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I N T R O D U C T I O N

The Great Migration refers to a period spanning roughly 1915 to 1970 during which mil-
lions of black men and women left their homes in the Southern United States in search of
greater opportunity in the North. This exodus has been the subject of much scholarship by
historians, economists and other social scientists, among whom there is a consensus that,
because it dramatically altered the geographic distribution of the black population in the
US, the Great Migration had profound implications for blacks’ socioeconomic outcomes,
both absolutely and relative to whites. In the essays of this dissertation, I study several
labor-economic dimensions of the Great Migration that have received comparatively little
attention in previous work: the impact of the Great Migration on the wages prevailing
in Northern labor markets, the degree to which altruism towards future generations led
the Great Migrants to leave the South, and the causal effect of Northward migration on
migrants’ wages. While the Great Migration is thought to have been instrumental in re-
ducing black-white inequality, accounts of the episode often neglect the fact that many
whites migrated North as well, although at much lower rates than blacks. In the first and
third essays, I emphasize black-white differences in the effects of the Great Migration on
the wages of, respectively, those already in the North and migrants. Throughout, I argue
that the Great Migration can be viewed as a case study for internal migration and foreign
immigration in general, as well as a historically-accurate counterfactual for contemporary
flows of foreign immigrants to the US.

The econometric identification of causal effects and structural parameters is an explicit
sub-theme of the dissertation. The first essay addresses the possibilities that migrants
may have relocated to high-wage labor markets in the North, and that natives may have
moved away from areas receiving large inflows of immigrants, obscuring the relationship
between immigration and wages. The second and third take into consideration concerns
that migrants may have differed from non-migrants in ways not observed in the data,
confounding estimates of the influence of intergenerational altruism on the decision to
migrate and the impact of migration on the wages of migrants. In particular, the third
essay develops a general framework for interpreting group differences in mean treated-
untreated comparisons as bounds on group differences in treatment effects when enroll-
ment is selective.

In the first essay, I estimate the effects of the Great Migration on wages in the North.
Using both the local labor markets approach, in which local immigrant shares are related
to wages, and the structural, national labor markets approach, in which the estimated
parameters of an aggregate production function are used to simulate the wage effects
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2 introduction

of migration, I find that Southern immigration during this period decreased wages ap-
preciably for blacks, leaving those for whites unchanged. I argue that the source of this
disparity is effective imperfect substitution between black and white labor. While studies
of contemporary foreign immigration to the US have reached conflicting conclusions, gen-
erating controversy over whether native outmigration diffuses local labor-supply shocks,
I find no evidence of outmigration among native blacks, permitting a unique cross vali-
dation of the local and national approaches. This research enriches our understanding of
the consequences of the Great Migration and the evolution of the black white wage gap.
In addition, the size and racial composition of the labor-supply shock due to the Great
Migration make it a useful counterfactual to observed flows of contemporary foreign
immigrants to the US and provide unusually high power for detecting wage effects.

In the second essay, I analyze the relationship between intergenerational altruism and
migration by estimating a dynastic residential location choice model using intergener-
ational panel data that combines information about three generations of black families
spanning much of the Great Migration. While many studies have considered intergenera-
tional aspects of migration, there has been little work to quantify the impact of intergener-
ational altruism on migration behavior; my results provide direct evidence on this impact
in the context of the Great Migration. I find that intergenerational altruism increases the
probability of migrating by 4-6% on average. My estimates, which allow for correlated
unobserved heterogeneity in location preferences, suggest that a large proportion of the
population would be unlikely to migrate regardless of altruistic concerns; among the re-
mainder of the population, the effect of altruism is considerably higher, about 12-16%. By
comparing the effects of two counterfactual subsidies to the cost of migration, I further
show that altruism affects migration primarily by inducing parents who would otherwise
remain in the South to migrate North in order increase future generations’ welfare.

In the third essay, I study the conditions under which information about the causal
effect of a treatment can be identified by applying difference-in-differences regression
to two groups that both self-select into treatment. I establish that, in many cases when
selection and counterfactual outcomes can be described by a Roy model, differences-in-
differences provide a lower bound on group differences in the average effect of the treat-
ment on the treated. This group difference in causal effects is particularly informative in
cases where treatment effect heterogeneity is of direct interest or when it is reasonable
to assume that the average treatment effect is nonnegative for both groups. Furthermore,
because the requirements for identification are relatively weak, this group difference pro-
vides a framework for understanding treated-untreated comparisons in causal terms in
the absence of a credibly-exogenous source of variation in the propensity to be treated. I
use the identification results to interpret North-South wage differentials during the Great
Migration in terms of black-white differences in the causal effect of Northward migration
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on wages, finding that migration increased wages for black migrants by at least 24% as
much as for white migrants.





1
T H E G R E AT M I G R AT I O N A N D WA G E S I N T H E N O RT H E R N
U N I T E D S TAT E S

1.1 introduction

In the early twentieth century, the Southern United States witnessed a tremendous exodus
as millions of Southern-born black men and women left their birthplaces in search of
greater opportunity in the North. So numerous were these migrants that historians have
named their egress the Great Migration. It is difficult to overstate the scale—or social
and economic significance—of this migration, which, after its start around 1915, lasted
into the 1970s (Carrington, Detragiache, and Vishwanath, 1996; Tolnay, 2003). By 1950,
2.5 million Southern-born blacks lived outside of the South; by 1980, this number was 4

million (Tolnay, 2003). Between 1915 and 1960, nearly 40% of the black population left the
South (Carrington et al., 1996). This widespread immigration had profound implications
for the demographic composition of the North: as I show below, fully 60% of the black
labor force in the North was comprised of Southern immigrants by 1940. Although the
Great Migration is rightfully viewed as a distinctively black episode, it was accompanied
by substantial migration among whites; white immigrants actually outnumbered black
immigrants, comprising just over 5% of the total labor force in the North, compared to
about 2.7% for black immigrants.

The Great Migration was thus a large, long-lasting, and racially disparate supply shock
to Northern labor markets, suggesting the potential for commensurately large wage ef-
fects, and making it a natural and historically meaningful laboratory for understanding
how immigration affects absolute and relative wages. In this paper, I estimate the impact
of this migration on wages in the North. I do so using two completely different method-
ologies. The local labor markets approach (see Altonji and Card, 1991; Card, 2007, 2009,
1990, e.g.) uses variation in the amount of immigration across labor markets in order to
identify the wage effects of immigration. The structural, national labor market approach
(see Borjas et al., 2008; Borjas, 2003, 1994, 1999; Ottaviano and Peri, 2012, e.g.) proceeds by
specifying the technology through which aggregate output is produced, estimating the
parameters governing this technology, and using these estimates to simulate the effects of
immigration on equilibrium wages. Unlike studies of the effects of foreign immigration
to the US, I obtain similar results under either methodology, adding credibility to my
estimates and suggesting that these empirical approaches are reconcilable in principle.

5



6 the great migration and wages in the northern us

I find that the Great Migration decreased the wages of blacks working in the North
appreciably, but had little effect on those of whites. My flagship local labor markets re-
gression implies that, by 1950, Southern immigration had decreased the annual wages
earned by blacks working in the North by as much as 23%, a result which is robust to
a number of non-causal interpretations. Under my preferred structural simulation of the
impact of the Great Migration, I find that Southern immigration between 1940 and 1960

caused the average black wage to decrease by 22%. Using both approaches, I find that,
although white migrants outnumbered black ones, Southern immigration caused little
change in the wages of Northern whites.

I argue that the racial disparity in the estimated effect of Southern immigration can be
explained by a combination of effective imperfect substitution between blacks and whites
(arising either because of productivity differences or labor market segmentation due to
racial discrimination) during the study period and outmigration among native whites. I
present evidence that some native whites left labor markets that received large influxes
of Southerners, diffusing labor-supply shocks across labor markets and, consequently, at-
tenuating estimates of the effect of Southern immigration on white wages based on wage
comparisons between markets with different amounts of immigration. This equilibrating
outmigration was evidently driven by white Southern immigration, and I find no evi-
dence of an outmigration response among blacks. When the North is treated as one large
labor market, however, the only form of outmigration that can attenuate estimates of the
impact of immigration on wages is South-North migration, which was substantially less
common. My national labor market simulations, which are therefore much less contam-
inated by geographical arbitrage effects, suggest that segmentation between the markets
for black and white labor in the North plays a greater role in explaining the estimated
racial disparity in the effects of Southern immigration on wages in the North. I also pro-
vide summary statistics and structural elasticity estimates that adduce effective imperfect
substitution between black and white labor during the period under study.

This research advances two literatures. The first concerns the economic impacts of the
Great Migration and the evolution of the black-white wage gap. It is well known (see, for
example, Smith and Welch, 1978, 1989; Donohue, III and Heckman, 1991) that the Great
Migration was an important instrument for black relative economic progress. It was not,
though, without detriment to its namesake migrants. Blacks in the North faced higher
rates of unemployment (Sundstrom, 1998) and earlier mortality (Black, Sanders, Taylor,
and Taylor, 2011) than their Southern counterparts. The Great Migration may have also
had negative consequences for Northern cities, potentially contributing to discrimination,
white flight, residential segregation, and ultimately, exacerbating racial inequality (Frey,
1979; Massey and Eggers, 1990; Massey and Denton, 1993; Tolnay, 2003), though there has
been little rigorous empirical work connecting the Great Migration to these phenomena.
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In an important contribution, Boustan (2009) finds that the wages of blacks working
in the North would have been 7% higher in 1970 absent the Southern immigration that
took place between 1940 and 1970, while white wages would have been unchanged. My
paper extends Boustan (2009) along two critical dimensions. First, my local labor markets
estimates provide quasiexperimental evidence on the impact of the Great Migration on
wages that is not sensitive to assumptions about the structure of the labor market. While
the national labor markets approach has the virtue of robustness to outmigration-induced
attenuation of wage effect estimates, it also makes strong assumptions about the process
that determines output, and thus wages. If the assumed structure is a poor representation
of the the underlying aggregate production function, the resulting simulations of the im-
pact of immigration on wages will be incorrect. That I obtain similar results using either
methodological tack lends credibility to both papers. Second, I assess the sensitivity of es-
timates of the elasticity of substitution between blacks and whites—a key determinant of
the impact of immigration on the wage distribution—to different identification strategies.
I present evidence that previous estimates of this elasticity may have been inflated by
endogenous labor supply responses to within-skill-group wage fluctuations, particularly
among blacks. In addition, my empirical analysis focuses on earlier waves of the Great
Migration, during which blacks and whites may have been less effectively substitutable.
Furthermore, my wage simulations are weighted to account for the contemporaneous
evolution of the national skill distribution and the size of the immigrant labor force in
the North. This correction scheme helps offset a mechanical bias that arises because, as
a consequence of increases in mean educational attainment over time, skill groups that
were initially small tended to experience the largest proportional changes in immigration.
Although there is broad agreement between our findings, the differences between my im-
plementation and Boustan’s combine to produce large differences in the simulated effects
of the Great Migration; I estimate the long-run impact on the mean black wage to be twice
that reported in Boustan.

The second literature concerns the effects of international immigration and internal
migration on wages and racial wage differentials. Studies of the wage impacts of con-
temporary foreign immigration to the US have reached conflicting conclusions (cf. Card,
1990; Altonji and Card, 1991; Card and DiNardo, 2000; Card, 2001, 2009; Borjas, 2003,
2006; Ottaviano and Peri, 2012), generating controversy over whether natives exit areas re-
ceiving large immigrant inflows and, consequently, whether local labor markets estimates
based on geographical correlations or national labor markets estimates based on aggre-
gate production functions are best-equipped to uncover the causal effects of immigration.
Additionally, Boustan, Fishback, and Kantor (2010), studying the Great Depression, find
no evidence of wage effects, but a strong outmigration response to internal migration.
Two aspects of the Great Migration make it a uniquely-clarifying case study. During the
periods that I analyze, blacks are clustered into a small number of Northern metropolitan
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areas, limiting their scope to migrate in response to inflows of Southern immigrants. This
eliminates concerns about equilibrating outmigration, allowing me to validate the local
and national approaches against each other. I find that they agree strongly, demonstrat-
ing that results obtained using these different approaches are inherently reconcilable, and
lending credence to the hypothesis that outmigration can, perhaps only partially, explain
why the results of studies of foreign immigration depend on the methodology used. The
Great Migration’s size also makes it particularly useful for analyzing the relationship be-
tween migration and wages. As noted above and evidenced below, well over half of the
blacks working in the North in 1950 were born in the South. In contrast, the immigrant
fraction of the contemporary labor force in the US is considerably smaller.1 Studying such
a large implied labor-supply shock provides me with unprecedented statistical power to
detect wage impacts, even when individual wages are highly heterogeneous and samples
are relatively small.

Previous work has shown that the impact of immigration on wages depends on the sub-
stitutability between the immigrant and native populations (Card, 2009; Ottaviano and
Peri, 2012) and that immigrant inflows can exacerbate racial wage differentials (Borjas,
1987; Borjas, Grogger, and Hanson, 2010). By demonstrating that imperfect substitution
between blacks and whites concentrated the wage impacts of Southern immigration on
blacks, ultimately limiting the ability of the Great Migration to narrow the national black-
white wage gap, my results redouble the evidence on these points. That my findings echo
those of studies of contemporary foreign immigration suggests that the Great Migration,
though it was the product of distinct historical circumstance, is a case study with high
external validity. At the same time, because of its differences with contemporary immi-
grant flows, the Great Migration provides an empirically rich counterfactual to observed
foreign immigration. For example, Card (2009) argues that foreign immigration to the US
has had little impact on relative wages because the immigrant skill distribution is similar
to that for natives. This is in stark contrast to the Great Migration, which disproportion-
ately increased the supply of labor among blacks in the North, decreasing black relative
wages commensurately.

1.2 the great migration and local labor markets in the north

1.2.1 Data, sample restrictions, and variable construction

Although the Great Migration, which began around 1915, lasted through the 1970s, South-
North flows among blacks had already started to slow by the 1960s (Eichenlaub et al.,
2010; Tolnay, 2003). From the perspective of the effect of Southern immigration on the

1 Card (2001), for example, documents that foreign immigrants comprised less than 15% of the population of
the 175 largest cities in 1990.
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wages of those living in the North, it is thus earlier waves of the Great Migration that
are of primary interest. Detailed wage data from these periods are somewhat scarce; the
Census did not collect wage information prior to 1940, while the datasets most widely-
used to study wage dynamics (the PSID, NLS, CPS, etc.) did not begin until the 1960s.
For this reason, I use the Integrated Public Use Microdata Series (IPUMS) 1% samples of
the 1940 and 1950 decennial U.S. Census, provided by the Minnesota Population Center
at the University of Minnesota (Ruggles, Alexander, Genadek, Goeken, Schroeder, and
Sobek, 2010).2 These data include information on respondents’ earnings and labor supply
decisions in the year before enumeration, as well as demographic characteristics such as
race, age, education, birthplace and residential location measures. One limitation of these
data is that only a subset of households were asked wage and education questions in the
1950 Census, so the resulting samples for that year are relatively small.

I use the Eichenlaub, Tolnay, and Alexander (2010) definition of the “South”: Oklahoma,
Texas, Arkansas, Louisiana, Kentucky, Tennessee, Mississippi, Alabama, North Carolina,
South Carolina, Georgia, Florida and Virginia are Southern states. I refer to all other states
as the “North.” I restrict the sample to U.S.-born, black and white men, aged 16-64, who
earned nonzero income in the year prior to enumeration. Throughout this paper, “native”
means born in the North, while “immigrant” means born in the South.

I define local labor markets as metropolitan areas.3 A potential complication with this
choice is that, during the period under study, blacks living in the North are clustered
into a small number of metropolitan areas. In the regression estimates below, I drop
metropolitan areas with fewer than ten members of the racial group being considered in
order to eliminate influential outliers. Appendix Table 1.17 lists, for each Census year, the
metropolitan areas with at least ten native black respondents, as well as the sample sizes
and amount of race-specific and overall Southern immigration in those areas; although
Northern blacks live in a small number of metropolitan areas, there is substantial variation
in the size of the immigrant labor force across these areas. In the empirical results that
follow, I undertake a number of exercises in order to assess the sensitivity of the estimated
effects of immigration to the number of Northern metros included in the black regression
samples.

Two of the key dependent variables in the models estimated below are the logarithms
of annual and weekly wages. Annual wages are simply self-reported income from wages
and salaries in the year preceding the Census. Weekly wages are annual wages divided by
the number of weeks worked. I inflate wages to 1999 dollars using the IPUMS-supplied
CPI weights.

2 The IPUMS Census sample for 1960 does not include geographical identifiers finer than state of residence,
precluding the use of this data for local labor markets analysis of immigration.

3 In the 1950 Census, metropolitan areas are referred to as Standard Metropolitan Areas (SMAs). The 1940

Census did not use a metropolitan area concept, but the IPUMS 1940 Census sample identifies areas falling
within the 1950 SMSA boundaries that contain enough respondents to meet confidentiality requirements
(Ruggles et al., 2010).
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Some of the independent variables used below are constructed metropolitan area aver-
ages. Of note, I calculate the fraction of the Northern labor force (men aged 18-64 report-
ing nonzero income) comprised of Southern-born men, Southern-born black men, and
Southern-born white men. When calculating metro-level averages, I weight each observa-
tion by the IPUMS-supplied person weights in order to increase the degree to which the
averages represent their underlying population moments.

Table 1.1 presents several summary measures of the amount of immigrant labor in the
North. Southern immigrants comprised about 8% of the labor force in 1940 and 10% in
1950. However, the distribution of immigrant labor among racial groups is highly skewed,
with between 63 and 66% of the black labor force in the North consisting of Southern
immigrants, and only 5-7% of the white labor force Southern born. At the same time,
black Southerners comprised only 3-4% of the overall labor force in the North, while
white Southerners comprised 5-7% of it. These summary statistics show that, while a
large fraction of blacks living in the North are Southern-born, the black population is
sufficiently small that Southern-born black labor is a comparatively small fraction of the
overall labor force in the North. The table also contains corresponding statistics for recent
immigration. The 1940 Census identifies the metropolitan areas in which respondents
lived five years before enumeration, while the 1950 Census identifies the metropolitan
area in the year just before enumeration. Only about two percent of the North’s labor
force as of 1940 resided in the South in 1935, while only a slightly smaller fraction of
the labor force as of 1950 resided in the South in 1949. These statistics suggest that the
estimates below are more likely to represent longer-run effects of immigration on wages.

Table 1.2 summarizes the distribution of education among natives and immigrants liv-
ing in the North. Overall, the native and immigrant distributions are similar, though
immigrants are overrepresented at lower educational levels for both races and years, with
Southern immigrants less likely to have a high-school degree or better. That the educa-
tional distribution among immigrants is not too dissimilar than that for natives suggests
that the wage effects of immigration will not be concentrated on any particular native
subgroup. For this reason, in the analysis below, I examine the effects of immigration on
overall average wages.

1.2.2 Empirical strategy

The “local labor markets” approach, which relates variation across geographic areas in
the wages of natives to that in immigration in order to deduce the impact of the latter
on the former, has a long history in the immigration literature (see, for example, Card,
1990, 2001, 2007; Altonji and Card, 1991; Card and DiNardo, 2000; Card and Lewis, 2007;
Boustan et al., 2010; Hunt, 2012). A complication to this approach is that migrants are not
randomly assigned to receiving locations. It seems reasonable, for example, to suppose
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that Southern immigrants selected into areas in the North where, owing to productivity
or demand shocks, wages were higher than average.4 The converse is also possible, e.g. if
locations closer to the South simultaneously offered below-average wages and attracted
immigrants by virtue of their proximity. In either case, estimates of the effect of immigra-
tion on wages based on the spatial correlation between these variables may be biased.

Altonji and Card (1991), drawing on research by Bartel (1989), argue that enclaving
among migrants—the tendency of successive generations of immigrants to live in the
same areas—provides a source of variation in immigration that is uncorrelated with the
contemporaneous economic conditions of local labor markets.5 To exploit this variation,
I predict contemporary immigration shares using 1920 settlement patterns. In particular,
I predict the fraction pjt of the labor force comprised of immigrants in area j during
decade t using p̂jt = µj20Mt/Njt, where µj20 is the fraction of all Southern immigrants
who resided in area j in 1920, Mt is the total number of Southerners living in the North
in decade t, and Njt is the total population of area j in decade t.6 I then use p̂jt to instru-
ment for the actual fraction of the labor force consisting of immigrants from the South.
Of course, instrumental variables estimates based on predicted immigration patterns may
still be biased if there are serially-correlated metro-level unobservables that affect both
wages and immigration (e.g. if high-average-wage metros in 1920 attracted a dispropor-
tionate share of the immigrant population in 1920 and also tended to have above-average
wages in 1940 and 1950). I take several steps, detailed below, to account for this possibil-
ity.7

Figure 1.1 plots, for 1940 and 1950, the fraction of the labor force born in the South
against predictions of that fraction based on 1920 settlement patterns. As the figure
demonstrates, predicted immigration is a strong instrument for observed immigration,
with most of the plotted points lying near the regression line. I present formal first-stage
regression results in Appendix Table 1.18, which also shows that predicted immigration

4 This hypothesis is not without empirical support. Tolnay (2003) presents some anecdotal evidence of loca-
tional selection, while Collins (1997) argues that demand shocks caused by restrictions on foreign immigra-
tion played an important role in catalyzing the Great Migration.

5 Cf. Card and DiNardo (2000); Card and Lewis (2007); Card (2001, 2007, 2009).
6 I use 1920 settlement patterns for several reasons. First, the Great Migration did not begin until roughly 1915,

so prior to 1920 the number of Southern immigrants residing in the North is small. Second, metropolitan
areas are only identified in the IPUMS Census samples if they are sufficiently populous to meet confiden-
tiality requirements, so using earlier settlement patterns reduces the number of metros that can be matched
to lagged migration. Third, as Table 1.1 shows, many of the Southern immigrants living in the North in
1940 were already present by 1935; immigrants living in the North in 1940 may therefore have selected into
locations on the basis of local economic conditions during the 1930s, so predicted migration based on 1930

settlement patterns may be more contaminated with selection effects.
7 It is also possible that the local average treatment effect estimated using lagged immigration to instrument

for contemporaneous immigration differs from the average treatment effect. This may happen if less-skilled
immigrants are more likely to be induced to locate in area j by the amount of existing immigration there.
Boustan et al. (2010), who use variation in weather and New Deal spending to instrument for internal migra-
tion during the same time period, note this as well.
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is strongly correlated with actual immigration in both the white and black regression
samples for both years.8

1.2.3 Native wages and Southern immigration

Table 1.3 presents OLS and IV estimates of the impact of Southern immigration on the
annual wages of native Northerners. These specifications model the log annual wage of
individual i, living in metropolitan area j, as a linear function of the fraction of the labor
force in area j comprised of immigrants, a full set of indicators for age and educational
attainment, and in some specifications, additional covariates. I estimate separate models
for each racial group and year. In order to account for the fact that the metro-level average
variables included as regressors are generated in a first stage, I weight each observation
by the number of observations used to construct these averages. The reported standard
errors are clustered by metropolitan area.9

Specification (1) includes only the proportion of the local labor force comprised of
Southern-born workers and indicators for age and education as explanatory variables.
Specification (2), following the literature, adds a number of metro-level covariates, in-
cluding the fractions of the black and white populations employed in manufacturing, the
fractions of these populations living on farms, and the average educational attainment
(measured in years of completed schooling) among these populations. The purpose of
these covariates is to absorb any potential correlation between lagged (or contempora-
neous, in the OLS estimates) migration and unobservable metro-level determinants of
wages. For the 1950 samples, it is also possible to include lagged averages of the depen-
dent variable. Specifications (3) and (4) mirror (1) and (2) with the exception that they
include metro-average log annual wages in 1940.10 These lagged average dependent vari-
ables serve several purposes. First, if the process that determines metro-level average
wages over time exhibits true state dependence, excluding these variables may induce
a correlation between lagged immigration and contemporaneous wages, even if lagged
immigration is otherwise exogenous. Second, lagged immigration may have exerted a
first-order effect on wages (e.g. if local labor markets responded to previous immigrant
flows by changing their industrial composition); conditioning on lagged average wages
can account for this possibility. Third, in the presence of permanent metro-level hetero-
geneity that affects both immigration and wages (e.g., permanent productivity shifters)
and is not absorbed by the other covariates, even IV estimates based on lagged immi-

8 In some of the results below, I also predict race-specific immigrant shares pr
jt using p̂r

jt = µr
j20 Mt/Njt, where

µr
j20 is the fraction of the labor force in area j in 1920 consisting of Southern immigrants of race r. Table 1.18

shows that these group-specific predictors are also strong instruments for actual group-specific immigration.
9 Note that the asymptotic distribution of the instrumental variables estimates is independent of the sampling

error arising from the estimation of the instruments (see Wooldridge, 2002, Appendix 6A).
10 These specifications are similar to those used in Altonji and Card (1991), Card (2007, 2009) and Boustan et al.

(2010).
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gration will be biased. I establish in Appendix B that, in my data, the inclusion of a
lagged dependent variable is likely to be bias-reducing in this case. Finally, there may be
time-varying, serially correlated, metro-level factors (e.g., serially correlated demand or
productivity shocks) that affect migration and wages in each time period. Lagged average
wages may provide a useful proxy for this type of heterogeneity as well.

The OLS estimates are presented in the left panel of Table 1.3. In the 1940 sample, none
of the estimated coefficients on the proportion Southern are statistically significant, al-
though the point estimate is negative for blacks in specification (2). In the 1950 sample,
this coefficient is negative and statistically significant in each specification for blacks, and
becomes larger in absolute value as more covariates are added to the model, a pattern
consistent with selection into high-wage metropolitan areas. The coefficient on the pro-
portion Southern is positive in all of the models estimated for whites, though it is not
always statistically significant. The instrumental variables estimates are displayed in the
right panel of the table. For blacks, each IV estimate of the coefficient on the proportion
Southern is larger in absolute value than its corresponding OLS estimate. With the excep-
tion of specification (1) in 1940, the estimated effect of migration is negative for blacks in
every specification, exhibiting the same pattern of a larger absolute effect as additional
covariates are added to the model. In the richest specification (specification (4), estimated
using the 1950 sample), the estimate implies that a 10% increase in the immigrant share
of the labor force decreases annual wages among native blacks by about 23%. In con-
trast, none of the estimates of the effect of immigration on the wages of native whites are
statistically significant, though most of the point estimates are positive.

The estimates in Table 1.3 should be viewed as general equilibrium effects that com-
bine the (potentially different) effects of own- and cross-race immigration. In order to
decompose these combined effects, I also estimate models that allow for different own-
and cross-race effects. Specifically, I replicate specifications (1)-(4), replacing the fraction
of the local labor force born in the South with the fraction of the labor force consisting
of Southern blacks and that consisting of Southern whites. Table 1.4 presents the esti-
mated coefficients for these models. The relationship between the OLS and IV estimates
of these specifications mirrors that in Table 1.3, with the IV coefficients generally more
negative than their OLS counterparts. Both the OLS and IV estimates suggest that the
negative effect of immigration evident for blacks is driven primarily by competition be-
tween Northern-born blacks and black immigrants from the South. In the OLS estimates
for blacks, the coefficients on the proportion Southern black are all negative, while those
on the proportion Southern white are either positive or smaller in absolute value (none
are statistically significant). In the IV estimates, the coefficients on the proportion South-
ern black are uniformly negative and statistically significant, while the coefficients on the
proportion Southern white are small and, in most cases, statistically insignificant.
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Among native whites, the evidence is somewhat mixed. Both the OLS and IV esti-
mates suggest a weak positive effect of black immigration on the wages of Northern-born
whites, although this effect disappears in the IV estimate of specification (4). At the same
time, there is some evidence of a negative own-race effect among whites, with the coeffi-
cients on the white immigrant share of the labor force uniformly negative. However, these
coefficients are never statistically significant when metro-level averages are included as
covariates. The estimates for whites also suggest that the apparent negative effect of im-
migration on the wages of native blacks cannot be explained by a residually-negative cor-
relation between immigration and unobservable metro-level determinants of wages. Were
this the case, one would expect the coefficients on the black immigrant share variables to
be negative in the regressions estimated on samples of native whites. These coefficients
are uniformly positive, a finding consistent with either positive cross-race effects of im-
migration or residual bias arising from positive selection into metropolitan areas, but not
selection among Southern-born blacks into low-wage areas.

Tables 1.5 and 1.6 present estimates of the effects of overall and, respectively, group-
specific Southern immigration on the log weekly wages of natives. The results from both
sets of models are similar to those for log annual wages. The IV estimates of the coefficient
on the fraction Southern are all negative for blacks (and statistically significant in three of
four specifications) while the estimated coefficients for whites are positive or close to zero
and statistically insignificant in every specification. Similarly, the estimated models of the
effects of group-specific immigration evince a negative effect of black immigration on the
wages of native blacks, with little evidence of a substantial own-race effect for whites
or cross-race effects for either group. For both the overall and group-specific models,
the estimated effects of immigration on weekly wages are generally smaller in absolute
value than in the corresponding models of annual wages. For example, the coefficient
on the fraction Southern in specification (4) is -2.27 when the dependent variable is the
log annual wage and -1.26 when that variable is the log weekly wage. This difference
implies that adjustments to employment are one of the channels through which markets
for black labor responded to immigration-induced supply shocks. If these adjustments
caused some natives to exit the labor force, this finding may also suggest that the effects
estimated using native black labor force participants understate the underlying impact
of migration on the earnings of the overall population. It is worth noting that even the
weekly wage estimates imply a large wage elasticity of labor supply. Sundstrom (1998)
notes that black-white relative unemployment rates were higher in the North, a finding
that he attributes to racial discrimination. Discrimination may have contributed to such
large elasticities among blacks employed in the North by decreasing their labor supply
along its intensive margin and possibly reducing their power to bargain for wages.

The justification that underlies my identification strategy is that, other things equal, im-
migrants prefer areas where others before them have moved. The instrumental variables
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estimates presented so far have been based on the total fraction of each metropolitan
area’s labor force comprised of Southern immigrants in 1920. That is, they are based on
the propensity of Southerners to migrate to areas where other Southerners have gone.
Although, as Figure 1.1 illustrates, predicted immigrant shares obtained this way are
strongly related to actual shares, a more compelling behavioral story might be that immi-
grants originating from a particular locale prefer to migrate to areas where others from
that locale have moved. To this end, I also estimate models that instrument for immigra-
tion using shares predicted from state-specific historical settlement patterns. I predict the
decade-t fraction of the labor force in area j comprised of Southern immigrants using
p̂jt = ∑k µkj20Mkt/Njt, where µkj20 is the fraction of immigrants from state k that resided
in metropolitan area j in 1920 and Mkt is the number of immigrants originating from
k in t. As Appendix Table 1.19 shows, using state-specific predictions to instrument for
immigrant shares produces coefficients for both groups that are higher on the real line,
regardless of how wages are measured. At the same time, even these IV estimates are
lower than the OLS estimates presented previously, a pattern once again consistent with
selective immigration into high-wage areas. The race-specific estimates, presented in Ap-
pendix Table 1.20, are similar. One explanation for this difference is that, since immigrat-
ing to closer areas is less financially and psychologically costly, state-specific settlement
patterns may be partially identifying areas to which residents of a particular state are
likely to move in response to transient shocks. Predicted immigration based on these set-
tlement patterns may therefore be more contaminated with selection effects, in which case
treating the entire South as the location of origin can reduce this bias by better-identifying
migrations that are motivated by enclaving behavior.

1.2.4 Native outmigration and Southern immigration

Some previous research (see Borjas, 2006; Boustan et al., 2010) has found evidence that
internal migration among natives is an important part of the response of local labor mar-
kets to immigration. In the presence of this type of equilibrating migration, immigration
shocks do not necessarily translate to labor supply shocks, and estimates of the impact
of immigration on wages may be attenuated. Both the 1940 and 1950 Census microdata
samples provide information on the metropolitan areas in which respondents lived prior
to the Census (in the 1940 Census, this is the area of residence five years prior to enu-
meration; in the 1950 Census it is the area one year prior). I construct an outmigration
indicator equal to one if an individual no longer resides in his pre-Census metropolitan
area. I then estimate a series of linear probability models that relate the probability of
leaving this area to the recent immigrant share of the local population (the number of
individuals living in a metro at the time of the Census but residing in the South in the
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pre-Census period divided by the total population of the metro in this period).11 I focus
on recent migration because outmigration in response to historical flows of immigrants
most likely occurred before the pre-Census periods.

Table 1.7 shows the results of this exercise. Specification (1) contains only the recent
immigrant share and indicators for age and education; specification (2) adds metro-level
covariates.12 The top panel of the table contains estimates of the overall effect of recent
immigration on native outmigration. For 1940, the OLS estimates suggest an outmigration
response to recent immigration among native whites (though this effect disappears when
covariates are added to the model) and a negative relationship among blacks; for 1950,
these estimates do not suggest responsive outmigration among natives of either race. The
IV estimates are more positive for both years and both races. When covariates are included
in the model, the estimated outmigration response among whites is about 0.7 in in 1940

and 1.4 in 1950, though the latter is not statistically significant, while the coefficients for
native blacks are smaller and statistically insignificant. The bottom panel of the table
presents the estimated effects of group-specific recent immigration. These estimates show
that native white outmigration is primarily a response to flows of white immigrants. The
IV estimates of the specification (2) coefficients on the white recent immigrant share are
about 0.8 and 2.1 (for 1940 and 1950, respectively; both are significant), while those on the
black recent share are very imprecise; for black natives, the IV estimates do not suggest
black outmigration in response to any form of recent Southern immigration.

