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Abstract

Most of the literature on inventory management assumes that demand distributions

and the parameters that characterize these distributions are known with certainty.

However, this is not the case in practice and the unknown parameters must be esti-

mated using only a finite (and sometimes very limited) amount of historical demand

data. The sequential process of first estimating the parameters and then optimizing

the inventory based on these estimates does not perform well especially when there is

limited amount of data for estimation. The discrepancy between the performance of

an optimal inventory target and the performance of its estimate from a short demand

history is a serious, but often ignored, operational problem.

The first study in this dissertation aims to solve this problem by considering a demand

history with distributional characteristics that are hard to capture using standard dis-

tributions, and uses a flexible system of distributions that can capture a wide variety

of distributional shapes with asymmetry, peakedness, and tail weight. The second

study, on the other hand, considers an intermittent demand history which includes

many zero values because demand does not arrive every inventory-review period. In

both of these studies, the objective is to develop inventory-target estimation methods

that account for the operational costs of incorrectly estimating the unknown param-

eters in the demand model. In particular, we combine inventory management and

parameter estimation into a single task to balance the costs of under- and overes-

timation of the optimal inventory target. In the third study, we focus on finding a

probabilistic guarantee on the near-optimality of an inventory-target estimator in the

presence of temporally dependent demand data. Our findings shed light on how the

autocorrelation and tail dependence in a demand process affect the number of demand

observations required to achieve a performance arbitrarily close to the performance of

the optimal inventory target, which has been only investigated for independent and

identically distributed demand in the inventory management literature.
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Chapter 1

Introduction

A fundamental issue in the theory and practice of inventory management has been

the modeling of random demand since the inception of stochastic inventory models

in the 1950s. Wagner (2002) distinguishes two approaches in his assessment of the

relation between inventory management and the use of historical demand data dur-

ing the fifty-year period from early 1950s to 2000s. The first approach builds on the

premise of using point forecasts and observed variation in forecast error to answer the

fundamental questions of inventory management such as ‘is it now time to replenish

inventory?’ and ‘what should be the order quantity?’. Pioneered by Brown (1959),

this approach aims to answer these questions with the current demand data on hand

and is motivated by the requirements of practice. An example is Brown’s renowned ex-

ponential smoothing method: The inventory manager uses historical data to forecast

the demand over lead time plus a review period and accounts for the accompanying

forecast error so as to hedge against demand uncertainty. The forecast-error distribu-

tion purportedly reveals inherent uncertainty about future demand, and typically, is

assumed to be normally distributed. Wagner (2002) designates the approach of using

point forecasts and observed variation in forecast error by the term ‘PFErr’. The

second approach, on the other hand, is based on applying an inventory replenishment
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formula obtained from a stochastic inventory model by using repeatedly updated sta-

tistical estimates of the parameter values in the assumed demand distribution of the

inventory model. Wagner (2002) names this alternative approach ‘OREst’. We refer

the reader to Wagner (2002) and the references therein for the underlying assump-

tions of the ‘PFErr’ approach. These assumptions typically are seriously violated in

practice, and thus contribute to its failure to deliver what it promises in terms of the

target service levels and inventory costs.

In this dissertation, we focus on the so-called ‘OREst’ approach. Most of the

literature on inventory management assumes that the demand (and other uncertain

quantities) is described completely by probability distributions with precisely specified

parameter values. However, an explicit consideration of the impact of statistical errors

arising from having only a limited amount of data (for example, due to a nonstationary

environment) on the performance of the stochastic inventory models is conspicuously

lacking from the current literature. Wagner (2002) states that dealing with this

impact is one of the major challenges facing a practitioner. For example, when the

inventory manager uses historical data to estimate the mean and standard deviation

of the postulated demand distribution, the inventory target – which is known to be

optimal for the true values of the mean and standard deviation – may be either

overestimated or underestimated. The costs of underestimation and overestimation

are often not the same, and thus they must be taken into account in inventory-target

estimation.

We start our study of inventory-target estimation by analyzing industrial de-

mand data; we identify a large number of demand histograms with significant levels

of asymmetry and tail weight. This naturally casts doubt on the performance of

inventory-target estimates obtained from limited amounts of demand data under the

assumption of a normal demand distribution. Our industrial data analysis also points

out the need for an adequate representation of the shape of demand distributions,
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especially with respect to the right tail of the demand, which is the most critical for

inventory management. In Chapter 3, we address this issue in a newsvendor setting

by modeling the demand with a flexible system of distributions known as the John-

son Translation System, which captures a wide variety of distributional shapes with

asymmetry, peakedness, and tail weight. Using the Johnson translation system for

demand modeling permits the development of procedures that require no restrictive

assumptions about the first four moments of the demand random variable. In this

first study we consider a newsvendor problem and quantify the expected cost of pa-

rameter uncertainty (also called the inaccuracy in inventory-target estimation) as a

function of the length of the historical demand data, the critical fractile, and the

shape parameters of the demand distribution. We also develop an inventory-target

estimation procedure that minimizes the expected total operating cost, which is the

sum of the expect cost due the stochastic demand uncertainty and the expected cost

due to parameter uncertainty. That is, the resulting inventory-target estimate ac-

counts for the operational costs of incorrectly estimating the unknown parameters in

the demand model.

In Chapter 4, we consider the problem of estimating inventory targets from limited

amount of demand data when the stationary demand process is intermittent. In

every period, either a positive demand or zero demand is observed with an unknown

probability. We represent the size of positive demand by a location-scale family of

distributions with unknown mean and variance. Similar to our first study, we first

quantify the expected cost of treating the estimates of the unknown parameters as

if they were the true values. We then minimize this expected cost due to parameter

uncertainty with respect to a threshold variable that factors the estimation error

into inventory decision. In certain cases, the use of an optimized threshold leads to

significant reductions in the expected cost of parameter uncertainty.

3



Motivated by industrial data of intermittent demand, we also introduce a copula-

based demand model to capture the correlation between demand size and the number

of zero-demand periods preceding the demand. In this general setting, we propose

two finite-sample hypothesis tests to investigate the existence of correlation in an

intermittent demand history. We show that a statistical test which accounts for the

expected cost of parameter uncertainty tends to reject the independence assumption

less frequently than a statistical test which only considers the sampling distribution

of the copula-parameter estimator. We find that such situation arises especially when

the intermittent demand history is short and the percentage of nonzero demand re-

alizations in the demand history is small.

In Chapter 5, we focus on a demand process with temporal dependence where the

demand realization in a time period depends on the past realizations of demand in

the previous periods. The AutoRegressive (AR) process with normally distributed

random shocks is one model with these characteristics that is widely used in inventory

management. It is well known that the linearity of this process implies that the

marginal demand distribution is normal. The distinguishing feature of our study is the

use of a copula-based time series model and its semi-parametric estimation that allow

the decision maker to avoid any parametric assumptions about the marginal demand

distribution. The objective of our study is to identify a probabilistic guarantee on

the near-optimality of the resulting inventory-target estimator. More specifically, we

are interested in finding a lower bound to the probability of the expected cost of the

inventory-target estimator being at most 1 + ε of the minimum expected cost of the

optimal inventory target, where ε is a positive constant. This lower bound serves as

a confidence level for the decision maker to assure a performance guarantee to the

inventory-target estimate obtained from a limited demand history.

Conditions that ensure this so-called ε-optimality of an inventory target estimate

have been studied in inventory management literature in the presence of independent
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and identically distributed demand observations. To the best of our knowledge, we

are the first to investigate an ε-optimality guarantee for temporally dependent de-

mand data. Our findings shed light on how the autocorrelation and tail dependence

(i.e., the dependence at very high or very low demand realizations) in a demand

process affect the number of demand observations required to achieve a performance

arbitrarily close to the performance of the optimal inventory target. We also provide

insights on when it is safe to ignore the temporal dependence in a demand history

in light of the additional cost imposed by the statistical estimation error around the

temporal-dependence parameters, and when it is necessary to account for the tem-

poral dependence in the demand process despite the limited history of temporally

dependent demand.

We next present a general overview of the inventory management literature under

incomplete demand information in Chapter 2. We will provide a more detailed review

specialized to each of the own studies in the relevant chapters of the dissertation.

Likewise, the necessary mathematical notation is defined in each chapter. Finally, we

conclude with a summary and potential future research directions in Chapter 6.
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Chapter 2

Related Work

In this chapter, we present an overview of the inventory management literature under

incomplete demand information. A more detailed discussion of the past research

related to each of the three studies will be presented in the subsequent chapters.

Inventory management literature under incomplete demand information falls in

two main categories: Parametric and nonparametric. Parametric methods assume

that the true demand distribution belongs to a known parametric family of distribu-

tions, and use parameters estimated from historical demand data. This assumption

is relaxed by nonparametric methods, which use the empirical distribution for de-

mand modeling. A parametric method can be further classified into two streams:

Bayesian methods which treat unknown parameters as random variables and update

their distributions over time, and the frequentist methods which assume a fixed true

value for each unknown parameter. Our work in Chapters 3 and 4 is in “parametric

and frequentist” stream. In Chapter 5, we position our work as “semiparametric and

frequentist” as we adopt a nonparametric method to estimate the marginal demand

distribution and a parametric method to estimate the temporal dependence structure.

The Bayesian methods choose a prior distribution for an unknown parameter and

update its distribution with the observations collected over time; see Scarf (1959,
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1960), and Iglehart (1964) for early studies. This approach builds on the assumption

that the prior and posterior distributions have the same form. The main premise of

this method is reducing an inventory control problem with a two-dimensional state

space (i.e., one state for the inventory level and another for a sufficient statistic of the

historical demand data) to a revised dynamic program with a single state variable,

and then scaling the optimal inventory target of the revised problem up to the solution

of the original problem. This procedure works well when the demand is restricted to

specific distributions such as exponential, gamma, and range families. Azoury (1985)

extends the method to the case where demand is uniform or Weibull. Lovejoy (1990)

uses Bayesian analysis to show that a myopic inventory policy based on a critical

fractile can be optimal or near optimal in the incomplete information setting. In

contrast, we assume that an unknown parameter is not random but has a fixed value

which is only known by nature. We capture the uncertainty around the point estimate

of an unknown parameter by its sampling distribution, as in papers in the frequentist

stream.

Hayes (1969) pioneered the frequentist approach in inventory management to es-

timate the newsvendor quantity that hedges against both the stochastic demand

uncertainty and the uncertainty around the parameter estimates, when the demand

distribution is either exponential or normal. Hayes achieves this by minimizing a

frequentist risk measure called Expected Total Operating Cost (ETOC). Katircioglu

(1996) revisits Hayes’ method and shows that the method applies not only to exponen-

tial and normal distributions but to all distributions known up to a location and scale

parameter. Akcay et al. (2011) extend this approach to a flexible, transformation-

based system of distributions to capture a wider variety of distributional shapes. In

parallel to Hayes (1969), Liyanage and Shanthikumar (2005) introduce the concept

of operational statistics to maximize the a priori expected profit; i.e., the expected

newsvendor profit where the expectation is taken with respect to demand history and
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the demand in the forthcoming period, when the demand distribution is known up

to a scale parameter. Chu et al. (2008) obtain the optimal operational statistic for

the location-scale family of distributions. Ramamurthy et al. (2012) also consider a

newsvendor model and propose a heuristic based on operational statistics to obtain

improved inventory targets in the presence of an unknown shape parameter.

The objective of all studies above is to integrate inventory optimization and pa-

rameter estimation into a single task. This is also the goal in Chapters 3 and 4 in

this dissertation. In Chapter 3, we use a flexible family of distributions named John-

son Translation System (JTS, Johnson 1949) as in Akcay et al. (2011) to capture

a wide variety of distributional shapes for the demand size. In Chapter 4, we rep-

resent the demand size with location-scale family of distributions as in Katircioglu

(1996) and Chu et al. (2008), but we also consider intermittency of demand which is

quite common in practice. Furthermore, we explicitly model the correlation between

the demand size and the number of inter-demand periods, and minimize the a pri-

ori expected cost of not acting optimally (i.e., the expected regret) due to incorrect

estimation of intermittent demand parameters.

In Chapter 5, our objective is not to integrate parameter estimation and inven-

tory optimization. Instead, we focus on finding a probabilistic guarantee on the

ε-optimality of a practical inventory-target estimation method in the presence of

temporally dependent demand data. The inventory-target estimate in Chapter 5 cor-

responds to the Sample Average Approximation (SAA) solution of Levi et al. (2007)

under the assumption of independent and identically distributed demand data. To

the best of our knowledge, we are the first in investigating an ε-optimality guarantee

for temporally dependent demand data.

Robust inventory models address the ambiguity in the demand distribution by

considering a family of distributions characterized by their descriptive statistics such

as mean, variance, mode, and range. Scarf (1958) and Gallego and Moon (1993)
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identify the newsvendor quantity that maximizes the minimum profit that would

occur when only the demand mean and variance are specified. Moon and Gallego

(1994) and Gallego et al. (2001) apply this approach to multi-period models. Perakis

and Roels (2008) derive the order quantity that minimizes the newsvendor’s maximum

regret by also considering factors such as asymmetry and unimodality of the demand

distribution.

Since we minimize the expected total operating cost in Chapter 3 and the expected

cost of parameter uncertainty associated with incorrectly estimating the unknown pa-

rameters in Chapter 4, our work is related to this research stream. But, in contrast,

we make direct use of historical demand data instead of assuming partial knowledge

about the demand distribution. Bertsimas and Thiele (2006) address demand am-

biguity in a multiperiod inventory control problem by specifying an uncertainty set

parameterized by a budget of uncertainty based on the framework of robust optimiza-

tion. See and Sim (2010) introduce a factor-based demand model that can capture

autocorrelation as well. More recently, Klabjan et al. (2013) introduce a model that

only requires historical data and minimize the worst case expected cost over a set of

demand distributions, which is defined as all the possible distributions satisfying a

chi-square goodness-of-fit test. In this dissertation, we directly account for the ran-

dom nature of demand parameter estimators instead of building uncertainty sets for

unknown demand data.

We conclude this section with a review of the nonparametric methods which make

no assumptions regarding the parametric form of the demand distribution; Book-

binder and Lordahl (1989), Lordahl and Bookbinder (1994), and Godfrey and Powell

(2001) are some early examples. More recently, Huh and Rusmevichientong (2009),

Huh et al. (2011), and Besbes and Muharremoglu (2013) focus on a repeated newsven-

dor problem to develop adaptive data-driven algorithms for setting inventory targets

and study the implications of demand censoring. Considering the newsvendor prob-

9



lem and its multi-period extension, Levi et al. (2007) identify the minimum number

of independent demand samples drawn from the true demand distribution to guar-

antee that the difference between the expected cost of the policy using the empirical

demand distribution and the expected cost of the optimal policy with full access to

the demand distribution is not greater than a prespecified error with a certain level

of confidence. Levi et al. (2012) characterize the properties of the demand distri-

bution that impact the quality of an inventory target obtained from the empirical

demand distribution. Huh et al. (2011) propose nonparametric adaptive inventory

control policies that converge almost surely to the optimal solution over time in the

presence of historical sales data. We focus on parametric methods of inventory-target

estimation in Chapters 3 and 4. In Chapter 5, the copula-based representation of

temporally dependent demand allows the decision maker to construct an estimate of

the multivariate distribution, which characterizes the stationary time-series data, by

using the empirical demand distribution function. That is, the decision maker follows

a nonparametric approach for the estimation of the marginal demand distribution and

a parametric approach for the estimation of the temporal dependence in the demand

process. The so-called semiparametric approach leads to an estimate of the critical

fractile solution as a function of the empirical demand distribution and the estimated

values of the temporal dependence parameters.
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Chapter 3

Improved Inventory Targets in the

Presence of Limited Historical

Demand Data

3.1 Introduction

Traditionally, the literature on inventory management assumes that the demand dis-

tribution and the values of its parameters are known with certainty. However, this is

not the case in practice, and inventory targets must be estimated using only a finite

(and sometimes, very limited) amount of historical demand data. In this chapter,

we consider this practical situation and describe the repeated newsvendor setting of

interest as follows: (i) Historical demand data {xt; t = 1, 2, . . . , n} of length n are

available with no forecasting process in place. (ii) The cumulative distribution func-

tion (cdf) of the demand random variable is assumed to be F (·;θ) with the stationary

(but unknown) parameter vector θ. (iii) Maximum likelihood estimation (MLE) is

used for obtaining the estimate θ̂ of θ from the historical demand data. That is, θ̂ is

chosen as the vector of parameter values that maximize the likelihood function of the

11



observed data {xt; t = 1, 2, . . . , n}. Under fairly general regularity conditions, the

MLEs are consistent and their asymptotical joint distribution approaches the multi-

variate normal distribution with the minimum attainable covariance matrix (Rohatgi

and Saleh, 2000). (iv) The decision maker sets the inventory target to Q̂ = F−1(ϕ; θ̂),

where ϕ is the critical fractile defined as the ratio of unit shortage cost to the sum

of unit shortage and inventory holding costs. The inventory policy that determines

the inventory target in this way is called the maximum likelihood policy (MLP) (Scarf

1959; Fukuda 1960; Gupta 1960).

The decision maker is, however, rarely fortunate enough to be in an asymptotic

situation. Since a small sample size is generally the rule when estimating an inventory

target, the asymptotical properties of the MLEs may not hold in practical cases

with limited historical demand data. Nevertheless, the MLP builds on the implicit

assumption that the estimated demand cdf F (·; θ̂) is identical to the true demand cdf.

Consequently, the MLP ignores the uncertainty around θ̂ and hence, the uncertainty

around the estimated inventory target Q̂. Hayes (1969) quantifies the inaccuracy

in the estimation of this particular inventory target using the concept of Expected

Total Operating Cost (ETOC); i.e., the expected one-period cost associated with

operating under an estimated inventory policy. Assuming exponentially and normally

distributed demands, Hayes identifies the inventory targets that minimize the ETOC

in the presence of limited historical demand data. The distinguishing feature of the

resulting inventory targets is that they are biased estimators in a framework that

combines statistical estimation with inventory optimization. While it is the first

study to show that a statistically good job of estimation does not necessarily result in

an inventory target that minimizes the ETOC, Hayes’ results are limited to demand

random variables that are either exponentially or normally distributed.

In this chapter, we quantify the inaccuracy in inventory-target estimation and

identify the ETOC-minimizing inventory target for a demand random variable that

12



does not necessarily have an exponential or normal distribution. For the exponentially

distributed demand, the coefficient of variation is 1, the coefficient of skewness
√
β1

(i.e., the measure of the symmetry of the demand’s density function) is 2, and the

coefficient of kurtosis β2 (i.e., the measure of the peakedness and the tail weight of

the demand’s density function) is 9 for any value of mean, while
√
β1 is 0 and β2

is 3 for the normally distributed demand with any pair of mean and variance. Our

study differs from Hayes (1969) in that we allow the inventory manager to avoid any

assumptions about the first four moments (i.e., mean, variance,
√
β1, and β2) of the

demand random variable. We do this by representing the demand with the Johnson

translation system (JTS); i.e., a parameterized family of distributions that has the

ability of matching any finite first four moments of a random variable (Johnson, 1949).

The use of JTS for demand modeling provides the flexibility of capturing (unimodal

and bimodal) distributional shapes with different levels of symmetry, peakedness, and

tail weights.

Both historical demand data of brick-and-mortar companies from the Fortune 1000

list (Cornacchia and Shamir, 2009) and data collected by SmartOps Corporation

from Fortune 500 companies in manufacturing, consumer packaged goods, chemicals,

technology, and distribution/retail industries (SmartOps Corporation, 2009) indicate

that the flexibility provided by the JTS is, in fact, necessary. Specifically, Cornacchia

and Shamir (2009) find that demands of products with highly-skewed, long-tailed

distributions often constitute a large portion of a company’s total demand. For

example, 98% of the products of an automotive aftermarket parts company have

highly skewed demand and these products have a share of 62% in the total revenue.

The percentage of products with similar demand characteristics and the share of

these products in total revenue are 86% and 46% for a consumer packaged goods

company, and 44% and 36% for a food and beverage company. The data collected

by SmartOps Corporation from a consumer packaged goods company and illustrated

13



Figure 3.1: Histograms of the demand data collected by SmartOps Corporation for
products from a consumer packaged goods company
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Figure 1 Histograms of the Demand Data Collected by SmartOps Corporation for Products from a Consumer Packaged Goods Company
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inventory target that minimizes the ETOC, Hayes’
results are limited to demand random variables that
are either exponentially or normally distributed.

In this paper, we quantify the inaccuracy in the
inventory-target estimation and identify the ETOC-
minimizing inventory target for a demand random
variable that does not necessarily have an exponen-
tial or normal distribution. For the exponentially dis-
tributed demand, the coefficient of variation is 1, the
coefficient of skewness

√
�1 (i.e., the measure of the

symmetry of the demand’s density function) is 2, and
the coefficient of kurtosis �2 (i.e., the measure of the
peakedness and the tail weight of the demand’s den-
sity function) is 9 for any value of mean, and

√
�1

is 0 and �2 is 3 for the normally distributed demand
with any pair of mean and variance. Our paper dif-
fers from Hayes (1969) in that we allow the inven-
tory manager to avoid any assumptions about the
first four moments (i.e., mean, variance,

√
�1, and �2)

of the demand random variable. We do this by rep-
resenting the demand with the Johnson translation
system (JTS), that is, a parameterized family of dis-
tributions that has the ability of matching any finite1

first four moments of a random variable (Johnson
1949). The use of JTS for demand modeling provides

1 Although the first four moments of all distributions of the JTS are
finite, the ability to match any finite first four moments provides a
great deal of flexibility that is sufficient for our inventory problem.
Johnson (1949) describes how to modify the Johnson cdf to attain
infinite moments, but this is beyond the scope of our paper.

the flexibility of capturing (unimodal and bimodal)
distributional shapes with different levels of symme-
try, peakedness, and tail weights. Both the historical
demand data of brick-and-mortar companies from the
Fortune 1000 list (Cornacchia and Shamir 2009) and
the data collected by SmartOps Corporation from the
Fortune 500 companies in manufacturing, consumer
packaged goods, chemicals, technology, and distri-
bution/retail industries (SmartOps Corporation 2009)
indicate that the flexibility provided by the JTS is,
in fact, necessary. Specifically, Cornacchia and Shamir
(2009) find that the demands of the products with
highly skewed, long-tailed distributions often consti-
tute a large portion of a company’s total demand.
For example, 98% of the products of an automo-
tive aftermarket parts company have highly skewed
demand, and these products have a share of 62% in
the total revenue. The percentage of products with
similar demand characteristics and the share of these
products in total revenue, respectively, are 86% and
46% for a consumer packaged goods company and
44% and 36% for a food and beverage company. The
data collected by SmartOps Corporation from a con-
sumer packaged goods company and illustrated in
Figure 1 exhibit similar demand characteristics as well
as bimodality; so these features of the demand cannot
be ignored.

A close look at the existing literature reveals that
the impact of the shape of the demand’s density
function (and thus,

√
�1 and �2) on the inventory-

target estimation has often been overlooked. For

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.

in Figure 3.1 exhibit similar demand characteristics as well as bimodality; so these

features of demand cannot be ignored.

A close look at the existing literature reveals that the impact of the shape of the

demand’s density function (and thus,
√
β1 and β2) on the inventory-target estimation

has often been overlooked. For example, Naddor (1978) and Fortuin (1980) discuss

that inventory decisions are best described by the mean and the variance of the

demand, and the coefficient of skewness
√
β1 and the coefficient of kurtosis β2 may

not be important. However, this discussion is based on modeling the demand with

one- and two-parameter distributions, which can only represent limited values of
√
β1

and β2. Actually, the demand distribution function often must have at least four

parameters for the adequate representation of the mean, dispersion, skewness, and

long tails (Lau et al., 1998). Indeed, Heuts et al. (1986) revisit the examples in

Naddor (1978) using the four-parameter Schmeiser-Deutsch distribution (Schmeiser

and Deutsch, 1977), and conclude that the optimal inventory target depends on the

14



shape of the demand’s density function. Kottas and Lau (1980) also point out the

insufficiency of two-parameter distributions in representing demands with skewed

distributional shapes; the authors use four-parameter distributions of the Pearson’s

system (Pearson, 1895) and the Schmeiser-Deutsch’s system. This is one of the early

papers noting that the use of standard distributions for demand modeling may be

overly restrictive and unrealistic, while flexible systems of distributions such as the

Pearson’s system and the Schmeiser-Deutsch’s system are versatile and realistic; see

Lau and Zaki (1982), Kumaran and Achary (1996), Bartezzaghi et al. (1999), and

Tang and Grubbstrom (2006) for further discussion on capturing the distributional

shape of stochastic demand with a flexible distribution system.

In this study, we also use a flexible distribution system – the Johnson Translation

System (JTS) – for representing the demand distribution. The ease in the applica-

tion of the ETOC concept of Hayes (1969) for setting inventory targets depends on

the availability of well-defined and easy-to-compute sampling distributions for the

MLEs of the unknown demand parameters. In this aspect, JTS is a good candidate

for demand modeling in comparison to the flexible distribution systems used in the

past inventory research. For example, the curves of the JTS generally agree with

Pearson curves having (nearly) the same first four moments. However, the cdf of the

JTS allows us to obtain the sampling distributions of the Johnson shape parameter

estimates by invoking well-established normal distribution theory.

By using the ETOC concept together with the JTS for flexible demand modeling,

we set the inventory target of a product by accounting for the uncertainty around

the demand parameters estimated from finite historical data. We summarize our

contributions as follows:

1. We use the JTS for demand modeling within the ETOC framework for the first

time in inventory management.
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2. We quantify the inaccuracy in the inventory-target estimation as a function of

the length of the historical data, the critical fractile, and the shape parameters

of the demand distribution.

3. In the presence of this inaccuracy, we identify the inventory target with the

minimum ETOC, accounting for the uncertainty around the demand parameters

estimated from limited historical data. We do that by seeking the ETOC-

minimizing inventory target estimate from a class of estimators implied by the

JTS. We name the inventory policy that determines the inventory target in this

way as Hayes Inventory Policy (HIP).

4. We extend HIP to set inventory targets subject to Type 1 and Type 2 service-

level constraints.

The remainder of this chapter is organized as follows. In Section 3.2, we present the

modeling framework. We quantify the inaccuracy in the inventory-target estimation

in Section 3.3, and use HIP for identifying the ETOC-minimizing inventory targets

in Section 3.4. In Section 3.5, we provide insights on how the shape of the demand’s

density function influences the effectiveness of HIP in search of an improved inventory

targets in the presence of limited historical demand data. We discuss the implemen-

tation details in Section 3.6 and the extension of HIP for service-level constraints in

Section 3.7.

3.2 The Model

In Section 3.2.1, we present the assumptions of the inventory model and introduce

the JTS for demand modeling. We present the maximum likelihood policy with the

Johnson translation system (MLP with JTS) in Section 3.2.2 and the Hayes Inventory

Policy (HIP) in Section 3.2.3. In Section 3.2.4, we discuss the computation of the

ETOC function.
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3.2.1 Demand Model and Newsvendor Problem

In a repeated newsvendor setting, we study the problem of determining inventory

targets in the presence of limited historical demand data. Specifically, the decision

maker approaches the ordering decision of each period with zero stock on hand, and

sets the inventory target to q units that arrive instantaneously at the beginning of

each period. The inventory target is determined using only a historical data set

comprised of independent demand observations. This reflects the situation where the

decision maker can keep track of all of the orders, and the records regarding the lost

sales can be retained even if some of the orders cannot be met, e.g., when the orders

arrive through Internet, fax, or phone (Cachon and Terwiesch, 2009). The stock of

q units is then depleted by the random demand X. We assume that all remaining

units, if any, are disposed and the shortages are written off at the end of each period.

A common assumption in modeling the random demand X is that the true de-

mand distribution is a standard distribution such as exponential, gamma, or normal.

However, the shapes represented by the standard families of distributions are lim-

ited, and therefore, they might fail to capture the distributional characteristics of the

historical demand data. It is also possible that a goodness-of-fit test might reject

or accept all candidate demand distributions, depending on the number of available

demand observations. Furthermore, the inventory manager might not be familiar

with all the standard distributions on a lengthy list that can be used for modeling the

demand. We overcome these challenges of demand modeling by using a highly flexible

system of distributions known as the Johnson Translation System (JTS). Specifically,

the JTS for random demand X is defined by a cdf of the form

F (x; γ, δ, ξ, λ) = Φ

(
γ + δr

(
x− ξ
λ

))
,
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Figure 3.2: The (β1, β2)-space covered by the JTS
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distributions by matching their first four moments,
whereas the SB family approximates the exponen-
tial, gamma, uniform, and Weibull distributions. It
is important to note that the JTS can represent any
(finite) first four moments and hence, the distribu-
tional shapes represented by the JTS are not limited to
the shapes of the standard distributions that appear
in Figure 2. More specifically, the use of the JTS for
demand modeling enables us to solve the inventory
problem of interest for any pair of

√
�1 and �2 that a

continuous demand random variable can have. Any
mean and (positive) variance can also be attained by
any one of the Johnson families. Within each family,
a distribution is completely specified by the values
of the parameters 	, 
, �, and �, and the range of
X depends on the family of interest: X > � and � = 1
for the SL family; � < X < � + � for the SB family;
−� < X < � for the SU family; and −� < X < �,
� = 0, and � = 1 for the SN family. Examples of the
probability density functions (pdfs) captured by the
JTS can be found in Johnson (1987).
All the relevant revenues and costs associated with

the decision to order I units for the forthcoming
period are incorporated into a loss function L�I� x�
that is piecewise linear in I − x. Specifically, we take

L�I� x� =
⎧⎨
⎩

ce�I − x� for I ≥ x�

cs�x − I� for I < x�

where ce is the unit inventory holding cost (i.e., unit
cost of excess stock) and cs is the unit cost of short-
age. Thus, for each family of the JTS the expected loss
function can be written as

L̄�I�	�
����� =
∫ �U

�L

L�I� x�dF �x�	�
������

where �L and �U are the lower and upper bounds
of the support of the Johnson demand distribution.

