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Abstract

Objective function bounds are critical to solving discrete optimization problems. In this

thesis, we explore several new techniques for obtaining bounds, and also describe a new

branch-and-bound algorithm for discrete optimization problems.

The first area explored is the application of decision diagrams (DDs) to binary optimiza-

tion problems. In recent years, DDs have been applied to various problems in operations

research. These include sequential pattern data mining, cut generation, product config-

uration, and post-optimality analysis in integer programming, to name a few. Through

these applications and others, DDs have proven to be a useful tool for a variety of tasks.

Unfortunately, DDs may grow exponentially large, prohibiting their use.

To overcome this difficulty, we introduce the notion of limited-width approximate de-

cision diagrams for discrete optimization problems. By limiting the width of a decision

diagram, the size of the data structure can be controlled to the level of accuracy desired.

Discussed in this dissertation is the use of approximate DDs as problem relaxations

and restrictions of the feasible set. We introduce top-down compilation algorithms for

approximate DDs and discuss how they can be used to generate both upper and lower

bounds on the optimal value for any separable objective function.

We then discuss how relaxed and restricted DDs can be used together to create a DD-

based branch-and-bound algorithm. The algorithm differs substantially from traditional

branch-and-bound algorithms on this class of problems in several important ways. First,

relaxed DDs provide a discrete relaxation, as opposed to a continuous relaxation (for example

a linear programming relaxation), which is typically employed. In addition, subproblems

are generated by branching on several partial solutions taken at once, thereby eliminating

9
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certain symmetry from the search. We discuss the application of the algorithm to the

classical maximum independent set problem. Computational results show that the algorithm

is competitive with state-of-the-art integer programming technology.

The next area explored is the idea of obtaining valid inequalities for a 0-1 model from

a constraint programming formulation of the problem. In particular, we formulate a graph

coloring problem as a system of all-different constraints. By analyzing the polyhedral struc-

ture of all-different systems, we obtain facet-defining inequalities that can be mapped to

valid cuts in the classical 0-1 model of the problem.

We employ a common strategy for generating problem-specific cuts: the identification

of facet-defining cuts for special types of induced subgraphs, such as odd-holes, webs, and

paths. We identify cuts that bound the objective function as well as cuts that exclude

infeasible solutions.

One structure that we focus on is cyclic structures and show that the cuts we obtain are

stronger than previously known cuts. For example, when an existing separation algorithm

identifies odd-hole cuts, we can supply stronger cuts with no additional calculation. In

addition, we generalize odd-hole cuts to odd-cycle cuts that are stronger than any collection

of odd-hole cuts. We also identify cuts associated with intersecting systems, for which there

are no previously known 0-1 cuts, to the best of our knowledge.
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Chapter 1

Introduction

The focus of the work presented in this dissertation is the investigation of new solution

approaches to discrete optimization problems. This class of problems is applicable across a

wide range of applications, including business analytics, process improvement, and health

care operations, to name a few. With the exponential explosion of data and computational

power, businesses, more than ever, are seeking to apply operations research techniques to

discrete optimization problems that they encounter to better the way they operate. As

the problems they seek to solve grow larger and more complex, it is crucial to improve on

existing technologies on this class of optimization problems.

The first technique investigated here is the use of decision diagrams (DDs) to represent

the feasible set of a problem. Binary Decision Diagrams (BDDs) [2, 50, 16], a specific

type of decision diagram, provide compact graphical representations of Boolean functions,

and have traditionally been used for circuit design and formal verification [44, 50]. More

recently, however, BDDs and their generalization Multivalued Decision Diagrams (MDDs)

[46] have been used in operations research for a variety of purposes, including cut generation

[6], vertex enumeration [8], and post-optimality analysis [36, 37]. Decision diagrams have

also been successfully applied to other problems, including for example sequential pattern

mining and genetic programming [51, 68].

In the context of discrete optimization, DDs can be used to represent the set of feasible

solutions to the problem. Unfortunately, the size of the DD can grow exponentially large.

21



22 CHAPTER 1. INTRODUCTION

In fact, as a corollary to a result in [65], there exists 0-1 problems for which the DD that

exactly represents the set of feasible solutions must be exponentially large, regardless of the

variable ordering chosen. As such, we investigate the use of approximate DDs to represent

an approximation of the feasible set.

Relaxation MDDs were introduced in [3] as a replacement for the domain store relax-

ation, i.e., the Cartesian product of the variable domains, that is typically used in Constraint

Programming (CP). MDDs provide a richer data structure that can capture a tighter relax-

ation of the feasible set of solutions, as compared with the domain store relaxation. In order

to make this approach scalable, MDD relaxations of limited size are applied. Various meth-

ods for compiling these discrete relaxations are provided in [38]. The methods described in

that paper focus on iterative splitting and edge filtering algorithms that are used to tighten

the relaxations. Similar to classical domain propagation, MDD propagation algorithms have

been developed for individual (global) constraints, including inequality constraints, equality

constraints, alldifferent constraints and among constraints [38, 39] and has also been applied

to disjunctive scheduling [19].

In this dissertation, however, we suggest using approximate DDs for the purpose of

representing either an over-approximation or an under-approximation of the feasible set.

The former (assuming a maximization problem) can then be used to prove upper-bounds on

the optimal value, while the latter can be used to find good feasible solutions and/or prove

lower-bounds.

In Chapter 2 we explore a technique that can be used to generate relaxed DDs that

represents a relaxation of the feasible set. The technique described is a modification of a

top-down algorithm that can be used to exactly represent the feasible set, which is also

discussed here. We note that using DDs for problem relaxations is quite different than the

traditional relaxations used in this domain. Typical methods of providing relaxations are

continuous, like linear programming or semi-defining programming relaxations. Here we

suggest using a discrete relaxation. As a test case, we apply the proposed method to the

maximum independent set problem. We find that BDDs can deliver significantly tighter

bounds than those obtained by state-of-the-art integer programming software, which solves

an LP relaxation augmented by cutting planes. The BDD bounds are also obtained in far
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less computation time.

The ordering of the variables plays an important role in not only the size of exact BDDs,

but also in the bound obtained by relaxed BDDs. For example, there are 0-1 problems with

n variables and a single equality constraint for which there exists orderings that result in

a DD with width 2
n
2 , while other orderings result in DDs with width 2. It is well known

that finding orderings which minimize the size of BDDs (or even improving on a given

ordering) is NP-hard [22, 15]. Moreover, in preliminary computational results, we found

that the ordering of the vertices is the single most important parameter in creating small

width exact BDDs and in proving tight bounds via relaxed BDDs.

As such, we do a thorough investigation of the variable ordering for the application of

DDs to the maximum independent set problem in this chapter. We explore particular classes

of graphs (paths, cliques, interval graphs, trees), and find variable orderings that allow us to

bound the largest possible size of the DD. In addition, we show that for every graph, there

exist orderings for which the exact DD will have width bounded by the Fibonacci numbers.

We also explore heuristics orderings for relaxed DDs. We describe orderings specific to

the maximum independent set problem, and also describe an ordering for general discrete

optimization problems.

Bounds provided by relaxations are important, but methods used to tighten the relax-

ations are perhaps even more important. For example, cutting planes used to tighten linear

programming relaxations are crucial to their application.

In Chapter 3 we discuss the problem of tightening relaxation bounds obtained by relaxed

DDs. The techniques discussed there involve iteratively pulling out all solutions in the

relaxed DD with objective function value equal to a given upper bound, and either finding

a feasible solution (thereby proving the optimality of the bound) or proving that none

exists (thereby allowing the upper-bound to be lowered). We compare the strength of

bounds provided by relaxed DDs with those provided by a linear programming relaxation

augmented with cutting planes on structured instances of the set covering problem. We also

compare the speed with which relaxed DDs (used as a pure inference method) and integer

programming solve the problem. We find that relaxed DDs are superior to conventional

integer programming when the ones in the constraint matrix lie in a relatively narrow band.
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That is, the matrix has relatively small bandwidth, meaning that the maximum distance

between any two ones in the same row is limited.

The bandwidth of a set covering matrix can often be reduced, perhaps significantly, by

reordering the columns. Thus relaxed DD can solve a given set covering problem much

more rapidly than integer programming if its variables can be permuted to result in a

relatively narrow bandwidth. Algorithms and heuristics for minimum bandwidth ordering

are discussed in [54, 17, 21, 24, 34, 55, 60, 66].

In Chapter 4 we explore another form of approximate DDs: restricted DDs. As opposed

to relaxed DDs, restricted DD represent an under-approximation of the feasible set. These

structures can thus be used as a new method for generating heuristic solutions to binary

optimization problems. We discuss how restricted DDs can be generated and show that the

proposed algorithm delivers solutions of comparable quality to a state-of-the-art general-

purpose optimization solver on randomly generated set covering and set packing problems.

Chapter 5 is the crux of the DD chapters. In this chapter we describe an algorithm that

combines relaxed and restricted DDs into a single framework, developing a new branch-and-

bound algorithm for discrete optimization problems. This algorithm differs substantially

from typical branch-and-bound algorithms (perhaps the most widely used technique) for

discrete optimization problem.

First, it employs relaxed DDs for upper-bounds (again, assuming a maximization prob-

lem). As discussed above, problem relaxations for discrete optimization problems are typi-

cally continuous relaxations. However, as the problems are themselves discrete, looking into

discrete relaxations is a natural course of investigation.

Second, subproblems are generated by nodes in the relaxed DDs. In traditional branch-

and-bound schemes, algorithms proceed by solving subproblems generated by fixing a given

variable to 0 and 1. In the DD approach investigated here, the nodes produce subproblems

that are defined by a pool of partial solutions. This allows for branching on multiple variable

fixings taken at once and also eliminates certain symmetry from the search.

Again, as a text case, we discuss the application of the algorithm to the maximum

independent set problem. Computational results show that more problems can be solved

less time using the DD approach then conventionally integer programming techniques. In
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addition, the algorithm is more robust in terms of the percent gap remaining after a given

amount of computation time.

In Chapter 6, we change gears and look at obtaining strong cutting-planes from alternate

models of 0-1 problems.

In integer programming models, a choice from several alternatives is typically encoded

by a set of binary variables. For example, the job assigned to a particular worker might be

represented by 0-1 variables yij , where
∑

j yij = 1 for each worker i, and yij = 1 indicates

that job j is assigned to worker i. Valid inequalities can then be generated in terms of the

0-1 variables, so as to strengthen the continuous relaxation of the model.

An alternative approach is to formulate such a choice directly in terms of finite-domain

variables. For example, variable xi might indicate which job is assigned to worker i. The

value of xi need not be a number, but if we choose to denote jobs by numbers, we can

analyze the convex hull of feasible solutions and write valid inequalities in terms of the

variables xi. These inequalities can then be mapped into a 0-1 model of the problem using

a simple change of variable. The resulting 0-1 inequalities may be different from and more

effective than known cutting planes for the 0-1 model.

This chapter explores the idea of using a finite-domain formulation of a problem as a

source of new valid inequalities for the 0-1 model. We will refer to such inequalities as

finite-domain cuts. We apply the idea to the vertex coloring problem on graphs, which has

a natural finite-domain formulation in terms of all-different constraints. Such “global” con-

straints frequently appear in constraint programming models, where finite-domain variables

are often used rather than 0-1 variables to encode discrete choices.

We employ a common strategy for generating problem-specific cuts: the identification

of facet-defining cuts for special types of induced subgraphs, such as odd holes, webs, and

paths. We identify cuts that bound the objective function (which we call z-cuts) as well as

cuts that exclude infeasible solutions (x-cuts).

We find that for coloring problems, finite-domain cuts for several subgraph structures

(when mapped into 0-1 space) provide tighter bounds than known 0-1 cuts for those sub-

graphs. Furthermore, we identify more general structures for which finite-domain cuts are

substantially more effective than known cuts, or for which no known cuts exist.
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When comparing finite-domain cuts with traditional 0-1 cuts, varying levels of strength-

ening can occur:

• Finite-domain web cuts, when mapped into the 0-1 model, yield tighter bounds than

standard web cuts. This means, in particular, that if an existing algorithm identifies

separating web cuts, we can replace them with more effective finite-domain web cuts

at no additional computational cost.

• Odd cycles are a generalization of odd holes. We show that in the special case of odd

holes, finite-domain cuts provide tighter bounds than standard odd hole and clique

cuts. We can therefore replace known separating odd hole cuts with more effective cuts,

at no additional cost. In the general case of odd cycles, only two finite-domain cuts for

a given cycle provide a substantially tighter bound than hundreds or thousands of odd

hole and clique cuts that can be generated for that cycle. We provide a polynomial-

time algorithm that identifies all separating finite-domain cuts for a given odd cycle.

• By contrast, finite-domain path cuts do not improve existing bounds. When mapped

into 0-1 space, they have no effect on the bound provided by the standard 0-1 model.

• Intersecting systems illustrate how a finite-domain perspective can yield facet-defining

cuts for novel structures. To our knowledge, no 0-1 cuts have previously been identified

for this general class of subgraphs. We also present a polynomial-time separation

algorithm.

Mapping finite-domain cuts into 0-1 space has the advantage that finite-domain cuts can

be combined with standard 0-1 constraints as well as previously known families of 0-1 cuts.

However, bounds can also be obtained directly from the finite-domain model by solving

its relaxation, which is much smaller than the 0-1 model. We investigate both approaches

computationally.

In this chapter, we proceed with a problem statement and brief literature review. We

then describe the mapping of finite-domain cuts into 0-1 space and prove some of its elemen-

tary properties. We next describe some general properties of the finite-domain polytope and

then derive facet-defining inequalities for combs, odd cycles, webs, paths, and intersecting
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systems, and study their properties when mapped into 0-1 space. In particular, we show that

a family of facet-defining x-cuts gives rise to a family of facet-defining z-cuts in a canonical

way, a result that is crucial for obtaining good bounds. A section on computational results

compares the strength of finite-domain cuts and known 0-1 cuts on odd cycles and webs. It

also demonstrates the advantages of odd cycle cuts on a set of benchmark instances. The

chapter concludes with a summary and suggestions for future research.
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Chapter 2

Relaxation Decision Diagrams

2.1 Introduction

Bounds on the optimal value are often indispensable for the practical solution of discrete

optimization problems, as for example in branch-and-bound procedures. Such bounds are

frequently obtained by solving a continuous relaxation of the problem, perhaps a linear

programming (LP) relaxation of an integer programming model. In this chapter, we explore

an alternative strategy of obtaining bounds from a discrete relaxation, namely a binary

decision diagram (BDD).

Binary decision diagrams are compact graphical representations of Boolean functions

[2, 50, 16]. They were originally introduced for applications in circuit design and formal

verification [44, 50] but have since been used for a variety of other purposes. These include

sequential pattern mining and genetic programming [51, 68].

A BDD can represent the feasible set of a 0-1 optimization problem, because the con-

straints can be viewed as defining a Boolean function f(x) that is 1 when x is a feasible

solution. Unfortunately, a BDD that exactly represents the feasible set can grow exponen-

tially in size. We circumvent this difficulty by creating a relaxed BDD of limited size that

represents a superset of the feasible set. The relaxation is created by merging nodes of the

BDD in such a way that no feasible solutions are excluded. A bound on any additively

separable objective function can now be obtained by solving a longest (or shortest) path

29
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problem on the relaxed BDD. The idea is readily extended to general discrete (as opposed

to 0-1) optimization problems by using multi-valued decision diagrams (MDDs).

As a test case, we apply the proposed method to the maximum independent set problem

on a graph. We find that BDDs can deliver tighter bounds than those obtained by a strong

LP formulation, even when the LP is augmented by cutting planes generated at the root

node by a state-of-the-art mixed integer solver. In most instances, the BDD bounds are

obtained in less computation time, even though we used a non-default barrier LP solver

that is faster for these instances.

The chapter is organized as follows. After a brief literature review, we show how BDDs

can represent 0-1 optimization problems in general and the maximum weighted independent

set problem in particular. We then exhibit an efficient top-down compilation algorithm that

generates exact reduced BDDs for the independent set problem, and prove its correctness.

We then modify the algorithm to generate a limited-size relaxed BDD, prove its correctness,

and show that it has polynomial time complexity. We also discuss variable ordering for

exact and relaxed BDD compilation, as this can have a significant impact on the size of the

exact BDD and the bound provided by relaxed BDDs. In addition, we describe heuristics

for deciding which nodes to merge while building a relaxed BDD.

At this point we report computational results for random and benchmark instances of

the maximum independent set problem. We experiment with various heuristics for ordering

variables and merging nodes in the relaxed BDDs and test the quality of the bound provided

by the relaxed BDDs versus the maximum BDD size. We then compare the bounds obtained

from the BDDs with the LP bounds obtained by a commercial mixed integer solver. We

conclude with suggestions for future work.

2.2 Previous Work

Relaxed BDDs and MDDs were introduced by [3] for the purpose of replacing the domain

store used in constraint programming by a richer data structure. They found that MDDs

drastically reduce the size of the search tree and allow faster solution of problems with

multiple all-different constraints, which are equivalent to graph coloring problems. Similar
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methods were applied to other types of constraints in [38] and [39]. The latter chapter also

develops a general top-down compilation method based on state information at nodes of the

MDD.

None of this work addresses the issue of obtaining bounds from relaxed BDDs. Three of

us applied this idea to the set covering problem in a conference chapter [12], which reports

good results for certain structured instances. In the current chapter, we present novel and

improved methods for BDD compilation and relaxation. These methods are superior to

continuous relaxation technology for a much wider range of instances, and require far less

time.

The ordering of variables can have a significant bearing on the effectiveness of a BDD

relaxation. We investigated this for the independent set problem in [9] and apply the results

here.

We note that binary decision diagrams have also been applied to post-optimality analysis

in discrete optimization [36, 37], cut generation in integer programming [6], and 0-1 vertex

and facet enumeration [8].

Branch-and-bound methods for the independent set problem, which make essential use

of relaxation bounds, are studied by [64, 67, 62], and surveyed by [63].

2.3 Binary Decision Diagrams

Given binary variables x = (x1, . . . , xn), a binary decision diagram (BDD) B = (U,A) for

x is a directed acyclic multigraph that encodes a set of values of x. The set U of nodes

is partitioned into layers L1, . . . , Ln corresponding to variables x1, . . . , xn, plus a terminal

layer Ln+1. Layers L1 and Ln+1 are singletons consisting of the root node r and the terminal

node t, respectively. All directed arcs in A run from a node in some layer Lj to a node in

some deeper layer Lk (j < k). For a node u ∈ Lj , we write ℓ(u) = j to indicate the layer in

which u lies.

Each node u ∈ Lj has one or two out-directed arcs, a 0-arc a0(u) and/or a 1-arc a1(u).

These correspond to setting xj to 0 and 1, respectively. We use the notation b0(u) to indicate

the node at the opposite end of arc a0(u), and similarly for b1(u). Thus, 0-arc a0(u) is
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Figure 2.1: (a) Example of a BDD. (b) Instance of the independent set problem for which

(a) is an exact BDD. (c) Relaxed BDD for the instance in (b).

(u, b0(u)), and 1-arc a1(u) is (u, b1(u)). Each arc-specified path from r to t represents the

0-1 tuple x in which xℓ(u) = 1 for each 1-arc a1(u) on the path, and xj = 0 for all other j.

The entire BDD represents the set Sol(B) of all tuples corresponding to r–t paths.

It is often useful to abbreviate a BDD by using long arcs. These arcs skip over variables

whose values are represented implicitly. A long arc can indicate that all skipped variables

take the value zero (resulting in a zero-suppressed BDD) or the value one (a one-suppressed

BDD). More commonly, a long arc indicates that the skipped variables can take either value.

One advantage of BDDs is that we can choose the type of long arc that suits the problem at

hand. We use zero-suppressed BDDs [58] because there are many zero-valued arcs in BDDs

for the independent set problem. Thus a long arc from layer Lj to layer Lk encodes the

partial assignment (xj , . . . , xk−1) = (1, 0, . . . , 0).

Figure 2.1(a) illustrates a BDD for variables x = (x1, . . . , x6). The left-most path from

root node r to terminal node t represents the tuple (x1, . . . , x6) = (0, 0, 1, 0, 0, 0). The

third arc in the path is a long arc because it skips three variables. It encodes the partial

assignment (x3, x4, x5, x6) = (1, 0, 0, 0). The entire BDD of Fig. 2.1(a) represents a set of

10 tuples, corresponding to the 10 r–t paths.

Given nodes u, u′ ∈ U , we will say that Buu′ is the portion of B induced by the nodes in
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U that lie on some directed path from u to u′. Thus Brt = B. Two nodes u, u′ on a given

layer of a BDD are equivalent if But and Bu′t are the same BDD. A reduced BDD is one that

contains no equivalent nodes. A standard result of BDD theory [16, 68] is that for a fixed

variable order, there is a unique reduced BDD that represents a given set. The width ωj of

layer Lj is |Lj |, and the width ω(B) of a BDD B is maxj{ωj}. The BDD of Fig. 2.1(a) is

reduced and has width 2.

The feasible set of any optimization problem with binary variables x1, . . . , xn can be

represented by an appropriate reduced BDD. The BDD can be regarded as a compact

representation of a search tree for the problem. It can in principle be obtained by omitting

infeasible leaf nodes from the search tree, superimposing isomorphic subtrees, and identifying

all feasible leaf nodes with t. We will present below a much more efficient procedure for

obtaining a reduced BDD. A slight generalization of BDDs, multi-valued decision diagrams

(MDDs), can similarly represent the feasible set of any discrete optimization problem. MDDs

allow a node to have more than two outgoing arcs and therefore accommodate discrete

variables with several possible values.

2.4 BDD Representation of Independent Sets

We focus on BDD representations of the maximum weighted independent set problem. Given

a graph G = (V,E), an independent set is a subset of the vertex set V , such that no two

vertices are connected by an edge in E. If each vertex vj is associated with a weight wj ,

the problem is to find an independent set of maximum weight. If each wj = 1, we have the

maximum independent set problem.

If we let binary variable xj be 1 when vj is included in the independent set, the feasible

solutions of any instance of the independent set problem can be represented by a BDD on

variables x1, . . . , xn. Figure 2.1(a), for example, represents the 10 independent sets of the

graph in Fig. 2.1(b).

We can remove any node u in a BDD with a single outgoing arc if it is a 0-arc a0(u). This

is accomplished by replacing every 0-arc a0(u
′) for which b0(u

′) = u with a longer arc a0(u
′)

for which b0(u
′) = b0(u). We can similarly replace every such 1-arc. If the BDD represents
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an instance of the independent set problem, a single outgoing arc must be a 0-arc, which

means that all nodes with single outgoing arcs can be removed. Every node in the resulting

BDD has exactly two outgoing arcs.

To represent the objective function in the BDD, let each 1-arc a1(u) have length equal

to the weight wℓ(u), and each 0-arc length 0. Then the length of a path from r to t is the

weight of the independent set it represents. The weighted independent set problem becomes

the problem of finding a longest path in a BDD. If for all vertices vj weight wj = 1, the

four longest paths in the BDD of Fig. 2.1(a) have length 2, corresponding to the maximum

independent sets {v1, v3}, {v1, v5}, {v2, v4}, and {v4, v6}.

Any binary optimization problem with an additively separable objective function
∑

j fj(xj)

can be similarly represented as a longest path problem on a BDD. Zero-suppressing long

edges may be used if fj(0) = 0 and fj(1) ≥ 0 for each j. This condition is met by any

independent set problem with nonnegative weights. It can be met by any binary problem if

each fj(xj) is replaced with f̄j(x̄j), where f̄j(0) = 0 and

f̄j(1) = fj(1)− fj(0) and x̄j = xj , if fj(1) ≥ fj(0)

f̄j(1) = fj(0)− fj(1) and x̄j = 1− xj , otherwise.

In addition, recent work by [43] shows how non-separable objective functions may be rep-

resented by BDDs.

2.5 Exact and Relaxed BDDs

If Sol(B) is equal to the feasible set of an optimization problem, we will say that B is an

exact BDD for the problem. If Sol(B) is a superset of the feasible set, B is a relaxed BDD

for the problem. We will construct limited-width relaxed BDDs by requiring ω(B) to be at

most some pre-set maximum width W .

Figure 2.1(c) shows a relaxed BDDB′ of width 1 for the independent set problem instance

of Fig. 2.1(b). B′ represents 21 vertex sets, including the 10 independent sets. The length

of a longest path in B′ is therefore an upper bound on the optimal value of the original

problem instance. If, again, for all vertices vj weight wj = 1, the longest path length is 3,

which provides an upper bound on the maximum cardinality 2 of an independent set.
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2.6 Exact BDD Compilation

We now describe an algorithm that builds an exact reduced BDD for the independent

set problem. Similar algorithms can be designed for any optimization problem on binary

variables by associating a suitable state with each node [39]. Choosing the state variable

can be viewed as analogous to formulating a model for the LP relaxation, because it allows

the BDD to reflect the problem at hand.

Starting with the root r, the procedure constructs the BDD B = (U,A) layer by layer,

selecting a graph vertex for each layer and associating a state with each node. We define

the state as follows. Using a slight abuse of notation, let Sol(B) be the set of independent

sets represented by B (rather than the corresponding set of tuples x). Thus, in particular,

Sol(Bru) is the set of independent sets defined by paths from r to u. Let the neighborhood

N(T ) of a vertex set T be the set of vertices adjacent to vertices in T , where by convention

T ⊆ N(T ). The state s(u) of node u is the set of vertices that can be added to any of the

independent sets defined by paths from r to u. Thus

s(u) = {vℓ(u), . . . , vn} \
⋃

T∈Sol(Bru)

N(T ).

In an exact BDD, all paths to a given node u define partial assignments to x that have

the same feasible completions. So s(u) = {vℓ(u), . . . , vn} \ N(T ) for any T ∈ Sol(Bru). In

addition, no two nodes on the same layer of an exact reduced BDD have the same feasible

completions. So we have the following:

Lemma 1 An exact BDD for G is reduced if and only if s(u) 6= s(u′) for any two nodes

u, u′ on the same layer of the BDD.

The exact BDD compilation is stated in Algorithm 1. We begin by creating the root r

of B, which has state s(r) = V because every vertex in V is part of some independent set.

We then add r to a pool P of nodes that have not yet been placed on some layer. Each

node u ∈ P is stored along with its state s(u) and the arcs that terminate at u.

To create layer Lj , we first select the j-th vertex vj by means of a function select

(step 4), which can follow a predefined order or select vertices dynamically. We let Lj

contain the nodes u ∈ P for which vj ∈ s(u). These are the only nodes in P that will have
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both outgoing arcs a0(u) and a1(u). All of the remaining nodes in P would have only an

outgoing 0-arc if placed on this layer and can therefore be skipped. The nodes in Lj are

removed from P , as we need only process them once.

For each node u in Lj , we create outgoing arcs a0(u) and a1(u) as follows. Node b0(u)

(i.e., the node at the opposite end of a0(u)) has state s0 = s(u)\{vj}, and node b1(u) has

state s1 = s(u)\N({vj}). To ensure that the BDD is reduced, we check whether s0 = s(u′)

for some node u′ ∈ P , and if so let b0(u) = u′. Otherwise, we create node u0 with s(u0) = s0,

let b0(u) = u0, and insert u0 into P . If s0 = ∅, u0 is the terminal node t. Arc a1(u) is

treated similarly. After the last iteration, P will contain exactly one node with state ∅, and

it becomes the terminal node t of B.

We now show this algorithm returns the exact BDD.

Theorem 1 For any graph G = (V,E), Algorithm 1 generates a reduced exact BDD for the

independent set problem on G.

Proof. Let Ind(G) be the collection of independent sets of G. We wish to show that if B

is the BDD created by Algorithm 1, Sol(B) = Ind(G). We proceed by induction on n = |V |.

First, suppose n = 1, and let G consist of a single vertex v. B consists of two nodes, r

and t, and two arcs a0(r) and a1(r), both directed from r to t. Therefore, Sol(B) = {∅, v} =

Ind(G). Moreover, this BDD is trivially reduced.

For the induction hypothesis, suppose that Algorithm 1 creates a reduced exact BDD

for any graph on fewer than n (≥ 2) vertices. Let G be a graph on n vertices. Suppose the

select function in Step 4 returns vertices in the order v1, . . . , vn. Let G0 = (V0, E0) be the

subgraph of G induced by vertex set V \{v1}, and G1 = (V1, E1) the subgraph induced by

V \N(v1). Then Ind(G) = Ind(G0) ∪ {T ∪ {v1} | T ∈ Ind(G1)}, since each independent set

either excludes v1 (whereupon it appears in Ind(G0)) or includes v1 (whereupon it appears

as the union of {v1} with a set in Ind(G1)).

Let B be the BDD returned by the algorithm for G. By construction, s(b0(r)) = V0 and

s(b1(r)) = V1. Let B0 be the BDD that the algorithm creates for G0, and similarly for B1.

We observe as follows that B0 = Bb0(r)t and B1 = Bb1(r)t. The root r0 of B0 has s(r0) = V0,

the same state as node b0(r) in B. But the successor nodes created by the algorithm for r0
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Algorithm 1 Exact BDD Compilation

1: Create node r with s(r) = V

2: Let P = {r} and R = V

3: for j = 1 to n do

4: vj = select(R,P )

5: R← R\{vj}

6: Lj = {u ∈ P : vj ∈ s(u)}

7: P ← P\Lj

8: for all u ∈ Lj do

9: s0 := s(u)\{vj}, s1 := s(u)\N(vj)

10: if ∃u′ ∈ P with s(u′) = s0 then

11: a0(u) = (u, u′)

12: else

13: create node u0 with s(u0) = s0 (u0 = t if s0 = ∅)

14: a0(u) = (u, u0)

15: P ← P ∪ {u0}

16: if ∃u′ ∈ P with s(u′) = s1 then

17: a1(u) = (u, u′)

18: else

19: create node u1 with s(u1) = s1 (u1 = t if s0 = ∅)

20: a1(u) = (u, u1)

21: P ← P ∪ {u1}

22: Let t be the remaining node in P and set Ln+1 = {t}

and b0(r) depend entirely on the state and are therefore identical in B0 and B, respectively.

Moreover, the states of the successor nodes depend entirely on the state of the parent and

which branch is taken. Thus the successor nodes have the same states in B0 as in B. If we

apply this reasoning recursively, we obtain B0 = Bb0(r)t. A parallel argument shows that
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B1 = Bb1(r)t. Now

Sol(B) = Sol(Bb0(r)t) ∪ {T ∪ {v1} | T ∈ Sol(Bb1(r)t)}

= Sol(B0) ∪ {T ∪ {v1} | T ∈ Sol(B1)}

= Ind(G0) ∪ {T ∪ {v1} | T ∈ Ind(G1)}

= Ind(G)

as claimed, where the third equation is due to the inductive hypothesis. Furthermore, since

all nodes with the same state are merged, Lemma 1 implies that B is reduced. �

To analyze the time complexity of Algorithm 1, we assume that the select function

(Step 4) is “polynomial” in the sense that its running time is at worst proportional to |V |

or the number of BDD nodes created so far, whichever is greater.

Lemma 2 If the select function is polynomial, then the time complexity of Algorithm 1 is

polynomial in the size of the reduced exact BDD B = (U,A) constructed by the algorithm.

Proof. We observe that an arc of B is never rechecked again once it was created in one

of the Steps 11, 14, 17, or 20. Hence, the complexity of the algorithm is dominated by

the select function or the constructive operations required when creating the out-arcs of

a node removed from the pool P . The select function is clearly polynomial in |U | and

|V |. The constructive operations consist of creating a new state (Step 9) and inserting or

searching in the node pool (Steps 10, 15, 16, and 21), which can be implemented in O(|V |).

Since every node has exactly two outgoing arcs (i.e., |A| = 2|U |), the resulting worst-case

complexity is O(|U | |V |), and the lemma follows. �

2.7 Relaxed BDDs

Limited-width relaxed BDDs allow us to represent an over-approximation of the family of

independent sets of a graph, and thus obtain an upper bound on the optimal value of the

independent set problem.

We propose a novel top-down compilation method for constructing relaxed BDDs. The

procedure modifies Algorithm 1 by forcing nodes to be merged when a particular layer
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Algorithm 2 Node merger for obtaining a relaxed BDD.

Insert immediately after line 7 of Algorithm 1.

1: while ωj > W do

2: M := node select(Lj) // where 2 ≤ |M | ≤ ωj −W

3: snew :=
⋃

u∈M s(u)

4: Lj ← Lj\M

5: if ∃u′ ∈ Lj with s(u′) = snew then

6: merge(M,u′)

7: else

8: Create node û with s(û) = snew

9: merge(M, û)

10: Lj = Lj ∪ {û}

exceeds a pre-set maximum width W . This modification is given in Algorithm 2, which is

to be inserted immediately after line 7 in Algorithm 1.

The procedure is as follows. We begin by checking if ωj > W , which indicates that the

width of layer Lj exceeds W . If so, we select a subset M of Lj using function node select

in Step 2, which ensures that 2 ≤ |M | ≤ ωj −W . The set M represents the nodes to be

merged so that the desired width is met. Various heuristics for selecting M are discussed in

Section 2.8.

The state of the new node that results from the merge, snew, must be such that no

feasible independent set is lost in further iterations of the algorithm. As will be established

by Theorem 2, it suffices to let snew be the union of the states associated with the nodes in

M (Step 3). Once snew is created, we search for some node u′ ∈ Lj such that s(u′) = snew.

If u′ exists, then by Lemma 1 we are only required to direct the incoming arcs of the nodes in

M to u′, as presented in Algorithm 3. Otherwise, we create a new node û with s(û) = snew

and add it to Lj .

In each iteration of the while loop in Algorithm 2, we decrease the size of Lj by at least

|M |−1. Thus, after at most ωj−W iterations, the layer Lj will have width no greater than

W . The modified Algorithm 1 hence yields a limited-width W BDD, i.e. ω(B) ≤W .
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Algorithm 3 merge(M,u′)

1: for all u ∈M do

2: for all arcs a0(w) with b0(w) = u do

3: b0(w)← u′

4: for all arcs a1(w) with b1(w) = u do

5: b1(w)← u′

The correctness of Algorithm 2 is proved by showing that every r-t path of the exact

BDD remains after merging operations.

Theorem 2 For any graph G = (V,E), Algorithm 1 modified by adding Algorithm 2 after

line 7 generates a relaxed BDD.

Proof. We will use the notation Bu for the BDD consisting of all r–t paths in B that

pass through u. Thus

Sol(Bu) = {V1 ∪ V2 | V1 ∈ Sol(Bru), V2 ∈ Sol(But)} (2.1)

It suffices to show that each iteration of the while-loop yields a relaxed BDD if it begins

with a relaxed BDD. Thus we show that if B is a relaxed (or exact) BDD, then the BDD B̂

that results from merging the nodes in M satisfies Sol(B) ⊆ Sol(B̂). Here M is any proper

subset of Lj for an arbitrary j ∈ {2, . . . , n− 1}.

Let M = {u1, . . . , uk} be the nodes to be merged into û. Also, let B̄ be the BDD

consisting of all r–t paths in B that do not include any of the nodes ui. Then

Sol(B) = Sol(B̄) ∪
k⋃

i=1

Sol(Bui
)

The merge procedure has no effect on Sol(B̄). Hence it remains to show that

k⋃

i=1

Sol(Bui
) ⊆ Sol(B̂û)
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But we can write

k⋃

i=1

Sol(Bui
) =

k⋃

i=1

{V1 ∪ V2 | V1 ∈ Sol(Brui
), V2 ∈ Sol(Buit)}

=

{

V1 ∪ V2

∣
∣
∣
∣
∣
V1 ∈

k⋃

i=1

Sol(Brui
), V2 ∈

k⋃

i=1

Sol(Buit)

}

=

{

V1 ∪ V2

∣
∣
∣
∣
∣
V1 ∈ Sol(B̂rû), V2 ∈

k⋃

i=1

Sol(Buit)

}

⊆
{

V1 ∪ V2

∣
∣
∣ V1 ∈ Sol(B̂rû), V2 ∈ Sol(B̂ût)

}

= Sol(B̂û)

The first and last equations are due to (2.1). The third equation is due to
⋃

i Sol(Brui
) =

Sol(B̂rû), which follows from the fact that û receives precisely the paths received by the

uis before the merge. The fourth line is due to
⋃

i Sol(Buit) ⊆ Sol(B̂ût). This follows from

the facts that (a) Sol(Buit) contains the independent sets in the subgraph of G induced by

s(ui); (b) Sol(B̂ût) contains the independent sets in the subgraph induced by s(û); and (c)

s(ui) ⊆ s(û) for all i. �

The time complexity of Algorithm 2 is highly dependent on the node select function

and on the number of nodes to be merged. Once a subsetM of nodes has been chosen, taking

the union of the states (Step 3) has a time complexity of O(|M ||V |), and Algorithm 3 has

a worst-case time complexity of O(W |M |) by supposing that every node in M is adjacent

to as many as W nodes located in previous layers. Hence, if k is the number of nodes

to be merged, the complexity of Algorithm 2 is O(H(k) + |M ||V | +W |M |) per iteration

of the while loop in Step 1, where H(k) is the complexity of the node selection heuristic

(node select) for a given k. The number of iterations depends on the size of the selected

node set. For example, if |M | is always 2, then at most W − k iterations are required (if

none of the newly defined states appeared in Lj previously). The time complexity for the

complete relaxation procedure is given by the following lemma.

Lemma 3 Let S be the time complexity of selecting the next variable (select function in

Step 4 of Algorithm 1), and let R(k) be the time complexity of Algorithm 2. The worst-

case time complexity of Algorithm 1 modified with the procedure in Algorithm 2 is given by
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O(n(S +R(nW ) +W |V |)).

Proof. If k nodes are removed from the pool in Step 6 of Algorithm 1, then the merging

procedure in Algorithm 2 ensures that at most 2min{k,W} new nodes are added back to

the pool. Thus, at each iteration the pool can be increased by at most W nodes. Since n

iterations in the worst case are required for the complete compilation, the pool can have at

most nW nodes.

Suppose now nW nodes are removed from the pool (Step 6 of Algorithm 1) at a particular

iteration. These nodes are first merged so that the maximum widthW is met (Algorithm 2),

and then new nodes or arcs are created according to the result of the merge. The time

complexity for the first operation is R(nW ), which yields a new layer with at most W

nodes. For the second operation, we observe as in Lemma 2 that creating a new state or

searching in the pool size can be implemented in time O(|V |); hence, the second operation

has a worst-case time complexity of O(W |V |).

This implies that the time required per iteration is O(S + R(nW ) +W |V |), yielding a

time complexity of O(n(S +R(nW ) +W |V |)) for the modified procedure. �

2.8 Merging Heuristics

The selection of nodes to merge in a layer that exceeds the maximum allotted width W is

critical for the construction of relaxation BDDs. Different selections may yield dramatic

differences on the obtained upper bounds on the optimal value, since the merging procedure

adds paths corresponding to infeasible solutions to the BDD.

In this section we present a number of possible heuristics for selecting nodes. This refers

to how the subsets M are chosen on line 2 in Algorithm 2. The heuristics we test are

described below.

random: Randomly select a subset M of size |Lj | −W + 1 from Lj . This may be used

a stand-alone heuristic or combined with any of the following heuristics for the purpose of

generating several relaxations.

minLP: Sort nodes in Lj in increasing order of the longest path value up to those nodes and

merge the first |Lj |−W +1 nodes. This is based on the idea that infeasibility is introduced
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into the BDD only when nodes are merged. By selecting nodes with the smallest longest

path, we lose information in parts of the BDD that are unlikely to participate in the optimal

solution.

minSize: Sort nodes in Lj in decreasing order of their corresponding state sizes and merge

the first 2 nodes until |Lj | ≤W . This heuristic merges nodes that have the largest number

of vertices in their associated states. Because larger vertex sets are likely to have more

vertices in common, the heuristic tends to merge nodes that represent similar regions of the

solution space.

2.9 Variable Ordering

The ordering of the vertices plays an important role in not only the size of exact BDDs, but

also in the bound obtained by relaxed BDDs. It is well known that finding orderings that

minimize the size of BDDs (or even improving on a given ordering) is NP-hard [22, 15]. We

found that the ordering of the vertices is the single most important parameter in creating

small width exact BDDs and in proving tight bounds via relaxed BDDs.

Different orderings can yield exact BDDs with dramatically different widths. For exam-

ple, Figure 2.2a shows a path on 6 vertices with two different orderings given by x1, . . . , x6

and y1, . . . , y6. In Figure 2.2b we see that the vertex ordering x1, . . . , x6 yields an exact

BDD with width 1, while in Figure 2.2c the vertex ordering y1, . . . , y6 yields an exact BDD

with width 4. This last example can be extended to a path with 2n vertices, yielding a BDD

with a width of 2n−1, while ordering the vertices according to the order that they lie on the

paths yields a BDD of width 1.

In the remainder of this section we describe classes of graphs for which an appropriate

ordering of the vertices leads to a bound on the width of the exact BDD. In addition, we

provide a set of orderings based on maximal path decompositions that yield exact reduced

BDDs in which the width of layer Lj is bounded by the (j+1)-st Fibonacci number for any

graph. Based on this analysis, we describe various heuristic orderings for reduced BDDs,

on the assumption that an ordering that results in a small-width exact reduced BDD also

results in a relaxed BDD that yields a strong bound on the objective function.
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x1 x2 x3 x4 x5 x6

y1 y4 y2 y5 y3 y6

(a) Path with 2 Orderings

x1

x2

x3

x4

x5

x6

(b) x-orderings

y1

y2

y3

y4

y5

y6

(c) y-ordering

Figure 2.2: Comparing Exact BDD for a Path Graph with 2 Different Orderings

2.9.1 Exact BDD Orderings

Here we present orderings of vertices for interval graphs, trees, and general graphs for which

we can bound the width, and therefore the size, of the exact reduced BDD.

We first consider interval graphs; that is, graphs that are isomorphic to the intersection

graph of a multiset of intervals on the real line. Such graphs have vertex orderings v1, . . . vn

for which each vertex vi is adjacent to the set of vertices vai
, vai+1, . . . vi−1, vi+1, . . . , vbi

for some ai, bi. We call such an ordering an interval ordering for G. Note that paths and

cliques, for example, are contained in this class of graphs.

Theorem 3 For any interval graph, an interval ordering v1, . . . , vn yields an exact reduced

BDD with width 1.

Proof. Let Tk = {vk, . . . , vn}. We first show by induction that for any interval ordering

v1, . . . , vn, there is a k such that s(u) = Vk for all u ∈ P throughout the entire execution of

Algorithm 1.

At the start of the algorithm, P = ∅, L1 = {r} with s(r) = T1. Starting from r, we have

s0 = s(r) \ {v1} = T2, and s1 = s(r) \ N(v1) = Tb1+1. Therefore, at the end of iteration

j = 1, P contains two nodes with states T2 and Tb1+1.