The results in Table 1.7 show that some native whites left metropolitan areas receiving
flows of Southern immigrants. Their precise interpretation, however, requires some care.
Some of the 1935-1940 and 1949-1950 native outmigration probably represents a response
to immigrants who arrived before these periods began, overstating the actual relationship
between Southern immigration and native outmigration.13 A better specification would

11 I follow Boustan et al. (2010) in using recent immigration as a fraction of the pre-Census population in order
to avoid a potential bias arising because, other things equal, native outmigration will mechanically increase
the contemporaneous immigrant share. In addition, since the total number of recent immigrants is somewhat
small in 1950, I use shares of the entire working-age population (rather than only those with nonzero wages)
in order to increase the precision of the estimates, although this has little effect on the estimated magnitudes.

12 Estimates from specifications that include lagged average wages (not shown) are similar.
13 A back-of-the-envelope calculation confirms this intuition. Replacing the recent immigrant share with the

total immigrant share and estimating specification (2) using the 1950 data produces a coefficient of about
0.06 for native whites. Since recent immigrants comprise roughly 15% of the total immigrant population in
1950, if this coefficient only reflected recent immigration, the implied coefficient on the recent immigrant
share would be 0.4 (=.06/.15). The actual coefficient is about 1.4, implying that only roughly 30% of the 1949-
1950 native outmigration occurred as a response to immigrants who arrived during this period. This effect is
probably less pronounced in the 1940 sample since a five-year interval is more likely to capture outmigration
occurring in response to current flows of immigrants. A simple example clarifies this logic. Suppose that half
of the natives that will outmigrate as a response to immigration in a given year do so at a one year lag and
that recent immigrant shares are roughly constant over time. Within a one-year period, half of the native
outmigration attributed to recent immigration will actually be a response to immigrants who arrived in the
previous year. Within a five-year period, only 10% of the observed outmigration attributed to immigration
within the period will actually be a response to previous immigration, since half of the outmigration that
takes place in the first year will be a response to immigrants who arrived before the beginning of the period.



1.2 the great migration and local labor markets in the north 17

include both the recent immigrant share and the total immigrant share at the beginning of
the pre-Census period. Since recent and total immigrant shares are highly correlated and
both are potentially endogenous, the estimation of such a model, which requires separate
instruments for initial and recent migration, is challenging.14 Although they likely over-
state the actual outmigration response to recent immigration, these estimates do evidence
an appreciable response among native whites, but no such response among blacks. These
results may help explain the racial difference in the estimated effects of immigration on
natives’ wages.

1.2.5 Robustness tests

A clear pattern emerges from the evidence presented so far: Southern immigration ap-
pears to put downward pressure on the wages of native blacks, but exerts no influence on
those of native whites. The effect among native blacks is driven by inflows of Southern-
born blacks, with only tenuous evidence of cross-group impacts. Finally, immigration
among Southern whites appears to induce native whites to move away from receiving
areas, possibly diffusing would-be labor supply shocks. In this section, I present a series
of tests to determine whether these findings are robust to alternative, non-causal interpre-
tations.

My identification strategy requires that 1920 migration patterns are correlated with
contemporary immigrant shares of the labor force but, conditional on covariates, oth-
erwise uncorrelated with unobservable determinants of wages. As discussed above, if
there is serially-correlated unobserved heterogeneity in metro-average wages for which
the included covariates are poor proxies (and if this heterogeneity is correlated with immi-
gration), IV estimates of the effects of immigration on wages based on lagged migration
patterns may still be inconsistent. Recall, however, that I have already presented evidence
on the direction of this bias: in models estimated using samples of native whites, the
coefficients on the black immigrant share of the labor force are positive, a result which
is prima facie inconsistent with the selection of black immigrants into low-average-wage
metros. Any residual unobserved heterogeneity is therefore likely to impart an upward
bias on my estimates, in which case they can viewed as bounding the actual effects from
above.

Note also that my regressions identify the impact of recent immigration on the probability of outmigrating
within the same period, not the impact on the total probability of outmigrating.

14 I also estimate models that relate natives’ wages to recent immigration (not shown). The estimated effects
in these models are generally much larger than those obtained using immigrant stocks, presumably because
recent immigration is strongly correlated with existing immigration (in fact, when the total fraction Southern
is included in these models, the coefficients on recent migration become small and statistically insignificant).
While outmigration is more likely to be related to recent immigration, natives compete in labor markets
with both new and existing immigrants, so the total immigrant share is the more appropriate measure
of immigration’s contribution to the labor supply. The wage effects presented above should therefore be
interpreted as combining the effects of recent and existing immigration, to the extent that these differ.
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To provide further evidence on this point, I present in Table 1.8 instrumental variables
estimates that pool the 1940 and 1950 samples in order to allow for permanent unobserved
metro-level heterogeneity. As the results show, demeaning the data substantially reduces
the variation in the covariates, increasing the standard errors commensurately. Regard-
less, the instrumental variables estimates give no indication that the negative effects for
blacks shown above owe to a residually-negative noncausal relationship between wages
and migration. When no covariates are included, the fixed-effects coefficient for annual
wages is statistically significant for blacks and the weekly wages coefficient is marginally
so (in fact, three of the four models reject the one-sided hypothesis test that the black coef-
ficient is positive). For whites, none of the estimated coefficients are significantly different
from zero, even though these coefficients are estimated more precisely.15 For both groups,
adding metro covariates to the equation increases the estimated standard errors on the
immigrant share coefficients, presumably because, after conditioning on individual-level
variables, little variation remains in the metro-average variables. I also estimate models of
the changes in metro-level average residual wages as a function of changes in immigra-
tion, where the residuals are taken from regressions that include a full set of indicators
for age and education. The main difference between these estimators is that using mean
residual wages does not remove the variation explained by the individual covariates from
the area-level covariates, preserving more variation in the latter. The estimates, presented
in the bottom panel of Table 1.8, are similar to the microdata fixed-effects results. Among
blacks, the instrumental variables coefficients are significant and negative for both annual
and weekly wages, while the white estimates are imprecise.16

If anything, the results in Table 1.8 suggest that models estimated in levels understate
the effect of Southern immigration on wages, in which case they can be viewed as upper
bounds. Since the within estimates identify the effects of immigration using innovations
over time to the proportion Southern, another possibility is that these estimates capture
the effect of more recent immigration, which may have a stronger effect on wages if lo-
cal labor markets adjust to immigrant flows over time, e.g. through adjustments to the
capital stock or changes in industrial composition. Although their confidence intervals
are wide, the magnitudes of the fixed-effects estimates for blacks suggest that permanent
unobserved heterogeneity may not accurately describe how metro-average wages evolve
over time. If, for example, wages are mean-reverting but areas with historically high im-
migration tend to receive greater immigrant inflows, the coefficient estimates of a model

15 I also estimate fixed-effects specifications that use group-specific migration shares (not shown). Although the
estimated coefficients are similar to the those from models of the overall impact of immigration, they are
even less precise.

16 The first-difference results shown in the table are from unweighted regressions, though weighting according
to the scheme used in Altonji and Card (1991) produces similar results.
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with fixed effects will be biased down.17 For this reason, I prefer the lagged-dependent-
variable specifications discussed previously.

As noted in Section 1.2.1, the Northern black population is clustered into a relatively
small number of metropolitan areas in my data. For example, because the sample of the
1950 Census, which only asked wage and education questions of a subset of households,
is somewhat small, I only identify 22 metropolitan areas with at least ten native blacks.
Although this clustering of the Northern black population is a matter of historical fact, it
may call into doubt the causal interpretation of my estimates if they are driven by a few
metropolitan areas acting as outliers. Figure 1.2 presents graphical evidence that this is
not the case. The figure plots, separately by race, metro-average residual log annual wages
against immigrant shares in 1950. I generate these figures by regressing both log annual
wages and immigrant shares on the specification (4) covariates and averaging them at the
metropolitan area level (in the figures labelled “IV,” the x-axis contains averages of the
projection of actual onto predicted immigration). While they are somewhat noisy, both
the OLS and IV plots show that the negative relationship between native black wages and
immigration is not an artifact of a small number of influential outliers. In contrast, among
whites, both regression lines have small, positive slopes.

Another concern is that the racial difference in the estimated effects of immigration may
be a consequence of the dispersion of whites across a larger number of metropolitan areas.
The evidence presented previously shows that the negative effect among blacks is not
driven by unobserved heterogeneity. However, since native whites live in a more diverse
set of locations, if there is heterogeneity in the effect of immigration across different
metros, it is possible that a negative effect for whites living in areas also inhabited by
blacks is obscured by positive effects in predominantly white areas. To test for this, I
replicate the log annual wage regressions, restricting the white samples to the same areas
used to estimate the black regressions. Table 1.9 presents the results (in the interest of
brevity, I include only the IV estimates). For native whites, the estimated coefficients
are very similar to those obtained using the entire white sample, offering no indication
that the apparent black-white difference owes to the greater dispersion of whites (the
estimates for blacks are identical to those shown above). I also estimate models of native
outmigration on the sample of whites living in the metropolitan areas from the black
regression sample. These estimates, displayed in Table 1.10, show that native whites living
in this geographic subsample are also more likely to leave their metropolitan areas in
response to incoming Southern whites.

All of the models estimated so far treat the wages (and migration behavior) of natives
as a function of Southern immigration. In principle, this is the correct sample with which
to estimate the impacts of immigration on natives. Even if interest centers on the impact

17 This argument is formalized in Appendix B. Of course, it is also possible that there are permanent and mean-
reverting components of unobserved heterogeneity. The estimation of such models generally requires many
periods of data even when the other regressors are exogenous.
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of immigration on the entire Northern labor force, there is a strong case to be made for
excluding immigrants from the sample. Although immigrants compete with each other in
the labor market—suggesting a potentially negative impact of immigration on the wages
of immigrants—there is also reason to believe that the immigrant share of the labor force
may affect the wages of immigrants themselves through additional channels. For example,
existing immigrants may help match new ones with employers and housing or provide
other forms of support. In fact, these network effects are one hypothesized reason for the
enclaving behavior that motivates the use of historical settlement patterns to instrument
for contemporaneous immigration (Carrington et al., 1996; White and Lindstrom, 2005).
Additionally, to the degree that there are metro-level factors that may differentially impact
the wages of migrants, selective immigration may introduce more bias into estimates of
the effect of immigration on the wages of other migrants. With these caveats in mind, I also
estimate models of the effects of immigration on wages (and outmigration) using samples
that include Southern immigrants. The primary advantage of extending the sample in this
way is that, since over half of the black labor force in the North is Southern-born during
this period, doing so increases the number of metropolitan areas that can be used to
estimate the effects of immigration on blacks.

The IV estimates for log annual wages are shown in Table 1.11. Including Southern
workers in the sample increases the number of metropolitan areas to 47 (from 26) in 1940

and 33 (from 22) in 1950. The estimates for the overall share immigrant are shown in
the left panel. For blacks, the point estimates are smaller in absolute value than those
obtained using only native workers. Still, the coefficient is statistically significant for the
1940 estimate of specification (2), and for each 1950 specification. The inclusion of South-
ern workers causes little change in the estimated coefficients for whites. The coefficients
on race-specific immigration shares are also similar to those estimated using the native
sample. For blacks, the coefficients on the proportion Southern black are more negative
than those on the overall proportion Southern, and, when covariates are included, these
estimates are statistically significant. The estimates for whites are also similar to those
obtained using only natives, with weak evidence of negative own-race and positive cross-
race effects, though these coefficients are sensitive to different specifications of the model.
Table 1.12 displays IV estimates of the impact of immigration on outmigration obtained
using this extended sample. The coefficients on overall and group-specific immigrant
shares are similar to those estimated using only natives, suggesting measurable outmigra-
tion among whites in response to recent Southern white immigration and no relationship
between black outmigration and Southern immigration.
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1.2.6 Discussion

My key findings—that (i) Southern immigration reduces wages for native blacks, but not
whites, and (ii) immigration results in considerable outmigration among native whites,
but not blacks—are thus quite resilient to alternative interpretations. The reciprocal re-
lationship between these findings is probably not coincidental: the greater the native
outmigration response to immigration, the less immigrant shares represent labor supply
shocks, and the more attenuated estimates of the effect of immigration on wages become.
Still, since they likely overstate the underlying outmigration response, these results do
not imply that white immigrants displace white natives one-for-one. Immigrant shares
do measure labor supply shifts, therefore, and cannot completely explain the lack of any
apparent effect of immigration on the wages of native whites.

The evidence on native migration in response to foreign immigrants arriving in the
US in the second half of the 20th century is ambiguous (contrast Card, 2001 with Borjas,
2006). In comparison, my estimates for whites are quite similar to those obtained by Bous-
tan et al. (2010), despite the analysis of different forms of immigration and use of different
identification strategies. Historical context may explain why a consensus emerges regard-
ing earlier internal migration but not later foreign immigration: 1940 marks the end of the
Great Depression and 1950 is the height of the white flight phenomenon (Frey, 1979); both
may have been periods of unusually high mobility, at least among whites. That blacks re-
side in a relatively small number of metropolitan areas in the North is a good candidate
explanation for the racial difference in my estimates of the native outmigration response
to Southern immigration. It is well-known (see Massey and Denton, 1993) that blacks are
often segregated into predominantly black neighborhoods. If the same social forces (e.g.,
discrimination and tastes for like-race neighbors) that drive this segregation also oper-
ated on larger geographic scales during the 40s and 50s, native blacks would have had
limited scope to migrate away from Northern metropolitan areas receiving large inflows
of Southern immigrants.

Insofar as they arise from labor supply effects, the differences between my estimates
of the impact of Southern immigration on the wages of black and white natives imply
that the degree of competition between blacks and whites in Northern labor markets is
limited during the sample period. I find no evidence of an effect of Southern white immi-
gration on native black wages and only tenuous evidence of a small positive effect of black
immigration on white wages. While white native outmigration can partially explain the
absence of an effect of Southern white immigration on black wages, it cannot fully recon-
cile the black-white difference: among neither group do I find an outmigration response
to black immigration, implying that black immigrants arriving from the South shift local
relative labor supply curves. If white natives substitute perfectly for black immigrants, we
should expect to see an effect of black immigration on white wages; we do not.



22 the great migration and wages in the northern us

The question of the substitutability of black for white labor thus becomes central. Ef-
fective imperfect substitution between racial groups may arise either because members of
different groups possess different skills, or because of discrimination-based segregation
into occupations, industries, firms, etc. A simple measure of black-white occupational
segregation is the correlation between the black and white fractions of the labor force
working in different Census occupations. I estimate this correlation to be 0.83 in 1940 and
0.75 in 1950. When I replace occupations with industries, the correlations are 0.87 and
0.77 for these years. Finally, when I classify workers into industry-occupation cells, the
correlations are 0.65 and 0.41. These correlations, which do not account for segregation at
the employer level, point to substantial imperfect substitution between blacks and whites.

In addition to explaining the absence of negative cross-group effects of immigration on
wages, imperfect substitution between racial groups can account for part of the appar-
ent black-white difference in the impact of own-race immigration. In 1940, for example,
Southern blacks comprise less than 3% of the Northern labor force, compared to 5% for
whites. In comparison, Southern immigrants comprise 63% of the black labor force. The
greater the degree of isolation between the markets for black and white labor, therefore,
the larger the relative shock to the black labor supply implied by the black immigrant
share. If, to give an extreme example, the markets for black and white labor were com-
pletely independent, Southern immigration would have caused a modest proportional
increase in the supply of white labor while more-than-doubling the supply of black labor.
Imperfect substitution would therefore make wage effects among whites more difficult
to detect in the data, especially combined with positive cross-group effects due to black
immigration and outmigration among natives, both of which would potentially offset the
variation in wages across labor markets.

Lastly, Southern immigration may have impacted wages through non-labor-supply
channels. Following Becker (1971), one possibility is that Southern immigration, as a con-
sequence of heterogeneous tastes for discrimination, increased the prejudice of marginal
employers of blacks in the North, decreasing equilibrium black wages (but having no ef-
fect on whites’ wages). I present some evidence in the next section that this is not the case.
In addition, Southern black immigration surely contributed to the formation of Northern
ghettos. The residential segregation literature indicates that the concentration of Northern
blacks into crowded urban centers exacerbates poverty in these areas (Massey and Eggers,
1990; Massey and Denton, 1993; Cutler and Glaeser, 1997), though the causal mechanism
underlying this effect is unclear (an interesting possibility is that immigration-induced
labor-supply shocks depressed wages in these areas, catalyzing ghetto formation). Differ-
entiating between labor-supply and other explanations of the impacts of Southern immi-
gration is beyond my scope, although I note that if these impacts are not driven by supply
shocks, they may be less informative about contemporary immigration.
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1.3 the great migration and the aggregate northern labor market

In this section I use the structural, “national labor market” approach to estimating the
effect of Southern immigration on wages. Closely following Borjas (2003) and Ottaviano
and Peri (2006, 2008, 2012), I first specify the technology through which aggregate output
is produced in the Northern US. I then use labor supply and wage data to estimate
the parameters of this production function. Finally, I use these parameter estimates to
simulate the wage impacts of observed and counterfactual flows of Southern immigrants.

This also the approach used by Boustan (2009), although our implementations differ
in several ways, discussed in detail below. While Boustan studies the effects of Southern
immigration between 1940 and 1970, I focus on the shorter period spanning 1940 to 1960

in order to emphasize earlier waves of the Great Migration, during which there was
more Southern immigration, and make my structural estimates more comparable to the
quasiexperimental results presented in Section 1.2.18 To compare the sensitivity of our
findings to implementation details, however, I also generate estimates using data from
the entire 1940-1970 period, and I am able to approximately replicate Boustan’s results.

A major advantage of the national labor market approach is that, since interregional
immigration is less common than intraregional migration, the resulting estimates will be
less susceptible to potential spatial arbitrage.19 Moreover, the ability to simulate the effects
of counter-historical changes in Southern immigration allows me to analyze the causes of
racial differences in the impact of immigration on wages, though this analysis necessarily
takes place through the lens of labor supply dynamics.

I assume that capital, K, and aggregate labor, L, are combined in the North in order to
produce output according to

Y = ALαK1−α.

I further assume that L can be decomposed into subgroups that differ according to their
education, experience, race, and regional origin using the following nested CES struc-
ture.20 In the highest nest,

L =

(
∑

e
θeL

σe−1
σe

e

) σe
σe−1

,

18 The Census did not collect wage information prior to 1940.
19 Only 1.6% of the Northern labor force in 1940 resided in the South as of 1935, while 7% exited their 1935

metropolitan areas during this period. Between 1949 and 1950, these flows were 1 and 4%, respectively.
20 This production function has become a workhorse in labor supply research. It was introduced by Card and

Lemieux (2001), building on Katz and Murphy (1992).
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where σe is the elasticity of substitution between labor aggregates, Le, with different edu-
cational attainment. These aggregates are composed of workers with the same education
but different amounts of labor market experience, so that

Le =

(
∑
x

θexL
σx−1

σx
ex

) σx
σx−1

,

where σx is the elasticity of substitution between education-experience groups Lex. These
groups can be further disaggregated as

Lex =

(
θexbL

σr−1
σr

exb + θexwL
σr−1

σr
exw

) σr
σr−1

,

where σr is the elasticity of substitution between blacks and whites with the same edu-
cation and experience. Finally, the education-experience-race labor aggregates consist of
Southern- and Northern-born labor:

Lexr =

(
θexrnL

σi−1
σi

exrn + θexrsL
σi−1

σi
exrs

) σi
σi−1

,

where σi is the elasticity of substitution between native and immigrant workers within
education-experience-race cells.

Under competitive pricing and this production function, the wage of a worker belong-
ing to group (e, x, r, i) satisfies

log wexri = log

[
Aα

(
K
L

)1−α
]
+

1
σe

log L + log θe +

(
1
σx
− 1

σe

)
log Le

+ log θex +

(
1
σr
− 1

σx

)
log Lex + log θexr +

(
1
σi
− 1

σr

)
log Lexr (1.1)

+ log θexri −
1
σi

log Lexri.

Average wages for higher labor aggregates can be obtained from this expression by elimi-
nating terms containing efficiency weights and elasticities belonging to cells nested within
them (e.g., eliminating the σ−1

i log Lexr, log θexri and σ−1
i log Lexri terms yields the log of

the average wages paid to workers within education-experience-race cells).21 The empir-
ical implementation proceeds by estimating various levels of the wage equation in order
to recover estimates of the elasticities.22

21 This can be seen by taking labor-supply-weighted averages of the first-order conditions with respect to each
(e, x, r, i) cell.

22 In principle, all of the elasticity and efficiency-weight parameters may be time-varying. However, the assump-
tion that the elasticities are constant over time is crucial to their identification.
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1.3.1 Data, sample restrictions, and variable construction

In order to estimate the parameters of this production function, I add the IPUMS 1960

and 1970 Census samples to the data described in Section 1.2.1, imposing the same sample
restrictions detailed previously (i.e., US-born black and white men, aged 16-64, earning
nonzero wages in the year before enumeration). The nesting structure requires the as-
signment of observations to groups according to their education, experience, race and
region of birth. While studies of contemporary foreign immigration typically use four ed-
ucational groups (high school dropouts, high school graduates, those with some college,
college graduates), this classification scheme is inappropriate for the time period that
I study. As Table 1.2 shows, nontrivial fractions of the black labor force had completed
fewer than five years of schooling in 1940 and 1950, and, even as late as 1960, the fractions
with less than an eighth-grade education exceeded those with greater than twelve years
of schooling for blacks and whites of either region of origin. Accordingly, I assign individ-
uals to one of five educational categories: less than fifth grade, fifth-to-eighth grade, some
high school (between 9 and 11 years of schooling), high school (12 years of schooling),
and greater than high school (greater than 12 years).

In assigning experience, I assume that schooling begins at age six and all subsequent
years are spent in the labor market. I also assume that the typical worker with less than
a fifth-grade education spends 2.5 years in school, one with a fifth-to-eighth grade ed-
ucation spends 6.5 years in school, one with some high school spends 10, one with a
high-school diploma (or equivalent) spends 12, and one with post-high-school educa-
tion spends 13.5. I then compute experience as age, less six, less years spent in school. I
drop groups with fewer than one or more than forty years of experience.23 I then assign
workers to one of eight five-year experience groups. Because of the age restrictions that I
impose, the remaining sample contains no workers in the lowest education category with
fewer than six years of imputed experience. I therefore have 39 education-experience cat-
egories for each year of data, and either 234 or 312 education-experience-race-year cells,
depending on the sample period (these cells include native and immigrant laborers).

My labor supply measures are based on within-cell observations counts (i.e., I implicitly
assume that each worker inelastically supplies one unit of labor). To allow for differences
between workers along the intensive margin of labor supply, and to capture responses
to immigration along this margin, my wage measures are based on annual earnings. At
the lowest nest, my labor supply measure is the number of workers in an education-
experience-race-birthplace cell, and my wage measure is the average annual wage in such

23 Boustan (2009) includes other nonwhite men, excludes those who are self employed, enrolled in school, or
living in group quarters, and uses a slightly different education-experience imputation scheme. In order to
make my structural estimates comparable to the local labor markets estimates above, I use the same sample
restrictions for each approach.
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a cell. In order to make these measures nationally representative, I weight each observa-
tion used in their construction by its IPUMS-supplied sampling weight.

To prelude my structural estimates of the impact of immigration on wages, I present in
Figure 1.3 a simple descriptive summary of this impact. Panel (a) plots log average native
wages and immigrant shares within education-experience groups from 1940 to 1960 for
blacks. This plot demonstrates a clear negative relationship between immigrant-induced
labor supply shocks and wages. Panel (b), which repeats this exercise for whites, suggests
only a small positive correlation. Two features of this figure warrant further comment.
First, if high wages attract workers from the South or the non-working North, an endoge-
nous response that would attenuate the apparent impact of immigration on wages, these
wage fluctuations must take place entirely within education-experience groups, since I
use only this variation to generate the figures. Second, since the basic units of analysis
are education-experience groups dispersed throughout the entire North, the only form of
equilibrating outmigration (itself an endogenous labor supply response) that can contam-
inate these relationships is interregional migration, which is substantially less common
than intraregional migration.

1.3.2 Elasticity estimates

Equation (1.1) implies that

log
(

wexrnt

wexrst

)
= log

(
θexrnt

θexrst

)
− 1

σi
log
(

Lexrnt

Lexrst

)
,

where wexrit is the wage paid to labor belonging to group (e, x, r, i) and σi is the elasticity of
substitution between Northern- and Southern-born labor. In order to recover this elasticity,
I estimate several variations of the model

log
(

w̄exrnt

w̄exrst

)
= λex + λet + λxt −

1
σi

log
(

L̂exrnt

L̂exrst

)
+ uexrt, (1.2)

where the w̄exrit represent mean wages within (e, x, r, i) cells at time t, the L̂exrit are es-
timates of group-specific labor supplies, λex is an education-experience group fixed ef-
fect, λet is an education-decade fixed effect, λxt is an experience-decade fixed effect, and
uexrt allows for measurement error and relative wage determinants not incorporated into
the model. The purpose of the fixed effects is to absorb the relative productivity term
log(θexrnt/θexrst). The identifying assumption embodied in this estimating equation is that,
conditional on these effects, the remaining variation in relative wages is orthogonal to rel-
ative labor supplies.24

24 The failure of this condition is likely to result in estimates of σ−1
i that are biased towards zero, understating

the amount of imperfect substitution. Such a bias, as will be evident below, will lead me to understate the
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Panel (a) of Table 1.13 displays the estimates of σ−1
i for both the 1940-60 and 1940-

70 sample periods. All regressions presented in this section are weighted by the total
number of observations used to construct the dependent and independent variables; re-
ported standard errors are clustered by education-experience group or, as appropriate,
education-experience-race group, unless otherwise noted.25 In order to allow for the pos-
sibility that native-immigrant substitutability varies by race, I first estimate (1.2) sepa-
rately by race. The coefficients from the black regressions are positive and, although the
white coefficients have the correct sign, none of the estimates are statistically significant.
I also estimate a version of this equation that pools observations from black and white
education-experience groups, constraining the elasticity to be the same for both races.
The resulting coefficients are small and statistically insignificant. These estimates imply
that, among blacks and whites alike, native Northern and Southern immigrant labor are
perfectly substitutable.

Based on this evidence, I compute aggregate education-experience-race labor supplies
using L̂exrt = L̂exrnt + L̂exrst, the sum of the Northern- and Southern-born supplies. The
log wage equation (1.1) implies that

log
(

w̄exwt

w̄exbt

)
= log

(
θexwt

θexbt

)
− 1

σr
log
(

Lexwt

Lexbt

)
, (1.3)

where σr is the elasticity of substitution between black and white labor and w̄exrt = wexrnt ·
(Lexrnt/Lexrt) + wexrst · (Lexrst/Lexrt) for r ∈ {b, w} is the average wage paid to workers
belonging to group (e, x, r) in decade t. I construct analogs to these averages by replacing
the wexrit (i ∈ {n, s}) with the group means used in the previous set of regressions. I then
estimate a series of models of the form

log
(

w̄exwt

w̄exbt

)
= λex + λet + λxt −

1
σr

log
(

L̂exwt

L̂exbt

)
+ uext, (1.4)

where, as before, the fixed effects are included in order to absorb the relative productivity
term. I use two instrumental variables strategies to account for the potential endogeneity
of the relative labor supply variable. The first follows Borjas (2003) and Ottaviano and
Peri (2012) in using this ratio among immigrant workers to instrument for the ratio itself.
The theory behind this instrument is that, conditional on the fixed effects, immigration
acts as a pure supply shifter. Since immigration itself may respond to wage fluctuations,
I also follow Boustan (2009) in using the same ratio among the national stock of South-
erners. This instrument operates under the premise that Southerners’ labor supply and

degree to which the impacts of immigration are concentrated on immigrants themselves (see Ottaviano and
Peri, 2012, for a discussion of this issue). However, if interest centers on racial differences in the impacts of
immigration, this bias will be inconsequential.

25 The estimates from unweighted regressions are similar.
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educational decisions are less responsive to (within education-experience-race cell) wage
shocks in the North.26

Although the nested-CES structure technically dictates that (1.4) should be estimated
using the sample of all Northern labor (i.e., immigrants and natives), following Bous-
tan (2009), I also estimate versions of (1.4) that use only natives’ relative wages, as they
are uncontaminated by composition effects from including migrants, as well as versions
that use only immigrants’ relative labor supplies, as these supplies may be less suscep-
tible to endogenous education effects.27 The elasticity estimates are presented in panel
(b) of Table 1.13. The results from the 1940-1960 sample point to a considerable degree
of imperfect substitution between blacks and whites. When wages and labor supply are
measured using both natives and immigrants, the OLS estimate of σ−1

r is about .2. Us-
ing immigration-induced changes in relative labor supplies to instrument for the overall
changes produces an imprecise point estimate of about .1; using the ratio of black to
white labor supply among all Southern-born workers as the instrument produces a sta-
tistically significant estimate of .2, close to the OLS estimate. When wages are calculated
using all Northern labor but only immigrant workers are used to calculate relative labor
supplies, the resulting OLS and IV estimates are closer to zero and statistically insignifi-
cant.28 Calculating wages using only natives and labor supplies using all Northern labor,
the OLS and IV estimates are similar to those obtained using the full sample, with esti-
mates of the inverse elasticity close to .2. Finally, when this equation is estimated using
only immigration-induced changes in relative labor supplies, the estimated elasticities are
once again smaller and statistically insignificant. With the exception of models estimated
using these changes, the inverse elasticity of substitution between blacks and whites is
about .2 across samples and specifications.29

When 1970 is added to the sample, the estimated inverse elasticities are smaller. Mea-
suring wages and labor supply using all labor, the OLS estimate is .13; using immigrant
labor as an instrument, the estimate is .05 and insignificant; using the national stock of

26 Neither instrument is perfect. Local wage shocks may induce immigration and labor supply among natives
(in which case the national stock instrument may be preferable), while national wage shocks may increase
labor supply across all nativities (making the immigrant component instrument preferable). Attenuated esti-
mates of σ−1

r will generate wage impacts that understate the effect of immigration on blacks.
27 It also makes little sense to use immigrants’ wages in IV regressions that use labor supply among immigrants

as an instrument for labor supply itself. Note also that OLS regressions that only use immigrant labor supply
are equivalently reduced-form regressions for models that use immigrant labor supply as an instrument.

28 Note that when labor supplies are calculated using immigrant labor alone, only the ratio among the national
stock of Southerners can be used as an instrument for the labor supply ratio.

29 A potential explanation for why using immigrant-induced variation in labor supply results in estimated
inverse elasticities that are attenuated towards zero is that there are immigrant-specific productivity shocks
with which immigrant labor supply is correlated (note that this is not inconsistent with the finding that
immigrants and natives are perfect substitutes). Since most of the sample consists of native whites, this
correlation may be negligible when using the full sample to measure wages and labor supply but not when
only immigrants are used to measure labor supply. This would also explain why, when native wages are
related to immigrant labor supply, the resulting estimates are closer to the OLS estimate when the full
sample is used to measure wages and labor supply.
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Southerners as an instrument, the estimate is .16 and significant. As in the shorter sam-
ple, using only immigration-induced changes in relative labor supplies (regardless of how
relative wages are measured) as a regressor produces smaller and less precise estimates.
When native wages are regressed on all labor, the OLS and IV (using either instrument)
estimates are between .13 and .16, similar to the OLS estimate obtained using natives and
immigrants to measure wages and labor supplies. The estimates obtained using the 1940-
1970 sample are much closer to those presented in Boustan (2009) than those obtained
using the shorter time period.30

A key identifying assumption of the nested-CES approach is that the elasticities are
time-invariant, which is clearly unrealistic. Ultimately, what these regressions identify is
an average elasticity over the sample period. It accords with intuition that adding data
from a decade during which much social progress took place increases the estimated
degree of substitutability between black and white labor. However, it seems unlikely that
racial progress alone can explain why the estimated inverse elasticity changes so much
when 1970 is included in the estimation sample. The OLS estimate obtained using both
natives and immigrants to measure wages and labor supply decreases from .22 to .13

when 1970 is added, a drop of over 40%.
Under the nested-CES technology, an equation like (1.4) also holds in race-specific lev-

els, rather than black-white ratios, providing a specification test for whether estimates of
(1.4) can be interpreted as racial elasticities of substitution. Estimating race-specific ver-
sions of this equation can also provide insight into whether discrimination, rather than
pure technical substitution, can best-explain why blacks and whites appear to be imper-
fect substitutes. As discussed above, if firms exhibit heterogenous discrimination against
blacks, the marginal employers of blacks belonging to skill groups with greater labor sup-
ply will be more prejudiced. If heterogeneous discrimination better explains the observed
relationship between relative wages and labor supplies, we should expect estimates of
σ−1

r obtained using the black sample to be larger in absolute value than those from the
white sample.31

Estimates of these group-specific equations are given in Table 1.14 (the instruments are
now the group-specific labor supplies among Southern immigrants and all Southerners).
In the 1940-1960 sample, the point estimates for whites are similar to those estimated
in ratios. However, the coefficients on Black× log Lext are positive and, in some cases, as
large as the coefficients for whites. This result immediately suggests that heterogeneous

30 They remain larger in absolute value, however. Although I can better-replicate the estimates in Boustan (2009)
by using her sample restrictions, the resulting simulated effects of immigration are similar in either case. The
most important sample restrictions appear to be the inclusion of all racial groups and foreign immigrants to
the US.

