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Abstract

We study the merchant operations of commodity and energy conversion assets. Examples
of such assets include natural gas pipelines systems, commodity swing options, and power
plants. Merchant operations involves managing these assets as real options on commodity
and energy prices with the objective of maximizing the market value of these assets.

The economic relevance of natural gas conversion assets has increased considerably
since the occurrence of the oil and gas shale boom; for example, the Energy Information
Agency expects natural gas to be the source of 30% of the world’s electricity production
by 2040 and the McKinsey Global Institute projects United States spending on energy
infrastructure to be about 100 Billion dollars by 2020.

Managing commodity and energy conversion assets can be formulated as intractable
Markov decision problems (MDPs), especially when using high dimensional price models
commonly employed in practice. We develop approximate dynamic programming (ADP)
methods for computing near optimal policies and lower and upper bounds on the market
value of these assets. We focus on overcoming issues with the standard math programming
and financial engineering ADP methods, that is, approximate linear programing (ALP) and
least squares Monte Carlo (LSM), respectively. In particular, we develop: (i) a novel ALP
relaxation framework to improve the ALP approach and use it to derive two new classes of
ALP relaxations; (ii) an LSM variant in the context of popular practice-based price models
to alleviate the substantial computational overhead when estimating upper bounds on the
market value using existing LSM variants; and (iii) a mixed integer programming based
ADP method that is exact with respect to a policy performance measure, while methods
in the literature are heuristic in nature.

Computational experiments on realistic instances of natural gas storage and crude oil
swing options show that both our ALP relaxations and LSM methods are efficient and
deliver near optimal policies and tight lower and upper bounds. Our LSM variant is also
between one and three orders of magnitude faster than existing LSM variants for estimating
upper bounds. Our mixed integer programming ADP model is computationally expensive
to solve but its exact nature motivates further research into its solution.

We provide theoretical support for our methods: By deriving bounds on approximation
error we establish the optimality of our best ALP relaxation class in limiting regimes of
practical relevance and provide a theoretical perspective on the relative performance of
our LSM variant and existing LSM variants. We also unify different ADP methods in the
literature using our ALP relaxation framework, including the financial engineering based
LSM method.

In addition, we employ ADP to study the novel application of jointly managing storage
and transport assets in a natural gas pipeline system; the literature studies these assets
in isolation. We leverage our structural analysis of the optimal storage policy to extend
an LSM variant for this problem. This extension computes near optimal policies and tight
bounds on instances formulated in collaboration with a major natural gas trading com-
pany. We use our extension and these instances to answer questions relevant to merchants
managing such assets.
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Overall, our findings highlight the role of math programming for developing ADP meth-
ods. Although we focus on managing commodity and energy conversion assets, the tech-
niques in this thesis have potential broader relevance for solving MDPs in other application
contexts, such as inventory control with demand forecast updating, multiple sourcing, and
optimal medical treatment design.
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Chapter 1

Introduction

In this chapter we discuss the business problem and methodologies that are the focus of
this thesis. We then describe our contributions in this context. In §1.1 we describe mer-
chant operations of commodity and energy conversion assets and associated optimization
challenges. In §1.2 we discuss the intractable Markov decision problem formulations arising
in these applications. We briefly review the approximate dynamic programming literature
in §1.3. We describe our contributions and provide an outline of the thesis in §1.4.

1.1 Business Background and Challenges

The energy sector in the United States is undergoing a renaissance. Energy production has
grown rapidly in recent years, mostly due to the oil and gas shale boom. According to the
International Energy Agency (IEA, 2012), the United States is projected to overtake Saudi
Arabia to become the largest oil producer by around 2020 and could be a net exporter of
oil and natural gas in about a decade. The McKinsey Global Institute identified the energy
sector as a game changer for the gross domestic product growth of the United States (Lund
et al., 2013), potentially adding between 360-690 Billion US dollars to the US economy by
2020. In short, it is an exciting time to engage in energy research.

The realization of these projected benefits hinges (in part) on commodity and energy
value chains being able to support the processing and physical flows of shale oil and natural
gas, which are relatively new and unconventional energy sources. Current infrastructure
falls short (Friedman and Philbin, 2014, INGAA, 2014). In response, commodity and
energy value chains, such as the ones of natural gas and electricity, are undergoing consid-
erable change, with $180 Billion US dollars worth of projected investment in new energy
infrastructure by 2020 (Lund et al., 2013).

This thesis studies commodity and energy conversion assets (Secomandi and Seppi,
2014), which are embedded in commodity and energy value chains and perform important
economic roles, such as physically converting raw materials or modifying the availability
of commodities and energy sources. Examples of commodity and energy conversion assets
include natural gas pipeline systems, oil refineries, and power plants. We focus on the
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operations of these assets from the perspective of managers and energy traders at chemical
and petroleum companies (e.g., Dow Chemicals, Exxon); energy trading, distribution, and
utility firms (e.g., Noble Energy, National Grid, Williams Partners, Sempra Energy); and
investment banks (e.g., Goldman Sachs). These managers and traders are referred to as
merchants (Secomandi and Seppi, 2014).

Merchant operations of commodity and energy conversion assets involves viewing these
assets as models of operational flexibility, or real options, on uncertain commodity and
energy prices (Dixit and Pindyck, 1994). The operational flexibility embedded in these
assets is limited by operational constraints, a feature typically deemphasized in financial
options. For example, the amount of natural gas injected into and withdrawn from a natural
gas storage facility is constrained in practice by overall storage space, and injection and
withdrawal capacities. The merchant’s objective is to maximize the value of commodity
and energy conversion assets by optimally adapting decisions endowed by their operational
flexibility to the unfolding of commodity and energy prices. The maximum value is referred
to as the market value of the commodity and energy conversion asset because this value
can be replicated using a portfolio of financially traded instruments under certain market
completeness assumptions (Dixit and Pindyck 1994, Seppi 2002, Secomandi and Seppi 2014
Chapter 3).

The valuation and management of commodity and energy conversion assets can be
formulated as intractable Markov decision problems (MDPs). Merchants thus use heuristics
to manage these assets. For example, popular practice-based heuristics for commodity
storage include (i) the rolling intrinsic approach, which periodically resolves a deterministic
version of the MDP; and (ii) the spread option linear program, which models the payoff
from a pair of injection and withdrawal trades as a spread option on the natural gas spot
prices and determines notional trading amounts over a portfolio of such spread options
(Gray and Khandelwal, 2004, Secomandi, 2014). Linear programming based heuristics are
also used for refinery operations (Favennec, 2001, Chapters 5 and 6). The quality of the
policies computed by practice-based heuristics varies from near optimal to substantially
suboptimal (de Jong et al., 2010, Lai et al., 2010).

Assessing the quality of practice-based heuristics is not straightforward because they
compute an operating policy, which provides only a lower bound on the market value; that
is, it does not provide an upper bound on the market value (Lai et al., 2010). Further,
valuation is a building block for hedging (Nadarajah et al., 2013) and credit value adjust-
ment computations (Thompson, 2012, 2013) which are critical for the risk management of
commodity and energy conversion assets. These tasks require valuations to be performed
at multiple future states (e.g., commodity and energy prices) sampled within Monte Carlo
simulation. Thus being able to perform fast valuations of the asset at future states is criti-
cal. Practice based heuristics are typically not well suited for these purposes because they
do not provide a valuation at future states and extending them to obtain such valuations is
computationally infeasible. Thus, efficient approximate methods for computing tight lower
and upper bounds on the market value are useful in practice.
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1.2 MDP

Merchant operations of commodity and energy conversion assets involves solving sequen-
tial decision making problems under uncertainty. The merchant operates a commod-
ity and energy conversion asset at a set of predefined times belonging to a stage set
I := {0, 1, . . . , N − 1}, where N is finite. At each stage i ∈ I, the merchant has access
to new information referred to as the state of the system. This state can be partitioned
into an endogenous component, xi, such as inventory or the asset operating status, and an
exogenous component, Fi, which we take to be commodity and energy prices, but other
possibilities include demand and interest rates. Both the endogenous and exogenous states
can be vectors. Changes in the endogenous state are the result of actions taken by mer-
chants, while the evolution of the price (exogenous) state is determined by market forces.
Because the endogenous state xi models the operational flexibility of the asset, it is rea-
sonable to model its support by a compact set Xi. Energy and commodity prices in Fi are
continuous and belong to RnFi , where nFi is the number of components of Fi.

Given the history of states from stage 0 to stage i, the merchant takes an action at
stage i. Once this action is known, the merchant receives an immediate reward, and the
system transitions to a state at stage i + 1 following a probability distribution function.
This process starts from some state at the initial stage (i = 0) and repeats until the end
of the finite horizon (i = N − 1).

In Markov decision problems (Puterman, 1994), the action, the immediate reward,
and the state transition probability distribution at stage i depend only on the current
state (xi, Fi), that is, past state information is inconsequential to the evolution of the
system. Thus, at stage i, the action at each state is given by a function ai(xi, Fi), the
reward is defined by a function ri(xi, Fi, ai) (we suppress the dependence of the action on
the state in our notation), and state transitions are given by a probability distribution
function fi(xi+1, Fi+1|xi, Fi, ai). Similar to the support of the endogenous state, we model
the support of ai(xi, Fi) by a compact set Ai(xi, Fi).

A common assumption in real options applications, including merchant operations ap-
plications, is that the decision maker is a price taker (small player) whose decisions do not
affect the evolution of Fi (Guthrie, 2009). This is a reasonable assumption in competitive
commodity markets such as natural gas and crude oil. Under this assumption, the tran-
sition function can be written as fi(xi+1, Fi+1|xi, Fi, ai) = fxi (xi+1|xi, Fi, ai)fFi (Fi+1|Fi),
where fxi (xi+1|xi, Fi, ai) and fFi (Fi+1|Fi) are marginal transition probability distribution
functions for the endogenous states and prices, respectively. The transition probability
distribution for prices is typically risk-adjusted (that is, it is a so called risk-neutral dis-
tribution) and determined by stochastic differential equations governing price evolution
(Seppi 2002 and Secomandi and Seppi 2014, chapter 3). This risk-adjusted measure is
unique when the commodity/energy market is complete, see, e.g., Björk (2004, page 122).
A common choice for the endogenous transition distribution in storage and transport ap-
plications is the following deterministic function: 1(xi+1 = xi − ai). We will use this
functional form for the endogenous transition distribution for concreteness.

Recall from §1.1 that we are ideally interested in computing the market value of a com-
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modity and energy conversion asset and an optimal operating policy, which is a collection
of optimal decision rules, one for each stage and state. Specifically, it is standard to de-
fine (operating) policy π as a sequence of decision rules, where the decision rule aπi (xi, Fi)
returns the action taken by policy π at stage i and state (xi, Fi). We also represent the
set of all policies by Π. Denoting the market value of the asset by V0(x0, F0) at the initial
state (x0, F0), our MDP formulation is

V0(x0, F0) := max
π∈Π

∑
i∈I

δiE [r(xπi , Fi, a
π
i (xπi , Fi))|x0, F0] , (1.1)

where δ is the risk-free discount factor from stage i back to stage i − 1, ∀i ∈ I \ {0}; E
is expectation under the risk-neutral measure for Fi, and xπi the value of the endogenous
state at stage i under policy π.

In theory, an optimal policy of MDP (1.1) can be computed by solving a stochastic
dynamic program (SDP). We denote by Vi(xi, Fi) the value function of this SDP, which in
our setting represents the market value of the asset starting at stage i from state (xi, Fi)
and operating until the end of the horizon. The SDP formulation is

Vi(xi, Fi) = max
ai∈Ai(xi,Fi)

ri(xi, Fi, ai) + δE [Vi+1 (xi − ai, Fi+1) |Fi] , (1.2)

∀(i, xi, Fi) ∈ I × Xi × RnFi , with boundary conditions VN(xN , FN) := 0,∀xN ∈ XN . The
structure we imposed on the state transition distribution functions is apparent in how the
stage i state (xi, Fi) transitions to the stage i + 1 state (xi − ai, Fi+1) in this SDP. The
presence of a vector of random variables, Fi, in the state is an important feature of this
SDP (these random variables need not appear in the state if their future distributions
do not depend on their prior realized values). The presence of these random variables
in the state is common in real and financial options. Examples of applications that fit
formulation (1.2) include chooser flexible caps (Meinshausen and Hambly, 2004), portfo-
lio liquidation (Gyurko et al., 2011), swing options (Barbieri and Garman, 1996, Jaillet
et al., 2004, Chandramouli and Haugh, 2012), switching options (Cortazar et al., 2008),
commodity processing and storage (Maragos, 2002, Boogert and De Jong, 2008, 2011/12,
Secomandi, 2010, Lai et al., 2010, Arvesen et al., 2013, Boogert and Mazières, 2011, De-
valkar et al., 2011, Thompson, 2012, Wu et al., 2012), and power plants (Tseng and Barz,
2002, Thompson, 2013).

In general, solving SDP (1.2) is challenging. First, the value function Vi(xi, Fi) needs to
be computed at infinitely many states. Some discretization is typically possible to avoid an
infinite number of states but the number of states in the discretization still grows exponen-
tially with the number of components in the state. This state space dimensionality issue is
referred to as the first curse of dimensionality (Powell, 2011, §4.1). Second, evaluating the
right hand side of (1.2) requires computing an expectation that is typically not available in
closed form (see Secomandi 2014, Proposition 4 for an exception). Discrete approximations
of transition probability distributions using grids or lattices are popular in the literature
(see, e.g., Levy 2004 and references therein) to overcome this issue when the number of
stochastic factors driving the evolution of prices is small, typically less than three (see,
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e.g., Schwartz and Smith 2000 and Jaillet et al. 2004). However, capturing the volatility
in energy and commodity prices typically requires a larger number of factors and, hence,
higher dimensional models for the evolution of prices are commonly employed in practice
and academia (Ho and Lee, 1986, Cortazar and Schwartz, 1994, Clewlow and Strickland,
2000, Maragos, 2002, Eydeland and Wolyniec, 2003, Veronesi, 2010). Thus, computing
expectations also has an associated curse of dimensionality referred to as the second curse
of dimensionality. Finally, even if this expectation were computable, the optimization over
actions in set A(xi, Fi) on the right hand side of (1.2) is in general a challenging nonlinear,
possibly, stochastic mixed integer optimization problem. However, there are applications
where this optimization can be performed efficiently such as when the value function is
concave in the endogenous state (see for example Lai et al. 2010, Powell 2011, ch. 13, and
Nascimento and Powell 2013a).

In summary, solving SDP (1.2) in the context of merchant operations of commodity
and energy conversion assets poses multiple challenges. Methods to approximately solve
such SDPs are thus justified.

1.3 Approximate Dynamic Programming

As discussed in §1.1, several challenges make the exact computation of an optimal operat-
ing policy and the associated market value V0(x0, F0) intractable. Approximate dynamic
programming (ADP; Bertsekas 2007 and Powell 2011) is an area at the intersection of ma-
chine learning, financial engineering, and optimization that takes the practical approach
of computing suboptimal policies and lower and upper bounds on their market values. A
common ADP approach computes low-dimensional approximations to the value function
Vi(xi, Fi) of SDP (1.2), or its continuation function Ci(xi+1, Fi) := δE [Vi+1 (xi+1, Fi+1) |Fi].
We use the labels V̂i(xi, Fi) and Ĉi(xi+1, Fi) to denote a value function approximation and
continuation function approximation, respectively. We briefly discuss the use of these ap-
proximations to compute suboptimal policies and lower bounds in §1.3.1 and upper bounds
in §1.3.2. We review methods to compute value function and continuation function ap-
proximations in §1.3.3.

In this thesis, we will largely apply the lower and upper bounding approaches available
from the literature and discussed in §§1.3.1-1.3.2, although we will exploit application-
specific structure in certain cases to make these methods efficient. Our contributions add
to the literature on methods for computing value function approximations discussed in
§1.3.3.

1.3.1 Greedy Policies and Lower Bounds

At a given stage i and state (xi, Fi), value function and continuation function approxi-
mations can be combined with the Bellman operator of SDP (1.2) to compute a heuristic
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feasible action, referred to as a greedy action (see §6.1.1 in Bertsekas 2007):

argmax
ai∈Ai(xi,Fi)

ri(xi, Fi, ai) + δE
[
V̂i(xi − ai, Fi+1)|Fi

]
, (1.3)

argmax
ai∈Ai(xi,Fi)

ri(xi, Fi, ai) + Ĉi(xi − ai, Fi). (1.4)

Notice that (1.3) is a stochastic optimization problem while (1.4) is a deterministic opti-
mization problem; the expectation in (1.3) is typically replaced by a sample approximation.
Finding optimal actions in both (1.3) and (1.4) can be done easily using enumeration if
Ai(xi, Fi) is a finite set of small cardinality. Otherwise, special structure on the reward
function and the value function approximation, such as concavity in the actions ai, is
needed for the efficient computation of greedy actions. The (possibly infinite) collection of
greedy actions at all stages and states defines a greedy policy and the value of the com-
modity and energy conversion asset operated under this policy is a “greedy” lower bound
on the market value. Computing this lower bound exactly may not be possible because
of the state space curse of dimensionality. Instead, an estimate of the greedy lower bound
can be obtained in Monte Carlo simulation by evaluating the greedy policy over a fixed set
of sample paths of prices (the exogenous state).

1.3.2 Upper Bounds

Upper bounds can be estimated via Monte Carlo simulation of prices (the exogenous state)
using the so called information relaxation and duality approach. This approach has its
roots in the financial engineering literature (see Rogers 2002, Andersen and Broadie 2004,
Chapter 8 in Glasserman 2004, Haugh and Kogan 2004, Detemple 2006, Haugh and Kogan
2007, Brown et al. 2010, and references therein). The intuition behind a dual upper bound
is to allow the decision maker to access future state information when making decisions,
that is, relax the “nonanticipativity” constraints related to state information implicit in
the SDP formulation. Knowledge of future information results in an upper bound on the
market value that is further tightened by penalizing this knowledge using well-constructed
dual penalties.

Brown et al. (2010) identify a hierarchy of information relaxations based on how much
future information the decision maker is allowed to access. Perfect information relaxations
correspond to the extreme case where the decision maker has access to all possible future
state information. Estimating perfect information upper bounds in Monte Carlo simula-
tion requires the solution of a deterministic version of SDP (1.2) with rewards modified by
the dual penalty along each sample path of prices (the exogenous state). Therefore, esti-
mating these upper bounds is easier when the endogenous state space is low dimensional
and optimization over actions in this deterministic dynamic program can be performed
efficiently, or the deterministic version of dynamic program (1.2) can be formulated as a
tractable math program, e.g., a convex program.

The construction of dual penalties is the key component for estimating dual upper
bounds. These penalties can be instantiated using value function and continuation func-
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tion approximations (Haugh and Kogan, 2004, Lai et al., 2010). The definition of dual
penalties involves an expectation that has to be typically approximated by a sample ap-
proximation. Brown et al. (2010) and Lai et al. (2010) instantiate dual penalties using
a value function approximation and such sample approximations. Other approaches to
instantiate dual penalties include using the continuation function of a heuristic policy
(Andersen and Broadie, 2004), gradient based penalties (Brown and Smith, 2011) or func-
tions related to the value functions of easier-to-solve versions of an SDP (Brown and Smith,
2013, Secomandi, 2014). It is known that computing dual upper bounds using a continua-
tion function approximation is computationally challenging (see Chapter 8 in Glasserman
2004).

1.3.3 Approximations of the Value and Continuation Functions

A key ingredient for computing greedy policies and upper and lower bounds is a value
(continuation) function approximation. A value function approximation is an approxima-
tion architecture V̂i(·, ·; βi) parameterized by the vector βi ∈ RBi . The parameterization in
V̂i(·, ·; βi) could be nonlinear, for example a neural network (Vapnik, 2000). Although non-
linear parameterizations are possible, the most common choice is a linear parameterization
of a set of potentially nonlinear basis functions, where each basis function is a mapping
from the stage i state space to the real line (Tsitsiklis and Van Roy, 1996). Examples
of basis functions include polynomials of the components of the state, and call and put
options on commodity and energy prices. Choice of basis functions are typically applica-
tion specific, but a few recent papers have focused on automatic basis function generation
(Klabjan and Adelman, 2007, Bhat et al., 2012). Continuation function approximations
Ĉi(·, ·; θi) can be defined in an analogous manner with parameters θi ∈ RBi . The problem
of determining a value function and continuation function approximation thus reduces to
the problem of determining βi and θi, respectively.

Developing methods to compute good linearly parametrized value (continuation) func-
tion approximations is an active area of ADP research. The applicability of methods in
the literature can be broadly classified based on the size of the endogenous and exogenous
state spaces of the SDP. We will refer to a endogenous/exogenous state space as small if
it is a vector with less than three components, and as large otherwise. We note that the
action space size, not included in this classification, is also important in determining the
difficulty of an SDP.

Class (i). The easiest SDP class has both small endogenous and exogenous state spaces.
Specialized methods are not critical here because the state space can typically be discretized
and a version of SDP (1.2) defined on this discretized state space can be solved using
backward recursion to obtain a good approximation. Thus, the interesting SDP classes
have a large endogenous state space or a large exogenous state space.

Class (ii). SDPs with a large endogenous state space and a small exogenous state space
are arguably the most well studied problem class in operations research. A popular math
programming approach applied to problems in this class is approximate linear programming
(Schweitzer and Seidmann 1985, de Farias and Van Roy 2003). This approach solves a linear
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program, known as an approximate linear program, with the value function approximation
weights βi as variables and a large number of constraints, one for every stage-state-action
triple. Because ALP has a manageable number of variables, row-generation schemes, or
column generation in its dual, have been used to solve it exactly in applications (Adelman,
2003, 2004, 2007). Alternatively, sampled approximate versions of ALP have also been
considered to reduce the number of constraints (de Farias and Van Roy, 2003, 2004).
Although constraint reduction is needed, adding constraints to impose structure on the
value function approximation has been shown to substantially speed up ALP solve times
(Adelman, 2007). On the theoretical side, an appealing feature of the ALP approach is
its strong performance guarantees, in terms of the difference between the value function of
SDP (1.2) and the value function approximation, evaluated using an∞-norm or a weighted
1-norm.

Recent research has focused on alternate math programs to ALP for computing a value
function approximation. Petrik and Zilberstein (2009) and Desai et al. (2012a) develop a
linear program, known as the smoothed ALP, by relaxing the constraints of ALP. Desai
et al. (2012a) show that the performance guarantee of smoothed ALP is superior to ALP.
Solving this ALP relaxation is more difficult than ALP because it has both a large number
of variables and constraints. Row generation for its exact solution is thus not viable. How-
ever, Desai et al. (2012a) discuss how a sampled version of the smoothed ALP can be solved
instead. Wang and Boyd (2010) propose a different ALP relaxation scheme that improves
upon the ALP performance guarantee as well but leads to a more controlled increase in
the number of variables compared to the smoothed ALP. Motivated by improving greedy
policy performance, Petrik (2012) develops a mixed integer programming ADP model that
maximizes a lower bound on the value of a greedy policy. This mixed integer program is
challenging to solve.

Another ADP approach for SDP class (iii) is based on stochastic gradient methods (see
Chapters 9 and 10 in Powell 2011 and Chapter 6 in Bertsekas 2007). These methods start
with an initial value (continuation) function approximation and apply an iterative scheme
to improve this approximation. An important component in designing such schemes is
a mechanism for updating the value (continuation) function approximation. Under cer-
tain conditions, convergence to the exact value (continuation) function can be guaranteed
(Nascimento and Powell, 2009), but performance guarantees after a finite number of itera-
tions are typically absent. Methods of this type have been successfully applied to compute
policies for applications with very large endogenous state spaces (Simo et al., 2008).

Upper bound estimation based on the information relaxation and duality idea (see
§1.3.2) may be challenging for SDPs with a large endogenous state space, unless the action
space, rewards, and dual penalties have special structure. An alternate upper bound on
the optimal policy that has been used in this literature is from the ALP value function
approximation (Adelman, 2003, 2004, 2007). This value function approximation is an upper
bound on the exact value function at every stage and state, and the exact value function
at the initial stage and state coincides with the value of an optimal policy. However, care
must be taken when solving a sampled version of ALP because the upper bound from this
sampled version may not be an upper bound on the optimal policy value of the original
problem.
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As noted in §1.2, realistic models of commodity and energy price evolution are typi-
cally high dimensional. Thus, the most relevant problem classes for merchant operations
applications are the two with large exogenous state spaces.

Class (iii). A number of important merchant operations applications have small en-
dogenous states and large exogenous states, for example, multiple exercise options such as
commodity storage and swing options. For this SDP class, the standard approach both in
practice and the financial engineering literature computes a continuation function approx-
imation by approximating the SDP (1.2) using regression and Monte Carlo simulation (see
Appendix B in Eydeland and Wolyniec 2003, Glasserman and Yu 2004, Meinshausen and
Hambly 2004, Detemple 2006, Boogert and De Jong 2008, 2011/12, Bender 2011, Gyurko
et al. 2011). This approach was pioneered by Carriere (1996), Longstaff and Schwartz
(2001), and Tsitsiklis and Van Roy (2001).

It is known than the standard LSM approach is not well suited for estimating infor-
mation relaxation and duality based upper bounds (see §1.3.2) because it computes a
continuation function approximation (see Chapter 8 in Glasserman 2004). Recent LSM
variants by Desai et al. (2012b) and Gyurko et al. (2011) focus on overcoming this is-
sue, but these variants rely on sample average approximations that are computationally
expensive.

We note that math programming based ADP methods that have been extensively ap-
plied for solving SDPs in class (ii) can in principle also be applied for solving SDPs in class
(iii). However, such applications have been limited (Nascimento and Powell, 2013b); in
particular, we are not aware of an application of ALP.

Class (iv). The most challenging SDPs have both large endogenous and exogenous
states. The development of ADP methods for these problems is scant (Powell et al., 2012a,
Scott et al., 2014). However, operations of important commodity and energy conversion
assets, such as refineries, belong to this class. The endogenous state in a refinery application
could include conversion decisions of multiple input commodities into multiple output
commodities and storage decisions of these inputs and outputs, and the exogenous state
could include input and output commodity prices.

1.4 Thesis Contributions and Outline

This thesis focuses on computing near optimal policies and lower and upper bounds on the
market value for SDPs arising in the merchant operations of commodity and energy conver-
sion assets, that is, SDPs with large endogenous and/or exogenous state spaces (see classes
(iii) and (iv) discussed in §1.3). We develop effective math programming and LSM based
ADP methods to overcome deficiencies of existing ALP and LSM approaches. We provide
theoretical support for these methods using bounds on the value function approximation
error and also provide some limiting optimality results. We also use a math programming
perspective to unify existing ADP methods and the ones we develop. These results connect
seemingly different financial engineering and math programming ADP approaches. We also
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study a novel commodity and energy conversion asset application. Overall, our findings
highlight the role of a math programming perspective when developing ADP methods.

Although the focus of this thesis is on managing commodity and energy conversion
assets, the ideas and methods we develop have potential broader relevance for solving
MDPs in applications such as inventory control with demand forecast updates (Iida and
Zipkin, 2006), multiple sourcing (Veeraraghavan and Scheller-Wolf, 2008), and optimal
medical treatment design (Schaefer et al., 2005, Mason, 2012).

We provide an outline of the thesis below, also elaborating on the contributions of each
chapter.

Chapter 2. ALP has been successfully applied for solving SDPs arising in applications
with small exogenous state spaces but has not been explored for solving SDPs with large
ones, which are typical in merchant operations applications. We explore the ALP approach
for these SDPs. We analyze the optimal solution sets of both the ALP dual and the dual
of the linear program associated with an MDP, which we refer to as the exact dual. The
optimal solutions of the exact dual are in one to one correspondence with the state-action
probability distributions induced by optimal policies (Puterman, 1994). In contrast, we find
that all the optimal solutions of the ALP dual may correspond to state-action probabilities
induced by infeasible policies. This inconsistency may lead to poor ALP value function
approximations and greedy policies, especially when the state space of the SDP includes
large exogenous information. We develop a novel ALP relaxation framework that overcomes
this issue by restricting the ALP dual using constraints. We use this framework to develop
two new classes of ALP relaxations. These ALP relaxations are different from the existing
ALP relaxations in the literature (Petrik and Zilberstein, 2009, Desai et al., 2012a, Wang
and Boyd, 2010). Moreover, the existing ALP relaxations are not derived by constraining
the ALP dual.

We provide theoretical support for our best ALP relaxation class by deriving bounds on
the value function approximation error and using them to establish the optimality of ALP
relaxations in limiting regimes of practical relevance. Our best ALP relaxation improves
on the best known bounds on realistic commodity storage instances and is competitive
with two state of the art approaches: least squares Monte Carlo (Longstaff and Schwartz,
2001) and the rolling intrinsic (see, e.g., Lai et al. 2010 and references therein).

Chapter 3. As discussed in §1.3.3, LSM methods are the standard approach in finan-
cial engineering for approximating SDPs with small endogenous states and large exogenous
states. However, existing LSM variants require substantial computational overhead for
upper bound estimation either due to the use of a continuation function approximation
(Longstaff and Schwartz, 2001) or sample average approximations (Desai et al., 2012b,
Gyurko et al., 2011). We develop an LSM variant for estimating greedy lower bounds and
dual upper bounds on the value of multiple exercise options in conjunction with common
term structure models for commodity and energy price evolution (Ho and Lee, 1986, Cor-
tazar and Schwartz, 1994, Clewlow and Strickland, 2000, Maragos, 2002, Eydeland and
Wolyniec, 2003, Veronesi, 2010). Our approach computes a value function approximation
and eliminates the need for sample average approximations during bound estimation. In-
terestingly, a number of papers that employ the standard LSM approach in the academic

10



literature use price models that are special cases of term structure models and would benefit
from using our variant.

We numerically benchmark our LSM variant against the standard LSM method (Longstaff
and Schwartz, 2001) and a recent LSM variant (Desai et al., 2012b, Gyurko et al., 2011) on
new realistic energy swing and storage option instances. We find that our LSM technique
requires significantly fewer regression samples than the two other LSM methods to deliver
near optimal bound estimates with about the same accuracy and precision. For the same
number of evaluation samples, our LSM approach is between one and three orders of mag-
nitude faster than the two existing LSM approaches when estimating dual upper bounds,
while all the three LSM methods exhibit comparable computational effort when estimating
greedy lower bounds. We also conduct a worst case error bounding analysis that provides
a theoretical perspective on the relative quality of the bounds estimated by these methods
on our instances.

Chapter 4. We consider the novel application of the merchant management of natural
gas pipeline systems, which give merchants the ability to trade natural gas across time and
geographical markets. That is, these systems embed two types of assets that merchants
manage as real options: storage and transport. The current literature has studied the
management of these assets in isolation, while we consider their joint management.

We formulate this problem as an SDP with large endogenous and exogenous state
spaces, that is, this SDP belongs to class (iv) of §1.3.3. The curse of dimensionality in
the endogenous state space makes it difficult to apply LSM methods. We thus use an
equivalent reformulation of this SDP that has a one dimensional endogenous state space
but requires solving a linear program for evaluating its reward function, that is, we move
the SDP from class (iv) to class (iii) without loss of generality. Our LSM variant of Chapter
3 is now applicable but takes substantial computational time to estimate lower and upper
bounds because of the expensive reward function evaluations. To overcome this issue, we
characterize the structure of an optimal storage policy and leverage it to efficiently reduce
the number of reward function evaluations. We find that this extension of our LSM method
is efficient and performs near optimally on realistic instances formulated in collaboration
with a natural gas trading company in the United States.

Using this policy and instances, we find that (i) the joint, rather than decoupled,
merchant management of storage and transport assets has substantial value; (ii) this man-
agement can be nearly optimally simplified by prioritizing storage relative to transport,
despite the considerable substitutability between these activities; (iii) the value due to
price uncertainty is large but can be almost entirely captured by sequentially reoptimizing
a deterministic version of our MDP, an approach included in existing commercial software;
and (iv) the value of transport trading across different pipelines is substantial.

Chapter 5. As discussed in §1.3.3, LSM is the standard financial engineering approach
for solving SDPs with a small endogenous states space and a large exogenous state space.
We show in Chapter 2 that our constraint-based ALP relaxations are also effective for
solving SDPs in this class. Thus, one wonders if the LSM or ALP relaxation approaches
are related in anyway. We settle this question by showing that our LSM variant and the
constraint-based ALP relaxations are special cases of the same family of ALP relaxations.
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We derive this family using our ALP relaxation framework of Chapter 2, which is based
on constraining the ALP dual. This unification result provides a new math programming
perspective on LSM methods.

A related question is whether our ALP relaxation framework can also be used to derive
the existing ALP relaxations of Desai et al. (2012a) and O’Donoghue et al. (2013), which
are not based on the idea of constraining the ALP dual. We answer this question in the
affirmative. We interpret the dual constraints that we use in deriving these ALP relaxations
as different ways of overcoming a potential under exploration of the state space by the set
of optimal solutions to the ALP dual. These derivations suggest that our framework for
generating ALP relaxations via restrictions of the ALP dual is a useful way of thinking
about ALP relaxations.

Finally, we study the mixed integer program of Petrik (2012) that computes a value
function approximation by maximizing a lower bound on the value of a greedy policy
(see §1.3.1 for definition of a greedy policy). This mixed integer program is challenging to
solve. Nevertheless, it is a heuristic approach that attempts to get closer to the objective of
maximizing the value of the greedy policy associated with a value function approximation
when determining such approximations, which is a natural objective to consider. Moreover,
it has strong worst case guarantees for greedy policy performance. Motivated to overcome
the heuristic nature of this approach, we develop a mixed integer program for computing a
value function approximation that maximizes the greed policy value for a class of structured
SDPs. In other words, our mixed integer program is exact for this class of SDPs (modulo
sampling error) which encompass many commodity and energy conversion assets. Our
mixed integer program is also challenging to solve but its exact nature motivates further
research into its solution.

Chapter 6 and Appendices A-C. We provide a summary of insights and a discussion
of future research directions in Chapter 6. Appendices A-C contain supporting material
and proofs for Chapters 2-4, respectively.
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Chapter 2

Relaxations of Approximate Linear
Programs for the Real Option
Management of Commodity Storage

(Joint work with François Margot and Nicola Secomandi)

2.1 Introduction

Real options are models of projects that exhibit managerial flexibility (Dixit and Pindyck,
1994). In commodity settings, this flexibility arises from the ability to adapt the operating
policy of commodity conversion assets to the uncertain evolution of commodity prices. For
example, consider a merchant that manages a natural gas storage asset (Maragos, 2002).
This merchant can purchase natural gas from the wholesale market at a given price, and
store it for future resale into this market at a higher price. Other examples of commodity
conversion assets include assets that produce, transport, ship, and procure energy sources,
agricultural products, and metals.

Managing commodity conversion assets as real options (Smith and McCardle, 1999,
Geman, 2005) gives rise to, generally, intractable Markov Decision Processes (MDPs). In
a given stage, the state of such an MDP includes both endogenous and exogenous infor-
mation. The endogenous information describes the current operating conditions of the
conversion asset, while the exogenous information represents current market conditions.
Changes in the endogenous information are caused by managerial decisions. The exoge-
nous information evolves as a result of market dynamics. The MDP intractability is due
primarily to the common use in practice of high dimensional models of the evolution of the
exogenous information (Eydeland and Wolyniec, 2003). To illustrate, consider the MDP
for the real options management of a commodity storage asset formulated by Lai et al.
(2010; LMS hereafter for short) using a multi-maturity version of the Black (1976) model
of futures price evolution. The endogenous information is the asset available inventory
at a given date, a one dimensional variable; the exogenous information is the commodity
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forward curve at a given time, an object with much higher dimensionality than inventory.
Approximations are thus typically needed to solve such MDPs.

Approximate linear programing (ALP; Schweitzer and Seidmann 1985, de Farias and
Van Roy 2003) is an approach that approximates the primal linear program associated with
an MDP (Manne, 1960, Puterman, 1994) by applying a lower dimensional representation of
its variables. Solving an approximate linear program (which we also abbreviate as ALP for
convenience) provides a value function approximation that can be used to obtain a heuristic
control policy and estimate lower and upper bounds on the value of an optimal policy (see
Bertsekas 2007, Brown et al. 2010, Powell 2011, and references therein). Applications of
this approach include Trick and Zin (1997) in economics; Adelman (2004) and Adelman
and Klabjan (2012) in inventory routing and control; Adelman (2007), Farias and Van
Roy (2007), Zhang and Adelman (2009), and Adelman and Mersereau (2013) in revenue
management; and Morrison and Kumar (1999), de Farias and Van Roy (2004, 2003),
Moallemi et al. (2008), and Veatch (2010) in queuing control. To the best of our knowledge,
ALP has not yet been applied to approximately solve MDPs that arise in the real option
management of commodity conversion assets.

We focus on the use of ALP for the real option management of commodity storage. We
analyze the optimal solution sets of both the ALP dual and the dual of the linear program
associated with an MDP, which we refer to as the exact dual. The optimal solutions of the
exact dual are in one to one correspondence with the state-action probability distributions
induced by optimal policies (Puterman, 1994). In contrast, we find that all the optimal
solutions of the ALP dual may correspond to state-action probabilities induced by infeasible
policies. ALP can thus yield low quality value function approximations that lead to poor
control policies and bounds. Motivated by this insight, we develop a novel approximate
dynamic programming approach that (i) addresses this deficiency of the ALP dual by
adding constraints to this dual to approximate a key property of the exact dual, and (ii)
obtains a value function approximation by solving the ALP relaxation obtained as the
primal linear program corresponding to this restricted ALP dual.

We apply our approach using look-up table value function approximations that, in the
spirit of LMS, are discrete grids depending on at most two prices in the forward curve (the
spot price and the prompt month futures price). We propose two classes of ALP relaxations:
constraint-based relaxations and multiplier-based relaxations. We derive three constraint-
based ALP relaxations and one multiplier-based ALP relaxation. Our constraint-based
ALP relaxations can be equivalently reformulated as recursive optimization models that
we refer to as approximate dynamic programs (ADPs). Two of these ADPs are new.
Interestingly, we show that our third constraint-based ALP relaxation yields the LMS
ADP, which we label as storage ADP (SADP). We provide a bound on the difference
between each ADP value function approximation and the exact value function. We show
that this bound tends to zero in limiting regimes of practical relevance. Overall, our analysis
provides theoretical support for the use of these ADPs rather than their respective ALPs,
as well as the use of our ADP based on the spot and prompt month futures prices instead
of the other ADPs.

We numerically evaluate our approach on the LMS natural gas instances. Our results
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are encouraging. Our ALP relaxations significantly outperform their corresponding ALPs
in terms of both the estimated lower and upper bounds. Our best model is the ADP that
uses both the spot and prompt futures prices in its value function approximation. Com-
pared to the other ADPs, this ADP yields better upper bounds and substantially better
lower bounds, most of which are near optimal. In addition, it relies less on periodic re-
optimizations to obtain near optimal bounds, and is thus a better approximation of the
commodity storage MDP than these other models. Our ADPs, that is, constrained-based
ALP relaxations, outperform our multiplier-based ALP relaxation in terms of both upper
and lower bounds. Moreover, our best ADP is competitive with two state-of-the-art tech-
niques for computing a heuristic operating policy for commodity storage and a lower bound
on the value of commodity storage: The practice based rolling intrinsic method (see, e.g.,
LMS and references therein) and the least squares Monte Carlo approach (Longstaff and
Schwartz 2001; see Boogert and De Jong 2008, 2011/12, for commodity storage applica-
tions). However, our approach is more directly applicable for dual upper bound estimation
because it gives explicit value function approximations while these other methods do not.
Our research thus adds to the literature on commodity storage real option valuation and
management (see, e.g., Chen and Forsyth 2007, Boogert and De Jong 2008, Thompson
et al. 2009, Carmona and Ludkovski 2010, LMS, Secomandi 2010, Birge 2011, Boogert and
De Jong 2011/12, Felix and Weber 2012, Secomandi et al. 2012, and Wu et al. 2012).

The use of relaxations in ALP is relatively new and the literature is scant: Petrik and
Zilberstein (2009) propose a relaxation method for ALPs that penalizes violated constraints
in the objective function; Desai et al. (2012a) relax an ALP by allowing budgeted violation
of constraints. In contrast to these authors, we introduce a general approach for deriving
ALP relaxations from ALP dual restrictions. Further, the two classes of ALP relaxations
that we obtain differ from the ALP relaxations proposed by these authors because they
are not based on the idea of budgeted constraint violations.

de Farias and Van Roy (2003) and Desai et al. (2012a) derive error bounds for ALP and
ALP relaxations, respectively. In contrast to de Farias and Van Roy (2003) but similar
to Desai et al. (2012a), our error bounds are for ALP relaxations. Different from the
error bounds of Desai et al. (2012a), ours rely on the recursive structure of the ADPs that
correspond to our constraint-based ALP relaxations.

Although our focus is on commodity storage, our proposed methodology is potentially
relevant for the approximate solution of intractable MDPs that arise in the real option man-
agement of other commodity conversion assets, as well as the valuation of real and financial
options that depend on forward curve dynamics; that is, MDPs whose states include both
endogenous and exogenous information. Examples include commodity processing assets,
energy swing options, put-call Bermudan options, and mortgages and interest rate caps
and floors (see, e.g., Longstaff and Schwartz 2001, Jaillet et al. 2004, Cortazar et al. 2008,
Devalkar et al. 2011).

We provide background material in §2.2. We discuss the ALP associated with the
storage MDP in §2.3 and analyze it in §2.4. We describe our ALP relaxation approach
and apply it using look-up table value function approximations in §2.5. We discuss our
performance bounds and conduct a computational complexity analysis in §2.6 and §2.7,
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respectively. We present our numerical results in §2.8. We conclude in §2.9. Appendix A.1
discusses our multiplier-based ALP relaxation and its numerical performance. Appendix
A.2 includes proofs. Appendix A.3 reports the greedy lower bound estimates from the
LMS ADP.

2.2 Background Material

In §§2.2.1-2.2.2 we present the commodity storage MDP and the bounding approach that
we use. These subsections are in part based on §2 and §4.2 in LMS.

2.2.1 Commodity Storage MDP

A commodity storage asset provides a merchant with the option to purchase-and-inject,
store (do-nothing), and withdraw-and-sell a commodity during a predetermined finite time
horizon, while respecting injection and withdrawal capacity limits, as well as inventory
constraints. The merchant’s goal is to maximize the market value of the storage asset.
We model this valuation problem as an MDP. Purchases-and-injections and withdrawals-
and-sales give rise to cash flows. The storage asset has N possible dates with cash flows.
The i-th cash flow occurs at time Ti, i ∈ I := {0, . . . , N − 1}. Each such time is also the
maturity of a futures contract. Since the trading times in our model coincide with monthly
futures maturity dates, we discretize time into monthly intervals. We denote by Fi,j the
price at time Ti of a futures contract maturing at time Tj, j ≥ i. The forward curve is
the collection of futures prices Fi := {Fi,i, Fi,i+1, . . . , Fi,N−1}. We adopt the convention
FN ≡ 0.

Set I is the stage set. The inventory level at the initial stage 0 is the given singleton x0.
The set of inventory levels at every other stage i ∈ I\{0} is X ′ := [0, x̄], where 0 and x̄ ∈ R+

represent the minimum and maximum inventory levels, respectively. The (absolute value
of) the injection capacity CI (< 0) and the withdrawal capacity CW (> 0) represent the
maximum amounts that can be injected and withdrawn in between two successive futures
contract maturities, respectively. An action a corresponds to an inventory change during
this time period. A positive action represents a withdraw-and-sell decision, a negative
action a purchase-and-inject decision, and the zero action is the do-nothing decision. Define
·∧· ≡ min{·, ·} and ·∨· ≡ max{·, ·}. The set of feasible injections, withdrawals, and overall
actions are AI(x) :=

[
CI ∨ (x− x̄), 0

]
, AW (x) :=

[
0, x ∧ CW

]
, and A′(x) := AI(x) ∪

AW (x), respectively.

The immediate reward from taking action a at time Ti is the function r(a, si), where
si ≡ Fi,i is the spot price at this time. The coefficients αW ∈ (0, 1] and αI ≥ 1 model
commodity losses associated with withdrawals and injections, respectively. The coefficients
cW and cI represent withdrawal and injection marginal costs, respectively. The immediate
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reward function is defined as

r(a, s) :=


(αIs+ cI)a, if a ∈ R−,
0, if a = 0, ∀s ∈ R+.
(αW s− cW )a, if a ∈ R+,

(2.1)

Let Π denote the set of all the feasible storage policies. Given the initial state (x0, F0),
valuing a storage asset entails finding a feasible policy that achieves the maximum time
T0 (:= 0) market value of this asset in this state, V0(x0, F0). Thus, we are interested in
solving the following problem:

V0(x0, F0) := max
π∈Π

∑
i∈I

δiE [r(Aπi (xπi , Fi), si)|x0, F0] , (2.2)

where δ is the risk free discount factor from time Ti back to time Ti−1, ∀i ∈ I \ {0}; E is
expectation under the risk neutral measure for the forward curve evolution (this measure
is unique when the commodity market is complete, see, e.g., Björk 2004, page 122, which
we assume to be the case in this chapter); xπi is the inventory level at stage i when using
policy π; and Aπi (·, ·) is the decision rule of policy π for stage i.

In our MDP formulation, committing on date Ti to perform a physical trade on date
Tj > Ti does not add any value, because the payoff from purchasing-and-injecting or
withdrawing-and-selling the commodity is linear in the transacted price, given the size of
a trade, and we use risk neutral valuation. To illustrate, without loss of generality suppose
that αW = αI = 1 and cW = cI = 0. Consider the trade that commits at stage i to
withdraw-and-sell 1 unit of commodity at stage j > i using a futures contract with price
Fi,j. The stage i value of the resulting stage j payoff is δj−iFi,j, which is also the stage i
value of withdrawing-and-selling 1 unit of commodity at the stage j spot price sj, because
δj−iE[sj|Fi,j] = δj−iFi,j, which follows from Shreve (2004, page 244).

When CI , CW , and x̄ are integer multiples of a maximal number Q ∈ R+, Lemma
1 in Secomandi et al. (2012) establishes that we can optimally discretize the continuous
inventory set X ′ into the finite set X := {0, Q, 2Q, . . . , x̄}, and the feasible action set A′(x)
for inventory level x ∈ X into the finite set A(x) := {

[
CI ∨ (x− x̄)

]
,
[
CI ∨ (x− x̄)

]
+

Q, . . . ,
[
x ∧ CW

]
}. In other words, under this assumption, we can replace X ′ and A′(x)

in (2.2) by X and A(x), respectively, without sacrificing optimality. Moreover, an optimal
policy for problem (2.2) can be obtained by solving a stochastic dynamic program that
uses the sets X and A(·). Letting Vi(xi, Fi) be the optimal value function in stage i and
state (xi, Fi), this stochastic dynamic program is

Vi(xi, Fi) = max
ai∈A(xi)

r(ai, si) + δE [Vi+1 (xi − ai, Fi+1) |Fi] , (2.3)

∀(i, xi, Fi) ∈ I × X × RN−i
+ , with boundary conditions VN(xN , FN) := 0,∀xN ∈ X . We

refer to the stochastic dynamic program (2.3) as the exact dynamic program (EDP).

Consistent with the practice-based literature (Eydeland and Wolyniec 2003, Chapter 5,
Gray and Khandelwal 2004, and the discussion in LMS), we assume that EDP is formulated
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using a full dimensional model of the risk neutral evolution of the forward curve. An
example is the multi-maturity version of the Black (1976) model of futures price evolution
used by LMS, which we also use for our computational experiments. In this continuous time
model, the time t futures price with maturity at time Ti is denoted F (t, Ti) (F (Ti′ , Ti) ≡
Fi′,i for i′, i ∈ I, i′ ≤ i). This price evolves during the interval [0, Ti] as a driftless
geometric Brownian motion with maturity specific and constant volatility σi > 0 and
standard Brownian motion increment dZi(t). The instantaneous correlation between the
standard Brownian motion increments dZi(t) and dZj(t) corresponding to the futures prices
with maturities Ti and Tj, i 6= j, is ρij ∈ [−1, 1] (ρii = 1). This model is

dF (t, Ti)

F (t, Ti)
= σidZi(t), ∀i ∈ I, (2.4)

dZi(t)dZj(t) = ρijdt, ∀i, j ∈ I, i 6= j. (2.5)

Property 1, which is easy to verify, states that under this price model each futures price
in the forward curve evolves in a Markovian fashion.

Property 1. At a given stage i ∈ I and for a given maturity Tj with j ∈ {i+1, . . . , N−1},
the futures price Fi,j is sufficient to obtain the probability distribution of the random futures
price Fi+1,j.

We use Property 1 in §2.2.2 and §2.5 to simplify the computation of expectations. This
property also holds for common futures price evolution models used in real option ap-
plications (Cortazar and Schwartz, 1994). Model (2.4)-(2.5) can be extended by making
time dependent the constant volatilities and instantaneous correlations without affecting
Property 1 or our analysis in this chapter.

2.2.2 Bounding Approach

In general, computing an optimal policy for EDP under a price model such as (2.4)-(2.5)
is intractable. We now describe Monte Carlo simulation procedures for estimating lower
and upper bounds on the EDP optimal value function in the initial stage and state given
an approximation of the EDP value function. The lower bound estimation relies on the
Monte Carlo simulation of a greedy heuristic policy given this value function approximation
(see §6.1.1 in Bertsekas 2007 and Powell 2011). The upper bound estimation applies the
information relaxation and duality approach (see Brown et al. 2010 and references therein)
based on this value function approximation. We illustrate these procedures using the value
function approximation V̂i(xi, si), which we assume is available. This function only uses
the spot price si from the forward curve Fi. Nevertheless, the same approach extends in a
straightforward manner to value function approximations that depend on a larger subset
of prices in this forward curve.