Now fix an arbitrary j < n and assume for the induction hypothesis that, at the start

of iteration j, each node u ∈ P has s(u) = Tk. Note that k ≥ j, since at each iteration we

always eliminate vj for each state (if it appears). Then |Lj | = 1, because there can be at
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most one node u′ ∈ P with vj ∈ s(u
′), and the only Tk with k ≥ j that contains vj is Tj .

Starting from u′, we have s0 = Vj \ {vj} = Tj+1 and s1 = Vj \N(vj) = Tbj+1. We therefore

add at most two nodes to P at the end of iteration j, each with a state of form Tk for some

k. This proves the claim.

We conclude that s(u) = Tk for all u ∈ P . For any j, we have |Lj | = 1, because there is

at most one node with vj ∈ s(u). Therefore, ω(B) = 1. �

We now prove a width bound for trees.

Theorem 4 For any tree with n ≥ 2 vertices, there exists an ordering of the vertices that

yields an exact reduced BDD with width at most n/2.

The proof will use a lemma demonstrated by [45].

Lemma 4 In any tree there exists a vertex v for which the connected components created

upon deleting v from the tree contain at most n/2 vertices.

Proof of Theorem 4. We proceed by induction on n. For n = 2, any tree is an interval

graph, and by Theorem 3 there exists an ordering of the vertices that yields an exact reduced

BDD with width 1.

For the inductive hypothesis, we suppose that for any tree T with n′ < n vertices, there

exists an ordering of the vertices in T for which the exact reduced BDD has width at most

n′/2. Let T be any tree with n vertices. Let v be a cut vertex satisfying the conditions

of Lemma 4. Each connected component Ti = (Vi, Ei), i = 1, . . . , k, created upon deleting

v from T is a tree. By induction, for each i, there is an ordering of the vertices in Vi for

which the exact reduced BDD for Ti has width at most |Vi|
2 ≤

n
4 . Let vi1, . . . , v

i
|Vi|

be such

an ordering and Bi = (Ui, Ai) be the exact reduced BDD for Ti with this ordering.

Consider the ordering v11 , . . . , v
1
|V1|

, v21 , . . . , v
k
|Vk|

, v of the vertices in T ; i.e., we order the

vertices by the component orderings that yield an exact reduced BDD with width at most

n
4 , followed by the cut vertex v. We now show that using this ordering, the exact reduced

BDD B = (U,A) for T has width at most 2 · n4 = n
2 , finishing the proof.

Fix j, 1 ≤ j ≤ n − 1, and let viℓ be the jth vertex in the ordering for T . We claim that

using this ordering, for each vertex u ∈ Lj of B, there exists a w ∈ Li
ℓ, the ℓth layer of Bi,
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for which

s(u) =







s(w)
⋃

(Vi+1 ∪ · · · ∪ Vk)

s(w)
⋃

(Vi+1 ∪ · · · ∪ Vk) \ {v}.

Consider the BDD Bru. For every set W ∈ Sol(Bru) we have that viℓ ∈ s(u) and

s(u) = (vj ∪ vj+1 ∪ · · · ∪ vn) \N(W )

=
({

viℓ ∪ v
i
ℓ+1 ∪ · · · ∪ v

i
|Vi|

}

∪
{
V i+1 ∪ · · · ∪ V k

})

\N(W )

=
({

viℓ ∪ v
i
ℓ+1 ∪ · · · ∪ v

i
|Vi|

}

\N(W )
)

∪
{
V i+1 ∪ · · · ∪ V k

}
,

where the last equality follows because the nodes in W are not adjacent to any vertex in

the remaining components.

Now, consider the set W [V i] = W ∩ V i. This must be an independent set in the graph

T [V i], the graph induced by vertex set V i. In addition, viℓ ∈ V i \ N(W [V i]) is in T [V i]

because this vertex also appears in s(u). Therefore, there is a node w ∈ Li
ℓ with state

s(w) =
{

viℓ ∪ v
i
ℓ+1 ∪ · · · ∪ v

i
|Vi|

}

\N(W [V i]). In the entire graph T , N(W ) contains exactly

the vertices in T [V i] that are in N(W [V i]) and possibly vertex v, because v is the only

vertex, besides those vertices in V i, that can be adjacent to any vertex in V i, as desired. �

Finally, we prove a bound for general graphs.

Theorem 5 Given any graph, there exists an ordering of the vertices that yields an exact

reduced BDD B = (U,A) with width equal to at most the jth Fibonacci number Fibj+1.

Proof. Given graph G = (V,E), we define a maximal path decomposion ordering of V

as an ordered partition of the vertex set V = V 1 ∪ · · · ∪ V k together with an ordering

vi1, . . . , v
i
|V i| of the vertices in each partition V i for which

(
vij , v

i
j+1

)
∈ E for i = 1, . . . , k, j = 1, . . . , |V k| − 1

N
(

vi|V i|

)

⊆ V 1 ∪ · · · ∪ V i for i = 1, . . . , k.

Thus each partition is covered by a path whose last vertex is independent of all vertices in

the remaining partitions.

We show that for any maximal path decomposition ordering, the exact reduced BDD B

will have ωj ≤ Fibj+1. Let Pj be the pool of nodes in Algorithm 1 before line 4 in iteration
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j. We will show that |Pj | ≤ Fibj+1, which implies that ωj = |Lj | ≤ |Pj | ≤ Fibj+1, as

desired.

We first consider the case with k = 1; i.e., the graph contains a Hamiltonian path. Let

v1, . . . , vn be a Hamiltonian path in G and the maximal path decomposition ordering we

use to create an exact reduced BDD for G. We proceed by induction.

We first note that P1 = {r}, so that |P1| = 1. Now L1 = {r}, and with u = r in the

algorithm, we have s0 = T2 and s1 = T2 \ N(v1). Since (v1, v2) ∈ E, these two states are

different, so that P2 = {u21, u
2
2} with s(u

2
1) = T2 and s(u

2
2) = T2\N(v1). However, v2 /∈ s(u

2
2)

because (v1, v2) ∈ E, so that L2 = {u21}. Node u
2
1 can result in the addition of at most two

more nodes to P2 in when creating P3, one with state s0 and one with state s1. Therefore,

|P3| ≤ 3 ≤ |P2|+ |P1| = 2 + 1 = 3 = Fib4, as desired.

For the inductive hypothesis, suppose |Pj | ≤ Fibj+1 for j ≤ j′. We seek to show that

|Pj′+1| ≤ Fibj′+2 (2.2)

Consider the partition of the nodes in Pj′ into X ∪ Y , where a node u ∈ Pj′ is in X if there

exists a node u′ ∈ Lj′−1 for which b1(u
′) = u; i.e., there is a 1-arc ending at u directed out

of a node in Lj′−1. All other nodes are in Y . We make three observations.

1. |Y | ≤ |Pj′−1|

The nodes in Pj′−1 can be partitioned into Lj′−1 ∪ L̄j′−1. All nodes in Pj′ either arise

from a 0-arc or 1-arc directed out of Lj′−1 or are copies of the nodes in L̄j′−1 (these

may be combined because their associated states may coincide). Only the nodes arising

from 1-arcs directed out of nodes in Lj′−1 are in X, and the remaining nodes are in Y .

There are at most |Lj′−1|+ |L̄j′−1| nodes in Y , including at most |Lj′−1| from 0-arcs

and at most |L̄j′−1| copies of nodes from Pj′−1. Therefore, |Y | ≤ |Lj′−1| + |L̄j′−1| =

|Pj′−1|.

2. |Lj′ | ≤ |Y |

We have that Lj′ ⊆ Pj′ . However, any node u ∈ X must have vj′ /∈ s(u) because

(vj′−1, vj′) ∈ E. Therefore Lj′ ⊆ Pj′ and |Lj′ | ≤ |Y |.

3. |Pj′+1| ≤ 2|Lj′ |+ (|Pj′ | − |Lj′ |) = |Pj′ |+ |Lj′ |

As in Pj′ , the nodes in Pj′+1 arise from a 0-arc or 1-arc directed out of Lj′ or are
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copies of the nodes in L̄j′ (these may be combined because their associated states may

coincide). So each node in Lj′ gives rise to at most two nodes that are inserted Pj′+1,

and each node in L̄j′ contributes at most one node to Pj′+1. The inequality follows.

Putting all three observations together, we get

|Pj′+1| ≤ |Pj′ |+ |Lj′ | ≤ |Pj′ |+ |Y | ≤ |Pj′ |+ |Pj′−1|,

We therefore have by induction that |Pj′+1| ≤ Fibj′+1 + Fibj′ = Fibj′+2, proving (2.2) for

k = 1.

Now let k > 1. From above, we know that
∣
∣
∣Pv1

|V 1
|

∣
∣
∣ ≤ Fib|V 1|+1. We first show that

∣
∣
∣Pv1

|V 1
|+1

∣
∣
∣ ≤

∣
∣
∣Pv1

|V 1
|

∣
∣
∣ (2.3)

Take any node u ∈ Pv1
|V 1

|

. If v1|V 1| /∈ s(u) then this node is reproduced in Pv1
|V 1

|+1
. If v1|V 1| ∈

s(u), then s0 = s1. This is because v
1
|V 1| is independent of all nodes in the remainder of the

graph. Therefore, eliminating v1|V 1| or eliminating v1|V 1| ∪N
(

v1|V 1|

)

from s(u) corresponds

to the set of vertices in G. This may coincide with the state of some node that originally did

not have v1|V 1| in its state, but in either case at most one new node is added to Pv1
|V 1

|+1
. We

therefore have (2.3). This in turn implies that
∣
∣
∣Pv1

|V 1
|+1

∣
∣
∣ ≤

∣
∣
∣Pv1

|V 1
|

∣
∣
∣ ≤ Fib|V 1|+1 ≤ Fib|V 1|+2,

as desired. In addition, since consecutive Pj ’s differ in size by at most a factor of 2,

∣
∣
∣Pv1

|V 1
|

+2

∣
∣
∣ ≤ 2

∣
∣
∣Pv1

|V 1
|

+1

∣
∣
∣ ≤ 2

∣
∣
∣Pv1

|V 1
|

∣
∣
∣ ≤ 2Fib|V 1|+1 ≤ Fib|V 1|+1,

as desired.

Now, since the vertices in indices v1|V 1| + 1 and v1|V 1| + 2 are v21 and v22 , respectively, and

their corresponding Pj ’s are bounded by the desired Fibonacci numbers, we can apply the

reasoning from the proof of k = 1 to bound the sizes of the Pj ’s until the end of set V 2, and

by induction bound the remaining Pj ’s. �

2.9.2 Relaxed BDD Orderings

The orderings in Section 2.9.1 inspire variable ordering heuristics for generating relaxed

BDD. We outline a few that are tested below. Note that the first two orderings are dynamic,

in that we select the j-th vertex in the order based on the first j − 1 vertices chosen and
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the partially constructed BDD. In contrast, the last ordering is static, in that the ordering

is determined prior to building the BDD.

random: Randomly select some vertex that has yet to be chosen. This may be used a

stand-alone heuristic or combined with any of the following heuristics for the purpose of

generating several relaxations.

minState: Select the vertex vj appearing in the fewest number of states in P . This

minimizes the size of Lj , given the previous selection of vertices v1, . . . , vj−1, since the only

nodes in P that will appear in Lj are exactly those nodes containing vj in their associated

state. Doing so limits the number of merging operations that need to be performed.

MPD: As proved above, a maximal path decomposition ordering of the vertices bounds the

exact BDD width by the Fibonacci numbers, which grow slower than 2j (the worst case).

Hence this ordering limits the width of all layers, therefore limiting the number of merging

operations necessary to build the BDD.

random: Randomly select some vertex that has yet to be chosen. We suggest this vertex

selection not only as a stand alone variable ordering heuristic, but also as a heuristic that

may be mixed with any of the following heuristics for the purpose of generating several

relaxations.

minState: Select the next vertex vj as the vertex appearing in the fewest number of

states in P . This selection minimizes the size of Lj , given the previous selection of vertices

v1, . . . , vj−1, since the only nodes in P that will appear in Lj are exactly those nodes

containing vj in their associated state. Doing so limits the number of merging operations

that need to be performed.

MPD: As mentioned above, it was shown in [9] that a Maximal Path Decomposition of the

vertices in a graph yields an ordering that bounds the exact BDD width by the Fibonacci

numbers, which grow slower than 2j (the worst case). Hence this ordering limits the width

of all layers, therefore also limiting the number of merging operations necessary to build the

BDD.
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2.10 Computational Experiments

In this section, we assess empirically the quality of bounds provided by a relaxed BDD. We

first investigate the impact of various parameters on the bounds. We then compare our

bounds with those obtained by an LP relaxation of a clique-cover model of the problem,

both with and without cutting planes. We measure the quality of a bound by its ratio with

the optimal value (or best lower bound known if the problem instance is unsolved). Thus a

smaller ratio indicates a better bound.

We test our procedure on two sets of instances. The first set, denoted by random, consists

of 180 randomly generated graphs according to the Erdös-Rényi modelG(n, p), in which each

pair of n vertices is joined by an edge with probability p. We fix n = 200 and generate 20

instances for each p ∈ {0.1, 0.2, . . . , 0.9}. The second set of instances, denoted by dimacs,

is composed by the complement graphs of the well-known DIMACS benchmark for the

maximum clique problem, obtained from http://cs.hbg.psu.edu/txn131/clique.html.

These graphs have between 100 and 4000 vertices and exhibit various types of structure.

Furthermore, we consider the maximum cardinality optimization problem for our test bed

(i.e., wj = 1 for all vertices vj).

The tests ran on an Intel Xeon E5345 with 8 GB RAM in single core mode. The BDD

method was implemented in C++.

2.10.1 Merging Heuristics

We tested the three merging heuristics presented in Section 2.8 on the random instance set.

We set a maximum width of W = 10 and used variable ordering heuristic MPD. Figure 2.3

displays the resulting bound quality.

We see that among the merging heuristics tested, minLP achieves by far the tightest

bounds. This behavior reflects the fact that infeasibility is introduced only at those nodes

selected to be merged, and it seems better to preserve the nodes with the best bounds as

in minLP. The plot also highlights the importance of using a structured merging heuristic,

because random yielded much weaker bounds than the other techniques tested. In light of

these results, we use minLP as the merging heuristic for the remainder of the experiments.
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Figure 2.3: Bound quality vs. graph density for each merging heuristic, using the random

instance set with MPD ordering and maximum BDD width 10. Each data point represents an

average over 20 problem instances. The vertical line segments indicate the range obtained

in 5 trials of the random heuristic.

2.10.2 Variable Ordering Heuristics

We tested the three variable ordering heuristics presented in Section 2.9 on the random

instance set. The results (Fig. 2.4) indicate that the MinState ordering is the best of the

three. This is particularly true for sparse graphs, because the number of possible node states

generated by dense graphs is relatively small. We therefore use MinState ordering for the

remainder of the experiments.

2.10.3 Bounds vs. Maximum BDD Width

The purpose of this experiment is to analyze the impact of maximum BDD width on the

resulting bound. Figure 2.5 presents the results for instance p-hat 300-1 in the dimacs set.

The results are similar for other instances. The maximum width ranges from W = 5 to the

value necessary to obtain the optimal value of 8. The bound approaches the optimal value

almost monotonically as W increases, but the convergence is super-exponential in W .



52 CHAPTER 2. RELAXATION DECISION DIAGRAMS

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

B
ou

nd
 / 

O
pt

im
al

 V
al

ue

Density

MPD
MinState
random

Figure 2.4: Bound quality vs. graph density for each variable ordering heuristic, using merge

heuristic minLP and otherwise the same experimental setup as Fig. 2.3.

2.10.4 Comparison with LP Relaxation

We now address the key question of how BDD bounds compare with bounds produced by

a traditional LP relaxation and cutting planes. To obtain a tight initial LP relaxation, we

used a clique cover model [33] of the maximum independent set problem, which requires

computing a clique cover before the model can be formulated. We then augmented the LP

relaxation with cutting planes generated at the root node by the CPLEX MILP solver.

Given a collection C ⊆ 2V of cliques whose union covers all the edges of the graph G,

the clique cover formulation is

max
∑

v∈V

xv

s.t.
∑

v∈S

xv ≤ 1, for all S ∈ C

xv ∈ {0, 1}.

The clique cover C was computed using a greedy procedure as follows. Starting with C = ∅,

let clique S consist of a single vertex v with the highest positive degree in G. Add to S the

vertex with highest degree in G \ S that is adjacent to all vertices in S, and repeat until no

more additions are possible. At this point, add S to C, remove from G all the edges of the
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Figure 2.5: Relaxation bound vs. maximum BDD width for dimacs instance p-hat 300-1.

clique induced by S, update the vertex degrees, and repeat the overall procedure until G

has no more edges.

We solved the LP relaxation with Ilog CPLEX 12.4. We used the interior point (barrier)

option because we found it to be up to 10 times faster than simplex on the larger LP

instances. To generate cutting planes, we ran the CPLEX MIP solver with instructions to

process the root node only. We turned off presolve, because no presolve is used for the BDD

method, and it had only a marginal effect on the results in any case. Default settings were

used for cutting plane generation.

The results for random instances appear in Table 2.1 and are plotted in Fig. 2.6. The

table displays geometric means, rather than averages, to reduce the effect of outliers. It uses

shifted geometric means1 for computation times. The computation times for LP include the

time necessary to compute the clique cover, which is much less than the time required to

solve the initial LP for random instances, and about the same as the LP solution time for

dimacs instances.

The results show that BDDs with width as small as 100 provide bounds that, after taking

means, are superior to LP bounds for all graph densities except 0.1. The computation time

required is about the same overall—more for sparse instances, less for dense instances. The

1The shifted geometric mean of v1, . . . , vn is g−α, where g is the geometric mean of v1 +α, . . . , vn +α.

We used α = 1 second.
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Figure 2.6: Bound quality vs. graph density for random instances, showing results for LP

only, LP plus cutting planes, and BDDs with maximum width 100, 1000, and 10000. Each

data point is the geometric mean of 20 instances.

scatterplot in Fig. 2.8 shows how the bounds compare on individual instances. The fact

that almost all points lie below the diagonal indicates the superior quality of BDD bounds.

More important, however, is the comparison with the tighter bounds obtained by an LP

with cutting planes, because this is the approach used in practice. BDDs of width 100 yield

better bounds overall than even an LP with cuts, and they do so in less than 1% of the time.

However, the mean bounds are worse for the two sparsest instance classes. By increasing

the BDD width to 1000, the mean BDD bounds become superior for all densities, and they

are still obtained in 5% as much time overall. Increasing the width to 10,000 yields bounds

that are superior for every instance, as revealed by the scatter plot in Fig. 2.10. The time

required is about a third as much as LP overall, but somewhat more for sparse instances.

The results for dimacs instances appear in Table 2.2 and Fig. 2.7, with scatter plots

in Figs. 2.11–2.13. The instances are grouped into five density classes, with the first class

corresponding to densities in the interval [0, 0.2), the second class to the interval [0.2, 0.4),

and so forth. The table shows the average density of each class. Table 2.3 shows detailed

results for each instance.
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Figure 2.7: Bound quality vs. graph density for dimacs instances, showing results for LP

only, LP plus cutting planes, and BDDs with maximum width 100, 1000, and 10000. Each

data point is the geometric mean of instances in a density interval of width 0.2.
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Figure 2.8: Bound quality for an LP re-

laxation (no cuts) vs. width 100 BDDs for

random instances. Each data point rep-

resents one instance. The time required is

about the same overall for the two types

of bounds.
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Figure 2.9: Bound quality for an LP re-

laxation with cuts vs. width 1000 BDDs

for random instances. The BDD bounds

are obtained in about 5% of the time re-

quired for the LP bounds.
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Figure 2.10: Bound quality for an LP re-

laxation with cuts vs. width 10000 BDDs

for random instances. The BDD bounds

are obtained in less time overall than the

LP bounds, but somewhat more time for

sparse instances.
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Figure 2.11: Bound quality for an LP re-

laxation (no cuts) vs. width 100 BDDs for

dimacs instances. The BDD bounds are

obtained in generally less time for all but

the sparsest instances.

BDDs of width 100 provide somewhat better bounds than the LP without cuts, except for

the sparsest instances, and the computation time is somewhat less overall. Again, however,

the more important comparison is with LP augmented by cutting planes. BDDs of width

100 are no longer superior, but increasing the width to 1000 yields better mean bounds than

LP for all but the sparsest class of instances. The mean time required is about 15% that

required by LP. Increasing the width to 10,000 yields still better bounds and requires less

time for all but the sparsest instances. However, the mean BDD bound remains worse for

instances with density less than 0.2. We conclude that BDDs are generally faster when they

provide better bounds, and they provide better bounds, in the mean, for all but the sparsest

dimacs instances.
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Figure 2.12: Bound quality for an LP re-

laxation with cuts vs. width 1000 BDDs

for dimacs instances. The BDD bounds

are obtained in about 15% as much time

overall as the LP bounds.
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Figure 2.13: Bound quality for an LP re-

laxation with cuts vs. width 10000 BDDs

for dimacs instances. The BDD bounds

are generally obtained in less time for all

but the sparsest instances.
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Table 2.1: Bound quality and computation times for LP and BDD relaxations, using random instances. The bound quality is the

ratio of the bound to the optimal value. The BDD bounds correspond to maximum BDD widths of 100, 1000, and 10000. Each

graph density setting is represented by 20 problem instances.

Bound quality (geometric mean) Time in seconds (shifted geometric mean)

LP relaxation BDD relaxation LP relaxation BDD relaxation

Density LP only LP+cuts 100 1000 10000 LP only LP+cuts 100 1000 10000

0.1 1.60 1.50 1.64 1.47 1.38 0.02 3.74 0.13 1.11 15.0

0.2 1.96 1.76 1.80 1.55 1.40 0.04 9.83 0.10 0.86 13.8

0.3 2.25 1.93 1.83 1.52 1.40 0.04 7.75 0.08 0.82 11.8

0.4 2.42 2.01 1.75 1.37 1.17 0.05 10.6 0.06 0.73 7.82

0.5 2.59 2.06 1.60 1.23 1.03 0.06 13.6 0.05 0.49 3.88

0.6 2.66 2.04 1.43 1.10 1.00 0.06 15.0 0.04 0.23 0.51

0.7 2.73 1.98 1.28 1.00 1.00 0.07 15.3 0.03 0.07 0.07

0.8 2.63 1.79 1.00 1.00 1.00 0.07 9.40 0.02 0.02 0.02

0.9 2.53 1.61 1.00 1.00 1.00 0.08 4.58 0.01 0.01 0.01

All 2.34 1.84 1.45 1.23 1.13 0.05 9.15 0.06 0.43 2.92
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Table 2.2: Bound quality and computation times for LP and BDD relaxations, using dimacs instances. The bound quality is the

ratio of the bound to the optimal value. The BDD bounds correspond to maximum BDD widths of 100, 1000, and 10000.

Bound quality (geometric mean) Time in seconds (shifted geometric mean)

Avg. LP relaxation BDD relaxation LP relaxation BDD relaxation

Density Count LP only LP+cuts 100 1000 10000 LP only LP+cuts 100 1000 10000

0.09 25 1.35 1.23 1.62 1.48 1.41 0.53 6.87 1.22 6.45 55.4

0.29 28 2.07 1.77 1.94 1.63 1.46 0.55 50.2 0.48 3.51 34.3

0.50 13 2.54 2.09 2.16 1.81 1.59 4.63 149 0.99 6.54 43.6

0.72 7 3.66 2.46 1.90 1.40 1.14 2.56 45.1 0.36 2.92 10.4

0.89 5 1.07 1.03 1.00 1.00 1.00 0.81 4.19 0.01 0.01 0.01

All 78 1.88 1.61 1.78 1.54 1.40 1.08 27.7 0.72 4.18 29.7

Table 2.3: Bound comparison for the dimacs instance set, showing the optimal value (Opt), the number of vertices (Size), and the

edge density (Den). LP times correspond to clique cover generation (Clique), processing at the root node (CPLEX), and total time.

The bound (Bnd) and computation time are shown for each BDD width. The best bounds are shown in boldface (either LP bound

or one or more BDD bounds

Instance LP with Cutting Planes Relaxed BDD

Time (sec) Width 100 Width 1000 Width 10000

Name Opt Size Den. Bound Clique CPLEX Total Bnd Sec Bnd Sec Bnd Sec

brock200 1 21 200 0.25 38.51 0 9.13 9.13 36 0.08 31 0.78 28 13.05

brock200 2 12 200 0.50 22.45 0.02 13.56 13.58 17 0.06 14 .45 12 4.09

brock200 3 15 200 0.39 28.20 0.01 11.24 11.25 24 0.06 19 0.70 16 8.31

Continued on next page
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Instance LP with Cutting Planes Relaxed BDD

Time (sec) Width 100 Width 1000 Width 10000

Name Opt Size Den. Bound Clique CPLEX Total Bnd Sec Bnd Sec Bnd Sec

brock200 4 17 200 0.34 31.54 0.01 9.11 9.12 29 0.08 23 0.81 20 10.92

brock400 1 27 400 0.25 66.10 0.05 164.92 164.97 68 0.34 56 3.34 48 47.51

brock400 2 29 400 0.25 66.47 0.04 178.17 178.21 69 0.34 57 3.34 47 51.44

brock400 3 31 400 0.25 66.35 0.05 164.55 164.60 67 0.34 55 3.24 48 47.29

brock400 4 33 400 0.25 66.28 0.05 160.73 160.78 68 0.35 55 3.32 48 47.82

brock800 1 23 800 0.35 96.42 0.73 1814.64 1815.37 89 1.04 67 13.17 55 168.72

brock800 2 24 800 0.35 97.24 0.73 1824.55 1825.28 88 1.02 69 13.11 55 180.45

brock800 3 25 800 0.35 95.98 0.72 2587.85 2588.57 87 1.01 68 12.93 55 209.72

brock800 4 26 800 0.35 96.33 0.73 1850.77 1851.50 88 1.02 67 12.91 56 221.07

C1000.9 68 1000 0.10 219.934 0.2 1204.41 1204.61 265 3.40 235 28.93 219 314.99

C125.9 34 125 0.10 41.29 0.00 1.51 1.51 45 0.05 41 0.43 39 5.73

C2000.5 16 2000 0.50 154.78 35.78 3601.41 3637.19 125 4.66 80 67.71 59 1207.69

C2000.9 77 2000 0.10 398.924 2.88 3811.94 3814.82 503 13.56 442 118.00 397 1089.96

C250.9 44 250 0.10 71.53 0.00 6.84 6.84 80 0.21 75 1.80 67 23.69

C4000.5 18 4000 0.50 295.67 631.09 3601.22 4232.31 234 18.73 147 195.05 107 3348.65

C500.9 57 500 0.10 124.21 0.03 64.56 64.59 147 0.85 134 7.42 120 84.66

c-fat200-1 12 200 0.92 12.00 0.04 0.95 0.99 12 0.00 12 0.00 12 0.00

c-fat200-2 24 200 0.84 24.00 0.05 0.15 0.2 24 0.00 24 0.00 24 0.00

c-fat200-5 58 200 0.57 61.70 0.07 35.85 35.92 58 0.00 58 0.00 58 0.00

c-fat500-10 126 500 0.63 126.00 1.89 2.80 4.69 126 0.01 126 0.01 126 0.01

c-fat500-1 14 500 0.96 16.00 1.03 27.79 28.82 14 0.02 14 0.01 14 0.01

c-fat500-2 26 500 0.93 26.00 0.81 7.71 8.52 26 0.01 26 0.00 26 0.01

c-fat500-5 64 500 0.81 64.00 1.51 3.05 4.56 64 0.01 64 0.01 64 0.01

gen200 p0.9 44 44 200 0.10 44.00 0.00 0.52 0.52 64 0.14 57 1.17 53 15.94

gen200 p0.9 55 55 200 0.10 55.00 0.00 2.04 2.04 65 0.14 63 1.19 61 15.74

gen400 p0.9 55 55 400 0.10 55.00 0.02 1.97 1.99 110 0.56 99 4.76 92 59.31

Continued on next page
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Instance LP with Cutting Planes Relaxed BDD

Time (sec) Width 100 Width 1000 Width 10000

Name Opt Size Den. Bound Clique CPLEX Total Bnd Sec Bnd Sec Bnd Sec

gen400 p0.9 65 65 400 0.10 65.00 0.02 3.08 3.1 114 0.55 105 4.74 94 56.99

gen400 p0.9 75 75 400 0.10 75.00 0.02 7.94 7.96 118 0.54 105 4.64 100 59.41

hamming10-2 512 1024 0.01 512.00 0.01 0.22 0.23 549 5.05 540 48.17 542 484.66

hamming10-4 40 1024 0.17 51.20 0.50 305.75 306.25 111 3.10 95 30.93 85 322.94

hamming6-2 32 64 0.10 32.00 0.00 0.00 0.00 32 0.01 32 0.09 32 1.20

hamming6-4 4 64 0.65 5.33 0.00 0.10 0.10 4 0.00 4 0.00 4 0.00

hamming8-2 128 256 0.03 128.00 0.00 0.01 0.01 132 0.26 136 2.45 131 25.70

hamming8-4 16 256 0.36 16.00 0.02 2.54 2.56 24 0.10 18 1.01 16 10.32

johnson16-2-4 8 120 0.24 8.00 0.00 0.00 0.00 12 0.02 8 0.10 8 0.23

johnson32-2-4 16 496 0.12 16.00 0.01 0.00 0.01 33 0.72 29 6.10 29 50.65

johnson8-2-4 4 28 0.44 4.00 0.00 0.00 0.00 4 0.00 4 0.00 4 0.00

johnson8-4-4 14 70 0.23 14.00 0.00 0.00 0.00 14 0.00 14 0.06 14 0.36

keller4 11 171 0.35 15.00 0.00 0.45 0.45 15 0.05 12 0.30 11 2.59

keller5 27 776 0.25 31.00 0.36 39.66 40.02 55 1.53 55 16.96 50 178.04

keller6 59 3361 0.18 63.00 55.94 3601.09 3657.03 194 37.02 152 361.31 136 3856.53

MANN a27 126 378 0.01 132.82 0.00 1.31 1.31 152 0.46 142 3.71 136 41.90

MANN a45 345 1035 0.00 357.97 0.01 1.47 1.48 387 2.83 367 26.73 389 285.05

MANN a81 1100 3321 0.00 1129.57 0.07 11.22 11.29 1263 20.83 1215 254.23 1193 2622.59

MANN a9 16 45 0.07 17.00 0.00 0.01 0.01 18 0.00 16 0.00 16 0.00

p hat1000-1 10 1000 0.76 43.45 5.38 362.91 368.29 33 0.76 20 13.99 14 117.45

p hat1000-2 46 1000 0.51 93.19 3.30 524.82 528.12 118 1.23 103 16.48 91 224.92

p hat1000-3 68 1000 0.26 152.74 1.02 1112.94 1113.96 194 2.20 167 21.96 153 313.71

p hat1500-1 12 1500 0.75 62.83 21.71 1664.41 1686.12 47 2.26 28 35.87 20 453.13

p hat1500-2 65 1500 0.49 138.13 13.42 1955.38 1968.80 187 3.11 155 36.76 140 476.65

p hat1500-3 94 1500 0.25 223.60 4.00 2665.67 2669.67 295 5.14 260 47.90 235 503.55

p hat300-1 8 300 0.76 16.778 0.10 20.74 20.84 12 0.06 9 0.19 8 0.22

Continued on next page
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Instance LP with Cutting Planes Relaxed BDD

Time (sec) Width 100 Width 1000 Width 10000

Name Opt Size Den. Bound Clique CPLEX Total Bnd Sec Bnd Sec Bnd Sec

p hat300-2 25 300 0.51 34.60 0.06 29.73 29.79 42 0.11 38 1.25 34 11.79

p hat300-3 36 300 0.26 55.49 0.02 25.50 25.52 67 0.20 60 2.15 54 27.61

p hat500-1 9 500 0.75 25.69 0.52 42.29 42.81 19 0.18 13 2.12 9 9.54

p hat500-2 36 500 0.50 54.17 0.30 195.59 195.89 70 0.31 61 4.23 53 51.57

p hat500-3 50 500 0.25 86.03 0.11 289.12 289.23 111 0.55 97 5.97 91 85.50

p hat700-1 11 700 0.75 533.10 1.64 115.55 117.19 24 0.35 15 5.95 12 34.68

p hat700-2 44 700 0.50 71.83 1.00 460.58 461.58 96 0.60 80 8.09 72 82.10

p hat700-3 62 700 0.25 114.36 0.30 646.96 647.26 149 1.08 134 11.32 119 127.37

san1000 15 1000 0.50 16.00 43.14 180.46 223.60 19 1.14 15 15.01 15 99.71

san200 0.7 1 30 200 0.30 30.00 0.02 0.74 0.76 30 0.08 30 0.62 30 7.80

san200 0.7 2 18 200 0.30 18.00 0.02 1.55 1.57 19 0.06 18 0.50 18 6.50

san200 0.9 1 70 200 0.10 70.00 0.00 0.16 0.16 71 0.13 70 1.08 70 12.88

san200 0.9 2 60 200 0.10 60.00 0.00 0.49 0.49 66 0.13 60 1.14 60 14.96

san200 0.9 3 44 200 0.10 44.00 0.00 0.46 0.46 60 0.13 54 1.18 49 15.41

san400 0.5 1 13 400 0.50 13.00 1.09 10.08 11.17 13 0.19 13 1.27 13 5.00

san400 0.7 1 40 400 0.30 40.00 0.33 16.91 17.24 45 0.32 40 2.97 40 33.58

san400 0.7 2 30 400 0.30 30.00 0.31 12.22 12.53 39 0.32 32 3.50 30 38.96

san400 0.7 3 22 400 0.30 22.00 0.28 6.38 6.66 31 0.31 26 3.68 23 41.45

san400 0.9 1 100 400 0.10 100.00 0.02 6.52 6.54 123 0.56 107 4.66 100 57.46

sanr200 0.7 18 200 0.30 34.02 0.01 9.00 9.01 31 0.08 28 0.82 24 11.88

sanr200 0.9 42 200 0.10 59.60 0.00 3.32 3.32 67 0.14 60 1.17 57 15.51

sanr400 0.5 13 400 0.50 39.30 0.13 281.21 281.34 31 0.21 24 4.09 18 35.88

sanr400 0.7 21 400 0.30 60.05 0.06 168.64 168.70 58 0.30 47 3.52 39 51.93
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2.11 Conclusions

In this chapter we presented a novel method, based on binary decision diagrams (BDDs), for

obtaining bounds on the optimal value of discrete optimization problems. As a test case, we

applied the technique to the maximum independent set problem. We found that the BDD-

based bounding procedure often yields better bounds, in less time, than a state-of-the-art

mixed-integer solver obtains at the root node for a tight integer programming model.

The performance of both BDD and conventional relaxations is sensitive to the density

of the graph. We found, however, that BDDs yield tighter bounds in less time, taking

the geometric mean, for random instances of all density classes. For a well-known set of

benchmark instances, BDDs provide better mean bounds in less time for all but the sparsest

class of instances (i.e., all but those with density less than 0.2). We obtained these results

using a barrier LP solver that is generally faster than simplex for these instances.

A further advantage of BDD relaxations is that the quality of the bound can be contin-

uously adjusted by controlling the maximum width of the BDD. This allows one to invest

as much or little time as one wishes in improving the quality of the bound. In addition,

BDD-based bounds can be obtained for combinatorial problems that are not formulated as

mixed integer models. Unlike LP relaxations, BDD relaxations do not presuppose that the

constraints take the form of linear inequalities.

BDD bounds can be rapidly updated during a search procedure, much as the LP can

be reoptimized after branching. This is achieved simply by removing arcs of the BDD that

correspond to excluded values of the branching variable, and recomputing the shortest (or

longest) path. Nonetheless, due to the speed at which BDDs can be constructed, it may be

advantageous to rebuild the BDD from scratch, so as to obtain a relaxation that is suited

to the current subproblem. One may be able to adjust the BDD width to obtain a bound

that is just tight enough to fathom the current node of the search tree, thus saving time.

These remain as research issues.

The above results suggest that BDD-based relaxations may have promise as a general

technique for bounding the optimal value of discrete problems. The BDD algorithms pre-

sented here are relatively simple, compared with the highly developed technology of LP and

mixed-integer solvers, and nonetheless improve the state of the art for at least one prob-
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lem class. Future research may yield improvements in BDD-based bounding and extend its

usefulness to a broader range of discrete optimization problems.



Chapter 3

Tightening Bounds from

Relaxed Decision Diagrams

3.1 Introduction

Binary Decision Diagrams (BDDs) [2, 50, 16] provide compact graphical representations of

Boolean functions, and have traditionally been used for circuit design and formal verifica-

tion [44, 50]. More recently, however, BDDs and their generalization Multivalued Decision

Diagrams (MDDs) [46] have been used in Operations Research for a variety of purposes,

including cut generation [6], vertex enumeration [8], and post-optimality analysis [36, 37].

In this chapter, we examine the use of BDDs and MDDs as relaxations for combinatorial

optimization problems. Relaxation MDDs were introduced in [3] as a replacement for the

domain store relaxation, i.e., the Cartesian product of the variable domains, that is typically

used in Constraint Programming (CP). MDDs provide a richer data structure that can

capture a tighter relaxation of the feasible set of solutions, as compared with the domain

store relaxation. In order to make this approach scalable, MDD relaxations of limited

size are applied. Various methods for compiling these discrete relaxations are provided in

[38]. The methods described in that chapter focus on iterative splitting and edge filtering

algorithms that are used to tighten the relaxations. Similar to classical domain propagation,

65
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such MDD propagation algorithms have been developed for individual (global) constraints,

including inequality constraints, equality constraints, alldifferent constraints and among

constraints [38, 39].

The focus of the current work is the application of limited-width MDD relaxations in

the context of optimization problems. We explore two main topics. Firstly, we investigate

a new method for building approximate MDDs. We introduce a top-down compilation

method based on approximating the set of completions of partially assigned solutions. This

procedure differs substantially from the ideas in [3] in that we do not compile the relaxation

by splitting vertices, but by merging vertices when the size of the partially constructed MDD

grows too large.

Secondly, and more specific to optimization, we introduce a method to improve the lower

bound provided by an MDD relaxation. It is somewhat parallel to a cutting plane algorithm

in that it “cuts off” infeasible solutions so as to tighten the bound. Unlike cutting planes,

however, it can begin with any valid lower bound, perhaps obtained by another method,

and tighten it. The bound becomes tighter as more time is invested.

The resulting mechanism is a pure inference algorithm that can be used analogously

to a pure cutting plane algorithm. We envision, however, that MDD relaxations would

be most profitably used as a bounding technique in conjunction with a branch-and-bound

search, much as separation algorithms are used in integer programming. Nonetheless we find

in this chapter that, even as a pure inference algorithm, MDD relaxation can outperform

state-of-the-art integer programming technology on specially structured instances.

One advantage of an MDD relaxation is that it is always easy to solve (as a short-

est path problem) whether the original problem is linear or nonlinear. This suggests that

MDDs might be most competitive on nonlinear discrete problems. Nonetheless we deliber-

ately put MDDs at a competitive disadvantage by applying them to a problem with linear

inequality constraints—namely, to the set covering problem, which is well suited to integer

programming methods.

We compare the strength of bounds provided by MDDs with those provided by the linear

programming relaxation and cutting planes. We also compare the speed with which MDDs

(used as a pure inference method) and integer programming solve the problem. We find
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that MDDs are much superior to conventional integer programming when the ones in the

constraint matrix lie in a relatively narrow band. That is, the matrix has relatively small

bandwidth, meaning that the maximum distance between any two ones in the same row is

limited.

The bandwidth of a set covering matrix can often be reduced, perhaps significantly,

by reordering the columns. Thus MDDs can solve a given set covering problem much

more rapidly than integer programming if its variables can be permuted to result in a

relatively narrow bandwidth. Algorithms and heuristics for minimum bandwidth ordering

are discussed in [54, 17, 21, 24, 34, 55, 60, 66].

The remainder of the chapter is organized as follows. In Section 3.2 we define MDDs more

formally and introduce notation. In Section 3.3 we describe a new top-down compilation

method for creating relaxation MDDs. In Section 3.4 we present our value enumeration

scheme to produce lower bounds. In Section 3.5 we discuss applying the ideas of the chapter

to set covering problems. In Section 3.6 we report on experiments results where we apply

the ideas of the chapter to set covering problems. We conclude in Section 3.7.

3.2 Preliminaries

In this work a Multivalued Decision Diagram (MDD) is a layered directed acyclic multi-

graph whose nodes are arranged in n + 1 layers, L1, L2, . . . , Ln+1. Layers L1 and Ln+1

consist of single nodes; the root r and the terminal t, respectively. All arcs in the MDD are

directed from nodes in layer j to nodes in layer j + 1.

In the context of Constraint Satisfaction Problems (CSPs) or Constraint Optimiza-

tion Problems (COPs), we use MDDs to represent assignments of values to variables.

A CSP is specified by a set of constraints C = {C1, C2, . . . Cm} on a set of variables

X = {x1, x2, . . . , xn} with respective finite domains D1, . . . , Dn, and a COP is specified

by a CSP together with an objective function f to be minimized. By a solution to a CSP

(COP) we mean an assignment of values to variables where the values assigned to the vari-

ables appear in their respective domains. By a feasible solution we mean a solution that

satisfies each of the constraints in C, and the feasible set is the set of all feasible solutions.
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For a COP, an optimal solution is a feasible solution x∗ such that for any other feasible

solution x̃, f(x∗) ≤ f(x̃).

We use MDDs to represent a set of solutions to a CSP, or COP, as follows. We let the

layers L1, . . . , Ln correspond to the problem variables x1, . . . , xn, respectively. Node u ∈ Lj

has label var(u) = j, representing its variable index. Arc (u, v) with var(u) = j is labeled

with arc domain du,v, by an element of the domain of variable xj , i.e., du,v ∈ Dj . All arcs

directed out of a node must have distinct labels.

A path p from node ui to node uk, i < k, along arcs ai, ai+1, . . . , ak−1 corresponds to

the assignment of the values daj
to the variables xj , for j = i, i+1, . . . , k− 1. In particular,

we see that any path from the root r to the terminal t, p = (a1, . . . , an) , corresponds to the

solution xp, where xpj = daj
. We note that as an MDD is a multi-graph, two paths p1, p2,

along nodes r = u1, . . . , un, t may correspond to multiple solutions as there may be multiple

arcs from uj to uj+1 corresponding to different assignments of values to the variable xj .