Without loss of generality, we take ce as 1 and use
�/�1 − �� for cs , where � denotes the critical fractile
cs/�ce + cs�. Thus, we represent the expected loss in
terms of the inventory holding cost in the remainder
of the paper.
Because the expected loss function L̄�I�	�
�����

is convex in I , the optimal inventory target I∗ is
the value of I that minimizes L̄�I�	�
����� for the
forthcoming period. Therefore, we represent the opti-
mal inventory target under complete certainty about
the demand distribution function F � · �	�
�����
by I∗ = F −1���	�
�����. Because the equation
F �I∗�	�
����� = � can be equivalently written as
�	 + 
r��I∗ − ��/��� = �, we have z� = 	 +

r��I∗ −��/��, where z� is the �th quantile of the stan-
dard normal random variable Z (i.e., Pr�Z ≤ z�� = �).
Therefore, the use of the JTS for demand modeling
leads to an optimal inventory target of the follow-
ing form under complete certainty about the demand
distribution:

I∗ = � + �r−1

(
− 	



+ z�




)
�

For ease of presentation in the remainder of the paper,
we assume that the type of the Johnson transforma-
tion r is known. We discuss the relaxation of this
assumption in Online Appendix C.2. However, the
true values of the Johnson demand parameters 	,

, �, and � are not known; that is, the parameters
of the demand distribution and the inventory target
are to be estimated. The inventory manager faces the
same problem at the beginning of each period and
estimates the inventory target using only the most
recent demand observations that constitute a station-
ary data set.

3.2. MLP with JTS
The inventory target under MLP with JTS is of
the same form with the optimal inventory target
under complete certainty except that the unknown
JTS parameters �, �, 	, and 
 are replaced by their
MLEs �̂, �̂, �	, and 
̂:

Î = �̂ + �̂r−1

(
− �	


̂
+ z�


̂

)
�

It is important to emphasize the roles played by dif-
ferent Johnson parameters in the distribution of the
demand random variable X. If we write X = � + �Y
with Y denoting the standard Johnson random vari-
able, then we observe that the pdf of X is of the
same shape as that of Y . Although the standard devi-
ation of X is � times that of Y and � only affects
the expected value of X, parameters � and � have
no effect on the values of

√
�1 and �2. Thus, parame-

ters � and � have no effect on the shape of the density

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.

where γ and δ are shape parameters, ξ is a location parameter, λ is a scale parameter,

Φ(·) is the cdf of the standard normal random variable, and r(·) is one of the following

transformations:

r(y) =





log (y) for the SL (lognormal) family

log
(
y +

√
y2 + 1

)
for the SU (unbounded) family

log (y/(1− y)) for the SB (bounded) family

y for the SN (normal) family

There is a unique family (choice of r) for each feasible combination of the coefficient of

skewness
√
β1 and the coefficient of kurtosis β2 that determine the shape parameters

γ and δ. Figure 3.2 presents the (β1, β2)-space covered by the JTS and illustrates the

regions captured by each Johnson family. It also displays the location-scale family of

distributions considered by Katircioglu (1996) to provide examples of the standard

distributions represented by the JTS. Figure 3.2 indicates that the distributions of
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the SU family approximate the Student’s t, logistics, and Laplace distributions by

matching their first four moments, while the SB family approximates the exponential,

gamma, uniform, and Weibull distributions. It is important to note that the JTS can

represent any feasible (finite) first four moments and hence, the distributional shapes

represented by the JTS are not limited to the shapes of the standard distributions

that appear in Figure 3.2. More specifically, the use of the JTS for demand modeling

enables us to solve the inventory problem of interest for any pair of
√
β1 and β2 that

a continuous demand random variable can have. Any mean and variance can also be

attained by any one of the Johnson families. Within each family, a distribution is

completely specified by the values of the parameters γ, δ, λ, and ξ, and the range of X

depends on the family of interest: X > ξ and λ = 1 for the SL family; ξ < X < ξ+λ

for the SB family; −∞ < X < ∞ for the SU family; and −∞ < X < ∞, ξ = 0,

and λ = 1 for the SN family. Figure 3.3 provides examples of the probability density

functions (pdfs) represented by each family of the JTS with ξ = 0 and λ = 1. Further

examples of the pdfs captured by the JTS can be found in Johnson (1987).

All the relevant revenues and costs associated with the decision to order q units for

the forthcoming period are incorporated into a loss function L(q, x) that is piecewise

linear in q − x. Specifically, we take

L(q, x) =





h(q − x) for q ≥ x,

b(x− q) for q < x,

where h is the unit inventory holding cost (i.e., unit cost of excess stock) and b is the

unit cost of shortage. Thus, for each family of the JTS the expected loss function can

be written as

L̄(q; γ, δ, ξ, λ) =

∫ ΩU

ΩL

L(q, x)dF (x; γ, δ, ξ, λ),
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Figure 3.3: Examples of the pdfs represented by the JTS with ξ = 0 and λ = 1.
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where ΩL and ΩU are the lower and upper bounds of the support of the Johnson

demand distribution. Without loss of generality, we take h as 1 and use ϕ/(1 − ϕ)

for b, where ϕ denotes the critical fractile b/(h+ b). Thus, we represent the expected

loss in terms of the inventory holding cost in the remainder of the chapter.

Since the expected loss function L̄(q; γ, δ, ξ, λ) is convex in q, the optimal inventory

target q∗ is the unique value of q that minimizes L̄(q; γ, δ, ξ, λ) in the forthcoming

period. We represent the optimal inventory target under complete certainty about

the demand distribution function F (·; γ, δ, ξ, λ) by q∗ = F−1(ϕ; γ, δ, ξ, λ). Because the

equation F (q∗; γ, δ, ξ, λ) = ϕ can be equivalently written as Φ (γ + δr ((q∗ − ξ)/λ)) =

ϕ, we have zϕ = γ + δr((q∗ − ξ)/λ), where zϕ is the ϕth quantile of the standard

normal random variable Z (i.e., P(Z ≤ zϕ) = ϕ). Therefore, the use of JTS for

demand modeling leads to an optimal inventory target of the following form under

20



complete certainty about the demand distribution:

q∗ = ξ + λr−1
(
−γ
δ

+
zϕ
δ

)

For ease of presentation in the remainder of the chapter, we assume that the type of

the Johnson transformation r is known. We discuss the relaxation of this assumption

in Section 3.6. However, the true values of the Johnson demand parameters γ, δ,

ξ, and λ remain to be unknown. The decision maker faces the inventory-target

estimation problem at the beginning of each period. Then, the demand parameters

are estimated from scratch by using all the demand observations that constitute a

stationary data set at the time of decision.

3.2.2 Maximum Likelihood Policy (MLP) with Johnson

Translation System (JTS)

The inventory target under MLP with JTS is of the same form as the optimal inven-

tory target under complete certainty except that the unknown JTS parameters ξ, λ,

γ, and δ are replaced by their MLEs ξ̂, λ̂, γ̂, and δ̂:

Q̂ = ξ̂ + λ̂r−1

(
− γ̂
δ̂

+
zϕ

δ̂

)

It is important to emphasize the roles played by different Johnson parameters in

the distribution of the demand random variable X. If we write X = ξ + λY with Y

denoting the standard Johnson random variable, then we observe that the pdf of X is

of the same shape as that of Y . Although the standard deviation of X is λ times that

of Y and ξ only affects the expected value of X, parameters ξ and λ have no effect

on the values of
√
β1 and β2. Thus, parameters ξ and λ have no effect on the shape

of the density function of X. Since our goal is to investigate the relation between
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the statistical inventory-target estimation problem and the shape of the demand’s

density function, we assume that the location parameter ξ and the scale parameter

λ are known, and represent (X − ξ)/λ by the standard Johnson random variable Y .

However, the mean and the variance of Y are still unknown as they are functions of

the unknown shape parameters γ and δ.

Our focus on the standard Johnson random variable Y might seem restrictive,

but it is less so than it first appears: It suffices to solve the inventory problem for

the standard Johnson random variable when there exists expert opinion about the

support of the demand distribution. If the demand is known to be larger than ξ′

with no upper bound, then a distribution from the SL family with ξ = ξ′ can be used

for modeling the demand (i.e., X = ξ′ + Y ). If the demand is known to lie in the

interval (ξ′, ξ′ + λ′), then a distribution from the SB family with ξ = ξ′ and λ = λ′

can be used for representing the demand (i.e., X = ξ′ + λ′Y ). When there exists no

such expert opinion, the inventory target is to be estimated by also accounting for

the uncertainty around the estimates of the parameters ξ and λ. We describe how to

do this in Section 3.6.2.

Since the parameters ξ and λ (> 0) are assumed to be known, we let ξ = 0 and

λ = 1 for notational convenience and represent the optimal inventory target under

complete certainty about the demand distribution function with q∗ = r−1(−γ/δ +

zϕ/δ). In the case of having ξ = ξ′ and λ = λ′, we set the inventory target to ξ′+λ′q∗.

We are now ready to present the asymptotically unbiased MLEs of parameters −γ/δ

and 1/δ2 (Johnson, 1949):

− γ̂
δ̂

=
1

n

n∑

t=1

r(xt)

1

δ̂2
=

1

n− 1

n∑

t=1

(
r(xt)−

1

n

n∑

`=1

r(x`)

)2

We adjust the expression of δ̂−2 to assure unbiasedness.
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For notational convenience, we denote the random variable −γ̂/δ̂ with r̄ and

use sr for 1/δ̂ in the remainder of the chapter. Since MLEs are invariant under

functional transformations, the inventory-target estimate Q̂ = r−1(r̄ + zϕsr) is an

MLE of q∗ = r−1(−γ/δ + zϕ/δ). Furthermore, both r̄ and s2
r have well-defined

sampling distributions:

Proposition 3.2.1. The distributional properties of random variables r̄ and s2
r are

as follows: (1) r̄ and s2
r are independent. (2) The sampling distribution of r̄, fr̄(r̄)

is normal with mean −γ/δ and variance δ−2/n. (3) The sampling distribution of s2
r,

fs2r(s
2
r) is gamma with shape parameter (n− 1)/2 and scale parameter 2δ−2/(n− 1).

Proof. (1) Since random variable r(Y ) is normally distributed with mean −γ/δ and

variance 1/δ2, the independence of random variables r̄ and s2
r follows from Rohatgi

and Saleh (2000). (2) The sampling distribution of r̄ follows from the regenerative

property of the independent and normally distributed random variables. (3) To derive

the sampling distribution of s2
r, we first multiply the expression for 1/δ̂2 with δ2(n−

1) and write
∑n

t=1(r(yt) − r̄)2 as
∑n

t=1(r(yt) + γ/δ)2 − n(r̄ + γ/δ)2. Hence, the

representation of 1/δ̂2 takes the form

δ2(n− 1)s2
r + nδ2(r̄ + γ/δ)2 = δ2

n∑

t=1

(r(yt) + γ/δ)2,

where the right-hand side corresponds to a χ2 random variable with n degrees of

freedom. Because the second term on the left-hand side is the square of a standard

normal random variable, it is also a χ2 random variable, but with one degree of

freedom. Consequently, δ2(n − 1)s2
r is a χ2 random variable with n − 1 degrees of

freedom with the following pdf:

(1/2)
n−1
2

Γ
(
n−1

2

) (δ2(n− 1)s2
r

)n−1
2
−1

exp
(
−δ2(n− 1)s2

r/2
)
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Thus, the sampling distribution of s2
r is gamma with shape parameter (n− 1)/2 and

scale parameter 2δ−2/(n− 1).

3.2.3 Hayes Inventory Policy (HIP)

Although the inventory-target estimate Q̂ = r−1(r̄+zϕsr) under MLP with JTS is an

MLE of the inventory target under complete certainty about the demand distribution,

the MLP with JTS ignores the uncertainty around the demand parameter estimates

r̄ and sr. Consequently, the MLP with JTS does not consider the uncertainty around

the estimated inventory target Q̂ and it does not minimize the expected total op-

erating cost (ETOC). We, on the other hand, account for the demand parameter

uncertainty and hence, the uncertainty around Q̂ by using the Hayes inventory policy

(HIP), a new inventory-target estimation policy that identifies improved inventory

targets in the presence of limited historical demand data.

We obtain HIP by modifying (i.e., biasing) the inventory-target estimator under

MLP with JTS to minimize the ETOC. Specifically, we replace the safety factor zϕ

in the inventory-target estimator Q̂ = r−1(r̄+zϕsr) under MLP with JTS by the bias

parameter k, and set the inventory-target estimator Q̂(k) under HIP to r−1(r̄+ ksr).

We discuss the motivation behind using such a functional form for the inventory-

target estimator by focusing on the normally distributed demand. Then, we extend

our discussion to other families of the JTS by using the functional relation between

the JTS and the normal distribution.

When the demand is normally distributed, the expected loss L̄(q∗; γ, δ) does not

depend on the mean demand. Also, underestimating the safety factor zϕ is more costly

than overestimating it when the critical fractile is greater than 0.5, and a deliberate

upward biasing of the safety factor reduces the expected cost (Silver and Rahmana,

1986). Hence, a way of identifying an ETOC-minimizing inventory-target estimator

for the normally distributed demand is to adjust the level of the safety factor by
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introducing a bias parameter k for the sample standard deviation: Q̂(k) = r̄ + ksr.

Further discussion on the use of biased estimators for normally distributed demand

can be found in Hayes (1969), Weerahandi (1987), and Katircioglu (1996).

Since the random variable r(Y ) is normally distributed (Section 3.2.1), we intro-

duce the bias parameter k to the sample standard deviation sr for each family of the

JTS; i.e., r(Q̂(k)) = r̄ + ksr. Consequently, we obtain an inventory-target estimator

Q̂(k) of the form r−1(r̄+ksr), where the optimal value of k, k∗ solves for the minimum

of the expected total operating cost associated with setting the inventory target to

Q̂(k). We call the inventory policy that estimates an inventory target in this way

Hayes Inventory Policy (HIP) and use it in Section 3.4 for setting inventory targets

in the presence of limited historical demand data.

3.2.4 Expected Total Operating Cost

In this section, we use the concept of expected total operating cost introduced by

Hayes (1969) to represent the expected one-period cost ETOC[Q̂(k)] associated with

setting the inventory target to Q̂(k) = r−1(r̄ + ksr) under HIP:

ETOC[Q̂(k)] (3.1)

= Er̄,s2r

[
L̄
(
r−1(r̄ + ksr); γ, δ

)]

=

∫ ∞

0

∫ ∞

−∞

∫ r−1(r̄+ksr)

ΩL

[
r−1(r̄ + ksr)− y

]
fY (y) fr̄(r̄) fs2r(s

2
r) dy dr̄ ds

2
r

+
ϕ

1− ϕ

∫ ∞

0

∫ ∞

−∞

∫ ΩU

r−1(r̄+ksr)

[
y − r−1(r̄ + ksr)

]
fY (y) fr̄(r̄) fs2r(s

2
r) dy dr̄ ds

2
r

In this representation, L̄(Q̂(k); γ, δ) is the expected loss function associated with

setting the inventory target of the forthcoming period to Q̂(k); fY (y) is the pdf of
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the standard Johnson random variable Y , i.e.,

fY (y) = δ
∂r(y)

∂y
φ (γ + δr (y))

with φ denoting the pdf of the standard normal random variable; fr̄(r̄) is the normal

pdf of the estimated demand parameter r̄ (Proposition 3.2.1), i.e.,

fr̄(r̄) =
1√

2πδ−2/n
exp

(
− (r̄ + γ/δ)2 /

(
2δ−2/n

))
;

and fs2r(s
2
r) is the gamma pdf of the estimated demand parameter s2

r (Proposi-

tion 3.2.1), i.e.,

fs2r(s
2
r) =

(2δ−2/(n− 1))
−(n−1)/2

(s2
r)

(n−3)/2
exp (−(n− 1)s2

r/(2δ
−2))

Γ ((n− 1)/2)
.

The sampling density functions fr̄(r̄) and fs2r(s
2
r) tell us which values independent

random variables r̄ and s2
r can have and how likely it is for r̄ and s2

r to assume

those values. Thus, the use of these sampling density functions in (3.1) allows us to

represent the expected one-period cost by accounting for the uncertainty around the

MLEs of the Johnson demand parameters.

Two important insights emerge from the use of the ETOC for capturing the un-

certainty around the MLEs of the Johnson demand parameters (Hayes, 1969): (1)

The loss function represents the opportunity loss associated with a given choice of the

inventory target. Therefore, the value of L̄(q∗; γ, δ) can be interpreted as the expected

value of perfect information about the demand distribution. (2) When the demand

distribution is not completely specified, ETOC[Q̂(k)]− L̄(q∗; γ, δ) represents the ex-

pected value of perfect information about the sampling distribution of the demand pa-

rameters for the estimated inventory target Q̂(k). Thus, ETOC[Q̂(k)]−L̄(q∗; γ, δ) can

be interpreted as the inaccuracy in the estimation of the inventory target Q̂(k). The
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next section uses this interpretation for quantifying the inaccuracy in the inventory-

target estimation, while Section 3.4 seeks an inventory target that minimizes the

ETOC within a class of inventory-target estimators implied by the JTS.

3.3 Inaccuracy Quantification under MLP

We first quantify the inaccuracy in inventory-target estimation in Section 3.3.1. In

Section 3.3.1, we provide approximations that show how the length of the historical

demand data, the asymmetry of the loss function, and the shape of the demand’s

density function affect the inaccuracy.

3.3.1 Quantification of the Inaccuracy in Inventory-Target

Estimation

For the SN family of the JTS, the inventory-target estimator Q̂(k) takes the form

r̄+ksr. Therefore, the piecewise linear structure of the loss function L(Q̂(k), y) allows

L(r̄ + ksr, y) to be written as srL(k, t) with t denoting (y − r̄)/sr. Consequently, we

integrate out the random variables r̄ and s2
r from the expression in (3.1) and obtain

ETOC[Q̂(k)] =
1√
2πδ

√
n

n+ 1

∫ k

−∞
(k − t)

(
1 +

n

n2 − 1
t2
)−n+1

2

dt (3.2)

+
ϕ

(1− ϕ)
√

2πδ

√
n

n+ 1

∫ ∞

k

(t− k)

(
1 +

n

n2 − 1
t2
)−n+1

2

dt.

ETOC[Q̂] under MLP with JTS is obtained by evaluating this integral for k = zϕ.

Therefore, the inaccuracy in the inventory-target estimation under MLP with John-

son’s SN family is given by ∆SN = ETOC[Q̂(zϕ)] − L̄(q∗; γ, δ), where L̄(q∗; γ, δ) =

δ−1φ(zϕ)/(1 − ϕ). Similarly, we use ∆SL , ∆SU , and ∆SB for denoting the inaccura-
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cies in the inventory-target estimation under MLP with Johnson’s SL, SU , and SB

families, respectively.

For the SL, SU , and SB families of the JTS, however, the structure of the inverse

transformation function r−1(·) does not allow us to reduce the loss function L(Q̂(k), y)

to a form that is piecewise linear in k. Also, we cannot integrate out the random

variables r̄ and s2
r from the expression in (3.1). Fortunately, the ETOC[Q̂(k)] can be

easily evaluated by numerical integration for any family of the JTS. Specifically, we

first reduce the three-dimensional integral in (3.1) to a one-dimensional integral for

the SL and SU families of the JTS. Then, we use Mathematica’s built-in numerical

integration function to evaluate ETOC[Q̂(k)] by setting the precision goal p and the

accuracy goal a to 5 and thus, forcing the integration error to be less than 10−a +

|q| 10−p in a result of size q (Wolfram Research, 2008).

3.3.2 Approximation of the Inaccuracy in Inventory-Target

Estimation

The quantification of the inaccuracy in the inventory-target estimation requires the

evaluation of the three-dimensional integral for the SB family of the JTS. Therefore,

a natural question to ask is whether we can approximate the inaccuracy under MLP

with JTS. We answer this question by using the second-order Taylor expansion of

L̄(Q̂; γ, δ) about the optimal inventory target q∗ under complete knowledge about the

demand distribution:

L̄(Q̂; γ, δ) =̇ L̄(q∗; γ, δ) + (Q̂− q∗)L̄′(q∗; γ, δ) +
1

2
(Q̂− q∗)2L̄′′(q∗; γ, δ)

In this representation, L̄′(q∗; γ, δ) and L̄′′(q∗; γ, δ) are the first-order and second-order

derivatives of the expected loss function L̄(·) evaluated at q∗. As a result of taking

the expectation of L̄(Q̂; γ, δ) with respect to Q̂ and recognizing that L̄′(q∗; γ, δ) is
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equal to zero, we obtain

ETOC[Q̂] =̇ L̄(q∗; γ, δ) +
1

2

(
E(Q̂2)− 2q∗E(Q̂) + q∗2

)
L̄′′(q∗; γ, δ),

where L̄′′(q∗; γ, δ) is equal to fY (q∗; γ, δ)/(1− ϕ). Then, the inaccuracy ETOC[Q̂]−

L̄(q∗; γ, δ) associated with the inventory-target estimator Q̂ can be approximated by

1

2

(
E(Q̂2)− 2q∗E(Q̂) + q∗2

)
δr′(q∗)

φ(zϕ)

1− ϕ,

where r′(q∗) is the first-order derivative of the transformation function r(·) evaluated

at q∗. As a result of approximating each of E(Q̂2) and E(Q̂) with a second-order

Taylor expansion, we obtain the following inaccuracy approximations:

Approximation 3.3.1. Defining g(n) := Γ[n/2]/Γ[(n − 1)/2], u := δ−1[−γ +

zϕ
√

2/(n− 1)g(n)], and v := δ−2[1/n + (2z2
ϕ/(n − 1))((n − 1)/2 − g(n)2)], we

approximate the inaccuracy in the inventory-target estimation as follows:

(i) For the SN family, the approximate inaccuracy ∆a
SN

is given by

1

δ

[
z2
ϕ

(
1−

√
2

n− 1
g(n)

)
+

1

2n

]
φ(zϕ)

1− ϕ.

(ii) For the SL family with q∗ = exp((zϕ − γ)/δ), the approximate inaccuracy ∆a
SL

is given by

δ

2q∗

[(
eu − q∗

)2

+ euv

(
2 eu − q∗

)]
φ(zϕ)

1− ϕ.

(iii) For the SB family with q∗ = (1 + exp((−zϕ + γ)/δ))−1, the approximate inac-

curacy ∆a
SB

is given by

δ eu

2 q∗(1− q∗)

[(
1 + eu

)2
+
(
2− eu

)
v

(
1 + eu

)4 −
(
2
(
1 + eu

)2
+
(
1− eu

)
v
)
q∗

(
1 + eu

)3 +
q∗2

eu

]
φ(zϕ)

1− ϕ.
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(iv) For the SU family with q∗ = {exp((zϕ − γ)/δ) − exp((−zϕ + γ)/δ)}/2, the

approximate inaccuracy ∆a
SU

is given by

δ

2
√
q∗2 − 1

[(
eu − e−u

q∗

)2

+
v

2

(
e2u + e−2u − q∗

(
eu − e−u

))
]
φ(zϕ)

1− ϕ.

The functional form of the approximate inaccuracy ∆a
SN

suggests that the ETOC

reduces to the expected loss with the full knowledge of the demand distribution as

n and
√

2/(n− 1)g(n) approach infinity and 1, respectively. That is, the inaccu-

racy in the inventory-target estimation under MLP diminishes as the length of the

demand data increases. Furthermore, ∆a
SN

increases with the critical fractile ϕ as

long as the underestimation of the inventory target is penalized more heavily than its

overestimation (i.e., ϕ > 0.5).

Since the expected loss function L̄(q∗; γ, δ) is given by δ−1φ(zϕ)/(1 − ϕ) for

the SN family of the JTS, the percentage approximate inaccuracy ∆a
SN

% (i.e.,

∆a
SN
/L̄(q∗; γ, δ) 100%) is z2

ϕ[1 −
√

2/(n− 1)g(n)] + 1/2n, and it depends only on n

and ϕ. For the SL family of the JTS, on the other hand, the approximate percent-

age inaccuracy ∆a
SL

% also depends on the parameter δ, which controls the shape

of the density function by itself; i.e., ω = exp(δ−2),
√
β1 =

√
ω − 1(ω + 2), and

β2 = ω4 + 2ω3 + 3ω2−3 (Johnson, 1949). Thus, as the shape of the demand’s density

function deviates from the shape of the normal density function, the factors affecting

the inaccuracy in the inventory-target estimation include
√
β1 and β2.

We conclude this section by noting that we approximate the inaccuracy in the

inventory-target estimation for each family of the JTS, while Hayes (1969) does this

only for the SN family. Hayes also quantifies the approximate inaccuracy by obtaining

E((Q̂ − q∗)2) from Var(Q̂), while Q̂ = r̄ + zϕsr is not an unbiased estimator of

q∗ = −γ/δ + zϕ/δ. Our approach for inaccuracy approximation differs from that

of Hayes in two aspects: (i) Instead of approximating E((Q̂ − q∗)2) as Var(Q̂), we
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use E(Q̂2)− 2q∗E(Q̂) + q∗2 for the quantification of the approximate inaccuracy; (ii)

Hayes obtains the inaccuracy (2 + z2
ϕ)φ(zϕ)/(4δn(1− ϕ)) for the normal distribution

via the use of Var(Q̂) = Var(r̄) + z2
ϕVar(sr) in which Var(r̄) = δ−2/n and Var(sr) is

approximated by δ−2/(2n). We, on the other hand, use the exact value of Var(sr)

to find our closed-form inaccuracy expressions. Consequently, we approximate the

inaccuracy in inventory-target estimation more accurately than Hayes (1969) for the

normally distributed demand. We investigate the performance of our approximations

for the Johnson SL family in Section 3.5.

3.4 Setting Inventory Targets under HIP

In this section, we seek the optimal bias parameter k∗ that leads to the minimum

ETOC for the inventory-target estimator Q̂(k) = r−1(r̄ + ksr). For the SN fam-

ily of the JTS with Q̂(k) = r̄ + ksr, the minimum ETOC is achieved for the bias

parameter k∗ that minimizes the expression in (3.2). Since the random variable

t
√
n2/(n2 − 1) has the Student’s t distribution with n degrees of freedom, k∗ is

given by tn,ϕ
√
n2 − 1/n, where tn,ϕ is the ϕth quantile of the Student’s t distribu-

tion with n degrees of freedom. Therefore, the ETOC-minimizing inventory target is

r̄ + tn,ϕ
√
n2 − 1/nsr.

For the remaining families of the JTS, however, the loss function cannot be written

independent of the MLEs of the demand parameters. This complicates the determina-

tion of the optimal value of k that minimizes ETOC[Q̂(k)]. Nevertheless, the optimal

bias coefficient k∗ is unique under HIP:

Proposition 3.4.1. The optimal bias coefficient k∗ that minimizes (3.1) is unique

under HIP.

Proof. We prove the uniqueness of k∗ by showing that (i) ETOC[Q̂(k)] is strictly con-

vex in Q̂(k) and (ii) Q̂(k) is strictly increasing in k: (i) ETOC[Q̂(k)] can be written
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as
∫
Q̂(k)

L̄(Q̂(k); γ, δ)fQ̂(k)(Q̂(k)) dQ̂(k), where fQ̂(k) is the pdf of Q̂(k). ETOC[Q̂(k)]

is strictly convex in ˆQ(k), because the expected loss function L̄(Q̂(k); γ, δ) is strictly

convex in Q̂(k), i.e., L̄′′(Î(k); γ, δ) = fY (Q̂(k))/(1− ϕ) > 0, and the strict convexity

is preserved under non-negative (infinitesimal) linear combinations (Boyd and Van-

denberghe, 2004). (ii) Since the inverse transformation function r−1(·) is continuous

and the first-order derivative of r−1(·) is positive for all families of the JTS, Q̂(k)

is continuous and strictly increasing in k. Therefore, ETOC[Q̂(k)] is increasing in k

for k > k∗ and decreasing in k for k < k∗. Hence, the optimal bias parameter k∗ is

unique under HIP.

The existence of a unique value for the optimal bias coefficient allows us to identify

the ETOC-minimizing inventory target within a prespecified level of accuracy using

a one-dimensional search procedure (Press et al., 2007). Thus, the determination of

the optimal bias parameter k∗ is a standard, unconstrained minimization problem

with a solution that is known to be in a continuous interval K, i.e., k∗ ∈ K and

ETOC[Q̂(k)] > ETOC[Q̂(k∗)] for all k ∈ K \ k∗. Our numerical solution procedure

consists of two major steps: (i) The evaluation of ETOC[Q̂(k)] via numerical integra-

tion. (ii) The iterative minimization of ETOC[Q̂(k)] to reach an approximation k̂∗

of k∗ within a predetermined precision. In this step, we let K = [0, 2zϕ] and identify

the value of k that minimizes ETOC[Q̂(k)] by using the golden search minimization

algorithm with a tolerance parameter of 10−3 (Press et al., 2007).

Clearly, k∗ depends only on n and ϕ for the SN family of the JTS. The indepen-

dence of k∗ from demand’s shape parameters continues to hold for the location-scale

family of distributions (Katircioglu, 1996). However, in return for an extended flexi-

bility in demand modeling, the optimal bias coefficient k∗ becomes dependent on the

shape parameters for each of the SL, SB, and SU families of the JTS. Therefore, it

is important to enter robust estimates of the Johnson parameters as inputs into the

golden search minimization algorithm. We do this by using the MLEs of the shape
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parameters when there is expert opinion about the bounds of the stochastic demand.

If there is not any expert opinion about the bounds of the stochastic demand, then

we use the publicly available FITTR1 software of Swain et al. (1988) that fits target

distributions from the JTS to independent and identically distributed data using the

diagonally weighted least-squares method. It is known that the small-sample prop-

erties of the location and scale parameter estimates obtained from this software are

superior to those of the MLEs (Biller and Gunes, 2010). Further details of this fitting

method can be found in Biller and Nelson (2005).