31 To give a simple theoretical justification for this intuition, if employers exhibit a constant elasticity of discrim-
ination, so that holding relative supplies constant, within-cell black wages are wexbt = L−δ

exbt, δ > 0, then the
estimating equation becomes log wexbt = λex + λet + λxt − (σ−1

r + δ) log Lexbt, and the racial difference in the
coefficient on the log labor supply represents a test of the hypothesis that δ = 0.
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discrimination among employers does not explain the apparent imperfect substitution
between black and white labor.32

What the estimates do suggest is that labor supply is more responsive to within-cell
wage shocks for blacks than whites, particularly during the period spanning 1940-1960.
When the equation is estimated by OLS or using the national stock of Southerners as an
instrument, the implied coefficient for blacks is zero. If black labor supply is more endoge-
nous, imposing the constraint that the coefficients on black and white log labor supply are
the same by estimating the equation in ratios rather than levels will result in attenuated
estimates of the inverse elasticity. Indeed, comparing Tables 1.13 and 1.14 reveals that the
point estimates for white log labor supply are slightly larger in absolute value than those
for log relative labor supply. The race-specific regressions call into question the hypothe-
sis that greater black-white substitution during the 60s can explain why using the longer
panel shrinks the estimated inverse elasticities. Looking at the relationship between labor
supply and wages among only whites, the estimated inverse elasticities are smaller in
absolute value when 1970 is added to the panel, but the changes are less-pronounced (e.g.
from -.25 to -.23 when the full sample is used to estimate the elasticity by OLS) and more
consistent with the expected effect of racial progress during the 60s on the average elastic-
ity over the full forty-year period. The implied coefficients on black labor supply are also
similar across both panels (the OLS estimate using the full sample, e.g., is .08 regardless
of whether 1970 is included); if anything, black labor supply appears less endogenous
during the 1960s. Evidently, only when the elasticity is estimated using relative wages
and labor supply (that is, the equation is estimated in ratios) does adding 1970 to the data
have an appreciable effect on the estimates.

One reason why relating black-white differences in log wages to those in log labor sup-
ply might attenuate estimates of the inverse elasticity is if white labor supply is negatively
correlated with productivity shocks for blacks, which may occur if firms with historically-
high black labor supply adjust to use black labor more efficiently (or vice versa).33 If such
technological change occurs slowly, adding later data will introduce greater endogeneity
into the relationship between relative wages and labor supplies. Though elucidating the
precise reasons why the inverse elasticity is so much smaller in absolute value when it is
estimated in ratios on the 1940-1970 panel exceeds my scope, the sensitivity of the esti-
mates to the regression specification used to obtain them warrants interpreting them with

32 This is not to say that imperfect substitution does not arise from other forms of discrimination. For example,
blacks may substitute imperfectly for whites—even conditional on education—because they receive schooling
of a lower quality (see Card and Krueger, 1992) and therefore have different effective amounts of skill or
because of discriminatory racial segregation into industries, occupations, firms, etc. Boustan (2009) provides
additional evidence on this point.

33 That is, if the log wage equations are log wexrt = λert + λxrt + λexr − σ−1 log Lexrt + uexrt where uexrt repre-
sents within education-experience-race productivity fluctuations, the error term for the equation in ratios will
be of the form uexwt − uexbt, which will be positively correlated with log Lexwt/ log Lexbt if uexrt is positively
correlated with Lexrt and negatively correlated with Lexr′t.
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some care, and may suggest that the elasticity of substitution between blacks and whites
remained small at least into the 1970s.34

Since the OLS and IV estimates of equation (1.4) are similar, I use the OLS estimates of
σ−1

r obtained using all wages and labor, and imposing the normalization that they sum
to one, estimate the efficiency weights θexwt and θexbt using

θ̂wext =
exp

(
λ̂ex
)

exp
(
λ̂et
)

exp
(
λ̂xt
)

1 + exp
(
λ̂ex
)

exp
(
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)

exp
(
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)

and
θ̂bext =

1
1 + exp

(
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)

exp
(
λ̂et
)

exp
(
λ̂xt
) ,

where the fixed effect terms are taken from the same regressions. I then construct the
education-experience labor supply aggregates as

L̂ext =

(
θ̂exwt L̂

σ̂r
σ̂r−1
exwt + θ̂exbt L̂

σ̂r
σ̂r−1
exbt

) σ̂r−1
σ̂r

. (1.5)

The theoretical model implies that

log w̄ext = log
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Atα
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Kt

Lt
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+

1
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log Lt + log θet +
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1
σx
− 1

σe

)
log Let

+ log θex −
1
σx

log Lext,

where w̄ext = w̄exwt · (Lexwt/Lext) + w̄exbt · (Lexbt/Lext).35 I construct the sample analogs
of these mean wages and estimate σ−1

x (the elasticity of substitution between experience
groups with the same educational attainment) using

log w̄ext = λet + λex −
1
σx

log L̂ext + uext. (1.6)

The λex effects are included to control for the log θex terms and the λet are included to cap-
ture the other components of the log wage equation. In the IV estimate of (1.6), I instru-
ment for the supply of labor by education-experience aggregates using their immigrant
analogs, again under the assumption that, conditional on the fixed effects, immigrant
labor supply acts as an exogenous supply shifter. For the remaining elasticities, I only
measure wages and labor supplies using all Northern labor. The estimates are presented

34 Another possible explanation is that using ratios amplifies classical measurement error and that labor supply
is measured with greater error during the 1970s (although we might expect the IV estimates to be less
attenuated in this case, which they are not).

35 Here, I follow Borjas (2003) and Ottaviano and Peri (2006, 2008, 2012) in assuming that the efficiency terms
θex are time-invariant. Ottaviano and Peri (2012) offer an alternative interpretation of this assumption: while
these terms may vary over time, they have systematic components that can be recovered from regressions
that include education-experience group fixed effects.
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in panel (c) of Table 1.13. Using the shorter panel, the OLS estimate of 0.26 is close to the
IV estimate of 0.2, with both statistically significant; the estimates from the longer panel
are similar (both sets of estimates are close to those reported by Boustan, 2009).

Using the IV estimates of (1.6), I calculate

θ̂ex =
exp(λ̂ex)

∑x exp(λ̂ex)
,

again imposing the normalization that the (time-invariant) productivity weights θex sum
to one. I then use the estimated weights and elasticities to construct the education labor
supply aggregates according to

L̂e =

(
∑
x

θ̂ex L̂
σ̂x−1

σ̂x
ext

) σ̂x
σ̂x−1

. (1.7)

Since the mean log wage within education groups is

log w̄et = log
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αAt
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+
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log Lt + log θet −
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log Let,

where w̄et = ∑x w̄ext(Lext/Let), the elasticity of substitution, σe, between these groups can
be estimated using the equation

log w̄et = λt + ∑
e

κe · t−
1
σe

log L̂et + uet, (1.8)

where the κe are education-group-specific linear time trends. The purpose of the λt is to
absorb the log

[
αAt (Kt/Lt)

1−α
]

and σ−1
e log Lt terms, and the purpose of the time trends

is to control for the log θet term.
I estimate this equation by OLS and IV, again using immigrant labor to instrument

for labor supply. The standard errors, reported in panel (c), are heteroskedasticity-robust.
As before, the OLS and IV estimates obtained from the shorter panel are quite similar
(0.24 and 0.28), and both are statistically significant; the estimates for the longer panel are
similar.

As Ottaviano and Peri (2012) note, many of the elasticities estimated in this section
have also been estimated by other scholars. Although I use earlier data than most previ-
ous research, a comparison may still be instructive. To my knowledge, Boustan (2009) is
the only other study to examine substitution between Southern- and Northern-born US
workers. Borjas et al. (2010), using decennial Census data from 1960-2000, estimate σ−1

r to
be small (their most negative estimate is a statistically insignificant -0.05), suggesting that
blacks and whites are perfect substitutes. Given the time period differences between their
study and the foregoing one, it is unsurprising that I find a greater degree of imperfect
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substitution between racial groups. The (inverse) elasticity of substitution between experi-
ence groups has been estimated by a number of studies. The estimates of σ−1

x in Ottaviano
and Peri (2012) lie in the range (0, -0.20); Boustan (2009) reports an elasticity of 0.19; Card
and Lemieux (2001) find estimates in the (-0.10, -0.23) range; Welch (1979) estimates this
range to be about (-0.08, -0.22). Even though I use earlier data, my estimates put this
inverse elasticity in the (-0.17, -0.22) range, in agreement with previous work. I estimate
σ−1

e , the inverse elasticity of substitution between education groups, to lie in the interval
(-0.25, -0.31). Ottaviano and Peri’s estimates of this parameter are in the range of (-0.22,
-0.43), Boustan’s is 0.27, Borjas (2003) finds a range of (-0.74, -0.76), while Borjas and Katz
(2007) estimate it to be -0.41. While there seems to be more variation in the literature for
this parameter, my estimates are similar to those of Ottaviano and Peri; my use of earlier
data and a different educational taxonomy may explain some of the differences between
previous estimates and mine.

1.3.3 The effects of Southern immigration on wages

I use the elasticities estimated in the previous section to simulate the impact of Southern
immigration on wages. Taking the total differential of group (e, x, r)’s log wage with
respect to the log labor supply from all groups (e′, x′, r′) gives
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where, for instance, se′x′r′s is the share of the wage bill accruing to Southern-born labor
with education e′, experience x′, and race r′ (and se′x′r′ is the wage bill share accruing to
all labor with these characteristics, and so on).36 This expression shows that the general
equilibrium impact of immigration on wages operates through its influence on each labor
aggregate. Immigration into each aggregate increases the marginal product of all groups
nested within that aggregate, exerting a positive effect on wages. At the same time, im-
migration also decreases the marginal product of the aggregate itself, depressing wages.

36 Ottaviano and Peri (2012, Appendix A1) provide a derivation. Here I sketch another for the simpli-

fied case where L =

(
∑i θi L

σ−1
σ

i

) σ
σ−1

. Normalizing the price of output, L, to one and differentiat-

ing the marginal product condition gives ∂ log wi/∂ log Lj = (1/σ)(∂ log L/∂Lj). Since production is
constant-returns-to-scale, the cost function will take the form c(L, w) = αL where α is a constant
that depends the wage vector. Thus, treating L as a function of Lj and holding wages all other in-
puts constant, we have d log c[L(Lj)]/d log Lj = d log L(Lj)/d log L. Furthermore, d log c[L(Lj)]/d log Lj =
(dc[L(Lj)]/dLj)(Lj/c[L(Lj)]). Constant returns to scale and the marginal product condition imply that we
also have dc[L(Lj)]/dLj = (dc(L)/dL)(dL(Lj)/dLj) = αwj. Hence, d log c[L(Lj)]/d log Lj = αwjLj/c[L(Lj)] =
αsj. Since, under perfect competition, profit maximization implies that price equals marginal cost, we must
have that α = 1, so ∂ log wi/∂ log Lj = sj/σ.
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Hence, immigration to the least-nested (most-nested) aggregate has an unambiguously
positive (negative) effect on wages, while immigration to all other aggregates causes op-
posing effects.37

Equation (1.9) incorporates two important simplifications. First, since my estimates sug-
gest perfect substitution between Northern- and Southern-born labor, immigration will
have the same impact on the wages of otherwise-similar workers from either region, ob-
viating the need to separately analyze the wages of natives and immigrants. Second, I
assume that capital has fully responded to immigration-induced labor supply shocks,
so that (1.9) represents the long-run impact of immigration on wages within education-
experience-race groups. Since I study the consequences of immigration taking place over
twenty and thirty year periods, this seems like the relevant impact. Another implication
of this assumption is that immigration induces no long-run change in the average wage
(weighting labor aggregates by their wage-bill shares).38 When production is constant
returns to scale, the long-run impacts of immigration on wages are necessarily distri-
butional, with changes in relative wages depending on cell-specific immigration rates,
wage-bill shares and elasticities. In reporting immigration-induced changes in wages, I
adopt the wage-bill-share weighting scheme of Ottaviano and Peri (2012), calculating the
percent change in the average wage to those of race r as

∆w̄r

w̄r
=

∑e ∑x
∆wexr
wexr

sexr

∑e ∑x sexr
,

and the percent change in the average wage among those of race r with education e as

∆w̄er

w̄er
=

∑x
∆wexr
wexr

sexr

∑x sexr
.

Appendix Table 1.21 reports labor-cell-specific changes in Southern immigration be-
tween 1940 and 1960. Two trends from the table stand out. First, for both races, the
changes are greater in higher educational groups; in fact, immigration among blacks with
less than a fifth-grade education, or less-experienced workers with a fifth- to eighth-grade
education, actually decreased over this period. This trend, which agrees with the chang-
ing educational distribution shown in Table 1.2, reflects increasing educational attainment
over time, particularly among blacks. Second, with the exception of groups with very low
educational attainment, the percent changes in the size of the immigrant labor force are
greater for blacks than for whites belonging to almost every education-experience group.

37 As long as the elements of successive nests are more easily substitutable (i.e., σ−1
e > σ−1

x > σ−1
r ), the

composite impacts will be negative in these intermediate nests.
38 The short-run impact on group (e, x, r) includes an additional term, common to all labor cells, that reflects

the immigration-induced change in the ratio of capital to aggregate labor. Since the average compensation to
overall aggregate labor is log w̄ = log

[
αA(K/L)1−α

]
, perfect capital adjustment implies no long-run average

effect of immigration.
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Of course, as equation (1.9) shows, immigration-induced proportional changes in wages
depend on existing immigrant shares as well as immigrant flows, a point to which I return
below.

In Table 1.15, I report estimates of the change in average wages due to the observed
changes in immigration over the periods spanning 1940-60 and 1940-70. Instead of thirty-
nine cell-specific changes, I report changes in average wages by race and race-education
group. For these simulations, I use OLS estimates of σr obtained using all Northern work-
ers to measure wages and labor supplies and IV estimates obtained using the same sample
and labor supply among all Southerners as the instrument. From equation (1.9), the aver-
age change in wages depends on the initial wage-bill shares of immigrants in each group.
Since education increased over time for blacks and whites, many of the immigrants be-
tween 1940 and 1970 belonged to education-experience groups that were small in 1940.
These groups receive little weight when 1940 wage-bill shares are used to calculate the ef-
fects of immigration. For this reason, I also calculate average effects using 1950 wage-bill
shares, which better-approximate the mean shares over time.

Between 1940 and 1960, immigration had no effect on the wages of whites, while blacks
experienced substantial wage decreases. Using 1940 shares, I find that immigration de-
creased black wages by about 13-14%. When I use 1950 shares, which better approxi-
mate the average educational distribution over the period, this decrease was on the order
of 20%. Less-educated whites experienced small wage increases which were offset by
small losses among better-educated whites. Less-educated blacks also experienced small
increases, but these changes were dominated by very large losses among blacks in higher
education groups, among whom the changes in immigration were greater. Using the
changes in immigration between 1940 and 1970, as well as the structural parameters esti-
mated using this longer time period, results in a somewhat smaller estimate of the impact
of immigration on wages. Weighting skill cells by their 1940 wage-bill shares, the average
wage decline for blacks is between between 9 and 11% (close to the effects reported by
Boustan); weighting with 1950 shares, the average effect is between 19 and 24%. The
effects for whites are negligible for all implementations.

These simulated effects agree with the local labor markets results: the Great Migration
caused substantial declines in the wages earned by Northern blacks and little change in
those earned by whites. They also agree broadly with Boustan’s (2009) findings, although
my analysis does suggest that hers may understate the magnitude of the effect of South-
ern immigration on black wages. Because the elasticity of substitution between black and
white labor increased over time (although part of this increase may be due to changes in
the endogeneity of labor supply), simulating the effects of Southern immigration using
the average elasticity over the entire period masks larger effects from the earlier Great
Migration. Furthermore, using 1940 wage bill shares under-emphasizes skill cells that ex-
perienced large immigration-induced supply shocks. My estimates probably suffer from
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similar biases—the nested-CES approach uses a static model to approximate a dynamic
process, making it sensitive to implementation details.39

To further examine the underlying causes of the racial difference in the effect of immi-
gration on wages, I simulate the impacts of immigration under several counterfactual as-
sumptions, focusing on the 1940-1960 period and using 1950 wage-bill shares. The results
of these simulations are presented in Table 1.16. In the first three simulations, I attempt
to effect a negative change in white average wages, maintaining imperfect substitution
between blacks and whites. The first simulation assumes that, while white immigration
changed as observed between 1940 and 1960, there was no black immigration during this
period. Under these circumstances, complementarities would have increased the average
black wage by 2%, leaving the average white wage unchanged. The second simulation
assumes that proportional changes in immigration among whites were the same as those
observed for blacks. In this case, the average wage among whites would have increased by
about 1% (slightly more than under actual immigration) while that for blacks would have
decreased by about 18% (slightly less than under actual immigration). For the third sim-
ulation, I assume again that white immigration changed as observed over the period, but
that there was no black immigration. To account for the fact that initial immigrant shares
are small for whites, I set white wage-bill shares equal to the observed black shares. Here,
white wages decline by about 6% (and black wages increase by the same amount since
both groups contribute equally to the wage bill). These simulations show the role that
greater flows, and initial stocks, of black immigrants play in generating their large esti-
mated wage declines. To underscore the importance of black-white substitution in gener-
ating these relative declines, my fourth simulation uses observed shares and immigration,
but sets σ−1

r = 0. Under this condition, the white average wage is essentially unaffected
by immigration, and the black average wage increases by less than 1% (for both groups,
there are small declines among those with some high school or a high school degree and
similar increases among all other education groups). As discussed above, immigrants are
a modest fraction of the overall and white labor forces, but a substantial fraction of the
black labor force. Since imperfect substitution concentrates the negative impact of black
immigration on blacks, it is the last ratio that matters; under perfect substitution, every
education-experience group would face small immigration-induced supply shocks and
commensurately small wage impacts.

39 Another approach would be to estimate the parameters for each pair of decades in order to obtain the effects
over the full period. Even this technique would suffer from approximation bias, as the elasticities and wage-
bill shares are likely not constant over decades. With more frequent data, however, this chained version of
the nested-CES technique might be preferable.
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1.4 conclusion

Using either the local or national approach, I find that Southern immigration decreased
the wages of natively-Northern blacks and had essentially no impact on those of native
whites. The estimated magnitudes of this impact are also similar across methodologies.
The richest specification that I estimate in Section 1.2 implies that a 10% increase in the
immigrant share of the labor force decreases the annual wages of native blacks by about
23%; in 1950, immigrants comprised about 10% of the Northern labor force. After es-
timating the aggregate production function in the North, I simulate a 20% decrease in
black wages.40 The similarity between these results is also consistent with the estimated
effects being driven primarily by labor supply dynamics, although in principle even the
structural estimates could reflect non-labor-supply causes; elucidating the causal channels
remains a topic for further work.

Equilibrating outmigration among native whites may be able to partially explain the
racial disparity in the estimated local labor market effects of immigration. It cannot ex-
plain the racial disparity estimated using the national approach, since only interregional
migration, which is less common, can bias this estimate. Because it concentrates the la-
bor supply effects of black immigration on blacks, effective imperfect substitution be-
tween racial groups—which may arise because of skill differences, discrimination, or
other reasons—offers a better explanation. Since immigrants constitute a significantly
larger share of the black labor force than the white labor force, even a moderate degree
of imperfect substitution translates to tighter labor markets for blacks than whites. The
industry-occupation segregation measures in Section 1.2 and the elasticity estimates in
Section 1.3 both evince imperfect substitution between black and white labor.

These findings have a number of implications. Most directly, they show that the Great
Migration had a detrimental effect on the wages of blacks already in the North; deteriorat-
ing wages, coupled with residential segregation, may have even helped catalyze the urban
poverty observed in the North during the 1970s (see Massey and Eggers, 1990). They also
suggest that, though migrating North provided a means for Southern-born blacks to im-
prove their economic status, market forces imposed limits on this opportunity. In their
survey of the effects of civil rights legislation, Donohue, III and Heckman (1991) show
that migration ceased to be an important factor in black relative wage gains after 1965.
While relative wage gains in the South surely played a role, declining relative wages in
the North may have contributed to the deceleration of the Great Migration as well.

My findings also provide empirical evidence on the relationship between immigration
and inequality, particularly when immigrants belong disproportionately to groups that

40 Since the local labor markets approach estimates the impact of the stock of immigrants in 1950, while the
national approach estimates the impact of immigrant flows between 1940 and 1960, these findings are not
directly comparable. However, given the timing of the Great Migration, the 1950 stock of immigrants is also
the flow of immigrants between 1915 and 1950, providing a justification for comparison.
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face labor-market discrimination. Even when immigrants and natives are perfect substi-
tutes, discrimination concentrates the negative impacts of discrimination on the disad-
vantaged group, exacerbating inequality.41 That flows of Southern immigrants were so
heavily black compared to the native labor force in the North makes the Great Migration
an informative empirical counterfactual to contemporary flows of foreign immigrants to
the US, which tend to have skill distributions that are similar to natives (Card, 2009). In
addition, that the Great Migration represented such a large shock to the Northern black
labor force provides me with unusually high statistical power to detect the effect of immi-
gration on wages. While previous immigration research has been challenged by concerns
that outmigration among natives may dissipate immigration-induced labor-supply shocks
across labor markets, attenuating estimates of the impact of immigration on wages, I find
no evidence of an outmigration response among blacks. That I find similar results using
both the local and national approaches lends credibility to the idea that such spatial ar-
bitrage can help explain why previous studies of immigration have reached conflicting
results.

1.a appendix tables

See Tables 1.17, 1.18, 1.19, 1.20, 1.21 and 1.14 attached.

1.b misspecified lagged-dependent-variables and fixed-effects models

Guryan (2001) shows that, when x is a serially-uncorrelated treatment indicator, estimates
from lagged-dependent-variables and fixed-effects specifications bound the treatment ef-
fect when the data-generating process is unknown. I extend his argument to the case
of serially-correlated treatment. I also compare the biases of OLS and lagged-dependent
variables when the data-generating processes exhibits permanent unobserved heterogene-
ity. I focus on the simplified case where the treatment effect is zero in order to emphasize
the bias due to misspecification. I assume that all variables are area-level means with
individual covariates (and other area-level covariates) partialled out.

Suppose that x has no causal effect, so that the the value of y in area j evolves according
to the data-generating process

yjt = aj + ejt,

with E(ejt|aj) = 0, implying that yjt = yjt−1 + ejt − ejt−1.

41 Ottaviano and Peri (2012) make a related point about the impact of immigration on the wages of previous of
immigrants when natives and immigrants are imperfect substitutes.
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If the regression is misspecified as including the lagged dependent variable, i.e. yjt =

αyjt−1 + βxjt + ujt, the probability limit of β̂ is

β∗LDV =
Cov(yjt, x̃jt)

Var(x̃jt)
=

Cov(yjt−1 + ejt − ejt−1, x̃jt)

Var(x̃jt)

=
Cov(ejt − ejt−1, xjt − γ(aj + ejt−1))

Var(x̃jt)
= γ

σ2
e

Var(x̃jt)

=
Cov(xjt, aj)

Var(yjt−1)
· σ2

e
Var(x̃jt)

,

where x̃jt = xjt − γyjt−1 is the residual from a population regression of xjt on yjt−1 and σ2
e

is the variance of ejt, which is assumed to be iid across j and t. If x is positively correlated
with a, then β∗LDV > 0.

Now suppose the data-generating process is

yjt = δyjt−1 + ejt

with δ < 1, but the model is misspecified as yjt = βxjt + aj + ujt. In addition, suppose
that over short periods of time the process by which xjt evolves can be described by
xjt = λxjt−1 + rjt, with λ > 1 (to reflect the accumulation of immigrants over time). In this
case, the probability limit of β̂ is

β∗FD =
Cov(yjt − yjt−1, xjt − xjt−t)

Var(xjt − xjt−t)

=
Cov(yjt, xjt)− Cov(yjt, xjt−1)− Cov(yjt−1, xjt) + Cov(yjt−1, xjt−1)

Var(xjt − xjt−1)

=
(δλ)t−1(λδ− λ− δ + 1)σxa

Var(xjt − xjt−1)
=

(δλ)t−1[(λ− 1)(δ− 1)]σxa

Var(xjt − xjt−1)
< 0,

where σxa = Cov(x0, yj0) is positive by assumption.
We thus have that β∗FD < β = 0 < β∗LDV .
A similar result allows us to compare the OLS and lagged-dependent-variables estima-

tors when there is permanent heterogeneity. If the data-generating process is yjt = aj + ejt

but the regression is specified as yjt = βxjt + ujt, the population regression coefficient will
be

β∗OLS =
Cov(yjt, xjt)

Var(xjt)
=

Cov(aj, xjt)

Var(xjt)
> 0.

Thus, the lagged-dependent-variable estimate will be less biased than standard OLS if

Var(xjt)

Var(x̃jt)
· σ2

e
Var(yjt−1)

< 1.
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Note that, since σ2
e /Var(yjt−1) ≤ 1 by definition, this condition is testable. In my dataset,

Var(xjt)/Var(x̃jt) ≈ 1.
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tables and figures

Figure 1.1: Actual and predicted immigration
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Figure 1.2: Mean residual wages and immigration in 1950
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(b) Whites

Notes—All variables are expressed as metro-area mean residuals from regressions that
include individual and metro-level covariates, as well as mean lagged log annual wages.
The IV plots use the projection of actual immigration onto its prediction according to
1920 settlement patterns on the x-axis.



46 the great migration and wages in the northern us

Figure 1.3: Wages and immigration within education-experience cells by race
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Notes—All variables are education-experience-group-level average residuals from a re-
gression of the form yext = λex + λet + λxt + uext; these figures relate variation in Southern
labor supply within education-experience groups over time to that in log annual wages.



1.2 tables and figures 47

Table 1.1: Immigration by race and year

1940 1950

Prop. Southern
Entire labor force 0.079 0.101

(0.270) (0.101)
Black labor force 0.632 0.661

(0.482) (0.473)
White labor force 0.054 0.068

(0.227) (0.253)

Prop. black and Southern
Entire labor force 0.027 0.036

(0.162) (0.187)

Prop. white and Southern
Entire labor force 0.052 0.065

(0.222) (0.246)

Prop. recent Southern
1940 (5 years ago) 1950 (1 year ago)

Entire labor force 0.017 0.015

(0.127) (0.080)
Black labor force 0.052 0.006

(0.223) (0.080)
White labor force 0.015 0.008

(0.121) (0.088)

Notes—The labor force is defined as black and white men aged 16-64 who reported
nonzero earnings in the year of enumeration. “Southern” means born in the South. Stan-
dard errors in parentheses.
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Table 1.2: Education by race, year and immigrant status

Black White
Year Education group Northern Southern Northern Southern

1940 Less than 5th grade 0.10 0.16 0.02 0.05

5th-8th grade 0.48 0.56 0.39 0.44

Some high school 0.23 0.15 0.23 0.21

High school degree 0.12 0.08 0.22 0.17

Greater than high school 0.07 0.05 0.13 0.13

1.00 1.00 1.00 1.00

1950 Less than 5th grade 0.05 0.12 0.02 0.04

5th-8th grade 0.34 0.45 0.27 0.35

Some high school 0.28 0.24 0.24 0.24

High school degree 0.21 0.13 0.29 0.21

Greater than high school 0.11 0.05 0.18 0.15

1.00 1.00 1.00 1.00

1960 Less than 5th grade 0.03 0.07 0.01 0.04

5th-8th grade 0.25 0.36 0.18 0.28

Some high school 0.33 0.28 0.25 0.25

High school degree 0.27 0.19 0.32 0.25

Greater than high school 0.13 0.09 0.24 0.19

1.00 1.00 1.00 1.00
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Table 1.21: Changes in South-North migration

% change (1940-1960) % change (1940-1970)
Education group Experience group White Black White Black

Less than 5th grade 6-10 0.10 -0.50 -0.15 -1.00

11-15 -0.02 0.20 -0.48 -0.75

16-20 0.58 0.24 -0.19 -0.65

21-25 0.58 0.11 -0.23 -0.71

26-30 0.90 0.08 0.33 -0.69

31-35 0.25 0.14 0.30 -0.58

36-40 0.98 0.21 1.21 -0.40

5th-8th grade 1-5 2.14 3.05 2.63 5.69

6-10 0.04 0.13 -0.39 -0.60

11-15 0.10 0.01 -0.37 -0.61

16-20 0.25 0.09 -0.34 -0.65

21-25 0.09 0.20 -0.24 -0.47

26-30 0.15 0.19 -0.02 -0.37

31-35 0.62 0.81 0.63 0.33

36-40 0.83 1.19 0.72 0.78

Some high school 1-5 3.06 1.66 4.62 2.33

6-10 0.83 1.92 0.70 1.36

11-15 0.63 1.82 0.46 1.59

16-20 0.88 2.72 0.59 2.41

21-25 1.50 3.60 1.22 3.11

26-30 2.11 4.79 2.58 6.97

31-35 2.02 4.49 3.60 9.39

36-40 3.87 5.48 5.94 11.88

High school degree 1-5 1.95 3.04 2.56 4.38

6-10 1.18 2.29 2.22 4.47

11-15 1.09 4.62 1.87 11.38

16-20 1.92 4.34 3.09 9.02

21-25 3.32 5.32 4.21 6.46

26-30 3.28 6.31 5.26 16.27

31-35 2.63 8.73 6.42 14.33

36-40 2.75 4.20 8.65 8.27

Greater than high school 1-5 1.72 2.64 5.74 6.52

6-10 1.94 3.54 3.81 8.23

11-15 1.84 4.60 3.00 8.50

16-20 2.24 2.71 3.50 6.20

21-25 1.78 2.34 3.12 4.29

26-30 1.31 2.19 4.74 4.89

31-35 1.63 1.76 4.36 4.55

36-40 1.90 2.35 5.78 4.18





2
I N T E R G E N E R AT I O N A L A LT R U I S M I N T H E M I G R AT I O N D E C I S I O N
C A L C U L U S : E V I D E N C E F R O M T H E G R E AT M I G R AT I O N

2.1 introduction

In this paper, I estimate the effect of intergenerational altruism on the propensity to mi-
grate during the Great Migration—a period spanning 1915-1970 during which millions of
Southern-born blacks left their birthplaces for cities in the Northern United States. Social
scientists have long recognized that the Great Migration was integral to the economic
gains realized by blacks during the 20th century (see Smith and Welch, 1989; Tolnay,
2003, for example); as we develop a greater understanding of the motives of the Great
Migrants, so do we better understand the history of black progress and the intergenera-
tional dynamics of inequality. While it is believed that the welfare of future generations
helped motivate the Great Migrants to leave the South (cf. Wilkerson, 2010; Eichenlaub
et al., 2010)—and that it figures prominently in decisions of many other migrants (see,
for example, Borjas, 1993; Tcha, 1995, 1996; Deutsch, Epstein, and Lecker, 2006; Caponi,
2011)—there has been little empirical work addressing the sensitivity of migrant flows
to intergenerational altruism, either in general or in the context of the Great Migration.
Although, like all migration episodes, the Great Migration was a product of unique his-
torical circumstances, the question faced by Southern blacks—whether the benefits of
migrating outweighed the financial and psychological costs—is the same that, as Sjaastad
(1962) first argued, all potential migrants face. Thus, evidence from the Great Migration
can also inform contemporary migration policy, better-enabling policymakers to predict,
and possibly influence, migrant flows.

Many studies have examined intergenerational dimensions of migration. Chiswick (1977),
in an early contribution, finds that second generation immigrants fare better in the labor
market than their parents and children. Borjas (1993) develops a model of dynastic se-
lection into migration, which he tests against Census data on immigrants to the US. He
finds evidence of negative selection among second-generation immigrants whose par-
ents hail from source countries with high income inequality, as well as intergenerational
earnings patterns that mirror those reported by Chiswick. Deutsch, Epstein, and Lecker
(2006) argue that the intergenerational earnings patterns first identified by Chiswick can
be explained by reciprocal altruism and use Oaxaca-Blinder decompositions to show
that, consistent with their theoretical model, the differences in earnings across succes-
sive generations of immigrants to Israel cannot be explained by differences in observable
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characteristics. Caponi (2011) develops a structural, intergenerational model of the migra-
tion decision in order to explain several stylized facts about Mexican immigrants to the
US (including the Chiswick earnings profile). His counterfactual exercises demonstrate
that intergenerational altruism and migration-induced depreciation in human capital can
explain why second-generation immigrants are more educated (and command higher
wages) than their first- and third-generation counterparts.

There is, in addition, a small literature on whether altruism motivates migration. Tcha
(1995, 1996) develop models of the migration decision when preferences exhibit reciprocal
parent-child altruism. Tcha (1996) shows that, under such models, the earnings thresholds
that characterize the migration decision rule depend on the degree of altruism, and that
using “dynastic earnings thresholds” improves the ability of empirical models to explain
flows of rural-urban migrants in Korea and the US. Berman and Rzakhanov (2000) test
their hypothesis that immigrants are self-selected on intergenerational altruism using data
on the fertility of Eastern European immigrants to Israel before and after a policy change
that dramatically increased access to Israel. The relationship between altruism and migra-
tion has also been investigated in the context of remittances (see, e.g., Lucas and Stark,
1985; Shen, Docquier, and Rapoport, 2009). Papers in this strand of the literature present
models in which some agents are willing to migrate in order to remit portions of their
earnings back to family members in the source country. Lucas and Stark (1985), for exam-
ple, find that the remittance behavior of rural-urban immigrants in Botswana is consistent
with a combination of altruism and self-interest.

Thus, the literature has shown that immigration has implications for intergenerational
mobility and that altruism plays a role in the decision to migrate, but has not provided ev-
idence on the degree to which altruism motivates migrants, or consequently, the effect of
intergenerational altruism on migrant flows. In order to quantify the effect of altruism on
migration, I develop and estimate a dynastic model of residential location choice in which
parents consider the welfare of future generations when deciding whether to migrate. My
basic framework can be viewed as a simplification of the Barro-Becker model (1989, cf.
Loury, 1981; Becker and Tomes, 1986; Becker and Barro, 1988), in which forward-looking
parents can bequeath capital (in the form of time, human capital, etc.) to their children
as an investment in future generations. In my model, current-generation utility depends
only on exogenously-endowed characteristics and residential location, so that parents
are able to invest in their children by choosing the location to which they expect their
children, grandchildren, etc. to be best-suited (i.e, have the greatest earnings capacity or
non-pecuniary taste). As I discuss below, Northward migrations are not well-explained
by observable characteristics, suggesting that unobserved characteristics loom large in the
migration decision process. Moreover, both observed and unobserved endowments may
by correlated across generations, as in Becker and Tomes (1986). Empirical models that do
not account for such unobserved heterogeneity will misstate agents’ location preferences
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and, consequently, the effect of altruism on the propensity to migrate. In order to allow for
this possibility, I use one of Arcidiacono and Miller’s (2010) conditional choice probability
estimators for dynamic models with unobserved heterogeneity. A unique aspect of my
dataset is that it follows families for enough to generations to meet the conditions for the
nonparametric identification of dynamic finite mixture models (Kasahara and Shimotsu,
2009).

