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CHAPTER 1

Introduction

Information lies at the heart of the capital market: almost all activities in the

capital market involve acquiring, analyzing, disseminating, or responding to infor-

mation. Moving away from the capital market, �rms devote signi�cant resources

to the production, disclosure, and use of information. In either setting, there are

often multiple producers generating decision relevant information. For instance,

several �nancial analysts issue research reports for a given company, and the prin-

cipal groups several agents into a team and designs each agent�s wage to depend

on signals generated by all team members.

This dissertation presents analytical models where multiple information pro-

ducers interact strategically. The guiding theme is that strategic interactions

among information producers have important implications for the way informa-

tion is produced, disseminated, and used, to the extent that models with multiple

information producers generate qualitatively di¤erent results compared to models

with only one information producer. The models presented in the dissertation

intend to answer the following questions.
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1. When can herding behavior among �nancial analysts arise in a way that

improves the information communicated to the market and therefore bene�ts in-

vestors?

2. Is it in investors�best interest that �nancial analysts only report a subset

of their information even though the report is forced to be truthful?

3. When and why are managers compensated for their poor performance?

The results cast light on the observed accounting practices and institutions

that conventional thinking and existing theories have di¢ culty explaining. Going

beyond a positive theory, these results also have normative policy implications.

When can regulators bene�t investors by promoting herding behavior among �-

nancial analysts? When will policies aimed at protecting investors turn out to

discourage information acquisition to the detriment of investors?

The key analytical tool used in the essays is the concept of strategic complemen-

tarity developed in simultaneous move games, and the broader notion that agents

tend to act alike (herding) in sequential move games. Bulow et al. (1985) �rst

use the term �strategic complementarity� to refer to games where each player�s

incentive to act in a certain way increases as other players act in that way as well.

A bank run is an example of strategic complementarity: it is best for a depositor

to withdraw her money if other depositors of the bank withdraw their money.
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I will �rst discuss the central feature of strategic complementarity in a di¤er-

entiable framework and then de�ne it in a general setting.1 Consider a two-person

non-corporate simultaneous move game (A;Ui), where player i 2 f1; 2g chooses his

action ai 2 [0; A] and receives his utility Ui. Ui = Ui(aijaj; �) is player i�s payo¤ if

he takes the action ai given the other player�s action aj and � is a vector of pay-

o¤ relevant parameters. Ui is assumed to be smooth (continuously di¤erentiable),

strictly increasing, and concave in ai, i.e., @Ui@ai
> 0; @

2Ui
@a2i

< 0. This game exhibits

strategic complementarity if

(1.1)
@2Ui
@ai@aj

> 0

and condition (1.1) means that the marginal bene�t of taking a high action in-

creases in the level of the other players�action.

Since the de�nition of strategic complementarity is based on the players�payo¤s

without specifying the mechanism generating such payo¤ structures, it accommo-

dates a large variety of games. For example, strategic complementarity can be

driven by a complementary production technology (e.g., Bulow et al., 1985), com-

plementary allocation rules in coordination games (e.g., Diamond and Dybvig,

1983), or the combination of the two (e.g., Baldenius and Glover, 2012).

In games with a strategic complementarity, players have incentives to act alike.

This can be seen from the fact that each player�s best response function is upward

1Earlier work used similar examples to review the concept of strategic complementarity (e.g.,
Cooper, 1999; Vives, 2005).
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sloping. Denote B(aj; �) as player i�s best response function given aj and �. The

strict concavity assumption suggests that B(aj; �) has a unique maximizer and

satis�es the following condition (assuming the solution is interior):

@Ui(B(aj; �)jaj; �))
@B(aj; �))

= 0

Applying the implicit function theorem, one can show that the slope of the best

response function is d
daj
B(aj; �) = �@2Ui=@ai@aj

@2Ui=@a2i
, which is positive if and only if the

game exhibits strategic complementarity (i.e., condition 1.1 holds).

While the example above assumes convex action spaces and smooth payo¤func-

tions of the players, the idea of strategic complementarity is more general. Among

others, Milgrom and Roberts (1990) and Vives (1990) study strategic complemen-

tarity in a general class of games called supermodular games,2 which allows for

non-smooth payo¤s and complex strategy spaces. A complete discussion of su-

permodular games requires lattice-based theories developed by Topkis (1978) and

is beyond the scope of the introduction. The purpose here is to highlight the

counterpart of strategic complementarity in supermodular games.