3.5 Results and Insights

The objective of this section is to investigate the effectiveness of HIP in minimizing the

ETOC incurred under MLP with JTS. We experiment with four different distributions

from the SL family of the JTS. Table 3.1 provides their distributional properties (i.e.,

the shape parameter δ, the coefficient of variation σ/µ, the coefficient of skewness
√
β1,

the coefficient of kurtosis β2, and the 95% quantile of the demand random variable

X0.95). In particular, distribution SL I is the most positively skewed with the longest

right tail. As δ increases from 1/2 to 5, the shape of the demand’s density function

approaches the shape of a normal density function (i.e.,
√
β1 and β2 approach 0 and

3, respectively). We adjust the value of parameter γ to achieve a mean demand of

50 units (i.e., µ = 50) for each distribution. Since the shape of the demand’s density

function depends only on δ for the SL family of the JTS, the value of parameter γ

does not affect the insights about the relation between the shape of the demand’s

density function and the inventory-target estimation.

We let n ∈ {8, 10, 15, 20, 30, 50} and ϕ ∈ {0.90, 0.95, 0.99} to investigate the ef-

fectiveness of HIP as a function of the length of the historical demand data and the

asymmetry of the loss function. We provide our results in Tables 3.2, 3.3, and 3.4 for
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Table 3.1: Distributional properties of the Johnson SL distributions with ξ = 0, λ = 1,
and mean µ = 50

δ σ/µ
√
β1 β2 X0.95

SL I 1/2 7.32 414.36 9.22 106 181
SL II 1 1.31 6.18 113.94 157
SL III 2 0.53 1.75 8.89 100
SL IV 5 0.20 0.61 3.67 68

Table 3.2: Inaccuracy (∆SL), approximate inaccuracy (∆a
SL

), ETOC[Q̂] under MLP

(E), ETOC[Q̂(k∗)] under HIP (E∗), and CPU time (T) for ϕ = 0.99.
SL I SL II

n ∆SL ∆a
SL

E E∗ T ∆SL ∆a
SL

E E∗ T
8 1367.2 569.4 3177.5 2550.5 0.3 219.0 162.5 630.8 629.1 0.3
10 974.3 503.5 2784.6 2423.3 0.3 170.7 135.0 582.5 581.8 0.3
15 569.6 379.0 2379.9 2238.2 0.3 109.9 94.3 521.7 521.6 0.3
20 403.5 300.7 2213.9 2138.6 0.3 81.0 72.3 492.8 492.8 0.3
30 255.5 211.5 2065.8 2034.2 0.4 53.0 49.2 464.8 464.8 0.5
50 147.6 132.2 1957.9 1947.0 0.6 31.4 30.0 443.2 443.2 0.6

SL III SL IV
8 57.1 41.9 176.6 173.2 0.4 14.8 10.0 48.5 45.8 0.3
10 43.6 33.8 163.1 160.7 0.4 11.0 7.9 44.7 42.9 0.3
15 27.2 22.8 146.7 145.5 0.5 6.6 5.2 40.3 39.5 0.4
20 19.6 17.2 139.1 138.4 0.4 4.7 3.9 38.3 37.9 0.4
30 12.6 11.5 132.1 131.8 0.5 2.9 2.6 36.6 36.4 0.5
50 7.3 6.9 126.8 126.7 0.6 1.7 1.6 35.4 35.3 0.6

ϕ = 0.99, ϕ = 0.95, and ϕ = 0.90, respectively. Each of these tables presents the ex-

act inaccuracy in the inventory-target estimation (∆SL), the approximate inaccuracy

(∆a
SL

), the ETOC associated with the MLP (ETOC[Q̂]) in column E, the ETOC as-

sociated with the HIP (ETOC[Q̂(k∗)]) in column E∗, and the CPU time (in seconds)

spent to obtain the ETOC-minimizing inventory target (T). We do not report the

value of L̄(q∗; γ, δ) in any of the tables, but it can be easily obtained from the differ-

ence ETOC[Q̂(k)]−∆SL . We code our solution procedures in Wolfram Mathematica

7.0.0 and run the codes in execution mode on an IBM T8300 2.4 Ghz with 2 GB

of RAM. Solving the inventory problem of interest requires very little computational

effort; i.e., we obtain a solution within a second in each experiment.
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Table 3.3: Inaccuracy (∆SL), approximate inaccuracy (∆a
SL

), ETOC[Q̂] under MLP

(E), ETOC[Q̂(k∗)] under HIP (E∗), and CPU time (T) for ϕ = 0.95.
SL I SL II

n ∆SL ∆a
SL

E E∗ T ∆SL ∆a
SL

E E∗ T
8 152.0 82.3 740.8 675.2 0.2 49.8 42.7 259.3 256.8 0.2
10 113.0 70.4 701.7 661.1 0.2 39.4 35.1 248.9 247.5 0.3
15 68.8 50.9 657.5 640.1 0.3 26.0 24.1 235.5 234.9 0.3
20 49.5 39.7 638.2 628.5 0.3 19.4 18.3 228.9 228.5 0.3
30 31.7 27.4 620.4 616.2 0.4 12.8 12.4 222.3 222.2 0.4
50 18.4 16.9 607.2 605.6 0.5 7.7 7.5 217.2 217.1 0.5

SL III SL IV
8 16.5 14.9 92.6 92.6 0.3 4.8 4.3 29.1 28.9 0.3
10 13.0 12.0 89.1 89.1 0.4 3.7 3.4 28.0 27.9 0.3
15 8.5 8.0 84.6 84.6 0.4 2.4 2.2 26.6 26.6 0.4
20 6.3 6.1 82.4 82.4 0.4 1.8 1.7 26.0 26.0 0.4
30 4.2 4.0 80.3 80.3 0.4 1.1 1.1 25.4 25.4 0.5
50 2.5 2.4 78.6 78.6 0.6 0.7 0.7 24.9 24.9 0.6

Table 3.4: Inaccuracy (∆SL), approximate inaccuracy (∆a
SL

), ETOC[Q̂] under MLP

(E), ETOC[Q̂(k∗)] under HIP (E∗), and CPU time (T) for ϕ = 0.90.
SL I SL II

n ∆SL ∆a
SL

E E∗ T ∆SL ∆a
SL

E E∗ T
8 46.3 28.0 378.2 359.3 0.3 22.4 20.1 166.9 165.4 0.3
10 34.9 23.6 366.8 354.7 0.3 17.8 16.4 162.4 161.4 0.3
15 21.6 16.8 353.4 348.1 0.3 11.8 11.2 156.3 155.9 0.3
20 15.6 12.9 347.5 344.5 0.3 8.8 8.5 153.4 153.1 0.3
30 10.0 8.9 341.9 340.6 0.4 5.8 5.7 150.4 150.3 0.5
50 5.8 5.4 337.7 337.2 0.6 3.5 3.5 148.1 148.0 0.6

SL III SL IV
8 8.6 8.2 67.2 67.2 0.4 2.7 2.6 22.6 22.6 0.3
10 6.8 6.6 65.5 65.5 0.4 2.1 2.1 22.0 22.0 0.3
15 4.5 4.4 63.1 63.1 0.5 1.4 1.4 21.3 21.3 0.4
20 3.4 3.3 62.0 62.0 0.4 1.0 1.0 20.9 20.9 0.4
30 2.2 2.2 60.9 60.9 0.5 0.7 0.7 20.6 20.5 0.5
50 1.3 1.3 60.0 60.0 0.6 0.4 0.4 20.3 20.3 0.6
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Our results suggest a significant amount of inaccuracy in the inventory-

target estimation for the highly skewed stochastic demand in the presence of

a small amount of historical demand data. Table 3.2 shows that the percent

inaccuracy (i.e., ∆SL/(ETOC[Q̂(k)] − ∆SL)100%) is 75.5% for the SL I distri-

bution when the historical data set has only 8 observations and the critical

fractile is ϕ = 0.99. The use of HIP eliminates 45.9% (i.e., (ETOC[Q̂] −

ETOC[Q̂(k∗)])/(ETOC[Q̂] − L̄(q∗; γ, δ))100%) of this inaccuracy and achieves a

24.6% (i.e., (ETOC[Q̂] − ETOC[Q̂(k∗)])/ETOC[Q̂(k∗)]100%) reduction in the

ETOC. However, the amount of improvement decreases with both n and 1 − ϕ.

When n = 10, we still improve the ETOC by almost 15%, but by less than 1% and

eliminate only 7.4% of the inaccuracy when n = 50. Thus, HIP is the most effective

in improving the ETOC of an inventory policy with highly skewed stochastic demand

when the amount of the historical demand data is small and/or when the shortage of

an item costs significantly more than its inventory holding cost. We also observe that

the approximate inaccuracy ∆a
SL

performs very poorly in this case. However, ∆a
SL

approximates the exact inaccuracy ∆SL quite well as ϕ decreases and n increases.

In each table, there is a non-monotonic change in the effectiveness of HIP with

respect to the shape parameter δ. For example, when n = 8, ϕ = 0.99, and the

distribution of interest is SL I in Table 3.2, HIP eliminates 45.9% of the inaccuracy

in the inventory-target estimation. These percentages are 0.8%, 6.1%, and 18.2%

for the distributions SL II, SL III, and SL IV, respectively. We can explain such

a change in the effectiveness of HIP as follows: A small value of δ leads to the

optimality of a negatively biased inventory target (i.e., k∗ < zϕ) as has been the

case for the exponentially distributed demand in Hayes (1969). A high value of δ, on

the other hand, results in a positively biased inventory target (i.e., k∗ > zϕ) as has

been observed for the normally distributed demand in Hayes (1969). Since there is

a continuum of k∗ values for increasing δ, we expect an equality between k∗ and zϕ
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at a specific value of δ at which the percentage of the inaccuracy eliminated by HIP

is zero. Establishing the connection of this observation to
√
β1 and β2 in the JTS

generalizes the findings of Hayes (1969), which have been limited to exponentially

and normally distributed demands.

3.6 Implementation Detailes

Section 3.6.1 discusses how to select the appropriate Johnson family. Section 3.6.2

extends the Hayes inventory policy for unknown location and scale parameters.

3.6.1 Selection of the Johnson Family

A question that arises in implementation is which Johnson family to use for modeling

the demand. Since the location parameter ξ and the scale parameter λ of the JTS

have simple interpretations for the SL and SB families, understanding the physical

limitations of the underlying stochastic demand and choosing the appropriate Johnson

family are often closely related. For the SL and SB families, ξ is the lower bound to

the values the demand random variable can take. For the SB family, λ also represents

the range, i.e., the difference between the largest and smallest values the demand

random variable can assume. Therefore, knowing the lower bound (lower and upper

bounds) to the stochastic demand justifies the selection of the SL (SB) family of the

JTS for demand modeling. Expert opinion about the characteristics of the stochastic

demand can also be conveniently incorporated into the demand model and used for

the identification of the appropriate Johnson family; e.g., when the pdf of the demand

is bimodal (SB) or positively skewed with a long right tail and a lower bound (SL). If

it is not possible to rely on any knowledge or expertise for selecting a Johnson family,

then we can utilize the existing body of work on the determination of the family
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that best represents the data on hand; see Slifker and Shapiro (1980), Bowman and

Shenton (1989), Chou et al. (1998), Chen and Schmeiser (2001), and Niermann (2006).

In this study, we consider a repeated newsvendor setting with a single-product;

there are only four different families to consider. Therefore, we implement HIP for

each family of the JTS and compare the performances of the resulting inventory

targets in the presence of limited historical demand data to decide on which family

of the JTS to use for modeling the demand.

3.6.2 Extension of HIP for Unknown ξ and λ

So far, we have assumed that the location parameter ξ and the scale parameter λ are

known. We now relax this assumption and discuss the representation of ETOC[Q̂(k)]

by also accounting for the uncertainty around the estimates of the parameters ξ and

λ. It is important to note that ETOC[Q̂(k)] is still strictly convex in Q̂(k), which

is further strictly increasing in k, for all families of the JTS. Therefore, the solution

approach in Section 3.4 to find the optimal bias coefficient remains the same.

Johnson’s SL Family

Johnson’s SL distribution with λ = 1 is well defined only if δ > 0 and ξ < X(1). There-

fore, the maximum of the likelihood function at the point ξ̂ = x(1) is not achieved.

We follow the approach of Biller and Nelson (2005), define the feasible region of the

parameter estimation problem as ξ ≤ X(1) (i.e., we technically remove x(1) from the

support of the distribution), and take the MLE of ξ as ξ̂ = x(1). This leads to an

inventory-target estimator of the form Q̂(k) = x(1) + r−1 (r̄ + ksr) under HIP. Since

the random variable x(1) is independent of r̄ and s2
r, and its sampling density function

is given by

fx(1)(x(1)) = n
(

1− F
(
x(1); γ, δ, ξ

) )n−1∂F
(
x(1); γ, δ, ξ

)

∂x(1)

,

38



with x(1) ∈ (ΩL,∞) (Rohatgi and Saleh, 2000), the ETOC associated with setting the

inventory target Q̂(k) to x(1)+r
−1 (r̄ + ksr) is obtained from Ex(1),r̄,s2r(L̄(Q̂(k); γ, δ, ξ)).

Johnson’s SB Family

We define the feasible region of the parameter estimation problem as ξ ≤ X(1) and

ξ+ λ ≥ X(n) (i.e., we remove both x(1) and x(n) from the support of the distribution)

and take the MLEs of ξ and λ as x(1) and x(n) − x(1). It is well known that the joint

density function fx(1),x(n)(x(1), x(n)) of x(1) and x(n) is given by

n(n−1)
(
F
(
x(n); γ, δ, ξ, λ

)
−F

(
x(1); γ, δ, ξ, λ

) )n−2∂F
(
x(1); γ, δ, ξ, λ

)

∂x(1)

∂F
(
x(n); γ, δ, ξ, λ

)

∂x(n)

with x(1) ∈ (ΩL, x(n)) and x(n) ∈ (x(1),ΩU) (Rohatgi and Saleh, 2000). Furthermore,

both x(1) and x(n) are independent of r̄ and s2
r. Thus, the inventory-target estimator

under HIP is given by Q̂(k) = x(1) + (x(n) − x(1))r
−1 (r̄ + ksr), and ETOC[Q̂(k)] is

obtained from Ex(1),x(n),r̄,s2r(L̄(Q̂(k); γ, δ, ξ, λ)).

Johnson’s SU Family

The approach we follow for the SL and SB families does not extend to the SU family

of the JTS. Although ξ and λ of the SU family still have no impact on the shape of

demand’s pdf, the relation of ξ and λ to the position and size of the density function

is not simple. Fortunately, the functional form of Johnson’s SU distributions leads to

closed-form expressions for the moments of the underlying demand random variable.

Consequently, the location and scale parameters of the SU family are represented by

ξ = µ+

√
2 σ2 exp(δ−2) sinh(γ/δ)√

(exp(δ−2)− 1) (exp(δ−2) cosh(2γ/δ) + 1)
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and

λ =

√
2 σ2

√
(exp(δ−2)− 1) (exp(δ−2) cosh(2γ/δ) + 1)

,

where µ and σ2 are the mean and the variance of the stochastic demand X (Johnson,

1949). Assuming that xt, t = 1, 2, . . . , n are independent and identically distributed

with finite µ and σ2, the sample mean µ̂ =
∑n

t=1 xt/n and the sample variance

σ̂2 =
∑n

t=1(xt − µ̂)2/(n − 1) are the unbiased estimators of µ and σ2 (i.e., E(µ̂) = µ

and E(σ̂2) = σ2) with a joint sampling distribution characterized by Springer (1953)

and Bennett (1955). Using the estimator r̄ of −γ/δ and the estimator s2
r of 1/δ2

provided in Section 3.2 together with µ̂ and σ̂2, we estimate ξ and λ as follows:

ξ̂ = µ̂+

√
2 σ̂2 exp(s2

r) sinh(−r̄)√
(exp(s2

r)− 1) (exp(s2
r) cosh(−2r̄) + 1)

λ̂ =

√
2 σ̂2

√
(exp(s2

r)− 1) (exp(s2
r) cosh(−2r̄) + 1)

.

Thus, the sampling distributions of ξ̂ and λ̂ are obtained from the joint sampling

distribution of µ̂, σ̂2, r̄, and s2
r. Furthermore, the inventory-target estimator un-

der HIP is given by Q̂(k) = ξ̂ + λ̂ r−1 (r̄ + ksr) and ETOC[Q̂(k)] is obtained from

Eξ̂,λ̂,r̄,s2r(L̄(Q̂(k); γ, δ, ξ, λ)).

3.7 HIP for Service-Level Constraints

So far, we have focused on the minimization of the ETOC function written in terms of

the unit inventory holding cost and the unit shortage cost. However, it is often difficult

for the inventory manager to choose a value for the unit shortage cost that includes

intangible components such as the loss of goodwill (Nahmias, 2005). Motivated by

this difficulty, we describe how to use HIP for setting inventory targets subject to
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service-level constraints. Specifically, we consider a Type 1 service-level criterion in

Section 3.7.1 and a Type 2 service-level criterion in Section 3.7.2.

3.7.1 Type 1 Service-Level Constraint

We define the Type 1 service objective as setting the inventory target to a value that

fully satisfies the demand of the forthcoming period with an average probability of

α. Under complete certainty about the demand cdf F (·; γ, δ), the optimal inventory

target q∗1, which attains the Type 1 service objective, is unique and satisfies Φ(γ +

δr(q∗1)) = α. Thus, q∗1 = r−1(−γ/δ + zα/δ), where zα = Φ−1(α) is the safety factor

associated with the Type 1 service objective. Estimating −γ/δ by r̄ and 1/δ by

sr leads to the inventory-target estimator Q̂1 = r−1(r̄ + zαsr) under MLP with JTS.

The use of this inventory-target estimator results in an average Type 1 service level of

Er̄,s2r(Φ (γ + δ (r̄ + zαsr))), which is not necessarily equal to α. Hence, the inventory-

target estimator Q̂1 may not attain the average Type 1 service level α.

It is possible to achieve the target Type 1 service level in the long run by adjusting

the bias in the inventory-target estimator Q̂1. Specifically, we replace the safety factor

zα with the bias coefficient k1, which satisfies α = Er̄,s2r(P(Z < γ + δ(r̄ + k1sr))) =

P(t < k1), where t = ((Z − γ)/δ − r̄)/sr. Thus, the optimal bias parameter k∗1 is

identified as tn−1,α

√
(n+ 1)/n, where tn−1,α is the αth quantile of the Student’s t

random variable with n− 1 degrees of freedom.

3.7.2 Type 2 Service-Level Constraint

We define the Type 2 service objective as the determination of the inventory target

that sets the average proportion of demand satisfied immediately from stock to β.

Under complete certainty about the demand distribution F (·; γ, δ), the optimal in-

ventory target q∗2, which attains the average Type 2 service level of β, is uniquely
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characterized by r−1(−γ/δ + zβ/δ), where the safety factor zβ satisfies

∫ ΩU

r−1(−γ/δ+zβ/δ)

(
y − r−1 (−γ/δ + zβ/δ)

)
δ
∂r(y)

∂y
φ
(
γ + δr(y)

)
dy = (1− β) µ.

Estimating −γ/δ by r̄ and 1/δ by sr leads to the inventory-target estimator Q̂2 =

r−1(r̄+zβsr) under MLP with JTS. However, the use of this inventory-target estimator

results in an average Type 2 service level, which is not necessarily equal to β. Hence,

the inventory-target estimator Q̂2 may not attain the average Type 2 service level.

To achieve the target Type 2 service level in the long run, HIP suggests the use

of an inventory-target estimator of the form Q̂2(k∗2) = r−1(r̄ + k∗2sr), where k∗2 is the

optimal bias coefficient satisfying

Er̄,sr2

(∫ ΩU

r−1(r̄+k∗2sr)

(
y − r−1 (r̄ + k∗2sr)

)
δ
∂r(y)

∂y
φ
(
γ + δr (y)

)
dy

)
= (1− β)µ.

(3.3)

Since Q̂2(k2) is strictly increasing in k2 and the integrand of the representation in (3.3)

is decreasing in k2, the unique optimal bias parameter k∗2 can be easily identified by a

one-dimensional search algorithm, which sets the left-hand side of (3.3) to its right-

hand side for a given value of β.

3.8 Conclusion

In this chapter, we study the problem of estimating an inventory target from limited

historical demand data in a repeated newsvendor setting. We quantify the inaccuracy

in the inventory-target estimation under maximum likelihood policy (MLP) as a func-

tion of the length of the historical demand data, the critical fractile, and the shape

parameters of the demand distribution. We suggest the use of Hayes inventory policy

(HIP), instead of MLP, for setting inventory targets in the presence of this inaccu-

racy. The distinguishing feature of HIP is the joint use of the highly flexible JTS for
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demand modeling and the ETOC criterion for capturing the uncertainty around the

MLEs of the demand parameters. Our solution procedure allows the decision maker

to obtain improved inventory targets without making any assumptions about the first

four moments of the demand random variable. Our numerical analysis identifies an

inaccuracy of 54% in the inventory-target estimation under MLP for a highly skewed

stochastic demand when the critical fractile is 0.99 and there are only 10 demand

observations available. The management of inventory via HIP leads to a reduction

of 15% in the expected total operating cost, while eliminating 37% of the inaccuracy.

We also extend the use of HIP for managing inventory subject to Type 1 and Type 2

service-level constraints.

Our study is the first to use JTS for demand modeling in inventory management.

The versatility offered by the JTS provides an opportunity to capture a wide variety

of demand characteristics. However, this discussion does not extend to slow moving

items with intermittent demand; JTS fails to assign positive probability to the event

of observing no demand in the forthcoming period. The inventory-target estimation

problem in the presence of intermittent demand data is the subject of the next chapter.
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Chapter 4

Managing Inventory with Limited

History of Intermittent Demand

4.1 Introduction

A common challenge faced by many businesses is linking inventory management and

historical demand data. The routine practice is to model stochastic demand using

probability distributions and then estimate the parameters of these distributions to

compute inventory policies – which are known to be optimal only when the true

parameter values are used. Therefore, the sequential process of first estimating the

parameters and then treating the parameter estimates as if they were the true values

casts doubt on the performance of the “optimal” inventory policy. This is clearly not

an issue when there is a large amount of demand data and the parameter estimates

converge to their true values. In practice, however, the demand history available to

support operational decisions is often very short – mainly because the underlying

demand generating process does not remain constant indefinitely, and, even if there

is a long demand history, it is common to consider only the most recent observations.

The discrepancy between the performance of an optimal (but unknown) inventory
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target and the performance of its estimate from a short demand history is a serious,

but often ignored, operational problem.

We address this problem by considering parameter estimation and inventory op-

timization as a single task, as opposed to the usual paradigm of estimating the pa-

rameters first, and then solving an optimization problem based on the estimates. In

recent years, this idea has been instrumental in setting inventory targets in the pres-

ence of historical data of finite length; see Liyanage and Shanthikumar (2005), Chu

et al. (2008), Akcay et al. (2011), and Ramamurthy et al. (2012) for example studies.

We also manage inventory by following this principle. However, we do this when the

stationary demand process is intermittent.

Intermittent demand is a series of positive realizations that only appear at random

periods. It constitutes a challenge in inventory management due to the dual source

of variation; i.e., both the demand size and the number of inter-demand periods – the

zero-demand periods between two (positive) demands – are uncertain. Intermittent

demand may arise for a number of reasons. For example, a smooth demand series at a

quarterly or monthly or weekly aggregation can become intermittent at a monthly or

weekly or daily bucket. Similarly, the upstream member in a supply chain may observe

intermittent demand based on the replenishment policies of downstream members

such as order batching and not ordering until the inventory level drops below a certain

level.

There is a type of dependence specific to intermittent demand presenting a fur-

ther challenge: correlation between the size of a positive demand and the number of

zero-demand periods preceding the demand. Positive correlation occurs when a long

(short) inter-demand period is followed by a high (low) demand size. Negative corre-

lation indicates the opposite relationship between the demand size and the number

of inter-demand periods. Willemain et al. (1994) show the existence of correlation

in the historical shipment data of items ranging from electrical equipment to health
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Figure 4.1: The intermittent histories with demand sizes that are correlated with
number of inter-demand periods
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products. Eaves (2002) investigates spare parts data from the Royal Air Force and

finds statistically significant correlation in 18% of more than ten thousand items. It

is concluded that positive correlations are more frequent than negative correlations.

More recently, Altay et al. (2012) analyze aircraft service parts data from the U.S.

Defense Logistics Agency and identify significant correlation in 35% of the items.

Our experience is as follows. In a data set from a global luxury manufacturer in

consumer-product space, the percentage of zero-demand periods varies between 32%

and 68% over a six-month period from April to September in 2010. A two-sided t test

shows that 292 items (out of 1149) have statistically significant correlation between

the demand size and the number of inter-demand periods. We observe that 81% of

the 292 items have positive correlation, which can be as high as 0.89. Figure 4.1

illustrates the demand histories for two of these items. We also find that the negative

correlation can be as low as -0.83, while the average value of the correlation is 0.49.

We introduce a flexible copula-based demand model to capture the correlation

between the demand size and the number of inter-demand periods. This flexibility

comes with additional parameters to be estimated from historical demand data. Con-

sequently, the discrepancy between the performance of the optimal inventory target

and the performance of its estimate becomes a more serious operational problem espe-
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cially when the demand history is short. In this study, we introduce two finite-sample

hypothesis tests to investigate the existence of correlation in a short demand history.

If the test suggests sufficient evidence for the existence of correlation, then we in-

corporate the dependence between the demand size and the number of inter-demand

periods into the estimation of the inventory target.

Next, we illustrate the role of statistical estimation errors on the performance of an

inventory-target estimate in the simplest possible setting with intermittent demand.

We consider the case of deterministic demand size with uncertain demand-arrival

periods in the presence of no correlation.

4.1.1 Role of Parameter Uncertainty: An Example with De-

terministic Demand

We let the demand size be a fixed quantity Q, but it is unknown when the demand will

arrive. The decision maker models the intermittent nature of demand as a Bernoulli

process; i.e., either Q units of demand arrives with probability p or zero demand

arrives with probability 1 − p. The comparison of the expected costs at inventory

targets between Q and zero shows that the optimal policy – which minimizes the

sum of expected holding and shortage costs – has a simple form: Do not keep any

inventory if p < h/(h + b), and stock Q units if p > h/(h + b), where h is the unit

holding cost and b is the unit shortage cost. If p is equal to h/(h+b), then the decision

maker is indifferent between stocking Q and zero units (and any value between Q and

zero) as they all result in the same expected cost.

The value of the demand-occurrence probability p is one important piece of in-

formation missing to implement the optimal policy in practice, and it has to be

estimated from historical data. A way of estimating p is to use the ratio of the

number of positive-demand periods to the total number of periods in the demand

history; i.e., the sample mean of the Bernoulli process. We denote this estimator of
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the demand-occurrence probability by p̂, which is not only unbiased and consistent,

but also achieves the Cramér-Rao lower bound when the sample size tends to infinity.

However, the decision maker is not fortunate enough to count on the unbiasedness

and large-sample properties of p̂ when the historical data is of limited length.

We illustrate this situation with a numerical example: The demand realizations

are recorded in the last eleven periods, h = $1, b = $9, Q = 100, and the unknown

value of p is 0.2. Since p > 0.1 (i.e., $1/($1 + $9)), it is optimal to order 100 units

with an expected cost of $80. The decision maker implements the “optimal” policy by

replacing unknown p with p̂. That is, she sets the inventory target to the optimal 100

units only when p̂ > 0.1. This condition is satisfied only if the nature generates two

or more positive realizations in eleven periods – a random event that occurs with 68%

probability. For the remaining 32% of the time, the decision maker incorrectly sets

the inventory target to zero and bears the a priori difference in the expected costs

at inventory targets of zero and 100 units. Since the expected cost associated with

ordering zero units is $180, we identify the expected cost of incorrectly estimating p

as $32 (i.e., 0.32 ($180− $80)).

The selection of the threshold as h/(h+ b), albeit optimal with known p, ignores

the impact of the uncertainty around p̂ (i.e., the estimation error) on the expected

cost. On the other hand, an alternative threshold which factors the estimation error

into inventory-target estimation can reduce the a priori expected cost of incorrect

estimation. As an example, suppose that the threshold is 0.01. Then, the decision

maker sets the inventory target to the optimal 100 units only when p̂ > 0.01. This

condition is satisfied only if the nature generates one or more positive realizations in

eleven periods – a random event with 91.5% probability of occurrence. That is, the

decision maker incorrectly sets the inventory target to zero for the remaining 8.5%

of the time. Consequently, the selection of 0.01 as an improved threshold reduces the
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probability of incorrectly estimating the optimal inventory target from 32% to 8.5%

and the expected cost of incorrect estimation from $32 to $8.5 (i.e., 0.085($180−$80)).

4.1.2 Contributions and Outline

Croston’s method (Croston, 1972) – a variant of exponential smoothing – is widely

used to estimate the mean demand per period from an intermittent demand history

with no correlation between demand size and the number of zero-demand periods

preceding the demand. Most of the research on intermittent-demand forecasting

builds on Croston’s method with the following objectives: (i) Improving the statistical

properties of the mean demand estimates (Syntetos and Boylan, 2001, 2005); (ii)

assessing the variance of the forecast error (Syntetos and Boylan, 2010); and (iii)

understanding the interaction between intermittent-demand forecasting and inventory

control (Teunter and Sani, 2009; Snyder et al., 2012). Unlike these research streams,

we do not forecast the demand but directly estimate the inventory target (as in Hayes

1969, Liyanage and Shanthikumar 2005, and Ramamurthy et al. 2012) in a decision

theoretical framework by minimizing the expected cost of incorrect estimation.

More specifically, we summarize our contributions in this study as follows:

1. The implementation of the optimal inventory policy by using the point estimates

of the demand-occurrence probability and the demand mean and variance re-

sults in an additional cost. We quantify the expected value of this cost – the

expected cost of parameter uncertainty – as a function of a threshold variable

when the distribution of the positive demand size belongs to a location-scale

family for an item with intermittent demand.