Consider the lower bound estimation. Given an inventory level xi and a forward curve
Fi in stage i, we use V̂i(xi, si) to compute a greedy action by solving the greedy optimization
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problem

max
ai∈A(xi)

r(ai, si) + δE
[
V̂i+1 (xi − ai, si+1) |Fi,i+1

]
, (2.6)

where Fi,i+1 is sufficient for computing the expectation by Property 1. We obtain (2.6)

from (2.3) by replacing Vi+1(·, ·) with V̂i+1(·, ·) and Fi with Fi,i+1. In computations, we
numerically approximate this expectation using Rubinstein (1994) lattices, as discussed in
Appendix 2.7. We apply the action ai(xi, si) computed in (2.6) (breaking ties by picking
ai(xi, si) such that the inventory change |ai(xi, si)| is minimized), and sample the forward
curve Fi+1 to obtain the new state (xi − ai(xi, si), Fi+1) in stage i + 1. Starting from the
initial stage and state, we continue in this fashion until we reach time TN−1. We then
discount back to time 0 the cash flows generated by this process, and add them up. We
repeat this process for multiple forward curve samples and average the sample discounted
total cash flows to estimate the value of the greedy policy, that is, the policy defined by
the greedy action in each stage and state. This provides us with an estimate of a (greedy)
lower bound on the value of storage, that is, V0(x0, F0).

When a value function approximation is computed by an approximate dynamic pro-
gramming model it is typically possible to generate an improved greedy lower bound esti-
mate by sequentially reoptimizing this model to update its value function approximations
within the Monte Carlo simulation used for lower bound estimation (Secomandi, 2008).
Specifically, solving such a model at time Ti yields value function approximations for stages
i through N − 1. However, we only implement the greedy action induced by the stage i
value function approximation. At time Ti+1, we reoptimize the “residual” model, that is,
the one defined over the remaining stages i + 1 through N − 1, given the inventory level
resulting from performing this action and the newly available forward curve. We repeat
this procedure until time TN−1. Repeating this process over multiple forward curve samples
allows us to estimate a reoptimized greedy lower bound.

For upper bound estimation, we sample a sequence of spot price and prompt month
futures price pairs P0 := ((si, Fi,i+1))N−1

i=0 starting from the forward curve F0 at time 0. We

use our value function approximation V̂i+1(xi+1, si+1) to define the following dual penalty
for executing the feasible action ai in stage i and state (xi, Fi) given knowledge of the
prompt month futures price Fi,i+1 and the stage i+ 1 spot price si+1:

p̂i(xi, ai, si+1, Fi,i+1) := V̂i+1(xi − ai, si+1)− E
[
V̂i+1(xi − ai, si+1)|Fi,i+1

]
, (2.7)

where Fi,i+1 is sufficient for computing the expectation by Property 1. For computational
purposes, we numerically approximate the expectation in (2.7) using Rubinstein (1994)
lattices (see Appendix 2.7). This penalty approximates the value of knowing the next
stage spot price when performing this action. Then, we solve the following deterministic
dynamic program given the sequence P0 (see Brown et al. 2010 and LMS):

Ui(xi;P0) = max
ai∈A(x)

r(ai, si)− p̂i(xi, ai, si+1, Fi,i+1) + δUi+1(xi − ai;P0), (2.8)
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∀(i, xi) ∈ I × X , with boundary conditions UN(xN ;P0) := 0, ∀xN ∈ X . In (2.8), the
immediate reward r(ai, si) is modified by the penalty p̂i(xi, ai, si+1, Fi,i+1) for using the
future information available in P0. We solve a collection of deterministic dynamic programs
(2.8), each one corresponding to a sample sequence P0. We estimate a dual upper bound
on the value of storage as the average of the value functions of these deterministic dynamic
programs in the initial stage and state; that is, we estimate E [U0(x0;P0)|F0], where the
expectation is taken with respect to the risk neutral distribution of the random sequence
P0 conditional on F0.

2.3 ALP

In this section we apply the ALP approach for heuristically solving MDPs with finite state
and action spaces (Schweitzer and Seidmann, 1985, de Farias and Van Roy, 2003). EDP
has a finite action space but its state space is in part continuous. To be able to apply
the ALP approach, we discretize the forward curve part of the EDP state to obtain a
discretized version of EDP (DDP). We let Fi ⊂ RN−i

+ represent a finite set of forward
curves at time Ti. We denote by Fi,j ⊂ R+ the finite set of values of the futures price Fi,j
in the forward curve Fi ∈ Fi. We denote by {Pr(Fi+1|Fi),∀Fi+1 ∈ Fi+1} the probability
mass function of the random vector Fi+1 on the set Fi+1 conditional on the forward curve
Fi ∈ Fi. We make Assumption 1 to ensure that all the forward curves in our discretized
sets have positive probability.

Assumption 1. Pr(Fi+1|Fi) > 0 ∀(Fi, Fi+1) ∈ Fi ×Fi+1.

To simplify the notational burden, in the rest of this chapter we omit the sets indexing
a tuple. For example, we write (i, xi, Fi, ai) in lieu of (i, xi, Fi, ai) ∈ I × X × Fi × A(xi).
We write (·)−(i) to indicate that i is excluded from I in the tuple ground set. Replacing
the continuous forward curve sets that define EDP with the discretized sets discussed in
this section yields DDP. Letting V D

i (xi, Fi) be the DDP optimal value function in stage i
and state (xi, Fi), DDP is

V D
i (xi, Fi) = max

ai
r(ai, si) + δE

[
V D
i+1 (xi − ai, Fi+1) |Fi

]
, (2.9)

∀(i, xi, Fi), with boundary conditions V D
N (xN , FN) := 0, ∀xN . The expectation in (2.9) is

expressed with respect to the probability mass function {Pr(Fi+1|Fi),∀Fi+1}, even though
the notation does not make it explicit.

It is well known that DDP can be reformulated as a linear program, which we refer
to as the exact primal linear program (PLP; Manne 1960, Puterman 1994, §6.9; also see
§5.2 of the thesis). PLP has a variable for every stage and state and a constraint for every
stage, state, and action. We refer to the PLP dual as DLP (see Puterman 1994, page 223;
also see §5.2 of the thesis).

Solving PLP or DLP is typically intractable due to the exponential number of vari-
ables and constraints as a function of the number of futures prices in the forward curve.
Computational tractability dictates approximating these models.

20



Following the ADP literature (Schweitzer and Seidmann, 1985, de Farias and Van Roy,
2003), PLP can be approximated by replacing its variables by lower dimensional approx-
imations defined as linear combinations of a manageable number of basis functions. Let
ψi,xi,b : RN−i 7→ R be the b-th basis function corresponding to the pair (i, xi). There are
Bi basis functions for each stage i, that is, b ∈ {1, . . . , Bi}. The weight associated with the
b-th basis function for each pair (i, xi) is βi,xi,b ∈ R. The value function approximation is∑

b ψi,xi,b(Fi)βi,xi,b. Since the stage 0 state space is the singleton (x0, F0), we choose B0 = 1
and ψ0,x0,1(F0) = 1 without loss of generality. The value function approximation weights
are computed by solving the following ALP:

min
β
β0,x0,1 (2.10)

s.t.
∑
b

ψN−1,xN−1,b(FN−1)βN−1,xN−1,b ≥ r(aN−1, sN−1), ∀(xN−1, FN−1, aN−1), (2.11)

∑
b

ψi,xi,b(Fi)βi,xi,b ≥ r(ai, si) + δE

[∑
b

ψi+1,xi−ai,b(Fi+1)βi+1,xi−ai,b | Fi

]
,

∀(i, xi, Fi, ai)−(N−1). (2.12)

The objective function (2.10) minimizes the approximate value function corresponding to
the initial stage and state. The ALP constraints can be obtained from DDP as follows:
For each triple (i, xi, Fi) express the maximization over the set A(xi) in (2.9) as |A(xi)|
inequalities, one for each ai, and then replace Vi(xi, Fi) by

∑
b ψi,xi,b(Fi)βi,xi,b. Constraints

(2.12) ensure that the ALP value function approximation is an upper bound on the DDP
value function approximation at every stage and state (de Farias and Van Roy, 2003).

Let 1(·) represent the indicator function that evaluates to 1 when the expression inside
its parentheses is true and zero otherwise. Denoting by wi(xi, Fi, ai) the dual variable of
the ALP constraint corresponding to (i, xi, Fi, ai), the dual of this ALP (DALP) is

max
w

∑
(i,xi,Fi,ai)

r(ai, si)wi(xi, Fi, ai) (2.13)

s.t.
∑
a0

w0(x0, F0, a0) = 1, (2.14)

∑
Fi

ψi,xi,b(Fi)

[∑
ai

wi(xi, Fi, ai)

]
=

∑
Fi

ψi,xi,b(Fi)

δ∑
Fi−1

Pr(Fi|Fi−1)
∑

(xi−1,ai−1)

1(xi−1 − ai−1 = xi)wi−1(xi−1, Fi−1, ai−1)

 ,
∀(i, xi, b)−(0), (2.15)

wi(xi, Fi, ai) ≥ 0,∀(i, xi, Fi, ai). (2.16)

It can be verified that the DALP objective function (2.13) and the constraints (2.14) and
(2.16) are identical to the corresponding DLP objective function and constraints (the DLP
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formulation is not given here for brevity). In contrast, the flow conservation constraints
(2.15) differ from the DLP flow conservation constraints. Specifically, for each pair (i, xi)
DALP has one constraint (2.15) for each basis function, and the DALP constraint corre-
sponding to the triple (i, xi, b) is a linear combination of the DLP flow conservation con-
straints corresponding to the triples in the set {(i, xi, Fi),∀Fi} taken using the coefficients
ψi,xi,b(Fi). Therefore, DALP is a relaxation of DLP.

2.4 ALP Analysis

In this section we analyze the ALP and DALP models introduced in §2.3. We begin this
analysis by discussing the relationship between feasible DLP solutions and feasible DDP
policies. Following a DDP feasible policy starting from the initial stage and state induces a
collection of probability mass functions defined over the feasible state and action spaces in
each stage. Given a feasible DDP policy π and such a probability mass function, we denote
by Prπ(xi, Fi, ai) the probability of visiting state (xi, Fi) in stage i and taking action ai
under policy π (this probability depends on the initial stage and state but we suppress this
dependence from our notation for expositional convenience). Therefore, a feasible DDP pol-
icy π can be equivalently specified by the set of probabilities {Prπ(xi, Fi, ai),∀(i, xi, Fi, ai)}.
It follows from Theorem 6.9.1 in Puterman (1994, page 224) that the set of feasible DLP
solutions encodes the set of feasible DDP policies: There is a one to one correspondence
between feasible DDP policies and feasible DLP solutions. In particular, for every feasible
DDP policy π there exists a feasible DLP solution u such that

ui(xi, Fi, ai) = δiPrπ(xi, Fi, ai), ∀(i, xi, Fi, ai). (2.17)

It follows from the equalities (2.17) that every optimal DDP policy is related to an optimal
DLP solution in this manner.

Let Pr∗(xi, Fi, ai) denote the probability of visiting state (xi, Fi) in stage i and taking
action ai under an optimal DDP policy. For this optimal policy, we now investigate whether
there exists an optimal DALP solution w∗ that satisfies a condition analogous to (2.17),
that is,

w∗i (xi, Fi, ai) = δiPr∗(xi, Fi, ai), ∀(i, xi, Fi, ai). (2.18)

We make Assumption 2 to ensure feasibility of ALP (de Farias and Van Roy 2003):

Assumption 2. ψi,xi,1 = 1 ∀(i, xi).

We denote by F=
i (β∗) the set of stage i forward curves for which at least one ALP constraint

corresponding to stage i holds as an equality at an ALP optimal solution β∗. Proposition
1 is useful to identify possible violations of (2.18) by the set of optimal DALP solutions.

Proposition 1. Suppose Assumption 2 holds. For every feasible DALP solution w it holds
that ∑

(xi,Fi,ai)

wi(xi, Fi, ai) = δi,∀i. (2.19)
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Moreover, for every optimal DALP solution w∗ it holds that∑
(xi,ai)

w∗i (xi, Fi, ai) = 0,∀(i, Fi) ∈ I × {Fi \ F=
i (β∗)}. (2.20)

Condition (2.19) states that a feasible DALP solution specifies a collection of discounted
probability mass functions defined over the DDP state and action spaces in each stage.
Suppressing its dependence on F0 for notational convenience, let Pr(Fi) denote the prob-
ability of observing the forward curve Fi. Condition (2.20) implies that the collection
of probability mass functions corresponding to an optimal DALP solution violates (2.18)
when the set F=

i (β∗) is a proper subset of Fi, because the conditions∑
(xi,ai)

w∗i (xi, Fi, ai) = δiPr(Fi), ∀(i, Fi), (2.21)

obtained by summing both sides of (2.18) over (xi, ai), are necessary for the validity of
(2.18) and Pr(Fi) > 0 by Assumption 1. In other words, comparing (2.20) and (2.21) shows
that the collection of discounted probability mass functions associated with an arbitrary
optimal DALP solution can be distorted relative to the analogous collection associated
with an optimal DDP policy.

These distortions can lead to pathological cases. To elaborate, let P be the probability
mass function defined by the probabilities Pr(Fi). Suppose that the forward curves in
F=
i (β∗) lie in the right tail of this probability mass function and

∑
Fi∈F=

i (β∗) Pr(Fi) = ε
for some positive ε much smaller than one. In this case, the probability distortion implied
by (2.20) is large and the value function approximation is determined by extreme forward
curves under P. Such a situation is evidently undesirable for bounding purposes.

In contrast to such pathological cases, Proposition 2 states that when at least one
optimal DDP policy and one optimal DALP solution satisfy (2.18) every ALP optimal
solution (β∗) enjoys a desirable property. (The equality F=(β∗) ≡ Fi is necessary for (2.18)
to hold, which follows form the proof of Proposition 2 and complementary slackness.) We
denote by Πg(β∗) the set of greedy policies induced by the value function approximation
specified by β∗i .

Proposition 2. If an optimal DDP policy and an optimal DALP solution satisfy (2.18),
then for every ALP optimal solution β∗ there exists a deterministic optimal DDP policy
π∗ that is greedy with respect to the value function approximation defined by β∗; that is,
π∗ ∈ Πg(β∗).

Proposition 2 suggests that, if possible, it may be useful to require an optimal DALP
solution to be consistent, in the sense of (2.18), with a deterministic optimal DDP policy.
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2.5 ALP Relaxations

In §2.5.1 we present our approach to derive ALP relaxations. In §2.5.2 we formulate and
analyze an ALP based on a look-up table value function approximation. In §2.5.3 we apply
our relaxation approach to this ALP, and a variant thereof, to derive our constraint-based
ALP relaxations. Multiplier-based ALP relaxations are discussed in Appendix A.1.

2.5.1 Approach for Deriving ALP Relaxations

Motivated by our analysis in §2.4, we would like to add constraints to DALP requiring its
feasible solutions to match the discounted probability mass function induced by an optimal
policy for DDP. The specific constraints that we would like to add to DALP are

wi(xi, Fi, ai) = δiPr∗(xi, Fi, ai), ∀(i, xi, Fi, ai). (2.22)

Although the probability on the right hand side of (2.22) is unknown in applications, we
proceed temporarily ignoring this important fact.

Let di(xi, Fi, ai) be the dual variable associated with the constraint in (2.22) corre-
sponding to (i, xi, Fi, ai). The dual of the DALP restricted by constraints (2.22) is the
ALP relaxation

min
β,d

β0,x0,1 +
∑

(i,xi,Fi,ai)

δiPr∗(xi, Fi, ai)di(xi, Fi, ai) (2.23)

s.t. βN = 0, (2.24)∑
b

ψi,xi,b(Fi)βi,xi,b + di(xi, Fi, ai) ≥ r(ai, si) + δE

[∑
b

ψi+1,xi−ai,b(Fi+1)βi+1,xi−ai,b | Fi

]
,

∀(i, xi, Fi, ai). (2.25)

Compared to ALP, that is, (2.10)-(2.12), the linear program (2.23)-(2.25) includes the
variables di(xi, Fi, ai) (i) on the left hand side of its constraints (2.25) and (ii) in a term in
its objective function that penalizes relaxations of constraints (2.25) when di(xi, Fi, ai) is
strictly positive and rewards the tightening of these constraints when di(xi, Fi, ai) is strictly
negative.

The ALP relaxation (2.23)-(2.25) is impractical because it depends on the unknown
terms Pr∗(·, ·, ·), in addition to having exponentially many variables di(xi, Fi, ai) and con-
straints (2.25). We thus focus on deriving practical ALP relaxations by adding constraints
to DALP that approximate (2.22) and avoid this exponential growth in the number of
variables and constraints in the resulting ALP relaxation. Our approach is summarized
in Figure 2.1. The solid arrows in this figure show the process of constructing an ALP
relaxation: (i) Starting from ALP, (ii) we formulate DALP, (iii) restrict it in the stated
manner, and (iv) take the dual of this restriction to obtain an ALP relaxation.

Our approach relaxes the ALP constraints (2.12), which ensure that the ALP value
function is an upper bound on the DDP value function at each stage and state (de Farias
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Figure 2.1: Schematic illustration of the ALP relaxation framework.

and Van Roy, 2003). Therefore, unlike ALP, the value function approximation obtained by
solving an ALP relaxation may not provide an upper bound on the DDP value function at
every stage and state. Nevertheless, if the constraints used to restrict DALP are implied by
(2.22), it can be verified that (i) the optimal objective function value of the ALP relaxation
provides an upper bound on the DDP optimal value function at the initial stage and state,
V D

0 (x0, F0), and (ii) this upper bound is no worse than the corresponding ALP upper
bound.

2.5.2 An ALP Based on a Look-up Table Value Function Ap-
proximation

In the rest of this chapter, we focus on using low-dimensional look-up table value function
approximations: Discrete grids that in each stage depend on the inventory level and at
most the first two futures prices in the forward curve. In light of Property 1, these look-up
table value function approximations are appealing because they result in a dimensionality
reduction that makes tractable (i) computing the expectation in (2.25) and (ii) solving the
resulting linear program.

Our starting point is an ALP formulated using the look-up table value function approx-
imation φi(xi, si), which in stage i depends on the inventory xi and the spot price si, as in
LMS. This look-up table contains the weights associated with indicator basis functions, that
is, it defines a value function approximation for the pair (i, xi) as

∑
s̄i
1(si = s̄i)φi(xi, si).

By Property 1, the expectation E[φi+1(·, si+1)|Fi] can be simplified to E[φi+1(·, si+1)|Fi,i+1].
The corresponding ALP, which has a much smaller number of constraints than the ALP
(2.10)-(2.12), is

min
φ
φ0(x0, s0) (2.26)

s.t. φN−1(xN−1, sN−1) ≥ r(aN−1, sN−1), ∀(xN−1, sN−1, aN−1), (2.27)

φi(xi, si) ≥ r(ai, si) + δE [φi+1(xi − ai, si+1)|Fi,i+1] ,

∀(i, xi, si, Fi,i+1, ai)−(N−1). (2.28)

Proposition 3 states that the optimal value function of the following ADP, labeled
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ADP0, is an optimal solution to (2.26)-(2.28):

φADP0
i (xi, si) = max

Fi,i+1

{
max
ai

r(ai, si) + δE
[
φADP0
i+1 (xi − ai, si+1)|Fi,i+1

}]
, (2.29)

∀(i, xi, si), with φADP0
N (xN , sN) := 0, ∀xN .

Proposition 3. The terms φADP0
i (xi, si), ∀(i, xi, si), optimally solve (2.26)-(2.28).

ADP0 has two maximizations: The first over the price Fi,i+1 and the second over the
action ai. The second maximization is analogous to the maximization in DDP (see (2.9)).
By Proposition 3, the first maximization implies that the ALP (2.26)-(2.28) treats the
exogenous futures price Fi,i+1 as a choice, which is unrealistic. Moreover, given a pair
(xi, si), we have verified numerically on the instances discussed in §2.8 that the maximizer
in this optimization is typically the largest price in the set Fi,i+1, which has a low probability
of occurring given si according to P. In other words, on our instances the ALP (2.26)-
(2.28) yields value function approximations that are determined by unlikely prompt-month
futures prices. This situation illustrates the pathological case discussed at the end of §2.4.
Therefore, the ALP (2.26)-(2.28) seems a particularly poor model. Our ALP relaxation
approach addresses this issue.

2.5.3 Constraint-based ALP Relaxations

We now discuss ALP relaxations that use constraints to control the extent to which an ALP
is relaxed. We thus label the relaxations in this class as constraint-based ALP relaxations.
We derive two relaxations of the ALP (2.26)-(2.28) and a relaxation of an ALP analogous
to (2.26)-(2.28) but formulated using a look-up table value function approximation that
in every stage also depends on the prompt-month futures price. These ALP relaxations
have equivalent ADP reformulations that: (i) allow us to interpret how these relaxations
overcome the ADP0 pathology pointed out at the end of §2.5.2; (ii) have optimal policies
that share the structure of DDP optimal policies (this is easy to verify; see Lemma 1 of
LMS for the DDP optimal policy structure); and (iii) are easier to solve using backward
recursion than their corresponding linear programming formulations, because of the low
dimensionality of the endogenous state and action spaces – this solution approach is thus
suitable for problems with this feature.

We denote {Fi,i+2, . . . , Fi,N−1} as Fi\{si, Fi,i+1} and the sum
∑

Fi\{si,Fi,i+1} Pr∗(xi, Fi, ai)

as Pr∗(xi, si, Fi,i+1, ai). We use wi(xi, si, Fi,i+1, ai) to indicate the DALP variables, which is
consistent with how the constraints of the ALP (2.26)-(2.28) are expressed. The analogue
of constraints (2.22) is

wi(xi, si, Fi,i+1, ai) = δiPr∗(xi, si, Fi,i+1, ai), ∀(i, xi, si, Fi,i+1, ai). (2.30)

Constraints (2.30) are derived from constraints (2.22) by (i) summing the latter constraints
over the futures prices in set Fi\{si, Fi,i+1} and (ii) replacing the sum

∑
Fi\{si,Fi,i+1}wi(xi, Fi, ai)

by wi(xi, si, Fi,i+1, ai). We obtain the constraints that we add to DALP by approximating
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constraints (2.30) in three steps. In the first step we sum both sides of constraints (2.30)
over the feasible actions:∑

ai

wi(xi, si, Fi,i+1, ai) = δiPr∗(xi, si, Fi,i+1), ∀(i, xi, si, Fi,i+1). (2.31)

In the second step we express the discounted probabilities δiPr∗(xi, si, Fi,i+1) on the right
hand side of (2.31) as δiPr∗(Fi,i+1|xi, si) · Pr∗(xi, si) and replace the term δiPr∗(xi, si) by
the new variable θi(xi, si) to get the constraints∑

ai

wi(xi, si, Fi,i+1, ai) = Pr∗(Fi,i+1|xi, si)θi(xi, si), ∀(i, xi, si, Fi,i+1). (2.32)

In the third step we approximate the unknown probability Pr∗(Fi,i+1|xi, si) on the right
hand side of (2.32) by a known probability p(Fi,i+1|si, F0), which we discuss below. The
specific constraints that we add to DALP are∑

ai

wi(xi, si, Fi,i+1, ai) = p(Fi,i+1|si, F0)θi(xi, si), ∀(i, xi, si, Fi,i+1). (2.33)

Constraints (2.32) are implied by (2.22), and are thus satisfied by at least one optimal
solution of the exact dual, DLP. In contrast, constraints (2.33) may not be implied by
(2.22), because the probability p(Fi,i+1|si, F0) does not depend on the stage i inventory
level obtained by an optimal policy. More specifically, Pr∗(Fi,i+1|xi, si) may differ from
Pr(Fi,i+1|si) in general because the (random) inventory level reached in stage i by following
an optimal policy may be correlated with the prompt-month futures price Fi,i+1. As a
consequence, the optimal objective function of the resulting ALP relaxation may not be
an upper bound on the corresponding DDP optimal value function at the initial stage and
state, V D

0 (x0, F0).

The ALP relaxation obtained by adding constraints (2.33) to DALP is

min
β,d

φ0(x0, s0) (2.34)

s.t. φN(xN , sN) = 0,∀xN , (2.35)

φi(xi, si) + di(xi, si, Fi,i+1) ≥ r(ai, si) + δE [φi+1(xi − ai, si+1)|Fi,i+1] ,

∀(i, xi, si, Fi,i+1, ai), (2.36)∑
Fi,i+1

p(Fi,i+1|si, F0)di(xi, si, Fi,i+1) = 0,∀(i, xi, si). (2.37)

This relaxed ALP differs from the ALP relaxation (2.23)-(2.25) in two aspects. First,
compared to the decision variables di(xi, Fi, ai), the variables di(xi, si, Fi,i+1) do not depend
on the action ai and the set of futures prices Fi \ {si, Fi,i+1}. Second, the amount of
relaxation in (2.34)-(2.37) is controlled by the constraints (2.37), whereas in (2.23)-(2.25) it
is regulated by the second term in the objective function (2.23). Specifically, the constraints
(2.37) set to zero the weighted average of the variables in set {di(xi, si, Fi,i+1),∀Fi,i+1} where
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the weights are the probabilities in set {p(Fi,i+1|si, F0),∀Fi,i+1} for each pair (i, xi, si).
Hence, large relaxations of a subset of constraints (2.37) corresponding to forward curves
that occur with low probability (under P) can be balanced by small restrictions of a subset
of constraints (2.37) corresponding to forward curves that happen with high probability.

The ALP relaxation of Desai et al. (2012a) also includes variables that relax the ALP
constraints, but these variables are nonnegative and hence only capture violations of ALP
constraints. In contrast to model (2.34)-(2.37), the model of these authors uses a constraint
to impose a budget on an average of the constraint violations.

Proposition 4 states that an optimal solution to the constraint-based ALP relaxation
(2.34)-(2.37) can be computed by solving the following ADP, which depends on the condi-
tional probability mass function {p(Fi,i+1|si, F0),∀Fi,i+1}:

φpi (xi, si) =
∑
Fi,i+1

p(Fi,i+1|si, F0)

[
max
ai

r(ai, si) + δE
[
φpi+1(xi − ai, si+1)

∣∣Fi,i+1

]]
, (2.38)

∀(i, xi, si), with φpN(xN , sN) := 0, ∀xN . We define dpi (xi, si, Fi,i+1), ∀(i, xi, si, Fi,i+1), as

max
ai

{
r(ai, si) + δE

[
φpi+1(xi − ai, si+1)|Fi,i+1

]}
− φpi (xi, si).

Proposition 4. The terms φpi (xi, si) and dpi (xi, si, Fi,i+1) optimally solve (2.34)-(2.37).

In light of Proposition 4, comparing (2.29) and (2.38) reveals that the constraint-based ALP
relaxation (2.34)-(2.37) effectively replaces the maximization over the set Fi,i+1 in (2.29)
with an expectation taken with respect to the probability mass function {p(Fi,i+1|si, F0),∀Fi,i+1}.

Different constraint-based ALP relaxations can be obtained from (2.38) by varying the
choice of the conditional probability mass function {p(Fi,i+1|si, F0),∀Fi,i+1}. We consider
the following choices for p(Fi,i+1|si, F0):

Pr(Fi,i+1|si, F0,i+1), (2.39)

1(Fi,i+1 = E[Fi,i+1|si, F0,i+1]); (2.40)

The term Pr(Fi,i+1|si, F0,i+1) is the conditional probability of Fi,i+1 given si and F0,i+1

under the forward curve probability mass function discussed at the beginning of §2.3;
1(Fi,i+1 = E[Fi,i+1|si, F0,i+1]) is a degenerate conditional probability mass function on the
set Fi,i+1 that places all its mass on the value E[Fi,i+1|si, F0,i+1] (this expectation is also
under the forward curve probability mass function discussed in §2.3 and is assumed to be
in set Fi,i+1).

Using (2.39), that is, letting p(Fi,i+1|si, F0) = Pr(Fi,i+1|si, F0,i+1) in (2.38), gives the
following constraint-based ALP relaxation:

φSADPi (xi, si) = E
[
max
ai

r(ai, si) + δE
[
φSADPi+1 (xi − ai, si+1)|Fi,i+1

]
| si, F0,i+1

]
, (2.41)

∀(i, xi, si), with φSADPN (xN , sN) := 0, ∀xN . This is the ADP of LMS, that is, SADP
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(hence the superscript on φi and φi+1 in (2.41); LMS do not show that SADP is an ALP
relaxation).

Using (2.40), that is, letting p(Fi,i+1|si, F0) = 1(Fi,i+1 = E[Fi,i+1|si, F0,i+1]) in (2.38),
gives ADP1:

φADP1
i (xi, si) = max

ai
r(ai, si) + δE

[
φADP1
i+1 (xi − ai, si+1)|E[Fi,i+1|si, F0,i+1]

]
, (2.42)

∀(i, xi, si), with φADP1
N (xN , sN) := 0, ∀xN . ADP1 is a new model.

Our two choices of p(Fi,i+1|si, F0,i+1) can be interpreted as restricting the amount of
information revealed by the stochastic process (2.4)-(2.5) that an ALP relaxation uses to
obtain a value function approximation. In both cases, at time Ti the joint probability mass
function of the price pair (si, Fi,i+1) conditional on (F0,i, F0,i+1) is replaced by the marginal
probability mass function of si given F0,i and a conditional probability mass function for
Fi,i+1 given (si, F0,i+1): The one based on (2.39) for SADP and (2.40) for ADP1.

Proposition 5 provides some support for these choices of p(Fi,i+1|si, F0,i+1): They imply
conditions analogous to properties satisfied by optimal DLP solutions. (These properties
may not characterize optimal DALP solutions.)

Proposition 5. Let w be a feasible solution to the restricted DALP.

(a) If p(Fi,i+1|si, F0) = Pr(Fi,i+1|si, F0,i+1), then w matches the discounted probability
mass function of the price pair (si, Fi,i+1):∑

(xi,ai)

wi(xi, si, Fi,i+1, ai) = δiPr(si, Fi,i+1),∀(i, si, Fi,i+1). (2.43)

(b) If p(Fi,i+1|si, F0) = 1(Fi,i+1 = E[Fi,i+1|si, F0,i+1]), then, assuming E[Fi,i+1|si, F0,i+1] ∈
Fi,i+1, w matches the first moment E[Fi,i+1|si, F0,i+1] of the prompt-month futures
price Fi,i+1 given the spot price si and the time zero prompt-month futures price
F0,i+1:

∑
Fi,i+1

Fi,i+1


∑

(xi,ai)

wi(xi, si, Fi,i+1, ai)∑
(xi,Fi,i+1,ai)

wi(xi, si, Fi,i+1, ai)

 = E[Fi,i+1|si, F0,i+1],∀(i, si). (2.44)

It is easy to verify that optimal DLP solutions satisfy conditions analogous to (2.32) and
thus correspondingly implied conditions analogous to (2.43)-(2.44). Moreover, it can be
verified that DALP feasible solutions that satisfy constraints (2.33) also satisfy condi-
tions (2.43)-(2.44). Thus, our choices of p(Fi,i+1|si, F0,i+1) limit the extent to which con-
straints (2.33) approximate (2.32). As discussed in Appendix 2.7, in our numerical imple-
mentation of ADP1 we force the assumption in part (b) of Proposition 5 by computing
E[Fi,i+1|si, F0,i+1] in closed form under price model (2.4)-(2.5) for each given si, which is
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equivalent to having a grid with the single value E[Fi,i+1|si, F0,i+1] for each considered value
of si.

Because conditions (2.43) capture more properties of optimal DLP solutions than con-
ditions (2.44), it seems that SADP is a better ADP model than ADP1. However, ADP1
has computational advantages over SADP: It requires computing fewer expectations than
SADP and discretizing only the spot price when the term E[Fi,i+1|si, F0,i+1] is available in
closed form, which is the case for the price model (2.4)-(2.5), as just pointed out.

The computational advantage of ADP1 over SADP motivates us to extend this model
to an ADP with value function φi(xi, si, Fi,i+1), which is a look-up table that in every stage
also depends on the prompt-month futures price. We briefly discuss the derivation of this
ADP1 extension, ADP2, without presenting formulations for brevity. ADP2 is derived in
a manner analogous to the derivation of ADP1 starting from an ALP formulated using
the value function approximation φi(xi, si, Fi,i+1). An optimal solution to this ALP can be
computed by solving an ADP that we label ADP0′ and is analogous to ADP0. We then
add to the dual of this ALP the following constraints that are analogous to the constraints
(2.33) used in the derivation of ADP1:∑

ai

wi(xi, si, Fi,i+1, Fi,i+2, ai) = 1(Fi,i+2 = E[Fi,i+2|si, Fi,i+1, F0])θi(xi, si, Fi,i+1),

∀(i, xi, si, Fi,i+1, Fi,i+2).

The primal linear program corresponding to this ALP dual restriction is an ALP relaxation
that can be reformulated as ADP2. The ADP2 model is

φADP2
i (xi, si, Fi,i+1) = max

ai
r(ai, si) + δE

[
φADP2
i+1 (xi − ai, si+1)|Fi,i+1

]
,

∀i ∈ {N − 2, N − 1}, (xi, si), (2.45)

φADP2
i (xi, si, Fi,i+1) = max

ai
r(ai, si)

+ δE
[
φADP2
i+1 (xi − ai, si+1, Fi+1,i+2)|Fi,i+1,E[Fi,i+2|si, Fi,i+1, F0,i+2]

]
,

∀i ∈ I \ {N − 2, N − 1}, (xi, si, Fi,i+1), (2.46)

with φADP2
N (xN , sN) := 0, ∀xN .

2.6 Error Bound Analysis for Constraint-based ALP

Relaxations

In this section we analyze the value function approximations obtained by versions of the
ADPs discussed in §2.5.2-2.5.3: ADP0, SADP, ADP1, ADP0′, and ADP2. Our analysis
provides insights into the relative performance of these ADPs, in particular the benefit
of the constraint-based ALP relaxations proposed in §2.5.3 relative to their corresponding
ALPs, and sheds light on when SADP, ADP1, and ADP2 can be expected to perform well.
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Let ` represent an ADP in the set L := {SADP,ADP1,ADP2}. Consistent with
how EDP is formulated, we analyze versions of ADP0, ADP0′, and the ADPs in set L
reformulated assuming that the forward curve Fi at each stage i belongs to RN−i

+ instead
of the finite set Fi (and hence the first “max” in (2.29) is assumed to be replaced with
“sup”; an analogous substitution is assumed for ADP0′). For simplicity, we continue to
use the same labels for these reformulated models. Under a mild assumption satisfied by
price model (2.4)-(2.5), Proposition 6 compares the value function approximations of ADP0
and ADP0′ against the value function of EDP and the value function approximations of
the ADPs in set L. The mild assumption in Proposition 6 is that the distributions of the
random variables si+1|Fi,i+1 and si+2|Fi,i+2 are stochastically increasing in Fi,i+1 and Fi,i+2,
respectively (see, e.g., Topkis 1998, Lemma 3.9.1 (b)).

Proposition 6. (i) If the distribution of si+1|Fi,i+1 is stochastically increasing in Fi,i+1 ∈
R+, ∀i ∈ I−(N−1), then the ADP0 value function is unbounded in every state in stages 0
through N − 2. (ii) If the distribution of si+2|Fi,i+2 is stochastically increasing in Fi,i+2 ∈
R+, ∀i ∈ I \ {N − 1, N − 2}, then the ADP0′ value function is unbounded in every state
in stages 0 through N − 3. (iii) The value functions of EDP and the ADPs in set L are
bounded at every stage and state.

Parts (i) and (ii) of Proposition 6 are consistent with the discussion given after Propo-
sition 3. Together with part (iii) of this proposition they suggest that there is potential
benefit in using constraint-based relaxations of an ALP rather than an ALP. We thus
focus on providing approximation guarantees for the value functions of the ADPs in set
L. Our approximation guarantees are based on the norm ‖g‖E,∞, which we define as
maxx E[g(x, Fi)|F0], where g(x, Fi) is a generic function with support on the stage i EDP
state space and the expectation is with respect to the distribution of Fi conditional on F0.
The expectation over the stage i futures prices in this norm is consistent with EDP, while
the maximum over inventory is for analytical tractability. Our choice of norm is based
on analytical tractability. Specifically, we analyze the following errors between the stage i
EDP value function Vi and each ADP ` value function φ`i :

‖Vi−φ`i‖E,∞ :=

{
maxxi E

[
|Vi(xi, Fi)− φ`i(xi, si)|

∣∣F0

]
, ∀` ∈ {ADP1, SADP},

maxxi E
[
|Vi(xi, Fi)− φADP2

i (xi, si, Fi,i+1)|
∣∣F0

]
,

∀i.

We refer to ‖Vi − φ`i‖E,∞ as the `-error at stage i.

Our analysis is based on the concept of an ideal value function approximation. This
function is defined by replacing with Vi+1, the EDP stage i+ 1 value function, the function
φ`i+1 on the right hand side of each ADP ` recursion, that is, (2.41), (2.42), and (2.45)-(2.46)
reformulated as discussed above, and modifying the conditional expectations accordingly.
Recall that F ′i ≡ {Fi,i+1, Fi,i+2, . . . , Fi,N−1}. Let F ′′i := {Fi,i+2, Fi,i+3, . . . , Fi,N−1}. To ease
the exposition we define F̄ ′i (si, F0) as E[F ′i |si, F0] and F̄ ′′i (si, Fi,i+1, F0) as E[F ′′i |si, Fi,i+1, F0].
The ideal value function approximations for the ADPs in set L are defined as

φSADP,Vi (xi, si) := E
[

max
ai∈A(xi)

r(ai, si) + δE [Vi+1 (xi − ai, Fi+1) |Fi] |si, F0

]
,
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φADP1,V
i (xi, si) := max

ai∈A(xi)
r(ai, si) + δE

[
Vi+1 (xi − ai, Fi+1) |F̄ ′i (si, F0)

]
,

φADP2,V
i (xi, si, Fi,i+1) := max

ai∈A(xi)
r(ai, si)

+δE
[
Vi+1 (xi − ai, Fi+1) |Fi,i+1, F̄

′′
i (si, Fi,i+1, F0)

]
,

where the superscript in the notation for an ideal value function approximation indicates
that it is defined using the exact value function and an ADP recursion.

We now bound the various `-errors using recursive functions that depend on the absolute
value of the differences between the EDP value function and the `-ideal value function ap-
proximations. These recursive functions for SADP and ADP1 are defined, ∀(i, xi, Fi)−(N−1),
as

γSADPi (xi, Fi) := |Vi(xi, Fi)− φSADP,Vi (xi, si)|+ δE
[
max
xi+1

E
[
γSADPi+1 (xi+1, Fi+1)

∣∣F ′i ]∣∣∣∣si, F0

]
,

γADP1
i (xi, Fi) := |Vi(xi, Fi)− φADP1,V

i (xi, si)|+ δmax
xi+1

E
[
γADP1
i+1 (xi+1, Fi+1)

∣∣F̄ ′i (si, F0)
]
,

with boundary conditions γ`N−1(·) ≡ 0, ∀` ∈ {SADP,ADP1}. For ADP2, this recursive
function is defined, ∀(i, xi, Fi)−(N−1,N−2), as

γADP2
i (xi, Fi) := |Vi(xi, Fi)− φADP2,V

i (xi, si, Fi,i+1)|
+ δmax

xi+1

E
[
γADP2
i+1 (xi+1, Fi+1)

∣∣Fi,i+1, F̄
′′
i (si, Fi,i+1, F0)

]
,

with boundary conditions γADP2
i (·) ≡ 0, ∀i ∈ {N − 2, N − 1}. As shown in page 141 of

Appendix A.2, our bound on the stage i `-error is

‖Vi − φ`i‖E,∞ ≤ ‖γ`i‖E,∞, (2.47)

∀(`, i) ∈ L × I. The bound (2.47) formalizes the intuition that the ADPs in set L incur
an error when the exact value function differs from its corresponding `-ideal value function
approximation at a given stage and state. This bound is finite (by part (iii) of Proposition
6).

The bound (2.47) is zero in the last stage (N − 1) and also in the penultimate stage
(N-2) for ADP2. Proposition 7 identifies limiting regimes under price model (2.4)-(2.5) for
which the bound (2.47) tends to zero in all other stages. We denote by ρ the matrix of the
correlations between the standard Brownian motion increments of price model (2.4)-(2.5).
We let ρ be a rank 2 matrix ρ such that each of its elements ρ̄i,i+1 satisfies |ρ̄i,i+1| < 1. We
also denote by 1 a matrix of ones that is compatible with ρ.

Proposition 7. Under price model (2.4)-(2.5) it holds that : (i) limρ→1 ‖γ`i‖E,∞ = 0 for all
` ∈ L and i ∈ I \ {N − 1}; and (ii) limρ→ρ ‖γADP2

i ‖E,∞ = 0 for all i ∈ I \ {N − 1, N − 2}.

Part (i) of Proposition 7 suggests that the ADPs in L should perform near optimally
under price model (2.4)-(2.5) when the correlations in this model are sufficiently large
and positive. The intuition for this conclusion is that at the stated limit there is a single
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source of uncertainty in price model (2.4)-(2.5), and hence the current spot price is a
sufficient statistic for the future evolution of the entire forward curve. Part (ii) of this
proposition suggests that ADP2 is also near optimal because at the limit there are two
sources of uncertainty in price model (2.4)-(2.5) and the spot price and the prompt month
futures price are not sufficient statistics for each other (|ρi,i+1| < 1). Because the ADP2
value function approximation depends on these two prices but the SADP and ADP1 value
function approximations are only based on the spot price, this result provides theoretical
support for the intuition that ADP2 should outperform both SADP and ADP1. Moreover,
this result also encompasses a weakening of the limiting condition in part (i), that is, the
case when ρ̄ corresponds to a rank 2 matrix where all correlations except ρi,i+1 are equal
to 1.

Our use of an ideal value function approximation to bound the `-error is similar in
spirit to the approach taken in de Farias and Van Roy (2003) and Desai et al. (2012a) to
bound the error incurred by the value function approximation determined by their models.
However, the error bounds of these authors do not apply to the ADPs in set L because
(i) de Farias and Van Roy (2003) provide bounds for an ALP while we analyze ADPs
corresponding to ALP relaxations, and (ii) Desai et al. (2012a) study an ALP relaxation
that is different from the ones that we consider, as discussed in §2.5.3. Likewise, our bound
(2.47) is specific to the ADPs considered here.

2.7 Computational Complexity Analysis

In this section we discuss the computational complexity of solving the ALP relaxations
presented in §2.5.3 and estimating greedy lower and dual upper bounds. This complexity
depends on the specific technique used for discretizing the relevant price sets. Our compu-
tational study in §2.8 is based on the multi-maturity Black (1976) price model (2.4)-(2.5)
discretized via Rubinstein (1994) binomial lattices when discretizations are needed. We
thus focus on this discretization approach. Our analysis uses the (easy to establish) prop-
erty that the policies associated with SADP, ADP1, and ADP2 share the basestock target
structure of an optimal DDP policy (see Proposition 4 and Lemma 2 in Secomandi et al.
2012 for details).

Consider ADP1. Figure 2.2 illustrates our discretization approach. We obtain the
set Fi,i, that is, we discretize R+, by evolving the time 0 futures price F0,i using a two-
dimensional Rubinstein binomial tree based on the volatility σi (see the top part of Figure
2.2). Let mi be the number of time steps used to discretize the time interval [0, Ti]. Building
this lattice results in a set Fi,i with mi + 1 values. This requires O(mi) operations.

At each stage i, solving ADP1 entails executing the following steps:
Step 1: Determine a probability mass function with support Fi+1,i+1 for the random vari-
able si+1 given E[Fi,i+1|si, F0,i+1] for all si;
Step 2: Compute the optimal ADP1 basestock targets for all si;
Step 3: Evaluate φADP1

i (xi, si) for all (xi, si).
In step 1, we evolve a two-dimensional Rubinstein lattice, starting from each price E[Fi,i+1|si, F0,i+1],
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Figure 2.2: Illustration of our discretization approach for ADP1.

referred to as the transition lattice, by using m time steps to discretize the interval [Ti, Ti+1]
(see the top part of Figure 2.2). In particular, this price depends on the correlation coeffi-
cient ρi,i+1. Each price E[Fi,i+1|si, F0,i+1] can be computed in closed-form inO(1) operations
under the price model (2.4)-(2.5). Each transition lattice yields a discretization of si+1 with
m + 1 values. Building all the mi transition lattices thus takes O(mi ·m) operations. To
obtain the distribution of si+1 given E[Fi,i+1|si, F0,i+1] with support on Fi+1,i+1, we project
each price si+1 in each transition lattice onto the set Fi+1,i+1 by rounding each price si+1

to the closest spot price in Fi+1,i+1 (see Figure 2.2). The set Fi+1,i+1 is constructed in a
manner analogous to how we generate the set Fi,i, but using the parameters mi+1, Ti+1,
F0,i+1, and σi+1 (see the bottom part of Figure 2.2). Since the si+1 values in each transition
lattice and the set Fi+1,i+1 are sorted, this projection takes a total of O(mi+1 ·m) operations
at stage i. Therefore, the time complexity for step 1 at stage i is O(mi ·m+mi+1 ·m).

Executing step 2 requires performing the maximization in (2.42) at inventory levels
0 and x̄ with the injection and withdrawal capacities relaxed to −x̄ and x̄, respectively,
which requires O(mi · |X | · m) operations. Executing step 3 also takes O(mi · |X | · m)
operations. Therefore, computing φADP1

i (xi, si) for all (xi, si) in stage i involves O(m ·
(mi + mi+1 + 2 ·mi · |X |)) operations. Using m′ := maxi∈Imi, this number of operations
simplifies to O(m′ · |X | ·m), since |X | ≥ 2. Thus, for an N -stage problem, solving ADP1
entails O(N ·m′ · |X | ·m) operations.

For SADP and ADP2, we determine the set Fi,i ×Fi,i+1 for each stage i using a three
dimensional Rubinstein lattice. For SADP, we use two dimensional binomial lattices and
projections to obtain the probability mass function of si+1 conditional on each of the m2

i

values of Fi,i+1. In contrast, for ADP2 we use three dimensional lattices and projections
to obtain the joint probability mass function of each random pair (si+1, Fi+1,i+2) on the
support Fi+1,i+1 × Fi+1,i+2 conditional on the pair (Fi,i+1,E[Fi,i+2|si, Fi,i+1, F0,i+2]). An
analysis similar to the one performed for ADP1 shows that we can solve SADP and ADP2
in O(N · (m′)2 · |X |2 ·m) and O(N · (m′)2 · |X |2 ·m2) operations, respectively.

Table 2.1 summarizes the computational complexity of solving each of SADP, ADP1,
and ADP2. This table indicates the following ordering of these models in terms of increas-
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Table 2.1: Computational complexity of solving SADP, ADP1, and ADP2.

Method Computational Complexity

ADP1 O(N ·m′ · |X | ·m)

SADP O(N ·m′2 · |X | ·m)

ADP2 O(N ·m′2 · |X | ·m2)

ing computational complexity: ADP1, SADP, and ADP2.

The operations count for estimating upper and lower bounds depends on the number
of prices included in a look-up table value function approximation. Let ns denote the
number of price sample paths used in a Monte Carlo simulation used to estimate a greedy
lower bound and a dual upper bound (see §2.2.2). Different from how we obtain each
discretization Fi,i, this simulation is based on evolving the entire forward curve. A simple
analysis shows that estimating lower and upper bounds, respectively, when using the look-
up table value function approximation φi(xi, si) requires O(ns ·N · logm′+ns ·N · |X | ·m)
and O(ns ·N · |X | · logm′+ns ·N · |X |2 ·m) operations (O(logm′) operations are needed by
binary search, which we use when projecting a transition lattice); doing this when using
the look-up table value function approximation φi(xi, si, Fi,i+1) involves O(ns ·N · logm′ ·
m+ns ·N · |X | ·m2) and O(ns ·N · |X | · logm′ ·m+ns ·N · |X |2 ·m2) operations, respectively.

Table 2.2: Computational complexity of estimating a greedy lower bound and a dual upper
bound with look-up table value function approximations.

Number of

Prices in the Computational Complexity

Look-up Table Greedy Lower Bound Dual Upper Bound

1 O (ns ·N · [logm′ + |X | ·m]) O (ns ·N · |X | · [logm′ + |X | ·m])

2 O (ns ·N ·m · [logm′ + |X | ·m]) O (ns ·N · |X | ·m · [logm′ + |X | ·m])

Table 2.2 summarizes the outcome of this analysis. This table shows that estimating
dual upper bounds is more costly than estimating greedy lower bounds, due to the com-
putation of the dual value function in (2.8) at each inventory level in the set X and for all
the stages in set I given a price sample path P0. Reasonable values of the parameters ns,
|X |, and m′ satisfy ns · |X | ≥ m′. Hence, estimating dual upper bounds is also more costly
than solving each of SADP, ADP1, and ADP2.

2.8 Numerical Results

In this section we discuss the computational performance of the models presented in §2.5.2
applied to the 24-stage LMS instances. Appendix A.3 contains additional numerical results
related to SADP. These instances are based on natural gas data from the New York Mer-
cantile Exchange (NYMEX) and the energy trading literature. Each instance is identified
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by a season (Spring, Summer, Fall, or Winter) and one of three injection and withdrawal
capacity pairs, with their labels 1, 2, and 3 denoting a heavy, intermediate, and mild capac-
ity restriction, respectively. These instances are based on the multi-maturity Black model
(2.4)-(2.5). The details of these instances are available in LMS.

In §§2.8.1-2.8.2 we investigate the upper and lower bounding performance of the models
summarized in Table 2.3. We discuss their run times in §2.8.3.

Table 2.3: Models used in our numerical study.

