogeneity are not enough. The externalities are not

internalized because of local contingency. Firms that bear the externalities cannot jointly give

incentives to the liquid firm via contingent payments. This occurs as long as one of the indirect

counterparties of the most liquid firm cannot condition payments on the distress link. Thus, the

liquid firm fails to internalize negative spillovers and forms the inefficient distress link.

While the prior literature largely focuses on the average soundness of the financial sector,4

my second primary result identifies a novel indicator for the level of network inefficiency: the

distress dispersion across financial firms. In my model, inefficiency arises when the distress

dispersion is sufficiently high and increases with the level of dispersion thereafter. This positive

relation is due to changes in network composition. When distress dispersion is higher, a wider

cross-sectional distribution implies more distressed firms in the left tail and more liquid ones in

the right tail. It is precisely then that the most liquid firm has an incentive to form the socially

costly distress link. Hence the disparity between individual and social incentives for forming a

distress link is greater, which crowds out valuable risk-sharing links and increases inefficiency.

Using insights from the model, I discuss policy implications for financial stability. The

links with distressed firms in the model can be interpreted as acquisitions of distressed firms.

This interpretation is reasonable because distressed financial firms are commonly acquired by

healthier institutions in the same industry.5 More than 1000 distressed financial firms were

acquired during 2000-2013, including Countrywide Financial Corp. and Riggs Bank. The asset

size of these acquisitions was $2.2 trillion, about half the size of all current banking deposits.

Despite the fact that acquisitions are a prevailing regulatory approach to improve financial

stability,6 my findings imply that excess acquisitions may emerge precisely when more banks

4Atkeson, Eisfeldt, and Weill (2014) measure the median Distance to Insolvency of largest financial firms
based on the Leland’s model of credit risk. Rampini and Viswanathan (2014) argue that the net worth of
(representative) financial intermediaries is an important state variable affecting the cost of financing. Gilchrist
and Zakrajsek (2012) show that the average credit spreads on outstanding corporate bonds has predictive power
for economic activity.

5Acharya, Shin, and Yorulmazer (2010) argue that if a bank needs to restructure or be sold, the potential
buyers are generally other banks. Almeida, Campello, and Hackbarth (2011) document that distressed firms
are acquired by liquid firms in their industries for financial synergies. Such acquisitions are more likely when
industry-level asset specificity is high and firm-level asset specificity is low, which applies to the financial sector.

6White and Yorulmazer (2014) provide a summary of resolution options for bank distress/failure. An acquisi-
tion “imposes the least cost since the franchise value is preserved, there is no disruption to the bank’s customers
or the payment system itself, and there are no fiscal costs.” For this reason, acquisition is the primary choice by
resolution authorities whenever there are willing acquirers.
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are distressed, thus increasing systemic risk rather than reducing failures.

In the context of acquisitions of distressed firms, I show an acquisition tax that varies with

the distress dispersion can prevent the inefficient acquisitions and reduce total liquidation costs.

Based on this result, regulators can restore efficiency by supervising the acquisitions of distressed

firms and using the purchase and assumption (P&A) method for distress resolution. In a model

extension that allows for the analysis of ex post policies, I show that if the excess acquisitions

are not banned ex ante, the too-connected-to-fail problem arises. In such a scenario, govern-

ment bailout or subsidized acquisitions are ex post optimal remedies, thereby rationalizing the

government interventions observed during the recent financial crisis.

Finally, I provide empirical evidence that the distress dispersion across financial institutions

provides a novel indicator for systemic risk. Following Laeven and Levine (2009), I measure dis-

tress by estimating Z-scores of financial firms. The time series of distress dispersion displays large

variations over time. Moreover, it has a countercyclical pattern and appears to lead recessions.

Consistent with the model predictions, the empirical dispersion series significantly comoves with

future economic activities and systemic risk, bank failures, acquisitions of distressed firms, and

interbank risk sharing. I run forecasting regressions to evaluate whether the dispersion series

conveys new information about aggregate indicators beyond what is contained in the average

distress and existing systemic risk measures. The estimates confirm that the dispersion series

has high predictive power for future indices of systemic risk.

1.1 Related Literature

This paper builds on network theory and its applications in economics and finance.7 Pioneered

by Allen and Gale (2000), a growing literature argues that certain network structures among

financial institutions can lead to risks of contagion.8 While powerful for analyzing how risks

propagate under different connection properties, this stream of research treats the network

structures as given. My paper studies network formation, hence contributes to the analysis of

how links evolve in response to changes in policies or aggregate conditions.

The main contribution of this paper is to embed distress heterogeneity in linkage formation

and to study the implications on efficiency and systemic risk. As such, my paper belongs to the

recent literature on financial network formation, which examines how inefficient networks form

due to various frictions.9 Castiglionesi and Navarro (2011) demonstrate network fragility when

undercapitalized banks gamble with depositors’ money. Di Maggio and Tahbaz-Salehi (2014)

analyze the role of collateral on a similar moral hazard problem. Zawadowski (2013) studies a

7See surveys by Jackson (2003, 2008) and Allen and Babus (2009).
8See Eisenberg and Noe (2001), Dasgupta (2004), Nier, Yang, Yorulmazer, and Alentorn (2007), Gai, Hal-

dane, and Kapadia (2011), Greenwood, Landier, and Thesmar (2012), Caballero and Simsek (2013), Acemoglu,
Ozdaglar, and Tahbaz-Salehi (2015), Elliott, Golub, and Jackson (2014), and Glasserman and Young (2015).

9See for example Lagunoff and Schreft (2001), Castiglionesi and Navarro (2011), Gofman (2011), Babus (2013),
Blume, Easley, Kleinberg, Kleinberg, and Tardos (2013), Acemoglu, Ozdaglar, and Tahbaz-Salehi (2014), Zawad-
owski (2013), Cabrales, Gottardi, and Vega-Redondo (2014), and Farboodi (2014).
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type of risk shifting stemming from banks’ underinsurance of counterparty risk. Gofman (2011)

and Farboodi (2014) highlight that bargaining friction and intermediation lead to welfare loss.

In the network formation literature, my paper is closest to Farboodi (2014) who illustrates

that a core-periphery intermediation structure arises inefficiently due to a lending constraint

and the opportunity to earn intermediation spreads. While my paper also generates excessive

systemic risk due to certain types of inefficient links, I differ by studying linkage formation among

firms differing in financial distress levels. Inefficiency arises from the incentive of liquid firms to

link with distressed firms for profit under contract incompleteness. Moreover, I model links on

the asset side of the balance sheet. The resulting asset cross-interdependence structure can be

used to evaluate acquisition regulations. Finally, the novel finding that the distress dispersion

is a critical state variable allows for a closer link to the data in forecasting systemic risk.

The key friction underlying the network inefficiency in my model is the failure to offer

incentives conditional on the entire network structure. In this sense, my paper is related to

the literature on incomplete contracts.10 From Hart and Moore (1988), agents cannot write

contracts contingent on states that cannot be clearly specified, even if the states are perfectly

foreseeable. The reason is that the states written in the contracts must be verifiable in court. In

my setting, given that the links entered by other firms are not specifiable or verifiable, bilateral

prices are contingent only on who the two firms directly trade with. This assumption is in line

with Acemoglu, Ozdaglar, and Tahbaz-Salehi (2014) who show that inefficient networks can

emerge in interbank lending markets with contingency debt covenants.

Finally, this paper adds to the studies on the trade-off between diversification and contagion.

Banal-Estanol, Ottaviani, and Winton (2013) evaluate conglomeration with default costs in

terms of this trade-off. I follow Cabrales, Gottardi, and Vega-Redondo (2014) and study the

trade-off in a network setting. Acharya (2009), Wagner (2010), Ibragimov, Jaffee, and Walden

(2011), and Castiglionesi and Wagner (2013) show that diversification may lead to greater

systemic risk as banks tend to over-diversify by holding similar portfolios. These papers mostly

assume costly joint failures among homogeneous agents. My paper complements these studies by

showing that links among heterogeneous firms can result in both over and under diversification.

The rest of the paper proceeds as follows. Section 2 lays out the model environment and

defines the equilibrium. Section 3 demonstrates the network inefficiencies and investigates the

key friction. Section 4 examines the role of distress dispersion on inefficiency. Section 5 discusses

the policy implications in the context of acquisitions of distressed firms. Section 6 presents

empirical results, and Section 7 concludes. All proofs are in the Appendix.

2 Model

This section describes a model of network formation in which financial firms strategically trade

assets via bilateral forward swap contracts.

10See for example Hart and Moore (1988, 1999), Tirole (1999), Maskin and Tirole (1999), and Segal (1999).
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2.1 Environment

Consider a four-date economy with a finite number of levered financial firms, denoted by i =

1, ..., N . All agents are risk neutral and there is no discounting.

At date 0, each firm borrows 1 unit of short-term debt from a continuum of creditors and

invests in an asset with fixed return R. The asset is subject to liquidity risk. A random

component ãi becomes liquid at date 2 and can be used to repay debt, whereas the rest R− ãi
is illiquid and matures at date 3. Given this financing structure, a maturity mismatch arises. A

firm can be interpreted as a financial institution, e.g., an investment firm investing in a certain

class of securities, or a commercial bank issuing an unsecured loan.

At date 1, firms observe the vector ν, which is a public signal about how much liquid

asset each firm expects to receive. Then they simultaneously decide to enter into bilateral

forward swap contracts for risk-sharing purpose, thus forming links. Each forward swap contract

promises a claim to a fraction of each other’s liquid assets.

At date 2, firms observe the amount of their liquid assets, given by ãi = νi + σεi. The

idiosyncratic shock εi is i.i.d. standard normal and is independent of νi.
11 Firms fulfill the

forward swap contracts, and based on the overall linkage structure, firms obtain potentially

diversified liquid asset holdings, which they use to repay debt.12 If the liquid asset holdings fall

short of debt, the firm liquidates its illiquid asset with a fixed cost c, for instance by selling at

a discount to industry outsiders as in Shleifer and Vishny (1992).13

At date 3, if not liquidated, the illiquid component R − ãi of the asset matures. Using this

return, the payments associated with the forward swap contracts are paid in full.

Given the signal ν, firms differ at date 1 in the amount of expected liquid asset. This

generates heterogeneity in financial distress. I follow Roy (1952) and define a distress statistic,

zi, as the number of standard deviations that firm i is expected to be away from liquidation

(zi ≡ νi−1
σ ). A firm with high zi has highly liquid asset and low financial distress. We say

such a firm is liquid. In contrast, a firm is distressed if it has a low zi. To highlight the role of

heterogeneity, I assume that the vector z has mean z̄ and is equally spaced with step size δ ≥ 0,

i.e.

zi = z̄ +
N + 1− 2i

2
δ, i = 1, ..., N. (1.1)

z̄ measures the average distance from liquidation. Let z̄ > 0 so that firms invest in positive

NPV projects on average. δ is proportional to the cross-sectional standard deviation of zi and

proxies for the degree of distress dispersion.14

11ãi being negative means further liquidity inflow needed in the asset investment.
12Introducing debt roll-over, renegotiation, or endogenous default boundary do not change the qualitative

features. To separate from risk-shifting due to agency conflict between shareholders and depositors (Jensen and
Meckling (1976)), limited liability is not particularly imposed for firm owners.

13The cost can result from deadweight loss in liquidation due to asset specificity, loss of franchise value, or
disruption of credit and payment services associated with relationship banking (see White and Yorulmazer (2014)).

14I rank firms by zi merely for expository purpose. Distress is modeled as exogenous, while in reality firms choose
liquidity holding and risk-taking which endogenously determine distress levels. Acharya, Shin, and Yorulmazer
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2.2 Network Formation

At date 1, firms strategically decide to enter into bilateral forward swap contracts. In this

network formation game, a strategy of firm i includes a vector li = (li1, ..., li,i−1, li,i+1, ..., liN )

and a vector pi = (pi1, ..., pi,i−1, pi,i+1, ..., piN ). Firm i proposes to buy lij ∈ {0, l̄},15 where

l̄ ∈ (0, 1), fractions of liquid asset from firm j at date 2, offering to pay a unit price pij at date

3. The prices can be made contingent on the links. Similar to the simultaneous announcement

game in Myerson (1991), each firm simultaneously proposes to contract with other firms.

A contract is signed (a two-sided link is formed) when both firms decide to swap asset claims

at the offered prices. Let the matrix L represent the linkage structure; its element satisfies

Lij = Lji = min{lij , lji}. (1.2)

Firms i and j are directly linked (Lij = l̄) only if lij = lji = l̄. This specification ensures that no

firms end up being a net asset seller or buyer so each firm still holds one unit of liquid asset. It

also captures an important aspect of the OTC derivatives market: firms have large gross notional

positions and small net positions. After the asset swaps, each firm holds a non-negative share of

its own asset, i.e. Lii = 1−
∑

j 6=i Lij ≥ 0. As such, L is a symmetric, doubly stochastic matrix

by construction.16 When Lii = 1, firm i is isolated.

The set of N firms and the links between them define the network. Depending on the distress

level of the two connecting firms, the network is composed of risk-sharing links which connect

two non-distressed firms, and distress links which connect a liquid and a distressed firm.

2.3 Payoffs and Firm Value

Firms’ liquid asset holdings, denoted by vector h̃i(ã, L), depend on not only their direct counter-

parties, but rather how firms are interconnected. As such, the linkage creates cross-interdependence

from the asset side of firms’ balance sheets. I model links via asset swaps because prior studies

highlight that correlated portfolio exposures are the main source of systemic risk in the financial

sector.17 In addition, asset swaps simplify the calculation of final asset holdings and systemic

risk by avoiding kinks in standard cascade models (e.g. Elliott, Golub, and Jackson (2014)).18

At date 3, firms deliver payment transfers according to the forward swap contracts. Their

final payoffs are thus determined by the liquid asset realizations ã, the network L, and the prices

(2010) argue that liquid banks hoard cash for potential gains from asset sales. This implies that an otherwise
endogenous setting would generate even bigger heterogeneity during an aggregate liquidity shortage.

15From Lemma 1, all results would remain if instead firms have a continuum strategy space, i.e. lij ∈ [0, 1).
16A square matrix is doubly stochastic if all its entries are non-negative and the sum of the entries in each of

its rows or columns is 1.
17See for example Elsinger, Lehar, and Summer (2006) and DeYoung and Torna (2013).
18The asset swaps may capture in a broad sense cross holdings of deposits in Allen and Gale (2000).
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p, given by Π(ã, L, p),

Πi(ã, L, p) = h̃i(ã, L) +R− ãi − 1︸ ︷︷ ︸− 1(h̃i(ã,L)<1)c︸ ︷︷ ︸ −
∑
j 6=i

(pij − pji)Lij︸ ︷︷ ︸
,

asset net of debt liquidation cost net payments from swaps

(1.3)

Firm value at date 1 is given by taking the expectation of Πi(ã, L, p),

Vi(z, L, p) = E1

[
h̃i(ã, L)

]
+R− νi − 1− Pr

(
h̃i(ã, L) < 1

)
c−

∑
j 6=i

(pij − pji)Lij . (1.4)

2.4 Bilateral Prices and Asset Swaps

The key features of a network formation game are the payoff functions and the payment transfers.

To further specify these terms in my framework, I next discuss assumptions on bilateral prices

and asset swaps process.

Local Contingency Which firms have the power to decide on a link between two firms is

crucial to linkage formation. The bilateral prices allow for transfer payments among firms,

which in turn define the decision power to form links. Given that a link Lij “alters the payoffs

to others, it seems reasonable to suppose that other firms, especially the [direct counterparties

of] firms i and j should have some say in the formation of a link between i and j”(Goyal (2009)).

Following this spirit, I assume prices with local contingency.

Assumption 1 (Local Contingency) The bilateral price pij is contingent on the direct links

entered by the two firms. Let Li be the i-th row of L, then

pij (Li, Lj , Lk) = pij

(
Li, Lj , L̂k

)
, ∀k, ∀L̂k 6= Lk. (1.5)

Under Assumption 1, firm i offers prices based on its own links Li and the links of its direct

counterparty Lj . Even if firm i foresees that it indirectly connects to a third firm k (Lij > 0,

Ljk > 0), the price it offers cannot vary with the links of firm k.

Assumption 1 is the key friction in the model. The motivation lies in an inherent feature

of the financial industry: when firms write bilateral contracts in an interconnected setting, it

is difficult for institutions to specify in every contract detailed contingencies for every possible

network structure. One reason for this is that institutions do not publicly disclose the identities

of their counterparties. As in Hart (1993), even if the bilateral relations they form could be

foreseeable by other institutions, “they might be difficult to specify in advance in an unambiguous

manner. [Hence], a contract that tries to condition on these variables may not be enforceable

by a court.” This is essentially one example of incomplete contracts.19

19An alternative motivation relates to transaction costs à la Williamson (1975). As the size and complexity of
the network builds up, it would be prohibitively costly to include all possible structures in each contract for every
firm. This is consistent with the fact that we do not observe such types of contracts in practice.
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Price Offering Rules In each bilateral contract, what matters for firm payoffs is the net

transfer payment (pij − pji)Lij . The same net payment can be achieved by a continuum of

gross payments; hence, to ensure a unique set of equilibrium prices, I assume that buyer i

proposes price pij to j as a take-it-or-leave-it offer. The proposed price cannot be lower than

firm j’s reservation price pjj . Formally,

pij ≥ pjj , ∀i 6= j, (1.6)

where pjj equals j’s outside option when it cannot form any links, i.e.

pjj(zj) = Vj (z, L, p |Lj = 0) . (1.7)

Asset Swap Process I model the cross-interdependence of liquid asset holdings h̃(ã, L) by an

iterative asset swap process: firm i swaps liquid asset with its direct counterparties iteratively.

Given the linkage matrix L, the vector of asset holdings after the first round of swap is h̃(1) = Lã.

Applying L to h̃(1) gives the second round of swap, h̃(2) = Lh̃(1) = L2ã, where L2 denotes L×L.

Specifically, I assume that the iteration goes on for infinitely many rounds.

Assumption 2 (Iterative Swap Process) Firms swap liquid assets according to the linkage ma-

trix L iteratively for infinite rounds. The final asset holdings h̃ are given by

h̃(ã, L) = lim
K→∞

LK ã. (1.8)

This iterative process is instantaneous and does not affect the payment of prices. It captures

the securitization process such as the origination and trades of asset-backed securities.20

Under Assumption 2, final holdings h̃ depend on the liquid returns of both direct and indirect

counterparties. Take for instance a network with N = 3 and L12 = L23 = l̄, L13 = 0. After

the first round, h̃
(1)
1 =

(
1− l̄

)
ã1 + l̄ã2. After infinite rounds, h̃1 = h̃2 = h̃3 = 1

3 ã1 + 1
3 ã2 + 1

3 ã3;

hence, firm 1 holds 1
3 shares of ã3 even if it does not directly link with firm 3. The following

lemma formalizes this property of the final asset holdings.

Lemma 1 (Complete risk-sharing) For all L, limK→∞ L
K is doubly stochastic and coincides

with complete risk-sharing among all firms connected in the same component,21 i.e. the holdings

of each firm are equally weighted by the liquid assets of all firms directly or indirectly connected

to it.

From Lemma 1, it is the linkage structure (whether Lij = 0 or Lij > 0) rather than the amount

of swap that determines the final holdings of each firm. Given Lemma 1, the results still hold

if instead lij ∈ [0, 1), that is, if we allow firms to make linkage decisions in a continuum space.

20“The possibly iterative procedure through which each firm exchanges assets on its whole array of asset holdings
can be viewed as a securitization process of the firm’s claims” (Cabrales, Gottardi, and Vega-Redondo (2014)).

21A component of a network is a maximally connected collection of firms: each firm in the component can reach
any other firm in the same component following one or more links.
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This rationalizes the simplification that lij is a binary variable. Moreover, the holding of own

asset Lii = 1−
∑

j 6=i Lij ≥ 0 implies that the maximum number of links a firm can form is 1/l̄.

If 1/l̄ is very large, the number of possible network structures increases exponentially with N .22

To maintain tractability, in what follows I restrict the number of links a firm can form.23

Assumption 3 (Chain Networks) each firm can form a maximum of two links, i.e. l̄ = 1
2 .

Lemma 1 implies that reducing a circle to a chain structure will not affect firms’ final holdings

and exposures. Therefore, the possible topology for minimal networks is an arbitrary collection of

paths,24 or chain networks. The number of firms here can be interpreted as the largest diameter

in an otherwise general network, such as the core-periphery structure empirically observed in the

dealers network for municipal bonds (Li and Schrhoff (2014)) and derivative securities (Hollifield,

Neklyudov, and Spatt (2014)), and theoretically analyzed in Farboodi (2014).

2.5 The Equilibrium

After observing the distress vector z, firms simultaneously choose linkage decision l and price

offerings p to maximize their firm values V (z, L, p). Next I formally define the equilibrium by

extending the notion of pairwise stability in Jackson and Wolinsky (1996). I embed bilateral

prices along the lines of transfer payments in Bloch and Jackson (2007).

Definition 1 The equilibrium of a network formed by bilateral forward swap contracts is char-

acterized by the linkage structure Le and the set of bilateral prices pe, such that

• Optimality: each firm i takes as given other firms’ strategies (lj , pj) , ∀j 6= i, and chooses

its own strategy (li, pi) to optimize its firm value, i.e.

Vi (z, Le, pe) = max
(lij∈{0,l̄},pij)

j 6=i

Vi (z, L, p) , (1.9)

subject to (1.2), (1.4), and constraints (1.5) - (1.8).

• Pairwise stability: denote Le−{ij} as the matrix Le by deleting Leij, and pe−{ij,ji} as the

matrix pe by deleting peij and peji. Then ∀Leij > 0 and ∀(p̂ij , p̂ji) 6= (peij , p
e
ji),

Vi(z, L
e, pe) ≥ Vi(z, Le−{ij}, Lij = 0, pe−{ij,ji}, p̂ij , p̂ji), (1.10)

Vj(z, L
e, pe) ≥ Vj(z, Le−{ij}, Lij = 0, pe−{ij,ji}, p̂ij , p̂ji); (1.11)

22The number of possible network structures among N heterogeneous firms is 2
N(N−1)

2 .
23A similar assumption on maximum number of links is made in Allen, Babus, and Carletti (2012).
24A path in a network is a sequence of firms and links that start with firm i and end with another firm j.
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and ∀Leij = 0 and ∀(p̂ij , p̂ji) 6= (peij , p
e
ji)

Vi

(
z, Le−{ij}, Lij = l̄, pe−{ij,ji}, p̂ij , p̂ji

)
> Vi (z, Le, pe) , (1.12)

⇒ Vj(z, L
e
−{ij}, Lij = l̄, pe−{ij,ji}, p̂ij , p̂ji) < Vj (z, Le, pe) . (1.13)

• Feasibility:

L× 1N×1 = L> × 1N×1 = 1N×1. (1.14)

The pairwise stability concept states that two firms connect only if both decide to connect

and prefer no other bilateral prices; two firms do not connect only if, for all possible bilateral

prices, at least one firm has no incentive to connect. Pairwise stability naturally applies to this

setting as the goal here is to understand which networks are likely to arise and remain stable.

Moreover, it eliminates the multiplicity of equilibrium networks due to coordination failures

under the standard concept of Nash equilibrium.

2.6 Discussions

Synergy from links The two types of links, risk-sharing links and distress links, generate

different sources of synergy. A risk-sharing link always generates a positive surplus by reducing

the volatility of liquid assets. For example, a link between two ex ante identical non-distressed

firms reduces the liquidation probability of each firm.25 In comparison, a distress link has an

extra source of synergy from the distress heterogeneity. For example, let ν1 = 1.5, ν2 = 0.8.

In the forward swap contracts, firm 1 has a claim of 1
2 ã2, and vice versa. Even when σ = 0,

there is gain as the liquidation of firm 2 can be avoided. The surplus from the reduction of total

liquidation costs of firms i and j is shown to increase with their distress dispersion |zi − zj |.26

When zj < −1, the surplus is positive only if zi > 0 − zj > 1; thus, only firms that are liquid

enough are able to profit from such a link.

Distress link as an acquisition relation The price offering rule and the fact that a dis-

tressed firm only has one link jointly imply that a distress link establishes an equity ownership

relation between the liquid and the distressed firm, which can be thought of as an acquisition.

The reason is that the distressed firm i does not enter other links,27 so {pij , pji} satisfy pij = pjj

and Vj(z, L, pij − pji) = pjj . Vj being fixed implies that the liquid firm i is claiming the entire

surplus value from the bilateral link. In other words, firm i maximizing Vi is equivalent to

maximizing Vi + Vj , which resembles an acquisition relation.

25The total expected liquidation costs of two stand alone firms are 2 Pr (ãi < 1) c = 2Φ(−zi)c. That of two
connected firms are 2Φ(−2zi)c. The total surplus equals 2(Φ(−zi)− Φ(−2zi)) c > 0.

26The synergy equals the reduction of liquidation costs of the two firms Φ (−zi) c+ Φ (−zj) c− 2Φ (−zi − zj) c.
The derivative of synergy with respect to |zi − zj |, holding the sum |zi + zj | fixed, is positive.

27The offered price premium pij − pjj endogenously responds to the outside option of firm j which is in turn
determined by the linkage structure L.
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Algorithm for linkage formation There are multiple ways to determine which network

emerges given a set of contingent transfer payments (prices). I illustrate the following one. Under

rational expectations, firms form a common belief about the equilibrium linkage structure Lb.

Based on this belief, firms simultaneously submit strategies li(L
b) and pi =

(
pij(z, L

b
i , L

b
j)
)
j 6=i

.

Given the strategies, the realized equilibrium network is consistent with the common belief, i.e.

Le = Lb. An alternative guess-and-verify approach is described in Bloch and Jackson (2007).

Existence of equilibrium The existence of the pairwise stable equilibrium in Definition

1 follows from a generalization of Goyal (2009) Proposition 7.1 “For any value function and

any allocation function, there exists at least one pairwise stable network or a closed cycle of

networks.” I refer the reader to Goyal (2009) for more discussion.

Payment seniority The liquid asset obtained from the forward contracts is used to pay

debt at date 2, whereas the payments for the forward swap contracts are paid in full at date

3 using yields from the long-term assets. This specification assumes that short-term creditors

have seniority over OTC derivative counterparties. The motivation is that derivatives seniority

creates an inefficiency in risk-sharing, similar to that illustrated in Bolton and Oehmke (2014).

Following the example above, let instead ν1 = 1.2, ν2 = 0.8. Suppose further that εi = ε2 = 0,

so there are two units of liquid asset in total. Firm 2 has to incur liquidation cost at date

2 whenever it pays a positive net payment (firm 2 is relatively more distressed) to firm 1. In

comparison, when net payment is paid at date 3, both firms avoid liquidation. As such, deferring

the payments to the final date helps to isolate the network externality mechanism in my model

from other potential inefficiencies associated with the derivatives payments.

3 Network Inefficiency

In this section, I examine the efficiency of the equilibrium network relative to a benchmark

that minimizes total liquidation costs. Results show that the equilibrium network is inefficient

when the dispersion of financial distress levels is high: there are more distress links and fewer

risk-sharing links. Lastly, I discuss the key friction that drives the network inefficiency.

3.1 Optimal Network

Under the model specifications for links and the asset swap process, the social planner chooses the

optimal linkage structure that minimizes total liquidation costs (maximizes total bank values).

Definition 2 The optimal network L∗ minimizes total expected liquidation costs, i.e.

L∗ = arg min
Lij∈{0,l̄}

∑
i

Pr
(
h̃i < 1

)
c, (P1)
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Figure 1. Optimal Network. This figure shows the optimal risk-sharing network charac-
terized in Proposition 1 for N = 4 and N = 5. The horizontal and vertical axes represent the
mean and dispersion of firm distress statistic z. In the white region, all firms are linked in one
component. In the dark region (z̄ ∈ [z̄2, z̄1] , δ > δ1 (z̄)), firm N is isolated.

subject to the conditions of two-sided links Lij = Lji, iterative procedure (1.8), and feasibility

(1.14).

Based on this definition, next I solve Problem (P1) and characterize the properties of L∗.

Proposition 1 (Optimal Network) ∃z̄1, z̄2, z̄1 > z̄2 ≥ 0, ∃ cutoff function δ1 (z̄) > 0 such that

• for z̄ ≥ z̄1, δ ≥ 0 or z̄ ∈ [z̄2, z̄1] , δ ∈ [0, δ1 (z̄)], all firms are connected in one component;

formally, either L∗ij > 0 or there exists a path between i and j, i.e. L∗ik1
, ..., L∗kmj > 0;

• for z̄ ∈ [z̄2, z̄1] , δ > δ1 (z̄), the distressed firm N is isolated (L∗NN = 1), whereas all other

firms are connected in one component.

Proposition 1 states that the optimal network can be characterized by the two moments

of the distress distribution, {z̄, δ}. All firms fully diversify by connecting in one component in

an economy with high enough average z̄ (low average distress), or with low z̄ and low enough

distress dispersion δ. In comparison, when distress dispersion δ is high and z̄ is not sufficiently

high, the most distressed firm N should be isolated, whereas all other firms are connected in

one component. These patterns are shown in Figure 1 for N = 4 and N = 5.28

The intuition for Proposition 1 is the trade-off between diversification and risks of conta-

gion.29 In an economy with high dispersion δ and low average z̄, firm N is heavily distressed

28The cutoff value z̄2 is zero for N = 4, and is positive for N ≥ 5. For z̄ < z̄2, there are regions when L∗ isolates
more than one firm. For instance, in Panel B Figure 1, both firms 4 and 5 are isolated in the hump-shaped region
in the lower left corner. As δ increases further, L∗ switches from isolating two firms to one firm. This is because
the total expected liquidity of firms 1 to N − 1 increases with δ which mechanically results from the assumption
of symmetric cross-sectional distribution in Equation 1.1. Similar patterns display for N > 5.

29The trade-off between risk-sharing and contagion is in line with Cabrales, Gottardi, and Vega-Redondo (2014),
who find that, when shock distribution has thin tails, firms should be connected in one component, whereas when
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Figure 2. Equilibrium Network (N = 4). This figure shows the equilibrium four-firm
chain network. Firms are ranked by the level of distress, and firm 4 is distressed. A solid line
represents a link between two firms. A $ arrow indicates the direction of net payment transfers
via bilateral prices.

from Equation (1.1). The contamination cost of linking firm N with all other firms dominates

the risk-sharing benefit, which rationalizes isolating it.

The model specifications on links and asset swaps do not deviate the optimal network from

the best possible risk-sharing outcome. In Appendix A.2, I show that under the iterative swap

procedure, the asset holdings implied by the optimal network, h̃∗ = (L∗)∞ ã, are equivalent to

the optimal allocations when the social planner directly chooses asset holdings for each firm.

Hence, total liquidation costs achieve the minimum as long as the network is optimal.

3.2 Excess Distress Link

The question I address next is whether the optimal network can be decentralized in the network

formation, and if not, in which ways the equilibrium network is inefficient.

Proposition 2 (Excess Distress Link) For N = 4, all firms are connected in one chain in

equilibrium and the distressed firm 4 is linked with the most liquid firm 1; formally, ∀i, z̄, δ,
Leii < 1 and ∀j 6= i, either Leij > 0 or there exists a path between i and j, i.e. Leik1

...Lekmj > 0.

Proposition 2 states that for all parameter values, all firms are connected in one component

at equilibrium including the most distressed firm via a distress link. Comparing Propositions 1

and 2, when the average z̄ is low and dispersion δ is high, the optimal network has no distress link

(L∗NN = 1); however, the equilibrium network features over-connection,
∑
i 6=N

LeiN −
∑
i 6=N

L∗iN > 0.

The excess distress link implies that equilibrium network is inefficient.

Figure 2 illustrates the intuition. Under reservation prices pij = pjj , firm 1 deviates to link

with firm 4 to obtain a large profit (as p14 = p44). Firm 2 has incentive to sever the 1−2 link as

the cost of indirectly holding a faction of ã4 is too high. In order to keep firm 2 staying connected,

firm 1 offers a premium price p12 by sharing part of the profit from L14. This premium price

matches the value of firm 2 to the same value that firm 2 gets when it withdraws. This way,

there is over-connection at equilibrium: the distressed firm 4 should have been isolated but is

linked into the network. Firm 2 cannot afford to pay a premium price high enough to prevent

shock distribution has fat tails, maximum segmentation into small components is optimal.
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Figure 3. Equilibrium Network (N = 5). This figure shows the equilibrium five-firm
network. The horizontal and vertical axes represent the mean and dispersion of firm distress
statistic z. In colored regions, the optimal network isolates firm 5. Blue (lighter) region denotes
over-connection, and orange (darker) region denotes inefficient network composition.

1 from connecting with 4. This is because the benefit of isolating ã4 is shared between firms 2

and 3, and so firm 2 would be worse-off paying the required premium fully on its own.

3.3 Risk Sharing Loss

As the chain network gets longer, the excess distress link can crowd out valuable risk-sharing

links, thus giving rise to an additional channel of inefficiency from the loss of risk-sharing.

Proposition 3 (Risk Sharing Loss) For N = 5, ∃ cutoff function δ2(z̄) such that when z̄ ∈
[z̄2, z̄1] and δ > δ1(z̄), there is excess distress link,

∑
i 6=N

LeiN −
∑
i 6=N

L∗iN > 0. In particular,

• when δ ∈ [δ1(z̄), δ2(z̄)], all firms are connected in one component, so there is over-

connection due to the distress link;

• when δ > max {δ1(z̄), δ2(z̄)}, the non-distressed firms are not connected in one component:

the network has inefficient composition due to both excess distress link and insufficient

risk-sharing.

Proposition 3 formalizes two channels of inefficiency: one from the excess distress link (over-

connection), and the other from risk-sharing loss (under-connection). When the average z̄ is

low and dispersion δ is high, the distressed firm N , which should be isolated, is linked by firm

1 at equilibrium, generating the excess distress link. This result occurs in the colored regions in

Figure 3 where z̄ ∈ [z̄2, z̄1] and δ > δ1(z̄). Specifically, if the value of dispersion is in a middle
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Figure 4. Inefficient Network Composition (N = 5). This figure shows the equilibrium
connection structure {1 − 5, 2 − 3, 4} with inefficient network composition that features both
over- and under-connections.
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Figure 5. Complete Contingent Contracts (N = 4). This figure shows the optimal
network is decentralized at equilibrium under complete contingent contracts. Firms are ranked
by the level of distress, and firm 4 is distressed. A solid line represents a link between two firms.
A $ arrow indicates the direction of net payment transfers via bilateral prices.

range (δ ∈ [δ1(z̄), δ2(z̄)]), all firms are linked in one component, so inefficiency only results from

over-connection. When the dispersion increases further (δ > max {δ1(z̄), δ2(z̄)}), some risk-

sharing link severs: a non-distressed firm becomes isolated or the non-distressed firms separate

into multiple components. The externality from the distress link crowds out potential gains

from risk-sharing. In this case, the inefficient network features inefficient composition featuring

over- and under-connections simultaneously.

Take a N = 5 chain network as an example. Without loss of generality, firms start from

the chain 1 − 2 − 3 − 4 − 5. As dispersion δ increases, firm 5 becomes distressed. The 4 − 5

link terminates and the distress link 1− 5 forms: equilibrium network 1− 2− 3− 4, 5 generates

over-connection. As δ rises further, firm 2 is worse off staying in the network: 1− 2 link severs

and 2 − 4 link forms, as shown in Figure 4. Notice that various initial sequences in the stable

risk-sharing chain at δ = 0 imply different outside options and deviation incentives for each

firm. Different initial sequences therefore lead to different equilibria, all of which share the same

inefficiency feature. Detailed analysis is included in Appendix A.3.

3.4 The Key Friction

The inefficiency is caused by network externalities. Due to local contingency specified in As-

sumption 1, the liquid firm fails to internalize the negative externalities to its direct and indirect

counterparties. When Assumption 1 is relaxed, bilateral prices pij (z, L) can induce the efficient

network, which indicates that the incomplete contingency on the network structure is the mere

underlying friction.

Recall the N = 4 example. When δ is high, linking with the distressed firm 4 by 1 imposes
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an externality to both 2 and 3. To prevent this distress link, firms 2 and 3 need to jointly offer

incentives to 1. In Appendix A.4, I formally elaborate that there exist unique premium prices

p∗21 and p∗32 such that Le14 = 0 if and only if L∗14 = 0. In particular, p∗32 is a function of L14 and

firm 3 pays a premium price when L14 = 0. Put differently, the price offered by firm 3 depends

not only on the links of 2 and 3, but also on the links of the counterparty’s counterparty (see

Figure 5).

4 The Distress Dispersion

In this section, I investigate factors that indicate the level of network inefficiency. While prior

literature has largely focused on the first moment of financial distress, I show that heterogeneity

in firm distress measured by the dispersion δ is a critical indicator for inefficiency. Both inef-

ficiency indicators, value loss and systemic risk, increase with dispersion δ. Using comparative

statics, I explain this positive relation by associating the network inefficiency to changes in the

network composition.

4.1 Measures of Inefficiency and Dispersion

In the model, I measure network inefficiency by value loss and systemic risk. Define value loss,

∆V , as the difference in total expected firm values between the optimal and the equilibrium

networks. Then let ∆V% be the percentage value loss, which is simply the percentage of value

loss over total optimal firm values.

∆V =

N∑
i=1

Vi (z, L∗, p∗)−
N∑
i=1

Vi (z, Le, pe) ; ∆V% =
∆V∑N

i=1 Vi (z, L∗, p∗)
. (1.15)

Under the feasibility condition of asset swaps in Equation (1.14), value loss equals the increment

of total liquidation costs. Next, I characterize the properties of value loss as a function of the

two moments of firm distress distribution, (z̄, δ).

Proposition 4 (Value Loss) Value loss decreases with average z̄ and increases with dispersion

δ. It increases with δ faster when z̄ is lower. Formally, ∂∆V
∂z̄ ≤ 0, ∂∆V

∂δ ≥ 0, and ∂2∆V
∂z̄∂δ ≤ 0.

From Proposition 4, value loss is bigger when the average distress is higher or when the

dispersion is higher. In such scenarios, firm N is so distressed that linking it with other firms

generates large contagion risk. Consequently, the cost from such a distress link causes higher

loss in total firm values.

Next I explore an alternative measure for inefficiency: systemic risk denoted as PrLsys. It

is defined as the probability that all firms liquidate at the same time. In a network where all

firms are linked in one component, systemic risk equals the liquidation probability of one firm
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Figure 6. Excess Systemic Risk. This figure plots the excess systemic risk against average
z̄ and dispersion δ for the equilibrium four-firm chain network.

because all firms hold exactly the same diversified asset, i.e.

Prall connect
sys = Pr

(
1

N

N∑
i=1

ãi < 1

)
. (1.16)

In a network that isolates the distressed firm, systemic risk is the probability that the isolated

firm liquidates at the same time when all non-distressed firms in one connected component

liquidate,

Prisolate N
sys = Pr

(
1

N − 1

N−1∑
i=1

ãi < 1

)
× Pr (ãN < 1) . (1.17)

Define excess systemic risk, ∆ Prsys = PrL
e

sys−PrL
∗

sys, i.e. the difference between systemic risk

at the equilibrium network compared to the optimal network. In the example of N = 4, the

excess systemic risk is positive whenever the network is inefficient. That is, ∆ Prsys(N = 4) > 0

in the inefficient region (z̄ ∈ [z̄2, z̄1], δ > δ1(z̄)).30

Figure 6 plots excess systemic risk as a function of the mean (Panel A) and dispersion of z

(Panel B). Excess systemic risk is positive when the average distress is sufficiently high and firm

distress is dispersed. ∆ Prsys decreases with z̄; and as long as the dispersion δ is high enough,

it increases with δ at a steeper rate when z̄ is lower. The similarity of these patterns with

Proposition 4 suggests that excess systemic risk serves as an alternative measure for inefficiency.

4.2 Comparative Statics: dispersion, inefficiency, and network composition

The above analysis shows that firm distress dispersion δ is a key indicator for both measures

of inefficiency. To inspect the mechanism, I analyze how the equilibrium network responds to

changes in z̄ and δ, relative to the optimal network. Especially, I look at the two inefficiency

measures, ∆V and ∆ Prsys, together with changes in the network composition in terms of distress

30For example, when z̄ = 0.2 and δ = 1.5, ∆ Prsys = 0.34− 0.05 = 0.29.
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Figure 7. Increase in Average Distress under High Distress Dispersion. This figure
shows the properties of the five-firm chain network with high δ when we lower z̄. The horizontal
axis ∆z̄ is the reduction in z̄. I plot the values in the equilibrium network (solid) and the optimal
network (dashed).

links and risk-sharing links.

In the first comparative statics, I lower the level of z̄ in two cases when δ takes a low and

a high value. When firms are similar in financial distress (δ is low), all firms linking in a

single component is optimal and pairwise stable. As we lower z̄, the optimal network remains

unchanged and is also stable. Consequently, both ∆V and ∆ Prsys equal zero.