I estimate that, over the sample period, altruism increased the probability of migrating
by 4-6% on average (depending on the generation), with somewhat larger effects among
those with more education or higher fertility, groups for which the potential benefits of
migrating are greater. My estimates also suggest that correlated but unobserved location
preferences play an integral role in determining migration behavior, masking consider-
able heterogeneity in the propensity of migrating. In particular, I find that roughly 65%
of the Southern population is unlikely to migrate regardless of altruism towards future
generations. Among the remainder of the population, the implied effect of altruism is sub-
stantially higher, on the order of 12-16%. Thus, the impact of altruism on the propensity
to migrate is relatively small when averaged over the complete pool of potential migrants
but appreciable among those for whom migrating is a legitimate possibility. Policy an-
alysts seeking to predict the effects of a proposed change to migration policy may find
the former impact more informative while social scientists concerned with understanding
migration behavior may be more interested in the latter. Finally, by comparing the effects
of a counterfactual subsidy that permanently offsets the cost of migrating to one which
does so only for future generations, I show that altruistic migration—migration under-
taken to the detriment of the current generation in order to increase the welfare of future
generations—is the main channel through which intergenerational altruism impacts mi-
gration behavior.

2.2 model

2.2.1 Theoretical framework

My empirical model can be viewed as simplifying Barro and Becker’s (1989) model of
intergenerational transfers (cf. Becker and Tomes, 1986; Becker and Barro, 1988) by mak-
ing residential location choice the instrument through which parents can invest in their
children and, in order to focus on the migration decision, abstracting away from human
capital and fertility decisions by assuming that they evolve exogenously. In this model,
successive members of a dynasty decide whether to live in the South or the North, taking
into account how their location decisions affect their flow utility as well as the dynas-
tic continuation utility that they receive by virtue of their altruistic concern for future
generations’ wellbeing.
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If the gth generation of the dynasty is endowed with characteristics zg, let the flow
utility accruing to g from living in location l ∈ {s, n} be denoted by ulg(zg) + εlg, where
the random component εlg is idiosyncratic across generations and independent of zg. I
assume that g expects all of her children to face the same endowments zg+1 and random
location preferences εlg+1, so that if λ ∈ (0, 1) is the intergenerational discount factor (i.e.,
the rate of intergenerational altruism) and h(k) describes the rate at which continuation
utility increases in fertility k (an element of z), expected dynastic utility from generation
g on can be expressed

E

{
G

∑
γ=g

∑
l∈{s,n}

1[lγ(zγ, εγ) = l]h(kγ)
1γ 6=g λγ−g [ulγ(zγ) + εlγ

]}

where 1[lγ(zγ, εγ) = l] indicates γ’s location choice (a function of her endowments and
idiosyncratic preferences) and the expectation is taken over the endowments zγ and id-
iosyncratic preference terms εlγ. Let E[Vg+1(zg+1)|zg, lg] denote the expected continuation
utility of the dynasty under the assumption that all generations after g choose their loca-
tions optimally and let g’s conditional valuation functions

vlg(zg) + εlg = ulg(zg) + εlg + h(kg)λE[V(zg+1)|zg, lg]

represent the utility to g of choosing location l under this assumption, so that the expected
valuation function can be defined recursively as

E[Vg+1(zg+1)|zg, lg] = E
{

max
l∈{s,n}

[
vl,g+1(zg+1) + εl,g+1

]
|zg, lg

}
and g’s choice problem reduces to choosing the location that maximizes vlg(zg) + εlg.

Several aspects of this framework warrant additional interpretation. First, like the the-
oretical model of Barro and Becker and the empirical models used in Caponi (2011) and
Heckman and Raut (2013), this framework ignores life-cycle aspects of the choice prob-
lem, assuming that agents, upon observing their permanent endowments and preferences,
choose the residential locations that maximize the discounted sum of lifetime utilities
over the duration of the dynasty. In contrast, Gayle, Golan, and Soytas (2013) estimate
a model that combines both life cycle and intergenerational considerations. Their model
is better-equipped to explain features of the data such as the timing of fertility and the
relationship between fertility and human capital decisions. Similarly, the dynamic loca-
tion choice models of Kennan and Walker (2011) and Bishop (2012) allow individuals to
choose many residences over the course of a lifetime, allowing them to capture common
migration phenomena such as return and chain migration. My dataset consists of cross
sectional observations from three generations which, as I discuss below, helps me identify
correlated unobserved heterogeneity. However, since it contains little information about
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the timing of location and other choices over the life cycle, I am unable to incorporate
these features into my model.

Second, because a model in which individuals simultaneously choose their characteris-
tics and residential location is equivalent to one in which the location decision is made
after observing characteristics drawn from a distribution obtained by margining location
out of the equilibrium joint distribution over all choice variables, little generality is lost
in assuming that the state variables evolve exogenously. One limitation of this assump-
tion is that it precludes me from modeling altruism’s impact on joint outcomes such as
education-location and location-fertility.

Third, I focus on the location decisions of Southern-born blacks during the Great Mi-
gration. As Tolnay (2003) and Eichenlaub et al. (2010) note, the Great Migration was
effectively over by the mid 1970s, making the dynamic residential location choice prob-
lem a non-stationary one. My stylized interpretation of this trend is that, after the 1970s,
forces such as the Civil Rights Movement and the interregional diffusion of labor, capi-
tal and technology brought the Northern and Southern labor markets into a steady-state
equilibrium, leaving agents indifferent between living in either location (at least before
accounting for moving costs). In this case, after the 1970s (roughly the fourth generation
in my dataset), Southern- and Northern-born agents would have faced the same expected
lifetime utility, eliminating the dynastic aspect of the location choice problem. This time-
horizon assumption, which I use in estimation, enables me to identify migration costs
which, in turn, play an important role in estimating how intergenerational altruism af-
fects migration behavior. As I discuss in Section 2.3, although misspecification of the time
horizon faced by the agents in the model may lead me to draw incorrect inferences about
the effects of altruism on migration, given information about the nature of the misspeci-
fication, the direction of the inconsistency can be determined and the resulting estimates
can be viewed as bounds on the true effects.

Let

pg(x, λ) =

¨
1[vng(x, w; λ) + εng > vsg(x, w; λ) + εsg] fw|x,g(w|x, g)dw fεg(εg)dεg

be the conditional probability of migrating, where endowed characteristics are partitioned
into z = (x, w) and the dependence of the conditional valuation function v on λ has been
made explicit, and

pg(x, 0) =
¨

1[ung(x, w) + εng > usg(x, w) + εsg] fw|x,g(w|x, g)dw fεg(εg)dεg

denote the probability that a myopic agent—one who places no weight on the utility of
future generations and thus makes location decisions with respect to flow utility alone—
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migrates to the North. A natural measure of the impact of intergenerational altruism on
the propensity to migrate is

pg(x, λ)− pg(x, 0) =
¨
{1[vng(x, w; λ) + εng > vsg(x, w; λ) + εsg]

− 1[ung(x, w) + εng > usg(x, w) + εsg]} fw|x,g(w|x, g)dw fεg(εg)dεg.

The difference pg(x, λ)− pg(x, 0), or equivalently, the difference in the probability of mi-
grating between otherwise-similar altruistic and selfish individuals, is my primary esti-
mand of interest.

Insofar as endowed characteristics are heritable, parents and children are likely to have
similar location preferences, in which case myopic and altruistic parents might be ex-
pected to make similar migration decisions. Within my theoretical framework, the source
of migration-altruism dynamics is when accounting for the wellbeing of future genera-
tions alters the balance of relative location preferences, in which case

sign
{
[vng(z; λ) + εng]− [vsg(z; λ) + εsg]

}
6= sign

{
[ung(z) + εng]− [usg(z) + εsg]

}
.

Even when endowments are correlated across generations, altruism may increase or de-
crease the propensity to migrate. The flagship case under which altruism will make mi-
gration more likely is when the moving costs embedded in the relative flow utilities are
prohibitive for selfish agents but, after the migrating generation has born the one-time
cost, migration is sufficiently beneficial to future generations to induce altruistic agents to
migrate. Altruism may increase or decrease the propensity to migrate when the deciding
factor for a selfish agent is an unusually high or low idiosyncratic preference εng − εsg

for living in the North. Here, altruistic agents will behave differently than their selfish
counterparts because it is unlikely that future generations will share their idiosyncratic
location tastes. The average impact of altruism will depend on the relative measures of
these cases across populations with different endowments and idiosyncratic location pref-
erences.

This framework can also be used to understand the value of incorporating dynamics
and heterogeneity into empirical models of location choice. A static choice model will pro-
duce inconsistent estimates of the parameters of the current utility function. Because these
estimates will reflect elements of both current and dynastic continuation utility, a static
model may provide a reasonable approximation of the probability of migrating. How-
ever, such a model will not be able to estimate the impact of altruism on the propensity
to migrate since its reduced form parameters will not distinguish between current and
dynastic utility components. Similarly, when intergenerationally-correlated heterogeneity
is part of the migration decision process, a model that ignores such heterogeneity will
estimate parameters that are “averaged” over the unobserved types. Since the probability
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of migrating is nonlinear in the parameters of the conditional valuation function, how-
ever, the probability of migrating given “average” parameters will differ from the average
probability of migrating given the actual parameters, with no a priori way to assess the
error introduced by ignoring unobserved heterogeneity.

2.2.2 Empirical implementation

I estimate several migration models, each of which treats the location decision as de-
pending on education, fertility, gender, an idiosyncratic shock and, in some cases, an
unobserved type. Let (d, g) denote the gth generation of dynasty d ∈ {1, . . . , D}. Let
(d, g)’s education be described by edg ∈ {1, . . . , 9} where each element represents years
of completed schooling in two-year intervals (so that 1 represents 0-1 years of school and
9 represents 16-17 years). I discretize fertility, letting fdg equal one if (d, g) has greater
than the median number of children among those in generation g, and zero otherwise.
A gender indicator mdg is equal to one if (d, g) is male and zero otherwise. I further as-
sume that all generations of a dynasty belong to one of two unobserved types, indexed
by τd ∈ {1, 2}.

I parameterize the flow utility functions for each model as ulg(xdg, τd) = ulg(xdg, τd; β, c),
where β is a vector of parameters and c is the cost of migrating (the exact specifications
are detailed in Section 2.6). The coefficients in these models should be interpreted as
structural parameters that combine both real-income and non-pecuniary differences in
relative location-specific utilities. Those with more education, e.g., may simultaneously
command higher wages in the North because of regional differences in skill prices and
prefer the North because education gives one a taste for Northern amenities.1 The cost
parameters should similarly be viewed as combining both the transportation and psy-
chological costs of migrating. Additionally, since remaining in the South includes the
possibility of moving within the South, moving costs in these models should be seen as
describing the cost of migrating to the North net of the costs associated with potential
smaller-scale intraregional moves. Finally, many studies (see, e.g., Ríos-Rull, 2002; Gayle
et al., 2013) report evidence of assortative mating, providing an a posteriori justification
for approximating the distribution of the correlated unobserved heterogeneity using two
types that are transmitted perfectly across generations.

Nearly all of the Northern-born individuals in my sample choose to remain in the
North, precluding me from modeling the location choices of Northern-born agents. In-
stead, I model the location choices of Southern-born agents under the assumption that
the North is an absorbing state, so that a Northward migration terminates the intergener-

1 Another possibility is that Southerners obtain more education in preparation for a planned migration to
the North. As mentioned previously, while my model does not capture life-cycle aspects of the migration
decision problem, it is not inconsistent with such behavior.
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ational decision problem. Normalizing the value to future generations of residing in the
North to zero, I assume that the conditional valuation functions take the form

vsg(xdg, τd; β, c) + εsdg

=

usg(xdg, τd; β, c) + εsdg + λ[1 + (µg − 1) fg]E[Vg+1(xd,g+1, τd)|xdg, sdg, τd] if g < 3

usg(xdg, τd; β, c) + εsdg if g = 3,

where µg = E(k|g, k ≥ k̃)/E(k|g, k < k̃) is the fertility ratio among those with above and
below median fertility in generation g, and

vng(xdg, τd; β, c) + εndg = ung(xdg, τd; β, c) + εsdg. (2.1)

Note that, embedded equation (2.1), is the idea that the utility from migrating to the
North is distinct from the utility of residing in the North, as only the generation that
undertakes the migration bears the cost of doing so. This is the sense in which migration
can properly be viewed as an investment in future generations, and the model a variation
on Barro and Becker (1989).2 Note also that my implementation abstracts away from the
tradeoff between the quantity and quality of children.3

2.3 identification

Hotz and Miller (1993) establish that under mild regularity conditions, given a distribu-
tion for the (serially uncorrelated) unobserved state variables and a value for the discount
factor, there is a mapping from the data (i.e. the conditional choice probabilities and state
transitions) to differences in the conditional valuation functions. Drawing on this work,
Magnac and Thesmar (2002) show that these differences can be used to nonparametrically
identify differences in flow utility functions, arguing that although the required assump-
tions about the unobserved state variables and discount factors render dynamic discrete
choice problems generically underidentified, restrictions on the flow utility functions can
restore identification in some cases. Arcidiacono and Miller (2013) extend these identifi-
cation results, characterizing the degree of underidentification and, among other things,
elucidating the conditions under which identification can be restored.

Absent serially-correlated unobserved heterogeneity, nonparametric identification of
the flow utility functions for my model requires estimates of the conditional (on the

2 Strictly speaking, I normalize the utility of residing in the North to ε, so that the continuation value after
migrating will be a discounted sum of Euler’s constants under the distributional assumptions on the ε that I
make below. However, this term will also appear in the valuation function for remaining in the South, with
no effect on the probability of a move.

3 Gayle et al. (2013) estimate this tradeoff using data from the Panel Study of Income Dynamics, finding that,
while there is evidence of a tradeoff, dynastic continuation utility is not too far from linear in fertility.
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observed state variables) probability of migrating, estimates of the transitions over the
observed state variables, a distribution from which the idiosyncratic location preference
terms (i.e., the uncorrelated unobserved heterogeneity) are drawn, and an assumption
about either the time horizon or the rate of intergenerational altruism (i.e., the dynastic
discount factor). The paucity of North-South migrations in my dataset makes disentan-
gling migration costs from pure location preferences another concern, and identifying the
distribution of the unobserved types places additional requirements on the data and the
model. I assume that the observed state variables evolve independently of the unobserved
type and that the idiosyncratic preference terms are distributed Type-I Extreme Value. I
discuss the remaining conditions for identification below.

2.3.1 Altruism

I assume that the intergenerational discount factor λ is equal to .9525 ≈ .28. This assump-
tion is consistent with two heuristic interpretations: either it takes 25 years for parents to
learn what their children’s lifetime utility will be, or, only after children have matured to
adulthood do they provide their parents with altruistic utility. Similar assumptions have
been used in previous research. Caponi (2011), in his study of Mexican immigration to
the US between 1994 and 2008, assumes a value of .961530 ≈ .31. Glover and Heathcote
(2011) use wealth data to calibrate a parameter that implies a discount factor of .31 in a
two-period overlapping generations economy in which the progression of time is roughly
comparable that in my model. Heckman and Raut (2013), using data from the Panel Study
of Income Dynamics over a period of time that overlaps with my data, estimate a value
of .44.4 Gayle et al. (2013) also estimate an intergenerational altruism parameter, although
since their model incorporates both life cycle and dynastic elements, it is difficult to com-
pare their estimates to a pure intergenerational discount factor.5

Arcidiacono and Miller (2013) note that, in finite-horizon models, time preferences are
identified directly from period-specific flow utilities, generalizing a result from Magnac
and Thesmar (2002) that restrictions on the current utility functions can be used to identify
the discount factor. Although the discount factor is in principle identified from the data, I
prefer to use a value that is comparable to those estimated by or used in previous studies
for two reasons. The first is that, in my model, identification of the altruism parameter
relies heavily on assumptions about the time horizon. While it is the historical fact that
the Great Migration had come to an end by the 1970s that motivates my assumption of
a finite time horizon, any incongruity between this stylized assumption and the data-

4 Their model does not account for fertility, which may partially explain their comparatively high point esti-
mate.

5 Estimates of a previous version of their paper that models future utility in a manner similar to mine are close
to the value that I use.
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generating process may cause me to misstate the altruism parameter and, consequently,
the other structural parameters of the model.

To understand the source of potential inconsistency, suppose that the inversion and
representation arguments of Arcidiacono and Miller (2013) have been used to obtain
estimates of the South-North relative ex-ante conditional valuation functions vg(x) =

vng(x)− vsg(x). These functions can be parameterized by regressing them on a constant
and a flexible function of the observed state variables x. Let kg be the corresponding
constant terms for each generation and suppose further that the relative ex-ante flow
utility functions are assumed to take take the stationary parametric form ug(x; β, c) =

β0 + c+ h(x; β). By Theorem 1 of Arcidiacono and Miller (2010), the conditional valuation
functions can be represented in terms of the conditional probabilities that all successive
generations remain in the South, in which case (ignoring fertility and unobserved types
for simplicity)6

k2 = β0 + c + λ(β0 + c)

and
k3 = β0 + c,

so that the altruism parameter can be recovered algebraically using

λ =
k2 − k3

k3
. (2.2)

Equation (2.2) can be used to sign the effect of misspecification of the time horizon on
the estimated altruism factor.7 For example, suppose that the dynamic decision problem
actually lasts four generations but is misspecified as ending after the third. In this case,
the estimator for λ becomes

λ̂ =
k2 − k3

k3
=

[
β0 + c + λ(β0 + c) + λ2(β0 + c)

]
− [β0 + c + λ(β0 + c)]

[β0 + c + λ(β0 + c)]
=

λ2

1 + λ
< λ.

Here, the estimate of λ will be too low. In a parametric utility specification, this incon-
sistency will spill over to the other structural parameters as well, invalidating estimates
of the effect of altruism on migration. Other types of misspecification will have a similar
effect on the estimated altruism parameter.8 Another concern is that, as I discuss below,

6 Normalizing the value of residing in the North to zero and maintaining the assumption of Gumbel errors,
the generation-two relative conditional valuation function can be represented using

v2(x) = β0 + c + h(x; β) + λ{E[β0 + c + h(x; β)|x]− E[log(1− p3(x3))|x]}

where p3(x) is the conditional probability of migrating for members of the third generation.
7 Note that the discount factor could also be identified by comparing the behavior of generations one and

three; with three periods of data, it is overidentified.
8 For example, suppose the environment becomes a stationary infinite-horizon one after three generations,

but the expected utilities of being born in the South and North are not the same. If the relative expected
continuation value of being born in the South after the third generation is E[V(xg>3)|xg−1, lg−1 = s] = ϕ > 0
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the location decisions of some of the younger members of the third-generation in my
sample may be right-censored, potentially overstating their preferences for remaining in
the South. Within the foregoing identification procedure, right censoring is tantamount
to overstating k3, which in turn will understate λ (since dλ̂/dk3 = −k2/k2

3 < 0).
My second reason for preferring to assume, rather than estimate, λ is that my treatment

of unobserved heterogeneity may generate estimates that understate the degree of altru-
ism. To see this, consider the simplified case where preferences only depend on the type
τ ∈ {1, 2} and an idiosyncratic preference term, and the type is observed. Repeating the
preceding estimation procedure will recover constant terms kτ

g for each type and genera-
tion. The altruism parameter, which I assume is type-independent, can then be recovered
by averaging type-specific estimates λ̂τ = (kτ

2 − kτ
3)/kτ

3 according to λ̂ = πλ̂1 + (1−π)λ̂2,
where π is the proportion of the population with τ = 1. Now suppose that dynasties with
τ = 2 never migrate, in which case k2

g = ∞ for all g. Since the limit of λ̂2 = (k2
2− k2

3)/k2
3 as

(k2
2, k2

3) → (∞, ∞) does not exist, approaching λ only in the special case where k2
2 and k2

3

grow along the path k2
2 = k2

3 + λk2
3 (the path implied by the finite horizon specification),

the altruism parameter is not identified for type-2 dynasties. If the estimates of k2
2 and

k2
3 converge to infinity at the same rate, λ̂2 will approach zero, severely attenuating the

overall estimate of λ, particularly if a large fraction of dynasties belong to the second
type.

Intuitively, this attenuation arises because the altruism parameter is identified from
differences in the migration behavior of successive generations, and these differences
vanish when preferences for the South approach infinity. Since migrations are rare and
not well-explained by observable characteristics in my data, families that never leave the
South have a high posterior probability of belonging to a type with strong unobserved
preferences for the South, similar to the type-2 dynasties in simplified example above.
Since this group comprises a large fraction of the dynasties in the data, estimates of λ

obtained from models that allow for unobserved heterogeneity place more weight on the
group for which this parameter is the hardest to estimate. Indeed, when I estimate the
altruism factor using a version of my primary specification (detailed below) that excludes
unobserved heterogeneity, I obtain a point estimate of about .25, close to the value that I
assume. However, this estimate is statistically insignificant and, for the reasons outlined
previously, may still understate the degree of altruism.

For these reasons, my model is poorly suited to estimate the altruism factor. In con-
trast, both Heckman and Raut (2013) and Gayle et al. (2013) use models in which parents
can make investments in children that only increase parental utility by affecting future
generations’ outcomes; such investment behavior directly conveys information about in-
tergenerational altruism. Conceptually, then, what my results establish is the effect of

we will have (again representing the valuation functions in terms of all generations residing in the South)
k2 = β0 + c + λ(β0 + c) + λ2 ϕ and k3 = β0 + c + λϕ so that λ̂ = [λ(β0 + (λ− 1)ϕ)]/(β0 + λϕ) < λ.



80 intergenerational altruism in the migration decision calculus

altruism on the propensity to migrate, given an assumed level of altruism. That parents
exhibit altruism towards future generations is not controversial, however, and I use a
value for the altruism parameter that is comparable to those estimated by other studies.
Furthermore, as I show in Section 2.6, my estimates are insensitive to large changes in the
assumed degree of altruism. It thus appears that it is the existence, rather than the degree,
of altruism that matters, and the former has been established by previous research.

2.3.2 Moving costs

In a model where migration is a terminal action, it is difficult to disentangle moving
costs from pure location preferences. What enables me to distinguish between these util-
ity components is the assumption that the dynamic decision problem ends after three
periods.9 To see this, represent the conditional valuation functions in terms of all future
generations living in the North and let kg be the constant term in vg(x), so that, using the
parameterization described above,10

kG = β0 + c

and
kg = β0 + c− λc.

Algebraically, the moving cost can be identified by estimating separate constant terms for
generations g < 3 and G = 3 and letting

ĉ =
kG − kg

λ
= c.

In a stationary model, it would be impossible to identify the moving cost, since the
constant term would be k = β0 + c− λc for every generation. The intergenerational mi-
gration probabilities p(x, λ), which would only depend on the composite constant term
β + (1− λ)c, could still be recovered. Estimating the effect of intergenerational altruism
on migration, however, would require an estimate of p(0, λ), which itself would require
the moving cost to be identified separately from the rest of the constant term.

9 In a binary location choice model with return migration, moving costs can be identified by comparing the
differential behavior of otherwise-similar individuals with different initial locations. Because I observe virtu-
ally no North-South moves, I am unable to use this approach to infer moving costs. While a larger dataset
may contain more variation in the behavior of Northern-born individuals, an additional complication is that
it is unclear whether the distribution over the unobserved types would remain nonparametrically identified.
Allowing for bidirectional migration would require adding the initial state (i.e., the lagged location choice)
to the state space. The identification approach of Kasahara and Shimotsu (2009) requires six time periods per
panel unit in this case, which is clearly infeasible when the unit of time is a generation. The approach of Hu
and Shum (2012) allows for lagged choice variables in the state vector, but requires four time periods when
the setting is stationary and at least five when it is not.

10 In this case, the relative conditional valuation function would be vg(xg) = β0 + c + h(xg; β) − λ{c +
E[log pg(xg+1)|xg]} where pg(x) is the conditional probability of migrating.
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The time horizon assumption is consequently important to estimating the effect of altru-
ism on the probability of migrating. My interpretation of the end of the Great Migration
(Tolnay, 2003; Eichenlaub et al., 2010) is that a fourth-generation child born in either the
South or the North faced the same expected utility, obviating the dynamic aspect of the
location decision problem. That is, after three generations, the North ceases to be an ab-
sorbing state and, net of moving costs, the utilities of residing in the South and the North
are the same (across observable and unobservable types), so that the constant from the
generation-three relative conditional valuation function can be written

kG = β0 + c− λ

[
c + log

(
ps,G+1

pn,G+1

)]
,

where pl,G+1 is the probability that a fourth-generation agent born in l chooses to live
in the North.11 If both locations yield the same utility, the only reason why a Southern-
born agent would be less likely to live in the North than a Northern-born one is that the
Southerner must pay the cost of migrating, in which case log(ps,G+1/pn,G+1) = −c.

There are two potential complications to identifying the moving cost this way. First,
right-censoring among third-generation respondents may overstate kG (which represents
their relative preferences for living in the South) and hence c. Second, the Northern and
Southern labor markets may not have completely equilibrated by the end of the third
generation. In either case, external information about the source of misspecification can
be used to sign the resulting inconsistency in the estimated effects of altruism, in which
case the estimates can be interpreted as bounding the true effects. For example, Tolnay
(2003) notes that return migration to the South exceeded migration to the North during
the mid-1970s. If Southerners found the North less attractive during this period (even
before taking moving costs into account) then log(ps,G+1/pn,G+1) < −c, implying ĉ =

(kG − kg)/λ > c, in which case the estimated effects of altruism on migration can be
viewed as upper bounds.12 In fact, the coefficients from a parametric specification of the
flow utility functions for a finite-horizon model can still be estimated consistently without
estimating the moving cost as long as the constant term for the third generation is allowed
to vary. Misspecification-induced inconsistency of the moving cost is therefore innocuous
in comparison to that for the altruism parameter.

2.3.3 Unobserved types

While the identification approaches of Magnac and Thesmar (2002) and Arcidiacono and
Miller (2013) require that all of the serially-correlated state variables are observed, my

11 This expression represents the valuation function in terms of all future generations residing in the North and
exploits the fact that the model exhibits finite dependence (see Arcidiacono and Miller, 2010; Arcidiacono
and Ellickson, 2011; Arcidiacono and Miller, 2013).

12 Since dp(x, 0)/dc < 0, overstating the cost of moving will also overstate the impact of altruism on migration.
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model allows for unobserved heterogeneity that persists across generations. The literature
on the short-panel identification of dynamic choice models with unobserved heterogene-
ity demonstrates that, under suitable conditions, the type-dependent distribution func-
tions that comprise the primitives of these models can be nonparametrically identified
(see Kasahara and Shimotsu, 2009; Hu and Shum, 2012). In particular, that the elements
of my model are, in principle, identified from the distributions governing the observable
data follows from Proposition 4 of Kasahara and Shimotsu (2009).13 Although in prac-
tice I use parametric specifications to smooth utilities over the state space and reduce
the dimension of the estimation problem, this identification argument suggests that the
information so-recovered is contained in the data itself.

2.4 data and summary statistics

The data that I use in this study are drawn from the Three-Generation National Survey
of Black American Families, 1978-1981 (Jackson and Tucker, 1997). This dataset is a com-
pendium of responses to several questionnaires administered as part of the National Sur-
vey of Black American Families, a nationally representative survey of black households
in the US. When respondents to the cross-sectional survey reported having two living rel-
atives belonging to different generations, these relatives were interviewed, and the initial
respondent re-interviewed, resulting in a dataset containing responses to the same ques-
tions from members of three generations of 510 families. This intergenerational dataset
includes information about educational attainment, fertility, birthplace, and residential
location at the time of enumeration, the primary variables that I use in my empirical anal-
ysis.14 Of the 1,425 individual observations that remain after omitting those with missing
values for the key covariates, there are only 11 North-South migrations, making it vir-
tually impossible to model the location decision problem for those born in the North.
Instead, I model the decision of Southern-born agents to remain in the South or migrate
North under the assumption that the North is absorbing—after a Northward migration,
all future generations remain in the North, effectively terminating the dynamic decision
problem. For this reason, I also omit respondents who were born in the North.

My empirical model is dynastic, treating the generation as the basic unit of time. Conse-
quently, I also omit observations from members of the third generation who are younger
than 18 at the time of the interview, as these respondents may have incomplete educa-

13 In addition to a rank condition (which is satisfied trivially), the proposition requires that (i) the choice prob-
abilities do not depend on lagged choices, (ii) any (observable) element of the state space can be reached
with positive probability, (iii) the transitions over the observable state variables do not depend on the un-
observed type and (iv) there are at least three time periods. My model meets conditions (i)-(iv) and is thus
nonparametrically identified subject to the rank condition.

14 I code respondents’ current and birth locations as Southern according to the Census Bureau’s definition of
the Southern region. According to this definition, Alabama, Arkansas, Delaware, Florida, Georgia, Kentucky,
Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia and
West Virginia are Southern states. I code all other locations within the US as belonging to the North.
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tion and fertility histories and are less likely to have made their own residential loca-
tion choices. This omission is unlikely to completely solve the problem of right-censoring
among third-generation respondents. However, because the initial sample is already some-
what small, there is a tradeoff between including only those third-generation observations
for which I can be reasonably sure that the data represent completed histories and retain-
ing enough data to preserve variation in the observables and permit meaningful inference.
Noting that it is generally straightforward to determine how incomplete histories will af-
fect estimates of the utility of migrating, I include all third-generation respondents aged
18 or older.

After performing these sample selections, I am left with 443 families, from which obser-
vations from 1,099 individuals are used in estimation. Table 2.1 provides sample charac-
teristics for these observations. The median respondent from the first generation was born
in 1910 and 70 years old when the survey was administered between 1978 and 1981. The
median second generation respondent was born in 1933 and 47 years old at the time of
the survey. The median third generation respondent was born in 1954 and was 24.5 when
surveyed. As the table shows, respondents, particularly those belonging to the first and
second generations, are substantially more likely to be female. This is almost certainly
a reflection of higher mortality rates among men, an explanation which is supported by
the fact that 43%, a much larger proportion, of third-generation respondents are male.
Because the intergenerational dataset was collected by interviewing relatives of respon-
dents to the nationally-representative seed survey, the larger fraction of women may also
partially reflect a greater willingness of females to participate in the follow-up surveys.
Regardless of the underlying cause, the sample distribution of gender is not an accurate
reflection of the population distribution across generations, a point to which I return in
Section 2.5.

The summary statistics in Table 2.1 also provide a sense of the likelihood of Northward
migration. Across generations, 86% of individuals choose to remain in the South. Mem-
bers of the second generation are about 7% more likely to migrate than the sample aver-
age, although the similarity between the migration behavior of first- and third-generation
respondents may partially owe to the younger ages at which the latter were interviewed.
Unsurprisingly, the table also shows that successive generations obtained more education,
with median years of completed schooling increasing from 7 to 11 to 12 across the three
generations. Similarly, the median number of children declines from 6 to 4 to 1. Note well
that right-censoring of the third generation plays a role in determining the observed rates
of change in education and fertility.

To provide preliminary evidence on how the covariates are related to location prefer-
ences, I present in Table 2.2 a series of linear models of the probability that a Southern-
born individual migrates North. For simplicity, these models use binary measures of
education (an indicator for having more than a high-school education) and fertility (an
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indicator for having greater than the median number of children); using full sets of edu-
cation and fertility indicators produces similar results. The first specification shows that,
pooling across generations, migration is more likely among males, those with greater ed-
ucation, and those with more children. The covariates included in this regression only
explain about 8% of the variation in migration. When the regressors are interacted with
time, the main coefficients are similar, and the explanatory power of the model only in-
creases by about 1%. For the third specification, which includes all interactions between
time, gender, education and fertility, the R2 is just over .1. Conditioning on gender and
time as well as fertility and human capital decisions, two of the most important choices
over the life cycle, only explains 10% of the variation in migration behavior. These re-
gressions show that migration decisions are made, in significant measure, with respect
to unobserved factors, illustrating the scope for empirical models that neglect this hetero-
geneity to be inconsistent, depending on how these unobservable factors are correlated
with each other over time and with the included observables.

2.5 estimation

2.5.1 Transitions

In my model, there are nine education categories, two genders and two fertility levels,
for a total of 36 observable states which evolve stochastically according to a Markov pro-
cess that does not depend on either the unobserved type or the idiosyncratic preference
shock. Estimating this transition function involves a tradeoff between capturing the mu-
tual dependence between education, gender, and fertility and the precision with which
the transitions can be estimated. I use a parsimonious multinomial logit specification in
which, letting x̃ represent education and fertility (omitting gender), the probability of
transiting from state xg to state x̃g+1 conditional on mg+1 is given by

Pr(x̃g+1 = j|mg+1, xg) =
exp

(
αj(mg+1, xg)

)
∑k∈{1,...,K} exp

(
αk(mg+1, xg)

) ,

where
αj(mg+1, xg) = αj0 + αj1eg + αj2 fg + αj3mg+1.

I estimate the transitions conditional on gender because the greater proportion of
women in the sample, as seen in Table 2.1, likely reflects a combination of earlier mor-
tality among men and a higher willingness of women to participate in the follow-up
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survey. I then assume that male and female children are equally likely, estimating the
unconditional transition function using

f (xg+1|xg) =
1
2

Pr(x̃g+1|mg+1, xg).

Because some of the state-space cells are sparsely populated, I pool data across gener-
ations and regions, estimating only one transition matrix to describe the evolution of the
state variables over time. As the summary statistics presented above show, education in
years is increasing over time. Thus, transitions from “low” to “medium” levels of educa-
tion are estimated primarily using variation between generations one and two and transi-
tions from “medium” to “high” levels are estimated primarily from the second and third
generations, so that pooling over generations mainly helps estimate transitions between
infrequently-obtained education levels. Similarly, the indicator for having above-median
fertility is generation-specific, so intergenerational pooling only implies that the transmis-
sion of relative fertility from parent to child is stable over time. In addition, because (i) the
majority of the sample is Southern-born, and (ii) I treat migration as a terminal action, so
that birthplace-specific differences in the transitions do not factor into the future values
of the options, including the Northern-born in the estimation sample for the transitions is
unlikely to have much of an effect on the resulting estimates. At the same time, using this
information allows me to better-capture the joint relationship between the state variables
across generations and estimate the transitions with greater precision.