Consider a 2 person simultaneous move game, where player i�s action space

Ai; i 2 f1; 2g contains �nite, real-valued elements. In addition, I will not impose

the smoothness assumption on players�payo¤ functions as I did earlier. The spirit

2A game is a supermodular game if for each player i, (1) his action space is a complete lattice; (2)
his payo¤ function U i has increasing �rst di¤erences (de�ned in the text); and (3) Given other
players�action a�i, U i is supermodular in his own action ai. De�nition of part (1) and (3) can
be found in Cooper (1999), Chapter 2.
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of strategic complementarity in this general setting is captured by the concept of

increasing �rst di¤erences de�ned below.

De�nition 1. Let Ai be the action space of player i 2 f1; 2g, a; a
0 2 A1, and b 2

A2. The payo¤ Ui exhibits increasing �rst di¤erences if for a
0
> a;Ui(a

0
; b)�Ui(a; b)

increases in b.

Clearly increasing �rst di¤erences is a generalization of condition (1.1). Through-

out the remainder, I do not di¤erentiate the concept of increasing �rst di¤erences

from strategic complementarity, but instead use the term �complementarity�when-

ever agent i�s incentive to choose a high action increases in his rival�s action.

The idea that players tend to act alike is not unique to simultaneous games.

Herding, which refers to players imitating their predecessor�s action, carries the

spirit of complementarity to sequential move games. To explore the connection

between herding and strategic complementarity, consider a sequential move game

where player 2 moves after player 1 taking a publicly observable action. Assuming

that both players�action space is f0; 1g, we say that player 2 herds with player 1

if the followings hold.

U2(a2 = 1ja1 = 1; I2) > U2(a2 = 0ja1 = 1; I2);8I2(1.2)

U2(a2 = 0ja1 = 0; I2) > U2(a2 = 1ja1 = 0; I2);8I2

where I2 is player 2�s private information when he chooses his action.



6

Recall from De�nition 2 that in the simultaneous move game with action space

f0; 1g, player 2�s payo¤ U2 exhibits complementarity if3

U2(a2 = 1ja1 = 1)� U2(a2 = 0ja1 = 1)(1.3)

> U2(a2 = 1ja1 = 0)� U2(a2 = 0ja1 = 0)

Abstracting from the context of two games, we can see that (1.2) implies (1.3).

In other words, one can consider herding as the case where the degree of comple-

mentarity is so strong that the follower, once observing the predecessor�s action,

will ignore any private information he possess and choose to act alike. Previous

research uses informational externality or reputation concerns to rationalize the

strong complementarity between players�actions that leads to herding.

Banerjee (1992) and Bikhchandani et al. (1992) develop the earliest mod-

els where herding is due to an informational externality. Herding arises in their

models because the information contained in the predecessor�s action is strictly

more informative about the underlying state than the follower�s private signal and

the follower wants to take an action as close to the underlying state as possible.

Scharfstein and Stein (1990) and Trueman (1994) develop models where herding

is driven by the agents�reputation concern. The model can be interpreted in a

Principal-Agent setting, where the agents (players) herd in order to manipulate

3Given the action space f0; 1g, a 2-person simultaneous game is a supermodular game if and only
if Ui exhibits increasing �rst di¤erences for both i (see De�nition 2).
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the (unmodeled) principal�s perception about their ability (or type). Most herd-

ing models assume small action spaces of a players, which prevents agents with a

slightly di¤erent posterior from choosing a slightly di¤erent action.

These herding models provide a good benchmark for understanding learning

behavior, but they assume all players have the same incentives and do not behave

strategically in the sense that they do not internalize the e¤ect of their behavior

on other players�choices. If information producers have heterogeneous incentives

and interact strategically, which seems common in practice, the information cas-

cade argument is questionable. For example, if the predecessor has an incentive to

a¤ect followers�actions, the predecessor may distort his action (that is to lie about

his private signal). But the predecessor�s distorted action lowers the informative-

ness of his action and therefore reduces the followers�incentive to herd. So once

we allows for strategic interactions between players with heterogenous incentives,

the predecessor�s action and the followers�herding choice should be determined

endogenously.