Results are different when firms are dispersed in financial distress (δ is high): a decrease

in z̄ affects the optimal and the equilibrium network differently. Figure 7 plots the value loss

(Panel A), systemic risk (Panel B), distress links (Panel C), and risk-sharing links (Panel D) as

functions of the reduction in z̄ in a five-firm network, starting from δ = 1 and z̄ = 0.5.31 As z̄

reduces, both value loss ∆V and excess systemic risk ∆ Prsys (the difference of the solid and the

dashed curves in Panel B) rise. Corresponding to where the inefficiency occurs, Panels C and D

31I consider a chain network 1− 2− 3− 4− 5 of which the optimal and equilibrium networks are analyzed in
Subsection 3.3 and in Figure 3. In particular, I set A = 4, c = 2, so that when δ = 1 and z̄ = 0.5, the average
liquidation cost amounts to 8% of total firm value.
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Figure 8. Increase in Dispersion. This figure shows the properties of the five-firm chain
network when we raise dispersion δ while adjusting z̄ so total firm values at L∗ remain constant.
I plot the values in the equilibrium network (solid) and the optimal network (dashed).

show that the equilibrium network has one extra distress link between 1 and 5, and one fewer

risk-sharing link between 1 and 2. This exercise has two implications. First, comparing the two

cases when δ takes a low and a high value, δ only matters to inefficiency when it is sufficiently

large. Second, the observed positive relation of inefficiency and δ is associated with changes in

the network composition.

In the second comparative statics, I study how the equilibrium network changes with disper-

sion. However, when firms form links optimally, increasing dispersion alone increases total firm

values, as the total liquidation costs decrease monotonically.32 For this reason, in the following

exercise, I increase δ while also adjusting z̄ such that the total firm values in the optimal network

remains constant. This allows me to conduct a “fair” comparison across states when identical

firm values can possibly be achieved. Figure 8 plots the inefficiency measures and linkages of the

32When all firms are linked in a single component, total liquidation costs equal NΦ
[√

N (−z̄)
]
c, independent

of δ. When the most distressed firm is optimally isolated, total liquidation costs, (N − 1) Φ
[√
N − 1

(
−z̄ − 1

2
δ
)]

+
Φ
[
−z̄ − 1−N

2
δ
]
, decrease monotonically with δ. With no linkages, however, liquidation costs increase monotoni-

cally with dispersion δ as more firms are distressed.
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same chain network as before. From Proposition 4, both measures of inefficiency (see in Panels

A and B) increase with dispersion. When δ is large enough, inefficiency becomes positive and

increases thereafter. Particularly, systemic risk at equilibrium increases with δ, except for the

drop when the 1-2 risk-sharing link severs, which reduces asset correlations.

These patterns are due to over-connection at high values of dispersion and wrong network

composition when dispersion gets even higher. This can be seen by comparing the number of

distress links and risk-sharing links in Panels C and D. The optimal network isolates firm 5

before it becomes distressed, so the only jump on the dashed curve in Panel C is when firm 4

falls into distress. In comparison, firms 4 and 5 are always connected at equilibrium (see the two

steps in the solid curve), which results in over-connection. Shown in Panel D, when δ is high,

the optimal network has one more risk-sharing link than the equilibrium network (dashed minus

solid curves). The severance of the 1-2 risk-sharing link implies wrong network composition,

which creates an extra channel for inefficiency.

To summarize, the above two comparative statics conclude that a decrease in z̄ when δ is

high, or an increase in δ (together with a decrease in z̄) is associated with: (1) higher value loss

and higher systemic risk, (2) more distress links, (3) fewer risk-sharing links. In both exercises,

the cross-sectional distribution of firm distress has high dispersion.

5 Policy Implications on the Acquisitions of Distressed Firms

In this section, I apply the model to the case where links with distressed firms are interpreted

as acquisitions. There are two reasons for this particular application. First, in the data, a

major example of the links with distressed firms is acquisitions. Acharya, Shin, and Yorulmazer

(2010) and Almeida, Campello, and Hackbarth (2011) provide evidence that liquid firms ac-

quire distressed firms for potential gains from asset sales or advantageous bargaining position.

Second, compared with OTC derivative contracts that are challenging to supervise, acquisitions

in the financial sector are subject to regulatory approval, which makes it relevant for policy

interventions.

Based on the model result, regulations that prevent the inefficient distress links can generate

social gains. I begin by proposing one such regulation using an acquisition tax to supervise

acquisitions. Then I study an extension of the model that allows for the analysis of optimal

government policies both before and after the linkage formation. Results indicate that the too-

connected-to-fail problem arises if the excess acquisition is not effectively prevented ex ante. In

this case, liquidating the distressed firm is too costly due to spillovers to its existing counter-

parties. Using the extended model, I discuss, respectively, the options of government bailout,

subsidized acquisition, and pushed acquisitions. I find that these are ex post optimal remedies,

thereby rationalizing the government interventions observed during the crisis.
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5.1 Acquisition Tax

Current authorities consider acquisition as the primary approach to resolve firm distress as it

incurs the least fiscal cost. However, my results imply that acquisitions of distressed firms should

rather be regulated accounting for the externalities in the financial linkage formation. If the

regulators are able to provide incentives by imposing taxes, then a tax formula that varies with

the distress distribution can induce the optimal level of acquisitions and restore the efficient

network. Next I formally characterize the tax rate.

Proposition 5 (Acquisition Tax) In an N-firm chain, the optimal network can be decentralized

by a tax τ imposed to firm 1 upon its acquisition of the distressed firm N ,

τ =

[
NΦ

[√
N (−z̄)

]
− (N − 2)Φ

(√
N − 1(−z̄ − 1

2
δ)

)
− Φ(−z1)− Φ(−zN )

]
c. (1.18)

where Φ(.) is the CDF of the standard normal distribution. Furthermore, τ > 0 ⇐⇒ L∗NN = 1.

τ satisfies ∂τ
∂δ > 0 and ∂τ

∂z̄ < 0.

Proposition 5 states that the acquisition tax is positive if and only if the most distressed

firm should be isolated in the optimal network. Moreover, the acquisition tax increases with

the average and dispersion of distress. The intuition is as follows. The acquisition tax equals

precisely the negative externalities to all other non-distressed firms i = 2, ..., N − 1. Hence, it

exactly aligns the individual motivation with the social incentive for acquisition. Accounting

for negative spillovers, the acquisition tax is a function of the cross sectional distribution of firm

distress in terms of {N, z̄, δ}. When dispersion is higher, the negative externalities are bigger;

hence, we require bigger incentive to correct for the externality. A similar argument holds for

the relation with the average distress. Note that the tax is only imposed conditional on the

excess acquisition. Therefore, no tax will be physically collected from the acquirers because the

inefficient acquisition is effectively prevented.

The model provides a sharp theoretical guidance on how to regulate acquisitions. In partic-

ular, the novel insight of considering firm distress distribution complements the current metrics

in regulatory decisions. The “financial stability” factor has been included for the first time

for processing firm acquisitions by the Dodd-Frank Wall Street Reform and Consumer Protec-

tion Act in Section 604(d). This section amended Section 3(c) of the Bank Holding Company

Act of 1956 and it requires the Fed to consider “the extent to which a proposed acquisition,

merger or consolidation would result in greater or more concentrated risks to the stability of the

United States banking or financial system.” In the orders on approving recent acquisitions, for

instance Capital One’s acquisition of ING Bank, the Fed illustrates the new financial stability

metrics in response to Dodd-Frank’s mandate, including size, substitutability, interconnected-

ness, complexity, and cross-border activity.33 The discussion regarding the interconnectedness

33www.federalreserve.gov/newsevents/press/orders/2012orders.htm
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factor, however, only covers the degree of interconnectedness of the resulting firm, rather than

considering the entire linkage structure and possible externalities through indirect linkages.

The key issue is how to implement such acquisition tax. From Equation (1.18), the regulators

need to account for the distribution of financial distress. One feasible approach detailed in

Section 6 is to estimate quarterly Z-scores of all financial firms. Among the limitations of this

measurement are the low frequency and the opacity of balance sheets. Using exclusive regulatory

data, the banking supervisors can potentially achieve better estimates by using observations with

higher frequency or alternative models such as CAMELS ratings.

Once the excess acquisitions are prevented, alternative resolution methods in case of failure

include liquidation or the Purchase and Assumption (P&A) transactions. The Federal Deposit

Insurance Corporation Improvement Act of 1991 mandates the FDIC to choose the resolution

method least costly to the Deposit Insurance Fund. To comply with this mandate, the FDIC

chose P&A transactions as the resolution method for a great majority of failing banks (about

95%).34 My results hence indicate that P&As are preferred to relying on private sector solutions

which give rise to network externalities and the potential build-up of systemic risk.

5.2 Ex post Policies

Several acquisition cases observed during the recent financial crisis render the baseline model

counterfactual, including the acquisitions of Bear Stearns, Merrill Lynch, and National City.

These cases differ from the baseline setting in several dimensions: links with the target institu-

tions were formed before the distress conditions were fully disclosed. Additionally, government

interventions such as bailout or pushed/subsidized acquisitions took place. For example, coun-

terparties did not immediately pull back from trading with Bear Stearns after the failure of its

two funds in 2007. When Bear Stearns suffered severe financial distress on March 2008, the

Fed provided assistance in the form of a non-recourse loan of $29 billion to JP Morgan to make

the acquisition. To rationalize the observed government interventions of such kind, I next con-

sider extensions of the baseline model, and the key deviation is that the timing of the network

formation does not coincide with the observation of distress.

Suppose the linkage cannot be severed once formed at t = 1 after ν is learned. Further,

assume that the liquid return ãi satisfies

ãi = νi + θi + σεi, i = 1, ..., N, (1.19)

where the additional term θi is realized after links are formed. Hence, νi and θi jointly determine

the amount of liquid value firm i expects to receive. Let θ be a vector with θi = 0, ∀i = 1, ..., N−1,

and θN = −kz̄σ.35 Further let z̄ ∈ [z̄2, z̄1] and δ > δ1(z̄) such that the distress firm N should

34For detailed institutional background on bank failures see White and Yorulmazer (2014), Granja, Matvos,
and Seru (2014), and the the Guidance for Developing Effective Deposit Insurance Systems from FDIC, at
http://www.fdic.gov/deposit/deposits/international/guidance/guidance/FailedResolution.pdf.

35In practice, distress signals are released gradually. The negative θN captures persistence in liquidity conditions.
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be isolated (Proposition 1). Nonetheless, in the absence of the acquisition tax, all firms are

connected at equilibrium (Proposition 2). Now, assume firm N receives a second bad liquidity

shock θN with k > N such that it drags down the average distress of all firms below zero. In

this case, the links do not generate positive risk-sharing surplus, thus total liquidation costs are

higher than without any links among firms.

Government Bailout

Next I analyze conditions when government bailout is ex post optimal and how total costs com-

pare to those under the ex ante optimal policies (imposing acquisition tax). For this purpose, let

us enable the option of government bailout in the form of costly liquidity injection. Specifically,

let Bσ denote the amount of government liquidity injection to the heavily distressed firm N .

Since all firms are connected and each has the same diversified asset holdings, they share the

same probability of liquidation Φ
[
− 1√

N
(Nz̄ − kz̄ +B)

]
. Here, the total costs incurred include

expenses both in liquidation and bailout.36

I find that positive government bailout is ex post optimal in an over-connected network as

long as the liquidation cost is not very small. The formal analysis is provided in Appendix A.5,

Proposition 7. When the liquidation cost satisfies c >
√

2πσ√
N

, a positive government bailout that

matches at least the total expected liquid value shortfall (B∗ > (k − N)z̄) is ex post optimal.

This lower bound of liquidation cost is smaller when the distressed firm has more counterparties

or when asset volatility is lower. Now, suppose the second shock θN to firm N is not sufficiently

bad, the lower bound of liquidation cost that justifies government bailout will be higher.37 In

other words, the worse shock the connected banking system gets, the more likely government

bailout is ex post optimal. This relation is consistent with the empirical observation that bailout

only occurs in rare occasions with severe distress.

Despite the fact that government bailout can be ex post optimal, it is likely to be more costly

than preventing the excess acquisition ex ante. I show that, as long as the bailout cost is not

sufficiently low, total costs from ex post government bailout is higher than regulating the links

ex ante using the acquisition tax (see Proposition 8 in Appendix A.5). This result captures one

critical aspect of inefficiency in the current policy making: the time-inconsistency problem.38

When a liquid firm observes the distress of some institution, it acquires the distressed target

while generating externalities. Precisely owing to the excess acquisition link, liquidation of the

distressed firm gets too costly. In consequence, government bailout becomes ex post optimal

and ex ante inefficient.

36The total costs incurred equal NΦ
[
− 1√

N
(Nz̄ − kz̄ +B)

]
+Bσ.

37Formally, if 0 ≤ k ≤ N in θN = −kz̄σ instead, the average distress 1√
N

(N − k)z̄ is then positive. And the

lower bound for liquidation cost is higher than the case of k > N , i.e. c ≥
√
2πσ√
N
e

(N−k)2z̄2

2N >
√
2πσ√
N

.
38For other discussions on the time-inconsistency issue, see Acharya and Yorulmazer (2007), Spatt (2009), Chari

and Kehoe (2013), and Gimber (2013).
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Government Subsidized Acquisition

Back to the Bear Stearns case, instead of injecting capital directly, the Fed provided assistance

to the acquirer JP Morgan in the form of a non-recourse loan.39 With a slight variation,

the extended framework can explain this behavior. I show that, when there exist healthier

institutions currently not connected with the distressed firm, government subsidized acquisition

can reduce total liquidation costs.

Consider another group of connected firms that are separate from the existing firms. Suppose

there are N firms i = N+1, ..., 2N with the same average z̄ > 0 and dispersion δ = 0, such that a

complete risk-sharing network optimally emerges.40 Let the additional signal θi be θN+1 = k̂z̄σ

and θi = 0, ∀i = N + 2, ..., 2N , so the (N + 1)th firm gets a positive shock in the liquid return.

The question I address next is whether firm N + 1 has the incentive to acquire the distressed

firm N after the realization of θ, and whether the ex post acquisition is socially optimal.

The answer to this question depends on how the liquidity surplus of firm N + 1 compares

with the liquidity shortage of firm N . In Corollary 1 of Appendix A.5, I show that the ex post

distressed acquisition is efficient and it occurs at equilibrium if and only if the average distress

is above zero (k̂ > k − 2N). However, if the adverse liquidity shock k is considerably large

(k ≥ k̂ + 2N), the acquisition has negative surplus, and firm N + 1 does not have incentive to

acquire. In this case, subsidized acquisition in the form of liquidity injection to the acquirer is

ex post optimal as long as the liquidation cost is not very small (c >
√
πσ√
N

). The intuition is that

risk-sharing among the two groups of firms reduces total liquidation costs only when the total

expected liquidity is positive. And both acquisition subsidy and government bailout can push

the average liquidity above zero. I find that the required optimal government subsidy is lower

when the positive liquidity shock of the potential acquirer (k̂) is higher. This result rationalizes

the observation that the subsidized acquirers during the financial crisis, for instance JP Morgan

and PNC (respectively acquirers of Stearns and National City), are relatively more liquid firms.

Comparing the two types of ex post policy remedies, the government subsidized acquisition

generates lower total costs than government bailout, thus is always preferred. This result holds

even when the acquisition alone is socially costly. Nonetheless, if the excess link with the

distressed firm was prevented in the first place, liquidation would not be as expensive; hence,

neither subsidized acquisition nor bailout would be necessary.

Government Pushed Acquisition

I have shown that when the two groups of firms have the same cardinality, the acquisition

link forms at equilibrium if and only if it generates value gains. However, this “if and only

if” condition does not hold when the cardinality of the two groups differs. Specifically, if the

39On March 14, 2008, the New York Fed agreed to provide a $25 billion collateralized loan to Bear Stearns for
up to 28 days, but later decided that the loan was unavailable to them.

40The results are robust to δ > 0. I leave the robustness on the number of firms in the two groups to the next
subsection.
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additional healthier group has fewer firms, the acquisition might not occur even if it is ex post

socially valuable, which motivates direct government interventions.

The relative cardinality of the two groups determines the sign of the bilateral surplus and

implies whether the ex post acquisition occurs at equilibrium or not. When the potential acquirer

in the second group has more counterparties, there are more firms to share the cost of the

acquisition than there are in the original distressed group to share the benefit. The bilateral

surplus from the acquisition is greater than the social surplus, hence the acquisition link forms

ex post whenever it is socially valuable. When the cardinality of the two groups are the same,

the sign of the bilateral surplus matches that of the social surplus, and we are back to the special

case in Section 5.2.

If instead the distressed firm N has more counterparties, the bilateral acquisition surplus

is smaller than the social surplus. Especially, the bilateral surplus can be negative even when

the social surplus is positive. Hence, the ex post socially valuable acquisition does not occur at

equilibrium. In such circumstances, government pushed acquisition is socially value improving.

For a detailed analysis see Proposition 9, Appendix A.5.

There are many ways in which a government intervention can take place. One approach is

by exerting pressure to the potential acquirers. Examples include the Fed pressuring Bank of

America to acquire the distressed Merrill Lynch.41 The regulators can also aim to correct the sign

of the bilateral surplus by subsidizing the acquirer using fund collected from the counterparties of

the distressed firm. Alternatively, the regulators can provide a coordination device for collective

decision making: let the potential acquirer and all the counterparties of the distressed firm

bargain over the payments. One such example is the initiation of collective bailout of LTCM by

the New York Fed in 1998.42

6 Empirical Evidence

In this section, I document evidence that the distribution of distress across financial institutions

provides a novel measure for systemic risk and aggregate failures in the financial sector. I

establish this result by first examining how the cross-sectional mean and dispersion of distress

correlate with indicators for aggregate systemic risk, liquidation costs, distress links through

acquisitions, and interbank risk-sharing. I then confirm the findings using predictive regressions.

41As discussed in Spatt (2010), “secretary of the Treasury Henry Paulson indicated to [Bank of America CEO]
Lewis that banking supervisors would question his suitability to lead Bank of America if BoA backed out of the
merger and then needed more federal support, while federal authorities agreed to provide ‘ring-fencing’ of difficult
to value Merrill Lynch assets if Bank of America went ahead with the merger.”

42On Sept 23 1998, the New York Fed arranged a meeting for a group of LCTM’s major creditors at one of its
conference rooms. During this historic meeting, the creditors worked out a restructuring deal that recapitalized
LTCM and avoided its bankruptcy.
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6.1 Measurement

The sample of financial institutions I consider includes bank holding companies and all Federal

Deposit Insurance Corporation (FDIC) insured commercial banks and savings institutions. The

quarterly accounting data of bank holding companies for the period of 1986-2013 are taken from

FR Y-9C filings provided by the Chicago Fed. The quarterly accounting data for commercial

banks (Call Reports) and savings institutions (Thrift Financial Reports) are taken from the

FDIC’s Statistics on Depository Institutions, available for 1976-2013. Next, I discuss the method

for estimating the distress measure Z-scores and identifying the acquisitions of distressed firms.

Z-score

The quarterly accounting data provide the basis for measuring financial distress and identifying

acquisitions of distressed institutions. I measure financial distress by estimating the Z-score,

which has been widely used in the recent literature (e.g. Stiroh (2004), Boyd and De Nicolo

(2005) and Laeven and Levine (2009)) as an indicator for a institution’s distance from insolvency

(Roy (1952)). The Z-score is defined as the return on assets plus the capital-asset ratio divided

by the standard deviation of return on assets. Simply put, it equals the number of standard

deviations that an institution’s return on assets has to drop below the expected value before

equity is depleted. For this reason, the Z-score provides a good proxy for financial distress,

which is denoted by the state variable zi in my model.

The Z-score combines accounting measures of profitability, leverage and volatility. In par-

ticular, it is estimated according to the formula

Z-scorei,t =
1
T

∑T−1
τ=0 ROAi,t−τ + 1

T

∑T−1
τ=0 CARi,t−τ

σtt−T+1(ROAi)
, (1.20)

where ROAi,t and CARi,t are respectively the return on assets (net income over total assets)

and capital asset ratio (total equity capital over total assets) for firm i in quarter t. In my

analysis, the Z-score is computed considering a rolling window of eight observations, i.e. T = 8.

The estimated Z-score is highly skewed; hence, I follow Laeven and Levine (2009) and Houston,

Lin, Lin, and Ma (2010) and adopt the natural logarithm of the Z-score as the distress measure.

The time series of the mean and dispersion of log Z-score are estimated by taking the average

and standard deviation across all financial firms in each quarter. Figure 9 plots the quarterly

series of dispersion, mean, and the 10-90 percentile range of log Z-score over the period of 1978-

2013. For the purpose of visualization, the series are normalized such that both the dispersion

and the mean are centered around one. The shaded bars indicate NBER recession dates.

From Figure 9, we can make the following observations. First, relative to the cross-sectional

mean, the dispersion of log Z-score displays a fair amount of variation and has an increasing

overall trend. Second, the dispersion series demonstrates a countercyclical pattern: it increases

during the Savings and Loan crisis, the Dot-com crash and the recession afterwards, as well as
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Figure 9. Log Z-score Moments across Financial Institutions. This figure plots the
quarterly time series of dispersion, mean, and the 10-90 percentile range of log Z-score across
all financial institutions over the period of 1978-2013. The series are normalized such that both
the dispersion and the mean are centered around one. Shaded bars indicate NBER recessions.

during the 2007-2009 financial crisis. Based on the comparative statics in Section 4.2, precisely

during the crises spell, network inefficiency is more pronounced, which potentially aggravates

the crises and increases systemic risk. Finally, the dispersion series appears to lead recessions.

Take the most recent crisis for instance, the dispersion starts to increase since 2005, and by

the time financial firms enter the crisis in the 3rd quarter of 2007, they already show significant

dispersion in financial distress. These features combined suggest that the time series of dispersion

can potentially signal economic changes and systemic risk, which I will test at the end of this

section.

While the Z-score provides a quantitative measure for distress, it is worth noting a few

limitations. First, the quarterly accounting data are an endogenous outcome of certain degrees

of risk diversification, thus are not exogenous to firms as assumed in my model. Nonetheless, the

Z-score gives the best available proxy for the distress shock in the static framework because it

is estimated using past data, which are taken as given by firms to make decisions onwards. The

Z-score indicates firm stability well also because, as shown by Acharya, Shin, and Yorulmazer

(2010), initially liquid firms tend to hoard liquidity or deleverage for potential gains from asset

sales, whereas risk management tools for an initially distressed firm are limited. Hence, the

ranks of the estimated Z-score across firms can reflect the ranks of initial distress. The second

limitation pertains to the estimation of Z-score using accounting data. It omits off-balance

sheet activities, and thus possibly gives a biased measure of firm risk. However, off-balance

sheet usages are only relevant for a few institutions, hence do not necessarily affect the entire

distribution.
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(b) Distressed vs. Total Acquisition Rate

Figure 10. Distressed Acquisitions Rate. This figure plots the quarterly (asset-weighted)
distressed acquisition rate for 1978-2013 (left) and compares the distressed acquisition rate to
the total acquisition rate (right). Shaded bars indicate NBER recessions.

Acquisitions of Distressed Firms

Based on the above measure, an acquisition of a distressed firm occurs when the target has a low

Z-score. This enables us to proxy for the acquisition links with the distressed firms in the model.

The acquisition transactions are taken from the Chicago Fed Mergers and Acquisitions dataset.

The dataset records all the acquisition transactions of banks and bank holding companies since

1976, keeping track of both the target and acquirer entities at the merger completion date.

I drop the observations that are failures or restructurings.43 I then match the dataset with

quarterly accounting data using RSSD ID of the target firm two quarters ahead.44 Around 86%

(17,930) of the observations are matched. Out of the matched sample, I identify a distressed

acquisition if the target firm reports a negative net income two quarters prior to the acquisition

completion date, or if the target firm has a log Z-score of below 2.35 (two standard deviations

below the sample mean) at least once, two to four quarters before the acquisition completes.

Using this strategy, around 20% (3,153) of the matched sample acquisitions are classified as

distressed acquisitions, whereas the rest mostly took place during the merger wave in the 2000s

after the Gramm-Leach-Bliley Act, which enabled mergers among investment banks, commercial

banks, and insurance companies. Among the identified distressed acquisitions, some notable

examples include Countrywide by Bank of America, Riggs and Sterling by PNC, and Wachovia

43Failures refer to transactions with Termination Reason Code = 5. Restructurings occur when the target
entities and the acquirer entities have exactly the same entity name but different Federal Reserve RSSD IDs.

44To match as many entities as possible, in this step, I include the FR Y-9LP and FR Y-9SP fillings for bank
holding companies. However, since these non-consolidated parent banks only report semiannually, I do not include
them when computing the Z-score distributions. I match the quarterly accounting dataset two quarters ahead
because the merger date in Chicago Fed M&A dataset represents the completion date and is usually later than
the last quarter when the non-survivor firm files quarterly report.
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Table 1. Distressed Acquisition Likelihood and Log Z-score

Pr(Completing an Acquisition of a Distressed Firm)

(1) (2) (3) (4) (5)

Log Z-score 0.153* 0.145* 0.142* 0.284** 0.317***

[0.070] [0.070] [0.067] [0.094] [0.094]

Firm Controls yes yes yes yes

Year Fixed-Effects yes yes

2006-2013 yes yes

Observations 57,035 57,035 57,035 14,490 14,490

Firm Fixed-Effects yes yes yes yes yes

Notes: This table reports the results from a fixed-effects logit regression. The sample includes commercial banks,
savings institutions and bank holding companies. The dependent variable Pr(Completing an Acquisition of a Dis-
tressed Firm) takes the value of one if institution i completes an acquisition of a distressed firm at time t+ 4, and
zero otherwise. Firm controls include quarterly CAR, ROA, and asset size. Regression coefficients are reported
with standard errors in the square bracket. *, **, *** denote statistical significance at the 5%, 1%, and 0.1% level.

by Wells Fargo.

Figure 1.10(a) plots the quarterly percentage of distressed acquisitions over total number

of financial institutions as well as the distressed acquisition rate weighted by the asset size of

the targets. From the plots, the distressed acquisition rates are countercyclical. Two periods

with clustered acquisitions are the Savings and Loan crisis and the 2007-2009 financial crisis.

The asset-weighted acquisition rate displays significant spikes (some spikes reach as high as 3%,

while the plots are trimmed at 2.5%).45 Panel 1.10(b) compares the distressed acquisition rate

to the total acquisition rate. The insignificant comovement between the two curves shows that

variations in distressed acquisitions are unlikely driven by merger waves.

Model Assumptions on Distressed Acquisitions

To confirm the assumption made in the model that more liquid firms acquire the distressed firms,

I match the quarterly firm-level data with the acquisition dataset using the acquirer entities and

acquisition completion dates, and perform fixed-effects logit regressions. The dependent variable

is a dummy indicating whether a firm conducts a distressed acquisition at a certain quarter. I

assume that an acquisition takes on average four quarters to complete, so it starts four quarters

prior to the merger completion date recorded in the Chicago Fed dataset. The independent

variable of interest is the firm’s estimated log Z-score. Results reported in Table 1 confirm that

a firm with higher log Z-score has a higher likelihood of acquiring a distressed firm. For a one-

standard-deviation increase in log Z-score (.58), the log odds ratio of a distressed acquisition

increases by 0.09 (=0.153 × 0.58). The economic and statistical significance of the coefficient

45The spikes include one in the 2nd quarter of 1992 due to the acquisition of Security Pacific, one in 2007-
2008 mostly due to the acquisitions of Lasalle bank (10/01/2007), Countrywide (01/11/2008), National City
(10/24/2008), and Wachovia (12/31/2008).
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(a) Log Z-score: Acquirer - Target
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(b) Log Asset Size: Acquirer-Target

Figure 11. Log Z-score and Asset Size: Acquirer - Target. This figure plots the
distribution of log Z-score and log asset size of the acquirer-target wedge for the identified 3,153
distressed acquisitions in 1983-2013. Shaded bars indicate NBER recessions.

is robust to including firm-level controls, year fixed effects, and only considering the post-2006

period.

Among the identified 3,153 distressed acquisitions, a clear pattern emerges among the acquirer-

target pairs: the acquirer has higher Z-score and bigger asset size relative to the target. The

results are depicted in Figure 11. The plots show the distributions of the acquirer-minus-target

log Z-score (Panel 1.11(a)) and log asset size (Panel 1.11(b)). Both distributions are significantly

above zero, implying that more stable firms acquire smaller and distressed targets.

In the theoretical analysis, a link with the distressed firm is modeled as a bilateral forward

swap contract, which increases the financial distress of the acquirer and thus negatively affects

its Z-score. To confirm this assumption, I perform fixed-effects regressions of growth rate in log

Z-score on target log Z-score, and the dummy variables representing acquisition and distressed

acquisition, controlling for firm-level characteristics. The regression results summarized in Table

2 show strong support for the model assumption. The estimates suggest that the effect of the log

Z-score of the targets on the growth rate of Z-score of the acquirers is positive and significant.

The economic magnitude of the effect is sizable: a one-standard-deviation decrease in target log

Z-score decreases future log Z-score of the acquirer by 0.16, more than four times the magnitude

of its average level. Results in columns (3) - (4) show that, while in general completing an

acquisition has a positive impact on the future Z-score of the acquirer, completing an acquisition

of a distressed target has a significantly negative impact on the future Z-score of the acquirer.

These findings are robust to controlling for recession periods, restricting to only top firms with

asset size larger than $1 billion, and including year-quarterly dummy.
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Table 2. Effect of Target log Z-score on Acquirers’ Future Z-score

log zi,t+1 − log zi,t

(1) (2) (3) (4) (5) (6) (7)

Target Log Z-score 0.248*** 0.310*** 0.326* 0.291** 0.250***

[0.060] [0.064] [0.130] [0.095] [0.060]

Acquisition Dummy 0.624*** 0.884***

[0.186] [0.206]

Distressed Acquisition -1.268** -1.373**

Dummy [0.447] [0.464]

Observations 1,326,071 1,326,071 1,326,071 1,326,071 435,635 98,737 1,326,071

Firm Controls Yes Yes Yes Yes Yes Yes Yes

Firm Fixed-Effects Yes Yes Yes Yes Yes Yes Yes

NBER Recessions Yes

Top Firms (A>$1B) Yes

Year-quarter Dummy Yes

Notes: This table reports the coefficients from a fixed-effects regression. The sample includes commercial banks,
savings institutions and bank holding companies. The dependent variable log zi,t+1 − log zi,t is the growth rate
of log Z-score for firm i at quarter t. The target log Z-score is the level of log Z-score of the target firm at the
acquisition completion date if firm i has an acquisition at quarter t. The dummy variables take 1 (and 0 other-
wise) if firm i has an acquisition or a distressed acquisition at quarter t. Firm controls include total assets, total
equity, net income, and current level log Z-score. Regression coefficients are reported with standard errors in the
square bracket. *, **, *** denote statistical significance at the 5%, 1%, and 0.1% level.

6.2 Model Predictions

As shown in the comparative statics in Section 4.2, an increase in dispersion (together with

a decrease in average Z-score) is associated with higher systemic risk, more liquidations, more

(excess) distress links through acquisitions, and fewer risk-sharing links. Next, I illustrate that

patterns in the data provide suggestive evidence for these model-predicted relations.

Aggregate Indicators

The goal is to provide aggregate level evidence that distress dispersion is indicative of economic

activity and financial stability. To measure macroeconomic activity, I use the Chicago Fed

National Activity Index (CFNAI),46 which is adopted in Giglio, Kelly, and Pruitt (2015) to

evaluate the predictive power of various systemic risk measures. As an indicator for systemic

risk, I take the Chicago Fed’s National Financial Conditions Index (NFCI).

Failures are aggregated from the FDIC Failure and Assistance Transaction Reports of all

commercial banks and savings institutions in 1976-2013. I append this sample using the failures

of bank holding companies, i.e. those in the Chicago Fed Mergers and Acquisitions dataset

46The CFNAI is designed to gauge overall economic activity and related inflationary pressure. It includes
the following subcomponents: production and income (P&I), sales, orders, and inventories (SO&I), employment,
unemployment, and hours (EU&H), and personal consumption and housing (C&H).
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Figure 12. Bank Failure Rates. This figure plots the quarterly failure rate and asset-
weighted failure rate of commercial banks and savings institutions for 1978-2013. Shaded bars
indicate NBER recession dates.

with Termination Code = 5 (failure). In total, I obtain 3,473 failures with an asset value of

1.84 trillion in 2010 dollars. I construct the quarterly failure rates (numbers of failures over

the numbers of total financial institutions) as well as the failure rates weighted by the failing

institution’s asset size. As depicted in Figure 12, failure rates are strongly countercyclical: the

majority of bank failures took place during the Savings and Loan crisis and the 2007-2009 crisis.

Regarding the linkage composition, the model predicts that non-distressed firms that do

not engage in distressed acquisitions withdraw from risk-sharing contracts as a consequence of

network externalities. Direct evidence on this prediction would be obtained if full information

on individual level linkage is available. Instead, I consider the lending and interbank lending

behavior of small to medium-sized commercial banks as proxies for risk-sharing contracts since

these institutions are more likely to be the non-distressed and non-acquirer firms in the model.

In particular, using data from the Fed’s H.8 release, I construct the fractions of bank credit and

Fed funds and reverse Repos with banks over total assets for small to medium-sized (beyond

top 25) commercial banks.

Univariate Correlations

Table 3 provides the summary statistics of the above series as well as their univariate correla-

tion coefficients with the mean and dispersion of financials’ log Z-scores. Both the mean and

dispersion series are rescaled such that the two series are centered around one. The distress

dispersion displays higher variation over time and does not significantly correlate with the mean

of distress, thereby confirming that dispersion provides new information not captured by the

mean.

Well aligned with the theoretical findings, dispersion series correlate negatively with the
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Table 3. Summary Statistics and Univariate Correlations

Mean StDev Sacf Correlations w/ log Z-score

Mean Dispersion

Mean of Log Z-score 1.00 0.03 0.90

Dispersion of Log Z-score 1.00 0.22 0.97 -0.13

A. Economic activity and systemic risk

Chicago Fed National Activity Index (CFNAI) -0.11 0.72 0.80 -0.03 -0.30**

National Financial Conditions Index (NFCI) -0.34 0.54 0.84 -0.25** 0.37***

B. Bank failures

Failure Rate (%) 0.18 0.25 0.72 -0.60*** 0.45***

Asset-weighted Failure Rate (%) 0.11 0.25 0.34 -0.38*** 0.17*

C. Distressed acquisitions

Distressed Acquisition Rate (%) 0.21 0.09 0.64 -0.41*** 0.60***

Distressed over Total Acquisition Rate 0.19 0.13 0.71 -0.44*** 0.68***

D. Lending and interbank lending

Small Comm. Bk Credit over Assets 0.88 0.02 0.94 -0.26** -0.73***

Small Comm. Bk Fed Funds Loan over Assets 0.02 0.01 0.85 -0.09 -0.53***

Notes: This table reports summary statistics for the quarterly cross-sectional mean and dispersion of log Z-score,
indicators for economic activity and systemic risk (A), bank failures (B), distressed acquisitions (C), and lending
and interbank lending (D). Group A series are from FRED. Series in groups B and C are aggregated based on
data from the FDIC and the Chicago Fed. Group D series are constructed from the Fed’s Z.1 and H.8 release.
Data availability on bank holding companies restricts the analysis to 1986-2013. Sacf is the first-order sample
autocorrelation coefficient. The last two columns report the correlation coefficients between cross-sectional mean
and dispersion of log Z-score and each series in groups A-D. *, **, *** denote statistical significance at the 5%,
1%, and 0.1% level.

economic activity index CFNAI and positively with the systemic risk index NFCI. In other words,

high dispersions relate to bad economic times and low financial stability. As the model predicts,

the failure rates and distressed acquisition rates are significantly higher when the dispersion

is higher or when the average Z-score is lower. Additionally, the distressed acquisitions as a

fraction of total acquisitions correlate even more significantly with the log Z-score moments,

ruling out the possibility that the variations in distressed acquisitions are due to changes in

total acquisition rates. These patterns all corroborate that high dispersion is associated with

more distressed acquisitions and consequently, more failures. Last but not least, indicators for

lending and interbank lending have negatively significant correlation with dispersion. Small and

medium-sized commercial banks reduce interbank lending and exposures with other banks in

the Fed Funds and Reverse Repos market, with significance at the 0.001 level. This finding

supports that certain risk-sharing contracts terminate as dispersion increases.
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Table 4. Predictive Regressions using Distress Dispersion

Quarters 1 2 3 4 1 2 3 4

Forecasting A. CFNAI NFCI

Dispersion -2.09*** -4.04*** -5.85*** -7.50*** 1.52** 2.77** 3.83** 4.72**

Mean 2.75 6.74 8.66 7.92 -8.95*** -17.80*** -25.73*** -32.32***

R2 44.85 52.03 54.05 52.48 53.22 53.40 52.24 50.56

R2 w/o disp 28.15 34.78 36.47 34.74 37.54 39.28 39.42 38.86

Forecasting B. Failure Rate(%) Asset-weighted Failure Rate(%)

Dispersion 0.53*** 1.03*** 1.56*** 2.07*** 0.24* 0.48* 0.77* 1.04*

Mean -3.81*** -7.91*** -12.21*** -17.12*** -2.68** -5.41** -7.92** -11.29**

R2 58.98 68.10 70.03 71.31 16.97 26.79 32.53 37.64

R2 w/o disp 50.16 58.46 59.91 60.99 11.07 18.68 22.29 26.14

Forecasting C. Acquisition Rate(%) Distressed over Total Acquisition Rate

Dispersion 0.16* 0.33* 0.50* 0.68* 0.29*** 0.63*** 1.00*** 1.34***

Mean -1.45** -2.66** -3.81** -4.43** -1.19* -2.16* -3.24** -3.90*

R2 47.31 57.25 64.90 67.04 53.90 63.06 72.20 75.26

R2 w/o disp 41.24 49.52 56.12 57.55 43.64 48.92 54.41 56.11

Forecasting D. Sml Bk Credit over Assets Sml Bk Fed Funds over Assets

Dispersion -0.04** -0.08** -0.12** -0.16** -0.01* -0.02* -0.03** -0.04***

Mean -0.02 -0.01 -0.01 -0.04 0.05 0.08 0.09 0.07

R2 69.85 70.68 71.18 71.44 57.07 63.49 64.71 63.93

R2 w/o disp 62.69 63.39 63.83 63.76 54.04 59.60 59.48 56.94

Notes: This table summarizes the ability of distress dispersion to forecast future economic activity, systemic risk,
failure rates, distressed acquisition rates, and bank lending behavior. Aggregate indicators in groups A-D are re-
gressed respectively on the cross-sectional dispersion and mean of log Z-score controlling for the term spread, the
leverage of financial business and security broker-dealers, and the growth rate of real non-financial corporate lia-
bility. Forecasting horizons range from one to four quarters and the data cover the years of 1986-2013. The table
reports the regression coefficients of the dispersion and mean of log Z-score, the R2, as well as the R2 when the
regressions are run without the dispersion series. *, **, *** denote statistical significance (based on Newey-West
standard errors) at the 5%, 1%, and 0.1% level.

Predictive Regressions

Evidence from the univariate correlations provides a strong indication that the distress dispersion

comoves with aggregate indicators. However, contemporaneous correlations do not necessarily

imply that the distress dispersion is able to forecast systemic risk. Hence, the next goal is to

evaluate whether the distress dispersion has predictive power of aggregate indicators by providing

additional information beyond what is contained in the average distress and existing systemic

risk measures.

To this end, I run forecasting regressions of the above introduced aggregate indicators on

the dispersion and mean of log Z-score controlling for moments including the term spread used
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in Giglio, Kelly, and Pruitt (2015), the leverage of both financial business and the security

broker-dealers as in Adrian, Etula, and Muir (2014), and the growth rate of non-financial cor-

porate liability as a measure of aggregate credit creation. The forecasting horizons range from

one to four quarters and the data cover the years 1986-2013. To overcome correlation and

autocorrelations in the time series, I calculate Newey-West standard errors.

Table 4 reports the coefficient estimates on the dispersion and mean of log Z-score, the values

of R2 when I run the regressions with and without the dispersion series. The regression results

echo those from the correlations and indicate striking predictive power of the dispersion series

to forecast economic activity and systemic risk, failures, distressed acquisitions, and interbank

lending. The predictive power is evidenced by both the economic significance of the regression

coefficients and the differences in the R2s with and without dispersion in the regressors. For

example, the estimates in the forecasting regression of CFNAI imply that (holding the mean

fixed) a one-standard-deviation increase in Dispersion (=0.22) relates to a 0.46 (= 0.22× 2.09)

decrease in CFNAI. Notably, the national activity index CFNAI, the credit and loans and the

interbank lending of small and medium-sized commercial banks all respond negatively to an

increase in distress dispersion, but not to changes in the mean of distress. Overall, these results

paint a clear picture: the second moment of the cross-sectional distress distribution conveys

new information about future activities in the financial sector in terms of systemic risk, failures,

acquisitions, as well as interbank lending behavior.

7 Conclusion

Given the importance of financial interconnectedness, policies on financial stability and distress

resolution should not analyze institutions in isolation. This paper has developed a network

formation model to highlight a novel channel of systemic risk due to externalities via financial

links.