Constraint-based Number of Prices

ALP ALP Relaxation in the Look-up Table

ADP0 SADP, ADP1 1

ADP0′ ADP2 2

2.8.1 Upper Bounds

As LMS, we use 10,000 forward curve sample paths to obtain our dual upper bound es-
timates on the value of storage in the initial stage and state. Across all the considered
instances, the ADP0-based dual upper bound estimates are between 30% and 690% larger
than the worst dual upper bound estimates obtained with ADP1 and SADP, and the
ADP0′-based dual upper bound estimates are between 21% and 600% larger than the
ADP2-based dual upper bound estimates. Thus, on these instances, the value function
approximations of the considered ALP relaxations lead to substantially tighter dual upper
bound estimates than the value function approximations of their respective ALPs. These
findings are consistent with our error bound analysis carried out in §2.6.

We denote by UBS, UB1, and UB2 the dual upper bound estimates associated with
SADP, ADP1, and ADP2, respectively. Figure 2.3 displays UBS and UB1 on all the
considered instances as percentages of UB2, which is tighter than all the other estimated
upper bounds. The error bars in this figure indicate standard errors, also reported as
percentages of UB2. UBS and UB1 match on all the instances after accounting for sampling
variability. UB2 is better than both UBS and UB1 by an average of 2.82% on the Winter
instances, while this average is smaller on the other instances. We are thus able to obtain
substantially improved upper bound estimates compared to LMS on the Winter instances.
The observed performance of UB2 relative to UBS and UB1 is consistent with our error
bound analysis performed in §2.6.

2.8.2 Lower Bounds

We also use 10, 000 sample paths to obtain our lower bound estimates on the value of
storage in the initial stage and state. Across all the considered instances, the ADP0-based
lower bound estimates are between 25% and 100% smaller than the worst lower bound
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Figure 2.3: Estimated upper bounds and their standard errors (error bars).

estimates obtained with ADP1 and SADP, and the ADP0′-based lower bound estimates
are between 5% and 89% smaller than the ADP2-based lower bound estimates. The control
policies obtained from the ALP relaxations are thus substantially better than the control
policies based on their respective ALPs on these instances. These results are in line with
our error bound analysis performed in §2.6.

We denote by LBS, LB1, and LB2 the lower bound estimates obtained using SADP,
ADP1, and ADP2, respectively. Figure 2.4 displays these estimates as percentages of UB2.
The error bars in this figure indicate the standard errors of these estimates as percentages
of UB2. The difference between LBS and LB1 is less than one standard error (expressed
as a ratio of UB2) on the Spring, Summer, and Fall instances, while LB1 is weaker than
LBS by no more than 2.44% of UB2 on the Winter instances. LB2 outperforms both LBS
and LB1 on all the considered instances: The improvement of LB2 on LBS is 2.00-3.36%
across the Spring, Summer, and Fall instances, and 6.72-8.43% on the Winter instances.
The improvements of LB2 on LB1 are similar on the Spring, Summer, and Fall instances,
but are larger on the Winter instances. These results suggest that ADP2 is a better model
than SADP and ADP1, with maximum suboptimality gaps of 3.03% of UB2 on the Spring,
Summer, and Fall instances, and 9.03% of UB2 on the Winter instances. In contrast, these
suboptimalities are 5.77% and 17.46% for SADP, and 6.11% and 19.89% for ADP1.
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Figure 2.4: Estimated lower bounds and their standard errors (error bars) without reopti-
mization.
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Figure 2.5: Intrinsic values.

The relative performance of ADP2 against ADP1 and SADP is consistent with part (ii)
of Proposition 7. To shed some more light on the difference between the ADP2-based and
SADP/ADP1-based lower bounds on the Winter instances relative to the other instances,
Figure 2.5 reports the intrinsic value for each instance, that is, the value of storage due
to seasonality (deterministic variability). This value is obtained by solving a deterministic
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version of EDP, (2.3), based only on the initial (time 0) forward curve (see §3.2 in LMS
for further details). The computed intrinsic values are less than 50% of their respective
UB2 values on the Winter instances, while they are at least 75% of UB2 on the remaining
instances. Thus, a substantially larger portion of the storage value is attributable to price
uncertainty for the Winter instances than for the other instances. In other words, capturing
the evolution of the forward curve appears to be more important on the Winter instances
than on the other instances. Because the ADP2 value function approximation depends on
both the spot and prompt futures prices while the ones of SADP and ADP1 depend only
on the spot price, ADP2 is better able to capture the evolution of the forward curve.

We denote by RLBS, RLB1, and RLB2 the estimates of the reoptimization versions
of LBS, LB1, and LB2, respectively. Figure 2.6 displays these reoptimization-based lower
bound estimates and their standard errors as percentages of the UB2 values (some of the
reported lower bound estimates exceed UB2 due to Monte Carlo sampling error). RLBS,
RLB1, and RLB2 are almost tight on the Spring, Summer, and Fall instances. RLB2 is
slightly better than RLBS and RLB1 on the Winter instances, with a maximum optimality
gap of 2.38% of UB2 compared to 3.51% for RLBS and 2.58% for RLB1. Further, LB2
is worse than RLB2 by 0.20-6.65% of UB2 on all the instances, while LBS and LB1,
respectively, fall below RLBS and RLB1 by 2.29-13.94% and 1.28-14.51% of UB2 on all
the instances. Thus, while reoptimization can be useful even for ADP2, it appears to be
less critical for ADP2 than it is for SADP and ADP1 to obtain near optimal lower bounds
and policies.

We now compare the ADP2-based lower bounds against the ones estimated using two
state-of-the-art approaches for commodity storage real option valuation and management:
The rolling intrinsic policy and least squares Monte Carlo (see §2.1 for relevant references).
Our implementation of the least squares Monte Carlo method uses basis functions that
for every stage and inventory level include polynomials of orders one and two in each
futures price. Across all the considered instances, the averages of the lower bounds (as
percentages of UB2) estimated by the rolling intrinsic policy and least squares Monte
Carlo, respectively, are 99.14% and 98.83% (the standard errors of the individual lower
bound estimates vary between 0.77% and 1.76% of UB2). The analogous averages for LB2
and RLB2 are 97.98% and 99.59%, respectively. The ADP2-based lower bounds are thus
competitive with the ones obtained by these state-of-the-art techniques.

2.8.3 CPU Times

The models that we solve numerically are formulated on discretized state and action spaces.
As in LMS, we optimally discretize the feasible inventory set into 21 equally spaced points.
We further reduce the considered inventory levels by eliminating the ones that cannot
be feasibly reached in each stage from the initial stage and state. We obtain discretized
price sets from the multi-maturity Black (1976) price model (2.4)-(2.5) using Rubinstein
(1994) binomial lattices (see Appendix 2.7 for details) and also apply lattice restrictions
(Levy, 2004) to shorten the CPU time required to solve ADP2. This approach, standard in
computational finance, is effective: We obtain a speed up equal to one order of magnitude
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Figure 2.6: Estimated lower bounds and their standard errors (error bars) with reopti-
mization.

while the estimated lower and upper bounds change by less than 0.2% with this restriction
in place.

Our experiments are based on the following computational setup: A 64 bits PowerEdge
R515 with twelve AMD Opteron 4176 2.4GHz processors, of which we used only one, with
64GB of memory, the Linux Fedora 15 operating system, and the g++ 4.6.1 20110908
(Red Hat 4.6.1-9) compiler. The SADP results that we report are obtained with the code
of LMS run within our computational setup.

The CPU seconds required to solve SADP ranges from 120 to 122. Solving ADP1 and
ADP2 takes between 0.11 and 0.12 and 36 and 53 CPU seconds, respectively. Thus, on all
the considered instances, the ADP1 and ADP2 computational requirements are at least
1,000 times and 2 times smaller, respectively, than the ones of SADP (recall that we use
lattice restrictions when solving ADP2).

The SADP overall CPU seconds, that is, also including the time required for bound
estimation, vary from 272 to 314. The ADP1 and ADP2 overall CPU seconds range
between 10 and 17 and 154 and 225, respectively. Therefore, the ADP1 overall CPU
run times are at least 1 order of magnitude smaller than the ones of SADP on all the
considered instances. The ADP2 overall CPU times are between 76% and 53% of the ones

40



of SADP. However, solving ADP2 is 12 to 16 times slower than solving ADP1. Given a
value function approximation, the upper bound estimation is more costly than the lower
bound estimation. For example, on average, the upper bound estimation requires roughly
87% and 75% of the total bounding CPU time for ADP1 and ADP2, respectively.

Computing RLBS takes between 544 and 619 CPU seconds, while this range for RLB1
is 90-93 CPU seconds, that is, roughly 6 times smaller. The RLB2 CPU seconds range
from 1,222 to 1,248. Thus, the RLB2 run times are roughly 1 order of magnitude and 2
times larger than the RLB1 and RLBS run times, respectively.

2.9 Conclusions

Real option management of commodity storage assets is an important practical problem
that, in general, gives rise to an intractable MDP when using high dimensional models of
commodity forward curve evolution. We develop a novel approximate dynamic program-
ming approach to derive ALP relaxations. Our approach relies on approximately enforcing
on the ALP dual a property of the exact dual. We derive tractable ALP relaxations by
applying our approach using low dimensional look-up table value function approximations,
subsuming an existing approximate dynamic programming model. We derive error bounds
that provide theoretical support for using our ALP relaxations over their respective ALPs.
Our numerical results on existing natural gas instances are promising, showing that our
ALP relaxations substantially outperform their respective ALPs, with our best ALP relax-
ation matching or improving on the best lower and upper bounds available in the litera-
ture for these instances, and being competitive with state-of-the-art methods for obtaining
heuristic policies and estimating lower bounds on the value of commodity storage.
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Chapter 3

Improved Least Squares Monte Carlo
for Term Structure Option Valuation
with Energy Applications

(Joint work with François Margot and Nicola Secomandi)

3.1 Introduction

The pricing of options with multiple exercises is an important area of financial engineering,
with applications including commodity, energy, and interest rate derivatives. Examples in-
clude chooser flexible caps (Meinshausen and Hambly, 2004), portfolio liquidation (Gyurko
et al., 2011), swing options (Barbieri and Garman, 1996, Jaillet et al., 2004, Chandramouli
and Haugh, 2012), switching options (Cortazar et al., 2008), and commodity processing and
storage (Maragos, 2002, Boogert and De Jong, 2008, 2011/12, Secomandi, 2010, Lai et al.,
2010, Arvesen et al., 2013, Boogert and Mazières, 2011, Devalkar et al., 2011, Thompson,
2012, Wu et al., 2012). In particular, our focus is on energy swing and storage options.

Term structure models are widespread both in practice and in the literature that deals
with applications in commodity, energy, and fixed income industries (Ho and Lee, 1986,
Cortazar and Schwartz, 1994, Clewlow and Strickland, 2000, Maragos, 2002, Eydeland
and Wolyniec, 2003, Veronesi, 2010). Valuing multiple exercise options using these models
generally gives rise to intractable Markov decision problems (MDPs). The intractability
here is due to two curses of dimensionality that affect the stochastic dynamic programs
(SDPs) corresponding to these MDPs: (i) The high dimensionality of the state spaces of
these SDPs and (ii) the inability to exactly compute the expectations that are present in
these SDPs (Powell, 2011, §4.1).

The financial engineering literature typically approaches the solution of these SDPs
using Monte Carlo based approximate dynamic programming (ADP) techniques, which
compute a heuristic exercise policy and greedy lower and dual upper bounds on the option
value (see Rogers 2002, Andersen and Broadie 2004, Chapter 8 in Glasserman 2004, Haugh
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and Kogan 2004, Detemple 2006, Haugh and Kogan 2007, Brown et al. 2010, and references
therein).

The least squares Monte Carlo (LSM) approach, pioneered by Carriere (1996), Longstaff
and Schwartz (2001), and Tsitsiklis and Van Roy (2001), has become the norm for valuing
multiple exercise options (see Appendix B in Eydeland and Wolyniec 2003, Glasserman
and Yu 2004, Meinshausen and Hambly 2004, Detemple 2006, Boogert and De Jong 2008,
2011/12, Bender 2011, Gyurko et al. 2011). This method approximates the SDP con-
tinuation (value) function. We thus refer to this method as LSMC, where C stands for
continuation (function). LSMC uses basis functions and a convenient sample average ap-
proximation, respectively, to overcome the first and second curses of dimensionality.

A known difficulty with LSMC is the estimation of dual upper bounds (see Chapter
8 in Glasserman 2004). To overcome this difficulty, Gyurko et al. (2011) and Desai et al.
(2012b) propose an LSMC variant that approximates a value function based on the LSMC
continuation function approximation. We refer to this LSMC variant as LSMH, where H
denotes hybrid.

An appealing feature of LSMC and LSMH is that they can be used with any term
structure model from which term structure elements can be sampled. However, this gener-
ality suggests that it may be possible to improve on these methods by developing an LSM
method that exploits properties of specific families of term structure models.

We develop an LSM variant to be used in conjunction with term structure models
commonly used both in practice and the literature (Ho and Lee, 1986, Cortazar and
Schwartz, 1994, Clewlow and Strickland, 2000, Maragos, 2002, Eydeland and Wolyniec,
2003, Veronesi, 2010). As LSMC and LSMH, our approach uses basis functions to solve
the first curse of dimensionality, but it differs from LSMC because it approximates a
value function and from LSMH because it does so directly. In stark contrast to LSMC and
LSMH, the key idea behind our approach is to overcome the second curse of dimensionality
by choosing basis functions that allow us to compute expectations in essentially closed-
form when employing term structure models; that is, this choice of basis functions allows
us to avoid employing the sample average approximation used by both LSMC and LSMH.
Examples include common basis functions used in the LSM literature, such as polynomi-
als of term structure elements and prices of call and put options on the term structure
(Longstaff and Schwartz, 2001, Andersen and Broadie, 2004, Boogert and De Jong, 2008,
2011/12, Cortazar et al., 2008, Gyurko et al., 2011, Desai et al., 2012b). A catalog of other
candidate basis functions can be found in Haug (2006). We refer to our LSM variant as
LSMV, where V abbreviates value (function).

We numerically compare the relative performance of LSMC, LSMH, and LSMV on
instances of realistic energy swing and storage options. We observe that LSMV needs a
considerably smaller number of regression samples than both LSMC and LSMH to obtain
near optimal bound estimates with roughly the same accuracy and precision. This improve-
ment leads to moderate computational savings. However, for a given number of evaluation
samples, the LSMV computational effort required to estimate dual upper bounds is be-
tween one and three orders of magnitude smaller than the analogous singular effort of both
LSMC and LSMH, while all three LSM methods exhibit comparable computational effort
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when estimating greedy lower bounds. We also perform a worst case error bounding anal-
ysis that offers a theoretical view on the relative quality of the bounds that these methods
estimate on our instances. The relevance of our proposed method and our findings extends
beyond the specific applications considered in this chapter.

Glasserman and Yu (2004) propose an LSMC variant that solves the second curse of
dimensionality, only for dual upper bound estimation, by choosing basis functions that
satisfy a martingale condition. In contrast, our approach is not based on such martingale
condition and overcomes the second curse of dimensionality when estimating both VFAs
and bounds. Moreover, these authors focus on the valuation of American options, whereas
our method has broader applicability.

The remainder of this chapter is organized as follows. In §3.2 we formulate an MDP
for multiple exercise option valuation, apply it to energy swing and storage options, and
discuss the two curses of dimensionality that arise when attempting to solve this MDP
using stochastic dynamic programming. In §3.3 we discuss the estimation of greedy lower
bounds and dual upper bounds. In §3.4 we present LSMC and LSMH. We describe LSMV
in §3.5. We perform our error bounding analysis in §3.6. We conduct our numerical study
in §3.7. We conclude in §3.8. All proofs are in Appendix B.1. Appendix B.2 includes
additional material related to our error bound analysis. Appendix B.3 reports lower and
upper bounds estimated using LSMV on the instances of Lai et al. (2010) used in §2.8.

3.2 Option Valuation Model and Curses of Dimen-

sionality

We describe our MDP framework for the valuation of multiple exercise options in §3.2.1
and discuss applications of this MDP to energy swing and storage options in §3.2.2. In
§3.2.3 we formulate two SDPs that can (in theory) be used to compute an optimal policy of
this MDP and discuss the two curses of dimensionality that make these SDPs intractable.

3.2.1 MDP

There are N exercise dates, each denoted as Ti, i ∈ I := {0, . . . , N − 1}. The set I is the
stage set. The state of our MDP at stage i is partitioned into endogenous and exogenous
components. The endogenous component is the scalar xi. It belongs to the finite set Xi
that represents information about the number of remaining exercise rights at stage i. The
exogenous component is the vector Fi ∈ RN−i that represents the option underlying term
structure (Fi,i, Fi,i+1, . . . , Fi,N−1), where Fi,j is the element of the term structure associated
with date Tj at time Ti. We define FN := 0. In commodity and energy applications, Fi
is a forward curve, Fi,i is the time Ti spot price, and Fi,j is the date Ti futures price with
maturity at time Tj > Ti. For fixed income applications, Fi is a bond yield curve and Fi,j
is the date Ti interest rate of the bond with maturity at date Tj.

At stage i and state (xi, Fi), the decision maker chooses an exercise action a from the
finite set Ai(xi), which includes the number of rights that can be exercised at stage i,
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and receives the reward ri : (a, Fi) 7→ R. Subsequently, the endogenous part of the state
transitions from xi to xi+1 := xi − a, and the exogenous part of the state evolves from
Fi to Fi+1 according to a known risk-neutral (risk adjusted) stochastic process. In this
chapter we assume that the dynamics of the exogenous information are governed by a
term structure model of the type discussed in §3.5.1. However, the models formulated in
this section have wider applicability.

Let E denote expectation under the risk-neutral probability measure for the exogenous
information stochastic process (such measure is unique in our setup). A policy π is the
collection of decision functions {Aπ0 , . . . , AπN−1}, where Aπi : (xi, Fi) 7→ Ai(xi), ∀(i, xi, Fi) ∈
I ×Xi×RN−i. We let Π be the set of all feasible policies. We denote by δ ∈ (0, 1] the risk-
free discount factor from each time Ti back to time Ti−1, i ∈ I \ {0}, that is, the discount
factor is constant across stages. This assumption can be relaxed in a straightforward
manner. Define T0 := 0. Let (x0, F0) be the time T0 state. Computing the option value
V0(x0, F0) and an optimal exercise policy entails solving the MDP

max
π∈Π

∑
i∈I

δiE [ri(A
π
i (xπi , Fi), Fi)|x0, F0] , (3.1)

where xπi is the random endogenous part of the state at stage i when using policy π.

To simplify our notation, for the most part in the rest of the chapter we omit the sets
that index a tuple. For example, we write (i, xi, Fi, a) in lieu of (i, xi, Fi, a) ∈ I × Xi ×
RN−i ×Ai(xi). We write (·)−(i) to indicate that i is excluded from I in the tuple ground
set.

3.2.2 Energy Applications

We consider two applications: Energy swing and storage options. They are the focus of
our numerical study in §3.7.

Energy swing option. Swing options are common in energy applications (Barbieri and
Garman, 1996, Jaillet et al., 2004). We focus on a purchase swing option. This option
could be used, for example, by a producer of ethylene that requires an amount qi > 0 of
crude oil as input to a thermal cracking process at time Ti for each i. The contract has two
parts: A purchase part that involves buying the quantity qi at the strike price Ki on each
date Ti; and a swing part that endows the producer with n ≤ N swing rights to increase
or decrease each purchase amount qi by a fixed constant Qi ∈ (0, qi] at the strike price Ki

at each stage i. At most one swing right can be exercised at a given stage i.

The incentive to exercise this swing option in stage i stems from the producer’s ability
to transact in the spot market at the prevailing spot price Fi,i. If Ki > Fi,i the producer
has the incentive to purchase a quantity qi − Qi from the purchase swing contract at the
strike price Ki and purchase a quantity Qi from the spot market at the price Fi,i. This
combined trade results in a gain of Qi(Ki−Fi,i) relative to procuring qi at the strike price
Ki. Similarly, if Ki < Fi,i, the producer has the incentive to purchase a quantity qi + Qi
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from the purchase swing contract at the strike price Ki and sell a quantity Qi into the spot
market at price Fi,i, for a gain of Qi(Fi,i −Ki).

Valuing the purchase part of this contract is trivial. The valuation of the swing part
of this contract can be modeled using our MDP by defining the endogenous state variable
xi to be the number of available swing rights at stage i. The set Xi is thus {i, . . . , n}.
The feasible action set is Ai(xi) := {0, 1} if xi > 0, and Ai(xi) := {0} if xi = 0. That is,
exercise is allowed only when there is at least one swing right available. The stage i reward
function ri(a, Fi) is defined as Qi · |Ki − Fi,i| · a.

Energy storage option. Consider a finite-term lease contract on a portion of the space
and capacity of an energy (e.g., natural gas) storage facility (see Secomandi 2010 and Lai
et al. 2010 for details). At each of a given number of dates, the contract owner can buy
energy from the wholesale spot market and inject it into this facility or withdraw from the
leased facility previously purchased and injected energy and sell it into the wholesale spot
market. The valuation of the energy storage contract can be modeled using our MDP by
appropriately defining the state and action spaces and the reward function.

The endogenous state xi is the inventory in storage at stage i. The maximum amount
of inventory allowed by the storage contract is x̄. The feasible inventory set in stage i
is Xi := [0, x̄]. In each stage, the storage contract withdrawal and injection capacities
are a and a. They satisfy 0 ≤ a, a ≤ x̄. At stage i, a positive action is an energy
withdrawal and sell decision, a negative action is an energy purchase and inject decision,
and zero is the do nothing decision. The set of feasible injections, withdrawals, and overall
actions are AIi (xi) := [max{−a, (xi − x̄)}, 0], AWi (xi) := [0,min{xi, a}], and Ai(xi) :=
AIi (xi)∪AWi (xi), respectively. Although the sets Xi, AIi (xi), and AWi (xi) are intervals, by
Lemma 1 in Secomandi et al. (2012) they can be optimally discretized if a, a, and x̄ are
rational. We assume this to be the case in this chapter.

Let the coefficients αW ∈ (0, 1] and αI ≥ 1 model energy losses associated with en-
ergy withdrawals and injections, respectively, and the coefficients ςW and ςI represent
withdrawal and injection marginal costs, respectively. The immediate reward function is
ri(a, Fi) := (αIFi,i + ςI)a if a ∈ R−; and ri(a, Fi) := (αWFi,i − ςW )a if a ∈ R+.

3.2.3 SDPs and Curses of Dimensionality

We formulate two SDPs to solve, at least in theory, the MDP (3.1): The value function SDP
and the continuation function SDP. The LSM methods discussed in §§3.4-3.5 approximate
these SDPs.

Let fi denote a generic function with support on the stage i state space Xi×RN−i. We
define the stage and state dependent operator

L(i,xi,Fi)fi+1 := max
a
ri(a, Fi) + δE [fi+1 (xi − a, Fi+1) |Fi] . (3.2)
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In theory, an optimal policy to the MDP (3.1) can be obtained by stochastic dynamic
programming. The value function SDP, ∀(i, xi, Fi), is

Vi(xi, Fi) = L(i,xi,Fi)Vi+1, (3.3)

with boundary conditions VN(xN , FN) := 0, ∀xN , where Vi(xi, Fi) is the optimal value
function in stage i and state (xi, Fi).

The continuation function SDP is based on the continuation function Ci(xi+1, Fi),
∀(i, xi+1, Fi), which is defined as

Ci(xi+1, Fi) := δE [Vi+1 (xi+1, Fi+1) |Fi] . (3.4)

Let gi denote a generic function with support on Xi+1 × RN−i. We define the operator

H(i,xi,Fi)gi := max
a
ri(a, Fi) + gi(xi − a, Fi). (3.5)

The continuation function SDP, ∀(i, xi+1, Fi), is

Ci(xi+1, Fi) = δE
[
H(i+1,xi+1,Fi+1)Ci+1|Fi

]
, (3.6)

with boundary conditions CN−1(xN , FN−1) := 0, ∀(xN , FN−1). In this case, the option value
V0(x0, F0) is H(0,x0,F0)C0. The SDP (3.6) can be derived by substituting for Vi+1 (xi+1, Fi+1)
in the right hand side of (3.4) using the right hand side of (3.3) expressed for i + 1 and
simplifying the resulting expression using the operator defined in (3.5).

Solving the SDPs (3.3) and (3.6) is typically intractable due to two curses of dimen-
sionality: (i) The high dimensionality of the value function and continuation function
caused by the presence of the high dimensional term structure in the states of these
SDPs; (ii) the inability to evaluate exactly the expectations E [Vi+1 (xi+1, Fi+1) |Fi] and
E
[
H(i+1,xi+1,Fi+1)Ci+1|Fi

]
in these SDPs when using common term structure models (see

§3.5.1). Of course, these expectations can be computed exactly when using discretization
techniques, such as lattices, but this approach is limited to models with one or two stochas-
tic factors with specific structure, in which case, the first curse of dimensionality is also
solved (see, e.g., Schwartz and Smith 2000 and Jaillet et al. 2004 for energy applications).
In contrast, dealing with more realistic term structure models of the type used in this
chapter requires adopting a different approach to break these two curses of dimensionality.
We discuss Monte Carlo based methods in §§3.3-3.5.

3.3 Bounding the Option Value

In this section we discuss standard Monte Carlo ADP approaches for heuristically solving
the two curses of dimensionality discussed in §3.2.3. These approaches determine a heuristic
exercise policy and estimate bounds on the option value V0(x0, F0) (see §6.1.1 in Bertsekas
2007, Brown et al. 2010, and Powell 2011). These methods rely on (i) low dimensional
value function approximations (VFAs) and continuation function approximations (CFAs)
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for breaking the first curse of dimensionality and (ii) sample average approximations of
expectations for breaking the second curse of dimensionality. Let V̂i(xi, Fi) and Ĉi(xi+1, Fi)
be given VFA and CFA, respectively. We discuss methods to compute VFAs and CFAs in
§§3.4-3.5.

To estimate a lower bound on the option value V0(x0, F0) one generates a set of W
term structure evaluation sample paths {Fw

i ,∀(i, w)} (w ∈ {1, . . . ,W}) starting from the
term structure F0 at time T0, and simulates the greedy policy induced by the VFA or
CFA . That is, on each sample path, at each stage i and state (xi, Fi) a greedy action is
computed by solving L(i,xi,Fi)V̂i+1 when using a VFA andH(i,xi,Fi)Ĉi when using a CFA, with

the understanding that the expectation E
[
V̂i+1 (xi+1, Fi+1) |Fi

]
appearing in L(i,xi,Fi)V̂i+1

is replaced by its sample average approximation, which requires additional inner simulation
(see Gyurko et al. 2011 and Desai et al. 2012b, no such approximation is needed when a
CFA is used). A greedy lower bound on the option value is estimated by averaging the sums
of time T0 discounted rewards obtained from implementing the greedy actions computed
along each sample path. Obviously, greedy optimizations can be used to determine a
heuristic control policy, that is, a sequence of feasible actions for the stages and states
encountered when managing the option.

The quality of the estimated greedy lower bound can be assessed by estimating dual
upper bounds by applying the information relaxation and duality framework (see Brown
et al. 2010, and references therein). This approach relies on the availability of feasible dual
penalties pi(xi+1, Fi+1, Fi) that penalize knowledge at time Ti of the future information
Fi+1: The feasibility requirement is E[pi(xi+1, Fi+1, Fi)|Fi] ≤ 0 (see Brown et al. 2010 for
details). Such penalties can be defined using a VFA as follows:

V̂i+1(xi+1, Fi+1)− E
[
V̂i+1(xi+1, Fi+1)|Fi

]
, (3.7)

where the first term is the stage i + 1 VFA and the second term is the undiscounted
stage i CFA induced by the stage i + 1 VFA. Analogous to the VFA-based lower bound

estimation, the expectation E
[
V̂i+1(xi+1, Fi+1)|Fi

]
in (3.7) is replaced by its sample average

approximation.

A CFA penalty analogous to (3.7) is typically obtained by replacing the first and second
terms in (3.7) by the stage i + 1 VFA H(i+1,xi+1,Fi+1)Ĉi+1, which is induced by the CFA

Ĉi+1, and the undiscounted stage i CFA Ĉi(xi+1, Fi)/δ, respectively. This dual penalty is

H(i+1,xi+1,Fi+1)Ĉi+1 − Ĉi(xi+1, Fi)/δ. (3.8)

When using the penalties (3.8), it holds that

E
[
H(i+1,xi+1,Fi+1)Ĉi+1|Fi

]
− Ĉi(xi+1, Fi)/δ ≥

E[Ĉi+1(xi+1, Fi+1)|Fi]− Ĉi(xi+1, Fi)/δ, (3.9)

where the inequality is obtained by assuming ri+1(0, Fi+1) = 0, ∀Fi+1 (this assumption is
satisfied for the applications discussed in §3.2.2). In general, the right hand side of (3.9)
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can be strictly positive, which implies that the dual penalties (3.8) can be infeasible, that
is, they can lead to invalid dual upper bounds on the option value.

In contrast, feasible dual penalties can be defined by replacing V̂i+1(xi+1, Fi+1) in both
the first and second terms of (3.7) by the induced VFA:

H(i+1,xi+1,Fi+1)Ĉi+1 − E
[
H(i+1,xi+1,Fi+1)Ĉi+1|Fi

]
. (3.10)

The expectation E
[
H(i+1,xi+1,Fi+1)Ĉi+1|Fi

]
in (3.10) cannot be computed exactly because

of the presence of a maximization in the operator H(i+1,xi+1,Fi+1) inside this expectation.
It is standard to replace this expectation by its sample average approximation, an approx-
imation that requires additional inner simulation and can be burdensome (Andersen and
Broadie, 2004, Haugh and Kogan, 2007).

Consider the same set of W term structure sample paths {Fw
i , ∀(i, w)} employed for

greedy lower bound estimation. Once dual feasible penalties are specified, a point estimate
Uw

0 (x0) of a dual upper bound on the option value V0(x0, F0) can be obtained by solving
the following deterministic dynamic program defined on the w-th term structure sample
path:

Uw
i (xi) = max

a
ri(a, F

w
i )− pi(xi − a, Fw

i+1, Fi
w) + δUw

i+1(xi − a),

∀(i, xi), with boundary conditions Uw
N(xN) := 0, ∀xN . A dual upper bound estimate on

the sought option value is the average of the point estimates Uw
0 (x0), ∀w.

3.4 Standard LSM Method and Variant

In §3.4.1 we discuss an ideal template for computing a CFA. In §§3.4.2-3.4.3 we describe
LSMC and one of its variants, LSMH.

We define a CFA as a linear combination of a number BC
i of basis functions. These types

of functions are commonly used in the ADP literature (e.g., see §6.1.1 in Bertsekas 2007
and page 326 in Powell 2011). Let ψi,b denote the b-th CFA basis function in stage i and θi,b
its associated weight. For each stage i−(N−1), we define the vector of CFA basis functions
Ψi := (ψi,1, . . . , ψi,BCi ) and the vector of basis function weights θi := (θi,1, . . . , θi,BCi ). We
define a CFA as

(Ψiθi)(xi+1, Fi) :=
∑
b

ψi,b(xi+1, Fi)θi,b. (3.11)

Thus, the problem of determining the stage i CFA reduces to computing the vector of
weights θi.

3.4.1 Ideal Template

Template I (I denotes ideal) describes the steps of an ideal LSM procedure for computing
the weights of a CFA. The inputs to this procedure are the number of sample paths and
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Template I: Ideal LSM procedure for computing a CFA

Inputs: Number of sample paths P and set of basis function vectors {Ψi,∀i−(N−1)}.

Initialization: Generate the set of P term structure sample paths {F p
i , ∀(i, p)};

θ̄N−1 := 0.

For each i = N − 2 to 0 do:

(i) For each (xi+1, p) do: Compute the stage i CFA estimate

ci(xi+1, p) := δE
[
H(i+1,xi+1,Fi+1)(Ψi+1θ̄i+1)|F p

i

]
.

(ii) Perform a 2-norm regression on the CFA estimates in set {ci(xi+1, p),∀(xi+1, p)} to
determine the weights θ̄i.

the basis function sets at each stage. Template I begins by generating P term structure
regression sample paths {F p

i ,∀(i, p)} (p ∈ {1, . . . , P}) and initializing the stage N − 1
weight vector θ̄N−1 to zero. Then, at each stage i, starting from stage N − 2 and moving
backwards to stage 0, this procedure performs the following steps: In Step (i), it computes
estimates ci(xi+1, p) of the stage i CFA obtained by replacing the stage i+ 1 continuation
function Ci+1 in the SDP (3.6) with the known stage i+ 1 CFA (Ψi+1θ̄i+1); in Step (ii), it
performs a 2-norm regression on these estimates to determine the stage i CFA weights.

Template I is ideal because in general the expectation δE[H(i+1,xi+1,Fi+1)(Ψi+1θ̄i+1)|F p
i ]

in Step (i) cannot be computed exactly, due to the second curse of dimensionality. Ap-
proximations of this expectation are thus required to make the template practical.

Algorithm 1: LSMC

Inputs: Number of sample paths P and set of basis function vectors {Ψi,∀i−(N−1)}.

Initialization: Generate the set of P term structure sample paths {F p
i , ∀(i, p)};

θ̄N−1 := 0.

For each i = N − 2 to 0 do:

(i) For each (xi+1, p) do: Compute the stage i CFA estimate

ĉi(xi+1, p) := δH(i+1,xi+1,F
p
i+1)(Ψi+1θ̄i+1).

(ii) Perform a 2-norm regression on the CFA estimates in set {ĉi(xi+1, p),∀(xi+1, p)} to
determine the weights θ̄i.
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3.4.2 LSMC

The LSMC procedure proposed by Longstaff and Schwartz (2001) and Tsitsiklis and
Van Roy (2001) computes a CFA by approximating the expectation E[H(i+1,xi+1,Fi+1)(Ψi+1θ̄i+1)|F p

i ]
in Step (i) of Template I using a sample average approximation based only on the p-th
sample path:

E
[
H(i+1,xi+1,Fi+1)(Ψi+1θ̄i+1)|F p

i

]
≈ H(i+1,xi+1,F

p
i+1)(Ψi+1θ̄i+1).

Using this approximation, which is based on the already available p-th sample path, allows
LSMC to avoid inner simulations in Step (i). However, a drawback of this approximation
is its high variance. We summarize LSMC in Algorithm 1, which differs from Template I
only in the definition of the CFA estimates in Step (i).

As discussed in §3.3, estimating a greedy lower bound using the LSMC CFA is easy
but estimating a dual upper bound using this CFA is challenging.

Algorithm 2: LSMH

Inputs: Number of sample paths P and sets of basis function vectors {Ψi, ∀i−(N−1)}
and {Φi,∀i−(0)}.

Initialization: Generate the set of P term structure sample paths {F p
i , ∀(i, p)};

θ̄N−1 := 0, and γ̄N := 0.

For each i = N − 2 to 0 do:

(i) For each (xi+1, p) do: Compute the stage i CFA estimate

ĉi(xi+1, p) := δH(i+1,xi+1,F
p
i+1)(Ψi+1θ̄i+1).

(ii) Perform a 2-norm regression on the CFA estimates in set {ĉi(xi+1, p),∀(xi+1, p)} to
determine the weights θ̄i.

(iii) Perform a 2-norm regression on the VFA estimates in set
{(1/δ)ĉi(xi+1, p), ∀(xi+1, p)} to determine the weights γ̄i+1.

3.4.3 LSMH

LSMH is a variant of LSMC proposed by Gyurko et al. (2011) and Desai et al. (2012b)
that overcomes the LSMC computational burden of estimating dual upper bounds. LSMC
does so by using the LSMC CFA to compute a VFA. Analogous to our CFA definition, a
VFA is a linear combination of BV

i basis functions. Let φi,b be the b-th VFA basis function
in stage i and γi,b the weight associated with this basis function. Let Φi := (φi,1, . . . , φi,BVi )
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and βi := (βi,1, . . . , βi,BVi ). The VFA is

(Φiγi)(xi, Fi) :=
∑
b

φi,b(xi, Fi)γi,b. (3.12)

Algorithm 2 outlines the LSMH steps. Comparing Algorithm 2 with Algorithm 1 shows
that the only differences between LSMH and LSMC are the additional LSMH input set
of VFA basis function vectors and the regression Step (iii) in Algorithm 2 that estimates
a stage i + 1 VFA from the stage i CFA of LSMC. This VFA estimation is based on the
stage i+1 VFA estimates induced by the stage i+1 LSMC CFA, that is, (1/δ)ĉi(xi+1, p) ≡
H(i+1,xi+1,F

p
i+1)(Ψi+1θ̄i+1).

Dual upper bounds and greedy lower bounds can be estimated using the LSMH VFA as
discussed in §3.3. Gyurko et al. (2011) and Desai et al. (2012b) employ the LSMH VFA to
estimate dual upper bounds. Gyurko et al. (2011) also estimate greedy lower bounds using
the LSMH VFA. In contrast, Desai et al. (2012b) estimate greedy lower bounds using the
LSMC CFA.

3.5 LSM Method for Term Structure Models

In §3.5.1 we describe term structure models. In §3.5.2 we introduce LSMV, which exploits
a key property of these models.

3.5.1 Term Structure Models

Term structure models are widespread in commodity, energy, and fixed income applica-
tions both in practice and in the academic literature (Ho and Lee, 1986, Cortazar and
Schwartz, 1994, Clewlow and Strickland, 2000, Maragos, 2002, Eydeland and Wolyniec,
2003, Veronesi, 2010). In these models, the term structure evolution is governed by the
risk-neutral dynamics of a multidimensional diffusion model. In this continuous time set-
ting, we denote by F (t, Tj) the value of the element of the term structure at time t ∈ [T0, Tj]
with maturity at time Tj, ∀j ∈ I. Hence, if t = Ti, i ∈ I, and j > i, then F (t, Tj) ≡ Fi,j.
Given a fixed number K ∈ {1, . . . , N − 1} of stochastic factors, the evolution of F (t, Tj),
∀j ∈ I \ {0} and t ∈ (0, Tj] is governed by the following stochastic differential equations:

dF (t, Tj)

F (t, Tj)
=

K∑
k=1

σj,k(t)dWk(t), ∀j ∈ I \ {0}, t ∈ (0, Tj], (3.13)

dWk(t)dWk′(t) = 0, ∀k, k′ ∈ {1, . . . , K}, k 6= k′, (3.14)

where σj,k(t) is the time t loading coefficient on the Brownian motion Wk for the term
structure element F (t, Tj).

The model (3.13)-(3.14) is quite general. It captures seasonality in the variances and
covariances of changes in the term structure elements because the loading factors are time
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dependent, and seasonality in the term structure levels from the seasonality in the initial
(time T0) term structure.

Under model (3.13)-(3.14), it is possible to compute (sometimes approximate) con-
ditional expectations of certain classes of functions of future term structure elements as
essentially closed form functions of current term structure elements, which is due to the
joint lognormality of the relevant distributions. This is a key property exploited by LSMV.
We provide three examples of such classes of functions below (see Haug 2006 for a catalog):

1. All polynomials of term structure elements. For example, when i′ > i, we can use the
property E[Fi′,j|Fi,j] = Fi,j to compute expectations of functions that are linear in the

term structure elements, and the property E[F 2
i′,j|Fi,j] = F 2

i,j exp(
∑

k∈K
∫ Ti′
Ti

σ2
j,k(t)dt)

to compute expectations of quadratic functions of such elements (these properties
are easy to verify).

2. Prices of call and put options on the term structure elements: E[(Fi′,j − K)+|Fi,j]
and E[(K − Fi′,j)+|Fi,j], where i′ > i, and K ∈ R is the given strike price (see §1.1.3
of Haug 2006 for explicit formulas for these prices).

3. Prices of spread options on term structure elements: E[(λ1Fi′,l−λ2Fi′,j−K)+|Fi,j, Fi,l],
where l > j ≥ i′ > i and λ1 and λ2 are given constants. Since a closed form expression
for this price is not available under model (3.13)-(3.14) when K 6= 0, one can instead
use the near-optimal and essentially closed form lower bound on this price developed
by Bjerksund and Stensland (2011) (see Margrabe 1978 for the case K = 0).

3.5.2 LSMV

LSMV computes a VFA by approximating the value function SDP (3.3) using basis func-
tions. We define the stage i LSMV VFA analogously to (3.12) but we denote its basis
function weights by βi; that is, the stage i LSMV VFA is Φiβi. Approximating the SDP
(3.3) using these basis functions requires computing expectations of next stage VFAs, that
is, the terms E[(Φi+1βi+1)(·, Fi+1)|Fi] in stage i. The main idea behind LSMV is to choose
basis functions in the context of the term structure model (3.13)-(3.14) to avoid approxi-
mating these expectations. We do this in two steps:

1. We choose basis functions φi,b(xi, Fi) that are separable in the endogenous (EN) and
exogenous (EX) components of the state, that is,

φi,b(xi, Fi) ≡ φENi,b (xi)φ
EX
i,b (Fi) (3.15)

for given functions φENi,b (xi) and φEXi,b (Fi). The expectation E[(Φi+1βi+1)(xi+1, Fi+1)|Fi]
is then ∑

b

φENi+1,b(xi+1)E[φEXi+1,b(Fi+1)|Fi]βi+1,b.

Since in this expression φENi+1,b(xi+1) is outside the expectation, it can be any function
of xi+1 that can be evaluated.
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2. We choose the function of the exogenous state component φEXi+1,b(Fi+1) such that
each expectation E[φEXi+1,b(Fi+1)|Fi] is a function of the term structure Fi that can be
computed in essentially closed form by exploiting the property of the term structure
model (3.13)-(3.14) discussed at the end of §3.5.1, that is,

E[φEXi+1,b(Fi+1)|Fi] = hi,b(Fi) (3.16)

for some known function hi,b(Fi).

The three choices of basis functions discussed at the end of §3.5.1 can thus be used as basis
functions of the exogenous part of the state that satisfy (3.16). Look-up tables can be used
as basis functions of the finite endogenous part of the state. These choices of basis functions
are commonly used in the literature to instantiate a CFA when using LSMC (Longstaff
and Schwartz, 2001, Boogert and De Jong, 2008, Cortazar et al., 2008). In contrast, we
also use them to instantiate a VFA in our numerical study in §3.7.

Algorithm 3: LSMV

Inputs: Number of sample paths P and set of basis function vectors {Φi,∀i−(0)}
that satisfy (3.15)-(3.16).

Initialization: Generate the set of P term structure sample paths {F p
i , ∀(i, p)};

β̄N := 0.

For each i = N − 1 to 1 do:

(i) For each (xi, p) do: Compute the stage i VFA estimate

vi(xi, p) := L(i,xi,F
p
i )(Φi+1β̄i+1).

(ii) Perform a 2-norm regression on the VFA estimates in set {vi(xi, p),∀(xi, p)} to
determine the weights β̄i.

The LSMV steps are summarized in Algorithm 3. The inputs to LSMV are the number
of sample paths and VFA basis function sets that satisfy (3.15)-(3.16). LSMV starts by
generating the set of P term structure sample paths and initializing the stage N weight
vector β̄N to zero. Then, at each stage i, starting from stage i = N − 1 and moving
backward to stage i = 1, it computes in Step (i) estimates vi(xi, p) of the stage i VFA by
replacing the stage i+ 1 value function Vi+1 in L(i,xi,F

p
i )Vi+1 – the right hand side of (3.3) –

by the known stage i+ 1 VFA Φi+1β̄i+1. In Step (ii), LSMV performs a 2-norm regression
on these estimates to determine the stage i regression weights β̄i.

The operator L(i,xi,F
p
i )(Φi+1β̄i+1) used to compute the VFA estimates in Step (i) of

LSMV includes the expectation E[(Φi+1βi+1)(·, Fi+1)|Fi]. It is our choice of basis functions
that satisfy (3.15)-(3.16) and our use of the term structure model (3.13)-(3.14) that allows
us to compute this expectation. Moreover, we can exactly compute similar expectations
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that arise when estimating greedy lower bounds and dual upper bounds using the LSMV
VFA (see §3.3). Thus, LSMV eliminates the second curse of dimensionality in §3.3 without
resorting to sample average approximations, as done by LSMC and LSMH.

3.6 Error Bounding Analysis

In this section, we analyze LSMC, LSMH, and LSMV by deriving and comparing worst
case (that is,∞-norm) bounds on the errors incurred when using these methods for a fixed
number of both regression and evaluation samples. The premise behind our analysis is
that a smaller worst case bound on the error associated with a given method compared
to the error associated with another method provides some theoretical support for the
claim that the former method should likely outperform the latter method. In §3.6.1 we
discuss the assumptions underlying the analysis performed in §§3.6.2-3.6.4. In §3.6.2 we
establish a preliminary result that we use in §3.6.3 and §3.6.4 to investigate the greedy
lower bounds and the dual upper bounds, respectively, estimated by LSMC, LSMH, and
LSMV. We summarize the theoretical predictions regarding the likely relative performance
of each method in §3.6.5.

3.6.1 Assumptions

The SDPs (3.3) and (3.6) have finite action spaces but partially continuous state spaces.
To simplify our analysis, we focus on sampled versions of these SDPs with finite state and
action spaces so that all norms used in our analysis are defined over finite domains. This
finiteness assumption could possibly induce some discretization error but this error will be
the same across all methods and thus will not affect statements regarding their relative
performance. Our sampled versions of SDPs (3.3) and (3.6) are formulated using the same
regression sample paths of the term structure Fi used by LSMC, LSMH, and LSMV, that is,
{F p

i ,∀(xi, p)}. Throughout this section we also refer to these sample paths as formulation
sample paths. Denote by Es expectation with respect to a probability distribution on
these sampled term structures (the superscript s denotes sampled). Let Lsi be the stage i
operator defined by (3.2) with E replaced by Es. The sampled finite state value function
SDP is

V s
i (xi, F

p
i ) = Ls(i,xi,F pi )V

s
i+1, (3.17)

∀(i, xi, p), with boundary conditions V s
N(xN , FN) := 0,∀xN , where V s

i (xi, F
p
i ) is the optimal

value function in stage i and state (xi, F
p
i ). The sampled finite state continuation function

SDP is
Cs
i (xi+1, F

p
i ) = δEs

[
H(i+1,xi+1,Fi+1)C

s
i+1|F

p
i

]
, (3.18)

∀(i, xi+1, p), with boundary conditions Cs
N−1(xN , F

p
N−1) := 0, ∀(xN , p), where Cs

i (xi+1, F
p
i )

is the optimal continuation function in stage i and state (xi+1, F
p
i ).

We analyze versions of LSMV, LSMC, and LSMH to approximately solve the SDPs
(3.17) and (3.18). For notational simplicity, we continue to refer to their respective
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VFA/CFA regression weights by β̄i, γ̄i, and θ̄i, that is, we do not superscript these quan-
tities with s. We also do not superscript the estimates vi, ci, and ĉi and continue to refer
to the considered LSM versions as LSMV, LSMC, and LSMH.

These LSM methods solve sequences of 2-norm regression problems to compute the
weights corresponding to their basis function approximations. For ease of analysis, we
assume that each of these regression problems has a unique optimal solution. For example,
at stage i, consider the 2-norm regression problem solved in Step (ii) of LSMV to determine
the weights β̄i:

min
βi
‖(Φiβi)(·)− vi(·)‖2 , (3.19)

where ‖g(·)‖2 :=
(∑

d∈Dg(g(d))2
)1/2

is the 2-norm of a function g with finite domain Dg.
Define Y as the regression matrix with P · |Xi| rows and BV

i columns and whose element
in row (xi, p) and column b is φi,b(xi, F

p
i ). We assume that Y has full column rank. Under

this assumption, the unique optimal solution to (3.19) is β̄i = (Y TY )−1Y Tvi. We can
thus define the projection operator associated with the 2-norm regression problem (3.19)
as ΠΦ

2 := Φi(Y
TY )−1Y T , where we suppress the dependence of ΠΦ

2 on stage i and Y for
notational simplicity. This operator allows us to succinctly represent a 2-norm regression
on vi involving the VFA basis functions as ΠΦ

2 vi = Φiβ̄i. We make analogous assumptions
for the 2-norm regression problems involving the vector of CFA basis functions Ψi and
denote the associated projection operators by ΠΨ

2 .

3.6.2 VFA/CFA Estimation

Denote the ∞-norm of a generic function g with domain Dg by ‖g(·)‖∞ := maxd∈Dg g(d).
We define the error ẽCi incurred when approximating Cs

i with the LSMC stage i CFA and
the errors ẽVi and ẽHi incurred when approximating V s

i with the LSMV and LSMH stage i
VFAs, respectively, as

ẽCi :=
∥∥(Ψiθ̄i)(·)− Cs

i (·)
∥∥
∞ ,

ẽHi := ‖(Φiγ̄i)(·)− V s
i (·)‖∞ ,

ẽVi :=
∥∥(Φiβ̄i)(·)− V s

i (·)
∥∥
∞ .

We bound these errors in terms of the following errors:

e∗i :=
∥∥ΠΦ

2 V
s
i (·)− V s

i (·)
∥∥
∞ , (3.20)

e∗∗i :=
∥∥ΠΨ

2 C
s
i (·)− Cs

i (·)
∥∥
∞ , (3.21)

ēCi :=
∥∥ΠΨ

2 ĉi(·)− Π2ci(·)
∥∥
∞ , (3.22)

ēHi :=
∥∥ΠΦ

2 ĉi−1(·)/δ − ĉi−1(·)/δ
∥∥
∞ . (3.23)

The terms e∗i and e∗∗i are regression errors incurred when using the basis functions φi and
ψi to approximate the value function V s

i and the continuation function Cs
i , respectively.

The term ēCi is the error incurred by LSMC when estimating a CFA by regressing on the
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estimates ĉi(xi+1, p) of the stage i continuation function δEs[H(i+1,xi+1,Fi+1)(Ψi+1θ̄i+1)|F p
i ],

instead of regressing on the evaluations ci(xi, p) of this continuation function. The term ēHi
is the regression error incurred in Step (iii) of LSMH when computing a VFA by regressing
on the value function estimates ĉi−1(xi, p)/δ of the LSMC CFA.