The set of solutions represented by MDD M is Sol(M) = {xp|p ∈ P} where P is the set

of paths from r to t. The width of layer Lj is given by ωj = |Lj |, and the width of MDD

M is given by ω(M) = maxj∈{1,2,...,n} ωj . The size of M is denoted by |M |, the number of

nodes in M .

For a given CSP P, let X(P) be the set of feasible solutions for P. An exact MDD M

for P is any MDD for which Sol(M) = X(P). A relaxation MDD Mrel for P is any MDD

for which Sol(Mrel) ⊇ X(P). For the purposes of this chapter, relaxation MDDs are of

limited width, in that we require that ωj ≤ W , for some predefined W . This ensures that

the relaxation has limited size which is necessary since even for single constrained problems,

the feasible set may correspond to an MDD of exponential size (for example inequality

constrained problems [7]).

Finally, we note that for a large class of objective functions (e.g., for separable functions),

optimizing over the solutions represented by an MDD corresponds to finding a shortest path

in the MDD [3]. For example, given a linear objective function min cx, we associate with

each arc (u, v) in the MDD a cost c(u, v), where c(u, v) = cvar(u) · du,v. Then it is clear that

a shortest path from r to t corresponds to the lowest cost solution represented by the MDD.
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Figure 3.1: Exact MDD for Example 1.

Example 1 As an illustration, consider the CSP consisting of binary variables x1, x2, . . . , x6,

and constraints

C1 : x1 + x2 + x3 ≥ 1,

C2 : x1 + x4 + x5 ≥ 1,

C3 : x2 + x4 + x6 ≥ 1.

An exact MDD representation of the feasible set is given in Fig. 3.1, where arc (u, v) being

solid/dashed corresponds to the arc setting var(u) to 1/0.

�

3.3 Top-Down MDD Compilation

As discussed above, there are several methods that can be used to construct both exact

and approximate MDDs. In this section we propose a new top-down method for creating

approximate MDDs.

3.3.1 Exact Top-Down Compilation

We first discuss an exact top-down compilation method, which is based on the notion of

node equivalence.

Given a path p from r to u, let F (p) be the set of feasible completions of the corresponding
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partial assignment. That is, if (x1, . . . , xk) = (d1, · · · , dk) = d is the partial assignment

represented by p, then F (p) = {y ∈ Dk+1 × · · · × Dn|(d, y) is feasible }. We say that two

paths p, p′ from r to the same layer are equivalent if F (p) = F (p′).

Analogously, we define F (u) to be the set of completions at node u, so that F (u) =
⋃

p∈P F (p), where P is the set of paths from r to u. We note that in an exact MDD all

paths terminating at a node u are equivalent.

A node equivalence test determines when two nodes u, u′ on the same layer have the

same set of feasible completions. In other words, this test determines when F (u) = F (u′).

Testing whether two nodes have the same set of feasible completions requires maintaining

a state Iu at each node [39]. The state of node u should contain all facts about the paths

ending at u to run an equivalence test. In addition, it is useful to know when a partial

assignment cannot be completed to a feasible solution for a CSP. In such a case, we let the

state of such a path, or more generally a node, be 0̂, to signal that there are no completions

of this path/node.

Now, using a properly defined node equivalence test, one can create an exact MDD using

Algorithm 4. Given that layers L1, . . . , Lj have been created, we examine the nodes in Lj

one by one. When examining node u, for each domain value d ∈ Dj we calculate the new

state Inew that results from adding xj = d to the partial paths ending at u. If no other

nodes on layer Lj+1 have the same state (i.e. the same set of feasible completions) we add

a new node v to Lj+1 and the arc (u, v) with arc domain d, and set Iv = Inew. If however

there is some node w ∈ Lj+1 with Iw = Inew we know that all paths starting at r, ending

at u and having xj = d will have the same set of feasible completions as w. Therefore, we

simply add the arc (u,w) with arc domain d.

We will be modifying Algorithm 4 later to create approximate MDDs. First, however,

we discuss specific exact MDDs for the feasible set satisfying a single equality constraint.

Such MDDs will be applied in our value enumeration method for tightening lower bounds,

presented in Section 3.4.

Lemma 5 Let P be a CSP on n binary variables with the single constraint
∑n

j=1 cjxj = c,

for a given integer c, and integer coefficients cj ≥ 0. An exact MDD for P has maximum

width c+ 1.
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Algorithm 4 Top-Down MDD Compilation

1: L1 = {r}

2: for j = 1 to n do

3: Lj+1 = ∅

4: for all u ∈ Lj do

5: for all d ∈ D(xj) do

6: calculate Inew, the state for all paths starting at r, ending at u, and including

xj = d

7: if Inew 6= 0̂ then

8: if there exists w ∈ Lj+1 with Iw = Inew then

9: add arc (u,w) with du,w = d

10: else

11: add node v to Lj+1

12: add arc (u, v) with du,v = d

13: set Iv = Inew

Proof. We apply Algorithm 4. Given a node u, let p be any path from r to u, and let

a1, . . . , ak be the arcs along this path, which set variables x1, . . . , xk to the arc domain

values da1
, . . . , dak

. We define Iu =
∑k

j=1 cj · daj
. Using this label as the state of node u we

see that two nodes u and v have the same set of feasible completions if and only if Iu = Iv.

In addition, if Iw ≥ c + 1 for some node w, it is clear that all paths from r to w have no

feasible completions. Therefore we can have at most c+ 1 nodes on any layer. �

We note that Lemma 5 is very similar to the classical pseudo-polynomial characterization

of knapsack constraints.

3.3.2 Approximate Top-Down Compilation

In general, an exact MDD representation of all feasible solutions to a CSP may be of expo-

nential size, and therefore generating exact MDDs for combinatorial optimization problems

is not practical. In light of this we use relaxation MDDs to approximate the set of feasible

solutions. In this section we outline one possible method for generating approximate MDDs,
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Algorithm 5 Top-Down Relaxation Compilation

1: while |Sj+1| > W do

2: select nodes u1, u2 ∈ Sj+1

3: create node u

4: for every arc directed at u1 or u2 redirect arc to u with the same arc domain

5: I(u) = I(u1)⊕ I(u2)

6: Sj+1 ← Sj+1\{u1, u2} ∪ {u}

by modifying Algorithm 4.

In order to create a relaxation MDD we merge nodes during the top-down compilation

method presented in Algorithm 4 when the width of layer j exceeds a certain preset max-

imum allotted width W . To accomplish this, we select two nodes and modify their states

in a relaxed fashion, ensuring that all feasible solutions will remain in the MDD when it is

completed. More formally, if we select nodes u1 and u2 to merge, we need to modify their

states Iu1
, Iu2

in such a way as to make them equivalent with respect to the equivalence

test used to merge nodes during the top-down compilation. We define a certain relaxation

operation ⊕ on the state of nodes as follows.1 If for nodes u1 and u2 we change their as-

sociated states to I(u1) ⊕ I(u2), any feasible completion of the paths from the root to u1

and u2 will remain when the terminal is reached. This is outlined in Algorithm 5, which is

to be inserted between lines 17 and 18 in Algorithm 4. In Section 3.5 we describe such an

operation in detail, for set covering problems.

The quality of the relaxation MDD generated using the modification of Algorithm 4

hinges largely on the method used for selecting two nodes to combine. We propose several

heuristics for this choice in the following table:

Name Node selection method

H1 select u1, u2 uniformly at random among all pairs in Sj+1

H2 select u1, u2 such that f(u1), f(u2) ≥ f(v), ∀v ∈ Sj+1, v 6= u1, u2

H3 select u1, u2 such that Iu1
and Iu2

are closest among all pairs in Sj+1

1Here we follow the notation ⊕ that was used in [39] for their analogous operation for aggregating node

information.
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The rationale behind each of the methods are the following. Method H1 calls for randomly

choosing which nodes to combine. Randomness often helps in combinatorial optimization

and applying it in this context may work as well. H2 combines nodes that have the greatest

shortest path lengths. For this we let f(u) be the shortest path length from the root to u in

the partially constructed MDD. Choosing such a pair of nodes allows for approximating the

set of feasible solutions in parts of the MDD where the optimal solution is unlikely to lie, and

retaining the exact paths in sections of the MDD where the optimal solution is likely to lie.

H3 combines nodes that have similar states. For particular types of states and equivalence

tests, we must determine the notion of closest. This method is sensible because these nodes

will most likely have similar sets of completions, allowing the relaxation to better capture

the set of feasible solutions.

3.4 Value Enumeration

We next discuss the application of MDD relaxations for obtaining lower bounds on the

objective function, in the context of COPs. We propose to obtain and strengthen these

bounds by means of successive value enumeration. Value enumeration is a method that can

be used to increase any lower bound on a COP via a relaxation MDD.

Suppose we have generated a relaxation MDD Mrel. We then generate an MDD repre-

senting every solution in Mrel with objective function value equal to the best lower bound.

There are several ways to accomplish this, but in general this MDD can have exponential

size. However, for some important cases the MDD representing every solution equal to a

particular value has polynomial size.

For example, suppose we have a COP with objective function equal to the sum of the

variables, i.e., f(x) =
∑n

j=1 xj , where we assume that the variable domains are integral.

Given a lower bound zLB , the reduced MDD for the set of solutions with objective value

equal to zLB , MzLB
, has width ω(MzLB

) = zLB +1, by Lemma 5. The same holds for other

linear objective functions as well.

In any case, suppose we have the desired MDD MzLB
, where Sol(MzLB

) is the set of

all solutions with objective value equal to zLB . Now, consider the set of solutions S =
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Sol(MzLB
) ∩ Sol(Mrel). As this is the intersection between the solutions represented by the

relaxation and every solution equal to the lower bound zLB , showing that there is no feasible

solution in S allows us to increase the lower bound.

Constructing an MDD M representing the set of solutions S = Sol(MzLB
) ∩ Sol(Mrel)

can be done in time O(|MzLB
| · |Mrel|) and has maximum width ω(M̃) ≤ ω(MzLB

) ·ω(Mrel)

[16]. As the width ofMzLB
has polynomial size for certain objective functions and the width

of Mrel is bounded by some preset W , the width of the resulting MDD will not grow too

large in these cases.

The value enumeration scheme proceeds by enumerating all of the solutions in M . If we

find a feasible solution, we have found a witness for our lower bounds. Otherwise, we can

increase the lower bound by 1. Of course, this method is only practical if we can enumerate

these paths efficiently.

Observe that we do not need to start the value enumeration scheme with the value of

the shortest path in the original MDD. In fact, we can start with any lower bound. For

example, we can use LP to find a strong lower bound and then apply this procedure to any

relaxation MDD.

As described above, in order to increase the bound, we are required to certify that none

of the paths in M correspond to feasible solutions. Of course this can be done by a naive

enumeration of all of the paths in M. However, we use MDD-based CP, as described in [3],

in unison with a branching procedure to certify this. In particular we apply MDD filtering

algorithms to reduce the size of the MDD MzLB
, based on the constraints that constitute

the COP. In Section 3.5.3 we will describe a new MDD filtering algorithm that we apply to

set covering problems.

3.5 Application to Set Covering

In this section we describe how to apply the ideas of the chapter to set covering problems.

We describe a node equivalence test and the state that is necessary to carry out the test.

We also describe the operation ⊕ that can be used to change the states of the nodes so that

we can generate relaxation MDDs.
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3.5.1 Equivalence Test

The well-studied set covering problem is a COP with n binary variables and m constraints,

each on a subset Ci of the variables, which require that
∑

j∈Ci
xj ≥ 1, i ∈ {1, . . . ,m}. The

objective is to minimize the sum of the variables (or a weighted sum).

The first step in applying our top-down compilation method is defining an equivalence

test between partial assignments of values to variables. For set covering problems we do this

by equating a set covering instance with its equivalent logic formula. Each constraint Ci

can be viewed as a clause ∨j∈Ci
xj and the set covering problem is equivalent to satisfying

F =
∧

i ∨j∈Ci
xj .

Using this interpretation of set covering problems, one can develop a complete equiva-

lence test by removing clauses that are implied by other clauses. Clause C absorbs clause

D if all of the literals of C are contained in D. In such a case, satisfying clause C implies

that clause D will be satisfied. As an example, consider the two clauses C = (x1 ∨ x2) and

D = (x1 ∨ x2 ∨ x3). It is clear that if some literal in C is set to true then clause D will be

satisfied.

Therefore, to develop the equivalence test, for any partial assignment x we delete any

clause Ci for which there exists a variable in the clause that is already set to 1, and then

delete all absorbed clauses, resulting in the logical formula F (x). We let Ix be the set of

clauses which remain in F (x). Doing so ensures that two partial assignments x1 and x2,

will have the same set of feasible completions if and only if Ix1 = Ix2 . Note that since

each literal is positive in all clauses of a set covering instance, this test can be performed in

polynomial time [41].

To create an exact MDD for a set covering instance (using Algorithm 4), we let the state

Iu at node u be equal to Ix for the partial assignment given by the arc domains on all paths

from the root to u. Two nodes u and v will have the same set of feasible completions if and

only if Iu = Iv, and so the node equivalence test simply compares Iu with Iv.

Example 2 Continuing Example 1, we interpret the constraints C1, C2, and C3 as set

covering constraints. In Fig. 3.2(a) we see the result of applying the top-down compilation

algorithm (following the variable order x1, x2, . . . , x6) and never combining nodes based on
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Figure 3.2: Relaxed MDD Construction for the Set Covering Problem

their associated states , for the first three layers of the MDD. Below the bottom nodes, we

depict the states of the partially constructed paths ending at those nodes. For example,

along this path (r, 2, 5, 11), variables x2 and x3 are set to 1. Therefore, constraints C1 and

C3 are satisfied for any possible completion of this path, and so the state at node 11 is C2.

Since node 11 and node 12 have the same state, we can combine these nodes into node 9’,

as shown in Fig. 3.2(b). Similarly, nodes 7 and 8 are combined into node 7’ and nodes 9

and 10 are combined into node 8’. �

3.5.2 Relaxation Operation

We next discuss our relaxation operator ⊕ that is applied to merge two nodes in a layer.

For set covering problems, we let ⊕ represent the typical set intersection. As an illustration,

for the instance in Example 2, suppose we decided that we want to decrease the width of

layer 4 by 1. We would select two nodes (in Fig. 3.2(b) we select nodes 9’ and 10’) and

combine them (making node 9” as seen in Fig. 3.2(c)), modifying their states to ensure that

all feasible paths remain upon completing the MDD. Notice that by taking the intersection

of the states of the nodes 9’ and 10’ we now label 9” with C2. Before merging the nodes, all

partial paths ending at node 10’ needed a variable in both constraint C2 and C3 to be set to

1. After taking the intersection, we are relaxing this condition, and only require that for all

partial paths ending at 9”, all completions of this path will set some variable in constraint

C2 to 1, ignoring that this needs to also happen for constraint C3.
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3.5.3 Filtering

As discussed above, during the value enumeration procedure, it is desirable to perform some

MDD filtering to decrease the search space. This filtering can be applied to arc domain

values, as described in [3], but also to the states represented in the nodes themselves, as we

will describe here in the context of set covering problems.

We associate two 0/1 m-dimensional state variables, s(v), z(v), to each node v in the

MDD. The value s(v)i will be 1 if for all paths from the root to v, there is no variable

in constraint Ci which is set to 1. Similarly, z(v)i will be 1 if for all paths from v to the

terminal, there is no variable in Ci which is set to 1.

Finding the values s(v)i, z(v)i is easily accomplished by the following simple algorithm.

Start with s(r)i = 1 for all i. Now, let node v have parents u1, u2, . . . , uk, and each edge

(up, u) fixes variable xj to value vp ∈ {0, 1}. Then,

s(v)i =

k∏

p=1

s′(up)i,

where

s′(up)i =







0 if xj ∈ Ci and vp = 1

s(up)i otherwise

The values z(v)i are calculated in the same fashion, except switching the direction of all

arcs in the MDD and starting with z(t)i = 1, where t is the terminal of the MDD.

A node v can now be eliminated whenever there is an index i such that s(v)i = z(v)i = 1.

This is because for all paths from r to v there is no variable in Ci set to 1, and on all paths

from v to t, there is no variable in Ci set to 1.

We note here that as in domain store filtering, certain propagators for MDDs are idem-

potent, in that reapplying the filtering algorithm with no additional changes results in no

more filtering. The filtering algorithm presented here is not idempotent, i.e, applying it

multiple times could result in additional filtering. In our computational experiments we

address how this impacts the efficiency of the overall method.
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3.6 Computational Results

In this section, we present experimental results on randomly generated set covering in-

stances. Our results provide evidence that relaxations based on MDDs perform well when

the constraint matrix of a set covering instance has a small bandwidth. We test this by

generating random set covering instances with varying bandwidths and comparing solution

times via pure-IP (using CPLEX), pure-MDD, and a hybrid MDD-IP method.

In all of the reported results, unless specified otherwise, we apply our MDD-based al-

gorithm until it finds a feasible solution. That is, we solve these set covering problems by

continuously improving the relaxation through our value enumeration scheme until we find

a feasible (optimum) solution.

3.6.1 Bandwidth and the Minimum Bandwidth Problem

The bandwidth of a matrix A is defined as

bw(A) = max
i∈{1,2,...,m}

{ max
j,k:ai,j ,ai,k=1

{j − k}}.

The bandwidth represents the largest distance, in the variable ordering given by the con-

straint matrix, between any two variables that share a constraint. The smaller the band-

width, the more structured the problem, in that the variables participating in common

constraints are close to each other in the ordering. The minimum bandwidth problem seeks

to find a variable ordering that minimizes the bandwidth [54, 17, 21, 24, 35, 55, 60, 66].

This underlying structure, when present in A, can be captured by MDDs and results in

good computational performance.

3.6.2 Problem Generation

To test the statement that MDD based relaxations provide strong relaxations for structured

problems, we generate set covering instances with a fixed constraint matrix density d (the

number of ones in the matrix divided by n ·m) and vary the bandwidth bw of the constraint

matrix.

We generate random instances with a fixed number of variables n, constraint matrix

density d, and bandwidth bw, where each row i has exactly k = d · n ones. For constraint
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i the k ones are chosen uniformly at random from variables xi+1, xi+2, . . . , xi+bw As an

example, a constraint matrix with n = 9, d = 1
3 and bw = 4 may look like

A =


















1 1 0 1 0 0 0 0 0

0 1 1 1 0 0 0 0 0

0 0 1 0 1 1 0 0 0

0 0 0 1 0 1 1 0 0

0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 1 1 1


















As bw grows, the underlying staircase-like structure of the instances dissolves. Hence, by

increasing bw, we are able to test the impact of the structure in the set covering instances

on our MDD-based approach.

Consider the case when bw = k. For such problems, as A is totally unimodular [26], the

LP optimal solution will be integral, and so the corresponding IP will solve the problem

at the root node. Similarly, we show here that the set of feasible solutions can be exactly

represented by an MDD with width bounded by m+1. In particular, for any node u created

during the top-down compilation method, Iu must be of the form (0, 0, . . . , 0, 1, 1, . . . , 1).

This is because, given any partial assignment fixing the top j variables, if some variable in

constraint Ci is fixed to 1, then for any constraint Ck, with k ≤ i, there must be some variable

also fixed to 1. Hence, ω(M) ≤ m+ 1. Therefore, such problems are also easily handled by

MDD-based methods. Increasing the bandwidth, however, destroys the totally unimodular

property of A and the bounded width of M . Therefore, increasing the bandwidth allows us

to test how sensitive the LP and the relaxation MDDs are to changes in the structure of A.

3.6.3 Evaluating the MDD Parameters

In Section 3.3.2 we presented three possible heuristics for selecting nodes to merge. In

preliminary computational tests, we found that using the heuristic based on shortest partial

path lengths, H2, seemed to provide the strongest MDD relaxations, and so we employ this

heuristic.

The next parameter that must be fixed is the preset maximum widthW that we allow for
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Figure 3.3: (a) Maximum width W vs. solution time, (b) Number of rounds of filtering vs.

solution time.

the MDD relaxations. Each problem (and even more broadly for each application of MDD

relaxations to CSP/COPs) has a different optimal width. To test for an appropriate width

for this class of problems, we generate 100 instances with n = 100, k = 20 and bw = 35.

In Figure 3.3(a) we report the average solution time, over the 100 instances, for different

maximum allowed widths W . Near W = 35 we see the fastest solution times, and hence

for the remainder of the experimental testing we fix W at 35. We note here that during

our preliminary computational tests, the range of widths that seemed to perform best was

W ∈ [20, 40].

Another parameter of interest is the number of times we allow the filtering algorithm to

run before branching. As discussed in Section 3.5.3 the filtering algorithm presented above

for set covering problems is not idempotent and applying the filtering once or for several

rounds has different impacts on the solution time. In Figure 3.3(b) we report solution time

versus the number of rounds of filtering averaged over the 100 instances with W = 35.

Applying the filtering algorithm once yielded the fastest solution times and so we use this

for the remainder of the experiments.

3.6.4 Evaluating the Impact of the Bandwidth

Next we compare the performance of our MDD-based approach with IP. We also compare

the performance of these two methods with a hybrid MDD/IP approach. For the hybrid
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Figure 3.4: (a) Number of instances solved in 1 minute for different bandwidths, (b) Average

lower bound in 1 minutes for different bandwidths.

method, the MDD algorithm runs for a fixed amount of time and then passes the lower

bound on the objective function to IP as a initial lower bound on the objective function.

We report results for random instances with n = 250, k = 20 and bandwidth bw ∈

{22, 24, . . . , 44} (20 instances per configuration). In Figure 3.4(a) we show, for increasing

bandwidths, the number of instances solved in 60 seconds using the three proposed methods.

For the hybrid method, we let the MDD method run for 10 seconds, and then pass the bound

zLB given by the MDD method to the IP and let the IP solver run for an additional 50

seconds. In addition, in Figure 3.4(b) we show, for increasing bandwidths, the best lower

bound provided by the three methods after one minute.

For the lower bandwidths, we see that both the MDD-based approach and the hybrid

approach outperform IP, with the hybrid method edging out the pure MDD method. As

the bandwidth grows, however, the underlying structure that the MDD is able to exploit

dissolves, but still the hybrid approach performs best.

3.6.5 Scaling Up

Here we present results on instances with 500 variables, and again with k = 20, to evaluate

how the algorithms scale up. We have generated instances for various bandwidths bw be-

tween 21 and 50 (5 random instances per configuration), and we report the most interesting

results corresponding to the ‘phase transition’, i.e., bw ∈ {22, 23, 24, 25}. We compare the
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Figure 3.5: Performance profile for pure-IP, pure-MDD, and hybrid MDD/IP for instances

width various bandwidth. Time is reported in log-scale.

three solution methods, allowing the algorithms to run for 12 minutes.

In the four plots given in Figure 3.5, we depict the performance profile of the three

methods for the different bandwidths. We show for each bandwidth the number of instances

solved by time t. As the bandwidth increases, we see that the IP is unable to solve many

of the instances that the MDD-based method can, and for bw = 25, neither the pure-IP nor

the pure-MDD based methods can solve the instances, while the hybrid method was able to

solve 2 of the 5 instances.

Figure 3.6(a) displays the lower bound given by the three approaches versus time, aver-

aged over the 5 instances. We run the algorithms for 5 minutes and see that the lower bound

given by the MDD-based approach dominates the IP bound, especially at small bandwidths.
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Figure 3.6: (a) Bandwidth versus lower bound (12 minute time limit), (b) Larger bandwidths

versus lower bound (5 minute time limit).

However, as the bandwidth grows, as shown in Figure 3.6(b), the structure captured by the

relaxation MDDs no longer exists and the pure-IP method is able to find better bounds.

However, even at the larger bandwidths, the hybrid method provides the best bounds.

3.7 Conclusion

In conclusion, we have examined how relaxation MDDs can help in providing lower bounds

for combinatorial optimization problems. We discuss methods for providing lower bounds

via relaxation MDDs and provide computational results on applying these ideas to randomly

generated set covering problems. We show that in general we can quickly improve upon LP

bounds, and even outperform state-of-the-art integer programming technology on problem

instances for which the bandwidth of the constraint matrix is limited. Finally, we have shown

how a hybrid combination of IP and MDD-based relaxation can be even more effective.
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Chapter 4

Restriction Decision Diagrams

4.1 Introduction

Binary optimization problems are ubiquitous across many problem domains. Over the last

fifty years there have been significant advances in algorithms dedicated to solving problems

in this class. In particular, general-purpose algorithms for binary optimization are commonly

branch-and-bound methods that rely on two fundamental components: a relaxation of the

problem, such as a linear programming relaxation of an integer programming model, and

heuristics. Heuristics are used to provide feasible solutions during the search for an optimal

one, which in practice is often more important than providing a proof of optimality.

Much of the research effort dedicated to developing heuristics for binary optimization

has primarily focused on specific combinatorial optimization problems; this includes, e.g.,

the set covering problem [18] and the maximum clique problem [30, 61]. In contrast, general-

purpose heuristics have received much less attention in the literature. The vast majority

of the general techniques are embodied in integer programming technology, such as the

feasibility pump [25] and the pivot, cut, and dive heuristic [23]. A survey of heuristics for

integer programming is presented by [28, 29] and [13]. Local search methods for general

binary problems can also be found in [1] and [14].

We introduce a new general-purpose method for obtaining a set of feasible solutions

for binary optimization problems. Our method is based on an under-approximation of the

85
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feasible solution set using binary decision diagrams (BDDs). BDDs are compact graphical

representations of Boolean functions [2, 50, 16], originally introduced for applications in

circuit design and formal verification [44, 50]. They have been recently used for a variety of

purposes in combinatorial optimization, including post-optimality analysis [36, 37], cut gen-

eration in integer programming [6], and 0-1 vertex and facet enumeration [8]. The techniques

presented here can also be readily applied to arbitrary discrete problems using multivalued

decision diagrams (MDDs), a generalization of BDDs for discrete-valued functions.

Our method is a counterpart of the concept of relaxed MDDs, recently introduced by [3]

as an over-approximation of the feasible set of a discrete constrained problem. The authors

used relaxed MDDs for the purpose of replacing the typical domain store relaxation used

in constraint programming by a richer data structure. They found that relaxed MDDs

drastically reduce the size of the search tree and allow much faster solution of problems

with multiple all-different constraints, which are equivalent to graph coloring problems.

Analogous methods were applied to other types of constraints in [38] and [39].

Using similar techniques, [12] proposed the use of relaxed BDDs to derive relaxation

bounds for binary optimization problem. The authors developed a general top-down con-

struction method for relaxed BDDs and reported good results for structured set covering

instances. Relaxed BDDs were also applied in the context of the maximum independent set

problem, where the ordering of the variables in the BDD were shown to have a significant

bearing on the effectiveness of the relaxation it provides [9].

We use BDDs to provide heuristic solutions, rather than relaxation bounds. Our main

contributions include:

1. Introducing a new heuristic for binary optimization problems;

2. Discussing the necessary ingredients for applying the heuristic to specific classes of

problems;

3. Providing an initial computational evaluation of the heuristic on the well-studied set

covering and set packing problems. We show that, on a set of randomly generated

instances, the solutions produced by our algorithm are comparable to those obtained

with state-of-the-art integer programming optimization software (CPLEX).
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The remainder of the chapter is organized as follows. We begin by defining BDDs in

Section 4.2. In Section 4.3, we describe how to generate and use BDDs to exactly represent

the set of feasible solutions to a problem. In Section 4.4, we describe how the algorithm in

Section 4.3 can be modified to provide an under-approximation of the feasible set and to

deliver a set of solutions to a problem. We discuss the application of the algorithm to two

problem classes in Section 4.5, and present computational experiments in Section 4.6.

4.2 Binary Decision Diagrams

Binary optimization problems (BOPs) are specified by a set of binary variablesX = {x1, . . . , xn},

an objective function f : {0, 1}n → R to be minimized, and a set of m constraints C =

{C1, . . . , Cm}, which define relations among the problem variables. A solution to a BOP P

is an assignment of values 0 or 1 to each of the variables in X. A solution is feasible if it

satisfies all the constraints in C. The set of feasible solutions of P is denoted by Sol(P ). A

solution x∗ is optimal for P if it is feasible and satisfies f(x∗) ≤ f(x̃) for all x̃ ∈ Sol(P ).

A binary decision diagram (BDD) B = (U,A) for a BOP P is a layered directed acyclic

multi-graph that encodes a set of solutions of P . The nodes U are partitioned into n + 1

layers, L1, L2, . . . , Ln+1, where we let ℓ(u) be the layer index of node u. Layers L1 and Ln+1

consist of single nodes; the root r and the terminal t, respectively. The width of layer j is

given by ωj = |Lj |, and the width of B is ω(B) = maxj∈{1,2,...,n} ωj . The size of B, denoted

by |B|, is the number of nodes in B.

Each arc a ∈ A is directed from a node in some layer j to a node in the adjacent layer

j + 1, and has an associated arc-domain da ∈ {0, 1}. The arc a is called a 1-arc when

da = 1 and a 0-arc when da = 0. For any two arcs a, a′ directed out of a node u, da 6= da′ ,

so that the maximum out-degree of a node in a BDD is 2, with each arc having a unique

arc-domain. Given a node u, we let a0(u) be the 0-arc directed out of u (if it exists) and

b0(u) be the node in Lℓ(u)+1 at its opposite end, and similarly for a1(u) and b1(u).

A BDD B represents a set of solutions to P in the following way. An arc a directed

out of a node u represents the assignment xℓ(u) = da. Hence, for two nodes u, u′ with

ℓ(u) < ℓ(u′), a directed path p from u to u′ along arcs aℓ(u), aℓ(u)+1, . . . , aℓ(u′)−1 corresponds
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to the assignment xj = daj
, j = ℓ(u), ℓ(u) + 1, . . . , ℓ(u′) − 1. In particular, an r–t path

p = (a1, . . . , an) corresponds to a solution xp, where xpj = daj
for j = 1, . . . , n. The set of

solutions represented by a BDD B is denoted by Sol(B) = {xp | p is an r–t path}. An exact

BDD B for P is any BDD for which Sol(B) = Sol(P ).

For two nodes u, u′ ∈ U with ℓ(u) < ℓ(u′), let Bu,u′ be the BDD induced by the nodes

that belong to some directed path between u and u′. In particular, Br,t = B. A BDD is

called reduced if Sol(Bu,u′) is unique for any two nodes u, u′ of B. The reduced BDD B is

unique when the variable ordering is fixed, and therefore the most compact representation

in terms of size for that ordering [68].

Finally, for a large class of objective functions (e.g., for additively separable functions),

optimizing over the solutions represented by a BDD B can be reduced to finding a shortest

path in B. For example, given a real cost vector c and a linear objective function cTx, we

can associate an arc-cost c(u, v) = cℓ(u)du,v with each arc a = (u, v) in the BDD. This way,

a shortest r–t path corresponds to a minimum cost solution in Sol(B). If B is exact, then

this shortest path corresponds to an optimal solution for P .

Example 3 Consider the following BOP P .

minimize − 2x1 − 3x2 − 5x3 − x4 − 3x5

subject to 2x1 + 2x2 + 3x3 + 3x4 + 2x5 ≤ 5

xj ∈ {0, 1}, j = 1, . . . , 5

In Figure 4.1 we show an exact reduced BDD for P . The 0-arcs are represented by

dashed lines, while the 1-arcs are represented by solid lines. There are 13 paths in the BDD,

which correspond to the 13 feasible solutions of this BOP. Assigning arc costs of 0 to all

of the 0-arcs and the cost coefficient of xj to the 1-arcs on layer j, j = 1, . . . , 5, the two

shortest paths in the BDD correspond to the solutions (0, 1, 1, 0, 0) and (0, 0, 1, 0, 1), both

optimal solutions for P . �
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x1

x2

x3

x4

x5

Figure 4.1: Reduced BDD for the BOP in Example 3.

4.3 Exact BDDs

An exact reduced BDD B = (U,A) for a BOP P can be interpreted as a compact search

tree for P , where infeasible leaf nodes are removed, isomorphic subtrees are superimposed,

and the feasible leaf nodes are merged into t. In principle, B can be obtained by first

constructing the branching tree for P and reducing it accordingly, which is impractical for

our purposes.

We present here an efficient top-down algorithm for constructing an exact BDD B for

P . It relies on problem-dependent information for merging BDD nodes and thus reducing

its size. If this information satisfies certain conditions, the resulting BDD is reduced. The

algorithm is a top-down procedure since it proceeds by compiling the layers of B one-by-one,

where layer Lj+1 is constructed only after layers L1, . . . , Lj are completed.

We first introduce some additional definitions. Let x′ = (x′1, . . . , x
′
j), j < n, be a partial

solution that assigns a value to variables x1, . . . , xj . We define

F (x′) = {x′′ ∈ {0, 1}n−j | x = (x′, x′′) is feasible for P}

as the set of feasible completions of x′. We say that two distinct partial solutions x1, x2 on

variables x1, . . . , xj are equivalent if F (x1) = F (x2).
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The algorithm requires a method for establishing when two partial solutions are necessar-

ily equivalent. If this is possible, then the last nodes u, u′ of the BDD paths corresponding

to these partial solutions can be merged into a single node, since Bu,t and Bu′,t are the

same. To this end, with each partial solution x′ of dimension k we associate a state function

s : {0, 1}k → S, where S is a problem-dependent state space. The state of x′ corresponds to

the information necessary to determine if x′ is equivalent to any other partial solution on

the same set of variables.

Formally, let x1, x2 be partial solutions on the same set of variables. We say that the

function s(x) is sound if s(x1) = s(x2) implies that F (x1) = F (x2), and we say that s is

complete if the converse is also true. The algorithm requires only a sound state function,

but if s is complete, the resulting BDD will be reduced.

For simplicity of exposition, we further assume that it is possible to identify when a

partial solution x′ cannot be completed to a feasible solution, i.e. F (x′) = ∅. It can be

shown that this assumption is not restrictive, but rather makes for an easier exposition of

the algorithm. We write s(x′) = 0̂ to indicate that x′ is not able to be completed to a

feasible solution. If x is a solution to P , we write s(x) = ∅ if x is feasible and s(x) = 0̂

otherwise.

We now extend the definition of state functions to nodes of the BDD B. Suppose that s

is a complete state function and B is an exact (but not necessarily reduced) BDD. For any

node u, the fact that B is exact implies that any two partial solutions x1, x2 ∈ Sol(Br,u)

have the same feasible completions, i.e. F (x1) = F (x2). Since s is complete, we must

have s(x1) = s(x2). We henceforth define the state of a node u as s(u) = s(x) for any

x ∈ Sol(Br,u), which is therefore uniquely defined for a complete function s.

We also introduce a function update : S × {0, 1} → S. Given a partial solution x′ on

variables x1, . . . , xj , j < n, and a domain value d ∈ {0, 1}, the function update(s(x′), d)

maps the state of x′ to the state of the partial solution obtained when x′ is appended with

d, s((x′, d)). This function is similarly extended to nodes: update(s(u), d) represents the

state of all partial solutions in Sol(Br,u) extended with value d for a node u.

The top-down compilation procedure is presented in Algorithm 6. We start by setting

L1 = {r} and s(r) = s0, where s0 is an initial state appropriately defined for the problem.
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Algorithm 6 Exact BDD Compilation

1: Create node r with s(r) = s0

2: L1 = {r}

3: for j = 1 to n do

4: Lj+1 = ∅

5: for all u ∈ Lj do

6: for all d ∈ {0, 1} do

7: snew := update(s(u), d)

8: if snew 6= 0̂ then

9: if ∃u′ ∈ Lj+1 with s(u′) = snew then

10: bd(u) = u′

11: else

12: Create node unew with s(unew) = snew

13: bd(u) = unew

14: Lj+1 ← Lj+1 ∪ unew

Now, having constructed layers L1, . . . , Lj , we create layer Lj+1 in the following way. For

each node u ∈ Lj and for d ∈ {0, 1}, let snew = update(s(u), d). If snew = 0̂ we do not create

arc ad(u). Otherwise, if there exists some u′ ∈ Lj+1 with s(u′) = snew, we set bd(u) = u′; if

such a node does not exist, we create node unew with s(unew) = snew and set bd(u) = unew.

Example 4 Consider the following simple binary optimization problem:

maximize 5x1 + 4x2 + 3x3

subject to x1 + x2 + x3 ≤ 1

xj ∈ {0, 1}, j = 1, 2, 3

We can define s(x) to equal the number of variables set to 1 in x. In this way, whenever

s(x1) = s(x2) for two partial solutions we have F (x1) = F (x2). For example, s ((1, 0)) = 1

and s ((0, 1)) = 1, with the only feasible completion being (0).
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In addition, we can let

update(s(u), d) =







0̂ , d = 1 and s(u) = 1

1 , d = 1 and s(u) = 0

s(u) , d = 0

With this update function, if in a partial solution there is already 1 variable set to 1, the

update operation will assign 0̂ to the node on the 1-arc (signifying that the solution cannot

be completed to a feasible solution) and 1 to the node on the 1-arc (to signify that still only

one variable is set to 1). On the other hand, if a partial solution has no variable set to 1,

the 1-arc will now be directed to a node that has state 1 and the 0-arc will be directed to a

node with state 0. �

Theorem 6 Let s be a sound state function for a binary optimization problem P . Algo-

rithm 6 generates an exact BDD for P .

Proof. We show by induction that at the end of iteration j, the set

⋃

u∈Lj+1

Sol(Br,u)

exactly corresponds to the set of feasible partial solutions of P on x1, . . . , xj . This implies

that after iteration n, Sol(Br,t) = Sol(P ), since all feasible solutions x have the same state

s(x) = ∅ and hence Ln+1 will contain exactly one node at the end of the procedure, which

is the terminal t.

Consider the first iteration. We start with the root r and s(r) = s0, which is the initial

state corresponding to not assigning any values to any variables. r is the only node in L1.

When d = 0, if there exists no feasible solution with x1 = 0, no new node is created, and

hence no solutions are introduced into B. If otherwise there exists at least one solution

with x1 = 0, we create a new node, add it to L2, and introduce a 0-arc from r to the newly

created node. This will represent the partial solution x1 = 0. This is similarly done for

d = 1.

Now, consider the end of iteration j. Each solution x′ = (x′′, d) that belongs to Sol(Br,u)

for some node u ∈ Lj+1 must go through some node u′ ∈ Lj with bd(u
′) = u. By induction,
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x′′ is a feasible partial solution with s(u′) = s(x′′) 6= 0̂. But when the arc ad(u
′) is consid-

ered, we must have update(u′, d) 6= 0̂, for otherwise this arc would not have been created.

Therefore, each solution in Sol(Br,u) is feasible. Since u ∈ Lj+1 was chosen arbitrarily, only

feasible partial solutions exists in Sol(Br,u) for all nodes u ∈ Lj+1.

What remains to be shown is that all feasible partial solutions exist in Sol(Br,u) for some

u ∈ Lj+1. This is trivially true for the partial solutions x1 = 0 and x1 = 1. Take now any

partial feasible solution x′ = (x′′, d) on the first j variables, j ≥ 2. Since x′ is a partial

feasible solution, x′′ must also be a partial feasible solution. By induction, x′′ belongs to

Sol(Br,u), for some u ∈ Lj . When Algorithm 6 examines node u, update(s(u), d) must not

return 0̂ because F (x′) 6= ∅. Therefore, the d-arc directed out of u is created, ending at

some node bd(u) ∈ Lj+1, as desired. �

Theorem 7 Let s be a complete state function for a binary optimization program P . Al-

gorithm 6 generates an exact reduced BDD for P .

Proof. By Theorem 6, B is exact. Moreover, for each j, each node u ∈ Lj will have a unique

state because of line 9. Therefore, any two partial solutions x′, x′′ ending at unique nodes

u′, u′′ ∈ Lj will have F (x′) 6= F (x′′).�

Theorem 8 Let B = (U,A) be the exact BDD outputted by Algorithm 6 for a BOP P with

a sound state function s. Algorithm 6 runs in time O(|U |K), where K is the time complexity

for each call of the update function.

Proof. Algorithm 6 performs two calls of update for every node u added to B. Namely, one

call to verify if u has a d-arc for each domain value d ∈ {0, 1}. �

Theorem 8 implies that, if update can be implemented efficiently, then Algorithm 6 runs

in polynomial time in the size of the exact BDD B. Indeed, there are structured problems

for which one can define complete state functions with a polynomial time-complexity for

update [3, 12, 9]. This will be further discussed in Section 4.5.
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4.4 Restricted BDDs

Constructing exact BDDs for general binary programs using Algorithm 6 presents two main

difficulties. First, the update function may take time exponential in the input of the prob-

lem. This can be circumvented by not requiring a complete state function, but rather just a

sound state function. The resulting BDD is exact according to Theorem 6, but perhaps not

reduced. This poses only a minor difficulty, as there exist algorithms for reducing a BDD

B that have a polynomial worst-case complexity in the size of B [68]. A more confining

difficulty, however, is that even an exact reduced BDD may be exponentially large in the

size of the BOP P . We introduce the concept of restricted BDDs as a remedy for this prob-

lem. These structures provide an under-approximation (i.e. a subset) of the set of feasible

solutions to a problem P . Such BDDs can therefore be used as a generic heuristic procedure

for any BOP.

More formally, let P be a BOP. A BDD B is called a restricted BDD for P if Sol(B) ⊆

Sol(P ). Analogous to exact BDDs, optimizing additively separable objective functions over

Sol(B) reduces to a shortest path computation on B if the arc weights are assigned appro-

priately. Thus, once a restricted BDD is generated, we can readily extract the best feasible

solution from B and provide an upper bound to P .

We will focus on limited-width restricted BDDs, in which we limit the size of the BDD

B by requiring that ω(B) ≤W for some pre-set maximum allotted width W .

Example 5 Consider the BOP from Example 3. Figure 4.2 shows a width-2 restricted

BDD. There are eight paths in the BDD which correspond to eight feasible solutions. As-

signing arc costs as in Example 3, a shortest path from the root to the terminal corresponds

to the solution (0, 1, 0, 0, 1) with an objective function value of -6 (the optimal value is -8). �

Limited-width restricted BDDs can be easily generated by performing a simple modifica-

tion to Algorithm 6. Namely, we insert the procedure described in Algorithm 7 immediately

after line 3 of Algorithm 6. This procedure is described as follows. We first verify whether

ωj = |Lj | > W . If so, we delete a set of |Lj |−W nodes in the current layer, which is chosen

by a function node select(Lj). We then continue building the BDD as in Algorithm 6.
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Figure 4.2: Width-2 restricted BDD for the BOP presented in Example 3.

Algorithm 7 delete nodes

Insert immediately after line 3 of Algorithm 6.

1: if ωj = |Lj | > W then

2: M := node select(Lj) // where |M | = ωj −W

3: Lj ← Lj \M

It is clear that the modified algorithm produces a BDD B satisfying ω(B) ≤ W . In

addition, it must create a restricted BDD since we are never changing the states of the

nodes during the construction, but rather just deleting nodes. Since Algorithm 6 produces

an exact BDD, this modified algorithm must produce a restricted BDD.