2. We illustrate the derivation of the expected cost of parameter uncertainty for

exponentially and normally distributed demand sizes.
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3. We propose an inventory-target estimation rule – the improved inventory-target

estimation – that minimizes the expected cost of parameter uncertainty with

respect to the threshold variable. Our approach, thus, combines inventory man-

agement and parameter estimation into a single task, and effectively balances

under- and overestimation of the optimal inventory target. In certain cases,

the use of an optimized threshold eliminates the expected cost of parameter

uncertainty completely.

4. Motivated by our analysis of industrial data and the previous literature on

empirical analysis of intermittent demand, we present a copula-based demand

model to capture the correlation between demand size and the number of zero-

demand periods that precede the demand. We characterize the optimal policy

when there is no parameter uncertainty.

5. We develop two new hypothesis tests to assess the existence of correlation in

limited amount of intermittent demand data. The copula-based representation

of intermittent demand allows us to obtain the distribution of the test statis-

tics by sampling from uniform random variables. We find that the test which

considers the expected cost of parameter uncertainty tends to reject the in-

dependence assumption less frequently than the test which only considers the

sampling distribution of the copula-parameter estimator.

The remainder of the chapter is organized as follows. Section 4.2 presents the demand

and inventory models and discusses the derivation of the expected cost due to pa-

rameter uncertainty. Section 4.3 discusses the improved inventory-target estimation.

Section 4.4 presents our copula-based demand model and develops the hypothesis

tests to assess the existence of correlation in intermittent demand data. Section 4.5

concludes with a summary of findings and future research directions.
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4.2 Statistical Inventory Management with Inter-

mittent Demand

We start our study of managing inventory with limited history of intermittent demand

under the assumption of no correlation between the demand size and the number of

inter-demand periods in Section 4.2.1. We consider this special case first as it will

be the building block of our copula-based demand model in Section 4.4, where we

also use it to obtain the test-statistic distribution under the null hypothesis of no

correlation in the operational test. Section 4.2.2 presents the inventory model and

identifies the optimal policy for known parameters. Section 4.2.3 discusses the practice

of implementing the optimal policy by naively treating the parameter estimates as

if they were the true values. Section 4.2.4 quantifies the expected cost of parameter

uncertainty under this practice, and Section 4.2.5 illustrates this quantification when

the demand size is represented with exponential and normal distributions.

4.2.1 Demand Model

We consider a discrete-time model with inventory review periods that are often shorter

than the times between successive demand arrivals. Therefore, there are periods in

which no demand is received. We model the randomness in demand arrivals by a

Bernoulli process; i.e., the number of inter-demand periods, which we denote by

Y ∈ {0, 1, 2, . . .}, has the geometric distribution with cumulative distribution func-

tion (cdf) G(y; p) = 1 − (1 − p)y+1. Thus, the probability of observing a positive

demand in any period is equal to p. We let the distribution of (positive) demand

size, denoted by X, be a member of the location-scale family of distributions with

location parameter τ and scale parameter θ. Therefore, the cdf of X, F (x; τ, θ) can

be written as F ((x− τ)/θ; 0, 1), where F (·; 0, 1) is the standardized cdf that does not

depend on τ and θ. We let Z := (X − τ)/θ be the standardized demand-size random
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variable with expectation a1 and variance a2. For example, a1 = a2 = 1 and τ = 0

for exponential distribution and a1 = 0 and a2 = 1 for normal distribution. Other

members of the location-scale family include gamma and Weibull distributions with

fixed shape parameters as well as Cauchy, uniform, logistics, Student’s t, and Laplace

distributions.

4.2.2 Inventory Model

The decision of how much inventory to keep, if any, is made at the beginning of each

period and is contingent on the amount of inventory on hand. We consider linear

procurement, holding, and backlogging costs c, h, and b per unit, respectively, and

the time lag between procurement and delivery is negligible. Holding and backlogging

costs are calculated based on the amount of ending inventory in each period. All

the backlogged demand is satisfied before the next period starts, and the decision

maker cannot dispose any inventory during the multi-period planning horizon. At

the end of the finite planning horizon, the decision maker obtains reimbursement of

the procurement cost for each leftover unit and incurs the procurement cost for each

backlogged unit. The goal is to find an ordering policy that minimizes the overall

expected cost. Without loss of generality, we take the per-unit ordering cost c as zero,

and represent the single-period expected cost associated with a nonnegative inventory

target q as follows:

C(q; p, τ, θ) := (1− p)hq + p

(
h

∫
(q − x)+dF (x; τ, θ) + b

∫
(x− q)+dF (x; τ, θ)

)
.

In the setting described above, the base-stock policy is optimal with complete knowl-

edge of the demand distribution (Porteus, 2002). Furthermore, the optimal inventory

target has a simple form:
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Proposition 4.2.1. Let γo denote h/(h+b). For p > γo, the optimal inventory target

q∗ is given by τ + η(p, γo)θ, where η(p, γo) is equal to F−1(1− γo/p; 0, 1). For p ≤ γo,

q∗ is zero and it is optimal not to carry any inventory.

Proof. The inventory level before ordering, denoted by ν, is the state of the system.

The optimality equation is given by

Vt(ν) = min
q≥max(0,ν)

{C(q; p, τ, θ) + (1− p)Vt+1 (q) + pE(Vt+1(q −X))}

for t = 1, 2, . . . , N and VN+1(ν) = 0 with N the number of periods in the planning

horizon. Let Lt(q) denote the function C(q; p, τ, θ)+(1−p)Vt+1 (q)+pE (Vt+1(q−X)).

There are two cases to analyze: (i) If p > γo, then the minimizer of the convex

function C(q; p, τ, θ) is characterized by the (interior) first-order condition (1− p)h+

p((h + b)F (q; τ, θ) − b) = 0. Then, the optimal base-stock level q∗ has an explicit

form given by τ + F−1(1 − γo/p; 0, 1)θ. The proof is standard, and we refer the

reader to page 70 in Porteus (2002) for details. (ii) If p ≤ γo, then the minimizer

of the convex function C(q; p, τ, θ), and hence, LN(q), is zero (i.e., the boundary

solution). Therefore, VN(ν) is given by LN(0) if ν ≤ 0 and LN(ν) if ν > 0. The

function LN−1(q) = C(q; p, τ, θ) + (1− p)VN (q) + pE (VN(q −X)) is also minimized

by the boundary solution since it is a weighted sum of functions, which take their

minimums at zero. Consequently, VN−1(ν) is given by LN−1(0) if ν ≤ 0 and LN−1(ν)

if ν > 0. The result follows from a recursive argument through the periods t =

N − 1, N − 2, . . . , 1.

The decision maker obtains the optimal inventory target q∗ for p > h/(h + b) by

minimizing the single-period expected cost knowing that the myopic policy is optimal.

To implement the policy, however, she obtains the point estimates of the unknown

parameters p, τ , and θ from the historical demand data, and plugs these estimates

into the functional form of q∗ which is optimal only when there is no parameter
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uncertainty. We name this practice as naive inventory-target estimation because it

ignores the uncertainty around the parameter estimates which are – inevitably –

obtained from a single realization of the demand history.

4.2.3 Naive Inventory-Target Estimation

We let {(xi, yi); i = 1, 2, . . . , nd} denote the demand history, where xi is the size of

ith demand, yi is the number of zero-demand periods preceding xi, and nd is the

number of periods with demand. Use of a base-stock policy implies ordering just

after a period with a demand arrival. Therefore, the number of inter-demand periods

is zero at the time of ordering, which is the beginning of period n + 1, where n is

nd +
∑nd

i=1 yi. We illustrate this intermittent demand history in Figure 4.2.

One practical approach is to estimate the expected (positive) demand size E(X)

by x̄ :=
∑nd

i=1 xi/nd, the demand-size variance by s2 :=
∑nd

i=1(xi − x̄)2/(nd − 1), and

the expected number of inter-demand periods E(Y ) by
∑nd

i=1 yi/nd. If one of the

parameters τ and θ is known (as is the case for the exponentially distributed demand

size), only E(X) and E(Y ) are estimated. These estimators are unbiased and easy

to calculate, and therefore, immediate choices for the decision maker. Consequently,

the decision maker implements the policy in Proposition 4.2.1 with the parameter

estimates θ̂ = s/
√
a2, τ̂ = x̄− a1θ̂, and p̂ = nd/n before the ordering decision is made

at the beginning of period n+1. We let Q̂(p̂, γo) denote the resulting inventory-target

estimator.

Definition 4.2.1 (Naive Inventory-Target Estimation). If p̂ > γo, then the naive

inventory-target estimator Q̂(p̂, γo) is given by τ̂ + η(p̂, γo)θ̂. If p̂ ≤ γo, then Q̂(p̂, γo)

is zero.

As demand observations accumulate over time, there is less uncertainty around the

point estimates of the parameters, and the naive inventory-target estimation starts
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Figure 4.2: The intermittent demand data (x1, y1) = (40, 3), (x2, y2) = (30, 4),
(x3, y3) = (80, 2), (x4, y4) = (50, 3), (x5, y5) = (10, 0), and (x6, y6) = (35, 2) with
nd = 6 observed by the end of period n = 20, marked by the arrow ↑

y1 y2

x2

x1

x4

x3

x6

x5

y3 y4 y5 y6

working as the optimal policy with no parameter uncertainty. The question is how

to manage inventory in the presence of a limited amount of demand data as this

knowledge is accumulated.

4.2.4 Quantification of the Expected Cost of Parameter Un-

certainty

We assume that the decision maker has access to an intermittent demand history of

length n. The objective is to quantify the expected cost of incorrectly estimating the

parameters p, τ , and θ in period n + 1 under the naive inventory-target estimation.

The difference between the expected costs of the naive inventory-target estimator and

the optimal inventory target (i.e., C(Q̂(p̂, γo); p, τ, θ)−C(q∗; p, τ, θ)) is a nonnegative

random variable because a different demand history from the true data generating

process could have led to a different value for Q̂(p̂, γo). Our objective is to calculate

the expected value of this difference, which we interpret as the expected cost of

parameter uncertainty.

We start with noting that the demand-occurrence probability estimator p̂ takes

different values depending on the number of positive realizations in an intermittent

demand history:
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Lemma 4.2.1. When the length of the historical demand data is n, p̂ takes the value

of ω ∈ {0, 1/n, 2/n, . . . , 1} with probability

P(p̂ = ω) =
n!

(nω)!(n− nω)!
pnω(1− p)n−nω.

Proof. The estimator of the demand-occurrence probability, p̂ = nd/n, is the sample

mean of n independent Bernoulli random variables, each with a success probability

of p. Equivalently, np̂ is a binomial random variable with parameters n and p. The

probability mass function of p̂ is, therefore, obtained from the transformation of the

binomial random variable np̂ to p̂.

Naive inventory-target estimation compares the demand-occurrence probability

estimate p̂ with threshold γo, and sets the inventory target as described in Defi-

nition 4.2.1. On the other hand, we know from the simple numerical example in

Section 4.1.1 that the use of an alternative threshold might improve the operational

performance when a decision is based on a limited amount of historical data. There-

fore, we quantify the expected cost of parameter uncertainty for an arbitrary threshold

γ ∈ [0, 1] in search of an inventory-target estimation rule Q̂(p̂, γ) that is better than

the naive inventory-target estimation rule Q̂(p̂, γo). Section 4.3 will discuss the min-

imization of the expected cost of parameter uncertainty with respect to γ. In the

remainder of this section, we focus on quantifying the expected cost of parameter

uncertainty as a function of γ.

There are four cases to consider: (1) If p ≤ γo and p̂ ≤ γ, then both the op-

timal inventory target and its estimate are zero, and there is no expected cost due

to parameter uncertainty. (2) If p ≤ γo and p̂ > γ, then the optimal inventory

target is zero while its estimate is positive, resulting in the additional expected

cost of C(Q̂(p̂, γ); p, τ, θ) − C(0; p, τ, θ) due to parameter uncertainty. (3) If p > γo

and p̂ ≤ γ, then the optimal inventory target is positive while its estimate is zero;
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thus, the additional expected cost is C(0; p, τ, θ) − C(q∗; p, τ, θ). (4) If p > γo and

p̂ > γ, then both the optimal inventory target and its estimate are positive with

C(Q̂(p̂, γ); p, τ, θ) − C(q∗; p, τ, θ) as the additional expected cost. Consequently, the

expected cost of incorrectly estimating p, averaged over all possible realizations of p̂,

is given by
∑

w>γ

(
C(Q̂(w, γ); p, τ, θ)− C(0; p, τ, θ)

)
P (p̂ = w)

for p ≤ γo; and,

∑

w≤γ
C(0; p, τ, θ) P (p̂ = w) +

∑

w>γ

C(Q̂(w, γ); p, τ, θ) P (p̂ = w)− C(q∗; p, τ, θ)

for p > γo. For ease in exposition, we denote this expected cost of incorrectly esti-

mating p with ∆τ̂ ,θ̂(γ; p, τ, θ). Since the estimators τ̂ and θ̂ obtained from nw demand

random variables factor into Q̂(w, γ), ∆τ̂ ,θ̂(γ; p, τ, θ) is a random variable. This leads

to the interpretation that E(∆τ̂ ,θ̂(γ; p, τ, θ)) is the expected cost due to parameter

uncertainty averaged over all possible realizations of an intermittent demand history

of length n.

Remark 4.2.1. E(∆τ̂ ,θ̂(γo; p, τ, θ)) is the expected cost of incorrectly estimating the

optimal inventory target under naive inventory-target estimation. Since p̂, τ̂ , and θ̂

are consistent estimators (Rohatgi and Saleh, 2000), E(∆τ̂ ,θ̂(γo; p, τ, θ)) approaches

zero as the length of the demand history increases. In this study, we focus on its

magnitude when there is a limited amount of historical demand data for parameter

estimation.

We now introduce two new random variables U := (τ̂ − τ)/θ and V := θ̂/θ, and

reduce the single-period expected cost function to an alternative form:

Lemma 4.2.2. (i) The distribution of random variables U and V are independent of

the parameters τ and θ. (ii) The expected cost function C(q; p, τ, θ) can be equivalently
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written as

θ C

(
q − τ
θ

; p, 0, 1

)
+ (1− p)h τ.

Proof. (i) We let zi = (xi − τ)/θ and z̄ = (1/n)
∑n

i=1 zi. The distribution functions

of zi and z̄ are both independent of τ and θ for any positive integer n. We also make

the following observations:

P
(
x̄− τ
θ
≤ κ

)
= P

(
1

n

n∑

i=1

xi − τ
θ
≤ κ

)
= P(z̄ ≤ κ)

P

(
θ̂

θ
≤ κ

)
= P


1

θ

√√√√
n∑

i=1

(xi − x̄)2

n− 1
≤ κ
√
a2




= P



√√√√

n∑

i=1

(
xi − τ
θ
− x̄− β

θ

)2

≤ κ
√
a2(n− 1)




= P



√√√√

n∑

i=1

(zi − z̄)2 ≤ κ
√
a2(n− 1)




Thus, the distributions of (x̄−τ)/θ and V = θ̂/θ do not depend on τ and θ. Plugging

τ̂ = x̄− a1θ̂ into U = (τ̂ − τ)/θ, we see that U can be written as (x̄− τ)/θ− a1V , and

hence, it is also independent of τ and θ. (ii) As a result of transforming X to τ +Zθ,

the expected cost function C(q; p, τ, θ) can be rewritten as follows:

C(q; p, τ, θ) = (1− p)hq + p
(
hE(q −X)+ + bE(X − q)+

)

= (1− p)hτ + θ(1− p)h
(
q − τ
θ

)

+ θp

(
hE
(
q − τ
θ
− Z

)+

+ bE
(
Z − q − τ

θ

)+
)

= (1− p)hτ + θC

(
q − τ
θ

; p, 0, 1

)
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Lemma 4.2.2 leads to the quantification of the expected cost of parameter uncertainty

as a linear function of the scale parameter θ and independent of the location parameter

τ . This result will play a key role in Section 4.3 as it allows us to minimize the expected

cost of parameter uncertainty over the threshold variable γ uniformly for all values

of τ and θ.

Proposition 4.2.2. The expected cost of incorrectly estimating the unknown pa-

rameters p, τ , and θ, which is given by E
(

∆τ̂ ,θ̂(γ; p, τ, θ)
)

, can be written as

θ E (∆U ,V(γ; p, 0, 1)), where ∆U ,V(·; p, 0, 1) is a function of the random variables U

and V, and the demand-occurrence probability p.

Proof. We let η0 denote the value of F−1(0; 0, 1). By Lemma 2(ii), we rewrite the

expected cost of incorrectly estimating p for given τ̂ and θ̂ as

θ
∑

w>γ

{
C

(
Q̂(w, γ)− τ

θ
; p, 0, 1

)
− C

(
(τ + η0θ)− τ

θ
; p, 0, 1

)}
P (p̂ = w)

for p ≤ γo, while it takes the form

θ
∑
w≤γ

C
(

(τ+η0θ)−τ
θ

; p, 0, 1
)
P (p̂ = w) + θ

∑
w>γ

C
(
Q̂(w,γ)−τ

θ
; p, 0, 1

)
P (p̂ = w)

−θC (η(p, γo); p, 0, 1)

for p > γo. Using τ̂ + η(w, γ)θ̂ as the inventory-target estimator Q̂(w, γ), we further

rewrite this expression as θ∆U ,V(γ; p, 0, 1), where ∆U ,V(γ; p, 0, 1) is given by

∑

w>γ

{C (U + η(w, γ)V ; p, 0, 1)− C (η0; p, 0, 1)}P (p̂ = w)

for p ≤ γo, and it is given by

∑

w≤γ
C (η0; p, 0, 1)P (p̂ = w)+

∑

w>γ

C (U + η(w, γ)V ; p, 0, 1)P (p̂ = w)−C (η(p, γo); p, 0, 1)
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for p > γo. We know from Lemma 4.2.2(i) that U = (τ̂ − τ)/θ and V = θ̂/θ are

independent of the true values of τ and θ.

4.2.5 Examples

We illustrate the quantification of the expected cost of parameter uncertainty first for

exponentially distributed demand size and then for normally distributed demand size.

Consistent with our presentation in the previous section, we quantify the expected

cost of parameter uncertainty for an arbitrary threshold γ on the unit interval. The

use of γo in place of γ leads to the expected cost of parameter uncertainty under naive

inventory-target estimation.

Exponentially Distributed Demand Size

We let the demand size X be exponentially distributed with mean θ; i.e., F (x; θ) =

1 − exp(−x/θ). Therefore, the optimal inventory target q∗ is θ log(p/γo) if p > γo,

and zero, otherwise (Proposition 4.2.1). Then, we identify the minimum expected

cost with known p and θ as follows:

C(q∗; p, θ) =





θpb for p ≤ γo,

θh (log (p/γo)− p+ 1) for p > γo.

Without knowing the true values of p and θ, the decision maker obtains p̂ = nd/n

and x̄ =
∑nd

i=1 xi/nd from historical data of length n. The naive inventory-target

estimator takes the form x̄ log(p̂/γo) if p̂ > γo, and zero, otherwise.

The goal is to characterize the expected cost due to the incorrect estimation of

the unknown parameters p and θ for an arbitrary threshold γ. First, we let Vw
denote

∑nw
i=1 Zi/(nw) with Zi = Xi/θ; i.e., Vw is the average of nw independent and

exponentially distributed random variables, each with a mean of one. Lemma 4.2.3
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provides a key component to the quantification of the expected cost of parameter

uncertainty in Proposition 4.2.3.

Lemma 4.2.3. Let Z be an exponentially distributed random variable with mean

one. The expected value of (Z − Vw log(w/γ))+, which we denote with `(n, γ, w),

is given by (log(w/γ)/(nw) + 1)−nw for the demand-occurrence probability estimate

w ∈ {1/n, 2/n, . . . , 1} greater than γ.

Proof. Taking the expectation of (Z − Vw log(w/γ))+ with respect to Z gives

∫ ∞

Vw log(wγ )

(
z − Vw log

(
w

γ

))
exp(−z)dz =

(
w

γ

)Vw
.

Since nw Vw is Gamma(nw, 1) distributed, the result follows from the evaluation of

the integral ∫ ∞

0

(
w

γ

)− x
nw 1

Γ(nw)
xnw−1 exp(−x)dx,

where Γ(nw) = (nw − 1)! is the gamma function.

Next, we characterize the expected cost of parameter uncertainty for an arbitrary

threshold γ:

Proposition 4.2.3. For threshold γ and exponentially distributed demand with mean

θ, the expected cost due to incorrect estimation of parameters p and θ is given by

θ
∑

w>γ

{
h log

(
w

γ

)
+ p(h+ b) (`(n, γ, w)− 1)

}
P(p̂ = w)

for p ≤ γo; and for p > γo, it is given by

θpb
∑
w≤γ

P(p̂ = w) + θ
∑
w>γ

{
h log

(
w
γ

)
− ph+ p(h+ b)`(n, γ, w)

}
P(p̂ = w)

−θh
(

log
(
p
γo

)
− p+ 1

)
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Proof. Suppose that p ≤ γo and w, the realized value of p̂ is greater than γ. In this

case, the optimal inventory target is zero, while the inventory-target estimator Q̂(w, γ)

takes a positive value. Consequently, the expected cost of parameter uncertainty is

given by

E

(∑

w>γ

(
C(Q̂(w, γ); p, θ)− C(0; p, θ)

)
P(p̂ = w)

)
. (4.1)

Let Q̂(w, γ) = x̄ log(w/γ) be the inventory target when the realized value of the

demand-occurrence probability is w, and hence, x̄ is the sample mean of nw expo-

nentially distributed random variables with mean θ. Note that C(q; p, θ) = (1−p)hq+

p(h(q − θ) + (h + b)E(X − q)+). By plugging in the value of C(0; p, θ) = θpb and

noting that E(Q̂(w, γ)) = θ log(w/γ) and E(X − Q̂(w, γ))+ = θ E(Z − Q̂(w, γ)/θ)+,

the expression (4.1) can be rewritten as

θ
∑

w>γ

{
h log

(
w

γ

)
+ p(h+ b)

(
E
(
Z − x̄ log(w/γ)

θ

)+

− 1

)}
P(p̂ = w).

The replacement of E (Z − x̄ log(w/γ)/θ)+ with the closed-form expression derived

in Lemma 4.2.3 gives the result for p ≤ γo. The proof for p > γo follows in a similar

manner.

Normally Distributed Demand Size

We now let the demand size X have the normal distribution with mean τ and standard

deviation θ. The cdf of the standard normal random variable Z = (X−τ)/θ is denoted

by Φ(·). If p > γo, then the optimal inventory target q∗ is given by τ+η(p, γo) θ, where

η(p, γo) is equal to Φ−1 (1− γo/p). Otherwise, q∗ is set to zero (Proposition 4.2.1).

The minimum expected cost with known p, τ , and θ can be shown to be

C(q∗; p, τ, θ) =





τpb for p ≤ γo,

τ(1− p)h+ p(h+ b)θφ (η(p, γo)) for p > γo,
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where φ(·) is the probability density function (pdf) of the standard normal random

variable. The decision maker estimates the unknown parameters p, τ , and θ2 by

p̂ = nd/n, x̄ =
∑nd

i=1 xi/nd, and s2 =
∑nd

i=1(xi − x̄)2/(nd − 1) from the intermittent

demand history of length n. The naive inventory-target estimator is then given by

x̄+ η(p̂, γo) s if p̂ > γo, and zero, otherwise.

We now let Uw =
∑nw

i=1 Zi/(nw) and V2
w =

∑nw
i=1(Zi−Uw)2/(nw−1) be the sample

mean and sample variance of nw independent standard normal random variables: (i)

√
nw Uw has the standard normal distribution; (ii) (nw − 1)V2

w has the chi-square

distribution with nw−1 degrees of freedom; and (iii)
√
nw Uw and (nw−1)V2

w are in-

dependent (Rohatgi and Saleh, 2000). We use these properties in Lemma 4.2.4, which

is the first step towards characterizing the expected cost of parameter uncertainty in

Proposition 4.2.4:

Lemma 4.2.4. Let Z be a standard normal random variable. The expected value of

(Z − (Uw + η(w, γ)Vw))+, which we denote with `(n, γ, w), is given by

√
nw + 1

nw

1√
2π

(
nw η(w, n)2

(nw)2 − 1
+ 1

) 1−nw
2

− Γ
(
nw
2

)

Γ
(
nw−1

2

)
√

2 η(w, γ)√
nw − 1

(
1− Tnw

(
nw η(w, γ)√

(nw)2 − 1

))

for the demand-occurrence probability estimate w ∈ {2/n, 3/n, . . . , 1} greater than γ,

where Γ(·) is the gamma function and Tnw(·) is the cdf of the t distribution with nw

degrees of freedom.

Proof. Note that Uw is normally distributed with mean zero and variance 1/(nw).

Therefore, the random variable Z − Uw is normally distributed with mean zero and

variance (nw + 1)/nw. By letting ξ denote the standard normal random variable
√
nw/ (nw + 1) (Z − Uw), we obtain

E (Z − (Uw + η(w, γ)Vw))+ =

√
nw + 1

nw
E


ξ − η(w, γ)

Vw√
nw+1
nw




+

. (4.2)

63



Taking the expectation with respect to ξ, the right-hand side of (4.2) is given by

√
nw + 1

nw
E


φ


η(w, γ)Vw√

nw+1
nw


− η(w, γ)Vw√

nw+1
nw

+
η(w, γ)Vw√

nw+1
nw

Φ


η(w, γ)Vw√

nw+1
nw




 .

There are three terms inside the expectation operator. For ease in exposition, we let

ψ be a random variable that has the chi-square distribution with nw − 1 degrees of

freedom and denote its pdf with χ(·), and rewrite the random variable Vw in terms

of ψ. Then, the first term is given by

√
nw + 1

nw
E


φ


η(w, γ)Vw√

nw+1
nw




 =

√
nw + 1

nw

∞∫

0

φ

(
η(w, γ)

√
nw

(nw)2 − 1

√
ψ

)
χ(ψ)dψ.

=

√
nw + 1

nw

1√
2π

(
nw η(w, n)2

(nw)2 − 1
+ 1

) 1−nw
2

.

The second term η(w, γ)E(Vw) reduces to the following form:

η(w, γ)E
( √

ψ√
nw − 1

)
=

η(w, γ)√
nw − 1

√
2 Γ
(
nw
2

)

Γ
(
nw−1

2

) .

We rewrite the last term as a function of ψ as

η(w, γ)E

( √
ψ√

nw − 1
Φ

(
η(w, γ)

√
nw√

(nw)2 − 1

√
ψ

))

=
η(w, γ)√
nw − 1

∞∫

0

η(w,γ)
√
nw√

(nw)2−1

√
ψ∫

−∞

√
ψ φ(z)χ(ψ)dzdψ. (4.3)

It is well known that T := Z
√
nw − 1/

√
ψ is a Student’s t random variable with

nw − 1 degrees of freedom (Rohatgi and Saleh, 2000). The transformation of the
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random variable Z to T √ψ/
√
nw − 1 allows us to write (4.3) as

η(w, γ)√
nw − 1

η(w,γ)
√
nw√

nw+1∫

−∞

∞∫

0

ψ√
nw − 1

φ

(
t

√
ψ√

nw − 1

)
χ(ψ)dψdt.

By evaluating the integrals first with respect to ψ and then with respect to t, we

reduce it to

η(w, γ)√
nw − 1

√
2 Γ
(
nw
2

)

Γ
(
nw−1

2

) Tnw
(
nw η(w, γ)√

(nw)2 − 1

)
,

where Tnw(·) is the cdf of Student’s t distribution with nw degrees of freedom. Rear-

ranging the three terms derived above completes the proof.

We are now ready to characterize the expected cost of parameter uncertainty as

a function of γ:

Proposition 4.2.4. For threshold γ and normally distributed demand with mean τ

and standard deviation θ, the expected cost due to the incorrect estimation of param-

eters p, τ , and θ is given by

θ
∑

w>γ

{√
2h η(w, γ)√
nw − 1

Γ
(
nw
2

)

Γ
(
nw−1

2

) + p(h+ b)`(n, γ, w) + η0(bp− (1− p)h)

}
P(p̂ = w)

for p ≤ γo; and for p > γo, it is given by

θ
∑
w≤γ
{η0(h(1− p)− pb)− h η(p, γo)}P(p̂ = w)

−θp(h+ b) {φ (η(p, γo))− (γo/p)η(p, γo)}

+θ
∑
w>γ

{√
2h η(w,γ)√
nw−1

Γ(nw2 )
Γ(nw−1

2 )
+ p(h+ b)`(n, γ, w)− hη(p, γo)

}
P(p̂ = w).
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Proof. For p ≤ γo, the expected cost of incorrectly estimating the parameters p, τ ,

and θ is given by

E

(∑

w>γ

(
C(τ̂ + η(w, γ)θ̂; p, τθ)− C(τ + η0θ; p, τ, θ)

)
P(p̂ = w)

)
. (4.4)

Since C(q; p, τ, θ) is given by (1− p)hq+ p(h(q− τ) + (h+ b)E(τ +Zθ− q)+), we can

rewrite (4.4) as

hθ(1− p) ∑
w>γ

E
(
τ̂−τ
θ

+ η(w, γ) θ̂
θ
− η0

)
P(p̂ = w)

+pθh
∑
w>γ

E
(
τ̂−τ
θ

+ η(w, γ) θ̂
θ
− η0

)
P(p̂ = w)

+pθ(h+ b)
∑
w>γ

(
E
(
Z − τ̂−τ

θ
− η(w, γ) θ̂

θ

)+

− E(Z − η0)+

)
P(p̂ = w).

Note that (τ̂ − τ)/θ is normally distributed with zero mean, and
√
nw − 1 θ̂/θ is the

square root of a chi-square random variable with nw−1 degrees of freedom. Therefore,

E((τ̂ − τ)/θ) = 0 and
√
nw − 1 E(θ̂/θ) =

√
2Γ(nw/2)/Γ((nw − 1)/2). By definition,

we also have E(Z − η0)+ = −η0 (i.e., Φ(η0) is assumed zero). Finally, plugging the

closed-form expression obtained for E(Z − (τ̂ − τ)/θ − η(w, γ)θ̂/θ)+ in Lemma 4.2.4

and rearranging the terms give the result. The proof for p > γo follows in a similar

manner.