Consider LSMV, which approximates the SDP (3.17). LSMV differs from (3.17) at stage
i in two ways: (a) in Step (i) LSMV computes the estimates vi(xi, p) by using the stage
i + 1 value function approximation Φi+1β̄i+1 as an argument to the operator Ls

(i,xi,F
p
i )

(·),
whereas the SDP (3.17) computes V s

i using V s
i+1 as an argument to the same operator; and

(b) in Step (ii) LSMV regresses over these estimates to compute the stage i VFA, whereas
the SDP (3.17) is not based on regression. These differences introduce separate errors in
the LSMV VFA, that is, they contribute to ẽVi differently. However, both these errors, and
hence ẽVi , can be bounded by sums of discounted regression errors (3.20), as shown in Part
(a) of Lemma 1.

The CFA estimated by LSMC includes two analogous errors, that is, these errors con-
tribute to ẽCi . These errors can be bounded by sums of discounted regression errors (3.21).
In addition, LSMC incurs an error to replace the expectation on the right hand side of the
SDP (3.18) with a single sample approximation (see Step (i) of LSMC). This error also
contributes to ẽCi and can be bounded by ēCi . Part (b) of Lemma 1 presents the resulting
bound on ẽCi .

LSMH computes its stage i VFA using a regression on value function estimates obtained
from the stage i LSMC CFA. Thus, the same errors that contribute to ẽCi also contribute
to ẽHi , but this regression adds to ẽHi . This additional regression error can be bounded by
ēHi . Part (c) of Lemma 1 reports the resulting bound on ẽHi .

Lemma 1. It holds that

(a) ẽVi ≤
N−1∑
j=i

δj−ie∗j , ∀(i)−(0),

(b) ẽCi ≤
N−2∑
j=i

δj−i(e∗∗j + ēCj ), ∀(i)−(N−1),

(c) ẽHi ≤ ēHi +
N−2∑
j=i

δj−i(e∗∗j + ēCj ), ∀(i)−(0).

We use Lemma 1 in the proofs of Propositions 8 and 9 in §3.6.3 and §3.6.4, which
establish error bounds related to the dual upper bounds and the greedy lower bounds
estimated by LSMV, LSMC, and LSMH.

3.6.3 Dual Upper Bound Estimation

We denote by usi (xi+1, F
p
i+1, F

p
i ) the dual penalties (3.7) instantiated using the value func-

tion V s
i . Assuming identical formulation and evaluation samples, using these dual penalties
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for upper bound estimation results in a tight upper bound estimate on the option value,
that is, the estimated dual upper bound equals V s

i (x0, F0) (Theorem 2.3 in Brown et al.

2010). Let uβ̄i (xi+1, F
p
i+1, F

p
i ) and uγ̄i (xi+1, F

p
i+1, F

p
i ) denote the dual penalties (3.7) instan-

tiated using the VFAs of LSMV and LSMH, respectively. Further, let uθ̄i (xi+1, F
p
i+1, F

p
i )

be the dual penalties (3.10) instantiated using the LSMC CFA. The worst case errors be-
tween the dual penalties of LSMV, LSMC, and LSMH, respectively, and the optimal dual
penalties are

ẽV,DPi := ‖uβ̄i (·)− usi (·)‖∞, (3.24)

ẽC,DPi := ‖uθ̄i (·)− usi (·)‖∞, (3.25)

ẽH,DPi := ‖uγ̄i (·)− usi (·)‖∞, (3.26)

where the superscript DP indicates dual penalty. Proposition 8 establishes bounds on these
errors. These bounds reflect an error structure analogous to the one bounded in Lemma 1.

Proposition 8. It holds that

(a) ẽV,DPi ≤ 2
N−2∑
j=i

δj−ie∗j+1, ∀(i)−(N−1),

(b) ẽC,DPi ≤ 2
N−3∑
j=i

δj−i(e∗∗j+1 + ēCj+1), ∀i ∈ I \ {N − 1, N − 2},

(c) ẽH,DPi ≤ 2

[
ēHi+1 +

N−3∑
j=i

δj−i(e∗∗j+1 + ēCj+1)

]
, ∀(i)−(N−1).

Under some technical conditions, discussed in Appendix §B.2.1, the bound on ẽV,DPi in
Part (a) of Proposition 8 is smaller than both the bounds on ẽC,DPi and ẽH,DPi in parts (b)
and (c) of this proposition. The bound on ẽC,DPi in Part (b) of Proposition 8 dominates
the bound on ẽH,DPi in Part (c) of this proposition. We thus conclude that (i) the LSMV-
based dual upper bound estimate should likely be better than both the LSMC-based and
LSMH-based dual upper bound estimates and (ii) the dual upper bound estimated by
LSMC should outperform the one estimated by LSMH.

3.6.4 Greedy Lower Bound Estimation

LSMC uses its CFA for greedy lower bound estimation. We can think of both LSMH
and LSMV as estimating greedy lower bounds using the CFAs induced by their respective
VFAs, which we respectively define as

C β̄
i (xi+1, F

p
i ) := δEs

[
(Φi+1β̄i+1)(xi+1, Fi+1)|F p

i

]
, (3.27)

C γ̄
i (xi+1, F

p
i ) := δEs [(Φi+1γ̄i+1)(xi+1, Fi+1)|F p

i ] . (3.28)
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Obviously, assuming identical formulation and evaluation samples, the greedy lower bound
estimated using the continuation function Cs

i is tight, that is, it equals V s
i (x0, F0). To

understand the relative greedy lower bounding performance of LSMV, LSMC, and LSMH,
we derive and compare bounds on the errors between the, possibly induced, CFAs associ-
ated with each of these methods and the continuation function Cs

i . Part (b) of Lemma 1
already provides such an error bound for the LSMC CFA. Proposition 9, based on parts
(a) and (c) of Lemma 1, establishes error bounds on the errors incurred by the LSMV and
LSMH induced CFAs. We define these respective errors as

ẽV,ICi :=
∥∥∥C β̄

i (·)− Cs
i (·)
∥∥∥
∞
, (3.29)

ẽH,ICi :=
∥∥C γ̄

i (·)− Cs
i (·)
∥∥
∞ , (3.30)

where the superscript IC stands for induced continuation function.

Proposition 9. It holds that

(a) ẽV,ICi ≤ δ
N−2∑
j=i

δj−ie∗j+1, ∀(i)−(N−1),

(b) ẽH,ICi ≤ δ

[
ēHi+1 +

N−3∑
j=i

δj−i(e∗∗j+1 + ēCj+1)

]
, ∀(i)−(N−1).

Under some technical conditions discussed in Appendix §B.2.2, we can show that the
bound on ẽV,ICi in Part (a) of Proposition 9 is no worse than both the bound on ẽCi in Part
(b) of Lemma 1 and the bound on ẽH,ICi in Part (b) of Proposition 9. Hence, the greedy
lower bounds estimated by LSMV should likely outperform the ones estimated by both
LSMC and LSMH.

Intuitively, one would expect that the error bound on ẽH,ICi in Part (b) of Proposition
9 should be larger than the error bound on ẽCi in Part (b) of Lemma 1 because the LSMH
VFA is estimated using regression based on the LSMC CFA. However, under some technical
conditions discussed in Appendix §B.2.2 we find that this intuition is wrong. Hence, we
conclude that the greedy lower bound estimated by LSMH should likely outperform the
one estimated by LSMC.

Table 3.1: Summary of our predictions on the relative bounding performance of LSMV,
LSMC, and LSMH (< denotes weakly better than).

Dual Upper Bounds Greedy Lower Bounds

LSMV < LSMC < LSMH LSMV < LSMH < LSMC
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3.6.5 Summary

Table 3.1 summarizes our predictions on the relative bounding performance of LSMV,
LSMC, and LSMH (< means weakly better than). Because our predictions are based on
worst case bounds they need not match the observed numerical performance of these meth-
ods. However, they provide a theoretical perspective on the numerical investigation that we
conduct in §3.7. In addition, our predictions focus on the quality of the bounds estimated
using different LSM methods but ignore their respective computational efforts. Consider-
ing this aspect is important for determining the practical usefulness of an LSM method. In
§3.7, we numerically investigate both the bounding quality and the computational burden
of LSMC, LSMH, and LSMV.

3.7 Computational Results

In this section we benchmark the computational performance of LSMC, LSMH, and LSMV
on crude oil swing option and natural gas storage option instances. The term structure in
these applications is an energy forward curve. In §3.7.1 we discuss a specific term structure
model and its calibration. We describe the crude oil swing option and natural gas storage
option instances in §3.7.2. In §3.7.3 we present the basis functions that we use in §3.7.4 to
investigate the upper and lower bounding performance of LSMC, LSMH, and LSMV.

3.7.1 Price Model and Calibration

We choose each function σm,k(·) in the term structure model (3.13)-(3.14) to be right
continuous and piecewise constant during each interval [Ti, Ti+1) (Blanco et al., 2002, Sec-
omandi et al., 2012). That is, we set σj,k(t) equal to the constant σj,k,i, ∀t ∈ [Ti, Ti+1).
Under this specification, we can equivalently rewrite (3.13)-(3.14) as

F (t′, Tj) = F (t, Tj) exp

[
−1

2
(t′ − t)

K∑
k=1

σ2
j,k,i +

√
t′ − t

K∑
k=1

σj,k,iZk

]
, (3.31)

for all i ∈ I, j ∈ {i + 1, . . . , N − 1}, t ∈ [Ti, Ti+1) and t′ ∈ (Ti, Ti+1] with t′ > t,
and with Z := (Zk, k = 1, . . . , K) a vector of K independent standard normal random
variables. Notice that the prices in (3.31) are correlated in general because they are driven
by common factors. We use (3.31) to generate forward curve sample paths by Monte Carlo
simulation.

We use ten years of NYMEX crude oil and natural gas futures prices, observed from
1997 to 2006, to estimate sample variance-covariance matrices of the daily log futures price
returns for each month for both commodities. We perform a principal component analysis
of all these matrices to estimate the loading coefficients σj,k,i (see Blanco et al. 2002 and
Secomandi et al. 2012 §6.1 for more details). We choose the number of factors K equal
to 7 and 3 for natural gas and crude oil, respectively, as these are the smallest numbers
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of factors explaining more than 99% of the total observed variance in each of our monthly
data sets.

3.7.2 Instances

We create four 24-stage price instances for both crude oil and natural gas by defining the
time zero forward curve, F0, as the forward curve for these energy sources observed on the
first trading date of April, July, October, and January 2006, respectively, because we take
these months as representative of Spring, Summer, Fall, and Winter. Following Lai et al.
(2010), who use the same convention, we use risk free interest rates equal to 4.74%, 5.05%,
5.01%, and 4.87% for the Spring, Summer, Fall, and Winter price instances, respectively.
We refine these price instances with application specific information to create our crude
oil swing option and natural gas storage option instances.

We create our swing option instances by adding to each crude oil price instance the
number of swing rights n, which we vary between 1 and 10 in increments of 1, and setting
the base load capacity qi equal to 1 and the swing capacity Qi equal to 0.2 for each of
the 24 stages (we do not consider different values for Qi as this parameter simply scales
the reward function and, hence, the value of the swing option). Each strike price Ki is set
equal to the price at time 0 of the futures with maturity at time Ti, F0,i. We thus obtain
forty swing option instances.

Our storage option instances are based on our natural gas price instances and follow
Lai et al. (2010) for the specification of their operational parameters. In particular, we add
to each such price instance a normalized storage capacity x̄ equal to 1, and high, moderate,
and low injection and withdrawal capacity pairs as defined in Lai et al. (2010). The initial
inventory x0 is set to 0. This process results in twelve natural gas storage instances.

3.7.3 Basis Functions

We define VFAs as described in §3.5.2 with φENi,b (xi) defined as look-up tables. This mod-
eling choice corresponds to specifying a different set of basis functions for each value of
the endogenous state variable in a given stage. We define the CFA basis function sets
analogously. Therefore, the VFA and CFA basis function sets can be represented as Φi,xi ,
∀(i, xi)−(0), and Ψi,xi+1

, ∀(i, xi+1)−(N−1), respectively.

We use three sets of VFA basis functions for our swing option instances. Table 3.2
reports the functions included in sets 1 and 2. Set 1 is standard (Longstaff and Schwartz,
2001, Boogert and De Jong, 2008, Cortazar et al., 2008). Set 2 is based on the observation
that the reward function and the optimal value function when the number of swing rights
equals the number of exercise dates (n = N) can be modeled using pairs of call and put
option prices. Set 3 is the union of sets 1 and 2. We use three analogous specifications for
the sets of CFA basis functions.

For our storage option instances, we also use three VFA and CFA basis function sets.
Set 1 is identical to the swing option set 1. Defining FW

j,j+1 := αWFj,j+1 − ςW and F I
j,j :=
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Table 3.2: Basis functions in sets 1 and 2 in stage i and state (xi, Fi).

Set 1
1
Fi,j, ∀j ∈ {i, . . . , N − 1}
F 2
i,j,∀j ∈ {i, . . . , N − 1}
Fi,jFi,m,∀m, j ∈ {i, . . . ,min{i+ 4, N − 1}}, m > j

Set 2
1
E[(Fj,j − F0,j)

+|Fi,j], ∀j ∈ {i, . . . , N − 1}
E[(F0,j − Fj,j)+|Fi,j], ∀j ∈ {i, . . . , N − 1}

αIFj,j + ςI , set 2 includes the functions 1, Fi,i, and E[(δFW
j,j+1 − F I

j,j)
+|Fi,j, Fi,j+1], ∀j ∈

{i, . . . , N − 2}. This choice is based on the finding by Secomandi (2014) that the optimal
value function of SDP (3.3) applied to storage with unitary injection and withdrawal loss
coefficients, zero injection and withdrawal marginal costs, and injection and withdrawal
capacities equal to the space (αI = αW = 1, ςI = ςW = 0, and |a| = a = x) is of this form.
Set 3 is the union of sets 1 and 2. We use three analogous CFA basis function sets.

3.7.4 Results

For a given set of basis functions, we estimate greedy lower bounds and dual upper bounds
using W = 100,000 evaluation sample paths as this choice ensures that the standard
errors of all the estimates are less than 0.5% of the tightest upper bound estimate. Our
sample average approximations of expectations are based on 100 inner sample paths when
estimating bounds using the CFA/VFA of LSMC and LSMH (see §3.3 for details). As
Gyurko et al. (2011), when using LSMH we estimate greedy lower bounds based on the
VFA computed by this method.

When LSMV, LSMC, and LSMH are combined with the three definitions of basis
function sets presented in §3.7.3, we obtain nine versions of these methods, labeled as
LSMV1, LSMV2, and LSMV3; LSMC1, LSMC2, and LSMC3; and LSMH1, LSMH2, and
LSMH3. Irrespective of the LSM approach, sets 1 and 3 result in the best converged (dual
upper and greedy lower) bound estimates on the storage option and swing option instances,
respectively (convergence means that the bound estimates do not change as the number
of regression samples, P , used to compute VFAs and CFAs increases). The converged
estimates for sets 1 and 3 are essentially the same on the storage option instances, but
using set 3 is computationally more expensive. Thus, we report the LSMV3, LSMC3, and
LSMH3 results on the swing option instances and the LSMV1, LSMC1, and LSMH1 results
on the storage option instances.

Based on our error bound analysis conducted in §3.6, for fixed values of the numbers of
regression and evaluation samples (P and W ) we expect that (i) LSMV should outperform
LSMC and LSMH in both dual upper and greedy lower bounding performance; (ii) the
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LSMC dual upper bound estimates should be better than the ones of LSMH; and (iii) the
LSMH greedy lower bound estimates should be of higher quality than the ones of LSMC.
We now numerically assess the quality differences between the bounds estimated by LSMV,
LSMC, and LSMH and compare our findings with these predictions. In addition, we assess
the changes in the quality of the bounds estimated by these LSM methods as functions of
the number of regression samples, P , keeping the number of evaluation samples, W , fixed.

Figures 3.1 and 3.2 display the dual upper bounds and greedy lower bounds estimated by
LSMV3, LSMC3, and LSMH3 on the swing option instances with three exercise rights (n =
3) as percentages of the LSMV3 dual upper bound estimates. The relative performance of
these methods on the instances with more exercise rights are similar and are not reported
here for brevity. Figures 3.3 and 3.4 display the dual upper bounds and greedy lower
bounds estimated by LSMV1, LSMC1, and LSMH1 on the January and April storage
option instances as percentages of the LSMV1 dual upper bound estimates. The results for
the July and October instances are similar and, we do not report them here for conciseness.

These numerical findings are for the most part consistent with our theoretical predic-
tions, except for the relative upper bounding performance of LSMC and LSMH on some
instances. (In Appendix B.2.3, we verify numerically for the case P = 1,000 that the condi-
tions that form the premises of these predictions appear to be verified.) These discrepancies
may be due to the nature of our analysis, which is based on comparing bounds on worst
case errors. Moreover, the differences between the bounds estimated by the considered
LSMV and LSMH versions are small, being at most 2% for the dual upper bounds and
3.5% for the greedy lower bounds. The analogous differences between the bounds estimated
by LSMV and LSMC are more pronounced, being at most 2.5% for the dual upper bounds
and 10.5% for the greedy lower bounds. For sufficiently large values of P , the accuracy
and precision of the bounds estimated by LSMV, LSMC, and LSMH are comparable and
these bounds are near optimal.

More interesting is the insensitivity of the accuracy and precision of the LSMV esti-
mated upper and lower bounds to changes in the number of regression samples, that is,
these bounds converge when P is at most 1,000. This is not the case for the other methods.
This observed behavior suggests that the sample path approximation errors ēCi that are
present in the error bounds for LSMC and LSMH are the dominant errors that determine
the quality of the bounds that these methods estimate (see (3.22) and Propositions 8 and
9), because, intuitively, we expect that these errors would decrease as more regression
samples are used. In contrast, such an error is not present in the LSMV error bounds.

Figure 3.5 displays the CPU times required to estimate a VFA/CFA for different values
of the number of regression samples using each LSM method on the swing option instances
with one and ten exercise rights as they are the instances that require the least and most
computational effort, respectively. For analogous reasons, Figure 3.6 displays the compu-
tational effort to estimate a VFA/CFA when varying the number of regression samples
using each LSM method on the storage option instances with high and low capacities.
These times are essentially the same for LSMV and LSMC while they are slightly larger
for LSMH. In particular, LSMV requires less than one CPU second to estimate a VFA
that delivers accurate and precise bound estimates, that is, it requires no more than 1,000
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Figure 3.1: Convergence of the dual upper bounds estimated by LSMV3, LSMC3, and
LSMH3 as percentages of the LSMV3 dual upper bound estimates on the swing option
instances with three exercise rights (n = 3) and one hundred thousand evaluation samples
(W = 100,000).
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Figure 3.2: Convergence of the greedy lower bounds estimated by LSMV3, LSMC3, and
LSMH3 as percentages of the LSMV3 dual upper bound estimates on the swing option
instances with three exercise rights (n = 3) and one hundred thousand evaluation samples
(W = 100,000).
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Figure 3.3: Convergence of the dual upper bounds estimated by LSMV1, LSMC1, and
LSMH1 as percentages of the LSMV1 dual upper bound estimates on the January and April
storage option instances with one hundred thousand evaluation samples (W = 100,000).
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Figure 3.4: Convergence of the greedy lower bounds estimated by LSMV1, LSMC1, and
LSMH1 as percentages of the LSMV1 dual upper bound estimates on the January and April
storage option instances with one hundred thousand evaluation samples (W = 100,000).
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Figure 3.5: Average CPU seconds required for computing a VFA/CFA on the swing option
instances with one (n = 1) and ten (n = 10) exercise rights.

regression samples, while the remaining methods may require up to 20 additional seconds
to achieve the same bounding performance.
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Figure 3.6: Average CPU seconds required for computing a VFA/CFA on the storage
option instances with high and low capacity.

Table 3.3 reports the average CPU time incurred by the three considered LSM methods
to estimate greedy lower bounds and dual upper bounds on our swing option and storage
option instances (this table excludes the CFA/VFA estimation times). Our implementation
of LSMH computes once the same inner sample path averages that need to be evaluated
when estimating lower and upper bounds. We attribute this CPU time to the upper bound
estimation. We find that the computational effort exerted by LSMV, LSMC, and LSMH to
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estimate greedy lower bounds is low and essentially equal. In particular, the resulting CPU
times vary between 2-5 and 13-17 seconds on the swing option and storage option instances,
respectively. The differences in the CPU times taken by these methods to estimate upper
bounds are instead substantial. LSMV estimates these bounds in a much faster fashion
than both LSMC and LSMH: The CPU time required by LSMV for dual upper bound
estimation is roughly 20-100 times smaller than the one of LSMH and 120-3200 times
smaller than the one of LSMC. Thus, the absence of sample average approximations that
distinguishes LSMV from both LSMC and LSMH makes LSMV between 1 and 3 orders of
magnitude faster than the two competing methods for dual upper bound estimation.

Table 3.3: Average CPU seconds needed for estimating lower and upper bounds on a
subset of the swing option instances and on the storage option instances using one hundred
thousand evaluation samples (W = 100,000).

Swing Option
Lower Bound Upper Bound

n LSMV LSMC LSMH LSMV LSMC LSMH
1 15.07 13.49 14.01 14.06 1,699.40 1,568.07
10 16.40 14.50 15.12 16.82 2,424.97 1,701.56

Storage Option
Lower Bound Upper Bound

Capacity LSMV LSMC LSMH LSMV LSMC LSMH
High 3.53 2.29 2.50 13.62 20,149.28 601.55

Moderate 4.17 3.31 3.46 22.35 56,550.55 646.03
Low 4.65 4.14 4.32 27.63 87,828.51 659.36

In summary, our numerical results suggest that (i) the three LSM methods are all
equivalent in terms of the quality of the estimated lower and upper bounds provided that
a sufficient number of regression samples are used to estimate the LSMC CFA and the
LSMH VFA, and (ii) the resulting computational savings that LSMV obtains relative to
both LSMC and LSMH during CFA/VFA estimation are overshadowed by the analogous
savings that arise when estimating dual upper bounds, while there are no substantial
differences in the computational requirements of these three methods when estimating
greedy lower bounds.

3.8 Conclusions

We develop an LSM method for valuing multiple exercise options in conjunction with term
structure models, that are widespread among practitioners and academics. We benchmark
our LSM method against the standard LSM method and a state-of-the-art variant thereof
on realistic energy swing and storage option instances. We find that all these LSM methods
estimate near optimal, accurate, and precise greedy lower and dual upper bounds. However,
the existing approaches require a significantly larger number of regression samples than
our LSM approach to achieve such bounding performance. The computational savings
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that result from this improvement are dominated by the analogous savings obtained by
our method when estimating dual upper bounds. In particular, our LSM approach is
between one and three orders of magnitude faster than the existing LSM approaches when
estimating dual upper bounds. The computational effort of all the considered LSM methods
are comparable for greedy lower bound estimation. Thus, we provide numerical support
for the use of our LSM method for valuing multiple exercise options in conjunction with
term structure models. We also conduct a worst case error bounding analysis that provides
a theoretical perspective on the relative quality of the bounds estimated by these methods
on our instances.
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Chapter 4

Joint Merchant Management of
Natural Gas Storage and Transport
Assets

(Joint work with Nicola Secomandi)

4.1 Introduction

Natural gas is an important commodity. It served more than one quarter of the 2012
energy consumption in the United States (EIA, 2013). The availability and importance
of natural gas is growing with the shale boom (Smith, 2013). It is projected that natural
gas consumption in North America will increase by 18% between 2008 and 2030 and be
accompanied by a need for 130-210 billion US dollars worth of midstream natural gas
infrastructure (INGAA, 2009). Eighty percent of this projected infrastructure cost is for
building new natural gas pipeline systems (INGAA, 2009).

Pipeline systems give merchants the ability to trade natural gas across time and ge-
ographical markets. That is, these systems embed two types of assets that merchants
manage as real options: storage and transport. Storage assets allow merchants to trade
natural gas over time by buying natural gas and injecting it into a storage facility and
withdrawing previously injected natural gas from the storage facility and selling it. Trans-
port assets allow merchants to trade natural gas across different geographical locations by
contemporaneously transporting natural gas along pipelines connecting multiple geograph-
ical markets. Merchants acquire storage and transport assets by purchasing from pipeline
companies contracts on their capacity.

The extant literature has studied the merchant management of natural gas storage and
transport assets in isolation. Charnes et al. (1966) study a fast commodity storage asset
that can be completely filled up or emptied in a single period. That is, the asset has no
constraining injection or withdrawal capacities. Secomandi (2010) studies a slow commod-
ity storage asset that requires multiple periods to be filled up or emptied. These authors
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show that the optimal storage policy has a basestock (target) structure. Irrespective of the
speed of the asset, computing an optimal storage policy is intractable when using a model
of the evolution of the natural gas price with more than a few stochastic factors. When
the evolution of this price is modeled using multi-factor price models, several authors focus
on computing near optimal heuristic storage operating policies and lower bounds on the
storage asset value (Lai et al. 2010, Boogert and De Jong 2011/12, Boogert and Mazières
2011, Thompson 2012, Wu et al. 2012, Chapters 2 and 3). Lai et al. (2010), Secomandi
(2012), and Chapters 2 and 3 also compute dual upper bounds on this value by applying the
information relaxation and duality framework (Brown et al., 2010, and references therein).
All these authors assume that storage is operated in a single market. The valuation and
merchant management of natural gas transport assets is studied by Secomandi (2010) and
Secomandi and Wang (2012). Secomandi (2010) provides empirical evidence for the use of
the real options approach to value the point-to-point version of these assets. Secomandi
and Wang (2012) propose a linear programming and Monte Carlo simulation based method
to value and manage such assets when they have a network structure. These authors do
not consider storage.

In contrast to the extant literature, we consider the joint merchant management of
natural gas storage and transport assets. We formulate a finite horizon discrete time
Markov Decision Problem (MDP), the states of which include, in every stage, the storage
inventory level and the forward curves of a set of geographically interconnected markets
where natural gas can be traded – a forward curve is a vector of futures prices. At each stage
and state, the MDP multidimensional action is a vector of storage and transport decisions.
Our MDP thus substantially generalizes the single market natural gas storage MDP so
far considered in the literature, in which the states include a single forward curve and the
action is a scalar (Secomandi and Seppi 2014, ch. 5 and ch. 6, and references therein).
Our MDP also models more general transport assets than the model of Secomandi and
Wang (2012).

Computing an optimal policy of our MDP is intractable. We thus leverage our structural
analysis of this model and obtain a heuristic policy by extending a least squares Monte
Carlo (LSM) method (Longstaff and Schwartz 2001, Tsitsiklis and Van Roy 2001, Rogers
2002, Glasserman 2004, ch. 8, Chapter 3). When applied to realistic instances developed in
conjunction with an energy trading company, our heuristic policy is near optimal compared
to various dual upper bounds that we estimate, a finding consistent with the results of
Chapter 3.

Using our heuristic policy and realistic instances we investigate various managerial
aspects of our business problem. We find that (i) the joint, rather than decoupled, merchant
management of storage and transport assets has substantial value; (ii) this management
can be nearly optimally simplified by prioritizing storage relative to transport, despite
the substitutability between these activities, a property that we formally establish, being
considerable; (iii) the value due to price uncertainty is appreciable, can be almost entirely
captured by sequentially reoptimizing the deterministic version of our MDP, an approach
included in existing commercial software (FEA, 2013) – a finding that extends what is
known for the single market storage asset (Lai et al., 2010, Secomandi, 2010) – and a
limited look-ahead, and hence faster to compute, version of this heuristic policy is also near
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optimal; and (iv) the value of transport trading across multiple pipelines is substantial.

Beyond natural gas storage and transport assets, our research has potential relevance for
the merchant management of assets used to store and transport commodities such as crude
oil and refined products, metals, agricultural products, and even electricity (Markland,
1975, Markland and Newett, 1976, Smith and McCardle, 1998, 1999, Deng et al., 2001,
Kleindorfer and Wu, 2003, Rømo et al., 2009, Boyabatli, 2011, Boyabatli et al., 2011,
Devalkar et al., 2011, Kim and Powell, 2011, Lai et al., 2011, Arvesen et al., 2013, Zhou
et al., 2013a,b).

We proceed by presenting in §4.2 some background material on the business problem
that we study. In §4.3 we formulate our MDP and reformulate it as a stochastic dynamic
program (SDP). In §4.4 we analyze the value function and an optimal storage policy of this
SDP, also establishing the substitutability between the storage and transport assets. In
§4.5 we discuss our LSM based policy and how to use it to estimate a lower bound on the
combined value of the storage and transport assets. In §4.6 we consider the estimation of
dual upper bounds on this value. In §4.7 we conduct our numerical analysis. We conclude
in §4.8. Proofs are in Appendix C.

4.2 Background Material

Figure 4.1: The Bobcat storage facility and connecting pipelines (Source: Spectra Energy
website).

Pipeline systems comprise of storage facilities, compressor stations, metering stations,
and interconnect stations that link different pipelines (Pipeline Knowledge & Develop-
ment, 2010). Figure 4.1 illustrates the connections of the Bobcat storage facility, located in
Louisiana, to five major pipeline systems: Texas Eastern Transmission Company (TETCO;
also referred to as TETLP), Transcontinental Gas Pipeline Company (TRANSCO), Gulf
South Pipeline Company, Florida Gas Transmission Company, and ANR Pipeline Com-
pany. Natural gas can be shipped across different pipelines through interconnect stations.
Figure 4.1 shows that the Bobcat storage facility is an off-pipeline interconnect station. In
contrast, Figure 4.2 illustrates that TETCO and the Algonquin Gas Transmission pipeline
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(AGT) are directly connected at on-pipeline interconnect stations on the AGT pipeline.
Transferring natural gas between pipelines is referred to as wheeling (EIA, 1996, ch. 3).

Figure 4.2: Interconnect stations between the TETCO and AGT pipeline systems (Source:
Spectra Energy website).

Figure 4.3: The TRANSCO pipeline system.

Merchant trading of natural gas occurs on commercial networks that are simplified
representations of the physical pipeline systems where several pipeline segments, storage
facilities, and compressor and metering stations are aggregated into zones. Figures 4.3
and 4.4 display the zones of TRANSCO and TETCO. Figure 4.5 shows the AGT pipeline,
which is smaller than both TRANSCO and TETCO and is treated as a single zone for
merchant trading purposes. Natural gas is traded on more than one hundred physical
markets in North America. Derivative contracts on this commodity are traded on organized
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exchanges. Prominent examples are the New York Mercantile Exchange (NYMEX) natural
gas futures contracts with delivery at Henry Hub, Louisiana, and basis swaps at about forty
geographical locations in North America – the price of a basis swap for a given maturity
represents an offset with respect to the NYMEX natural gas futures price for the same
maturity, and hence the futures price for such a location and maturity is the sum of its
basis swap price and the NYMEX futures price for this maturity. From a merchant trading
perspective, the zones of major pipelines in North America are associated with the NYMEX
futures and basis swaps.

Figure 4.4: The TETCO pipeline system.

The trading activity of natural gas merchants on these commercial networks is based on
acquiring contracts on the storage and transport capacity of pipelines. A storage contract
specifies a collection of time periods during which storage can be used; the storage space
accessible at a storage facility; injection and withdrawal capacities for each time period; and
variable and fuel costs. A transport contract specifies a collection of time periods during
which transport can be performed; a set of points where natural gas can be received into the
pipeline (receipt points) or delivered from the pipeline (delivery points); capacity limits at
each of these points; and variable and fuel costs to ship natural gas from receipt to delivery
points. Commercially, the transport of natural gas is contemporaneous because natural gas
is shipped by displacement using compressor stations that maintain pressure differentials
between pipeline segments. We refer to these contracts as storage and transport assets.
Merchants manage these assets as real options on natural gas prices that give them the
ability to change the temporal or geographical availability of natural gas (Maragos, 2002,
Lai et al., 2010, Secomandi, 2010, Secomandi and Wang, 2012).

The merchant value of a storage asset originates from trading natural gas between
time periods where price differences exceed the cost of storage. Such price differences can
exist in a competitive equilibrium because of the volatility in production and demand and

77



Figure 4.5: The AGT pipeline system.

the high costs associated with changing production to satisfy demand (Pindyck, 2004).
A competitive equilibrium perspective on natural prices is reasonable because there is
empirical support that natural gas markets have become increasingly competitive since
deregulation in the early 1990s (De Vany and Walls, 1993, Cuddington and Wang, 2006).
The number of merchants has also considerably increased (Dahl and Matson, 1998).

Analogously, the merchant value of a transport asset originates from trades between
geographical locations where the price differences exceed the cost of transportation. Al-
though transport occurs contemporaneously, such price differences can occur, as explained
next. Our discussion is based on §5 of Secomandi (2010) (see also Cuddington and Wang
2006 and Marmer et al. 2007). For simplicity consider two markets m1 and m2. Without
transport, the equilibrium natural gas prices at m1 and m2 are determined by local pro-
duction and consumption at each location. Now suppose for simplicity that uncapacitated
transport is possible between m1 and m2 at a constant transportation cost. In this case,
at equilibrium, the natural gas price at m1 (m2) will be at most the sum of the natural
gas price at m2 (m1) and the transportation cost. Otherwise, there will be an arbitrage
opportunity. However, in practice, transport assets have finite capacity, which can be tight
(Marmer et al., 2007, Friedman and Philbin, 2014). When this happens, the price differ-
ence between markets m2 and m1 can be larger than the transport cost by the congestion
value of transport capacity. In this case, even though the price difference is larger than the
transport cost, arbitrage is not possible because of the tight capacity constraint. Therefore,
pricing a transport asset can be viewed as computing the congestion value of its capacity.
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4.3 Model

We consider a natural gas commercial network that consists of one storage facility and sev-
eral pipeline zones, and respective geographical markets, some of which can be interconnect
stations. We represent the storage facility and these markets as nodes on a network. The
geographical markets are represented by the set M. Although storage may be co-located
with one of these geographical markets, we represent it as a separate node to be able to
distinguish between storage trades and transport trades, defined below. Labeling storage
by ST, the node set of the commercial network is M∪ {ST}. Figure 4.6 illustrates this
representation using a realistic commercial network that includes (from left to right) three
markets corresponding to TRANSCO zones 3, 4, and 6 (see Figure 4.3), which we label
Z3, Z4, and Z6; the Bobcat storage facility located at the interconnect station (IC) be-
tween TRANSCO and TETCO (see Figure 4.1); four markets on TETCO, corresponding
to its zones 1 through 3 and East Louisiana (see Figure 4.4), which we label M1, M2, and
M3, and ELA; and the AGT zone (see Figure 4.5). An edge linking two nodes in this
network indicates the possibility of transporting natural gas between these nodes (in both
directions).

Z3

Z4

Z6
M1

M2

M3ELA

TRANSCO TETCO

0

ST
AGT

IC

Figure 4.6: Commercial network based on the Bobcat storage facility, portions of
TRANSCO and TETCO, and AGT.

A merchant trade specifies the type of activity (storage or transport), the quantity of
natural gas stored or shipped, the date of service, and a unique path (sequence of nodes)
in the commercial network. We denote the set of merchant trades by J . In particular,
J I and JW are the subsets of J that include the injection and withdrawal storage trades,
respectively. We denote by pj the path of trade j, and by pj(n) the n-th node in this path.
The number of nodes in the path pj is denoted by |pj|. The set of trades can be partitioned
into transport trades within a pipeline system, wheeling trades across pipeline systems,
storage injection trades, and storage withdrawal trades. In Figure 4.6, the paths Z3-Z6
and M2-M3 are transport trades and the paths Z3-IC-ELA and M3-AGT are wheeling
trades. The path of an injection trade starts at ST. The path of a withdrawal trade ends
at ST. In Figure 4.6, paths Z3-IC-ST and AGT-M3-ELA-IC-ST belong to storage injection
trades and paths ST-IC-Z3-Z6 and ST-IC-ELA to storage withdrawal trades.

We formulate an MDP to optimize the trading of natural gas on a given commercial

79



network. Trades can be performed at each of N times. Denote the i-th such time as Ti with
i belonging to the set I := {0, 1, . . . , N−1}. We use the set I as the stage set of our MDP.
Let ȳ denote the maximum inventory allowed in storage. The inventory in storage at stage
i is yi ∈ Y := [0, y]. At time Ti the market m futures price with maturity at time Ti′ > Ti
is Fm

i,i′ ∈ R+ and the forward curve of this market is Fm
i := (Fm

i,i , F
m
i,i+1, . . . , F

m
i,N−1). We

denote the time Ti spot price at market m by smi ≡ Fm
ii . For notational convenience, we

define the array of forward curves and the vector of spot prices across all markets at time
Ti as Fi := (Fm

i ,∀m ∈M) and si := (smi ,∀m ∈M), respectively. We also define FN := 0.
The stage i state is the pair (yi,Fi).

The cash flows generated from performing a trade on a given date include the cost of
purchasing or revenue from selling natural gas at a given market at its prevailing spot price
and two types of variables costs: commodity charges and compressor fuel costs.

The commodity charge is a fee that the merchant pays to the pipeline company on
each unit of transported, injected, or withdrawn natural gas. The commodity charge for
transporting natural gas between node m and node m′ is denoted by cm,m

′
. The storage

injection and withdrawal commodity charges are denoted by cI and cW , respectively (I
and W abbreviate injection and withdrawal, respectively).

Compressor stations create pressure differentials between pipeline segments, enabling
the transport of natural gas. Storage injections and withdrawals are also based on pressure
differentials obtained by the use of pumps, which, however, sometimes are not needed for
withdrawal. Merchants pay the pipeline company in kind for the fuel used for compression.
The fuel consumed to transport 1 unit of natural gas from node m to node m′ is (1 −
φm,m

′
)/φm,m

′
, where φm,m

′ ∈ (0, 1): 1/φm,m
′ ≡ 1 + (1 − φm,m′)/φm,m′ units of natural gas

needs to be received at node m in order to deliver 1 unit of this commodity at node m′.
We assume that this fuel is purchased at the market corresponding to node m. The fuel
consumed to inject or withdraw 1 unit of natural gas into or out of storage is (1−φI)/φI and
(1−φW )/φW , respectively, where φI ∈ (0, 1) and φW ∈ (0, 1) have interpretations analogous
to the transport fuel loss. We assume that the fuel used for injection or withdrawal is
monetized at the spot price of the market closest to storage.

Denote by xj the amount of natural gas transacted under trade j ∈ J . For notational
convenience, we define x := (xj, j ∈ J ). The reward r(x, s) from executing the vector of
trade amounts x given the vector of spot prices s is defined as

r(x, s) :=
∑
j∈J

|pj |∑
n=1

[
αjn(s) + γjn

]
xj, (4.1)

where
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αjn(s) :=



−spj(2) (1− φW )

φW
1(j ∈ JW )− spj(1)

φpj(1),pj(2)
1(j ∈ J \ JW ), if n = 1,

spj(l)
(1− φpj(n),pj(n+1))

φpj(n),pj(n+1)
, if 1 < n < |pj|,

−spj(|pj |−1) (1− φI)
φI

1(j ∈ J I) + spj(|pj |)1(j ∈ J \ J I), if n = |pj|;

γjn :=


−cW1(j ∈ JW )− cpj(1),pj(2)

1(j ∈ J \ JW ), if n = 1,

−cpj(n),pj(n+1), if 1 < n < |pj|,
−cI1(j ∈ J I), if n = |pj|.

When executing trade j, the term αjn(s) in (4.1) includes the cost and revenue from buying
and selling natural gas, respectively, and the value of the corresponding fuel loss incurred:
When n = 1 this term equals the value of the withdrawal fuel loss if j is a withdrawal trade,
and the sum of the purchase costs of one unit of natural gas and of the transport fuel on the
edge (pj(1), pj(2)) otherwise; when 1 < n < |pj| this term equals the value of the transport
fuel loss on the edge (pj(n), pj(n + 1)); and when n = |pj| this term equals the value of
the injection fuel loss if j is an injection trade, and the revenue from selling one unit of
natural gas otherwise. The term γjn in (4.1) represents the commodity charge incurred
when executing trade j: When n = 1 this term equals the withdrawal commodity charge
if j is a withdrawal trade, and the transport commodity charge on the edge (pj(1), pj(2))
otherwise; when 1 < n < |pj| this term equals the transport commodity charge on the edge
(pj(n), pj(n+ 1)); and when n = |pj| this term equals the injection commodity charge if j
is an injection trade.

We now define the set of feasible traded quantities. The receipt and delivery capacities
of node m are denoted as CR,m and CD,m (R is for receipt and D is for delivery), respec-
tively. The storage injection and withdrawal capacities are CI and CW , respectively. Let
J R(m) and J D(m), respectively, be the set of trades for which node m is a receipt point
and a delivery point in their respective paths. We denote by ∨ a logical disjunction (or).
A vector of trade amounts x is feasible at inventory level y ∈ Y if it satisfies the following
conditions: ∑

j∈JR(m)

xj ≤ CR,m, ∀m ∈M, (4.2)

∑
j∈JD(m)

xj ≤ CD,m,∀m ∈M, (4.3)


∑
j∈J I

xj ≤ min{CI , ȳ − y}∑
j∈JW

xj = 0

 ∨


∑
j∈J I

xj = 0∑
j∈JW

xj ≤ min{CW , y}

 , (4.4)
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xj ≥ 0,∀j ∈ J . (4.5)

The receipt and delivery capacities at each market are imposed by constraints (4.2) and
(4.3), respectively. The left and right hand sides of the disjunction (4.4) express the storage
constraints: When the storage decision is to inject, (4.4) ensures that (i) the sum of the
withdrawal trade amounts is zero and (ii) the sum of the injection trade amounts is less than
both the storage injection capacity and the available space in storage; if the storage decision
is to withdraw, (4.4) ensures that (i) the sum of the injection trade amounts is zero and (ii)
the sum of the withdrawal trade amounts is less than both the storage withdrawal capacity
and the available inventory in storage. Constraints (4.5) enforce nonnegativity of the trade
amounts. The set of feasible trade amounts is thus defined as X (y) := {x|(4.2)-(4.5)}.

Given the stage i spot price vector si, executing a feasible collection of trade amounts x
at inventory level yi results in an immediate reward of r(x, si) and an inventory transition
from yi to yi +

∑
j∈J I xj −

∑
j∈JW xj. In contrast, the evolution of the stage i array

of forward curves Fi into the stage i + 1 array of forward curves Fi+1 is governed by a
known risk-adjusted stochastic process, to be discussed shortly, which is assumed to be
unaffected by the merchant trades (that is, the merchant is a small player). Let E denote
expectation under the corresponding risk-neutral probability measure for the forward curve
evolution (Secomandi and Seppi, 2014, ch3). A policy π is the collection of decision rules

{Aπ0 , Aπ1 , . . . , AπN−1}, where Aπi : (yi,Fi) 7→ X (yi), ∀(i, yi,Fi) ∈ I × Y × RM ·(N−i)
+ . We let

Π be the set of all feasible policies. We denote by δ the risk-free discount factor from each
time Ti back to time Ti−1, ∀i ∈ I \{0}. Let (y0,F0) be the time T0 := 0 state. Maximizing
the time T0 value of the storage and transport assets entails solving the following MDP:

max
π∈Π

∑
i∈I

δiE [r(Aπi (yπi ,Fi), si)|y0,F0] , (4.6)

where yπi is the random inventory level in stage i when using policy π. Denoting the value
function in stage i and state (yi,Fi) by Vi(yi,Fi), an optimal policy of (4.6) can in theory

be computed by solving the following SDP, ∀(i, yi,Fi) ∈ I × Y × RM ·(N−i)
+ :

Vi(yi,Fi) = max
x∈X (yi)

r(x, si) + δE

Vi+1

yi +
∑
j∈J I

xj −
∑
j∈JW

xj,Fi+1

∣∣∣∣∣∣Fi
 , (4.7)

with boundary conditions VN(yN ,FN) := 0,∀yN ∈ Y .

We model the continuous time risk neutral dynamics of the array of forward curves
using a reduced-form price model, which is popular in academia and practice for modeling
natural gas forward curve evolution. Reduced-form models for natural gas forward curve
evolution are popular because their calibration relies on natural gas futures and options
that have significant trading volume. In these models, it is assumed that the impact of
factors such as demand, supply, and capacity on natural gas prices at equilibrium (see
discussion at the end of §4.3) are embedded in the prices of futures and options and can
be (approximately) captured via calibration (see Secomandi 2010, page 401, and Eydeland
and Wolyniec 2003, ch. 4). The specific reduced-form model we use is a multi-market
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extension of the multifactor term structure model that is widespread among practitioners
in commodity industries (Cortazar and Schwartz, 1994, Clewlow and Strickland, 2000,
Blanco et al., 2002, Secomandi et al., 2012, Secomandi and Seppi, 2014, ch. 4). The one
and two factor models of Jaillet et al. (2004) and Schwartz and Smith (2000), respectively,
are special cases of this model. In this continuous time setting, we denote by Fm(t, Ti)
the market m futures price at time t ∈ [T0, Ti] with maturity on date Ti ≥ t. We denote
by K the number of stochastic factors driving the evolution of this price; by dWk(t) the
standard geometric Brownian motion increment corresponding to factor k at time t; and by
σm,i,k(t) the time t loading factor on the k-th Brownian motion increment for the evolution
of the price of the market m futures with maturity at time Ti. The evolution of Fm(t, Ti),
∀(m, i) ∈ M× I \ {0} and t ∈ (T0, Ti], is governed by the following stochastic differential
equations:

dFm(t, Ti)

Fm(t, Ti)
=

K∑
k=1

σm,i,k(t)dWk(t), ∀(m, i) ∈M× I \ {0}, t ∈ (T0, Ti], (4.8)

dWk(t)dWk′(t) = 0, ∀k, k′ ∈ {1, 2, . . . , K}, k 6= k′. (4.9)

This model captures the seasonality in price levels via the initial array of forward curves,
and the seasonalities in the price changes through the dependence of the loading factors
on the trading time (t). The price changes can be correlated because they are functions
of common factors. Our analysis in §4.4 does not depend on this specific price model. In
contrast, our algorithm developed in §4.5 to obtain a heuristic policy and one of the upper
bounds presented in §4.6 rely on a particular specification of this price model, which we
use in our numerical analysis carried out in §4.7.

4.4 Structural Analysis

In this section we analyze the SDP (4.7). In §4.4.1 we reformulate it to facilitate our
structural analysis of the value function and of an optimal storage policy of this SDP
in §4.4.2 and the development of our LSM approach in §4.5. We formally establish the
relationship between the value of storage and transport in §4.4.3.

4.4.1 Reformulation of SDP (4.7)

Our reformulation of the SDP (4.7) explicitly optimizes the storage inventory change as-
suming the storage and transport decisions are made optimally for every feasible storage
inventory change. We also refer to the storage inventory change as the storage action. We
point out that a given storage action may result from executing more than one storage
trade.

Given the inventory levels yi and yi+1, define the storage action (inventory change) a
as yi − yi+1: A positive storage action corresponds to a withdrawal of natural gas from
the storage asset, a negative storage action corresponds to an injection of natural gas
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into this asset, and a zero storage action corresponds to leaving the inventory in storage
unchanged (doing nothing). Let X ′(a) denote the collections of all (storage and transport)
trade amounts that satisfy the receipt and delivery capacity constraints and result in an
inventory change equal to a. A vector of trade amounts x belongs to this set if it satisfies∑

j∈J I
xj =

{
−a, if a < 0,

0, otherwise,
(4.10)

∑
j∈JW

xj =

{
a, if a > 0,
0, otherwise,

(4.11)

(4.2), (4.3), (4.5). (4.12)

Constraints (4.10) and (4.11) ensure that the sums of the injection and the withdrawal
trade amounts, respectively, are consistent with the storage action a.

Given a spot price vector s ∈ RM
+ and a storage action a, an optimal collection of

storage and transport trade amounts in set X ′(a) can be computed by solving the linear
program

r̄(a, s) := max
x∈X ′(a)

r(x, s). (4.13)

We define aI and aW as the maximum injection and withdrawal amounts, respectively,
ignoring the storage asset capacity constraints:

aI := max
x

∑
j∈J I

xj s.t. (4.2), (4.3), (4.5);

aW := max
x

∑
j∈JW

xj s.t. (4.2), (4.3), (4.5).

Given a storage action a, it is straightforward to check that it is feasible, that is, X ′(a) 6= ∅,
if and only if a ∈ [−aI , aW ]. Thus, the set of feasible stage i+ 1 inventory levels reachable
from the stage i inventory level yi is

Z(yi) :=
[
max{0, yi − CW , yi − aW},min{y, yi + CI , yi + aI}

]
.

Define the continuation function Wi(yi+1,Fi), ∀(i, yi+1,Fi) ∈ I × Y × RM ·(N−i)
+ , as

Wi(yi+1,Fi) := δE [Vi+1 (yi+1,Fi+1) |Fi] . (4.14)

Our reformulated SDP (4.7) is

Vi(yi,Fi) = max
yi+1∈Z(yi)

r̄(yi − yi+1, si) +Wi(yi+1,Fi), (4.15)

∀(i, yi,Fi) ∈ I × Y × RM ·(N−i)
+ , with boundary conditions VN(yN ,FN) := 0,∀yN ∈ Y .

In contrast to SDP (4.7), the maximization in SDP (4.15) is over the feasible next stage
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inventory level and the function r̄(·, si) used in this maximization returns the value of the
optimal storage and transport trade amounts conditional on a feasible storage action.

4.4.2 Value and Continuation Functions and Optimal Storage
Policy Structure

We now characterize the value and continuation functions and an optimal policy of the
SDP (4.15). Specifically, we characterize the structure of an optimal storage policy. Under
a mild assumption, this analysis leads to a substantial simplification of the SDP (4.15).
Let Ii := {i+ 1, i+ 2, . . . , N − 1}. We begin by establishing the concavity of the value and
continuation functions of this SDP in Lemma 2.