Theorem 9 describes how the time complexity of Algorithm 6 is affected by the choice

of the maximum allotted width W .

Theorem 9 The modified version of Algorithm 6 for width-W restricted BDDs has a worst-

case time complexity of O(nL + nWK), where L and K are the time complexity for each

call of the node select and update functions, respectively.

Proof. Because the function node select is called once per layer, it contributes to O(nL) to

the overall time complexity. The update function is called twice for each BDD node. Since

there will be at most O(nW ) nodes in a width-W restricted BDD, the theorem follows. �

The selection of nodes in node select(Lj) can have a dramatic impact on the quality of
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the solutions encoded by the restricted BDD. In fact, as long as we never delete the nodes

u1, . . . , un that are traversed by some optimal solution x∗, we are sure to have the optimal

solution in the final BDD.

We observed that the following node select procedure yields restricted BDDs with

the best quality solutions in our computational experiments. Each node u ∈ Lj is first

assigned a value lp(u) = min f(x) ∈ Sol(Br,u), where f is the objective function of P .

(We are assuming a minimization problem; a maximization problem can be handled in an

analogous way.) This can be easily computed for a number of objective functions by means

of a dynamic programming algorithm; for example linear cost functions whose arc weights

are as described in Section 4.2. The node select(Lj) function then deletes the nodes in

Lj with the largest lp(u) values. We henceforth use this heuristic for node select in the

computational experiments of Section 4.6. It can be shown that the worst-case complexity

of this particular heuristic is O(W logW ).

4.5 Applications

We now describe the application of restricted BDDs to two fundamental problems in binary

optimization: the set covering problem and the set packing problem. For both applica-

tions, we describe the problem and provide a sound state function. We then present the

update operation based on this state function which can be used by the modified version of

Algorithm 6.

4.5.1 Set Covering Problem

The (weighted) set covering problem (SCP) is the binary program

minimize cTx

subject to Ax ≥ e

xj ∈ {0, 1}, j = 1, . . . , n

where c is an n-dimensional real-valued vector, A is a 0–1 m × n matrix, and e is the m-

dimensional unit vector. Let ai,j be the element in the i-th row and j-th column of A,
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and define Aj = {i | ai,j = 1} for j = 1, . . . , n. The SCP asks for a minimum-cost subset

V ⊆ {1, . . . , n} of the sets Aj such that for all i, ai,j = 1 for some j ∈ V , i.e. V covers

{1, . . . ,m}.

State Function

We now present a sound state function for the purpose of generating restricted BDDs by

means of Algorithm 6. Let Ci be the set of indices of the variables that participate in

constraint i, Ci = {j | ai,j = 1}, and let last(Ci) = max{j | j ∈ Ci} be the largest index of

Ci. We consider the state space S = 2{1,...,m} ∪ {0̂}. For a partial solution x′ on variables

x1, . . . , xj , we write the state function

s(x′) =







0̂, if ∃ i :
∑j

k=1 ai,kx
′
k = 0 and j ≥ last(Ci),

{

i :
∑j

k=1 ai,kx
′
k = 0

}

, otherwise.

We first argue that the function above assigns a state 0̂ to a partial solution x′ if and

only if F (x′) = ∅. Indeed, the condition
∑j

k=1 ai,kx
′
k = 0, j ≥ last(Ci) for some i implies

that all variables that relate to the i-th constraint
∑n

k=1 ai,jxj ≥ 1 are already zero in x′,

and hence the constraint can never be satisfied. If otherwise that condition does not hold,

then (1, . . . , 1) is a feasible completion of x′.

In addition, the following Lemma shows that s is a sound state function for the SCP.

Lemma 6 Let x1, x2 be two partial solutions on variables x1, . . . , xj. Then, s(x1) = s(x2)

implies that F (x1) = F (x2).

Proof. Let x1, x2 be two partial solutions with dimension j for which s(x1) = s(x2) = s′.

If s′ = 0̂ then both have no feasible completions, so it suffices to consider the case when

s′ 6= 0̂. Take any completion x̃ ∈ F (x1). We show that x̃ ∈ F (x2).

Suppose, for the purpose of contradiction, that (x2, x̃) violates the i∗-th SCP inequality,

j
∑

k=1

ai∗,k x
2
k +

n∑

k=j+1

ai∗,k x̃k = 0, (4.1)

while
j
∑

k=1

ai∗,k x
1
k +

n∑

k=j+1

ai∗,k x̃k ≥ 1 (4.2)
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since (x1, x̃) is feasible.

By (4.1), we have that
n∑

k=j+1

ai∗,k x̃k = 0 (4.3)

and
j
∑

k=1

ai∗,k x
2
k = 0. (4.4)

The equality (4.4) implies that i∗ ∈ s(x2) and therefore i∗ ∈ s(x1). But then
∑j

k=1 ai∗,kx
1
k =

0. This, together with (4.3), contradicts (4.2). �

Assuming a partial solution x′ on variables x1, . . . , xj and that s(x′) 6= 0̂, the corre-

sponding update operation is given by

update(s(x′), d) =







s(x′) \ {i | ai,j+1 = 1}, d = 1

s(x′), d = 0, ∀ i∗ ∈ s(x′) : last(Ci∗) > j + 1

0̂, d = 0, ∃ i∗ ∈ s(x′) : last(Ci∗) = j + 1

and has a worst-case time complexity of O(m) for each call.

Example 6 Consider the SCP instance with

c = (2, 1, 4, 3, 4, 3)

and

A =








1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1








Figure 4.3(a) shows an exact reduced BDD for this SCP instance where the nodes are

labeled with their corresponding states. If outgoing 1-arcs (0-arcs) of nodes in layer j are

assigned a cost of cj (zero), a shortest r–t path corresponds to solution (1, 1, 0, 0, 0, 0) and

proves an optimal value of 3. Figure (b) depicts a width-2 restricted BDD where a shortest

r–t path corresponds to solution (0, 1, 0, 1, 0, 0), which proves an upper bound of 4. �
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{1, 2, 3}

{1, 2, 3} {3}

{1,2,3} {2} {3} ∅

∅

∅

∅

∅

{2, 3} {2} {3}

{2, 3} {2} {3}

{3}

(a) Exact BDD (b) Width-2 Restriction BDD

Figure 4.3: Exact and Restricted BDD for the Set Covering Problem

Example 7 The implication in Lemma 6 is not sufficient as the state function is not

complete. Consider the set covering problem

minimize x1 + x2 + x3

subject to x1 + x3 ≥ 1

x2 + x3 ≥ 1

x1, x2, x3 ∈ {0, 1}

and the two partial solutions x1 = (1, 0), x2 = (0, 1). We have s(x1) = {2} and s(x2) = {1}.

However, both have the single feasible completion x̃ = (1). �

There are several ways to modify the state function to turn it into a complete one

[12]. The state function can be strengthened to a complete state function, which requires

only polynomial time to compute per partial solution, but nonetheless at an additional

computational cost. For the computational experiments in Section 4.6 we report results for

the simpler (sound) state function presented above.
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4.5.2 The Set Packing Problem

A problem closely related to the SCP, the (weighted) set packing problem (SPP), is the

binary program

maximize cTx

subject to Ax ≤ e

xj ∈ {0, 1}, j = 1, . . . , n

where c, A, and e are as in the SCP. Letting Aj be as in Section 4.5.1, the SPP asks for the

maximum-cost subset V ⊆ {1, . . . , n} of the sets Aj such that for all i, ai,j = 1 for at most

one j ∈ V .

State Function

For the SPP, the state function identifies the set of constraints for which no variables have

been assigned a one and could still be violated. More formally, consider the state space

S = 2{1,...,m} ∪ {0̂}. For a partial solution x′ on variables x1, . . . , xj , we write the state

function

s(x′) =







0̂, if ∃ i :
∑j

k=1 ai,kx
′
k > 1

{

i :
∑j

k=1 ai,kx
′
k = 0 and last(Ci) > j

}

, otherwise.

We first argue that the function above assigns a state 0̂ to a partial solution x′ if and

only if F (x′) = ∅. Indeed, the condition
∑j

k=1 ai,kx
′
k > 1 for some i immediately implies

that x′ is infeasible; otherwise, (0, . . . , 0) is at least one feasible completion to x′.

As the following lemma shows, if the states of two partial solutions on the same set of

variables are the same, then the set of feasible completions for these partial solutions are

the same, thus proving that this state function is sound.

Lemma 7 Let x1, x2 be two partial solutions on variables x1, . . . , xj. Then, s(x1) = s(x2)

implies that F (x1) = F (x2).
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Proof. Let x1, x2 be two partial solutions for which s(x1) = s(x2) = s′. If s′ = 0̂ then both

have empty sets of feasible completions, so it suffices to consider the case when s′ 6= ∅. Take

any partial solution x̃ ∈ F (x1). We show that x̃ ∈ F (x2).

Suppose, for the purpose of contradiction, that (x2, x̃) violates the i∗-th SPP inequality,

j
∑

k=1

ai∗,k x
2
k +

n∑

k=j+1

ai∗,k x̃k > 1, (4.5)

while
j
∑

k=1

ai∗,k x
1
k +

n∑

k=j+1

ai∗,k x̃k ≤ 1, (4.6)

since (x1, x̃) is feasible.

First suppose that
∑n

k=j+1 ai∗,k x̃k = 1. By (4.6),
∑j

k=1 ai∗,k x
1
k = 0. This implies that

F (x1) contains i∗ since no variables in Ci∗ are set to 1 and there exists ℓ ∈ Ci∗ with ℓ > j.

Therefore F (x2) also contains i∗, implying that no variable in Ci∗ is set to one in the partial

solution x2. Hence
∑j

k=1 ai∗,k x
2
k = 0, contradicting (4.5).

Now suppose that
∑n

k=j+1 ai∗,k x̃k = 0. Then
∑j

k=1 ai∗,k x
2
k > 1, contradicting the

assumption that s′ = s(x2) 6= ∅. �

Given a partial solution x′ on variables x1, . . . , xj with s(x′) 6= 0̂, the corresponding

update operation is

update(s(x′), d) =







s(x′) \ {i | last(Ci) = j + 1}, d = 0

s(x′) \ {i | j + 1 ∈ Ci}, d = 1, Aj+1 ⊆ s(x′)

0̂, d = 1, Aj+1 6⊆ s(x′)

and has a worst-case time complexity of O(m) for each call.

Example 8 Consider the SPP instance with the same constraint matrix A as in the

Example 6, but with weight vector

c = (1, 1, 1, 1, 1, 1).

Figure 4.4a shows an exact reduced BDD for this SPP instance. The nodes are labeled

with their corresponding states. Assigning arc costs 1/0 to each 1/0-arc, a longest r–t path

(which can be computed by a shortest path on arc weights c′ = −c, since the BDD is acyclic)
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{1, 2, 3}

{1,2,3} {3}

{1,2,3} {2} {3}

{2,3} {2} {3}

{2,3} ∅ {2} {3}

{3} ∅

∅

(a) Exact BDD (b) Width-2 Restriction BDD

Figure 4.4: Exact and Restricted BDD for the Set Packing Problem

corresponds to solution (0, 0, 1, 0, 1, 1) and proves an optimal value of 3. Figure 4.4b depicts

a width-2 restricted BDD where a longest r–t path, for example, corresponds to solution

(1, 0, 0, 0, 0, 1), which has length 2. �

Example 9 As in the case of the SCP, the above state function is not complete. For

example, consider the problem

maximize x1 + x2 + x3

subject to x1 + x3 ≤ 1

x2 + x3 ≤ 1

x1, x2, x3 ∈ {0, 1}

and the two partial solutions x1 = (1, 0), x2 = (0, 1). We have the states s(x1) = {2} and

s(x2) = {1}. However, both have the single feasible completion, x̃ = (0). �

There are several ways to modify the state function above to turn it into a complete one.

For example, one can reduce the SPP to an independent set problem and apply the state

function defined in [9]. We only consider the sound state function in this work.
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4.6 Computational Experiments

In this section, we perform a computational study on randomly generated set covering

and set packing instances. We evaluate our method comparing the bounds provided by a

restricted BDD with the ones obtained via state-of-the-art integer programming technology

(IP). We acknowledge that a procedure solely geared toward constructing heuristic solutions

for BOPs is in principle favored against general-purpose IP solvers. Nonetheless, we sustain

that this is still a meaningful comparison, as modern IP solvers are the best-known general

bounding technique for 0-1 problems due to their advanced features and overall performance,

specially for set packing and set covering problems. This method of testing new heuristics

for binary optimization problems was employed by the authors in [14] and we provide a

similar study here to evaluate the effectiveness of the algorithm.

The tests ran on an Intel Xeon E5345 with 8 GB of RAM. The BDD code was imple-

mented in C++. We used Ilog CPLEX 12.4 as our IP solver. In particular, we took the

bound obtained from the root node relaxation. We set the solver parameters in a way to

balance the quality of the bound value and the CPU time to process the root node. The

CPLEX parameters that are distinct from the default settings are presented in Table 4.1.

We note that all cuts were disabled, since we observed that the root node would be processed

orders of magnitude faster without such cuts, which did not have a significant effect on the

quality of the heuristic solution obtained for the instances tested.

Table 4.1: CPLEX Parameters

Parameters (CPLEX internal name) Value

Version 12.4

Number of explored nodes (NodeLim) 0 (only root)

Parallel processes (Threads) 1

Cuts (Cuts, Covers, DisjCuts, ...) -1 (off)

Emphasis (MIPEmphasis) 4 (find hidden feasible solutions)

Time limit (TiLim) 3600

Our experiments focus on instances with a particular structure. Namely, we provide evi-

dence that restricted BDDs perform well when the constraint matrix has a small bandwidth.
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The bandwidth of a matrix A is defined as

bw(A) = max
i∈{1,2,...,m}

{ max
j,k:ai,j ,ai,k=1

{j − k}}.

The bandwidth represents the largest distance, in the variable ordering given by the con-

straint matrix, between any two variables that share a constraint. The smaller the band-

width, the more structured the problem, in that the variables participating in common

constraints are close to each other in the ordering. The minimum bandwidth problem seeks

to find a variable ordering that minimizes the bandwidth ([54, 21, 24, 35, 55, 60, 66]). This

underlying structure, when present in A, can be captured by BDDs and results in good

computational performance.

4.6.1 Problem Generation

Our random matrices are generated according to three parameters: the number of variables

n, the number of ones per row k, and the bandwidth bw. For a fixed n, k, and bw, a

random matrix A is constructed as follows. We first initialize A as a zero matrix. For each

row i, we assign the ones by selecting k columns uniformly at random from the index set

corresponding to the variables {xi, xi+1, . . . , xi+bw}. As an example, a constraint matrix

with n = 9, k = 3, and bw = 4 may look like

A =


















1 1 0 1 0 0 0 0 0

0 1 1 1 0 0 0 0 0

0 0 1 0 1 1 0 0 0

0 0 0 1 0 1 1 0 0

0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 1 1 1


















.

Consider the case when bw = k. The matrix A has the consecutive ones property and

is totally unimodular [26] and IP finds the optimal solution for the set packing and set

covering instances at the root node. Similarly, we argue that an (m + 1)-width restricted

BDD is an exact BDD for both classes of problems, hence also yielding an optimal solution

for this structure. Indeed, this structure implies that the state of a BDD node u is always

of the form {j, j + 1, . . . ,m} for some j ≥ ℓ(u) during top-down compilation.
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To see this, consider the set covering problem. We claim that for any partial solution

x′ (that can be completed to a feasible solution), s(x′) = {i(x′), i(x′) + 1, . . . ,m} for some

index i(x′) (or s(x′) = ∅ if x′ completed with 0’s already satisfies all of the constraints).

Let j′ ≤ j be the largest index in x′ with x′j = 1. Because x′ can be completed to a feasible

solution, for each i ≤ bw + j − 1 there is a variable xji with ai,ji = 1. All other constraints

must have xj = 0 for all i with ai,j = 0. Therefore s(x′) = {bw + j, bw + j + 1, . . . ,m}, as

desired. Therefore the state for every partial solution must be of the form i, i+ 1, . . . ,m or

∅. There are at most m+1 such states, and so the size of any layer cannot exceed (m+1).

A similar argument works in the case of the SPP.

Increasing the bandwidth bw, however, destroys the totally unimodular property of A

and the bounded width of B. Hence, by changing bw, we can test how sensitive IP and the

BDD-based heuristics are as the staircase structure dissolves.

We note here that generating instances of this sort is not restrictive. Once the band-

width is large, the underlying structure dissolves and each element of the matrix becomes

randomly generated. In addition, as mentioned above, algorithms to exactly (or approxi-

mately) solve the minimum bandwidth problem have been investigated. To any SCP or SPP

one can therefore apply these methods to reorder the matrix and then apply the BDD-based

algorithm.

4.6.2 Relation between Solution Quality and Maximum BDD Width

We first analyze the impact of the maximum width W on the solution quality provided by

a restricted BDD. To this end, we report the generated bound versus maximum width W

obtained for a set covering instance with n = 1000, k = 100, bw = 140, and a cost vector c

where each cj was chosen uniformly at random from the set {1, . . . , ncj}, where ncj is the

number of constraints in which variable j participates. We observe that the reported results

are common among all instances tested.

Figure 4.5a depicts the resulting bounds, where the width axis is in log-scale, and Fig-

ure 4.5b presents the total time to generate the W -restricted BDD and extract its best

solution. We tested all W in the set {1, 2, 3, . . . , 1000}. We see that as the width increases,

the bound approaches the optimal value, with a super-exponential-like convergence in W .
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Figure 4.5: Restricted BDD performance versus the maximum allotted width for a set

covering instance with n = 1000, k = 100, bw = 140, and random cost vector.

The time to generate the BDD grows linearly in W , as expected from the complexity result

in Section 4.4.

4.6.3 Set Covering

We report the results for two representative classes of instances for the set covering prob-

lem. In the first class, we studied the effect of bw on the quality of the bound. To

this end, we fixed n = 500, k = 75, and considered bw as a multiple of k, namely

bw ∈ {⌊1.1k⌋, ⌊1.2k⌋, . . . , ⌊2.6k⌋}. In the second class, we analyzed if k, which is propor-



4.6. COMPUTATIONAL EXPERIMENTS 107

tional to the density of A, also has an influence on the resulting bound. We then considered

n = 500, k ∈ {25, 50, . . . , 250}, and fixed bw = 1.6k for this case. In all classes, we generated

30 instances for each triple (n, k, bw) and fixed 500 as the restricted BDD maximum width.

It is well-known that the objective function coefficients play an important role in the

bound provided by IP solvers for the set covering problem. We considered two types of cost

vectors c in our experiments. The first is c = 1, which yields the combinatorial set covering

problem. For the second cost function, let ncj be the number of constraints that include

variable xj , j = 1, . . . , n. We chose the j-th cost of variable xj uniformly at random from

the range [0.75ncj , 1.25ncj ]. As a result, variables that participate in more constraints have

a higher cost, thereby yielding harder set covering problems to solve. This cost vector yields

the weighted set covering problem.

To compare the quality of the feasible solutions, we first obtained a lower bound for each

instance by running CPLEX with its default settings. We then measured the gap difference

with respect to the IP bound, which is obtained by taking the difference between the IP

gap and the BDD gap and dividing the result by the IP gap.

The results for the first instance class are presented in Table 4.2 and Figure 4.6. The

labels IP-G, RB-G, IP-T, and RB-T represent the IP gap, the restricted BDD gap, the IP

time, and the restricted BDD time, respectively. Each data point in the figure represents

the average over the gaps of the individual instances for a particular triple (n, k, bw). We

observe that the restricted BDD yields a significantly better solution for small bandwidths in

the combinatorial set covering version. As the bandwidth increases, the staircase structure

is lost and the BDD gap becomes progressively worse in comparison to the IP gap. This

happens since an exact reduced BDD for larger bandwidth matrices would have larger

width as well. Thus, more information is lost when we restrict the BDD size. The same

behavior is observed for the weighted set covering problem, although we notice that the gap

provided by the restricted BDD is generally better in comparison to the IP gap even for

larger bandwidths. Finally, we note that the restricted BDD time is also comparable to the

IP time. This time takes into account both BDD construction and extraction of the best

solution it encodes by means of a shortest path algorithm.

The results for the second instance class are presented in Table 4.3 and Figure 4.7,



108 CHAPTER 4. RESTRICTION DECISION DIAGRAMS

Combinatorial Weighted

bw/k IP-G RB-G IP-T(s) RB-T(s) IP-G RB-G IP-T(s) RB-T(s)

1.1 36.16 22.99 0.59 0.27 37.02 24.25 0.36 0.27

1.2 37.67 27.21 0.74 0.31 41.51 31.05 0.50 0.33

1.3 40.43 30.06 0.78 0.33 44.55 33.51 0.56 0.35

1.4 43.49 31.69 0.76 0.35 48.78 37.40 0.64 0.37

1.5 45.80 36.10 0.82 0.36 50.24 39.80 0.69 0.37

1.6 48.27 40.16 0.74 0.35 50.56 41.15 0.74 0.36

1.7 50.50 43.47 0.69 0.35 49.84 42.77 0.80 0.37

1.8 50.36 46.24 0.73 0.36 49.73 44.27 0.81 0.37

2.0 50.47 46.44 0.77 0.36 50.39 45.58 0.82 0.37

2.1 49.76 46.03 0.69 0.37 49.95 46.57 0.84 0.37

2.2 50.67 47.58 0.61 0.37 47.94 47.97 0.84 0.37

2.3 47.98 49.38 0.53 0.37 49.74 48.54 0.81 0.37

2.4 48.65 51.29 0.52 0.37 50.36 49.12 0.83 0.37

2.5 48.10 52.58 0.55 0.37 49.07 50.22 0.79 0.37

2.6 46.96 53.25 0.56 0.34 49.93 49.87 0.80 0.35

Table 4.2: Combinatorial and weighted set covering results for n = 500, k = 75, and

varying bandwidth. The data represents the average over all instances with that particular

bandwidth.

similarly as before. In this case we note that restricted BDDs provide better solutions when

k is smaller. The intuition behind this behavior is due to the fact that, when the matrix

is sparser, a variable affects a smaller number of constraints. Hence, the possible number

of BDD node states is smaller, and less information is lost by restricting the BDD width.

Moreover, we notice again that the relative gap for the weighted set covering is usually

better than the combinatorial case. Finally, we observe that the restricted BDD time is

relatively constant for all instances, outperforming the IP solver when k is small.

4.6.4 Set Packing

We extend the same experimental analysis of the previous section to set packing instances.

Namely, we generated two classes of instances: the fist considers variations of the bandwidth,

while the second considers variations of the density of the constraint matrix A. We observed

that for most values of (n, k, bw), both restricted BDD and IP had a very similar performance

with respect to the final generated gap, since set packing problems with the studied structure
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Figure 4.6: Average gap difference for the combinatorial and weighted set covering instances

with n = 500, k = 75, and varying bandwidth.

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

A
ve

ra
ge

 G
ap

 D
iff

er
en

ce
 (

%
)

k/n

Combinatorial
Weighted

Figure 4.7: Average gap difference for the combinatorial and weighted set covering instances

with n = 500, varying k, and bw = 1.6k.
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Combinatorial Weighted

k/n IP-G RB-G IP-T(s) RB-T(s) IP-G RB-G IP-T(s) RB-T(s)

0.05 42.42 27.84 0.66 0.28 40.61 27.45 0.55 0.29

0.10 44.75 34.34 0.89 0.33 47.59 36.27 0.74 0.35

0.15 48.27 40.16 0.74 0.35 50.56 41.15 0.74 0.36

0.20 49.72 44.90 0.50 0.38 50.43 45.60 0.68 0.38

0.25 49.70 48.35 0.54 0.37 52.36 47.49 0.59 0.38

0.30 49.52 44.52 0.26 0.39 47.79 51.19 0.50 0.36

0.35 56.88 56.88 0.25 0.36 46.39 50.74 0.41 0.34

0.40 42.84 59.51 0.27 0.33 46.62 48.45 0.31 0.33

0.45 40.88 56.71 0.23 0.33 44.08 45.97 0.23 0.32

0.50 48.30 51.08 0.16 0.30 40.31 42.15 0.16 0.28

Table 4.3: Combinatorial and weighted set covering results for n = 500, varying k, and

bw = 1.6k. The data represents the average over all instances with that particular k.

are usually easy for all techniques. The only noticeable exception occurred when A was

sparse. Hence, for the first instance class we fixed n = 1000, k = 50, and took bw again as

a multiple of k, namely bw ∈ {⌊1.1k⌋, ⌊1.2k⌋, . . . , ⌊2.5k⌋}. In the second class we considered

n = 1000, k ∈ {25, 50, . . . , 250}, and fixed bw = 1.8k. In all classes, we generated 30

instances for each triple (n, k, bw) and fixed 500 as the restricted BDD maximum width.

Similar to set covering, experiments were performed with two types of objective function

coefficients. The first, c = 1, yields the combinatorial set packing problem. For the second

cost function, let ncj again be the number of constraints that include variable xj , j =

1, . . . , n. Moreover, let p = maxj{ncj}. We chose the j-th cost of variable xj uniformly

at random from the range [0.75(p − ncj + 1), 1.25(p − ncj + 1)]. As a result, variables

that participate in fewer constraints have a higher cost, thereby yielding harder set packing

problems to solve. This cost vector yields the weighted set packing problem.

The results for the first instance class are presented in Table 4.4 and Figure 4.8, similarly

as before. We observed that, for all tested instances, the solution obtained from the BDD

restriction was at least as good as the IP solution for all cost functions. As the bandwidth

increases, the gap increases for both techniques (as suggested by Table 4.4). Nonetheless, the

bounds derived from the IP technique increase faster than the BDD bound, which explains

why the relative gap for the BDD is progressively better. The same reasoning can be applied
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to the weighted set packing version. Also note that the BDD time is an order of magnitude

faster than the IP root node.

Combinatorial Weighted

bw/k IP-G RB-G IP-T(s) RB-T(s) IP-G RB-G IP-T(s) RB-T(s)

1.1 0.96 0.49 1.87 0.03 0.36 0.12 0.30 0.03

1.2 0.17 0.17 2.16 0.03 0.52 0.11 0.51 0.03

1.3 0.83 0.00 2.28 0.04 1.06 0.10 0.62 0.03

1.4 0.90 0.21 2.45 0.04 1.36 0.17 0.72 0.04

1.5 0.91 0.18 2.66 0.04 1.40 0.22 0.78 0.04

1.6 1.62 0.23 2.82 0.05 1.89 0.25 0.81 0.05

1.7 3.21 0.52 3.08 0.05 1.53 0.29 0.85 0.05

1.8 2.14 0.63 3.28 0.06 2.05 0.44 0.86 0.06

1.9 3.67 0.90 3.41 0.06 1.50 0.37 0.91 0.06

2.0 3.76 1.61 3.39 0.07 2.36 0.37 0.90 0.07

2.1 3.91 1.35 3.55 0.07 1.90 0.26 0.93 0.07

2.2 3.36 1.62 3.57 0.09 1.77 0.27 0.94 0.09

2.3 4.05 1.26 3.73 0.09 1.47 0.26 0.99 0.09

2.4 3.65 1.55 3.64 0.11 1.64 0.39 1.01 0.10

2.5 4.24 1.74 3.59 0.11 1.91 0.48 1.01 0.12

Table 4.4: Combinatorial and weighted set packing results for n = 1000, k = 50, and

varying bandwidth. The data represents the average over all instances with that particular

bandwidth.
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Figure 4.8: Average gap difference for the combinatorial and weighted set packing instances

with n = 1000, k = 50, and varying bandwidth.
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The results for the second instance class are presented in Table 4.5 and Figure 4.9,

similarly as before. For all instances tested, the BDD bound was at least as good as the

bound obtained with IP. The analysis is similar to the set covering case, in which restricted

BDDs provide better solutions when k is smaller. This is due to the fact that, since A is

sparser, fewer BDD node states are possible in each layer, which implies that less information

is lost by restricting the BDD width. Finally, we observe that for small k
n the restricted

BDD approach is again an order of magnitude faster than IP, although this changes as k
n

increases.

Combinatorial Weighted

k/n IP-G RB-G IP-T(s) RB-T(s) IP-G RB-G IP-T(s) RB-T(s)

0.05 2.14 0.63 3.28 0.06 2.05 0.44 0.86 0.06

0.10 0.64 0.12 3.02 0.12 1.09 0.19 1.00 0.12

0.15 5.82 5.55 2.02 0.18 4.02 3.96 0.92 0.18

0.20 12.27 11.88 1.23 0.22 3.61 3.24 0.86 0.22

0.25 8.46 8.46 0.84 0.21 4.96 4.43 0.76 0.21

0.30 8.08 8.08 0.72 0.20 5.80 5.04 0.71 0.21

0.35 6.25 6.25 0.68 0.19 5.43 4.56 0.68 0.19

0.40 8.24 7.86 0.59 0.18 5.90 4.35 0.59 0.19

0.45 7.10 6.32 0.44 0.16 5.11 4.51 0.45 0.16

0.50 6.80 6.80 0.19 0.15 4.52 3.91 0.19 0.16

Table 4.5: Combinatorial and weighted set packing results for n = 1000, varying k, and

bw = 1.8k. The data represents the average over all instances with that particular k.

4.7 Conclusion

We introduce a new structure, restricted BDDs, and describe how they can be used to

develop a new class of general-purpose heuristics for binary optimization problems. A

restricted BDD is a limited-size directed acyclic multigraph that represents an under-

approximation of the feasible set. We apply this technique to randomly generated set

covering and set packing instances and find that it can yield substantially better solutions

than state-of-the-art integer programming technology when the constraint matrix has a

small bandwidth.
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Figure 4.9: Average gap difference for the combinatorial and weighted set packing instances

with n = 1000, varying k, and bw = 1.8k.

The results indicate that restricted BDDs could become a useful addition to the existing

library of heuristics for binary optimization problems. Several aspects of the algorithm may

still need to be further investigated, including the application to broader classes of problems

and how these structures can be incorporated into existing complete or heuristic methods.

For example, they could be used as an additional primal heuristic during a branch-and-

bound search. Moreover, restricted BDDs could also be applied to problems for which no

strong linear programming relaxation is known, since they can accommodate constraints of

arbitrary form.
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Chapter 5

Decision Diagram-Based Branch

and Bound

5.1 Introduction

Discrete optimization problems model a wide-range of problems arising in a wide-range of

industries, including business analytics, process improvement, and health care operations,

to name a few. Due to the computational difficulty in solving these problems, one typically

relies on branch-and-bound algorithms to solve these problems.

Branch-and-bound algorithms proceed by iteratively defining and approaching smaller

subproblems, calculating relaxation bounds and heuristic solutions for each subproblem,

with the goal of finding an improving solution, or proving that one cannot exists in that

area of the search space.

Traditionally, continuous relaxations are used for obtaining relaxation bounds, due in

part to the vast research effort in this area. Examples of these include linear programming

(LP) relaxations and semi-definite programming (SDP) relaxations. Primal heuristics are

employed in conjunction with these continuous relaxations, which are used to find feasi-

ble/improving solutions.

Although these techniques have been successfully applied across a broad range of appli-

115
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cation areas, research has been limited in searching for new solution methodologies for this

class of optimization problems. With the exponential explosion of data and computational

power, businesses, more than ever, are seeking to apply optimization methods to better the

way they operate. As the problems they seek to solve grow larger and more complex, it is

crucial to improve on existing technologies on this class of optimization problems.

In this chapter, we explore the idea of using decision diagrams (DDs) for solving discrete

optimization problems. We discuss how DDs can be used for relaxation bounds, searching for

improving feasible solutions, and defining subproblems. This approach differs substantially

from the traditional methods in several important ways:

• We employ discrete relaxations in the form of relaxed DDs (Chapters 2,chap:tighten).

Continuous relaxations have been successful, but often time problems do not admit

tight, or even easily defined, continuous relaxations. As an alternative, we suggest

using relaxed DDs for this purpose.

• We use relaxed DDs to define subproblems. The approach discussed differs substan-

tially from standard branch-and-bound algorithms in a number of important ways.

First, the algorithm relies on approximate DDs for relaxation bounds, a discrete struc-

ture, which differs from the typical continuous relaxations that are employed for this

class of problems. In addition, search is performed not on single value assignments to

variables, but rather on pools of partial solutions, thereby eliminating certain symme-

tries.

• We use DDs as the primal heuristic in the branch-and-bound procedure. These re-

stricted DDs (Chapter 4) are generated at search tree nodes using the same information

that is necessary to build relaxed DDs and so are easily integrated with the rest of the

procedure.

The remainder of the chapter is organized as follows. We first describe binary optimiza-

tion problems and the application of binary decision diagrams for representing the feasible

set for this class of problems. We then describe approximate decision diagrams and then dis-

cuss how to define subproblems using relaxed DDs. We then describe the branch-and-bound

algorithm in detail and discuss computational results on the application of the algorithm to
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the maximum independent set problem. These experiments shows promise as the algorithms

outperforms state-of-the-art integer programming technology. We then conclude with some

final remarks and suggestion of future research.

5.2 Binary Optimization Problems

Binary optimization problems (BOPs) are specified by a set of binary variablesX = {x1, . . . , xn},

an objective function f : {0, 1}n → R to be minimized, and a set of m constraints C =

{C1, . . . , Cm}, which define relations among the problem variables. A solution to a BOP P

is an assignment of values 0 or 1 to each of the variables in X. A solution is feasible if it

satisfies all the constraints in C. The set of feasible solutions of P is denoted by Sol(P ). A

solution x∗ is optimal for P if it is feasible and satisfies f(x∗) ≤ f(x̃) for all x̃ ∈ Sol(P ). We

denote by x∗(P ) an optimal solution and let z∗(P ) be the value of the optimal solution.

We will be discussing the application of the methodology presented here in the context

of several classical BOPs. We define these problems here.

Knapsack Problem (KP): Given a set of items 1, . . . , n, each with size sj ≥ 0 and profit

pj , and a knapsack of size S, find the set of items K of maximum total value with total size

not exceeding S.

The KP can be formulated as a binary optimization problem. Associating a binary

variable xj with each item, we write

maximize

n∑

j=1

pjxj

subject to
n∑

j=1

sjxj ≤ S

xj ∈ {0, 1}, j = 1, . . . , n

Inverse Knapsack Problem (IKP): Given a set of items 1, . . . , n, each with size sj ≥ 0

and cost cj , and a minimum size of S, find the set of items K of minimum total cost with

total size at least S.

The IKP can be formulated as a binary optimization problem. Associating a binary
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variable xj with each item, we write

minimize
n∑

j=1

cjxj

subject to

n∑

j=1

sjxj ≥ S

xj ∈ {0, 1}, j = 1, . . . , n

Weighted Maximum Independent Set Problem (WMISP): Given a graph G =

(V,E) and weights wv for each vertex v ∈ V , find the subset of variables I, all mutually

non-adjacent, of largest total weight. When wv = 1 for all vertices, the problem is referred

to as the Maximum Independent Set Problem (MISP).

We can cast the WMISP as a BOP by associating a binary variables xv with each vertex:

maximize

n∑

j=1

wvxv

subject to xv + xv′ ≤ 1, ∀(v, v′) ∈ E

xv ∈ {0, 1}, ∀v ∈ V

Weighted Maximum Clique Problem (WMCP): Given a graph G = (V,E) and

weights wv for each vertex v ∈ V , find the subset of variables I, all mutually adjacent,

of largest total weight. When wv = 1 for all vertices, the problem is referred to as the

Maximum Clique Problem (MCP).

We can cast the WMCP as a BOP by associating a binary variables xv with each vertex:

maximize
n∑

j=1

wvxv

subject to xv + xv′ ≤ 1, ∀(v, v′) /∈ E

xv ∈ {0, 1}, ∀v ∈ V

Set Covering Problem (SCP):

minimize cTx

subject to Ax ≥ e

xj ∈ {0, 1}, j = 1, . . . , n
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where c is an n-dimensional real-valued vector, A is a 0–1 m × n matrix, and e is the m-

dimensional unit vector. Let ai,j be the element in the i-th row and j-th column of A,

and define Aj = {i | ai,j = 1} for j = 1, . . . , n. The SCP asks for a minimum-cost subset

V ⊆ {1, . . . , n} of the sets Aj such that for all i, ai,j = 1 for some j ∈ V , i.e. V covers

{1, . . . ,m}.

Set Packing Problem (SPP):

maximize cTx

subject to Ax ≤ e

xj ∈ {0, 1}, j = 1, . . . , n

where c is an n-dimensional real-valued vector, A is a 0–1 m × n matrix, and e is the m-

dimensional unit vector. Let ai,j be the element in the i-th row and j-th column of A,

and define Aj = {i | ai,j = 1} for j = 1, . . . , n. The SPP asks for a maximum-cost subset

V ⊆ {1, . . . , n} of the sets Aj such that for all i, ai,j = 1 for at most one j ∈ V .

Binary Integer Programming (IP): Given a real-valued matrix A, vector c, and vector

b:

minimize cTx

subject to Ax ≤ b

xj ∈ {0, 1}, j = 1, . . . , n

The other problems listed above are all special cases of IP but it will be beneficial to

refer to them individually as well.

5.3 Binary Decision Diagrams

Here we describe binary decision diagrams and how they are used to represent a set of

solutions to a given BOP. We first describe standard binary decision diagrams and then dis-

cuss various forms of compressed binary decision diagrams that may be useful for particular

applications.
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5.3.1 Standard Binary Decision Diagrams

A binary decision diagram (BDD) B = (U,A) for a BOP P is a layered directed acyclic

multi-graph that encodes a set of solutions of P . The nodes U are partitioned into n + 1

layers, L1, L2, . . . , Ln+1, where we let ℓ(u) be the layer index of node u. Layers L1 and Ln+1

consist of single nodes; the root r and the terminal t, respectively. The width of layer j is

given by ωj = |Lj |, and the width of B is ω(B) = maxj∈{1,2,...,n} ωj . The size of B, denoted

by |B|, is the number of nodes in B.

Each arc a ∈ A is directed from a node in some layer j to a node in the adjacent layer

j+1, and has an associated arc-domain da ∈ {0, 1}. The arc a is called a 1-arc when da = 1

and a 0-arc when da = 0. For any two arcs a, a′ directed out of a node u, da 6= da′ , so that

the maximum out-degree (d+(u)) of a node u in a BDD is 2, with each arc having a unique

arc-domain. Given a node u, we let a0(u) be the 0-arc directed out of u (if it exists) and

b0(u) be the node in Lℓ(u)+1 at its opposite end, and similarly for a1(u) and b1(u).

A BDD B represents a set of solutions to P in the following way. An arc a directed

out of a node u represents the assignment xℓ(u) = da. Hence, for two nodes u, u′ with

ℓ(u) < ℓ(u′), a directed path p from u to u′ along arcs aℓ(u), aℓ(u)+1, . . . , aℓ(u′)−1 corresponds

to the assignment xj = daj
, j = ℓ(u), ℓ(u) + 1, . . . , ℓ(u′) − 1. In particular, an r–t path

p = (a1, . . . , an) corresponds to a solution xp, where xpj = daj
for j = 1, . . . , n. The set of

solutions represented by a BDD B is denoted by Sol(B) = {xp | p is an r–t path}.

Let B be a BDD and P a BOP. B is an exact BDD for P if Sol(B) = Sol(P ). B is a

relaxed BDD for P if Sol(B) ⊇ Sol(P ) and is a restricted BDD for P if Sol(B) ⊆ Sol(P )

For two nodes u, u′ ∈ U with ℓ(u) < ℓ(u′), let Bu,u′ be the BDD induced by the nodes

that belong to some directed path between u and u′. In particular, Br,t = B. A BDD is

called reduced if Sol(Bu,u′) is unique for any two nodes u, u′ of B. The reduced BDD B is

unique when the variable ordering is fixed, and therefore the most compact representation

in terms of size for that ordering [68].

Finally, for a large class of objective functions (e.g., for additively separable functions),

optimizing over the solutions represented by a BDD B can be reduced to finding a longest

path in B. For example, given a real cost vector c and a linear objective function cTx, we

can associate an arc-cost c(u, v) = cℓ(u)du,v with each arc a = (u, v) in the BDD. This way,
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x1

x2

x3

x4

x5

Figure 5.1: Reduced BDD for the BOP in Example 10.

a longest r–t path corresponds to a maximum cost solution in Sol(B). If B is exact, then

this longest path corresponds to an optimal solution for P . We denote by z∗(B) the length

of the longest path in B, p∗(B) the longest path in B, and x∗(B) the solution corresponding

to p∗(B).

Example 10 Consider the following KP.

maximize 2x1 + 3x2 + 5x3 + x4 + 4x5

subject to 2x1 + 2x2 + 3x3 + 3x4 + 2x5 ≤ 5

xj ∈ {0, 1}, j = 1, . . . , 5

In Figure 5.1 we show an exact reduced BDD for P . The 0-arcs are represented by

dashed lines, while the 1-arcs are represented by solid lines. There are 15 paths in the BDD,

which correspond to the 15 feasible solutions of this BOP. Assigning arc costs of 0 to all of

the 0-arcs and the cost coefficient of xj to the 1-arcs on layer j, j = 1, . . . , 5, the longest

path in the BDD correspond to the solution (0, 0, 1, 0, 1), the optimal solutions for P . �
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5.3.2 Compressed Binary Decision Diagrams

For different applications, it may be useful to have arcs that can skip layers in order to

reduce the size of the BDD by eliminating intermediate nodes. Depending on the particular

BOP, the useful form of the compression may change. In this section we will describe three

different types of compression and describe problem classes that may benefit from them.

0-BDDs

Zero-compressed BDDs were have been previously introduced. We use the notation 0-

BDDs in this chapter for clarity but note that they correspond to the previously introduced

structures.

Unlike standard BDDs, 0-BDDs may have arcs that skip layers. In a 0-BDD, an arc

a = (u, v) with u ∈ Lj and v ∈ Lj′ , j < j′, will have an arc-domain da ∈ {0, 1} as

before. However, in a 0-BDD, the arc represents the set of assignments xj = da, xk = 0, for

k = j+1, . . . , j′−1. In particular, in a 0-BDD, an r−t path p on nodes r = u1, u2, . . . , uk = t

(which may now be on fewer than n+ 1 nodes) corresponds to the solution x with

xj =







d(ui,ui+1) , for j = ℓ(ui), i = 1, . . . , k − 1

0 , otherwise

As with standard BDDs, a solution in Sol(B) that maximizes (minimizes) an additively

separable objective function can be identified by a simple longest (shortest) path calculation.