4.3 Improved Inventory-Target Estimation

In this section, we switch our focus to the minimization of the expected cost of

parameter uncertainty, which has been characterized in Section 4.2. We know from

Proposition 4.2.2 that the expected cost of parameter uncertainty E
(

∆τ̂ ,θ̂(γ; p, τ, θ)
)

is equal to θE (∆U ,V(γ; p, 0, 1)), and hence, its minimization with respect to threshold

γ does not require the knowledge of parameters τ and θ. For ease in exposition,
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we let R(γ; p) denote E (∆U ,V(γ; p, 0, 1)). Section 4.3.1 discusses the minimization

of R(γ; p) over threshold γ along with the implementation details. Section 4.3.2

compares the performance of an inventory-target estimator with optimized threshold

to the performance of the naive inventory-target estimator with threshold γo.

4.3.1 Minimizing the Expected Cost of Parameter Uncer-

tainty

When the true parameter values are known, Proposition 4.2.1 shows the optimality

of a myopic base-stock policy with an explicit form for the optimal inventory tar-

get. However, when there is parameter uncertainty, parameter estimators appear

in the dynamic programming formulation as additional states. The resulting multi-

dimensional dynamic program with continuous state space is subject to the curse of

dimensionality. Therefore, we continue to focus on the forthcoming period as in the

optimal policy with known parameters. To be specific, the objective is to minimize

the expected cost due to parameter uncertainty in period n+ 1, given by θR(γ; p), in

the presence of a demand history of length n. In this way, we consider the impact of

estimation errors directly on the expected cost, which is operationally more relevant

than statistical measures such as mean squared error and mean absolute deviation of

the parameter estimates.

It is not possible to compute the value of γ that minimizes R(γ; p) directly as

R(γ; p) remains a function of the unknown parameter p. Obviously, we would prefer

a decision rule (i.e., a value for optimum γ) superior to all others for all values of p.

Failing this, the decision maker can be forced to choose between two or more rules,

each of which is optimal only over certain values of p. In this study, we introduce the

notion of confidence-interval information to address this problem. More specifically,

we evaluate R(γ; p) over a certain range of p values, which is likely to include the
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true value of p, and then choose the value of γ that minimizes the average value of

R(γ; p).

It is well known that the Wald statistic (p̂− p)/
√
p̂(1− p̂)/n converges to a stan-

dard normal random variable with increasing n (Rohatgi and Saleh, 2000). The true

value of the demand-occurrence probability p (which is fixed and unknown to the

decision maker) is then trapped in the interval

P :=

[
p̂− υ1−α/2

√
p̂(1− p̂)

n
, p̂+ υ1−α/2

√
p̂(1− p̂)

n

]

with probability at least 1 − α, where υ1−α/2 = Φ−1(1 − α/2). That is, the decision

maker uses the historical data available by the end of period n to understand where

the true value of p is likely to lie on the unit interval. The improved inventory-target

estimation then corresponds to the following optimization problem:

γ∗ := arg min
γ∈[0,1]

∫

P∩[0,1]

R(γ; p)dp. (4.5)

We note that Akcay et al. (2011) and Ramamurthy et al. (2012) estimate inven-

tory targets by optimizing a frequentist risk function as well, and they suggest using

the maximum likelihood estimate of an unknown parameter when the risk function

requires the specification of the unknown parameter. It is worth noting that this

practice is subsumed in the definition of P for the special case of α equal to 1. Next,

we replace γo of the naive inventory-target estimation with γ∗ to account for the

uncertainty around the parameter estimates:

Definition 4.3.1 (Improved Inventory-Target Estimation). If p̂ > γ∗, then the im-

proved inventory-target estimator Q̂(p̂, γ∗) is given by τ̂ + η(p̂, γ∗)θ̂. If p̂ ≤ γ∗, then

Q̂(p̂, γ∗) is zero.
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The optimal threshold γ∗ can be identified by evaluating the objective function in

(4.5) on a fine grid of γ between 0 and 1. While this is clearly not the most efficient

approach, it is practical as the optimal threshold can be obtained almost instantly.

4.3.2 Results and Insights

The objective of this section is two-fold: (1) To quantify the expected cost of param-

eter uncertainty associated with naive inventory-target estimation. (2) To investigate

the effectiveness of improved inventory-target estimation in reducing the expected

cost of parameter uncertainty. We let the demand size be normally distributed with

mean τ = 100 and standard deviation θ = 20. It is important to note that the opti-

mal threshold γ∗ of improved inventory-target estimation does not depend on what

we specify for τ and θ. We let n ∈ {10, 25, 30} and γo ∈ {0.25, 0.50, 0.75} to investi-

gate the effectiveness of the improved-inventory target estimation as a function of the

length of the demand history and the asymmetry of the unit holding and backlogging

costs.

We provide three different results for each scenario in Tables 4.1, 4.2, and 4.3.

First, we present the optimal threshold γ∗, a decision rule that minimizes the

expected cost of parameter uncertainty before the demand realization in the

forthcoming period. Second, we provide the ratio of the expected cost of pa-

rameter uncertainty to the minimum expected cost with known parameters; i.e.,

E(γo; p) := θR(γo; p)/C(q∗; p, τ, θ)100%, evaluated at p ∈ {0.2, 0.4, 0.6, 0.8} for the

naive inventory-target estimation. Finally, we report E(γ∗; p) for the improved

inventory-target estimation. The decision maker uses two pieces of information to

compute γ∗: The length of the historical data n and the number of positive demand

realizations nd. We report the values of γ∗ when nd is equal to p 100% of the demand

history n. It is important to note that the decision maker uses nd to build the confi-

dence interval P ; the uncertainty of nd (or p̂) is still captured by the minimization of
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Table 4.1: γo = 0.25 (Unit backlogging cost is greater than the unit holding cost)

p

0.2 0.4 0.6 0.8

n = 10 γ∗ 1.000 0.183 0.192 0.221
E(γo; p) 12.5% 14.0% 7.0% 4.6%
E(γ∗; p) 0.0% 8.1% 5.2% 3.8%

n = 15 γ∗ 1.000 0.188 0.224 0.229
E(γo; p) 10.9% 9.0% 3.5% 2.9%
E(γ∗; p) 0.0% 5.7% 3.0% 1.9%

n = 30 γ∗ 1.000 0.197 0.231 0.236
E(γo; p) 6.9% 4.7% 1.5% 1.2%
E(γ∗; p) 0.0% 2.6% 0.6% 0.5%

the expected cost of parameter uncertainty in (4.5). In each experiment, the optimal

threshold γ∗ is computed within seconds on a standard desktop system.

In improved inventory-target estimation, the decision maker compares γ∗ with

the current estimate of the demand-occurrence probability to decide whether to stock

inventory. We note that γ∗ is equal to 1 in some instances. This means that the

decision maker sets inventory target to zero units regardless of the realized demand

history since p̂ is less than or equal to one for any demand history. We observe γ∗

to be equal to 1 for p = 0.2 and γo = 0.25 in Table 4.1, for p ∈ {0.2, 0.4} and

γo = 0.50 in Table 4.2, and for p ∈ {0.2, 0.4, 0.6} and γo = 0.75 in Table 4.3. In

these cases, the improved inventory-target estimation mimics the optimal policy with

known parameters, which sets the inventory target to zero. Therefore, the expected

cost of parameter uncertainty is zero, and we identify the ratio E(γ∗; p) as 0.0%.

We observe the difference between the true value of p and γo to be an important

driver of the expected cost of parameter uncertainty. For example, when n = 10 and

p = 0.2, we see that E(γo; p) is as much as 12.5% for γo = 0.25 (Table 4.1), while it is

only 1.1% for γo = 0.75 (Table 4.3). The probability of p̂ being less than γo = 0.75 is

greater than the probability of p̂ being less than γo = 0.25 for p = 0.2. Thus, it is more
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Table 4.2: γo = 0.50 (Unit backlogging cost is equal to the unit holding cost)

p

0.2 0.4 0.6 0.8

n = 10 γ∗ 1.000 1.000 0.392 0.460
E(γo; p) 1.9% 9.1% 13.1% 8.4%
E(γ∗; p) 0.0% 0.0% 7.0 % 4.9%

n = 15 γ∗ 1.000 1.000 0.395 0.461
E(γo; p) 1.1% 8.9% 8.3% 3.5%
E(γ∗; p) 0.0% 0.0% 5.4% 2.6%

n = 30 γ∗ 1.000 1.000 0.423 0.474
E(γo; p) 0.0% 4.0% 6.5% 1.4%
E(γ∗; p) 0.0% 0.0% 3.1% 1.1%

Table 4.3: γo = 0.75 (Unit holding cost is greater than the unit backlogging cost)

p

0.2 0.4 0.6 0.8

n = 10 γ∗ 1.000 1.000 1.000 0.693
E(γo; p) 1.1 % 3.2% 13.3% 9.5%
E(γ∗; p) 0.0% 0.0% 0.0 % 7.3%

n = 15 γ∗ 1.000 1.000 1.000 0.699
E(γo; p) 0.6% 1.5% 7.0% 8.3%
E(γ∗; p) 0.0% 0.0% 0.0% 5.7%

n = 30 γ∗ 1.000 1.000 1.000 0.724
E(γo; p) 0.0% 0.0% 2.9% 5.5%
E(γ∗; p) 0.0% 0.0% 0.0% 3.9%

likely for the naive inventory-target estimation to align with the optimal policy with

known parameters (i.e., stocking zero units) when p = 0.2 and γo = 0.75 compared

to when p = 0.2 and γo = 0.25. This is the main reason why we observe a smaller

E(γo; p) for γo = 0.75 than for γo = 0.25 in this example. Improved inventory-target

estimation achieves 0.0% as the value of E(γ∗; p) for both of these cases.

The intuition on the effectiveness of the improved inventory-target estimation lies

behind accounting for the costs of overestimation and underestimation. For example,
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when p = 0.6 and n = 10, the optimal threshold γ∗ is 0.192 for γo = 0.25 (Table 4.1),

while it is 1 for γo = 0.75 (Table 4.3). That is, the improved inventory-target esti-

mation makes it more difficult (in fact, impossible in this example) to set a positive

inventory target by choosing γ∗ = 1 greater than γo = 0.75 when the holding cost

dominates the backlogging cost (or the overestimation is more costly than under-

estimation). On the other hand, when the backlogging cost dominates the holding

cost (or the underestimation is more costly than overestimation), we observe that

γ∗ = 0.192 is less than γo = 0.25, meaning that improved inventory-target estimation

dictates ordering more than the naive inventory-target estimate. We note that γ∗ can

still be smaller than γo even though the holding cost dominates the backlogging cost

as in the p = 0.8 column of Table 4.3, depending on the length of the demand history

and the number of positive demand observations. We observe in our experiments

with a wider range of cost parameters that the role of γ∗ on balancing the costs of

underestimation and overestimation becomes more visible when γo approaches zero

or one.

We know that the estimators p̂, τ̂ , and θ̂ are all consistent; i.e., they converge

to their true values with increasing length of the demand history. Therefore, the

expected cost of parameter uncertainty (or the values of E(γo; p) and E(γ∗; p)) de-

creases as the length of the demand history increases. For example, when p = 0.6

and γo = 0.50 (Table 4.2), we observe that E(γo; p) decreases from 13.1% to 6.5%

as n increases from 10 to 30, while E(γ∗; p) decreases from 7.0% to 3.1%. To put it

another way, while the expected cost of parameter uncertainty disappears with in-

creasing length of the demand history, the decision maker must be aware of the cost

of parameter uncertainty if there is a limited amount of historical data.
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4.4 Correlated Demand Size and Number of Inter-

Demand Periods

Section 4.4.1 presents a copula-based demand model to capture the relation between

a demand size and the number of zero-demand periods preceding the demand, and

characterizes the optimal policy when there is no parameter uncertainty. Section 4.4.2

introduces a statistical test to assess the existence of correlation in the presence of a

limited data. Section 4.4.3 introduces an alternative test for the same purpose based

on the difference between the expected cost of an inventory-target estimate and the

minimum expected cost. We name these tests as correlation test and operational test,

respectively. Contrary to the correlation test – which is solely based on the sampling

distribution of the copula-parameter estimator, the operational test accounts for the

costs of over- and underestimation of the optimal inventory target in investigating the

existence of correlation. Section 4.4.4 describes how the improved inventory-target

estimation of Section 4.3 can be extended to intermittent demand with correlation.

4.4.1 Correlated Intermittent Demand Model and Optimal

Inventory Policy

When the size of a (positive) demand depends on the number of periods since the last

demand, there is a challenge in the characterization of the expected cost function:

Modeling the distribution of demand size conditional on the number of periods since

the last demand, while retaining the distribution of demand size X from the location-

scale family along with the geometric distribution for the number of inter-demand

periods Y . We address this issue by constructing the joint distribution of X and Y

with a copula, which allows us to model the univariate distributions of X and Y and

the dependence structure between them separately. Sklar’s theorem (Nelsen 2006)
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elucidates the role played by a copula in the relation between a joint distribution and

its univariate cdfs:

Theorem 4.4.1 (Sklar’s Theorem). Given the bivariate cdf H(x, y) for the random

variables X and Y with univariate cdfs F (x; τ, θ) and G(y; p), there exists a copula C

such that H(x, y) = C (F (x; τ, θ), G(y; p)). Conversely, if C is a copula and F (x; τ, θ)

and G(y; p) are univariate cdfs, then H(x, y) is a bivariate cdf for the random variables

X and Y .

The applications of copulas are relatively few in operations management; Clemen

and Reilly (1999), Cooper and Gupta (2006), Corbett and Rajaram (2006), and Aydın

et al. (2012) are some of the few examples in decision analysis, revenue management,

and supply chain management. To the best of our knowledge, we are the first to use

copula in the interface of inventory management and intermittent demand modeling

with parameter uncertainty.

More specifically, we construct the bivariate distribution of X and Y using the nor-

mal copula, which encodes the dependence precisely the same way a bivariate normal

distribution does: H(x, y) = Φ2 {Φ−1(F (x; τ, θ)),Φ−1(G(y; p)); r} where Φ2{·, ·; r} is

the bivariate standard normal cdf with the correlation coefficient r (Nelsen, 2006).

We use the normal copula because the copula parameter r can be conveniently esti-

mated by using the tools available to estimate the correlation coefficient of a bivariate

standard normal distribution. We next characterize the optimal policy when there is

no parameter uncertainty.

Proposition 4.4.1. Suppose that the demand-size distribution parameters τ and θ,

the demand-occurrence probability p, and the copula parameter r are known. Let y

denote the number of zero-demand periods since the last demand.

(i) A base-stock policy is optimal in any time period for all values of y.
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(ii) For the demand-occurrence probability p > γo, the optimal inventory target q∗

is given by τ + F−1 (κ∗; 0, 1) θ, where κ∗ is the unique value of κ that solves the

equation

Φ2 {Φ−1(κ),Φ−1(G(y; p)); r} − Φ2 {Φ−1(κ),Φ−1(G(y − 1; p)); r}
(1− p)yp = 1− γo

p
.

(4.6)

(iii) For p ≤ γo, the optimal inventory target q∗ is zero.

Proof. (i) The state space is defined by the level of inventory before ordering, ν and the

number of zero-demand periods since the last demand, y. We now let C(q|y; p, τ, θ, r)

denote (1 − p)hq + p (hE(q −X|y)+ + bE(X|y − q)+). The optimality equation is

written as Vt(ν, y) = minq≥max(0,ν){C(q|y; p, τ, θ, r)+(1−p)Vt+1(q, y+1)+pE(Vt+1(q−

X|y, 0))} for t = 1, 2, . . . , N with VN+1(ν, y) = 0. Let Lt(q) denote C(q|y; p, τ, θ, r) +

(1−p)Vt+1 (q, y + 1)+pE (Vt+1(q−X, 0)). We now examine the single-period problem

in period N for a particular value of y. Note that the unique minimizer of the convex

function LN is the base-stock level for period N . Since convexity is preserved under

minimization (Theorem A.4, Porteus 2002), VN is also convex, and the result follows

from a recursive argument through the periods t = N − 1, N − 2, . . . , 1 for any value

of y. There are two cases to analyze: If p > γ0, then the optimal base-stock level is

positive for all y values, while it is zero if p ≤ γ0. We discuss the minimization of the

single-period expected cost function below for each of these cases.

(ii) If p > γ0, then the minimizer of the convex function C(q|y; p, τ, θ, r) is char-

acterized by the first-order condition (1 − p)h + p((h + b)HX|Y (q|y) − b) = 0 with

HX|Y (·|y) the cdf of the demand size X conditional on the number of zero-demand

periods Y = y. Using the bivariate distribution of X and Y characterized by Sklar’s

theorem, P(X ≤ x, Y = y) is obtained from H(x, y) − H(x, y − 1) and equal to

Φ2 {Φ−1(F (x; τ, θ)),Φ−1(G(y; p)); r}−Φ2 {Φ−1(F (x; τ, θ)),Φ−1(G(y − 1; p)); r} by the

definition of the normal copula. We also know P(Y = y) = (1−p)yp by the definition
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of the geometric distribution. Consequently, the distribution of X conditional on

Y = y; i.e., P(X ≤ x|Y = y) = P(X ≤ x, Y = y)/P(Y = y), takes the form

Φ2 {Φ−1(F (x; τ, θ)),Φ−1(G(y; p)); r} − Φ2 {Φ−1(F (x; τ, θ)),Φ−1(G(y − 1; p)); r}
(1− p)yp .

(4.7)

Since this expression is an increasing function of F (x; τ, θ), there is a unique value

of F (x, τ, θ) which makes (4.7) equal to 1 − h/((h + b)p) to impose the first-order

condition. Let κ∗ denote this value of F (x; τ, θ). Consequently, the optimal solution

q∗ of the single-period problem is given by τ + F−1(κ∗; 0, 1)θ; i.e., κ∗ = F (q∗; τ, θ).

(iii) If p ≤ γ0, the expected cost C(q|y; p, τ, θ, r) is minimized at zero, the boundary

solution.

It is important to note that the solution of (4.6) does not depend on the demand-size

parameters due to our copula-based representation of intermittent demand. We will

make use of this key property in establishing the distribution of the test statistic

introduced in the operational test.

4.4.2 A Sampling-Based Test for Correlation

The copula-based representation of intermittent demand allows the univariate distri-

bution parameters τ , θ, and p, and the copula parameter r to be estimated separately,

potentially with different methods. In this section, we continue to use the estima-

tors τ̂ , θ̂, and p̂ introduced in Section 4.2.3. We then transform the historical data

{(xt, yt); t = 1, 2, . . . , nd} into {(uix, uiy); i = 1, 2, . . . , nd} with uix := F ((xi− τ̂)/θ̂; 0, 1)

and uiy := G(y; p̂), and use the maximum likelihood method to estimate the copula

parameter r by fitting the normal copula to the transformed data:

r̂ := arg max
r∈(−1,1)

nd∑

i=1

log φ2{Φ−1(uix),Φ
−1(uiy); r}, (4.8)
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where φ2{·, ·; r} is the bivariate standard normal pdf with correlation r. The transfor-

mation of historical data into a unit hypercube by the parametric estimates of their

univariate cdfs is known as the inference functions for margins; we refer the reader

to Cherubini et al. (2011) for the details.

Clearly, the estimated value of r̂ never takes the exact value of zero. Thus, the

immediate task of a decision maker – before using the copula – is to make sure that

the historical data carry sufficient information to reject the independence between

the demand size and the number of inter-demand periods. There are powerful tools

in statistics to test the existence of correlation in bivariate normal data; see Fosdick

and Raftery (2012) for a review.

Traditionally, the distribution of a test statistic is based on asymptotic theory.

In contrast, we generate test-statistic samples, each of which is obtained from a

limited amount of demand data, to build an empirical distribution of the test statistic.

The so-called bootstrap hypothesis testing has become increasingly attractive due to

advances in computing (MacKinnon, 2009). We let the null hypothesis H0 be r = 0

and the two-tailed alternative hypothesis HA be r 6= 0. The correlation test compares

the observed value of the test statistic r̂ with the distribution that it would follow if

the null hypothesis were true. The null hypothesis is then rejected if r̂ is sufficiently

extreme relative to this distribution. The decision maker performs the test by only

specifying the length of the demand history and the number of positive realizations.

We present an outline of the correlation test in Figure 4.3.

Remark 4.4.1. The copula-based representation of intermittent demand and the as-

sumption of a location-scale family for the distribution of demand size allow the use of

standardized demand samples {zb1, zb2, . . . , zbnd} instead of the actual demand samples

{xb1, xb2, . . . , xbnd} – which could be generated only if the true values of τ and θ were

known.
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Figure 4.3: The correlation test with H0 : r = 0 and HA : r 6= 0

28

Correlation Test Testing for correlation with H0 : r= 0 and HA : r 6= 0.

Initialization. Specify the number of bootstrap samples (B), the length of historical data (n),

the number of positive realizations (nd), and the significance level (1−α).

Set p̂← nd/n and b← 1.

Compute the test statistic r̂ as in (7) from the historical data {(xt, yt); t= 1,2, . . . , nd}.
while b≤B:

Step 1. Generate the bootstrap sample path:

Set i← 1 and t← 1.

while t≤ n
Generate (Zbx,i,Zby,i) from the bivariate standard normal cdf with correlation r= 0.

Obtain zbi = F−1(Φ(Zbx,i); 0,1) and ybi =G−1(Φ(Zby,i); p̂).
Set t← t+ ybi + 1 and i← i+ 1.

Let nbd be the number of nonzero demands in bth bootstrap sample path.

end

Step 2. Compute the test statistic from the bootstrap sample path:

Let z̄ and sz be the sample mean and sample standard deviation of {zb1, zb2, . . . , zbnd}.
Set r̂b← arg maxr∈(−1,1)

∑nbd
i=1 logφ2{Φ−1(F ((zi− z̄)/sz; 0,1)),Φ−1(G(ybi ;n

b
d/n)); r}.

b← b+ 1

end

Step 3. Construct the critical region to reject the null hypothesis:

Sort r̂b, b= 1,2, . . . ,B in ascending order (r(1), r(2), . . . , r(B)).

Reject the null hypothesis H0 if r̂ < r(b(α/2)Bc) or r̂ > r(d(1−α/2)Be).

Remark 2. The copula-based representation of intermittent demand and the assump-

tion of a location-scale family for the distribution of demand size allow the use of standard-

ized demand samples {zb1, zb2, . . . , zbnd} instead of the actual demand samples {xb1, xb2, . . . , xbnd}
– which could be generated only if the true values of τ and θ were known.

We let the number of independent bootstrap sample paths B equal to 10,000. The

number of positive realizations nd is taken as 20%, 40%, 60%, and 80% of n, the length

of the demand history. A level α = 0.05 test rejects the hypothesis that the correlation

is zero in favor of the alternative that it is not zero if the copula-parameter estimate is

less than 2.5% quantile or greater than 97.5% quantile. Table 5 presents the so-called 95%

We let the number of independent bootstrap sample paths B equal to 10, 000.

The number of positive realizations nd is taken as 20%, 40%, 60%, and 80% of n, the

length of the demand history. A level α = 0.05 test rejects the hypothesis that the

correlation is zero in favor of the alternative that it is not zero if the copula-parameter

estimate is less than 2.5% quantile or greater than 97.5% quantile. Table 4.4 presents

the so-called 95% significance test bounds. For example, the significance test bounds

are {−0.89, 0.89} for a demand history of length 30 with 6 positive demand realiza-

tions. That is, the decision maker has sufficient evidence to reject the independence

assumption only if the estimated value of the copula parameter is less than −0.89 or
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Table 4.4: 95% significance bounds in the correlation test to reject r = 0 against
r 6= 0

The percentage of positive realizations in the n-period history

n 20% 40% 60% 80%

30 {-0.89, 0.89} {-0.62, 0.62} {-0.48, 0.48} {-0.41, 0.41}
50 {-0.70, 0.70} {-0.46, 0.46} {-0.36, 0.36} {-0.31, 0.31}
100 {-0.47, 0.47} {-0.32, 0.32} {-0.26, 0.26} {-0.22, 0.22}
250 {-0.28, 0.28} {-0.20, 0.20} {-0.16, 0.16} {-0.14, 0.14}

greater than 0.89. On the other hand, the significance test bounds are {−0.14, 0.14}

for a demand history of length 250 with 200 positive demand realizations. In this

case, the estimated value of the copula parameter must be less than −0.14 or greater

than 0.14 to justify the modeling of correlation in intermittent demand. The signifi-

cance bounds approach zero (i.e., the critical region becomes larger) as the length of

the demand history and the number of positive realizations increase.

In Table 4.5, we focus on the fraction of time that the decision maker rejects the

null hypothesis at the level α = 0.05 based on 500 replications of the correlation test.

In each scenario, we let the percentage of positive realizations be 20% (top) and 40%

(bottom) of the demand history to focus on highly intermittent demand histories.

Clearly, the fraction of rejections approaches one as the length of the demand history

and the true value of the copula parameter (i.e., the strength of correlation) increases.

For example, the decision maker rejects the null hypothesis of no correlation 5% of

the time when the copula parameter is 0.15 in a demand history of length 30 with

12 positive demand realizations. In this case, the fraction of rejections reaches 94%

when the copula parameter is as high as 0.90. It is worth noting that the correlation

test only considers the sampling distribution of the copula-parameter estimator to

decide whether to model the correlation. We next present an alternative hypothesis

test that considers the expected cost associated with the over- and underestimation

of the optimal inventory target to investigate the existence of correlation.
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Table 4.5: The fraction of time the correlation test rejects H0 at 95% significance
level

r

n nd 0.15 0.3 0.45 0.6 0.75 0.90

30 6 3% 3% 5% 12% 17% 38%
50 10 5% 7% 13% 32% 62% 85%
100 20 9% 20% 46% 77% 95% 100%
250 50 20% 53% 90% 99% 100% 100%

30 12 5% 9% 22% 37% 75% 94%
50 20 7% 20% 41% 71% 94% 100%
100 40 11% 37% 75% 96% 100% 100%
250 100 31% 80% 99% 100% 100% 100%

4.4.3 Sampling-Based Testing for Correlation: An Opera-

tional Alternative

As opposed to searching for the statistical significance of a parameter estimate, a

decision maker is more interested in the performance of the decision based on the

estimate. In this section, we propose an alternative test considering the sampling

distribution of the difference between the expected costs of the optimal inventory

target and its estimate.

We start with showing a result analogous to Lemma 4.2.2(ii) to reduce the ex-

pected cost function to an alternative form, which will be used to construct the sam-

pling distribution of the test statistic. Let C(q|y; p, τ, θ, r) denote the single-period

expected cost conditional on the number of periods y since the last demand.

Lemma 4.4.1. The expected cost C(q|y; p, τ, θ, r) can be equivalently written as

θC

(
q − τ
θ
|y; p, 0, 1, r

)
+ hτ(1− p).
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Proof. We first derive the pdf of X conditional on Y = y, denoted by fX|Y (x|y), as

f(x; τ, θ)
{

Φ
(

Φ−1(G(y+1;p))−rΦ−1(F (x;τ,θ))√
1−r2

)
− Φ

(
Φ−1(G(y;p))−rΦ−1(F (x;τ,θ))√

1−r2

)}
,

where f is the marginal pdf of X. If we make the transformation Zc = (X − τ)/θ in

fX|Y (·|y), then we obtain the pdf of Zc as

1
θ
f(zc; 0, 1)

{
Φ
(

Φ−1(G(y+1;p))−rΦ−1(F (zc;0,1))√
1−r2

)
− Φ

(
Φ−1(G(y;p))−rΦ−1(F (zc;0,1))√

1−r2

)}
.

That is, the marginal-copula representation of intermittent demand allows us to trans-

form the demand size X conditional on Y = y into τ +Zcθ with Zc the standardized

conditional demand. Consequently, the expected cost function C(q|y; p, τ, θ, r), which

is given by (1− p)hq + p (hE(q −X|y)+ + bE(X|y − q)+) , can be transformed into

(1− p)hq + p
(
hE(q − (τ + Zcθ))

+ + bE((τ + Zcθ)− q)+
)
.

Rewriting (1− p)hq as θ(1− p)h[(q − τ)/θ] + hτ(1− p) completes the proof.

The decision maker implements the optimal policy in Proposition 4.4.1 with an

arbitrary threshold γ as follows: If the estimate of the demand-occurrence probability

p̂ > γ, then the inventory target is set to τ̂+F−1(κ̂γ; 0, 1)θ̂; and if p̂ ≤ γ, then it is set

to zero. We let κ̂γ the value of κ that solves the equation Π(κ; p̂, y, r̂) = 1− γ/p̂. In

this representation, Π(κ; p̂, y, r̂) denotes the left-hand side of (4.6) for notational con-

venience. The use of γo as the value of threshold γ leads to the correlated counterpart

of the naive inventory target of Section 4.2.3.

Building on Lemma 4.4.1 and the definitions of U and V from Section 4.2.4, the

difference between the expected cost of an inventory-target estimate and the minimum

expected cost of the optimal inventory target takes the form θΛ(κ̂γ,U ,V , y; γo, p, r),
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where Λ(κ̂γ,U ,V , y; γo, p, r) is given by





C(U + F−1(κ̂γ; 0, 1)V|y; p, 0, 1, r)− C(η0|y; p, 0, 1, r) for p̂ > γ; p ≤ γo,

C(U + F−1(κ̂γ; 0, 1)V|y; p, 0, 1, r)− C(F−1(κ∗; 0, 1)|y; p, 0, 1, r) for p̂ > γ; p > γo,

C(η0|y; p, 0, 1, r)− C(F−1(κ∗)|y; p, 0, 1, r) for p̂ ≤ γ; p > γo,

0 for p̂ ≤ γ; p ≤ γo.

We use the the nonnegative random variable Λ(κ̂γ,U ,V , y; γo, p, r) as the test statis-

tic. The operational test compares the observed value of the test statistic with the

distribution that it would follow under the null hypothesis of no correlation. The null

hypothesis is then rejected when the observed value of the test statistic is sufficiently

high relative to this distribution. We present the outline of the operational test in

Figure 4.4.