Lemma 2. For each given (i,Fi) ∈ I ×RM ·(N−i)
+ , the functions Vi(yi,Fi) and Wi(yi+1,Fi)

are concave in yi ∈ Y and yi+1 ∈ Y, respectively.

We state a technical assumption with no practical impact that allows us to refine
Lemma 2 and establish the structure of an optimal storage policy in Proposition 10.

Assumption 3. The parameters CR,m, ∀m ∈ M, CD,m, ∀m ∈ M, y0, ȳ, CW , and CI

are rational numbers.

Let Ḡ be the largest rational number such that the transport capacity values in sets
{CR,m,∀m ∈M} and {CD,m,∀m ∈M} are integer multiples of Ḡ (Ḡ exists by Assumption
3). We interpret Ḡ as a lot size. Lemma 3 characterizes the function r̄(·, s) in terms of
this lot size.

Lemma 3. Suppose Assumption 3 holds. For each given spot price vector s ∈ RM
+ , the

function r̄(·, s) is piecewise linear concave on the interval a ∈ [−aI , aW ] with slope changes
at integer multiples of Ḡ.

The optimal storage policy structure established shortly relies on the target function
bi(yi,Fi), defined as the smallest element of

argmax
yi+1∈Y

r̄(yi − yi+1, si) +Wi(yi+1,Fi). (4.16)

The target qualification of this function is due to its output being a stage i+1 inventory level
that might not be reachable from the stage i inventory level yi – because the optimization
in (4.16) is over the set of all feasible inventory levels, Y , which potentially strictly includes
the set of feasible next stage inventory levels for the given inventory level yi, Z(yi). We
also define the functions bi(Fi) and bi(Fi) that return the smallest and largest feasible
inventory levels, respectively, for which the do nothing storage action is optimal in stage i
given the array of forward curves Fi:

bi(Fi) := min
yi∈Y

yi s.t. yi = bi(yi,Fi),
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bi(Fi) := max
yi∈Y

yi s.t. yi = bi(yi,Fi).

We show the existence of these functions in Proposition 10.

Under Assumption 3, Proposition 10, based on Lemmas 2 and 3, refines in Part (a) the
characterizations of the value and continuation functions of the SDP (4.15) established in
Lemma 2 and characterizes in Part (b) the structure of an optimal storage policy. This
characterization depends on the lot size G that is defined as the largest rational number
such that Ḡ, y0, ȳ, CW , and CI are all integer multiples of G (G exists by Assumption
3). This lot size is smaller, potentially strictly, than the lot size Ḡ because it also depends
on the storage injection and withdrawal capacities and the initial and maximum inventory
levels. We denote an optimal storage decision rule as Ā∗i (yi,Fi).

Proposition 10. Suppose Assumption 3 holds.

(a) For each given (i,Fi) ∈ I × RM ·(N−i)
+ , the value function Vi(yi,Fi) and the contin-

uation function Wi(yi+1,Fi) are piecewise linear concave in yi ∈ Y and yi+1 ∈ Y,
respectively, with slope changes at integer multiples of G.

(b) For each given (i,Fi) ∈ I × RM ·(N−i)
+ and for every q ∈ {0, G, . . . , (ȳ/G) − 1},

the target function bi(·,Fi) equals a constant or varies linearly with slope 1 for all
yi ∈ [qG, (q + 1)G]:

bi(yi,Fi) = bi(qG,Fi) + (yi − qG)θq, ∀yi ∈ [qG, (q + 1)G],

with θq ∈ {0, 1}. The functions bi(Fi) and bi(Fi) exist and partition the feasible
inventory set Y into the three regions [0, bi(Fi)), [bi(Fi), bi(Fi)], and (bi(Fi), y], such
that (i) an optimal storage action is to inject when yi ∈ [0, bi(Fi)), do nothing when
yi ∈ [bi(Fi), bi(Fi)], and withdraw when yi ∈ (bi(Fi), y], and (ii) the function bi(yi,Fi)
returns a value that lies in the region of this partition that yi belongs to. Specifically,
an optimal storage policy is defined by the decision rules

Ā∗i (yi,Fi) =


max{−CI , yi − bi(yi,Fi)}, if yi ∈ [0, bi(Fi)),

0, if yi ∈ [bi(Fi), bi(Fi)],

min{CW , yi − bi(yi,Fi)}, if yi ∈ (bi(Fi), y],
(4.17)

∀(i, yi,Fi) ∈ I × Y × RM ·(N−i)
+ .

Buy
Do

Nothing
Withdraw

0 bi(Fi) bi(Fi) y

Figure 4.7: Partition of the feasible inventory set based on type of storage action
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Under Assumption 3, Part (a) of Proposition 10 establishes the piecewise linearity of
the value and continuation functions of the SDP (4.15) with possible slope changes at a
predetermined set of values. Related results have been established in Bannister and Kaye
(1991) and Nascimento and Powell (2013a). However, these papers do not characterize an
optimal storage policy structure, as we do in Part (b) of Proposition 10.

Before interpreting our optimal storage policy structure, we briefly describe the double
basestock target structure of an optimal storage policy that is known in the single market
case (Secomandi, 2010, Secomandi et al., 2012). This structure includes two stage and
forward curve, but not inventory, dependent basestock target functions. Given a stage and
a forward curve it is optimal to inject up to the smaller basestock target function value
for inventory levels below this target value, withdraw down to the larger basestock target
function value for inventory levels above this target value, and do nothing for inventory
levels between these target function values. Thus, for each given stage and forward curve,
the feasible inventory set is partitioned into inject, do nothing, and withdraw regions, and
the optimal storage action within the inject and withdraw regions strictly increases in
inventory. Moreover, under an assumption analogous to Assumption 3, but which excludes
the initial inventory level and transport capacities, these target values are integer multiples
of a given lot size.

Under Assumption 3, Part (b) of Proposition 10 establishes the structure of an optimal
storage policy in the multiple market setting. Analogous to the single market case, for
each given stage and array of forward curves, the feasible inventory set is partitioned into
inject, do nothing, and withdraw regions (see Figure 4.7). However, this partition is defined
by the functions bi(Fi) and b̄i(Fi) that may not be target functions. In other words, in
general these are only threshold functions that define this partition. Moreover, an optimal
storage action is determined by the target function bi(yi,Fi), which can be interpreted
as a piecewise linear basestock target function that also depends on the inventory level
yi, and can thus take infinitely many values for each given array of forward curves Fi.
This aspect is in stark contrast to the double basestock optimal policy structure for the
single market case. As in this case, however, these basestock target functions do not bring
a given inventory level outside of the region it belongs to in the inject, do nothing, and
withdraw partition, and the resulting next stage inventory level is a weakly increasing
function of this inventory level. Moreover, different from this case, the storage injection
and withdrawal actions can be weakly increasing in the inventory level, that is, it is possible
to have subregions where these actions are equal to a constant. Figure 4.8 conceptually
illustrates this structure for the injection case.

Our optimal storage policy structure has useful computational implications. By Part
(b) of Proposition 10, our optimal storage policy only visits inventory levels in the finite
set

Y ′ := {0, G, . . . , ȳ},

with ȳ/G+1 values, and for each inventory level yi in this set chooses a next stage inventory
level in the finite set

Z ′(yi) :=
{
yi −min{CW , aW}, yi −min{CW , aW}+G, . . . , yi + min{CI , aI}

}
.
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0 G 2G 3G 4G

−G

−2G

Ā∗i (yi,Fi)/G

yi/G

Figure 4.8: Conceptual illustration of the piecewise linearity of an optimal policy structure
in the injection region with bi(Fi) = 4G.

Thus, in principle, the optimal storage policy associated with the decision rules (4.17)
could be computed by solving the following SDP:

Vi(yi,Fi) = max
yi+1∈Z′(yi)

r̄(yi − yi+1, si) +Wi(yi+1,Fi), (4.18)

∀(i, yi,Fi) ∈ I ×Y ′×RM ·(N−i)
+ , with boundary conditions VN(yN ,FN) := 0,∀yN ∈ Y ′. The

SDP (4.18) critically differs from the SDP (4.15) because it optimizes over the finite set
Z ′(yi) rather than the interval Z(yi).

Given the pair (i,Fi) and assuming knowledge of the function Wi(·,Fi), the optimiza-
tion on the right hand side of (4.18) can be performed efficiently for all the feasible inven-
tory levels yi by exploiting the results established in Proposition 10. Specifically, combining
the structure of the functions r̄(·, si) and Wi(·,Fi) and the decision rules (4.17) allows us
to efficiently compute the set of optimal next stage inventory levels for all inventory levels
yi by scanning once the next stage inventory levels in the set Y ′. This efficient search
is possible because the optimal next stage inventory level weakly increases in the current
stage i inventory level, yi, and thus we can restrict our search for the optimal next stage
inventory level for a given yi in set Y ′ \ {0} to the subset of Y ′ delimited by the optimal
next stage inventory level computed for yi −G and the maximum inventory level ȳ.

Although the function Wi(·,Fi) is unknown, the same scheme remains applicable when
this function is replaced by another piecewise linear concave function of the current inven-
tory level with slope changes at integer multiples of the lot size G. We use this approach
in §4.5 when developing our approximate solution method, which relies on approximating
the continuation function Wi(·,Fi) with a function that satisfies this property. Moreover,
we take advantage of this property when using our estimated approximate continuation
function to compute a heuristic policy and estimate a lower bound on the combined value
of the storage and transport assets, as detailed in §4.5. One of the approaches presented in
§4.6 to estimate an upper bound on this value also critically relies on our estimated value
function approximations, which we use to obtain our approximate continuation functions,
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changing slope at integer multiples of the lot size G.

Finally, it is important to point out that the lot size used to define the sets Y ′ and
Z ′(yi) depends on the initial inventory level. This dependence implies that different initial
inventory levels potentially require different discretizations of these sets. In contrast, the
lot size used to discretize the feasible inventory and storage action sets in the single market
case is independent of the initial inventory level (Secomandi, 2010, Secomandi et al., 2012).

4.4.3 Relationship Between the Values of Storage and Transport

Storage and transport compete for the same receipt and delivery capacity. Thus, intuitively,
they are substitute activities. Proposition 11 establishes this property formally. Let ΠTR

and ΠST be the subsets of policies in Π that allow only transport and storage trades,
respectively. We define the transport and storage MDPs as

V TR
0 (x0,F0) := max

π∈ΠTR

∑
i∈I

δiE [r(Aπi (yπi ,Fi), si)|y0,F0] , (4.19)

V ST
0 (x0,F0) := max

π∈ΠST

∑
i∈I

δiE [r(Aπi (yπi ,Fi), si)|y0,F0] . (4.20)

Proposition 11. It holds that

V0(x0,F0) ≤ V TR
0 (x0,F0) + V ST

0 (x0,F0). (4.21)

Inequality (4.21) is consistent with the definition of substitutes in §2.6.1 of Topkis
(1998). When (4.21) holds as a strict inequality, storage and transport are strict substitutes
and jointly managing these activities is necessary to obtain an optimal policy. In other
words, a pair of optimal policies to (4.19) and (4.20) cannot form an optimal policy to
(4.6). On the other hand, when (4.21) holds as an equality there is no substitution between
storage and transport, and hence these activities can be optimally managed independently
of each other. We estimate numerically the degree of substitutability between storage and
transport in §4.7.2.3.

4.5 LSM Heuristic Policy and Lower Bound

In theory, an optimal storage action at a given stage and state can be computed by solving
the optimization problem defined by the right hand side of the SDP (4.18) – we suppose
that Assumption 3 holds in the rest of this chapter. However, this approach is not practical
because computing the continuation function in this optimization is intractable due to (i)
the high dimensionality of the state space and (ii) the inability to compute the expecta-
tion in the definition of this function. To overcome both these issues, we follow a popular
approximate dynamic programming (ADP) approach to compute heuristic, but hopefully
near optimal, decisions, by replacing the unknown continuation function in the right hand
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side of the SDP (4.18) by a tractable continuation function approximation (Powell 2011,
Bertsekas 2007). A lower bound on the option value can be estimated by Monte Carlo
simulation of the policy defined by these heuristic decisions. We explain the details of
the lower bound estimation after we describe the LSM approach (Longstaff and Schwartz,
2001, Tsitsiklis and Van Roy, 2001) that we use to compute a continuation function ap-
proximation.

We extend the version of the LSM approach proposed by Chapter 3 to compute a
continuation function approximation by first computing a value function approximation,
which is also useful for upper bound estimation, as discussed in §4.6. We consider value
function approximations that are linear combinations of a given set of basis functions.
For each stage i and inventory level yi ∈ Y ′ we specify Bi basis functions. The b-th basis
function is φi,yi,b : Fi 7→ R and its linear combination weight is βi,yi,b. We define the row and
column vectors Φi,yi := (φi,yi,1, φi,yi,2, . . . , φi,yi,Bi) and βi,yi := (βi,yi,1, βi,yi,2, . . . , βi,yi,Bi)

>.
The value function approximation is

V̂i(yi,Fi; βi,yi) := (Φi,yiβi,yi)(Fi) ≡
Bi∑
b=1

φi,yi,b(Fi)βi,yi,b. (4.22)

We define a continuation function approximation by replacing Vi by V̂i on the right hand
side of (4.14):

Ŵi(yi+1,Fi; βi+1,yi+1
) := δE

[
V̂i+1(yi+1,Fi+1; βi+1,yi+1

)|Fi
]

= δ

Bi+1∑
b=1

E
[
φi+1,yi+1,b(Fi+1)|Fi

]
βi+1,yi+1,b. (4.23)

Following §3.5.2 we choose basis functions such that the expectations in (4.23) can be
computed exactly when using the price model (4.8)-(4.9), as discussed in §4.7.2.1. We
extend the LSM variant of §3.5.2 to approximate the SDP (4.18). We refer to our extension
as extended LSM (ELSM). Our extension consists of a concavification step, discussed below,
which yields a continuation function approximation Ŵ conc

i (·,Fi; βi+1,·) that is piecewise
linear concave with break points in set Y ′. This step has not been used with LSM methods
but it has appeared in other ADP contexts (Powell 2011, ch. 13, and Nascimento and
Powell 2013a)

Algorithm 3 summarizes the ELSM steps. The inputs to ELSM are the number of sam-
ple paths and basis functions that allow the exact computation of the expectation in (4.23)
(see §4.7.2.1 for an example). ELSM outputs the weights β̄i,yi that define a value function
approximation via (4.22) and a continuation function approximation via (4.23). ELSM
starts by generating H regression sample paths of the arrays of forward curves from stage
1 through N starting from F0, which we include in set {F h

i , i ∈ I \ {0}, h = 1, 2, . . . , H},
and initializing the stage N weight vector β̄N,yN to zero. At each stage i ∈ I \{0}, starting
from stage N−1 and moving backward to stage 1: In Step 1(i), for each h ∈ {1, 2, . . . , H},
ELSM computes the stage i continuation function approximation using the stage i+1 basis
function weights. In Step 1(ii) ELSM concavifies this continuation function approximation
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Algorithm 3: ELSM

Inputs: Number of sample paths H and basis functions that allow the exact
computation of the expectation in (4.23).

Outputs: Weights β̄i,yi , ∀(i, yi) ∈ I × Y ′.

Initialization: Generate H regression sample paths of the arrays of forward curves
{F h

i , i ∈ I \ {0}, h = 1, . . . , H} starting from F0; β̄N,yN := 0, ∀yN ∈ Y ′.

For each i = N − 1 to 1 do:

1. For each h ∈ {1, 2, . . . , H} do:

(i) For each yi+1 ∈ Y ′ do:

Ŵi(yi+1,F
h
i ; β̄i+1,yi+1

) := δ

Bi+1∑
b=1

E
[
φi+1,yi+1,b(Fi+1)|F h

i

]
β̄i+1,yi+1,b.

(ii) Concavify Ŵi(·,F h
i ; β̄i+1,·) to obtain Ŵ conc

i (·,F h
i ; β̄i+1,·).

(iii) For each yi ∈ Y ′ do:

vi(yi,F
h
i ) := max

yi+1∈Z′(yi)
r̄(yi − yi+1, s

h
i ) + Ŵ conc

i (yi+1,F
h
i ; β̄i+1,yi+1

). (4.24)

2. For each yi ∈ Y ′ do: Perform a 2-norm regression on the set of value function
estimates {vi(yi,F h

i ),∀h ∈ {1, 2, . . . , H}} to determine the weights β̄i,yi .

by a simple scanning and modification procedure illustrated in Figure 4.9. After concav-
ification, for each yi ∈ Y ′, in Step 1(iii) ELSM computes the approximate value function
estimates for each inventory level yi ∈ Y ′ by solving a set of greedy optimization problems
(4.24). These optimizations can be performed efficiently using the scheme discussed at the
end of §4.4.2, because the functions Ŵ conc

i (yi+1,F
h
i ; β̄i+1,yi+1

) and r̄(yi − yi+1, s
h
i ) are both

piecewise linear concave in yi+1 with break points in set Z ′(yi) given a pair (i,Fi). In Step
2, ELSM performs a 2-norm regression on these value function estimates to determine the
weight vectors β̄i,yi at each inventory level yi in set Y ′.

We now explain the details of how the continuation function approximation estimated
by ELSM is used to estimate a lower bound. At stage i and state (yi,Fi), we replace the con-
tinuation function Wi on the right hand side of the SDP (4.18) with Ŵ conc

i (yi+1,Fi; β̄i+1,yi+1
)

to obtain the following optimization problem, which is greedy with respect to Ŵi:

max
yi+1∈Z′(yi)

r̄i(yi − yi+1, si) + Ŵ conc
i (yi+1,Fi; β̄i+1,yi+1

). (4.25)

Given the solution ygi+1 to (4.25) (breaking ties in favor of the smallest maximizer), the
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(a) Ŵi

Inventory

(b) Ŵ conc
i

Inventory

Figure 4.9: Illustration of the ELSM concavification step.

corresponding greedy storage action is agi := yi − ygi+1. The collection of greedy ac-

tions at all stages and states defines the greedy policy associated with Ŵ conc
i . Because

Ŵ conc
i (·,F h

i ; β̄i+1,·) is piecewise linear concave with slope changes at integer multiples of
the lot size G, each ygi+1 can be found efficiently, and the corresponding greedy policy has
the same structure of the optimal policy identified in Part (b) of Proposition 10. A lower
bound on the value of an optimal policy can be estimated by applying the greedy policy
along L Monte Carlo simulation sample paths of the arrays of forward curves, which we
include in set {F l

i , i ∈ I \ {0}, l = 1, 2, . . . , L}, starting from the time 0 inventory level y0

and the array of forward curves F0.

4.6 Dual Upper Bounds

In this section we discuss the estimation of dual upper bounds on the value of an optimal
policy (Brown et al. 2010 and references therein). Such a bound is based on performing
hindsight optimizations in which knowledge of future information is penalized using dual
penalties. We denote by ui(yi+1,Fi,Fi+1) the dual penalty in stage i given yi+1, Fi, and
Fi+1. Specifically, these penalties penalize knowledge in stage i of the array of forward
curves Fi+1 and must satisfy the feasibility condition E[ui(yi+1,Fi,Fi+1)|Fi] ≤ 0 (see Brown
et al. 2010 for details). Once feasible dual penalties are specified, we estimate dual upper
bounds in Monte Carlo simulation using the same set of L simulation sample paths {F l

i , i ∈
I \ {0}, l = 1, 2, . . . , L} employed for lower bound estimation. A point estimate U l

0(y0) of
an upper bound on V0(y0,F0) can be computed based on the l-th sample path of the arrays
of forward curves by solving the following dynamic program, ∀(i, yi) ∈ I × Y ′:

U l
i (yi) = max

yi+1∈Z′i(yi)
r̄(yi − yi+1, s

l
i)− ui(yi+1,F

l
i ,F

l
i+1) + δU l

i+1(yi+1),

with boundary conditions U l
N(yN) := 0, ∀yN ∈ Y ′. An upper bound estimate on the

optimal policy value V0(y0,F0) is obtained by averaging the point estimates U l
0(y0), ∀l ∈

{1, 2, . . . , L}.
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We consider the following feasible dual penalties instantiated using the ELSM value
function approximation (4.22):

V̂i+1(yi+1,Fi+1; β̄i+1,yi+1
)− E

[
V̂i+1(yi+1,Fi+1; β̄i+1,yi+1

)|Fi
]
. (4.26)

As alluded to in §4.5, our choice of basis functions allows the exact computation of the
expectation in (4.26). We also consider two types of linear dual penalties that are not
based on such a function, and hence are easier to instantiate. The first type of linear dual
penalties are

(smi+1 − Fm
i,i+1)yi+1. (4.27)

These penalties are feasible because E[smi+1|Fm
i,i+1] = Fm

i,i+1 by the martingale property of
futures prices under a risk neutral measure (Shreve, 2004, page 244), and in particular
under the price model (4.8)-(4.9). These penalties are motivated by the encouraging upper
bounding results of Secomandi (2012) who uses analogous penalties for the case of storage
with a single market. The second type of linear dual penalties are averages of the penalties
(4.27) for each of the M markets:

(1/M)
∑
m∈M

(smi+1 − Fm
i,i+1)yi+1. (4.28)

The feasibility of these dual penalties follows from the feasibility of the dual penalties
(4.27).

4.7 Numerical Analysis

In this section we perform our numerical investigation. In §4.7.1 we describe our instances.
In §4.7.2 we discuss our findings.

4.7.1 Instances

We developed our instances in conjunction with a major natural gas trading company that
operates in the United States. These instances are based on the commercial network dis-
played in Figure 4.6 and discussed in §4.3. We do not explicitly model the interconnect
station IC, in addition to ST, because the commodity charges and fuel losses for trans-
porting natural gas between IC and ST are zero. We use a time horizon equal to a year
subdivided into monthly periods (that is, N = 12). Our instances include operational and
price model parameters.

Operational parameters. The storage asset parameters are normalized maximum
inventory (ȳ) equal to 1 MMBtu; normalized monthly injection capacity (CI) and with-
drawal capacity (CW ) equal to 0.45 MMBtu/month and 0.75 MMBtu/month, respectively;
injection and withdrawal fuel adjustment factors (φI and φW ) equal to 1 and 0.985, re-
spectively; and injection and withdrawal commodity charges (cI and cW ) equal to 0.02
$/MMBtu and 0.01 $/MMBtu, respectively.
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Table 4.1: Transport fuel losses (φm,m
′
) for the months April to November.

ST Z3 Z4 Z6 ELA M1 M2 M3 AGT
ST - 1 - - 1 - - - -
Z3 - 0.9823 0.9638 - - - - -
Z4 - 0.9672 - - - - -
Z6 - - - - - -

ELA - 0.9557 0.9406 0.9305 -
M1 - 0.9632 0.9531 -
M2 - 0.9602 -
M3 - 0.9907

Table 4.2: Transport fuel losses (φm,m
′
) for the months December to March.

ST Z3 Z4 Z6 ELA M1 M2 M3 AGT
ST - 1 - - 1 - - - -
Z3 - 0.9823 0.9638 - - - - -
Z4 - 0.9672 - - - - -
Z6 - - - - - -

ELA - 0.9523 0.9316 0.9179 -
M1 - 0.956 0.9423 -
M2 - 0.952 -
M3 - 0.99

Table 4.3: Commodity charges (cm,m
′
, $/MMBtu).

ST Z3 Z4 Z6 ELA M1 M2 M3 AGT
ST - 0.05 - - 0.0103 - - - -
Z3 - 0.02253 0.04454 - - - - -
Z4 - 0.04027 - - - - -
Z6 - - - - - -

ELA - 0.0353 0.0762 0.1044 -
M1 - 0.0659 0.0941 -
M2 - 0.0743 -
M3 - 0.013

The operational parameters of the transport assets are commodity charges and fuel
losses (cm,m

′
and φm,m

′
, respectively) equal to the values given in Tables 4.1-4.3; receipt

and delivery capacities at both markets Z3 and M3 equal to 0.45 MMBtu/month (= CW )
and 0.75 MMBtu/month (= CI), respectively; receipt and delivery capacities at all the
TRANSCO markets other than market Z3 equal to 0.15 MMBtu/month (= CW/3) and
0.25 MMBtu/month (= CI/3), respectively; and receipt and delivery capacities at the AGT
market and all the TETCO markets other than market M3 equal to 0.09 MMBtu/month
(= CW/5) and 0.15 MMBtu/month (= CI/5), respectively. Thus, the lot size G is equal
to 0.01.
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Price model parameters. We calibrated a specification of the price model (4.8)-(4.9)
using data made available to us by the energy trading company mentioned above. In this
specification each function σm,i′,k(t) is right continuous and piecewise constant within a
trading month, that is, during each interval in the set {[Ti, Ti+1),∀i ∈ I \ {N − 1}} (see
Blanco et al. 2002 and Secomandi et al. 2012 for more details). We denote by σm,i′,k,i
the value of each such function taken in the interval [Ti, Ti+1). Pick t ∈ [Ti, Ti+1) and
t′ ∈ (Ti, Ti+1] with t′ > t. Recall that Ii ≡ {i+1, i+2, . . . , N−1}. Under this specification,
we can reexpress (4.8)-(4.9) in a form suitable for simulation using a vector (Zk, k =
1, 2, . . . , K) of K independent standard normal random variables as

Fm(t′, Ti′) = Fm(t, Ti′) exp

[
−1

2
(t′ − t)

K∑
k=1

σ2
m,i′,k,i +

√
t′ − t

K∑
k=1

σm,i′,k,iZk

]
, (4.29)

∀(m, i, i′) ∈ M× I × Ii. Notice that prices can be correlated because they are functions
of common factors.

Our data set includes 1 year and 3 months (June 2011 to August 2012) of natural
gas closing futures prices for Henry Hub, Louisiana, and basis swaps for each of the 8
markets in Figure 4.6. From this information we created a futures price data set for each
of these 8 markets. We first estimated monthly sample variance-covariance matrices of
the daily log futures price returns across maturities and markets. We then performed
a principal component analysis of these matrices and estimated the loading coefficients
σm,i′,k,i accordingly (see Clewlow and Strickland 2000 §8.6 for more details). We chose the
number of factors K equal to 6 because this is the smallest value that explains more than
99% of the total observed variance in each of our monthly data sets.

We created 12 instances by choosing 12 valuation dates corresponding to the first trad-
ing date of each month from June 2011 to May 2012. We set the discount factor for each
instance based on the following one year United States treasury rates corresponding to our
valuation dates: 0.18%, 0.20%, 0.22%, 0.10%, 0.12%, 0.13%, 0.12%, 0.12%, 0.13%, 0.18%,
0.18%, and 0.19%.

The details of the estimated loading coefficients and the initial forward curves are
available from the authors upon request.

4.7.2 Findings

In §4.7.2.1 we estimate bounds on the combined value of the storage and transport assets.
In §§4.7.2.2-4.7.2.5 we provide insights into the merchant management of these assets.

4.7.2.1 Bound Estimation

For a given stage and inventory pair (i, yi), we implement ELSM using the following poly-
nomials of futures prices as basis functions:

1,
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{Fm
i,i′ ,∀i′ ∈ Ii},

{(Fm
i,i′)

2,∀i′ ∈ Ii},
{Fm

i,i′F
m′

i,i′ ,∀i′ ∈ Ii;m,m′ ∈M,m 6= m′},
{Fm

i,i′F
m
i,i′+1, i

′ ∈ Ii \ {N − 1},m ∈M}.

This choice of basis functions is common in the LSM literature (Longstaff and Schwartz,
2001). Chapter 3 uses it for valuing storage in a single market. Define ∆Ti := Ti+1 − Ti.
For w ≥ i′ > i and under price model (4.29), it is easy to verify that the expectation in
(4.23) for each of these basis functions is

E[Fm
i′,i′′ |Fm

i,i′′ ] = Fm
i,i′′ ,

E[(Fm
i′,i′′)

2|Fm
i,i′′ ] = (Fm

i,i′′)
2 exp

{
i′−1∑
w=i

∆Tw
∑
k∈K

σ2
m,i′′,k,w

}
,

E[Fm
i′,i′′F

m′

i′,i′′|Fm
i,i′′ , F

m′

i,i′′ ] = Fm
i,i′′F

m′

i,i′′ exp

{
i′−1∑
w=i

∆Tw
∑
k∈K

σm,i′′,k,wσm′,i′′,k,w

}
,

E[Fm
i′,i′′F

m
i′,i′′+1|Fm

i,i′′ , F
m
i,i′′+1] = Fm

i,i′′F
m
i,i′′+1 exp

{
i′−1∑
w=i

∆Tw
∑
k∈K

σm,i′′,k,wσm,i′′+1,k,w

}
.
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Figure 4.10: Comparison of the estimated ELSM-based lower bounds as percentages of the
estimated ELSM-based dual upper bounds.

We estimate the ELSM value function approximation using 10,000 regression forward
curve samples (H = 10,000). We use this value function approximation to estimate greedy
lower bounds and dual upper bounds, the latter based on the penalties (4.26), on the time
T0 combined value of the storage and transport assets, V0(x0,F0), by employing 30,000
simulation forward curve samples (L = 30,000). Figure 4.10 reports the lower bound
estimates as percentages of the dual upper bound estimates. The error bars in this figure
are standard errors, which are at most 0.15% of their respective estimates. The ELSM-
based lower bound and dual upper bound estimates are essentially tight on all the instances.
We refer to these lower and upper bound estimates as LBL and UBL, respectively. Chapter
3 uses its LSM approach, on which ELSM is based on, to estimate almost tight bounds
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on the value of natural gas storage with access to a single market. Thus, despite the more
complicated structure of the optimal policy when jointly managing storage and transport
assets, ELSM continues to estimate effectively tight bounds.

We also estimate dual upper bounds on the linear dual penalties (4.27) and (4.28),
which are not based on the ELSM value function approximation. We consider the linear
dual penalties (4.27) specified for markets Z3 and ELA. We denote their respective dual
upper bound estimates as UBZ3 and UBELA. We label the dual upper bound obtained
with the average penalties (4.28) as UBA. Figure 4.11 displays these dual upper bounds as
percentages of UBL along with their standard errors, both estimated on the same forward
curve samples used to estimate UBL. These bounds are somewhat weaker than UBL, but
perform quite well: They are respectively at most 0.86%, 0.65%, and 0.44% larger than
UBL. UBA is tighter than UBZ3 and UBELA, with two exceptions. Linear dual penalties
are thus effective in our application. This finding is consistent with a result of Secomandi
(2012) obtained in the context of the merchant management of natural gas storage in a
single market.
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Figure 4.11: Comparison of the estimated dual upper bounds based on linear dual penalties
as percentages of UBL.

Our computational setup is a 64 bits PowerEdge R515 with twelve AMD Opteron 4176
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2.4GHz processors with 64GB of memory, the Linux Fedora 17 operating system, and the
gcc version 4.7.2 20120921 (Red Hat 4.7.2-2) compiler. We use the LAPACK 3.X library
with a single processor for ordinary least squares regression and Gurobi 5.0 (Gurobi Opti-
mization, 2012) for solving linear programs. Estimating the value function approximations
and the ELSM-based bounds takes 14 minutes on average across our instances. Roughly,
17%, 31%, and 52% of this time is used for estimating a value function approximation,
a lower bound, and an upper bound, respectively. The CPU times required to estimate
upper bounds using the penalties (4.27) and (4.28) are equal to the analogous CPU time
when using the penalties (4.26) based on the ELSM value function approximation, which
we assume is available from lower bound estimation.

4.7.2.2 Relevance of Jointly Managing Storage and Transport

We assess the relevance of the joint merchant management of storage and transport assets
by comparing the value of the near optimal policy discussed in §4.7.2.1, LBL, against the
value of a policy that manages these assets in an almost decoupled fashion and forces
storage to have access to a single market. Specifically, (i) we estimate a value function
approximation using the LSM method of Chapter 3, using the same basis functions of our
ELSM implementation, by only considering storage trades at a given single market; and
(ii) at each stage and state, we first use this value function approximation to determine a
storage trade amount that is greedy with respect to this function, and then optimize the
transport trade amounts using the residual receipt and delivery capacities at the market
assigned to storage and the full receipt and delivery capacities at the remaining markets.
By choosing the best storage to market assignment, we quantify the average value of this
(almost) decoupled policy to be 89.60% of LBL on our instances. Thus, we estimate the
incremental value of jointly managing the storage and transport assets to be 11.40%.

We provide some operational intuition for this benefit by analyzing the flow rates of
these two policies. The flow rate of a given policy is the average amount of natural gas sold
across all the stages and states visited in the Monte Carlo simulation used to estimate the
value of this policy. The flow rate of the policy that jointly manages storage and transport,
the ELSM-based policy, is 0.85. Compared to this flow rate, the flow rate of the almost
decoupled policy is only 2.5% smaller, but its transport and storage components are 8.1%
larger and 24.3% smaller than their respective ELSM-based policy counterparts. In other
words, the flow rates of these policies are close to each other but the mix of their storage
and transport trade amounts is substantially different.

The almost decoupled policy allows for some interaction between the management of
storage and transport assets, because the transport assets can use the capacity not utilized
by the storage asset. The value of the best completely decoupled policy, which ignores
this interaction, is a meager 52.07% of LBL. There is thus substantial benefit from even
partially integrating the merchant management of the storage and transport assets.
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4.7.2.3 Effectiveness of Sequential Policies

We now investigate the possibility of near optimally simplifying the joint merchant man-
agement of the storage and transport assets by considering sequential policies. A sequential
policy prioritizes one of the storage and transport decisions over the other. Such a policy
is optimal if and only if there is no substitution between storage and transport activities
(a simple corollary of Proposition 11). The findings discussed in §4.7.2.2 suggest that
there is substantial substitution between these activities on our instances. Indeed, our
estimates of the average values, across all our instances, of the values of the transport only
and storage only policies, V TR(x0,F0) and V ST (x0,F0), are 74.95% and 55.47% of LBL,
respectively. This substantial substitution suggests that the sequential policies might not
fair well. Nonetheless, we now evaluate the performance of these policies.

We first consider a sequential policy that gives preference to transport over storage.
Specifically, at a given stage and state this policy first optimizes the transport trade
amounts and then optimizes the storage trade amounts on the residual capacity based
on a value function approximation estimated using an obvious ELSM modification. The
suboptimality of this policy is substantial, its value being on average 78.17% of LBL. Sim-
ilar to the almost decoupled policy, the flow rate of this policy is a mere 1.2% smaller
than the flow rate of the ELSM-based policy, but their mix of storage and transport trade
amounts are very different: The average transport and storage flow rates of this sequential
policy are 32.0% larger and 68.4% smaller than the analogous flow rates of the ELSM-based
policy.

We now consider a policy that prioritizes storage over transport. We implemented
this policy using a modification of the ELSM method analogous to the one we used to
implement the other sequential policy. This alternative sequential policy performs near
optimally, achieving 98.63% of LBL on average across our instances. Compared to the
ELSM-based policy, the flow rate of this policy is 5.5% smaller and its transport and
storage flow rate components are only 2.6% and 11.6% smaller, respectively; that is, these
figures suggest that these policies have a similar mix of trades.

Our findings indicate that obtaining a near optimal sequential policy depends critically
on how storage and transport are prioritized. Moreover, the near optimal sequential policy
that gives priority to storage over transport is simpler to compute than the policy that
does not prioritize these activities because in every stage and state it solves a single linear
program rather than several such programs.

4.7.2.4 Value of Price Uncertainty and Performance of the Extended Rolling
Intrinsic Policy

The intrinsic policy solves the deterministic version of the MDP (4.6) that only depends
on the time T0 array of forward curves F0. The value of this policy is referred to as the
intrinsic value and denoted by V I

0 (y0;F0). The intrinsic value can be computed by solving
the following deterministic version of SDP (4.18):

V I
i (yi;F0) = max

yi+1∈Z′(yi)
r̄(yi − yi+1,F0,i) + δV I

i+1(yi+1;F0), (4.30)
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∀(i, yi) ∈ I × Y ′, with boundary conditions V I
N(yN ;F0) := 0, ∀yN ∈ Y ′ – model (4.30) can

also be equivalently formulated as a linear program.

The intrinsic value excludes the value due to price uncertainty, known as the extrinsic
value. This value is the difference V0(y0,F0)− V I

0 (y0;F0) and measures how much can be
gained by adapting the operating policy to the uncertain evolution of the array of forward
curves. We estimate the extrinsic value on our instances by subtracting V I

0 (y0;F0) from
LBL. The estimated extrinsic values range between 7.17% and 14.47% of LBL across our
instances (the standard errors of these estimates are at most 0.2% of their respective values
of LBL). The average of these estimates is 10.41%. Although substantial, this average is
smaller than both the 27.93% and 21% average extrinsic values estimated by Lai et al.
(2010) and Secomandi (2010), respectively, in the case of storage operating in a single
market and the 64.51% estimated by Secomandi and Wang (2012) in the case of transport
without storage. Explaining these differences is difficult because our instances (i) couple
storage and transport and (ii) use different parameters than the ones considered by these
authors.
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Figure 4.12: Comparison of the average estimated lower bounds corresponding to the
limited look-ahead extended rolling intrinsic policy as percentages of UBL.

When managing storage in a single market setting, a common approach among prac-
titioners to capture the extrinsic value of storage is to reoptimize the intrinsic policy at
every stage and observed state (Gray and Khandelwal, 2004, Breslin et al., 2009, Lai et al.,
2010, Secomandi, 2010, Secomandi et al., 2012). The policy generated by this approach is
referred to as the rolling intrinsic policy and is known to be near optimal. We analyze a
rolling intrinsic policy extended for jointly managing storage and transport in a multiple
market setting by reoptimizing the deterministic dynamic program (4.30) at every stage
and state. Specifically, in stage i and state (yi,Fi) this dynamic program depends on Fi
rather than F0. This extended rolling intrinsic policy is part of the commercial software
StoragePLUS developed by Financial Engineering Associates, Inc. (FEA, 2013). We find
that this policy performs near optimally on our instances, its estimated value being within
1 standard error of UBL on each instance. This finding provides support for using this
policy in practice.

Despite the equivalence of LBL and the estimated value of the extended rolling intrinsic
policy (recall that LBL is near optimal), estimating the latter lower bound requires at
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least 2 orders of magnitude more CPU time than the former. We thus investigate ways to
reduce this computational effort. In particular, this computational burden can be reduced
by reoptimizing a limited look-ahead version of the intrinsic model (4.30). Figure 4.12
plots as percentages of UBL the average estimated lower bounds corresponding to different
choices of the number of look-ahead stages. Near optimal performance is achieved with a
look-ahead of as few as 4 stages. This simplified approach leads to computational savings
of about 1 order of magnitude relative to the extended rolling intrinsic policy implemented
with a full look-ahead, a finding that has practical relevance. However, estimating a
lower bound on the combined value of storage and transport even with this limited look-
ahead rolling intrinsic policy remains substantially slower compared to the ELSM approach.
Moreover, estimating an upper bound on this value based on the discussed linear penalty is
appealing when using the extended rolling intrinsic approach, because instantiating these
dual penalties does not require the computation of a value function approximation.

4.7.2.5 Value of Transport Trading Across Multiple Pipelines

Our instances are based on three different pipelines (see Figure 4.6). We now assess the
value of inter-pipeline transport trading, that is, the value of wheeling (see §4.3; we do not
estimate the value of wheeling across multiple pipelines using storage because estimating
this value requires keeping track of the injection source of the inventory in storage, which
is challenging to do). We do this by considering a policy that restricts transport trades
to occur within zones of a single pipeline. This policy has no trades involving AGT,
because AGT is a single zone, and ignores all the contemporaneous transfers of natural
gas between TETCO and TRANSCO. However, transfer of natural gas between TETCO
and TRANSCO is still possible over time using storage. Comparing the value of this
restricted policy, we find that the average value of wheeling is 36.45% of LBL on our
instances. Allowing transport trades between AGT and TETCO alone reduces this value
to 28.81%. These figures suggest that transport trading between TETCO and TRANSCO
has substantially more value than doing the same between TETCO and AGT. This finding
reflects the smaller AGT capacity compared to TRANSCO and the fact that natural gas
shipped from TRANSCO to AGT must go through TETCO.

4.8 Conclusion

We investigate the joint merchant management of natural gas storage and transport assets,
thus extending the current literature that studies the management of these assets in isola-
tion. We model the management of these assets as an MDP and characterize the structure
of the value function and an optimal policy of this model. Because computing such a pol-
icy is intractable, we leverage this structural analysis to extend an existing storage LSM
method to compute a near optimal policy for this MDP. We apply our method to realis-
tic instances and find that (i) the joint, rather than decoupled, merchant management of
storage and transport assets has substantial value; (ii) this management can be nearly op-
timally simplified by prioritizing storage relative to transport, despite the substitutability
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between these activities being considerable; (iii) the value due to price uncertainty is large
but can be almost entirely captured by sequentially reoptimizing a deterministic version
of our MDP, an approach included in existing commercial software; and (iv) the value
of transport trading across different pipelines is substantial. Our research has potential
relevance beyond the specific application considered in this chapter.
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Chapter 5

A Critical Review of Least Squares
and Math Programming Based ADP
Methods

(Joint work with François Margot and Nicola Secomandi)

5.1 Introduction

Finite horizon and discrete time stochastic optimization problems arise commonly in stochas-
tic control applications, including energy real options such as commodity and energy con-
version assets (Lai et al., 2010, Boogert and De Jong, 2011/12, Devalkar et al., 2011, Powell
et al., 2012b, Thompson, 2013). Solving these problems directly is typically difficult be-
cause their deterministic versions may be mathematical programs containing non convex
features such as integer variables. A popular approach is therefore to reformulate dynamic
stochastic optimization problems as stochastic dynamic programs (SDPs). In theory, SDPs
can be solved recursively in the finite horizon and discrete time setting, and using a (pos-
sibly infinite) linear program in the general case. These exact approaches are typically not
practical due to the well known curses of dimensionality caused by high dimensional state
and action spaces and expectations that are potentially challenging to compute (Powell
2011, §4.1, and Chapter 2 of this thesis).

An active area of research focuses on approximate methods for solving high dimensional
SDPs. This area is broadly referred to as approximate dynamic programming (ADP). A
prevalent idea in ADP is to compute an approximation to the value function of the SDP and
use this approximation together with the Bellman operator to obtain feasible actions. We
consider ADP methods based on least Squares Monte Carlo (LSM) and math programming
that rely on this idea of computing a value function approximation.

Least squares Monte Carlo is a popular ADP approach for managing energy real options
in that literature. Examples include the popular Longstaff and Schwartz (2001) method
and recent variants such as the ones from Gyurko et al. (2011) and Desai et al. (2012b) and
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LSMV of Chapter 3. The popularity of these methods can be attributed to their simplicity
and excellent practical performance. We focus in this chapter on LSMV.

Math programming based ADP methods are known for their strong theoretical guar-
antees. The standard approach in this literature computes a value function approximation
by solving a linear program referred to as an approximate linear program (ALP; Schweitzer
and Seidmann 1985, de Farias and Van Roy 2003). Recent research has focused on im-
proving ALP by solving math programs obtained by relaxing the ALP constraints. The
smoothed ALP of Desai et al. (2012a) and the constrained-based and multiplier-based ALP
relaxations in Chapter 2 use ALP relaxations to improve the ALP value function approxi-
mation. The iterated Bellman linear program due to Wang and Boyd (2010) relaxes ALP
to improve its upper bounds on the exact value function and the optimal policy value.
Different from these linear programming based methods, Petrik (2012) develops a mixed
integer programming based ADP approach referred to as distributionally robust ADP.

We critically review the above mentioned ADP methods. We classify them based on the
objectives driving their computation of a value function approximation: (i) minimize value
function approximation error; and (ii) minimize greedy policy loss. Value function approx-
imation error is the difference between the exact value function and the value function
approximation under an appropriate norm. Greedy policy loss is the difference between
the optimal policy value and the value of the greedy policy induced by the value function
approximation.

LSMV, ALP, and the four discussed ALP relaxations minimize value function approx-
imation error. We unify these methods by showing that they can all be derived using the
ALP relaxation framework of Chapter 2, which is based on restricting the ALP dual. In par-
ticular, we bridge the financial-engineering based LSMV method and the constraint-based
ALP relaxations by showing that they are special cases of a family of ALP relaxations.
This ALP relaxation is parameterized by distributions used for constraint-aggregation that
can be viewed as basis functions approximating the dual variables. We also specify restric-
tions of the ALP dual to obtain the multiplier-based ALP relaxations, the smoothed ALP,
and the iterated Bellman linear program. Our ALP-dual-based derivation of the iterated
Bellman linear program shows that a parameter choice commonly used in finite horizon
and discrete time problems makes its upper bound on the optimal policy value equal to
the one from ALP.

Distributionally robust ADP (Petrik, 2012) approximately minimizes policy loss by
minimizing an upper bound on this quantity. Using this approach entails solving large
mixed integer programs, which is challenging. We develop a new mixed integer program-
ming formulation that exactly minimizes the greedy policy loss for a class of structured
SDPs arising in energy real options applications. The size of our formulation is compa-
rable to the mixed integer program of Petrik (2012) and is thus challenging to solve, but
it guarantees the best value function approximation in terms of greedy policy loss. We
numerically test our mixed integer program on 6 month versions of the 24 month natural
gas storage option instances discussed in §3.7.2 of Chapter 3. We warm start our mixed
integer program using the LSMV value function approximation, which we know is essen-
tially optimal in terms of policy loss, and check if its near optimality can be proven. We
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find that the mixed integer program proves the optimality of the LSMV value function
approximation on roughly 42% of the instances and marginally improves the LSMV lower
bound estimate on the samples used to compute the value function approximation. These
results motivate further research into advanced techniques for solving this mixed integer
program more efficiently.

The remainder of this chapter is organized as follows. In §5.2 we formulate our SDP
and discuss exact solution approaches. In §5.3 we define value function approximations and
greedy operating policies. In §5.4 we present ADP methods that minimize value function
approximation error and unify them in §5.5. We describe the distributionally robust ADP
approach in §5.6 and our mixed integer program in §5.7. We conclude in §5.8.

5.2 SDP Formulation and Exact Solution

We consider solving a finite horizon discrete time stochastic optimization problem with N
stages belonging to the set I := {0, . . . , N − 1} and indexed by i. The stage i state space
is denoted by Yi and the initial state is y0, that is, Y0 := {y0}. The set Ai(yi) includes
the feasible actions in stage i and state yi. We assume that the state and action spaces
are finite. A feasible action ai at a state yi results in an immediate reward and a state
transition to a stage i+1 state yi+1 with probability Pr(yi+1|i, yi, ai). We represent the stage
i immediate reward for each state-action pair by a function ri(yi, ai). The transition kernel
when taking action ai at stage i and state yi is expectation Ei,yi,ai defined by probabilities
Pr(yi+1|i, yi, ai),∀yi+1. Rewards at states in future stages are deflated using a discount
factor δ ∈ (0, 1). Let Π define the set of all policies and π ∈ Π a policy with its action at
stage i and state yi denoted by aπi (yi). The value of a policy is defined as

ρ(π) :=
∑
i∈I

δiE[r(yπi , a
π
i (yπi ))],

where E is expectation under policy π starting from the initial state y0 and yπi is the
random state at stage i under policy π. The stochastic optimization problem is

max
π∈Π

ρ(π).

In theory, an optimal policy π∗ can be obtained by reformulating the above problem
as an SDP. Denoting by Vi ∈ R|Yi| the stage i value function of the SDP, we write its
associated recursion as

Vi(yi) = max
ai∈Ai(yi)

ri(yi, ai) + δEi,yi,aiVi+1, ∀(i, yi) ∈ I × Yi, (5.1)

where we use the vector product Pi,yi,aiVi+1 instead of
∑

yi+1
Pr(yi+1|i, yi, ai)Vi+1(yi+1).

Similarly, we also replace sums by vector products in other parts of this chapter. For ease
of notation, in the rest of this chapter we write (i, yi, ai) instead of (i, yi, ai) ∈ I×Yi×Ai(yi).
We write (·)−(i) to indicate that i is excluded from I in the tuple ground set.
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The value function of SDP (5.1) can also be computed by reformulating it as an equiv-

alent linear program (Manne, 1960). Defining the nonnegative vectors {ci ∈ R|Yi|+ ,∀i} with
c0(y0) > 0, this linear program is

min
V

∑
i

cᵀiV i (5.2)

s.t. V N−1(yN−1) ≥ rN−1(yN−1, aN−1), ∀(yN−1, aN−1), (5.3)

V i(yi) ≥ ri(yi, ai) + δEi,yi,aiV i+1, ∀(i, yi, ai)−(N−1). (5.4)

We refer to the linear program (5.2)-(5.4) as PLP (P and LP abbreviate primal and linear
program, respectively). The PLP variables are V i(yi), ∀(i, yi). The objective function
(5.2) minimizes the weighted sum of these variables over all stages and states, using the
vectors ci’s as weights. Ignoring the difference in notation between the variables of PLP
and the value function of SDP (5.1), the constraints of PLP can be obtained from this
SDP as follows: For each pair (i, yi) express the maximization over the set Ai(yi) in (5.1)
as |Ai(yi)| inequalities, one for each ai. At optimality, the values of the PLP variables
match the SDP value function in every stage and state that is reachable starting from a
state where ci(yi) > 0. (This can be easily verified using complementary slackness).

The dual of PLP, denoted DLP (D abbreviates dual), is

max
u

∑
i

rᵀi ui (5.5)

s.t.
∑
a0

u0(y0, a0) = c0(y0), (5.6)∑
ai

ui(yi, ai) = ci(yi) + δ
∑

(y′i−1,ai−1)

Pr(yi|y′i−1, ai−1)ui−1(yi−1, ai−1), ∀(i, yi)−(0), (5.7)

ui(yi, ai) ≥ 0, ∀(i, yi, ai). (5.8)

The value of the dual variable ui(yi, ai) in a DLP feasible solution can be interpreted as
the frequency of visiting stage i and state yi and taking action ai. The objective function
(5.5) for a feasible DLP solution u := {ui(yi, ai),∀(i, yi, ai)} is the weighted sum of the
immediate rewards using these frequencies as weights. The constraint (5.6) ensures that
the frequency of visiting the initial state in the initial stage is c0(y0). Constraints (5.7) are
discounted flow balance constraints. Constraints (5.8) impose nonnegativity conditions on
the decision variables. Property 2 states an easily verifiable condition and another well
known property of DLP basic feasible solutions (see Theorem 6.9.1 in Puterman 1994, page
224).