Adding to the recent literature on financial network formation, this paper embeds firm

heterogeneity in financial distress and examines how the linkage formation affects efficiency and

systemic risk. I have shown that, when firms display high distress dispersion, the equilibrium

network features too many links with the distressed firms and too few risk-sharing links among

liquid firms. The reason is that the relatively more liquid firms have incentives to connect with

distressed firms for profit while shifting risks away to their direct and indirect counterparties

via the links. Particularly, these liquid firms fail to internalize the negative externalities when

prices in the bilateral contracts cannot be contingent on the overall network structure. The

inefficient link with the distressed firm not only generates risks of contagion but also crowd out

valuable risk-sharing links, thereby increasing systemic risk. Notably, this inefficiency is shown

to be more severe when institutions are more dispersed in financial distress.

While detailed data on the precise linkages among financial institutions are yet to be col-
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lected,47 this paper draws a relation between the degree of network inefficiency and the cross-

sectional distribution of fundamentals, thus contributing to the measurement and forecast of

systemic risk. The test can be extended along the lines of Giglio, Kelly, and Pruitt (2015) by

comparing the distress dispersion to existing systemic risk measures such as CoVaR (Brunner-

meier and Adrian (2011)) and Marginal and Systemic Expected Shortfall (Acharya, Pedersen,

Philippon, and Richardson (2010)). Additionally, my model predicts that links between firms

with different distress levels respond differently to an aggregate dispersion increase. With pos-

sibly better data access in the future, more work is needed to test these qualitative predictions.

My model provides new insights on policies for financial stability. The links with distressed

firms in the model can be interpreted as acquisitions of such firms. In this context, my results call

for regulations to eliminate the network inefficiencies associated with acquisitions of distressed

firms. The task of the regulators is to oversee the acquisitions of distressed firms, especially

those by highly interconnected acquirers when the distress dispersion is high across institutions.

Rather than relying on acquisitions as the preferred private sector solution, regulators should

instead adopt resolution methods such as purchase and assumption (P&A) for these distressed

targets in case of failure.

47For current challenges in measuring linkages and systemic risk, see for example Bisias, Flood, Lo, and Valavanis
(2012), Hansen (2013), and Yellen (2013).
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Appendix

A Technical Appendix

A.1 Notation Summary

General Notation:

• t: event dates, t = 0, 1, 2, 3.

• i: firm index, i ∈ {1, ..., N}.

• R: fixed return of asset.

• ãi: amount of liquid asset component.

• νi: expectation of ãi at t = 1.

• ν: the vector of νi.

• εi: idiosyncratic term in the liquid re-

turn, i.i.d. standard normal.

• σ: conditional volatility of liquid return.

• c: fixed liquidation cost.

• zi: the distress statistic of firm i.

• z: the vector of zi.

• z̄: average distance to liquidation.

• δ: distress dispersion across firms.

• lij : the fraction of firm j’s liquid asset

that firm i proposes to buy, lij ∈ {0, l̄}.

• l̄: fixed share of bilateral asset swaps.

• li: i’s strategy (li1, ..., li,i−1, li,i+1, ..., liN )

• pij : the unit price of firm j’s asset offered

by buyer firm i.

• pi: i’s strategy (pi1, ..., pi,i−1, pi,i+1, ..., piN ).

• pjj : reservation price of firm j.

• L: the matrix representing two-sided

links.

• Li: the i-th row of matrix L.

• h̃i: the final liquid asset holdings.

• Πi(z, L, p): firm payoff at date 3.

• Vi(z, L, p): firm value under network L

and price p at date 1.

Additional notation in Section 3:

• L∗: the optimal network.

• h̃∗: the optimal asset holdings under the

optimal network L∗.

• z̄1, z̄2: the cutoff values of z̄.

• δ1(z̄): the cutoff function of δ(z̄) where

the optimal network changes from a sin-

gle connected component to isolating the

distressed firm.

• δ2(z̄): the cutoff function of δ(z̄) where

the equilibrium network changes from

over connection to inefficient composi-

tion.

Additional notation in Section 4:

• ∆V : the value loss.

• ∆V%: the percentage value loss.

• PrLsys: the systemic risk in network L.

• ∆ Prsys: the excess systemic risk.

Additional notation in Section 5:

• τ : the acquisition tax.

• θi: part of the expected liquid return re-

alized after linkages are formed.

• k: a scalar indicating the negative shock

to the distressed firm N , θN = −kz̄σ.

• Bσ: government liquidity injection after

linkages are formed.

• B∗: the optimal government liquidity in-

jection policy.

• k̂: a scalar indicating the positive shock

to the potential acquirer firm N + 1,

θN+1 = k̂z̄σ.
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A.2 Optimal Risk Sharing Allocation

This section provides the technical results for subsection 3.1. I show that under the iterative

asset swap procedure, the asset holdings resulting from the optimal network L∗ is equivalent to

the allocations when the social planner is allowed to choose the asset allocations directly.

Definition 3 Let H be an asset holding matrix such that firms’ liquid asset holdings are h̃ = Hã.

The optimal asset allocation H∗ is feasible and minimizes total expected liquidation costs,

H∗ = arg min
H

N∑
i

E
[
h̃i < 1

]
c, (P2)

subject to

H× 1N×1 = H> × 1N×1 = 1N×1, (1.21)

where Equation (1.21) imposes the feasibility constraint for asset allocation. H being a doubly

stochastic matrix ensures that no assets are created or lost from asset pooling and that each

firm still holds one unit of assets. The following lemma states that if it is optimal for a firm to

have a diversified asset holding, then it is more likely to be a relatively liquid firm. Moreover,

its optimal asset holding is full risk-sharing, i.e. it holds the equally weighted asset composed

of assets of all firms that participate in risk-sharing.

Lemma 2 If @i with h̃∗i = ãi, then h̃∗i = 1
N

N∑
j=1

ãj ,∀i ≤ N . If ∃i with h̃∗i = ãi and h̃∗i−1 6= ãi−1,

then h̃∗j = ãj, ∀j ≥ i and h̃∗j = 1
i−1

i−1∑
k=1

ãk, ∀j ≤ i− 1.

Proof The optimal connection minimizes total expected liquidation costs (or equivalently de-

fault probabilities). Let the number of firms that participate in risk-sharing and have diversified

asset holdings h̃ = Hã be M . The total expected liquidation costs equal

M∑
i=1

Pr(h̃i ≤ 1)c =

M∑
i=1

Φ

−z̄ − (1−
∑

j Hij)νi −
∑

j Hijνj√
(1−

∑
j Hij)2 +

∑
j H

2
ijσ

 c. (1.22)

The first order condition with respect to Hij is

∂
∑M

i=1 Pr(h̃i ≤ 1)c

∂Hij
=
∂ Pr(h̃i ≤ 1)c

∂Hij
+
∂ Pr(h̃j ≤ 1)c

∂Hji
. (1.23)
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In particular, the derivative for firm i is

∂ Pr(h̃i ≤ 1)c

∂Hij
= Φ′

−z̄ −Hiiνi −
∑

j Hijνj√
H2
ii +

∑
j H

2
ijσ

 c×

(νi − νj)
√
H2
ii +

∑
j H

2
ijσ +

(
−z̄ −Hiiνi −

∑
j Hijνj

)
σ
(
H2
ii +

∑
j H

2
ij

)− 1

2

(Hii −Hij)

H2
iiσ

2 +
∑

j H
2
ijσ

2
.

Similarly, write out the symmetric equation for firm j with respect to Hji = Hij , and plug into

Equation (1.23) we obtain

∂
∑M

i=1 Pr(h̃i ≤ 1)c

∂Hij
|Hii=Hij= 1

M
= 0, ∀i 6= j.

This implies that the first order conditions with respect to asset holdings equal zero when each

element of H is evaluated at 1
M , thus achieving the optimal allocation. Hij = 1

M indicates full

risk-sharing. It is worth noting that the above result holds if we relabel Φ as a rather general

distribution function even through the above proof explicitly uses normal distribution Φ. The

only condition necessarily required is that εi is distributed independently across firms.

From Lemma 2, if no firm holds entirely idiosyncratic assets, then all firms share risks fully

by having the same holding equally weighted by the liquid assets of all firms. If there exist firms

who hold only their original assets, they must be the relatively distressed ones, while all other

more liquid firms pool liquid assets equally. As such, the optimal asset holdings boil down to

determining who should participate in risk-sharing and who should stay isolated.

Lemma 1 shows that the asset composition matrix H∗ implied by the optimal network L∗

also coincides with full risk-sharing among all connected firms. In this regard, under the iterative

asset swap process, the optimal network H∗ in (P1) achieves the best asset allocation matrix H∗

in (P2). Importantly, the iterative feature of the asset swap itself does not deviate equilibrium

from the optimal allocation.

A.3 Multiple Equilibria for N ≥ 5

In Section 3.3, when analyzing the inefficiency in risk-sharing loss, I have focused on one specific

equilibrium when firms start from the chain {1−2−3−4−5} before distress dispersion increases.

In fact, when N ≥ 5, different initial sequences in the stable risk-sharing chain at δ = 0 imply

different outside options and deviation incentives for each firm. As a result, we can have various

equilibrium networks. The four panels in Figure A.I illustrate different equilibrium connection

structures in the (z̄, δ) space. Importantly, across all potential equilibria, a general pattern

displays: equilibrium network switches from optimal connection to over-connection to over- and

under-connections simultaneously as δ increases.
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Figure A.I. Equilibria (N = 5). This figure shows the equilibrium five-firm network. The
horizontal and vertical axes represent the mean and dispersion of firm distress statistic z. The
four panels show different stable networks with different initial sequences along the chain. In
colored regions, firm 5 is isolated in the optimal network. Blue (lighter) region denotes over-
connection; orange (darkest) and yellow (lightest) regions denote inefficient network composition.

A.4 Full Contingent Contracts

This section provides the technical results for subsection 3.4. I use an example of N = 4 and

show that a complete set of contracts contingent on the entire network structure decentralizes

the efficient network.

Proposition 6 The efficient network is decentralized by bilateral contracts contin-

gent on the entire network structure.
For N = 4, the prices between 1 and 4 are (p41, p44) if 1 links with 2 and (p11, p44) otherwise;

prices between 1 and 2 are (p11, p12) if 1 links with 4 and (p21, p22) otherwise; prices between 2
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and 3 are (p33, p22) if 1 links with 4 and (p33, p32) otherwise, where

p41 = p11 + Φ(−z1)c+ Φ(−z4)c− 2 Pr
(
h̃4 < 1

)
c;

p12 = p22 + max

{
δ + 2 Pr

(
h̃4 < 1

)
c− 2 Pr

(
ã2 + ã3

2
< 1

)
c+ Φ(−z2)c− Φ(−z1)c, 0

}
;

p21 = p11 + δσ + 2 Pr

(
ã2 + ã3

2
< 1

)
c+ 2 Pr

(
ã1 + ã2 + ã3

3
< 1

)
c

− 6 Pr
(
h̃4 < 1

)
c+ Φ(−z1)c+ 2Φ(−z4)c− Φ(−z2)c;

p32 = p22 + δσ + 4 Pr

(
ã1 + ã2 + ã3

3
< 1

)
c− 6 Pr

(
h̃4 < 1

)
c+ 2Φ(−z4)c,

and h̃4 = ã1+ã2+ã3+ã4

4 . Under these conditional prices {p41, p12, p21, p32}, when z̄ ≥ z̄1 or when

z̄ ∈ [z̄2, z̄1] and δ < δ̄(z̄), all firms are connected in the equilibrium network; when z̄ ∈ [z̄2, z̄1]

and δ > δ̄(z̄), distressed firm 4 is isolated in the equilibrium network.

Proof The proof is equivalent to show that under the bilateral contracts {(p41, p14) , (p11, p44)},
{(p11, p12) , (p21, p22)}, and {(p33, p22) , (p33, p32)}, Le = {1− 2− 3, 4} ⇐⇒ L∗ = {1− 2− 3, 4},
and Le = {4− 1− 2− 3} ⇐⇒ L∗ = {4− 1− 2− 3}. Next I check that firms have no incentive

to deviate in the optimal network. In what follows, let V̂ L
i denote the value of firm i in network

L under reservation prices {pii}, and V L
i the value of firm i in network L under bilateral prices

{pji}.
If L∗ = {4− 1− 2− 3}, under bilateral prices, firm values are

V 4123
1 ((p41, p44) , (p11, p12)) =

∑
i=1,2,4

V̂ 4123
i − V̂ a

4 − V̂ 2−3
2 ;

V 4123
2 ((p41, p44) , (p11, p12)) = V̂ 2−3

2 ;

V 4123
3 ((p41, p44) , (p11, p12)) = V̂ 4123

3 ;

V 4123
4 (p41, p44) = V a

4 .

If L∗ = {1− 2− 3, 4}, under bilateral prices, firm values are

V 4,123
1 ((p11, p44) , (p21, p22)) =

∑
i=1,2,4

V̂ 4123
i − V̂ a

4 − V̂ 2−3
2 ;

V 4,123
2 ((p21, p22) , (p33, p32)) = V̂ 2−3

2 ;

V 4,123
3 (p33, p32) =

3∑
i=1

V̂ 123
i + V a

4 −
∑
i=1,2,4

V̂ 4123
i ;

V 4,123
4 = V a

4 .

When L∗ = {4− 1− 2− 3}, no firm would deviate, so {4−1−2−3} is an equilibrium. In fact,

by checking that all the other possible connection structures are not stable under these bilateral

prices, full risk-sharing is the unique, stable, efficient equilibrium. When L∗ = {1− 2− 3, 4},
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∑3
i=1 V

123
i + V a

4 −
∑

i=1,2,4 V
4123
i > V̂ 4123

3 . This implies that firm 3 is willing to pay for the

premium price p32. Similarly, by checking that all the other possible connection structures are

not stable under these bilateral prices, full risk-sharing is the unique,stable, efficient equilibrium.

Therefore, the above bilateral prices are able to decentralize the optimal network structures.

Next I show that under the price offering rules, these are the unique profit maximizing

prices to decentralize the optimal networks. If L∗ = {4− 1− 2− 3}, we have
∑4

i=1 V̂
4123
i ≥∑2

i=1 V̂
123,4
i + V a

4 . Under the outside prices, there is a large region in the {z̄, δ} space in which

2 is better off to withdraw to form a link with 3. If this is the case, V̂ 2−3
2 > V̂ 4123

2 , we require

that firm 1 pays a premium 1
2 (p12 − p22) = V̂ 2−3

2 − V̂ 4123
2 for L12 = 1

2 share of asset swap. Since

firm 1 is offering a take-it-or-leave it offer to firm 2, the profit maximization behavior of firm 1

implies that

p12 = p22 + max
{

2
(
V̂ 2−3

2 − V̂ 4123
2

)
, 0
}
.

The participation constraint for firm 4 implies that

1

2
(p41 − p11) ≤ V̂ 4123

4 − V a
4 . (1.24)

For the equilibrium not to have the 1 − 4 link, we require that neither 2 nor 3 be worse off

offering price premiums nor 1 is worse off accepting the prices. This means the sum of value of

1 and 2 and 3 is higher with 1− 4 link than without,

3∑
i=1

V̂ 123
i ≤

3∑
i=1

V̂ 4123
i +

1

2
(p41 − p11)

Combining with
∑4

i=1 V̂
4123
i ≥

∑2
i=1 V̂

123,4
i + V a

4 , we require that

1

2
(p41 − p11) ≥ V̂ 4123

4 − V̂ a
4 .

Combining with Equation (1.24), we obtain

1

2
(p41 − p11) = V̂ 4123

4 − V a
4 .

Therefore, the value of firm 1 under {4− 1− 2− 3} is

V 4123
1 ((p41, p44) , (p11, p12)) = V̂ 4123

1 + V̂ 4123
4 − V a

4 −
1

2
(p12 − p22) ≤

∑
i=1,2,4

V̂ 4123
i − V a

4 − V̂ 2−3
2 .

If instead L∗ = {1 − 2 − 3, 4},
∑2

i=1 V̂
123,4
i + V a

4 ≥
∑4

i=1 V̂
4123
i . It is sufficient to ensure

pairwise stability if the following conditions hold: (1) 1 severs link with 4, (2) 2 stays link with
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1, (3) 3 stays link with 2.

V̂ 123
1 +

1

2
(p21 − p11) ≥ V̂ 4123

1 + V̂ 4123
4 − V̂ a

4 −
1

2
(p12 − p22)

V̂ 123
2 − 1

2
(p21 − p11) +

1

2
(p32 − p23) ≥ V̂ 4123

2 +
1

2
(p12 − p22) ≥ V̂ 2−3

2

V̂ 123
3 − 1

2
(p32 − p23) ≥ V̂ 4123

3 ≥ V a
3

Since firm 2 is offering the price premium, the minimum possible p21 is

1

2
(p12 − p22) = V̂ 4123

1 +V̂ 4123
4 −V a

4 −
1

2
(p12 − p22)−V̂ 123

1 = V̂ 4123
1 +V̂ 4123

4 −V a
4 −V̂ 123

1 −V̂ 2−3
2 +V̂ 4123

2 .

Firm 3 needs to offer price premium p32 so that

V̂ 123
2 − 1

2
(p21 − p11) +

1

2
(p32 − p23) ≥ V̂ 4123

2 +
1

2
(p12 − p22) = V̂ 2−3

2 .

So the minimum possible p32 is

1

2
(p32 − p23) = V̂ 2−3

2 − V̂ 123
2 + V̂ 4123

1 + V̂ 4123
4 − V a

4 − V̂ 123
1 − V̂ 2−3

2 + V̂ 4123
2 .

Based on all the above analysis, the required profit-maximizing prices are uniquely given by

1

2
(p21 − p11) = V̂ 4123

1 + V̂ 4123
4 − V a

4 − V̂ 123
1 − V̂ 2−3

2 + V̂ 4123
2 ;

1

2
(p32 − p23) = V̂ 4123

1 + V̂ 4123
4 + V̂ 4123

2 − V̂ 123
2 − V̂ 123

1 − V a
4 ;

1

2
(p12 − p22) = max

{(
V̂ 2−3

2 − V̂ 4123
2

)
, 0
}

;

1

2
(p41 − p11) = V̂ 4123

4 − V a
4 .

Substituting the values, we recover the prices in Proposition 6.

A.5 Extension with Government Bailout

This section provides the technical results for Section 5.2. I consider slight variations of the

baseline model where the timing of the network formation does not coincide with the observation

of distress. Under the set up in Section 5.2, if the regulators had optimally isolated the distressed

N , the total liquidation cost is

Ciso-N = (N − 1) Φ

[√
N − 1

(
−z̄ − 1

2
δ

)]
c+ Φ

[
(k − 1) z̄ +

N − 1

2
δ

]
c. (1.25)

In the absence of the acquisition tax, all firms are connected and the liquidation costs are

C =

N∑
i=1

Pr
(
h̃i < 1

)
c = NΦ

[
k −N√

N
z̄

]
c. (1.26)
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When we enable the option of ex post government bailout as in 5.2, the costs equal liquidation

plus bailout costs,

CGB =

N∑
i=1

Pr
(
h̃i < 1

)
c+Bσ = NΦ

[
(k −N)z̄ −B√

N

]
c+Bσ. (1.27)

Notice that C = CGB (B = 0). The gain from government bailout is C −CGB. The next propo-

sition shows that as long as the fixed liquidation cost c is large enough, a positive government

bailout that at least matches the expected liquid value shortfall is ex post optimal.

Proposition 7 If c >
√

2πσ√
N
, k > N , the government bailout B∗σ generates positive surplus,

where

B∗ = (k −N)z̄ +
√
N

√
−2 log

[√
2πσ√
Nc

]
. (1.28)

Proof The optimal liquid value injection policy B∗ minimizes total costs CGB and thus satisfies

the first order condition ∂CGB
∂B = 0, i.e. NΦ′

[
(k−N)z̄−B√

N

]
c
(
− 1√

N

)
+ σ = 0. This gives

Φ′
[

(k −N) z̄ −B∗√
N

]
=

1√
2π
e
− 1

2

[
(k−N)z̄−B∗√

N

]2

=
σ√
Nc

. (1.29)

Solving for B∗ gives (1.28). Given e
− 1

2

[
(k−N)z̄−B∗√

N

]2

≤ 1, (1.29) implies σ√
Nc
≤ 1√

2π
. Hence

c ≥
√

2πσ√
N

, i.e. the liquidation cost needs to be large enough.

Further, in order that B∗ archives the global minimum of CGB(B), we take the second

derivative of B,

∂2CGB
∂B2

= Φ′′
[

(k −N) z̄ −B∗√
N

]
c ≥ 0, ∀ (k −N) z̄ −B∗ ≤ 0.

The second derivative is positive which ensures that B∗ archives the global minimum of CGB(B),

so the bailout surplus is positive, C−CGB = CGB(B = 0)−CGB(B = B∗) > 0. B∗ ≥ (k −N) z̄

requires that B∗ at least matches the expected liquid value short fall, B∗σ > (k −N) z̄σ. The

extra liquidity injection depends on the uncertainty and cost tradeoff.

From Equation (1.28), B∗σ at least matches the expected liquid value shortfall, B∗σ >

(k − N)z̄σ. c >
√

2πσ√
N

ensures that B∗ is non-zero. This requirement is easier to be satisfied

when there are more counterparties to the distressed, and when uncertainty is lower. The extra

liquidity injection,
√
N

√
−2 log

[√
2πσ√
Nc

]
, depends on the trade-off between cost and uncertainty.

∂B∗

∂c > 0 implies that the bigger the liquidation cost is, the higher the optimal government

bailout is; from ∂B∗

∂σ < 0, optimal government bailout decreases with asset uncertainty.

If instead 0 ≤ k ≤ N , the average distress after θ shock is positive. From Equation (1.28), a

positive government bailout requires that c ≥
√

2πσ√
N
e

(N−k)2z̄2

2N >
√

2πσ√
N

. Plugging Equation (1.28)
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into (1.27), the total costs under optimal bailout policy B∗ is

C∗GB = (k −N)z̄σ +NΦ

−
√
−2 log

[√
2πσ√
Nc

] c+
√
Nσ

√
−2 log

[√
2πσ√
Nc

]
. (1.30)

Although C∗GB improves upon C, it is important to compare C∗GB with the cost when the

acquisition link had been prevented ex ante.

Proposition 8 There exists c̄ >
√

2πσ√
N

, such that C∗GB > CisoN for c ∈ [
√

2πσ√
N
, c̄] and for all

δ ≥ 0, where c = σB∗

(N−1)Φ[−
√
N−1z̄]+Φ[(k−1)z̄]−NΦ[ (k−N)z̄−B∗√

N
]
, and B∗ is given by Equation (1.28).

Therefore, when liquidation cost is bounded by c̄, C∗GB is more costly than CisoN .

Next I consider the optimal policy when there are healthier institutions currently not con-

nected with the distressed. Denote the existing firms i = 1, ...N as group one. Now, con-

sider group two of N other firms i = N + 1, ..., 2N with the same liquid value structure,

z̄ > 0, σ > 0. For simplicity, let the dispersion δ among these firms be zero, so ex ante an

optimal full risk-sharing network is formed.Let the additional signal θi be θN+1 = k̂z̄σ and

θi = 0, ∀i = N + 2, ..., 2N , so ex post the N + 1th firm gets a positive shock in the liquid

value. The next corollary examines whether the ex post acquisition of heavily distressed N by

the liquid N + 1 can reduce total liquidation costs, and if not, whether subsidized acquisition is

value increasing.

Corollary 1 With no subsidy, the liquid firm N + 1 acquires the heavily distressed N if and

only if k̂ ≥ k − 2N . Government subsidized acquisition is ex post optimal if k̂ < k − 2N and

c >
√
πσ√
N

; the optimal subsidy to the acquirer firm N + 1 upon acquisition is B∗Aσ, where

B∗A =
(
k − k̂ − 2N

)
z̄ +
√

2N

√
−2 log

[√
πσ√
Nc

]
. (1.31)

When there exist healthier institutions, ex post subsidized acquisition is always preferred to ex

post government bailout.

When the cardinality of the two groups differs, pushed acquisition could be ex post optimal.

Denote N1 (instead of N) the number of the group one firms including the heavily distressed

θN1
= −kz̄σ. Consider N2 other firms (group two), with the same z̄ > 0, σ > 0, but δ = 0

for simplicity. Ex ante an optimal full risk-sharing network is formed among N2 firms. The

additional signal is θN1+1 = k̂z̄σ, θi = 0, ∀i = N1 + 2, ...N1 + N2. Hence firm i = N1 + 1 has

the highest liquid value ex post. Suppose after t = 1 when links in each group are formed and

prices are exchanged, the most liquid firm can acquire the heavily distressed.

Proposition 9 The social surplus of the acquisition is positive when the liquidity shocks satisfy

k̂ > max

[√
N1 +N2 −

√
N1√

N1 +N2 −
√
N2

(k −N1)−N2, k −N1 −N2

]
. (1.32)
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Under (1.32),

• when N2 ≥ N1 the bilateral surplus is positive;

• when N2 < N1 the bilateral surplus is negative when

2Φ

[
k − k̂ − (N1 +N2)√

N1 +N2

z̄

]
c > Φ

[
k −N1√

N1

z̄

]
c+ Φ

[
−k̂ −N2√

N2

z̄

]
c+

(N2 −N1)
(
N2k +N1k̂

)
N1N2 (N1 +N2)

z̄σ. (1.33)

As a sufficient condition for a positive social surplus, (1.32) sets a lower bound for the positive

liquidity shock k̂. The relative cardinality of the two groups of firms is essential in determining

the sign of the bilateral surplus. When N2 > N1, on average, the pair of i = {N1, N1 + 1}
gets bigger surplus than an average bank. When N1 = N2, we recover the case in subsection

5.2, so the sign of the bilateral surplus matches that of the social surplus. When N1 > N2,

under condition (1.33), bilateral surplus can be negative even if social surplus is positive. (1.33)

implies an upper bound for k̂, hence is especially relevant when the potential acquirer does not

have an abundant supply of liquidity.

B Proofs

B.1 Proof of Lemma 1

Before showing the properties of the asset composition matrix L∞, let us first check the features

of the initial asset swap matrix L.

Claim 1 The initial asset swap matrix L is a doubly stochastic matrix. Its largest eigenvalue

is 1, and all the other eigenvalues lie within the unit circle.

Proof By construction, L × 1N×1 = 1N×1. Thus L is a doubly stochastic matrix, λ = 1 is

its eigenvalue with eigenvector 1N×1. Suppose for contradiction that there exists an eigenvalue

λ > 1. Then there exists a non-zero vector x such that Lx = λx > x. However since the

rows of L are non-negative and sum to 1, each element of vector Lx is a convex combination of

the components of x. This implies that max[Lx] ≤ max[x], which contradicts with max[λx] >

max[x]. Hence all the eigenvalues cannot exceed 1 in absolute value.

More formally, we can resort to the properties of self-consistent norm. Let λ be the eigen-

values and x be the corresponding eigenvector. For any self-consistent matrix norm‖ ‖, we have

|λ|× ‖ x ‖=‖ λx ‖=‖ Lx ‖≤‖ L ‖‖ x ‖ .

Because x is non-zero, |λ|≤‖ L ‖= maxj (
∑

i Lij) = 1.
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Lastly, we need to show that λ = −1 is not an eigenvalue of L. It is equivalent to show that

the matrix L+ I is non-singular. This can be seen from

det(L+ I) = det



2−
∑

j 6=1 Lij L12 .. .. L1M

L21 2−
∑

j 6=2 Lij .. .. ..

.. .. .. .. ..

.. .. .. 2−
∑

j 6=M−1 Lij ..

LM1 .. .. .. 2−
∑

j 6=M Lij


All the off-diagonal elements are within 0 and 1. All the diagonal elements are within 1 and 2.

For any column or row, the largest element is on the diagonal. Hence there are no columns or

rows that are zero or linearly dependent. Therefore det(L + I) > 0, and λ = −1 cannot be an

eigenvalue of L.

Next we use the result from Claim 1 to show the limiting properties of H = L∞. Since L is

a symmetric matrix, all the eigenvalues {λ1, λ2, ..., λM} are real. And there exists an orthogonal

matrix Q with Q′ = Q−1 such that L∞ = QΛQ−1, where Λ = diag(λ1, λ2, ..., λM ). And the

columns of Q are eigenvectors of unit length corresponding to the eigenvalues λ1, λ2,..., λM .
Without loss of generality, we rank the eigenvalues λi ≥ λi+1 , then

L∞ = QΛQ−1...QΛQ−1 = QΛ∞Q−1 = Q


λ∞1 0 .. 0
0 λ∞2 .. ..
.. .. .. ..
0 .. .. λ∞M

Q−1 → Q


1 0 .. 0
0 0 .. ..
.. .. .. ..
0 .. .. 0

Q−1,
where the last step follows from λi < 1 and limλ∞i = 0, ∀i 6= 1. Let the first column of Q, which

is the unit length eigenvector corresponding to λ1 = 1 be x1, then


1−

∑
j 6=1Hij H12 .. .. H1M

H21 1−
∑

j 6=2Hij .. .. ..

.. .. .. .. ..

.. .. .. 1−
∑

j 6=M−1Hij ..

HM1 .. .. .. 1−
∑

j 6=M Hij




x11
x12
..
..
x1M

 =


x11
x12
..
..
x1M

 .

(1.34)

(
x11 x12 .. .. x1M

)


x11

x12

..

..

x1M


= 1. (1.35)
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Combining Equations (1.34) and (1.35), we can solve for the unit length eigenvectors as x11 =

x12 = .. = x1M = 1√
M

. In this case,

L∞ = Q


1 0 .. 0

0 0 .. ..

.. .. .. ..

0 .. .. 0

Q−1 =


x2

11 x11x12 .. x11x1M

x12x11 x2
12 .. ..

.. .. .. ..

x1Mx11 .. .. x2
1M

 =


1
M

1
M .. 1

M
1
M

1
M .. ..

.. .. .. ..
1
M .. .. 1

M

 .
Hence L∞ coincides with full risk-sharing regardless of the initial values of Lij in L.

Finally, since L is a doubly stochastic matrix, L×1N×1 = 1N×1, L>×1N×1 = 1N×1. Then

LN × 1N×1 = LN−1 × L × 1N×1 = LN−1 × 1N×1 = 1N×1. Similarly L>
N × 1N×1 = 1N×1, so

H = L∞ is also a doubly stochastic matrix. Q.E.D.

B.2 Proof of Proposition 1

Let us start by analyzing the risk-sharing decision of N = 2 in the following lemma.

Lemma 3 The risk-sharing surplus for N = 2 is positive if and only if z̄ ≥ 0; the risk-sharing

surplus increases monotonically with δ.

Proof The total liquidation cost for two separate firms with distress {z̄+1
2δ, z̄−

1
2δ} is Pr (ã1 ≤ 1) c+

Pr (ã2 ≤ 1) c = Φ
[
−z̄ − 1

2δ
]
c+Φ

[
−z̄ + 1

2δ
]
c. The total liquidation cost for the two firms to fully

share risk is Pr
(
h̃1 ≤ 1

)
c+ Pr

(
h̃2 ≤ 1

)
c = 2Φ

[
−
√

2z̄
]
c. The bilateral risk-sharing surplus is

given by

Pr (ã1 ≤ 1) c+ Pr (ã2 ≤ 1) c− 2 Pr
(
h̃1 ≤ 1

)
c = Φ

[
−z̄ − 1

2
δ

]
c+ Φ

[
−z̄ +

1

2
δ

]
c− 2Φ

[
−
√

2z̄
]
c.

Function Φ(x) is monotonically increasing for all x, and is convex for x < 0 (Φ′′ > 0,∀x <

0). Therefore Φ
[
−z̄ − 1

2δ
]
c + Φ

[
−z̄ + 1

2δ
]
c ≥ 2Φ [−z̄] c ≥ 2Φ

[
−
√

2z̄
]
c, i.e. the surplus is

positive whenever z̄ > 0, δ > 0. The first derivative with respect to δ is −1
2Φ′

[
−z̄ − 1

2δ
]
c +

1
2Φ′

[
−z̄ + 1

2δ
]
c = c

2

(
Φ′
[
−z̄ + 1

2δ
]
− Φ′

[
−z̄ − 1

2δ
])
> 0, for −z̄ + 1

2δ > −z̄ −
1
2δ, i.e. δ > 0. �

Next I show that δ matters for the optimal risk-sharing policy for N ≥ 3. The total default

probability in a full risk-sharing network with N firms is

N∑
i=1

Pr(h̃i ≤ 1) = N × Φ
[√

N(−z̄)
]
.

The total default probability when the best N − 1 firms fully share risk, isolating the most

distressed firm is

N−1∑
i=1

Pr(h̃i ≤ 1) + Pr(ãN ≤ 1) = (N − 1)× Φ

[√
N − 1(−z̄ − 1

2
δ)

]
+ Φ

[
−z̄ − 1−N

2
δ

]
.
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The difference between the above two terms is

N−1∑
i=1

Pr(h̃i ≤ 1) + Pr(ãN ≤ 1)−
N∑
i=1

Pr(h̃i ≤ 1) (1.36)

=(N − 1)× Φ

[√
N − 1(−z̄ − 1

2
δ)

]
+ Φ

[
−z̄ − 1−N

2
δ

]
−N × Φ

[√
N(−z̄)

]
. (1.37)

When δ →∞, the limit becomes

lim
δ→∞

N−1∑
i=1

Pr(h̃i ≤ 1) + Pr(ãN ≤ 1)−
N∑
i=1

Pr(h̃i ≤ 1) = 1−N × Φ
[√

N(−z̄)
]
.

Then as long as z̄ is large enough that Φ
[√

N(−z̄)
]
< 1

N , full risk-sharing dominates, i.e.

z̄1 = − 1
NΦ−1( 1

N ). If we consider an upper bound on δ in our analysis, say the upper bound is

δ ≤ 2, then equating Equation (1.36) to zero and plugging in δ = 2, z̄1 solves

(N − 1)Φ
[√

N − 1(−z̄)
]

+ Φ [N − z̄] = NΦ
[√

N(−z̄)
]
.

When the best N−2 firms fully share risk whereas the two most distressed firms are isolated,

we have that the total default probability becomes

N−2∑
i=1

Pr(h̃i ≤ 1) + Pr(ãN−1 ≤ 1) + Pr(ãN ≤ 1)

=(N − 2)Φ
[√

N − 2(−z̄ − δ)
]

+ Φ

[
−z̄ − 3−N

2
δ

]
+ Φ

[
−z̄ − 1−N

2
δ

]
.

The difference between isolating one or two distressed firms is

N−2∑
i=1

Pr(h̃i ≤ 1) + Pr(ãN−1 ≤ 1) + Pr(ãN ≤ 1)−
N−1∑
i=1

Pr(h̃i ≤ 1)− Pr(ãN ≤ 1)

=(N − 2)Φ
[√

N − 2(−z̄ − δ)
]

+ Φ

[
−z̄ − 3−N

2
δ

]
− (N − 1)× Φ

[√
N − 1(−z̄ − 1

2
δ)

]
.

When δ → ∞, the limit of the function is 1. When z̄ = 0, the RHS becomes (N −
2)Φ

[√
N − 2(−δ)

]
+Φ

[
N−3

2 δ
]
− (N −1)×Φ

[√
N − 1(−1

2δ)
]
< 0 for small values of δ and when

N > 4. The curve (N−2)Φ
[√
N − 2(−z̄ − δ)

]
+Φ

[
−z̄ − 3−N

2 δ
]

= (N−1)Φ
[√
N − 1(−z̄ − 1

2δ)
]

is concave with δ and convex with z̄. Denote z̄2 the maximum value of z̄ on this curve. Then for

z̄ > z̄2, isolating one distressed firm is preferred to isolating two firms. In this case, the cutoff

curve δ1(z̄) is defined by

(N − 1)× Φ

[√
N − 1(−z̄ − 1

2
δ1(z̄))

]
+ Φ

[
−z̄ − 1−N

2
δ1(z̄)

]
= N × Φ

[√
N(−z̄)

]
.
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From the implicit function theorem, the curve is well-defined, and

∂δ1(z̄)

∂z̄
= −

N
√
NΦ′

[√
N(−z̄)

]
− (N − 1)

√
N − 1Φ′

[√
N − 1(−z̄ − 1

2δ)
]
− Φ′

[
−z̄ − 1−N

2 δ
]

N−1
2

(
Φ′
[
−z̄ + N−1

2 δ
]
−
√
N − 1Φ′

[√
N − 1(−z̄ − 1

2δ)
]) > 0.

Q.E.D.

B.3 Proof of Proposition 2

The proof is equivalent to show that there do not exist bilateral prices (p21, p12), (p41, p14),

(p32, p23) that can decentralize the optimal network in the parameter region ({z̄ ∈ [1, z̄1], δ >

δ1(z̄)}). In other words, when L∗ = {4, 1− 2− 3}, there does not exist a feasible premium price

p21 offered by firm 2 that prevents firm 1 from linking with 4.

In what follows, let V̂ L
i denote the value of firm i in network L under reservation prices {pii},

and V L
i the value of firm i in network L under bilateral prices {pji}.

If L∗ = {4 − 1 − 2 − 3}, we have
∑4

i=1 V̂
4−1−2−3
i ≥

∑3
i=1 V̂

1−2−3
i + V a

4 . Under the outside

prices, there is a large region in the {z̄, δ} space in which 2 is better off to withdraw and form

risk-sharing pair with 3. If this is the case, V̂ 2−3
2 > V̂ 4−1−2−3

2 , we require that firm 1 pays

at least a premium 1
2 (p12 − p22) = V̂ 2−3

2 − V̂ 4−1−2−3
2 for L12 = 1

2 share of asset swap so that

V 4−1−2−3
2 (p12, p11) = V̂ 2−3

2 .

V 4−1−2−3
1 ((p41, p44) , (p22, p12)) = V̂ 4−1−2−3

1 +
1

2
(p41 − p11)− 1

2
(p12 − p22) ≥ V̂ 1−2−3

1 ; (1.38)

V 4−1−2−3
2 ((p22, p12) , (p32, p23)) = V̂ 4−1−2−3

2 +
1

2
(p12 − p22) +

1

2
(p32 − p23) ≥ V̂ 2−3

2 ; (1.39)

V 4−1−2−3
3 (p32, p23) = V̂ 4−1−2−3

3 − 1

2
(p32 − p23) ≥ V a

3 . (1.40)

V 4−1−2−3
4 (p41, p44) = V̂ 4−1−2−3

4 − 1

2
(p41 − p11) ≥ V a

4 . (1.41)

From (1.39), the minimum price offered by 1 is

1

2
(p12 − p22) = V̂ 2−3

2 − V̂ 4−1−2−3
2 − 1

2
(p32 − p23) . (1.42)

Let us pick the upper bound of prices 1
2 (p32 − p23) and 1

2 (p41 − p11) from the participation

constraints (1.40) and (1.41), the value firm 1 gets by linking with 4 is

V 4−1−2−3
1 ((p41, p44) , (p22, p12))

= V̂ 4−1−2−3
1 + V̂ 4−1−2−3

2 +
1

2
(p32 − p23) +

1

2
(p41 − p11)− V̂ 2−3

2

= V̂ 4−1−2−3
1 + V̂ 4−1−2−3

2 + V̂ 4−1−2−3
4 − V a

4 + V̂ 4−1−2−3
3 − V̂ a

3 − V̂ 2−3
2

>

4∑
i=1

V̂ 4−1−2−3
i − V a

4 − V̂ a
3 − V̂ 2−3

2 >

4∑
i=1

V̂ 4−1−2−3
i − V a

4 − V̂ 2−3
3 − V̂ 2−3

2

> V̂ 1−4
1 + V̂ 1−4

4 − V a
4 .
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This shows that paying the premium (1.42) to prevent 2 from withdrawing is always a dominating

strategy for firm 1. The value of 1 in L = {4− 1− 2− 3} is

V 4−1−2−3
1 ((p41, p44) , (p22, p12))

= V̂ 4−1−2−3
1 + V̂ 4−1−2−3

2 +
1

2
(p32 − p23) + V̂ 4−1−2−3

4 − V a
4 − V̂ 2−3

2 .

And equilibrium replicates the optimal connection Le = L∗ = {4− 1− 2− 3}.
If L∗ = {4, 1 − 2 − 3}, we have

∑3
i=1 V̂

1−2−3
i + V a

4 ≥
∑4

i=1 V̂
4−1−2−3
i . Under the outside

prices, for all the region, firm 1 wants to link with 4 and firm 2 wants to withdraw. We require

that firm 2 pays at least a premium 1
2 (p21 − p11) to prevent 1 from linking with 4.

V 4,1−2−3
1 (p11, p21) = V̂ 1−2−3

1 +
1

2
(p21 − p11) ≥ V 4−1−2−3

1 ((p41, p44) , (p22, p12)) ;

(1.43)

V 4,1−2−3
2 ((p11, p21) , (p32, p23)) = V̂ 1−2−3

2 − 1

2
(p21 − p11) +

1

2
(p32 − p23) ≥ V̂ 2−3

2 ; (1.44)

V 4,1−2−3
3 (p32, p23) = V̂ 1−2−3

3 − 1

2
(p32 − p23) ≥ V a

3 .

V 4,1−2−3
4 = V a

4 .

Notice that (p32, p23) is not contingent on the link of 1 − 4, thus it has the same value in

both structures. From (1.43), the minimum required incentive offered by firm 2 to 1 is

1

2
(p21 − p11) = V̂ 4−1−2−3

1 + V̂ 4−1−2−3
2 +

1

2
(p32 − p23) + V̂ 4−1−2−3

4 − V a
4 − V̂ 2−3

2 − V̂ 1−2−3
1 .