Remark 4.4.2. (i) We present the operational test for an arbitrary threshold γ on

the unit interval. In the remainder of the section, we let γ be equal to γo for the

numerical experiments. (ii) In Step 2, plugging the estimator s/
√
a2 of θ̂ in V = θ̂/θ

leads to v = sz/
√
a2 – which is computed from the standardized demand samples

{zb1, zb2, . . . , zbnd} – as the sampled value of V. Similarly, plugging the estimator x̄−a1θ̂

of τ̂ in U = (τ̂ − τ)/θ leads to u = z̄ − a1v as the sampled value of U .

The main question we aim to answer is how the consideration of the expected cost

of parameter uncertainty affects the decision maker in assessing the need for modeling

the correlation. To this end, we use the same experimental design in Table 4.5 and

compare the operational test and the correlation test in terms of the fraction of time

the decision maker rejects the null hypothesis of no correlation. Table 4.6 presents

the fraction of time that the decision maker rejects the independence assumption at

the α = 0.05 level when the cost ratio γ0 = h/(h+ b) is equal to 0.1.
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Figure 4.4: The operational test with H0 : r = 0 and HA : r 6= 0

32

Operational Test Testing for correlation with H0 : r= 0 and HA : r 6= 0.

Initialization. Specify the number of bootstrap samples (B), the length of historical data (n),

the number of positive realizations (nd), the number of periods since last demand (y),

and the significance level (1−α).

Set p̂← nd/n and b← 1.

Compute the test statistic Λ̂ := Λ(κ̂γ,0,1, y;γo, p̂,0) from historical data {(xt, yt); t= 1,2, . . . , nd}.
while b≤B:

Step 1. Generate the bth bootstrap sample path as in Step 1 of the correlation test.

Step 2. Compute the test statistic from the bootstrap sample path:

Set p̂b← nbd/n.

Let z̄ and sz be the sample mean and sample standard deviation of {zb1, zb2, . . . , zbnd}.
Set r̂b← arg maxr∈(−1,1)

∑nbd
i=1 logφ2{Φ−1(F ((zi− z̄)/sz; 0,1)),Φ−1(G(ybi ; p̂

b)); r}.
Set κbγ to the value of κ that solves the equation Π(κ; p̂b, y, r̂b) = 1− γ/p̂b.
Set ub← z̄− a1vb and vb← sz/

√
a2.

Λ̂b←Λ(κ̂γ, u
b, vb, y;γo, p̂

b,0).

b← b+ 1

end

Step 3. Construct the critical region to reject the null hypothesis:

Sort Λ̂b, b= 1,2, . . . ,B in ascending order (Λ(1),Λ(2), . . . ,Λ(B)).

Reject the null hypothesis H0 if Λ̂>Λ(d(1−α)Be).

Remark 3. (i) We present the operational test for an arbitrary threshold γ on the

unit interval. In the remainder of the section, we let γ be equal to γo for the numerical

experiments . (ii) In Step 2, plugging the estimator s/
√
a2 of θ̂ in V = θ̂/θ leads to v =

sz/
√
a2 – which is computed from the standardized demand samples {zb1, zb2, . . . , zbnd} – as

the sampled value of V. Similarly, plugging the estimator x̄− a1θ̂ of τ̂ in U = (τ̂ − τ)/θ

leads to u= z̄− a1v as the sampled value of U .

The main question we aim to answer is how the consideration of the expected cost

of parameter uncertainty affects the decision maker in assessing the need for modeling

the correlation. To this end, we use the same experimental in Table 6 and compare the

operational test and the correlation test in terms of the fraction of time the decision maker

rejects the null hypothesis of no correlation. Table 7 presents the fraction of time that the

We observe that the fraction of time the decision maker rejects the independence

assumption is considerably smaller in Table 4.6 compared to Table 4.5 especially when

the length of the demand history and the strength of the correlation are not very high.

This can be explained by the additional statistical estimation error around the copula

parameter when the independence assumption is relaxed. To put it another way, the

benefit of accounting for the correlation is dominated by the additional expected cost

associated with the incorrect estimation of the copula parameter. This is why the

operational test, which considers the expected cost of parameter uncertainty, is in

favor of the simpler model with no correlation when the amount of data is limited

and the strength of the correlation is low. Not surprisingly, this is the case when
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the the copula-parameter estimator has the highest variance, and hence, when the

estimated value of correlation is subject to highest statistical estimation error.

We also observe that the difference between the inventory holding and backlogging

costs – which is ignored by the correlation test – plays an important role when the

expected cost of parameter uncertainty is the criterion to decide whether to model

the correlation. To illustrate, we present the fraction of time that the decision maker

rejects the independence assumption in Table 4.7 when γ0 is equal to 0.25. Clearly,

the fraction of time the decision maker rejects the independence assumption is smaller

in Table 4.7 compared to Table 4.6 (bottom). In these tables, the values of n and nd

are both the same, while the difference between the ratio of nd to n and the value of γ0

is smaller in Table 4.7. The decision maker is more likely to set a zero inventory target

when the ratio of nd to n is not sufficiently bigger than γ0, leading to smaller values

for the probability of rejecting the independence assumption in Table 4.7. Intuitively,

the decision maker is less likely to bother with modeling the correlation since the

inventory target is set to zero anyway. Indeed, we observe that the fraction of time

the decision maker rejects the independence assumption in the operational test is

Table 4.6: The fraction of time the operational test rejects H0 at 95% significance
level for γo = 0.1

r

n nd 0.15 0.3 0.45 0.6 0.75 0.90

30 6 0% 0% 0% 0% 0% 2%
50 10 0% 0% 0% 0% 3% 5%
100 20 0% 1% 3% 9% 21% 27%
250 50 3% 7% 26% 33% 46% 69%

30 12 0% 1% 3% 5% 8% 28%
50 20 0% 3% 8% 13% 35% 45%
100 40 0% 8% 28% 46% 49% 58%
250 100 0% 15% 51% 63% 73% 84%
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Table 4.7: The fraction of time the operational test rejects H0 at 95% significance
level for γo = 0.25

r

n nd 0.15 0.3 0.45 0.6 0.75 0.90

30 12 0% 0% 0% 1% 3% 5%
50 20 0% 0% 2% 5% 11% 14%
100 40 0% 2% 5% 13% 41% 53%
250 100 1% 10% 35% 69% 72% 81%

almost zero in all the cases when the ratio of nd to n is 20% with γ0 = 0.25 and when

the ratio of nd to n is 20% and 40% with γ0 = 0.5.

A natural question to ask is which statistical test to use for investigating the exis-

tence of correlation in an intermittent demand history. The correlation test considers

the copula parameter in isolation, and therefore, it is more appropriate if the goal is

merely to make an inference about the intermittent demand process. On the other

hand, the operational test incorporates the expected cost of incorrectly estimating the

copula parameter into the decision of modeling the correlation. Thus, the operational

test is more pragmatic to consider when the question is whether the copula-parameter

estimate should be used as an input in decision making, as is the case in this study.

4.4.4 Improved Inventory-Target Estimation in the Presence

of Correlation

Once the need to model the correlation is warranted, an immediate question is whether

an alternative threshold can be used to reduce the expected cost of parameter uncer-

tainty. We briefly address this question in the remainder of the section.

The copula-based representation of intermittent demand makes it very convenient

to sample intermittent demand histories, lending itself to the use of Sample Average

Approximation (SAA) to find an improved threshold. More specifically, the differ-

ence between the expected costs of the optimal inventory target and the estimate
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of the optimal inventory target – which we characterize as θΛ(κ̂γ,U ,V , y; γo, p, r) in

Section 4.4.3 – is independently sampled a large number of times and added up to

obtain the objective function. The so-called SAA objective function is a deterministic

function of the threshold γ. Therefore, any numerical minimization method suitable

for a deterministic problem can be applied to approximate the optimal threshold.

The method provides consistent estimates of the optimal threshold and the minimum

expected cost of parameter uncertainty. We refer the reader to Shapiro et al. (2009)

for details.

Without loss of generality, the decision maker can generate the independent sam-

ple paths by assuming the scale parameter θ as one. This is because the solution

of the SAA objective function does not depend on the value of θ. However, it is

necessary to specify the copula parameter r and the demand-occurrence probability

p to generate the sample paths. In this case, the sampling distribution of the copula-

parameter estimator can be used to obtain the confidence-interval information for

the copula parameter r – in addition to the confidence-interval information for the

demand-occurrence probability p obtained in Section 4.3. If the statistical tests are

not in favor of rejecting the independence assumption, then the decision maker can

directly use the improved inventory-target estimation proposed in Section 4.3.

4.5 Conclusion

We consider the inventory-target estimation problem for a single item whose demand

history consists of many zero observations because demand does not arrive every

review period. We first establish the optimal policy under the assumptions of known

demand-occurrence probability and known mean and variance for the demand size:

If demand-occurrence probability is less than a threshold, do not keep inventory;

otherwise, set a positive inventory target that minimizes the expected holding and
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shortage costs in the forthcoming period. It is well known that the implementation

of this policy – which is only optimal for known parameters – may result in poor

operational performance when the parameter estimates are used as if they were the

true values.

We first quantify the expected cost of parameter uncertainty as a function of

a threshold variable when the demand-size distribution belongs to a location-scale

family. We illustrate this quantification for exponentially and normally distributed

demand sizes. We then discuss the minimization of the expected cost of parameter

uncertainty with respect to the threshold variable. Our approach, thus, combines

inventory management and parameter estimation into a single task, and effectively

balances under- and overestimation of the optimal inventory target by considering the

interplay between holding and backlogging costs. For example, our method suggests

using a threshold equal to one, when the demand is highly intermittent and the

holding cost dominates the backlogging cost. In this case, the decision maker mimics

the optimal policy for known parameters by not keeping any stock regardless of the

realized demand history. The optimized threshold variable minimizes the expected

cost by accounting for all the possible realizations of the demand history, and hence

all the realizations of the demand parameter estimators, in a frequentist framework.

Motivated by our analysis of industrial data and the previous literature on empiri-

cal analysis of intermittent demand, we also present a copula-based model to capture

the correlation between demand size and the number of zero-demand periods that

precede the demand. The main question is when we need to model the correlation

despite the statistical estimation error around the copula parameter. The copula-

based representation of intermittent demand allows us to develop two new hypothesis

tests to assess the existence of correlation in a limited amount of intermittent demand

data. We show that a statistical test which accounts for the expected cost of param-

eter uncertainty tends to reject the independence assumption less frequently than a
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statistical test which only considers the sampling distribution of the copula-parameter

estimator.

In this study, we assume that the intermittent demand process is stationary and

the decision maker uses all the demand history for inventory-target estimation. How-

ever, when demand is nonstationary, the expected cost of parameter uncertainty can

be smaller when only the most recent demand realizations are used in inventory-

target estimation. Although we do not address this issue here, our joint estimation-

optimization approach is the first step in search of a solution to this important oper-

ational problem and it is the subject of future work.
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Chapter 5

Data-Driven Newsvendor:

A Probabilistic Guarantee for Near

Optimality when Demand is

Temporally Dependent

5.1 Introduction

An important problem in inventory management is to set inventory targets in the

absence of complete information about the true demand generating process. In this

paper, we address this problem in a newsvendor setting for stationary and temporally

dependent demand. It is well known that the critical fractile solution is optimal when

the parameters that characterize the distribution of the demand conditional on past

demand realizations are known. In practice, however, these parameters are unknown

and must be estimated using only a finite (and sometimes, very limited) amount of

historical demand data. Consequently, the expected cost associated with an estimate
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of the critical fractile solution can be far from the minimum but unknown expected

cost.

The dependence of demand on its past realizations is not uncommon in practice.

Erkip et al. (1990) find that the autocorrelation in monthly demand can reach up to

0.70 in a consumer products company. Lee et al. (1997) report dependence between

demand realizations over time – especially positive autocorrelation – in high-tech and

grocery industries. Lee et al. (2000) show that the sales data of 91% of the items in

a supermarket have autocorrelations between 0.26 and 0.89. Similarly, Hosoda et al.

(2008) analyze the sales data of soft drink products at a grocery retailer and find that

the autocorrelation in weekly demand varies between 0.77 and 0.83. The dependence

of random variables on past realizations is also frequent in areas other than inventory

management. The daily concentrations of pollutants collected and analyzed in an

environmental health project (Peng and Dominici, 2008), the energy generated from

a wind farm (Kim and Powell, 2011), and the number of beds demanded in a hospital

(Kros and Brown, 2012) are some examples.

A widely used method to model autocorrelation is to construct the temporally

dependent process via classical time series. For example, the linear autoregressive

(AR) process is often used for demand modeling in inventory management and sup-

ply chain analysis (e.g., Lee et al. 2000, Luong 2007, Chen and Lee 2012). It is well

known that an AR process can be expressed as a linear combination of independent

and normally distributed random shocks. This implies that the marginal demand

distribution is normal, which is an assumption vastly made in theory but often vio-

lated in practice. In particular, a normal distribution often falls short of an adequate

representation of the demand distribution, leading to inaccurate prediction models

and poor operational performance. We refer the reader to Akcay et al. (2011) and Ra-

mamurthy et al. (2012) as the examples illustrating the importance of the demand’s
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distributional shape in estimating inventory targets from independent and identically

distributed demand data.

For autocorrelated demand, as in this paper, a considerable amount of effort has

been devoted to modeling time series with exponential, gamma, geometric, or gen-

eral discrete marginal distributions (e.g., Block et al. 1990, Tiku et al. 2002, Akkaya

and Tiku 2005, Gourieroux and Jasiak 2006, and Jose et al. 2008). Nevertheless,

these models often allow only limited control of the dependence structure for a given

marginal demand distribution. In addition, there is no one-size-fit-all solution for

modeling and estimation of time-series processes. We overcome these challenges by

(i) modeling the temporal dependence in a transformed demand process which has

a standard uniform marginal distribution and matches the underlying dependence

structure of the actual demand process, and (ii) capturing the demand’s distribu-

tional shape with the empirical demand distribution function. To be specific, we

model the temporal dependence in {F (Xt); t = 1, 2, . . .} rather than modeling the

temporal dependence in the actual demand process {Xt; t = 1, 2, . . .}, where F is the

marginal cumulative distribution function (cdf) of the demand process. We do this

by using a copula which allows a decision maker to avoid any restrictive assumption

on the functional form of F . To estimate the critical fractile solution, the decision

maker first obtains the empirical demand distribution from the temporally depen-

dent demand data and then uses it in lieu of the true marginal demand distribution

while estimating the copula parameters that characterize the temporal dependence.

Finally, an estimate of the critical fractile solution is obtained as a function of the

empirical demand distribution and the estimated values of the copula parameters.

A natural question to ask is as follows. How good is an inventory target estimated

in this way? We define the goodness of an inventory-target estimate as in Levi et al.

(2007) by using the notion of ε-optimality; i.e., an inventory-target estimate is ε-

optimal if its expected cost is at most 1 + ε of the minimum but unknown expected
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cost. Clearly, the ε-optimality of an inventory-target estimator is a random event

because the inventory-target estimator is a random variable as a result of being a

function of the historical data randomly generated by the true demand process. In this

paper, we consider all the possible realizations of a demand history, and hence, all the

realizations of an inventory-target estimator in a frequentist framework. Accordingly,

we obtain a lower bound on the probability of ε-optimality when the inventory target

is a function of the empirical demand distribution and copula-parameter estimators.

This lower bound, which we refer as a probabilistic guarantee for near optimality,

serves as a level of confidence for the decision maker to assure the ε-optimality of an

inventory target obtained from a limited amount of demand data.

We summarize our contributions in this paper as follows:

1. To the best of our knowledge, we are the first to investigate the ε-optimality (i.e.,

near optimality) guarantee of an inventory target estimated from temporally

dependent demand data.

2. We introduce a copula-based model that allows the decision maker to assume a

demand process with an arbitrary marginal demand distribution and temporal-

dependence structure. Autocorrelation is a measure of linear dependence and

it may fall short of capturing the real-world dynamics in historical demand

data. Our copula-based demand model does not suffer from this limitation.

We illustrate it by accounting for the tail dependence – the amount of depen-

dence between the very low or very high valued demand realizations of the two

consecutive time periods.

3. For the special case of normal copula, we show that the probabilistic guarantee

for ε-optimality decreases with the strength of the autocorrelation. We then

provide a lower bound on the number of demand observations necessary to

achieve a certain level of probabilistic guarantee when the marginal demand
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distribution is known. Furthermore, we provide an upper bound on the number

of demand observations – as a function of the copula parameter – such that

the decision maker achieves a higher probabilistic guarantee of ε-optimality by

simply ignoring the temporal dependence.

4. We propose a sampling-based method to compute a lower bound to the probabil-

ity of ε-optimality for an arbitrary choice of copula when the marginal demand

distribution is unknown to the decision maker. In particular, our method builds

on the idea of sampling dependent uniform random variates matching the un-

derlying dependence structure of the demand process – rather than sampling

the actual demand which requires the specification of the marginal distribution.

The remainder of the paper is organized as follows. Section 5.2 presents our

copula-based demand model and the solution of the newsvendor problem with com-

plete information about the temporally dependent demand process. Section 5.3 pro-

vides a two-step estimation method consistent with the marginal-copula representa-

tion of demand. Section 5.4 characterizes the ε-optimality for temporally dependent

demand, provides structural results for normal copula, and presents our sampling-

based method to compute a probabilistic guarantee for ε-optimality. Section 5.5 aims

to understand the driving factors behind the probabilistic guarantee, the value of per-

fect information about autocorrelation, and the value of relaxing the independence

assumption. Section 5.6 investigates the impact of tail dependence on inventory-

target estimation. Section 5.7 concludes the paper with a summary of findings and

future research directions. We provide all the proofs in an Appendix at the end of

the chapter.
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5.2 The Modeling Framework

Section 5.2.1 introduces our copula-based demand model. Section 5.2.2 presents an

overview of the newsvendor model and characterizes the optimal critical-fractile solu-

tion when the marginal demand distribution and the temporal dependence structure

are known.

5.2.1 Demand Process

We let the demand {Xt; t = 1, 2, . . .} be a stationary first-order Markov process; i.e.,

P (Xt+1 = xt+1|Xt = xt, Xt−1 = xt−1, . . . , X1 = x1) = P (Xt+1 = xt+1|Xt = xt) .

In contrast to using a conditional probability distribution directly, we consider an

alternative approach based on copulas to model the first-order temporal dependence.

We do this by constructing the joint distribution of transformed demand random

variables Ut = F (Xt) and Ut+1 = F (Xt+1) by a bivariate copula C(·, ·;θ) with θ ∈ Θ,

where the parameter space Θ is a compact subset of Rd and d is the number of

parameters characterizing the underlying dependence structure.

Definition 5.2.1 (Nelsen 2006). A bivariate copula is a function C : [0, 1]× [0, 1]→

[0, 1]; i.e., a mapping of the unit square into the unit interval with the following

properties: (i) For every (ut, ut+1) in [0, 1] × [0, 1], C(ut, 0;θ) = C(0, ut+1;θ) = 0,

and C(ut, 1;θ) = ut and C(1, ut+1;θ) = ut+1; (ii) For every u′t, u
′′
t , u

′
t+1, u

′′
t+1 in [0, 1]

such that u′t ≤ u′′t and u′t+1 ≤ u′′t+1, C(u′′t , u
′′
t+1;θ) − C(u′′t , u

′
t+1;θ) − C(u′t, u

′′
t+1; θ) +

C(u′t, u
′
t+1;θ) ≥ 0.

The first condition provides the lower bound on the distribution function and ensures

that a bivariate copula is a two-dimensional distribution function with standard uni-

form marginal distributions. The second condition guarantees the probability of ob-
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serving a point in [0, 1]× [0, 1] to be nonnegative. The use of copulas for representing

the joint distribution of a random vector has been studied extensively for the past two

decades. We refer the reader to Joe (1997) and Nelsen (2006) for the widely known

properties of the copulas. The use of copulas for modeling the temporal dependence

of time series data has recently gained attention; see Chen and Fan (2006), Beare

(2010), and Patton (2012) as the example studies.

Sklar’s theorem (Sklar, 1959) and the stationarity of the demand process allow

us to construct the distribution of demand random variables Xt and Xt+1 with a

marginal distribution function F and a copula C(·, ·;θ):

Theorem 5.2.1 (Sklar’s Theorem.). Let H be a bivariate distribution function with

the continuous marginal cdf F . Then, there exists a bivariate unique copula C

such that H(xt, xt+1) = C(F (xt), F (xt+1);θ) for all (xt, xt+1) ∈ R2. Conversely,

if C is a bivariate copula and the marginal cdf F is continuous, then the function

C(F (xt), F (xt+1);θ) is a bivariate distribution function with marginal cdf F .

The advantage of using copula for demand modeling is that we have the freedom

to specify the marginal demand distribution and the dependence structure separately.

That is, we can choose any arbitrary continuous demand distribution, link the con-

secutive demand random variables with a copula, and obtain a legitimate bivariate

distribution to characterize the first-order time series. We only impose the following

technical assumption on the dependence structure:

Assumption 5.2.1. The copula C(ut, ut+1;θ) is absolutely continuous with respect

to Lebesgue measure on [0, 1] × [0, 1], and is neither the Fréchet-Hoeffding upper

bound (i.e., C(ut, ut+1;θ) 6= min(ut, ut+1)) nor the Fréchet-Hoeffding lower bound

(i.e., C(ut, ut+1;θ) 6= max(ut + ut+1 − 1, 0)).
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Assumption 5.2.1 is standard in the context of dependence modeling to rule out

the deterministic cases of Xt = Xt−1 for the upper bound and Xt = F−1(1−F (Xt−1))

for the lower bound.

There are relatively few applications of copulas in operations management; Clemen

and Reilly (1999), Cooper and Gupta (2006), Corbett and Rajaram (2006), and Aydın

et al. (2012) are examples in decision analysis, revenue management, and supply chain

modeling. The common characteristic of these papers is that they all use copulas to

model the joint distribution of random vectors that are independent over time. In this

study, we use copulas to model the temporal dependence in a demand process for the

first time in operations management. We illustrate our method of demand modeling

in Example 5.2.1 by using the normal copula, which encodes the dependence precisely

the same way a bivariate normal distribution does; we refer the reader to Joe (1997)

for other copulas that enable us to capture any form of dependence structure.

Example 5.2.1 (Normal Copula). Let Φ be the standard normal cdf and Φ2(·, ·; θ)

be the standard normal bivariate cdf with correlation θ ∈ (−1, 1). The normal copula

is defined as C(ut, ut+1; θ) = Φ2(Φ−1(ut),Φ
−1(ut+1); θ). As a result of representing

a standard normal random variable Zt as Φ−1(Ut) from a standard uniform random

variable Ut = F (Xt), it can be easily seen that normal copula constructs a valid joint

distribution for demand random variables Xt and Xt+1:

Φ2

(
Φ−1(ut),Φ

−1(ut+1); θ
)

= P
(
Zt ≤ Φ−1(ut), Zt+1 ≤ Φ−1(ut+1)

)

= P
(
Φ−1(Ut) ≤ Φ−1(ut),Φ

−1(Ut+1) ≤ Φ−1(ut+1)
)

= P (Ut ≤ ut, Ut+1 ≤ ut+1)

= P (F (Xt) ≤ F (xt), F (Xt+1) ≤ F (xt+1))

= P (Xt ≤ xt, Xt+1 ≤ xt+1)
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The last equation follows because an inequality still holds after applying a monotoni-

cally increasing function to both sides of the inequality.

It is worth noting that the dependence structure of a normal copula implies

that the demand process {Xt; t = 1, 2, . . .} accepts an Autoregressive-To-Anything

(ARTA) process representation of Cario and Nelson (1996). In Example 5.2.1, the

ARTA process first takes an AR(1) model Zt = θZt−1 + Yt with standard normal

Zt and normally distributed independent error term Yt with mean zero and variance

1 − θ2, and then obtains the demand random variable Xt via the transformation

Xt = F−1(Φ(Zt)). Clearly, the use of normal copula together with normal marginal

distribution further reduces the demand process to a classical AR model.

There is a one-to-one mapping between the normal copula parameter θ – which

is the autocorrelation coefficient in the AR(1) model described above – and the au-

tocorrelation of the demand process {Xt; t = 1, 2, . . .}. We refer reader to Cario and

Nelson (1996) for the details of so-called correlation matching problem. In this paper,

we focus on estimating the copula parameter directly.

5.2.2 Newsvendor Model

The decision maker aims to set the correct number of units in stock to meet the

unknown demand in period n + 1. The period starts with zero inventory on hand.

Ordering too few incurs a shortage cost of b per unit short, while ordering too many

incurs a holding cost of h per unit over. The goal is to minimize the sum of expected

shortage and holding costs conditional on the most recent demand realization since

the demand is known to be a first-order Markov process.

The resulting objective function is convex and minimized by the critical fractile

solution (Porteus, 2002). The critical fractile solution requires the knowledge of the

distribution of demand Xn+1 conditional on Xn = xn, which can be derived directly
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from the copula as follows:

P(Xn+1 ≤ xn+1|Xn = xn) = P(Un+1 ≤ un+1|Un = un)

= lim
δ→0

P(Un+1 ≤ un+1, Un ∈ (un − δ, un + δ))

P(Un ∈ (un − δ, un + δ))

= lim
δ→0

C(un + δ, un+1;θ)− C(un − δ, un+1;θ)

2δ

=
∂C(un, F (xn+1);θ)

∂un

∣∣∣∣
un=F (xn)

We denote this conditional distribution by C2|1 (F (·)|F (xn);θ). The critical fractile

solution q∗ is then the value of q that solves the first-order condition

C2|1 (F (q)|F (xn);θ)− b

h+ b
= 0, (5.1)

and it can be written as q∗ = F−1(C−1
2|1 (b/(h+ b)|F (xn);θ)). We next discuss a

two-step method to estimate the unknown marginal distribution function F and the

d-dimensional copula-parameter vector θ.

5.3 Model Estimation

The marginal-copula representation of the demand process allows the marginal distri-

bution function and copula parameters to be estimated separately, potentially with

different methods. In this study, we focus on the case where the decision maker

estimates the marginal distribution function with the empirical demand distribu-

tion. Subsequently, the copula parameters are estimated via the maximum likelihood

method by treating the empirical demand distribution as the true marginal distri-

bution. This method is known as semiparametric estimation as well as canonical

maximum likelihood estimation (Patton, 2012).
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The joint density function of the demand random variables Xt and Xt+1 is given

by

∂2 C(F (xt), F (xt+1);θ)

∂xt∂xt+1

= f(xt)f(xt+1)c (F (xt), F (xt+1);θ) ,

where f(·) is the marginal probability density function (pdf) and c(u, v;θ) :=

∂2C(u, v;θ)/(∂u∂v) is the copula density function. Therefore, the density function

of Xt+1 conditional on Xt = xt, which we denote with f2|1(xt+1|xt), reduces to

f(xt+1)c(F (xt), F (xt+1);θ). The likelihood function of the historical demand data

{xt; t = 1, 2, . . . , n} then takes the form

f(x1)
n−1∏

t=1

f2|1(xt+1|xt) =
n∏

t=1

f (xt)
n−1∏

t=1

c
(
F (xt), F (xt+1);θ

)
. (5.2)

It is worth noting that the copula density function of independent random variables

takes the value of one and the likelihood function in (5.2) reduces to the likelihood

function
∏n

t=1 f (xt) of independent and identically distributed data.

In the first step of semiparametric estimation, the decision maker estimates the

marginal distribution function F (x) by using the empirical demand distribution func-

tion Fn(x) := (1/n)
∑n

t=1 1(Xt ≤ x), where 1(·) is the indicator variable taking the

value of 1 if · is true and zero otherwise. In the second step, the copula-parameter

vector θ is estimated by maximizing the log-likelihood function after replacing the

unknown F by Fn and ignoring the terms that do not depend on θ:

θ̂ = argmax
θ∈Θ

n−1∑

t=1

log c
(
Fn(xt), Fn(xt+1);θ

)
.

Finally, the decision maker estimates the critical fractile solution q∗ by replacing the

marginal distribution function F by Fn and the copula parameters θ by θ̂ in the

functional form of q∗. The inventory-target estimator, which is a function of the
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demand random variables {Xt; t = 1, 2, . . . , n}, then takes the form

Q̂ = F−1
n

(
C−1

2|1

(
b

h+ b

∣∣∣Fn(Xn); θ̂
))

, (5.3)

where

F−1
n (τ) = min

j=1,2,...,n

{
Xj :

1

n

n∑

t=1

1(Xt ≤ Xj) ≥ τ

}
.

To the best of our knowledge, Chen and Fan (2006) is the first to show the

consistency of the semiparametric copula-parameter estimator θ̂. We next present

this result as it plays a crucial role in establishing the consistency of the inventory-

target estimator in (5.3).

We first define F as the space of probability distributions over the support of Xt.

For any F0 ∈ F , we then let ‖F0 − F‖F = supx |(F0(x)− F (x))/w(F (x))| with w(·)

a weighting function satisfying the conditions in Lemma 4.1 of Chen and Fan (2006).

In addition, we let Fλ = {F0 ∈ F : ‖F0 − F‖F ≤ λ} for a small λ > 0. For any

θ0 ∈ Θ, we use ‖θ0 − θ‖ to denote the usual Euclidean metric.

Proposition 5.3.1 (Chen and Fan 2006). Let `(u1, u2;θ) denote log c(u1, u2;θ), and

represent ∂`(u1, u2;θ)/∂θ and ∂2`(u1, u2;θ)/(∂uj∂θ), j = 1, 2 with `θ(u1, u2;θ) and

`θ,j(u1, u2;θ), j = 1, 2, respectively. Suppose that the following conditions hold:

i. E(`θ(Ut−1, Ut;θ)) = 0, and `θ(Ut−1, Ut;θ) is Lipschitz continuous at θ for all

θ ∈ Θ.

ii. `θ(u1, u2;θ) and `θ,j(u1, u2;θ), j = 1, 2 are well-defined for (u1, u2,θ) ∈ (0, 1)×

(0, 1)×Θ.

iii. {Xt; t = 1, 2, . . .} is β-mixing with a decay rate of βt = O(t−b) for b > 0.

iv. E(supθ0∈Θ ‖`θ(Ut−1, Ut;θ0)‖ log(1 + ‖`θ(Ut−1, Ut : θ0)‖)) <∞.

v. E(supθ0∈Θ,F∈Fλ
‖`θ,j(F (Xt−1), F (Xt);θ0)‖w(Ut−2+j)) <∞ for j = 1, 2.
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Then, ‖θ̂ − θ‖ = op(1). That is, P(‖θ̂ − θ‖ > ε) approaches zero for every ε > 0 as

n tends to infinity.