Property 2. Any feasible DLP solution u satisfies

∑
(yi,ai)

ui(yi, ai) =
i∑

j=0

δi−j
∑
yj

cj(yj),∀i. (5.9)

Moreover, every basic feasible DLP solution u is such that for any stage-and-state pair
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(i, yi) there exists exactly one action ai for which ui(yi, ai) > 0.

5.3 Value Function Approximations and Greedy Poli-

cies

Solving the SDP recursion (5.1), PLP, or DLP is intractable in many important applications
due to the curse of dimensionality. ADP provides a wide array of techniques to overcome
this issue when solving the exact models discussed in §5.2 (see Bertsekas 2007 and Powell
2011). A common approach in this literature is to compute a tractable approximation to the
value function Vi of SDP (5.1) that is a linear parameterization of a set of basis functions.
The b-th basis function at stage i, φi,b : Yi 7→ R, is a mapping from the stage i state space to
the real line. We denote the set of stage i basis functions by Φi = {φi,b, b = 1, . . . , Bi}, where
Bi is a positive integer. Given weights βi,b, ∀b, the stage i value function approximation

is defined as
∑Bi

b=1 φi,b(yi)βi,b, which we abbreviate to (Φiβi)(yi). Methods to compute
the weight vector βi := (φi,b, b = 1, . . . , Bi) are discussed in §5.4, §5.6, and §5.7. A
widespread measure of the quality of a value function approximation is its deviation from
the exact value function under a weighted 1-norm. This is referred to as the value function
approximation error and is defined as

‖V − (Φβ)‖1,µ :=
∑
(i,yi)

µi(yi)|Vi(yi)− (Φiβi)(yi)|, (5.10)

where µi(yi) ≥ 0, ∀(i, yi).
Given a value function approximation, the Bellman operator associated with the SDP

(5.1) can be used to compute a feasible action at every stage i and state yi by solving the
following optimization problem over feasible actions:

argmax
ai∈Ai(yi)

ri(yi, ai) + δEi,yi,ai(Φi+1βi+1). (5.11)

Thus, a value function approximation implicitly defines a feasible policy through (5.11).
This policy is referred to as a greedy policy in the ADP literature. Denoting a greedy
policy given the weights β := (βi, i ∈ I) as πg(β), an alternate measure of quality to the
value function approximation error is the greedy policy loss

ρ(π∗)− ρ(πg(β)). (5.12)

5.4 ADP Methods for Minimizing VFA Error

In this section, we review ADP methods that compute a value function approximation
by heuristically minimizing the value function approximation error (5.10). We discuss an
LSM method in §5.4.1. The ALP approach is presented in §5.4.2. Various ALP relaxation
approaches are described in §§5.4.3-5.4.5.
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5.4.1 LSM

LSM methods are recursive procedures that are ubiquitous in financial engineering for ap-
proximating SDP (5.1) or its continuation value function formulation (see §3.2.3 of Chapter
3 for details of these two formulations). This approach was pioneered by Carriere (1996),
Longstaff and Schwartz (2001), and Tsitsiklis and Van Roy (2001). Chapter 3 treats these
methods in detail.

We focus in this chapter on our LSM variant, LSMV, described in §3.5 and outlined
in Algorithm 3 on Page 55. To facilitate our unification results in §5.5 we rewrite this
algorithm succinctly as follows. Let Ti,yi represent the stage i Bellman operator given a set
of basis functions, that is,

Ti,yi(Φi+1βi+1) := max
ai∈Ai(yi)

ri(yi, ai) + δEi,yi,ai(Φi+1βi+1).

We will drop the index yi in this operator when using it in vector form. Consistent with
Algorithm 3, let β̄N ≡ 0. Starting from stage N − 1 and moving back to stage 0, LSMV is
a recursive procedure that computes the weights β̄i by solving

β̄i := min
βi∈RBi

‖(Φiβi)− Ti(Φi+1β̄i+1)‖2, (5.13)

where ‖ · ‖2 represents the 2-norm.

5.4.2 ALP

Schweitzer and Seidmann (1985) and de Farias and Van Roy (2003) proposed a linear
program, ALP, to compute a value function approximation. The ALP is

min
β

∑
i

cᵀi (Φiβi) (5.14)

s.t. (ΦN−1βN−1)(yN−1) ≥ r(yN−1, aN−1),∀(yN−1, aN−1), (5.15)

(Φiβi)(yi) ≥ r(yi, ai) + δEi,yi,ai(Φi+1βi+1), ∀(i, yi, ai)−(N−1). (5.16)

The objective function (5.14) minimizes a weighted combination of the value function
approximation at each stage and state using the weights ci(yi). For this reason, the vectors
ci, ∀i, are referred to as state-relevance weights. Without loss of generality we assume
that

∑
i,yi
ci(yi) = 1. Constraints (5.15)-(5.16) approximate the SDP recursion and can be

viewed as a linearization of the convex constraints

(Φiβi) ≥ Ti(Φi+1βi+1),∀i, (5.17)

which can be derived from (5.1) by replacing Vi by (Φiβi) and changing the equalities to
inequalities. Constraints (5.17) are referred to as Bellman inequalities (see, e.g., Wang and
Boyd 2010). We make the following standard assumption on the basis functions to ensure
the feasibility of ALP (de Farias and Van Roy, 2003):
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Assumption 4. φi,1(yi) := 1, ∀(i, yi).

Because the Bellman operator is monotonic and a contraction mapping (Puterman,
1994), a value function approximation satisfying constraints (5.17) is guaranteed to be a
pointwise upper bound on the exact value function, that is,

(Φiβi) ≥ Ti(Φi+1βi+1) ≥ T 2
i (Φi+1βi+1) ≥ . . . ≥ Vi,∀i. (5.18)

In particular, since the exact value function at the initial stage and state coincides with
the optimal policy value, these inequalities establish that the ALP value function approx-
imation at the initial stage and state provides an upper bound on the value of an optimal
policy. This upper bound can be combined with the greedy policy lower bound, also com-
puted using the ALP value function approximation, to obtain a performance guarantee on
the greedy policy.

The dual of ALP, denoted DALP, is

max
w

∑
i

rᵀiwi (5.19)

s.t.
∑
a0

w0(y0, a0) = c0(y0), (5.20)∑
yi

φi,b(yi)
∑
ai

wi(yi, ai) =

∑
yi

φi,b(yi)

ci(yi) + δ
∑

(yi−1,ai−1)

Pr(yi|yi−1, ai−1)wi−1(yi−1, ai−1)

 ,∀(i, b)−(0), (5.21)

wi(yi, ai) ≥ 0,∀(i, yi, ai). (5.22)

The DALP variables can be interpreted as the frequencies at which a state is visited and
an action is taken by some policy, possibly infeasible. The DALP objective function is the
sum of returns weighted by the DALP state-action frequency vector. Constraint (5.20) is
identical to the DLP constraint (5.6), while constraints (5.21) at stage i are Bi different
aggregations of the DLP flow balance constraints (5.7) using weights defined by each stage
i basis function. Constraints (5.22) enforce nonnegativity. This relaxation breaks flow
balance at each stage, which was present in DLP. Nevertheless, the aggregate flow at each
stage is conserved as stated in Property 3, which can be easily verified using the DALP
constraints corresponding to b = 1 under Assumption 4.

Property 3. Any feasible DALP solution w satisfies

∑
(yi,ai)

wi(yi, ai) =
i∑

j=0

δi−j
∑
yj

cj(yj),∀i. (5.23)

Solving ALP (or DALP) can be potentially challenging because it has a large number of
constraints. However, since ALP has a manageable number of variables, it may be possible
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to employ a row-generation scheme to solve it exactly or employ a column-generation
heuristic to solve DALP (Adelman, 2003, 2004, 2007). Alternatively, sampling schemes
can be used to solve approximate versions of ALP (de Farias and Van Roy, 2003, 2004).
In other words, ALP is constructed using the sampled state sets Ŷi ⊆ Yi, ∀i, where the
cardinality of |Ŷi| is chosen to be manageable at each stage i.

5.4.3 Smoothed ALP

Desai et al. (2012a) observe that the value function approximation from ALP can be
potentially poor because it must be an upper bound on the exact value function at each
stage and state (see (5.18)). These authors relax this condition by solving a linear program
with constraints that relax the ALP constraints. In other words, feasible solutions of
this ALP relaxation can violate the ALP constraints (5.17) with the goal of obtaining a
value function approximation that potentially approximates better the exact value function
compared to the ALP value function approximation. The ALP relaxation model of Desai
et al. (2012a) is referred to as smoothed ALP (SALP).

We now discuss SALP. Let Prπ
∗
(i, yi|j, yj) be the probability of reaching state yi from

state yj, i > j, under an optimal policy π∗. Define

Prπ
∗,c,δ(i, yi) :=

i∑
j=0

δi−j
∑
yj

Prπ
∗
(i, yi|j, yj)cj(yj).

The term Prπ
∗,c,δ(i, yi) can be interpreted as the discounted probability of visiting state yi

at stage i assuming that the initial distribution of states is given by the probability mass
function defined by ci(yi), ∀(i, yi). Using these probabilities, SALP is

min
β

∑
i

cᵀi (Φiβi) + dᵀPr∗,c,δ (5.24)

s.t. (ΦN−1βN−1)(yN−1) ≥ ri(yN−1, aN−1),∀(yN−1, aN−1), (5.25)

(Φiβi)(yi) + di(yi) ≥ ri(yi, ai) + δEi,yi,ai(Φi+1βi+1),∀(i, yi, ai)−(N−1), (5.26)

di(yi) ≥ 0,∀(i, yi)−(N−1). (5.27)

SALP differs from ALP (5.14)-(5.16) in two ways: (i) a slack variable di(yi) is present in the
constraints (5.16) and allows their violations, and (ii) the amount of violation is controlled
by a new objective function term that penalizes a weighted combination of these slack
variables. The value function of SALP may not provide an upper bound on the exact value
function or the optimal policy value.

To operationalize SALP, the conceptual probabilities Prπ
∗,c,δ(·, ·) in its objective func-

tion (5.24) need to be approximated. After such an approximation, solving SALP is po-
tentially challenging because it has a large number of new variables, one for every state.
Hence, in contrast to ALP, SALP has both a large number of variables and constraints.
The presence of a large number of variables precludes the use of row generation for its
solution. Thus, obtaining a value function approximation in practice necessitates solving
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a sampled approximation of SALP constructed by replacing Yi by a sampled set of states
Ŷi at each stage i. Such sampled versions of SALP can be solved efficiently using a barrier
method – with the same computational complexity per iteration as solving an analogous
sampled version of ALP but with a sublinear increase in the number of iterations – because
of the sparsity of the constraint matrix associated with (5.26) and the slack variables (see
§5.1 of Desai et al. 2012a for details).

5.4.4 Iterated Bellman Linear Program

Wang and Boyd (2010), O’Donoghue et al. (2011), and O’Donoghue et al. (2013) propose
an ALP relaxation to compute a value function approximation that we refer to as the
iterated Bellman linear program. Similar to SALP, this linear program relaxes the ALP
constraints, but, despite this relaxation, its value function approximation remains an upper
bound on the exact value function at all stages and states. In other words, the value
function approximation from the iterated Bellman linear program may violate (5.17) but
is guaranteed to satisfy (Φiβi) ≥ Vi.

The key idea behind relaxing the right hand side of (5.17) is to replace Ti(Φi+1βi+1) by a
function fi that satisfies Ti(Φi+1βi+1) ≥ fi ≥ Vi. As shown in (5.18), such a function can be
obtained by iteratively applying the Bellman operator to the right hand side of (5.17). For
instance applying the Bellman operator K times results in the following iterated Bellman
inequalities:

(Φiβi) ≥ T ki (Φi+1βi+1),∀i. (5.28)

Constraints (5.28) are convex but their right hand side is difficult to evaluate. Moreover,
linearizing these constraints requires the addition of a large number of new variables.

To overcome these issues, Wang and Boyd (2010) propose a system of Bellman inequali-
ties such that any value function approximation satisfying this system is bounded below by
the right hand side of an iterated Bellman inequality such as (5.28). We now discuss this
system of Bellman inequalities, in particular, we use the most recent variant in O’Donoghue
et al. (2013). Let βj,i, ∀i and j = 0, 1, . . . , J , denote the weights of J + 1 different value
function approximations, each constructed using the basis functions in set Φ := (Φi, i ∈ I).
These value function approximations are used to define the convex constraint system

(Φiβj,i) ≥ Ti(Φi+1βj+1,i+1),∀(i, j), (5.29)

βJ,i = βJ+1,i,∀i. (5.30)

The constraints (5.29) corresponding to stage i are J + 1 Bellman inequalities. The j-th
stage i Bellman inequality differs from the corresponding ALP Bellman inequality (5.17)
because the value function approximations on the left and right hand sides of (5.29) are
different. In particular, the j-th value function approximation appears on the left hand
side of (5.29) while the j + 1-st value function approximation appears on its right hand
side. Chaining these inequalities for increasing values of j establishes that the following
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iterated Bellman inequalities are implied by (5.29):

(Φiβ0,i) ≥ T Ji (Φi+1βJ,i+1),∀i. (5.31)

Further, using equalities (5.30) in the inequalities (5.29) for j = J gives

(ΦiβJ,i) ≥ Ti(Φi+1βJ,i+1),∀i. (5.32)

Finally, combining (5.31) and (5.32) shows that the value function approximation (Φiβ0,i)
is bounded below by the right hand side of an iterated version of the Bellman inequality
(5.32).

To obtain the iterated Bellman linear program, O’Donoghue et al. (2013) linearize the
convex system (5.29)-(5.30), and obtain

min
β

∑
i

cᵀi (Φiβ0,i) (5.33)

s.t. (ΦN−1βj,N−1)(yN−1) ≥ r(yN−1, aN−1),∀(yN−1, aN−1), j ∈ {0, . . . , J}, (5.34)

(Φiβj,i)(yi) ≥ r(yi, ai) + δEi,yi,ai(Φi+1βj+1,i+1),∀(i, yi, ai)−(N−1), j ∈ {0, . . . , J − 1}, (5.35)

(ΦJβJ,i)(yi) ≥ r(yi, ai) + δEi,yi,ai(Φi+1βJ,i+1),∀(i, yi, ai)−(N−1). (5.36)

This linear program has J times the number of variables as ALP, but a potentially smaller
number of new variables than SALP. It is also easy to see that (5.33)-(5.36) is a relaxation
of ALP because adding the equalities βj,i = βj+1,i, ∀i and j = 0, . . . , J , makes this linear
program equivalent to the ALP (5.14)-(5.16). Similar to ALP, (5.33)-(5.36) can be solved
by using row generation or approximated using a tractable sampled version.

5.4.5 Constraint-based and Multiplier-based ALP Relaxations

Section 2.4 of Chapter 2 identifies a potential issue with ALP by comparing its dual, DALP,
with the exact dual, DLP (see §5.2). In particular, Proposition 1 establishes that the set
of DALP optimal solutions are potentially distorted compared to DLP optimal solutions.
Because optimal DLP solutions are in one-to-one correspondence with optimal policies of
SDP (5.1), this implies that DALP solutions are also inconsistent with the SDP optimal
policies. In particular, DALP optimal solutions may all correspond to infeasible policies
to the SDP. By complementary slackness, this inconsistency implies that the ALP value
function approximation is determined by states visited by an infeasible policy.

To overcome this inconsistency, §2.5 proposes adding constraints to DALP enforcing
properties of DLP optimal solutions in an exact or approximate manner. The primal linear
program corresponding to this DALP restriction is an ALP relaxation and can be solved
to compute a value function approximation. This approach is used to derive two classes
of ALP relaxations when using look-up table value function approximations: constraint-
based and multiplier-based relaxations. To facilitate our unification of methods in §5.5.2,
we present these ALP relaxation classes here in the context of general basis functions. To
be consistent with the treatment in Chapter 2, we make the following assumptions:
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(A1) The SDP state yi at each stage i can be partitioned into an endogenous component
ydi and an exogenous component, yri (the superscripts d and r denote deterministic
and random, respectively). (Changes in the endogenous component are caused by
the decision makers actions while the exogenous component evolves according to a
given stochastic process that does not depend on these actions.)

(A2) Probabilities in set {Pr(yri |yri−1),∀yri } defining the probability mass function over the
support of yri given yri−1 are available. (Typically from a stochastic process such as
(2.4)-(2.5) used in Chapter 2.)

(A3) State relevance weights are chosen to be c0(y0) = 1, and ci(yi) = 0, ∀(i, yi)−(0).

Constraint-based ALP Relaxations. Let yr,+i be a subset of the components of the
exogenous state yri and yr,−i be its remaining elements. Given a generic probability mass
function p(yr,−|yr,+, ydi ) (to be defined shortly), the constraints added to DALP are∑

ai

wi(yi, ai) = p(yr,−i |ydi , y
r,+
i )θi(y

d
i , y

r,+
i ),∀(i, yi), (5.37)

where θi(y
d
i , y

r,+
i ) are new variables that will be introduced in DALP. The primal linear

program corresponding to the DALP restriction with constraints (5.37) is

min
β

∑
i

cᵀi (Φiβi) (5.38)

s.t. (ΦN−1βN−1)(yN−1) ≥ rN−1(yN−1, aN−1),∀(yN−1, aN−1), (5.39)

(Φiβi)(yi) + di(yi) ≥ ri(yi, ai) + δEi,yi,ai(Φi+1βi+1),∀(i, yi, ai)−(N−1), (5.40)∑
yr,−i

p(yr,−i |ydi , y
r,+
i )di(y

d
i , y

r,+
i , yr,−i ) = 0,∀(i, ydi , y

r,+
i ). (5.41)

By choosing p(yr,−i |ydi , y
r,+
i ), the linear program (5.38)-(5.41) specifies different constraint-

based ALP relaxations. Section 2.5 considers the following practical choices for these
probabilities

Pr(yr,−i |y
r,+
i ),

1(yr,−i = E[yr,−i |y
r,+
i ]).

Both these probability mass functions can be derived from the probability mass function
that we assume is available from the exogenous information stochastic process, because
they only depend on the exogenous part of the state.

Similar to SALP, in general, solving linear program (5.38)-(5.41) is more challenging
than solving ALP and entails solving a sampled approximation instead. However, when the
value function approximation is chosen to be low dimensional look up tables, Proposition 4
in Chapter 2 shows that constraint-based ALP relaxations become tractable approximate
SDPs.
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Multiplier-based ALP Relaxations. The idea here is to add constraints to DALP
that match discounted probabilities associated with the exogenous part of the state yri
or moments of the components of this state. Addition of such constraints is justified
under (A3) because the value of the variable u∗i (yi, ai) in an DLP optimal solution can be
interpreted as the discounted probability of reaching stage i and state yi and taking action
ai starting from the initial stage and state. Denoting the probability of reaching the stage
i exogenous state yri starting from the initial state y0 by Pr(i, yri ), optimal DLP solutions
thus match the discounted probability of the exogenous part of the state, δi Pr(i, yri ), that
is,
∑

(ai,ydi ) u
∗
i (yi, ai) ≡ δi Pr(i, yri ) .

To match moments in DALP, we interpret the term
∑

(ai,ydi ) wi(yi, ai) as the discounted
probability mass function of the exogenous part of the state. Matching the entire dis-
counted probability mass function of the exogenous part of the state involves adding the
following constraints to DALP:∑

(ai,ydi )

wi(yi, ai) = δi Pr(i, yri ),∀(i, yri ). (5.42)

The primal linear program corresponding to DALP restricted with these constraints is

min
β

∑
i

cᵀi (Φiβi) +
∑
(i,yri )

Pr(i, yri )di(y
r
i ) (5.43)

s.t. (ΦN−1βN−1)(yN−1) ≥ rN−1(yN−1, aN−1),∀(yN−1, aN−1), (5.44)

(Φiβi)(yi) + di(y
r
i ) ≥ ri(yi, ai) + δEi,yi,ai(Φi+1βi+1),∀(i, yi, ai)−(N−1). (5.45)

Compared to the constraint-based ALP relaxation, the multiplier-based ALP relaxation
(5.43)-(5.45) controls the amount of relaxation using the additional term in its objective
function as opposed to constraints. Because the number of decision variables di(y

r
i ) in a

multiplier-based ALP relaxation is equal to the number of restricting constraints added
to DALP, one could simply add fewer constraints to DALP and obtain a smaller ALP
relaxation. For instance, such constraints might depend only on a few moments of the
probability mass function rather than all the probabilities that define it, as discussed next.

Let yri,j be the j-th element of yri and |yri | the number of elements of yri . We denote by

yr,−ji the elements of yri other than the j-th element and by y
r,−{j,k}
i the elements of yri with

both the j-th and k-th elements removed. The probabilities of the element yri,j and the pair
yri,jy

r
i,k are given by Pr(i, yri,j) and Pr(i, yri,jy

r
i,k), respectively. Recalling the interpretation

of
∑

(ai,ydi ) wi(yi, ai) used in (5.42), the following constraints enforce the first, second, and
cross moments of the elements of yri at each stage i:∑

yri,j

yri,j
∑

(ydi ,y
r,−j
i ,ai)

wi(yi, ai) =
∑
yri,j

yri,j Pr(i, yri,j),∀(i, j) ∈ I × {1, . . . , |yri |}, (5.46)

∑
yri,j

(yri,j)
2

∑
(ydi ,y

r,−j
i ,ai)

wi(yi, ai) =
∑
yri,j

(yri,j)
2 Pr(i, yri,j),∀(i, j) ∈ I × {1, . . . , |yri |}, (5.47)
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∑
(yri,j ,y

r
i,k)

yri,jy
r
i,k

∑
(ydi ,y

r,−{j,k}
i ,ai)

wi(yi, ai) =
∑

(yri,j ,y
r
i,k)

yri,jy
r
i,k Pr(i, yri,jy

r
i,k),

∀i ∈ I, (j, k)× {1, . . . , |yri |}, k > j. (5.48)

Multiplier-based ALP relaxations are more challenging to solve than ALP, but, as dis-
cussed above, we can better control the number of new variables in this ALP relaxation
class. Thus, we may be able to employ row generation when the multiplier-based ALP re-
laxations have only a small to moderate number of new variables relative to ALP; resorting
to solving a sampled approximation when row generation is not tractable.

5.5 Unification of ADP Methods in §5.4

By complementary slackness, the set of all optimal DALP solutions determine which con-
straints in ALP must hold as equalities at optimality. In other words, the DALP optimal
solution set implicitly samples the set of states that determines the ALP value function
approximation. This set is

YDALP := {(i, yi)|∃ an optimal DALP solution w∗ such that
∑

ai
w∗i (yi, ai) > 0},

where the term
∑

ai
wi(yi, ai) is the state occupancy frequency of state yi in stage i under

a DALP feasible solution w (see discussion after the DALP formulation in §5.4.2 for an
interpretation of the DALP variables).

When the DALP optimal solution set is distorted relative to the DLP optimal solution
set, as discussed in §2.4 and §5.4.5, the cardinality of the set YDALP may be small, thus
leading to an under-exploration of the state space when determining the value function
approximation. Property 3 states that the sum of DALP state occupancy frequencies
is equal to a positive constant. Moreover, DALP variables are nonnegative by (5.22) and
states outside YDALP have zero state occupancy frequencies. Therefore, a small cardinality
of YDALP implies that the state occupancy frequencies induced by optimal DALP solutions
are artificially high only for certain states. We restrict DALP by adding constraints with
the goal of avoiding the concentration of state occupancy frequencies at a few states. By
applying this principle in different ways, we will show in §5.5 that the methods considered
are ALP relaxations.

5.5.1 SALP and Multiplier-based ALP Relaxations

The simplest way to avoid state occupancy frequencies becoming too large at a subset of
states is to place an upper bound on their value.

We find that SALP bounds the state-action frequencies by adding the following in-
equality constraint ∀(i, yi) ∑

ai

wi(yi, ai) ≤ Prπ
∗,c,δ(yi). (5.49)
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The probabilities on the right hand side of (5.49) are valid upper bounds in the sense that
there is a DLP optimal solution that satisfies this upper bound. The primal linear program
corresponding to DALP with constraints (5.49) is the linear program (5.24)-(5.27), which
is the finite horizon specification of the conceptual model (14) stated and analyzed in §4.3
by Desai et al. (2012a).

Multiplier-based ALP relaxations bound state occupancy frequencies using a different
strategy. Because the state occupancy frequencies

∑
ai
wi(yi, ai) are positive by (5.22), they

can be bounded by equality constraints that set their weighted sum equal to a constant.
Constraints (5.42) and constraints (5.46)-(5.48) are such examples with probabilities and
moments of state elements on their right hand sides, respectively. For a fixed state (ȳdi , ȳ

r
i ),

this bounding property is easy to see for constraints (5.46) because∑
ai

wi(ȳ
d
i , ȳ

r
i , ai) = Pr(yri )−

∑
ydi 6=ȳdi ,ai

wi(y
d
i , ȳ

r
i , ai)

≤ Pr(yri ).

5.5.2 LSM and Constraint-based ALP Relaxations

In this subsection, we will represent the DALP state occupancy frequencies as a linear com-
bination of a family of pre-specified state occupancy frequency distributions. If the chosen
state occupancy frequency distributions do not concentrate the occupancy frequencies to
a few states, then the optimal DALP solution under this restriction will not under explore
the state space, that is, the cardinality of YDALP will not be small.

Let Ψi = {ψi,b′ , b′ = 1, . . . , B′i} be a set of B′i stage i basis functions. Each basis function
defines state occupancy frequencies over the stage i state space Yi. Denoting by θi,b′ the
weight of the b′-th stage i basis function, we approximate the state occupancy frequencies
using constraints parametrized by basis functions:∑

ai

wi(yi, ai) = (Ψiθi)(yi),∀(i, yi), (5.50)

where (Ψiθi)(yi) :=
∑

b′ ψi,b′(yi)θi,b′ . Adding these constraints to DALP and taking the
dual of the resulting DALP restriction gives the following ALP relaxation:

min
β,d

∑
i

cᵀi (Φiβi) (5.51)

(Φiβi)(yi) + di(yi) ≥ ri(yi, ai) + δEi,yi,ai(Φi+1βi+1), ∀(i, yi, ai), (5.52)∑
yi

ψi,b(yi)di(yi) = 0, ∀(i, b), (5.53)

where constraints (5.53) in the ALP relaxation are a consequence of the dual variables θi
in the constraints (5.50) that we added to restrict DALP.

We begin by stating in Proposition 12 the relationship between LSMV and the ALP
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Algorithm 3: Stage decomposed solution of (5.51)-(5.53)

1. Initialize β̂N ≡ 0.

2. For each i = N − 1 to 0 set β̂i to the optimal solution of the linear program

min
βi,di

cᵀi (Φiβi) (5.54)

(Φiβi)(yi) + di(yi) ≥ ri(yi, ai) + δEi,yi,ai(Φi+1β̂i+1), ∀(yi, ai), (5.55)∑
yi

ψi,b(yi)di(yi) = 0, ∀b. (5.56)

3. Return β̂i, ∀i.

relaxation (5.51)-(5.53) parameterized by basis functions in Ψi, ∀i. Let β̄i, ∀i ∈ I \ {0} be
the solution to LSMV, and Zi be the |Yi| × Bi regression matrix, where Zi,yi,b = φi,b(yi).
Given basis function weights βi, ∀i, define

di(yi; β) := max
ai

ri(yi, ai) + δEi,yi,ai(Φi+1βi+1)− (Φiβi)(yi),∀(i, yi).

Proposition 12. Suppose that for all i the regression matrix Zi has full column rank,
the basis functions in Φi are nonnegative, and Φi ≡ Ψi. Then there exists state-relevance
weights {ĉi,∀i} such that (β̄i, di(·; β)), ∀i, is an optimal solution to (5.51)-(5.53).

Proof. Consider the following convex program:

min
β

∑
i

cᵀi (Φiβi) (5.57)∑
yi

φi,b′(yi)(Φiβi)(yi) ≥

∑
yi

φi,b′(yi)

[
max

ai∈Ai(yi)
ri(yi, ai) + δEi,yi,ai(Φi+1βi+1)

]
, ∀(i, b′). (5.58)

Let the set of feasible βi, ∀i, in systems (5.58) and (5.52)-(5.53) be denoted by FS1 and
FS2, respectively. We will show that FS1 ≡ FS2. Notice that the constraints (5.52) define
the lower bound di(yi; β) on di(yi). Constraints (5.58) can be obtained by using this lower
bound in (5.53) because ψi,b(yi) = φi,b(yi) ≥ 0 by our assumption. Thus, FS1 ⊇ FS2.
Next, given a β̄i satisfying (5.58), it is easy to verify that (β̄i, d̄i(·; β̄)), ∀i, is a feasible
solution to (5.52)-(5.53). Hence, we also have FS1 ⊆ FS2. Given that FS1 ≡ FS2,
the equivalence between math programs (5.57)-(5.58) and (5.51)-(5.53) follows from their
objective functions being the same.

Consider the inequalities (5.58) corresponding to stage i expressed as equalities. When
the vector βi+1 on the right hand side of these equalities is chosen to be the stage i + 1
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LSMV vector of weights β̄i+1, they define the well known first order conditions for the
2-norm regression problem (5.13) used to compute the stage i LSMV vector of weights βi.
Using the full rank assumption on the regression matrices, it is easy to verify through an
induction argument, starting from stage N − 1 and moving backwards to stage 1, that β̄i,
∀i, is the unique solution to the equality system defined by the inequalities (5.58).

Moreover, β̄i, ∀i, is a boundary point of the convex feasible region (5.58) because all
the inequalities hold as equalities at this point. Then it follows from the linear support
function characterization of convex sets (see §2.4 in Hiriart-Urruty and Lemaréchal 2001)
that there exists a non zero vector ĉ ≡ {ci,∀i} such that β̄i, ∀i is an optimal solution to
the linear program (5.51)-(5.53).

Proposition 12 states that the LSMV weights define an optimal solution to the ALP re-
laxation (5.51)-(5.53) when Φ ≡ Ψ and under the mild condition of positive basis functions,
which can be easily satisfied by replacing basis functions by their positive and negative
parts. Thus, there is an ALP relaxation (5.51)-(5.53) that recovers the LSMV weights but
we are unable to characterize these state relevance weights. Nevertheless, as established
in Proposition 13, the LSMV weights can be obtained by solving a stage-decomposed ver-
sion of (5.51)-(5.53) using the readily available state-relevance weights ĉi(yi) =

∑
b φi,b(yi),

∀(i, yi) defined by basis functions in Φ.

Proposition 13. Suppose that for all i the regression matrix Zi has full column rank,
the basis functions in Φi are nonnegative, and Φi ≡ Ψi. Then for state-relevance weights
ĉi(yi) =

∑
b φi,b(yi), ∀(i, yi), Algorithm 3 returns the LSMV weights β̄i, ∀i.

Proof. Using essentially the same arguments as in the proof of Proposition 12 it can be
shown that (5.55)-(5.56) is equivalent to the convex constraints∑

yi

φi,b′(yi)(Φiβi)(yi) ≥
∑
yi

φi,b′(yi)

[
max

ai∈Ai(yi)
ri(yi, ai) + δEi,yi,ai(Φi+1β̂i+1)

]
, ∀(i, b′).

(5.59)

The only difference between the above constraints and the constraints (5.58) is that the
right hand side of (5.59) is a constant because β̂i+1 is specified. Under the assumed choice
of state relevance weights, the objective function (5.54) is a positive combination of the left
hand sides of (5.59). Moreover, β̄i, ∀i, is the unique solution to (5.59) expressed as equalities
because of the full rank assumption on the regression matrices. Then the objective sense
being minimization implies that the inequalities (5.59) must hold as equalities at optimality.

Although we focus in this subsection on LSMV, the Longstaff and Schwartz (2001)
LSM approach discussed in §3.4.2 can also be derived as a relaxation of an approximate
linear program based on the continuation function SDP formulation (3.6).

We now turn to deriving the constraint-based ALP relaxation (5.38)-(5.41). This ALP
relaxation differs from the parametric ALP relaxation (5.51)-(5.53) only in its constraints
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(5.41). We will show that constraints (5.41) can be derived from constraints (5.53) by
choosing basis functions Ψi in (5.53) to be different from Φi. Following the treatment in
§5.4.5, we will assume (A1)-(A3) hold. Let Ŷi = {(ydi , y

r,+
i )|∃ yr,−i s.t. (ydi , y

r,+
i , yr,−i ) ∈ Yi}.

Consider the choice

ψi,b(yi) = 1(ydi = ȳdi [b], y
r,+
i = ȳr,+i [b])p(yr,−i |ȳdi [b], ȳ

r,+
i [b]),

∀b = 1, . . . , |Ŷi|, where (ȳdi [b], ȳ
r,+
i [b]) denote the b-th element in set Ŷi. Under this choice

we have ∑
yi

ψi,b(yi)di(yi) =
∑
yi

1(ydi = ȳdi , y
r,+
i = ȳr,+i )p(yr,−i |ȳdi , ȳ

r,+
i )di(yi)

=
∑
yr,−i

p(yr,−i |ȳdi , ȳ
r,+
i )di(ȳ

d
i , ȳ

r,+
i , yr,−i ),

which is a constraint in (5.41). Thus, we recover the constraint-based ALP relaxation
(5.38)-(5.41).

5.5.3 Iterated Bellman Linear Program

As explained in §5.4.4, the iterated Bellman linear program is an ALP relaxation that is
defined in a lifted primal space. We will establish relationships between the dual of the
iterated Bellman linear program and both DALP and DLP. These relationships highlight
how the dual of the iterated Bellman linear program attempts to increase the number of
states explored by DALP. We also show a potential weakness of the upper bound on the
optimal policy value from the iterated Bellman linear program for a commonly encountered
sufficient condition in finite horizon and discrete time problems.

We begin by presenting the dual of the iterated Bellman linear program. Consistent
with the indexing of constraints (5.35)-(5.36), we denote by wLj,i(yi, ai) the dual variables
associated with the j-th set of inequalities corresponding to the triple (i, yi, ai) (the su-
perscript L abbreviates lifted space). The dual of the iterated Bellman linear program
is

max
wL

∑
(j,i)

rᵀiw
L
j,i (5.60)

s.t.
∑
a0

wL0,0(y0, a0) = c0(y0), (5.61)∑
yi

φi,b(yi)
∑
ai

wL0,i(yi, ai) =
∑
yi

φi,b(yi)ci(yi),∀(i, b)−(0), (5.62)∑
a0

wLj,0(y0, a0) = 0,∀j = 1, . . . , J, (5.63)∑
yi

φi,b(yi)
∑
ai

wLj,i(yi, ai) =
∑
yi

φi,b(yi)δ
∑

(yi−1,ai−1)

Pr(yi|yi−1, ai−1)wLj−1,i−1(yi−1, ai−1),
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∀(i, b)−(0), j = 1, . . . , J − 1, (5.64)∑
yi

φi,b(yi)
∑
ai

wLJ,i(yi, ai) =∑
yi

φi,b(yi)δ
∑

(yi−1,ai−1)

Pr(yi|yi−1, ai−1)[wLJ−1,i−1(yi−1, ai−1) + wLJ,i−1(yi−1, ai−1)],

∀(i, b)−(0), (5.65)

wLj,i(yi, ai) ≥ 0,∀(i, yi, ai), j = 1, . . . , J. (5.66)

Proposition 14 states our main results. We summarize the findings of Proposition 14
in Figure 5.1.

DLP Lifted DLP

Iterated

Bellman LP
DALP

Relaxation Relaxation

Reformulation

Restriction [in general]

Reformulation [under (a)-(c)]

Figure 5.1: Schematic illustration of results in Proposition 14.

Proposition 14. It holds that the dual (5.60)-(5.66) of the iterated Bellman linear program
is (i) a relaxation of an equivalent lifted reformulation of DLP, and (ii) a restriction of an
equivalent lifted reformulation of DALP using constraints (5.63)-(5.66). Moreover, (iii) if

(a) c0(y0) > 0 and ci(yi) = 0, ∀(i, yi)−(0),

(b) for each (i, yi), ∃b such that |φi,b(yi)| > 0, and

(c) for each i, either φi,b(yi) ≥ 0, ∀yi or φi,b(yi) ≤ 0, ∀yi,

then the dual of the iterated Bellman linear program is equivalent to DLP and the optimal
objective function values of the iterated Bellman linear program and ALP are identical.

Proof. (i) Consider the following linear program:

max
uL

∑
(j,i)

rᵀi u
L
j,i (5.67)

s.t.
∑
ai

uL0,i(yi, ai) = ci(yi),∀(i, yi), (5.68)∑
a0

uLj,0(y0, a0) = 0,∀j = 1, . . . , J, (5.69)∑
ai

uLj,i(yi, ai) =
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δ
∑

(yi−1,ai−1)

Pr(yi|yi−1, ai−1)uLj−1,i−1(yi−1, ai−1),∀(i, yi)−(0), j = 1, . . . , J − 1, (5.70)

∑
ai

uLJ,i(yi, ai) =

δ
∑

(yi−1,ai−1)

Pr(yi|yi−1, ai−1)[uLJ−1,i−1(yi−1, ai−1) + uLJ,i−1(yi−1, ai−1)],∀(i, yi)−(0), (5.71)

uLj,i(yi, ai) ≥ 0,∀(i, yi, ai), j = 1, . . . , J. (5.72)

Constraints (5.68) for stage 0, (5.69), and (5.72) are identical to constraints (5.61), (5.63),
and (5.66), except for a notational difference. Each of the remaining constraints in (5.61)-
(5.66) is a linear combination of constraints in (5.68)-(5.72) using weights specified by a
basis function evaluated at different states at a given stage. Thus, the dual (5.60)-(5.66) of
the iterated Bellman linear program is a relaxation of (5.67)-(5.72). To prove the claimed
result we now show that (5.67)-(5.72) is an equivalent lifted reformulation of DLP.

Let ûLj,i, ∀(i, j), be a feasible solution to (5.67)-(5.72). Define the terms ūi(yi, ai) =∑J
j=0 û

L
j,i(yi, ai), ∀(i, yi, ai). It can be easily verified that ūi, ∀i, defines a feasible solution

to DLP with the same objective function value as ûLj,i, ∀(i, j).

For the converse, let ūi, ∀i, be a basic feasible solution of DLP. Consider the system
obtained by adding the following conditions to (5.67)-(5.72): uLj,i(yi, ai) = 0, ∀(j, i, yi, ai)
such that ūi(yi, ai) = 0. Given the triple (i, j, yi), the restricted system will have at most
one ai for which uLj,i(yi, ai) > 0 because of Property 2. As a result, this restricted system
becomes a simple recursion which can be solved starting from stage 0 and moving forward
to stage N − 1. We label this solution ûLj,i, ∀(i, j). Because flow over stages and states is

conserved in both DLP and (5.67)-(5.72), we have
∑J

j=0 û
L
j,i(yi, ai) = ūi(yi, ai), ∀(i, yi, ai).

Thus, ûLj,i, ∀(i, j), has the same objective function value as ūi, ∀i.

(ii) To derive the ALP relaxation (5.33)-(5.36) we first lift DALP by using the substi-
tution wi(yi, ai) =

∑J
j=0 w

L
j,i(yi, ai). The resulting lifted DALP is

max
wL

∑
(j,i)

rᵀiw
L
j,i (5.73)

s.t.
∑
a0

J∑
j=0

wLj,0(y0, a0) = c0(y0), (5.74)

∑
yi

φi,b(yi)
∑
ai

J∑
j=0

wLj,i(yi, ai) =

∑
yi

φi,b(yi)

ci(yi) + δ
∑

(yi−1,ai−1)

Pr(yi|yi−1, ai−1)
J∑
j=0

wLj,i−1(yi−1, ai−1)

 ,∀(i, b)−(0), (5.75)

J∑
j=0

wLj,i(yi, ai) ≥ 0,∀(i, yi, ai). (5.76)
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We restrict (5.73)-(5.74) by adding constraints (5.63)-(5.66). The resulting restriction
is equivalent to the dual of the iterated Bellman linear program, except for the follow-
ing cosmetic differences: (i) Constraints (5.76) are absent in (5.61)-(5.66), (ii) constraints
(5.74) are different from constraints (5.61), and constraints (5.75) are different from con-
straints (5.62). The first difference is immaterial because constraints (5.76) are implied
by constraints (5.66). The second difference can be reconciled by substituting (5.63) in
(5.74). Finally, the third difference can be handled by using (5.64) and (5.65) to eliminate
terms from (5.75) and obtain (5.62). It is evident from our derivation that for any feasible
solution ŵLj,i, ∀i, j, of (5.60)-(5.66) the terms w̄i(yi, ai) :=

∑J
j=0 ŵ

L
j,i(yi, ai) define a feasible

solution to DALP.

(iii) Let W := {(i, j) ∈ I × {0, . . . , J}|i 6= j if 0 < j < J or i < j if j = J}. We will
show that conditions (a)-(c) and constraints (5.61)-(5.66) force wj,i(yi, ai) = 0, ∀(i, j) ∈ W
and ∀(yi, ai). To verify this claim, notice that assumption (a) implies that the right hand
side of constraints (5.62) are zero. This together with conditions (b) and (c) imply that
wL0,i(yi, ai) = 0, ∀(i, yi, ai)−(0). Moreover, by (5.63), the only nonzero variables at stage 0
correspond to j = 0. Because of these observations, conditions (b) and (c), and (5.64), the
only nonzero variables at stage 1 correspond to j = 1. Moving forward in this manner shows
that wj,i(yi, ai) = 0, ∀(i, j) ∈ W and ∀(yi, ai), which implies that variables with non zero
values have (i, j) pairs belonging to the set {(i, j)|i = j,∀ 0 < j < J}∪{(i, j)|i ≥ j,∀j = J}.
In other words, for each i there is exactly one j for which variables in the lifted DALP
could be non zero. The set of constraints defined by these pairs are equivalent to the DALP
constraints, after accounting for condition (a). Therefore, the optimal objective function
values of DALP and (5.60)-(5.66) are equal, which implies that the optimal objective
function values of ALP and the iterated Bellman linear program are also equal because of
strong linear programming duality.

Part (i) of Proposition 14 establishes that the dual (5.60)-(5.66) of the iterated Bellman
linear program is a relaxation of the lifted reformulation (5.67)-(5.72) of DLP. This lifted
reformulation has an intuitive network flow relationship to DLP. Notice that the flow
balance constraints (5.7) of DLP equate the flow at stage i and state yi (the left hand side)
to the new flow ci(yi) entering the system at stage i and state yi, and the discounted sum
of flows that entered into the system at prior stages and reached stage i and state yi (the
right hand side). Thus, DLP conserves flow entering into the system at different stages
in an aggregate fashion (see aggregated flow illustration in Figure 5.2). An alternative to
this aggregate flow conservation is to dedicate a separate set of equations to conserve flows
introduced at states in each stage i for the first J periods (that is periods 0, . . . , J − 1)
that they spend in the system and then re-aggregate these flows at the next period (see
disaggregated flow illustration in Figure 5.2). This is the intuition behind the lifted DLP
reformulation (5.67)-(5.72).

Next, notice that the relaxation used to derive the dual (5.60)-(5.66) of the iterated
Bellman linear program from the lifted DLP reformulation (5.67)-(5.72) is analogous to
the relaxation used to derive DALP from DLP. Thus, one may expect DALP and the
dual of iterated Bellman linear program to also be equivalent. Nevertheless, Part (ii) of
Proposition 14 shows that (5.60)-(5.66) is a restriction of DALP. This is because the exact
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Aggregated Network [Nodes indexed by stage i with 0 ≤ i ≤ 4 (= N − 1)]

0 1 2 3 4

Disaggregated Network [Nodes indexed by (j, i) with 0 ≤ j ≤ 2 (= J) and 0 ≤ i ≤ 4 (= N − 1)]

Period 0 0,0 0,1 0,2 0,3 0,4

Period 1 (= J − 1) 1,0 1,1 1,2 1,3 1,4

Period 2 (= J) 2,0 2,1 2,2 2,3 2,4

Figure 5.2: Network flow illustration of relationship between DLP and lifted DLP refor-
mulation (5.67)-(5.72).

disaggregation of DLP flows illustrated in Figure 5.2 and used to obtain (5.67)-(5.72) is
not exact when applied to DALP because DALP lacks the network flow structure of DLP.
This particular form of restriction has implications on the number of states explored by
the dual of the iterated Bellman linear program relative to DALP. Recall from the proof of
Proposition 14 that every feasible solution ŵL of (5.60)-(5.66) defines a feasible solution w̄
of DALP via the equivalence relationship w̄i(yi, ai) ≡

∑J
j=0 ŵ

L
j,i(yi, ai). This feasible DALP

solution conserves flow at each stage by Property 3, but w̄ is defined by a restriction of
DALP that disaggregates flow as shown in Figure 5.2. Thus, w̄ is likely to have nonzero
entries at a larger number of states than DALP optimal solutions.

Finally, Part (iii) of Proposition 14 shows that the choice of state relevance weights plays
an important role in how the dual of the iterated Bellman linear program restricts DALP
under the mild conditions (a)-(c): Condition (a) is natural for finite horizon problems
because the initial state distribution is concentrated on a given stage 0 state (see Chapter
2 and Adelman 2003), condition (b) is almost always true, and condition (c) can be easily
satisfied for practical purposes by splitting a basis function violating this condition into
its positive and negative parts. In particular, this proposition shows that the dual of the
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iterated Bellman linear program does not restrict DALP under conditions (a)-(c). As a
consequence, the upper bound on the optimal policy value from the iterated Bellman linear
program is equal to the upper bound from ALP (see §5.4.2 and §5.4.4 for a discussion of
the upper bounds from ALP and the iterated Bellman linear program). Thus, we identify a
likely parameter combination that must be avoided when using the iterated Bellman linear
program to improve the ALP upper bound on the optimal policy value.

5.6 Mixed Integer Programming ADP Methods for

Approximately Minimizing Greedy Policy Loss

The methods considered in §§5.4-5.5 attempt to minimize the value function approxima-
tion error (5.10). If the primary purpose of a value function approximation is to compute
a greedy policy, then attempting to find a value function approximation that minimizes
greedy policy loss (5.12) seems logical. In this subsection, we discuss the math program-
ming based ADP approach of Petrik (2012) that approximates this objective by minimizing
an upper bound on policy loss. To simplify our exposition we will choose state relevance
weights such that c0(y0) = 1 and ci(yi) = 0, ∀(i, yi)−(0). All the results below have their
respective counterparts when using general state relevance weights.

Let SA := ∪(i,yi)Ai(yi). We define the set of policies as Π := {π ∈ [0, 1]|SA| :∑
ai
π(ai|yi) = 1,∀(i, yi)}, where the notation πi(ai|yi) stresses that a policy in Π is repre-

sented using conditional probabilities of taking action ai given that we are in stage i and
state yi. This representation is different from the representation of a policy in DLP as a
set of discounted joint probabilities of visiting stage i and state yi and taking action ai.
Petrik (2012) constructs an upper bound on the policy loss using a lower bound ρ̃(π) on
the value of a policy ρ(π), that is, for an optimal policy π∗,

ρ(π∗)− ρ(π) ≤ ρ(π∗)− ρ̃(π).

The lower bound ρ̃(π) is defined as

ρ̃(π) = max
β

(Φ0β0)− max
w∈W̃ (π)

∑
(i,yi,ai)

wi(yi, ai) ((Φiβi)(yi)− ri(yi, ai)− δEi,yi,ai(Φi+1βi+1))

 ,

where W̃ (π) := {w ∈ R|SA||(5.20)-(5.22), wi(yi, ai) ≤ δiπi(ai|yi),∀(i, yi, ai)}. The set W̃ (π)
is a restriction of the DALP feasible set because it is defined using the DALP constraints
(5.20)-(5.22) and the additional constraints wi(yi, ai) ≤ δiπi(ai|yi),∀(i, yi, ai). For a deter-
ministic policy π these additional constraints ensure that wi(yi, ai) is non zero for a given
(i, yi) pair at precisely the action prescribed by π. This property will be critical for finding
a value function approximation that is greedy with respect to a deterministic policy.

In order to find the policy in Π that minimizes the upper bound ρ(π∗) − ρ̃(π) on the
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policy loss, Petrik (2012) solves the equivalent problem of maximizing ρ̃(π):

max
π∈Π

ρ̃(π). (5.77)

The primal version of the optimization problem (5.77) can be reformulated as the following
bilinear program:

max
β,d,π

(Φ0β0)−
∑
i

πᵀ
i di (5.78)

s.t. (ΦN−1βN−1)(yN−1) ≤ r(yN−1, aN−1) + dN−1(yN−1, aN−1),∀(yN−1, aN−1), (5.79)

(Φiβi)(yi) ≤ r(yi, ai) + δEi,yi,ai(Φi+1βi+1) + di(yi, ai),∀(i, yi, ai)−(N−1), (5.80)∑
ai

πi(yi|ai) = 1,∀(i, yi), (5.81)

0 ≤ πi(yi|ai) ≤ 1,∀(i, yi, ai). (5.82)

Solving this bilinear program returns both a policy and a value function approximation.
Petrik (2012) shows that there exists an optimal solution triple (π′, β′, d′) to (5.78)-(5.82)
such that π′ is the greedy policy induced by the value function approximation (Φβ′). More-
over, by optimality, it follows that β′ defines the value function approximation that induces
the greedy (hence deterministic) policy maximizing ρ̃(π), but not necessarily maximizing
ρ(π). This connection between the value function approximation and its greedy policy is
a result of the constraints wi(yi, ai) ≤ δiπi(ai|yi),∀(i, yi, ai) in W̃ (π) that make this set a
restriction of the DALP feasible set.