Because the resulting 36× 36 transition matrix is somewhat unwieldy, I summarize the
estimated transitions in Table 2.3 (the full matrix is presented in Appendix Table 2.14).
The top panel of the table shows the estimated average unconditional transitions for edu-
cation, obtained by margining over gender and fertility in generation g + 1 and averaging
over fertility in generation g. The estimates exhibit the expected pattern of conditionally
increasing education over time. For example, the child of a parent with roughly a sixth
grade education (eg = 4) is most likely to have about a high-school education (eg+1 = 7),
but relatively unlikely to complete additional schooling; the child of a parent with be-
tween 16 and 17 years of education remains most likely to obtain a high school degree,
but is also relatively likely to obtain between 14 and 17 years of education. The bottom
panel of the distribution shows the estimated average transitions over fertility. As ex-
pected, these estimates show that parents with below-median fertility are more likely to
themselves have below-median fertility than children born to parents with above-median
fertility.
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2.5.2 Conditional valuation functions

Hotz and Miller (1993) establish that, under mild assumptions met by my empirical
model, there is a mapping from the state-specific probabilities of selecting the elements
of the choice set to the normalized (relative to a reference choice) conditional valuation
functions, obviating the need to use backwards recursion or fixed point iteration to com-
pute the future value terms. Arcidiacono and Miller (2010) further show that the valuation
functions can be represented in terms of the conditional probabilities of selecting any (po-
tentially counterfactual) sequence of decisions. I use these inversion and representation
results to express the conditional valuation functions in terms of the conditional proba-
bilities of migrating. Specifically, since the εldg are distributed Type-I Extreme Value and
the North is a terminating action, the (relative) valuation functions for living in the South
can be expressed in terms of the choice sequence (l1 = s, l2 = n, l3 = n) as

vg(xdg, τd) ≡ vsg(xdg, τd)− vndg(xdg, τd) = usg(xdg, τd)− ung(xdg, τd)

+ [1 + (µg − 1) fdg]λ

un,g+1(xdg, τd)− ∑
xg+1∈X

f (xd,g+1 = xg+1|xdg) log[pg+1(xg+1)]

 ,

(2.3)

where pg+1(xg+1) = Pr(lg+1 = n|xd,g+1 = xg+1) is the conditional probability of migrating
to the North.

In equation (2.3), the conditional relative value of living in the South is simply relative
current utility usg − ung plus maximized relative future utility. Since the future utility as-
sociated with migrating is normalized to zero, the relative future utility term reduces to
the maximized utility for future generations given that g remains in the South, discounted
by λ and weighted by fertility. The maximized future value term for living in the South is
represented in terms of all future generations living in the North. Under this sequence of
future location choices, generation g + 1 receives flow utility un,g+1, to which a correction,
−E[log pg+1(xg+1)|xg], is added to account for the fact that living in the North may not,
in fact, be optimal for generation g + 1. Given that g + 1 has chosen to migrate, a termi-
nal action, future generations remain in the North, receiving flow utility that has been
normalized to zero, and to which no further correction terms need to be added.15

2.5.3 Estimation with unobserved types

If τd were observed, the conditional choice probabilities could be estimated directly from
the data, in which case representation (2.3) could be combined with the estimated tran-

15 That is, the model exhibits one-period finite dependence.
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sitions and the model estimated by maximum likelihood. In order to estimate the model
with unobserved types, I use one of the Arcidiacono and Miller (2010) estimators, which
adapt the Expectation-Maximization algorithm (Dempster, Laird, and Rubin, 1977) for use
in conditional choice probability estimation of dynamic discrete choice models. While the
estimators are fully documented in Arcidiacono and Miller (2010) (see also Arcidiacono
and Ellickson, 2011), I briefly outline the algorithm here.

Denote the probability of observing g’s location choice and (g + 1)’s observed state
variables, conditional on g’s observed state variables and d’s type τ ∈ {1, 2}, by

Lg(ldg, xd,g+1|xdg, τ; θ, p) =(
exp

(
vg(xdg, τ; θ, p)

)
1 + exp

(
vg(xdg, τ; θ, p)

))1(ldg=s)(
1

1 + exp
(
vg(xdg, τ; θ, p)

))1(ldg=n)

f (xd,g+1|xdg),

where the dependence of vg on the parameters θ of the utility functions and the vector p of
conditional choice probabilities has been made explicit, and the logit form arises because
the εldg are Type I-Extreme Value (Rust, 1987, 1994). The (m + 1)th stage of the algorithm
proceeds in two steps. In the expectation step, the probability q(τd = τ|xd, ld) that τd = τ

conditional on the sequences xd = (xd1, xd2, xd3) and ld = (ld1, ld2, ld2) of dynasty d’s state
variables and location choices is updated using

q(m+1)(τd = τ|xd, ld) =
π(m) ∏3

g=1 Lg(ldg, xd,g+1|xdg, τ, θ(m), p(m))

∑τ∈{1,2} π(m) ∏3
g=1 Lg(ldg, xd,g+1|xdg, τ, θ(m), p(m))

,

where π is the fraction of dynasties with τd = 1. The estimate of π is also updated in the
step, according to

π(m+1) =
∑D

d=1 q(m+1)(τd = τ|xd, ld)

D
,

as are the conditional choice probabilities of migrating given xdg and τd, using

p(m+1)(x, τ) =
1

1 + exp
(
vg(xdg, τ; θ(m), p(m))

) .

In the maximization step, the parameters θ are updated by maximizing a sum of type-
specific log-likelihood functions, weighted by the posterior probability that d belongs to
either type:

θ(m+1) = argmax
θ

D

∑
d=1

G

∑
g=1

∑
τ∈{1,2}

q(m+1)(τd = τ|xd, ld) log
[

Lg(ldg, xd,g+1|xdg, τ; θ(m+1), p(m+1))
]

.

Iterations continue until convergence.
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2.6 results

2.6.1 Parameter estimates

In the main specification of my empirical model, I parameterize the current utility func-
tions as

usg(xdg, τd) + εsdg = βτ
0 + β1edg + β2e2

dg + β3mdg + β4 fdg + β5g + εsdg

ung(xdg, τd) + εndg = −c + εndg.

That is, location preferences depend on education, gender, fertility and time, as well as
moving cost and a fixed-effect that is specific to the unobserved type. Estimates of this
specification are presented in the second column of Table 2.4 alongside estimates of the
same model with no permanent unobserved heterogeneity (the first column). In interpret-
ing the coefficient estimates, recall that the utility specifications relate the utility of living
in the South relative to the North, which is normalized to zero. In the model with hetero-
geneity, the estimated constant term for those with τ = 2 (hereafter the “low” type since
they are relatively unlikely to migrate) is an order of magnitude larger than that for those
with τ = 1 (the high type). This result is unsurprising: families that reside in the South for
all three generations are likely have the same unobserved type, and because they never
migrate, must have strong preferences for living in the South.

More interesting are the effects of including unobserved heterogeneity on estimates
of the other parameters of the model. In the model with no permanent heterogeneity,
the main coefficient on grades is -.6, indicating that education decreases relative tastes
for the South. In the model with heterogeneity, this coefficient is halved, although it
remains negative. This pattern is due to textbook omitted variables bias: the high types
(τ = 1) tend to be better educated, leading the model without heterogeneity to overstate
the role of education in determining tastes for the South. Accounting for unobserved
heterogeneity has no clear impact on the gender coefficient, with both the point estimates
and the standard errors increasing after including heterogeneity.

Including permanent heterogeneity has a notable effect on the coefficient on generation,
causing it to switch signs and increase substantially in absolute value, a change which can
be explained by dynamic selection bias. Since those remaining in the South over time are
more likely to belong to the low type, and consequently less likely to migrate, the model
without unobserved heterogeneity detects no trend in the utility of the South over time.
When permanent heterogeneity is included, the utility of the South appears to decrease
across generations, a finding more consistent with the increasing likelihood of migration
over time evidenced in the summary statistics. This dynamic selection bias may also ex-
plain why the coefficient on fertility is so much lower in the model without heterogeneity.
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If low types are more fecund, the fertility coefficient may be attenuated downward to re-
flect that, even among the low types, the probability of migrating is increasing over time
(along with fertility among Southerners).

The estimated moving costs are clinically large. In the model without heterogeneity,
for example, the relative lifetime utility of living in the South for a first-generation male
with ten years of education and below-median fertility is about -4.3. The estimated cost
of migrating is over half that sum. This finding accords well with those of Kennan and
Walker (2011) and Bishop (2012), who also estimate that moving is very costly. The under-
lying explanation for these large cost estimates is that, even among those who, according
to their observable characteristics, are the most likely to move, migrations are somewhat
rare (among those with a high-school degree or greater, e.g., the average probability is
on the order of about .2). Furthermore, allowing for some families to have systematically
large relative tastes for the South does not drastically reduce the estimated cost (which
drops from 2.7 to 2.1 when heterogeneity is included); even among the high types, migra-
tion is sufficiently uncommon that the cost of a move represents a substantial fraction of
lifetime utility.

The estimated fraction π of the population who are of the high type is .35. As I discuss
in Section 2.9, this estimate corresponds roughly with the fraction of dynasties that ever
leave the South. This correspondence arises because the observables in the utility function
do not explain much of the variation in migration, so its sequence of location choices is
the most influential determinant of the posterior probability that a dynasty belongs to
either type.

As the standard errors for the model with heterogeneity show, it is difficult to sepa-
rately estimate the location preference parameters for the unobserved types and observed
covariates. However, a Wald test for the joint significance of the observables rejects the hy-
pothesis that they are not a part of the utility function. Table 2.4 also reports the results
of a likelihood ratio test between the models with and without permanent heterogeneity.
There are two sets of restrictions under which the model without heterogeneity can be
nested into the model with heterogeneity: either the parameters are the same for both
types or the parameters are type-dependent but the unobserved type distribution is de-
generate. As Chen and Chen (2001) note (see also Chen, Chen, and Kalbfleisch, 2001),
this multiplicity imbues the likelihood ratio test with a nonstandard limiting distribution.
For this reason, I use the bootstrap procedure that they outline in order to test between
these models. Let LRD denote the likelihood ratio statistic and θ̃ denote the parameters of
the model with no unobserved heterogeneity, estimated using the full sample. I construct
B = 100 bootstrap samples (lb

dg, xdg), b ∈ {1, . . . , B}, d ∈ {1, . . . , D}, g ∈ {1, 2, 3}, by draw-
ing errors from a Type-I Extreme Value distribution for each b, d and g and computing
the optimal location choices lb

dg(xdg, εb
dg; θ̃) implied by the null hypothesis of no hetero-

geneity. For each bootstrap sample, I estimate the model with and without heterogeneity
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and compute the likelihood ratio statistic LRb. The p-value associated with the likelihood
ratio test is the proportion of the LRb that exceed LRD.

As the table shows, none of the bootstrap samples generate a likelihood ratio statis-
tic that exceeds that computed from the original sample; the model without permanent
heterogeneity is easily rejected. The rarity of migrations can also explain why including
unobserved heterogeneity improves the fit of the model. Because, regardless of their ob-
servables, people seldom move, the idiosyncratic location-preference errors play a pivotal
role in rationalizing the migrations that do occur. Allowing for unobserved types reduces
the implied magnitude of the random errors invoked to explain the observed migrations,
increasing the likelihood of observing the data.

2.6.2 The effect of altruism on migration

In Table 2.5, I present estimates of the intergenerational and selfish migration probabili-
ties, as well as the effects p(x, λ)− p(x, 0) of altruism on migration, for this model among
several different subpopulations x, computed using parameters estimated with and with-
out permanent unobserved heterogeneity. Across specifications and subpopulations, the
estimated probabilities vary as expected; they are increasing in education, decreasing in
fertility, and higher for members of the second generation, reflecting the same patterns
seen in the summary statistics. When permanent unobserved heterogeneity is accounted
for, the estimated altruistic and selfish migration probabilities are close to zero for the low
types. Although the stark difference between the types is a mechanical consequence of the
use of two unobserved types (families that remain in the South must have high tastes for
living there), the differences in migration probabilities between these types show that un-
observed correlated preference components figure importantly in the migration decision
process.

Accounting for heterogeneity, the average effect of altruism is to increase the probabil-
ity of a migration by about 4% for members of the first generation and 6% for members
of the second (since the horizon is finite, the effect is zero by construction for the third
generation); I can reject the hypothesis that these effects are zero. Given that the average
migration probabilities are about 10 and 20% in generations one and two, the magnitudes
of these effects are nontrivial. The effects of altruism are greater-than-average among
those with a high-school degree or better (between 5 and 6%, depending on the genera-
tion) and among those with above-median fertility (between 6 and 8%). The first effect
clearly arises because education simultaneously increases both tastes for the North and
the education of future generations. The second effect represents a combination of two
forces: fertility decreases tastes for the North while increasing the number of children that
can benefit from a Northward migration.
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The corresponding effects estimated without accounting for heterogeneity are nearly
all somewhat smaller. Even though there are marked differences in the parameter esti-
mates between these models, the model without heterogeneity approximates the effects
of altruism reasonably well. However, the differences between the effects of altruism esti-
mated with and without heterogeneity are statistically significant among second genera-
tion individuals with low education or high fertility, groups with relatively low migration
probabilities. High types with low education or high fertility may lie on a steeper part of
the distribution function that determines migration probabilities, making their migration
behavior more sensitive to intergenerational altruism.

Although the model without heterogeneity can approximate the average effect of al-
truism among the pool of all potential migrants, it cannot differentiate between those for
whom migration is a realistic possibility and those who are unlikely to migrate regardless
of altruism. As Table 2.5 shows, the average migration probability is over 50% among high
types and close to zero among low types. The effect estimates in the table demonstrate
that, among high types, the average effects of altruism on the probability of migrating
are about 12 and 16 percent for the first and second generations, respectively. Because of
their strong, and dynastically correlated, preferences for the South, the average effect of
altruism among low types is virtually zero. Thus, the estimated effects of altruism pre-
sented in Table 2.5 answer two different questions. For policymakers concerned about the
effects of a policy that would primarily benefit the children of would-be migrants, the
relevant question is how much altruism would increase the total flow of migrants from
the source location. The answer, at least insofar as the Great Migration is a generalizable
case study, is not by much—on average over the entire pool of potential migrants, altru-
ism increases migration by less than 6%. On the other hand, for a behavioralist interested
in understanding what motivates migration decisions, the relevant question is the degree
to which altruism encourages migration among those for whom migration is a realistic
possibility (that is, among the high types). Among this group, altruism is much more
influential, increasing the probability of a migration by as much as 16% on average.

2.7 additional specifications and robustness exercises

2.7.1 Moving cost heterogeneity

The preference specification used to generate the results discussed above assumes that
only pure location preferences, and not the cost of migration, depend on the unobserved
type. In a stationary, infinite-horizon model, the estimated intergenerational migration
probabilities are robust to misspecification of the role of unobserved heterogeneity. In a
finite-horizon setting, the different implications of unobserved heterogeneity for agents in
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the terminal generation breaks this equivalence.16 Moreover, as discussed in Section 2.3,
what identifies moving costs in this model is the differential behavior of members of
the third and members of the first and second generations, to whom these costs present
different incentives. Misspecification of the way that the unobserved type enters the utility
function may therefore distort estimates of the costs of moving and, consequently, the
effects of altruism on migration.17

In order assess the sensitivity of my results to different assumptions about the role
of unobserved heterogeneity, I also present, in the third column of Table 2.4, estimates
of a second specification in which pure location preferences are type independent, but
members of different unobserved types face different migration costs:

usg(xdg, τd) + εsdg = β0 + β1edg + β2e2
dg + β3mdg + β4 fdg + β5g + εsdg

ung(xdg, τd) + εndg = −cτ + εndg.

The relationships between the coefficient estimates for the models with and without het-
erogeneity are similar to those for the first specification. The coefficient on education
drops (by even more in this case) due to omitted variables bias and the coefficient on gen-
eration switches signs due to dynamic selection bias, causing the coefficient on fertility to
increase in turn. Here as well, a Wald test rejects the hypothesis that the observable char-
acteristics can be excluded from the utility function. The estimated moving cost for the
high types is 1.93, lower than estimates from the models without heterogeneity and with
location-preference heterogeneity, but still large. Partially compensating for this, the con-

16 To see this, first suppose that the environment is stationary and, in the data-generating process, both types
have the same location preferences, but the high types have a lower moving cost. In this case (ignoring
fertility for simplicity), the constant term in the conditional valuation function can be expressed kτ = β0 +
(c− ∆1τ=1)− λ(c− ∆1τ=1). If the empirical model is misspecified by allowing only for type-specific fixed
effects, so that k̃τ = β0 + ∆̃1τ=1 + c− λc, ∆̃ will be estimated as (1− λ)∆, and the estimated constant and
intergenerational migration probabilities will be the same even if the model is misspecified. When the time
horizon is finite, the true and misspecified models are only equivalent when ∆̃ = −∆ = (λ− 1)∆, a condition
that requires that either ∆ or λ is zero. This argument also applies to the case where both location preferences
and moving costs are heterogeneous.

17 Misspecification of the dependence of moving costs on the covariates may also be a source of incon-
sistency. For example, suppose that the actual conditional valuation function is vg(xg) = x′gβ + x′gγ −
λ{E(xg+1|xg)′γ + E[log p(xg+1)|xg]}, where γ is a vector of cost function parameters (ignoring unobserved
types and abusing notation by letting x be a vector rather than an element of the state space). If an interac-
tion between β and an indicator for belonging to the terminal generation is included in the specification, the
(population) parameter estimates from a model that ignores the dependence of moving costs on x will be
β̃g = β + γ− λΛ′xgγ and β̃G = β + γ, where Λ is the matrix of coefficients from a linear projection of the
elements of xg+1 onto xg. If E(xg+1|xg) were linear in xg, the altruistic migration probabilities p(x, λ) could
be estimated consistently (although the preference parameter estimates themselves would be inconsistent). If,
in addition, this expectation were stationary, the combined location preference and moving cost terms could
be recovered using β + γ = β̃g − (β̃G − β̃g)/λ, and these composite parameters used to estimate the selfish
migration probabilities p(x, 0). Since this expectation is in general nonlinear, the projection of xg+1 onto xg
will introduce some approximation error. Note, however, that by this argument, omitting a time trend in the
moving cost introduces no inconsistency as long as the preference specification includes a time trend, since g
transitions linearly. (Note also that, even if the the projection error were negligible, a non-stationary transition
function would imply that (β̃G − β̃g)/λ 6= Λ′xgγ, rendering the estimated moving costs inconsistent.)
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stant term is noticeably lower. For the low types, the estimated moving cost is prohibitive
at roughly 7 (both costs are significantly different from zero). The fraction of high types
is estimated at .29 and the likelihood ratio procedure described above yields a p-value of
zero, easily rejecting the null that there is no unobserved heterogeneity.

The estimated effects of altruism on migration probabilities for this model are shown
in Table 2.6. These effects are nearly identical to those estimated for the first specification.
The average effects are between 4 and 6% (for generations one and two), with larger effects
for the more educated and more fertile. Across subpopulations, the effects from the model
with heterogeneity are larger, though not statistically significantly so. At between 13 and
15%, the average effects among the high types are substantially larger. The estimated
effects of altruism are, evidently, not sensitive to specification of the role that unobserved
heterogeneity plays in the utility function.

2.7.2 The altruism parameter

The value of λ ≈ .28 that I assume is on the low end of those used in the literature
on altruistic investment in children; Caponi (2011) assumes a value of about .31 while
Heckman and Raut (2013) estimate this parameter at about .44. In order to assess the sen-
sitivity of my parameter and effect estimates to the altruism parameter, I re-estimate the
model using a value of λ = .4, an increase of over 40%. Because the estimated effects are
similar under both specifications, I only estimate the model with pure location preference
heterogeneity under this assumption. The coefficient estimates are displayed in the last
two columns of Table 2.4. Regardless of whether permanent unobserved heterogeneity
is included in the model, the coefficient estimates are very similar to those obtained us-
ing λ ≈ .28. The exception to this pattern is that the estimated moving costs are lower
(and the estimated constant terms are higher). This occurs because some of the observed
migrations are undertaken only to unburden future generations of paying the costs of mi-
grating, and a higher altruism parameter implies a lower cost threshold at which parents
are willing to make this sacrifice.

The corresponding estimates of the effects of altruism are summarized in Table 2.7. Ul-
timately, assuming a higher altruism parameter causes a slight increase in the estimated
effects of altruism. When this larger value of λ is used, the average effect increases by only
.004 when heterogeneity is excluded and .001 when it is included. Within subpopulations,
the differences are similarly small. These estimates show that my results are locally in-
sensitive to the assumed level of intergenerational altruism (especially when allowing for
permanent unobserved heterogeneity).
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2.7.3 A stationary, infinite-horizon model

To underscore the role of time horizon assumptions and moving cost estimates in assess-
ing the impact of altruism on migration, I present estimates in Table 2.8 of a stationary,
infinite-horizon version of the model. Because, in this environment, moving costs cannot
be estimated, this specification does not include a moving cost term. In the specification
that excludes permanent unobserved heterogeneity, the estimated constant term is about
3, over twice its counterpart from the finite-horizon model summarized in Table 2.4. This
difference arises because the constant term in the stationary model absorbs both location
preferences and moving costs. Because I pool across generations to estimate the condi-
tional choice probabilities for this model, the estimated coefficient on grades is smaller
in absolute value, a reflection of the higher likelihood of migration among less-educated
members of older generations. Unlike the finite-horizon case, the estimated fertility co-
efficient is negative, an artifact of dynamic selection bias introduced by the omission of
a time trend in the location preference specification: the utility of living in the South is
increasing in fertility (compared to the national median) and decreasing over time, so that
successive generations of Southerners are simultaneously more fertile and more likely to
migrate. When permanent heterogeneity is included in the model, the results are much
the same. As expected, the constant term for the low types is much larger than when
heterogeneity is excluded. It is lower, however, than the estimate from the finite-horizon
model, presumably because using data on all generations to estimate the choice proba-
bilities used in the value function representation reduces the influence of right-censoring
among third generation observations. As in the finite-horizon model, the estimated coef-
ficients on education and fertility are larger when unobserved heterogeneity is accounted
for (although in this case the fertility coefficient remains negative, again a consequence of
the stationarity assumption). With the exception of the fertility coefficients, the estimates
from the stationary and finite-horizon models are broadly comparable.

The effects of altruism on migration depend on the moving costs, about which the
estimates in Table 2.8 provide no guidance. Instead, Table 2.9 shows the implied effects
of altruism when moving is costless. This hypothetical exercise illustrates the role of
moving costs and unobserved heterogeneity in determining the dynamics of migration.
In the model without unobserved heterogeneity, the estimated average effect of altruism
is -15%. When migration is both costless and terminal, altruism decreases the likelihood
of migrating because the only way to “invest” in future generations is to remain in the
South to hedge against the possibility that they will be poorly-matched to the North.
Including permanent unobserved heterogeneity substantially diminishes this effect by
making location matches more persistent over generations. When moving is costly, the
average effect of altruism combines this dynamic with the ability to migrate in order to
spare future generations the cost of doing so.



2.8 policy analysis : subsidized migration 95

2.8 policy analysis : subsidized migration

A comparison of the estimated effects of altruism presented in Section 2.6 with the hy-
pothetical effects under stationarity discussed in Section 2.7.3 reveals that moving costs
are a central determinant of the role that altruism plays in the migration decision process.
In this section, I study how a subsidy that offsets the cost of migration might affect wel-
fare and immigrant flows. This analysis is instructive for several reasons. In the context
of the Great Migration—and internal migration in general—a prolonged period of high
migration flows suggests a role for policy to reduce the inefficiency associated with geo-
graphical disequilibrium in the labor market. I also analyze the effects of a subsidy that
only offsets the cost of migration for future generations. As discussed in Section 2.2.1,
altruism can impact migration behavior by encouraging members of the current gener-
ation to migrate at their own detriment in order to make future generations better off,
a phenomenon I refer to as altruistic migration, or by preventing members of the cur-
rent generation from making location decisions on the basis of idiosyncratic preferences
that future generations are unlikely to share. When migrating terminates the dynamic
decision problem, a subsidy that eliminates moving costs for future generations can only
impact welfare and migration behavior by removing the incentive for altruistic migra-
tion. A comparison of the previously-discussed effects of altruism on migration to the
effects of such a subsidy on migration enables me to identify the importance of altruis-
tic migration in explaining the overall effect of intergenerational altruism on migration
behavior. In addition to being interesting in its own right, understanding the importance
of altruistic migration may also provide guidance to policymakers concerned about the
intergenerational ramifications of changes to migration policy.

Table 2.10 summarizes the gains in expected indirect dynastic and current utility ac-
cruing to Southern-born individuals from a subsidy that reduces the cost of migrating
to the North to zero. I calculate the welfare effects using the estimated parameters of the
location-preference heterogeneity specification (Table 2.4).18 The right panel displays the
simulated welfare effects using parameters estimated without including permanent unob-
served heterogeneity; the left displays effects after doing so. Within each panel, the first
and second rows show the subsidy-induced increases in dynastic, and respectively, flow
utility.19 Ignoring heterogeneity, the increase in flow utility accounts for 60% of the aver-

18 With Type-I Extreme Value errors, indirect dynastic utility can be calculated using EVg(x, τ) = −c + γ −
log pg(x, τ) where pg(x, τ) is the probability of migrating and γ ≈ .5772 is Euler’s constant, and indirect
flow utility can be calculated as

EUg(x, τ) = [1− pg(x, τ)]{(τ, x)′βτ + γ− log[1− pg(x, τ)]}+ pg(x, τ)[−c + γ− log pg(x, τ)].

These expressions use finite dependence and the property of the Type-I Extreme Value distribution that
E(εn|vn + εn > vs + εs) = γ− log p(n).

19 N.b.: these effects, which I calculate under the normalization that the utility of residing in the North is zero,
have no cardinal interpretation.
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age total gain to members of the first generation and over 70% of the gain to members of
the second (and, by construction, 100% of the gain for the third). In subpopulations with
high pre-subsidy migration probabilities (high education and low fertility), flow utility
accounts for a greater share of the total welfare gains due to the subsidy. This occurs
because children belonging to these subpopulation are likely to enjoy the benefits of re-
siding in the North (without incurring the moving cost) even absent the subsidy, which
therefore primarily benefits their parents.

As the left panel shows, these relationships persist when allowing for unobserved het-
erogeneity, with flow utility accounting for over 60% of the total average gain from the
subsidy for all generations and an even greater fraction among subpopulations already
more likely to migrate. However, including unobserved heterogeneity substantially de-
creases both the dynastic and flow utility gains due the subsidy, although it does so pro-
portionally, preserving the share of the total welfare increase accruing to flow utility. The
reason for this estimated decrease is that the subsidy only benefits those who prefer the
North to the South. Under the parameter estimates from the model without heterogeneity,
the typical Southerner has only a modest preference for living in the South, so remitting
the cost of moving results in substantial utility gains for a large number of migrants and
would-be migrants. In contrast, under the model with heterogeneity, two-thirds of the
Southern-born population (the low types) have such large tastes for the South that they
would never migrate, even if doing so were costless; this group receives no benefit from
subsidized migration. At the same time, the remaining third of Southerners (the high
types) have a high likelihood of migration even before the subsidy, placing them on a
relatively shallow portion of the distribution function that relates location preferences to
migration probabilities. Since expected indirect utility is convex and decreasing in the mi-
gration probability, accounting for unobserved heterogeneity also decreases the welfare
gain due to the subsidy for high types relative to the model that ignores it.

In order to decompose the current-utility gains induced by the subsidy, I also compute
the welfare effects of a notional policy under which moving costs are unchanged for the
current generation, but future generations can migrate at no cost.20 Because this policy
does not affect the current generation’s migration cost, the only way that the subsidy
can influence current utility is through its effect on the probability that members of the
current generation migrate in order to benefit future generations. Furthermore, because
this policy presents future generations with precisely the same incentives as the policy
that subsidizes all migrations, the differential effects of these two policies isolates the
contribution of altruistic migration to the impact of the subsidy to all generations on

20 That is, for each generation, I (i) calculate relative conditional valuation functions v̂g(x, τ) = (τ, x)′βτ +
c − [1 + (µg − 1) fg]λE[log p̃(xg+1, τ)|xg, τ] using future choice probabilities p̃g+1(x, τ) obtained under the
assumption that migration is costless, (ii) use these valuation functions to estimate current-generation choice
probabilities p̂g(x, τ) = [1 + exp(v̂g(x, τ))]−1 (under the assumption that the current generation does face
migration costs), and (iii) use these choice probabilities to calculate current-period expected utility according
to the expression given in footnote 18.
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current-generation welfare. The third columns of the left and right panels of Table 2.10

present the results of this decomposition. Considering first the results when heterogeneity
is ignored, it seems that altruistic migration does not contribute much to the welfare
effects of the subsidy. On average, offering future generations a subsidy only increases
flow utility by about 1% as much as subsidizing current and future migration. Including
unobserved heterogeneity increases this figure, but not by much; the average increases to
about 2%. As the left panel shows, the current-generation welfare gains from subsidizing
future migration accrue entirely to members of the high type—the only group with the
ability to forecast whether future generations will fare better in the North—among whom
flow utility can account for between 6 and 7% of the welfare increase from subsidizing
all migration. Reflecting the fact that they have more children upon whom to bestow the
benefits of migration, the contribution of altruistic migration to the current-utility effects
of the subsidy are largest among those with above-median fertility; in this population,
eliminating the incentive to altruistically migrate accounts for between 11 and 17% of
the current-generation welfare increase from subsidizing all generations’ moving costs.
Ultimately, the reason that the subsidy to future generations has such a small impact on
flow utility (and, as I show below, the probability of migration) is that the discounted
future benefit of migrating is simply not large enough relative to the cost of doing so to
induce much migration, regardless of whether unobserved heterogeneity is included.

Of course, migration policy is often designed to target the amount of migration and not
migrants’ welfare. To this end, I summarize in Table 2.11 the impact of these subsidies on
the probability of migrating. The left panel accounts for heterogeneity, the right does not;
in each panel, the first column shows the effect of subsidizing migration for all genera-
tions and the second shows the effect of subsidizing only future generations’ migration
costs. When heterogeneity is ignored, the apparent effects of the permanent subsidy on
the propensity to migrate are quite large, with the average probability increasing by be-
tween 38 and 56%. When these effects are calculated using parameter estimates that take
permanent unobservable heterogeneity into account, the mean effects are much smaller,
on the order of 9-12%. The left panel of the table shows that the effect of subsidizing migra-
tion for all generations is as high as 35% for high types, and that the subsidy has virtually
no effect for low types. The differences between these estimates highlight the impact of
ignoring unobserved heterogeneity. While models without heterogeneity approximate the
effect of altruism reasonably well, the inconsistent parameter estimates from these models
can perform poorly in other counterfactual exercises. Including unobserved heterogeneity
changes the simulated impacts of the subsidy to all generations more than the subsidy
to future generations because the former subsidy causes a much greater increase in the
relative utility of migrating. Since the probability of migrating is a nonlinear function of
the utility of doing so, for large utility increases, the resulting change in the probabil-
ity of migrating given “averaged” parameters is a worse approximation to the average
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change given the actual parameters. The average effect of subsidizing future generations’
migration costs is to decrease migration by about 5%, although the simulations that allow
for heterogeneity show that this average is driven almost entirely by high types, among
whom the subsidy decreases the probability of migrating by between 14 and 17%. As the
hypothetical effects of altruism when migration is costless (Table 2.9) show, parents who
are idiosyncratically well-suited to the North can also benefit their progeny by choosing
not to migrate, since future generations are unlikely to share their tastes for the North.
Since, when the North is an absorbing state, the incentive to avoid migrating on this ba-
sis remains, such parents are unaffected by a policy that only rebates future generations’
moving costs. At the same time, since this subsidy leaves the flow utility of migrating
unchanged, any effect of subsidizing the cost of moving for future generations must be
due to altruistic migration. The estimated effects of this policy change are very similar
to the estimated effects of intergenerational altruism on migration presented in Table 2.5,
implying that altruistic migration is overwhelmingly the primary channel through which
intergenerational altruism affects migration behavior.

2.9 identifying the unobserved type distribution

As the hypothesis tests discussed in Section 2.6 demonstrate, allowing for permanent un-
observed heterogeneity greatly increases the ability of empirical models to explain loca-
tion choices over time. Because unobserved heterogeneity appears to feature prominently
in the data-generating process, the question of how the distribution of this heterogeneity
is uncovered from variation in the data becomes important.

The distribution of intergenerational location sequences ld = (ld1, ld2, ld3) is shown in
Table 2.12 (after removing the small number of families with North-South migrations).
Only about 35% of families ever leave the South, a fraction that corresponds with esti-
mates of the proportion π of high types obtained from the empirical models presented
above (which range between .29 and .36). This correspondence suggests that the location
sequences are more influental than the other observables in identifying the distribution
of the unobserved types.