Let z =
∑n

j=1 cj(xj). For each arc a = (u, v) we let

c(a) = cℓ(u)(da) +

ℓ(v)−1
∑

j=ℓ(u)+1

cj(0).

With these arc costs, a maximum (minimum) length r− t path will correspond to a solution

that maximizes (minimizes) z.

Example 11 Consider the graph in Figure 5.2a where we have labeled the vertices with

numbers. Depicted in Figures 5.2b and 5.2c are a standard BDD and 0-BDD, respectively,

for the independent sets in the graph. Notice that using a 0-BDD allows for a reduction in

the size of the BDD. The standard BDD has a total of 17 nodes, as opposed to the 10 nodes
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(b) Exact Standard BDD
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(c) Exact 0-BDD

Figure 5.2: BDD representation of independent sets in a graph using standard BDDs and

0-BDDs

in the 0-BDD, and the width of the standard BDD is 4, while it is only 2 for the 0-BDD.

As both structures represent the same set of solutions, it is apparent from this example

that there is a benefit to using a 0-BBD to represent the collection of independent sets in a

graph.

�

1-BDDs

One-compressed BDDs, 1-BDDs, may have arcs that skip layers. In a 1-BDD, an arc a =

(u, v) with u ∈ Lj and v ∈ Lj′ , j < j′, will have an arc-domain da ∈ {0, 1} as before.

However, in a 1-BDD, the arc represents the set of assignments xj = da, xk = 1, for k =

j + 1, . . . , j′ − 1. In particular, in a 1-BDD, an r − t path p on nodes r = u1, u2, . . . , uk = t

(which may now be on fewer than n+ 1 nodes) corresponds to the solution x with

xj =







d(ui,ui+1) , for j = ℓ(ui), i = 1, . . . , k − 1

1 , otherwise
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(a) Exact Standard BDD
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(b) Exact 1-BDD

Figure 5.3: BDD representation of the feasible set for the BOP in Example 12 using standard

BDDs and 1-BDDs

Again, as with standard BDDs, a solution in Sol(B) that maximizes (minimizes) an

additively separable objective function can be identified by a simple longest (shortest) path

calculation. Let z =
∑n

j=1 cj(xj). For each arc a = (u, v) we let

c(a) = cℓ(u)(da) +

ℓ(v)−1
∑

j=ℓ(u)+1

cj(1).

With these arc costs, a maximum (minimum) length r− t path will correspond to a solution

that maximizes (minimizes) z.

Example 12 Consider the feasible set to the IKP with the following constraint:

x1 + 3x2 + x3 + 3x4 + x5 ≥ 6

Depicted in Figure 5.3a is a standard BDD for the feasible set and depicted in Figure 5.3b

is a 1-BDD. As in Example 11, both BDDs represent the same set of solutions, but in this

case the 1-BDD has 7 nodes as opposed to the 11 nodes in the standard BDD. Note that

a 0-BDD would not have compressed any nodes, exemplifying that the useful type of com-

pressed BDD is indeed problem specific. �
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0/1-BDDs

Zero/One-compressed compressed BDDs, 0/1-BDDs, may also have arcs that skip layers,

but these arcs represent multiples sets of assignments to variables as opposed to standard

BDDs, 0-BDDs, and 1-BDDs. In a 0/1-BDD, an arc a = (u, v) with u ∈ Lj and v ∈ Lj′ ,

j < j′, will have an arc-domain da ∈ {0, 1} as before. However, in a 0/1-BDD, the arc

represents the set of assignments xj = da, xk ∈ {0, 1}, for k = j+1, . . . , j′−1. In particular,

in a 0/1-BDD, an r− t path p on nodes r = u1, u2, . . . , uk = t (which may now be on fewer

than n+ 1 nodes) corresponds to the set of solutions for which

xj = d(ui,ui+1), for j = ℓ(ui)i = 1, . . . , k − 1,

and all other variables are set to 0 or 1.

Once again, one can optimize over the solutions in Sol(B). Here, however, arc costs

c(a) depend on whether we are maximizing or minimizing an objective function. Let z =
∑n

j=1 cj(xj).

If we seek to find an x ∈ Sol(B) that maximizes z, we let

c(a) = cℓ(u)(da) +

ℓ(v)−1
∑

j=ℓ(u)+1

max{cj(0), cj(1)},

and a longest r − t path will correspond to a maximum cost solution.

If we seek to find an x ∈ Sol(B) that minimizes z, we let

c(a) = cℓ(u)(da) +

ℓ(v)−1
∑

j=ℓ(u)+1

min{cj(0), cj(1)},

and a shortest length r − t path will correspond to a minimum cost solution.

Example 13 For the SCP, a 0/1-BDD representation can yield a lot of compression.

Consider a set covering problem on 6 variables with the following constraint matrix:

A =








1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1








An exact standard BDD has 18 nodes (Figure 5.4a) while a 0/1-BDD has 11 nodes (Fig-

ure 5.4b) �
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(b) Exact 0/1-BDD

Figure 5.4: BDD representation of feasible set for BOP in Example 13 using standard BDDs

and 0/1-BDDs

5.4 Exact BDDs

5.4.1 Exact BDD Compilation

We now describe an algorithm that, given a BOP, produces an exact reduced standard BDD.

A simple modification can be used to generate a 0-BDD, 1-BDD, or 0/1-BDD.

An exact reduced BDD B = (U,A) for a BOP P can be interpreted as a compact search

tree for P , where infeasible leaf nodes are removed, isomorphic subtrees are superimposed,

and the feasible leaf nodes are merged into t. In principle, B can be obtained by first

constructing the branching tree for P and reducing it accordingly, which is impractical for

our purposes.

We present here an efficient top-down algorithm for constructing an exact BDD B for

P . It relies on problem-dependent information for merging BDD nodes and thus reducing

its size. If this information satisfies certain conditions, the resulting BDD is reduced. The

algorithm is a top-down procedure since it proceeds by compiling the layers of B one-by-one,

where layer Lj+1 is constructed only after layers L1, . . . , Lj are completed.
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We first introduce some additional definitions. Let x′ = (x′1, . . . , x
′
k), k < n, be a partial

solution that assigns a value to variables x1, . . . , xk. We define

F (x′) = {x′′ ∈ {0, 1}n−k | x = (x′, x′′) is feasible for P}

as the set of feasible completions of x′. We say that two distinct partial solutions x1, x2 on

variables x1, . . . , xk are equivalent if F (x1) = F (x2).

The algorithm requires a method for establishing when two partial solutions are necessar-

ily equivalent. If this is possible, then the last nodes u, u′ of the BDD paths corresponding

to these partial solutions can be merged into a single node, since Bu,t and Bu′,t are the

same. To this end, with each partial solution x′ of dimension k we associate a state function

s : {0, 1}k → S, where S is a problem-dependent state space. The state of x′ corresponds to

the information necessary to determine if x′ is equivalent to any other partial solution on

the same set of variables.

Formally, let x1, x2 be partial solutions on the same set of variables. We say that the

function s(x) is sound if s(x1) = s(x2) implies that F (x1) = F (x2), and we say that s is

complete if the converse is also true. The algorithm requires only a sound state function,

but if s is complete, the resulting BDD will be reduced.

For simplicity of exposition, we further assume that it is possible to identify when a

partial solution x′ cannot be completed to a feasible solution, i.e. F (x′) = ∅. It can be

shown that this assumption is not restrictive, but rather makes for an easier exposition of

the algorithm. We write s(x′) = 0̂ to indicate that x′ cannot be completed into a feasible

solution. If x is a solution to P , we write s(x) = ∅ if x is feasible and s(x) = 0̂ otherwise.

We now extend the definition of state functions to nodes of the BDD B. Suppose that s

is a complete state function and B is an exact (but not necessarily reduced) BDD. For any

node u, the fact that B is exact implies that any two partial solutions x1, x2 ∈ Sol(Br,u)

have the same feasible completions, i.e. F (x1) = F (x2). Since s is complete, we must have

s(x1) = s(x2). We henceforth, for exact BDDs, define the state of a node u as s(u) = s(x)

for any x ∈ Sol(Br,u), which is therefore uniquely defined for a complete function s.

We also introduce a function update : S × {0, 1} → S. Given a partial solution x′ on

variables x1, . . . , xk, k < n, and a domain value d ∈ {0, 1}, the function update(s(x′), d)

maps the state of x′ to the state of the partial solution obtained when x′ is appended with
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d, s((x′, d)). This function is similarly extended to nodes: update(s(u), d) represents the

state of all partial solutions in Sol(Br,u) extended with value d for a node u.

The top-down compilation procedure is presented in Algorithm 8. We start by setting

L1 = {r} and s(r) = s0, where s0 is an initial state appropriately defined for the problem.

Now, having constructed layers L1, . . . , Lj , we create layer Lj+1 in the following way. For

each node u ∈ Lj and for d ∈ {0, 1}, let snew = update(s(u), d). If snew = 0̂ we do not create

arc ad(u). Otherwise, if there exists some u′ ∈ Lj+1 with s(u′) = snew, we set bd(u) = u′; if

such a node does not exist, we create node unew with s(unew) = snew and set bd(u) = unew.

The proof of correctness and running time of the above algorithm is described in previous

chapters.

Example 14 Consider the following simple BOP:

maximize 5x1 + 4x2 + 3x3

subject to x1 + x2 + x3 ≤ 1

xj ∈ {0, 1}, j = 1, 2, 3

We can define s(x) to equal the number of variables set to 1 in x. In this way, whenever

s(x1) = s(x2) for two partial solutions we have F (x1) = F (x2). For example, s ((1, 0)) = 1

and s ((0, 1)) = 1, with the only feasible completion being (0).

An update function can be given as follows:

update(s(u), d) =







0̂ , d = 1 and s(u) = 1

1 , d = 1 and s(u) = 0

s(u) , d = 0

With this update function, if in a partial solution there is already one variable set to 1, the

update operation will assign 0̂ to the node on the 1-arc (signifying that the solution cannot

be completed to a feasible solution) and 1 to the node on the 1-arc (to signify that still only

one variable is set to 1). On the other hand, if a partial solution has no variable set to 1,

the 1-arc will now be directed to a node that has state 1 and the 0-arc will be directed to a

node with state 0.
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Algorithm 8 Exact BDD Compilation: build exact(X, s0, update)

1: INPUT: X, s0, update // X is the set of variables, s0 the starting state, and update is

// the function used to update the states

2: Create node r with s(r) = s0

3: L1 = {r}

4: U = ∅, A = ∅

5: for j = 1 to |X| do

6: U = U ∪ Lj

7: Lj+1 = ∅

8: for all u ∈ Lj do

9: for all d ∈ {0, 1} do

10: snew := update(s(u), d)

11: if snew 6= 0̂ then

12: if ∃u′ ∈ Lj+1 with s(u′) = snew then

13: bd(u) = u′

14: A = A ∪ {(u, u′)}

15: else

16: Create node unew with s(unew) = snew

17: bd(u) = unew

18: Lj+1 ← Lj+1 ∪ unew

19: A = A ∪ {(u, unew)}

20: create terminal t

21: merge(L|X|+1, t); L|X|+1 = {t}

22: U = U ∪ L|X|+1

23: return B = (U,A)

The progression of the algorithm is depicted in Figure 5.5 where after the construction of

each layer Lj we show the partially constructed BDD along with the state of each node. Note

that the state definition (and update function) for the BOP is a complete state function.

The only caveat is that the feasible solution (0, 0, 0) has state 0, while all other feasible
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Algorithm 9 merge(M,u′)

1: for all u ∈M do

2: for all arcs a0(w) with b0(w) = u do

3: b0(w)← u′

4: for all arcs a1(w) with b1(w) = u do

5: b1(w)← u′

0

(a) root

0

10

(b) L2

0

10

0 1 0̂

(c) L3

0

10

0 1 0̂

0 1

(d) L4

0

10

t

0 1

(e) Final BDD

Figure 5.5: Depiction of exact BDD compilation for the BOP in Example 14

solutions have state 1. However, this is corrected in the final line of Algorithm 8 since all

nodes in the final layer are merged with the terminal t.

�

5.4.2 Examples

Here we describe state functions for a variety of BOPs. We let x′ be a partial solution on the

first k variables and give a state for the partial solution and an associated update function.

• Knapsack Problem (KP)

For the KP, we have S = R
+ ∪ 0̂, s0 = 0, and

s(x) =







∑k
j=1 sjx

′
j ,

∑k
j=1 sjx

′
j ≤ S

0̂ , otherwise

update(s, d) =







s+ sk+1 · d ,
∑k

j=1 sjx
′
j + sk+1 · d ≤ S

0̂ , otherwise
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Proposition 1 s is a sound state function for the KP and update calculates s.

Proof. Proof For any partial solution x′ on the first k variables,

F (x) =






(xk+1, . . . , xn) :

n∑

j=k+1

xjsj ≤ S −
k∑

j=1

x′jsj






.

Therefore, if any two partial solutions x1, x2 agree on
∑k

j=1 x
i
jsj they must have the

same feasible completions. In addition, if
∑k

j=1 sjx
′
j > S, x′ cannot be completed to

a feasible solution.

update exactly calculates the marginal effect of setting xk = d, as desired. �

We note here that developing a complete state function for the KP is NP-hard but it

can be done in pseudo-polynomial time/space.

• Inverse Knapsack Problem (IKP)

For the IKP, we also have S = R
+ ∪ 0̂, s0 = 0, but in this case

s(x) =







min
{
∑k

j=1 sjx
′
j , S
}

,
∑k

j=1 sjx
′
j +

∑n
j=k+1 sj ≥ S

0̂ , otherwise

update(s, d) =







min {s+ sk+1 · d, S} , s+ sk+1 · d+
∑n

j=k+2 sj ≥ S

0̂ , otherwise

Proposition 2 s is a sound state function for the IKP and update calculates s.

Proof. Proof For any partial solution x′ on the first k variables,

F (x) =






(xk+1, . . . , xn) :

n∑

j=k+1

xjsj ≥ S −
k∑

j=1

x′jsj






.

Therefore, if any two partial solutions x1, x2 have
∑k

j=1 x
i
jsj ≥ S they must have

the same feasible completions (namely any assignment to the remaining variables)

and so assigning a state of S to any solution of this form allows the solutions to

be identifying as having the same feasible completions. In addition, if
∑k

j=1 x
1
jsj =

∑k
j=1 x

2
jsj < S, the solution will also have the same set of feasible completions, and so
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assigning this common value as the state of a node is a valid assignment. In addition,

if
∑k

j=1 sjx
′
j +
∑n

j=k+1 < S, x′ cannot be completed to a feasible solution so assigning

a state of 0̂ is correct.

update exactly calculates the marginal effect of setting xk = d, as desired. �

As in the case of the KP problem, a complete state function for the IKP is NP-hard

but it can be done in pseudo-polynomial time/space.

• WMISP

Let G = (V,E), V = {v1, . . . , vn} be a graph. For any partial solution x we associate a

set of vertices V (x) = {vj : xj = 1}. Let I(G) be the family of all independent sets in

a graph. For any vertex vj , let N(vj) be the neighborhood of vj (where by convention

vj ∈ N(v)).

Let x be a partial solution on variables x1, . . . , xk. S = 2V ∪ 0̂, s0 = V , and

s(x) =







{vi|i ≥ k + 1, vi ∪ V (x) ∈ I(G)} , V (x) ∈ I(G)

0̂ , otherwise

update(s, d) =







s \ {vk+1} , d = 0

s \N(vk+1) , d = 1 and vk+1 ∈ s

0̂ , d = 1 and vk+1 /∈ s

Proposition 3 s is a complete state function for the WMISP and update calculates

s.

The proof of Proposition 3 appears in Chapter 2 and is based upon interpreting the

state as the set of vertices that are non-adjacent to all vertices in the partial solution.

If this set is the same for two partial solutions, then they must have the same feasible

completions. Interestingly this is also a complete state function so that two solutions

have the same feasible completions if and only if they agree on this set.

• WMCP
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Let C(G) be the set of cliques in G. Similarly to the WMISP, we let S = 2V ∪0̂, s0 = V ,

but now

s(x) =







{vi|i ≥ k + 1, vi ∪ V (x) ∈ C(G)} , V (x) ∈ C(G)

0̂ , otherwise

update(s, d) =







s \ {vk+1} , d = 0

s \N(vk+1) , d = 1 and vk+1 ∈ s

0̂ , d = 1 and vk+1 /∈ s

Proposition 4 s is a complete state function for the WMCP and update calculates

s.

Proof. Proof Let G = (V,E) be a graph for which we are creating an exact BDD to

represent the set of cliques for the WMCP. Consider the complement graph Ḡ of G.

I(Ḡ) = C(G). Therefore, a complete state function for I(Ḡ) must be a complete state

function for C(G). �

• SCP

Let Ci be the set of indices of the variables that participate in constraint i, Ci =

{j | ai,j = 1}, and let last(Ci) = max{j | j ∈ Ci} be the largest index of Ci. We

consider the state space S = 2{1,...,m} ∪ {0̂}. For a partial solution x′ on variables

x1, . . . , xk, we can write the following state and update functions:

s(x) =







0̂, if ∃ i :
∑k

j=1 ai,jx
′
j = 0 and k ≥ last(Ci),

{

i :
∑k

j=1 ai,jx
′
j = 0

}

, otherwise.

update(s, d) =







s(x′) \ {i | ai,k+1 = 1}, d = 1

s(x′), d = 0, ∀ i∗ ∈ s(x′) : last(Ci∗) > k + 1

0̂, d = 0, ∃ i∗ ∈ s(x′) : last(Ci∗) = k + 1
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Proposition 5 s is a sound state function for the SCP and update calculates s.

The proof of Proposition 5 has previously been shown. We think of the state as

representing the set of constraints that still need some variable set to be set to 1 in

order to satisfy that constraint. If two solutions agree upon this set of constraints,

they must have the same feasible completions.

s (and update) can be extended into a complete state function and still run in poly-

nomial time.

• SPP

Let P be a SPP. One can define a similar state and update function to solutions for

the SPP as the SCP. However, another way of defining a state is to note the following.

Consider the graph G = (V,E) where we associate a vertex vj for each variable xj

and let

E = {(vj , vj′)| ∃ i for which ai,j = ai,j′ = 1} .

Let P ′ be the WMISP on G. It is well-known that Sol(P ) = Sol(P ′). Therefore, a

complete state function for P ′ is also a complete state function for P .

• IP

Let P be a general IP (with only binary variables). Let S = R
m ∪ 0̂, where m is the

number of linear inequalities in P . Starting with s0 = (0, . . . 0), for a partial solution

x′, we can let s(x)i be the sum
∑k

j=1 ai,jx
′
j .

It is clear that any solutions that agree on s must have the same feasible completions.

update(s, d) can be defined so as to represent the marginal effect of setting xk+1 = d

(namely either adding ai,k+1 to s if d = 1 or keep s constant otherwise).

This is only a sound state function.

5.5 Approximate BDDs

Exact BDDs are useful for a variety of purposes. As discussed above, they can be viewed

as a compact encoding of the entire branching tree. Unfortunately, exact BDDs can be
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exponential in size and so we use approximate BDDs to encode over-approximations and

under-approximations of the feasible set.

Approximate BDDs come in two forms: relaxed or restricted. Relaxed BDD provide an

over-approximation of the feasible set while restricted BDDs provide an over-approximation

of the feasible set. These structures are useful for a variety of purposes; for this chapter, we

use them to guide branching decisions and to provide optimization bounds. We concentrate

on limited-width approximate BDDs which cap the size of each layer by a preset maximum

width W , thereby enforcing a bound on the size of the entire BDD.

In this section, we describe how to modify Algorithm 8 in order to generate these struc-

tures and discuss how to obtain optimization bounds.

5.5.1 Relaxed BDDs

A BDD B is a width-W relaxed BDD for P if ω(B) ≤ W and Sol(B) ⊇ Sol(P ). Such a

structure has size |B| ≤ nW and so enforcing a maximum width of W controls the size of

the BDD.

We use relaxed BDD for two purposes: generating relaxation bounds and branching. In

this section we will describe how to generate relaxed BDDs and derive bounds from them,

and in the following sections describe the branching procedure.

A relaxed BDD B can be used to provide an upper-bound on the objective function.

As with exact BDDs, a solution in Sol(B) maximizing an additively separable objective

function can be found via a simple longest path calculation. As B is a relaxed BDD, every

feasible solution is a candidate, and therefore the value of this longest path must be an

upper bound on the objective function.

Example 15 Consider the KP from Example 10. Figure 5.6 depicts a width-3 relaxed

BDD for the problem. The relaxed BDD contains 17 solutions, including the 15 feasible

solution in the exact BDD in Figure 5.1. The longest path in the exact BDD corresponds

to the solution (0,0,1,0,1) which has objective function value 9 while the longest path in the

relaxed BDD corresponds to the solution (0,0,1,1,1) which has objective function value 10,

an upper bound on the optimal value. �
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Figure 5.6: Width-3 Relaxed BDD for the BOP in Example 15.

Relaxed BDD Compilation

Before describing an algorithm that can be used to generate a relaxed BDDs, we first define

additional notation.

Let P be a BOP with z(x) =
∑n

j=1 cj(xj) (we suppose the objective is to maximize z).

For any node u ∈ A, let P |u be the BOP with objective function
∑n

j=ℓ(u) cj(xj) and feasible

set as in P except that feasible solutions are required to have the tuple (x1, . . . , xℓ(u)−1)

restricted to Sol(Br,u). In other words, P |u is the optimization problem only on solutions

that can be extended into feasible solutions from the set of partial solutions represented by

paths from the root of B to node u. Similarly, P |x′ for any partial solution x′ is the BOP

resulting from fixing the variables in x′. In addition, let z(u) be the longest r − u path in

B.

We prove a lemma now that describes how an exact BDD can be generated for a sub-

problem of a BOP P . It will be used later for generating relaxed BDD and for the branch-

and-bound algorithm.

Lemma 8 Let x′ = (x′1, . . . , x
′
k) be a partial solution (that can be extended into a feasible

solution) on the first k variables in P and B an exact BDD for P . Let s be a sound state

function for P . If we begin Algorithm 8 with s(r) = s0 = s(x′) and run iterations from
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j = k + 1, . . . , n, the BDD generated, B′, will be an exact BDD for P |u, where u ∈ Lk+1 is

the node in B for which x′ ∈ Sol(Br,u); i.e., s is a sound state function for P |u when s0 is

set to s(x′).

Proof. Proof B is an exact BDD for P so Sol(Bu,t) = F (x) for any x ∈ Sol(Br,u); in

particular, Sol(Bu,t) = F (x′). In addition, it must be that Sol(Bu,t) = Sol(P |u). It therefore

suffices to show that Sol(Bu,t) = Sol(B′). But, any path created that starts from u will

always be created when Algorithm 8 is run with r having the same state as u, and vice-versa.

�

Relaxed BDDs can be generated via a modification of Algorithm 8 and require the

definition of a relaxation function ⊕ : S × S → S. This function takes as argument two

states s1, s2, both corresponding to partial solutions x1, x2 on the same set of variables (say

x1, . . . , xk), and returns a new state snew = s1 ⊕ s2. A valid relaxation function requires

that running Algorithm 8 with state snew as the state of the root node using variables

xk+1, . . . , xn will generate a BDD B′ for which Sol(B′) ⊇ Sol(P |xi). We will give several

examples of functions later in this section, but first describe how to generate a relaxed BDD

given such a function.

Algorithm 10 describes a modification to Algorithm 8 that will generate a relaxed BDD.

It proceeds exactly as in the case of generating an exact BDD, but whenever a layer Lj

exceeds the preset maximum allotted width W , the algorithm selects two nodes in Lj and

merges them (along with all arcs directed at either of them). The state of the newly

created node is set via the relaxation function ⊕ so that no feasible solutions will be lost.

Let build relaxation(X, s, update) be the function that returns a relaxed BDD via this

modification.

The quality of the relaxed BDD generated hinges greatly on the selection of nodes to

merge in line 2 in Algorithm 10. The authors have investigated several possible heuristics

for this choice. In preliminary computational work, selecting the nodes u1, u2 that have the

worst objective function value (i.e., have lowest z(u) values in Lj) works well and we employ

thus heuristic in the computational work described in Section 5.8.
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Algorithm 10 Node merger for obtaining a relaxed BDD.

Insert immediately after line 5 of Algorithm 8.

1: while |Lj | > W do

2: {u1, u2} := node select(Lj)

3: snew := s(u1)⊕ s(u2)

4: Lj ← Lj\{u1, u2}

5: if ∃u′ ∈ Lj with s(u′) = snew then

6: merge({u1, u2}, u
′)

7: else

8: Create node û with s(û) = snew

9: merge({u1, u2}, û)

10: Lj = Lj ∪ {û}

Examples

• Knapsack Problem (KP)

Let P be a KP and let s be the state for the KP from Section 5.4.2.

Proposition 6 Let

B = build exact({xk+1, . . . , xn}, s, update)

and

B′ = build exact({xk+1, . . . , xn}, s
′, update),

with s < s′. Then Sol(B) ⊇ Sol(B′)

Proof. Proof As S is a sound state function, the function build exact(X, s, update)

will return an exact BDD for P |x′ , for any partial solution with s(x′) = s. The feasible

region for P |x′ is those tuples (xk+1, . . . , xn) for which
∑n

j=k+1 sjxj ≤ S−
∑k

j=1 sjx
′
j .

Now, take partial solutions x, x′ having s(x) = s, s(x′) = s′. Sol(P |x) ⊇ Sol(P |x′) and

therefore the larger the value of the state assigned to the root of the BDD, the fewer

solutions it will contain, and these solutions will be contained in the BDD created

with any smaller value. �
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From Proposition 6, when we combine nodes u1 and u2 into some node w, we can let

snew = min{s1, s2},

because decreasing si can only introduce more solutions to the BDD Bw,t as compared

to Bui,t.

• Inverse Knapsack Problem (IKP)

Let P be a IKP and let s be the state for the IKP from Section 5.4.2. Much like for

the KP, we can let

snew = max{s1, s2}.

We replace the min with a max because in this case, increasing si can only introduced

more solutions.

• WMISP

Let P be a WMISP and let s be the state for the WMISP from Section 5.4.2.

Proposition 7 Let

B = build exact({xk+1, . . . , xn}, s, update)

and

B′ = build exact({xk+1, . . . , xn}, s
′, update),

with s ⊆ s′. Then Sol(B) ⊆ Sol(B′)

The proof of Proposition 7 can be found in previous chapters and is based on the idea

that if we include more vertices in the state of a node, more vertices will be eligible

to be added to the independent sets under this node, thereby increase the number of

solutions in the BDD.

Therefore, we can use

snew = s1 ∪ s2

as the relaxation operation.

As the WMCP and the SPP can both be formulated as a WMISP, this relaxation

function also works for these problems.
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• SCP

The compilation of relaxed BDD for the SCP is discussed above. In relies on the

following proposition:

Proposition 8 Let

B = build exact({xk+1, . . . , xn}, s, update)

and

B′ = build exact({xk+1, . . . , xn}, s
′, update)

with s ⊆ s′. Then Sol(B) ⊇ Sol(B′)

The proof is based on the interpretation of the state of a solution as the set of con-

straints that still need to have some variable set to 1. If we eliminate constraints from

this state, we can only increase the set of solutions in the BDD because the condition

of feasibility becomes relaxed.

• IP

Developing a relaxation operation for a general IP can be difficult. Assuming ai,j ≥ 0

one can let the relaxation operation take the coordinate-wise minimum because each

constraint can be seen as a knapsack constraint.

5.5.2 Restricted BDDs

A BDD B is a width-W restricted BDD for P if ω(B) ≤ W and Sol(B) ⊆ Sol(P ). Such a

structure has size |B| ≤ nW and so enforcing a maximum width of W controls the size of

the BDD.

Much like for relaxed BDDs, a restricted B can be used to provide a lower-bound on

the objective function. As with exact BDDs, a solution in Sol(B) maximizing an additively

separable objective function can be found via a simple longest path calculation. As B is a

restricted BDD, every solution will be feasible and so the longest path will return the best

feasible solution in the restricted BDD.
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Figure 5.7: Width-3 Restricted BDD for the BOP in Example 16.

Algorithm 11 Node deletion for obtaining a restricted BDD.

Insert immediately after line 5 of Algorithm 8.

1: while |Lj | > W do

2: u′ := node select(Lj)

3: delete(u′)

Example 16 Consider again the KP from Example 10. Depicted in Figure 5.7 is a width-3

restricted BDD. Each of the 13 solution represented by the BDD are feasible and the longest

path (corresponding to (0,1,1,0,0)) has value 8, a lower bound on the optimal value. �

There are many ways to generate a restricted BDD. One can do a modification as in

Section 5.5.1 and merge nodes whenever the width exceeds a given threshold by defining a

restriction operation. However, a simpler modification works as well. During preliminary

computational testing it was identified by the authors that the following modification to

the exact BDD compilation algorithm produces higher quality solutions than defining a

restriction operation, and so we present this method here.

Algorithm 11 can be used to generate a restricted BDD. It proceeds as in Algorithm 8,

and during the construction, whenever a layer exceeds the preset maximum width, it selects

some node in that layer and deletes it from the BDD. Such an operation only removes

solutions and hence creates a BDD representing only feasible solutions.
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Algorithm 12 delete(u′)

1: for all u ∈ Lj−1 with arc directed at u′ (b0(u) or b1(u) = u′) do

2: if d+(u) = 1 then

3: delete(u)

4: Lj = Lj \ {u
′}

The operation that selects a node u′ ∈ Lj to delete can have a dramatic effect on the

quality of the restricted BDD that is generated. In particular, even a width-1 BDD will

contain an optimal solution if the correct nodes to delete are always selected. The authors

have experimented with various methods and find that selecting the node u′ with the worst

objective function value (i.e., z(u′) is smallest amongst all nodes in Lj) yields restricted

BDD with high quality solutions (as compared with other heuristics tested).

Let the function build restriction(X, s, update) be Algorithm 8 supplemented with Al-

gorithm 11.

5.6 Branching via BDDs

5.6.1 Partitioning the Solution Space

Let P be a BOP with z =
∑n

j=1 cj(xj) (we suppose the objective is to maximize z) and

B = (U,A) be a relaxed BDD for P .

We begin by defining when a node in B is exact versus when it is relaxed. An node u is

an exact node if for any two partial solutions x1, x2 ∈ Sol(Br,u), F (x
1) = F (x2) and these

sets are not empty (i.e., x1 and x2 can be completed to feasible solutions). A node is relaxed

otherwise.

A set of nodes C ⊆ U is an exact r − t cut if there is no path in B from r to t that

doesn’t use a node from C and all nodes in C are exact.

Example 17 Consider the KP from Example 10. Figure 5.8 depicts a width-3 relaxed

BDD for the problem. The nodes are named r, t or an associated integer and in parenthesis

next to the name is a label indicating whether the node is exact or relaxed for the KP.
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Figure 5.8: Width-3 Relaxed BDD for the BOP in Example 17.

Consider, for example, node 6. The two partial solutions ending at node 6 are (0,0,0)

and (0,0,1). The completion (1,1) (i.e., assigning x4 = x5 = 1) is feasible for (0,0,0) but

infeasible for (0,0,1). Therefore, 6 is relaxed. In contrast, consider node 8. The three partial

solutions, (0,1,1), (1,0,1), (1,1,0), can all only be completed into feasible solutions by setting

x4 = x5 = 0 thereby making 8 an exact node. �

Theorem 10 Let C be an exact r − t cut for B. Then,

z∗(P ) = max
u∈C
{z(u) + z∗(P |u)}

Proof. Proof We begin by showing z∗(P ) ≤ maxu∈C{z(u) + z∗(P |u)}.

Let x∗(P ) be an optimal solution to P . As B is a relaxed BDD, x ∈ Sol(B) so there

exists some r− t path p in B corresponding to x∗(P ). Since C is an r− t cut, p goes through

some node u′ ∈ C. Let x∗(P ) = (x1, x2), where x1 is x∗(P ) on variables x1, . . . , xℓ(u)−1 and

x2 is x∗(P ) on the remaining variables.

We first claim that z(u′) =
∑ℓ(u′)−1

j=1 cj(x
1
j ). If not, then there is some other partial solu-

tion x′ in Sol(Br,u′) with z(u′) =
∑ℓ(u′)−1

j=1 cj(x
′) >

∑ℓ(u′)−1
j=1 cj(x

1
j ). But, since u′ is exact,

F (x′) = F (x1), making the solution x̃ = (x′, x2) feasible, and
∑n

j=1 x̃j >
∑n

j=1 x
∗(P )j ,

contradicting that x∗(P ) is an optimal solution.



144 CHAPTER 5. DECISION DIAGRAM-BASED BRANCH AND BOUND

In addition, since u′ is an exact node, the feasible set to P |u′ coincides exactly with F (x)

for every x ∈ Sol(Br,u′) and in particular to F
(
x1
)
. Therefore, x2 must be optimal to P |u′ ,

making z∗(P |u′) =
∑n

j=ℓ(u) x
2
j .

Therefore,

z∗(P ) =

n∑

j=1

x∗(P )j = z(u′) + z∗(P |u′) ≤ max
u∈C
{z(u) + z∗(P |u)},

as desired.

We now show the other side of the inequality. Suppose, by way of contradiction, that

z∗(P ) < z(u′) + z∗(P |u′)

for some u′ ∈ C. Let x′ be the partial solution in Sol(Br,u) achieving z(u
′); i.e.,

∑ℓ(u)−1
j=1 x′j =

z(u′). As u is exact, x′ can be completed into a feasible solution, and the completion x′′ of

x′ that maximizes z is the optimal solution to P |u′ . Then, the feasible solution x = (x′, x′′)

satisfies that z(u′)+z∗(P |u′) =
∑n

j=1 cj(xj), contradicting that z
∗(P ) is the optimal solution

to P . �

Example 18 Consider again the relaxed BDD in Figure 5.8. Consider the cut C = {1, 2}.

For node 1, z(1) = 0 and the best possible completion with x1 fixed to 0 is (0,1,0,1). There-

fore, for this node, z(1) + z∗(P |1) = 0+ 9 = 9. For node 2, z(2) = 2 because the one partial

solution ending at 2 is (1) and c1 = 2 so that c2 ·1 = 2. In addition, the best possible comple-

tion with x1 set to 1 is (0,1,0,0) which has objective function value 5. Therefore, for this node,

z(2)+z∗(P |2) = 2+5 = 7. The optimal value is max{z(1)+z∗(P |1), z(2)+z
∗(P |2)} = 9. �

Theorem 10 gives us a method of branching so as to create a complete search of the

feasible set. Given a BOP P , we can build a relaxed BDD B and, for any exact r − t cut

C = {u1, . . . , uk}, create subproblems P |ui
. Solving each subproblem yields optimal values

z∗ (P |u1
) , . . . , z∗ (P |uk

). Adding the longest path lengths z(u1), . . . , z(uk) in the relaxed

BDD to each of these values, and taking the maximum of the values z(ui) + z∗ (P |ui
) will

therefore yield the optimal value for P .

One can also uncover an optimal solution. When creating the subproblems P |uk
we also

save any partial solution x′k ∈ Br,uk
that has objective function value z(uk). Let x∗ (P |uk

)
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be the optimal solution for each of the subproblems. Then, for the k′ that maximizes

z(uk′) + z∗
(
P |uk′

)
, the solution

(
x′k′ , x∗

(
P |uk′

))
will be an optimal solution for P .

5.6.2 Labeling Nodes as Exact/Relaxed

Identifying which nodes in a relaxed BDD B are exact is computationally difficult. However,

adding the following to the top-down relaxed BDD construction algorithm will identify a

subset of the nodes that are indeed exact. Such a procedure can then be used to identify

an exact r − t cut.

Initialize the root node r to have label e(r) = 1, where e(u) = 1 indicates that the node

u is exact. Now, having constructed layers L1, . . . Lj and labeled nodes in Lj as exact or

not, consider a node u ∈ Lj . If when considering appending the BDD with an arc and

snew doesn’t exists in layer Lj+1, a new node unew is created (as described in Algorithm 8)

and set e(unew) = e(u). If otherwise snew does exist at some node u′ ∈ Lj+1, we set

e(u′) = min{e(u′), e(u)} (i.e., e(u′) will be 0 if either it is currently 0 or if e(u) is 0). Lastly,

whenever the modification in Algorithm 10 is employed due to a layer growing beyond the

preset maximum width W , we set e(u1) = e(u2) = 0 for the two nodes chosen to be merged.

Theorem 11 If e(u) = 1 then u is exact.

Proof. Proof e(u) = 1 if any only if no node in Br,u is ever forcibly merged via the modi-

fication in Algorithm 10. Now, suppose we build an exact BDD via Algorithm 8 without

the modification of Algorithm 10 and let B′ be the exact BDD generated. There must be a

node u′ in B′ with Sol(B′
r′,u′) = Sol(Br,u) because the same operations leading to u must

occur in the generation of B′ as well. As B′ is an exact BDD, each node in B′ is exact.

Therefore, u must be exact. �

The converse of the statement in Theorem 11 is not necessary true as shown by the

following example.

Example 19 Consider the partially constructed relaxed BDD in Figure 5.9b for the in-

dependent sets in the star graph in Figure 5.9a. The partial solutions (0), (1) have different

feasible completions. For example, the solution (0, 0, 0, 0, 1), which corresponds to the set
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v1

v2

v4

v3

v5

(a) Star Graph

1

2

(b) Partially Constructed Relaxed BDD

Figure 5.9: A star graph and a partially constructed relaxed BDD for the independent sets

in B

{v5} is an independent set while (1, 0, 0, 0, 1), corresponding to the set {v1, v5}, is not an

independent set. Therefore, the single node in L2 is a relaxed node and during the compi-

lation algorithm it would have resulted from an instantiation of Algorithm 10. Therefore,

the right-most node in L3 would have been designated as relaxed, because there is an in-

coming arc directed from a relaxed node. However, the two solutions represented by paths

to this node, (0, 1) and (1, 1), have the same set of feasible completions: x3 and x4 assigned

arbitrarily, but x5 = 0.

�

5.6.3 Selecting an Exact r − t Cut

As described in Theorem 10 any exact r − t cut suffices for partitioning the solution space.

For example, as long as the maximum width of a relaxed BDD is greater than or equal to

2, we can use the second layer (i.e., C = L2) which in effect creates subproblems defined

by setting x1 equal to 0 or 1. However, having nodes in deeper layers of the BDD creates

subproblems defined by several value assignments to variables taken all at once. In addition,

the deeper the nodes in the cut, the more likely that paths have merged above the nodes

and therefore creating subproblems may remove symmetry as well.

We propose three methods for selecting cuts.
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• Traditional Branching

Here, we set C = L2. As discussed above, this has the effect of branching on the

designation of the variable associated with the first layer of the BDD. This is the

shallowest cut possible but mimics traditional branching schemes.

• Last-Exact-Layer

We define, for a proper relaxed BDD B (i.e., a BDD for which Sol(B) ⊃ Sol(P )), the

last-exact-layer of B as the set of nodes LEL(B) = Lj′ , where j
′ is the maximum value

of j for which each node in Lj is exact.

Although identifying precisely which nodes in a relaxed BDD are exact can be hard,

identifying LEL(B) can be done during the construction of a relaxed BDD, as proved

in Theorem 12, if a complete state function (and associated update function) is known.

Theorem 12 Let u be the first node for which e(u) = 0 and suppose Algorithm 8 is

run with a complete state function. Then LEL(B) = Lℓ(u)−1.

Proof. Proof We first show that if Lj contains a relaxed node then Lj+1 must also

contain a relaxed node. Let u be a relaxed node in Lj . Then, either there exists

a solution x′ ∈ Sol(Br,u) which has no feasible completion or there exists solutions

x1, x2 ∈ Sol(Br,u) for which F (x
1) 6= F (x2).

In the former case, for any arc a directed out of u, (x′, da) will also have no feasible

completion.

For the latter case, suppose, without loss of generality, that there exists a y ∈ F (x1)

which is not in F (x2). Let x̃1 = (x1, d), where d is the value assigned to variable xℓ(u)

in y. Since B is a relaxed BDD, there must be a node u′ ∈ Lj+1 with x̃′ ∈ Sol(Br,u′).

Consider x̃2 = (x2, d). This solution is also in Sol(Br,u′). Then, u′ must be relaxed,

because, since y /∈ F (x2), the partial solution y′, which is obtained by removing the

value assigned to variable xj in y, will not be in F (x̃2), although it is in F (x̃1).

We need only show that if we use a complete state function in Algorithm 8, the first

node u to have e(u) = 0 must be relaxed. The first node designated relaxed must
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be done so because of the instantiation of Algorithm 10. Since the state function is

complete, we know that the two node u1 and u2 that are combined have solutions

x1 ∈ Sol(Br,u1
) and x2 ∈ Sol(Br,u2

) for which F (x1) 6= F (x2) (this may not be the

case if the state function is only sound and not complete). When the nodes are merged

into u′ or û, these two solutions will be a part of the solution space of the same node,

and therefore u will be relaxed. �

Therefore, given a complete state function, we can easily identify what LEL(B) is. If

only a sound state function is employed, we can still use the layer above the first node

that is designated as an exact r − t cut, but it may not be the actual last-exact-layer

of B.

• Transition-Cut

We define, for a proper relaxed BDD B, the transition-cut of B as the set of nodes

TC(B) = {u : e(u) = 1, ∃(u, u′) ∈ A with e(u′) = 0},

where e(u) is set as described in the beginning of Section 5.6.2. We show now that

TC(B) is an exact r − t cut.

Theorem 13 Let B = (U,A) be a proper relaxed BDD. TC(B) is an exact r − t cut.

Proof. Proof By the definition of a transition-cut, each node is exact. We need only

show that each solution goes through some node in TC(B).

Take any x ∈ Sol(B). The path p corresponding to this solution ends at t. Since B

is a proper relaxation, e(t) = 0. Since e(r) = 1 there must be a first node u ∈ p for

which e(u) = 0. The node immediately preceding this node in p will be in TC(B), as

desired. �

Example 20 Consider again the relaxed BDD in Figure 5.8. The three examples of cuts

discussed above are:

L2 = {1, 2}

LEL(B) = L3 = {3, 4, 5}

TC(B) = {3, 7, 10}
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�

5.7 Branch and Bound

5.7.1 The Algorithm

We now present the main algorithm of the chapter. It utilizes relaxed BDD for upper-bounds

(assuming a maximization problem) and restricted BDDs for lower-bounds. In addition, the

algorithm uses exact r − t cuts in relaxed BDDs to create subproblems.

The algorithm iteratively search over subproblems, creating relaxed and restricted BDDs.

Each subproblem is defined by a search tree node u that contains information necessary to

build an exact (and hence relaxed or restricted) BDD of a subproblem that needs to be

explored. This consists of a set of variables X(u) in the subproblem, a state s(u) which will

be assigned as the state of the root, and a value z(u) which is the largest value of the sum

of a partial solution on the variables not in X(u) that leads to this subproblem.