Plugging into (1.44), the value of firm 2 then becomes

V 4,1−2−3
2 ((p11, p21) , (p32, p23)) = V̂ 1−2−3

2 − 1

2
(p21 − p11) +

1

2
(p32 − p23)

= V̂ 2−3
2 + V̂ 1−2−3

2 + V̂ a
4 + V̂ 1−2−3

1 −
(
V̂ 4−1−2−3

1 + V̂ 4−1−2−3
2 + V̂ 4−1−2−3

4

)
︸ ︷︷ ︸.

total surplus of firms 1,2,4

where V̂ 1−2−3
2 + V a

4 + V̂ 1−2−3
1 −

(
V̂ 4−1−2−3

1 + V̂ 4−1−2−3
2 + V̂ 4−1−2−3

4

)
is the group surplus of

1,2,4 in {4, 1 − 2 − 3} compared to that in {4 − 1 − 2 − 3}. The surplus can be expressed as

−1
2δ − Φ

[
−z̄ + 3

2δ
]
− 2Φ

[
−
√

3z̄ −
√

3
2 δ
]

+ 3Φ [−2z̄]. When evaluated at δ = 0, the surplus is

−Φ [−z̄]− 2Φ
[
−
√

3z̄
]

+ 3Φ [−2z̄] < 0. Take the derivative of δ, it establishes that

√
3Φ′

[
−
√

3z̄ −
√

3

2
δ

]
− 3

2
Φ′
[
−z̄ +

3

2
δ

]
− 1

2
− 6Φ′ [−2z̄] < 0,∀δ > 0, z̄ > 0.

which follows from 3
2Φ′

[
−z̄ + 3

2δ
]

+ 1
2 + 6Φ′ [−2z̄] > Φ′(0) + Φ′ [−2z̄] > 2Φ′ [−z̄] >

√
3Φ′ [−z̄] >
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√
3Φ′

[
−
√

3z̄ −
√

3
2 δ
]
. Therefore

V̂ 1−2−3
2 + V̂ a

4 + V̂ 1−2−3
1 < V̂ 4−1−2−3

1 + V̂ 4−1−2−3
2 + V̂ 4−1−2−3

4 .

This further implies

V 4,1−2−3
2 ((p11, p21) , (p32, p23)) < V̂ 2−3

2 = V 4,1−2−3
2 ((p11, p21) , (p32, p23)) ,

Firm 2 is worse off providing the required premium price p21 than staying in the full connection

{4 − 1 − 2 − 3}. Therefore, the efficient network is not stable. In other words, the equilibrium

fails to replicate the optimal connection Le = {4−1−2−3} 6= L∗ = {4, 1−2−3}. This further

implies

V 4,1−2−3
2 ((p11, p21) , (p32, p23)) < V̂ 2−3

2 = V 4,1−2−3
2 ((p11, p21) , (p32, p23)) .

I next show that even if we relax the price offering rule, there still do not exist feasible

bilateral prices between 1 and 2 to effectively prevent the 4− 1 link. For L∗ = {4, 1− 2− 3} to

be stable, we require (1.38), (1.39), (1.43), and

V 4,1−2−3
2 ((p11, p21) , (p32, p23)) = V̂ 1−2−3

2 −1

2
(p21 − p11)+

1

2
(p32 − p23) ≥ V 4−1−2−3

2 ((p22, p12) , (p32, p23)) .

Combining all these conditions, we require

V̂ 1−2−3
2 + V̂ 1−2−3

1 ≥ V̂ 4−1−2−3
2 + V̂ 4−1−2−3

1 +
1

2
(p41 − p11) .

From (1.41), we require

V̂ 1−2−3
2 + V̂ 1−2−3

1 ≥ V̂ 4−1−2−3
2 + V̂ 4−1−2−3

1 + V̂ 4−1−2−3
4 − V a

4 . (1.45)

Consider the region around cutoff curve δ1(z̄), where
∑3

i=1 V̂
1−2−3
i + V a

4 = ε+
∑4

i=1 V̂
4−1−2−3
i .

The total values under L∗ is only slightly greater than that under L = {4− 1− 2− 3}, but the

value difference for firm 3 is big especially when dispersion δ is large,

V̂ 1−2−3
3 − V̂ 4−1−2−3

3 =
1

2
δ + Pr

(
h̃4 < 1

)
c− Pr

(
ã1 + ã2 + ã3

3
< 1

)
c > ε,

In this case, (1.45) does not hold: there does not exist bilateral price (p21, p12) to prevent the

formation of the 4− 1 link. Q.E.D.

B.4 Proof of Proposition 3

First consider the case withN = 5 firms. The distress vector is z = {z̄ + 2δ, z̄ + δ, z̄, z̄ − δ, z̄ − 2δ}.
I next show that the proposition holds in different equilibrium networks, {5 − 1 − 2 − 3 − 4},
{5− 1− 3− 2− 4}, {5− 1− 4− 3− 2}, {5− 1− 4− 2− 3}. In all these structures, I start from

the optimal full risk-sharing network and solve for the bilateral prices that decentralize the full
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risk-sharing network. Then I fix the contracts between 2, 3, 4 (because these contract should not

change with the link 1 − 5), and check whether agents can optimally decentralize the network

to isolate the distressed bank, and whether any agent deviates from full connection.

Case 1. I check the stability and efficiency of the chain {5 − 1 − 2 − 3 − 4}. Firm values

under outside prices are given by {V̂ 51234
1 , V̂ 51234

2 , V̂ 51234
3 , V̂ 51234

4 , V̂ 51234
5 }.

Notice that the bilateral prices between 2− 3− 4 are not contingent on L15, whereas those

between 1 and 2 (p12(L15)) is a function of L15. To decentralize the optimal full network, let

p43 − p34 = 1
2δσ, p32 − p23 = 1

2δσ, 1
2 (p12(L15)− p22) =

∑4
i=2 V̂

234
i − V a

3 − V a
4 − V̂ 51234

2 , so that

V 51234
2 =

∑4
i=2 V̂

234
i − V a

3 − V a
4 (outside option of 2 in {4 − 2 − 3}). As a result, V 51432

1 =

V̂ 51432
1 + V̂ 51432

5 −V a
5 + V̂ 51432

2 −
∑4

i=2 V̂
234
i +V a

3 +V a
4 ; V 51234

3 = V̂ 51234
3 , V 51234

4 = V̂ 51234
4 − 1

2δσ.

I then check that it is not feasible for 2 to offer incentive to 1 not to link with 5, i.e.

L∗ = {5, 1− 2− 3− 4} cannot be decentralized.

Next I check if the full-connection is pairwise stable. Since both 2 and 5 are offered by the

contingent contracts exactly their respective outside options, we only need to check the deviation

incentives for firm 1, 3, 4. Results show that (1) neither 3 or 4 deviates; (2) there is a region

in which 1 is better off severing the linkage with 2 so Le = {5 − 1, 3 − 2 − 4}; (3) for the rest

regions, full connection is stable so Le = {5− 1− 2− 3− 4}.

Case 2. I check the stability of {5− 1− 3− 2− 4} using the same logic. Firm values under

outside prices are given by {V̂ 51324
1 , V̂ 51324

2 , V̂ 51324
3 , V̂ 51324

4 , V̂ 51324
5 }.

Let the bilateral prices be p23 − p32 = 1
2δσ, 1

2

(
p1

3(L15)− p33

)
= V̂ a

3 − V̂ 51324
3 − 1

2δσ, so that

V 51324
3 = V a

3 (outside option of 3 in {4− 2− 3}). So V 51324
1 = V̂ 51324

1 + V̂ 51324
5 − V a

5 + V̂ 51324
3 −

V a
3 + 1

2δσ, V 51324
2 = V̂ 51324

2 − 1
2δσ, V 51324

3 = V a
3 , V 51324

4 = V̂ 51324
4 , V 51324

5 = V a
5 .

In this case, it is not feasible for 3 to offer incentive to 1 not to link with 5, i.e. L∗ =

{5, 1− 3− 2− 4} cannot be decentralized.

I then check if full-connection (all banks connected in one component) is stable. After

computing the deviation incentives of 1, 2, 4, results show that (1) neither banks 2 or 4 deviates;

(2) there is a region in which 1 is better off severing the linkage with 3 and so Le = {5−1, 3−2−4};
(3) for the rest regions, full connection is stable so Le = {5− 1− 3− 2− 4}.

Case 3. I check the stability of {5− 1− 4− 3− 2} using the same logic. Firm values under

outside prices are given by {V̂ 51432
1 , V̂ 51432

2 , V̂ 51432
3 , V̂ 51432

4 , V̂ 51432
5 }.

In order to decentralize the full risk-sharing network, we require that the bilateral prices

between 1 and 4 be contingent on L15 to prevent 4 from withdrawing, and that the bilateral

prices between 4 and 3, 3 and 2 be independent of L15 link.

Let p43 − p34 = 1
2δσ, p32 − p23 = 1

2δσ, and 1
2 (p14(L15)− p44) = V a

4 − V̂ 51432
4 + 1

2δσ, so that

V 51432
4 = V a

4 (outside option of 4 in {4− 2− 3}). So V 51432
1 = V̂ 51432

1 + V̂ 51432
5 − V a

5 + V̂ 51432
4 −

1
2δσ − V

a
4 , V 51432

2 = V̂ 51432
2 + 1

2δσ, V 51432
3 = V̂ 51432

3 , V 51432
4 = V a

4 , V 51432
5 = V a

5 . Similarly, it is
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not feasible for 4 to offer incentive to 1 not to link with 5, i.e. L∗ = {5, 1 − 4 − 2 − 3} cannot

be decentralized.

Next check whether the full-connection is pairwise stable by computing the deviation incen-

tives for 1, 2, 3. It turns out that for a large region, V 51432
2 < V a

2 and firm 2 withdraws from

the end of the chain. Given that 2 withdraws, we need to check if {5− 1− 4− 3} is stable, we

compare V 5−1−4−3
1 = V̂ 5−1−4

1 + V̂ 5−1−4
4 + V̂ 5−1−4

5 − V a
5 − V a

4 with V̂ 1−5
1 . If V 5−1−4−3

1 > V̂ 1−5
1 ,

Le = {5− 1− 4− 3, 2}; otherwise Le = {5− 1, 4− 2− 3}, which has wrong network composition

compared to L∗.

Case 4. We move to check the stability of {5 − 1 − 4 − 2 − 3}. Firm values under outside

prices are given by {V̂ 51423
1 , V̂ 51423

2 , V̂ 51423
3 , V̂ 51423

4 , V̂ 51423
5 }.

Let p23 − p32 = 1
2δσ, and 1

2 (p14(L15)− p44) = V a
4 − V 51432

4 , so that V 51432
4 = V a

4 (outside

option of 4 in {4−2−3}). So V 51432
1 = V̂ 51432

1 +V̂ 51432
5 −V a

5 +V̂ 51432
4 −V a

4 , V 51432
2 = V̂ 51432

2 − 1
2δσ,

V 51432
3 = V̂ 51432

3 + 1
2δσ, V 51432

4 = V a
4 , V 51432

5 = V a
5 .

Compared to the previous case, now firm 3 is at the end of the chain. In most of the regions,

3 withdraws when V̂ 51432
3 − V a

3 < 0. Given this, the outside option of 2 is to form a pair with 3,

i.e. V outside
2 = 1 + z̄+ δσ−Pr

(
ã2+ã3

2 < 1
)
− Φ(−z2)−Φ(−z3)

2 . So we then check whether 2 deviates

by comparing V̂ 5142
2 and V outside

2 . If 2 does not withdraw, Le = {5 − 1 − 4 − 2, 3}. When 2

withdraws, {5−1−4} is not stable, and the equilibrium network becomes Le = {5−1, 4−2−3}.
Q.E.D.

B.5 Proof of Proposition 4

I prove this proposition in a four-firm network setting. The inefficiency occurs in the region

(z̄ ∈ [1, z̄1], δ > δ1(z̄)), where L∗ = {4, 1− 2− 3} and Le = {4− 1− 2− 3}. The value loss equals

the difference of the total firm values at L∗ compared to Le,

V loss =

3∑
i=1

V 1−2−3
i + V a

4 −
4∑
i=1

V 4−1−2−3
i

= 4z̄ − 3 Pr

(
ã1 + ã2 + ã3

3
< 1

)
c− Φ(−z4)−

(
4z̄ − 4 Pr

(
h̃4 < 1

)
c
)

= 4× Φ [2(−z̄)]− 3Φ

[√
3(−z̄ − 1

2
δ)

]
− Φ

[
−z̄ +

3

2
δ

]
.

The value loss has the following properties. First, from Proposition 2, V loss > 0, z̄ ∈
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Figure A.II. Percentage Value Loss. This figure plots the percentage value loss against z̄
and δ for the equilibrium four-firm chain network.

[1, z̄1], δ > δ1(z̄). Second,

∂V loss

∂δ
=

3
√

3

2
Φ′
[√

3(−z̄ − 1

2
δ)

]
− 3

2
Φ′
[
−z̄ +

3

2
δ

]
=

3
√

3

2

1√
2π
e−

3

2
(−z̄− 1

2
δ)2 − 3

2

1√
2π
e−

1

2
(−z̄+ 3

2
δ)2

=
3

2

1√
2π

(√
3e−

3

2
(−z̄− 1

2
δ)2 − e−

1

2
(−z̄+ 3

2
δ)2
)
> 0, z̄ ∈ [0, z̄1], δ > δ1(z̄).

So V loss increases with δ. Third, the value loss also decreases with average financial distress z̄,

∂V loss

∂z̄
= −8Φ′ [2(−z̄)] + 3

√
3Φ′

[√
3(−z̄ − 1

2
δ)

]
+ Φ′

[
−z̄ +

3

2
δ

]
< 0.

Finally, the cross-derivative of value loss with respect z̄ and δ is negative

∂2V loss

∂δ∂z̄
=

3

2
Φ′′
[
−z̄ +

3

2
δ

]
− 9

2
Φ′′
[√

3(−z̄ − 1

2
δ)

]
< 0,

which means that the value loss increases faster with δ when z̄ is lower.

Figure A.II illustrates these patterns for N = 4. The left panel plots the percentage value

loss against z̄ when evaluating δ = 1. For δ > 0, the value loss is positive until z̄ is large enough.

The right panel plots the value loss as a function of the dispersion parameter δ for z̄ = 0.2 and

z̄ = 0.3. It shows that value loss increases with δ, and the slope is steeper when z̄ is smaller.

The negative cross-derivative implies that the impact of heterogeneity in network inefficiency is

more pronounced during episodes of banking distress. Q.E.D.

B.6 Proof of Proposition 5

I show that the acquisition tax τ aligns the social incentive for acquisition with that of firm 1. τ

equals precisely the negative externality imposed by the acquisition behavior of acquiring firm
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1 to all the other non-distressed banks, i = 2, ...N − 1. Under the required tax payment τ , the

value of 1 upon acquisition is

V1(τ) = V̂ 12..N
1 − τ =

N∑
i=1

V̂ 12..N
i −

N−1∑
i=2

V̂ 12..N−1
i − V a

N .

Bank 1 chooses to acquire if and only if V1(τ) is larger than the value of not acquiring, i.e.,

V1(τ) ≥ V 12..N−1
1 .

Plugging in τ , this condition is equivalent to

N∑
i=1

V̂ 12..N
i −

N−1∑
i=2

V̂ 12..N−1
i − V a

N ≥ V̂ 12..N−1
1 ,

which equals the social surplus function of acquisition. Therefore, V1(τ) ≥ V 12..N−1
1 ⇐⇒∑N

i=1 V̂
12..N
i ≥

∑N−1
i=2 V̂ 12..N−1

1 + V a
N ⇐⇒ N is linked into the network.

Plugging in the following values

N−1∑
i=2

V̂ 12..N−1
i = (N − 2)(1 + z̄)− (N − 2)Φ

[√
N − 1(−z̄ − 1

2
δ)

]
c;

N∑
i=2

V̂ 12..N
i = N(1 + z̄)−NΦ

[√
N(−z̄)

]
c−

(
1 + z̄ +

N − 1

2
δσ − Φ

[
−z̄ − N − 1

2
δσ

]
c

)
;

V a
N = 1 + z̄ +

1−N
2

δσ − Φ

[
−z̄ − 1−N

2
δ

]
c,

we get that τ is a function of {N, z̄, δ}.

τA1 =

(
NΦ

[√
N(−z̄)

]
− (N − 2)Φ

[√
N − 1(−z̄ − 1

2
δ)

]
− Φ(−z1)− pN

)
c.

Whenever the most distressed firm should be optimally isolated, we have

N−1∑
i=1

V̂ 12..N−1
i + V a

N −
N∑
i=1

V̂ 12..N
i > 0. (1.46)

Combining the optimal condition (1.46) and the acquisition incentive of firm 1, i.e. V̂ 12..N
1 −

V̂ 12..N−1
1 > 0.

τ =

N−1∑
i=2

V̂ 12..N−1
i + V a

N −
N∑
i=2

V̂ 12..N
i

=

N−1∑
i=1

V̂ 12..N−1
i + V a

N −
N∑
i=1

V̂ 12..N
i +

(
V 12..N

1 − V 12..N−1
1

)
> 0.
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τ =NΦ
[√

N(−z̄)
]
c− (N − 2)Φ

[√
N − 1(−z̄ − 1

2
δ)

]
c− Φ

[
−z̄ − 1−N

2
δ

]
c

− Φ

[
−z̄ − N − 1

2
δ

]
c.

Further, τ increases with dispersion δ, decreases with mean z̄. To see this, we take the

derivatives of z̄, δ, and the cross-derivative of z̄ and δ.

∂τA1
∂z̄

=
√
N − 1(N − 2)Φ′

[√
N − 1(−z̄ − 1

2
δ)

]
c

+Φ′
[
−z̄ − 1−N

2
δ

]
c+ Φ′

[
−z̄ − N − 1

2
δ

]
c−N

√
NΦ′

[√
N(−z̄)

]
c < 0,

∂τA1
∂δ

=
1

2

√
N − 1(N − 2)Φ′

[√
N − 1(−z̄ − 1

2
δ)

]
c

+
N − 1

2

(
Φ′
[
−z̄ − N − 1

2
δ

]
− Φ′

[
−z̄ − 1−N

2
δ

])
c > 0.

And ∂2τA1
∂δ∂z̄ < 0. Q.E.D.

B.7 Proof of Proposition 8

In this proof, I first show that CisoN decreases monotonically with δ, hence it achieves the

maximum at CisoN (δ = 0). Then I show that C∗GB is a concave function: C∗GB > CisoN (δ = 0)

at the minimum value for cost c =
√

2πσ√
N

, C∗GB crosses the linear function CisoN (δ = 0) at c̄.

Accordingly, C∗GB is greater than in the region c ∈ [
√

2πσ√
N
, c̄).

Step 1: ∂CisoN
∂δ < 0, so CisoN decreases with δ. Take the derivative of CisoN with respect

to δ,

∂CisoN
∂δ

=
(N − 1) c

2

(
Φ′
[
(k − 1) z̄ +

N − 1

2
δ

]
−
√
N − 1Φ′

[√
N − 1

(
−z̄ − 1

2
δ

)])
. (1.47)

Notice that (k − 1) z̄+ N−1
2 δ > 0,

√
N − 1

(
−z̄ − 1

2δ
)
< 0, and we can also show that (k − 1) z̄+

N−1
2 δ > −

√
N − 1

(
−z̄ − 1

2δ
)
.48 Accordingly, Φ′(x) = 1√

2π
e−

x2

2 implies that

Φ′
[
(k − 1) z̄ +

N − 1

2
δ

]
< Φ′

[√
N − 1

(
−z̄ − 1

2
δ

)]
<
√
N − 1Φ′

[√
N − 1

(
−z̄ − 1

2
δ

)]
Plugging into Equation (1.47), we have ∂CisoN

∂δ < 0. Evaluate CisoN at δ = 0, we obtain a linear

function of c,

CisoN (δ = 0) = (N − 1)Φ
[
−
√
N − 1z̄

]
c+ Φ [(k − 1) z̄] c.

Step 2: C∗GB is a concave function.

48We take the difference of the squares,
(
(k − 1) z̄ + N−1

2
δ
)2−(√N − 1

(
−z̄ − 1

2
δ
))2

= (k − 1)2 z̄2+ (N−1)2

4
δ2+

(k − 1) (N − 1) z̄δ−(N − 1) z̄2− (N−1)
4

δ2−(N − 1) z̄δ > (N − 1) (N − 2) z̄2+ (N−1)(N−2)
4

δ2+(N − 2) (N − 1) z̄δ =

(N − 2) (N − 1)
(
−z̄ − 1

2
δ
)2
> 0.
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Denote J =

√
−2 log

[√
2πσ√
Nc

]
> 0, then ∂J

∂c = 1
Jc , and from (1.29), Φ′(−J) = σ√

Nc
. Now sub

the expression of J into Equation (1.30), we have

C∗GB = NΦ [−J ] c+ (k −N)z̄σ +
√
NσJ.

Take the first derivative of c,

∂C∗GB
∂c

= NΦ [−J ] +

√
Nσ

Jc
− NΦ′ [−J ]

J
= NΦ [−J ] = NΦ

−
√
−2 log

[√
2πσ√
Nc

] .
Therefore, ∂C∗GB

∂c > 0. Since ∂J
∂c = 1

Jc > 0, ∂C∗GB
∂c decreases with c, i.e. ∂2C∗GB

∂c2 < 0.

Step 3: Establish C∗GB

(
c =

√
2πσ√
N

)
> CisoN

(
δ = 0, c =

√
2πσ√
N

)
.

Plugging in c =
√

2πσ√
N

,

C∗GB

(
c =

√
2πσ√
N

)
=

√
2πσ

2

√
N + (k −N)z̄σ,

CisoN

(
δ = 0, c =

√
2πσ√
N

)
= (N − 1)Φ

[
−
√
N − 1z̄

] √2πσ√
N

+ Φ [(k − 1) z̄]

√
2πσ√
N

.

Since k > N , Φ < 1,

CisoN

(
δ = 0, c =

√
2πσ√
N

)
< N

√
2πσ√
N

=

√
2πσ

2

√
N < C∗GB

(
c =

√
2πσ√
N

)
.

Step 4: Solve for cross point c̄.

Equating C∗GB = CisoN (δ = 0) and solve for c gives c̄.

Finally, with the results from Steps 1 - 4, we establish that C∗GB > CisoN , ∀c ∈ [
√

2πσ
2 , c̄].

Q.E.D.

B.8 Proof of Corollary 1

In this proof, I first analyze conditions for the acquisition link to be ex post optimal. Then I

examine whether the acquisition link forms at equilibrium, and then move to conditions for the

positive subsidy to be optimal. Finally, I conclude that subsidized acquisition is cheaper than

government bailout.

Step 1: condition for the acquisition link to be ex post optimal. Without acquisition

link, total liquidation costs of group one and group two are respectively

Cg1 = NΦ

[
−N + k√

N
z̄

]
c, Cg2 = NΦ

[
−N − k̂√

N
z̄

]
c. (1.48)
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With the acquisition link, the total liquidation costs of the two groups become

Ctotal =

2N∑
i=1

Pr
(
h̃i < 1

)
c = 2NΦ

[
−2N − k̂ + k√

2N
z̄

]
c. (1.49)

The acquisition link generates prositive surplus if and only if Cg1 + Cg2 > Ctotal. Plugging in
(1.48) and (1.49) and applying Lemma 3, we get

NΦ

[
−N + k√

N
z̄

]
c+NΦ

[
−N − k̂√

N
z̄

]
c > 2NΦ

[
−2N − k̂ + k√

2N
z̄

]
c ⇐⇒ k̂ > k − 2N.

Step 2: condition for the acquisition link to be formed ex post at equilibrium. I
show that as long as this acquisition is socially optimal, Cg1 +Cg2 > Ctotal, the acquisition link
will form ex post at equilibrium. Since prices are already set between other banks, with only

bilateral prices
(
pN+1
N , pNN+1

)
to be contracted. Hence whether the acquisition link can form at

equilibrium is equivalent to whether the bilateral surplus between N and N + 1 is positive. The
value of firm N without the ex post acquisition link is49

V̂N = 1 +

(
1− N − 1

2
δ − k

N

)
z̄σ − Φ

[
k −N√

N
z̄

]
c− Φ

(
−z̄ +

N − 1

2
δ

)
c+ Φ

(
−
√
Nz̄
)
c.

Notice that when k = 0, V̂N = V a
N , which matches the outside option of firm N . The value

of firm N + 1 without the ex post acquisition link is

V̂N+1 = 1 +
k̂ +N

N
z̄σ − Φ

[
−N − k̂√

N
z̄

]
c.

The bilateral surplus is

Φ

[
−N − k̂√

N
z̄

]
c+ Φ

[
k −N√

N
z̄

]
c > 2Φ

[
−2N − k̂ + k√

2N
z̄

]
c ⇐⇒ k̂ > k − 2N

which recovers precisely the condition for positive total acquisition surplus. This shows that if

and only if k̂ > k− 2N , the acquisition link is efficient and forms in equilibrium after θ realizes.

Step 3: the positive acquisition subsidy is optimal if the liquidation cost is large
enough. When k̂ ≤ k − 2N , I next show that the positive acquisition subsidy is optimal if
the liquidation cost is large enough. Let the positive government subsidy be BAσ given to the
acquire N + 1. The total cost with subsidized acquisition becomes

CsubA =

2N∑
i=1

Pr
(
h̃ < 1

)
c+BAσ = 2NΦ


(
k − k̂ − 2N

)
z̄ −BA

√
2N

 c+BAσ.

49V̂N = E[h̃N ]−Pr
(
h̃N < 1

)
c+ 1

2
p1N− 1

2
pN1 , p1N = 1+

(
z̄ − N−1

2
δ
)
σ−Φ

(
−z̄ + N−1

2
δ
)
c, pN1 = 1+

(
z̄ + N−1

2
δ
)
σ+

Φ
(
−z̄ + N−1

2
δ
)
c− 2Φ

(
−
√
Nz̄
)
c.
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B∗A satisfies the first order condition

Φ′


(
k − k̂ − 2N

)
z̄ −B∗A

√
2N

 =
σ√
2Nc

. (1.50)

Solving for B∗A gives (1.31), and we require that c >
√
πσ√
N

and k̂ ≤ k − 2N .

Step 4: subsidized acquisition is preferred to government bailout. I show that the
subsidized acquisition is less costly thus preferred to government bailout. Based on Proposition

7, for c ∈
(√

πσ√
N
,
√

2πσ√
N

)
, subsidized acquisition is the only feasible option. For c >

√
2πσ√
N

, costs

with government bailout for the two groups are

C∗GB = NΦ

−
√√√√−2 log

[√
2πσ√
Nc

] c+ (k −N)z̄σ +
√
Nσ

√√√√−2 log

[√
2πσ√
Nc

]
+NΦ

[
−N − k̂√

N
z̄

]
c.

Costs with subsidized acquisition is

C∗subA =
(
k − k̂ − 2N

)
z̄σ +

√
2N

√
−2 log

[√
πσ√
Nc

]
σ + 2NΦ

[
−

√
−2 log

[√
πσ√
Nc

]]
c.

Denote J =

√
−2 log

[√
2πσ√
Nc

]
> 0, H = k̂+N√

N
z̄ > 0, then

C∗GB =
√
NσJ +NΦ [−J ] c+

√
NσH +NΦ [−H] c+

(
k − k̂ − 2N

)
z̄σ.

From (1.29), Φ′(−J) = σ√
Nc

. Hence, function f(x) =
√
Nσx + NΦ [−x] c, satisfies f ′(J) = 0,

f ′′(x) > 0,∀x > 0. This implies C∗GB > 2
√
NσJ + 2NΦ [−J ] c+

(
k − k̂ − 2N

)
z̄σ >

√
2NσJ +

2NΦ [−J ] c+
(
k − k̂ − 2N

)
z̄σ.

In a similar approach, denoteG =

√
−2 log

[√
πσ√
Nc

]
> 0, then C∗subA =

√
2NGσ+2NΦ [−G] c+(

k − k̂ − 2N
)
z̄σ, and from (1.50), Φ′ [−G] = σ√

2Nc
. Function f(x) =

√
2Nσx+2NΦ [−x] c, x >

0, achieves global (x > 0) minimum at x = G. This implies that C∗GB > C∗subA Q.E.D.

B.9 Proof of Proposition 9

I first show that condition (1.32) implies positive social surplus from the acquisition link between
the liquid N1 + 1 and the distressed firm N1. Without acquisition link, total liquidation costs
of group one and group two are respectively

Cg1 = N1Φ

[√
N1

(
k

N1
− 1

)
z̄

]
c, Cg2 = N2Φ

[√
N2

(
−1− k̂

N2

)
z̄

]
c

With the acquisition link, the total liquidation costs of the two groups become

Ctotal =

N1+N2∑
i=1

Pr
(
h̃i < 1

)
c = (N1 +N2) Φ

[√
N1 +N2

(
k − k̂

N1 +N2
− 1

)
z̄

]
c.
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The acquisition link generates prositive surplus if and only if Cg1 + Cg2 > Ctotal, i.e.

N1

N1 +N2
Φ

[
k −N1√

N1

z̄

]
+

N2

N1 +N2
Φ

[
−k̂ −N2√

N2

z̄

]
> Φ

[
k − k̂ − (N1 +N2)√

N1 +N2

z̄

]
. (1.51)

Under (1.32), k̂ > max
[√

N1+N2−
√
N1√

N1+N2−
√
N2

(k −N1)−N2, k −N1 −N2

]
. It follows(

N2 + k̂
)(√

N1 +N2 −
√
N2

)
> (k −N1)

(√
N1 +N2 −

√
N1

)
⇐⇒(

−N1

√
N1 +

√
N1k

)
+
(
−
√
N2N2 −

√
N2k̂

)
>
√
N1 +N2k −

√
N1 +N2k̂ −

√
N1 +N2 (N1 +N2) ⇐⇒

N1

√
N1

(
−1 + k

N1

)
z̄

N1 +N2
+
N2

√
N2

(
−1− k̂

N2

)
z̄

N1 +N2
>
k − k̂ − (N1 +N2)√

N1 +N2

z̄. (1.52)

Given Φ(.) is convex when k−k̂−(N1+N2)√
N1+N2

z̄ < 0, by definition

N1

N1 +N2
Φ

[
k −N1√

N1

z̄

]
+

N2

N1 +N2
Φ

[
−k̂ −N2√

N2

z̄

]
≥ Φ

N1

√
N1

(
−1 + k

N1

)
z̄

N1 +N2
+
N2

√
N2

(
−1− k̂

N2

)
z̄

N1 +N2

 .
Combining with Equation (1.52), we establish (1.51).

Next I show that under (1.32), the bilateral acquisition surplus is positive when N2 ≥ N1.

Since prices are already set between other banks, there are only bilateral prices
(
pN1+1
N1

, pN1

N1+1

)
to be contracted. Hence whether the acquisition link can form at equilibrium is equivalent to
whether the bilateral surplus between N1 and N1 + 1 is positive. The value of firm N1 without
acquisition is

V̂N1
= 1 +

(
1− N1 − 1

2
δ − k

N1

)
z̄σ − Φ

[
k −N1√

N1

z̄

]
c− Φ

(
N1 − 1

2
δ − z̄

)
c+ Φ

(
−
√
N1z̄

)
c.

Notice that when k = 0, V̂N1
= V a

N1
, which matches the outside option of firm N1. The value of

firm N1 + 1 without the acquisition link is

V̂N1+1 = 1 +

(
1 +

k̂

N2

)
z̄σ − Φ

[
−N2 − k̂√

N2
z̄

]
c.

With the acquisition link, the value of firm N1, and firm N1 + 1 are respectively

V̂ A
N1

= 1 +

(
1− N1 − 1

2
δ − k − k̂

N1 +N2

)
z̄σ − Φ

[
k − k̂ − (N1 +N2)√

N1 +N2

z̄

]
c− Φ

(
−z̄ +

N1 − 1

2
δ

)
c+ Φ

(
−
√
N1z̄

)
c;

V̂ A
N1+1 = 1 +

(
1− k − k̂

N1 +N2

)
z̄σ − Φ

[
k − k̂ − (N1 +N2)√

N1 +N2

z̄

]
c.
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The bilateral surplus minus the total surplus is

V̂ A
N1

+ V̂ A
N1+1 − V̂N1

− V̂N1+1

2
−
Cg1 + Cg2 − Ctotal

N1 +N2

=
1
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− 2

k − k̂
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)
z̄σ +

N2 −N1

2(N1 +N2)

(
Φ

[
k −N1√

N1

z̄

]
− Φ

[
−k̂ −N2√

N2

z̄

])
c

=
(N2 −N1)

(
N2k +N1k̂

)
2N1N2 (N1 +N2)
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(
Φ

[
k −N1√
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z̄

]
− Φ

[
−k̂ −N2√
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c

=
N2 −N1

2(N1 +N2)

[
N2k +N1k̂

N1N2
z̄σ +

(
Φ

[
k −N1√

N1

z̄

]
− Φ

[
−k̂ −N2√

N2

z̄

])
c

]
.

which is non-negative when N2 ≥ N1. In other words, when N2 ≥ N1, and Cg1+Cg2−Ctotal > 0,

V̂ A
N1

+ V̂ A
N1+1 − V̂N1

− V̂N1+1

2
≥
Cg1 + Cg2 − Ctotal

N1 +N2
> 0.

If N1 > N2, the average bilateral surplus is smaller than the average social surplus. Under

condition (1.33), the bilateral surplus is negative. Q.E.D.
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C Additional Empirical Results

In this Appendix, I provide additional empirical results to supplement the findings in Section 6.

Table A.I presents supplementary univariate correlations to Table 3. I adopt alternative indi-

cators for economic activity and systemic risk, including the Recession Probability from Chauvet

and Piger (2008), the subcomponents of the Chicago Fed National Activity Index (CFNAI) on

personal consumption and housing (C&H) and employment, unemployment, and hours (EU&H).

Finally, following Giglio, Kelly, and Pruitt (2015), I take the systemic risk measures relating to

liquidity and credit conditions in the financial market: the Default Spread (difference between

3-Month BAA bond yields and the Treasury) and the Term Spread (difference between 10-Year

and 3-Month Treasury).

Table A.I. Summary Statistics and Univariate Correlations

Mean StDev Sacf Correlations w/ log Z-score

Mean Dispersion

A. Economic activity and systemic risk

Recession Probability 0.08 0.23 0.83 0.00 0.17

CFNAI: Personal Consumption and Housing -0.03 0.13 0.93 -0.03 -0.78***

CFNAI: Employment, Unemployment, and Hours -0.06 0.31 0.86 -0.03 -0.20*

Default Spread 4.19 1.54 0.93 -0.14 0.54***

Term Spread 1.87 1.11 0.91 -0.25** 0.37***

B. Lending and interbank lending

Financial Business Leverage 29.40 5.59 0.94 -0.16 -0.71***

Security Broker-Dealers Leverage 41.11 17.94 0.73 0.51*** -0.18*

∆% Non-financial Corporate Liability 0.01 0.01 0.46 0.14 -0.22*

All Comm. Bank Credit over Assets 0.81 0.03 0.94 -0.13 -0.84***

Small Comm. Interbank Loan over Assets 0.02 0.01 0.87 0.10 -0.51***

Notes: This table supplements to Table 3 and reports the summary statistics for alternative measures of eco-
nomic activity and systemic risk, lending and interbank lending, as well as their univariate correlation coefficients
with the mean and dispersion of financials’ log Z-scores. Group A series are taken from FRED. Group B series
are constructed from the Fed’s Z.1 and H.8 release. Data availability on bank holding companies restricts the
analysis to 1986-2013. Sacf is the first-order sample autocorrelation coefficient. The last two columns report the
correlation coefficients between the cross-sectional mean and dispersion of log Z-score and each series in groups
A-B together with the significance levels. *, **, *** denote statistical significance at the 5%, 1%, and 0.1% level.

The alternative indicators for lending and interbank lending include the leverage of both

financial business and the security broker-dealers discussed in Adrian, Etula, and Muir (2014),

the growth rate of non-financial corporate liability, the credit and loans of all commercial banks

over assets, and the interbank loans over assets of small and medium-sized commercial banks.

The correlation coefficients show a clear pattern: the aggregate indicators correlate significantly

with dispersion, whereas only the leverage of security broker-dealers comoves strongly with the

mean.
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Table A.II presents supplementary predictive regression results to Table 4. Using the same

method as in Table 4, I run predictive regressions to forecast the alternative measures. The

estimates strongly echo the findings from the correlation analysis. Both the significance level of

the regression coefficients and the differences in R2s with and without dispersion in the regressors

suggest the robustness of the predictive power of dispersion series.

The economic magnitude of the predictive power is also sizable. Take the forecasting of

Recession Probability for instance, holding the controls fixed, a one-standard-deviation increase

in the Dispersion (=0.22) predicts a 0.095 (= 0.22× 0.43) increase in the Recession Probability

in the next quarter, whereas a one-standard-deviation decrease in the Mean (=0.03) predicts a

0.046 (= 0.03× 1.54) raise in the future Recession Probability.

Table A.II. Predictive Regressions using Distress Dispersion

Quarters 1 2 3 4 1 2 3 4

Forecasting A. Recession Probability B. CFNAI: CH

Dispersion 0.43** 0.79** 1.07* 1.29* -0.38*** -0.75*** -1.10*** -1.43***

Mean -1.54** -3.28** -4.83** -5.12* 0.27 0.70 1.23 1.76

R2 40.98 43.91 45.95 42.37 70.18 72.88 74.29 75.30

R2 w/o disp 33.95 37.23 39.95 36.96 53.71 56.23 57.85 59.39

Forecasting C. Default Spread D. Term Spread

Dispersion 0.04*** 0.08*** 0.13*** 0.18*** 0.01* 0.02* 0.04* 0.06

Mean 0.00 -0.02 -0.08 -0.12 -0.02 -0.05 -0.13 -0.22

R2 83.97 79.92 74.97 69.61 87.19 80.07 72.93 66.32

R2 w/o disp 72.23 65.71 58.38 49.95 86.49 78.48 70.32 62.16

Forecasting I. Bk Credit over Assets K. Sml Bk Interbank L over Assets

Dispersion -0.09*** -0.18*** -0.28*** -0.37*** -0.01 -0.02 -0.04* -0.05**

Mean -0.02 0.07 0.18 0.27 0.06 0.10 0.11 0.09

R2 80.41 82.41 83.95 85.16 48.13 54.09 56.03 56.46

R2 w/o disp 64.37 65.53 65.98 65.79 45.00 49.57 49.55 47.33

Notes: This table summarizes the ability of distress dispersion to forecast future economic activity, systemic risk,
failure rates, distressed acquisition rates, and bank lending behavior. In A-K, quarterly time series are regressed
on the cross-sectional dispersion and mean of log Z-score controlling for the term spread, the leverage of finan-
cial business and security broker-dealers, and the growth rate of real non-financial corporate liability. Forecasting
horizons range from one to four quarters and the data cover the years 1986-2013. The table reports the predictive
regression coefficients on the dispersion and mean of log Z-score, the R2, as well as the R2 when the regressions
are run without the dispersion series. *, **, *** denote statistical significance (based on Newey-West standard
errors) at the 5%, 1%, and 0.1% level.
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Chapter 2

Asset Pricing with Dynamic Labor
Contracts

1 Introduction

An average job tenure in the U.S. labor markets is 4.6 years. Why are labor relations long term

and how are the compensation schemes designed? What are the impacts on asset prices? In this

paper, I consider a key observation of the labor market: Certain attributes of a worker, such

as ability, passion, and physical condition, largely affect productivity but cannot be directly

observed or measured by employers. Although working hours can be specified in the labor

contract, effective effort level is beyond the employers’ control.

To capture such features, I build a model of dynamic labor contracts under private informa-

tion. Firms use long-term compensation schemes, wage payment and promise of future raises,

to better provide insurance as well as incentives to workers. This labor relation has unique

predictions on the risk-sharing properties of the economy. Quantitative results show that the

dynamic contracting feature is important in matching asset prices and business cycle facts.

I model a two-agent production economy in which the worker has private information about

her labor productivity. The model features heterogeneous preferences and limited stock market

participation: the representative shareholder is less risk averse and is better off holding risky

assets, whereas the representative worker earns income by supplying labor. The worker’s labor

productivity risk has two dimensions: one publicly informed and one privately observed by the

worker. The shareholder offers an incentive compatible long-term labor contract, which partially

insures the worker against her labor income risk.

Following the recursive formulation in Spear and Srivastava (1987), I solve for the consump-

tion allocations and labor input specified by the optimal incentive compatible labor contract.

The equity return and risk-free rate are priced using shareholder’s consumption stream as pricing

kernel. The model is then calibrated with relatively low risk aversions for both agents. I com-

pare the model’s performance to settings with a Walrasian competitive labor market, and with

static labor contracts. My model successfully matches both asset returns data and business-
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cycle facts, including a countercyclical and high equity premium, a low risk-free rate, procyclical

labor input, and countercyclical labor share.