The first two conditions are standard regularity conditions. The third condition

requires the demand process to be β-mixing with a polynomial decay rate. The

assumption that c(u1, u2;θ) is positive on (0, 1) × (0, 1) ensures that any process

satisfying Assumption 1 is β-mixing with at least a polynomial decay rate; we refer

the reader to Chen and Fan (2006) for the definition of β-mixing and further details.

For example, the time series {Xt; t = 1, 2, . . .} generated by a normal copula is β-

mixing with an exponential decay rate regardless of its marginal distribution. The

fourth condition is a moment condition on the score function, while the last condition

states that the weighted partial derivatives of the score function must be dominated

by a function with a finite first moment.

The asymptotic behavior of the semiparametric copula-parameter estimator and

the convergence of the empirical demand distribution to the true marginal distribution

imply that, when there is a large number of demand observations, the inventory-

target estimator Q̂ approaches the critical fractile solution with full knowledge of

copula parameters and marginal distribution function. In practice, a decision maker

is rarely fortunate enough to observe a large number of demand observations. In

contrast, the demand history can be very short, casting doubt on the performance of

the inventory-target estimator Q̂ in minimizing the sum of expected inventory holding

and shortage costs. In this paper, we mainly focus on this expected cost associated

with Q̂ for finite number of demand observations, which is a more relevant measure

for the decision maker than the asymptotic properties of the estimators Fn and θ̂.
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5.4 ε-Optimality in Inventory-Target Estimation

We let q̂ denote the realization of the inventory-target estimator Q̂ from the historical

demand data {xt; t = 1, 2, . . . , n} of length n. The expected cost associated with q̂ is

given by

L(q̂|xn) := h

∫ q̂

−∞
(q̂ − xn+1)f2|1(xn+1|xn)dxn+1 + b

∫ ∞

q̂

(xn+1 − q̂)f2|1(xn+1|xn)dxn+1.

The decision maker does not necessarily achieve the minimum expected cost L(q∗|xn)

by using the inventory-target estimate q̂ especially when n is small. In this study, we

are interested in finding a lower bound to the probability of the difference L(q̂|xn)−

L(q∗|xn) not exceeding a certain threshold for all possible realizations of the demand

history. To this end, we let 0 < ε ≤ 1 and define the ε-optimality in inventory-target

estimation as follows:

Definition 5.4.1. The inventory-target estimate q̂ is ε-optimal if its expected cost is

at most 1 + ε of the minimum expected cost; i.e., L(q̂|xn) ≤ (1 + ε)L(q∗|xn).

Considering all possible realizations of the demand observation in period n,

we let Q∗ denote the critical fractile solution which has the functional form

F−1(C−1
2|1 (b/(h+ b)|F (Xn);θ)). We aim to provide a lower bound to the probability

of the event
[
L(Q̂|Xn) ≤ (1 + ε) L(Q∗|Xn)

]

to measure the quality of the inventory-target estimator Q̂ in a frequentist framework.

If this probability is sufficiently large, then Q̂ can be used confidently even though it

is estimated from finite number of demand observations. This is because the expected

cost of its realization (before the realization of demand in period n + 1) cannot be

more than 1 + ε of the minimum but unknown expected cost with high probability

for any historical demand data.
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We organize the remainder of this section as follows. Section 5.4.1 generalizes

the characterization of ε-optimality for temporally dependent demand. Section 5.4.2

considers the special case of normal copula to provide analytical insights shedding light

on the roles of temporal dependence and the length of demand history in inventory-

target estimation. Section 5.4.3 switches our focus back to an arbitrary choice of

copula and proposes a sampling-based method to compute a lower bound to the

probability of ε-optimality.

5.4.1 The ε-Optimality for Temporally Dependent Demand

Data

The ε-optimality in inventory-target estimation is introduced by Levi et al. (2007)

under the assumption of independent and identically distributed demand data. We

start with generalizing the concept of ε-optimality for stationary and temporally

dependent demand data.

Proposition 5.4.1. Let C2|1(F (q̂)|F (xn);θ) ≥ b/(h+b)−α and C2|1(F (q̂)|F (xn);θ) ≤

b/(h + b) + α. The expected cost of the inventory-target estimate q̂ is at most

1 + ε of the expected cost of the optimal inventory target q∗ when α is equal to

(εhb/(h+ b))/(h+ b+ εmax(b, h)).

Proposition 5.4.1 characterizes the value of α so that an inventorytarget estimate

q̂ is guaranteed to be ε-optimal. Therefore, if the value of α is taken as characterized

in Proposition 5.3.1, the probability of the event Y (Q̂,Xn) defined as

[
C2|1

(
F (Q̂)|F (Xn);θ

)
≥ b

h+ b
− α

]⋂[
C2|1

(
F (Q̂)|F (Xn);θ

)
≤ b

h+ b
+ α

]

gives a lower bound to the probability of the ε-optimality of the inventory-target

estimator Q̂. We denote the probability of the event Y (Q̂,Xn) with δ for ease in
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exposition in the next section, where we investigate the behavior of this probabilistic

guarantee for ε-optimality as a function of the copula parameters and the length of

the demand history.

Remark 5.4.1. Levi et al. (2007) set α to (ε/3) min(b, h)/(h+ b) when the historical

demand data is independent and identically distributed. The lower bound on the

probability of ε-optimality is higher when α is set as in Proposition 5.4.1, leading to

a tighter bound. This is because (εhb/(h+ b))/(h+ b+ εmax(b, h)) is always greater

than (ε/3) min(b, h)/(h+ b).

5.4.2 Analytical Insights: Normal Copula

The objective of this section is to provide analytical insights that highlight the relation

between the lower bound δ on the probability of ε-optimality, i.e.,

P
{
L(Q̂|Xn) ≤ (1 + ε) L(Q∗|Xn)

}
≥ δ, (5.4)

and the temporal dependence in the demand process as well as the length of the

demand history when the temporal dependence is represented by a normal copula.

We start with investigating how the lower bound δ in (5.4) changes as a function of

the normal-copula parameter θ, i.e., the autocorrelation coefficient of the transformed

AR(1) demand process Φ−1(F (Xt)) = θΦ−1(F (Xt−1))+Yt. Proposition 5.4.2 provides

a condition that allows us to characterize the impact of the copula parameter θ on

the lower bound δ:

Proposition 5.4.2. Let αε,h,b denote the value of α characterized in Proposition 2.

Define p(·; θ) as the pdf of the random variable C2|1(F (Q̂)|F (Xn); θ). Suppose that

p
(

b
h+b

+ αε,h,b; θ
)

p
(

b
h+b
− αε,h,b; θ

) >
Φ−1

(
b

h+b
− αε,h,b

)
φ
(
Φ−1

(
b

h+b
− αε,h,b

))

Φ−1
(

b
h+b

+ αε,h,b
)
φ
(
Φ−1

(
b

h+b
+ αε,h,b

)) , (5.5)
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where Φ−1(·) is the inverse standard normal cdf and φ(·) is the standard normal

pdf. Then, the lower bound δ on the probability of ε-optimality increases in θ for

θ ∈ (−1, 0), takes its maximum value when θ is zero, and decreases in θ for θ ∈ (0, 1).

In the remainder of the section, we let the unit holding cost be equal to the unit

shortage cost.

Corollary 5.4.1. The lower bound δ for the probability of ε-optimality takes its maxi-

mum value when there is no temporal dependence with the copula parameter θ equal to

zero. Furthermore, δ decreases as the negative autocorrelation becomes stronger with

θ approaching from zero to −1 or as the positive autocorrelation becomes stronger

with θ approaching from zero to 1.

Corollary 5.4.1 shows that the probabilistic guarantee for ε-optimality gets smaller

as the strength of the autocorrelation increases. That is, the decision maker is less

confident about the performance of the inventory-target estimator in (5.3) when there

is high dependence between consecutive demand realizations. Intuitively, this can be

easily seen by visualizing a demand history with very high autocorrelation. In this

case, the demand realizations take values very close to each other, and they do not

uniformly span the support of the demand distribution. Consequently, it takes more

time for the empirical demand distribution to move away from the impact of initial

demand realizations, and hence, to converge to the true marginal demand distribution,

leading to smaller probabilistic guarantee for a fixed number of demand realizations

in the historical data.

In the remainder of the section, we concentrate on the uncertainty around the

copula-parameter estimator through its asymptotic distribution by assuming that

the decision maker has access to the true marginal demand distribution. We switch

our focus back to finite-sample analysis in Section 5.4.3, where both the marginal
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distribution function and the copula parameters are unknown to the decision maker

without any restrictions on the cost parameters and the functional form of the copula.

We first present an asymptotic approximation to the distribution of the random

variable C2|1(F (Q̂)|F (Xn); θ):

Lemma 5.4.1. For a normal copula with parameter θ, the pdf of the random variable

C2|1(F (Q̂)|F (Xn); θ) can be approximated as

p(·; θ) :=
1

φ(Φ−1(·))

√
n(1 + θ2)

1− θ2
g

(√
n(1 + θ2)

1− θ2
Φ−1(·)

)
,

where g(·) is the pdf of the standard normal-product distribution.

A standard normal-product random variable is the product of two independent stan-

dard normal random variables; its cdf is given by G(·) = φ−1K0(| · |), where K0(·) is

a modified Bessel function of the second kind (Craig, 1936).

We next provide a lower bound to number of autocorrelated demand observations

that is necessary to achieve a certain level of probabilistic guarantee for ε-optimality:

Proposition 5.4.3. A lower bound to the length of the demand history, n to deliver

an approximate probabilistic guarantee of δ for ε-optimality is given by

n ≥




(
1− θ2

1 + θ2

)(
G−1

(
1+δ

2

)

Φ−1
(

1
2

(
1 + ε

2+ε

))
)2


,

where G−1 is the inverse cdf of the standard normal-product distribution.

Remark 5.4.2. The probabilistic guarantee δ is approximate because we make

use of the asymptotic distribution of the normal-copula parameter estimator from

Lemma 5.4.1. We build our discussion on finite number of demand observations in

Section 5.4.3.
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We immediately observe in Proposition 5.4.3 that the number of demand obser-

vations necessary to achieve a certain level of approximate probabilistic guarantee for

ε-optimality is a decreasing function of ε and and an increasing function of δ. That

is, not surprisingly, the decision maker needs to collect more demand observations

to achieve less expected cost with higher confidence. However, a more interesting

result arises about the copula parameter: A smaller number of demand observations

is required as the strength of the autocorrelation (i.e., the absolute value of the copula

parameter θ) increases. This observation tells us the opposite of what is implied in

Proposition 5.4.2.

In Proposition 5.4.2, the marginal demand distribution is unknown to the decision

maker, and an increase in the strength of the autocorrelation leads to a slower conver-

gence of the empirical demand distribution to the true marginal distribution, leading

to a smaller probabilistic guarantee for a fixed number of demand observations. On

the other hand, when the marginal demand distribution is known by the decision

maker as in Proposition 5.4.3, an increase in the strength of the autocorrelation leads

to a smaller variance for the copula-parameter estimator, and hence, an improved

performance when the critical fractile solution is obtained from the true marginal

demand distribution and hence, a more accurate copula-parameter estimate.

We now investigate whether it is always necessary to account for the temporal

dependence in the demand process. Intuitively, a decision maker may not find it

reasonable to model the autocorrelation and set the inventory target accordingly if

there is no visible sign of temporal dependence in the demand process. Even if there

is some evidence of temporal dependence, the decision maker may still want to neglect

the autocorrelation considering the inevitable statistical estimation error around the

copula parameter. Proposition 5.4.4 sheds light on this issue.

Proposition 5.4.4. Despite the temporal dependence in the demand process {Xt; t =

1, 2, . . .} with a nonzero copula parameter θ (i.e., |θ| > 0), the decision maker achieves
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a higher probabilistic guarantee for ε-optimality by ignoring the demand autocorrela-

tion when

n ≤
⌊

1− θ2

1 + θ2

1

η(ε)2
K−1

0

(
πΦ

(√
1− θ2 η(ε)

|θ|

))2
⌋
,

where η(ε) is Φ−1 ((1/2)(1 + ε/(2 + ε))) and K0(·) is a modified Bessel function of

the second kind.

We observe in Proposition 5.4.4 that the decision maker achieves a higher proba-

bilistic guarantee for ε-optimality by ignoring the autocorrelation in the demand pro-

cess if the number of demand observations is less than a certain threshold. Clearly,

this threshold is a decreasing function of |θ| since the inverse of K0(·) is an increasing

function. We also note that the threshold is an increasing function of ε. That is,

the decision maker is better off by simply ignoring the autocorrelation in the demand

process when the strength of autocorrelation is small and the accuracy level ε is high

in the presence of a limited amount of demand data.

For example, Proposition 5.4.4 reveals that ignoring the autocorrelation in the

demand process leads to a higher probabilistic-guarantee on 0.25-optimality when

|θ| = 0.1 in the presence of less than 70 demand observations. Nevertheless, as the

strength of autocorrelation increases, it quickly becomes necessary to account for the

autocorrelation in inventory-target estimation. For instance, ignoring the autocorre-

lation always leads to a smaller probabilistic-guarantee for 0.25-optimality as soon

as the strength of autocorrelation, |θ| exceeds 0.3. In Section 5.5.2, we investigate

when the estimation of the critical fractile solution by ignoring the temporal depen-

dence leads to a higher probabilistic guarantee of ε-optimality if the marginal demand

distribution is also unknown.
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5.4.3 Identifying the Probabilistic Guarantee for ε-Optimality

under General Copula

In this section, we switch our focus back to a general copula to allow the decision

maker to capture scale-free temporal dependence properties in the demand process.

For example, autocorrelation is only a scalar measure of linear dependence suitable

when the demand random variables in two consecutive periods have an elliptical joint

distribution; e.g., bivariate normal distribution implied by an AR(1) model with

normal random shocks. On the other hand, the joint distribution of the demand

random variables in two consecutive periods may not be elliptical. The objective

of this section is to provide an arbitrarily close approximation to the lower bound δ

defined in (5.4) under the assumption of a general copula that captures such nonlinear

asymmetric dependence. We also relax the assumptions of known marginal demand

distribution and equal holding and shortage costs, and use the empirical demand

distribution to estimate the marginal demand distribution.

Clearly, the probability of the random event Y (Q̂,Xn) – which gives the lower

bound δ – is a function of the unknown marginal distribution function F , while our

goal is to find a probabilistic guarantee on ε-optimality for any marginal distribution.

The marginal-copula representation of the demand process allows us to achieve this

goal by waiving the requirement to know the true marginal distribution function of

the demand process.

We let {Ut; t = 1, 2, . . . , n} correspond to a series of dependent standard uniform

random variables represented by the copula function C(·, ·;θ), and let Gn(u) :=

(1/n)
∑n

t=1 1(Ut ≤ u) be the empirical distribution function built from these uniform

random variables. Then, we define a random variable U∗ as follows:

U∗ = min
j=1,2,...,n

{
Uj : Gn(Uj) ≥ C−1

2|1

(
b

h+ b

∣∣∣Gn(Un); θ̂

)}
. (5.6)

109



We also define the event Ỹ (U∗, Un) as

[
C2|1 (U∗|Un;θ) ≥ b

h+ b
− α

]⋂[
C2|1 (U∗|Un;θ) ≤ b

h+ b
+ α

]
,

which will lead us to the key result to identify the lower bound δ on the probability

of ε-optimality for any marginal demand distribution:

Proposition 5.4.5. The probability of the event Y (Q̂,Xn) is equal to the probability

of the event Ỹ (U∗, Un), where U∗ is defined as in (5.6) from a series of dependent

standard uniform random variables {Ut; t = 1, 2, . . . , n} generated from the copula

C(·, ·;θ).

Proposition 5.4.5 plays a critical role in identifying the lower bound δ because it

allows us to focus on the transformed demand random variables {Ut; t = 1, 2, . . . , n}

instead of the actual demand process {Xt; t = 1, 2, . . . , n}. We next present an

algorithm in Figure 5.1 based on this property to approximate the lower bound δ

to the ε-optimality probability by sampling dependent uniform random variates –

rather than sampling the actual demand which requires the knowledge of the marginal

distribution.

Remark 5.4.3. The decision maker may question the existence of temporal depen-

dence in the demand process and choose to set the inventory target as if the de-

mand realizations were independent and identically distributed. In this case, the al-

gorithm provides the lower bound to the probability of ε-optimality by choosing u∗ as

minj=1,2,...,n {uj : Gn(uj) ≥ b/(h+ b)} for each sample path.

The theoretical support for the algorithm above rests upon Hoeffding’s inequality

for bounded random variables (Hoeffding, 1963):

P
(
|B̄ − E(B)| > γ

)
≤ 2 exp(−2Mγ2).

110



Figure 5.1: Computation of the lower bound δ to the probability of ε-optimality

17

Proposition 6 plays a critical role in identifying the lower bound δ because it allows us to focus on

the transformed demand random variables {Ut; t= 1,2, . . . , n} instead of the actual demand process

{Xt; t= 1,2, . . . , n}. We next present an algorithm based on this property to approximate the lower

bound δ to the ε-optimality probability by sampling dependent uniform random variates – rather

than sampling the actual demand which requires the knowledge of the marginal distribution.

Algorithm. Computation of the lower bound δ to the probability of ε-optimality

Initialization. Specify an accuracy parameter γ > 0 and a confidence parameter β ∈ (0,1).

Let M = dlog(2/β)/(2γ2)e and m= 1.

while m≤M :

Generate dependent standard uniform variates (u1, u2, . . . , un) from the copula C(·, ·;θ).

θ̂← argmax
{∑n−1

t=1 log c(Gn(ut),Gn(ut+1);θ) : θ ∈Θ
}

.

u∗←minj=1,2,...,n

{
uj :Gn(uj)≥C−12|1

(
b/(h+ b) | Gn(un); θ̂

)}
.

Bm←
{

1 if
∣∣C2|1 (u∗|un;θ)− b/(h+ b)

∣∣≤ (εhb/(h+ b))/(h+ b+ εmax(h, b)),

0 otherwise.

m←m+ 1.

end

Set B̄ :=M−1∑M

m=1Bm.

Return B̄− γ as the value of δ.

Remark 3. The decision maker may question the existence of temporal dependence in the demand

process and choose to set the inventory target as if the demand realizations were independent and

identically distributed. In this case, the algorithm provides the lower bound to the probability of

ε-optimality by choosing u∗ as minj=1,2,...,n {uj :Gn(uj)≥ b/(h+ b)} for each sample path.

The theoretical support for the algorithm above rests upon Hoeffding’s inequality for bounded

random variables (Hoeffding 1963):

P
(
|B̄−E(B)|>γ

)
≤ 2exp(−2Mγ2).

In this representation, E(B) is the unknown mean of the independently sampled indicator ran-

dom variables {Bm;m = 1,2, . . . ,M}, and it corresponds to the true value of the lower bound

δ on the probability of ε-optimality. Hoeffding’s inequality immediately leads to the guarantee

P
(
E(B)∈ [B̄− γ, B̄+ γ]

)
≥ 1− β. The algorithm provides an arbitrarily close approximation to

δ because the values of γ and β can be chosen arbitrarily small to make B̄ − γ close enough to

the true value of the δ with high confidence. To sum up, given the confidence level 1 − β, the

expected cost at the inventory-target estimator Q̂ is at most 1 + ε of the minimum expected cost

with probability at least B̄− γ.

In this representation, E(B) is the unknown mean of the independently sampled

indicator random variables {Bm;m = 1, 2, . . . ,M}, and it corresponds to the true

value of the lower bound δ on the probability of ε-optimality. Hoeffding’s inequality

immediately leads to the guarantee P
(
E(B) ∈ [B̄ − γ, B̄ + γ]

)
≥ 1−β. The algorithm

provides an arbitrarily close approximation to δ because the values of γ and β can be

chosen arbitrarily small to make B̄ − γ close enough to the true value of the δ with

high confidence. To sum up, given the confidence level 1 − β, the expected cost at

the inventory-target estimator Q̂ is at most 1 + ε of the minimum expected cost with

probability at least B̄ − γ.

5.5 Results

In this section, we implement the algorithm in Section 5.4.3 to investigate how the

lower bound δ on the probability of ε-optimality gets affected by the value of ε, the

temporal dependence in the demand process, the length of the demand history, and

the cost parameters. We assume that the decision maker does not know the marginal
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demand distribution and the normal-copula parameter θ is the measure of temporal

dependence in the demand process. We relax the latter assumption in Section 5.6.

Letting ϕ denote the critical fractile b/(h + b) for ease in presentation, we set the

values of γ and β to 0.001 and 0.05, respectively, in the rest of the chapter.

We first let the demand process be independent and identically distributed with

θ equal to zero. The decision maker does not know that the demand realizations

are independent and identically distributed, and first builds the empirical demand

distribution and then estimates the copula parameter to obtain an estimate of the

critical fractile solution as in (5.3).

Figure 5.2 (left) takes the accuracy level ε equal to 0.25 and plots the lower bound

δ for increasing length of the demand history. We observe that the lower bound δ

increases and approaches one in a faster rate for smaller values of n than for the higher

values of n. For example, Figure 5.2 (left) shows that, for ϕ = 0.50, the lower bound

δ takes the values of 28%, 39%, 49%, 64%, 85%, 95%, and 99% when the number of

demand realizations n is equal to 15, 30, 50, 100, 250, 500, and 1000, respectively.

That is, the expected cost associated with the inventory-target estimator in (5.3) is

at most 1.25 of the expected cost of the optimal inventory target with probability

Figure 5.2: θ = 0 and ε = 0.25 (left); θ = 0 and n = 50 (right)
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at least 39% when there are 30 demand observations in the historical data. In this

case, the probabilistic guarantee of 0.25-optimality reaches 95% when the number of

demand realizations increases to 500.

Figure 5.2 (left) also provides an insight into the role of the unit shortage and

holding costs in achieving the 0.25-optimality. The lower bound δ on the probability of

the 0.25-optimality decreases as the difference between the unit shortage and holding

costs increases; i.e., when the asymmetry of the newsvendor’s expected cost function

is high. This is because the statistical estimation of the data generating process

does not account for the shortage and holding costs of the newsvendor model, while

the underestimation and overestimation of the optimal critical fractile solution can

be penalized far differently. Intuitively, it is very likely for the expected cost of an

inventory-target estimate to quickly exceed the minimum expected cost of the critical

fractile solution even when the critical fractile solution is just a bit underestimated if

the shortage cost is much higher than the holding cost. For example, in the presence

of 500 demand observations, we observe that the lower bound δ on the probability of

the 0.25-optimality takes the values of 90%, 77%, and 64% when the critical fractile

ϕ is 0.75, 0.90, and 0.95, respectively.

A natural question to ask is how fast the lower bound δ on the probability of the

ε-optimality decreases as the value of ε gets smaller. Figure 5.2 (right) provides an

answer to this question. We observe that the lower bound δ decreases and approaches

zero at a faster rate for smaller values of ε than for the higher values of ε. For example,

Figure 5.2 (right) shows that, for n = 50 and ϕ = 0.50, the lower bound δ takes the

values of 95%, 76%, 49%, 22%, and 11% when the accuracy level ε is equal to 1,

0.5, 0.25, 0.1, and 0.05, respectively. In this case, the decision maker concludes

that the expected cost of the inventory-target estimator in (5.3) is at most twice the

expected cost of the optimal inventory target with probability at least 95%, while

the probabilistic guarantee for 0.05-optimality is only 11%. We already know from
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Figure 5.2 (left) that the lower bound δ on the probability of ε-optimality decreases

as the critical fractile deviates from 0.5. What we further see from Figure 5.2 (right)

is the role of ε on this reduction: The absolute decrease in the lower bound δ with

the deviation of ϕ from 0.5 gets smaller as the accuracy level ε approaches zero.

We now let the copula parameter θ take values between −0.9 and 0.9 to represent a

wide range of negative and positive autocorrelations in the demand process. Figure 5.3

plots the lower bound δ on the probability of 0.25-optimality as a function of the length

of the demand history. For all values of n, we observe that the lower bound δ takes its

maximum value when there is no autocorrelation in the demand process; i.e., when θ is

equal to zero. Furthermore, we see that the lower bound δ decreases as the absolute

value of the copula parameter θ increases. That is, the probabilistic guarantee to

assure that the expected cost of an inventory-target estimate is at most 1.25 of the

optimal expected cost decreases with the increasing strength of the autocorrelation

in the demand process. To put it another way, as the autocorrelation in the demand

process increases, the decision maker needs to collect more demand observations to

be able to achieve a specified level of probabilistic guarantee. In Proposition 5.4.2,

we prove this result for a symmetric expected cost function with ϕ = 0.5. We observe

Figure 5.3: ε = 0.25 and ϕ = 0.5 (left); ε = 0.25 and ϕ = 0.95 (right)
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in Figure 5.3 (right) that this is also the case for a highly asymmetric expected cost

function with ϕ = 0.95.

Table 5.1 and Table 5.2, in which we provide the number of demand observations

necessary to achieve an ε-optimality guarantee of 50% for the critical fractile values

of 0.5 and 0.95, verifies the need for a larger number of demand observations with in-

creasing strength of autocorrelation. For example, Table 5.1 shows that the expected

cost of the inventory-target estimator in (5.3) is at most 1.5 of the optimal expected

cost with a probability of at least 50% if the historical demand data includes the past

45 observations of a highly negatively correlated demand process (i.e., θ = −0.9). The

required number of demand observations decreases to 14 when there is no temporal

dependence (i.e., θ = 0), and then increases to 30 for a highly positively correlated

demand process (i.e., θ = 0.9). We explain this behavior in Section 5.4.2 by the slow

convergence of the empirical demand distribution to the true marginal distribution in

the presence of strong correlation – because it takes more time for the demand history

to discard the initial condition (i.e., the demand realizations at the beginning of the

process) which controls the later demand realizations, delaying the convergence of

Table 5.1: The number of demand observations necessary to achieve δ = 0.5 with
ϕ = 0.5

ε
θ

-0.9 -0.6 -0.3 0 0.3 0.6 0.9

0.50 45 23 17 14 17 20 30
0.25 145 73 57 52 53 62 87
0.10 749 374 309 290 287 326 401

Table 5.2: The number of demand observations necessary to achieve δ = 0.5 with
ϕ = 0.95

ε
θ

-0.9 -0.6 -0.3 0 0.3 0.6 0.9

0.50 265 108 100 96 102 136 475
0.25 778 322 280 274 299 387 1384
0.10 3812 1581 1390 1370 1442 1892 6738
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the empirical demand distribution. Tables 5.1 and 5.2 also shed light on how fast the

number of demand observations necessary to achieve a certain level of probabilistic

guarantee increases as ε decreases.

5.5.1 The Value of Perfect Information about Autocorrela-

tion

We now investigate the value of the knowledge of the autocorrelation in the demand

process. To put it another way, we ask what the increase in the probabilistic guarantee

of ε-optimality would be if the copula parameter θ were known by the decision maker.

That is, the decision maker estimates the marginal distribution only. Table 5.3 reports

the value of the lower bound δ on the probability of ε-optimality obtained in this way

in parenthesis next to the value of δ obtained under the assumption of an unknown

copula parameter as in the previous section.

The immediate observation is the relatively smaller increase in the lower bound

δ with the additional knowledge of the copula parameter in estimating inventory

targets. For example, the lower bound δ on the probability of 0.5-optimality is 41%

when the copula parameter θ = −0.90 is unknown and estimated as described in

Section 5.3. However, when the value of θ is known by the decision maker, the lower

bound δ only reaches 45%. Similarly, the value of δ is 51% when the copula parameter

θ = 0.90 is unknown by the decision maker, and it reaches 72% when the true value of

θ is made available to the decision maker. This is the maximum increase we observe

in Table 5.3. The key takeway here is the leading role of the uncertainty around

the empirical demand distribution function in driving the probabilistic guarantee for

ε-optimality.
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Table 5.3: The probabilistic guarantee δ when θ is estimated from a demand history
of length n = 30 (when θ is known by the decision maker) for ϕ = 0.5

θ
ε

0.50 0.25 0.10 0.05

-0.9 0.41 (0.45) 0.23 (0.26) 0.10 (0.12) 0.05 (0.06)
-0.6 0.56 (0.62) 0.33 (0.37) 0.15 (0.17) 0.08 (0.09)
-0.3 0.63 (0.70) 0.38 (0.44) 0.17 (0.19) 0.09 (0.10)
0 0.65 (0.73) 0.40 (0.46) 0.18 (0.21) 0.09 (0.11)

0.3 0.63 (0.72) 0.39 (0.45) 0.17 (0.20) 0.09 (0.11)
0.6 0.59 (0.69) 0.37 (0.43) 0.16 (0.19) 0.08 (0.10)
0.9 0.51 (0.72) 0.32 (0.47) 0.14 (0.22) 0.07 (0.11)

5.5.2 The Value of Relaxing the Independence Assumption

For a decision maker with no significant evidence about the existence of autocorrela-

tion in the demand process, it may not be reasonable to make use of the copula-based

demand model introduced in Section 5.2.1. Instead, the decision maker may choose to

estimate the critical fractile solution by assuming that the demand process is indepen-

dent and identically distributed. In this section, considering the inevitable statistical

estimation error around the copula parameter, we aim to understand when it is nec-

essary to account for the autocorrelation in the historical demand data and when it

is better to ignore it.