To explore the different roles played by the observables, I present in Table 2.12 regres-
sions of the estimated posterior probabilities q(τd = 1|xd, ld; θ̂) of being a high-migration-
probability type on family-level observable characteristics (I estimate these regressions
using probabilities obtained from both the location-preference and moving-cost hetero-
geneity specifications, although the results are similar for both). Unconditional on other
observables, the estimated probability of being a high type declines when when some
generations are more fertile and increases when they are more highly educated. These
unconditional relationships are intuitive, although they are quite weak, with small esti-
mated coefficients and low explanatory power (this is partially due to the misspecified
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linear functional form, which I use for simplicity).21 When the estimated probabilities are
regressed on a set of indicators for the location sequences ld, the R2 for the regressions
increases to about .88; these sequences are capable of explaining about 88% of the likeli-
hood that dynasties belong to either type, with the remaining variation explained by the
observable characteristics included in the empirical models. Predictably, the probability of
being a high type is decreasing in the number of generations the dynasty remains in the
South. When education and fertility are added to this regression, they are more weakly
related to the type probability than when considered unconditionally, with the coefficient
on education actually changing sign. This counterintuitive sign change occurs because,
although education is positively correlated with being of the high type, it also increases
the utility of living in the North. Thus, better-educated families who remain long in the
South are less likely to be high types (which explains why they do not migrate despite
their high education), as are better-educated families who leave for the North (because
their high education makes them more likely to migrate even if they are of the low type).

The high explanatory power of the location sequences reflects the relative magnitudes
of the coefficients on the observed covariates and unobserved types; although the observ-
able covariates influence location preferences, among low types this influence is domi-
nated by that of the permanent location-preference or moving cost components, making
them unlikely to migrate regardless of their covariates. Note that this does not imply that
unobserved heterogeneity does not affect the parameters estimated from models that ig-
nore it (the R2 from a regression of the estimated type probabilities on a set of indicators
for all generations’ observable states is about .4, suggesting a strong correlation between
the observed and unobserved preference components).22

2.10 conclusion

In order to provide direct evidence on the impact of intergenerational altruism on mi-
gration, I use data from the Great Migration to estimate a dynastic model of residential
choice, arguing that this migration episode can be viewed as a case study for migration
in general. I find that altruism makes the average Southerner between 4 and 6 percent
more likely to migrate. My estimates also imply that a large proportion of Southern dy-
nasties have overriding preferences for remaining in the South, making them unlikely
to migrate regardless of their concern for future generations; altruism has no impact on

21 The reported standard errors should be interpreted with care. Because they have not been adjusted to account
for the fact that the posterior probabilities are estimated, the only source of “uncertainty” in these regressions
is specification error.

22 In the limiting case where the covariates explained none of the variation in the type probabilities conditional
on the location sequences (i.e. if the location fixed effect for low types was infinite), the preference parameters
for the low types could not be identified (their migration probabilities would be exactly zero). Preferences for
the high types, and therefore the effects of altruism, could still be recovered by estimating the model (without
heterogeneity) on the sample of migrating families, weighting each family by its posterior probability of
belonging to the high type.
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members of these dynasties. In contrast, among those who would actually consider mi-
grating, the impact of altruism is between 12 and 16%. The evident effect of altruism on
migration depends crucially on the population over which the average is taken, with the
correct population depending on the question being asked. For example, policymakers
concerned about the response of migrant flows to a policy change that would make the
children of potential migrants better off might be more interested in the effect of altru-
ism among all members of a source country while social scientists seeking to understand
the determinants of migration behavior may only be interested in the impact of altruism
among those who might plausibly choose to migrate.

My estimates are robust several potential types of misspecification. Although, in a finite-
horizon setting, heterogeneity in pure location preferences is distinct from heterogeneity
in moving costs, I obtain similar estimates under either assumption. That parents exhibit
altruism towards future generations has been established by previous research, and my
effect estimates are locally insensitive to the assumed rate of intergenerational altruism.
While moving costs play an integral role in determining the importance of altruism in the
decision to migrate, it is difficult to disentangle these costs from pure location preferences
when return migration is rare. However, the influence of the failure of these assumptions
on the estimated impacts of altruism can be signed, in which case the estimates can be
interpreted as bounding the actual impact.

I simulate the effects of a hypothetical subsidy that eliminates the cost of migrating. In
addition to making future generations better off, such a subsidy increases direct utility
by making those better-suited for the North more likely to migrate and by obviating
the need for altruistic migration—migrations undertaken to increase future generations’
wellbeing to the detriment of the current generation. By comparing this policy to one that
subsidizes only future generations’ moving costs, I decompose the direct utility impact
of the original subsidy, finding that the role of altruistic migration is comparatively small.
I also simulate the effects of these policies on the propensity to migrate, finding that
altruistic migration, which decreases by about five percent under either subsidy, is the
primary channel through which intergenerational altruism impacts migration behavior.

2.a appendix tables

See Table 2.14 below.
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tables

Table 2.1: Descriptive statistics

Generation N Mean Median Standard deviation Min Max
Age 1 443 70.48 70 9.05 49 96

2 400 46.55 47 8.18 28 75

3 256 25.49 24.5 5.80 18 53

All 1099 51.29 51 19.42 18 96

Birth year 1 443 1909.40 1910 9.04 1883 1931

2 400 1933.18 1933 8.08 1906 1951

3 256 1954.19 1955 5.80 1927 1963

All 1099 1928.49 1929 19.33 1883 1963

Male 1 443 0.28 0 0.45 0 1

2 400 0.29 0 0.45 0 1

3 256 0.43 0 0.50 0 1

All 1099 0.32 0 0.47 0 1

South 1 443 0.89 1 0.32 0 1

2 400 0.82 1 0.38 0 1

3 256 0.88 1 0.32 0 1

All 1099 0.86 1 0.35 0 1

Grades 1 443 6.81 7 3.36 0 17

2 400 10.46 11 3.18 0 17

3 256 12.54 12 2.15 5 17

All 1099 9.47 10 3.83 0 17

Kids 1 443 6.33 6 3.97 0 23

2 400 4.77 4 3.02 0 18

3 256 1.11 1 1.36 0 7

All 1099 4.55 4 3.76 0 23
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Table 2.2: Migration probabilities

(1) (2) (3)
Male 0.0768 0.0894 0.101

(0.0208) (0.0346) (0.0349)
Education 0.126 0.193 0.222

(0.0278) (0.0875) (0.118)
Fertility 0.0760 0.0441 0.0387

(0.0171) (0.0274) (0.0273)
Male*Education -0.156

(0.189)
Education*Fertility 0.739

(0.373)
Male*Education*Fertility -0.944

(0.533)
Male*2nd gen. -0.0159 0.0846

(0.0498) (0.0594)
Male*3rd gen. -0.0213 0.0358

(0.0510) (0.0637)
Education*2nd gen. -0.000473 0.0210

(0.0985) (0.131)
Education*3rd gen. -0.125 -0.153

(0.0965) (0.135)
Fertility*2nd gen. 0.0810 0.142

(0.0398) (0.0427)
Fertility*3rd gen. 0.0235 0.0903

(0.0438) (0.0525)
Male*Education*2nd gen. 0.0135

(0.225)
Male*Education*3rd gen. 0.118

(0.220)
Male*Fertility*2nd gen. -0.271

(0.0797)
Male*Fertility*3rd gen. -0.232

(0.0949)
Education*Fertility*2nd gen. -0.863

(0.395)
Education*Fertility*3rd gen. -0.804

(0.387)
Male*Education*Fertility*2nd gen. 0.873

(0.583)
Male*Education*Fertility*3rd gen. 1.099

(0.563)
Observations 1,099 1,099 1,099

R-squared 0.078 0.088 0.114

Notes—Dependent variable is an indicator for migrating North. Coefficients estimated by
OLS.
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Table 2.3: Average transition matrices

Education in g+1

Education in g 1 2 3 4 5 6 7 8 9

1 0.005 0.143 0.115 0.171 0.156 0.191 0.173 0.030 0.015

(0.004) (0.058) (0.040) (0.043) (0.030) (0.033) (0.028) (0.011) (0.006)
2 0.006 0.065 0.069 0.146 0.169 0.231 0.243 0.046 0.025

(0.004) (0.022) (0.020) (0.029) (0.024) (0.027) (0.026) (0.012) (0.008)
3 0.005 0.025 0.038 0.111 0.167 0.250 0.303 0.063 0.037

(0.003) (0.008) (0.010) (0.017) (0.018) (0.023) (0.023) (0.012) (0.009)
4 0.004 0.009 0.021 0.078 0.157 0.252 0.347 0.080 0.052

(0.003) (0.004) (0.006) (0.010) (0.014) (0.018) (0.019) (0.012) (0.010)
5 0.003 0.003 0.011 0.052 0.145 0.245 0.377 0.096 0.069

(0.002) (0.002) (0.004) (0.008) (0.012) (0.015) (0.016) (0.011) (0.010)
6 0.002 0.001 0.006 0.034 0.133 0.232 0.392 0.112 0.089

(0.002) (0.001) (0.003) (0.007) (0.012) (0.015) (0.017) (0.012) (0.010)
7 0.002 0.000 0.003 0.021 0.122 0.216 0.402 0.125 0.109

(0.001) (0.000) (0.002) (0.006) (0.014) (0.018) (0.022) (0.015) (0.013)
8 0.001 0.000 0.002 0.013 0.111 0.199 0.396 0.140 0.137

(0.001) (0.000) (0.002) (0.005) (0.016) (0.022) (0.030) (0.021) (0.022)
9 0.001 0.000 0.001 0.008 0.101 0.183 0.385 0.154 0.168

(0.001) (0.000) (0.002) (0.004) (0.020) (0.027) (0.040) (0.031) (0.037)

(a) Education

Fertility in g+1

Fertility in g Low High
Low 0.674 0.326

(0.019) (0.019)
High 0.558 0.442

(0.025) (0.025)
(b) Fertility

Notes—Standard errors based on 100 nonparametric bootstrap replications.
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Table 2.4: Parameter estimates

Permanent unobserved het. λ = .4
No het. In preferences In moving costs No het. Preference het.

Constant 1.35 0.79 0.51 1.52 1.18

(1.00) (1.63) (1.57) (0.96) (1.49)
Constant (Type 2) 8.68 8.94

(2.64) (2.46)
Grades -0.61 -0.28 -0.12 -0.58 -0.26

(0.33) (0.58) (0.53) (0.33) (0.57)
Grades2

0.03 0.00 -0.02 0.03 0.00

(0.03) (0.06) (0.05) (0.03) (0.06)
Fertility 0.54 0.85 0.95 0.56 0.86

(0.30) (0.57) (0.60) (0.30) (0.58)
Male 0.08 0.22 0.11 0.08 0.22

(0.22) (0.42) (0.37) (0.22) (0.41)
Generation 0.05 -0.51 -0.56 0.01 -0.53

(0.16) (0.37) (0.38) (0.16) (0.36)
Moving cost 2.77 2.11 1.93 2.57 1.67

(0.59) (1.05) (1.17) (0.43) (0.77)
Moving cost (Type 2) 7.04

(2.06)
π 0.35 0.29 0.35

(0.04) (0.05) (0.04)

Wald 9138.29 6792.56 8801.49 6411.07 8984.02

Pr(Wald) 0.00 0.00 0.00 0.00 0.00

LR 78256.05 80533.06

Pr(LR) 0.00 0.00

Notes—Standard errors based on 250 nonparametric bootstrap replications. Wald statistic
is for the hypothesis that the observables are jointly insignificant. LR tests the model with
heterogeneity against the one without.
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Table 2.5: Migration probabilities (location preference heterogeneity)

With heterogeneity Without heterogeneity
Altruistic Selfish Diff. Altruistic Selfish Diff. Diff. in diff.

All, 1st gen. 0.112 0.069 0.043 0.122 0.086 0.036 0.007

(0.015) (0.027) (0.024) (0.015) (0.024) (0.020) (0.010)
All, 2nd gen. 0.195 0.140 0.055 0.161 0.123 0.038 0.017

(0.021) (0.025) (0.030) (0.018) (0.021) (0.027) (0.013)
All, 3rd gen. 0.197 0.197 0.000 0.131 0.131 0.000 0.000

(0.030) (0.030) (0.000) (0.019) (0.019) (0.000) (0.000)
All type 1, 1st gen. 0.318 0.196 0.122

(0.050) (0.079) (0.074)
All type 1, 2nd gen. 0.554 0.397 0.157

(0.084) (0.083) (0.091)
All type 1, 3rd gen. 0.559 0.559 0.000

(0.111) (0.111) (0.000)
All type 2, 1st gen. 0.000 0.000 -0.000

(0.001) (0.002) (0.001)
All type 2, 2nd gen. 0.000 0.000 -0.000

(0.005) (0.006) (0.002)
All type 2, 3rd gen. 0.001 0.001 0.000

(0.013) (0.013) (0.000)
≥12 years, 1st gen. 0.179 0.126 0.053 0.213 0.156 0.057 -0.004

(0.027) (0.036) (0.029) (0.031) (0.039) (0.030) (0.013)
≥12 years, 2nd gen. 0.223 0.166 0.056 0.191 0.147 0.044 0.012

(0.023) (0.026) (0.030) (0.021) (0.024) (0.031) (0.014)
≥12 years, 3rd gen. 0.202 0.202 0.000 0.135 0.135 0.000 0.000

(0.030) (0.030) (0.000) (0.019) (0.019) (0.000) (0.000)
<12 years, 1st gen. 0.094 0.054 0.040 0.098 0.068 0.030 0.010

(0.015) (0.026) (0.023) (0.014) (0.021) (0.018) (0.010)
<12 years, 2nd gen. 0.140 0.087 0.052 0.101 0.076 0.025 0.027

(0.026) (0.029) (0.030) (0.017) (0.018) (0.021) (0.013)
<12 years, 3rd gen. 0.108 0.108 0.000 0.065 0.065 0.000 0.000

(0.045) (0.045) (0.000) (0.020) (0.020) (0.000) (0.000)
High fertility, 1st gen. 0.100 0.040 0.060 0.105 0.057 0.048 0.012

(0.018) (0.031) (0.033) (0.016) (0.025) (0.027) (0.016)
High fertility, 2nd gen. 0.175 0.092 0.082 0.133 0.084 0.049 0.033

(0.024) (0.038) (0.044) (0.022) (0.027) (0.036) (0.019)
High fertility, 3rd gen. 0.161 0.161 0.000 0.100 0.100 0.000 0.000

(0.039) (0.039) (0.000) (0.025) (0.025) (0.000) (0.000)
Low fertility, 1st gen. 0.122 0.100 0.022 0.136 0.116 0.020 0.002

(0.019) (0.024) (0.013) (0.020) (0.023) (0.011) (0.004)
Low fertility, 2nd gen. 0.210 0.186 0.024 0.182 0.161 0.021 0.003

(0.023) (0.022) (0.013) (0.021) (0.018) (0.015) (0.007)
Low fertility, 3rd gen. 0.237 0.237 0.000 0.165 0.165 0.000 0.000

(0.034) (0.034) (0.000) (0.023) (0.023) (0.000) (0.000)

Notes—Standard errors based on 250 nonparametric bootstrap replications.
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Table 2.6: Migration probabilities (moving cost heterogeneity)

With heterogeneity Without heterogeneity
Altruistic Selfish Diff. Altruistic Selfish Diff. Diff. in diff.

All, 1st gen. 0.112 0.070 0.042 0.122 0.086 0.036 0.006

(0.015) (0.028) (0.026) (0.015) (0.024) (0.020) (0.022)
All, 2nd gen. 0.198 0.143 0.055 0.161 0.123 0.038 0.017

(0.021) (0.026) (0.030) (0.018) (0.021) (0.027) (0.018)
All, 3rd gen. 0.204 0.204 0.000 0.131 0.131 0.000 0.000

(0.029) (0.029) (0.000) (0.019) (0.019) (0.000) (0.000)
All type 1, 1st gen. 0.359 0.233 0.126

(0.058) (0.113) (0.088)
All type 1, 2nd gen. 0.622 0.469 0.153

(0.085) (0.114) (0.099)
All type 1, 3rd gen. 0.656 0.656 0.000

(0.120) (0.120) (0.000)
All type 2, 1st gen. 0.009 0.002 0.007

(0.009) (0.004) (0.006)
All type 2, 2nd gen. 0.022 0.007 0.015

(0.019) (0.008) (0.012)
All type 2, 3rd gen. 0.016 0.016 0.000

(0.016) (0.016) (0.000)
≥12 years, 1st gen. 0.184 0.131 0.053 0.213 0.156 0.057 -0.004

(0.027) (0.035) (0.030) (0.031) (0.039) (0.030) (0.019)
≥12 years, 2nd gen. 0.229 0.171 0.057 0.191 0.147 0.044 0.013

(0.023) (0.026) (0.030) (0.021) (0.024) (0.031) (0.018)
≥12 years, 3rd gen. 0.210 0.210 0.000 0.135 0.135 0.000 0.000

(0.029) (0.029) (0.000) (0.019) (0.019) (0.000) (0.000)
<12 years, 1st gen. 0.093 0.054 0.039 0.098 0.068 0.030 0.009

(0.014) (0.028) (0.025) (0.014) (0.021) (0.018) (0.023)
<12 years, 2nd gen. 0.139 0.088 0.051 0.101 0.076 0.025 0.025

(0.026) (0.031) (0.031) (0.017) (0.018) (0.021) (0.022)
<12 years, 3rd gen. 0.106 0.106 0.000 0.065 0.065 0.000 0.000

(0.046) (0.046) (0.000) (0.020) (0.020) (0.000) (0.000)
High fertility, 1st gen. 0.097 0.038 0.059 0.105 0.057 0.048 0.011

(0.017) (0.034) (0.036) (0.016) (0.025) (0.027) (0.032)
High fertility, 2nd gen. 0.176 0.094 0.083 0.133 0.084 0.049 0.033

(0.025) (0.041) (0.045) (0.022) (0.027) (0.036) (0.026)
High fertility, 3rd gen. 0.168 0.168 0.000 0.100 0.100 0.000 0.000

(0.039) (0.039) (0.000) (0.025) (0.025) (0.000) (0.000)
Low fertility, 1st gen. 0.123 0.102 0.021 0.136 0.116 0.020 0.001

(0.019) (0.024) (0.013) (0.020) (0.023) (0.011) (0.009)
Low fertility, 2nd gen. 0.215 0.191 0.024 0.182 0.161 0.021 0.003

(0.024) (0.021) (0.013) (0.021) (0.018) (0.015) (0.009)
Low fertility, 3rd gen. 0.244 0.244 0.000 0.165 0.165 0.000 0.000

(0.030) (0.030) (0.000) (0.023) (0.023) (0.000) (0.000)

Notes—Standard errors based on 250 nonparametric bootstrap replications.
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Table 2.7: Migration probabilities (λ = .4, location preference heterogeneity)

With heterogeneity Without heterogeneity
Altruistic Selfish Diff. Altruistic Selfish Diff. Diff. in diff.

All, 1st gen. 0.112 0.068 0.044 0.123 0.083 0.040 0.004

(0.015) (0.028) (0.025) (0.015) (0.023) (0.020) (0.011)
All, 2nd gen. 0.195 0.139 0.056 0.160 0.121 0.039 0.016

(0.021) (0.026) (0.030) (0.018) (0.021) (0.027) (0.014)
All, 3rd gen. 0.197 0.197 0.000 0.132 0.132 0.000 0.000

(0.030) (0.030) (0.000) (0.019) (0.019) (0.000) (0.000)
All type 1, 1st gen. 0.319 0.194 0.124

(0.048) (0.082) (0.078)
All type 1, 2nd gen. 0.554 0.395 0.159

(0.083) (0.085) (0.092)
All type 1, 3rd gen. 0.559 0.559 0.000

(0.110) (0.110) (0.000)
All type 2, 1st gen. 0.000 0.000 -0.000

(0.001) (0.002) (0.001)
All type 2, 2nd gen. 0.000 0.000 -0.000

(0.003) (0.005) (0.003)
All type 2, 3rd gen. 0.001 0.001 0.000

(0.012) (0.012) (0.000)
≥12 years, 1st gen. 0.179 0.124 0.055 0.213 0.148 0.065 -0.010

(0.027) (0.036) (0.031) (0.032) (0.037) (0.030) (0.015)
≥12 years, 2nd gen. 0.223 0.165 0.058 0.190 0.143 0.046 0.011

(0.023) (0.027) (0.031) (0.021) (0.024) (0.030) (0.015)
≥12 years, 3rd gen. 0.202 0.202 0.000 0.136 0.136 0.000 0.000

(0.030) (0.030) (0.000) (0.019) (0.019) (0.000) (0.000)
<12 years, 1st gen. 0.094 0.054 0.041 0.099 0.066 0.033 0.008

(0.015) (0.027) (0.024) (0.014) (0.020) (0.018) (0.011)
<12 years, 2nd gen. 0.139 0.087 0.052 0.101 0.076 0.025 0.027

(0.026) (0.030) (0.030) (0.018) (0.018) (0.021) (0.014)
<12 years, 3rd gen. 0.109 0.109 0.000 0.066 0.066 0.000 0.000

(0.045) (0.045) (0.000) (0.020) (0.020) (0.000) (0.000)
High fertility, 1st gen. 0.100 0.039 0.061 0.106 0.054 0.052 0.009

(0.018) (0.033) (0.035) (0.017) (0.024) (0.027) (0.017)
High fertility, 2nd gen. 0.174 0.092 0.083 0.132 0.081 0.050 0.032

(0.024) (0.039) (0.044) (0.022) (0.026) (0.036) (0.020)
High fertility, 3rd gen. 0.161 0.161 0.000 0.100 0.100 0.000 0.000

(0.039) (0.039) (0.000) (0.025) (0.025) (0.000) (0.000)
Low fertility, 1st gen. 0.122 0.099 0.022 0.135 0.113 0.022 0.000

(0.019) (0.024) (0.013) (0.020) (0.022) (0.011) (0.005)
Low fertility, 2nd gen. 0.210 0.186 0.025 0.181 0.159 0.022 0.002

(0.023) (0.022) (0.014) (0.021) (0.018) (0.015) (0.008)
Low fertility, 3rd gen. 0.237 0.237 0.000 0.167 0.167 0.000 0.000

(0.033) (0.033) (0.000) (0.022) (0.022) (0.000) (0.000)

Notes—Standard errors based on 250 nonparametric bootstrap replications.
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Table 2.8: Stationary specification estimates

With heterogeneity Without heterogeneity
Constant 1.68 2.99

(1.33) (0.88)
Constant (Type 2) 6.68

(1.48)
Grades -0.27 -0.49

(0.51) (0.32)
Grades2 -0.01 0.03

(0.05) (0.03)
Fertility -0.15 -0.61

(0.29) (0.18)
Male 0.14 0.07

(0.36) (0.21)
π 0.36

(0.04)

Wald 7968.29 10923.55

Pr(Wald) 0.00 0.00

Notes—Standard errors based on 250 nonparametric bootstrap replications. Wald statistic
is for the hypothesis that the observables are jointly insignificant.



112 intergenerational altruism in the migration decision calculus

Table 2.9: Migration probabilities (stationary)

With het. Without het.
Altruistic Selfish Diff. Altruistic Selfish Diff. Diff. in diff.

All 0.161 0.195 -0.034 0.138 0.290 -0.152 0.118

(0.161) (0.195) (-0.034) (0.012) (0.013) (0.008) (0.020)
All, type 1 0.452 0.530 -0.078

(0.452) (0.530) (-0.078)
All, type 2 0.001 0.009 -0.009

(0.001) (0.009) (-0.009)
≥12 years 0.207 0.241 -0.033 0.174 0.341 -0.166 0.133

(0.207) (0.241) (-0.033) (0.017) (0.016) (0.007) (0.017)
<12 years 0.105 0.139 -0.034 0.095 0.229 -0.134 0.100

(0.105) (0.139) (-0.034) (0.013) (0.023) (0.013) (0.024)
High fertility 0.144 0.194 -0.049 0.113 0.347 -0.234 0.185

(0.144) (0.194) (-0.049) (0.015) (0.027) (0.016) (0.033)
Low fertility 0.175 0.188 -0.013 0.159 0.212 -0.052 0.039

(0.175) (0.188) (-0.013) (0.017) (0.018) (0.004) (0.008)

Notes—Standard errors based on 250 nonparametric bootstrap replications.
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Table 2.10: Welfare gains due to subsidized migration

With heterogeneity Without heterogeneity
Dynastic Flow Flow (future subsidy) Dynastic Flow Flow (future subsidy)

All, 1st gen. 0.517 0.312 0.021 1.293 0.780 0.008

All, 2nd gen. 0.604 0.484 0.024 1.377 1.008 0.006

All, 3rd gen. 0.565 0.565 0.000 1.064 1.064 0.000

All type 1, 1st gen. 1.467 0.888 0.059

All type 1, 2nd gen. 1.715 1.375 0.069

All type 1, 3rd gen. 1.600 1.600 0.000

All type 2, 1st gen. 0.001 0.000 0.000

All type 2, 2nd gen. 0.002 0.001 0.000

All type 2, 3rd gen. 0.004 0.004 0.000

≥12 years, 1st gen. 0.586 0.465 0.023 1.574 1.197 0.013

≥12 years, 2nd gen. 0.634 0.539 0.024 1.485 1.147 0.008

≥12 years, 3rd gen. 0.575 0.575 0.000 1.088 1.088 0.000

<12 years, 1st gen. 0.498 0.272 0.020 1.219 0.669 0.006

<12 years, 2nd gen. 0.545 0.375 0.024 1.161 0.733 0.004

<12 years, 3rd gen. 0.411 0.411 0.000 0.678 0.678 0.000

High fertility, 1st gen. 0.574 0.241 0.039 1.423 0.590 0.014

High fertility, 2nd gen. 0.610 0.411 0.046 1.387 0.795 0.011

High fertility, 3rd gen. 0.511 0.511 0.000 0.909 0.909 0.000

Low fertility, 1st gen. 0.471 0.368 0.006 1.192 0.928 0.003

Low fertility, 2nd gen. 0.600 0.539 0.007 1.369 1.170 0.003

Low fertility, 3rd gen. 0.625 0.625 0.000 1.237 1.237 0.000

Notes—“Dynastic” refers to the gain in dynastic indirect utility when the moving cost
is subsidized, “Flow” refers to the gain in current-period utility under the subsidy, and
“Flow (future subsidy)” refers to the gain in current-period utility when the subsidy is
only applied to future generations.
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Table 2.11: Migration probability differences due to subsidized migration

With heterogeneity Without heterogeneity
Subsidy Future subsidy Subsidy Future subsidy

All, 1st gen. 0.095 -0.047 0.375 -0.050

All, 2nd gen. 0.088 -0.059 0.458 -0.053

All, 3rd gen. 0.124 0.000 0.561 0.000

All type 1, 1st gen. 0.271 -0.135

All type 1, 2nd gen. 0.249 -0.167

All type 1, 3rd gen. 0.345 0.000

All type 2, 1st gen. 0.000 0.000

All type 2, 2nd gen. 0.000 0.000

All type 2, 3rd gen. 0.004 0.000

≥12 years, 1st gen. 0.100 -0.058 0.489 -0.076

≥12 years, 2nd gen. 0.080 -0.060 0.494 -0.061

≥12 years, 3rd gen. 0.121 0.000 0.568 0.000

<12 years, 1st gen. 0.094 -0.045 0.345 -0.043

<12 years, 2nd gen. 0.102 -0.056 0.386 -0.038

<12 years, 3rd gen. 0.168 0.000 0.459 0.000

High fertility, 1st gen. 0.056 -0.066 0.264 -0.066

High fertility, 2nd gen. 0.073 -0.088 0.369 -0.070

High fertility, 3rd gen. 0.146 0.000 0.535 0.000

Low fertility, 1st gen. 0.127 -0.033 0.462 -0.038

Low fertility, 2nd gen. 0.099 -0.037 0.526 -0.041

Low fertility, 3rd gen. 0.099 0.000 0.591 0.000

Notes—”Subsidy” refers to the change in the probability of migrating when all gener-
ations’ moving costs are subsidized. “Future subsidy” refers to this change when only
future generations’ moving costs are subsidized.
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Table 2.12: Location sequences

Number Fraction
l = (n, n, n) 41 0.096

l = (s, n, n) 65 0.152

l = (s, s, n) 44 0.103

l = (s, s, s) 277 0.649

Total 427 1

Table 2.13: Determinants of q(τ|l, x)

Preference heterogeneity Moving cost heterogeneity
Constant 0.07 0.35 0.02 0.3

(0.13) (0.03) (0.12) (0.03)
Grades (gen. 1) 0.01 -0.01 0.01 -0.01

(0.01) (0.01) (0.01) (0.01)
Grades (gen. 2) 0.02 -0.02 0.02 -0.02

(0.01) (0.01) (0.01) (0.01)
Grades (gen. 3) 0.01 0 0.01 0

(0.02) (0.01) (0.02) -(0.01)
Fertility (gen. 1) -0.05 -0.01 (0.06) 0

(0.04) (0.02) (0.04) (0.02)
Fertility (gen. 2) -0.02 -0.01 -0.02 0

(0.04) (0.02) (0.04) (0.02)
Fertility (gen. 3) 0.02 -0.01 0.02 -0.01

(0.04) (0.02) (0.04) (0.02)
l = (n, n, n) 1 1.2 0.96 1.15

(0.03) (0.07) (0.03) (0.07)
l = (s, n, n) 0.84 1.03 0.76 0.93

(0.02) (0.07) (0.02) (0.06)
l = (s, s, n) 0.43 0.61 0.34 0.5

(0.03) (0.07) (0.03) (0.06)
l = (s, s, s) 0.09 0.26 0.05 0.21

(0.01) (0.06) (0.01) (0.06)

R2
0.01 0.01 0.88 0.88 0.02 0.01 0.87 0.88

N 427 427 427 427 427 427 427 427
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3
R O Y- M O D E L B O U N D S O N G R O U P D I F F E R E N C E S I N T R E AT M E N T
E F F E C T S : T H E O RY W I T H A N A P P L I C AT I O N T O T H E G R E AT
M I G R AT I O N

3.1 introduction

In this paper, I study the conditions under which information about the causal effect
of a treatment can be identified by applying difference-in-differences regression to two
groups that both self-select into treatment. I show that, in many cases when selection
and counterfactual outcomes can be described by a Roy model, differences-in-differences
provide a lower bound on the difference in the average effect of the treatment on the
treated between the group that is more likely to receive the treatment and the group that
is less likely to do so. This group difference in treatment effects is particularly informa-
tive when interest centers on treatment effect heterogeneity or when it is reasonable to
assume that the average treatment on the treated is nonzero for both groups, in which
case differences-in-differences also provide a lower bound on the treatment effect for the
group with the higher treatment rate. My identification results apply under quite general
selection and outcome processes and do not require an instrument for treatment status.
Since they provide a framework for interpreting treated-untreated outcome differences in
terms of the causal effects of treatment, they may also be useful when the data contain no
credibly exogenous sources of variation in the probability of receiving treatment.

The logic of the identification argument is straightforward. Suppose that, within each
of two groups, the treated population is positively selected in the sense that those for
whom the effect of treatment is greater are more likely to enroll in treatment. In this case,
the within-group average difference between the outcomes of the treated and untreated
populations represents a combination of the effect of the treatment on the treated and a
bias term that reflects positive selection. When one group has a lower probability of being
treated—that is, treatment is more selective—we might expect the selection bias compo-
nent to be larger for this group. In this case, subtracting the average treated-untreated
difference for the low-probability group from that for the high-probability group over-
controls for the selection bias of the high-probability group. Consequently, the group dif-
ference in average treated-untreated differences represents a lower bound on the group
difference in the average effect of the treatment on the treated. In other words, although
treatment is not randomly assigned, the low-probability group may be viewed as a quasi-
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control group whose outcomes can be used to partially identify the causal effect of the
treatment on the high-probability group.

The formal identification results that I present below clarify the conditions under which
this informal argument is correct. Identification is not assumption-free. Rather, the iden-
tification procedures that I develop require restrictions on group-specific treatment rates
and the processes that determine treatment and counterfactual outcomes. Only the former
is directly verifiable. Of the second set of restrictions, the most stringent requirement is
that the selection and outcomes processes follow a generalized Roy model under which
those for whom the treatment effect is greater are more likely to enroll. Because it im-
poses a rational decision-making structure on the data, this requirement is strong. At the
same time, because this structure underlies many social-scientific theories and economet-
ric methodologies, it is not unusually strong. More importantly, this same rational-choice
framework is almost always the source of concerns that treated-untreated comparisons
are contaminated with selection bias. If it is unreasonable to presume that the data were
generated by a Roy model, selection bias is unlikely to be a problem.

As usual, functional form assumptions can assist in identification. In the simplest of
the models that I develop, treated and untreated outcomes are linear functions of an un-
observed random variable that also influences selection into treatment, imposing further
structure on the data-generating process. Similar assumptions are invoked in procedures
for estimating truncated regressions, switching regressions, treatment effects and sample
selection models that are implemented in popular statistical packages such as Stata and
R (Toomet and Henningsen, 2008; StataCorp, 2013). While these estimators typically as-
sume that the unobservable determinants of selection and counterfactual outcomes are
normally distributed, my identification results hold under much weaker distributional
assumptions that are met by many distributions frequently used in empirical models
of discrete choice, sample selection, duration and reliability. I also present identification
results that hold under more general forms for the functions that determine outcomes
and enrollment. This additional generality requires further restrictions on the processes
that determine selection and counterfactual outcomes. Because these extra restrictions are
unlikely to be acceptable on purely theoretical grounds, I present a falsification test for
whether they are consistent with the data, although the test is weak in that it may fail to
reject when the conditions are not met.

The standard methods for estimating treatment effects when unobservable factors in-
fluence both treatment and outcomes are instrumental variables and switching regression
estimators based on Heckman’s (1979) sample-selection correction (see, e.g., Wooldridge,
2002). As previously discussed, my identification results hold under weaker distributional
assumptions, or more flexible functional forms, than the canonical switching regression
model. Moreover, both instrumental variables methods and switching regression estima-
tors require an exclusion restriction (a variable that appears in the selection equation but
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not the outcome equations) in order to identify treatment effects.1 Because my identifi-
cation results exploit between-group variation in treatment rates to bound (group differ-
ences in) treatment effects, they do not require an exclusion restriction.