Starting with P , we create a search tree node u for the entire problem on variables

x1, . . . , xn. We initialize this node to have state s0, the initial state necessary to create an

exact BDD. In addition, the update function is supplied. We let this search node be u,

the initial search tree node. In addition, as in typical branch-and-bound algorithms, the

optimal value zopt is initialized to −∞. This search tree node is put in a queue of nodes to

explore, Q.

Now, while there are search tree nodes left to explore, we select a node u ∈ Q and remove

u′ from Q. We first build a restricted BDD B for the subproblem defined by the state s(u)

on variables X(u). If the longest path value in B plus the value z(u) is larger than the

current value of zopt, we update zopt to equal this sum. We then delete B from memory.

Now, we build a relaxed BDD B, again for the subproblem defined by the state s(u) on

variables X(u). This BDD supplies an upper-bound for the subproblem. If the upper-bound

z∗(B) plus the value z(u) is less than or equal to zopt we need not explore this subproblem

further, and B is deleted without creating any further search tree nodes.

Otherwise, z∗(B) + z(u) > zopt and we need to explore this subproblem further. From
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Theorem 10 we know that any exact r − t cut in B will allow us to generate subproblems

that will explore the entire feasible set remaining in this subproblem. We can do this by any

method, or specifically via the labeling e described in Section 5.6.2. From the cut chosen,

C, we create a search tree node u(w) for each w ∈ C. The state of this node s(u(w)) is set

to the state of w. By Lemma 8, this state is the initial state necessary to generate an exact

BDD for P |w and so also a relaxed or restricted BDD. The variables in X(u(w)) are the

variables in B that are below the layer of node u, which are the variables in P |u(w). Finally,

z(u(w)) is the value of the partial solution with the best possible objective value that when

set yields subproblem P |u(w).

The algorithm follows a standard branch-and-bound scheme. The primal heuristic em-

ployed is restricted BDDs and relaxed BDD provide relaxation bounds. The two BDDs

need exactly the same information as input; namely the longest path value to the node

that creates the subproblem, the set of variables remaining to explore, and the initial state

for this subproblem. Search nodes are pruned based on objective function values in the

subproblems.

We note here that, as presented, the algorithm only returns on optimal value. A simple

modification allows one to recover the optimal solution as well. Namely, we save an addi-

tional piece of information at each search tree node u. This information will be the values

assigned to the variables that yield a partial solution of value z(u) in X \X(u). This can

be determined and saved when creating each search tree node.

5.7.2 Comparison with Traditional Branch-and-Bound Algorithms

There are many algorithms designed to solve BOPs. Many of these rely on a variant of the

following branch-and-bound scheme. Begin by solving a relaxation for the original problem

P , and then select a variable xk to create subproblems P |xk=0, P |xk=1. As

z∗(P ) = max{c1(0) + z∗(P |xk=0), c2(1) + z∗(P |xk=1)},

the algorithm proceed by recursively solving each subproblem, yielding a complete algo-

rithm.

We highlight the major differences, contributions, and benefits of the BDD-based branch-
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Algorithm 13 solve(P,X, s0, update)

1: create search node u′

2: X(u′) = X

3: z(u′) = 0

4: s(u′) = s0

5: Q = {u′}

6: zopt = −∞

7: while Q 6= ∅ do

8: u = select node(Q)

9: Q = Q \ {u}

10: B = build restriction(X(u), s(u))

11: if (z(u) + z∗(B) > zopt) then

12: zopt = z(u) + z∗(B)

13: delete B

14: B = build relaxation(X(u), s(u))

15: if (z(u) + z∗(B) > zopt) then

16: let C be an exact r − t cut in B

17: for all w ∈ C do

18: create search node u(w)

19: X(u(w)) = X(u) \ {xj : j = |X| − |X(u)|+ 1, . . . , |X| − |X(u)|+ ℓ(w)}

20: z(u(w)) = z(u) + z(w)

21: s(u(w)) = s(w)

22: Q = Q ∪ {u′}

23: delete B

24: return zopt

and-bound algorithm.

1. Relaxed and restricted BDDs are a novel technique for providing bounds to BOPs.

They can be used as a standalone bounding method or be employed in conjunction

with other relaxations and heuristics. The only information necessary (in addition to
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a sound state function and update function) to create a relaxed of restricted BDD for

a subproblem is either a state or a partial solution that yields that subproblem. In

addition, the quality of the relaxation (heuristic) at each search tree node is flexible in

that the maximum width determines how tight the approximation generated will be.

2. The BDD-based algorithm requires little memory consumption. The amount of infor-

mation stored at each search tree node is minimal, and at most one BDD is saved at

any point during the execution of the algorithm.

3. Search tree nodes are created, in general, based on several value assignments to vari-

ables, all taken at once. This is because any exact r − t cut can be used to create

subproblems and ensure that the entire feasible region is explored. The deeper in the

BDD this cut is taken, the more variables are assigned.

4. The subproblems generated are based on potentially a set of solutions, not just one.

When a node u in a relaxed BDD is part of an exact r − t cut that is used to create

subproblems, there may be many solutions from the root of the relaxed BDD to u. In

a standard branching scheme, each of these partial solutions could potentially lead to

different search tree nodes.

5.8 Computational Results

In this section we present results comparing the run time and solution quality of the BDD-

based branch-and-bound algorithm with a leading general-purpose solver for BOPs, CPLEX.

We apply the technique to the MISP and run the comparison on complements of the graphs

in the well-known DIMACS benchmark set (http://cs.hbg.psu.edu/txn131/clique.html) for

the Maximum Clique Problem.

The tests were run on an Intex Xeon E5345 with 8GB RAM. The BDD-based algorithm

was implemented in C++ and CPLEX 12.4 was used. The settings used in CPLEX were

set to default.

Many inputs to the BDD-based algorithm are necessary. There include the frequency

of heuristics, the order of the variables used, the exact r − t cut used, the selection of
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subproblems, and the maximum width allowed for the relaxed and restricted BDDs. In

our implementation, a width-100 restricted BDD was generated at each search tree node, to

name a few. The order of the variables is given by the min-state ordering from the Chapter 2.

We employed the TC(B) cut. Subproblems were selected based on the best relaxation bound

known for each node. Namely, the node with the worst z(u) value amongst the nodes in Q

is always selected. The original BDD generated has width-100, and all subsequent BDDs

have width-1. This mimics the approach often taken in IP; a reasonable amount of time is

spent at the root node finding cutting planes and tightening the relaxation while less time

is devoted to each subsequent search tree node.

We use the IP model for the MISP in Section 5.2 and note that there are different IP

models for the MISP. For the purposes of computational testing we used this traditional

model. Although other choices may yield different results, the computational results pre-

sented here and to give a basis for the proposed algorithm. The authors by no means claim

that the BDD-based branch-and-bound algorithm outperforms state-of-the-art IP technol-

ogy. We compare with IP (and in particular CPLEX) to test whether or not the proposed

algorithm has an basis for further development and if it has the capability to solve problems

of at least similar difficulty to other general-purpose methods for BOP. The results suggest

this.

The results are given in Table 5.1 where both algorithm were given a maximum of half

an hour. We begin with the name of the instances and the number of vertices. We then, for

both methods, give the time (in seconds), the lower-bound, upper-bound, and the percent

gap (UB−LB
LB · 100%) proved in the time given.

The algorithms were tested on 66 instances. 33 instances were solved by the BDD-based

method, as opposed to 30 instances by the IP-method. For 28 instances, the gap provided by

the BDD-based algorithm was better than the IP gap, as opposed to only 14 instances where

IP-based bound provided a tighter gap. In addition, a statistical test for the differences in

the means yields a p-value of 0.03 that the percent gap provided by the BDD algorithm is

stronger than the percent gap provided by CPLEX.

In addition, we provide two plots of the data points. In Figure 5.10 we depict the number

of instances solved, per method, versus time. We see that at any given point in time, more
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Figure 5.10: Number of instances solved versus time.

instances are solved by the BDD-based algorithm than CPLEX. Furthermore, in Figure 5.11

we depict the percent gap, after the allotted 1800 seconds, for both methods. From this

plot we can deduce that the BDD-based algorithm for the MISP on this data set is more

robust than the IP-based method used.
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Table 5.1: Comparison of BDD-Based branch-and-bound with IP solver CPLEX

Instance BDD IP

name n tBDD LBBDD UBBDD %GapBDD tIP LBIP UBIP %GapIP

brock200 1.clq 200 1800 21 22 4.76 1800 21 24.78 18.00

brock200 2.clq 200 6.24 12 12 0.00 754.06 12 12.00 0.00

brock200 3.clq 200 38.36 15 15 0.00 1058.24 15 15.00 0.00

brock200 4.clq 200 118.92 17 17 0.00 1800 17 18.06 6.22

brock400 1.clq 400 1800 27 56 107.41 1800 22 64.20 191.83

brock400 2.clq 400 1800 27 56 107.41 1800 21 64.49 207.12

brock400 3.clq 400 1800 30 62 106.67 1800 23 64.87 182.05

brock400 4.clq 400 1800 31 58 87.10 1800 21 64.72 208.17

brock800 1.clq 800 1800 19 86 352.63 1800 13 92.00 607.69

brock800 2.clq 800 1800 20 74 270.00 1800 13 93.00 615.38

brock800 3.clq 800 1800 19 71 273.68 1800 14 93.00 564.29

brock800 4.clq 800 1800 19 88 363.16 1800 13 93.10 616.19

c-fat200-1.clq 200 0.01 12 12 0.00 16.17 12 12.00 0.00

c-fat200-2.clq 200 0.01 24 24 0.00 6.93 24 24.00 0.00

c-fat200-5.clq 200 0.01 58 58 0.00 41.6 58 58.00 0.00

c-fat500-10.clq 500 0.04 126 126 0.00 107.77 126 126.00 0.00

c-fat500-1.clq 500 0.04 14 14 0.00 310.38 14 14.00 0.00

c-fat500-2.clq 500 0.04 26 26 0.00 358.31 26 26.00 0.00

c-fat500-5.clq 500 0.05 64 64 0.00 190.9 64 64.00 0.00

hamming10-2.clq 1024 1800 512 541 5.66 0.06 512 512.00 0.00

hamming10-4.clq 1024 1800 38 104 173.68 1800 27 48.00 77.78

hamming6-2.clq 64 0.25 32 32 0.00 0 32 32.00 0.00

hamming6-4.clq 64 0 4 4 0.00 0.5 4 4.00 0.00

hamming8-2.clq 256 476.3 128 128 0.00 0 128 128.00 0.00

hamming8-4.clq 256 130.55 16 16 0.00 5.25 16 16.00 0.00

Continued on next page
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Instance BDD IP

name n tBDD LBBDD UBBDD %GapBDD tIP LBIP UBIP %GapIP

johnson16-2-4.clq 120 0.35 8 8 0.00 0.08 8 8.00 0.00

johnson32-2-4.clq 496 1800 16 24 50.00 4.01 16 16.00 0.00

johnson8-2-4.clq 28 0 4 4 0.00 0 4 4.00 0.00

johnson8-4-4.clq 70 0.2 14 14 0.00 0.02 14 14.00 0.00

keller4.clq 171 28.27 11 11 0.00 9.45 11 11.00 0.00

keller5.clq 776 1800 27 60 122.22 1800 21 31.00 47.62

keller6.clq 3361 1800 57 171 200.00 1800 33 1680.50 4992.42

MANN a27.clq 378 1800 126 136 7.94 5.15 126 126.00 0.00

MANN a45.clq 1035 1800 342 367 7.31 182.42 345 345.00 0.00

MANN a81.clq 3321 1800 1097 1215 10.76 1800 1100 1112.50 1.14

MANN a9.clq 45 0.01 16 16 0.00 0.03 16 16.00 0.00

p hat1000-1.clq 1000 728.8 10 10 0.00 1800 7 500.00 7042.86

p hat1000-2.clq 1000 1800 36 106 194.44 1800 30 213.89 612.95

p hat1000-3.clq 1000 1800 46 212 360.87 1800 48 210.49 338.51

p hat1500-1.clq 1500 1800 12 21 75.00 1800 6 750.00 12400.00

p hat1500-2.clq 1500 1800 44 197 347.73 1800 25 750.00 2900.00

p hat1500-3.clq 1500 1800 52 291 459.62 1800 42 750.00 1685.71

p hat300-1.clq 300 1.56 8 8 0.00 1799.93 7 16.03 129.02

p hat300-2.clq 300 168.25 25 25 0.00 1764.15 25 25.00 0.00

p hat300-3.clq 300 1800 33 48 45.45 1800 33 47.65 44.39

p hat500-1.clq 500 23.5 9 9 0.00 1800 6 25.71 328.51

p hat500-2.clq 500 1800 34 44 29.41 1800 23 55.34 140.62

p hat500-3.clq 500 1800 43 95 120.93 1800 42 85.61 103.83

p hat700-1.clq 700 86.81 11 11 0.00 1800 5 34.32 586.35

p hat700-2.clq 700 1800 40 72 80.00 1800 27 74.49 175.90

p hat700-3.clq 70 1800 47 142 202.13 1800 48 113.84 137.16

san1000.clq 1000 40.59 15 15 0.00 1800 7 18.23 160.48

Continued on next page
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Instance BDD IP

name n tBDD LBBDD UBBDD %GapBDD tIP LBIP UBIP %GapIP

san200 0.7 1.clq 200 1.82 30 30 0.00 0.9 30 30.00 0.00

san200 0.7 2.clq 200 1.65 18 18 0.00 18.05 18 18.00 0.00

san200 0.9 1.clq 200 2.5 70 70 0.00 0.13 70 70.00 0.00

san200 0.9 2.clq 200 2.7 60 60 0.00 0.2 60 60.00 0.00

san200 0.9 3.clq 200 1800 44 54 22.73 0.98 44 44.00 0.00

san400 0.5 1.clq 400 5.28 13 13 0.00 1800 9 13.00 44.44

san400 0.7 1.clq 400 8.21 40 40 0.00 115.99 40 40.00 0.00

san400 0.7 2.clq 400 1800 30 31 3.33 1800 17 30.00 76.47

san400 0.7 3.clq 400 1800 21 26 23.81 1800 17 22.00 29.41

san400 0.9 1.clq 400 1800 100 126 26.00 3.25 100 100.00 0.00

sanr200 0.7.clq 200 444.27 18 18 0.00 1800 18 20.65 14.71

sanr200 0.9.clq 200 1800 39 59 51.28 1800 41 45.87 11.87

sanr400 0.5.clq 400 491.74 13 13 0.00 1800 10 38.28 282.78

sanr400 0.7.clq 400 1800 20 42 110.00 1800 18 58.47 224.85
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5.9 Conclusions and Future Work

In this chapter we present a novel branch-and-bound algorithm for binary optimization

problems (BOPs) that utilizes only binary decision diagrams (BDDs). The BDDs are used

for generating both relaxation bounds and heuristic solutions. In addition, the relaxed

BDDs also guide the branching. This technique allows for making branching decisions on

pools of partial solutions, as opposed to branching on single value assignments to variables,

as is typically done in algorithms designed to solve BOPs.

Computational results suggest to that proposed algorithm is well-suited for the maxi-

mum independent set problem as the algorithm is competitive with state-of-the-art integer

programming software on a standard benchmark set for this problem class.

Many aspects of the algorithm needs to be investigated, as with any general purpose

branch-and-bound algorithm. This includes looking at bettering the techniques for using

approximate BDDs for bounds, and also looking into how to use the BDD to guide the

search.
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Chapter 6

Finite-Domain Cuts for Graph

Coloring

6.1 Introduction

In integer programming models, a choice from several alternatives is typically encoded by

a set of binary variables. For example, the job assigned to a particular worker might be

represented by 0-1 variables yij , where
∑

j yij = 1 for each worker i, and yij = 1 indicates

that job j is assigned to worker i. Valid inequalities can then be generated in terms of the

0-1 variables, so as to strengthen the continuous relaxation of the model.

An alternative approach is to formulate such a choice directly in terms of finite-domain

variables. For example, variable xi might indicate which job is assigned to worker i. The

value of xi need not be a number, but if we choose to denote jobs by numbers, we can

analyze the convex hull of feasible solutions and write valid inequalities in terms of the

variables xi. These inequalities can then be mapped into a 0-1 model of the problem using

a simple change of variable. The resulting 0-1 inequalities may be different from and more

effective than known cutting planes for the 0-1 model.

This chapter explores the idea of using a finite-domain formulation of a problem as a

source of new valid inequalities for the 0-1 model. We will refer to such inequalities as

161
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finite-domain cuts. We apply the idea to the vertex coloring problem on graphs, which has

a natural finite-domain formulation in terms of all-different constraints. Such “global” con-

straints frequently appear in constraint programming models, where finite-domain variables

are often used rather than 0-1 variables to encode discrete choices.

We employ a common strategy for generating problem-specific cuts: the identification

of facet-defining cuts for special types of induced subgraphs, such as odd holes, webs, and

paths. We identify cuts that bound the objective function (which we call z-cuts) as well as

cuts that exclude infeasible solutions (x-cuts).

We find that for coloring problems, finite-domain cuts for several subgraph structures

(when mapped into 0-1 space) provide tighter bounds than known 0-1 cuts for those sub-

graphs. Furthermore, we identify more general structures for which finite-domain cuts are

substantially more effective than known cuts, or for which no known cuts exist.

We present here our results for webs, odd cycles, paths, and intersecting systems, because

they illustrate four possible outcomes:

• Finite-domain comb cuts, which differ from previously identified comb inequalities,

that exist depending on the size of the domain set.

• Finite-domain web cuts, when mapped into the 0-1 model, yield tighter bounds than

standard web cuts. This means, in particular, that if an existing algorithm identifies

separating web cuts, we can replace them with more effective finite-domain web cuts

at no additional computational cost.

• Odd cycles are a generalization of odd holes. We show that in the special case of odd

holes, finite-domain cuts provide tighter bounds than standard odd hole and clique

cuts. We can therefore replace known separating odd hole cuts with more effective cuts,

at no additional cost. In the general case of odd cycles, only two finite-domain cuts for

a given cycle provide a substantially tighter bound than hundreds or thousands of odd

hole and clique cuts that can be generated for that cycle. We provide a polynomial-

time algorithm that identifies all separating finite-domain cuts for a given odd cycle.

• By contrast, finite-domain path cuts do not improve existing bounds. When mapped

into 0-1 space, they have no effect on the bound provided by the standard 0-1 model.
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• Intersecting systems illustrate how a finite-domain perspective can yield facet-defining

cuts for novel structures. To our knowledge, no 0-1 cuts have previously been identified

for this general class of subgraphs. We also present a polynomial-time separation

algorithm.

Mapping finite-domain cuts into 0-1 space has the advantage that finite-domain cuts can

be combined with standard 0-1 constraints as well as previously known families of 0-1 cuts.

However, bounds can also be obtained directly from the finite-domain model by solving

its relaxation, which is much smaller than the 0-1 model. We investigate both approaches

computationally.

We begin below with a problem statement and brief literature review. We then describe

the mapping of finite-domain cuts into 0-1 space and prove some of its elementary properties.

We next describe some general properties of the finite-domain polytope and then derive

facet-defining inequalities for combs, odd cycles, webs, paths, and intersecting systems, and

study their properties when mapped into 0-1 space. In particular, we show that a family

of facet-defining x-cuts gives rise to a family of facet-defining z-cuts in a canonical way,

a result that is crucial for obtaining good bounds. A section on computational results

compares the strength of finite-domain cuts and known 0-1 cuts on odd cycles and webs. It

also demonstrates the advantages of odd cycle cuts on a set of benchmark instances. The

chapter concludes with a summary and suggestions for future research.

6.2 The Problem

Given an undirected graph G with vertex set V and edge set E, the vertex coloring problem

is to assign a color xi to each vertex i ∈ V so that xi 6= xj for each (i, j) ∈ E. We seek a

solution with the minimum number of colors; that is, a solution that minimizes |{xi | i ∈ V }|.

The vertex coloring problem can be formulated as a system of all-different constraints.

An all-different constraint alldiff(X) requires that the variables in set X take pairwise dis-

tinct values. Let {Vk | k ∈ K} be the vertex sets of the maximal cliques of G, and let Xk

be the set of variables xi with i ∈ Vk. Let the colors be denoted by distinct nonnegative

numbers vj for j ∈ J , so that each variable xi has the finite-domain D = {vj | j ∈ J}. Then
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the problem of minimizing the number of colors is

min z

z ≥ xi, i ∈ V

alldiff(Xk), k = 1, . . . ,K

xi ∈ D = {vj | j ∈ J}, i ∈ V

(6.1)

Here we use maximal cliques Vk, but any clique cover {Vk | k ∈ K} suffices to formulate the

coloring problem.

It is convenient assume that |V | = n colors v0, . . . , vn−1 are available. We also assume

v0 < · · · < vn−1. An initial question is how to select numerical domain values v0, . . . , vn,

and how polyhedral structure depends on the selection. We note that this same question

arises in 0-1 programming, because the numerical domain of a Boolean variable need not

be {0, 1}. In the Boolean case, polyhedral results are valid for any binary domain, modulo

appropriate adjustments in the coefficients and right-hand sides of valid inequalities. The

issue is more complicated for general finite-domains, but we find that the x-cuts identified

here are valid for arbitrary nonnegative domain values, while z-cuts are valid for any domain

of the form Dδ = {0, δ, 2δ . . . , (n − 1)δ}, where δ > 0. In practice, it is convenient to use

domain D1, because in this case the minimum color number z is one less than the chromatic

number.

A standard 0-1 model for the coloring problem uses binary variables yij to denote whether

vertex i receives color j, and binary variables wj that indicate whether color j is used. The

model is

min
∑

j∈J

wj

∑

j∈J

yij = 1, i ∈ V (a)

∑

i∈Vk

yij ≤ wj , j ∈ J, k ∈ K (b)

yij ∈ {0, 1}, i ∈ V, j ∈ J

(6.2)
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6.3 Previous Work

All facets for a single all-different constraint alldiff(X) are given in [40, 69]. If X =

{x1, . . . , xm} and each xi has domain {v1, . . . , vm} with n ≤ m, they are

|J|
∑

j=1

vj ≤
∑

i∈J

xi ≤
m∑

j=m−|J|+1

vj , all nonempty J ⊆ {1, . . . , n} (6.3)

where again v1 < · · · < vm. If m = n, (6.3) defines the affine hull when J = {1, . . . , n}. The

facial structure of a system of two all-different constraints is studied in [4, 5].

In [53] the dimension of all-different systems is considered and it was found that the

polytope is full-dimensional if and only if the number of domain values exceeds the chromatic

number. If the number of domain values equals the chromatic number, the polytope is

not full-dimensional, and it’s dimension depends on the structure of the constraints in the

problem.

Facets for general all-different systems are derived for combs in [47, 48, 53] and for odd

holes and webs in [52]. To our knowledge, the cuts we describe here for cycles, paths, and

intersecting systems have not been previously identified. We also generalize the web cuts in

[52] and introduce z-cuts for webs.

It is natural to ask when all facets of an all-different system are facets of individual

constraints in the system. It is shown in [53] that this occurs if and only if the all-different

system has an inclusion property, which means that pairwise intersections of sets Vk in the

alldiff constraints are ordered by inclusion. The structures studied here lack the inclusion

property and therefore generate new classes of facets.

Known facets for the 0-1 graph coloring model are discussed in [20, 56, 57, 59]. These

include cuts based on odd holes, webs, anti-webs, cliques, and paths.

Finite-domain cuts have been developed for a few global constraints other than alldiff

systems. These include the element constraint [40], the circuit constraint [27], the cardinality

constraint [42], cardinality rules [70], the sum constraint [71], and disjunctive and cumulative

constraints [42].

In a conference paper [11], we presented the cycle cuts described here and mapped them

into 0-1 space. The present chapter extends the computational tests to benchmark instances,

introduces additional families of cuts, and studies the properties of the mapping. Aside from
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[11], the strategy of mapping finite-domain cuts into 0-1 space has, to our knowledge, not

been previously investigated.

6.4 Mapping into 0-1 Space

We now specify what it means to map a valid finite-domain cut into 0-1 space. We first

discuss cuts for (6.1) involving only the variables xi, which we call x-cuts. We then consider

bounds on the largest color number z, which we call z-cuts.

We convert a valid x-cut ax ≥ b to a 0-1 inequality simply by replacing each xi with
∑

j vjyij . The inequality ax ≥ b therefore becomes

n∑

i=1

ai

n−1∑

j=0

vjyij ≥ b (6.4)

We refer to this as a 0-1 x-cut. It is important to analyze this conversion carefully, to ensure

that valid cuts are mapped to valid cuts and to study their strength in the 0-1 model.

The domain Dn of the coloring problem is the set of all tuples (x1, . . . , xn) with each

xi ∈ D. A bijection φ maps each x ∈ Dn to a point y = φ(x) given by

yij =







1 if xi = vj

0 otherwise
(6.5)

For S ⊂ Dn, let φ(S) = {φ(x) | x ∈ S}. All y ∈ φ(S) satisfy

n−1∑

j=0

yij = 1, i = 1, . . . , n (6.6)

An inequality ax ≥ b is valid for S ⊂ Dn if ax ≥ b for all x ∈ S. The inequality (6.4) is

valid for φ(S) if it is satisfied by all y ∈ φ(S). Valid cuts map to valid cuts:

Lemma 9 If ax ≥ b is valid for S ⊂ Dn, then (6.4) is valid for φ(S).

Proof. Supposing ȳ ∈ φ(S), we wish to show that ȳ satisfies (6.4). Because ȳ ∈ φ(S),

we have ȳ = φ(x̄) for some x̄ ∈ S. Thus ax̄ ≥ b, which implies that ȳ satisfies (6.4) because

x̄ =
∑

j vj ȳij from the definition of φ. �

An important issue is the strength of cuts mapped into 0-1 space. In particular, we

may wish to know whether a 0-1 x-cut (6.4) is redundant of a system Ay ≥ c of known
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0-1 cuts. To make this precise, we will say that (6.4) is redundant of system Ay ≥ c if all

y ∈ [0, 1]n×n satisfying (6.6) and Ay ≥ c also satisfy (6.4). Cut (6.4) is simply redundant if

all y ∈ [0, 1]n×n satisfying (6.6) also satisfy (6.4).

We now consider z-cuts, or bounds z ≥ ax + b on the largest color number z. If we

suppose that the color numbers are 0, . . . , n − 1, minimizing z is equivalent to minimizing

the number of colors minus 1. Because the number of colors is
∑

j wj , we map z ≥ ax + b

to the 0-1 inequality
n−1∑

j=0

wj − 1 ≥
n∑

i=1

ai

n−1∑

j=0

j yij + b (6.7)

which we call a 0-1 z-cut. This inequality may be added to the 0-1 model because some

optimal solution satisfies it. Yet (6.7) is not valid, because it can be violated by solutions

that use larger color numbers but the same number of colors. Thus 0-1 z-cuts have the

advantage of excluding symmetric solutions. We can ensure that (6.7) is formally valid by

adding symmetry breaking constraints

wj ≥ wj+1, j = 0, . . . , n− 2 (6.8)

to the 0-1 model (6.2).

We can now define validity as follows. Given S ⊂ Dn
1 , we say that the z-cut z ≥ ax+ b

is valid for S if maxi{xi} ≥ ax + b for all x ∈ S. Inequality (6.7) is valid for φ(S) when it

is satisfied by all y ∈ φ(S) and w ∈ {0, 1}n that satisfy (6.6), (6.8), and

wj ≥ yij , all i, j (6.9)

Then valid bounds map to valid bounds:

Lemma 10 If z ≥ ax+ b is valid for S ∈ Dn
1 , then (6.7) is valid for φ(S).

Proof. Suppose that ȳ ∈ φ(S) and w̄ ∈ {0, 1}n satisfy (6.6), (6.8) and (6.9). We wish to

show that (ȳ, w̄) satisfies (6.7). Because ȳ = φ(x̄) for some x̄ ∈ S, we have

max
i
{x̄i} ≥ ax̄+ b =

n∑

i=1

ai

n−1∑

j=0

j ȳij + b

It therefore suffices to show that

n−1∑

j=0

w̄j − 1 ≥ max
i
{x̄i} (6.10)



168 CHAPTER 6. FINITE-DOMAIN CUTS FOR GRAPH COLORING

Due to (6.8), we can suppose w̄j = 1 for j ≤ k and w̄j = 0 for j > k. Then from (6.9) we

have ȳij = 0 for all i and all j > k. Thus (6.6) implies
∑k

j=0 ȳij = 1 for all i, which implies

k∑

j=0

jȳij ≤ k, all i (6.11)

Now we have

n−1∑

j=0

w̄j − 1 = (k + 1)− 1 ≥ max
i







k∑

j=0

jȳij






= max

i







n−1∑

j=0

jȳij






= max

i
{x̄i}

where the inequality is due to (6.11). This establishes (6.10), as desired. �

It is an interesting question whether facets map to facets. In general, they do not.

Consider the feasible set S for the single constraint alldiff(x1, x2, x3) with xi ∈ {0, 1, 2}.

Then x1 + x2 ≥ 1 is one of the facet-defining inequalities (6.3). It maps to

y11 + 2y12 + y21 + 2y22 ≥ 1 (6.12)

This is not facet-defining because the convex hull of φ(S) has dimension 4, while only 2

points satisfy (6.12) at equality:







y10 y11 y12

y20 y21 y22

y30 y31 y32







=








0 1 0

1 0 0

0 0 1







,








1 0 0

0 1 0

0 0 1








The finite-domain cuts we obtain below do not in general map to facet-defining cuts

in 0-1 space. They can nonetheless provide substantially tighter bounds on the chromatic

number than known cuts, which themselves may not be facet-defining, as in the case of odd

hole cuts.

6.5 General Properties of the Polytope

In this section we describe two general properties of the finite-domain polytope in (6.1).

The first proves that facet-defining inequalities appear in pairs and the second proves that

for large enough domain values, all facet-defining inequalities contain coefficients with the

same sign. This is demonstrated by the comb inequalities in Section 6.7.

For this section, we suppose that our domain set is D1 but note that the result in

Theorem 14 extends all-different problems with domain set Dδ.



6.5. GENERAL PROPERTIES OF THE POLYTOPE 169

6.5.1 Complement Inequalities

Given a point x, the complement of x , denoted by C(x), is the n-dimensional vector (n−1)e,

where e is the n-dimensional vector with 1 in each coordinate.

Lemma 11 If x̃ is feasible then so is C(x̃).

Proof. Let x̃ be a feasible solution. Then, x̃j ∈ D1. Hence k − x̃j ∈ D1.

Furthermore, consider any two variables xj and xj′ . Since x̃ is feasible, if for some

k, xj , xj′ ∈ Xk then x̃j 6= x̃j′ . Therefore, (n−1)− x̃j 6= (n−1)− x̃j′ for any variables which

share a constraint. �

Theorem 14 Inequality ax ≥ δ1 is facet-defining if and only if there exists a δ2 such that

ax ≤ δ2 is facet defining.

Proof. (→) Let ax ≥ δ1 be facet defining. Take any point x̂ satisfying ax̂ = δ1. Define

δ2 = aC(x̂).

Suppose ax ≤ δ2 is not valid. Then there exits some feasible point x̃ such that ax̃ > δ2.

Hence

ax̃ > δ2 = aC(x̂) = a(n− 1)− ax̂.

Rearranging terms, we get

ax̂ > a(n− 1)− ax̃ = a((n− 1)− x̃) = aC(x̃).

x̃ is feasible, therefore, by lemma 11, C(x̃) is feasible, so aC(x̃) ≥ δ1. Hence,

ax̂ > aC(x̃) ≥ δ1,

contradicting that x̂ satisfies ax ≥ δ1 at equality.

In order to finish the proof that ax ≤ δ2 is facet defining, we display n affinely inde-

pendent points, each satisfying ax ≤ δ2 at equality. We know ax ≥ δ1 is facet defining, so

there exists n affinely independent points satisfying ax ≥ δ1 at equality. Let x1, . . . , xn be

these points. We show that their complements, C(xj), are n affinely independent points

satisfying aC(xj) = δ2.

For all j, axj = δ1 so that aC(xj) = a(n− 1)− axj = δ2.
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Now, suppose
∑n

j=1 λjC(x
j) = 0 and

∑n
j=1 λn = 0. Then,

0 =

n∑

j=1

λjC(x
j) =

n∑

j=1

λj((n− 1)− xj) = 0−
n∑

j=1

λjx
j .

And, since x1, . . . , xn are affinely independent,

n∑

j=1

λjx
j = 0 and

n∑

j=1

λj = 0→ λj = 0, for all j.

(←) Dividing ax ≤ δ2 by −1 produces (−a)x ≥ −δ2. Applying this first part of the proof,

we get that (−a)x ≤ δ̃2 is facet defining for some δ̃2. And hence, setting δ1 = −δ̃2 we get

that ax ≥ δ1 is facet defining. �

6.5.2 Signs of Coefficients in Facet-Defining Inequalities

In it interesting to consider what happens to the facial structure of the finite-domain poly-

tope when we consider variations in D. In this, and the next, section, we will explore what

happens to the polytope under changes to the domain set.

For this section, suppose we are given domain set Dk = {0, 1, . . . , k}. We address the

problem of characterizing the facet-defining inequalities as k varies.

Before providing the main result for this section, we first prove a lemma concerning

optimal graph colorings which is used to prove the main result.

Lemma 12 Let G = (V,E) be a graph and consider the Sum Coloring Problem:

min cx

alldiff(Xk), k = 1, . . . ,K

xi ∈ D
k,

(6.13)

where c ≥ 0 and Dk = {0, 1, . . . , k}.

There exists an optimal solution x̃ to the sum coloring problem (6.13) for which x̃i ≤ ∆,

where ∆ is the maximum degree of any vertex in G.

Proof. Suppose by contradiction that there exists a graph G′ such that in any optimal

solution x∗, there exists a variable with x∗i ≥ ∆ + 1. Take such an optimal solution and

consider variable xj with x∗j ≥ ∆+ 1. Let N(xj) be the neighborhood in G′ of xj :

N(xj) = {xi : (xi, xj) ∈ E(G′)}
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∆ is the size of the maximum neighborhood in G′, therefore |N(xj)| ≤ ∆. Hence, by the

pigeonhole principle, there exists a d ∈ {0, 1, . . . ,∆} such that d 6= x∗i for all xi ∈ N(xj).

Consider the feasible point x̃ defined by:

x̃i =







x∗i : i 6= j

d : i = j

c ≥ 0, therefore

ax̃ =
∑

i∈[v]

aix̃i =
∑

i∈[v],i6=j

aix̃i + ajd ≤
∑

i∈[v],i6=j

aix̃i + aj(∆ + 1) ≤ ax∗

We can do the same for all i with x∗i ≥ ∆+1, contradicting that the optimal solution cannot

have all variables with value less than or equal to ∆. �

We note that here that the above results is tight: there are graphs and vectors c for

which in any optimal solution x∗j = ∆ for some j.

Let G = (V,E) be the bipartite graph defined by

V = {x1, x2, x3} ∪ {x4, x5, x6}

E = {(x1, x4), (x1, x5), (x1, x6), (x2, x4), (x2, x6), (x3, x4), (x3, x5)}

Consider

1x1 + 100x2 + 1, 000x3 + 10x4 + 100x5 + 1, 000x6

It is not hard to see that the unique optimal solution is:

x∗ = (3, 1, 0, 2, 1, 0),

with x̃1 = 3 = ∆.

The above example can be extended to arbitrary ∆.

By symmetry we get the following lemma as well.

Lemma 13 Then there exists an optimal solution x∗ to (6.13) for which, for all j, x∗j ≥

(n− 1)−∆.

We use Lemmas 12,13 to show that when the domain set is sufficiently large, all facet-

defining inequalities must have the coefficients of the variables take on the same sign.
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Theorem 15 If |Dk| ≥ 2∆ + 2 (i.e., k is chosen so that k ≥ 2∆ + 1), then any facet

defining inequality must have all coefficients of the same sign.

Proof. Suppose we have an alldifferent system with |Dk| ≥ 2∆ + 2. By contradiction,

suppose there is a facet defining inequality, αx ≥ δ, where some of the αi’s are positive and

some are negative. (Without loss of generality, we can assume the inequality is a greater

than or equal to and α ≥ 0.)

Letting α = [α+ : α−] with α+ = {αi : αi ≥ 0} and α− = {αi : αi < 0}, we define:

α1 = [α+ : 0] and α2 = [0 : α−].

Consider the sum coloring problems P 1, P 2, with the objective functions α1, α2, respectively.

By lemma 12, there exists an optimal solution x1 for P 1 with x1j ≤ ∆, ∀j and by lemma

13, there exists an optimal solution x2 for P 2 with x2j ≥ (n − 1) −∆ ≥ ∆+ 1, ∀j. Letting

δ1, δ2 be defined by δ1 = α1x1,−δ2 = −α2x2, we get the following two valid inequality for

PI :

α1x ≥ δ1 and α2x ≥ δ2.

Let F be the set of feasible colorings of a graph: i.e., F = {x : xj 6= xj′ , ∀(j, j
′) ∈ E}.

Now, since αx ≥ δ is facet defining, it must be the case that

δ = min
x∈F

αx,

and since for any two functions f, g with common support S,

min
x∈S
{f(x) + g(x)} ≥ min

x∈S
{f(x)}+min

x∈S
{g(x)},

we get that δ ≥ δ1 + δ2. Now suppose that δ > δ1 + δ2; i.e.,

min
x∈F

αx > δ1 + δ2.

Consider the point x̃ defined by:

x̃i =







x1i : αi ≥ 0

x2i : αi < 0

We show now that x̃ is feasible.
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Suppose by contradiction that x̃ /∈ F . As x̃j ∈ D
k, there must exists a pair of variables

xi, xj in the same constraint for which x̃i = x̃j . If αi, αj ≥ 0 then x̃i 6= x̃j because x1 is

feasible. Similarly if αi, αj < 0. Therefore, either αi or αj are greater than or equal to 0,

but not both. Without loss of generality, suppose αi ≥ 0 and αj < 0. But then x̃i = x1i ≤ ∆

and x̃j = x2j ≥ ∆+ 1 contradicting that x̃i = x̃j .

Hence, x̃ is feasible and αx̃ = α1x1 + α2x2 = δ1 + δ2 contradicting that

min
x∈F

αx = δ > δ1 + δ2.

Therefore, δ = δ1+ δ2. But then we can write αx ≥ δ as a positive combination of two valid

inequalities, α1x ≥ δ1 and α2x ≥ δ2, contradicting that αx ≥ δ is facet defining. �

6.5.3 Facet Invariance to Affine Transformations in the Domain Set

In this section we show that there is a one-to-one correspondence between the facet-defining

inequalities under affine mappings of the domain set. In particular, this shows that facet-

defining inequalities for all-different systems with domain sets Dδ and Dδ′ are unique up to

changes in the right-hand side.

For the rest of this section, suppose that we have a fixed all-different system composed

of K all-different constraints, as in the definition of the problem in (6.1).

Let D,D′ be domain sets of equal cardinality, for which there exists constants a′, b′ 6= 0

for which for all d ∈ D there exists a d′ ∈ D′ with d′ = a′d + b′. Let P, P ′ be the graph

coloring problem defined in (6.1) with domain set D,D′, respectively. Let T (x) = a′x+ b′.

The following lemma follows immediately.

Lemma 14 x is feasible to P if and only if x̃ is feasible to P ′.

Theorem 16 Let ax ≥ δ1 be facet-defining for P . If a′ > 0, then there exists δ2 for which

ax ≥ δ2 is facet-defining for P ′. If a′ < 0, then there exists a δ3 for which ax ≤ δ3 is

facet-defining for P ′.

Proof. We begin with the case when a′ > 0.

ax ≥ δ1 is facet defining for P , therefore there exists x̂ satisfying ax̂ = δ1. Let δ2 =

aT (x̂).
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First we show that ax ≥ δ2 is valid for P ′. Suppose by contradiction that there exists

x̃ feasible to P ′ for which ax̃ < δ2. Consider T−1(x) = 1
a′
x − b′

a′
. By lemma (14) since

a′ 6= 0, T−1(x̃) is feasible to P , so that

aT−1(x̃) ≥ δ1

a( 1
a′
x̃− b′

a′
) ≥ δ1

ax̃− ab′ ≥ a′δ1

ax̃ ≥ a′δ1 + ab′.

δ2 is defined to equal aT (x̂), which by the assumption is larger than ax̃. Therefore,

aT (x̂) > a′δ1 + ab′

a(a′x̂+ b′) > a′δ1 + ab′

a(a′x̂) + ab′ > a′δ1 + ab′

a′(ax̂) > a′δ1

ax̂ > δ1

,

contradicting that δ1 = ax̂. Therefore, ax ≥ δ2 is valid for P ′.

Now, since ax ≥ δ1 is facet defining for P , there exists, n affinely independent points,

feasible the P satisfying ax ≥ δ1 at equality. Let x1, x2, . . . , xn be such a set points. We

show that the points {T (xi)}ni=1 are n affinely independent points satisfying ax ≥ δ2 at

equality.

First, δ2 = aT (x̂) = a′δ1 + b′a = a′axi + b′a = aT (xi) for each i, so that all points T (xi)

satisfy ax ≥ δ2 at equality.

Now, suppose
∑n

i=1 λ
iT (xi) = 0 and

∑n
i=1 λ

i = 0. Then

0 =

n∑

i=1

λiT (xi) = a′
n∑

i=1

λi(xi) + b′
n∑

i=1

λi

We know b′
∑n

i=1 λ
i = 0 and since a′ 6= 0 the above implies that

n∑

i=1

λi(xi) = 0.

And since {xi}ni=1 are affinely independent, we get that λi = 0, for all j, finishing the proof

that when a′ > 0, ax ≥ δ2 is facet defining for P ′.

The proof for a′ < 0 follows similarly. �
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Figure 6.1: A 5-cycle. The solid ovals correspond to constraints alldiff(Xk) for k = 1, . . . , 5.

The sets S̄1, . . . , S̄2 provide the basis for one possible valid cut with s = 2.

6.6 Cycles

We first investigate valid inequalities that correspond to odd cycles. We define a cycle in

graph G to be a subgraph of G induced by the vertices in V1, . . . , Vq ∈ V (for q ≥ 3), where

the subgraph induced by each Vk is a clique, and the only overlapping Vk’s are adjacent

ones in the cycle V1, . . . , Vq, V1. Thus,

Vk ∩ Vℓ =







Sk if k + 1 = ℓ or (k, ℓ) = (q, 1)

∅ otherwise

where Sk 6= ∅. A feasible vertex coloring on G must therefore satisfy

alldiff(Xk), k = 1, . . . , q (6.14)

where again Xk = {xi | i ∈ Vk}. The cycle is odd if q is odd. If |Vk| = 2 for each k, an odd

cycle is an odd hole.