The model generates an equity premium of 6.13% and a risk-free rate 0.98%, matching the

observation in Mehra and Prescott (1985). The calibrated fraction of privately observed labor

productivity risk is 0.5. The consumption growth volatility matches Consumer Expenditure

Survey with that of shareholders within 5.38% ∼ 12%, and that of workers within 3% ∼ 5.38%.1

The ratio of the two assumes a value of 1.62, in line with the findings in Mankiw and Zeldes

(1991) based on the PSID data. The cyclical feature of all macro variables generated in this

model are consistent with data.

The model mechanism is as follows. First, the endogenous labor input is procyclical, thus

expanding or contracting aggregate production in response to labor productivity shocks. In good

economy (e.g. favorable climate, technology) and when being more productive (e.g. smart, en-

ergetic), the worker is given incentive to devote higher effort. In the aggregate, hours worked

increase when the economy is good. Hence, consumption volatility is endogenously amplified

by the incentive compatible labor contracts.2 Second, the risk-sharing feature under the dy-

namic labor contracts endogenously generates a countercyclical labor share. The less risk averse

shareholder offers an incentive compatible long-term labor contract, which partially insures the

worker against labor income risk. Essentially the shareholder bears a larger consumption risk in

the contract, thus requires to be compensated by a higher equity premium. Finally, the dynamic

feature captures the intertamporal risk-sharing in the long-term employment relationship. The

promised continuation utility provides shareholders an extra tool to balance insurance and in-

centive, thus further facilitating risk-sharing. In Section 3, we isolate the effect of intertemporal

risk-sharing from intratemporal risk-sharing by observing a higher level of equity premium and

risk ratio in the dynamic labor contract model relative to a benchmark static model.

This paper contributes to the large body of literature on equity premium puzzle, which docu-

ments the difficulty of using neoclassical models to rationalize the U.S. stock market premiums.3

With plausible constant relative risk aversion, the average consumption growth volatility is too

low to rationalize the observed 6.18% equity premium.4 Constantinides and Duffie (1996) show

that it is possible for incomplete market models to explain the asset pricing anomalies in an

economy with uninsurable, persistent, and heteroscedastic labor income shocks. Kocherlakota

(1996) also argues that modeling incomplete insurance markets where agents fail to fully insure

themselves due to private information leads to a promising direction. As labor income pro-

vides the lion’s share of consumption for the working class, partial insurance in labor market as

explored here is necessarily relevant.

Shareholder’s consumption streams are used as pricing kernel. In this sense, this paper

1See data provided in Malloy, Moskowitz, and Vissing-Jorgensen (2009).
2Shorish and Spear (2005) show in their static agency theoretic model that worker’s ability to endogenously

control output largely affects asset prices.
3See Mehra and Prescott (1985) for the puzzle, Kocherlakota (1996) for a survey.
4Mehra and Prescott (1985) observe for 1889-1978, market return is 6.98% and risk-free rate is 0.80%.
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adds to the literature on limited stock market participation.5 Mankiw and Zeldes (1991) show

evidence that only one fourth of US households own stocks and that stockholders’ consumption

growth is much more volatile than that of non-stockholders. While most papers rely on a fixed

cost of participation or borrowing constraints, agents in my model choose their roles to enter

the contracts based on heterogeneous risk aversion. Hence, workers have no need to further seek

insurance from the asset market because the labor contract has provided them with maximum

possible insurance constrained by private information.

Berk and Walden (2013) explore similar idea that investors provide insurance to wage earners

who then optimally choose not to participate in the financial markets. They demonstrate that

human capital risk is shared in labor markets through bilateral labor contracts, and investors

offload the labor market risk they assumed from workers by participating in financial markets.

While they focus on the labor contracts based on working flexibility, I differ by building on the

incentive compatible contracts in a world with private information.

My paper is closest to Danthine and Donaldson (2002) who show that operation leverage

by wage claims magnifies the risk of residual payments to firm owners and the required risk

premium. However, in their model, the labor supply is fixed and the optimal risk-sharing

formula is exogenously specified. This paper differs by solving the endogenous labor supply and

limited risk-sharing determined by labor contracts.

The paper proceeds as follows: Section 2 describes the model. Section 3 presents quantitative

results on equilibrium allocations and asset pricing implications. Extension on persistent public

shocks is presented in Section 4, and Section 5 concludes.

2 Model

In this section, I describe a production economy with heterogeneous agents, private information,

and dynamic labor contracts. The goal is to study the risk-sharing properties and asset pricing

implications.

2.1 Environment

This economy has a single, non-durable, consumption good. Time is discrete. A continuum

of measure α of shareholders invest in the asset market by holding ownership of the firm. A

continuum of measure 1− α of workers supply labor in production and earn consumption from

labor income. Heterogeneous preferences in risk aversion and labor disutility sort agents into

two groups, thus generating limited market participation. Labor productivity risk contains both

publicly informed and privately observed components. A labor contract of a horizon of T periods

formalizes the employment relationship between a worker and a shareholder.

5See evidence for example in Mankiw and Zeldes (1991), Basak and Cuoco (1998), Cao, Wang, and Zhang
(2005), Berk and Walden (2013).
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Workers

Assume workers are all alike, so there exists a representative worker. The worker has additively

separable period utility defined over consumption C and labor input L. U(Ct, Lt) is increasing

in Ct, decreasing in Lt, twice continuously differentiable and concave in both consumption

and labor. Workers discount future utility at constant rate 0 < β < 1. Given a sequence

of consumption and labor input {Ct, Lt}Tt=1, the worker’s expected discounted utility over the

contract horizon is

W
(
{Ct, Lt}Tt=1

)
= E0

T∑
t=1

βt−1U(Ct, Lt), (2.1)

where E0 denotes expectation at pre-contracting stage.

Shareholders

Shareholders by nature are less risk averse and have stronger labor disutility.6 The represen-

tative shareholder’s period utility V (Dt) is also additively separable over time with discount

factor β, and is increasing, twice continuously differentiable and concave in consumption Dt.
7

Shareholders hold firm shares St and risk-free bonds Bt and obtain dividend income Dt as con-

sumption. Let the equilibrium stock price be Pt and bond price be bt+1
t . Shareholder’s budget

constraint at time t is

Dt + PtSt+1 +Bt+1b
t+1
t ≤ (Pt +Dt)St +Bt. (2.2)

Let ψ be the distribution of shareholders. The asset market clearing condition is given by∫
Btdψ = 0,

∫
Stdψ = 1. (2.3)

Accordingly, a representative shareholder solves

max
{Dt,St,Bt}Tt=1

: E0

T∑
t=1

βt−1V (Dt), (2.4)

subject to (2.2) and (2.3).

Production, Risks, and Information

Since the focus is on labor relations, I fix the capital stock as constant for all periods and states,

i.e. Kt = K,∀zt, θt. There are two dimensions of labor productivity risk φt(zt, θt): publicly

informed zt and privately observed θt.
8 Let zt ≡ (z1, z2, ..., zt) ∈ Zt and θt ≡ (θ1, θ2, ..., θt) ∈ Θt

6Sources of heterogeneity include age, wealth, social status, etc.
7Labor does not enter the utility function directly because shareholders do not directly supply labor in pro-

duction.
8θt is the systematic component of private labor productivity risk. As in Berk and Walden (2013), the

idiosyncratic component of labor productivity risk can be diversified away among workers, even though it is likely
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denote the histories of the shocks up to period t. φ(zt, θt) is increasing with both arguments.

Output is given by Cobb-Douglas form with capital share α,

Yt = φ(zt, θt)L
1−α
t Kα. (2.5)

Private information of a worker concerns with both private labor productivity shock θt and the

amount of labor input Lt. We make the following assumptions on the distribution of risks.

Assumption 4 Labor productivity risks satisfy the following.

(i) The private risk is independent of the public shock.

(ii) The shocks are identically distributed over time and independent of history realizations.

Under Assumption 4, the probability of drawing shocks {zt, θt} is Π(zt)P (θt). Assumption

4.(i) is to isolate the private information nature of the private risks, so that nothing can be

inferred from the realization of public risks. We will relax Assumption 4.(ii) by adding persistence

to the public shocks in Section 4. Under 4.(ii), the size of the shocks is time-invariant. Following

Ales and Maziero (2010), the fraction of privately observed labor productivity risk is given by

Ω =
V ar(θt)

V ar(zt) + V ar(θt)
∈ [0, 1], ∀t. (2.6)

Dynamic Labor Contract

The timeline of the contract is as follows. At t = 0, the shareholder and the worker enter

a horizon T exclusive labor contract. This employment relationship promises the worker an

expected utility above his initial reservation utility W0. We assume two-sided commitment

such that both parties commit to stay in the contract once it is signed. Upon observing the

realization of both public and private shocks each period, the worker strategically reports to the

shareholder about her private labor productivity and exert effort accordingly. At the end of the

period, output is realized and consumption is allocated based on the contract.

I solve for the equilibrium allocations and labor input defined by the optimal contract.

The revelation principle ensures that we can restrict to direct mechanisms in which workers

truthfully report the private labor productivity. Given a worker’s initial reservation utility

W0, the contract specifies consumption allocation, labor input, and required output conditional

on the realized history of public shock zt and the reported history of private shock θt, i.e.

{C(zt, θt,W0), Y (zt, θt,W0), L(zt, θt,W0)}Tt=1.

The worker chooses to enter the contract only if the expected discounted utility from the

long-term employment is no less than W0. A contract satisfies individual rationality (IR) if the

to be sizable for an individual worker.
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following holds,
T∑
t=1

∑
zt,θt

Π(zt)P (θt)βt−1U(C(zt, θt), L(zt, θt)) ≥W0. (2.7)

In order to induce truth-telling, the contract is such that there are no gains by deviating

from truthfully reporting the privately observed shock state. A contract is incentive compatible

(IC) if it satisfies the following

T∑
t=1

∑
zt,θt

Π(zt)P (θt)βt−1
[
U(C(zt, θt), L(zt, θt))− U(C(zt, θ̃t), L̂(zt, θ̃t))

]
≥ 0, ∀θ̃t ∈ Θt, (2.8)

where the required effort level if lying is

L̂(zt, θ̃t)) =

[
Y (zt, θ̃t)

φ(zt, θt)Kα

] 1

1−α

=

[
φ(zt, θ̃t)

φ(zt, θt)

] 1

1−α

Lt(zt, θ̃t). (2.9)

A contract is feasible if it satisfies

C(zt, θt) +D(zt, θt) +Bt+1b
t+1
t (zt, θt) ≤ φ(zt, θt)L

1−α
t Kα +Bt, ∀zt ∈ Zt, θt ∈ Θt. (2.10)

For a contract satisfying Conditions (2.8), (2.9), (2.10), the worker truthfully reports his

private shock states and exerts optimal labor input in exchange for a compensation profile less

volatile than his marginal productivity. Thereby, the labor contract provides partial insurance

to the worker against her labor income risk. In other words, the existence of private information

induces limited risk-sharing between shareholder and worker.

Financial Market

I consider a setting of incomplete financial markets with two assets: the risky asset and the

risk-free asset. Risky asset is the dividend claim from holding the firm share, holdings of which

are within the shareholders. Allen (1985) shows that incentive compatibility constraint cannot

hold if agents are able to hold assets privately. Hence, I make the following assumption

Assumption 5 Asset holdings of shareholders and workers are public information.

Based on Assumption 5, denote the bond holding of a worker as Bw
t , then we have the

following characterization on worker’s consumption.

Lemma 4 Equilibrium consumption allocation defined by the optimal contract satisfies

C(zt, θt|Bw
t ) = C(zt, θt|B̃w

t ), ∀Bw
t 6= B̃w

t . (2.11)

Lemma 4 delivers the idea that worker’s equilibrium consumption is independent of her bond

holdings. When the worker’s bond holding is public information, the shareholder will specify

labor contract conditional on the bond holdings such that worker’s equilibrium consumption
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stays the same. This way, any potential insurance effect by participating in the financial market

is already covered by the labor contract. Therefore, it is without loss of generality that workers

are restricted from asset market participation. I further make the following assumption.

Assumption 6 Risk-free bonds are in zero net supply, i.e. only private bonds are traded. Share-

holders are all alike and behave independently and competitively.

Lemma 5 The equilibrium allocations specified by the labor contract depend on the shareholder’s

bond holding. Under Assumption 6, the equilibrium bond holding of a typical shareholder Bt = 0.

Shareholder’s Problem

The representative shareholder maximizes his expected discounted utility by designing the op-

timal dynamic labor contract and choosing the optimal amount of asset holdings. Hence, the

representative shareholder solves the following problem subject to Equations (2.7), (2.8), (2.9),

and (2.10).

max
{Ct,Dt,Lt,Bt}Tt=1

:

T∑
t=1

∑
zt

Π(zt)
∑
θt

P (θt)βt−1V (D(zt, θt)). (2.12)

Endogenous Stock Market Participation

For each reservation value W0, the labor contract specifies a sequence of consumption alloca-

tions as a function of the sequence of shocks. The equilibrium reservation value is chosen by

shareholders such that workers is better off serving as a worker, that is9

W0 ≥
T∑
t=1

∑
zt,θt

Π(zt)P (θt)βt−1U
[
D(zt, θt,W0), L(zt, θt) = 0

]
. (2.13)

2.2 Recursive Formulation

To solve (2.12), it is convenient to rewrite the shareholder’s problem recursively. Following Spear

and Srivastava (1987) and Green (1987), we use the promised utility as a state variable, denoted

by W . Provided certain boundary conditions satisfied by our problem, under i.i.d. private shock

distribution, temporary incentive compatibility is sufficient to guarantee the general IC condition

(2.8).

The shareholder’s problem (2.12) can be solved by considering two problems separately: (1)

period T problem, where the shareholder specifies period T consumption and labor, and (2) period

t problem where the shareholder chooses current consumption, labor, and promised continuation

utility. From here onward, we make the additional assumption that both the public and private

labor productivity shocks have two state realizations per period, zt ∈ {zh, zl}, θt ∈ {θh, θl}, with

zh > zl, θh > θl, ∀t. The seed values {θh, θl} are known to all agents.

9There are multiple values of W0 satisfying Condition (2.13). In the quantitative analysis, I calibrate it to
match the level of labor share in dynamic labor contract model with that in the Walrasian RBC model 1−α = 64%.
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I consider the relaxed problem: only incentive compatibility constraints to prevent worker

with high state realization θh from lying are considered.10 The period T problem is

ST (WT ) = max
{CT ,DT ,LT }

∑
zT

Π (zT )
∑
θT

P (θT )V (DT ) (2.14)

subject to ∑
zT

Π (zT )
∑
θT

P (θT )U(CT , LT ) ≥WT ; (2.15)

U [C(zT , θh), L(zT , θh)] ≥ U
[
C(zT , θl), L̂(zT , θl)

]
, ∀zT ∈ ZT , (2.16)

where L̂(zT , θl) =
[
φ(zT ,θl)
φ(zT ,θh)

] 1

1−α
L(zT , θl);

CT +DT ≤ YT , ∀zT ∈ ZT , θT ∈ ΘT . (2.17)

The period t problem is:

St(Wt) = max
{Ct,Dt,Lt,W ′t}

∑
zt

Π (zt)
∑
θt

P (θt)
[
V (Dt) + βSt+1

(
W ′t
)]

(2.18)

subject to ∑
zT

Π (zT )
∑
θT

P (θT )
[
U [Ct, Lt] + βW ′t

]
≥Wt; (2.19)

U [C(zt, θh), L(zt, θh)] + βW ′t (zt, θh) ≥ U
[
C(zt, θl), L̂(zt, θl)

]
+ βW ′t(zt, θl), ∀zt ∈ Zt, (2.20)

where L̂t(zt, θl) = [ φ(zt,θl)
φ(zt,θh) ]

1

1−αLt(zt, θl).

Ct +Dt ≤ Yt, ∀zt ∈ Zt, θt ∈ Θt. (2.21)

We adopt the Cobb-Douglas functional form for the worker’s utility

U(C,L) =
[Cτ (1− L)1−τ ]1−σw

1− σw
, (2.22)

where the consumption share is τ ∈ (0, 1) and the curvature parameter is σw > 1. Cobb-Douglas

utility implies a constant elasticity of substitution between consumption and leisure; hence, the

labor input is constant across states when competitive wage is offered at the marginal product

of labor. Shareholder has power utility function with constant relative risk aversion σs

V (C) =
C1−σs

1− σs
. (2.23)

The shareholders are less risk averse than the worker, i.e. 0 < σs < 1 + τ(σw − 1). I further

10The relaxed problem is shown to be equivalent to the original problem in Green and Oh (1991) for a more
general setting. In the numerical solutions, I verify that the solution of the relaxed problem satisfies the original
problem.
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Figure 1. Equilibrium allocations under private information. This figure shows the
equilibrium allocations of shareholder dividend, worker consumption, labor share, labor input
under private information.

assume the technology shock takes the form

φ(zt, θt) = ztθt. (2.24)

2.3 Optimality Conditions

I characterize the properties of the equilibrium allocations specified by the dynamic contracts

under private information. Figure 1 shows the constrained optimal consumption allocation and

labor input at Ω = 0.5. From Panel A and B, both agents’ consumption profiles are procyclical

with productivity. Shareholder’s dividend shows larger percentage deviation than that of the

worker. Panel C plots labor share, the percentage of worker’s consumption over total output.

The countercyclical labor share demonstrates how labor contract provides insurance to the

worker. Panel D shows that dynamic labor contract features a procyclical labor input which

enlarge the aggregate production risk.

I characterize the optimal solution in the full information case below.

Proposition 10 The optimal solution under full information features, ∀(z, θ),

(i) Perfect risk-sharing ∂V (z,θ)
∂D(z,θ) = ηt

∂U(z,θ)
∂C(z,θ) ;

(ii) Countercyclical labor share C(z,θ)
Y (z,θ) = τ(1−α)

1−τ ( 1
L(z,θ) − 1);

(iii) Constant promised continuation utility W ′(z, θ) = W ;
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(iv) The first best dynamic contracts can be equivalently implemented by a sequence of static

contracts.

2.4 Asset Prices

The limited market participation implies that equilibrium holding of risky asset is Autarky,

i.e. S∗t = 1. Given any state realizations {zt, θt}Tt=1 and the equilibrium allocation series

{Dt, Ct, Lt}Tt=1, the price of risky asset is given by

Pt = βEt
[
V ′(Dt+1)

V ′(Dt)
(Pt+1 +Dt+1)

]
= Et

T−t∑
j=1

βj−1V
′(Dt+j)

V ′(Dt)
Dt+j

 . (2.25)

and PT = 0, ∀zT , θT .

Implied equilibrium market return from holding the risky asset is

Rt = Et

[
Pt+1 +Dt+1

Pt

]
− 1. (2.26)

Bond price bt+1
t is calculated from the shareholder’s intertemporal Euler equation

bt+1
t = βEt

[
V ′(Dt+1)

V ′(Dt)

]
. (2.27)

The implied equilibrium risk-free rate is

rft =
1

bt+1
t

− 1. (2.28)

Equity premium is the difference between market return and risk-free rate

EPt = Rt − rft . (2.29)

3 Quantitative Results

In this section, I solve the model numerically for equilibrium allocations and asset returns. Then

I compare the performance of three different models in matching financial market statistics and

macro variable features. The baseline model is the finite horizon dynamic labor contract model

under private information. The two reference models are respectively Walrasian real business

cycle model (with competitive wage) and a static labor contract model.

Walrasian RBC Model

The canonical Walrasian RBC model features a competitive labor market and is commonly

used in the production based asset pricing literature. With a competitive wage w∗ = ∂Yz,θ
∂Lz,θ

=

(1 − α)zθL−αz,θK
α, we get constant labor share: LS = 1 − α. Worker has constant labor input
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L(z, θ) = τ and bears her share of income risk C(z, θ) = (1− α)zθL1−α
z,θ K

α.11

Static Agency Model

The second reference model is a static agency model, in which the shareholder and the worker

enter a static contract every period. Given the worker’s period reservation utility W , the share-

holder solves the following problem

S(W ) = max
{C,D,L}

∑
z

Π(z)
∑
θ

P (θ)V [D(z, θ)] (2.30)

subject to ∑
z

Π(z)
∑
θ

P (θ)U [C(z, θ), L(z, θ)] ≥W (2.31)

U [C(z, θh), L(z, θh)] ≥ U

C(z, θl),

[
φ(z, θl)

φ(z, θh)

] 1
1−α

L(z, θl)

 (2.32)

C(z, θ) +D(z, θ) ≤ Y (z, θ), ∀z ∈ Z, θ ∈ Θ. (2.33)

As shown in Proposition 10.(iv), the first best dynamic contract can be equivalently im-

plemented by a corresponding sequence of static contract under the same private information

structure. This enables us to match the static model with the dynamic contract model to the

extent that the optimal allocation under private information of the two models are comparable.

Given the worker’s initial reservation utility W0 in the dynamic contract, and the corresponding

first best solution of the continuation utility as {W ′t(z, θ)}T−1
t=1 , the equivalent static reservation

utility at time t is W t = W ′t−1 − βW ′t , as in the proof of Proposition 10. Using this trans-

formation, the static first best problem and dynamic first best problem match exactly in their

equilibrium allocations and asset prices.

The importance of noncompetitive labor market and labor contract framework is shown by

comparing labor contract models with the Walrasian RBC model. The comparison of models

with dynamic contracts versus models with static contracts shows the intertemporal incentive

effect by promised continuation utility. This allows us to separate intertemporal risk-sharing

from intratemporal risk-sharing.

3.1 Parameter Calibration

The parameter calibration is shown in Table 1. The model is calibrated at an annual frequency.

The contracting time horizon T is parametrized with both empirical and computational consid-

11In competitive labor market, individual worker decides how much labor to input. Given the competitive
wage level w∗, each worker solves: max

∑
ΠzPθU [C(z, θ), L(z, θ)], subject to their budget constraint: C(z, θ) ≤

w∗L(z, θ). First order conditions yield: − ∂U [C(z,θ),L(z,θ)]
∂C(z,θ)

w∗ = ∂U [C(z,θ),L(z,θ)]
∂L(z,θ)

. From firm’s optimization, w∗ =
∂Yz,θ
∂Lz,θ

= (1−α)zθL−αz,θK
α. Combining the two conditions, the equilibrium labor input is: τ

Lz,θ
= 1−τ

1−Lz,θ
⇒ Lz,θ =

τ, ∀z, θ.
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Table 1. Benchmark Parameter Calibration

Parameter Symbol Value

Contracting time horizon T 8
Capital share α 0.36
Constant capital stock k0 1.257
Probability of a high publicly observed productivity shock Π(z = H) 0.5
Probability of a high privately observed productivity shock Π(θ = h) 0.5
Consumption share in worker’s utility τ 0.8
Time preference (discount rate) β 0.975
Shareholder’s risk aversion σs 3.5
Worker’s utility function curvature σw 8
Worker’s risk aversion τ(σw − 1) + 1 6.6
Worker’s lifetime reservation utility W0 -78
Fraction of labor productivity risk due to private information Ω 0.5
Total risk of productivity V ar(z) + V ar(θ) 0.0033

erations. Despite the lack of formal statistics, several studies have shown that people change jobs

every 3 to 10 years in relatively large businesses. The model generated moments tend to be nu-

merically more stable the longer horizon we take. As computation time increases exponentially

with the time horizon, T = 8 is chosen as a compromise.

Capital share α = 0.36 is set following the convention of real business cycle models. Constant

capital Kα in the production function is set to 1.257. Both public and private shocks are i.i.d.

in the benchmark model with Π(z = H) = Π(z = L) = 0.5, P (θ = h) = P (θ = l) = 0.5.

The consumption share in worker’s utility τ , agents’ subjective time preference β, and cur-

vature parameters σs, σw are free parameters calibrated to match the target moments of asset

returns and consumption.12 We set the shareholder’s risk aversion σs = 3.5, and set σw = 8

to yield workers’ risk aversion as τ(σw − 1) + 1 = 6.6, a commonly adopted value in the equity

premium literature.13

Since the worker’s reservation utility W0 directly determines her bargaining power in the

contracting process and her welfare, we calibrate it to match the level of labor share in the

dynamic labor contract model with that in the Walrasian RBC model 1− α = 64%.

The fraction of labor productivity risk due to private information Ω is calibrated as Ω = 0.5

in the benchmark model. In Figure 2, we see how the level of equity premium and risk-free

rate change in the Walrasian RBC and the dynamic labor contract model when we vary Ω in

the range of [0, 1] while keeping the total risk of productivity V ar(z) + V ar(θ) fixed. Both the

equity premium and risk-free rate decrease as the fraction of private information Ω increases.

12Ales and Maziero (2010) estimate in their benchmark model τ = 0.69 using CEX and PSID data.
13Guvenen (2009) uses 7, Gomes and Michaelides (2008) select 5, and Danthine and Donaldson (2002) adopt a

value around 4 ∼ 7.
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Figure 2. Equity Premium and Risk-free Rate w.r.t. Ω. The figure plots the equity risk
premium and risk free rate (in percentage) when we vary the fraction of labor productivity risk
due to private information Ω.

The dynamic labor contract model with value Ω = 0.5 gives the two moments in the right

ballpark, while Walrasian RBC has equity premium way lower than data.

3.2 Comparison of Model Performance

With the benchmark model parametrized as above, we numerically compare the model generated

moments of equilibrium allocation for consumption, labor input, labor share, and the asset

returns in the dynamic labor contract model and the two reference models.

Table 2 shows the comparison of model generated unconditional moments with real data.

historical asset returns data varies greatly depending on the time window. I take the commonly

cited data from Table 1 of Mehra and Prescott (1985). For the benchmark calibration with

i.i.d. shocks and Ω = 0.5, the dynamic labor contract model generates a level of equity premium

6.13% and a risk-free rate 0.98%, which is close to the empirical average during 1889−1978. The

dynamic labor contract model clearly performs better in generating higher risky asset returns

and lower risk-free rate over the Walrasian RBC and the static contract model.

While the first moments of asset returns and the volatility of market return match the

empirical targets, the unconditional volatility of risk-free rate is too high and that of equity

premium is too low. This stems from the assumption that shareholders are all alike and their

equilibrium bond holdings are zero. In real world, bond trading helps to stabilize risk-free rate.

When the volatility of risk-free rate is lowered, we would get a more volatile equity premium.

Using the CEX data available from 1980 to the first quarter of 2005, we get the standard

deviation of households’ annual (four quarters rather than annualized quarterly data) consump-

tion growth as 3.00%, 5.38%, and 12% respectively for non-shareholders, shareholders, and

top shareholders (definitions see Malloy, Moskowitz, and Vissing-Jorgensen (2009)). As our
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Table 2. Comparing Model Generated Moments with Data

Dynamic Walrasian Static

Moments Data Labor Contract RBC Labor Contract

Asset returns

Equity premium 6.18% 6.13% 3.12% 4.19%
Market return 6.98% 7.12% 4.80% 7.11%
Risk-free rate 0.80% 0.98% 1.69% 2.92%

σ(EPt) 16.67% 2.59% 1.09% 1.51%
σ(Rt) 16.54% 27.03% 17.75% 21.54%

σ(rft ) 5.67% 24.84% 16.85% 20.29%
Consumption risks

σ (∆Dt+1) 5.38% - 12% 7.84% 5.66% 7.82%
σ (∆Ct+1) 3% - 5.38% 4.84% 5.66% 5.95%
σ(∆Dt+1)
σ(∆Ct+1) 1.6 1.6 1 1.3

Average labor share 0.64 0.64 0.64 0.64
Correlations

Corr(EPt, zt) - -0.41 -0.41 -0.62
Corr(EPt, θt) - -0.56 -0.53 -0.31
Corr(Lt, zt) + 0.35 0 -0.12
Corr(Lt, θt) + 0.68 0 0.95
Corr(Dt, zt) + 0.56 0.54 0.85
Corr(Dt, θt) + 0.52 0.54 0.12
Corr(Ct, zt) + 0.52 0.54 0.23
Corr(Ct, θt) + 0.56 0.54 0.79

Corr(CtYt , zt) - -0.60 0 -0.88

Corr(CtYt , θt) - -0.45 0 0.80

Note: Models are compared under the same sequence of state realizations. Sources of data include: (1) Mehra
and Prescott (1985); (2) CEX 1980-2005 Q1, see Mankiw and Zeldes (1991).

model assumes shareholders do not work and workers do not hold shares, the consumption

growth volatility of the two groups of agents should fall within the range of 3% ∼ 5.38% and

5.38% ∼ 12%. The dynamic labor contract model generates the shareholder’s consumption

growth volatility as 7.84% and that of worker as 4.84%, matching the empirical observations.

Define risk-ratio to be the ratio of shareholders’ consumption growth volatility to that of non-

shareholders as a risk-sharing indicator in the economy. Mankiw and Zeldes (1991) document

the ratio to be 1.6 using PSID data, although their consumption measure consists of only food

expenditures rather than the nondurable goods. The same ratio assumes a value of 1.6 in our

benchmark dynamic labor contract model. In comparison, risk-ratio equals 1 in Walrasian RBC

model, which means agents in the economy bear risk equally. Under the competitive labor

market setting, no risk is shared between agents with different risk aversion. The static labor

contract model yields a ratio of 1.3, which indicates risk is not shared enough through the static

82



1950 1960 1970 1980 1990 2000
−4

−2

0

2

4
Countercyclical Equity Premium

E
qu

ity
 P

re
m

iu
m

 

 
Equity Premium

Output

1950 1960 1970 1980 1990 2000
−4

−2

0

2

4
Countercyclical Labor Share

La
bo

r 
S

ha
re

 

 
Labor Share

Output

1950 1960 1970 1980 1990 2000
−4

−2

0

2

4

La
bo

r 
In

pu
t

Procyclical Labor Input

 

 
Labor Input

Output
Corr(labor input, output)  = 0.98

Corr(labor share, output) = − 0.74

Corr(equity premium, output) = − 0.15

Figure 3. Cyclical Features of Macro Variables. This figure plots the empirical patterns
of countercyclical equity premium, countercyclical labor share, and procyclical labor input. The
data sources include BLS 1947-2010 and CRSP for asset returns.

labor contract.

Figure 3 shows the countercyclical equity premium and labor share, and procyclical labor

input.14 As in Guvenen (2009), the countercyclical equity premium has been difficult to generate

in standard production based asset pricing models with constant labor share. Nonetheless, the

countercyclical movement of labor share over the business cycle has been put forth as part of

an optimal risk-sharing arrangement between firms and workers.15 The dynamic labor contract

model captures this feature and generates equity premium and labor share negatively correlated

with labor productivity shocks. As is shown in the lower half of Table 2, the cyclical features of

all macro variables in the model with dynamic labor contracts are consistent with data.

To better understand the risk-sharing properties in long-term employment relationship, and

the advantage of dynamic contract model over static ones, we construct the equivalent static

contract by matching its first best solution with that of the dynamic case. The key difference

between dynamic and static labor contract models is the adoption of promised continuation

utility as an instrument to provide incentive and facilitate risk-sharing. The comparison allows

us to isolate the effect of intertemporal risk-sharing from intratemporal risk-sharing.

14To highlight the comovement between series, each data series is detrended, rescaled by its standard deviation.
I use log real GDP as output.

15See for example Gomme and Greenwood (1995), Boldrin and Horvath (1995), Gomme and Rupert (2004).
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Figure 4. Horizon of Dynamic Labor Contact. This figure plots the asset returns as a
function of the horizon of the dynamic labor contract.

Compare Column 3 and 5 in Table 2. Dynamic labor contract model generates a comparable

market return but a much lower risk-free rate, compared with static contract model. Not only is

the level of equity premium higher, but also is its volatility and countercyclical variation. Labor

input is strongly procyclical and labor share is strongly countercyclical in dynamic model, while

both the two moments present ambiguous cyclical features in the static model. We observe that

Corr(Lt, θt)dynamic < Corr(Lt, θt)static. This is because part of the second best distortion is

transformed to the spread out of continuation utility in the dynamic contract. The risk-sharing

property is summarized by an increase in σ (∆Dt+1), a decrease in σ (∆Ct+1), and a negative

Corr(CtYt , θt) in the dynamic model. Hence we conclude that the intertemporal incentive from

dynamic contract facilitates risk-sharing, evidenced from the higher risk ratio, and contributes

an additional increase in the equity premium by 1.94%.

To further study how the dynamic effect changes with the contract horizon, in Figure 4 we

present the asset returns with respect to parameter T (the rest parameter values are set as

in Table 1). We get relatively more plausible and stable asset returns as T increases. In our

benchmark case when T = 8, levels of equity premium and risk-free rate become closer to data.

Besides, the computation results is more stable with respect to state realizations as can be seen

by a lower unconditional standard deviation of the excess return.

Simulation results in Figure 5 show that equity premium in dynamic labor contract model

is countercyclical, and is significantly higher than the other models. Shareholder’s consumption

growth volatility is amplified procyclically, while worker’s consumption is smoothed under the
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Figure 5. Model Simulated Moments. This figure plots model simulated series of equity
premium, dividend (shareholder consumption), and worker consumption for the dynamic labor
contract model (red dashed), the static labor contract model (green dot dashed), and a com-
petitive labor market model (green solid). The model is simulated 1000 times and randomly
plotted for 160 years of horizon.

labor contract.

4 Persistence of Public Shock

So far the shocks are assumed to be identically distributed, independent of history realizations,

and with an equal probability for high and low state. In this section, we relax this assumption

by looking at the effect of persistent public shocks.

The persistence of business cycle risk is well understood in the real business cycle literature.

As examples of publicly observed common shocks, global climate and technological developments

happen gradually. We model the distribution of public shock as a two state first-order Markov

process. The transition matrix Π =

[
ΠHH ΠHL

ΠLH ΠLL

]
is public information to both agents.

Persistence is governed by ΠHH ∈ (0.5, 1), and ΠLH ∈ (0, 0.5).

The deviation from i.i.d. shock distribution results a difference in the recursive formulation

and the numerical procedure. Besides the promised utility W , we now need an extra state

variable z−1: the previous period public shock realization. The mapping from W to S(W ) is

now conditional on z−1 since we have different implied shock distributions in the optimization

problem depending on whether the previous public realization is zH or zL. We compute both
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Table 3. Model Generated Moments under Persistent Public Shock

Dynamic Walrasian Static

Moments Data Labor Contract RBC Labor Contract

Asset returns

Equity premium 6.18% 5.75% 2.91% 4.37%
Market return 6.98% 6.54% 4.60% 7.00%
Risk-free rate 0.80% 0.79% 1.69% 2.63%

σ(EPt) 16.67% 2.28% 0.98% 1.51%
σ(Rt) 16.54% 23.29% 15.42% 19.63%

σ(rft ) 5.67% 21.47% 14.67% 18.49%
Consumption risks

σ (∆Dt+1) 5.38% - 12% 8.59% 6.20% 9.55%
σ (∆Ct+1) 3% - 5.38% 5.22% 6.20% 5.57%
σ(∆Dt+1)
σ(∆Ct+1) 1.6 1.6 1 1.7

Average labor share 0.64 0.64 0.64 0.64
Correlations

Corr(EPt, zt) - -0.40 -0.40 -0.60
Corr(EPt, θt) - -0.51 -0.49 -0.25
Corr(Lt, zt) + 0.58 0 0.04
Corr(Lt, θt) + 0.46 0 0.89
Corr(Dt, zt) + 0.77 0.74 0.95
Corr(Dt, θt) + 0.26 0.30 -0.10
Corr(Ct, zt) + 0.71 0.74 0.43
Corr(Ct, θt) + 0.34 0.30 0.63

Corr(CtYt , zt) - -0.83 0 -0.88

Corr(CtYt , θt) - -0.13 0 0.79

Note: Models are compared under the same sequence of state realizations. Sources of data include: (1) Mehra
and Prescott (1985); (2) CEX 1980-2005 Q1, see Mankiw and Zeldes (1991).

sets of conditional mappings and plug in the corresponding mapping according to the previous

state realization.

To construct the equivalent static contract problem, notice that the static reservation utility

is also conditional on the previous public state realization z−1. Define W̄t/zt−1 = Wt/zt−1 −
β
∑

z Π/zt−1

∑
θ PθW

′
t(z, θ), ∀t = 1, 2, ...T , where W1/z0 = W1 = W0, Π/H = Π/L = Π at t = 1

(with no prior) and W ′T (z, θ) = 0. The static problem with conditional static reservation utility

W̄t/zt−1 matches with the dynamic contract problem in their first best solution. A detailed

derivation can be found in the Appendix, proof of Proposition 10.

We parametrize the transition matrix as ΠHH = ΠLH = 0.5 for t = 1, and ΠHH = 0.6,ΠLH =

0.4, for t ≥ 2. This corresponds to a quarterly persistence of 0.88 from high state to high state.

We keep the other parameter values fixed as in Table 1, and vary Ω. Figure 6 shows how the

level of equity premium and risk-free rate change with private shock component. We also plot
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Figure 6. Equity Premium and Risk-free Rate under Persistent Public Shocks. This
figure plots the equity risk premium and risk free rate (in percentage) under persistent public
shocks when we vary the fraction of labor productivity risk due to private information Ω.

the historical data and i.i.d. case as references.

First, asset returns are lower under persistent public shocks relative to the i.i.d. shock case.

This is because being aware of the shock persistence, agents expect a smoother economy. Share-

holders now put a smaller probability weight to the event which contributes a larger consumption

growth volatility, thus require to be compensated by smaller returns. As Ω increases, equity

premium tend to decrease since risk-sharing becomes more limited. Meanwhile, a decrease of

the public shock component weakens the persistence effect, which drives the equity premium up.

As a result, we observe a first downward and then slight upward trend of the equity premium.

At Ω = 1, the persistence effect of public shocks disappears. This is where the results of the two

cases coincide.

At the value of Ω = 1
3 , both levels of equity premium and risk free rate are the closest to their

empirical counterparts. Table 3 demonstrates that the advantage of dynamic contract models are

robust under persistent public shocks. The size and allocation of consumption risk remains the

same, since the persistent shock distribution only alters agents’ expectations. Cyclical features

of model generated moments are also robust.16

16Although adding history dependent private shock is interesting, complexities arise because the shareholder
lacks the common prior on the current period shock distribution, which is conditional on the previous privately
observed state realization θ−1. Worker may become better off by deviating from truth-telling in the current
period in order to send wrong message about the next period’s shock distribution. Fernandes and Phelan (2000)
show that temporary incentive compatibility constraint plus threat keeping constraint is equivalent to the inventive
compatibility condition. The threat keeping constraint is defined as U [Ct(z, θh), Lt(z, θh)] + βW ′t (z, θh|ph) ≥

U [Ct(z, θl), L̃t(z, θh)] + βŴt
′
(z, θl|ph). whereL̃t(z, θh) =

[
φ(z,θl)
φ(z,θh)

] 1
1−α

Lt(z, θl), and Ŵ ′t (z, θl|ph) is the promised

continuation utility to the worker if he lies under θh.
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5 Conclusion

Frictions in labor relations are important for understanding risks in the financial markets. In

this paper, I demonstrate the potential of modeling labor contracts in a dynamic general equi-

librium model to reconcile both financial market and business cycle facts. The model has shown

satisfactory quantitative performance in two dimensions. First, with consumption allocations

matched to CEX data, the model generates equity premium and risk-free rate comparable with

historical average. Second, regarding the cyclical features, this model successfully produces

procyclical consumption and labor input, countercyclical equity premium and labor share.

This study adds to the literature by connecting the financial markets with labor market

frictions. First, the model generates procyclical labor supply and countercyclical labor share,

which are considered challenging for standard production-based asset pricing models. Second, I

deviate from previous literature on perfect risk-sharing in labor relations by analyzing the limited

risk-sharing implications due to private information. Finally, workers in my model endogenously

choose not to participate in the financial markets because the labor contract has insured them

to the maximum extent against labor income risk. This rationale provides new insights on the

limited asset market participation.

88



Appendix

A Proofs

A.1 Proof of Lemma 4

We first show that bond holding is not a state variable in the recursive formulation. Suppose

for contradiction that the recursive problem has two state variables: W and B, where B is

the equilibrium holding of bonds traded between shareholders and workers. At period T , the

shareholder solves

ST (W,B) = max
{CT ,DT ,LT }

∑
zT

Π(zT )
∑
θT

P (θT )V [DT −B] (2.34)

subject to

(CT +B) + (DT −B) ≤ YT , (2.35)∑
zT

Π(zT )
∑
θT

P (θT )U [CT +B,LT ] ≥W, (IR) (2.36)

U [C(zT , θh) +B,L(zT , θh)] ≥ U [C(zT , θl) +B, L̃(zT , θh)], (IC) (2.37)

where L̃(zT , θh) =
[
φ(z,θl)
φ(z,θh)

] 1

1−α
L(zT , θl). Now fix W , ∀B̂ 6= B, the FOCs of this static problem

(2.34) stay the same. Hence, D̂T − B̂ = DT − B, ĈT + B̂ = CT + B, L̂ = L. Essentially,

ST (W,B) = ST (W, B̃) ,∀B, B̃. Therefore, bond holding B is not a state variable for problem

(2.34), i.e. bond holding will not affect the final consumption of both agents at period T .

Back to period T − 1, if bond holding in period T is irrelevant, then B′z,θ = 0. Then apply

the same argument as above, we conclude B is irrelevant as a state variable.