For computational purposes, Petrik (2012) reformulates this bilinear program as a
mixed integer linear program, which he refers to as the distributionally robust mixed inte-
ger program because it is based on a relaxation of the DLP state occupancy frequencies.
We abbreviate this mixed integer program as DRMIP. Given an upper bound τi(yi, ai) on
di(yi, ai), DRMIP is

max
β,d,π,z

(Φ0β0)−
∑

(i,yi,ai)

zi(yi, ai) (5.83)

s.t. zi(yi, ai) ≥ di(yi, ai)− τi(yi, ai)(1− πi(yi|ai)),∀(i, yi, ai), (5.84)

(ΦN−1βN−1)(yN−1) ≤ r(yN−1, aN−1) + dN−1(yN−1, aN−1),∀(yN−1, aN−1), (5.85)

(Φiβi)(yi) ≤ r(yi, ai) + δEi,yi,ai(Φi+1βi+1) + di(yi, ai),∀(i, yi, ai)−(N−1), (5.86)∑
ai

πi(yi|ai) = 1,∀(i, yi), (5.87)

πi(yi|ai) ∈ {0, 1},∀(i, yi, ai). (5.88)

DRMIP has a large number of variables and constraints. Specifically, it has |SA| binary
variables and 2|SA| +

∑
iBi free variables. Similar to the ALP relaxations discussed in

§5.4, using DRMIP in practice entails solving a sampled approximation. However, because
DRMIP has binary variables, solving these sampled versions of DRMIP is substantially
more challenging than solving sampled ALP relaxations.
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5.7 Mixed Integer Programming ADP Methods for

Exactly Minimizing Greedy Policy Loss

The DRMIP model discussed in §5.6 computes a value function approximation by mini-
mizing an upper bound on the greedy policy loss, but this value function approximation
may not minimize greedy policy loss. Motivated by this shortcoming, we propose a mixed
integer programming formulation that exactly minimizes greedy policy loss for a certain
class of structured SDPs. These SDPs have (i) each state at stage i partitioned into an
endogenous component ydi and an exogenous component yri ; and (ii) a deterministic stage
i endogenous state transition rule fi(y

d
i , ai) which maps state ydi and action ai to a unique

stage i + 1 state in Yi+1. These assumptions are satisfied by the applications studied in
Chapters 2-4, and other common energy real option applications

Our mixed integer program attempts to mimic the process of estimating the value of a
greedy policy πg(β) associated with the value function approximation (Φβ) via Monte Carlo
simulation (see §5.3 for a discussion of value function approximations and greedy policies).
We explain this estimation process before presenting our formulation. We first sample L
paths of the exogenous states yri over stages in set I \ {0}. Let yr,pi ,∀i−(0) denote the p-th
sample path. To estimate the policy value we require the following two quantities: (i) a
greedy action ap,i(β) taken at stage i and on sample path p, which can be computed using
(5.11), and (ii) the endogenous state ydp,i reached at stage i on sample path p as a result of
following greedy actions. Given the value function approximation weights βi,∀i−(0), these
two quantities can be computed using the following forward recursion:

1. Initialize ydp,0(β) = y0 and ap,0(β) = argmax
a0∈A0(y0)

r0(y0, a0) + δEy0,a0(Φ1β1) for all p;

2. For stages 1 to N − 1 do

(a)
ydp,i(β) = fi−1(ydp,i−1(β), ap,i−1(β)), ∀p, (5.89)

(b)

ap,i(β) ∈ argmax
ai∈Ai(ydp,i(β),yrp,i)

ri(y
d
p,i(β), yrp,i, ai) + δEydp,i(β),yrp,i,ai

(Φi+1βi+1),∀p. (5.90)

The triples (i, ydp,i(β), ai,p(β)), ∀i, define the trajectory through the endogenous-state and
action spaces taken by the greedy policy on sample path p. An estimate of the greedy policy
value can be obtained by averaging the discounted sum of rewards on the L trajectories:

(1/L)
∑
(p,i)

δiri(y
d
p,i(β), yrp,i, ap,i(β)). (5.91)

.
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The following mixed integer program finds the value function approximation that max-
imizes the greedy policy value estimate:

max
β,d,z

(1/L)
∑

(i,ydi ,y
r
p,i,ai)

δiri(y
d
i , y

r
p,i, ai)zi(y

d
i , y

r
p,i, ai) (5.92)

s.t. di(y
d
i , y

r
p,i, ai) = ri(y

d
i , y

r
p,i, ai) + Eydi ,yrp,i,ai(Φi+1βi+1), ∀(i, ydi , p, ai), (5.93)

di(y
d
i , y

r
p,i, ai)− di(ydi , yrp,i, a′i) ≥ (1− zi(ydi , yrp,i, ai))`i(ydi , yrp,i, ai, a′i),

∀(i, ydi , p, ai, a′i), a′i 6= ai, (5.94)∑
ydi ,ai

zi(y
d
i , y

r
p,i, ai) = 1, ∀(i, p), (5.95)

∑
ydi ,ai

f(ydi , ai)zi(y
d
i , y

r
p,i, ai) =

∑
ydi+1,ai+1

ydi+1zi+1(ydi+1, y
r
p,i, ai+1), ∀(i, p)−(N−1), (5.96)

zi(y
d
i , y

r
p,i, ai) ∈ {0, 1}, ∀(i, ydi , p, ai). (5.97)

This mixed integer program has three sets of variables: (i) the weights βi define the stage
i value function approximation; (ii) the binary variables zi track the endogenous states
visited and greedy actions taken along each sample path when following the greedy policy,
that is, zi(y

d
i , y

r
p,i, ai) equals 1, if ydi = ydp,i(β) and ai = ai,p(β), and zero otherwise; and

(iii) the variables di store the sum of the immediate reward and continuation value for the
stage-state-action triple (i, yi, ai). The parameter `i(y

d
i , y

r
p,i, ai, a

′
i) is a lower bound on the

difference di(y
d
i , y

r
p,i, ai) − di(ydi , yrp,i, a′i) and needs to be specified. Given the definition of

variables zi, the objective function (5.92) is analogous to (5.91). Constraints (5.93) enforce
the definition of the di variables. Constraints (5.94) ensure that zi(y

d
i , y

r
p,i, ai) equals 1 for

an action that is greedy with respect to the value function approximation, that is, they
mimic (5.90). Constraints (5.95) ensure that a single state-action pair is selected at stage
i along the p-th sample path starting from x0. Constraints (5.96) ensure that the state
transition law fi(y

d
i , ai) is enforced, that is, they model conditions (5.89).

Denoting the sampled version of the set SA by ŜA, the mixed integer program (5.92)-
(5.97) has |ŜA| binary variables and |ŜA| +

∑
iBi free variables. When compared to

DRMIP, our formulation has the same number of binary variables but fewer free variables.
Nevertheless, (5.92)-(5.97) has a large number of binary variables and constraints. Table
5.1 reports the number of variables and constraints in (5.92)-(5.97) when representing 6-
month truncations of the twelve 24-month natural gas storage instances of §3.7.2 and using
a modest 400 sample paths, that is, L = 400 (see §3.7.2 for details of these instances). The
number of binary variables and constraints ranges are between 150,000-800,000 and 1.9-14.5
million, respectively.

Given the large size of the mixed integer program (5.92)-(5.97), it is unreasonable to
expect its performance to be competitive with the LSMV method of Chapter 3, which
computes value function approximations in under 2 seconds and estimates tight lower
bounds on both the 6 and 24-stage instances (we independently verified the optimality of
the LSMV lower bound estimates on the 6 stage instances). However, because our mixed
integer program guarantees a value function approximation that maximizes the policy
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Table 5.1: Number of variables and constraints in (5.92)-(5.97)

Capacity Binary Variables Free Variables Constraints
High 226,404 227,538 1,989,617

Medium 158,404 159,394 1,248,017
Low 786,410 788,600 14,322,501

value (that is, the lower bound estimate) it can potentially serve as a benchmark for ADP
algorithms in the literature, including LSMV, which lack this guarantee. To understand the
viability of our mixed integer program for this purpose, we check if it can prove the known
near optimality of the LSMV value function approximation on these 6-month instances.

To solve the mixed integer program (5.92)-(5.97) we need to choose the number of
sample paths L and the lower bound parameter `i(y

d
i , y

r
p,i, ai, a

′
i) in constraints (5.94). We

define an in-sample lower bound estimate as one that is obtained on the L sample paths
used for computing a value function approximation. Because the objective function (5.92)
of our mixed integer program is an in-sample estimate of the greedy lower bound, its
optimal objective function value provides a reliable proof of optimality only when this in-
sample estimate has small standard error. Thus, our choice of L should ideally result in
the LSMV in-sample lower bound estimate having a small standard error. For our choice
of L equals 400, the standard error of the LSMV in-sample lower bound estimate ranges
between 7-12% of the tight LSMV dual upper bound estimate. This standard error range
is not small but, as we will see shortly, the mixed integer program for this value of L is
already very challenging to solve. We choose `i(y

d
i , y

r
p,i, ai, a

′
i) as follows:

di(y
d
i , y

r
p,i, ai)− di(ydi , yrp,i, a′i) =ri(y

d
i , y

r
p,i, ai)− ri(ydi , yrp,i, a′i)

+ Eydp,i(β),yrp,i,ai
(Φi+1βi+1)− Eydp,i(β),yrp,i,a

′
i
(Φi+1βi+1)

≥ ri(y
d
i , y

r
p,i, ai)− V UB

i (yi) (5.98)

= `i(y
d
i , y

r
p,i, ai, a

′
i),

where we obtain (5.98) by assuming that Eydp,i(β),yrp,i,ai
(Φi+1βi+1) ≥ 0 (the exact value

function is nonnegative) and replacing ri(y
d
i , y

r
p,i, a

′
i) + Eydp,i(β),yrp,i,a

′
i
(Φi+1βi+1) by an upper

bound V UB
i (yi) on the exact value function at stage i and state yi. We set V UB

i (yi) equal
to the discounted sum of rewards from selling up to the withdrawal capacity at each stage
at the maximum spot price over all L sample paths, but other upper bounds on the exact
value function could also be used.

For our computational experiments we use the Gurobi 5.0 (Gurobi Optimization, 2012)
solver with up to 12 threads on a 64 bits PowerEdge R515 with twelve AMD Opteron 4176
2.4GHz processors with 64GB of memory, the Linux Fedora 17 operating system, and the
gcc version 4.7.2 20120921 (Red Hat 4.7.2-2) compiler. We attempt to solve the twelve
6-month natural gas storage instances under default Gurobi settings and using the LSMV
value function approximation as a warm start solution. We set a time limit of 48 hours.
Gurobi failed to solve all the instances under these default settings. In particular, it was
unable to solve the linear relaxation at the root node on all instances. Therefore, we tried
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changing the root node solver from its default choice of barrier to dual simplex. This change
was useful. Gurobi solved the root node relaxation in five out of the twelve instances by
taking between 11 and 16 hours, but once again failed to prove optimality in all cases.
Although some root node relaxations were solved, Gurobi reported numerical difficulties
and changed to quadratic precision on all the instances. To address this numerical issue, we
cleaned the coefficients of the mixed integer program to avoid values very close to zero and
restrict all coefficients to have at most four decimal places. With this change, Gurobi solved
the root node relaxation after roughly 1-10 hours for all the instances and also continued
to solved the mixed integer program and prove the optimality of the LSMV value function
approximation for five out of the twelve instances in 3-16 hours. The in-sample lower bound
from the mixed integer program value function approximation was 0.5% larger than the
LSMV in-sample lower bound estimate on three out of these five instances. The optimality
gap of the unsolved instances ranged from 28% to 94%.

Our results show that the mixed integer program (5.92)-(5.97) proves the optimality of
the LSMV value function approximation on roughly 42% of the instances that we consid-
ered, but remains quite challenging to solve for the remaining instances. This motivates
future research into tighter formulations and/or more advanced solution techniques such
as row or column generation.

5.8 Conclusions

In this chapter, we review some recent ADP methods for solving high dimensional fi-
nite horizon and discrete time SDPs arising in energy real options applications. Mini-
mizing value function approximation error is a common objective for an LSM method,
constrained-based and multiplier based ALP relaxations, the smoothed ALP, and the it-
erated Bellman linear program. We unify these ADP methods by deriving them as ALP
relaxations obtained by restricting the ALP dual. The dual restrictions we use for uni-
fication are different strategies for avoiding the set of ALP dual optimal solutions from
potentially under-exploring the state space. Our unification results identify an underlying
thread among different ALP relaxations and the considered LSM method. We also review
the distributionally robust ADP approach for heuristically minimizing greedy policy loss.
Motivated by this method, we develop a mixed integer program that exactly minimizes
policy loss for a certain class of structured SDPs arising in energy real options applica-
tions. We perform computational experiments on small natural gas storage instances and
find that our mixed integer program is still challenging to solve, but is able to prove the
known near optimality of the considered LSM value function approximation on some small
instances. These results motivates further research into advanced solution techniques.
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Chapter 6

Conclusions

The merchant operations of commodity and energy conversion assets is an important area
of business applications that give rise to intractable MDPs, especially when using common
practice-based price evolution models. This thesis leveraged tools from operations research
and financial engineering to design novel ADP methods based on ALP relaxations, LSM,
and mixed integer programming for approximating these MDPs. We provided theoretical
support for the performance of some of these ADP methods. We benchmarked our ADP
methods on realistic instances of existing and new applications, such as natural gas storage,
crude oil swing options, and natural gas pipeline systems. Our methods were either com-
petitive with or outperformed state-of-the-art techniques used in practice and academia,
such as the rolling intrinsic approach and existing LSM variants. We also used an ALP
relaxation perspective to unify different ADP methods.

Overall, our findings highlight the role of a math programing ADP approach for man-
aging commodity and energy conversion assets. Although we focus on these assets, the
techniques in this thesis have potential broader relevance for solving MDPs in other appli-
cation contexts, such as inventory control with demand forecast updates, multiple sourcing,
and optimal medical treatment design.

In §6.1, we summarize the insights gained from this thesis. In §6.2, we discuss directions
for future research.

6.1 Summary of Insights

At a high level, this thesis explored the question of whether a financial engineering or math
programming ADP approach should be used for approximating the value (continuation)
function of SDPs with large exogenous state spaces. Such SDPs arise in the merchant
operations of commodity and energy conversion assets. The financial engineering literature
has a long history of approximating SDPs with large exogenous state spaces but small
endogenous state spaces. The standard approach in this literature is LSM. In contrast, the
operations research literature has focused on approximating SDPs with large endogenous
state spaces but small exogenous state spaces. ALP is a popular operations research ADP
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approach. We thus studied the LSM and ALP approaches for shedding light on the above
question.

We identified that ALP may perform poorly when approximating the value function
of SDPs, especially with large exogenous state spaces. We prescribed ALP relaxations as
a way of overcoming this issue. Different from the recent work on ALP relaxations, our
key observation was about the importance of correcting inconsistencies in the ALP dual
to derive effective ALP relaxations. This led to our main result, a general ALP relaxation
framework. We used this framework to derive effective ALP relaxations that delivered
near optimal policies and tight lower and upper bounds on realistic natural gas storage
instances. In addition, our best ALP relaxation was competitive with the standard LSM
approach for lower bound estimation but computationally better suited for upper bound
estimation.

Our next contribution was to overcome this upper bounding deficiency in the standard
LSM approach, and a related issue with a recent LSM variant. By developing a new LSM
variant, LSMV, we showed that upper bounds can be estimated efficiently by combining
value function approximations with term structure price models, which are popular both
in practice and academia for modeling commodity price evolution. LSMV was between
one and three orders of magnitude faster than existing LSM variants for estimating upper
bounds on the market value of realistic natural gas storage and crude oil swing option
instances. Moreover, LSMV outperformed our best ALP relaxation model in both quality
of the estimated lower and upper bounds and computational time.

The above findings suggests the use of LSMV over ALP relaxations. Interestingly, we
showed that these seemingly different approaches are closely related. Specifically, our ALP
relaxation framework based on correcting the ALP dual subsumes LSMV, as well as the
existing ALP relaxations in the literature. Thus, the excellent performance of LSMV in
fact supports the use of our ALP relaxation framework, even though LSMV has appealing
computational behavior.

Although our ALP relaxations, including LSMV, are effective, they do not find a value
function approximation that maximizes the greedy policy value (lower bound) estimate.
To the best of our knowledge, other methods in the literature also handle this objective
heuristically. This is a modeling drawback. We showed that a mixed integer program can
be formulated to exactly handle this objective for a class of structured SDPs. Our mixed
integer program is challenging to solve and motivates further research into reformulations
and advanced solution techniques.

We also applied ADP to the novel application of jointly managing storage and transport
assets in a pipeline system; the current literature studies these assets in isolation. We lever-
aged structural analysis to extend LSMV to compute near optimal operating policies and
tight lower and upper bounds on realistic instances created in collaboration with a major
natural gas trading company. We found that on these instances (i) the joint, rather than
decoupled, merchant management of storage and transport assets has substantial value;
(ii) this management can be nearly optimally simplified by prioritizing storage relative to
transport, despite the considerable substitutability between these activities; (iii) the value
due to price uncertainty is large but can be almost entirely captured by sequentially reop-
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timizing a deterministic version of our MDP, an approach included in existing commercial
software; and (iv) the value of transport trading across different pipelines is substantial.

Overall, our findings indicate that math programing provides a general framework for
thinking about ADP methods for approximately solving SDPs with large exogenous state
spaces. In particular, this approach subsumes LSM methods, which, however, based on
our computational experiments appear to be the most effective methods for solving these
SDPs.

6.2 Future Research Directions

The results in this thesis suggest several methodological and theoretical directions for
future research and one application extension. We discuss them below.

Exploring the ALP relaxation framework of Chapter 2 from an upper bounding per-
spective is yet to be done. To this end, the multiplier-based ALP relaxations discussed in
Appendix A.1 are appealing as they provide an upper bound on the optimal policy value
that is no worse than the ALP upper bound, which has been used in the literature (see the
discussion in §1.3.3). It would be interesting to quantify the upper bound improvement
from using multiplier-based ALP relaxations instead of ALP. Theoretical bounds on the
value function approximation error of these relaxations would further support their use.

Another research question related to ALP relaxations is the possibility of constructing
them in an automated fashion. The ALP relaxations in this thesis were derived by adding
pre-specified sets of constraints to the ALP dual. Instead, it may be possible to design
an algorithm for adding constraints to the ALP dual in an adaptive manner by analyzing
the current value function approximation obtained in a given iteration. Such an approach
would provide greater flexibility when applying ALP relaxations.

As discussed in §5.7, additional research is also required to efficiently solve the mixed
integer program (5.92)-(5.97). This could involve applying advanced solution techniques
and exploring alternate reformulations.

The excellent performance of LSMV in our numerical experiments motivates studying
this approach in more detail. Extending the applicability of LSMV to a broader class of
price models that include features such as jumps and negative prices observed in electricity
markets is practically useful. From a theoretical perspective, it would be interesting to
investigate if LSMV is the best method that can be derived from the ALP relaxation
(5.51)-(5.53), which we used to unify LSMV and the constraint-based ALP relaxations.
Answering this question may also shed light on ways to further improve LSMV.

A broader methodological question relates to the selection of an approximation archi-
tecture for constructing value function approximations. Currently this selection is appli-
cation specific. More research into automating this selection would reduce the barrier to
apply ADP. For example, when representing a value function approximation as a linear
combination of basis functions, we would want to automate the choice of basis functions.
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Finally, the merchant management of a single storage asset in a natural gas pipeline
system (see Chapter 4) could be extended to the case of several storage assets. It would be
interesting to characterize the optimal storage policy structure in this setting and develop
ADP methods for computing near optimal policies and estimating lower and upper bounds
on the optimal policy value.
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Appendix A

Additional Material for Chapter 2

A.1 Multiplier-based ALP Relaxations

This appendix discusses a model that belongs to a class of ALP relaxations that limits the
amount by which an ALP is relaxed using objective function multipliers that weigh the
variables that relax the ALP constraints. Hence, we label the ALP relaxations in this class
as multiplier-based ALP relaxations. We propose derive a multiplier-based ALP relaxation
by adding constraints to DALP that match the discounted first, second, and cross moments
of the futures prices in every stage conditional on F0. We refer to this ALP relaxations as
MMR, where MM and R abbreviate moment matching and relaxation, respectively.

Every feasible DALP solution induces a discounted probability mass function on the
feasible state and action spaces. Given a feasible solution w to DALP corresponding to
ALP (2.26)-(2.28), the discounted probability of the stage i price pair (si, Fi,i+1) under this
probability mass function is thus

∑
(xi,ai)

wi(xi, si, Fi,i+1, ai). Recalling that si ≡ Fi,i, define

{si, Fi,i+1} \ {Fi,j} as Fi,i+1 if j = i + 1, si if j = i, and {si, Fi,i+1} otherwise. We restrict
DALP by using the following three sets of discounted moment matching constraints:∑

Fi,j

Fi,j
∑

{si,Fi,i+1}\{Fi,j}

∑
(xi,ai)

wi(xi, si, Fi,i+1, ai) = δiE[Fi,j|F0,j], ∀i, j ∈ {i, i+ 1},

∑
Fi,j

F 2
i,j

∑
{si,Fi,i+1}\{Fi,j}

∑
(xi,ai)

wi(xi, si, Fi,i+1, ai) = δiE[F 2
i,j|F0,j], ∀i, j ∈ {i, i+ 1},

∑
(si,Fi,i+1)

siFi,i+1

∑
(xi,ai)

wi(xi, si, Fi,i+1, ai) = δiE[siFi,i+1|F0,i, F0,i+1], ∀i.

We denote by dfi,j, d
s
i,j, and dci the dual variables corresponding to the constraints

enforcing the first (f), second (s), and cross (c) discounted moments of the futures prices,
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respectively, conditional on F0. MMR is

min
φ
φ0(x0, s0) +

∑
i

δi

 ∑
j∈{i,i+1}

(E[Fi,j|F0,j]d
f
i,j + E[F 2

i,j|F0,j]d
s
i,j) + E[siFi,i+1|F0,i, F0,i+1]dci


s.t. φN(xN , sN) = 0,∀xN ,

φi(xi, si) +
∑

j∈{i,i+1}

Fi,jd
f
i,j +

∑
j∈{i,i+1}

F 2
i,jd

s
i,j + siFi,i+1d

c
i ≥

r(ai, si) + δE [φi+1(xi − ai, si+1)|Fi,i+1] ,∀(i, xi, si, Fi,i+1, ai).

The second entry in the MMR objective function is the sum of the discounted expectations
of the terms

∑
j∈{i,i+1} Fi,jd

f
i,j,
∑

j∈{i,i+1} F
2
i,jd

s
i,j, and siFi,i+1d

c
i that appear in the second set

of MMR constraints. The presence of the sum of these terms in these constraints precludes
the maximization over Fi,i+1 that is implicit in the ALP (2.26)-(2.28) from occurring in
MMR.

The constraints added to DALP to derive MMR are implied by constraints (2.22), which
match the probability mass function of the forward curve at each stage. In other words,
(i) the restricted DALP feasible solutions are a subset of the DALP feasible solutions, and
(ii) constraints (2.22) are violated by solutions that are in the DALP feasible set but not
in the restricted DALP feasible set. Thus, more solutions in the restricted DALP feasible
set satisfy constraints (2.22) than do solutions in the DALP feasible set. Moreover, as
discussed at the beginning of §2.5.1, the implied nature of the constraints that restrict
DALP ensures that the optimal objective function value of MMR, zMMR, is a no weaker
upper bound on the DDP value function at the initial stage and state than the ADP0
upper bound: V D

0 (x0, F0) ≤ zMMR ≤ φADP0
0 (x0, s0).

We now briefly discuss the numerical performance of MMR applied to the instances used
in §2.8 under the same computational setup. We formulate MMR using discretized price
sets obtained in the same manner discussed in §2.7. Thus, the computational complexity
of solving MMR using an interior point method is O(N2.5 ·(m′ · |X |)3.5 +L ·(N ·m′ · |X |)0.5),
where L is the number of bits required to store the input data (see §3 in Wright 1997
for details). This computational complexity is more onerous than the one associated with
ADP2. The computational complexity of estimating lower and upper bounds using the
MMR-based value function approximation can be read on the first row of Table 2.2.

Across all instances, the MMR-based upper bound estimates are between 1.50% and
12.86% larger than the worst upper bound estimates obtained with SDAP, ADP1, and
ADP2. The MMR optimal objective function value is not competitive with UB2, being
between 1.4 and 6 times larger than UB2, but it is at least 100 times smaller than the
ADP0 optimal objective function value.

The MMR-based lower bound estimates are between 1.51% and 17.95% smaller than
the worst lower bound estimates obtained with SADP, ADP1, and ADP2 across all the
considered instances. Reoptimizing MMR yields better lower bounds, which are however,
weaker than the other reoptimization based lower bounds, with optimality gaps ranging
between 0.90% and 6.27% of UB2.
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We now compare the CPU times required to estimate lower and upper bounds using
MMR against the analogous CPU time requirements of SADP and ADP1, which also
compute a value function approximation that depends at each stage on the inventory level
and the spot price. We use Gurobi 5.0 (Gurobi Optimization, 2012) with a single thread
for solving MMR. The CPU seconds required to solve MMR ranges from 2,444 to 9,546.
Thus, solving MMR is at least 20 and 20,000 times slower than solving SADP and ADP1,
respectively. The MMR overall CPU seconds, that is, also including the time required for
bound estimation, vary from 2,457 to 9,601. Thus, using MMR is at least 7 and 140 times
slower than using SADP and ADP1, respectively. The CPU seconds to estimate the MMR
reoptimized lower bounds vary between 39,164 and 41,695, which are larger than the times
required to estimate the other reoptimization based lower bounds by at least a factor of
30.

A.2 Proofs

Proof of Proposition 1. Suppose Assumption 2 is true. We proceed by induction to prove
(2.19). The result is clearly true at stage 0. Suppose the result is also true for all stages
1, . . . , i− 1. At stage i, for a given (i, xi) the DALP constraint (2.15) corresponding to the
first basis function, that is, b = 1, is∑
(Fi,ai)

wi(xi, Fi, ai) = δ
∑
Fi−1

∑
Fi

Pr(Fi|Fi−1)︸ ︷︷ ︸
=1

∑
(xi−1,ai−1)

1(xi−1 − ai−1 = xi)wi−1(xi−1, Fi−1, ai−1).

Summing over xi on both sides of this constraint and simplifying gives∑
(xi,Fi,ai)

wi(xi, Fi, ai) = δ
∑

(xi−1,Fi−1,ai−1)

∑
xi

1(xi−1 − ai−1 = xi)wi−1(xi−1, Fi−1, ai−1)

= δ
∑

(xi−1,Fi−1,ai−1)

wi−1(xi−1, Fi−1, ai−1) = δi,

where the last equality follows from the induction hypothesis. Condition (2.19) is thus
true for stage i. The condition holds for all the stages by the principle of mathematical
induction.

We proceed by contradiction to prove (2.20). Suppose there exists an optimal solution
w∗ to DALP and a forward curve F̄i 6∈ F=

i (β∗) such that
∑

(xi,ai)
w∗i (xi, F̄i, ai) > 0. This

implies that there exists at least one pair (x̄i, āi) such that w∗i (x̄i, F̄i, āi) > 0. Since (2.16)
and (2.19) imply that the feasible set of DALP is bounded, we can write w∗ =

∑
j∈J λjw

j,

where
∑

j∈J λj = 1, λ ≥ 0, J is the index set for the set of basic feasible solutions, and wj

is the j-th basic solution. The optimality of w∗ implies that every wj such that λj > 0 must
also be a basic optimal solution. Further, the inequality w∗i (x̄i, F̄i, āi) > 0 implies that there
must be at least one basic optimal solution wj such that wji (x̄i, F̄i, āi) > 0. It follows from
complementary slackness that the primal constraint corresponding to (i, x̄i, F̄i, āi) holds as

137



an equality, which contradicts F̄i 6∈ F=
i (β∗).

Proof of Proposition 2. Suppose there exists a DDP optimal policy and a DALP optimal
solution that satisfy (2.18). This implies that the DLP and DALP optimal objective
function values match. As discussed in §2.3, DALP is a relaxation of DLP. Hence, ev-
ery optimal solution of DLP is also optimal for DALP. Let w∗ be the basic DALP op-
timal solution that corresponds to the deterministic DDP optimal policy π∗. Since π∗

is deterministic it can be equivalently represented by the set of stage-state-action tuples
K := {(i, xi, Fi, ai) : w∗i (xi, Fi, ai) > 0}. By complementary slackness, the ALP constraints
corresponding to tuples in K hold as equalities. Hence, for the stage-state-action tuple
(i, xi, Fi, ai) ∈ K the action ai is greedy optimal at stage i and state (xi, Fi) with respect
to the value function approximation corresponding to β∗. Therefore, starting from state
(x0, F0) in stage 0, at each visited state in each stage we can choose an action that is greedy
optimal relative to the value function approximation given by β∗ such that the encountered
stage-state-action tuples belong to K. Hence, it holds that π∗ ∈ Πg(β∗).

Proof of Proposition 3. The constraints (2.27)-(2.28) can be equivalently rewritten as

φN−1(xN−1, sN−1) ≥ max
aN−1

r(aN−1, sN−1),∀(xN−1, sN−1), (A.1)

φi(xi, si) ≥ max
Fi,i+1

{
max
ai

r(ai, si) + δE [φi+1(xi − ai, si+1)|Fi,i+1]

}
,

∀(i, xi, si)−(N−1). (A.2)

These inequalities hold as equalities when evaluated using φADP0. Moreover, (i) the variable
φN−1(xN−1, sN−1) appears on the left hand side of inequalities (A.1) is multiplied by positive
coefficients; and (ii) the variable φi(xi, si) is multiplied by positive coefficients on both the
left hand sides of the inequalities (A.2) corresponding to (i, xi, si) and the right hand
sides of the inequalities (A.2) corresponding to stage i−1. Therefore, a feasible solution of
(2.26)-(2.28) for which the constraints (A.1)-(A.2) do not hold as equalities has an objective
function value greater than or equal to φADP0

0 (x0, s0). Hence, φADP0 is an optimal solution
of (2.26)-(2.28).

Proof of Proposition 4. The constraints (2.36) provide lower bounds on the di(xi, si, Fi,i+1)
variables. Substituting this lower bound in (2.37) yields the following inequalities

φi(xi, si) ≥
∑
Fi,i+1

p(Fi,i+1|si, F0)

[
max
ai

r(ai, si) + δE [φi+1(xi − ai, si+1)|Fi,i+1]

]
,∀(i, xi, si).

The solution (φp, dp) is feasible to (2.34)-(2.37) and makes these inequalities hold as equal-
ities. The rest of the proof is analogous to the proof of Proposition 3.

Proof of Proposition 5. (a) Summing both sides of (2.33) over xi with p(Fi,i+1|si, F0) =
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Pr(Fi,i+1|si, F0,i+1) gives∑
(xi,ai)

wi(xi, si, Fi,i+1, ai) = Pr(Fi,i+1|si, F0)
∑

xi
θi(xi, si),∀(i, si, Fi,i+1). (A.3)

Comparing the right hand sides of (A.3) and (2.43) shows that it suffices to prove that
the equality

∑
xi
θi(xi, si) = δiPri(si, F0) holds for each stage i and spot price si and for

every feasible solution to the dual of ALP (2.26)-(2.28). We proceed by induction. This
equality holds at stage 0 by (2.13) and (2.33). Suppose this equality is also true for stages 0
through i−1. Consider stage i. When using the look-up table value function approximation
φi(xi, si), constraints (2.15) can be written as∑

(Fi,i+1,ai)

wi(xi, si, Fi,i+1, ai) =

δ
∑

(si−1,Fi−1,i)

Pr(si|Fi−1,i)
∑

(xi−1,ai−1)

1(xi−1 − ai−1 = xi)wi−1(xi−1, si−1, Fi−1,i, ai−1),

∀(i, xi, si)−(0).

Summing over xi on both sides of these constraints and simplifying gives∑
(xi,Fi,i+1,ai)

wi(xi, si, Fi,i+1, ai) =

δ
∑

(si−1,Fi−1,i)

Pr(si|Fi−1,i)
∑

(xi−1,ai−1)

wi−1(xi−1, si−1, Fi−1,i, ai−1). (A.4)

Replacing the terms
∑

ai
wi(xi, si, Fi,i+1, ai) and

∑
ai−1

wi−1(xi−1, si−1, Fi−1,i, ai−1) in (A.4)

using (2.33) and simplifying the resulting equality yields

∑
xi

θi(xi, si) = δ
∑
si−1

∑
Fi−1,i

Pr(si|Fi−1,i)Pr(Fi−1,i|si−1, F0,i)

∑
xi−1

θi−1(xi−1, si−1)

= δ
∑
si−1

Pr(si|si−1, F0,i)
∑

xi−1
θi−1(xi−1, si−1)

= δ
∑
si−1

Pr(si|si−1, F0,i)δ
i−1Pr(si−1, F0) = δi Pr(si, F0),

where the third equality follows from our induction hypothesis:
∑

xi−1
θi−1(xi−1, si−1) =

δi−1Pr(si−1, F0). Therefore, the stated claim holds for all the stages by the principle of
mathematical induction.

(b) Summing over xi on both sides of (2.33) with p(Fi,i+1|si, F0) = 1(Fi,i+1 = E[Fi,i+1|si, F0,i+1])
yields

∑
(xi,ai)

wi(xi, si, Fi,i+1, ai) = 1(Fi,i+1 = E[Fi,i+1|si, F0,i+1])
∑

xi
θi(xi, si). Summing

over (xi, Fi,i+1) on both sides of (2.33) gives
∑

(xi,Fi,i+1,ai)
wi(xi, si, Fi,i+1, ai) =

∑
xi
θi(xi, si).
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Therefore, it follows that

∑
Fi,i+1

Fi,i+1

( ∑
(xi,ai)

wi(xi, si, Fi,i+1, ai)∑
(xi,Fi,i+1,ai)

wi(xi, si, Fi,i+1, ai)

)
= E[Fi,i+1|si, F0,i+1].

Proof of Proposition 6. (i) Define (·)+ := max(0, ·). It holds that φADP0
N−1 (xN−1, sN−1) =

(αW sN−1 − cW )+xN−1 for all xN−1 ∈ X and sN−1 ∈ R+, since φADP0
N (xN , sN) ≡ 0 for all

xN ∈ X . At stage N − 2 for xN−2 ∈ X \ {0} we have

φADP0
N−2 (xN−2, sN−2) = sup

FN−2,N−1∈R+

{
max

a∈A(xN−2)
r(a, sN−2)

+δE
[
φADP0
N−1 (xN−2 − a, sN−1)|FN−2,N−1

]}
= sup

FN−2,N−1∈R+

{
max

a∈A(xN−2)
r(a, sN−2)

+αW δ(xN−2 − a)E

[(
sN−1 −

cW

αW

)+

|FN−2,N−1

]}

≥ αW δxN−2 sup
FN−2,N−1∈R+

E

[(
sN−1 −

cW

αW

)+

|FN−2,N−1

]
,

where we obtain the inequality by noting that the do-nothing decision is feasible and

from r(0, sN−2) = 0. The term E
[(
sN−1 − cWαW

)+ |FN−2,N−1

]
is an increasing func-

tion of FN−2,N−1 under the assumption that the conditional distribution of sN−1 given
FN−2,N−1 is stochastically increasing in FN−2,N−1 (Topkis 1998, Corollary 3.9.1 (a)). It
follows that φADP0

N−2 (xN−2, sN−2) = ∞, for all xN−2 ∈ X \ {0} and sN−2 ∈ R+. To show
that φADP0

N−2 (0, sN−2) = ∞ we use a similar argument with the feasible action equal to CI

instead of 0. It follows that φADP0
i (xi, si) is also equal to infinity for all i ∈ I, xi ∈ X , and

siR+.

(ii) The proof for this part is similar to the proof of part (i).

(iii) We have 0 ≤ Vi(xi, Fi) ≤ x̄E
[(∑N−1

j=i δ
j−isj

)∣∣∣Fi] = x̄
(∑N−1

j=i δ
j−iFij

)
, since the

first inequality holds because doing nothing at every stage and state is a feasible policy
with zero value; the second inequality is true because the stage i value of selling x̄ at every
stage without incurring the withdrawal loss and marginal cost provides a trivial upper
bound on the stage i optimal value function; and the equality follows from the property
that E[sj|Fi] is equal to Fi,j under a risk neutral measure (Shreve, 2004, page 244). It
can be shown in an analogous manner that the value functions of the ADPs in set L are
bounded. We omit these derivations for brevity.

We use Lemma 4 to derive inequality (2.47).
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Lemma 4. Let the functions f and g be defined on a finite set Z. It holds that |maxz∈Z f(z)−
maxz∈Z g(z)| ≤ maxz∈Z |f(z)− g(z)|.

Proof. Let z1 ∈ argmaxz∈Z f(z) and z2 ∈ argmaxz∈Z g(z). It holds that f(z1) − g(z2) ≤
f(z1) − g(z1) ≤ maxz∈Z{f(z) − g(z)} ≤ maxz∈Z |f(z) − g(z)|. Following the same steps
starting from g(z2)− f(z1) yields g(z2)− f(z1) ≤ maxz∈Z |f(z)− g(z)|.

Derivation of Inequality (2.47). Consider ADP1. To prove the claimed bound it suffices
to prove that

|Vi(xi, Fi)− φADP1
i (xi, si)| ≤ γADP1

i (xi, Fi), (A.5)

holds for all (i, xi, Fi), because γADP1
i (xi, Fi) ≥ 0. We establish (A.5) by induction on the

number of stages. Inequality (A.5) holds as an equality at stage N − 1 with both sides
equal to zero. Make the induction hypothesis that this inequality also holds for stages
i+ 1, . . . , N − 2. At stage i we have

|Vi(xi, Fi)− φADP1
i (xi, si)| ≤ |Vi(xi, Fi)− φADP1,V

i (xi, si)|
+ |φADP1,V

i (xi, si)− φADP1
i (xi, si)|. (A.6)

We bound |φADP1,V
i (xi, si)− φADP1

i (xi, si)| as

|φADP1,V
i (xi, si)− φADP1

i (xi, si)| = |max
ai

r(ai, si) + δE[Vi+1(xi − ai, Fi+1)|F̄ ′i (si, F0)]

−max
ai

r(ai, si) + δE[φADP1
i+1 (xi − ai, si+1)|F̄ ′i (si, F0)]|

≤ δmax
ai
|E[Vi+1(xi − ai, Fi+1)

− φADP1
i+1 (xi − ai, si+1)|F̄ ′i (si, F0)]|

≤ δmax
xi+1

E[|Vi+1(xi+1, Fi+1)− φADP1
i+1 (xi+1, si+1)||F̄ ′i (si, F0)]

≤ δmax
xi+1

E[γADP1
i+1 (xi+1, Fi+1)|F̄ ′i (si, F0)], (A.7)

where the first inequality follows from Lemma 4, the second from the modulus inequality
(Resnick, 1999, page 128) and xi − ai ∈ X , and the third from the induction hypothesis.
Using (A.6) and (A.7) and γADP1

i (xi, Fi) yields |Vi(xi, Fi)− φADP1
i (xi, si)| ≤ γADP1

i (xi, Fi).
The validity of inequality (A.5) in all other stages follows from the principle of mathematical
induction. The proofs of the bounds for the remaining ADPs are similar and are omitted
for brevity.

We use Lemmas 5-7 in the proof of Proposition 7. We define ρi := {ρi,j, j > i} and use
the vector expressions ρi = 1 and ρi → 1 instead of ρi,j = 1,∀j > i and ρi,j → 1,∀j > i,
respectively, where 1 is a compatible vector of all ones in each case. For i > j, let F̄ ′i (si, Fj)
be shorthand notation for expectation E [F ′i |si, Fj], where the stage i futures price vector
F ′i is the random variable and the conditioning information is the stage i spot price and
the stage j forward curve. Similarly, we denote expectation E

[
F ′i |si, F̄ ′i−1(si−1, F0)

]
by
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F̄ ′i (si, si−1, F0). Building on this notation, we use F̄
′(ρi=1)
i (si, Fj) and F̄

′(ρi=1)
i (si, si−1, F0)

to denote the limits limρi→1 E [F ′i |si, Fj] and limρi→1 E
[
F ′i |si, F̄ ′i−1(si−1, F0)

]
, respectively.

Lemma 5. Under price model (2.4)-(2.5):

(a) The function Vi(xi, ·) is continuous. Given i and xi, the random variable Vi(xi, Fi)
is uniformly integrable;

(b) Given si and Fj, i > j, F ′i converges in distribution to the constant F̄
′(ρi=1)
i (si, Fj)

when ρi → 1;

(c) Given si and F̄ ′i−1(si−1, F0), F ′i converges in distribution to the constant F̄
′(ρi=1)
i (si, si−1, F0)

when ρi → 1;

(d) Given si and F̄ ′i−1(si−1, F0), the constant F̄
′(ρi=1)
i (si, si−1, F0) converges to the con-

stant F̄
′(ρi=1)
i (si, F0) as ρi−1 → 1;

(e) Given si and F̄ ′i−1(si−1, F0), F̄ ′i (si, F0) converges in distribution to the constant F̄
′(ρi=1)
i (si, F0)

as ρi → 1.

Proof. (a) The continuity of Vi(xi, ·) follows from Proposition 5 in Secomandi et al. (2012).
The uniform integrability of Vi(xi, Fi) holds by part (iii) of Proposition 6 and the fact that
futures prices are uniformly integrable under price model (2.4)-(2.5) (see the dominated
families criterion in Resnick 1999, page 183).

(b)-(e) In each case, pick an element of the random vector. This random variable is
lognormal with mean and variance that are functions of the volatilities and instantaneous
correlations of price model (2.4)-(2.5). In the limit, it can be easily verified that the
variance function tends to zero and the mean function tends to its respective claimed
constant. Thus, we have convergence in distribution (see Resnick 1999, page 249).

Lemma 6. Let f(·) be a real valued and continuous function and Xn a sequence of
uniformly integrable random vectors. Suppose that the random variable f(Xn) is uni-
formly integrable and limn→∞Xn converges in distribution to the constant vector X̄. Then,
limn→∞ E[|f(Xn)− f(X̄)|] = 0.

Proof. Because convergence in distribution to a constant implies convergence in probability
(see Proposition 8.5.2 in Resnick 1999), we have that limn→n̄Xn converges in probability
to the constant vector X̄. Using this result and the continuity of f , it follows from part (ii)
of Corollary 6.3.1 in Resnick (1999) that f(Xn) converges in probability to the constant
f(X̄). This result and the uniform integrability of f(Xn) allows us to use Theorem 6.6.1
in Resnick (1999) to prove the claimed result.

Lemma 7 holds by the properties of (multivariate) lognormal random variables.
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Lemma 7. Under price model (2.4)-(2.5), it holds for j > i > k that

F̄i,j(si, Fk) = Fk,j

(
si
Fk,i

) ρi,jσj
σi

exp

(
ρi,jσj(i− k)∆t

2
(σi − ρi,jσj)

)
; (A.8)

E
[
s
σj/σi
i |Fi−1,i

]
= F

σj/σi
i−1,i exp

(
σi∆t

2
(σj − σi)

)
; (A.9)

E
[
F
σj/σi
i−1,i

∣∣∣si−1, F0

]
= F

σj/σi
0,i

(
si−1

F0,i−1

)σjρi−1,i
σi−1

exp

(
σj(i− 1)∆t

2
(ρi−1,iσi−1 − σi + σj(1− ρ2

i−1,i))

)
. (A.10)

Proof of Proposition 7. (i) Consider ADP1. Note that the equivalence φADP1,V
i (xi, si) ≡

Vi(xi, si, F̄
′
i (si, F0)) follows from the definitions of φ`,V in §2.6 and Vi in (2.3). At a stage

i, using this equivalence and the definition of γADP1
i we have

‖γADP1
i ‖E,∞ ≡max

xi
E
[
|Vi(xi, Fi)− Vi(xi, si, F̄ ′i (si, F0))|

∣∣F0

]
+ δE

[
max
xi+1

E
[
γADP1
i (xi+1, Fi+1)|F̄ ′i (si, F0)

]∣∣∣∣F0

]
. (A.11)

We now show that the right hand side of (A.11) tends to zero as ρ→ 1. For the first term
on the right hand side of (A.11), we have

lim
ρ→1

max
xi

E
[
|Vi(xi, Fi)− Vi(xi, si, F̄ ′i (si, F0))|

∣∣F0

]
≤ max

xi
lim
ρ→1

E
[
E
[
|Vi(xi, Fi)− Vi(xi, si, F̄ ′(ρi=1)

i (si, F0))|
∣∣∣si, F0

]∣∣∣F0

]
+ max

xi
lim
ρ→1

E
[
E
[
|Vi(xi, si, F̄ ′(ρi=1)

i (si, F0))− Vi(xi, si, F̄ ′i (si, F0))|
∣∣∣si, F0

]∣∣∣F0

]
= max

xi
lim
ρ→1

E
[
E
[
|Vi(xi, Fi)− Vi(xi, si, F̄ ′(ρi=1)

i (si, F0))|
∣∣∣si, F0

]∣∣∣F0

]
= 0;

where the inequality follows from swapping the limit and maximization, which is allowed
because the maximization is over the finite set X , iterating expectation and conditioning
on si, and applying the triangle inequality; the first equality holds by the continuity of
Vi(xi, ·) established in part (a) of Lemma 5 and the fact that, given si and F0, F̄ ′i (si, F0)

is a continuous function of ρi that tends to F̄
′(ρi=1)
i (si, F0) as ρi → 1 (see (A.8) in Lemma

7); and the final equality follows by applying parts (a) and (b) of Lemma 5 and Lemma 6.
Thus, the limit of the first term on the right hand side of (A.11) must be zero.

The second term on the right hand side of (A.11) can be rewritten as an expression
that depends only on the exact value function Vi by using the recursive definition of γADP1

i .
This expression is a sum of terms, one for each j ∈ {i+ 1, . . . , N − 2}, where the j-th term
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is a sequence of iterated expectations and the inner-most expectation is

E
[
|Vj(xj, sj, F ′j)− Vj(xj, sj, F̄ ′j(sj, F0))|

∣∣F̄ ′j−1(sj−1, F0)
]
. (A.12)

We show that the limit of (A.12) when ρj−1 → 1 and ρj → 1 is zero for any fixed xj as
follows (we write the limit explicitly once and then suppress its argument in the remaining
expressions):

lim
ρj−1→1
ρj→1

E
[
|Vj(xj, sj, F ′j)− Vj(xj, sj, F̄ ′j(sj, F0))|

∣∣F̄ ′j−1(sj−1, F0)
]

= limE
[
E
[
|Vj(xj, sj, F ′j)− Vj(xj, sj, F̄ ′j(sj, F0))|

∣∣sj, F̄ ′j−1(sj−1, F0)
]∣∣F̄ ′j−1(sj−1, F0)

]
≤ limE

[
E
[
|Vj(xj, sj, F ′j)

−Vj(xj, sj, F̄
′(ρj=1)
j (sj, sj−1, F0))|

∣∣∣sj, F̄ ′j−1(sj−1, F0)
]∣∣∣F̄ ′j−1(sj−1, F0)

]
+ limE

[
E
[
|Vj(xj, sj, F̄

′(ρj=1)
j (sj, sj−1, F0))

−Vj(xj, sj, F̄
′(ρj=1)
j (sj, F0))|

∣∣∣sj, F̄ ′j−1(sj−1, F0)
]∣∣∣F̄ ′j−1(sj−1, F0)

]
+ limE

[
E
[
|Vj(xj, sj, F̄

′(ρj=1)
j (sj, F0))

−Vj(xj, sj, F̄ ′j(sj, F0))|
∣∣sj, F̄ ′j−1(sj−1, F0)

]∣∣F̄ ′j−1(sj−1, F0)
]

= 0,

where the first equality follows from iterating expectation and conditioning on sj; the first
inequality from applying the triangle inequality twice; and the second equality from Lemma
6, part (a) of Lemma 5, and parts (c)-(e) of Lemma 5. Thus, the limit of the second term
in the right hand side of (A.11) must be zero, which completes the proof for ADP1. The
proof for ADP2 is similar and is thus omitted for brevity.