What affords my results this flexibility is that they only partially recover treatment ef-
fects. Rather than point-identifying the average effect of treatment on the treated, differences-
in-differences identifies a lower bound on the group difference in this average. In many
treatment effect estimation contexts, this is not the primary object of interest. However,
there are several settings in which this estimand provides useful information. The first,
and most salient, of these is when heterogeneity in treatment effects is of direct interest.
In Section 3.4, for example, I use the identification results to interpret wage differentials
between the Northern and Southern US in terms of the causal impact of migration on
wages. Because Northward migration is thought to have played a crucial role in black rel-
ative economic progress during the 20th century, the black-white difference in the effect
of migration is arguably more relevant than the causal effect for either group alone. Other
examples abound: an educator may be interested in knowing whether a new program
helps struggling students catch up to their peers, a clinician may be interested in gender
or racial differences in the efficacy of a new drug, etc. Second, when it is reasonable to
assume that the treatment effect is nonnegative for both groups, a lower bound on the
group difference in treatment effects is also a lower bound on the average treatment ef-
fect itself for the group with the higher treatment rate. Third, because group differences
in treatment effects are identified under relatively weak conditions, partial information
about the causal effect of the treatment may be preferable to treatment effect estimates
that are point-identified from invalid instruments. Fourth, information about group differ-
ences in treatment effects obtained from differences-in-differences may be cross-validated
against the results of other treatment effect estimators.

This paper builds on a number of seminal theoretical and methodological results on
sample-selection problems. Roy’s “Some Thoughts on the Distribution of Earnings” was
published in 1951 and has provided social scientists with a framework for thinking about
self-selection ever since. Tobin (1958) demonstrated the effects of truncation on estimates
of models with linear errors and developed an estimation procedure to circumvent the
resulting bias. Heckman (1979) showed similar biases arising due to sample-selection can
be viewed as specification error and accounted for using his celebrated sample-selection
correction. Heckman (1976) and Amemiya (1984) showed that many sample-selection esti-

1 It is possible to estimate the switching regression model without an exclusion restriction. Since identification
in this case is achieved purely through the nonlinearity of the inverse Mills ratio, however, the credibility
(and precision) of the resulting estimates may be low. Olsen (1980) presents an alternative to Heckman’s
selection correction in which the errors in the selection equation are uniformly distributed, in which case
the model cannot be estimated without an exclusion restriction. Although my identification results also rely
on distributional assumptions, since only bounds on group differences in treatment effects can be recovered,
identification is robust to very general misspecification of the distributions of the random determinants of
selection and outcomes.
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mators can be viewed as extensions of the Tobin’s (1958) truncated regression procedure.
My results draw on these authors’ methodological contributions and can be applied to
sample-selection models similar to theirs. Furthermore, although my results are novel
and my emphasis is on treatment effects, my identification approach is also conceptually
related to work by Borjas (1988) and Heckman and Honoré (1990), in which Roy mod-
els of self-selection (into immigration and occupations, respectively) are used to draw
inferences about the underlying models whose equilibria generate observed descriptive
relationships.

In Section 3.2, I present identification results for a simple model, similar to those used
in standard sample-selection and truncated regression estimators, in which selection is
determined entirely by the realization of an unobserved type that is also linearly related
to counterfactual outcomes. In Section 3.3, I extend these results to allow for the pos-
sibilities that other random factors influence the enrollment decision and that selection
and outcomes depend nonlinearly on the unobserved type. In Section 3.4, I apply the
identification results to interpret wage differentials between the Northern and Southern
US in terms of the black-white difference in the causal effect of Northward migration on
migrants’ wages. I summarize and conclude in Section 3.5.

3.2 pure selection

I begin by analyzing the impacts of treatment in the case where the treatment effect is a
linear function of an unobserved, normally distributed random variable, a setup similar
to those studied by Roy (1951), Borjas (1988) and Heckman and Honoré (1990). In the
interest of clarity, and to avoid using nonstandard notation, I present the model and
theoretical results in the context of the empirical application given at the end of this
paper: the identification of black-white differences in the causal effect of treatment. The
extension of the results to other kinds of group differences is straightforward.

Assume that members of group r ∈ {b, w} are characterized by their unobserved type
a with corresponding distribution and density functions F(a) and f (a) that do not de-
pend on r.2 Individuals may choose to receive treatment (that is, make the enrollment
choice d = 1) or remain untreated (d = 0). Counterfactual outcomes in the treated and
untreated conditions are given by ydr = γdra, with γdr ≥ 0 for r ∈ {b, w} and d ∈ {0, 1}.

2 This implies that any group differences in the average treatment effect and the probability of treatment arise
because of group differences in the utility of receiving treatment. If one group’s type distribution is a shift-
and-spread of the other’s, the identification arguments that follow still be apply as long as the treatment
effect model presented below is still applicable when viewed as a function of the standardized type variable.
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Reflecting the hypothesis of positive selection into treatment, I assume that the selection
(equivalently, enrollment) decision rule takes the form

d(a, r) =

1 if a ≥ âr

0 otherwise
.

This decision rule subsumes the standard Roy-model selection process in which individ-
uals select into treatment solely on the basis of the counterfactual outcomes ydr. It also al-
lows for the possibility that individuals receive utility from being treated that is unrelated
to the outcome variable, as long as this utility is increasing in the unobserved type a. Note
that if the treatment and selection equations also depend on observable characteristics x,
the argument that follows can be repeated within strata of these variables. In this case,
the decision thresholds become ârx and the outcome equations become ydr(x) = γdrxa.

Unlike traditional difference-in-differences designs, since blacks and whites both self-
select into treatment, there is no formal control group. However, if there are group differ-
ences in the probability of being treated, information about the group difference in aver-
age treatment effects may still be identified. In particular, suppose that blacks are more
likely than whites to be treated, so that âb < âw. In this case, whites can be viewed as a
quasi-control group. Under conditions outlined below, treated-untreated comparisons for
whites may be used to bound the degree to which treated-untreated comparisons among
blacks are contaminated by selection bias.

Given the above selection and treatment models, and letting y = dy1 + (1− d)y0 denote
the observed outcome, the group-r mean treated-untreated difference can be written

E(y|r, d = 1)− E(y|r, d = 0) = γ1rE(a|a ≥ âr)− γ0rE(a|a < âr)

= (γ1r − γ0r)E(a|a ≥ âr) + γ0r [E(a|a ≥ âr)− E(a|a < âr)] . (3.1)

The second equality in (3.1) decomposes the mean difference in outcomes between treated
and untreated members of group r into the average causal effect of treatment on the
outcomes of the treated, (γ1r − γ0r)E(a|a ≥ âr), and the selection bias, γ0r[E(a|a ≥
âr) − E(a|a < âr)] that arises because the average type is higher in the treated popula-
tion. Similarly, the black-white difference in average treated-untreated differences can be
written

[E(y|b, d = 1)− E(y|b, d = 0)]− [E(y|w, d = 1)− E(y|w, d = 0)] =

{(γ1b − γ0b) E(a|a ≥ âb)− (γ1w − γ0w) E(a|a ≥ âw)}
+ {γ0b [E(a|a ≥ âb)− E(a|a < âb)]− γ0w [E(a|a ≥ âw)− E(a|a < âw)]} . (3.2)
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In (3.2), the difference-in-differences is expressed as the sum of the black-white differences
in treatment effects and selection biases. Therefore, a difference-in-differences estimator
(i.e., the left-hand size of (3.2)) will identify a lower bound on the black-white difference
(γ1b − γ0b)E(a|a ≥ âb)− (γ1w − γ0w)E(a|a ≥ âw) in treatment effects if

γ0b

γ0w
<

E(a|a ≥ âw)− E(a|a < âw)

E(a|a ≥ âb)− E(a|a < âb)
. (3.3)

As long as γ0b ≤ γ0w, we can replace the left-hand side of condition (3.3) with unity.
What this simplification requires is that, when untreated, a black individual’s outcome
will be no better than that of a white individual of the same type. Since, by assumption,
the black treatment rate exceeds the white treatment rate, this assumption is natural. For
example, in the context of the effect of South-North migration on wages, that blacks face
greater discrimination (and consequently lower wages) in the South is mutually consistent
with the observation that they are also more likely to migrate to the North. Given this
simplification, a sufficient condition for (3.3) is that

[E(a|a ≥ â)− E(a|a < â)]′ ≥ 0 whenever â ≥ âb. (3.4)

Consider the effect of an increase in the enrollment threshold âr. Due to this change,
an individual at the margin of the enrollment decision switches from the treated state to
the untreated state. Since, were this individual to enroll, he would have the lowest type
in the treated group, increasing the threshold therefore increases the type of the mean
treated unit. Because this marginal individual is now the untreated unit with the highest
type, increasing the threshold also increases the type of the mean untreated unit. What
(3.4) ensures is that the former effect dominates, so that subtracting the mean treated-
untreated outcome difference for whites from that for blacks effectively over-controls for
selection bias among blacks, resulting in a lower bound on the black-white difference in
the average effect of treatment on the treated. The following result establishes that, if the
type distribution is normal, this dominance is automatic if the probability of treatment is
less than 1/2.

Proposition 3.1. Suppose that a is normally distributed. Then [E(a|a ≥ â)− E(a|a < â)]′ ≥ 0
when the treatment probability is less than 1/2.

Proof. A standard result on truncated normal variables is that (supposing without loss
of generality that a is standard normal) E(a|a ≥ â) = λ(a) = φ(a)/Φ(−a) and E(a|a <

â) = −λ(−a) = −φ(a)/Φ(a), where λ(a), φ(a) and Φ(a) are the inverse Mill’s ratio, and
the standard normal density and distribution functions, respectively (see, e.g., Heckman,
1979; Wooldridge, 2002; Greene, 2011). Thus, E(a|a ≥ â)− E(a|a < â) = λ(a) + λ(−a). By
inspection, this function has a critical point at zero. Furthermore, Heckman and Honoré
(1990) showed that λ(a) is strictly convex, so λ(a) + λ(−a) is strictly convex as well,
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implying that the function reaches its unique minimum at zero and is increasing for all
â > 0.

The implication of Proposition 3.1 is that, when both groups receive treatment with
probability less than 1/2, the selection bias component of the treated-untreated difference
is increasing in the enrollment threshold for both groups, so subtracting this difference for
whites from that for blacks bounds the group difference in treatment effects from below.
Defining the group-r proportional treatment effect as y1r/y0r = γ1r/γ0r, noting that the
difference-in-differences for log outcomes is

[E(log y1b|a ≥ âb)− E(log y0b|a < âb)]− [E(log y1r|a ≥ âw)− E(log y0r|a < âw)]

= log
(

γ1b/γ0b

γ1w/γ0w

)
+ [E(log a|a ≥ âb)− E(log a|a < âb)]

− [E(log a|a ≥ âw)− E(log a|a < âw)],

and recalling that, when a ∼ LN(µ, σ2) the median of a is eµ, the following result is
immediate:

Corollary 3.1. Suppose that log a is normally distributed. Then differences-in-differences iden-
tifies a lower bound on the proportional black-white difference in proportional treatment effects
whenever both groups are treated with probability less than 1/2.

Although I show below that this bounding result holds under many type distributions,
the normality assumption is common in sample selection models and natural in cases
where the empiricist has no a priori guidance about the distribution of the unobserv-
ables. Moreover, the actual type distribution only has to resemble the normal distribution
insofar as it inherits condition (3.4) in order for differences-in-differences to bound the
group difference in treatment effects from below. This set identification approach is thus
more robust to misspecification of the skill distribution than Tobit-type estimators that
attempt to point-identify the parameters of an outcome equation, which, as Arabmazar
and Schmidt (1982) illustrate, can suffer from considerable inconsistency when the data-
generating process is non-normal.

3.2.1 Robustness to non-normality

The following result establishes two sets of sufficient conditions under which E(a|a ≥ â)−
E(a|a < â) is increasing. The conditions are quite different and appear restrictive on face.
As illustrated below, however, most distributions used in sample selection, truncation,
discrete choice, duration and reliability models meet one of these two sets of conditions.

Proposition 3.2. Suppose that a is distributed over [L, ∞] with density f (a) satisfying lima→∞ f (a) =
0. Then
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1. If E(a|a ≥ â) is convex and E(a|a < â) is concave, there exists an a∗ such that

[E(a|a ≥ â)− E(a|a < â)]′ ≥ 0

for all â ≥ a∗. If f (a) is symmetric, then a∗ is the mean. If the mean exceeds the median,
then a∗ is less than the median.

2. If f (a) is log convex and f ′(a) ≤ 0 for all a,

[E(a|a ≥ â)− E(a|a < â)]′ ≥ 0

for all â.3

Proof. To prove the first part, suppose that limâ→∞ E(a|a < â)′ > 0. Then, since a has
infinite support, there exists an â such that E(a|a ≤ â) > E(a), a contradiction. Thus
limâ→∞ E(a|a < â)′ = 0. Since E(a|a ≥ â)′ ≥ 0 by definition, there is an a∗ such that
E(a|a ≥ â)′ = E(a|a < â)′. Then by assumption, E(a|a ≥ â) − E(a|a < â) is convex,
reaching its unique minimum at a∗ and increasing thereafter. Further,

[E(a|a ≥ â)− E(a|a < â)]′ =
f (â)

1− F(â)

(´ ∞
â t f (t)dt
1− F(â)

− â

)
− f (â)

F(â)

(
â−
´ â

L f (t)dt
F(â)

)
.

At the median, ã, of a, this expression becomes 4 f (ã) [E(a)− ã]. Thus, for f (a) symmetric,
a∗ = E(a) = ã. Instead, if E(a) > ã, [E(a|a ≥ ã)− E(a|a < ã)]′ > 0, so a∗ < ã.

To prove the second part, note that f (a) log convex with lima→∞ f (a) = 0 implies
that 1− F(a) is log convex and that f ′(a) ≤ 0 for all a implies that F(a) is log concave
(Bagnoli and Bergstrom, 2005). But 1− F(a) log convex implies E(a|a ≥ â)′ ≥ 1 while
F(a) log concave implies E(a|a < â)′ ≤ 1 (see, e.g., Heckman and Honoré, 1990). Thus
[E(a|a ≥ â)− E(a|a < â)]′ ≥ 0 for all â.

The first part of Proposition 3.2 clarifies the sense in which a type distribution needs
to approximate the normal distribution in order for the identification result to hold over
some range of treatment probabilities—the left- and right-truncated expectations must be
convex and, respectively, concave. Note that if the mean of an asymmetric type distribu-
tion exceeds its median then the condition that the treatment probability is less than 1/2

is conservative: the difference between the left- and right-truncated expectations will be
increasing at even higher treatment rates. The second part of the proposition shows that,
even when the type density does not resemble the normal distribution in this way (i.e.,
log convex distributions with monotone decreasing densities), difference-in-differences
regression may still recover lower bounds on group differences in treatment effects. More-

3 A function is log concave (log convex) if its logarithm is concave (convex).
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over, for distributions that satisfy the second set of criteria, the bounding result holds at
any treatment probability.4

Figure 3.1 plots the density functions, left- and right-truncated expectations, and the dif-
ference between these expectations, for the (standard) normal, logistic, uniform, gamma
(with shape parameter 1.5), Weibull (with shape parameter 1.5), exponential (with rate
parameter 1.5), and (standard) lognormal distributions. For each of these distributions,
the left-truncated expectation is at least weakly convex and the right-truncated expecta-
tion is at least weakly concave. Accordingly, for each distribution, there exists a range
over which the difference E(a|a ≥ â)− E(a|a < â) is nondecreasing. For the normal and
logistic distributions, this difference is increasing whenever â exceeds the mean (i.e., the
treatment probability is less than 1/2). Under, for example, the gamma and Weibull dis-
tributions, the threshold at which this difference reaches its minimum is lower (so that
the corresponding treatment probability is greater).

Figure 3.2 plots the same functions for the gamma distribution (with shape parameter
.75), the Weibull distribution (with shape parameter 1.5), the Pareto distribution (with
shape parameter 1.1) and the lognormal distribution (with a ∼ LN(1, 2)). Each of these
distributions has concave left- and right-truncated expectations with the slope of the left-
truncated expectation exceeding that of the right-truncated expectation over the entire
support. For these distributions, the difference E(a|a ≥ â) − E(a|a < â) is increasing
everywhere increasing, implying that differences-in-differences identifies a lower bound
on the group difference in average treatment effects at any enrollment threshold.

A comparison of Figures 3.1 and 3.2 reveals that log concave distributions tend to sat-
isfy the first set of conditions given in Proposition 3.2 while log convex distributions tend
to satisfy the second set. The density functions for the normal, logistic and exponential
densities are log concave, while the gamma and Weibull densities are log concave when
their shape parameters exceed one.5 As Figure 3.1 illustrates, these densities have convex
(concave) left-truncated (right-truncated) expectations. In contrast, the Pareto density is
log convex and the gamma and Weibull distributions are log convex when their shape
parameters are less than one. Figure 3.2 shows that these distributions have monotone
decreasing density functions (and hence log concave distribution functions), concave left-
truncated expectations with slopes that exceed one, and concave right-truncated expecta-
tions with slopes less than one. The uniform and lognormal densities straddle these cases:
the uniform density is both log concave and log convex while the lognormal density is
log concave when a is small and log convex with a is large.

Proposition 3.3 shows that this pattern is not coincidental. Under certain conditions,
met by many distributions, log concave densities generate convex and concave left- and,

4 Note also that if the distribution of the log of the type satisfies one of these conditions, then a result similar
to Corollary 3.1 applies.

5 Bagnoli and Bergstrom (2005) give expressions for [log f (a)]′′ for the normal, lognormal, exponential, gamma,
Weibull and Pareto densities.
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respectively, right-truncated expectations while monotone decreasing log convex densities
generate concave left-truncated expectations with slopes that are everywhere smaller than
those of their concave right-truncated expectations.

Proposition 3.3. Suppose that a is distributed over [L, H] and∣∣∣∣∣∣∣
[log f (a)]′′{
[log f (a)]′

}2

∣∣∣∣∣∣∣
′

Q 0 when f ′(a) Q 0. (3.5)

1. If f (a) is log concave and lima→L f (a) = lima→H f (a) = 0, then E(a|a ≥ â) is convex
and E(a|a < â) is concave.

2. If f (a) is log convex and lima→H f (a) = 0 then E(a|a ≥ â) is concave.

The proof is presented in Appendix 3.A. In addition to explaining the pattern exhibited
by the distributions shown in Figures 3.1 and 3.2, Proposition 3.3 provides easily veri-
fiable conditions under which a hypothesized distribution will satisfy the first criterion
given in Proposition 3.2 (the second criterion can already be verified given an expression
for the density function).6 For example, when a is distributed standard normal or logistic,
|[log f (a)]′′/{[log f (a)]′′}2| is 1/a2 or 2 exp(a)/[1− exp(a)]2, respectively. These functions
are decreasing when a exceeds zero, and the left-truncated expectations for these distri-
butions are convex. When a is Pareto with shape parameter β, this ratio is 1/(β + 1) and
the left-truncated expectation is linear.

Although the previous proposition clarifies the relationship between the shape of the
density function and the shape of the truncated expectation functions, it is Figures 3.1
and 3.2 that provide the most persuasive evidence of the utility of the foregoing identifi-
cation procedure. The fact that the sufficient conditions for the identification of a lower
bound presented in Proposition 3.2 are met by a large collection of distributions that
are commonly used for econometric and reliability modeling strongly suggests that the
distributional assumptions upon which the identification argument ultimately relies are
relatively innocuous.7

6 That the lognormal density, which is neither log concave nor log convex over its entire support, can be con-
figured to satisfy the either set of conditions given in Proposition 3.2 underscores the fact that the conditions
enumerated in Proposition 3.3 are sufficient, and not necessary, to determine the shapes of the truncated
expectations.

7 The linear functional form for counterfactual outcomes also suggests a natural falsification test for whether
the type variable meets the conditions of Proposition 3.2. Although observed outcomes are of the form y =
dγ1a + (1− d)γ0a, if there exists a subpopulation among whom treatment is very unlikely, the distribution
of y will be close to the distribution of a, making it possible to estimate the curvature of the truncated
expectations or test whether the empirical distribution of a approximates some hypothesized distribution.
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3.3 noisy selection

Although the identification results in Section 3.2 hold under a wide variety of type distri-
butions, the assumptions that selection is determined entirely by the unobserved type and
that outcomes are linear in this type may be unreasonably restrictive in some contexts. In
this section, I extend the identification argument to allow for the possibilities that idiosyn-
cratic factors influence the decision to enroll in treatment and that the outcome functions
are nonlinear. This additional flexibility comes at the cost of the imposition of greater
structure on the treatment enrollment decision and, given outcome and selection mech-
anisms, more restrictive assumptions on the type distribution. However, the enrollment
decision model remains quite general and I develop a falsification test that can detect the
failure of the distributional assumptions in some cases. I also show that, when enrollment
is idiosyncratic but outcomes remain linear, the results of the previous section can be ap-
plied under restrictions that are stronger than those required for the pure selection model
but weaker than those required when outcomes are nonlinear.

3.3.1 Two types

I first present a simplified selection model in which the type distribution is binary, with
a ∈ {l, h} and Pr(a = h) = π. The race- and treatment-condition-specific outcome equa-
tions take the form ydr = ydr(a), y′dr(a) ≥ 0, y1r(a) > y0r(a), y0b(a) ≤ y0w(a) and, as
before, r ∈ {b, w}, d ∈ {0, 1}. These assumptions are the nonlinear counterparts to those
presented in the setup of the pure selection model developed in the previous section. The
relative utility of receiving the treatment is given by ∆r + γ1a=h − ε, where ε is drawn
from a distribution with density f (ε) and distribution function F(ε), so that the enroll-
ment decision is of the form

d(a, r, ε) =

1 if ∆r + γ1a=h − ε ≥ 0

0 otherwise
.

To reflect the notion that those who enroll in treatment are likely to have higher out-
comes even absent the treatment, I assume that γ > 0. Note that a higher probability
of treatment among blacks implies ∆b > ∆w. Because the main purpose of this model is
to provide intuition about a more general selection model presented below, I postpone
further discussion of the implications of these assumptions until Section 3.3.2.



128 roy-model bounds on group differences in treatment effects

Under this model, the mean treated-untreated outcome differential for group r is

E(y|r, d = 1)− E(y|r, d = 0)

= [P(h|r, 1)y1r(h) + P(l|r, 1)y1r(l)]− [P(h|r, 0)y0r(h) + P(l|r, 0)y0r(l)]

= P(h|r, 1) [y1r(h)− y0r(h)] + P(l|r, 1) [y1r(l)− y0r(l)]

+ [P(h|r, 1)− P(h|r, 0)] y0r(h) + [P(l|r, 1)− P(l|r, 0)] y0r(l),

where P(a|r, d) denotes probability that an individual has type a given that they belong
to group r and make treatment decision d. As in the model of Section 3.2, this expression
decomposes the treated-untreated outcome differential into an average treatment on the
treated term, P(h|r, 1)[y1r(h)− y0r(h)] + P(l|r, 1)[y1r(l)− y0r(l)], and a selection bias term,
[P(h|r, 1)− P(h|r, 0)]y0r(h)+ [P(l|r, 1)− P(l|r, 0)]y0r(l), that reflects differences in the type
distribution, and hence untreated outcomes, between the treated and untreated groups.

The black-white difference in treated-untreated differences will bound the black-white
difference in mean treatment effects from below if the selection bias component for whites
exceeds that for blacks, or if

[P(h|b, 1)− P(h|b, 0)] y0b(h) + [P(l|b, 1)− P(l|b, 0)] y0b(l)

< [P(h|w, 1)− P(h|w, 0)] y0w(h) + [P(l|w, 1)− P(l|w, 0)] y0w(l). (3.6)

Since ∆b > ∆w, condition (3.6) will hold if

∂

∂∆r
{[P(h|r, 1)− P(h|r, 0)] y0r(h) + [P(l|r, 1)− P(l|r, 0)] y0r(l)}

=

(
∂P(h|r, 1)

∂∆r
− ∂P(h|r, 0)

∂∆r

)
[y0r(h)− y0r(l)] < 0, (3.7)

where the equality arises because ∂P(h|r, 1)/∂∆r = −∂P(l|r, 0)/∂∆r. Since y0r(h) > y0r(l)
for r ∈ {b, w} by assumption, (3.7) is tantamount to

∂

∂∆r
[P(h|r, 1)− P(h|r, 0)] < 0. (3.8)

The following result establishes sufficient conditions for (3.8) to hold.

Proposition 3.4. Suppose that F(ε) is log concave and that members of group r receive treatment
with probability less than 1/2. Then

∂

∂∆r
[P(h|r, 1)− P(h|r, 0)] ≤ 0

if
f (∆r + γ)− f (∆r) ≤ 0. (3.9)



3.3 noisy selection 129

The proof, which is given in Appendix 3.A, shows that, when the treatment probability
is less than 1/2, log concavity enables us to to bound the derivative in (3.8) from above
while the density condition (3.9) establishes that the upper bound is negative, signing the
derivative. The behavioral interpretation of the proposition is that the density condition
f (∆r + γ) < f (∆r) implies that high types are already sufficiently likely to enroll that
making the treatment more appealing (increasing ∆r) induces a disproportionate number
of low types to enroll, decreasing the gap between the types of the average treated and
untreated individuals.

3.3.2 A continuum of types

Although it is easier to understand how difference-in-differences can identify a lower
bound on the difference in treatment effects when the type distribution is binary, for
many applications, a binary type distribution may be inappropriate. To generalize the
model to allow for a continuous type distribution, assume now that types are drawn
from a distribution with density π(a), outcomes are given by ydr(a) where y′dr(a) ≥ 0,
and the selection rule is

d(a, r, ε) =

1 if ∆r + γ(a)− ε ≥ 0

0 otherwise
, (3.10)

where γ′(a) ≥ 0 and the distribution and density functions for ε are F(ε) and f (ε).8 Note
that the assumption that outcomes depend only on a is without loss of generality: we can
equivalently assume that ydr(a) is the outcome that a type-a member of group r expects
to receive when her treatment status is d, with the difference between the observed and
expected outcomes being due to forecasting or measurement error, or otherwise uncorre-
lated with a and the stochastic component ε of the selection equation. Put differently, the
statistical relationship between the selection and outcome equations owes to the mutual
dependence of these functions on the unobserved factor a; this dependence is the ultimate
source of selection bias in treated-untreated comparisons. As before, ∆b > ∆w when the
black treatment rate exceeds the white rate.

As in the linear treatment effect model of Section 3.2, the assumption that both groups
have the same type distribution can be relaxed as long as the selection and treatment
models are still applicable after the types has been standardized. The assumption that
the random preference components ε are drawn from the same distribution for both
groups is innocuous; any systematic differences in the attractiveness of treatment should
be absorbed into the deterministic component ∆r + γ(a) of the selection equation.

8 I assume without loss of generality that ε has support over the real line.
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For parsimony, I impose in the selection equation (3.10) the simplification that the func-
tion γ(a) that determines the relationship between the type and the utility from treatment
is the same for blacks and whites. This assumption accommodates two important para-
metric models of group-differences in the utility of treatment. In the first model, the ex-
pected treatment-induced utility gains for blacks and whites of the same type differ only
by a constant. This will be appropriate if ∆r represents a source of between-group varia-
tion in the attractiveness of treatment that is uncorrelated with the effect of treatment on
the outcome measure (in other words, if ∆ is an instrument that is constant within groups
but varies between them) or if, at least to an approximation, the outcome functions for
blacks and whites are vertical translates. In the second model, the utility from treatment
to a type-a black individual whose random preference component is ε is proportional
to that for an otherwise-identical white individual. That is, the utility associated with
treatment status d is ∆drγd(a)εd

−1, so that an individual from group r will enroll if

log(∆1r − ∆0r) + log[γ1(a)− γ0(a)]− log(ε1 − ε0) ≡ ∆r + γ(a)− ε ≥ 0.

This model of the treatment decision is simple and flexible; absent prior empirical or
theoretical information about the selection process, it is also a priori reasonable. How-
ever, the identification argument can also be modified to allow more general selection
equations of the form γ(∆r, a)− ε subject to the conditions that ∂γ(∆r, a)/∂∆r > 0 and
supa{∂γ(∆r, a)/∂∆r} < ∞.9

Like the pure selection model, the noisy selection model can accommodate the case
where the unobserved type only enters the enrollment decision through its influence on
outcomes—that is, when ∆r + γ(a) = y1r(a)− y0r(a)—as well as the more general case
where preferences over treatment conditions also depend on non-outcome factors that are
correlated with unobserved types. Finally, as in the pure selection model, if treatment and
selection also depend on observable characteristics x, the identification argument can be
repeated within x-strata.

When the type distribution is continuous, the mean treated-untreated outcome differ-
ence can be written

E(y|r, d = 1)− E(y|r, d = 1) =
ˆ

y1r(a)P(a|r, 1)da−
ˆ

y0r(a)P(a|r, 0)da

=

ˆ
[y1r(a)− y0r(a)] P(a|r, 1)da +

ˆ
[P(a|r, 1)− P(a|r, 0)] yr0(a)da,

9 To see this, replace all instances of f (∆r + γ(a)) in the proof (given in Appendix 3.A) with
f (γ(∆r, a))[∂γ(∆r, a)/∂∆r]; the result still holds as long as ∂γ(∆r, a)/∂∆r is positive and bounded over a.
When this derivative is unbounded, whether the argument still applies depends on the rate at which it
grows. Note also that, when ∂γ(∆r, a)/∂∆r 6= 1, the falsification test developed below must be modified
accordingly.
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where, as before, the second equality decomposes the treated-untreated difference into
the average effect of treatment on the treated,

´
[y1r(a)− y0r(a)]P(a|r, 1)da, and a selection

bias term,
´
[P(a|r, 1) − P(a|r, 0)]y0r(a)da.10 In this case, the group difference in treated-

untreated differences will bound the group difference in the average treatment effect for
the treated from below if

ˆ
[P(a|w, 1)− P(a|b, 0)] yb0(a)da <

ˆ
[P(a|w, 1)− P(a|w, 0)] y0w(a)da. (3.11)

Condition (3.11) will hold if ∆b > ∆w and

∂

∂∆r

ˆ
[P(a|r, 1)− P(a|r, 0)] y0r(a)da < 0. (3.12)

Proposition 3.5 presents sufficient conditions for (3.12):

Proposition 3.5. Suppose that F(ε) is log concave, limε→∞ f (ε) = 0, and that members of group
r receive treatment with probability less than 1/2. Then

∂

∂∆r

ˆ
[P(a|r, 1)− P(a|r, 0)] y0r(a)da ≤ 0

if
Cov [ f (∆r + γ(a)) , y0r(a)] ≤ 0. (3.13)

The proof, which is given in Appendix 3.A, is similar that of Proposition 3.4. When the
distribution of the random preference terms is log concave and the treatment probability
is less than one half, the derivative in (3.12) can be bounded from above (when the type
distribution is continuous, this also requires the tail condition that the density of the
random preference terms is zero at infinity). When, in addition, the covariance condition
(3.13) is satisfied, the upper bound is negative, signing the derivative. The covariance
condition is analogous to the density condition required for the binary type distribution
case. Informally, it requires that treatment is sufficiently common among those with high
realizations of the unobserved type that large untreated outcomes are associated with
small changes in the probability of treatment.

Several aspects of Proposition 3.5 (and Proposition 3.4) warrant further comment. The
log concavity of F(ε) is weaker than the log concavity of f (ε) (which was required for the
identification results developed in Section 3.2), since the log concavity of the latter implies
that of the former. Second, although the proposition requires log concavity (as opposed
to either log concavity or log convexity as in Section 3.2), it is only the distribution of the
idiosyncratic component ε of the relative utility of receiving the treatment that must be
log concave; the normal and logistic distributions, which are frequently used to model
differences in utilities, satisfy this condition. Third, the derivative (3.12), and hence the

10 I abuse notation here by letting P(a|r, d) denote the density of a conditional on race and treatment status.
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covariance condition (3.13), only needs to hold for values of ∆r in the set (∆w, ∆b) for
the lower bound condition (3.11) to be satisfied at the observed group-specific treatment
probabilities.

3.3.3 Assessing the covariance condition

Proposition 3.5 shows that the essential identification result of the pure selection model—
that differences-in-differences can provide a lower bound on the group difference in treat-
ment effects when treatment rates are unequal—can still be obtained when outcomes are
nonlinear in the unobserved type and the enrollment decision is stochastic. Although ex-
tending the result to these cases requires the imposition of additional structure on the
model, the extra requirements are minimal: the distribution function governing the ran-
dom preference components must be log concave, the associated density must be zero at
infinity, and the selection equation must fall into a large class of parametric functions.

However, the unobserved types (combined with the selection and outcome equations)
must also meet the more stringent condition (3.13) that the covariance between the “treat-
ment density” f (∆r + γ(a)) and untreated outcomes y0r(a) is nonpositive. Since this co-
variance depends simultaneously on four potentially nonlinear functions (the distribu-
tions of ε and a as well as the selection and outcome equations), it seems reasonable to
ask whether it is likely, or even possible, that this condition will hold. By assumption,
f is log concave (and hence unimodal) and y0r is increasing. Therefore, large values of
y0r(a) will be associated with large values of the treatment density f (∆r + γ(a)) when
this density is increasing and small values of y0r(a) when this density is decreasing. In-
formally, the covariance between these functions will therefore be negative if ∆r is large
enough that the treatment density tends to be decreasing, if the distribution of a is such
that it places more weight on points in the support of a where the treatment density is
decreasing, or if y0r is increasing more rapidly when the treatment density is decreasing.

A simple numerical example illustrates this logic. Suppose that the outcome equations
take the linear forms y1 = 3a and y0 = a and that the selection equation is a probit
in the difference in counterfactual outcomes, so that d = 1(∆ + 2a− ε) with ε standard
normal. When log(a) is standard normal, simulation reveals that Cov[ f (∆ + 2a), a] is neg-
ative when ∆ is large enough to generate an average treatment probability E[F(∆ + 2a)]
greater than about .3. Instead, if log(a) ∼ N(0, 2), in which case the right tail of the type
distribution is fatter (and hence places more weight on points of the support of a where
the treatment density is decreasing), the simulated covariance is negative when ∆ is large
enough to generate an average treatment probability of about .15 or greater.