ST−1(W,B) = max
{CT−1,DT−1,LT−1,W ′}

∑
zT−1

Π(zT−1)
∑
θT−1

P (θT−1)[V (cz,θ −B +B′b) + βST (W ′)]

(2.38)

subject to

(DT−1 −B +B′b) + (CT−1 +B −B′b) ≤ YT−1 (2.39)∑
zT

Π(zT )
∑
θT

P (θT )
(
U [CT−1 +B −B′b, L] + βW ′

)
= W, (IR) (2.40)

U(Cz,h +B −B′z,hbz,h, Lz,h) + βW ′h > U(Cz,l +B −B′z,lbz,l, L̃z,l) + βW ′l , (IC) (2.41)

The Lemma is established by applying the same argument through all periods. Q.E.D.
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A.2 Proof of Lemma 5

By assumption 2, shareholders are all alike. Hence at equilibrium, we must have Bi = Bj , ∀i, j.

Because bonds are in zero net supply, equilibrium bond market clearing condition requires:∫
Bi,tdB = 0. Therefore, Bi = Bj = 0 ∀i, j.

Now suppose we don’t have the condition: Bi = Bj = 0 ∀i, j. Following the trading protocol

in Atkeson and Lucas (1992), at t = T type W0 investor solves the problem

ST (W = W0) = max
{C,D,L}

∑
zT

Π(zT )
∑
θT

P (θT )V [DT −B]

subject to the IR, IC, and feasibility constraints.

L =
∑

Π(zT )
∑

P (θT )V [DT −B]− λz,θ (CT +DT − YT ) +

η
{∑

Π(zT )
∑

P (θT )U(Cz,θ, Lz,θ)−W
}

+ δ
{
U [Cz,h, Lz,h]− u[Cz,l, L̃z,h]

}
. (2.42)

Bond market clearing must satisfy:
∑
B(W0) = 0.

Compared to the previous problem (2.34) when B = 0. The two problems will only coincide

if BT = 0; iterate backward, there must be Bt(W0) = 0, ∀t,W0. Hence, we establish that

any nontrivial bond holdings of shareholders will change the original labor contracts and the

equilibrium allocations. Q.E.D.

A.3 Proof of Proposition 10

Proposition 10.(i), 10.(ii), 10.(iii) are derived from the first order conditions with respect to Cz,θ,

Lz,θ and W ′z,θ in the first best problem.

Next we prove 10.(iv). Given the initial reservation utility for t = 1 is as W1, the first best

problem for the dynamic contract at t = 1, 2, . .T − 1 is:

St(Wt) = max
{Ct,Dt,Lt,W ′t}

∑
z

Πz

∑
θ

Pθ[V (Dz,θ) + βSt+1(W ′t)]

subject to feasibility and the individual rationality constraint. As W ′t(z, θ) is independent of

state (z, θ) for the i.i.d. shocks from 10.(iii), the IR constraint reduces to

∑
z

Πz

∑
θ

PθU [Ct, Lt] ≥Wt − βW ′t . (2.43)

Solving the first best dynamic contract problem backward, we obtain {Wt}Tt=1. Redefine:

W̄t = Wt − βWt+1, ∀t = 1, 2, ..., T − 1, and W̄T = WT . We get the equivalent first best static

90



contract problem ∀t = 1, 2, ..., T :

St(W ) = max
{Ct,Dt,Lt}

∑
z

Πz

∑
θ

PθV (Dz,θ)

subject to the feasibility constraint and an equivalent static IR constraint

∑
z

Πz

∑
θ

PθU [Ct, Lt] ≥ W̄t.

The equivalent static contract under persistent public shocks Under persistent public

shocks, mappings W → S(W ) is conditional on the previous public state realization z−1. The

first order condition shows S′/z(W
′) + η = 0, where η is the Lagrangian multiplier on the IR

constraint.

Given that S′(.) is monotonic, S′/z=H 6= S′/z=L and S′/z=H(W ′H,θ) = S′/z=L(W ′L,θ) = −η

jointly imply that W ′H,θ 6= W ′L,θ. The IR constraint is also conditional on previous public shock

realization. For

∑
z

Π(z/z−1 = H)
∑
θ

Pθ
{
U [Ct, Lt] + βW ′t

}
≥Wt(z−1 = H) = W ′t−1(H, θ); (2.44)

∑
z

Π(z/z−1 = L)
∑
θ

Pθ
{
U [Ct, Lt] + βW ′t

}
≥Wt(z−1 = L) = W ′t−1(L, θ). (2.45)

Hence the conditional IR constraint reduces to

∑
z

Π(z/z−1 = H)
∑
θ

PθU [Ct, Lt] ≥Wt(z−1 = H)− β
∑
z

Π(z/z−1 = H)
∑
θ

PθW
′
t ; (2.46)

∑
z

Π(z/z−1 = H)
∑
θ

PθU [Ct, Lt] ≥Wt(z−1 = L)− β
∑
z

Π(z/z−1 = H)
∑
θ

PθW
′
t . (2.47)

Redefine

W̄t/zt−1 = Wt/zt−1 − β
∑
z

Π(z/z−1)
∑
θ

PθW
′
t , ∀t = 1, 2, ..., T, (2.48)

where W1/z0 = w1 = w0, ΠH = ΠL = Π at t = 1 (with no prior) and W ′T (z, θ) = 0. Hence,

by defining the conditional static reservation utility W̄t/zt−1, we construct the equivalent static

first best problem, of which the equilibrium allocation and asset returns coincide with those of

the dynamic first best contract problem. Q.E.D.
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B Numerical Procedure

To solve the model numerically, we adopt the numerical method as in Ales and Maziero (2010).17

With the recursive formulation of the contract problem, we break the optimization algorithm

into end period T problem and period T − 1 problem, and solve it using backward induction.

1. Solve the dynamic contracting problem

(a) In each period, the state variable W (promised utility) is discretized on the appro-

priate time-variant support interval with grid step 0.05. Given a set of first order

equations, we solve the first best problem using Newton’s method. Setting the first

best solution as the initial guess for the corresponding second best problem greatly

helps to improve the computation efficiency and convergence stability.

(b) Having solved for the optimal policy function, we compute the value function (ex-

pected utility) of the shareholder and its numerical derivatives. The first order deriva-

tives are computed using two-sided difference formula, second derivatives using a

three-point formula. We repeat the above procedure for period t problem except that

the state-contingent promised continuation utility W ′(z, θ) is added to the system of

first order equations.

(c) As the mappings from W to S(W ) and its derivatives are well behaved in our setting

(see Figure 10), we use cubic spline interpolation as the numerical approximation

over the interval of state variable support. The entire dynamic first best and second

best mappings are solved by integrating the procedure back to t = 1.

2. Simulate the allocations

(a) Given the period value functions computed above, we now solve the equilibrium

allocation forward from t = 1, 2, , , T given the initial reservation utility W0 and a

state realization history (zT , θT ).

(b) W0 is the promised utility in period t = 1 problem. Pick the promised continuation

utility according to the state realization (z1, θ1) as the promised utility for period

t = 2, and repeat till t = T . This procedure gives us the sequences of the worker’s

required labor input and consumption streams of both agents in a dynamic contract.

17I extend their framework to a risk averse shareholder. As a result, I solve for the maximization of expected
utility rather than cost minimization.
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3. Solve the equivalent static contract problem.

(a) Take the sequence of promised utility solved in the dynamic contract problem {Wt}Tt=1

and {W ′t}T−1
t=1 and transform to the redefined static promised utility: {W t}Tt=1 =

{Wt − βW ′t}Tt=1, with W ′T = 0.

(b) Take W t as promised utility for each period t and use the same procedure as in Step

1, period T problem, we get the sequences of the worker’s required labor input and

consumption streams of both agents in the equivalent static contract.

4. Solve the asset prices.

(a) With a finite horizon setting tailored to accommodate the dynamic labor contract,

the price of risky asset at time t depends on the shareholder’s consumption stream

from the time t node to all the following possible realizations till end period T . We

solve for the contract in all possible state realizations in the event tree, which amounts

to a number of 4T sets of equilibrium allocations.

(b) Start from the end of the event tree, we calculate period T − 1 asset price with the

Euler equation (we have 4T−1of them).

(c) Iterate backward till t = 1, we get all the asset prices at each node.

(d) Picking the sequence of realized asset prices according to the specific state realization

(zT , θT ) gives equilibrium prices and returns of risky asset.

(e) Similar procedures are applied to the pricing of bonds.
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Chapter 3

A Labor Capital Asset Pricing
Model

1 Introduction

Dynamics in the labor market are an integral component of business cycles. More than 10

percent of U.S. workers separate from their employers each quarter. Some move directly to a

new job with a different employer, some become unemployed and some exit the labor force.

These large flows are costly for firms, because they need to spend resources to search for and

train new employees.1

Building on the seminal contributions of Diamond (1982), Mortensen (1982), and Pissarides

(1985), we show that labor search frictions are an important determinant of the cross-section

of equity returns. In search models, firms post vacancies to attract workers, and unemployed

workers look for jobs. The likelihood of matching a worker with a vacant job is determined

endogenously and depends on the congestion of the labor market, which is measured as the

ratio of vacant positions to unemployed workers. This ratio, termed labor market tightness, is

the key variable of our analysis. Intuitively, recruiting new workers becomes more costly when

this ratio increases.

We begin by studying the empirical relation between labor market conditions and the cross-

section of equity returns. We measure aggregate labor market tightness as the ratio of the

monthly vacancy index published by the Conference Board to the unemployed population (cf.

Shimer (2005)). To measure the sensitivity of firm value to labor market conditions, we estimate

loadings of equity returns on log changes in labor market tightness controlling for the market

return. We use rolling firm-level regressions based on three years of monthly data to allow for

time variation in the loadings. Using the panel of U.S. stock returns from 1951 to 2012, we show

1According to the U.S. Department of Labor, the cost of replacing a worker amounts to one-third of a new
hire’s annual salary. Direct costs include advertising, sign-on bonuses, headhunter fees and overtime. Indirect
costs include recruitment, selection, training and decreased productivity while current employees pick up the slack.
Similar evidence is contained in Blatter, Muehlemann, and Schenker (2012). Davis, Faberman, and Haltiwanger
(2006) provide a review of aggregate labor market statistics.

94



that loadings on changes in the labor market tightness robustly and negatively predict future

stock returns in the cross-section. Sorting stocks into deciles on the estimated loadings, we find

an average spread in future returns of firms in the low- and high-loading portfolios of 6% per

year. We emphasize that this return differential is not due to mispricing. While it cannot be

attributed to differences in loadings on commonly considered risk factors, such as those of the

CAPM or the Fama and French (1993) three-factor model, it arises rationally in our theoretical

model due to risk associated with labor market frictions as we describe in detail below.

To ensure that the relation between labor search frictions and future stock returns is not

attributable to firm characteristics that are known to relate to future returns, we run Fama-

MacBeth (1973) regressions of stock returns on lagged estimated loadings and other firm-level

attributes. We include conventionally used control variables such as a firm’s market capitaliza-

tion and book-to-market ratio as well as recently documented determinants of the cross-section

of stock returns that may potentially correlate with labor market tightness loadings, such as

asset growth studied by Cooper, Gulen, and Schill (2008) and hiring rates investigated by Belo,

Lin, and Bazdresch (2014). The Fama-MacBeth analysis confirms the robustness of results ob-

tained in portfolio sorts. The coefficients on labor market tightness loadings are negative and

statistically significant in all regression specifications. The magnitude of the coefficients suggests

that the relation is economically important: For a one standard deviation increase in loadings,

future annual returns decline by approximately 1.5%.

Our results hold not only when controlling for firm-level characteristics as in Fama-MacBeth

regressions but also after accounting for macro variables. For example, labor market tightness

and industrial production are correlated and highly procyclical. However, we show that loadings

on labor market tightness contain information about future returns, while loadings on industrial

production do not. We also find that, unlike many cross-sectional predictors of equity returns

that are priced mainly within industries, labor market tightness loadings contain information

about future returns when considered both within and across industries. Additional robustness

tests confirm our results; for example, excluding micro stocks has a negligible effect on the return

spread across labor market tightness portfolios.

To interpret the empirical findings, we propose a labor market augmented capital asset pric-

ing model. Building on the search and matching framework pioneered by Diamond-Mortensen-

Pissarides, we develop a partial equilibrium labor search model and study its implications for

firm employment policies and stock returns. For tractability, we do not model the supply of

labor as an optimal household decision; instead we assume an exogenous pricing kernel. Our

model features a cross-section of firms with heterogeneity in their idiosyncratic profitability

shocks and employment levels. Given the pricing kernel, firms maximize their value either by

posting vacancies to recruit workers or by firing workers to downsize. Both firm policies are

costly at proportional rates.

In the model, the fraction of successfully filled vacancies depends on labor market conditions
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as measured by labor market tightness (the ratio of vacant positions to unemployed workers).

As more firms post vacancies, the likelihood that vacant positions are filled declines, thereby

increasing the costs to hire new workers. Since labor market tightness is a function of all firms’

vacancy policies, it has to be consistent with individual firm’s policies and is thus determined

as an equilibrium outcome. In equilibrium, the matching of unemployed workers and firms is

imperfect which results in both equilibrium unemployment and rents. These rents are shared

between each firm and its workforce according to a Nash bargaining wage rate.

Our model is driven by two aggregate shocks, both of which are priced: a productivity shock

and a shock to the efficiency of the matching technology, which was first studied by Andolfatto

(1996). The literature has shown that variation in matching efficiency can arise for many reasons,

and we are agnostic about the exact source. For example, Pissarides (2011) emphasizes that

matching efficiency captures the mismatch between the skill requirements of jobs and the skill

mix of the unemployed, the differences in geographical location between jobs and unemployed,

and the institutional structure of an economy with regard to the transmission of information

about jobs.

Aggregate productivity and matching efficiency are not directly observable in the data. To

quantitatively compare the model with the data, we map the aggregate productivity and match-

ing efficiency shocks into the market return and labor market tightness, which are observable

in the data. As a result, we show that expected excess returns obey a two-factor structure in

the market return and labor market tightness. We call the resulting model the Labor Capital

Asset Pricing Model. Importantly, a one-factor CAPM does not span all risks and thus implies

mispricing, in line with the data.

Our model replicates the negative relation between loadings on labor market tightness and

expected returns. Intuitively, firm policies are driven by opposing cash flow and discount rate

effects. On the one hand, positive shocks to matching efficiency lower marginal hiring costs.

This cash flow channel implies an increase in optimal vacancies postings. On the other hand,

positive shocks to matching efficiency are associated with an increase in discount rates. This

assumption is consistent with the general equilibrium view that positive efficiency shocks lead to

lower consumption as firms incur higher total hiring costs. This discount rate channel implies a

reduction in the present value of job creation, and hence a decrease in optimal vacancy postings.

As an equilibrium outcome of the labor market, the cash flow channel dominates the discount

rate effect at the aggregate level. Thus, labor market tightness is positively related to matching

efficiency shocks, so that loadings on labor market tightness are positively related to return

exposures to matching efficiency shocks.

The cross-sectional differences in returns arise from frictions and heterogeneity in idiosyn-

cratic productivity. Due to proportional hiring and firing costs, optimal firm policies exhibit

regions of inactivity, where firms neither hire nor fire workers. Some firms are hit by low id-

iosyncratic productivity shocks so that hiring is not optimal when matching efficiency is high.
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For these firms, the discount rate channel dominates the cash flow channel, thereby depressing

valuations. Their dividends are reduced not only by low idiosyncratic productivity shocks but

also by higher wages, arising from tighter labor markets, and by firing costs. Consequently,

these firms have countercyclical dividends and valuations with respect to matching efficiency

shocks, which renders them more risky. Since labor market tightness loadings and loadings on

matching efficiency are positively related, our model can replicate the negative relation between

labor market tightness loadings and expected returns.

This paper contributes to the macroeconomic literature by building on the canonical search

and matching model of Mortensen and Pissarides (1994). The importance of labor market

dynamics for the business cycle has long been recognized, e.g., Merz (1995) and Andolfatto

(1996). While the standard model assumes a representative firm, firm heterogeneity has been

considered by Cooper, Haltiwanger, and Willis (2007), Mortensen (2010), Elsby and Michaels

(2013), and Fujita and Nakajima (2013). These papers have similar model features to ours but

do not study asset prices.

Our paper also adds to the production-based asset pricing literature pioneered by Cochrane

(1991) and Jermann (1998). Starting with Berk, Green, and Naik (1999), a large literature

studies cross-sectional asset pricing implications of firm-level real investment decisions (e.g.,

Gomes, Kogan, and Zhang (2003), Carlson, Fisher, and Giammarino (2004), Zhang (2005), and

Cooper (2006)). More closely related are Papanikolaou (2011) and Kogan and Papanikolaou

(2014, 2013) who highlight that investment-specific shocks are related to firm-level risk premia.

We differ by studying frictions in the labor market and specifically shocks to the efficiency of

the matching technology.

The impact of labor market frictions on the aggregate stock market has been analyzed by

Danthine and Donaldson (2002), Merz and Yashiv (2007), Lochstoer and Bhamra (2009), and

Kuehn, Petrosky-Nadeau, and Zhang (2012).2 A related line of literature links cross-sectional

asset prices to labor-related firm characteristics. Gourio (2007), Chen, Kacperczyk, and Ortiz-

Molina (2011), and Favilukis and Lin (2012) consider labor operating leverage arising from rigid

wages; Donangelo (2014) focuses on labor mobility; Palacios (2013) studies labor intensity as

measured by the ratio of wages to revenue; Ochoa (2013) investigates the risk implications of

skilled labor; and Eisfeldt and Papanikolaou (2013) study organizational capital embedded in

specialized labor input. We differ by exploring the impact of search costs on cross-sectional asset

prices.

Closest to our paper is Belo, Lin, and Bazdresch (2014), who also emphasize that firms’ hiring

policies affect cross-sectional risk premia. They find that hiring growth rates predict returns

in the data and explain this finding with a neoclassical Q-theory model with labor and capital

adjustment costs. In contrast, we base our analysis on conditional risk loadings rather than firm-

2Whereas we consider labor market frictions, human capital risk is studied by Jagannathan and Wang (1996),
Berk and Walden (2013), and Eiling (2013).
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level characteristics, and emphasize the risk implications arising in a partial-equilibrium labor

search model. Recruiting workers in congested labor market is costly and firms’ sensitivity to

the tightness of the labor markets affects their valuation.

2 Empirical Results

In this section, we document a robust negative relation between stock return loadings on changes

in labor market tightness and future equity returns. We establish this result by studying port-

folios sorted by loadings on labor market tightness and confirm it using Fama-MacBeth (1973)

regressions. We also show that these loadings forecast industry returns.

2.1 Data

Our sample includes all common stocks (share code of 10 or 11) listed on NYSE, AMEX, and

Nasdaq (exchange code of 1, 2, or 3) available from CRSP. Availability of labor market data

restricts our analysis to the 1951 to 2012 period. Fama-MacBeth regressions additionally require

Compustat data on book equity and other firm-level attributes. Consequently, the analysis

based on those data is conducted for the 1960 to 2012 sample. In Appendix A, we list the exact

formulas for firm characteristics used in our tests.

2.2 Labor Market Tightness

We obtain the monthly labor force participation and unemployment rates from the Current

Population Survey of the Bureau of Labor Statistics for the years 1951 to 2012. The traditionally

used measure of vacancies has been the Conference Board’s Help Wanted Index, which was based

on advertisements in 51 major newspapers. In 2005, Conference Board replaced it with Help

Wanted Online, recognizing the importance of online marketing. We follow Barnichon (2010),

who combines the print and online data to create a composite vacancy index starting in 1995.3

We define labor market tightness as the ratio of aggregate vacancy postings to unemployed

workers. The pool of unemployed workers is the product of the unemployment rate and the

labor force participation rate (LFPR). Hence, labor market tightness is given by

θt =
Vacancy Indext

Unemployment Ratet × LFPRt
. (3.1)

Figure 1 plots the monthly time series of θt and its components. Labor market tightness is

strongly procyclical and persistent as in Shimer (2005). The cyclical nature of θt is driven

by the pro-cyclicality of vacancies, its numerator, and the counter-cyclicality of the number of

unemployed workers, its denominator.

3The data are available on his website, http://sites.google.com/site/regisbarnichon/.
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We define the labor market tightness factor in month t as the change in logs of the vacancy-

unemployment ratio θt:

ϑt = log(θt)− log(θt−1). (3.2)

Table 1 reports the time series properties of ϑt, its components, and other macro variables.

We consider changes in the Industrial Production Index (IP) from the Board of Governors,

changes in the Consumer Price Index (CPI) from the Bureau of Labor Statistics, the dividend

yield of the S&P 500 Index (DY) as computed by Fama and French (1988), the term spread

(TS) between 10-year and 3-month Treasury constant maturity yields, and the default spread

(DS) between Moody’s Baa and Aaa corporate bond yields.

The labor market tightness factor is more volatile than any of the considered variables. As

expected, it is strongly correlated with its components. The factor is also highly correlated

with the default spread and changes in industrial production, which motivates us to conduct

robustness tests (described below) to confirm that our empirical results are driven by changes

in labor market tightness rather than by these other variables.

To study the relation between stock return sensitivity to changes in labor market tightness

and future equity returns, we estimate loadings for each stock from a two-factor model based

on the market excess return, ReM,t, and labor market tightness, ϑt. At the end of each month τ ,

we run rolling regressions of the form

Rei,t = αi,τ + βMi,τR
e
M,t + βθi,τϑt + εi,t, (3.3)

where Rei,t denotes the excess return on stock i in month t ∈ {τ − 35, τ}. To obtain meaningful

risk loadings at the end of month τ , we require each stock to have non-missing returns in at

least 24 of the last 36 months.

2.3 Portfolio Sorts

At the end of each month τ , we rank stocks into deciles by loadings on labor market tightness

βθi,τ , computed from regressions (3.3). We skip a month to allow information on the vacancy

and unemployment rates to become publicly available and hold the resulting ten value-weighted

portfolios without rebalancing for one year (τ + 2 through τ + 13, inclusive). Consequently,

in month τ each decile portfolio contains stocks that were added to that decile at the end of

months τ−13 through τ−2. This design is similar to the approach used to construct momentum

portfolios and reduces noise due to seasonalities. We show robustness to alternative portfolio

formation methods in the next section.

Table 2 presents average firm characteristics of the resulting decile portfolios. Average

loadings on labor market tightness (βθ) range from −0.80 for the bottom decile to 0.91 for

the top decile. Firms in the high and low groups are on average smaller with higher market

betas than firms in the other deciles, as is often the case when firms are sorted on estimated
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loadings. No strong relation emerges between loadings on labor market tightness and any of the

other considered characteristics: book-to-market ratios (BM), stock return run-ups (RU), asset

growth rates (AG), investment rates (IR), and hiring rates (HN). The lack of a relation between

loadings on labor market tightness and hiring rates is of particular interest, as it provides the

first evidence that our empirical results are distinct from those of Belo, Lin, and Bazdresch

(2014).

For each decile portfolio, we obtain monthly time series of returns from January 1954 until

December 2012. Table 3 summarizes returns, alphas, and betas of each decile and of the portfolio

that is long the decile with low loadings and short the decile with high loadings on labor market

tightness. To control for differences in risk across deciles, we present unconditional alphas from

the CAPM, Fama and French (1993) 3-factor model, and Carhart (1997) 4-factor model. We

account for possible time variation in betas and risk premiums by calculating conditional alphas

following either Ferson and Schadt (1996) (FS) or Boguth, Carlson, Fisher, and Simutin (2011)

(BCFS).4 The last four columns of the table show market (MKT), value (HML), size (SMB),

and momentum (UMD) betas of each decile. Firms in the high decile have somewhat larger size

betas and lower momentum loadings.

Both raw and risk-adjusted returns of the ten portfolios indicate a strong negative relation

between loadings on the labor market tightness factor and future stock performance. Firms in

the low βθ decile earn the highest average return, 1.12% monthly, whereas the high βθ decile

performs most poorly, generating on average just 0.65% return per month. The difference in

performance of the two deciles, at 0.47%, is economically large and statistically significant (t-

statistic of 3.41). The corresponding differences in both unconditional and conditional alphas

are similarly striking, ranging from 0.41% (t-statistic of 2.99) for Carhart 4-factor alphas to

0.52% (t-statistic of 3.83) for Fama-French 3-factor alphas. Conditional alphas are similar in

magnitude to unconditional ones, suggesting negligible time variation in betas.

Results of portfolio sorts thus strongly suggest that loadings on labor market tightness are

an important predictor of future returns. To evaluate robustness of this relation over time,

we plot the cumulative returns (Panel A) and monthly returns (Panel B) of the long-short βθ

portfolio in Figure 2. The cumulative return steadily increases throughout the sample period,

indicating that the relation between loadings on labor market tightness and future stock returns

persists over time. Table 4 presents summary statistics for returns on this portfolio and for

market, value, size, and momentum factors. The long-short labor market tightness portfolio is

4More specifically, we calculate conditional alphas as intercepts from regression

Rej,t = αj + βj
[

1 Zt−1

]′
ReM,t + ej,τ , (3.4)

where j indexes portfolios, t indexes months, βj is a 1× (k+ 1) parameter vector, and Zt−1 is a 1× k instrument
vector. Ferson and Schadt (1996) conditional alpha is computed using as instruments demeaned dividend yield,
term spread, T-bill rate, and default spread. Boguth, Carlson, Fisher, and Simutin (2011) conditional alpha is
computed by additionally including as instruments lagged 6- and 36-month market returns and average lagged 6-
and 36-month betas of the portfolios.
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as volatile as the market and momentum factors and achieves a Sharpe ratio (0.13) comparable

to that of the market and the value factors.

We emphasize that although the difference in returns of firms with low and high loadings

on labor market tightness cannot be explained by the commonly considered factor models,

this difference should not be interpreted as mispricing. It arises rationally in our theoretical

framework as compensation for risk associated with labor market frictions. The commonly used

factor models such as the CAPM do not capture this type of risk. Consequently, alphas from

such models are different for firms with different loadings on labor market tightness.

2.4 Robustness of Portfolio Sorts

We now demonstrate robustness of the relation between stock return loadings on changes in labor

market tightness and future equity returns. We use alternative timings of portfolio formation,

exclude micro cap stocks, consider modified definitions of the labor market tightness factor, and

change regression (3.3) to also include size, value, and momentum factors. Table 5 summarizes

the results of the robustness tests.

The portfolio formation design employed in the previous section is motivated by investment

strategies such as momentum. It involves holding 12 overlapping portfolios and reduces noise

due to seasonalities. We consider two alternatives: forming portfolios only once a year (Panel A)

and holding the portfolios for one month (Panel B). Both alternatives ensure that no portfolios

overlap. Panels A and B of Table 5 show that each of these approaches results in even more

dramatic differences in future performance of low and high βθ deciles. For example, the difference

in average returns of the low and high deciles reaches 0.55% monthly when portfolios are formed

once a year, compared to 0.47% reported in Table 3.

We next explore the sensitivity of the results to the length of time between calculating βθ and

forming portfolios. Our base case results in Table 3 are obtained by assuming that all variables

needed to compute labor market tightness (vacancy index, unemployment rate, and labor force

participation rate) are publicly available within a month. The assumption is well-justified in

current markets, where the data for any month are typically available within days after the end

of that month. To allow for a slower dissemination of data in the earlier sample, we consider a

two-month waiting period. Panel C of Table 5 shows that the results are not sensitive to this

change in methodology. The difference in future returns of stocks with low and high loadings

on labor market tightness reaches 0.47% per month.

To account for the possibility that the negative relation between stock return loadings on

changes in labor market tightness and future equity returns is driven by stocks with extreme

loadings, we confirm robustness to sorting firms into quintile rather than decile portfolios. Panel

D of Table 5 shows that the difference in future returns of quintiles with low and high loadings

is economically and statistically significant.

In Panel E of Table 5 we evaluate robustness to excluding microcaps, which we define as
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stocks with market equity below the 20th NYSE percentile. Microcaps on average represent just

3% of the total market capitalization of all stocks listed on NYSE, Amex, and Nasdaq, but they

account for approximately 60% of the total number of stocks. Excluding these stocks from the

sample does not meaningfully impact the results.5

We also evaluate robustness to two alternative definitions of the labor market tightness

factor. Table 1 shows that ϑt as defined in equation (3.2) is correlated with changes in industrial

production and other macro variables. To ensure that the relation between stock return loadings

on the labor market tightness factor and future equity returns is not driven by these variables,

our first alternative specification involves re-defining the labor market tightness factor as the

residual ϑ̃t from a time-series regression

ϑt = γ0 + γ1IPt + γ2CPIt + γ3DYt + γ4TBt + γ5TSt + γ6DSt + ϑ̃t, (3.5)

where IPt, CPIt, DYt, TBt, TSt, and DSt are changes in industrial production, changes in the

consumer price index, the dividend yield, the T-bill rate, the term spread, and the default spread,

respectively. For our second alternative definition, we compute the labor market tightness factor

as the residual from an ARMA(1,1) specification.

The disadvantage of both of these approaches is that they introduce a look-ahead bias as

the entire sample is used to estimate the labor market tightness factor. Yet, the first alternative

definition allows us to focus on the component of labor market tightness that is unrelated to

macro variables, which may have non-zero prices of risk. The second definition allows us to focus

on the unpredictable component of labor market tightness. Panels F and G of Table 5 show

that our results are little affected by the changes in the definition of the labor market tightness

factor. The difference in future raw and risk-adjusted returns of portfolios with low and high

loadings on the factor are always statistically significant and economically important, ranging

between 0.41% and 0.51% monthly.

In Table 3, we compute alphas from multi-factor models to ensure that the relation between

loadings on labor market tightness and future equity returns is not driven by differences in

loadings on known risk factors. For robustness, we also consider modifying regression (3.3) to

include size, value and momentum factors. Panel H of Table 5 shows that our results are not

sensitive to this alternative method for estimating βθ.

We provide additional robustness tests in the Internet Appendix. In Tables IA.I and IA.II,

we control for the liquidity and profitability factors, and summarize post-ranking βθ loadings of

the decile portfolios. We also evaluate the relation between loadings on labor market tightness

and future equity returns conditional on stocks’ market betas βM . Table IA.III shows that,

irrespective of whether we consider independent or dependent sorts, stocks with low loadings on

labor market tightness significantly outperform stocks with high loadings.

5Untabulated results also confirm robustness to imposing a minimum price filter and to excluding Nasdaq-listed
stocks.
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2.5 Fama-MacBeth Regressions

The empirical evidence from portfolio sorts provides a strong indication of a negative relation

between stock return loadings on changes in labor market tightness and subsequent equity

returns. However, such univariate analysis does not account for other firm-level characteristics

that have been shown to relate to future returns. We compare the loadings on the labor market

tightness factor to other well-established determinants of the cross-section of stock returns. Our

goal is to evaluate whether the ability of βθ to forecast returns is subsumed by other firm-level

characteristics. To this end, we run annual Fama-MacBeth (1973) regressions

Rei,T+1 = γ0
T + γ1

Tβ
θ
i,τ +

K∑
j=1

γjTX
j
i,T + ηi,T , (3.6)

where Rei,T+1 is stock i excess return from July of year T to June of year T +1, βθi,τ is the loading

from regressions (3.3) with τ corresponding to May of year T , and Xi,T are K control variables

all measured prior to the end of June of year T . The timing of the variables’ measurements in

the regression follows the widely accepted convention of Fama and French (1992).

We include in the Fama-MacBeth regressions commonly considered control variables such as

the log of a firm’s market capitalization (ME), the log of the book-to-market ratio (BM), and

the return run-up (RU) (Fama and French (1992) and Jegadeesh and Titman (1993)). We also

consider other recently documented determinants of the cross-section of stock returns, including

the investment rate (IK) of Titman, Wei, and Xie (2004), asset growth rate (AG) of Cooper,

Gulen, and Schill (2008), and the labor hiring rate (HN) of Belo, Lin, and Bazdresch (2014)

and Titman, Wei, and Xie (2004). We winsorize all independent variables cross-sectionally at

1% and 99%.

Table 6 summarizes the results of the Fama-MacBeth regressions. The coefficient on βθ is

negative and statistically significant in each considered specification, even after accounting for

other predictors of the cross-section of equity returns. The magnitude of the coefficient implies

that for a one standard deviation increase in βθ (0.49), subsequent annual returns decline by

approximately 1.5%. Average loadings of firms in the bottom and top decile portfolios are

3.5 standard deviations apart, suggesting that the difference in future stock returns of the two

groups exceeds 5% per year, in line with the results presented in Table 3.

Changes in labor market tightness are highly correlated with its components and with

changes in industrial production (see Table 1). To ensure that our results are not driven by

these macro variables, we estimate loadings from a two-factor regression of stock excess returns

on market excess returns and log changes in either labor force participation rate, unemployment

rate, vacancy index, or industrial production. Tables IA.IV and IA.V of the Internet Appendix

show that none of the considered loadings are robustly related to future equity returns, sug-

gesting that the relation between loadings on the labor market tightness factor and future stock

returns is not driven by one particular component of the labor market tightness or by changes
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in industrial production.

2.6 Industry-Level Analysis

The ability of commonly considered firm characteristics to predict stock returns is known to

be stronger when these characteristics are computed relative to industry averages. In other

words, many determinants of the cross-section of stock returns are priced within rather than

across industries (e.g., Cohen and Polk (1998), Asness, Burt, Ross, and Stevens (2000), Simutin

(2010), Novy-Marx (2011), and Eisfeldt and Papanikolaou (2013)). We now show that unlike

many other cross-sectional predictors of stock returns, βθ contains more information about

future returns when considered across rather than within industries. Our goal in this section is

to understand how much of the negative relation between βθ and future stock returns is due to

industry-specific versus firm-specific (non-industry) components.

We begin our analysis by modifying the portfolio assignment methodology used above to

ensure that all βθ decile portfolios have similar industry characteristics. To achieve this, we

sort firms into deciles within each of the 48 industries as defined in Fama and French (1997)

and then aggregate firms across industries to obtain ten industry-neutral portfolios. Panel A of

Table 7 shows that the differences in future performance of firms with low and high loadings on

the labor market tightness factor are slightly muted relative to those in Table 3. For example,

the return of the long-short βθ portfolio reaches 0.37% monthly when portfolio assignment is

done within industries, whereas the corresponding figure is 0.47% when industry composition is

allowed to vary across deciles.

The larger difference in future performance of low and high βθ stocks when we allow for

industry heterogeneity across decile portfolios is particularly interesting given that many known

premiums are largely intra-industry phenomena. This result suggests that the labor market

tightness factor may be priced in the cross-section of industry portfolios. To investigate this

conjecture, we assign 48 value-weighted industry portfolios into deciles on the basis of their

loadings on the labor market tightness factor and study future returns of the resulting decile

portfolios.6 Panel B of Table 7 shows that industries with low loadings outperform industries

with high loadings by 0.34% return per month.

3 Model

The goal of this section is to provide an economic model that explains the empirical link between

labor market frictions and the cross-section of equity returns. To this end, we solve a partial

equilibrium labor market model and study its implications for stock returns. For tractability

we do not model endogenous labor supply decisions from households; instead we assume an

exogenous pricing kernel.

6Industry portfolios are from Ken French’s data library. Table IA.VI of the Internet Appendix provides
summary statistics for the industry portfolios.
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3.1 Revenue

To focus on labor frictions, we abstract from capital accumulation and investment frictions and

assume that the only input to production is labor. Firms generate revenue, Yi,t, according to a

decreasing returns to scale production function

Yi,t = ext+zi,tNα
i,t, (3.7)

where α denotes the labor share of production and Ni,t is the size of the firm’s workforce. Both

the aggregate productivity shock xt and the idiosyncratic productivity shocks zi,t follow AR(1)

processes

xt = ρxxt−1 + σxε
x
t , (3.8)

zi,t = ρzzi,t−1 + σzε
z
i,t, (3.9)

where εxt , εzi,t are standard normal i.i.d. innovations. Firm-specific shocks are independent across

firms, and from aggregate shocks.

The dynamics of firms’ workforce are determined by optimal hiring and firing policies. Firms

can expand the workforce by posting vacancies, Vi,t, to attract unemployed workers. The key

friction of labor markets is that not all posted vacancies are filled in a given period. Instead,

the rate q at which vacancies are filled is endogenously determined in equilibrium and depends

on the tightness of the labor market, θt, and an exogenous efficiency shock, pt, to the matching

technology. Firms can also downsize by laying off Fi,t workers. Before hiring and firing takes

place, a constant fraction s of workers quit voluntarily. Taken together, this implies the following

law of motion for the firm workforce size

Ni,t+1 = (1− s)Ni,t + q(θt, pt)Vi,t − Fi,t. (3.10)

The matching efficiency shock pt follows an AR(1) process with autocorrelation ρp and i.i.d.

normal innovations εpt :

pt = ρppt−1 + σpε
p
t . (3.11)

Matching efficiency innovations are uncorrelated with aggregate productivity innovations. The

matching efficiency shock is common across firms and thus represents aggregate risk. This shock

was first studied by Andolfatto (1996) who argues that it can be interpreted as a reallocative

shock, distinct from disturbances that affect production technologies. In search models, the

efficiency of the economy’s allocative mechanism is captured by the technological properties

of the aggregate matching function. Changes in this function can be thought of as reflecting

mismatches in the labor market between the skills, geographical location, demography or other

dimensions of unemployed workers and job openings across sectors, thereby causing a shift in

the so-called aggregate Beveridge curve.
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Several recent studies empirically analyze sources of changes in matching efficiency. Using

micro-data Barnichon and Figura (2015) show that fluctuations in matching efficiency can be

related to the composition of the unemployment pool, such as a rise in the share of long-term

unemployed or fluctuations in participation due to demographic factors, and to dispersion in

labor market conditions; Herz and van Rens (2015) and Sahin, Song, Topa, and Violante (2014)

highlight the role of skill and occupational mismatch between jobs and workers; Sterk (2015)

focuses on geographical mismatch exacerbated by house price movements; and Fujita (2011)

analyzes the role of reduced worker search intensity due to extended unemployment benefits.

3.2 Matching

Labor market tightness affects how easily vacant positions can be filled. It is a function of aggre-

gate vacancy postings and employment. The aggregate number of vacancies, V̄ , and aggregate

employment, N̄ , are simply the sums of all firm-level vacancies and employment, respectively,

that is,

V̄t =

∫
Vi,tdµt N̄t =

∫
Ni,tdµt, (3.12)

where µt denotes the time-varying distribution of firms over the firm-level state space (zi,t, Ni,t).

The mass of firms is normalized to one. The labor force with mass L is defined as the sum

of employed and unemployed. Hence, the unemployment rate is given by (L− N̄)/L. The mass

of the labor force searching for a job includes workers who have just voluntarily quit, sNi,t, and

is given by

Ūt = L− (1− s)N̄t. (3.13)

Labor market tightness can now be defined as the ratio of aggregate vacancies to the mass of

the labor force who are searching for a job, that is, θt = V̄t/Ūt.

Following den Haan, Ramey, and Watson (2000), vacancies are filled according to a constant

returns to scale matching function

M(Ūt, V̄t, pt) =
eptŪtV̄t

(Ū ξt + V̄ ξ
t )1/ξ

, (3.14)

and the rate q at which vacancies are filled per unit of time can be computed from

q(θt, pt) =
M(Ūt, V̄t, pt)

V̄t
= ept

(
1 + θξt

)−1/ξ
. (3.15)

The matching rate is decreasing in θ, meaning that an increase in the relative scarcity of unem-

ployed workers relative to job vacancies makes it more difficult for firms to fill a vacancy. It is

increasing in p, as a positive efficiency shock makes finding a worker easier.
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3.3 Wages

In equilibrium, the matching of unemployed workers and firms is imperfect, which results in both

equilibrium unemployment and rents. These rents are shared between each firm and its workforce

according to a Nash bargaining wage rate. Following Stole and Zwiebel (1996), we assume Nash

bargaining wages in multi-worker firms with decreasing returns to scale production technology.

Specifically, firms renegotiate wages every period with its workforce based on individual (and

not collective) Nash bargaining.

In the bargaining process, workers have bargaining weight η ∈ (0, 1). If workers decide not to

work, they receive unemployment benefits b, which represent the value of their outside option.

They are also rewarded the saving of hiring costs that firms enjoy when a job position is filled,

κhθt, where κh is the unit cost of vacancy postings. As a result, wages are given by

wi,t = η

[
α

1− η(1− α)

Yi,t
Ni,t

+ κhθt

]
+ (1− η)b. (3.16)

Firms benefit from hiring the marginal worker not only through an increase in output by the

marginal product of labor but also through a decrease in wage payment to its current workers,

Yi,t/Ni,t. The term α/(1 − η(1 − α)) represents a reduction in wages coming from decreasing

returns to scale. At the same time, workers can extract higher wages from firms when the labor

market is tighter. Unemployment benefits provide a floor to wages.7

3.4 Firm Value

We do not model the supply side of labor coming form households. This would require to solve

a full general equilibrium model. Instead, following Berk, Green, and Naik (1999), we specify

an exogenous pricing kernel and assume that both the aggregate productivity shock xt and

efficiency shock pt are priced. The log of the pricing kernel is given by

lnMt+1 = lnβ − γx(σxε
x
t+1 + φxt)− γp,t(σpεpt+1 + φpt), (3.17)

where β is the time discount rate, γx the constant price of risk of aggregate productivity shocks,

γp,t = γp,0e
γp,1pt the time-varying price of risk of efficiency shocks, and φ measures the sensitivity

of interest rates with respect to aggregate shocks.