Consider SADP. At stage i, by definition of γSADPi we have

‖γSADPi ‖E,∞ = max
xi

E
[
|Vi(xi, Fi)− V SADP

i (xi, si)|
∣∣F0

]
+ δE

[
E
[
max
xi+1

E
[
γSADPi+1 (xi+1, Fi+1)|F ′i ]

]∣∣∣∣si, F0

]∣∣∣∣F0

]
. (A.13)

We show that each of the terms on the right hand side of (A.13) tends to zero as ρ → 1.
The proof of this result for the first term is similar to the given proof for ADP1 above,
and is thus omitted. The second term can be rewritten as an expression involving only the
exact value function Vi using the recursive definition of γSADPi . This expression is a sum
of terms, one for each j ∈ {i+ 1, . . . , N − 2}, where the j-th term is a sequence of iterated
expectations and the inner-most expectation is

E
[
max
xj

E
[
|Vj(xj, sj, F ′j)− φ

SADP,V
j (xj, sj)|

∣∣∣F ′j−1

]∣∣∣∣sj−1, F0

]
. (A.14)
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We show the limit of (A.14) as ρj−1 → 1 and ρj → 1 is zero for any fixed xj. We have:

lim
ρj−1→1
ρj→1

E
[
E
[
|Vj(xj, sj, F ′j)− φ

SADP,V
j (xj, sj)|

∣∣∣F ′j−1

]∣∣∣sj−1, F0

]
= lim

ρj−1→1
ρj→1

E
[
E
[
E
[
|Vj(xj, sj, F ′j)− φ

SADP,V
j (xj, sj)|

∣∣∣sj, F ′j−1

]∣∣∣F ′j−1

]∣∣∣sj−1, F0

]
≤ lim

ρj−1→1
ρj→1

E
[
E
[
E
[
|Vj(xj, sj, F ′j)− Vj(xj, sj, F̄

′(ρj=1)
j (sj, F

′
j−1))|

∣∣∣sj, F ′j−1

]∣∣∣F ′j−1

]∣∣∣sj−1, F0

]
+ lim

ρj−1→1
ρj→1

E
[
E
[
E
[
|Vj(xj, sj, F̄

′(ρj=1)
j (sj, F

′
j−1))

−Vj(xj, sj, F̄
′(ρj=1)
j (sj, F0))|

∣∣∣sj, F ′j−1

]∣∣∣F ′j−1

]∣∣∣sj−1, F0

]
+ lim

ρj−1→1
ρj→1

E
[
E
[
E
[
|Vj(xj, sj, F̄

′(ρj=1)
j (sj, F0))

−φSADP,Vj (xj, sj)|
∣∣∣sj, F ′j−1

]∣∣∣F ′j−1

]∣∣∣sj−1, F0

]
(A.15)

= lim
ρj−1→1

E
[
E
[
|Vj(xj, sj, F̄

′(ρj=1)
j (sj, F

′
j−1))− Vj(xj, sj, F̄

′(ρj=1)
j (sj, F0))|

∣∣∣F ′j−1

]∣∣∣sj−1, F0

]
≤ C ′

N−2∑
k=j+1

lim
ρj−1→1

E
[
E
[
|F̄ ′(ρj,k=1)

j,k (sj, F
′
j−1)− F̄ (ρj,k=1)

j,k (sj, F0)|
∣∣∣Fj−1,j, Fj−1,k

]∣∣∣sj, F0,j, F0,k

]
:= RHS,

where the first equality follows from iterated expectation and conditioning on sj; the
first inequality from applying the triangle inequality twice; the second equality from (i)
the first term in (A.15) being zero by parts (a) and (b) of Lemma 5 and Lemma 6, (ii)
unconditioning on sj in the second term of (A.15), and (iii) the third term in (A.15) being

zero by the equivalence φSADP,Vi (xi, si) ≡ E[Vi(xi, si, F
′
i )|si, F0], parts (a) and (b) of Lemma

5, and Lemma 6; the last inequality follows from the Lipschitz continuity of Vj(xi, ·) with
Lipschitz constant C ′ := αI · max{|CI |, CW}, which is a straightforward modification of
Proposition 5 in Secomandi et al. (2012).

We now proceed to show that RHS is zero. In the ensuing analysis, we use the super-
script ρj,k = 1 over an expectation to indicate that it is being evaluated at this specific
correlation value.

RHS = C ′
N−2∑
k=j+1

lim
ρj−1→1

E

[∣∣∣∣∣ Fj−1,k

F
σk/σj
j−1,j

exp

(
σk∆t

2
(σj − σk)

)

− F0,k

F
σk/σj
0,j

exp

(
σkj∆t

2
(σj − σk)

)∣∣∣∣∣E [sσk/σjj |Fj−1,j

]
|sj, F0,j, F0,k

]
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= C ′
N−2∑
k=j+1

lim
ρj−1→1

E [|Fj−1,k

− F0,k

F
σk/σj
0,j

F
σk/σj
j−1,j exp

(
σk(j − 1)∆t

2
(σj − σk)

)∣∣∣∣∣ |sj, F0,j, F0,k

]

= C ′
N−2∑
k=j+1

(
lim

ρj−1→1
E

[(
Fj−1,k −

F0,k

F
σk/σj
0,j

F
σk/σj
j−1,j exp

(
σk(j − 1)∆t

2
(σj − σk)

))+

|sj, F0,j, F0,k]

+ lim
ρj−1→1

E

[(
F0,k

F
σk/σj
0,j

F
σk/σj
j−1,j exp

(
σk(j − 1)∆t

2
(σj − σk)

)
− Fj−1,k

)+

|sj, F0,j, F0,k])

= C ′
N−2∑
k=j+1

((
F̄

(ρj−1,k=1)

j−1,k (sj−1, F0)

− F0,k

F
σk/σj
0,j

exp

(
σk(j − 1)∆t

2
(σj − σk)

)
E(ρj−1,j=1)

[
F
σk/σj
j−1,j |sj−1, F0

])+

+

(
F0,k

F
σk/σj
0,j

exp

(
σk(j − 1)∆t

2
(σj − σk)

)
E(ρj−1,j=1)

[
F
σk/σj
j−1,j |sj−1, F0

]
−F̄ (ρj−1,k=1)

j−1,k (sj−1, F0)
)+
)

= C ′
N−2∑
k=j+1

∣∣∣F̄ (ρj−1,k=1)

j−1,k (sj−1, F0)

− F0,k

F
σk/σj
0,j

exp

(
σk(j − 1)∆t

2
(σj − σk)

)
E(ρj−1,j=1)

[
F
σk/σj
j−1,j |sj−1, F0

]∣∣∣∣∣
= 0,

where the first equality follows from using (A.8) and factoring the term within the absolute
value out of the inner expectation because this term is deterministic given Fj−1; the second
follows from using (A.9) and simplifying; the third by splitting the absolute value into a sum
of two positive parts; the fourth by evaluating the expectations using the exchange option
formula of Margrabe (1978) and evaluating the limit ρj−1 → 1; the fifth by expressing
the sum of the two positive parts as an absolute value; and the sixth by using (A.10) and
simplifying. Hence, (A.14) tends to zero when ρ→ 1.

(ii) Since the limiting matrix is rank 2 and |ρi,i+1| < 1, we have convergence of
F ′′i |si, Fi,i+1 in distribution to F̄ ′′i (si, Fi,i+1) as ρ→ ρ (recall that F ′′i ≡ {Fi,i+1, . . . , FN−1}).
The rest of the proof of this part is analogous to the proof of part (a), and is thus omitted
for brevity.
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A.3 SADP Greedy Lower Bounds

The SADP lower bounds from LMS reported in §2.8 are not obtained from the greedy
optimization described in §2.2.2. Instead, these authors estimate a lower bound using a
policy computed by solving the SADP recursion (2.41) over a discretized price grid (see
§2.7 for details of price discretization). Feasible actions are obtained from this policy grid
in simulation by employing interpolation when the sampled price is not a price in the
discretization. Contrary to this approach and consistent with §2.2.2, below we report the
greedy lower bounds associated with the SADP value function φSADPi (xi, si) defined by
the recursion (2.41) and the greedy lower bound associated with another value function
embedded in this recursion. As in (28)-(30) of LMS, this implicit value function can be
defined as

φ′
SADP
i (xi, si, Fi,i+1) := max

ai
r(ai, si) + δE

[
φSADPi+1 (xi − ai, si+1)|Fi,i+1

]
.

The SADP recursion (2.41) can be written in terms of this value function as

φSADPi (xi, si) = E
[
φ′
SADP
i (xi, si, Fi,i+1) | si, F0,i+1

]
.

Table A.1 reports the LMS lower bound estimate from the policy grid and the greedy
lower bounds estimated using the value functions φSADPi (xi, si) and φ′SADPi (xi, si, Fi,i+1)
as percentages of the ADP2 upper bound estimate, UB2. The instance labels in the first
column of this table have the season and the capacity label separated by a hyphen. These
results indicate that the lower bound based on greedy optimization of the value function
φSADPi (xi, si) dominates the lower bound from the policy grid, which is also based on this
value function but uses the SADP recursion (2.41). The greedy lower bound based on
φ′SADPi (xi, si, Fi,i+1) is the best in Table A.1, and is in fact comparable with the ADP2
greedy lower bound estimate, LB2. Finally, we report the value of the UB2 estimates in
Table A.2 to allow the computation of values corresponding the percentage values reported
in this section and in §2.8.

147



Table A.1: Lower bounds estimated using the LMS policy grid and greedy optimization of
the value functions φSADPi (xi, si) and φ′SADPi (xi, si, Fi,i+1) reported as percentages of UB2

Instances LMS φSADPi (xi, si) φ′SADPi (xi, si, Fi,i+1)
Spring-1 94.23 94.53 97.11
Spring-2 95.35 95.99 98.82
Spring-3 96.26 97.02 99.32

Summer-1 94.99 95.32 97.56
Summer-2 97.11 97.64 99.71
Summer-3 97.72 98.46 99.92

Fall-1 95.81 96.08 98.41
Fall-2 97.39 97.85 100.07
Fall-3 98.12 98.63 100.21

Winter-1 82.54 83.21 91.23
Winter-2 88.56 89.90 96.92
Winter-3 91.50 92.88 98.33

Table A.2: UB2 values

Instances UB2
Spring-1 4.20
Spring-2 5.26
Spring-3 5.72

Summer-1 4.70
Summer-2 6.26
Summer-3 6.78

Fall-1 4.14
Fall-2 6.38
Fall-3 7.50

Winter-1 1.80
Winter-2 2.48
Winter-3 2.85
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Appendix B

Additional Material for Chapter 3

B.1 Proofs for §3.6

This section contains the proofs of Lemma 1 and Propositions 8 and 9. Lemma 8 and
Lemma 9 are required in these proofs. Let Π2 define a generic projection operator corre-
sponding to 2-norm regression (see the operator ΠΦ

2 at the end of §3.6.1 for an example).

Lemma 8. Let the functions f and g be defined on a closed and bounded set Z. It holds
that

(a) |maxz∈Z f(z)−maxz∈Z g(z)| ≤ maxz∈Z |f(z)− g(z)|,

(b) ‖Π2f(·)− Π2g(·)‖∞ ≤ ‖f(·)− g(·)‖∞.

Proof. (a) Let z1 ∈ argmaxz∈Z f(z) and z2 ∈ argmaxz∈Z g(z). It holds that f(z1) −
g(z2) ≤ f(z1)− g(z1) ≤ maxz∈Z{f(z)− g(z)} ≤ maxz∈Z |f(z)− g(z)|. Following the
same steps starting from g(z2)− f(z1) yields g(z2)− f(z1) ≤ maxz∈Z |f(z)− g(z)|.

(b) Since the optimal solution to a 2-norm regression problem is linear in its argument
we have ‖Π2f −Π2g‖∞ = ‖Π2(f − g)‖∞. Now we use the fact that Π2 is a projection
operator to conclude that ‖Π2(f − g)‖∞ ≤ ‖f(·)− g(·)‖∞.

Let V̂i(xi, F
p
i ) and Ĉi(xi+1, F

p
i ) denote a generic VFA and a generic CFA, respectively.

Further, define the continuation function induced by V̂i+1(xi+1, F
p
i+1) and the value function

induced by Ĉi(xi+1, F
p
i ), respectively, as

CI
i (xi+1, F

p
i ) := δEs

[
V̂i+1(xi+1, Fi+1)|F p

i

]
,

V I
i (xi, F

p
i ) := H(i,xi,F

p
i )Ĉi.

Lemma 9 bounds the ∞-norm error of these functions.
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Lemma 9. For qV , qC ∈ R+, suppose ‖V̂i+1 − V s
i+1‖∞ ≤ qV and ‖Ĉi − Cs

i ‖∞ ≤ qC, then

‖CI
i − Cs

i ‖∞ ≤ δqV ,

‖V I
i − V s

i ‖∞ ≤ qC .

Proof.

‖CI
i (·)− Cs

i (·)‖∞ = δ
∥∥∥Es [V̂i+1(·, Fi+1)− V s

i+1(·, Fi+1)|·
]∥∥∥
∞

≤ δ
∥∥∥V̂i+1(·)− V s

i+1(·)
∥∥∥
∞

= δqV .

We bound the error term
∥∥∥V̂i(·)− V s

i (·)
∥∥∥
∞

as follows:

∥∥V I
i (·)− V s

i (·)
∥∥
∞ = ‖H(i,·,·)Ĉi −H(i,·,·)C

s
i ‖∞

= max
(xi,p)

∣∣∣max
a
ri(a, si) + Ĉi(xi − a, F p

i )−max
a
ri(a, si) + Cs

i (xi − a, F
p
i )
∣∣∣

≤ max
(xi,p)

∣∣∣max
a

∣∣∣Ĉi(xi − a, F p
i )− Cs

i (xi − a, F
p
i )
∣∣∣∣∣∣

= max
(xi,p,a)

∣∣∣Ĉi(xi − a, F p
i )− Cs

i (xi − a, F
p
i )
∣∣∣

≤ max
(xi+1,p)

∣∣∣Ĉi(xi+1, F
p
i )− Cs

i (xi+1, F
p
i )
∣∣∣

≤ qC ,

where the first inequality holds by Part (a) of Lemma 8 and the second by noticing that
xi − a ∈ Xi+1.

Proof of Lemma 1. (a) Proof by induction. At stage N − 1 we have

ẽVN−1 =
∥∥(ΦN−1β̄N−1)(·)− V s

N−1(·)
∥∥
∞ =

∥∥ΠΦ
2 V

s
N−1(·)− V s

N−1(·)
∥∥
∞ = e∗N−1,

where the second equality follows from noticing that LSMV performs a regression against
V s
N−1 to compute β̄N−1 at stage N − 1 (see Algorithm 3). Make the induction hypothesis

that ẽVj ≤
∑N−1

j=i δ
j−ie∗j , ∀j = i+ 1, . . . , N − 1. For stage i, we have

ẽVi =
∥∥(Φiβ̄i)(·)− V s

i (·)
∥∥
∞

≤
∥∥(Φiβ̄i)(·)− ΠΦ

2 V
s
i (·)

∥∥
∞ +

∥∥ΠΦ
2 V

s
i (·)− V s

i (·)
∥∥
∞

=
∥∥(Φiβ̄i)(·)− ΠΦ

2 V
s
i (·)

∥∥
∞ + e∗i , (B.1)

where the inequality is true by the triangle inequality property of norms. Now we bound
êi :=

∥∥(Φiβ̄i)(·)− ΠΦ
2 V

s
i (·)

∥∥
∞. For ease of notation we use the placeholder η = (xi −
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a, Fi+1). We have

êi = ‖ΠΦ
2Ls(i,·,·)(Φi+1β̄i+1)− ΠΦ

2 V
s
i (·)‖∞

≤ max
(xi,p)

∣∣∣{max
a
ri(a, F

p
i ) + δEs

[
(Φi+1β̄i+1)(η)|F p

i

]}
−
{

max
a
ri(a, F

p
i ) + δEs

[
V s
i+1(η)|F p

i

]}∣∣∣
≤ δmax

(xi,p)

∣∣∣max
a

Es
[
(Φi+1β̄i+1)(η)− V s

i+1(η)|F p
i

]∣∣∣
≤ δmax

(xi,p)

∣∣∣∣max
(a,p)

{
(Φi+1β̄i+1)(xi+1, F

p
i+1)− V s

i+1(xi+1, F
p
i+1)
}∣∣∣∣

≤ δ max
(xi,a,p)

∣∣(Φi+1β̄i+1)(xi+1, F
p
i+1)− V s

i+1(xi+1, F
p
i+1)
∣∣

≤ δ max
(xi+1,p)

∣∣(Φi+1β̄i+1)(xi+1, F
p
i+1)− V s

i+1(xi+1, F
p
i+1)
∣∣

= δẽVi+1, (B.2)

where the first two inequalities follow from parts (b) and (a) of Lemma 8, respectively;
the third inequality from replacing an expectation by a maximum; the fourth inequality
from the relation |maxs∈S g(s)| ≤ maxs∈S |g(s)|; and the last inequality by noticing that
xi − a ∈ Xi+1. Combining (B.1) and (B.2) gives ẽVi ≤ δẽVi+1 + e∗i , from which we obtain
the desired bound on ẽVi by applying the induction hypothesis to bound ẽVi+1. The result
holds for all stages by the principle of mathematical induction.

(b) Proof by induction. At stage N − 2, we have

ẽCN−2 =
∥∥(ΨN−2θ̄N−2)(·)− Cs

N−2(·)
∥∥
∞

≤
∥∥(ΨN−2θ̄N−2)(·)− ΠΨ

2 δEs[H(N−1,·,FN−1)(ΨN−1θ̄N−1)|·]
∥∥
∞

+
∥∥ΠΨ

2 δEs[H(N−1,·,FN−1)(ΨN−1θ̄N−1)|·]− Cs
N−2(·)

∥∥
∞

= ēCN−2 + e∗∗N−2.

Make the induction hypothesis that ẽCj ≤
∑N−2

j=i δ
j−i(e∗∗j + ēCj ), ∀j = i + 1, . . . , N − 2. At

stage i, it holds that

ẽCi =
∥∥(Ψiθ̄i)(·)− Cs

i (·)
∥∥
∞

≤
∥∥(Ψiθ̄i)(·)− ΠΨ

2 C
s
i (·)
∥∥
∞ +

∥∥ΠΨ
2 C

s
i (·)− Cs

i (·)
∥∥
∞

≤
∥∥(Ψiθ̄i)(·)− ΠΨ

2 C
s
i (·)
∥∥
∞ + e∗∗i

≤
∥∥(Ψiθ̄i)(·)− ΠΨ

2 Es[H(i+1,·,Fi+1)(Ψi+1θ̄i+1)|·]
∥∥
∞

+
∥∥ΠΨ

2 Es[H(i+1,·,Fi+1)(Ψi+1θ̄i+1)|·]− ΠΨ
2 C

s
i (·)
∥∥
∞ + e∗∗i

= ēCi +
∥∥ΠΨ

2 Es[H(i+1,·,Fi+1)(Ψi+1θ̄i+1)|·]− ΠΨ
2 C

s
i (·)
∥∥
∞ + e∗∗i .

Further, we can show that
∥∥ΠΨ

2 Es[H(i+1,·,Fi+1)(Ψi+1θ̄i+1)(·)|·]− ΠΨ
2 C

s
i (·)
∥∥
∞ ≤ δẽCi+1 follow-

ing steps similar to those required to bound the term êi ≡
∥∥(Φiβ̄i)(·)− ΠΦ

2 V
s
i (·)

∥∥
∞ in Part

(a) (see (B.2)). The rest of the proof follows in a straightforward manner from our induc-
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tion hypothesis and the principle of mathematical induction.

(c) Recall that the term vi(·) is defined in Algorithm 3. At stage i, we have

‖(Φiγ̄i)(·)− V s
i (·)‖∞ ≤ ‖(Φiγ̄i)(·)− vi(·)‖∞ + ‖vi(·)− V s

i (·)‖∞
≤ ēHi + ‖vi(·)− V s

i (·)‖∞
≤ ēHi + ẽCi

≤ ēHi +
N−2∑
j=i

δj−i(e∗∗j + ēCj ),

where the third inequality follows from Lemma 9 and the fourth inequality from Part
(b).

Proof of Proposition 8. Recall that the terms uβ̄i (·), uθ̄i (·), and usi are defined in §3.6.3. We
begin by bounding the error ẽV,DPi :

ẽV,DPi = ‖uβ̄i (·)− usi (·)‖∞
= ‖(Φi+1β̄i+1)(·)− V s

i+1(·)− Es
[
(Φi+1β̄i+1)(·, Fi+1)− V s

i+1(·, Fi+1)|·
]
‖∞

≤ ‖(Φi+1β̄i+1)(·)− V s
i+1(·)‖∞ + ‖Es

[
(Φi+1β̄i+1)(·, Fi+1)− V s

i+1(·, Fi+1)|·
]
‖∞

≤ 2‖(Φi+1β̄i+1)(·)− V s
i+1(·)‖∞

= 2ẽVi+1,

where the first inequality follows from the triangle inequality property of norms. The
claimed bound on ẽV,DPi+1 follows from bounding ẽVi+1 by using Part (a) of Lemma 1. The

proof of the claimed bound on ẽH,DPi is similar to the proof of the bound on ẽV,DPi+1 . We

bound ẽC,DPi as follows:

ẽC,DPi = ‖uθ̄i (·)− usi (·)‖∞
= ‖H(i+1,·,·)(Ψi+1θ̄i+1)−H(i+1,·,·)C

s
i+1(·)

− Es
[
H(i+1,·,Fi+1)(Ψi+1θ̄i+1)−H(i+1,·,Fi+1)C

s
i+1|·

]
‖∞

≤ ‖H(i+1,·,·)(Ψi+1θ̄i+1)−H(i+1,·,·)C
s
i+1‖∞

+ ‖Es
[
H(i+1,·,Fi+1)(Ψi+1θ̄i+1)−H(i+1,·,Fi+1)C

s
i+1|·

]
‖∞

≤ max
(xi+1,p,a)

∣∣(Ψi+1θ̄i+1)(xi+1 − a, F p
i+1)− Cs

i+1(xi+1 − a, F p
i+1)
∣∣

+ max
(xi+1,p)

∣∣∣Es [max
a

∣∣(Ψi+1θ̄i+1)(xi+1 − a, Fi+1)− Cs
i+1(xi+1 − a, Fi+1)

∣∣ |·]∣∣∣
≤ 2 max

(xi+2,p)

∣∣(Ψi+1θ̄i+1)(xi+2, p)− Cs
i+1(xi+2, p)

∣∣
= 2ẽCi+1,

where we obtain the second inequality by applying Part (a) of Lemma 8. The claimed
bound on ẽC,DPi follows from bounding ẽCi+1 using Part (b) of Lemma 1.
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Proof of Proposition 9. The claimed bounds follow from a direct application of Lemma
9.

B.2 Technical Conditions Used in §§3.6.3-3.6.4 and

Their Numerical Validation

In §B.2.1 and §B.2.2 we discuss the technical conditions underlying our error bound analysis
in §3.6.3 and §3.6.4, respectively. In §B.2.3 we numerically validate these conditions.

B.2.1 Upper Bound Estimation

Comparing the bounds on ẽC,DPi and ẽH,DPi in parts (b) and (c) of Proposition 8, respec-
tively, with the bound on ẽV,DPi in Part (c) of Proposition 8 is challenging because the
regression errors e∗i+1 and e∗∗i originate from approximating the functions V s

i+1 and Cs
i .

These latter functions are related as Cs
i (xi+1, F

p
i ) ≡ δEs

[
V s
i+1(xi+1, Fi+1)|F p

i

]
. We expect

Cs
i to be smoother than V s

i+1. It is plausible to expect that the inequality e∗∗i ≤ δe∗i+1

should hold for similar basis functions and the same number of regression samples. In
addition, consider the following two sets of inequalities:

e∗i ≤ ēHi ,∀(i), (B.3)

δe∗i+1 ≤ e∗∗i + ēCi ,∀(i)−(N−1). (B.4)

If inequalities (B.3)-(B.4) hold, then the bound on ẽV,DPi is no larger than the bound on
ẽH,DPi . In other words, the LSMV-based dual upper bound estimates should be no worse
than the LSMH-based dual upper bound estimates. Because the LSMC error ēCi results
from regressing over single sample path estimates of expectations (see the discussion in
§3.6.2), it is reasonable to expect this error to be larger than both the regression errors
e∗i+1 and e∗∗i+1, especially for low values of P . Moreover, because the regression estimates of
ēHi are based on the LSMC CFA, they are potentially noisy, especially for low values of P .
Thus, we expect ēHi to be larger than e∗i+1 (see Step (iii) of LSMH). These anticipations are
validated numerically in §B.2.3. The above reasoning provides some support for conditions
(B.3)-(B.4) to be satisfied.

Now we turn to comparing the bounds on ẽV,DPi and ẽC,DPi . At stage N − 2, the bound
on ẽC,DPi is no worse than the bound on ẽV,DPi because the former bound is based on sums
of N − i− 1 terms while the latter bound is based on sums of N − i terms. However, the
bound on ẽV,DP is no worse than the bound on ẽC,DPi for stages 0, . . . , N − 3 if inequalities
(B.4) hold and

e∗i+1 ≤
N−2∑
j=i+1

δj−i−1(e∗∗i + ēCi − δe∗j+1),∀i ∈ I \ {N − 1, N − 2}. (B.5)
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Based on analogous arguments regarding the validity of (B.4), we expect inequality (B.5)
to hold. Thus, the LSMV-based dual upper bound estimates should be no worse than the
LSMC-based dual upper bound estimates.

B.2.2 Lower Bound Estimation

The error bound on the CFA induced by the LSMV VFA given in Part (a) of Proposition
9 is no worse than both the error bound on the LSMC CFA established in Part (b) of
Lemma 1 and the error bound on the CFA induced by the LSMH VFA shown in Part
(b) of Proposition 9 if inequalities (B.4) and (B.3)-(B.4) hold, respectively. Based on our
discussion in §B.2.1 regarding the validity of these inequalities, the LSMV-based greedy
lower bound estimates should be no worse than the ones based on LSMC and LSMH.

We now compare the error bound on the CFA induced by the LSMH VFA given in Part
(b) of Proposition 9 with the error bound on the LSMC CFA established in Part (b) of
Lemma 1. The error bound on ẽH,ICi is no worse than the error bound on ẽCi at each stage
i if the following inequalities hold:

δēHi+1 ≤ e∗∗i + ēCi , ∀(i)−(N−1), (B.6)

We expect these inequalities to be satisfied based on arguments analogous to the ones
discussed in §3.6.3. The greedy lower bound estimates obtained by LSMH should thus
outperform the ones determined by LSMC.

B.2.3 Numerical Validation

We provide support for the validity of inequalities (B.3)-(B.6) evaluated on the instances
considered in §3.7.2 when P = 1,000. For brevity, we focus on evaluating these inequalities
when LSMV3, LSMC3, and LSMH3 are applied to the swing option instances, but we have
verified that the resulting qualitative insights remain essentially unchanged when LSMV1,
LSMC1, and LSMH1 are applied to the natural gas storage instances.

Evaluating the left and right hand sides of inequalities (B.3)-(B.6) requires estimating
the errors e∗i , e

∗∗
i , ēHi , and ēCi (see (3.20)-(3.23)). Estimating e∗i and e∗∗i is challenging

because these errors depend on the value function V s
i (xi, F

p
i ) of (3.17) and the continuation

function Cs
i (xi+1, F

p
i ) of (3.18), respectively, which are unknown. To overcome this issue,

we assume that the stage i + 1 LSMV3 VFA is equal to V s
i (xi, F

p
i ) and use the stage i

VFA L(i,xi,F
p
i )(Φi+1β̄i+1) and the stage i CFA δE

[
(Φi+1β̄i+1)(xi+1, Fi+1)|F p

i

]
, respectively,

as proxies for V s
i (xi, F

p
i ) and Cs

i (xi+1, F
p
i ).

Table B.1 reports the estimated errors on the January, April, July, and October swing
option instances for n = 3 and P = 1,000 when using LSMV3, LSMC3 and LSMH3.
We find that the estimates of e∗∗i+1 are much smaller than the estimates of e∗i , which is
consistent with our expectation, discussed in §B.2.1, that Cs

i should be smoother than
V s
i+1. We verified that the estimates of ēHi are almost always larger than the estimates

of e∗i , although their intervals overlap (see satisfaction of (B.3) in Figure B.1 below for
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Table B.1: Errors e∗i , e
∗∗
i , ēHi , and ēCi estimated on the swing option instances for n = 3,

P = 1,000, and basis function set 3.

e∗i e∗∗i
Month Minimum Median Maximum Minimum Median Maximum

January 0.095 0.568 1.293 0.000 0.084 0.343
April 0.280 0.548 1.160 0.000 0.071 0.226
July 0.000 0.682 1.444 0.000 0.118 0.342

October 0.130 0.573 1.385 0.000 0.073 0.279

ēHi ēCi
Month Minimum Median Maximum Minimum Median Maximum

January 0.079 0.941 1.889 1.226 8.298 29.013
April 0.311 0.917 1.354 1.437 9.236 31.842
July 0.000 1.132 2.012 2.327 9.939 31.623

October 0.250 0.992 1.577 0.540 9.133 17.644

support). The estimates of ēCi are substantially larger than the estimated errors e∗i , e
∗∗
i ,

and ēHi .

(a) Satisfaction of (B.3)

January April July October
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(b) Satisfaction of (B.4)
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Figure B.1: Satisfaction of inequalities (B.3) and (B.4) on the swing option instances for
n = 3, P = 1,000, and basis function set 3.

We now discuss the validity of inequalities (B.3)-(B.6). We define the slack associated
with inequalities (B.3) and (B.4) by SL1 := ēHi −e∗i and SL2 := e∗∗i +ēCi −δe∗i+1, respectively.
Thus positive values of SL1 and SL2 indicate satisfaction of the corresponding inequalities
while negative values of these slacks represent violations. Figure B.1 is a box and whisker
plot of the distributions of the estimates of SL1 and SL2 across stages on the swing option
instances. Because the estimated SL2 is positive across stages and instances, the inequality
(B.4) always appears to be satisfied. In contrast to the estimated SL2, the estimated SL1

is negative in a few stages, which we verified to be at most 3 out of the 23 stages across
instances.
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Comparing the distribution of the estimates of SL2 values in Figure B.1 with the dis-
tribution of estimates of e∗i in Table B.1 suggests that the former values are substantially
larger than the latter. We verified this to be true at each stage across instances. As a
result, inequality (B.5) also holds for all stages i ≤ N − 2. Finally, we also verified that
the inequality (B.6) is always satisfied because the estimates of ēCi are larger than the
estimated differences δēHi − e∗∗i , which is somewhat expected given the estimated values
for the involved errors reported in Table B.1. Thus, our numerical error analysis for P =
1,000 provides support for the validity of inequalities (B.3)-(B.6).

B.3 LSMV1 Bound Estimates on LMS Instances

Figure B.2 reports the LSMV1 dual upper bound estimate as a percentage of UB2 on the
LMS instances used in Chapter 2. We find that LSMV1 improves on UB2 by 0.17% to
2.33%. Since LSMV1 is the best upper bound estimate, Figure B.3 reports as a percentage
of this estimated upper bound, LB2, RLB2, and the lower bound estimate of LSMV1. We
find that the lower bound estimates of LSMV1 and RLB2 are within standard error of each
other and essentially optimal on all the instances. In particular, the optimality of the RLB2
lower bound estimate on all the winter instances shows that the suboptimalities of this lower
bound estimate in Figure 2.6 of Chapter 2 are due to the weakness of UB2. Finally, Table
B.2 reports the values of the LSMV1 lower bound and upper bound estimates.

1 2 3
97

98

99

100

Capacity restriction

P
er

ce
n
t

of
U

B
2

Spring Summer Fall Winter

Figure B.2: LSMV1 estimated upper bounds and their standard errors (error bars).
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Figure B.3: Estimated lower bounds and their standard errors (error bars).

Table B.2: Values of LSMV1 lower bound and upper bound estimates.

Instance Lower bound Upper bound
Spring-1 4.15 4.17
Spring-2 5.21 5.23
Spring-3 5.68 5.69

Summer-1 4.64 4.68
Summer-2 6.20 6.24
Summer-3 6.71 6.76

Fall-1 4.80 4.11
Fall-2 6.32 6.35
Fall-3 7.44 7.46

Winter-1 1.72 1.75
Winter-2 2.42 2.44
Winter-3 2.79 2.81
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Appendix C

Additional Material for Chapter 4

C.1 Proofs

Proof of Lemma 2. For proving the claimed characterization we require the finiteness of
the value and continuation functions of SDP (4.15). It is obvious that Vi(yi,Fi) ≥ 0 > −∞,
which implies that Wi(yi+1,Fi) > −∞. Further, Vi(yi,Fi) ≤

∑
i′∈Ii

∑
m∈MCD,msmi′ . Using

this inequality we have

Wi(yi+1,Fi) ≡ δE [Vi+1 (yi+1,Fi+1) |Fi]

≤ δE

[∑
i′∈Ii

∑
m∈M

CD,msmi′ |Fi

]
= δ

∑
i′∈Ii

∑
m∈M

CD,mE [smi′ |Fi]

= δ
∑
i′∈Ii

∑
m∈M

CD,mFm
i,i′

<∞,

where the second equality follows from smi′ ≡ Fm
i′,i′ and the martingale property of futures

prices (Shreve, 2004, page 244). Thus, the value and continuation functions of SDP (4.15)
are finite.

We now proceed by induction to prove the claimed result. At stage N − 1, for a given
Fi, we have

VN−1(yN−1,FN−1) = max
yN∈Z(yN−1)

r̄(yN−1 − yN , sN−1).

Standard linear programming results (Bertsimas and Tsitsiklis 1997, ch. 5) imply that
the function r̄(yN−1 − yN , sN−1) is concave in the pair (yN−1, yN), which belongs to a
convex (polyhedral) feasible set. Further, the interval Z(yN−1) is nonempty for each given
yN−1 ∈ Y . The concavity of VN−1(·,FN−1) follows from Proposition B-4 in Heyman and
Sobel (2003). The continuation function at stage N−1 is zero by definition and is therefore
concave.
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Make the induction hypothesis that the value and continuation functions are concave
in their first arguments also for stages i + 1, i + 2, . . . , N − 2. We proceed to prove the
claim at stage i. From the finiteness of the continuation function in every stage and the
induction hypothesis, it is easy to verify that the continuation function is concave in its
first argument at stage i. This property and Part (a) of this lemma imply the concavity of
r̄(yi − yi+1, si) +Wi(yi+1,Fi) in the pair (yi, yi+1), which belongs to a convex (polyhedral)
feasible set. Since Z(yi) is nonempty for each given yi ∈ Y , the concavity of Vi(·,Fi) follows
from Proposition B-4 in Heyman and Sobel (2003). The claimed concavity of the value
and continuation functions at all stages for a given array of forward curves follows from
the principle of mathematical induction.
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Figure C.1: Edge network formulation for the feasible set of (4.13) when a ≤ 0.

Proof of Lemma 3. The piecewise linear concavity of r̄(·, s) follows from standard linear
programming results (Bertsimas and Tsitsiklis 1997, ch. 5). We proceed to show that the
slope of r̄(·, s) changes at integer multiples of Ḡ. Our proof relies on reformulating the
maximum profit flow problem (4.13), defined over the set of trade paths, as a maximum
profit network flow problem on an edge network.

We begin by describing the edge network construction. Figure C.1 illustrates the edge
network assuming a nonnegative storage action, a ≤ 0. An analogous network exists for
the case a > 0. Recall that CR,m and CD,m are the receipt and delivery capacities of node
m, respectively. The nodes in this figure are (i) a dummy source node and a dummy sink
node; (ii) nodes m1

j -m
4
j for modeling market mj; (iii) nodes ST 1-ST 5 for modeling storage;

and (iv) the node labeled “rest of graph” that is an aggregation of nodes and edges not
represented explicitly in this figure. Thin edges denote actual edges in the network with
their capacities as edge labels, while thick edges denote a collection of edges to or from
the node labeled “rest of the graph”. The supply of the source node is the storage action
a. The demand of node ST 3 is −a. All other nodes have zero demand. It can be verified
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that each path in this network corresponds to the path of a trade in set J . To help verify
this assertion, the labels within parentheses on the edges of this figure indicate the edge
modeling purpose. For example, the label “(Buy)” on the edge (Source,m3

j) indicates that
this edge models the purchase of natural gas from market mj. Thus, each term that makes
up the cash flow of a trade can be represented as a profit on one of the edges in this
network.

We introduce some generic notation to formulate the stated maximum profit flow prob-
lem on this edge network. Part of this notation uses with a different meaning notation
used elsewhere in this paper, but this confined reuse of notation should not give rise to any
confusion. The pair (N , E) includes the node and edge sets of this network. Let the capac-
ity and profit on edge e = (u, v) be Ce and ce, respectively (c is the column vector of all
edge profits). Denote the demand on node v by dv. By construction, we have dsource = a,
dST 3 = −a, and all other node demands equal to zero. We use we to represent the flow
variable associated with edge e (w is the column vector of all these flow variables). The
maximum profit flow problem is

max
w

c> · w (C.1)∑
e∈E:e=(·,v)

we −
∑

e∈E:e=(v,·)

we = 0,∀v ∈ N \ {Source, ST 3}, (C.2)

w(Sink,Source) −
∑

e∈E:e=(Source,·)

we = a, (C.3)

w(ST2,ST3) = −a, (C.4)

0 ≤ we ≤ Ce,∀e ∈ E . (C.5)

The claimed equivalence between (C.1)-(C.5) and (4.13) holds because an optimal solu-
tion of (C.1)-(C.5) can be decomposed into amounts corresponding to trades in set J by
removing the edge from the sink to the source if a 6= 0 (all cycles that do not include the
edge (Sink, Source) have a negative profit).

Make the change of variable ŵe := we/Ḡ in (C.1)-(C.5) (ŵ is the column vector of
scaled flow variables on all edges). This change yields the linear program

max
ŵ

Ḡ(c> · ŵ) (C.6)∑
e∈E:e=(·,v)

ŵe −
∑

e∈E:e=(v,·)

ŵe = 0,∀v ∈ N \ {Source, ST 3}, (C.7)

ŵ(Sink,Source) −
∑

e∈E:e=(Source,·)

ŵe = a/Ḡ, (C.8)

ŵ(ST2,ST3) = −a/Ḡ, (C.9)

0 ≤ ŵe ≤ Ce/Ḡ,∀e ∈ E . (C.10)

From the definition of Ḡ it follows that the scaled capacity Ce/Ḡ is integer for all the edges
that have finite capacity. The integrality of the scaled capacities and the unimodularity of
the constraint matrices of network flow problems (see Theorems 11.11 and 11.12 in Ahuja
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et al. 1993) imply that the optimal solution to the linear program (C.6)-(C.10) with a = 0
is integer. Let this optimal solution be ŵ∗(0). Recall the definition of aI on Page 84.
Suppose that we increase the injection amount from 0 to ε such that 0 < ε < Ḡ and ε ≤ aI ,
that is, a = −ε. This corresponds to increasing the injection amount by less than 1 unit
in (C.6)-(C.10). Note that ŵ∗(0) defines a pseudo flow (see page 320 of Ahuja et al. 1993)
for the problem with a = −ε, that is, this solution violates mass balance by ε only at the
nodes Source and ST 3. Since ε ≤ aI there exists a shortest path from the node Source to
the node ST 3 in the residual network (see §9.1 in Ahuja et al. 1993). Augmenting by ε the
flow along this path yields an optimal solution to (C.6)-(C.10) by Lemma 9.12 in Ahuja
et al. (1993). This shortest path has capacity at least 1 since ŵ∗(0) is an integral flow
and all edge capacities in (C.6)-(C.10) are integral. Thus, when changing a/Ḡ between 0
and −1 an optimal solution to the resulting problem can be found by augmenting by the
same amount the flow along the same shortest path. Consequently, the optimal solution
value of the problem (C.6)-(C.10) is linear for values of a/Ḡ in between 0 and −1, which
implies that the optimal solution to (C.1)-(C.5) is linear for a ∈ [0,−Ḡ]. This argument
can be repeated to prove an analogous result when the injection amount ε is between any
two consecutive integers η and η + 1 such that (η + 1)Ḡ ≤ aI . These arguments prove
the claimed result for the injection case. Symmetric arguments can be used to show the
claimed result for withdrawals.
Proof of Proposition 10. By induction.

Stage N − 1.
By Lemma 3, r̄N−1(·, sN−1) is piecewise linear concave with slope changes at integer mul-
tiples of Ḡ, and thus at integer multiples of G as well. Thus, maxa∈R r̄N−1(a, sN−1) has
a maximizer a∗N−1 that is an integer multiple of G, where we suppress the dependence of
this maximizer on sN−1. This maximizer is also finite, for every given sN−1, because, as
discussed in §4.4.1, the linear program (4.13) is infeasible when a 6∈ [−aI , aW ]. Notice that
a∗N−1 ≥ 0 since injecting (a < 0) incurs an additional cost compared to doing nothing
(a = 0). If a∗N−1 = 0, then bN−1(yN−1,FN−1) = yN−1 for all yN−1 ∈ [0, ȳ], which is a linear
function in yN−1 with slope equal to 1. Suppose that a∗N−1 > 0, that is, withdrawal is
optimal. Then, it holds that bN−1(yN−1,FN−1) = 0 for all yN−1 ∈ [0,min{a∗N−1, ȳ}] and
bN−1(yN−1,FN−1) = yN−1 − a∗N−1 for all yN−1 ∈ (min{a∗N−1, ȳ}, ȳ]. This target function is
piecewise linear in yN−1 with possible slopes equal to 0 and 1. Thus, we have established
the claimed structure of the target function at stage N − 1. This structure implies that
bN−1(FN−1) = 0, while bN−1(FN−1) = ȳ if a∗N−1 = 0 and bN−1(FN−1) = 0 if a∗N−1 > 0,
which is consistent with our claimed partitioning of the feasible inventory set Y . Finally,
the target function structure also implies that the difference yN−1 − bN−1(yN−1,FN−1) is
not increasing in yN−1 and the values returned by this function lie in the same region of
the inventory partition that yN−1 belongs to.

By definition, WN−1(·,FN−1) is constant at zero, and thus trivially satisfies the claimed
property. By Lemma 2, VN−1(·,FN−1) is concave. We proceed to prove that this function is
piecewise linear concave with breakpoints at integer multiples of G. Recall from above that
a∗N−1 ≡ argmaxa∈R r̄N−1(·, sN−1). Define ā := min{CW , aW , a∗N−1, ȳ}, which is an integer
multiple of G. For yN−1 ∈ [0, ā) it holds that VN−1(yN−1,FN−1) = r̄N−1(yN−1, sN−1), and
for yN−1 ∈ [ā, ȳ] we have VN−1(yN−1,FN−1) = r̄N−1(ā, sN−1). The function VN−1(yN−1,FN−1)
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Figure C.2: Conceptual illustration of cases (i) and (ii) in the proof of Part (b) of Propo-
sition 10.

inherits the slope of r̄N−1(yN−1, sN−1) for yN−1 ∈ [0, ā] and has a slope of zero for yN−1 ∈
[ā, ȳ]. Because the function r̄N−1(·, sN−1) is piecewise linear concave with slope changes
slope at integer multiples of G, so is VN−1(·,FN−1).

Induction hypothesis. Suppose that the value function Vi(·,Fi) is piecewise linear concave
with slope changes at integer multiples of G for stages i′ = i+ 1, . . . , N − 2.

Stage i. Because Vi+1(yi+1,Fi+1) is finite (see the proof of Lemma 2), for a fixed Fi+1,
the induction hypothesis implies that Wi(yi+1,Fi) ≡ δE[Vi+1(yi+1,Fi+1)|Fi] is a piecewise
linear function with slope changes at integer multiples of G.

For a given yi, note that dr̄(yi − yi+1, si)/dyi+1|yi+1=y′i+1
= −dr̄(a, si)/da|a=yi−y′i+1

. More-
over, it holds that dr̄(a, si)/da|a=yi−y′i+1

is a nondecreasing function of y′i+1 because the
function r̄(·, si) is concave. Since Wi(·,Fi) and r̄(·, si) are piecewise linear concave func-
tions, we can state the optimality condition that determines bi(yi,Fi) as follows: bi(yi,Fi)
is the smallest y′i+1 ∈ Y such that dr̄(a, si)/da|a=yi−y′i+1

≥ dWi(yi+1,Fi)/dyi+1|yi+1=y′i+1
.
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Before using this optimality condition to formally prove the structure in yi of the target
function, we provide the intuition behind our proof. Observe that as yi increases the slope
of the continuation function Wi(·,Fi) does not change but the slope of the reward function
r̄i(·, si) weakly decreases. In other words, dWi(·,Fi)/dyi+1|yi+1=y′i+1

is a nonincreasing step
function with changes at integer multiples of G that does not depend on yi, whereas
dr̄(a, si)/da|a=yi−y′i+1

is a nondecreasing step function with changes at integer multiples of
G that shifts to the right by the same proportion by which yi is increased. Figure C.2
provides illustrative examples of this property. Our proof of the basestock target function
structure relies on two possible types of optima. The first type of optimum, illustrated in
panels (a) and (b) of Figure C.2 occurs when the slope of the reward function is “bracketed”
above and below by the slopes of the continuation function as yi is increased starting from a
value that is an integer multiple of G. In this case, the target function is a constant until the
reward function slope is no longer bracketed. The second type of optimum, illustrated in
panels (c) and (d) of Figure C.2 occurs when the continuation function slope is bracketed
between the reward function slopes as yi is increased. In this case, the target function
increases proportionately to the increase in yi until the continuation function slope is no
longer bracketed. We now make these intuitive arguments formal.

Let dW (q) be the slope of the function Wi(·,Fi) in the interval [qG, (q + 1)G) for
q = 0, 1, . . . , (ȳ/G) − 1. By Lemma 3, r̄i(·, si) changes slope at integer multiples of Ḡ,
and thus at integer multiples of G as well. Define dr̄(q) := dr̄(a, si)/da|a=(q−1)Ḡ for q =
−(aI/G)+1,−(aI/G)+2, . . . , aW/G. We define these slope functions to be right continuous
at breakpoints, except for the right boundary point, where these functions are defined
to be left continuous. Because the function r̄i(−yi+1, si) + Wi(yi+1,Fi) changes slope in
yi+1 at integer multiples of G, it holds that bi(0,Fi) = q̄G for some nonnegative integer
q̄ ≤ min{aI/G, ȳ/G}. Suppose that 0 < q̄ < min{aI/G, ȳ/G} (we discuss the boundary
cases later). The optimality condition stated above implies that the following conditions
must hold for q̄G to be optimal at yi = 0:

dr̄(bq̄G/Ḡc) ≥ dW (q̄), (C.11)

dr̄(b(q̄G− ε)/Ḡc) < dW (q̄ − 1), for some ε > 0, (C.12)

where bc is the floor function. In addition, we could either have: (ai) dr̄(b(q̄G− ε)/Ḡc) ≥
dW (q̄) (see Figure C.2(a) for an example) or (aii) dr̄(b(q̄G− ε)/Ḡc) < dW (q̄) (see Figure
C.2(c) for an example). We now characterize an interval [0, ηG) ⊆ Y by suitably defining
a positive integer η such that the target function has slope 0 or 1 if case (i) or (ii) holds,
respectively.

Case (i). Find the smallest positive integer η such that dr̄(b(q̄− η)G/Ḡc) < dW (q̄). When
such an η does not exist, set η equal to q̄/G (that is, we reach the left boundary of Y).
Therefore, for all yi ∈ [0, ηG) it holds that dr̄(b(q̄G − yi)/Ḡc) ≥ dW (q̄). Further, it
holds that there exists an ε′ > 0 such that dr̄(b(q̄G − yi − ε′)/Ḡc) < dW (q̄ − 1). This
inequality follows from (C.12) and the concavity of r̄i(·, si). Thus, we have bi(yi,Fi) = q̄G,
∀yi ∈ [0, ηG]. Panels (a) and (b) of Figure C.2 provide illustrative examples.

Case (ii). Find the smallest positive integer η such that dr̄(b(q̄G − ε)/Ḡc) ≥ dW (q̄ + η).
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When such an η does not exist, set η equal to (ȳ − q̄G)/G (that is, we reach the right
boundary of Y). Therefore, for all yi ∈ [0, ηG), there exists an ε′ > 0 such that dr̄(b(q̄G−
ε)/Ḡ) < dW (b(q̄G + yi − ε′)/Gc). Moreover, by (C.11) and the concavity of Wi(·,Fi) we
have dr̄(bq̄G/Ḡc) ≥ dW (b(q̄G + yi)/Gc). Thus, it holds that bi(yi,Fi) = q̄G + (yi − q̄G),
∀yi ∈ [0, ηG]. Panels (a) and (b) of Figure C.2 provide illustrative examples.

Irrespective of case (i) or (ii), bi(ηG,Fi) = q̄G. However, at yi = ηG the type of optimum
changes from the type of optimum at yi = 0, that is, if case (i) is true at yi = 0 then case
(ii) holds at yi = ηG, and if case (ii) is true at yi = 0 then case (i) holds at yi = ηG.
We then repeat the procedure described above to identify a positive integer η′ such that
the target function either is constant or increases within the interval [ηG, η′G] ⊂ Y . This
process is iterated until we reach the right boundary of Y .

Now we consider the boundary cases. When q̄ = 0 a proof analogous to the in-
terior case handled above, omitted for brevity, establishes the claimed result. When
q̄ = min{aI/G, ȳ/G}, we have bi(yi,Fi) = q̄G, ∀yi ∈ Y . We have thus proved the claimed
piecewise linearity of the target function at stage i.

We now show the partitioning of the feasible inventory set into the stated inject, do
nothing, and withdraw regions. It is obvious that −bi(0,Fi) ≤ 0 and ȳ − bi(ȳ,Fi) ≥ 0.
Our characterization of bi(yi,Fi) as a piecewise linear function of yi with slopes 0 or 1
implies that (i) bi(yi,Fi) is continuous and nondecreasing in yi, and (ii) yi − bi(yi,Fi) is a
nondecreasing function of yi. The first property implies that the set {yi|yi = bi(yi,Fi)} is
a nonempty closed interval. Thus, the functions bi(Fi) and bi(Fi) are well defined. The
second property implies that an optimal storage action does not increase in yi, which proves
the partitioning of the inventory interval into the inject, do nothing, and withdraw regions
and the target function returns values that lie in the region of this partition that yi belongs
to.

When yi is within an interval [qG, (q + 1)G] the target function is either (i) equal to a
constant, which implies that an optimal storage action increases at rate 1 in yi and the value
function Vi(·,Fi) inherits the slope of r̄i(·, si) or (ii) increases with slope 1, the optimal
action is a constant, and the value function Vi(·,Fi) inherits the slope of the continuation
function Wi(·,Fi). Since both r̄i(·, si) and Wi(·,Fi) are piecewise linear functions with
slope changes at multiples of G, the claimed result follows.

The claimed properties hold for all the stages by the principle of mathematical induc-
tion. The decision rule (4.17) tries to change the current storage inventory level to the
basestock target function value while accounting for the storage injection and withdrawal
capacities.

Proof of Proposition 11. Let π∗ be an optimal policy to SDP (4.15). The value of this
policy is V0(x0,F0). Let πST,∗ and πTR,∗ be the storage and transport policies that make
up π∗. The inequality (4.21) follows because πST,∗ and πTR,∗ are feasible, but not necessarily
optimal, policies to (4.19) and (4.20), respectively.
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