Figure 6.1 illustrates an odd cycle with q = 5. Each solid oval corresponds to a constraint

alldiff(Xk). Thus V1 = {0, 1, 2, 3, 10, 11}, and similarly for V2, . . . , V5. All the vertices in a

given Vk are connected by edges in G.
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6.6.1 Valid Inequalities

We first identify valid inequalities that correspond to a given cycle. In the next section, we

show that they are facet-defining.

Lemma 15 Let V1, . . . , Vq induce a cycle, and let S̄k ⊆ Sk and |S̄k| = s ≥ 1 for k = 1, . . . , q.

If q is odd and S̄ = S̄1 ∪ · · · ∪ S̄q, the following inequality is valid for (6.1):

∑

i∈S̄

xi ≥ β(q, s) (6.15)

where

β(q, s) =
q − 1

2

L−2∑

j=0

vj +

(

sq −
q − 1

2
(L− 2)

)

vL−1

and

L =

⌈
sq

(q − 1)/2

⌉

Proof. Because q is odd, each color can be assigned to at most (q − 1)/2 vertices in the

cycle. This means that the vertices must receive at least L distinct colors, and the variables

in (6.14) must take at least L different values. Because v0 < · · · < vn−1, we have

∑

i∈S̄

xi ≥
q − 1

2
(v0 + v1 + · · ·+ vL−2) +

(

sq −
q − 1

2
(L− 2)

)

vL−1 = β(q, s)

where the coefficient of vL−1 is the number of vertices remaining to receive color vL after

colors v0, . . . , vL−2 are assigned to (q − 1)/2 vertices each. �

If the cycle is an odd hole, each |Sk| = 1 and L = 3. So (6.15) becomes

∑

i∈S̄

xi ≥
q − 1

2
(v0 + v1) + v2 (6.16)

If the domain {v0, . . . , vn−1} of each xi is Dδ = {0, δ, 2δ, . . . , (n − 1)δ} for some δ > 0,

inequality (6.15) becomes

∑

i∈S̄

xi ≥

(

sq −
q − 1

4
L

)

(L− 1)δ (6.17)

for a general cycle and
∑

i∈S̄

xi ≥
q + 3

2
δ
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for an odd hole.

An example with q = 5 appears in Fig. 6.1. By setting s = 2 we can obtain 9 valid

inequalities by selecting 2-element subsets S̄2 and S̄4 of S2 and S4, respectively. Here

L = 5, and if the colors are 0, . . . , 9, the right-hand side of the cut is β(5, 2) = 20. The sets

S̄1, . . . , S̄5 illustrated in the figure give rise to the valid inequality

x0 + · · ·+ x9 ≥ 20 (6.18)

6.6.2 Facet-defining Inequalities

We now show that the valid inequalities identified in Lemma 15 are facet-defining. Let the

variables xi for i ∈ S̄ be indexed x0, . . . , xqs−1. We will say that a partial solution

(x0, x1, . . . , xqs−1) = (x̄0, x̄1 . . . , x̄qs−1) (6.19)

is feasible for (6.1) if it can be extended to a feasible solution of (6.1). That is, there is

a complete solution (x1, . . . , xn) that is feasible in (6.1) and that satisfies (6.19). Because

|V | colors are available, any partial solution (6.19) that satisfies (6.14) can be extended to

a feasible solution simply by assigning the remaining vertices distinct unused colors. That

is, assign vertices in V \ {0, . . . , sq − 1} distinct colors from the set J \ {x̄0, . . . , x̄sq−1}.

Theorem 17 If the graph coloring problem (6.1) is defined on a graph in which vertex sets

V1, . . . , Vq induce a cycle, where q is odd, then inequality (6.15) is facet defining for (6.1).

Proof. Define

F = {x feasible for (6.1) | (x0, . . . , xqs−1) satisfies (6.15) at equality}

It suffices to show that if µx ≥ µn+1 holds for all x ∈ F , then there is a scalar λ > 0 such

that

µi =







λ for i = 0, . . . , qs− 1

β(q, s)λ for i = n+ 1

0 otherwise

(6.20)

We will construct a partial solution (x̄0, . . . , x̄qs−1) that is feasible for (6.1) as follows.

Domain values v0, . . . , vL−2 will occur (q − 1)/2 times in the solution, and domain value
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vL−1 will occur r times, where

r = qs−
q − 1

2
(L− 1)

This will ensure that (6.15) is satisfied at equality. We form the partial solution by first

cycling r times through the values v0, . . . , vL−1, and then by cycling through the values

v0, . . . , vL−2. Thus

x̄i =







vi mod L for i = 0, . . . , rL− 1

v(i−rL) mod (L−1) for i = rL, . . . , rs− 1
(6.21)

To show that this partial solution is feasible for the odd cycle, we must show

alldiff{x̄i, i ∈ S̄k ∪ S̄k+1}, for k = 1, . . . , q − 1 (a)

alldiff{x̄i, i ∈ S̄1 ∪ S̄q} (b)

To show (a), we note that the definition of L implies L−1 ≥ 2s. Therefore, any sequence of

2s consecutive x̄i’s are distinct, and (a) is satisfied. To show (b), we note that the number

of values x̄rL, . . . , x̄rs−1 is

(rs− 1)− rL+ 1 = (L− 1)

(
q − 1

2
L− qs

)

from the definition of r. Because the number of values is a multiple of L − 1, the values

x̄i for i ∈ S̄q are (x̄(q−1)s, . . . , x̄qs−1) = (vL−s−1, . . . , vL−2), and they are all distinct. The

values x̄i for i ∈ S̄1 are (x̄0, . . . , x̄s−1) = (v0, . . . , vs−1) and are all distinct. But L− 1 ≥ 2s

implies L− s > s, and (b) follows.

We now construct a partial solution (x̃0, . . . , x̃qs−1) from the partial solution in (6.21)

by swapping any two values x̄ℓ, x̄ℓ′ for ℓ, ℓ
′ ∈ S̄k ∪ S̄k+1, for any k ∈ {1, . . . , q− 1}. That is,

x̃i =







x̄ℓ′ if i = ℓ

x̄ℓ if i = ℓ′

x̄i otherwise

(6.22)

Extend the partial solutions (6.21) and (6.22) to complete solutions x̄ and x̃, respectively,

by assigning values with

x̄i = x̃i for i 6∈ {0, . . . , qs− 1}
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such that the values assigned to x̄i for i 6∈ {0, . . . , qs− 1} are all distinct and do not belong

to {v0, . . . , vL−1}. Because x̄ and x̃ are feasible and satisfy (6.15) at equality, they satisfy

µx = µn+1. So we have µx̄ = µx̃, which implies µℓ = µℓ′ for ℓ, ℓ
′ ∈ S̄k ∪ S̄k+1 for any pair

ℓ, ℓ′ ∈ S̄k ∪ S̄k+1 and any k ∈ {1, . . . , q − 1}. This implies

µℓ = µℓ′ for any ℓ, ℓ
′ ∈ S̄ (6.23)

Define x̄′ by letting x̄′ = x̄ except that for an arbitrary ℓ 6∈ {0, . . . , qs−1}, x̄′ℓ is assigned

a value that does not appear in the tuple x̄. Since x̄ and x̄′ are feasible and satisfy (6.15)

at equality, we have µx̄ = µx̄′. This and x̄ℓ 6= x̄′ℓ imply

µi = 0, i ∈ V \ {0, . . . , qs− 1} (6.24)

Finally, (6.23) implies that for some λ > 0,

µi = λ, i = 0, . . . , qs− 1 (6.25)

Because µx̄ = µn+1, we have from (6.25) that µn+1 = β(q, s)λ. This, (6.24), and (6.25)

imply (6.20). �

In the example of Fig. 6.1, suppose that the vertices in V1, . . . , V5 induce a cycle of G.

That is, all vertices in each Vk are connected by edges, and there are no other edges of G

between vertices in V1 ∪ · · · ∪ V5. Then (6.18) is facet-defining for (6.1).

6.6.3 Bounds on the Chromatic Number

We can write a facet-defining inequality involving the objective function variable z if the

domain of each xi is Dδ for δ > 0. To do so we rely on the following:

Theorem 18 If ax ≥ β is facet-defining for a graph coloring problem (6.1) in which each

xi has domain Dδ for δ > 0, then

aez ≥ ax+ β (6.26)

is also facet defining, where e = (1, . . . , 1).

Proof. To show that (6.26) is valid, note that for any x ∈ Dn
δ , z − xi ∈ Dδ for all i, where

z = maxi{xi}. Because ax ≥ β is valid for all x ∈ Dn
δ and z − xi ∈ Dδ, ax ≥ β holds when
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z − xi is substituted for each xi. This implies (6.26) because z in (6.1) satisfies z ≥ xi for

each i.

To show that the z-cut (6.26) is facet-defining, let

F = {(z, x) feasible for (6.1) | aez = ax+ β}

It suffices to show that if µzz = µx+ µ0 is satisfied by all (z, x) ∈ F , then there is a λ > 0

with

µz = λae

µ = λa

µ0 = λβ

(6.27)

Let F ′ = {x feasible for (6.1) | ax = β}. F ′ is nonempty because ax ≥ β is facet defining. F

is therefore nonempty, because for any x ∈ F ′, we have (z̄, x̄) ∈ F where z̄ = maxi{xi} and

x̄ = ze−x. But for any point (z, x) ∈ F , we also have (z+ δ, x+ δe) ∈ F . So µzz = µx+µ0

and µz(z + δ) = µ(x+ δe) + µ0. Subtracting one equation from the other, we get µz = µe.

We now claim that any (ez−x) ∈ F ′ satisfies µ(ez−x) = µ0. This is because (ez−x) ∈ F
′

implies (z, x) ∈ F , which implies µez = µx+µ0, which implies µ(ex−x) = µ0. But because

ax ≥ β is facet defining, there is a λ > 0 for which µ = λa and µ0 = λβ. Because µz = µe,

this same λ satisfies (6.27). �

Inequality (6.15) and Theorem 18 imply

Corollary 1 If the graph coloring problem (6.1) is defined on a graph in which vertex sets

V1, . . . , Vq induce a cycle, where q is odd and each xi has domain Dδ with δ > 0, then

z ≥
1

qs

∑

i∈S̄

xi +
β(q, s)

qs
(6.28)

is facet defining for (6.1), where

β(q, s)

qs
=

(

1−
q − 1

4qs
L

)

(L− 1)δ

In the case of an odd hole (s = 1), the z-cut is

z ≥
1

q

∑

i∈S̄

xi +
q + 3

2q
δ

In the example of Fig. 6.1, the z-cut is

z ≥ 1
10 (x0 + · · ·+ x9) + 2 (6.29)
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6.6.4 Mapping to 0-1 Cuts

The 0-1 model for a coloring problem on a cycle has the following continuous relaxation:

∑

j∈J

yij = 1, i = 1, . . . , q (a)

∑

i∈Vk

yij ≤ wj , j ∈ J, k = 1, . . . , q (b)

0 ≤ yij , wj ≤ 1, all i, j (c)

(6.30)

Because constraints (b) appear for each maximal clique, the relaxation implies all clique

inequalities
∑

i∈Vk
yij ≤ 1. Nonetheless, we will see that two finite-domain cuts strengthen

the relaxation more than the collection of all odd hole cuts.

To simplify discussion, let each xi have domain D1 = {0, 1, . . . , n− 1}. The x-cut (6.17)

maps into the cut
∑

i∈S̄

n−1∑

j=1

jyij ≥

(

sq −
q − 1

4
L

)

(L− 1) (6.31)

which is valid by Lemma 9. The z-cut (6.28) maps into

n−1∑

j=0

wj − 1 ≥
1

q

∑

i∈S̄

n−1∑

j=1

jyij +
q + 3

2q
(6.32)

which is valid by Lemma 10.

We will compare cuts (6.31)–(6.32) with classical odd hole cuts, which have the form

∑

i∈H

yij ≤
q − 1

2
wj , j = 0, . . . , n− 1 (6.33)

where H is the vertex set for an odd hole. The cut (6.33) is not facet defining in general,

although it is facet defining when H contains all vertices of G. This is in contrast with the

finite-domain cut (6.15), which is facet defining in the x-space for any odd hole in G (and

more generally, any odd cycle in G).

We first note that when s = 1, the 0-1 x-cut (6.31) is redundant of odd hole cuts.

Lemma 16 If s = 1, the 0-1 x-cut (6.31) is implied by the 0-1 model (6.30) with odd hole

cuts (6.33).

Proof. When s = 1, the cut (6.31) becomes

∑

i∈S̄

n−1∑

j=0

jyij ≥
q + 3

2
(6.34)
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It suffices to show that (6.34) is dominated by a nonnegative linear combination of (6.30) and

(6.33), where H = S̄ in (6.33). Assign multiplier 2 to each constraint in (6.30a); multipliers

2 and 1, respectively, to constraints (6.33) with j = 0, 1; and multipliers q−1 and (q−1)/2,

respectively, to the constraints w0 ≤ 1 and w1 ≤ 1. The resulting linear combination is

∑

i∈S̄

yi1 + 2
n−1∑

j=2

∑

i∈S̄

yij ≥ 2q −
q − 1

2
− (q − 1) =

q + 3

2

This dominates (6.34) because the left-hand side coefficients are less than or equal to the

corresponding coefficients in (6.34). �

However, the two finite-domain cuts (6.31) and (6.32), when combined, provide a tighter

bound than the n odd hole cuts (6.33) even when s = 1. For example, when q = 5, the

10 odd hole cuts provide a lower bound of 2.5 on the chromatic number, while the two

finite-domain cuts provide a bound of 2.6. The improvement is modest, but 10 cuts are

replaced by only two cuts. Comparisons for larger q appear in the next section.

Furthermore, when s > 1, the single 0-1 z-cut (6.32) provides a tighter bound than the

collection of all odd hole cuts, which have no effect in this case. There are sq odd hole cuts

(6.33) for each color j, one for every H that selects one element from each Sk, k = 1, . . . , q.

For example, when q = 5 and s = 2, there are nsq = 320 odd hole cuts. The lower bound

on the chromatic number is 4.0 with or without them. However, the one finite-domain cut

(6.32) yields a bound of 4.5. Addition of the 0-1 x-cut (6.31) strengthens the bound further,

raising it to 5.0. This bound is actually sharp in the present instance, because the chromatic

number is 5. Thus two finite-domain cuts significantly improve the bound, while 320 odd

hole cuts have no effect on the bound. Further comparisons appear in Section 6.11.

6.6.5 Separation

Separating cuts can be identified in either the x-space or the y-space. When a continuous

relaxation of the 0-1 model is solved, the resulting values of the yijs can be used to identify

a separating cut directly in 0-1 space. Alternatively, these values can be mapped to values

of the xjs using the transformation xi =
∑

j vjyij , and a separation algorithm applied in

x-space.
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In practice, a solver may apply existing algorithms to identify separating odd hole cuts.

The odd holes that give rise to these cuts can trigger the generation of an x-cut and a z-cut.

These superior cuts can then replace the odd hole cuts.

If odd cycle cuts for s > 1 are desired, a separation algorithm can be applied to the

xi-values by heuristically seeking a cycle that gives rise to separating cuts. We show here

that a simple polynomial-time algorithm identifies a separating x-cut and a separating z-cut

for a given cycle if such cuts exist.

The algorithm is as follows. We again suppose the colors are 0, 1, . . . , n − 1. Let (6.14)

be an odd q-cycle for which we wish to find a separating cut. Let ȳ, w̄ be a solution of the

continuous relaxation of the 0-1 model, and let

x̄i =
n−1∑

j=1

jȳij , i ∈

q
⋃

k=1

Vk z̄ =
n−1∑

j=0

w̄j − 1

For each k = 1, . . . , q, define the bijection πk : {1, . . . , |Sk|} → Sk such that x̄πk(ℓ) ≤ x̄πk(ℓ′)

whenever ℓ < ℓ′. Then for s = 1, . . . ,mink |Sk|, generate a separating x-cut

q
∑

k=1

s∑

ℓ=1

xπk(ℓ) ≥ β(q, s)

whenever x̄ violates this inequality, and generate a separating z-cut

z ≥
1

qs

q
∑

k=1

s∑

ℓ=1

xπk(|Sk|−ℓ+1) +
β(q, s)

qs

whenever (x̄, z̄) violates this inequality. The running time of the algorithm is O(qs̄ log s̄),

where s̄ = maxk |Sk| and s̄ log s̄ is the sort time for s̄ values.

Lemma 17 The above algorithms find a separating x-cut and separating z-cut for a given

odd q-cycle if such cuts exist.

Proof. Suppose there is a separating x-cut with S̄k ⊂ Sk and s∗ = |S̄k| for k = 1, . . . , q.

Then
∑

i∈S̄

x̄i < β(q, s∗) (6.35)

where S̄ =
⋃

k S̄k. Because πk orders the elements of Sk by size,

s∗∑

ℓ=1

x̄πk(ℓ) ≤
∑

i∈S̄k

x̄i, k = 1, . . . , q
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Summing this over k = 1, . . . , q, we get

q
∑

k=1

s∑

ℓ=1

x̄πk(ℓ) ≤
∑

i∈S̄

x̄i < β(q, s)

where the strict inequality is due to (6.35). This means that the algorithm generates the

separating cut for s = s∗. The proof is similar for z-cuts. �

6.6.6 Additional Cycle Facts

In this section we present an additional facet-defining inequality in (6.36) for a cycle graph

that is not of the form (6.15). The inequality displays that a graph may not have |Vi∩Vi+1|

be a uniform value for each of the consecutive cliques in the cycle, but nonetheless, may

still admit a facet-defining inequality. In addition, several other inequalities can be derived

from (6.36), including a complement inequality (as described in Theorem 14), a z−cut (as

described in Theorem 18), and all of these inequalities can be mapped into 0-1 space to

strengthen the linear relaxation, similar to the discussion in Section 6.6.4.

Theorem 19 Consider the cycle all-different system in Figure 6.2, and let D = D1. The

inequality

3 · (x1 + x2 + x7 + x8) + 4 · (x3 + x4 + x5 + x6) ≥ 42 (6.36)

is facet-defining.

x1 x2

x3

x4

x5x6

x7

x8

Figure 6.2: Cycle graph with non-uniformly sized intersections
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Proof. Let ax ≥ b be inequality (6.36). We being with a proof validity.

Let x̃ be a feasible solution. We first show that if there are no repeated values among

the values {x̃3, x̃4, x̃5, x̃6} then inequality (6.36) is satisfied.

If there are no repeated values in {x̃3, x̃4, x̃5, x̃6} then

x̃3 + x̃4 + x̃5 + x̃6 ≥ 0 + 1 + 2 + 3 = 6 (6.37)

The remaining values {x̃1, x̃2, x̃7, x̃8} all belong to a single alldiff constraint so that

x̃1 + x̃2 + x̃7 + x̃8 ≥ 0 + 1 + 2 + 3 = 6 (6.38)

And so, in the case that all of the values in {x̃3, x̃4, x̃5, x̃6} are unique, we get

ax̃ ≥ 3 · 6 + 4 · 6 = 42, (6.39)

as desired.

We now suppose that there is some repeated value in the set {x̃3, x̃4, x̃5, x̃6} implying

that x̃3 = x̃6. Let this common value be k. We now condition on the value of k, noting that

no other variables can be assigned the value k since the union of the neighborhoods of the

vertices corresponding to x3 and x6 span all of the vertices in the graph.

• k = 0

In this case, we have

x̃4 + x̃5 ≥ 1 + 2 = 3 (6.40)

and

x̃1 + x̃2 + x̃7 + x̃8 ≥ 1 + 2 + 3 + 4 = 10 (6.41)

Therefore,

ax̃ ≥ 3 · 10 + 4 · (0 + 1 + 2 + 0) = 42, (6.42)

as desired.



186 CHAPTER 6. FINITE-DOMAIN CUTS FOR GRAPH COLORING

• k = 1

In this case, we have

x̃4 + x̃5 ≥ 0 + 2 = 2 (6.43)

and

x̃1 + x̃2 + x̃7 + x̃8 ≥ 0 + 2 + 3 + 4 = 9 (6.44)

Therefore,

ax̃ ≥ 3 · 9 + 4 · (1 + 0 + 2 + 1) = 43 > b, (6.45)

as desired.

• k = 2

In this case, we have

x̃4 + x̃5 ≥ 0 + 1 = 1 (6.46)

and

x̃1 + x̃2 + x̃7 + x̃8 ≥ 0 + 1 + 3 + 4 = 8 (6.47)

Therefore,

ax̃ ≥ 3 · 8 + 4 · (2 + 0 + 1 + 2) = 44 > b, (6.48)

as desired.

• k = 3

In this case, we still have

x̃4 + x̃5 ≥ 0 + 1 = 1 (6.49)

and now

x̃1 + x̃2 + x̃7 + x̃8 ≥ 0 + 1 + 2 + 4 = 7 (6.50)

Therefore,

ax̃ ≥ 3 · 7 + 4 · (3 + 0 + 1 + 3) = 49 > b, (6.51)
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as desired.

• k ≥ 4

In this case, we still have

x̃4 + x̃5 ≥ 0 + 1 = 1 (6.52)

and as always

x̃1 + x̃2 + x̃7 + x̃8 ≥ 0 + 1 + 2 + 3 = 6 (6.53)

Therefore,

ax̃ ≥ 3 · 6 + 4 · (k + 0 + 1 + k) = 18 + 4 · (2k + 1) >= 54 > b, (6.54)

as desired, and finishing the proof that ax ≥ b is valid for all feasible solutions.

We now prove that ax ≥ b is facet-defining. Let

F = {x : x is feasible and ax = b}

We show that if (µ, µ0) are such that µx = µ0 for every x ∈ F , then for some λ, µi = λ · ai

for each i and µ0 = λ · b.

Let x̃ = (0, 1, 3, 1, 2, 0, 2, 3). It is readily seen that x̃ ∈ F .

Lemma 18 µ1 = µ2 = µ7 = µ8

Proof. Switching the values assigned to x1 and x2 in x̃ yields another feasible solution also

in F . Therefore, µ1 = µ2. This is also true for x7 and x8 so that µ7 = µ8.

Now, consider the solution x̂ for which x̂2 = 2 and x̂7 = 1 with all other values x̂i = x̃i;

i.e., we switch the values assigned to x2 and x7. x̂ ∈ F and therefore, we have µx̂ = µx̃.

Simplifying yields µ2 = µ7. Therefore, µ1 = µ2 = µ7 = µ8, as desired.

Let λA be the common value of µ1, µ2, µ7, µ8.

Lemma 19 µ3 = µ4 = µ5 = µ6
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Proof. Switching the values assigned to x4 and x5 in x̃ yields another feasible solution also

in F . Therefore, µ4 = µ5.

Now, consider the solution x̂ for which x̂3 = 2 and x̂5 = 3 with all other values x̂i = x̃i;

i.e., we switch the values assigned to x3 and x5. x̂ ∈ F and therefore, we have µx̂ = µx̃.

Simplifying yields µ3 = µ5.

Now, consider the solution x̂ for which x̂4 = 0 and x̂6 = 1 with all other values x̂i = x̃i;

i.e., we switch the values assigned to x4 and x6. x̂ ∈ F and therefore, we have µx̂ = µx̃.

Simplifying yields µ4 = µ6.

Therefore, µ3 = µ4 = µ5 = µ6, as desired.

Let λB be the common value of µ3, µ4, µ5, µ6. We can then rewrite µx = µ0 as

λA · (x1 + x2 + x7 + x8) + λB · (x3 + x4 + x5 + x6) = µ0. (6.55)

Lemma 20 4
3 · λA = λB

Proof. Consider the solution x̂ for which x̂3 = 0 and x̂1 = 4 with all other values x̂i = x̃i.

We first show that x̂ ∈ F . x̂ is feasible since in each alldiff constraint all of the variables

take pairwise different values. It remains to show that ax = b. Plugging in yields

ax̂ = 3 · (4 + 1 + 2 + 3) + 4 · (0 + 1 + 2 + 0) = 42,

as desired.

Therefore, x̂ ∈ F and we have µx̂ = µx̃. Simplifying yields 4µ1 = 3µ3 and plugging in

λA and λB yields 4
3 · λA = λB as desired.

We now write µx = µ0 as

λA · (x1 + x2 + x7 + x8) +
4

3
· λA · (x3 + x4 + x5 + x6) = µ0.

Let λ = 1
3λA. This yields

3λ · (x1 + x2 + x7 + x8) + 4λ · (x3 + x4 + x5 + x6) = µ0.

Finally, as x̃ ∈ F , µx̃ = µ0. Therefore

3λ · (0 + 1 + 2 + 3) + 4λ · (3 + 1 + 2 + 0) = µ0,
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Figure 6.3: A comb with 3 variables in the handle and three teeth, each with 3 variables.

yielding 18λ + 24λ = µ0. Therefore µ0 = 42λ, finishing the proof that ax ≥ b is facet-

defining. �

6.7 Combs

In this section we study cuts that arise from combs. Comb structures often arise as structures

from which cutting planes can be deduced, for example in the polyhedral analysis of the

Traveling Salesman Problem [31, 32].

Comb structures, in the context of all-different systems, were studied in [47, 48, 53]. We

study them here again, where we find inequalities that depend on the cardinality of D.

A comb is a subgraph of G induced by vertices in subsets H,T1, . . . , TK , (H is the handle

and the Tj ’s are teeth) where each subset is a clique, and

|H ∩ Tk| = 1 , for k = 1, . . . ,K

|Tk ∩ Tk′ | = 0 , for all 1 ≤ k < k′ ≤ K

A comb with H = {x1, x2, x3} and Tk = {x1k, x
2
k, x

3
k} is depicted in Figure 6.3.

Let X(ℓ, u) be the sum of the integers from ℓ to u, inclusive. We will prove that the

following inequalities are facet-defining for a comb.

For A,B ⊆ H,A∩B = ∅, |A| = a ≥ 1, |B| = b ≥ 1, s = a+ b, and for any Ai ⊆ Ti, |Ai| =
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m for i ∈ A, and for any Bi ⊆ T i, |Bi| = m for i ∈ B,

a
∑

i∈A



xi + s
∑

j∈Ai

xji



− b
∑

i∈B



xi + s
∑

j∈Bi

xji



 ≥ b1, (6.56)

with k = 2m+ s− 2 and

b1 = a{X(m,m+ a− 2) + (m+ s− 1) + s{a ·X(0,m− 1)}

−b{X(m+ a− 1,m+ s− 2) + s{b ·X(m+ s− 1, 2m+ s− 2)}.

6.7.1 Validity Proof

Theorem 20 Inequality (6.56) is valid.

First we state two results from [49].

Lemma 21 ∀A ⊆ H, |A| = a ≥ 1 and ∀Ai ⊆ Ti, |Ai| = m for i ∈ A,

∑

i∈A

(xi + a
∑

j∈Ai

xji ) ≥ X(m,m+ a− 1) + a2 ·X(0,m− 1)

is a valid inequality.

Lemma 22 ∀B ⊆ H, |B| = b ≥ 1 and ∀Bi ⊆ Ti, |Bi| = m for i ∈ B,

∑

i∈B

(xi + b
∑

j∈Bi

xji ) ≤ X(k −m− b+ 1, k −m) + b2 ·X(k −m+ 1, k)

is a valid inequality.

Now, with the use of the above lemmas, we may proceed with the proof of the validity

of the inequality (6.56). Let the inequality (6.56) be given by cx ≥ b1, and suppose by

contradiction that there exists a feasible x̃ which minimizes cx for which

cx̃ ≤ b1 − 1. (6.57)

Lemma 23 ∀i ∈ A, x̃i ≥ m.
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Proof. Suppose that for some x̃k, k ∈ A, x̃k < m. Because x̃ minimizes cx, the variables

in tooth k must all be assigned to the set {0, 1, . . . , x̃k−1, x̃k+1, . . . ,m}. Now, given that

x̃k < m , consider the expression

∑

i∈A,i6=k

(xi + s
∑

j∈Ai

xji ) (6.58)

From lemma 21 we know that the greedy assignment of values to the teeth variables will

minimize
∑

i∈A,i6=k

(xi + (a− 1)
∑

j∈Ai

xji ),

and since s > a, the greedy assignment must also minimize (6.58). Hence, given that for

some k, x̃k < m, we have that

a{
∑

i∈A

x̃i + s
∑

j∈Ai

x̃ji} = a{x̃k + s
∑

j∈Sk

x̃jk +
∑

i∈A,i6=k

x̃i + s
∑

j∈Ai

x̃ji}

≥ a{x̃k + s(X(0,m)− x̃k) +X(m,m+ a− 2)

+s(a− 1)(X(0,m− 1))}

And hence,

a{
∑

i∈A

x̃i + s
∑

j∈Ai

x̃ji} ≥ a{X(m,m+ a− 2)) + s{aX(0,m− 1)}}

+a(x̃k + sm− sx̃k) (6.59)

Now, consider the expression

∑

i∈B

xi + s
∑

j∈Bi

xji . (6.60)

From lemma 22, we know that the greedy assignment (the maximization version) of

values to variables will maximize

∑

i∈B

(xi + b
∑

j∈Bi

xji )

and since s > b, the greedy assignment must maximize (6.60). Hence,

−b{
∑

i∈B

(x̃i + s
∑

j∈Bi

x̃ji )} ≥ −b{X(k −m− b+ 1, k −m) + sb ·X(k −m+ 1, k)}
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Plugging in k = 2m+ s− 2 yields

−b{
∑

i∈B

(x̃i + s
∑

j∈Bi

x̃ji )} ≥ −b{X(m+ a− 1,m+ s− 2)

+sb ·X(m+ s− 1, 2m+ s− 2)} (6.61)

Combining (6.57), (6.59) and (6.61) we get

a(x̃i + sm− sx̃k) ≤ a(m+ s− 1)− 1,

which can be written as

(s− 1)(m− x̃k − 1) ≤ −1,

and since s−1 ≥ 0 and m− x̃k−1 ≥ 0, we have a contradiction. Therefore, ∀i ∈ A, x̃i ≥ m.

�

Lemma 24 ∀i ∈ B, x̃i ≤ k −m = m+ s− 2.

Proof. Follows similarly to the proof of lemma 23. �

Lemma 25 ∀i ∈ A, ∀j ∈ Ai, x̃
j
i ≤ m− 1. Hence ∀i ∈ A,

∑

j∈Ai

x̃ji = X(0,m− 1).

Proof. Suppose some variable xlk is such that x̃lk > m−1 for some k ∈ A, l ∈ Ak. Then some

value d ∈ {0, 1, . . . ,m − 1} is not taken by any of the variables xk ∪ {x
j
k}j∈Ak

. Therefore

defining x̂ = x̃ except that x̂lk = d yields a feasible solution such that cx̂ < cx̃ contradicting

that x̃ minimizes cx. �

Lemma 26 ∀i ∈ B, ∀j ∈ Bi, x̃
j
i ≥ m+ s− 1. Hence ∀i ∈ B,

∑

j∈Bi

x̃ji = X(m+ s− 1, 2m+ s− 2 = k).

Proof. Follows similarly to the proof of lemma 25. �

Lemma 26 and lemma 25, together with cx̃ ≤ b1 − 1, implies
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a
∑

i∈A

x̃i − b
∑

i∈B

x̃i ≤ a{X(m,m+ a− 2) + (m+ s− 1))} (6.62)

−b{X(m+ a− 1,m+ s− 2)} − 1.

Suppose now, without loss of generality, that the variables in A are given by x1, x2, . . . , xa

and that the variables are sorted in increasing order (x̃1 < · · · < x̃a). Similarly, let the

variables in B be given by xa+1, . . . , xs and that the variables are sorted in increasing order

(x̃a+1 < · · · < x̃s).

Lemma 27 x̃a−1 = m+ a− 2 and therefore for i = 1, 2, . . . , a− 1, x̃i = m+ i− 1.

Proof. Note that from lemma 23, if x̃i = m+ a− 2, then we must have x̃i = m+ i− 1 for

i = 1, 2, . . . , a− 1. Therefore we need only show that x̃a−1 = m+ a− 2.

First suppose that x̃a−1 ≥ m + s − 1. Consider the set of domain values {m,m +

1, . . . ,m+s−2} which has cardinality s−1. The number of variables in A∪B−{xa−1, xa}

is s− 2, and since x̃a ≥ x̃a−1 ≥ m+ s− 1 there is some d ∈ {m,m+ 1, . . . ,m+ s− 2} such

that no variable in the entire alldifferent system is assigned to d. Therefore, defining x̂ = x̃

except that x̃a−1 = d yields a feasible integer point satisfying cx̂ < cx̃ contradicting that x̃

minimizes cx.

Now suppose that m+ a− 1 ≤ x̃a−1 ≤ m+ s− 2. Then ∃d ∈ {m,m+ 1, . . . ,m+ a− 2}

such that x̃i 6= d, ∀i ∈ A. If there also does not exists a x̃i = d, for i ∈ B, then defining

x̂ = x̃ except that x̂a−1 = d yields a feasible solution with cx̂ < cx̃ contradicting that x̃

minimizes cx. If there does exists some k ∈ B such that x̃k = d, switching the domain

values assigned to xa−1 and xk yields a feasible solution with an even smaller value of cx,

again contradicting that x̃ minimizes cx. �

Lemma 28 x̃a+2 = m+ a and therefore for i = 1, 2, . . . , b− 1, x̃i = m+ a+ i− 1.

Proof. Follows similarly to the proof of lemma 27 �

Now, from lemma 27 and lemma 28 we have

a
∑

i∈A

x̃i − b
∑

i∈B

x̃i = ax̃a − bx̃a+1 + aX(m,m+ a− 2)− bX(m+ a,m+ s− 2).
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This, together with inequality (6.62), implies that

ax̃a − bx̃a+1 ≤ a(m+ s− 1)− b(m+ a− 1)− 1

Also from lemma 27 and lemma 28 we have that x̃a ≥ m+ a− 1 and x̃a+1 ≤ m+ a− 1.

It is clear that since x̃ minimizes cx we must have either x̃a = m+a−1 or x̃a+1 = m+a−1,

for if not, then x̃a > m+ a− 1 and we can define x̂ = x̃ except that x̂a = m+ a− 1 to yield

a feasible integer point satisfying cx̂ < cx̃. Therefore only two cases to consider.

If x̃a+1 = m+a−1 then x̃a ≥ m+s−1 because all values in the set {m,m+1, . . . ,m+s−2}

are taken by some x̃i, i ∈ A ∪B − {a}. Actually, since the coefficient of xa is positive in cx

it must be that x̃a = m + s − 1. But then a(m + s − 1) − b(m + a − 1) = ax̃a − bx̃a+1 ≤

a(m+ s− 1)− b(m+ a− 1)− 1, yielding a contradiction.

If x̃a = m+a−1 then x̃a+1 ≤ m−1 because all values in the set {m,m+1, . . . ,m+s−2}

are taken by some x̃i, i ∈ A∪B−{a+1}. Actually, since the coefficient of xa+1 is negative

in cx it must be that x̃a+1 = m − 1. But then a(m + a − 1) − b(m − 1) = ax̃a − bx̃a+1 ≤

a(m+s−1)−b(m+a−1)−1, which upon simplification yields a2 ≤ a2−1, a contradiction.

This concludes the proof that cx ≥ b1 is a valid inequality.

6.7.2 Facet Proof

Theorem 21 Inequality (6.56) is facet-defining.

Proof. Let F = {x ∈ PI : cx = b1} and suppose that µx = µ0 is satisfied by all x ∈ F . We

show that there exists a λ such that

µi =







aλ : for i ∈ A

−bλ : for i ∈ B

and

µj
i =







asλ : for i ∈ A, j ∈ Ai

−bsλ : for i ∈ B, j ∈ Bi

and µ0 = b1λ, thereby proving that (6.56) is facet defining. Note that for simplicity, we

assume that H = A ∪B and that
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Ti =







Ai : for i ∈ A

Bi : for i ∈ B

and for the more general situation where either some variable in the handle is not is

A ∪B or some variables in the teeth are not in some Ai or Bi the proof follows similarly.

Without loss of generality, suppose that A = {x1, x2, . . . , xa} and that B = H − A =

{xa+1, . . . , xs}, and that Ti = {x
1
i , x

2
i , . . . , x

m
i } for all i ∈ H. Let x̃ be defined by

x̃i =







m+ i− 1 : for i = 1, 2, . . . , a− 1

m+ s− 1 : for i = a

m+ i− 2 : for i = a+ 1, a+ 2, . . . , a+ b = |H|,

and

x̃ji =







j − 1 : for i ∈ A, j ∈ Ai

j +m+ s− 2 : for i ∈ B, j ∈ Bi.

x̃ ∈ F . Define x̂ identical to x̃ except that x̂1 = m + 1 and x̂2 = m. x̂ ∈ F . Therefore,

µx̃ = µx̂ and after cancelling common terms, we get µ1 = µ2. Similarly we can pick any

two variables xi, xk ∈ A and find µi = µk. Let λ be defined such that aλ is this common

value.

Now, define x̂ identical to x̃ except that x̂a+1 = m + a and x̂a+2 = m + a − 1. Again,

x̂ ∈ F and so µx̃ = µx̂ and after cancelling common terms, we get µa+1 = µa+2. Similarly

we can pick any two variables xi, xk ∈ B and find µi = µk. Let λ
′ be this common value.

Now, define x̂ identical to x̃ except that x̂a = m+a−1 and x̂a+1 = m−1. Again, x̂ ∈ F

and so µx̃ = µx̂ and after cancelling common terms, we get µa(m+s−1)+µa+1(m+a−1) =

µa(m+a−1)+µa+1(m−1). Substituting in s = a+ b yields bµa = aµa+1 and so λ′ = −bλ.

Summarizing, we now have µi = aλ, ∀i ∈ A and µi = −bλ, ∀i ∈ B.

Now, define x̄ identical to x̃ except that x̄a = m − 1 and x̄ma = m. It can be verified

that x̄ ∈ F and so µx̃ = µx̄. Cancelling like terms yields µa(m + s − 1) + µm
a (m − 1) =

µa(m − 1) + µm
a (m) which implies that µm

a = sµa = asλ. In addition, this change can be

made ∀i ∈ A and ∀j ∈ Ai. This is because we can switch the values assigned to x̃i and x̃k
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for any two i, k ∈ A and for a fixed i we can switch the values of x̃ji and x̃li for any k, l ∈ Ai.

Hence, ∀i ∈ A, ∀j ∈ Ai, µ
j
i = asλ, as desired.

Now, define x̄ identical to x̂ (as defined two paragraphs above) except that x̄a+1 =

m+ s− 1 and x̄1a+1 = m+ s− 2. It can be verified that x̄ ∈ F and so µx̂ = µx̄. Cancelling

like terms yields µa+1(m − 1) + µ1
a+1(m + s − 1) = µa+1(m + s − 1) + µ1

a+1(m + s − 2)

which implies that µ1
a+1 = sµa+1 = −bsλ. In addition, this change can be made ∀i ∈ B

and ∀j ∈ Bi. This is because we can switch the values assigned to x̃i and x̃k for any two

i, k ∈ B and for a fixed i we can switch the values of x̃ji and x̃li for any k, l ∈ Bi. Hence,

∀i ∈ B, ∀j ∈ Bi, µ
j
i = −bsλ, as desired.

Finally, plugging in any point, for example x̃, which is in F into ux = µ0 yields µ0 = b1λ,

concluding the proof that cx ≥ b1 is facet defining. �

6.7.3 0-1 Cut and z−cut

As discussed in the context of cycles, in Section 6.6.4, the comb inequalities presented here

(and in [47, 48, 53]) can be mapped into 0-1 space to strengthen the continuous relaxation

(6.30). In addition, z−cuts can be obtained from the x−cut (6.56) as described in The-

orem 18. We omit the details for brevity, and stress that the purpose of displaying the

facet-defining inequalities (6.56) was to display how the result in Theorem 15 can manifest

itself.

6.8 Webs

We next study cuts that arise from webs. A web W (q, r) is a graph in which vertices can

be arranged cyclically so that the edges connect pairs of vertices separated by a distance of

at least r on the cycle. More formally, given that q ≥ 2r + 1 and r ≥ 1, a web W (q, r) is

a graph on vertices 0, . . . , q − 1 whose edges are all (i, i′) such that 0 ≤ i ≤ q − r − 1 and

r ≤ i′ − i ≤ q − r. Thus W (q, 1) is a clique. When q is odd, W (q, q−1
2 ) is an odd hole, and

W (q, 2) is an odd anti-hole (the complement of an odd hole). Figure 6.4 illustrates W (7, 2).

We will focus on webs for which q and r are mutually prime. Odd holes and odd anti-

holes are special cases. Such webs give rise to 0-1 finite-domain cuts that provide tighter
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x0 = 0
.................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................................

x1 = 0.....................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................

x2 = 1.....................................................................................................................................................................................................................................................................................................................................................................................................

...........................................................................................................................................................................................................................................................................................................................................

x3 = 1x4 = 2

x5 = 2
........................................................................................................................................................................................................................................................................................................................................

x6 = 3
.................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................

Figure 6.4: Web W (7, 2), which is an odd antihole. Variables connected by an edge appear

in a common alldiff constraint. A feasible solution is shown.

bounds than known 0-1 cuts.

6.8.1 Facet-Defining Inequalities

Theorem 22 Let vertices 0, . . . , q − 1 of G induce a web W (q, r) , where q and r are

mutually prime. The following inequality is facet-defining for (6.1):

q−1
∑

i=0

xi ≥ γ(q, r) (6.63)

where

γ(q, r) = r

t−1∑

j=0

vj + (q − tr)vt

and t = ⌊q/r⌋.

Proof. To show that (6.63) is valid, we observe that each color can be used at most r

times. This is because if any set of r vertices receive color j, no two of these vertices can

be separated by distance of r or more in the cycle, because any such pair of vertices are

connected. The vertices must therefore be adjacent. Because every other vertex is connected

to one of them, no other vertex can receive color j, and no more than r vertices can receive

color j. This means that at least t+ 1 colors must be used. Thus

q−1
∑

i=0

xi ≥ r(v0 + v1 + · · ·+ vt−1) + dvt = γ(q, r)
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where the coefficient d = q − tr is number of vertices remaining after assigning each the

colors v0, . . . , vt−1 to r vertices.