The objective of firms is to maximize their value Si,t either by posting vacancies Vi,t to hire

workers or by firing Fi,t workers to downsize. Both adjustments are costly at rate κh for hiring

and κf for firing. Firms also pay fixed operating costs f . Dividends to shareholders are given

by revenues net of operating, hiring, firing, and wages costs

Di,t = Yi,t − f − κhVi,t − κfFi,t − wi,tNi,t. (3.18)

7The same wage process is used in Elsby and Michaels (2013) and Fujita and Nakajima (2013). See the first
paper for a proof.
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The firm’s Bellman equation solves

Si,t = max
Vi,t≥0,Fi,t≥0

{Di,t + Et[Mt+1Si,t+1]}, (3.19)

subject to equations (7)–(18). Notice that the firms’ problem is well-defined given labor market

tightness θt and expectations about its dynamics. Given optimal cum-dividend firm value Si,t,

expected excess returns are given by

Et[Rei,t+1] =
Et[Si,t+1]

Si,t −Di,t
− 1

Et[Mt+1]
. (3.20)

3.5 Equilibrium

In search and matching models, optimal firm employment policies depend on the dynamics of

the aggregate labor market. This is typically not the case for models with labor adjustment costs

based on the Q-theory. Rather, in our setup firms have to know how congested labor markets

are when they decide about optimal hiring policies as next period’s workforce, Equation (3.10),

depends on aggregate labor market tightness θ via the vacancy filling rate q. At the same time,

labor market tightness depends on the distribution of vacancy postings implied by the firm-level

distribution µt and the aggregate shocks.

Equilibrium in the labor market requires that the beliefs about labor market tightness are

consistent with the realized equilibrium. Consequently, the firm-level distribution enters the

state space, which is given by Ωi,t = (Ni,t, zi,t, xt, pt, µt), and labor market tightness θt at each

date is determined as a fixed point satisfying

θt =

∫
V (Ωi,t)dµt

Ūt
. (3.21)

This assumes that each individual firm is atomistic and takes labor market tightness as exoge-

nous.

Let Γ be the law of motion for the time-varying firm-level distribution µt such that

µt+1 = Γ(µt, xt+1, xt, pt+1, pt). (3.22)

The recursive competitive equilibrium is characterized by: (i) labor market tightness θt, (ii)

optimal firm policies V (Ωi,t), F (Ωi,t), and firm value function S(Ωi,t), (iii) a law of motion Γ of

the firm-level distribution µt, such that: (a) Optimality: Given the pricing kernel (3.17), Nash

bargaining wage rate (3.16), and labor market tightness θt, V (Ωi,t) and F (Ωi,t) solve the firm’s

Bellman equation (3.19) where S(Ωi,t) is its solution; (b) Consistency: θt is consistent with the

labor market equilibrium (3.21), and the law of motion Γ of the firm-level distribution µt is

consistent with the optimal firm policies V (Ωi,t) and F (Ωi,t).
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3.6 Approximate Aggregation

The firm’s hiring and firing decisions trade off current costs and future benefits, which depend on

the aggregation and evolution of the firm-level distribution µt. Rather than solving for the high

dimensional firm-level distribution exactly, we follow Krusell and Smith (1998) and approximate

it with one moment. In search models, labor market tightness θt is a sufficient statistic to solve

the firm’s problem (3.19) and thus enters the state vector replacing µt, i.e., the approximate

state space is Ω̃i,t = (Ni,t, zi,t, xt, pt, θt).

To approximate the law of motion Γ, Equation (3.22), we assume a log-linear functional form

log θt+1 = τ0 + τθ log θt + τxσxε
x
t+1 + τpσpε

p
t+1. (3.23)

Under rational expectations, the perceived labor market outcome equals the realized one at each

date of the recursive competitive equilibrium. In equilibrium, we can express the labor market

tightness factor ϑ as the log changes in labor market tightness

ϑt+1 = τ0 + (τθ − 1) log θt + τxσxε
x
t+1 + τpσpε

p
t+1. (3.24)

This definition is consistent with our empirical exercise in Section 2.

Our application of Krusell and Smith (1998) differs from Zhang (2005) along two dimensions.

First, future labor market tightness θt+1 is a function of the firm distribution at time t+1; hence,

it is not in the information set of date t. The forecasting rule (3.23) at time t does not enable

firms to learn θt+1 perfectly, but rather to form a rational expectation about θt+1. In contrast,

Zhang (2005) assumes that firms can perfectly forecast next period’s industry price given time

t information. If firms could perfectly forecast next period’s labor market tightness, it would

not carry a risk premium. Second, at each period of the simulation, we impose labor market

equilibrium by solving θt as the fixed point in Equation (3.21). Hence, there is no discrepancy

between the forecasted and the realized θt+1.

3.7 Equilibrium Risk Premia

The model is driven by two aggregate shocks: productivity and matching efficiency. To test the

model’s cross-sectional return implications on data, it is convenient to derive an approximate

log-linear pricing model. Based on the Euler equation for expected excess returns, we can apply

a log-linear approximation to the pricing kernel (3.17) implying

Et[Rei,t+1] ≈ βxi,tλx + βpi,tλ
p
t , (3.25)

where βxi,t and βpi,t are loadings on aggregate productivity and matching efficiency shocks and

λx and λpt are their respective factor risk premia. All proofs of this section are contained in

Appendix B.

Both aggregate productivity and matching efficiency are not directly observable in the data.
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Since we would like to take the model to the data, it is necessary to express expected excess

returns in terms of observable variables such as the return on the market and labor market

tightness. To this end, we also approximate the excess return on the market as an affine function

of the aggregate shocks

ReM,t+1 = ν0 + νθ log θt + νx,0xt + νp,0pt + νx,1xt+1 + νp,1pt+1. (3.26)

As a result, we can show that expected excess returns obey a two-factor structure in the market

excess return and log-changes in labor market tightness, which is summarized in the following

proposition.

Proposition 1 Given a log-linear approximation of the pricing kernel (3.17) and laws of motion

(3.24) and (3.26), the log pricing kernel satisfies

mt+1 = −γM,tR
e
M,t+1 − γθ,tϑt+1, (3.27)

where the prices of market risk γM,t and labor market tightness γθ,t are given by

γM,t =
τpγx − τxγp,t
τpνx − τxνp

γθ,t =
νxγp,t − νpγx
τpνx − τxνp

. (3.28)

The pricing kernel (3.27) implies a linear pricing model in the form of

Et[Rei,t+1] = βMi,tλ
M
t + βθi,tλ

θ
t , (3.29)

where βMi,t and βθi,t are the loadings on the market excess return and log-changes in labor market

tightness

βMi,t =
τp

τpνx − τxνp
βxi,t +

−τx
τpνx − τxνp

βpi,t (3.30)

βθi,t =
−νp

τpνx − τxνp
βxi,t +

νx
τpνx − τxνp

βpi,t (3.31)

and λMt and λθt are the respective factor risk premia given by

λMt = νxλ
x + νpλ

p
t λθt = τxλ

x + τpλ
p
t . (3.32)

We call relation (3.29) the Labor Capital Asset Pricing Model.8 The goal of the model is to

endogenously generate a negative factor risk premium of labor market tightness, λθt . We will

explain the intuition behind Proposition 1 after the calibration in Section III.C.

In the data, the CAPM cannot explain the returns of portfolios sorted by loadings on labor

market tightness, βθi,t. To replicate this failure of the CAPM in the model, we can compute

a misspecified one-factor CAPM and compare the CAPM-implied alphas with the data. The

8Note that the risk loadings (3.30) and (3.31) are not univariate regression betas because the market return
and labor market tightness are correlated.
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following proposition summarizes this idea.

Proposition 2 Given a log-linear approximation of the pricing kernel (3.17) and laws of motion

(3.24) and (3.26), the CAPM implies a linear pricing model in the form of

Et[Rei,t+1] = αCAPMi,t + βCAPMi,t λCAPMt , (3.33)

where the CAPM mispricing alphas are given by

αCAPMi,t = βθi,tγθ,t
(τxνp − νxτp)2σ2

pσ
2
x

ν2
xσ

2
x + ν2

pσ
2
p

, (3.34)

CAPM loadings on the market return by

βCAPMi,t =
νxσ

2
x

ν2
xσ

2
x + ν2

pσ
2
p

βx +
νpσ

2
p

ν2
xσ

2
x + ν2

pσ
2
p

βp, (3.35)

and the CAPM factor risk premium λCAPMt = λMt = νxλ
x + νpλ

p
t .

Intuitively, this proposition states that CAPM betas are independent of the price of risk of

labor market tightness γθ,t, whereas the CAPM mispricing alphas are inversely related to labor

market tightness loadings when γθ,t is negative. These insights are qualitatively in line with the

empirical findings above and are confirmed quantitatively next.

4 Quantitative Results

In this section, we first describe our calibration strategy and present the numerical results of

the equilibrium forecasting rules. Given the equilibrium dynamics for the labor market, we

then calculate loadings on labor market tightness and show that the model is consistent with

the inverse relation between loadings and future stock returns in the cross-section. We solve

the competitive equilibrium numerically in the discretized state space Ω̃i,t using an iterative

algorithm described in Appendix C.

4.1 Calibration

Table 8 summarizes the parameter calibration of the benchmark model. Labor and equity

market data are available monthly and we choose this frequency for the calibration.

The labor literature provides several empirical studies to calibrate labor market parameters.

Following Elsby and Michaels (2013) and Fujita and Nakajima (2013), we scale the size of

labor force L to match the average unemployment rate. The elasticity of the matching function

determines the responsiveness of the vacancy filling rate to changes in labor market tightness.

Based on the structural estimate in den Haan, Ramey, and Watson (2000), we set the elasticity

ξ at 1.27.
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The bargaining power of workers η determines the rigidity of wages over the business cycle.

As emphasized by Hagedorn and Manovskii (2008) and Gertler and Trigari (2009), aggregate

wages are half as volatile as labor productivity. We follow their calibration strategy and set

η = 0.125 to match the relative volatility of wages to output.9 It is important to highlight that

our model is not driven by sticky wages as proposed by Hall (2005) and Gertler and Trigari

(2009). In our model, wages are less volatile than productivity but, conditional on productivity,

they are not sticky. This is consistent with Pissarides (2009), who argues that Nash bargaining

wage rates are in line with wages for new hires.

If workers decide not to work, they receive the flow value of unemployment activities b.

Shimer (2005) argues that the outside option for rejecting a job offer are unemployment benefits

and thus sets b = 0.4. Hagedorn and Manovskii (2008), on the other hand, claim that unemploy-

ment activities capture not only unemployment benefits but also utility from home production

and leisure. They calibrate b close to one. As in the calibration of Pissarides (2009), we follow

Hall and Milgrom (2008) and set the value of unemployment activities at 0.71.10

The labor share of income, which Gomme and Rupert (2007) estimate to be around 0.72,

is highly affected by the value of unemployment activities b and the output elasticity of labor

α. Since the value of unemployment activities is close to the labor share of income, we can

easily match the labor share by setting α to 0.735. We assume less curvature in the production

function than, for instance, Cooper, Haltiwanger, and Willis (2007). They, however, do not

model wages as the outcome of Nash bargaining.

Motivated by Davis, Faberman, and Haltiwanger (2006), we use the flows in the labor market

as measured in the Job Openings and Labor Turnover Survey (JOLTS) collected by the Bureau

of Labor Statistics to calibrate the monthly separation rate s as well as the proportional hiring

κh and firing κf costs. JOLTS provides monthly data on the rates of hires, separations, quits,

and layoffs.

The total separation rate captures both voluntary quits and involuntary layoffs. As firms in

our model can optimize over the number of worker to be laid off, we calibrate the separation

rate only to the voluntary quit rate, which captures workers switching jobs, for instance, for

reasons of career development, better pay or preferable working conditions. As such, we set the

monthly exogenous quit rate s to 2.2%.

The proportional costs of hiring and firing workers, κh and κf , determine both the overall

costs of adjusting the workforce as well as the behavior of firm policies. Since the literature

provides little guidance on estimates of hiring costs, we set κh to 0.75 to match the aggregate

hiring rate of workers, defined as the ratio of aggregate filled vacancies to employed labor force,

qtV̄t/N̄t. As hiring costs increase, firms post fewer vacancies so that the hiring rate rises. Our

9Hagedorn and Manovskii (2008) set the bargaining power of workers at 0.054 and Lubik (2009) estimates it
to be 0.03.

10Similarly, Lubik (2009) estimates that unemployment activities amount to 0.74 relative to unit mean labor
productivity.
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parameter choice is close to Hall and Milgrom (2008), who account for both the capital costs of

vacancy creation and the opportunity cost of labor effort devoted to hiring activities.

Employment protection legislatures are a set of rules and restrictions governing the dismissals

of employees. Such provisions impose a firing cost on firms along two dimensions: a transfer from

the firm to the worker to be laid off (e.g., severance payments), and a tax to be paid outside the

job-worker pair (e.g., legal expenses). As the labor search literature does not provide guidance

on the magnitude of this parameter, we set the flow costs of firing workers κf to 0.35 to match

the aggregate layoff rate, defined as the ratio of total laid off workers to employed labor force,

F̄t/N̄t. As firing costs increase, firms lay off fewer workers so that the firing rate drops.

The last cost parameter is fixed operating costs f . Without these costs, the model would

overstate the net profit margin of firms. Consequently, we target the aggregate profit to aggre-

gate output ratio to calibrate f .

We calibrate the two aggregate shocks following the macroeconomics literature. Since labor

is the only input to production, aggregate productivity is typically measured as aggregate output

relative to the labor hours used in the production of that output. As such, labor productivity is

more volatile than total factor productivity. Similar to Gertler and Trigari (2009), we set ρx =

0.951/3 and σx = 0.005. Shocks to the matching efficiency tend to be less persistent but more

volatile than labor productivity shocks. For instance, Andolfatto (1996) estimates matching

shocks to have persistence of 0.85 with innovation volatility of 0.07 at quarterly frequency. We

follow more recent estimates by Cheremukhin and Restrepo-Echavarria (2014) and set ρp =

0.881/3 and σp = 0.025.11

For the persistence ρz and conditional volatility σz of firm-specific productivity, we choose

values close to those used by Zhang (2005), Gomes and Schmid (2010), and Fujita and Nakajima

(2013) to match the cross-sectional properties of firm employment policies.

The pricing kernel is calibrated to match financial moments. We choose the time discount

rate β and the pricing kernel parameters γx, γp,0, γp,1, and φ so that the model approximately

matches the first and second moments of the risk-free rate and market return. This requires

that β equals 0.994, γx = 1, γp,0 = −4.7, γp,1 = 3.6, and φ = −0.0214. Importantly, shocks to

matching efficiency carry a negative price of risk and are pro-cyclical. A small parameter value

of φ allows for a time-varying but smooth interest rate.

Berk, Green, and Naik (1999) provide a motivation for γx > 0 in an economy with only

aggregate productivity shocks. The assumption of γp < 0 can be motivated as follows. In

a general equilibrium economy with a representative household, a positive matching efficiency

shock increases the probability that vacant jobs are filled and thereby lowers the expected unit

hiring cost. As a result, job creation becomes more attractive and firms spend more resources

on hiring workers, thus depressing aggregate consumption.12

11Similar structural estimates are contained in Furlanetto and Groshenny (2012) and Beauchemin and Tasci
(2014).

12The same intuition is shown to hold in general equilibrium for investment-specific shocks by Papanikolaou
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4.2 Aggregate and Firm-Level Moments

Table 9 summarizes aggregate and firm-level moments computed on simulated data of the model

and compares them with the data. The model closely matches firm-level and aggregate employ-

ment quantities as well as financial market moments. In equilibrium, the unemployment rate is

5.8%, the aggregate hiring rate is 3.6%, and the layoff rate is 1.4% on average, close to what we

observe in the JOLTS dataset for the years 2001 to 2012.

Davis, Faberman, and Haltiwanger (2006) illustrate that the net change in employment over

time can be decomposed into either worker flows, defined as the difference between hires and

separations, or job flows, defined as the difference between job creation and destruction. While a

single firm can either create or destroy jobs during a period, it can simultaneously have positive

hires and separations. Davis, Faberman, and Haltiwanger (2006) report that the monthly job

creation and job destruction rates are 2.6% and 2.5%, respectively, which our model replicates

closely.

The model also performs well in replicating the dynamics of aggregate labor market tightness.

Shimer (2005) estimates average labor market tightness of 0.63, while the model implied one is

0.65. The cyclical behavior of model-generated time series for labor market tightness, aggregate

vacancies and unemployment rate match well the correlations in monthly data (for the data

see Table 1). Changes in labor market tightness correlate positively with changes in vacancies

(0.78), and negatively with changes in the unemployment rate (-0.83). The negative relationship

between changes in vacancies and unemployment rate (-0.36) is consistent with the well-known

shape of the Beveridge curve.

Given our calibration strategy, the model matches well the high labor share of income (0.72),

the low relative volatility of wages to output (0.55), and the small profit margin (0.11). The data

for the labor share is from Gomme and Rupert (2007) and the volatility of aggregate wages to

aggregate output is from Gertler and Trigari (2009). We compute the average share of corporate

profits to national income using the National Income and Product Accounts as in Gourio (2007).

At the firm-level, we compute moments of annual employment growth rates as in Davis,

Haltiwanger, Jarmin, and Miranda (2006) for the merged CRSP-Compustat sample for the

period 1980 to 2012. The model generates the observed high volatility in annual employment

growth, 23.9% in the model relative to 23.6% in the data. The proportional cost structure

implies the existence of firms that are neither posting vacancies nor laying off workers. As

emphasized by Cooper, Haltiwanger, and Willis (2007), we measure inaction as the fraction of

firms with no change in employment, which is 9.7% for the merged CRPS-Compustat sample.

In the model, this fraction is 9.9%, lending support for our modeling assumption of proportional

costs.

To gauge the aggregate pricing implications, we obtain the monthly series of the value-

weighted market return and one-month T-Bill rate from CRSP, and inflation from the Bureau

(2011).
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of Labor Statistics to compute the annualized first and second moments of the one-month real

risk-free rate and real market return for the period 1926 to 2012. The pricing kernel and its

calibration give rise to a realistic annual average market return (8.2%) and volatility (17.2%).

In addition, the average risk-free rate is low (1%) and smooth (2.1%) as in the data.

4.3 Equilibrium Forecasting Rules

The goal of the model is to endogenously generate a negative relation between loadings on labor

market tightness and expected returns, implying a negative factor risk premium for labor market

tightness, λθt . Given that aggregate productivity shocks carry a positive and efficiency shocks a

negative price of risk, γx > 0 and γp,0 < 0, Proposition 1 (Equation (3.32)) states that for the

model to generate a negative factor risk premium for labor market tightness, it is necessary that

labor market tightness reacts positively to efficiency shocks, i.e., τp > 0.

The dynamics of labor market tightness (3.23) are the equilibrium outcome of firm policies

and the solution to the labor market equilibrium condition (3.21). In particular, the endogenous

response of labor market tightness to efficiency shocks, τp, depends on two economic forces,

namely, a cash flow and a discount rate effect, which work in opposite directions. To illustrate

this trade-off, we compute the Euler equation for job creation, which is given by13

κh
q(θt, pt)

= EtMt+1

[
ext+1+zi,t+1αNα−1

i,t+1 − wi,t+1 −Ni,t+1
∂wi,t+1

∂Ni,t+1
+ (1− s) κh

q(θt+1, pt+1)

]
.

(3.36)

The left-hand side is the marginal cost and the right-hand side the marginal benefit of job

creation.

In Figure 3, we illustrate this trade-off by plotting labor market tightness as a function of

matching efficiency. Consider a positive matching efficiency shock, which shifts p0 to p1. A

positive efficiency shock increases the rate at which vacancies are filled and thus reduces the

marginal costs of hiring workers, i.e., the left-hand side of the Euler equation (3.36). This cash

flow effect implies that firms are willing to post more vacancies after a positive efficiency shock.

Consequently, the equilibrium moves along the solid black line and shifts from point A to B,

resulting in a higher labor market tightness θ1. This effect causes a positive relation between

labor market tightness and matching efficiency, i.e., τp > 0.

The cash flow effect would be the only equilibrium effect in a setting in which agents are risk-

neutral. Since we are interested in the pricing of labor market risks, we assume that efficiency

shocks carry a negative price of risk. As a result, a positive efficiency shock leads to an increase

in discount rates. This discount rate effect implies that firms reduce vacancy postings, as an

increase in discount rates reduces the value of job creation, i.e., the right-hand side of the Euler

equation (3.36). In Figure 3, the discount rate effect shifts the equilibrium labor market tightness

schedule downward. If the discount rate channel dominates the cash flow channel (blue dotted

13For simplicity, we ignore the Lagrange multipliers on vacancy postings Vi,t and firing Fi,t.
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line), then the new equilibrium is point D, which is associated with a drop in labor market

tightness to θ3 and thus τp < 0.

Our benchmark calibration implies that the cash flow effect dominates the discount rate effect

(dashed red line) so that labor market tightness is positively related with matching efficiency

(point C in Figure 3). Quantitatively, the equilibrium labor market tightness dynamics are14

log θt+1 = −0.0076 + 0.9827 log θt + 0.0392εxt+1 + 0.0079εpt+1. (3.37)

Labor market tightness is highly persistent and firms increase their vacancy postings after posi-

tive aggregate productivity shocks, τx > 0, and after positive efficiency shocks, τp > 0. Similarly,

the equilibrium dynamics of (realized) market excess returns are

ReM,t+1 = 0.0060 + 0.0096εxt+1 − 0.0470εpt+1. (3.38)

The average market excess return is 60 basis points per month and market prices increase with

aggregate productivity shocks, νx > 0, and decrease with efficiency shocks, νp < 0, which is

consistent with a positive price of risk for productivity shocks and a negative one for efficiency

shocks.

These two dynamics allow us to compute stock return loadings on labor market tightness,

which we use in the following section to form portfolios. Proposition 1 (Equation (3.31)) states

the functional form for labor market tightness loadings, βθi,t. As the above discussion highlights,

efficiency shocks and not productivity shocks are the driver of the labor market tightness pre-

mium. To illustrate the intuition behind Equation (3.31), we assume here that loadings on the

market are constant. Labor market tightness loadings are negatively correlated with expected

returns when νx/(τpνx − τxνp) > 0. Because productivity has a positive effect on job creation,

τx > 0, and on market returns, νx > 0, this condition reduces to τp > νp, which again emphasizes

that the cash flow effect of efficiency shocks has to dominate the discount rate effect.

4.4 Cross-Section of Returns

In the previous section, we have shown that labor market tightness obtains a negative factor risk

premium in equilibrium. To assess the extent to which the model can quantitatively explain the

empirically observed negative relation between loadings on labor market tightness and future

stock returns, we follow the empirical procedure of Section 2 on simulated data. To this end,

we sort simulated firms into decile portfolios by their labor market tightness loadings, βθi,t, as

defined in Proposition 1. Table 10 compares the simulated returns with data on industry-neutral

portfolios from Panel A of Table 7.15 As in the data, we form monthly value-weighted portfolios

14Note that the coefficients on the x and p shocks are normalized by their respective standard deviations as
compared to Equation (3.23). The same normalization applies to Equation (3.38).

15We base our analysis on industry-neutral portfolios because the model does not capture heterogeneities across
industries.

116



with annual rebalancing. The table reports average labor market tightness loadings, returns,

and CAPM alphas across portfolios.

The model generates a realistic dispersion in labor market tightness loadings and returns

across portfolios. The average monthly return difference between the low- and high-loading

portfolios is 0.38% relative to 0.37% in the data. Moreover, the CAPM cannot explain the

return differences across portfolios because in the model it does not span all systematic risks.

In particular, Proposition 2 states that the CAPM alphas are inversely related to loadings on

labor market tightness, as long as the market price of labor market tightness is negative.

The cash flow channel of hiring costs impacts the cross-section of returns in the following

way. Due to proportional hiring and firing costs, the optimal firm policy exhibits regions of

inactivity, where firms neither hire nor fire workers. Figure 4 illustrates the optimal firm policy.

The horizontal black line is the optimal policy when adjusting the workforce is costless. In the

frictionless case, firms always adjust to the target employment size independent of the current

size. The red curve is the optimal policy in the benchmark model. It displays two kinks. In

the middle region, where the optimal policy coincides the dashed line, firms are inactive. In the

inactivity region below the frictionless employment target, firms have too few workers but hiring

is too costly (Hiring constrained). In the inactivity region above the frictionless employment

target, firms have too many workers but firing is too costly (Excess labor).

Due to the time variation in matching efficiency, ideally firms would like to hire when

marginal hiring costs, κh/q(θ, p), are low. This holds for the majority of firms, as aggregate

vacancy postings increase with efficiency shocks. However, some firms are hit by low idiosyn-

cratic productivity shocks such that hiring is not optimal when matching efficiency is high. For

these firms, the discount rate channel dominates the cash flow channel, thereby depressing val-

uations. Their dividends are reduced not only by low idiosyncratic productivity shocks but also

by higher wages, arising from tighter labor markets, and by firing costs. Consequently, these

firms have countercyclical dividends and valuations with respect to matching efficiency shocks,

which renders them more risky. Since labor market tightness loadings and loadings on matching

efficiency are positively related, our model can replicate the negative relation between labor

market tightness loadings and expected returns.

To illustrate that the differences in average return across portfolios are driven by the cash

flow effect of matching efficiency shocks, we compute the correlation between profitability and

the labor market tightness factor for each portfolio. The results are reported in the column

denoted by Corr both for the data and model of Table 10.16 Consistent with the model, firms

with low βθ loadings are risky because their cash flows are counter-cyclical with respect to labor

market tightness.

16Portfolio assignment is done within 48 industries as in Panel A of Table 7 to obtain industry-neutral decile
portfolios.
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4.5 Robustness

To gain more insights about the driving forces of the model, we consider alternative calibrations

in Table 11. Specifically, we are interested in the sensitivity of the return differences across

βθ-sorted portfolios to parameter values.

In specifications (1) to (3), we consider the effects of changing prices of risks, holding the

first and second moments of the risk-free rate constant. Specification (1) illustrates the impact

of pricing aggregate productivity shocks by setting its price to zero, γx = 0. The portfolio spread

is of the correct sign but of smaller magnitude compared to the data. This finding indicates

the importance of modeling productivity shocks to generate cross-sectional heterogeneity among

firms.

In specification (2), we assume that matching efficiency shocks are not priced, γp,0 = 0. We

also raise the price of risk of productivity shocks to γx = 20, so that the Sharpe ratio of the

pricing kernel matches the benchmark calibration. With only productivity shocks being priced,

the cross-sectional spread is small and negative −0.18. This experiment shows that the priced

variation in aggregate matching efficiency is crucial for the labor market tightness factor to affect

valuations. In the benchmark calibration, we assume that the price of matching efficiency risk

increases with adverse shocks. In specification (3), we assume that matching efficiency shocks

have a constant price of risk, γp,1 = 0. As a result, the simulated cross-sectional spread reduces

from 0.38% to 0.18%, indicating the importance of the time variation in the price of risk of

matching efficiency shocks.

Specifications (4) to (7) analyze the importance of labor search frictions by varying labor

market parameters. For these exercises, we hold the dynamics of labor market tightness, Equa-

tion (3.37), constant, and study local perturbations of the parameter space. In specification

(4), we increase the bargaining power of workers η by 10% to 0.1375. As a result, wages be-

come more cyclical, implying a weaker operating leverage effect. The results suggest that this

wage operating leverage channel is weak as the return spread does not change relative to the

benchmark.

The next two specifications show that the costs of hiring rather than firing drive the cross-

sectional return spread. In particular, reducing the costs of laying off workers κf by 10% to

0.315 has little effect on the return spread (specification (5)). In contrast, reducing the costs

of hiring works κh by 10% to 0.675, decreases the return spread to 0.34% (specification (6)),

compared to 0.38% for the benchmark calibration.

In the baseline calibration, we set the fixed operating costs f to match the corporate profit

margin in the data. In specification (7), we reduce the fixed operating costs by 10% to 0.2034.

Since the ratio of hiring costs to output is very small, κhV/N
α = 0.036, reducing operating

costs makes time-varying hiring costs less relevant for firm cash flow dynamics. As a result, the

return spread drops to 0.32%.

Optimal firm employment policies depend on the equilibrium dynamics of labor market
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tightness (3.37). The log-linear structure shows that, controlling for aggregate productivity,

labor market tightness proxies for unobserved matching efficiency shocks. As shown in Table

10, firms’ cash flow exposures to variations in labor market tightness are the source for the

pricing of labor market tightness in the cross-section of returns. Consequently, the labor market

tightness factor should also be a valid aggregate state variable, predicting future aggregate

economic conditions.

Table 12 confirms the predictability of future economic activity by labor market tightness

both in the data and model. In the data, we obtain quarterly time series for the Gross Domestic

Product, Wages and Salary Accruals, and Personal Dividend Income from the National Income

and Product Accounts and total factor productivity from Fernald (2012). In the table, we

report coefficients on labor market tightness growth, their t-statistics, and adjusted R2 values

from bivariate regressions of output growth (Panel A), wage growth (Panel B), and dividend

growth (Panel C) on labor market tightness growth and total factor productivity. We run

quarterly forecasting regressions for horizons up to a year.

In the data, labor market tightness predicts positively and significantly output growth, wage

growth, and dividend growth for horizons up to a year. This finding is consistent with our

model, where changes in labor market tightness measure shocks to the matching efficiency of

the labor market. Positive matching efficiency shocks predict an increase in economic activity,

wages and dividends. Although being a highly procyclical aggregate variable, labor market

tightness effectively captures a dimension of systematic risk absent in total factor productivity.

5 Conclusion

This paper studies the cross-sectional asset pricing implications of labor search frictions. The

dynamic nature of the labor market implies that firms face costly employment decisions while

searching for and training new employees. The ratio of vacant positions to unemployed workers,

termed labor market tightness, determines the likelihood and costs of filling a vacant position.

We show that firms with low loadings on labor market tightness generate higher future

returns than firms with high loadings. The return differential, at 6% per year, is economically

and statistically important, cannot be explained by commonly considered factor models, and is

distinct from previously studied determinants of the cross-section of equity returns.

To provide an interpretation for this result, we develop a Labor Capital Asset Pricing Model

with heterogeneous firms making optimal employment decisions under labor search frictions. In

the model, equilibrium labor market tightness is determined endogenously and depends on the

time-varying firm-level distribution and aggregate shocks. Loadings on labor market tightness

proxy for the sensitivity to aggregate shocks to the efficiency of matching workers and firms.

Firms with lower labor market tightness loadings are more exposed to adverse matching efficiency

shocks and hence require higher expected stock returns.

The model successfully replicates the observed return differential and other empirical firm-
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level and aggregate labor market moments. Our results suggest that labor search frictions

have important implications for equity returns. Further research into the nature of interactions

between labor and financial markets should provide an even more complete picture on the

determinants of asset prices.
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Appendix

A Data

We use the following definitions of CRSP-Compustat variables: ME is the natural logarithm

of market equity of the firm, calculated as the product of its share price and number of shares

outstanding. BM is the natural logarithm of the ratio of book equity to market equity. Book

equity is defined following Davis, Fama, and French (2000) as stockholders’ book equity (SEQ)

plus balance sheet deferred taxes (TXDB) plus investment tax credit (ITCB) less the redemption

value of preferred stock (PSTKRV). If the redemption value of preferred stock is not available, we

use its liquidation value (PSTKL). If the stockholders’ equity value is not available in Compustat,

we compute it as the sum of the book value of common equity (CEQ) and the value of preferred

stock. Finally, if these items are not available, stockholders’ equity is measured as the difference

between total assets (AT) and total liabilities (LT). RU is the 12-month stock return run-up. HN

is the hiring rate, calculated following Belo, Lin, and Bazdresch (2014) as (Nt −Nt−1)/((Nt +

Nt−1)/2), where Nt is then number of employees (EMP). AG is the asset growth rate, calculated

following Cooper, Gulen, and Schill (2008) as At/At−1 − 1, where At is the value of total assets

(AT). IK is the investment rate, calculated following Belo, Lin, and Bazdresch (2014) as the

ratio of capital expenditure (CAPX) divided by the lagged capital stock (PPENT). Profitability

is defined following Cooper, Gulen, and Schill (2008) as [operating income before depreciation

(OIBDP) - interest expenses (XINT) - taxes (TXT) - preferred dividends (DVP) - common

dividends (DVC)] / total assets (AT).

B Proofs

Proof of Proposition 1: A log-linear approximation of the pricing kernel Mt+1 is given by

Mt+1

Et[Mt+1]
= emt+1−ln(Et[Mt+1]) ≈ 1 +mt+1 − ln(EtMt+1).

Given this approximation, the Euler equation, Et[Mt+1R
e
i,t+1] = 0, implies

Et[Rei,t+1] ≈ −Covt(mt+1, R
e
i,t+1). (3.39)

For the pricing kernel (3.17), the previous equation specializes to

Et[Rei,t+1] ≈ γxCovt(σxε
x
t+1, R

e
i,t+1) + γp,tCovt(σpε

p
t+1, R

e
i,t+1). (3.40)

Because σxε
x
t+1 = xt+1 − ρxxt and σpε

p
t+1 = pt+1 − ρppt, a two-factor model in x and p holds:

Et[Rei,t+1] ≈ βxi,tλx + βpi,tλ
p
t , (3.41)
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where risk loadings are given by

βxi,t =
Covt(xt+1, R

e
i,t+1)

σ2
x

βpi,t =
Covt(pt+1, R

e
i,t+1)

σ2
p

, (3.42)

and factor risk premia are

λx = γxσ
2
x λpt = γp,tσ

2
p. (3.43)

Given the pricing kernel (3.27) and laws of motion (3.24) and (3.26), it follows from (3.39)

that

Et[Rei,t+1] = (γM,tνx+γθ,tτx)Covt(σxε
x
t+1, R

e
i,t+1)+(γM,tνp+γθ,tτp)Covt(σpε

p
t+1, R

e
i,t+1). (3.44)

Thus, by matching coefficients in terms of covariances between equations (3.40) and (3.44), it

follows that

γx = γM,tνx + γθ,tτx γp,t = γM,tνp + γθ,tτp,

implying (3.28) holds.

Since xt and pt are uncorrelated, the factor loadings βx and βp satisfy the regression

Rei,t+1 − Et[Rei,t+1] = βxi,tσxε
x
t+1 + βpi,tσpε

p
t+1 + εi,t+1, (3.45)

with loadings defined in equation (3.42). Similarly, the loadings on the market return and labor

market tightness satisfy the regression

Rei,t+1 − Et[Rei,t+1] = βMi,t
(
ReM,t+1 − Et[ReM,t+1]

)
+ βθi,t(ϑt+1 − Et[ϑt+1]) + εi,t+1. (3.46)

Notice that since ReM,t+1 and ϑt+1 are not independent, it follows that

βMi,t 6=
Covt(R

e
i,t+1, R

e
M,t+1)

Vart(ReM,t+1)
βθi,t 6=

Covt(R
e
i,t+1, ϑt+1)

Vart(ϑt+1)
.

To compute the loadings on the market return and labor market tightness, equate Equations

(3.45) and (3.46) and substitute in laws of motion (3.24) and (3.26), obtaining

βxi,tσxε
x
t+1 + βpi,tσpε

p
t+1 + εi,t+1 = βMi,t

(
νxσxε

x
t+1 + νpσpε

p
t+1

)
+ βθi,t(τxσxε

x
t+1 + τpσpε

p
t+1) + εi,t+1.

By matching the coefficients in terms of σxε
x
t+1 and σpε

p
t+1, we get

βxi,t = βMi,t νx + βθi,tτx βpi,t = βMi,t νp + βθi,tτp,

implying that (3.30) and (3.31) hold.

Next, substitute (3.30) and (3.31) into (3.29), yielding

Et[Rei,t+1] =
τxβ

p
i,t − τpβxi,t

νpτx − νxτp
λMt +

νpβ
x
i,t − νxβ

p
i,t

νpτx − νxτp
λθt (3.47)
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and match coefficients in terms of βxi,t and βpi,t with (3.41), implying

λx(νpτx − νxτp) = νpλ
θ
t − τpλMt

λpt (νpτx − νxτp) = τxλ
M
t − νxλθt .

Solving for λθt and λMt confirms (3.32).

Proof of Proposition 2: Given the dynamics for the market excess return (3.26), univariate

loadings on the market return can be computed via

βCAPMi,t =
Covt

(
Rei,t+1, R

e
M,t+1

)
Vart

(
ReM,t+1

)
=

νxCovt

(
Rei,t+1, σxε

x
t+1

)
+ νpCovt

(
Rei,t+1, σpε

p
t+1

)
Vart

(
ReM,t+1

) =
νxσ

2
xβ

x
i,t + νpσ

2
pβ

p
i,t

ν2
xσ

2
x + ν2

pσ
2
p

.

Notice that the CAPM factor risk premium remains the same in the one-factor or two-factor

models, that is, λCAPMt = λMt = νxλ
x + νpλ

p
t . Given the pricing of expected excess returns in

terms of independent aggregate risks (3.41), we can calculate the CAPM mispricing as

αCAPMi,t = βxi,tλ
x
t + βpi,tλ

p
t − βCAPMi,t λCAPMt =

(
βxi,tνp − β

p
i,tνx

)
(νpγx − νxγp)σ2

xσ
2
p

ν2
xσ

2
x + ν2

pσ
2
p

.

Using the definition of βθi,t in (3.31) and γθ,t in (3.28), it follows that (3.34) holds.

C Computational Algorithm

To solve the model numerically, we discretize the state space. All shocks (x, p, z) follow finite

states Markov chains according to Rouwenhorst (1995) with 5 states for x, 9 for p, and 11 for

z. We create a log-linear grid of 500 points for current employment N in the interval [0.01, 20].

The lower and upper bounds of N are set such that the optimal policies are not binding in the

simulation. The choice variable N ′ is a vector containing 5,000 elements, also log-linearly spaced

on the same interval as N . The space of labor market tightness θ is discretized into a linear grid

in the interval [0.1, 1.5] with 50 points. The upper and lower bounds for θ are chosen such that

the simulated path of equilibrium labor market tightness never steps outside its bounds.

The computational algorithm amounts to the following iterative procedure. To save on

notation, we drop the firm index i and time index t.

1. Initial guess: Make an initial guess for the coefficient vector τ = (τ0, τθ, τx, τp) of the law of

motion (3.23). We start from τ = (−0.0091, 0.98, 0, 0) because labor market tightness tends

to be highly persistent and in steady state τ0 = (1− τθ) log(θss) = (1− 0.98) log(0.634).

2. Optimization: Solve the firm’s optimization problem (3.19) given the forecasting rule
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coefficients τ . We use value function iteration and linear interpolation to obtain the

value function off grid points. Given the discretized state space Ω = (N, z, x, p, θ) and

proportional hiring and firing costs, the firm value function solves

S(Ω) = max{Sh(Ω), Sf (Ω), Si(Ω)},

where Sh is the value of a firm that expands its workforce

Sh(Ω) = max
N ′>(1−s)N

{
ex+zNα −WN − κh

q(θ, p)
[N ′ − (1− s)N ] + E[M ′S(Ω′)|Ω]

}
,

Sf is the value of a firm that fires workers

Sf (Ω) = max
N ′<(1−s)N

{
ex+zNα −WN − κf [(1− s)N −N ′] + E[M ′S(Ω′)|Ω]

}
,

and Si is the value of an inactive firm

Si(Ω) = ex+zNα −WN + E[M ′S((1− s)N, z′, x′, p′, θ′)|Ω].

3. Simulation: Use the firm’s optimal employment policies V (Ω) and F (Ω) to simulate a

panel of 5,000 firms for 5,300 periods. Importantly, we impose labor market equilibrium

at each date of the simulation by solving θ as the fixed point in Equation (3.21). In this

way, we obtain a time series of realized equilibrium θ.

4. Update coefficients: Delete the initial 300 periods as burn-in and use the stationary region

of the simulated data to estimate the vector τ by OLS; update the forecasting coefficients,

and restart from the optimization step 2; continue the outer loop iteration until the τ

coefficients have converged.
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D. Labor Market Tightness

Figure 1. Labor Market Tightness and Its Components
This figure plots the monthly time series of the vacancy index, the labor force participation rate,
the unemployment rate, and labor market tightness for the years 1951 to 2012.
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Figure 2. Returns on Long-Short Labor Market Tightness Portfolios
This figure plots the log cumulative (Panel A) and monthly (Panel B) returns on a portfolio
that is long the decile of stocks with the lowest exposure to the labor market tightness factor
and short the decile of stocks with the highest loadings. The sample spans 1954 to 2012.
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Figure 3. Labor Market Tightness and Matching Efficiency
This figure illustrates the endogenous response of equilibrium labor market tightness θ(p) to a
positive matching efficiency shock p.
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Figure 4. Optimal Employment Policy
This figure illustrates the optimal employment policy. The horizontal black line is the optimal
policy when adjusting the workforce is costless. The red kinked curve is the optimal policy in
the benchmark model under search frictions. In the middle region, where the optimal policy
coincides with the dashed line, firms are inactive. In the inactivity region below the frictionless
employment target, firms have too few workers but hiring is too costly (Hiring constrained). In
the inactivity region above the frictionless employment target, firms have too many workers but
firing is too costly (Excess labor).
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Table 1. Summary Statistics

This table reports summary statistics for the monthly labor market tightness factor (ϑ), changes
in the vacancy index (VAC), changes in the unemployment rate (UNEMP), changes in the labor
force participation rate (LFPR), changes in industrial production (IP), changes in the consumer
price index (CPI), dividend yield (DY), T-bill rate (TB), term spread (TS), and default spread
(DS) calculated for the 1954 to 2012 period. Means and standard deviations are in percent.