Thus, the covariance condition (3.13) depends in a complex way on functions whose
realizations are unobserved and about which theory or prior empirical evidence may pro-
vide little guidance. Furthermore, although specifying parametric forms for these func-
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tions may provide insight about the plausibility of the covariance condition, the fewer
restrictions placed on these functions, the more credible the identification strategy. The
availability of a proxy z for a suggests a natural falsification test for the covariance condi-
tion: use z to estimate g(z) = G′(z) where G(z) = Pr(d = 1|z) and compute the empirical
covariance between outcomes in the untreated condition (which are observed in the data)
and the estimate ĝ(z). If, for example, z is discrete, a simple estimator for g(z) is

ĝ(z) = Ĝ(z)− Ĝ(z− 1) = ∑N
i=1 1(di = 1)1(zi = z)

∑N
i=1 1(zi = z)

− ∑N
i=1 1(di = 1)1(zi = z− 1)

∑N
i=1 1(zi = z− 1)

. (3.14)

Alternatively, one may specify a parametric form (say a logit or probit) for G(z) = Pr(di =

1|zi = z) and construct ĝ(z) by differentiating Ĝ(z).
Note that assuming that z proxies for the unobserved type is much weaker, and con-

sequently more defensible, than the assumptions that either (i) the covariance condition
holds, (ii) the forms of the untreated outcome equation, selection equation and density
for the stochastic preference terms are known, or (iii) that there is an instrument for d.
Since z is a proxy (and not an estimator) for a, and since the untreated outcomes yr0(a)
are only observed for untreated units, this procedure only provides a falsification test,
and not a formal hypothesis test, of the covariance condition. If the data fail the falsifica-
tion exercise—that is, if the empirical covariance between ĝ(zi) and y0ri is positive—we
should be skeptical that condition (3.13) will hold. However, since f is nonlinear (and
perhaps so is y0r) and y0r is not observed for treated individuals, it is possible that the
empirical covariance will be nonpositive even when f (∆r + γ(a)) is positively correlated
with y0r(a).11

When z is thought to be correlated with a but also have an independent impact on the
probability of selection into treatment, the falsification test can still be applied, but only
with reduced ability to detect the failure of the covariance condition. For example, if the
enrollment probability is actually F(β0 + β1a+ β2z) and the falsification exercise is carried
out under the specification G(γ0 + γ1z), the estimate of γ1 will reflect both the effect of
z on the probability of selection and the relationship between z and a. Proposition 3.5
requires that the treatment density and the untreated outcomes are negative correlated
at each level of z, which implies that the average (across values of z) correlation will
be negative as well.12 A finding that Cov[g(γ̂0 + γ̂1zi), y0i] < 0 lends credibility to the
assumption that the covariance condition holds on average, but this does not imply that
it holds at each level of the proxy z.

11 The second of these concerns can be addressed with an additional falsification test if there is a subpopulation
for whom the treatment probability is close to zero, and consequently, the distributions of observed and
untreated outcomes are approximately the same. Also note that, although the covariance condition needs
to hold over the range (∆w, ∆b), if it holds at ∆w it is also likely to hold at values of ∆r > ∆w since, as ∆r
increases, the part of the support of a over which f (∆ + γ(a)) is increasing becomes smaller.

12 This follows from the bilinearity of the covariance operator.
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3.3.4 Relating the pure and noisy selection models

While the noisy selection model allows for more flexible selection and outcome processes,
the key criterion required to ensure identification is stronger than the analogous condi-
tions on the type distribution required in the pure selection model. However, when the
selection and outcome equations can be well-approximated by linear functions, the results
from the pure selection model of Section 3.2 can be applied to the case where the enroll-
ment decision is random under milder distributional assumptions, obviating the need to
verify the covariance condition required by Proposition 3.5.

Standard estimators of sample selection and switching regression models (see Amemiya,
1984; Wooldridge, 2002, for example) assume counterfactual outcome equations similar to

ydr(a) = γdra

and that selection into treatment is determined by a process similar to

dr(ε) =

1 if ∆r − ε ≥ 0

0 otherwise
.

In this model, the mean treated-untreated differences can be decomposed, as before, ac-
cording to

E(y|d = 1, r)− E(y|d = 0, r) = γ1rE(a|ε ≤ ∆r)− γ0rE(a|ε > ∆r)

= (γ1r − γ0r)E(a|ε ≤ ∆r) + γ0r[E(a|ε ≤ ∆r)− E(a|ε > ∆r)].

If, as in Olsen (1980) and Wooldridge (2002), we assume that E(a|ε) = ρε (with ρ < 0
and, for exposition, a and ε mean zero), then E(a|ε ≤ ∆r) = ρE(ε|ε ≤ ∆r) and this
difference becomes

E(y|d = 1, r)− E(y|d = 0, r)

= (γ1r − γ0r)ρE(ε|ε ≤ ∆r)− γ0rρ[E(ε|ε > ∆r)− E(ε|ε ≤ ∆r)]. (3.15)

When blacks are more likely to enroll in treatment than whites, ∆b > ∆w, so the results
of Section 3.2 can be applied to the random component ε of the selection equation to
determine whether the selection bias term −γ0rρ[E(ε|ε > ∆r)− E(ε|ε ≤ ∆r)] from (3.15)
is decreasing, in which case differences-in-difference once again recovers a lower bound
on the black-white difference in the average treatment on the treated, even though the
enrollment decision is random conditional on the type.
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The assumption that the expectation of a given ε is linearly decreasing in ε (which im-
plies that treated units have lower values of ε and hence higher values of a) is a simple way
of capturing the notion of positive selection into treatment when the selection equation is
random. Olsen (1980) shows that, given a distribution for ε, the linearity assumption may
not impose unreasonable requirements on the distribution of a.13 Indeed, when a and ε

are multivariate normal, this linearity is automatic, the (modified) pure selection model
reduces to the canonical switching regression or Type 5 Tobit model (Amemiya, 1984),
and Proposition 3.1 can be applied.

3.4 application : the wages of the great migrants

3.4.1 The Great Migration

The Great Migration refers to a period of US history spanning roughly 1915-1970 during
which a tremendous number of Southern-born blacks left the South in favor of cities in the
North. This episode is widely believed to have had profound social and economic conse-
quences, both for the migrants themselves and for the areas to which they moved (Tolnay,
2003 provides a detailed review of the Great Migration and its effects). In particular, it
is widely acknowledged (see, e.g., Smith and Welch, 1989; Donohue and Heckman, 1991)
that Northward migration played an important role in the relative economic progress ex-
perienced by blacks during the 20th century. Although the Great Migration is therefore
rightfully seen as holding special significance for black history, accounts of the magnitude
of this migration often overlook the fact—which I document below—that many whites
also moved North, albeit at considerably smaller rates. On average between 1940 and
1970, for example, 14% of Southern-born white men, compared to 28% of Southern-born
black men, migrated to the North.

Smith and Welch (1989) and Donohue and Heckman (1991) decompose changes in
black-white log wage gaps into components explained by racial differences in residential
location, education and other factors. The aim of these studies is to understand the con-
tribution of, inter alia, migration to declines in the black-white wage gap. This estimand
can easily be recovered from black-white differences in North-South wage differentials.
However, since characteristics not observed in the data may have contributed to the de-
cision to migrate, and since they might have done so differently for blacks and whites,
descriptive decompositions may not be informative about the causal effects of migration

13 Olsen (1980) notes that when ε is uniform and E(a|ε) is linear, a can be decomposed into two random vari-
ables, one of which is independent of ε. If the component that is independent of ε is normal, the distribution
of a will be the convolution of a normal variable with a uniform variable. Since log concavity is preserved by
multiplication and linear transformations (Bagnoli and Bergstrom, 2005), it is also preserved by convolution.
It is therefore not unreasonable to believe that the results of Section 3.2 will apply in this case.
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on wages. As Smith and Welch (1989) noted in their survey of the determinants of black
economic progress,

Even among men who have the same amount of education and job experience,
large geographic wage differentials prevail among regions. Identifying their
underlying causes is a complex empirical problem. Some of these wage dispar-
ities reflect cost-of-living differences between regions, or compensating pay-
ments for the relative attractiveness or undesirability of locational attributes
(e.g. climate, crime, and density). Given the magnitude of the regional wage
differentials we estimate, it is also likely that they proxy for unobserved in-
dices of skill. Finally, the large black-white gap in the South may well reflect
the historically more intense racial discrimination there.

and

If they proxy for unobserved skill differences, cross-sectional wage differen-
tials would not represent the wage gain an individual would receive by mov-
ing from the South to the North.

The identification results of Sections 3.2 and 3.3 provide a framework for understand-
ing racial differences in North-South wage differentials in terms of the causal impact of
migration on wages. In fact, because they recover group-differences in average treatment
effects, the identification procedures in this paper are particularly well-suited to the anal-
ysis of the impacts of the Great Migration. As Smith and Welch (1989) argue, equilibrium
North-South wage differentials may partially reflect regional variation in amenities, so
that subtracting the effect of migration among whites from that for blacks removes the
component of the wage effect of migration that is due to amenities, at least insofar as
this component is similar for blacks and whites.14 Further, while between-group hetero-
geneity in treatment effects is of interest in many settings, in the context of the Great
Migration its interpretation is particularly stark: it represents extent to which black mi-
grants earned more in the North because its denizens were less discriminatory than their
Southern counterparts.

3.4.2 Migration rates and North-South wage differentials

Figure 3.3 plots Northward migration rates by year of birth for black and white men
born in the Southern US. The data for this graph, and all further results in this section,

14 If the North-South amenity differential were greater for blacks (say because of reduced discrimination in the
North), they would be willing to accept smaller wage increases in exchange for migrating. Subtracting the
regional wage differential for whites (of which the decrease in the treatment effect due to amenities would be
smaller) would still result in a lower bound on the black-white difference in the component of the treatment
effect not due to amenity differences.
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are based on 1% Integrated Public Use Microdata Samples (IPUMS) of the 1940-1970

US Censuses (Ruggles, Alexander, Genadek, Goeken, Schroeder, and Sobek, 2010), from
which I include only Southern-born black and white men.15 For birth years prior to 1880,
the sample sizes are small and the estimated migration rates are imprecise for men of
both races. Past 1880, as the figure shows, black migration rates dominate white rates
at all birth years, and exhibit a steeper trend. For example, a white man born in the
South around 1940 had about a 20% chance of migrating to the North, while his black
counterpart had a 40% chance of migrating. To examine these differences in migration
rates in greater detail, I present in Table 3.1 linear models of the probability of migrating
as a function of race and, in some specifications, indicators for age, educational attainment
and, in models that pool across time, decade. Pooling across all four decades of Census
data, the average probability of migrating for whites was about 14%; for blacks, it was
twice as high at about 28%. Including covariates (which are not race-specific) increases
the coefficient on Black, most likely reflecting racial differences in educational attainment
over time.16 The decade-specific regressions show that the white migration rate increased
from about 15% in 1940 to 17% in 1950, leveling off around 19% during the 60s and
70s. The black-white difference in migration rates increased as well, increasing from 8%
in 1940 to nearly 16% during the 60s and 70s. Within decades, the trend in black-white
differences in migration rates are similar. Thus, Figure 3.3 and Table 3.1 demonstrate that
both groups migrated North with probability less than one half and that blacks were
substantially more likely to migrate than whites, both overall and within age-education
strata.

Table 3.2 presents regression estimates of the black-white difference in North-South
(annual) wage and log wage differentials over the same periods.17 The top panel of the
table shows the log wage results. On average between 1940 and 1970, black wages were
70 log points smaller than white wages, white migrants earned wages that were 25 log
points higher than whites working in the South, and black migrants earned wages that
were another 34 log points higher. Conditioning on age and education reduces each of
these differentials: the black-white wage gap drops to 43 log points, the North-South

15 I classify states as Southern using the Census Bureau’s definition of the South: Alabama, Arkansas, Delaware,
Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina,
Tennessee, Texas, Virginia and West Virginia are Southern states. I define the North as any other state in the
US. Although the Great Migration started well-before 1940, that decade is the first for which wage data are
available.

16 This hypothesis is supported by the fact that, when covariates are included in the regression, the coefficient
on black decreases between 1960 and 1970, a period of large gains in black relative educational attainment
(Smith and Welch, 1989). As the estimates of the model without covariates shows, the raw difference in
migration rates was stable during this period.

17 The wage measure consists of all income from wages and salary in the year before enumeration (this variable
is named INCWAGE in the IPUMS dataset). The self-employed are included but business and farm income
are not. All wages are inflated to 1999 dollars using the CPI weights supplied with the IPUMS. To make the
wage and log wage regressions comparable, I restrict the sample to include only those reporting nonzero
wages. In addition, to focus on men who are likely to have completed educational histories, I restrict the
estimation sample to those older than 30.
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wage gap drops to 22 log points and the black-white difference in this gap drops to 24 log
points. The within-decade results are similar. The raw and covariate-adjusted racial log
wage gaps drop from 75 and 44 in 1940 to 63 and 43 in 1970 (both of these gaps actually
increase between 1950 and 1960, providing an explanation for this trend is beyond the
scope of this paper); the raw and adjusted white North-South log wage gaps drop from 32

and 23 in 1940 to 21 and 17 by 1970. In addition, the black-white difference in North-South
wage gaps increase from 30 (without covariates) and 20 (with covariates) log points to 37

and 27 in 1950, then decrease to 31 and 23 log points in 1970. These descriptive results are
similar to those reported by Smith and Welch (1989) and Donohue and Heckman (1991).

The bottom panel of Table 3.2 presents the results for wages in levels. On average be-
tween 1940 and 1970, blacks earned $12,700 less than whites (in 1999 dollars), a figure
which drops to $8,300 after accounting for age and education. White migrants earned
$5,400 more than whites working in the South, or $4,600 after controlling for covari-
ates. Black migrants earned an additional $2,400 compared to blacks living in the South,
or $1,100 with covariates. The results are similar within and across decades, with the
racial gap in absolute North-South wage differentials increasing from $374 when covari-
ates are excluded and -$509 when they are included to around $4000 and $2000, respec-
tively, between 1940 and 1970. Regardless of how wages are measured, these difference-
in-differences estimates show that the North-South wage differential was substantially
higher for blacks than for whites, over time and across covariate strata.

3.4.3 Applying the identification results

Suppose, as in the above caveat from Smith and Welch (1989), that the North-South wage
differentials detailed in Table 3.2 represent a combination of the treatment effect of migra-
tion on migrants’ wages and selection bias arising because those with greater skill find
migration less costly, more beneficial, or both, and thus are more likely to migrate. Put
differently, equilibrium wages and migration behavior are determined by a Roy model, in
which case the identification results developed in this paper may be applicable.

First, suppose that the pure selection model of Section 3.2 provides a reasonable ap-
proximation to the data-generating process for migration and wages. That is, at least
within covariate strata, region-specific wages are a linear function of skill and individu-
als migrate if their skill exceeds a threshold beyond which migrating is more attractive
than remaining in the South. Since, as evidenced in Table 3.1, the black and white mi-
gration rates are less than one-half and the black migration rate exceeds the white rate,
the difference-in-differences estimates presented in Table 3.2 can be interpreted as lower
bounds on the black-white difference in treatment effects as long as the skill distribu-
tion satisfies one of the sufficient conditions given in Proposition 3.2. For example, if the
skill distribution is lognormal, then the black-white differences in both the absolute and
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proportional average effects of migration on migrants’ wages are bounded from below
by differences-in-differences estimates. In this case, the estimates presented in Table 3.2
imply that, on average between 1940 and 1970, whatever the proportional change that a
white Southerner would have experienced as a consequence of migrating to the North,
a black Southerner would have experienced an increase in wages that was at least 24%
greater, after accounting for the variation in wages explained by age and educational
differences between migrants and nonmigrants. Similarly, whatever the absolute effect
of migrating on the white Southerner’s wages was, the wages of his black counterpart
would have increased by at least an additional $1,100.

While the assumption imposed by the pure selection model that wages are linear in
unobserved skill is comparable to the assumption, invoked in standard sample selection
and switching regression estimators, of an additively separable error term, it may seem
an oversimplification to suppose that skill is the only random determinant of migration
behavior. However, if the linearity assumptions are reasonable, the selection model may
be weakened according to the discussion in Section 3.3.4 to allow the migration decision
to depend on a general random preference component. As long as the expectation of skill
given the random preference component is linear in that component and the distribution
of the random component satisfies one of the criteria listed in Proposition 3.2, the above
interpretation of the differences-in-differences estimates of Table 3.2 remains applicable.

If the functional form assumptions of the pure selection model are incorrect, these
differences-in-differences may still have a causal interpretation as long as the relationship
between migration and wages can be viewed through the lens of the noisy selection model
of Section 3.3. This less restrictive model allows for the wage and selection equations to
depend on unobserved skill in very general ways, as long as the observed black-white
difference in migration probabilities can be modeled as a function of a single preference
parameter and the error term in the selection equation satisfies mild regularity conditions.
The more stringent identification requirement is that, given selection and wage equations
and a distribution for the random preference terms, the skill distribution meets the co-
variance condition (3.13).

Of course, because this condition places restrictions on the distribution of an unob-
served random variable, it is not directly testable. Education, which is often viewed as
a proxy for skill, is observed, allowing me to implement the falsification test developed
in Section 3.3.4. I conduct two versions of this test. In the first, I estimate the covariance
between wages and the frequency estimate (3.14) of discrete changes in the probability of
migrating conditional on educational attainment for those working in the South. In the
second, I estimate a logit model in which the migration decision depends on quadratics
in age and education. I then estimate the covariance between wages and the estimated
derivative of the migration probability, Λ(xi β̂)[1−Λ(xi β̂)] where Λ is the logistic density
and β̂ are the logit estimates, among those working in the South. Because discrimination
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and other socioeconomic factors may have altered the relationship between skill and ed-
ucation among blacks, reducing the fidelity of education as a proxy for unobserved skill,
I estimate these covariances using samples of white men. I perform separate tests for
absolute wages and log wages by decade.

The results of the falsification tests are presented in Table 3.3. In each decade, the
empirical covariance between log wages in the South and the frequency estimate of the
migration density is close to zero. The empirical covariance between absolute wages and
this estimate is negative in each decade. The bottom panel of the table shows the results
of the test when the migration density is estimated using a logit (the logit parameter es-
timates are given in Table 3.4). For log wages, the empirical covariances are positive but
close to zero. For absolute wages, the empirical covariances are positive and numerically
larger, casting doubt on the validity of the identification procedure when wages are mea-
sured in levels. Still, given the scale of wages, even these covariances, which are on the
order of about 100, are comparatively small. Thus, the results of both sets of falsification
tests are consistent with the hypothesis that, on average over the covariate distribution,
the covariance between skill and the treatment density is nonpositive. This, in turn, is
consistent with the hypothesis that this covariance is nonpositive within covariate cells.
Consequently, there is no evidence that the difference-in-difference estimates presented
above cannot be interpreted as lower bounds on the black-white difference in the im-
pact of migration on wages when the wage and selection equations depend on skill in a
nonlinear way. At the same time, this does not imply that the covariance condition (and
hence the identification result) holds, since, for reasons outlined in Section 3.3.3, these
falsification tests cannot detect all failures of the covariance condition.

3.5 conclusion

The identification results developed in this paper demonstrate that group differences in
treated-untreated average outcome differences can often be interpreted as a lower bound
on the difference between the average causal effect of the treatment on the treated for the
group with the higher treatment rate and the group with the lower rate. When outcomes
are a linear function of an unobserved type that also determines enrollment, the bounding
result applies when when the type is drawn from a large class of distributions commonly
used in econometric modeling and group differences in treatment rates meet verifiable re-
strictions. The result can also be applied when there are additional random determinants
of the enrollment decision. When the unobserved type enters the selection and outcome
equations nonlinearly, the requirements for identification are more stringent, and may
not be acceptable on purely theoretical grounds. However, if the empiricist has access to a
proxy for the unobserved type, a weak falsification test can be used to determine whether
the data are inconsistent with these additional requirements.
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Although it is not the typical estimand of treatment effect studies, the group difference
in average treatment effects is particularly informative when researchers are interested in
treatment effect heterogeneity or when it is believed that the average treatment effect is
nonzero for both groups (since in this case a lower bound on the difference in treatment ef-
fects is also a lower bound on the treatment effect itself for the high-treatment-rate group).
Moreover, since this difference is identified under comparatively mild conditions, it may
also be of interest when there are no exogenous sources of variation in treatment status,
or as a consistency check on treatment effect estimates obtained using other methods.

I use these results to impose a causal interpretation on regional wage differentials dur-
ing the Great Migration. Southern-born blacks migrated North at higher rates than their
white counterparts, at least between 1940 and 1970, the period that I study, and earned
wages that were about 23% higher, on average after controlling for age and education.
If selection and wages are well-approximated by the pure selection model presented in
Section 3.2, this cross-sectional difference-in-differences estimate implies that migration
increased wages for blacks by at least 23% more than for whites. I also provide evidence
that the data are consistent with the more rigorous requirements of the general noisy se-
lection model of Section 3.3, implying that black-white differences in North-South wage
differences retain the same interpretation even under less restrictive assumptions on the
enrollment and outcome processes.

The Great Migration neatly illustrates the applicability of the identification results.
Since Northward migration was an important instrument for black relative economic
progress, and since the causal effect of migration on wages may reflect a combination
of factors including productivity, regional amenity differences and discrimination, the
black-white difference in the effect of migration on migrants’ wages is of direct interest.
In fact, at least to an approximation, it may be interpreted as representing the contribution
of regional differences in racial discrimination to the impact of migration on the wages
of black migrants. Additionally, historical wage microdata are scarce and difficult to con-
nect with ancillary datasets that contain information about plausibly exogenous sources
of variation in the propensity to migrate.18 My identification results, in concert with stan-
dard economic models of migration behavior and wage determination, allow me to draw
inferences about the causal effects of the Great Migration from the available data.

18 Collins and Wanamaker (2014) use linked Census data and imputed wages constructed from occupational
averages to provide evidence on the causal effect of migration on black migrants’ wages during earlier
waves of the Great Migration. That they find little evidence of selective migration is consistent with my
interpretation of black-white differences in regional wage differentials, although no direct comparison can
be made since they only examine wages for blacks.
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3.a proofs

3.a.1 Proof of Proposition 3.3

Proposition. Suppose that a is distributed over [L, H] and∣∣∣∣∣∣∣
[log f (a)]′′{
[log f (a)]′

}2

∣∣∣∣∣∣∣
′

Q 0 when f ′(a) Q 0. (3.16)

1. If f (a) is log concave and lima→L f (a) = lima→H f (a) = 0, then E(a|a ≥ â) is convex
and E(a|a < â) is concave.

2. If f (a) is log convex and lima→H f (a) = 0 then E(a|a ≥ â) is concave.

The proof relies on an extension of the Prékopa-Borell theorem (Prékopa, 1971, 1973;
Borell, 1975) due to Mares and Swinkels (2011).19 Define the local ρ-concavity of g(a) at a
by

ρg(a) = 1− g(a)g′′(a)
[g′(a)2]

.

The justification for this definition is that if the local ρ-concavity of g(a) at a is t, then gt/t
is linear at a. Mares and Swinkels (2011, Theorem 2) show that the local ρ-concavity of g
can be used to bound the local ρ-concavity of the function Ḡ(a) =

´ 1
a g(t)dt. In the course

of establishing this result, they also provide the following corollary:

Corollary (Mares and Swinkels, 2011). If on some interval [ã, 1], g is decreasing and g(1) = 0
while ρg is decreasing, then ρḠ is decreasing on [ã, 1]. If g is decreasing, while ρg is increasing on
[ã, 1], then ρḠ is increasing on [ã, 1].

Proof of Proposition 3.3. For the log concave case, I prove the result for E(a|a ≥ â). That
−E(a|a < â) is convex follows by analogy. First, note that, since E(a|a ≥ â)− â = [

´ H
â 1−

F(t)dt]/[1 − F(â)] (this follows from integration by parts, see Bagnoli and Bergstrom,
2005), we can write

E(a|a ≥ â)′ =
f (â)

1− F(â)

´ H
â 1− F(t)dt

1− F(â)
.

Since

ρ´ 1−F(â) = 1−
f (â)
´ H

â 1− F(t)dt
[1− F(â)]2

,

19 See Caplin and Nalebuff (1991) for an introduction to ρ-concavity and the Prékopa-Borell theorem.
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E(a|a ≥ â) convex is equivalent to ρ′́ 1−F(â) ≤ 0. By the corollary, since 1 − F(â) is
decreasing, ρ′1−F(â) ≤ 0 implies ρ′́ 1−F(â) ≤ 0. Because log concave densities are unimodal
(see An, 1995), ρ1−F(â)′ ≤ 0 whenever â is less than or equal to the mode of a, since

ρ1−F(â) = 1− [− f ′(â)][1− F(â)]
[ f (â)]2

= 1 +
f ′(â)[1− F(â)]

[ f (â)]2

and, when f ′(â) > 0, f ′(â)/ f (â) and [1− F(â)]/ f (â) are positive and, by log concavity,
they are always decreasing.

When a exceeds the mode, so that f ′(â) < 0, we can apply the corollary once again in
order to infer the sign of ρ′1−F(â) from that of ρ′f (â). Noting that, since f (â) is log concave,
it can be written f (â) = exp[h(â)] where h(â) is a concave function,

ρ f (â) = 1− f ′′(â) f (â)
[ f ′(â)]2

= 1−
exp[h(â)]

{
exp[h(â)]h′(â)2 + exp[h(â)]h′′(â)

}
{exp[h(â)]h′(â)}2 = − h′′(â)

[h′(â)]2
.

Since log concavity implies h′′(â) < 0,−h′′(â)/[h′(â)]2 is positive and (weakly) decreasing,
so ρ f (â)′ ≤ 0, implying that ρ1−F(â)′ ≤ 0 and hence ρ´ 1−F(â)′ ≤ 0, establishing the result.

For the log convex case, note that if f (â) is log convex then f ′(â)/ f (â) is increasing and,
since f (H) = 0 implies that 1− F(â) is also log convex (see Theorem 2 of Bagnoli and
Bergstrom, 2005), [1− F(â)]/ f (â) is increasing as well. Thus, ρ1−F(â), and consequently
ρ´ 1−F(â) are positive and increasing when f ′(â) > 0. When f ′(â) < 0, by the conditions
of the proposition, we have h′′(â)/[h′(â)]2 positive and decreasing, so that ρ f (â), ρ1−F(â)
and hence ρ´ 1−F(â) are increasing, implying that E(a|a ≥ â) is concave.

3.a.2 Proof of Proposition 3.4

Proposition. Suppose that F(ε) is log concave and that members of group r receive treatment
with probability less than 1/2. Then

∂

∂∆r
[P(h|r, 1)− P(h|r, 0)] ≤ 0

if
f (∆r + γ)− f (∆r) ≤ 0.

Proof. Dropping the r subscripts for simplicity and applying Bayes’ rule,

P(h|1) = πF(∆ + γ)

πF(∆ + γ) + (1− π)F(∆)

and
P(h|0) = π [1− F(∆ + γ)]

π [1− F(∆ + γ)] + (1− π) [1− F(∆)]
.
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Differentiating,

∂P(h|1)
∂∆

=
π(1− π)

P(1)2 [F(∆) f (∆ + γ)− F(∆ + γ) f (∆)] ≡ π(1− π)

P(1)2 c1

and

∂P(h|0)
∂∆

=
π(1− π)

P(0)2 {[1− F(∆ + γ)] f (∆)− [1− F(∆) f (∆ + γ)]} ≡ π(1− π)

P(0)2 c0,

where P(1) = 1− P(0) = πF(∆ + γ) + (1− π)F(∆).
Notice that ∂P(h|n)/∂∆ (and hence c1) have the same sign as

f (∆ + γ)

F(∆ + γ)
− f (∆)

F(∆)
< 0,

where the inequality is a consequence of the log concavity of F, which implies that
( f /F)′ < 0.

Since P(1) < P(0) and c1 < 0,

∂P(h|1)
∂∆

− ∂P(h|0)
∂∆

= π(1− π)

[
c1

P(1)2 −
c0

P(0)2

]
<

π(1− π)

P(0)2 (c1 − c0)

=
π(1− π)

P(0)2 [ f (∆ + k)− f (∆)] ,

proving the proposition.

3.a.3 Proof of Proposition 3.5

Proposition. Suppose that F(ε) is log concave, limε→∞ f (ε) = 0, and that members of group r
receive treatment with probability less than 1/2. Then

∂

∂∆r

ˆ
[P(a|r, 1)− P(a|r, 0)] y0r(a)da ≤ 0

if
Cov [ f (∆r + γ(a)) , y0r(a)] ≤ 0.

Proof. First, note that, dropping the r indices for notational simplicity,

∂P(a|1)
∂∆

=
∂

∂∆
π(a)F (∆ + γ(a))´
π(a)F (∆ + γ(a)) da

=
c1(a)
P(1)2
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and
∂P(a|0)

∂∆
=

∂

∂∆
π(a) [1− F (∆ + γ(a))]´
π(a) [1− F(∆ + γ(a)] da

=
c0(a)
P(0)2

where P(1) = 1− P(0) =
´

π(a)F (∆ + γ(a)) da,

c1(a) ≡ π(a) f (∆ + γ(a))
ˆ

π(a)F(∆ + γ(a))da

− π(a)F (∆ + γ(a))
ˆ

π(a) f (∆ + γ(a)) da,

and

c0(a) ≡ −
[ˆ

π(a) [1− F (∆ + γ(a))] da
]

π(a) f (∆ + γ(a))

+ π(a) [1− F (∆ + γ(a))]
ˆ

π(a) f (∆ + γ(a)) da.

Second, observe that c1(a) has the same sign as

f (∆ + γ(a))
F (∆ + γ(a))

− E [ f (∆ + γ(a))]
E [F (∆ + γ(a))]

. (3.17)

Since F(ε) is log concave with limε→∞ f (ε) = 0, f /F decreases monotonically to zero.
Furthermore, since (3.17) determines the sign of c1(a) and E[ f (∆+γ(a)]/E[F(∆+γ(a)] ≥
0 is constant, there exists an a∗ such that c1(a) Q 0 as a R a∗.

Third, since y′0(a) > 0 and

ˆ
c1(a)da = E [ f (∆ + γ(a))] E [F (∆ + γ(a))]− E [F (∆ + γ(a))] E [ f (∆ + γ(a))] = 0,

we must have

ˆ
c1(a)y0(a)da <

ˆ a∗

−∞
c1(a)y0(a∗)da +

ˆ ∞

a∗
c1(a)y0(a∗)da < y0(a∗)

ˆ
c1(a)da = 0,

where a∗ is the unique solution to c1(a∗) = 0. As long as limit operations can be inter-
changed, this implies that

∂

∂∆

ˆ
[P(a|1)− P(a|0)] y0(a)da =

ˆ [
∂P(a|1)

∂∆
− ∂P(a|0)

∂∆

]
y0(a)da

=

ˆ [
c1(a)
P(1)2 −

c0(a)
P(0)2

]
y0(a)da

<
1

P(0)2

ˆ
[c1(a)− c0(a)] y0(a)da

since P(1) < P(0).
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Finally, the sign of the last expression is the same as that of

ˆ
[c1(a)− c0(a)] y0(a) =

ˆ [
π(a) f (∆ + γ(a)) da + π(a)

ˆ
π(a) f (∆ + γ(a)) da

]
y0(a)da

= E [ f (∆ + γ(a)) y0(a)]− E [y0(a)] E [ f (∆ + γ(a))]

= Cov [ f (∆ + γ(a)) , y0(a)] .
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tables and figures

Figure 3.1: Distributions with convex (concave) left- (right-) truncated expectations
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(1982), Heckman and Honore (1990) and Jawitz (2004). By direct calculation, if a ∼ U[0, 1] then
E(a|a ≥ â) = 1/2 + â/2 and E(a|a < â) = â/2. If a is exponential with rate parameter λ, then
it can be shown (integrate by parts and apply L’Hôpital’s rule) that E(a|a ≥ â) = 1/λ + â and
E(a|a < â) = 1/λ− â/(eλâ − 1) (see also Head, 2011).
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Figure 3.2: Distributions with concave truncated expectations
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and Bergstrom (2005). Expressions for the left- and right-truncated moments of the gamma,
Weibull and lognormal densities can be found in Jawitz (2004). If a is Pareto distributed with
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[β/(β− 1)](1− â1−β)/(1− â−β) (see also Head, 2011).
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Figure 3.3: Migration rates by year of birth
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Table 3.3: Covariance tests

Frequency estimator
1940 1950 1960 1970

Log wage 0.000 0.000 -0.001 -0.001

Wage -4.108 -8.990 -17.491 -28.169

Logit
1940 1950 1960 1970

Log wage 0.011 0.007 0.005 0.004

Wage 116.698 97.992 79.409 106.361

Notes—Frequency estimates computed using the sample analogs of Pr(North|Ed. = e)−
Pr(North|Ed. = e − 1). Logit estimates computed using Λ(x′β)[1− Λ(x′β)] where Λ is
the logistic CDF and x includes quadratics in age and education. All estimates are derived
from samples of whites.
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Table 3.4: Logit estimates

1940 1950 1960 1970

Age 0.0243*** 0.0151** 0.00216 0.0236***
(0.00488) (0.00751) (0.00361) (0.00333)

Age2 -0.000173*** -0.000149** -7.67e-05** -0.000274***
(4.92e-05) (7.52e-05) (3.57e-05) (3.27e-05)

Ed 0.316*** 0.180*** 0.161*** 0.0781***
(0.0156) (0.0216) (0.0106) (0.0106)

Ed2 -0.0114*** -0.00553*** -0.00604*** -0.00219***
(0.000724) (0.000993) (0.000480) (0.000459)

Constant -4.307*** -3.097*** -2.278*** -2.468***
(0.141) (0.211) (0.103) (0.101)

Observations 76,594 28,524 109,323 118,250

Notes—Logit models of migration among Southern-born whites. *** p<0.01, ** p<0.05, *
p<0.1.
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