To show that (6.63) is facet defining, let

F = {x feasible for (6.1) | (x0, . . . , xq−1) satisfies (6.63) at equality}

It suffices to show that if µx ≥ µn holds for all x ∈ F , then there is a scalar λ > 0 such that

µi =







λ for i = 0, . . . , q − 1

γ(q, r)λ for i = n

0 otherwise

(6.64)

The partial solution

(x̄0, . . . , x̄q−1) =



v0, . . . , v0
︸ ︷︷ ︸

r

, v1, . . . , v1
︸ ︷︷ ︸

r

, . . . , vt−1, . . . , vt−1
︸ ︷︷ ︸

r

, vt, . . . , vt
︸ ︷︷ ︸

d



 (6.65)

is clearly feasible and satisfies (6.63) at equality. We construct a partial solution (x̃0, . . . , x̃q−1)

from (6.65) by swapping the color assignment of the vertices receiving color vt with that of

the last d vertices receiving color v0. That is, we let

x̃i =







vt if i ∈ {r − d, . . . , r − 1}

v0 if i ∈ {q − d, . . . , q − 1}

x̄i otherwise

Note that (x̃0, . . . , x̃q−1) is feasible, because colors v1, . . . , vt−1 are assigned to r adjacent

vertices as before, color v0 is assigned to the r adjacent vertices q−d, . . . , q−1, 0, . . . , r−d−1,

and color vt is assigned to the remaining adjacent vertices r − d, . . . , r − 1. Extend the two

partial solutions to feasible solutions x̄ and x̃ of (6.1). Because x̄ and x̃ satisfy (6.63) at

equality, we have µx̄ = µx̃, which yields

µr−d + · · ·+ µr−1 = µq−d + · · ·+ µq−1

By symmetry, we conclude

µi + · · ·+ µ(i+d−1) mod q = µ(i−r) mod q + · · ·+ µ(i−r+d−1) mod q

for i = 0, . . . , q − 1. Because q and r are mutually prime, this implies that the sums

µi+ · · ·+µ(i+d−1) mod q are equal for all i. Thus, in particular, they are equal for i and i+1,
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which yields µi = µ(i+d) mod q for all i. Because d 6= q, this implies that µ0 = · · · = µq−1

and

µi = λ, i = 0, . . . , q − 1 (6.66)

for some λ > 0.

Define x̄′ by letting x̄′ = x̄ except that for an arbitrary ℓ 6∈ {0, . . . , q− 1}, x̄′ℓ is assigned

a value that does not appear in the tuple x̄. Since x̄, x̄′ ∈ F , we have µx̄ = µx̄′, which

implies

µi = 0, i ∈ V \ {0, . . . , q − 1} (6.67)

Because µx̄ = µn, we have from (6.66) that µn = γ(q, r)λ. This, (6.66) and (6.67) imply

(6.65). �

For domain Dδ with δ > 0, the cut (6.63) is

q−1
∑

i=0

xi ≥
(
q − 1

2 (t+ 1)r
)
tδ

For an odd antihole W (q, 2) with domain Dδ, the cut simplifies to

q−1
∑

i=0

xi ≥
1
4 (q − 1)2δ (6.68)

Theorems 18 and 22 imply

Corollary 2 If the graph coloring problem (6.1) is defined on a graph in which vertex sets

Vr induce a web W (q, r), where q and r are mutually prime, and each xi has domain Dδ

with δ > 0, then

z ≥
1

q

q
∑

i=1

xi +

(

1−
r

2q
(t+ 1)

)

tδ (6.69)

is facet defining for (6.1), where t = ⌊q/r⌋.

For example, the antihole of Fig. 6.4 gives rise to the facet-defining cuts

6∑

i=0

xi ≥ 9, z ≥ 1
7

6∑

i=0

xi +
9
7
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6.8.2 Mapping to 0-1 Cuts

If each xi has domain D1 = {0, 1, . . . , n− 1} the x-cut (6.17) maps into the cut

q−1
∑

i=0

q−1
∑

j=1

jyij ≥
(
q − 1

2 (t+ 1)r
)
t (6.70)

which is valid by Lemma 9. The z-cut (6.69) maps into

q−1
∑

j=0

wj − 1 ≥
1

q

q−1
∑

i=0

q−1
∑

j=1

jyij +

(

1−
r

2q
(t+ 1)

)

t (6.71)

We wish to compare these cuts with known cuts for webs. Facet-defining web cuts for

a 0-1 model of the coloring problem are given in [59]. These cuts are defined in a space

in which the variables correspond to edges and colorings correspond to “admissible star

partitions” of the graph. However, the cuts are based on the fact that at most r vertices

can be assigned any given color, and we can write analogous web cuts in the yij-space:

q−1
∑

i=0

yij ≤ r · wj , all j (6.72)

As with odd cycle cuts, the finite-domain web cuts provide a tighter bound than known

0-1 cuts. For example, for an antihole W (7, 2), seven 0-1 web cuts (6.72) give a bound of

3.5, while the two finite-domain cuts provide a bound of 3.5714. For the web W (8, 3), eight

0-1 cuts give the bound 2.6667, while the two finite-domain cuts yield the bound 2.75. This

if an existing separation algorithm identifies 0-1 cuts for a given web, they can be replaced

(at no additional cost) with two finite-domain cuts that yield a tighter bound. Further

comparisons appear in Section 6.11.

6.9 Paths

Paths present an interesting case because they give rise to finite-domain cuts that are re-

dundant in the 0-1 model. That is, they have no effect on the bound when the problem

consists entirely of a path system. However, a few finite-domain cuts may replace a large

number of inequalities in a more complex coloring problem, allowing a substantial reduction

in the size of the 0-1 model. In addition, path cuts are useful in a finite-domain model of

the problem.
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Figure 6.5: A path with q = 5. The variables in dashed circles appear in one possible valid

cut.

A path is a subgraph of G induced by the vertices in subsets V0, . . . , Vq of V , provided

the subgraph induced by each Vk is a clique, and only adjacent Vk’s overlap. That is,

Vk ∩ Vℓ =







Sk if k + 1 = ℓ

∅ otherwise

where Sk 6= ∅.

6.9.1 Facet-defining Inequalities

Facet-defining inequalities can be obtained by selecting one variable from each overlap Sk.

Valid cuts can be obtained if two or more variables are selected, as with cycles, but they

are redundant of the single-variable cuts.

Lemma 29 Let V0, . . . , Vq be a path, and let x0 ∈ V0 \ V1, xq ∈ Vq \ Vq−1, and xi ∈ Si for

i = 1, . . . , q − 1. If q is odd, the following inequality is valid for (6.1):

(v2 − v0)(x0 + xq) + (v1 − v0)

q−1
∑

i=1

xi ≥ φ(q) (6.73)

where

φ(q) =

(
q − 1

2
(v1 − v0) + v2 − v0

)

(v0 + v1)

Proof. Suppose to the contrary (6.73) is not satisfied, which implies

(v1 − v0)

q−1
∑

i=1

xi < φ(q)− (v2 − v0)(x0 + xq) (6.74)
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Adjacent variables in the list x0, . . . , xq must take distinct values. So we have xi + xi+1 ≥

v0 + v1 for i = 1, 3, . . . , q − 2. Summing these, we obtain

q−1
∑

i=1

xi ≥
q − 1

2
(v0 + v1)

This and (6.74) imply

q − 1

2
(v1 − v0)(v0 + v1) <

(
q − 1

2
(v1 − v0) + v2 − v0

)

(v0 + v1)− (v2 − v0)(x0 + xq)

which implies x0 + xq < v0 + v1. This is possible only if x0 = xq = v0, because v1 > v0 ≥ 0.

Thus x1, xq−1 6= v0, which means that at most (q − 3)/2 of the variables x1, . . . , xq−1 can

take the value v0, and at least one variable must take a value larger than v1. So

(v1 − v0)

q−1
∑

i=1

xi ≥ (v1 − v0)

(
q − 3

2
v0 +

q − 1

2
v1 + v2

)

= φ(q) + (v1 − v0)(v2 − v0)

But this is inconsistent with (6.74) because x0 + xq ≥ 0 and (v1 − v0)(v2 − v0) > 0. �

If each xi has domain Dδ for δ > 0, the cut (6.73) is

2(x0 + xq) +

q−1
∑

i=1

xi ≥
1
2 (q + 3)δ (6.75)

Theorem 23 If the graph coloring problem (6.1) is defined on a graph in which vertex sets

V0, . . . , Vq induce a path, where q is odd, then inequality (6.73) is facet defining for (6.1).

Proof. Let

F = {x feasible for (6.1) | (x0, . . . , xq) satisfies (6.73) at equality}

It suffices to show that any equation µx ≥ µn+1 that holds for all x ∈ F is a positive scalar

multiple of (6.73). It therefore suffices to show that there is a scalar λ > 0 such that

µi =







(v1 − v0)λ for i = 1, . . . , q − 1

(v2 − v0)λ for i = 0, q

φ(q)λ for i = n+ 1

0 otherwise

(6.76)
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The following partial solutions are feasible for (6.1):

(x̄0, . . . , x̄q) = (v1, v0, v1, v0, v1, v0, v1, . . . , v1, v0)

(x̂0, . . . , x̂q) = (v0, v2, v1, v0, v1, v0, v1, . . . , v1, v0)

(x̃0, . . . , x̃q) = (v0, v1, v2, v0, v1, v0, v1, . . . , v1, v0)

They can be extended to complete solutions x̄, x̂, x̃ with

x̄i = x̂i = x̃i for i 6∈ {0, . . . , q}

in the manner described above. Because x̂ and x̃ satisfy (6.73) at equality, they satisfy

µx = µn+1, and we have µx̂ = µx̃ = µn+1. This implies µ(x̂ − x̃) = 0, and therefore

µ1 = µ2. By symmetry, we have

µ1 = · · · = µq−1 (6.77)

Also x̄ satisfies (6.73) at equality, and we have µx̄ = µx̂ = µn+1. This implies (v1− v0)µ0 =

(v2 − v0)µ1. Thus by (6.77) and symmetry

(v1 − v0)µ0 = (v1 − v0)µq = (v2 − v0)µi, i = 1, . . . , q − 1 (6.78)

Define x̄′ by letting x̄′ = x̄ except that for an arbitrary ℓ 6∈ {0, . . . , q}, x̄′ℓ is assigned a value

that does not appear in the tuple x̄. Since x̄, x̄′ are feasible and satisfy (6.73) at equality,

we have µx̄ = µx̄′. This and x̄ℓ 6= x̄′ℓ imply

µi = 0, i ∈ V \ {0, . . . , q} (6.79)

Finally, (6.78) implies that for some λ > 0,

µ0 = µq = (v2 − v0)λ and µi = (v1 − v0)λ, i = 1, . . . , q − 1 (6.80)

Because µx̄ = µn+1, we have from (6.80) that µn+1 = φ(q)λ. This, (6.79), and (6.80) imply

(6.76). �

Theorems 18 and 23 imply

Corollary 3 If the graph coloring problem (6.1) is defined on a graph in which vertex sets

V0, . . . , Vq induce a path, where q is odd and each xi has domain Dδ for δ > 0, then

z ≥
1

q + 3

(

2(x0 + xq) +

q−1
∑

i=1

xi

)

+
δ

2
(6.81)

is facet defining for (6.1).
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If the colors are 0, 1, . . . , 4, the cuts for the path in Fig. 6.5 are

2(x0 + x5) +

4∑

i=1

xi ≥ 4, z ≥ 1
4 (x0 + x5) +

1
8

4∑

i=1

xi +
1
2

6.9.2 Mapping to 0-1 Cuts

Assuming domain D1, the x-cut (6.73) and z-cut (6.81) respectively map to 0-1 space as

follows:

2

q−1
∑

j=1

j(y0j + yqj) +

q−1
∑

i=1

q−1
∑

j=1

jyij ≥
1
2 (q + 3) (6.82)

q
∑

j=1

wj − 1 ≥
2

q + 3

q−1
∑

j=1

j(y0j + yqj) +
1

q + 3

q−1
∑

i=1

q−1
∑

j=1

jyij +
1
2 (6.83)

To simplify notation, we suppose in this section that each Sk = {k}. The arguments are

very similar for the more general case. Given this simplification, the continuous relaxation

of the 0-1 path model is

q−1
∑

j=0

yij = 1, i = 0, . . . , q (ri)

yij + yi+1,j ≤ wj , i = 0, . . . , q − 1, j = 0, . . . , q − 1 (sij)

0 ≤ yij , wj ≤ 1, all i, j

(6.84)

It can be shown that if the wjs are treated as constants equal to 1, the constraint matrix of

this model is totally unimodular. The 0-1 x-cut (6.82) is therefore redundant of (6.84).

We cannot use a similar argument to show that the 0-1 z-cut (6.83) is redundant, because

the full model (6.84) with wjs is not totally unimodular. In fact, the 0-1 z-cut is not redun-

dant, because it is not implied by (6.84) augmented with symmetry-breaking constraints

wi ≥ wi+1. The following (extreme point) solution satisfies (6.84) with q = 3 but violates

the cut because it results in a left-hand side of 1 2
7 and a right-hand side of 2 5

14 .

y =














0 4
7 0 3

7

2
7 0 4

7
1
7

2
7

4
7 0 1

7

0 0 4
7

3
7














, w = ( 47 ,
4
7 ,

4
7 ,

4
7 )
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The 0-1 z-cut has no effect on the bound in a problem consisting entirely of a path system,

because the relaxation (6.84) already implies the optimal bound of 2. The sum of the

negated constraints (rq−1) and (rq) with constraints (sq−1, j) for j = 0, . . . , q yields the

bound
∑

j wj ≥ 2.

On the other hand, if the 0-1 x-cut and z-cut are present, the 0-1 model yields the same

bound of 2 even if all of the constraints (sij) are dropped. This suggests that for a more

complex problem, a few finite-domain cuts could replace many constraints in the 0-1 model

with little effect on the resulting bound. We leave this issue to future research.

6.10 Intersecting Systems

Finally, we identify cuts for more general structures for which there are apparently no

previously known 0-1 cuts. They illustrate how a finite-domain perspective can lead to

facet-defining cuts for a wide variety of situations.

We define an intersecting system to be a family of clique-inducing vertex sets such that

(a) at least one vertex belongs to all the sets, (b) every set contains at least one vertex that

belongs to no other set, and (c) every set excludes at least one vertex that belongs to all the

other sets. Formally, an intersecting system consists of a family V1, . . . , Vq of clique-inducing

vertex sets such that the following sets are nonempty:

U =

q
⋂

k=1

Vk

Ak = Vk \
⋃

ℓ 6=k

Vℓ, k = 1, . . . , q

Sk = (
⋂

ℓ 6=k

Vℓ) \ Vk, k = 1, . . . , q

Figure 6.6 illustrates an intersecting system with q = 3.

6.10.1 Valid Inequalities

We first establish two families of valid inequalities for an intersecting system.

Lemma 30 Given an intersecting system V1, . . . , Vq, suppose xk ∈ Ak, S̄k ⊂ Sk, and

|S̄k| = s for k = 1, . . . , q. Then if A =
⋃q

k=1{xk}, S =
⋃

k S̄k, Ū ⊂ U , and |Ū | = u, the
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Figure 6.6: An intersecting system with q = 3. The variables x1, x2, x3 and sets S̄1, S̄2, S̄3, Ū

provide the basis for two possible facet-defining cuts with s = u = 2.

following inequalities are valid for (6.1):

c1
∑

i∈A

xi + c2
∑

i∈S∪Ū

xi ≥ ψ(q, s, u) (6.85)

d1
∑

i∈A

xi + d2
∑

i∈S

xi + d3
∑

i∈Ū

xi ≥ ω(q, s, u) (6.86)
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where

c1 = vqs+u − v0

c2 =

q−1
∑

i=1

vi − (q − 1)v0

ψ(q, s, u) = c1qv0 + c2

qs+u
∑

i=1

vi

d1 = vqs+u − vu

d2 =

q+u−1
∑

i=1

vi − qvu

d3 = (vqs+u − vu)q

ω(q, s, u) = d1qvu + d2

qs+u
∑

i=u+1

vi + d3

u−1∑

i=1

vi

Proof. We prove the validity of (6.85) only, as the proof for (6.86) is similar. Write (6.85)

as ax ≥ ψ(q, s, u), and let x̄ be any feasible solution of (6.1) that minimizes ax. It suffices

to show that ax̄ = ψ(q, s, u).

We first show that x̄i ≤ vqs+u for all i ∈ S ∪ Ū . Suppose to the contrary that x̄j =

w > vqs+u for some j ∈ S ∪ Ū . Then at least two values w1, w2 ∈ {v0, . . . , vqs+u} fail to

appear in {x̄i | i ∈ S ∪ Ū \ {j}}, because the latter set has qs + u − 1 elements. Suppose

w1 < w2. Then w2 does not appear in {x̄i | i ∈ A}, because if it did, we could define a

feasible solution x̂ that is identical to x̄ except that x̂k = w1 for some k ∈ A, and we would

have ax̂ < ax̄, contrary to the assumption that x̄ minimizes ax. So w2 appears nowhere

in {x̄i | i = 1, . . . q}. This means we can define a feasible solution x̃ that is identical to x̄

except that x̃j = w2 (rather than w), and we have ax̃ < ax̄, contrary to assumption.

Now since x̄i ≤ vqs+u for all i ∈ S ∪ Ū , and all the variables in S ∪ Ū must take different

values, the set {x̄i | i ∈ S ∪ Ū} must be {v0, . . . , vqs+u} \ {vr} for some r ∈ {0, . . . , qs+ u}.

This implies

min
x
{ax} = c1

∑

i∈A

x̄i + c2

(
qs+u
∑

i=0

vi − vr

)

(6.87)

We consider two cases.

Case 1: r ≥ q. Here all the values in {v0, . . . , vq−1} appear in {x̄i | i ∈ S ∪ Ū}. So each



208 CHAPTER 6. FINITE-DOMAIN CUTS FOR GRAPH COLORING

value in {v0, . . . , vq−1} can appear at most once in {x̄j | j ∈ A}. Thus from (6.87) we have

min
x
{ax | r ≥ q} = c1

q−1
∑

i=0

vi + c2

(
qs+u
∑

i=0

vi − vr

)

= c1

q−1
∑

i=0

vi + c2

qs+u−1
∑

i=0

vi = ψ(q, s, u)

where the second equality is due to the fact that we must have r = qs + u. Otherwise,

x̄i = vqs+u > vr for some i ∈ S ∪ Ū , and we can create a feasible solution x̂ that is identical

to x̄ except that x̂i = vr, and we have ax̂ < ax̄. The third equality follows algebraically

from the definitions of c1, c2.

Case 2. 0 ≤ r ≤ q−1. We show that the minimum is obtained in this case only if c1 ≥ c2,

and that the minimum is again ψ(q, s, u). Because vr does not appear in {x̄i | i ∈ S∪ Ū}, no

value greater than vr appears in {x̄i | i ∈ A}. Furthermore, all the values in {v0, . . . , vr−1}

appear in {x̄i | i ∈ S ∪ Ū}. Thus each value in {v0, . . . , vr−1} can appear at most once in

{x̄j | j ∈ A}. The remaining q − r variables in A can be assigned the value vr, because it

does not appear in {x̄i | i ∈ S ∪ Ū}. So, from (6.87) we have

min
x
{ax | 0 ≤ r ≤ q − 1} = c1

(
r−1∑

i=0

vi + (q − r)vr

)

+ c2

(
qs+u
∑

i=0

vi − vr

)

If c1 ≥ c2, this expression is minimized by setting r = 0, whereupon it reduces to ψ(q, s, u).

If c1 < c2, the minimum occurs when r = q − 1, and the expression becomes

c1

q−1
∑

i=0

vi + c2

(
qs+u
∑

i=1

vi − vq−1

)

> c1

q−1
∑

i=0

vi + c2

qs+u−1
∑

i=0

vi = ψ(q, s, u)

Thus if c1 < c2, the minimum occurs in Case 1, and the lemma follows. �

When the domains are Dδ, the inequalities (6.85)–(6.86) become

(qs+ u)
∑

i∈A

xi +
1
2q(q − 1)

∑

i∈S∪Ū

xi ≥ ψ(q, s, u)

s
∑

i∈A

xi +
1
2 (q − 1)

∑

i∈S

xi + qs
∑

i∈Ū

xi ≥ ω(q, s, u)/q

(6.88)

where

ψ(s, q, u) = 1
4q(q − 1)(qs+ u)(qs+ u+ 1)δ

ω(s, q, u)/q = 1
4qs(2u(u+ 1) + (q − 1)(sq + 2u+ 1))δ

Given domain D1, the cuts for the system in Fig. 6.6 are

8(x1 + x2 + x3) + 3(x4 + · · ·+ x11) ≥ 108

2(x1 + x2 + x3) + (x4 + · · ·+ x9) + 6(x10 + x11) ≥ 51
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6.10.2 Facet-Defining Inequalities

Theorem 24 If V1, . . . , Vq is an intersecting system, then inequalities (6.85) and (6.86) are

facet defining.

Proof. We prove that (6.85) is facet defining, as the proof for (6.86) is similar. We know

that (6.85) is valid, by Lemma 30. Let

F = {x feasible for (6.1) | x satisfies (6.85) at equality}

To show that (6.85) is facet defining, it suffices to show that if µx ≥ µ0 holds for all x ∈ F ,

then there is a scalar λ > 0 such that

µi =







λc1 for i ∈ A

λc2 for i ∈ S ∪ Ū

0 for i ∈ V \ (A ∪ S ∪ Ū)

λψ(q, s, u) for i = 0

(6.89)

Let xA be the tuple of variables xj for i ∈ A, xi the tuple of variables xj for j ∈ Si, and x
U

the tuple of variables xj for j ∈ Ū . The partial solution

x̄A = (v0, . . . , v0)

x̄i = (vi, vi+q, vi+2q, . . . , vi+(s−1)q), for i = 1, . . . , q

x̄U = (vsq+1, . . . , vsq+u)

is feasible and satisfies (6.85) at equality. As in previous proofs, it is straightforward to

show that µi = 0 for i ∈ V \ (A∪S ∪ Ū). Also, by symmetry, µi and µj take the same value

λA (or λS or λU ) for any pair i, j in A (or S or Ū). So if xS = (x1, . . . , xq), the equation

µx = µ0 reduces to

λA
∑

i∈A

xi + λS
∑

i∈S

xi + λU
∑

i∈Ū

xi = µ0 (6.90)

Now let (x̃A, x̃S , x̃U ) = (x̄A, x̄S , x̄U ) except that x̃j = x̄k for arbitrary j ∈ S, k ∈ Ū . Extend

these two partial solutions to feasible solutions x̄, x̃ of (6.1). Since x̄, x̃ satisfy (6.90), we

have λS = λU . So (6.90) reduces to

λA
∑

i∈A

xi + λS
∑

i∈S∪Ū

xi = µ0 (6.91)
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By definition of x̄, we have that x̄j = vq for some j ∈ Sq, and x̄k = qs+ u for some k ∈ Ū .

Let (x̂A, x̂S , x̂U ) = (x̄A, x̄S , x̄U ) except that x̂j = v0 and x̂k = vq, and extend this partial

solution to a feasible solution x̂. Then since x̄, x̂ satisfy (6.91), we have

λAqv0 + λS

qs+u
∑

i=1

vi = λA

q−1
∑

i=1

vi + λS





q−1
∑

i=1

vi + v0 +

qs+u−1
∑

i=q+1

vi + vq





This yields

λA

(
q−1
∑

i=1

xi − (q − 1)v0

)

= λS (vqs+u − v0)

or λAc2 = λSc1. Thus µj/µi = c2/c1 for any i ∈ A and any j ∈ S ∪ Ū . Also since µx̄ = µ0,

we have

µ0/µi =
∑

i∈A

x̄i +
c2
c1

∑

i∈S∪Ū

x̄i = qv0 +
c2
c1

qs+u
∑

i=1

vi = ψ(q, s, u)/c1

So there exists a λ satisfying (6.89). �

6.10.3 Bounds on the Chromatic Number

Theorems 18 and 24 imply

Corollary 4 If V1, . . . , Vq is an intersecting system and each xi has domain Dδ with δ > 0,

then the inequalities

z ≥
2

q(q + 1)

∑

i∈A

xi +
q − 1

(q + 1)(qs+ u)

∑

i∈S∪Ū

xi +
1
2

q − 1

q + 1
(qs+ u+ 1)

z ≥
2

qh

∑

i∈A

xi +
q − 1

qsh

∑

i∈S

xi +
2

h

∑

i∈Ū

xi +
1

2h
(2u(u+ 1) + (q − 1)(qs+ 2u+ 1))

(6.92)

are facet defining for (6.1), where h = q + 2u+ 1.

Given domain D1, the bounds for the system in Fig. 6.6 are

z ≥ 1
6 (x1 + x2 + x3) +

1
16 (x4 + · · ·+ x11) +

9
4

z ≥ 1
12 (x1 + x2 + x3) +

1
24 (x2 + · · ·+ x9) +

1
4 (x10 + x11) +

17
8

As with other cuts, the inequalities (6.85), (6.86), and (6.92) can be mapped to valid 0-1

inequalities by replacing each xi with
∑

j vjyij and z with
∑

j wj − 1.
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6.10.4 Separation

A polynomial-time separation algorithm for (6.85), given domain D1, is as follows. Let

V1, . . . , Vq define an intersecting system for which we wish to find a separating cut, and

let (x̄, z̄) be a solution of the current continuous relaxation (perhaps mapped from the 0-1

model). For each k = 1, . . . , q, let x̄a(i) = mini∈A{x̄i} and x̄b(i) = maxi∈A{x̄i}, and define

the bijection πk : {1, . . . , |Sk|} → Sk such that x̄πk(i) ≤ x̄πk(i′) whenever i < i′. Also

define the bijection π : {1, . . . , |U |} such that x̄π(i) ≤ x̄π(i′) whenever i < i′. Then for

s = 1, . . . ,mink |Sk| and u = 1, . . . , |U |, generate a separating x-cut

(qs+ u)

q
∑

i=1

xa(i) +
1
2q(q − 1)

(
q
∑

k=1

s∑

i=1

xπk(i) +

u∑

i=1

xπ(i)

)

≥ 1
4q(q − 1)(qs+ u)(qs+ u+ 1)

whenever x̄ violates this inequality, and generate a separating z-cut

z ≥
2

q(q + 1)

q
∑

i=1

xb(i) +
q − 1

(q + 1)(qs+ u)

(
q
∑

k=1

s∑

i=1

x|Sk|−i+1 +

u∑

i=1

x|U |−i+1

)

+ 1
2

q − 1

q + 1
(qs+ u+ 1)

whenever (x̄, z̄) violates this inequality.

This procedure obtains a separating cut whenever one exists. Separation for (6.86) is

similar.

6.11 Computational Results

6.11.1 Cycles

We generated instances of the cycle problem parameterized by s and q. All of the overlap

sets Sk have size s, and vertex set Vk = Sk∪Sk+1 for k = 1, . . . , q−1 (with Vk = Sk∪S1). For

each instance, we solved the linear programming relaxation that minimizes
∑

j wj subject

to (6.30) and various classes of cuts. Clique inequalities are always present.

We generated the instances indicated in Table 6.1, which shows the resulting bounds,

the optimal value (chromatic number), and the number of odd hole cuts.

For s = 1, the table confirms that 0-1 x-cuts are redundant of odd hole cuts. However,

the combination of one x-cut and one z-cut yields a tighter bound than n odd hole cuts. The
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Table 6.1: Lower bounds on the chromatic number in a 0-1 clique formulation of problem

instances consisting of one q-cycle with overlap of s.

q s Without Odd hole x-cut z-cut x-cut Optimal No. of odd

cuts cuts only only only & z-cut value hole cuts

5 1 2.00 2.50 2.00 2.30 2.60 3 5

2 4.00 4.00 4.00 4.50 5.00 5 320

3 6.00 6.00 6.00 6.77 7.53 8 3645

4 8.00 8.00 8.00 9.00 10.00 10 20,480

5 10.00 10.00 10.00 11.26 12.52 13 78,125

7 1 2.00 2.33 2.00 2.21 2.43 3 7

2 4.00 4.00 4.00 4.36 4.71 5 1792

3 6.00 6.00 6.00 6.50 7.00 7 45,927

4 8.00 8.00 8.00 8.68 9.36 10 458,752

9 1 2.00 2.25 2.00 2.17 2.33 3 9

2 4.00 4.00 4.00 4.28 4.56 5 9216

3 6.00 6.00 6.00 6.39 6.78 7 531,441

improvement is modest, but it is obtained at no additional cost. It is therefore advantageous

to replace any set of standard cuts generated for an odd hole with these two cuts.

For s > 1, neither odd hole cuts nor 0-1 x-cuts alone have any effect on the bound when

clique inequalities are present. However, a single 0-1 z-cut significantly improves the bound.

Combining the z-cut with the x-cut raises the bound still further, substantially reducing the

integrality gap, sometimes to zero. Two finite-domain cuts therefore provide a much tighter

relaxation than a large set of standard clique inequalities and odd hole cuts.

We also investigated whether the finite-domain cuts are equally effective in the x-space,

where they take their original form (6.15) and (6.28). We formulated a linear relaxation of

the finite-domain model that minimizes z+1 subject to z ≥ xi for all i, plus cuts. It is easy

to show that the LP bound subject to the x-cut alone, or to the z-cut alone, is β(q, s)/qs+1.



6.11. COMPUTATIONAL RESULTS 213

The bound subject to both cuts is 2β(q, s)/qs+ 1. These bounds appear in the left half of

Table 6.2. The two cuts, when combined, yield the same bound as in the 0-1 model.

One might obtain a fairer comparison if clique inequalities are added to the finite-domain

model, because they appear in the 0-1 model. In the finite-domain model, clique inequalities

correspond to the individual alldiff constraints. We know from [40, 69] that for domain D1,

the following is facet-defining for alldiff(Xk):

∑

i∈Vk

xi ≥
1
2 |Vk|(|Vk| − 1)

In the test instances, |Vk| = 2s. We therefore added the following cuts:

∑

i∈Vk

xi ≥ s(2s− 1), k = 1, . . . , q

Using Theorem 18, we also added the cuts:

z ≥
1

qs

∑

i∈Vk

xi +
2s− 1

q
, k = 1, . . . , q

The results appear in the right half of Table 6.2. The x-cut performs as before, but now the

z-cut provides the same bound as in the 0-1 model. When combined, the x-cut and y-cut

again deliver the same bound as in the 0-1 model.

Thus two odd cycle cuts yield the same bound in the very small finite-domain relaxation

(even without clique inequalities) as in the much larger 0-1 relaxation. The finite-domain

relaxation contains n variables xi and n + 2 constraints, while the 0-1 relaxation contains

n2+n variables yij , wj and n
2+n+2 constraints (dropping odd hole cuts). It may therefore

be advantageous to obtain bounds from a finite-domain model rather than a 0-1 model.

6.11.2 Webs

We generated the webs W (q, r) shown in Table 6.3. We omitted clique cuts (when they

exist) because they have no effect on the bound. The table shows that the 0-1 x-cut and

z-cut, when used together, yield a tighter bound than the known 0-1 cuts discussed above.

The improvement is modest, but the finite-domain cuts can replace known web cuts and

tighten the bound at no additional cost.
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Table 6.2: Lower bounds on the chromatic number in the finite-domain model of problem

instances consisting of one q-cycle with overlap of s and color set {0, 1, . . . , n− 1}.

q s No x-cut z-cut x-cut Clique Plus Plus Plus x-

cuts only only & z-cut cuts x-cut z-cut & z-cut

5 1 1.00 1.80 1.80 2.60 1.50 1.80 2.30 2.60

2 1.00 3.00 3.00 5.00 2.50 3.00 4.50 5.00

3 1.00 4.27 4.27 7.53 3.50 4.27 6.77 7.53

4 1.00 5.50 5.50 10.00 4.50 5.50 9.00 10.00

5 1.00 6.76 6.76 12.52 5.50 6.76 11.26 12.52

7 1 1.00 1.71 1.71 2.43 1.50 1.71 2.21 2.43

2 1.00 2.86 2.86 4.71 2.50 2.86 4.36 4.71

3 1.00 4.00 4.00 7.00 3.50 4.00 6.50 7.00

4 1.00 5.18 5.18 9.36 4.50 5.18 8.68 9.36

9 1 1.00 1.67 1.67 2.33 1.50 1.67 2.17 2.33

2 1.00 2.78 2.78 4.56 2.50 2.78 4.28 4.56

3 1.00 3.89 3.89 6.78 3.50 3.89 6.39 6.78

The LP bound given by the finite-domain model is γ(q, r)/q + 1 when the x-cut alone,

or the z-cut alone, is present. The bound subject to both cuts is 2γ(q, r)/q + 1. The latter

bound is the same as shown in Table 6.3 for the combined cuts in the 0-1 model.

6.11.3 Benchmark Instances

We tested the strength of odd cycle cuts on benchmark instances of the vertex coloring

problem taken from the DIMACS library. Table 6.4 displays the odd cycle bounds computed

for instances with fewer than 100 variables. Larger instances almost always resulted in an

out-of-memory error when the odd hole cuts were added.

We searched a given graph G = (V,E) for cycles with s = 1, 2, 3 using the following

greedy algorithm. Let the co-neighborhood of a set K of vertices be the intersection of
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Table 6.3: Lower bounds on the chromatic number in a 0-1 formulation of problem instances

consisting of a web W (q, r). The bound given by the finite-domain formulation is the same

as shown below when both cuts are used.

q r Without 0-1 cuts x-cut z-cut x-cut Optimal No. of

cuts only only only & z-cut value 0-1 cuts

5 2 2 2.50 2.00 2.30 2.60 3 5

7 2 2 3.50 2.29 2.79 3.57 4 7

3 2 2.33 2.00 2.21 2.43 3 7

8 3 2 2.67 2.00 2.38 2.75 3 8

9 2 2 4.50 2.78 3.28 4.56 5 9

4 2 2.25 2.00 2.17 2.33 3 9

10 3 2 3.33 2.20 2.70 3.40 4 10

11 2 2 5.50 3.27 3.77 5.55 6 11

3 2 3.67 2.36 2.86 3.73 4 11

4 2 2.75 2.00 2.41 2.82 3 11

5 2 2.20 2.00 2.14 2.27 3 11

the neighborhoods of the individual vertices in K. For each s ∈ {1, 2, 3} we proceed as

follows. We first select the clique S̄1 of size s with the largest co-neighborhood (breaking

ties arbitrarily). We then progressively build a path S̄1, S̄2, . . . by adding cliques S̄ℓ. For

each ℓ, if ℓ is odd, we examine cliques of size s that have vertices in V \ (S̄1∪ · · ·∪ S̄ℓ−1) and

that continue the path, and select from these a clique S̄ℓ with the largest co-neighborhood.

A clique K continues the path if all pairs (i, j) ∈ S̄ℓ−1 ×K are edges in E. If ℓ is even, we

check, for each clique K that continues the path, whether it allows completion of the cycle;

that is, whether each pair (i, j) ∈ S̄1 × K is an edge in E. If so, we generate the cycle.

(The vertices in S̄1 ∪ · · · ∪ S̄ℓ may induce edges that are not in a cycle, but the odd cycle

cuts are still valid.) We then let S̄ℓ be a clique that continues the path and has the largest
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co-neighborhood in V \ (S̄1 ∪ · · · ∪ S̄ℓ−1). The process terminates when no clique continues

the path.

Table 6.4 compares the bounds obtained from the 0-1 model after adding all odd hole

cuts for the cycles found with the bounds obtained after adding all 0-1 x-cuts and z-cuts on

these same cycles.

The results depend on the problem structure, but the finite-domain odd cycle cuts

obtained tighter bounds in most instances, in some cases substantially tighter. As one

might expect, the advantage is greater when there are cycles with s > 1. The time required

to solve the LP relaxation was also consistently less for the finite-domain cuts (because there

are only two of them per cycle), in some cases dramatically less.

6.12 Conclusion

We explored the idea of obtaining valid inequalities from a finite-domain formulation of

a problem that is normally given a 0-1 formulation. We showed that in the case of graph

coloring, this approach yields valid inequalities that provide tighter bounds on the chromatic

number than known 0-1 cuts for the problem. In particular, we identified facet-defining

inequalities for webs and odd holes that, when mapped into a 0-1 model, yield a tighter

bound than standard 0-1 cuts. Furthermore, two finite-domain cuts for an odd cycle can

yield substantially tighter bounds, in much less time, than hundreds or thousands of odd

hole cuts. We also described a family of facet-defining cuts for intersecting systems, for

which no 0-1 cuts seem to have been previously identified.

In addition, we discovered that web and odd cycle cuts provide the same tight bound

in a relaxation of the finite-domain model as in a relaxation of the 0-1 model. If other

families of finite-domain cuts follow this pattern, there could be advantage in obtaining

bounds from a finite-domain relaxation that is much smaller than the 0-1 model. Given

that some benchmark instances result in 0-1 models that are too large even to load into a

linear solver [57], this could provide a viable alternative for solving large graph coloring and

related problems.

The alternate polyhedral perspective afforded by the finite-domain formulation therefore
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seems beneficial, at least in the case of graph coloring. The next step is to seek additional

families of finite-domain cuts for graph coloring, perhaps corresponding to combs, anti-webs,

and more general structures. The general strategy of obtaining valid inequalities and tight

bounds from finite-domain formulations can be investigated for other problem classes.
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Table 6.4: Lower bounds on the chromatic number in a 0-1 formulation of benchmark

instances with n vertices and m edges, based on odd hole cuts and finite-domain odd cycle

cuts. Number of cycles found (for s = 1, 2, 3) and LP solution time in seconds are also

shown.

Bound No. cycles found LP Time (sec)

Instance n m Odd Odd Opt Odd Odd

hole cycle s = 1 s = 2 s = 3 hole cycle

1-Fulllns 3 30 100 2.00 2.00 3 18 0 0 0.4 0.4

1-Fulllns 4 93 593 2.00 2.00 4 61 0 0 208.0 0.4

1-Insertions 4 67 232 1.33 1.43 4 48 0 0 30.3 2.4

2-Fulllns 3 52 201 2.00 2.00 4 18 0 0 0.9 0.7

2-Insertions 3 37 72 1.25 1.33 3 8 0 0 2.9 0.2

3-Fulllns 3 80 346 2.00 2.00 5 25 0 0 25.8 0.2

3-Insertions 3 56 110 1.20 1.27 4 10 0 0 11.5 1.0

4-Insertions 3 79 156 1.17 1.23 3 12 0 0 12.1 6.0

david 87 406 2.00 8.00 10 103 48 10 11.0 0.8

huck 74 301 2.00 8.00 10 71 28 4 7.2 0.3

jean 80 254 2.00 8.00 10 26 0 8 10.2 1.8

mug88 1 88 146 2.00 2.00 3 2 0 0 7.8 2.7

mug88 25 88 146 2.00 2.00 3 4 0 0 5.3 1.7

myciel3 11 20 1.50 1.60 3 4 0 0 0.0 0.0

myciel4 23 71 1.50 1.60 4 18 0 0 0.6 0.0

myciel5 47 236 1.50 1.60 5 45 0 0 7.9 0.1

myciel6 95 755 1.50 1.60 6 153 0 0 1754.7 0.6

queen5 5 25 160 2.00 2.00 4 47 0 0 0.4 0.0

queen6 6 36 290 2.00 5.00 6 65 1 0 1.5 0.1

queen7 7 49 476 2.00 3.71 6 105 1 0 10.6 0.2

queen8 8 64 728 * 3.38 8 133 5 0 * 3.4

queen8 12 96 1368 2.00 8.00 11 229 31 20 439.6 1.7

queen9 9 81 1056 2.00 8.00 9 193 2 1 212.4 1.3
∗LP solver ran out of memory.
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Conclusions

In conclusion, in this dissertation we explore novel solution methods and bounding tech-

niques for discrete optimization problems.

The first method investigated is the use of approximate decision diagrams to represent

the feasible set. We describe two forms of approximate decision diagrams: relaxed and

restricted. Relaxed decision diagrams provide an over-approximation of the feasible set

and are used to prove upper-bounds (assuming maximization) on the optimal value. Re-

stricted decision diagrams provide an under-approximation of the feasible set and provide

lower-bounds (assuming maximization) on the objective function. We then discuss how

these structures can be used together in a branch-and-bound algorithm. Computational

experiments show that the proposed algorithm is competitive with state-of-the-art integer

programming software.

There are many opportunities for my current line of research on decision diagrams to

develop in the future. Continuing in discrete optimization, one such direction is the use of

a flow-polytope to transform the discrete relaxation provided by an approximate decision

into a continuous relaxation. In this way, the relaxations we have been developing can be

integrated with existing methodologies that utilize other continuous relaxations. This also

allows, for example, decision diagrams to model non-linear objective function terms and

constraints.

Beyond discrete optimization, decision diagrams have also shown to have an intimate

219
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connection with dynamic programming and hence approximate decision diagrams may be

useful for approximate dynamic programming. In addition, decision diagrams have recently

been applied in the context of sequential pattern data mining and perhaps for large-scale

problems, approximate decision diagrams may be an alternate mechanism to accomplish

the same task. There is also the possibility of using decision diagrams for stochastic pro-

gramming because of the sequential nature of the structure, viewing each layer as a stage

in the stochastic process. I am excited about the numerous prospects of the application of

decision diagrams and look forward to continuing this line of research.

The second method explored is the use of finite-domain models for finding strong cutting-

planes for 0-1 problems. The idea is to analyze the problem in an alternate space, perhaps

one that arises from a constraint programming formulation of the problem, and investigate

the convex hull of feasible solution in this space. Then investigate a mapping that takes

cuts in the finite-domain space and maps them to the original 0-1 space.

We apply this general technique to the graph coloring problem. We show that in the

case of graph coloring, this approach yields valid inequalities that provide tighter bounds

on the chromatic number than known 0-1 cuts for the problem. In particular, we identified

facet-defining inequalities for webs and odd-holes that, when mapped into a 0-1 model, yield

a tighter bound than standard 0-1 cuts. Furthermore, two finite-domain cuts for an odd-

cycle can yield substantially tighter bounds, in much less time, than hundreds or thousands

of odd-hole cuts. We also described a family of facet-defining cuts for intersecting systems,

for which no 0-1 cuts seem to have been previously identified.

In addition, we discovered that web and odd-cycle cuts provide the same tight bound

in a relaxation of the finite-domain model as in a relaxation of the 0-1 model. If other

families of finite-domain cuts follow this pattern, there could be advantage in obtaining

bounds from a finite-domain relaxation that is much smaller than the 0-1 model. Given

that some benchmark instances result in 0-1 models that are too large even to load into a

linear solver [57], this could provide a viable alternative for solving large graph coloring and

related problems.

The alternate polyhedral perspective afforded by the finite-domain formulation therefore

seems beneficial, at least in the case of graph coloring. The next step is to seek additional
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families of finite-domain cuts for graph coloring, perhaps corresponding to combs, anti-webs,

and more general structures. The general strategy of obtaining valid inequalities and tight

bounds from finite-domain formulations can be investigated for other problem classes.
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