Correlations

Mean StDev ϑ VAC UNEMP LFPR IP CPI DY TB TS

ϑ 0.02 5.48
VAC -0.10 3.46 0.78
UNEMP 0.16 3.38 -0.83 -0.36
LFPR 0.01 0.30 -0.13 0.04 0.15
IP 0.24 0.89 0.56 0.44 -0.48 0.04
CPI 0.31 0.32 -0.08 -0.04 0.06 0.05 -0.08
DY 3.20 1.13 -0.14 0.00 0.12 0.07 -0.10 0.34
TB 0.39 0.24 -0.12 -0.08 0.04 0.05 -0.09 0.52 0.51
TS 1.45 1.22 0.11 0.10 -0.05 -0.03 0.04 -0.29 -0.12 -0.39
DS 0.99 0.45 -0.26 -0.20 0.22 -0.03 -0.28 0.11 0.33 0.33 0.29
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Table 2. Characteristics of Labor Market Tightness Portfolios

This table reports average characteristics for the ten portfolios of stocks sorted by their loadings
on labor market tightness βθ. βM denotes the market beta, BM the book-to-market ratio,
ME the market equity decile, RU the 12-month run-up return in percent; AG, IK, and HN
are asset growth, investment, and new hiring rates, respectively, all shown in percent. Mean
characteristics are calculated annually for each decile and then averaged over time. The sample
period is 1954 to 2012 except for variables that use Compustat data (BM, AG, IK, and HN)
where it is 1960 to 2012.

Decile βθ βM BM ME RU AG IK HN

Low -0.80 1.35 0.89 4.84 15.44 12.92 32.59 6.36
2 -0.38 1.16 0.92 5.73 13.68 13.02 29.39 7.16
3 -0.23 1.07 0.91 6.09 12.67 11.01 27.34 5.70
4 -0.12 1.01 0.92 6.27 12.92 11.36 27.05 6.72
5 -0.03 1.00 0.92 6.22 13.37 11.17 26.08 5.00
6 0.06 1.01 0.94 5.99 13.08 11.51 26.44 5.12
7 0.16 1.04 0.94 5.84 13.35 11.30 27.35 5.94
8 0.27 1.08 0.95 5.52 13.55 11.41 28.17 5.50
9 0.45 1.17 0.94 4.98 13.71 12.23 29.54 6.95
High 0.91 1.33 0.92 3.99 16.13 12.63 32.87 6.86
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Table 3. Performance of Labor Market Tightness Portfolios

This table reports average raw returns and alphas, in percent per month, and loadings from the four-factor
model regressions for the ten portfolios of stocks sorted on the basis of their loadings on the labor market
tightness factor, as well as for the portfolio that is long the low decile and short the high one. The bottom
row gives t-statistics for the low-high portfolio. Firms are assigned into deciles at the end of every month
and the value-weighted portfolios are held without rebalancing for 12 months. Conditional alphas are
based on either Ferson and Schadt (FS) or Boguth, Carlson, Fisher, and Simutin (BCFS). The sample
period is 1954 to 2012.

Raw Unconditional Alphas Cond. Alphas 4-Factor Loadings

Decile Return CAPM 3-Factor 4-Factor FS BCFS MKT HML SMB UMD

Low 1.12 0.04 0.06 0.04 0.08 0.08 1.16 -0.11 0.38 0.02
2 1.09 0.13 0.13 0.13 0.11 0.11 1.05 0.01 -0.02 0.00
3 1.05 0.13 0.11 0.13 0.11 0.10 0.99 0.06 -0.08 -0.02
4 1.01 0.11 0.09 0.09 0.10 0.10 0.95 0.07 -0.10 -0.01
5 0.98 0.09 0.05 0.03 0.06 0.05 0.96 0.13 -0.11 0.01
6 0.96 0.06 0.03 0.01 0.04 0.04 0.97 0.09 -0.11 0.03
7 0.96 0.05 0.03 0.04 0.03 0.03 0.98 0.04 -0.07 -0.01
8 0.94 -0.01 -0.02 0.03 -0.01 0.00 1.01 0.00 0.02 -0.05
9 0.83 -0.20 -0.19 -0.13 -0.16 -0.14 1.11 -0.08 0.18 -0.07
High 0.65 -0.47 -0.46 -0.37 -0.40 -0.38 1.18 -0.19 0.62 -0.09

Low-High 0.47 0.51 0.52 0.41 0.48 0.47 -0.02 0.07 -0.24 0.11
t-statistic [3.41] [3.78] [3.83] [2.99] [3.56] [3.46] [-0.62] [1.41] [-5.18] [3.30]
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Table 4. Summary Statistics of Risk Factors

This table reports summary statistics for the difference in returns on stocks with low and high
loadings βθ on the labor market tightness factor as well as for the market excess return, and
value, size and momentum factors. All data are monthly. Means and standard deviations are
in percent. The sample period is 1954 to 2012.

Correlations

Standard Sharpe Low-high Mkt excess Value Size
Mean deviation ratio βθ return return factor factor

Low-high βθ return 0.47 3.60 0.13
Market excess return 0.55 4.40 0.13 -0.11
Value factor 0.38 2.75 0.14 0.08 -0.27
Size factor 0.20 2.95 0.07 -0.22 0.28 -0.21
Momentum factor 0.73 4.06 0.12 0.15 -0.13 -0.17 -0.03
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Table 5. Robustness of Performance of Labor Market Tightness Portfolios

This table reports average raw returns and alphas, in percent per month, four-factor loadings, and corresponding
t-statistics for the portfolio that is long the decile of stocks with low loadings on the labor market tightness factor
and short the decile with high loadings. In Panel A, firms are assigned into deciles at the end of May and are held
for one year starting in July. In Panel B, firms are assigned into deciles at the end of every month τ and are held
during month τ + 2. In Panel C, firms are assigned into deciles at the end of every month τ and are held without
rebalancing for 12 month beginning in month τ+3. In Panel D, firms are assigned into quintiles rather than deciles.
In Panel E, firms below 20th percentile of NYSE market capitalization are excluded from the sample. In Panel
F, the labor market tightness factor is defined as the residual from a time-series regression of log-changes in the
labor market tightness on changes in industrial production and the consumer price index, dividend yield, T-Bill
rate, term spread, and default spread. In Panel G, labor market tightness factor is defined as the residual from
an ARMA(1,1) specification. In Panel H, regression (3.3) is amended to also include size, value, and momentum
factors. Conditional alphas are based on either Ferson and Schadt (FS) or Boguth, Carlson, Fisher, and Simutin
(BCFS). In all panels, portfolios are value-weighted. The sample period is 1954 to 2012.

Raw Unconditional Alphas Cond. Alphas 4-Factor Loadings

Decile Return CAPM 3-Factor 4-Factor FS BCFS MKT HML SMB UMD

A. Non-overlapping portfolios
Low-High 0.55 0.59 0.51 0.47 0.50 0.50 0.01 0.24 -0.25 0.04
t-statistic [3.42] [3.68] [3.19] [2.89] [3.16] [3.11] [0.29] [3.92] [-4.50] [0.94]

B. One-month holding period
Low-High 0.51 0.58 0.61 0.46 0.54 0.52 -0.06 0.04 -0.28 0.16
t-statistic [2.99] [3.44] [3.63] [2.67] [3.35] [3.23] [-1.42] [0.67] [-4.84] [3.85]

C. Two-month waiting period
Low-High 0.47 0.52 0.52 0.42 0.48 0.47 -0.02 0.07 -0.24 0.11
t-statistic [3.49] [3.84] [3.90] [3.08] [3.62] [3.52] [-0.58] [1.35] [-5.17] [3.23]

D. Quintile portfolios
Low-High 0.32 0.39 0.39 0.30 0.35 0.32 -0.06 0.07 -0.19 0.09
t-statistic [2.82] [3.44] [3.44] [2.60] [3.13] [2.90] [-2.29] [1.61] [-4.91] [3.33]

E. Excluding micro caps
Low-High 0.45 0.49 0.51 0.35 0.49 0.46 -0.05 0.01 -0.01 0.17
t-statistic [3.72] [4.05] [4.15] [2.84] [4.08] [3.88] [-1.79] [0.31] [-0.22] [5.54]

F. Alternative definition 1 of ϑ
Low-High 0.44 0.48 0.50 0.46 0.47 0.46 -0.04 0.02 -0.19 0.04
t-statistic [3.22] [3.55] [3.65] [3.32] [3.53] [3.46] [-1.30] [0.44] [-4.08] [1.06]

G. Alternative definition 2 of ϑ
Low-High 0.45 0.51 0.49 0.41 0.45 0.44 -0.03 0.11 -0.24 0.09
t-statistic [3.28] [3.68] [3.58] [2.87] [3.29] [3.20] [-0.80] [2.13] [-4.92] [2.70]

H. Alternative computation of βθ

Low-High 0.29 0.36 0.38 0.30 0.32 0.31 -0.08 0.03 -0.08 0.20
t-statistic [2.36] [2.90] [3.04] [2.55] [2.62] [2.54] [-2.55] [0.70] [-1.82] [6.46]

133



Table 6. Fama-MacBeth Regressions of Annual Stock Returns

This table reports the results of annual Fama-MacBeth regressions. Stock returns from July to
June are regressed on lagged labor market tightness loadings βθ, market betas βM , log market
equity ME, log of the ratio of book equity to market equity BM, 12-month stock return RU, hiring
rates HN, investment rates IK, and asset growth rates AG. Reported are average coefficients
and the corresponding Newey and West (1987) t-statistics. Details of variable definitions are in
Appendix A. The sample period is 1960 to 2012.

Reg βθ βM ME BM RU HN IK AG

(1) -0.028 0.000 -0.015
[-2.46] [-0.01] [-2.70]

(2) -0.030 0.009 -0.011 0.035
[-2.30] [0.67] [-1.95] [4.20]

(3) -0.040 0.010 -0.012 0.037 0.066
[-2.85] [0.72] [-2.22] [4.65] [3.46]

(4) -0.043 0.010 -0.012 0.032 0.067 -0.050
[-3.01] [0.72] [-2.29] [4.09] [3.38] [-3.48]

(5) -0.048 0.011 -0.013 0.033 0.066 -0.017
[-2.94] [0.78] [-2.30] [4.37] [3.32] [-1.54]

(6) -0.040 0.012 -0.011 0.032 0.066 -0.075
[-2.75] [0.83] [-2.13] [4.10] [3.36] [-5.02]

(7) -0.046 0.011 -0.012 0.028 0.068 0.004 0.014 -0.091
[-3.01] [0.77] [-2.25] [3.67] [3.36] [0.26] [1.16] [-4.66]
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Table 7. Performance of Labor Market Tightness Portfolios: Industry-Level Analysis

This table reports in Panel A average raw returns and alphas, in percent per month, and loadings from
the four-factor model regressions for the ten portfolios of stocks sorted within each of the 48 Ken French-
defined industries on the basis of their loadings on the labor market tightness factor. Panel B repeats the
analysis for the ten portfolios obtained by sorting 48 value-weighted industry portfolios from Ken French’s
data library on the basis of their loadings on the labor market tightness factor. The table also shows
returns, alphas, and loadings for the portfolio that is long the low decile and short the high one. The
bottom row of each panel gives t-statistics for the low-high portfolio. Firms (in Panel A) or industries (in
Panel B) are assigned into deciles at the end of every month and are held without rebalancing for twelve
months. Conditional alphas are based on either Ferson and Schadt (FS) or Boguth, Carlson, Fisher, and
Simutin (BCFS). The sample period is 1954 to 2012.

Raw Unconditional Alphas Cond. Alphas 4-Factor Loadings

Decile Return CAPM 3-Factor 4-Factor FS BCFS MKT HML SMB UMD

A. Portfolios of Stocks Sorted by Labor Market Tightness Loadings Within Industries
Low 1.10 0.09 0.04 0.02 0.10 0.09 1.10 0.06 0.20 0.03
2 1.06 0.10 0.06 0.07 0.09 0.09 1.03 0.06 0.06 -0.01
3 1.01 0.08 0.07 0.11 0.07 0.07 0.99 0.01 -0.05 -0.04
4 0.99 0.08 0.07 0.08 0.06 0.07 0.97 0.03 -0.07 -0.01
5 0.97 0.06 0.06 0.07 0.04 0.04 0.98 0.03 -0.12 -0.02
6 0.99 0.08 0.08 0.08 0.06 0.05 0.98 0.02 -0.12 0.00
7 0.93 0.01 0.00 0.00 -0.01 -0.01 0.99 0.03 -0.08 0.00
8 0.92 -0.01 -0.03 -0.03 -0.01 -0.01 1.00 0.05 -0.05 0.00
9 0.91 -0.06 -0.09 -0.06 -0.04 -0.03 1.05 0.05 0.04 -0.04
High 0.73 -0.27 -0.34 -0.31 -0.25 -0.25 1.08 0.09 0.27 -0.03

Low-High 0.37 0.36 0.39 0.33 0.35 0.34 0.02 -0.03 -0.07 0.06
t-statistic [3.84] [3.76] [4.01] [3.36] [3.79] [3.63] [0.96] [-0.78] [-1.98] [2.40]

B. Portfolios of Industries Sorted by Labor Market Tightness Loadings
Low 1.30 0.34 0.23 0.13 0.29 0.27 1.03 0.22 0.25 0.11
2 1.14 0.19 0.10 0.10 0.15 0.14 1.00 0.16 0.16 0.01
3 1.13 0.18 0.08 0.07 0.15 0.14 1.00 0.16 0.21 0.02
4 1.11 0.17 0.08 0.05 0.14 0.13 0.99 0.17 0.23 0.03
5 1.08 0.13 0.04 0.05 0.11 0.10 1.00 0.14 0.20 -0.01
6 1.05 0.09 0.00 0.04 0.06 0.06 1.03 0.14 0.17 -0.04
7 1.04 0.07 -0.03 0.01 0.03 0.03 1.03 0.16 0.18 -0.04
8 1.09 0.12 0.00 0.05 0.06 0.06 1.05 0.19 0.17 -0.06
9 0.90 -0.08 -0.21 -0.11 -0.15 -0.14 1.05 0.19 0.21 -0.11
High 0.96 -0.03 -0.16 -0.13 -0.09 -0.10 1.05 0.19 0.32 -0.03

Low-High 0.34 0.37 0.39 0.26 0.38 0.37 -0.02 0.03 -0.07 0.13
t-statistic [2.37] [2.55] [2.60] [1.71] [2.54] [2.45] [-0.48] [0.56] [-1.41] [3.67]
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Table 8. Benchmark Parameter Calibration

This table lists the parameter values of the benchmark calibration, which is at monthly frequency.

Parameter Symbol Value

Labor Market

Size of the labor force L 1.63
Matching function elasticity ξ 1.27
Bargaining power of workers η 0.125
Benefit of being unemployed b 0.71
Returns to scale of labor α 0.735
Workers quit rate s 0.022
Flow cost of vacancy posting κh 0.75
Flow cost of firing κf 0.35
Fixed operating costs f 0.226

Shocks

Persistence of aggregate productivity shock ρx 0.9830
Volatility of aggregate productivity shock σx 0.005
Persistence of matching efficiency shock ρp 0.9583
Volatility of matching efficiency shock σp 0.025
Persistence of idiosyncratic productivity shock ρz 0.965
Volatility of idiosyncratic productivity shock σz 0.095

Pricing Kernel

Time discount rate β 0.994
Price of risk of aggregate productivity shock γx 1
Constant price of risk of matching efficiency shock γp,0 -4.7
Time-varying price of risk of matching efficiency shock γp,1 3.6
Interest rate sensitivity φ -0.0214
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Table 9. Aggregate and Firm-Specific Moments

This table summarizes empirical and model-implied aggregate and firm-specific moments. The
data on the unemployment rate are from the BLS; the hiring and firing rates are from the JOLTS
dataset collected by the BLS; job creation and destruction rates are from Davis, Faberman, and
Haltiwanger (2006); labor market tightness is the ratio of vacancies to unemployment, with
vacancy data from the Conference Board and Barnichon (2010); the labor share of income is
from Gomme and Rupert (2007); the relative volatility of wages to output is from Gertler and
Trigari (2009); profits and output data are from the National Income and Product Accounts. At
the firm level, we compute moments of annual employment growth rates as in Davis, Haltiwanger,
Jarmin, and Miranda (2006) for the merged CRSP-Compustat sample. The first and second
moments of real stock returns and real risk-free rate are based on the value-weighted CRSP
market return and the one-month T-Bill rate, and inflation from the BLS.

Moment Data Model

Aggregate Labor Market

Unemployment rate 0.058 0.058
Hiring rate 0.036 0.036
Layoff rate 0.014 0.014
Job creation rate 0.026 0.028
Job destruction rate 0.025 0.027
Labor market tightness (LMT) 0.634 0.650
Correlation of LMT and vacancy 0.780 0.747
Correlation of LMT and unemployment rate -0.830 -0.851
Correlation of unemployment rate and vacancy -0.360 -0.328
Labor share of income 0.717 0.717
Volatility of aggregate wages to aggregate output 0.520 0.547
Aggregate profits to aggregate output 0.110 0.106

Firm-Level Employment

Volatility of annual employment growth rates 0.236 0.239
Fraction of firms with zero annual employment growth rates 0.097 0.099

Asset Prices

Average risk-free rate 0.010 0.010
Volatility of risk-free rate 0.021 0.021
Average market return 0.081 0.082
Stock market volatility 0.176 0.172
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Table 10. Labor Market Tightness Portfolios from the Benchmark Model

This table compares the performance of the benchmark model with the data. Reported are
loadings on labor market tightness factor, βθ, average returns of portfolios sorted by loadings on
labor market tightness, alphas from the one-factor CAPM, αCAPM , and cash flow correlations
of profits and labor market tightness, Corr. Returns and alphas are expressed in percent per
month.

Data Model

Decile βθ Return αCAPM Corr βθ Return αCAPM Corr

Low -0.74 1.10 0.09 -0.13 -0.98 1.10 0.23 -0.12
2 -0.39 1.06 0.10 -0.03 -0.76 1.02 0.19 -0.10
3 -0.23 1.01 0.08 -0.01 -0.64 0.99 0.16 -0.09
4 -0.12 0.99 0.08 -0.09 -0.52 0.95 0.15 -0.09
5 -0.03 0.97 0.06 -0.01 -0.37 0.91 0.13 -0.05
6 0.06 0.99 0.08 -0.00 -0.30 0.90 0.12 -0.04
7 0.16 0.93 0.01 0.10 -0.10 0.85 0.00 -0.01
8 0.28 0.92 -0.01 0.05 0.02 0.83 -0.01 0.09
9 0.45 0.91 -0.06 0.05 0.26 0.79 -0.04 0.11
High 0.85 0.73 -0.27 0.19 0.66 0.72 -0.08 0.15

Low-High -1.59 0.37 0.36 -0.32 -1.64 0.38 0.31 0.27
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Table 11. Labor Market Tightness Portfolios from Alternative Calibrations

This table summarizes average returns of portfolios sorted by loadings on labor market tightness
from alternative calibrations. In specification (1), the aggregate productivity shock is not priced,
γx = 0. In specification (2), the matching efficiency shock is not priced, γp,0 = 0, and in
specification (3), γp,1 = 0 so that the aggregate matching efficiency shock has a constant price
of risk. In specification (4), the bargaining power of workers, η, is raised by 10% relative to
the benchmark calibration. In specifications (5, 6, 7), the costs of laying off workers, κf , the
vacancy posting cost κh, and the fixed operating costs, f , are lowered by 10%, respectively.

(1) (2) (3) (4) (5) (6) (7)
Decile γx γp,0 γp,1 η κf κh f

Low 1.09 0.70 0.80 1.10 1.09 1.07 1.05
2 1.03 0.76 0.76 1.02 1.02 1.01 0.99
3 1.00 0.75 0.76 1.00 0.99 0.99 0.98
4 0.96 0.83 0.74 0.96 0.96 0.95 0.95
5 0.91 0.80 0.73 0.92 0.92 0.92 0.92
6 0.91 0.79 0.73 0.92 0.92 0.92 0.92
7 0.86 0.89 0.69 0.85 0.85 0.85 0.86
8 0.85 0.87 0.69 0.84 0.84 0.85 0.85
9 0.79 0.84 0.66 0.78 0.79 0.79 0.79
High 0.73 0.88 0.62 0.72 0.72 0.73 0.73

Low-High 0.36 -0.18 0.18 0.38 0.37 0.34 0.32
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Table 12. Forecasting Economic Activity with Labor Market Tightness

This table summarizes the ability of labor market tightness to forecast future economic activity.
The quarterly time series for the Gross Domestic Product, Wages and Salary Accruals, and
Personal Dividend Income are from the National Income and Product Accounts and total factor
productivity from Fernald (2012). The table reports coefficients on labor market tightness
growth, their t-statistics, and adjusted R2 values from bivariate regressions of output growth
(Panel A), wage growth (Panel B), and dividend growth (Panel C) on labor market tightness
growth and total factor productivity. Forecasting horizons range from one quarter to one year
and the data cover the years 1951 to 2012.

Data Model

Horizon (quarters) 1 2 3 4 1 2 3 4

A. Predicting aggregate output growth
ϑ 0.032 0.040 0.037 0.022 0.041 0.052 0.052 0.047
t-statistic [7.03] [5.15] [3.46] [1.67]
R2 25.13 20.47 14.01 8.59 25.12 11.14 5.94 3.46

B. Predicting aggregate wage growth
ϑ 0.043 0.063 0.077 0.076 0.046 0.056 0.056 0.052
t-statistic [9.71] [8.26] [7.24] [5.50]
R2 37.80 34.07 30.74 23.97 32.94 16.03 9.45 5.91

C. Predicting aggregate dividend growth
ϑ 0.078 0.151 0.193 0.199 0.282 0.346 0.324 0.297
t-statistic [3.81] [4.99] [4.69] [3.88]
R2 8.08 14.29 13.89 10.86 23.09 12.59 7.19 4.39
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Internet Appendix to
A Labor Capital Asset Pricing Model

In this Internet Appendix, we evaluate robustness of the inverse relation between stock return

loadings on changes in labor market tightness and future equity returns. We also provide

additional empirical results.

A. Controlling for Liquidity and Profitability Factors

Pastor and Stambaugh (2003) show that stocks with higher liquidity risk earn higher returns,

and Novy-Marx (2013) documents that more profitable firms generate superior future stock

returns. To ensure that our results are not driven by liquidity or profitability risks, we repeat

the portfolio analysis of Table 3, while controlling for these two sources of risk. As before, we

assign stocks into deciles conditional on their loadings on the labor market tightness factor and

obtain a monthly time series of future returns for each of the resulting ten portfolios. We use

the same models as before to calculate unconditional and conditional alphas, but include the

liquidity (Panel A) or profitability factor (Panel B) as an additional regressor in Table IA.I.17

The table shows that our results are robust to controlling for the liquidity and profitability

factors. The negative relation between labor market tightness loadings and future stock returns

is economically important and statistically significant in all regressions. The differences in future

returns of portfolios with low and high loadings range from 0.33% to 0.47% monthly.

B. Post-Ranking Loadings on Labor Market Tightness

Table IA.II summarizes post-ranking βθ loadings of the labor market tightness portfolios. For

each portfolio, we obtain monthly time series of returns from January 1954 until December

2012. We then regress excess returns of each group annually on the market and the labor

market tightness factors, including two Dimson (1979) lags to account for any effects due to

non-synchronous trading. We average betas across years to obtain average βθ loadings for

each portfolio. We show results for decile sorts in Panel A and quintile ones in Panel B. The

differences in post-ranking betas of the bottom and top groups are sizable, although muted

relative to the spread in betas shown in Table 2. Importantly, in both panels a positive relation

emerges between pre-ranking and post-ranking betas.

C. Controlling for Market Beta

In Table IA.III, we evaluate the relation between βθ loadings and future equity returns, con-

ditional on market betas βM . We sort firms into quintiles based on their βθ and βM loadings

computed at the end of month τ and hold the resulting 25 value-weighted portfolios without

17Liquidity and profitability factors are from http://faculty.chicagobooth.edu/lubos.pastor/research/ and
http://rnm.simon.rochester.edu/data lib/index.html, respectively. The data on the two factors are available
starting only in 1960s, which shortens our sample by as much as 14 years.
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rebalancing for 12 months beginning in month τ + 2. Table IA.III shows that irrespective of

whether we consider independent sorts or dependent sorts (e.g., first on βM and then by βθ

within each market beta quintile), stocks with low loadings on the labor market tightness factor

significantly outperform stocks with high loadings.

D. Controlling for Components of Labor Market Tightness and for Industrial
Production

Labor market tightness is composed of three components: vacancy index, unemployment rate,

and labor force participation rate. The negative relation between labor market tightness loadings

and future stock returns can plausibly be driven by just one of these components, rather than

the combination of them, that is the labor market tightness. It could also be driven by changes

in industrial production, with which labor market tightness is highly correlated (see Table 1).

To explore whether this is the case, we first estimate loadings from a two-factor regression

of stock excess returns on market excess returns and log changes in either the vacancy index

(βV ac), the unemployment rate (βUnemp), the labor force participation rate (βLFPR), or the

industrial production (βIP ). Following the methodology used in the main body of the paper, we

next study future performance of portfolios formed on the basis of these loadings and also run

Fama-MacBeth regressions of annual stock returns on the lagged loadings and control variables.

Tables IA.IV and IA.V show that none of the considered loadings relate robustly to future equity

returns. Loadings on the vacancy factor relate negatively but weakly to future stock returns,

and loadings on the unemployment rate factor relate positively but also weakly. There is no

convincing evidence that loadings on either the labor force participation factor or the industrial

production factor relate to future returns. Overall, the results suggest that the inverse relation

between labor market tightness loadings and future stock returns is not driven by vacancies,

unemployment rates, or labor force participation rates alone, but rather by their interaction:

the labor market tightness.

E. Loadings on 48 Industry Portfolios

In Table IA.VI, we summarize labor market tightness statistics for the 48 value-weighted industry

portfolios from Ken French’s data library. We report average conditional betas from rolling

three-year regressions, their corresponding standard deviations, and the fractions of months an

industry falls into the high or the low βθ quintiles. Differences in loadings on labor market

tightness across industries are small, with average conditional betas falling in a tight range

from −0.097 (Precious Metals) to 0.071 (Real Estate). All industries exhibit significant time

variation in βθ, suggesting that industry return sensitivities to changes in labor market tightness

vary strongly over time, conceivably in response to changes in the underlying economics of the

industry. For example, the Precious Metals industry has the lowest average conditional loading

but it still falls in the top βθ quintile 21% of the time. Overall, the results suggest considerable
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heterogeneity and time variation in loadings on labor market tightness across industries.
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Table IA.I. Performance of Labor Market Tightness Portfolios: Controlling for Liquidity and
Profitability Factors

This table reports average raw returns and alphas, in percent per month, and five-factor betas for the ten
portfolios of stocks sorted on the basis of their loadings on the labor market tightness factor, as well as for
the portfolio that is long the low decile and short the high one. In Panel A, all alphas are computed by
including the Pastor-Stambaugh liquidity factor (LIQ). In Panel B, all alphas are computed by including
the Novy-Marx profitability factor (PMU). The bottom row of each Panel gives t-statistics for the low-
high portfolio. Firms are assigned into deciles at the end of every month and the value-weighted portfolios
are held without rebalancing for 12 months. Conditional alphas are based on either Ferson and Schadt
(FS) or Boguth, Carlson, Fisher, and Simutin (BCFS). The sample period is January 1968 to December
2012 in Panel A, and July 1963 to December 2012 in Panel B.

A. Controlling for Pastor-Stambaugh liquidity factor

Raw Uncond. Alphas: Liquidity + Cond. Alphas 5-Factor Loadings

Decile Return Market 3-Factor 4-Factor FS BCFS MKT HML SMB UMD LIQ

Low 1.00 0.01 0.05 0.03 0.05 0.05 1.17 -0.14 0.38 0.02 0.02
2 1.03 0.13 0.12 0.13 0.11 0.11 1.05 0.01 -0.02 -0.01 0.04
3 0.97 0.10 0.08 0.10 0.08 0.08 0.99 0.06 -0.09 -0.02 0.03
4 0.96 0.11 0.09 0.09 0.09 0.09 0.97 0.08 -0.12 -0.01 0.03
5 0.92 0.10 0.04 0.03 0.07 0.06 0.96 0.15 -0.11 0.01 0.01
6 0.93 0.11 0.08 0.05 0.09 0.08 0.97 0.10 -0.11 0.03 -0.02
7 0.89 0.08 0.07 0.08 0.06 0.06 0.97 0.04 -0.07 -0.01 -0.06
8 0.87 0.03 0.02 0.07 0.02 0.03 1.01 0.00 0.03 -0.06 -0.08
9 0.73 -0.16 -0.15 -0.09 -0.14 -0.12 1.12 -0.08 0.19 -0.07 -0.10
High 0.53 -0.43 -0.40 -0.32 -0.35 -0.34 1.16 -0.22 0.64 -0.09 -0.12

Low-High 0.47 0.44 0.45 0.34 0.40 0.39 0.01 0.08 -0.25 0.11 0.14
t-statistic [2.82] [2.62] [2.67] [2.03] [2.41] [2.35] [0.24] [1.29] [-4.70] [2.99] [3.15]

B. Controlling for Novy-Marx profitability factor

Raw Uncond. Alphas: Profitability + Cond. Alphas 5-Factor Loadings

Decile Return Market 3-Factor 4-Factor FS BCFS MKT HML SMB UMD PMU

Low 1.05 0.04 0.09 0.07 0.06 0.06 1.17 -0.15 0.39 0.02 -0.10
2 1.03 0.12 0.09 0.09 0.10 0.09 1.05 0.04 -0.01 0.00 0.08
3 0.99 0.12 0.07 0.08 0.10 0.09 1.00 0.09 -0.08 -0.02 0.09
4 0.97 0.11 0.06 0.07 0.10 0.09 0.97 0.10 -0.11 0.00 0.08
5 0.93 0.09 0.00 -0.01 0.07 0.06 0.96 0.17 -0.11 0.01 0.09
6 0.93 0.07 0.01 -0.02 0.06 0.05 0.98 0.13 -0.11 0.03 0.11
7 0.89 0.00 -0.03 -0.03 -0.01 -0.01 0.98 0.07 -0.07 -0.01 0.12
8 0.89 -0.03 -0.06 -0.02 -0.04 -0.02 1.02 0.03 0.02 -0.05 0.12
9 0.77 -0.20 -0.17 -0.10 -0.18 -0.15 1.12 -0.10 0.17 -0.07 -0.04
High 0.59 -0.42 -0.35 -0.26 -0.37 -0.36 1.16 -0.29 0.64 -0.09 -0.22

Low-High 0.45 0.47 0.44 0.33 0.43 0.42 0.02 0.13 -0.25 0.12 0.13
t-statistic [2.91] [2.96] [2.78] [2.05] [2.77] [2.67] [0.46] [2.25] [-4.86] [3.26] [1.80]
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Table IA.II. Post-Ranking Betas of Labor Market Tightness Portfolios

This table reports post-ranking βθ loadings of the labor market tightness portfolios. Firms are
assigned into deciles by βθ at the end of every month and the value-weighted portfolios are
held without rebalancing for 12 months. Excess returns of each portfolio are then regressed
annually on the market and the labor market tightness factors, including two Dimson (1979)
lags to account for effects of non-synchronous trading. Betas are averaged across the years to
obtain average βθ loadings for each portfolio. Panel A reports results for decile portfolios, and
Panel B for quintile ones. The last column of each Panel shows the differences in post-ranking
betas of the bottom and top groups. The sample period is 1954 to 2012.

A. Post-ranking betas of decile portfolios
Low 2 3 4 5 6 7 8 9 High Low - High

βθ -0.07 -0.13 -0.13 -0.01 0.00 -0.06 0.13 0.04 0.15 0.18 -0.25

B. Post-ranking betas of quintile portfolios
Low 2 3 4 High Low - High

βθ -0.10 -0.06 -0.01 0.06 0.10 -0.20

145



Table IA.III. Performance of Portfolios Sorted by Loadings on Market and Labor Market
Tightness Factors

This table reports average excess returns, in percent per month, for the quintile portfolios of
stocks sorted on the basis of their loadings on labor market tightness and market factors, as
well as for the portfolio that is long the low quintile and short the high quintile. Firms are
assigned into groups at the end of every month and the value-weighted portfolios are held
without rebalancing for 12 months. The bottom row and the last column of each Panel give
t-statistics for the low-high portfolios. The sample period is 1954 to 2012.

Low βM 2 3 4 High βM Low-High βM

A. Independent sorts
Low βθ 0.62 0.64 0.51 0.47 0.30 0.32 [1.79]
2 0.64 0.54 0.54 0.39 0.23 0.41 [2.53]
3 0.58 0.56 0.47 0.34 0.13 0.45 [2.69]
4 0.61 0.51 0.42 0.25 0.20 0.41 [2.43]
High βθ 0.28 0.34 0.17 0.11 -0.03 0.31 [1.69]
Low-High βθ 0.34 0.29 0.34 0.36 0.33
t-statistic [2.27] [2.31] [2.61] [2.73] [2.60]

B. Conditional sorts: first on βθ, then on βM

Low βθ 0.63 0.60 0.44 0.39 0.30 0.33 [1.78]
2 0.64 0.56 0.56 0.44 0.31 0.33 [2.23]
3 0.59 0.59 0.47 0.38 0.21 0.39 [2.66]
4 0.62 0.53 0.38 0.29 0.17 0.45 [2.86]
High βθ 0.31 0.31 0.04 0.04 -0.04 0.35 [1.80]
Low-High βθ 0.32 0.29 0.40 0.35 0.34
t-statistic [2.21] [2.32] [2.95] [2.64] [2.49]

C. Conditional sorts: first on βM , then on βθ

Low βθ 0.70 0.60 0.51 0.44 0.27 0.43 [2.34]
2 0.63 0.53 0.55 0.41 0.19 0.44 [2.61]
3 0.53 0.54 0.45 0.32 0.18 0.35 [2.03]
4 0.62 0.53 0.44 0.22 0.14 0.48 [2.79]
High βθ 0.32 0.39 0.24 0.10 -0.16 0.49 [2.39]
Low-High βθ 0.37 0.21 0.26 0.34 0.43
t-statistic [2.70] [1.91] [2.24] [2.53] [2.95]
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Table IA.IV. Performance of Portfolios Sorted by Loadings on Components of Labor Market
Tightness and Industrial Production

This table reports four-factor alphas, in percent per month, for the ten portfolios of stocks sorted
on the basis of βV ac, βUnemp, βLFPR, and βIP , which are loadings from two-factor regressions
of stock excess returns on market excess returns and log changes in either the vacancy index,
the unemployment rate, the labor force participation rate, or industrial production, respectively.
The bottom two rows show the alphas and the corresponding t-statistics for the portfolio that
is long the low decile and short the high one. Firms are assigned into groups at the end of
every month and the value-weighted portfolios are held without rebalancing for 12 months. The
sample period is 1954 to 2012.

Four-factor alphas of portfolios sorted by

Decile βV ac βUnemp βLFPR βIP

Low 0.02 -0.22 -0.05 -0.07
2 0.12 -0.08 -0.02 0.07
3 0.11 0.01 0.02 0.04
4 0.02 0.02 0.03 0.10
5 0.02 0.11 0.03 0.05
6 0.01 0.11 0.04 0.04
7 0.10 0.04 0.04 0.02
8 0.02 0.09 0.08 -0.07
9 -0.05 0.13 0.10 -0.07
High -0.22 -0.01 0.08 -0.07

Low-High 0.24 -0.20 -0.13 -0.01
t-statistic [1.58] [-1.33] [-0.89] [-0.06]
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Table IA.V. Fama-MacBeth Regressions of Annual Stock Returns

This table reports the results of annual Fama-MacBeth regressions. Stock returns from July
to June are regressed on lagged market betas (βM ) and loadings from two-factor regressions of
stock excess returns on market excess returns and log changes in either labor force participation
rate, unemployment rate, vacancy index, or industrial production (βLFPR, βUnemp, βV ac, or
βIP , respectively). Regressions (7) to (12) also control for log market equity, log of the ratio of
book equity to market equity, 12-month stock return, hiring rates, investment rates, and asset
growth rates. Reported are average coefficients and the corresponding Newey and West (1987)
t-statistics. Details of variable definitions are in Appendix A. The sample period is 1960 to
2012.

Reg βM βLFPR βUnemp βV ac βIP Controls

(1) 0.001 0.001 No
[0.04] [1.19]

(2) 0.000 0.011 No
[-0.01] [1.51]

(3) 0.001 -0.007 No
[0.05] [-1.13]

(4) 0.001 -0.001 No
[0.09] [-0.43]

(5) 0.000 0.001 0.015 0.002 No
[-0.00] [1.08] [1.51] [0.35]

(6) 0.001 0.001 0.015 0.004 0.000 No
[0.05] [1.35] [1.15] [0.48] [-0.10]

(7) 0.012 0.001 Yes
[0.86] [1.54]

(8) 0.011 0.021 Yes
[0.81] [2.21]

(9) 0.011 -0.024 Yes
[0.77] [-3.36]

(10) 0.012 -0.004 Yes
[0.86] [-1.04]

(11) 0.011 0.001 0.012 -0.017 Yes
[0.79] [1.21] [1.14] [-1.25]

(12) 0.012 0.001 0.012 -0.015 0.000 Yes
[0.86] [1.34] [0.96] [-1.06] [-0.11]
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Table IA.VI. Loadings of 48 Industry Portfolios on Labor Market Tightness

This table reports average and standard deviation of conditional loadings on the labor market
tightness factor for industry portfolios. Loadings are computed as in regression (3.3), based on
rolling three-year windows. The last two columns show the fraction of months each industry
was assigned to the low and high βθ quintiles. Definitions of the 48 industries are from Ken
French’s data library. The sample period is 1954 to 2012 for all industries except Candy & Soda
(1963 to 2012), Defense (1963 to 2012), Fabricated Products (1963 to 2012), Healthcare (1969
to 2012), and Precious Metals (1963 to 2012).

Fraction of months in

Average Standard low βθ high βθ

Industry cond βθ dev of βθ quintile quintile

Precious Metals -0.097 0.612 0.595 0.211
Tobacco Products -0.086 0.211 0.416 0.152
Beer & Liquor -0.063 0.162 0.337 0.060
Utilities -0.047 0.106 0.271 0.047
Communication -0.031 0.103 0.123 0.118
Banking -0.030 0.151 0.287 0.094
Candy & Soda -0.025 0.187 0.267 0.239
Business Services -0.023 0.113 0.075 0.079
Food Products -0.022 0.114 0.213 0.094
Coal -0.019 0.272 0.355 0.313
Electronic Equipment -0.019 0.133 0.166 0.152
Shipping Containers -0.018 0.112 0.137 0.123
Medical Equipment -0.018 0.155 0.278 0.136
Computers -0.016 0.175 0.220 0.235
Chemicals -0.008 0.083 0.073 0.144
Almost Nothing -0.006 0.220 0.208 0.186
Insurance 0.000 0.133 0.204 0.114
Petroleum and Natural Gas 0.001 0.136 0.220 0.144
Agriculture 0.002 0.206 0.319 0.201
Pharmaceutical Products 0.004 0.128 0.152 0.169
Retail 0.005 0.106 0.069 0.157
Steel Works Etc 0.005 0.149 0.209 0.166
Consumer Goods 0.006 0.093 0.032 0.079
Transportation 0.006 0.120 0.129 0.112
Printing and Publishing 0.007 0.152 0.161 0.220
Construction 0.008 0.173 0.274 0.213
Entertainment 0.010 0.165 0.260 0.209
Fabricated Products 0.011 0.240 0.274 0.277
Personal Services 0.012 0.178 0.202 0.202
Restaraunts, Hotels, Motels 0.013 0.149 0.159 0.233
Trading 0.017 0.113 0.066 0.158
Defense 0.019 0.212 0.284 0.274
Electrical Equipment 0.020 0.093 0.042 0.194
Construction Materials 0.021 0.119 0.065 0.105
Shipbuilding, Railroad Equipment 0.021 0.204 0.262 0.244
Aircraft 0.024 0.128 0.224 0.195
Machinery 0.027 0.103 0.043 0.132
Recreation 0.028 0.247 0.188 0.295
Rubber and Plastic Products 0.031 0.125 0.121 0.216
Business Supplies 0.033 0.119 0.116 0.230
Measuring and Control Equipment 0.036 0.121 0.141 0.230
Apparel 0.038 0.142 0.078 0.190
Healthcare 0.040 0.273 0.297 0.291
Automobiles and Trucks 0.042 0.117 0.069 0.425
Non-Metallic and Industrial Metal Mining 0.042 0.202 0.267 0.258
Wholesale 0.043 0.114 0.026 0.134
Textiles 0.056 0.140 0.073 0.284
Real Estate 0.071 0.195 0.127 0.355
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