Figure 5.4 plots the lower bound δ for the probability of 0.5-optimality when the

demand is assumed to be independent (dot-dashed line) and autocorrelated (solid

line) by the decision maker. We observe that the insights derived in Proposition 5.4.4

for known marginal distribution continue to hold when the decision maker does not

know the true marginal distribution: In each plot, there is an interval of copula-

parameter values, where the lower bound δ on the probability of 0.5-optimality is

higher if the demand is assumed to be independent.

Specifically, we observe that if the autocorrelation is small enough such that the

copula parameter θ takes values from the intervals (−0.2, 0.2), (−0.15, 0.15), and
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(−0.1, 0.1), it hurts to account for the autocorrelation in the demand process for a

demand history of length 15, 30, and 100, respectively. This can be explained by

the fact that the copula-parameter estimator has the highest variance when there is

no temporal dependence in the demand process. Intuitively, assuming the copula-

parameter estimate as zero is better than estimating its value with high variability

for these values of the copula parameter and the length of demand history. On the

other hand, if the autocorrelation is strong enough such that the copula parameter

falls outside of the intervals (−0.2, 0.2), (−0.15, 0.15), and (−0.1, 0.1) when n is equal

to 10, 30, and 100, we observe a significant benefit in Figure 5.4 to achieve a higher

probabilistic guarantee by incorporating the autocorrelation in inventory decisions.

Clearly, the uncertainties around the copula-parameter estimator and the empirical

demand distribution decrease as the length of the demand history increases, and this

is why the copula-parameter interval which suggests ignoring the autocorrelation gets

smaller and finally becomes negligible with the accumulation of demand realizations.

Figure 5.4: The probabilistic guarantee δ for 0.5-optimality when the decision maker
assumes that demand is independent (dot-dashed line) and demand is autocorrelated
(solid line) with ϕ = 0.5
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5.6 Impact of Tail Dependence on the Probabilis-

tic Guarantee for ε-Optimality

Autocorrelation is a measure of linear association between a random variable and

its previous realizations. The normal copula, for example, allows us to model the

first-order stationary demand process {Xt; t = 1, 2, . . .} by representing the random

variable Φ−1(F (Xt)) as a linear combination of Φ−1(F (Xt−1)) and a random shock;

i.e., Φ−1(F (Xt)) = θΦ−1(F (Xt−1)) +Yt. However, dependence is a more general con-

cept which refers to any type of association between random variables. For example,

it can be more likely to see a stronger dependence between low demand realizations

in consecutive time periods when the economy is in a temporary recession. In other

words, the dependence between low demand values can be higher than the depen-

dence between moderate demand values. Similarly, a high demand can be more likely

to be followed by another high demand when the economy is doing well. In these sit-

uations, autocorrelation is not sufficient to describe the temporal dependence at the

tails of the bivariate distribution that characterizes the uncertainty in the consecutive

demand random variables Xt and Xt+1.

In this section, we first illustrate the effectiveness of the copula-based time-series

modeling in capturing tail dependence and then investigate the impact of tail de-

pendence on the probabilistic guarantee for ε-optimality. The tail dependence is a

measure of the joint behavior in the tails of the lower-left quadrant or upper-right

quadrant of a bivariate distribution (Nelsen, 2006):

Definition 5.6.1. The upper-tail dependence τU is defined as

τU = lim
u→1−

P (F (Xt+1) ≥ u|F (Xt) ≥ u) ,
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and the lower-tail dependence τL is defined as

τL = lim
u→0+

P (F (Xt+1) ≤ u|F (Xt) ≤ u) .

Using the definition of the bivariate copula function C(·, ·;θ), an equivalent rep-

resentation of the tail dependence is given by

τU = lim
u→1−

1− 2u+ C(u, u;θ)

1− u

for the upper-tail dependence and

τL = lim
u→0+

C(u, u;θ)

u

for the lower-tail dependence. These representations show that the tail dependence

is a copula property. For example, it is well known that the normal copula does not

allow for tail dependence since the values of τU and τL are both zero for any value of

the normal-copula parameter θ. Many of the other copulas allow tail dependence; we

refer the reader to Nelsen (2006) for a review. In the remainder of this section, we

illustrate the use of Clayton copula – a widely-used copula for capturing lower-tail

dependence – as an alternative to normal copula while we investigate the role of tail

dependence in the probabilistic guarantee for ε-optimality.

Example 5.6.1 (Clayton Copula). Let the copula parameter θ be positive. The Clay-

ton copula is defined as C(ut, ut+1; θ) = (u−θt +u−θt+1− 1)−1/θ, and it has the lower-tail

dependence τL = 2−1/θ and the upper-tail dependence τU = 0.

We next illustrate the potential pitfall of taking autocorrelation as the only mea-

sure of temporal dependence. Figure 5.5 shows a 500-period time series generated

by a normal copula with parameter 0.7 (plots on left) and by a Clayton copula with

parameter 2.015 (plots on right) under the assumption of standard normal marginals.
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In this example, both of these time series have exactly the same autocorrelation co-

efficient, which is equal to 0.7. Clearly, the scatter plot on the right shows a positive

lower-tail dependence of 2−1/2.015 which is impossible to capture by considering the

autocorrelation as the only temporal dependence measure. In other words, if the

demand history shows the characteristics of tail dependence, normal copula and au-

tocorrelation may not be sufficient to describe the temporal dependence structure in

the demand process.

We now investigate the impact of tail dependence on the probabilistic guarantee for

ε-optimality. We do this by considering the demand processes illustrated in Figure 5.5,

and hence, we focus on the impact of the lower-tail dependence. Since both demand

processes have exactly the same autocorrelation but different lower-tail dependencies,

we can isolate the impact of tail dependence in our analysis. Figure 5.6 reports the

lower bound δ on the probability of ε-optimality for varying levels of ε and data

Figure 5.5: Illustration of a 500-period time series generated by a normal copula
(plots on left) and by a Clayton copula (plots on right) with the same autocorrelation
coefficient but with different tail dependence
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length n. We consider equal holding and shortage costs to limit the impact by the

asymmetry of the newsvendor’s expected cost function.

The difference between the two curves on each plot of Figure 5.6 highlights the

impact of tail dependence on the probabilistic guarantee for ε-optimality. We observe

that the presence of tail dependence leads to a smaller probabilistic guarantee despite

the identical amounts of linear dependence in the respective demand processes. The

impact is more visible as the length of the demand history increases, while it is less

apparent for shorter demand histories. Intuitively, we can explain this result by the

difficulty of estimating the tail dependence from a limited amount of historical demand

data. For example, we observe a negligible difference between the two curves for n

less than about 30 – a number too small to be able to observe enough number of very

low consecutive demand realizations, and hence, to justify the use of tail dependence

in demand modeling.

Table 5.4 provides further support to our observation about the limited impact

of tail dependence on the probabilistic guarantee for ε-optimality when n is small.

In Table 5.4, we aim to understand whether it is always necessary to capture the

Figure 5.6: The probabilistic guarantee δ for ε-optimality when ϕ = 0.5 and the
demand process is represented by a normal copula (dot-dashed line) and a Clayton
copula (solid line) with the same autocorrelation coefficient but with different tail
dependencies as illustrated in Figure 5.5
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Table 5.4: The probabilistic guarantee δ for 0.25-optimality when ϕ = 0.50
θ = 0.5 (τL = 0.25) θ = 2 (τL = 0.71) θ = 5 (τL = 0.87)

n δ (Clayton) δ (Normal) δ (Clayton) δ (Normal) δ (Clayton) δ (Normal)

15 0.30 0.28 0.26 0.24 0.25 0.22
30 0.39 0.36 0.34 0.30 0.30 0.28
50 0.49 0.44 0.41 0.33 0.34 0.30
100 0.63 0.55 0.53 0.38 0.42 0.33
500 0.93 0.73 0.84 0.42 0.72 0.36

tail dependence in a demand process to achieve a higher probabilistic guarantee for

ε-optimality. To this end, we provide the probabilistic guarantee δ when a normal

copula – which is unable to capture any tail dependence – is used in inventory-target

estimation even there is positive tail dependence in the demand process (i.e., see

δ (Normal) column). In the δ (Clayton) column, on the other hand, the decision

maker correctly fits a Clayton copula to the tail-dependent historical demand data

and obtains the inventory-target estimate accordingly. Table 5.4 indicates a small

difference between the values of the probabilistic guarantee in these two cases when

there is a limited amount of demand data, suggesting the use of autocorrelation as a

sufficient measure of temporal dependence. We observe that the incorporation of tail

dependence in inventory decisions becomes more important to achieve a higher prob-

abilistic guarantee for ε-optimality especially when there are strong tail dependence

and sufficiently large number of demand observations.

5.7 Conclusion

We consider the problem of estimating the critical fractile solution in a newsvendor

setting when the demand depends on its past realizations. As opposed to widely-used

linear time-series models with normally distributed random shocks, we introduce a

copula-based demand model that allows us to represent the stationary and tempo-

rally dependent demand process with any marginal demand distribution and an arbi-
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trary dependence structure. Consequently, the decision maker estimates the marginal

demand distribution and the copula parameters that characterize the temporal de-

pendence separately without making any assumptions on the parametric form of the

marginal demand distribution. The objective of our study is to identify a proba-

bilistic guarantee for the ε-optimality of an estimate of the critical fractile solution

which is obtained from the empirical demand distribution and the estimates of the

copula parameters. To the best of our knowledge, we are the first to investigate the

ε-optimality guarantee for temporally dependent demand data.

We first consider the special case of a normal copula and prove that the proba-

bilistic guarantee for ε-optimality decreases with the strength of the autocorrelation

in the demand process. We then provide a lower bound on the number of demand

observations necessary to achieve a certain level of probabilistic guarantee when the

marginal distribution is known and the unit holding and shortage costs are the same.

In this case, we also provide an upper bound for the number of demand observations

such that the decision maker achieves a higher probabilistic guarantee for ε-optimality

by simply ignoring the temporal dependence in inventory-target estimation. We then

propose a sampling-based method to compute this probabilistic guarantee when the

marginal distribution is unknown to the decision maker without any restrictions on

the functional form of copula and the cost parameters. Our method builds on the

idea of sampling dependent uniform random variates matching the underlying de-

pendence structure of the demand process – rather than the sampling of the actual

demand which requires the specification of the marginal demand distribution. We

also account for the tail dependence in our copula-based demand model as a measure

of association alternative to autocorrelation.

We believe that our copula-based demand model and the sampling-based method

of computing a probabilistic guarantee for ε-optimality have application areas not only

in inventory management but essentially in any decision problem in which an overage-
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underage trade-off exists and the random realizations observed in consecutive time

periods depend on each other. In this paper, we focus on a single-period problem and

the extension of this study in a multi-period decision setting is a potential direction

for future research.
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Appendix

Proof of Proposition 5.4.1. Suppose q̂ is greater than q∗. If the realized demand in

period n + 1 is xn+1 ∈ (−∞, q̂), then the inaccuracy L(q̂|xn) − L(q∗|xn) is at most

h(q̂ − q∗). On the other hand, if xn+1 ∈ (q̂,∞), then L(q∗|xn) − L(q̂|xn) is equal to

b(q̂ − q∗). It is then possible to bound the inaccuracy as follows:

L(q̂|xn)− L(q∗|xn) ≤ C2|1(F (q̂)|F (xn);θ)h(q̂ − q∗)

−(1− C2|1(F (q̂)|F (xn);θ))b (q̂ − q∗)

≤
(
h

(
b

h+ b
+ α

)
− b
(

h

h+ b
− α

))
(q̂ − q∗)

= α(h+ b) (q̂ − q∗) (5.7)

The first inequality follows from the definition of copula C2|1 as the cdf of Xn+1

conditional on Xn = xn. The second inequality follows from the assumption of

C2|1(F (q̂)|F (xn);θ) ≤ b/(b+ h) + α. Furthermore, since

L(q∗|xn) ≥ EXn+1|xn
(
b(Xn+1 − q∗)+

)

≥ EXn+1|xn(1(Xn+1 > q̂)b(q̂ − q∗))

= (1− C2|1(F (q̂)|F (xn);θ)))b(q̂ − q∗),

the inequality

L(q∗|xn) ≥ b

(
h

h+ b
− α

)
(q̂ − q∗) (5.8)

is also implied by the assumption of C2|1(F (q̂)|F (xn);θ) ≤ b/(b+ h) + α.

Now suppose q̂ is less than q∗. If the realized demand in period n + 1 is xn+1 ∈

(q̂,∞), then the inaccuracy L(q̂|xn) − L(q∗|xn) is at most b(q∗ − q̂). On the other
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hand, if xn+1 ∈ (−∞, q̂), then L(q∗|xn) − L(q̂|xn) is equal to h(q∗ − q̂). It is then

possible to bound the inaccuracy as follows:

L(q̂|xn)− L(q∗|xn) ≤ (1− C2|1(F (q̂)|F (xn);θ))b(q̂ − q∗)

−C2|1(F (q̂)|F (xn);θ)h (q∗ − q̂)

≤
(
b

(
h

h+ b
+ α

)
− h

(
b

h+ b
− α

))
(q∗ − q̂)

= α(h+ b) (q∗ − q̂) (5.9)

The second inequality follows from the assumption of C2|1(F (q̂)|F (xn);θ) ≥ b/(h +

b)− α. Furthermore, since

L(q∗|xn) ≥ EXn+1|xn
(
h(q∗ −Xn+1)+

)

≥ EXn+1|xn(1(Xn+1 ≤ q̂)h(q∗ − q̂))

= C2|1(F (q̂)|F (xn);θ)h(q∗ − q̂),

the inequality

L(q∗|xn) ≥ h(b/(b+ h)− α)(q∗ − q̂) (5.10)

is also implied by the assumption of C2|1(F (q̂)|F (xn);θ) ≥ b/(h+ b)− α.

The inequalities (5.7) and (5.9) imply that L(q̂|xn)−L(q∗|xn) ≤ α(h+ b)|q̂− q∗|.

Similarly, the inequalities (5.8) and (5.10) imply that L(q∗|xn) ≥ {hb/(h + b) −

αmax(h, b)}|q̂− q∗|. Consequently, the value of α that guarantees the ε-optimality of

the inventory-target estimate q̂ follows from solving for α in the equation (b+ h)α =

ε(hb/(h+ b)− αmax(h, b)).
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Proof of Proposition 5.4.2. Let L(θ) denote the random variable C2|1(F (Q̂)|F (Xn); θ).

The focus is on the lower bound δ on the probability of ε-optimality, which is defined

as the probability of the event

[
L(θ) ≥ b

h+ b
− αε,h,b

]⋂[
L(θ) ≤ b

h+ b
+ αε,h,b

]

in Section 5.1. Let δa denote P(L(θ) ≤ a). Thus, the lower bound δ is given by

the difference between δb/(h+b)+αε,h,b and δb/(h+b)−αε,h,b . The goal is to investigate the

sensitivity of the probabilistic guarantee for ε-optimality, δ to the copula parameter

θ; i.e.,

∂δ

∂θ
=
∂δb/(h+b)+αε,h,b

∂θ
− ∂δb/(h+b)−αε,h,b

∂θ
. (5.11)

We next obtain a characterization for the probability sensitivity ∂δa/∂θ, which we

will later use in (5.11) to obtain ∂δ/∂θ. To do this, we first note that the following

three conditions are satisfied by

L(θ) = Φ

(
Φ−1(F (Q̂))− θΦ−1(F (Xn))√

1− θ2

)

and its first-order derivative

∂L(θ)

∂θ
=

(
−Φ−1(F (Xn)) + θΦ−1(F (Q̂))

(1− θ2)
√

1− θ2

)
φ

(
Φ−1(F (Q̂))− θΦ−1(F (Xn))√

1− θ2

)
:

1. For any θ ∈ (−1, 1), ∂L(θ)/∂θ exists with probability one, and there exists a

random variable η such that E(η) <∞ and |L(θ+ ∆θ)−L(θ)| < η|∆θ| for any

∆θ that is close enough to zero.

2. For any θ ∈ (−1, 1), the cdf P(a; θ) of L(θ) is continuously differentiable at

a = b/(h+ b)− αε,h,b and a = b/(h+ b) + αε,h,b.
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3. Since the conditional expectation function E(∂L(θ)/∂θ|L(θ) = a) is given by

− 1√
1− θ2

E
(
Φ−1(F (Xn))φ(Φ−1(a))

)
+

θ

1− θ2
Φ−1(a)φ(Φ−1(a)),

and Φ−1(F (Xn)) is standard normal with the expected value of zero, the con-

ditional expectation E(∂L(θ)/∂θ|L(θ) = a) reduces to the following representa-

tion:

θ

1− θ2
Φ−1(a)φ(Φ−1(a)).

Therefore, E(∂L(θ)/∂θ|L(θ) = a) is continuous at a = b/(h + b) − αε,h,b and

a = b/(h+ b) + αε,h,b for any θ ∈ (−1, 1).

Since L(θ) satisfies all the three conditions above, we use the following result by Hong

(2009) to identify the probability sensitivity ∂δa/∂θ as

∂δa
∂θ

= −p(a; θ)E
(
∂L(θ)

∂θ

∣∣∣L(θ) = a

)

where p(a; θ) is the value of ∂P(t; θ)/∂θ evaluated at t = a. Consequently, we obtain

∂δ

∂θ
= − θ

1− θ2
p

(
b

h+ b
+ αε,h,b; θ

)
Φ−1

(
b

h+ b
+ αε,h,b

)
φ

(
Φ−1

(
b

h+ b
+ αε,h,b

))

+
θ

1− θ2
p

(
b

h+ b
− αε,h,b; θ

)
Φ−1

(
b

h+ b
− αε,h,b

)
φ

(
Φ−1

(
b

h+ b
− αε,h,b

))
.

Thus, ∂δ/∂θ = 0 for θ = 0. We also note that ∂δ/∂θ < 0 for θ ∈ (0, 1) and ∂δ/∂θ > 0

for θ ∈ (−1, 0) as long as the inequality in Proposition 5.4.2 is satisfied.

Proof of Corollary 5.4.1. For h = b, αε,h,b reduces to (1/2)(1+ε/(2+ε)), and it holds

that

Φ−1

(
b

h+ b
+ αε,h,b

)
= −Φ−1

(
b

h+ b
− αε,h,b

)
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since Φ−1(1− Φ(z)) = −z for any z. Furthermore,

φ

(
Φ−1

(
b

h+ b
+ αε,h,b

))
= φ

(
Φ−1

(
b

h+ b
− αε,h,b

))

because the standard normal density is symmetric around zero. Consequently, the

right-hand side of the inequality in Proposition 5.4.2 simplifies to −1. Since any

density function takes nonnegative values, this inequality is always satisfied.

Proof of Lemma 5.4.1. The inventory-target estimator Q̂, which is given by

F−1
n

(
Φ
(
θ̂ Φ−1 (Fn(Xn))

)
+ Φ−1

(
b

h+ b

)√
1− θ̂2

)

for an unknown marginal distribution and unknown normal-copula parameter, sim-

plifies to

F−1
(

Φ(θ̂Φ−1(F (Xn)))
)

when the true marginal demand distribution is known and the unit holding and

shortage costs are equal. In this case, C2|1(F (Q̂)|F (Xn); θ) reduces to

Φ




(
θ̂ − θ

)
Φ−1 (F (Xn))
√

1− θ2


 ,

which we denote by L(θ). We are interested in finding the distribution of the random

variable L(θ), which has the cdf defined as

P(t; θ) = P (L(θ) ≤ t)

= P


Φ




(
θ̂ − θ

)
Φ−1 (F (Xn))
√

1− θ2


 ≤ t




= P




(
θ̂ − θ

)
Φ−1 (F (Xn))
√

1− θ2
≤ Φ−1(t)


 . (5.12)
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We now derive an asymptotic approximation to the distribution of the random vari-

able θ̂ − θ using the large-sample theory of maximum likelihood estimation for sta-

tionary time series. When the marginal demand distribution function F is assumed

to be known, the transformed demand series {Φ−1(F (Xt)); t = 1, 2, . . .} reduces to

an AR(1) time series {Zt; t = 1, 2, . . .} with autocorrelation θ. Since the marginal

demand distribution is known, the two-step estimation procedure introduced in Sec-

tion 3.1 has only the second step, which yields the copula-parameter estimator θ̂ as

the solution of arg max{`(θ) : θ ∈ (−1, 1)}, where the log-likelihood function `(θ) is

given by

`(θ) =
n−1∑

t=1

(
−1

2
log(1− θ2)− θ2

2(1− θ2)
(z2
t + z2

t+1) +
θ

1− θ2
ztzt+1

)
.

We first note that E(Z2
t ) = 1 and E(ZtZt+1) = θ, and then use the inverse of Fisher

information E(−∂2`(θ)/∂θ2) to calculate the variance of the copula-parameter estima-

tor θ̂. Consequently, we show that
√
n(θ̂−θ) is asymptotically normal with mean zero

and variance (1− θ2)2/(1 + θ2) since the AR(1) time-series model is ergodic and the

asymptotic normality results derived for maximum likelihood estimation with inde-

pendent data carry over (Billingsley, 2008). Let Z denote a standard normal random

variable independent of the standard normal random variable Zn = Φ−1(F (Xn)). The

distribution of L(θ) in (5.12) can be approximated as

P(t; θ) = P

(√
1− θ2

n(1 + θ2)
ZZn ≤ Φ−1(t)

)

= P

(
ZZn ≤

√
n(1 + θ2)

1− θ2
Φ−1(t)

)

= G

(√
n(1 + θ2)

1− θ2
Φ−1(t)

)
,
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where G is the cdf of the product of two independent standard normal random vari-

ables. The result follows from taking the derivative of P(t; θ) with respect to t.

Proof of Proposition 5.4.3. We first note that the coefficient αε,h,b characterized in

Proposition 5.4.2 is equal to (ε/2)(1/(2 + ε)) when the unit shortage and holding

costs are the same. The goal is to identify the minimum length of the demand history

n such that

P
(

1

2

(
1 +

ε

2 + ε

)
; θ

)
− P

(
1

2

(
1− ε

2 + ε

)
; θ

)
≥ δ.

This inequality can be written as

G

(√
n(1 + θ2)

1− θ2
Φ−1

(
1

2

(
1 +

ε

2 + ε

)))

−G
(√

n(1 + θ2)

1− θ2
Φ−1

(
1

2

(
1− ε

2 + ε

)))
≥ δ

by Lemma 5.4.1. Due to the symmetry of the cdf G around zero, this inequality takes

the form

2G

(√
n(1 + θ2)

1− θ2
Φ−1

(
1

2

(
1 +

ε

2 + ε

)))
− 1 ≥ δ,

and the result follows from solving for n in the inequality.

Proof of Proposition 5.4.4. We know from the definition of the event Y (Q̂,Xn) that

the lower bound on the probability of ε-optimality is characterized as

P

(
Φ

(
(θ̂ − θ)Φ−1(F (Xn))√

1− θ2

)
≤ 1

2
+

ε/2

ε+ 2

)

−P
(

Φ

(
(θ̂ − θ)Φ−1(F (Xn))√

1− θ2

)
≤ 1

2
− ε/2

ε+ 2

)
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when the unit holding and shortage costs are the same and the decision maker knows

the marginal demand distribution function F . Using the asymptotic distribution

of the copula-parameter estimator θ̂ characterized in Lemma 1, we can equivalently

write (5.13) as

G

(√
n(1 + θ2)

1− θ2
Φ−1

(
1

2

(
1 +

ε

2 + ε

)))
−G

(√
n(1 + θ2)

1− θ2
Φ−1

(
1

2

(
1− ε

2 + ε

)))
,

which takes the form

2G

(√
n(1 + θ2)

1− θ2
Φ−1

(
1

2

(
1 +

ε

2 + ε

)))
− 1, (5.13)

since the standard normal-product distribution is symmetric around zero. The cdf

G(·) is given by φ−1K0(| · |), and we rewrite (5.13) as

2

π
K0

(
√
n

√
1 + θ2

1− θ2
η(ε)

)
− 1, (5.14)

where η(ε) denotes Φ−1 ((1/2)(1 + ε/(2 + ε))). We now suppose that the decision

maker ignores the autocorrelation in the demand process by setting θ̂ equal to zero.

In this case, (5.13) reduces to

P
(

Φ

(
−θ Φ−1(F (Xn))√

1− θ2

)
≤ 1

2
+

ε/2

ε+ 2

)

−P
(

Φ

(
−θ Φ−1(F (Xn))√

1− θ2

)
≤ 1

2
− ε/2

ε+ 2

)
.

Since Φ−1(F (Xn)) is a standard normal random variable, (5.15) can be rewritten as

2 Φ

(√
1− θ2 η(ε)

|θ|

)
− 1. (5.15)
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The result follows from solving the value of n that makes (5.15) greater than or equal

to (5.14).

Proof of Proposition 5.4.5. It follows from the probability integral transformation

and the definition of a copula function that the series of standard uniform random

variables {Ut; t = 1, 2, . . . , n} is equivalent to {F (Xt); t = 1, 2, . . . , n}. We consider

the realizations {ut; t = 1, 2, . . . , n} and {xt; t = 1, 2, . . . , n}. Since only the ordinal re-

lation matters in building an empirical distribution function, the values of Fn(xt) and

Gn(ut) are the same for t = 1, 2, . . . , n. Therefore, C−1
2|1(b/(h + b)|Fn(xn); θ̂) is equal

to C−1
2|1(b/(h + b)|Gn(xn); θ̂). The result follows because ut = F (xt), t = 1, 2, . . . , n

and

q̂ = min
j=1,2,...,n

{
xj : Fn(xj) ≥ C−1

2|1(b/(h+ b)|Fn(xn); θ̂)
}

imply the equivalence between

min
j=1,2,...,n

{
uj : Gn(uj) ≥ C−1

2|1(b/(h+ b)|Gn(un); θ̂)
}

and F (q̂) for any realizations of {Ut; t = 1, 2, . . . , n} and {Xt; t = 1, 2, . . . , n}.
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Chapter 6

Concluding Remarks

A challenge faced by many businesses is linking inventory management and the esti-

mation of demand from historical data. In this dissertation, we consider a decision

maker who applies an inventory replenishment formula obtained from a stochastic

inventory model, in which the parameters of the true data generating process are

estimated from a limited amount of historical demand data. We adopt a frequentist

view and assume that the values of these parameters are fixed and only known by

nature throughout the dissertation. We develop data-driven methodologies to under-

stand, quantify, and eliminate the expected operational costs that arise from the use

of parameter estimates – which are essentially random due to the random nature of

the historical demand data – in decision making as if they were the true values. We

focus on different types of historical demand data with a common theme of capturing

the characteristics of real world demand.

In the first study, we identify a large number of demand histograms with significant

levels of asymmetry and tail weight. This naturally sheds doubt on the performance

of the inventory-target estimates obtained from historical data under the assumption

of normally distributed demand – an assumption vastly made in theory but often

violated in practice. We address this issue in a newsvendor setting by modeling the
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demand random variable with a flexible system of distributions, which captures a wide

variety of distributional shapes with asymmetry, peakedness, and tail weight. In the

second study, we consider a multi-period inventory management problem, in which

inventory review periods are often shorter than the times between successive demand

observations. Therefore, the demand process is intermittent, and the demand history

contains many zero values. Motivated by industrial data of intermittent demand, we

investigate the impact of correlation between demand size and the number of zero-

demand periods preceding the demand on the performance of an inventory target

estimated from limited demand data. To this end, we introduce a new copula-based

demand model to capture the relation between demand size and the number of zero-

demand periods preceding the demand. Building on this model, we propose two

new finite-sample hypothesis tests to investigate the existence of correlation in an

intermittent demand history. Our results show that the test which only considers

the sampling distribution of the correlation-coefficient estimator tends to reject the

independence assumption more frequently than the other test which considers the

expected cost of parameter uncertainty – a measure operationally more relevant to

the decision maker.

The overarching theme of these first two studies in the dissertation is to develop

inventory-target estimation methods that account for the operational costs of incor-

rectly estimating the unknown parameters in a demand model. In particular, we

combine inventory management and parameter estimation into a single task to bal-

ance the costs of under- and overestimation of the optimal inventory target of a

product. We do this by minimizing the expected total operating cost in the first

study and by minimizing the expected cost of parameter uncertainty in the second

study.

We consider a temporally dependent demand process in the third study. In par-

ticular, we focus on finding a probabilistic guarantee of the near-optimality of an
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inventory-target estimator when the decision maker uses the empirical demand dis-

tribution without making any restricting assumptions on the parametric form of the

demand distribution. We propose a sampling-based method to compute a lower bound

to the probability of near optimality by making use of the marginal-copula represen-

tation of demand and building on the idea of sampling dependent uniform random

variates – rather than the sampling of actual demand which requires the specifica-

tion of a marginal demand distribution. We analyze the driving factors behind the

probabilistic guarantee of near optimality, the value of perfect information about au-

tocorrelation, and the value of relaxing the independence assumption in the presence

of limited amount of historical demand data. Our findings also shed light on how the

autocorrelation and tail dependence (i.e., the joint behavior at extreme demand real-

izations in consecutive time periods) in a demand process affect the number of demand

observations required to achieve a performance arbitrarily close to the performance

of the optimal inventory target. This had been only investigated for independent and

identically distributed demand in the inventory management literature.

In this dissertation, the common takeaway in all three studies is that the deci-

sion maker should not regard an inventory decision as optimal when there is limited

amount of historical demand data available for parameter estimation and the param-

eter estimates factor into an inventory model. We propose data-driven methods that

effectively quantify and minimize the additional expected cost due to the incorrect

estimation of unknown parameters. Nevertheless, we assume that the data generating

process is stationary throughout the dissertation. We believe that the extension of

our methods to work in demand environments that change over time is a potential

research direction. Our main premise of using a limited amount of historical demand

data is actually a good starting point, as the demand histories available to support

operational decisions are often very short in practice – mainly because the underlying

demand generating process does not remain constant indefinitely, and, even if there
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is a long demand history, it is common to consider only the most recent observations.

In addition, we consider the problem of managing the inventory of a single product.

We believe that the extension of our work to account for multiple product families is

another promising research area as the decision maker can get more from the limited

amount of demand histories by considering the relations between product families.
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