Another assumption adopted in the herding literature is that players�informa-

tion is exogenously given. If players acquire their private information at a cost,

one needs to reconsider the information cascade argument: if the player knows

he or she is going to herd with the predecessors in the future, he or she will not

acquire any information in the �rst place. So, as one endogenizes players�informa-

tion acquisition, time consistency of the player�s decision suggests that the e¤ect
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of herding depends critically on how it a¤ects the players� incentive to acquire

information in the �rst place.

Chapter 2 studies how an independent analyst interacts with an a¢ liated an-

alyst when issuing stock recommendations, and how that interaction a¤ects in-

formation acquired and communicated to the investor. This chapter builds on

a herding model, but it endogenizes information acquisition and the sequence of

actions, and introduces players with heterogeneous incentives. The model shows

that the independent analyst disciplines/reduces the bias in the a¢ liated analyst�s

recommendation, but sometimes also herds with the a¢ liated analyst to improve

recommendation accuracy. While casual intuition and existing research suggest

that herding will jeopardize the ability to discipline, I show that in equilibrium

herding and disciplining can be complements in the sense that the two roles coex-

ist and reinforce each other.

In addition, the model shows that the independent analyst only herds with the

a¢ liated analyst conditionally rather than perfectly (all the time), which implies

that we will observe disagreement between the two analysts� recommendations

from time to time. This �nding is also associated with Welch�s (2000) critique of

existing herding models.

This is because many herding theories are designed to explain a

steady state in which all analysts herd perfectly, not to explain

an ever-varying time-series of recommendations or a residual het-

erogeneity in opinion across analysts. (Welch, 2000, pp. 370)
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Returning to the study of strategic complementarity in simultaneous move

games, the literature has focused on identifying settings where strategic com-

plementarity arises and studying the implication of strategic complementarity.

Whether the game exhibits strategic complementarity has not been treated as

a control variable yet.

Chapter 3 studies the optimal contract based on subjective/non-veri�able per-

formance measures in a multi-period, principal-multi-agent game. The non-veri�able

feature of the agents�performance measures limits the principal�s ability to com-

mit to reporting those measures truthfully. The repeated relationship enhances

the principal�s credibility as the agents can punish the principal if the latter fails

to honor the contract. The repeated relationship also creates the room for implicit

side contracts between the two agents. Whether the contract (in particular agents�

payo¤s induced by the contract) exhibits strategic complementarity or strategic

substitutability has a subtle impact on the nature of the agent-agent side contract,

and therefore is an important decision variable for the principal. For example,

consider a game where both agents can either �shirk�or �work�and the principal

wants to induce �work� from both agents as a collusion-proof equilibrium at a

minimum cost. Baldenius and Glover (2012) shows that if the contract exhibits

strategic complementarity, agents colluding on a (shirk, shirk) strategy is most

expensive for the principal to break; while if the contract exhibit strategic substi-

tutability, the two agents alternating between (work, shirk) and (shirk, work) is

most expensive to break.
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Investigating why and how the principal purposely designs the contract to ex-

hibit strategic complementary, substitutability, or independence is the focus of

Chapter 3. It shows that when the expected relationship horizon is long, the op-

timal contract exhibits strategic complementarity in order to motivate the agents

to use implicit contracting and mutually monitor each other. When the expected

horizon is short, the solution converges to a static bonus pool in the sense that

the optimal contract rewards agents for (joint) bad performance in order to make

the principal�s promises to provide honest evaluations credible. For intermedi-

ate expected horizons, the optimal contract again rewards the agents for (joint)

bad performance if the agents�credibility to collude with each other is relatively

stronger than the principal�s credibility to honor the contract. The reason is that

paying for bad performance allows the principal to create a strategic independence

in the agents�payo¤s that reduces their incentives to collude. That is if the prin-

cipal did not have to prevent tacit collusion between the agents in this case, she

would not reward the agents for bad performance. She would instead use a relative

performance evaluation scheme. The unappealing feature of relative performance

evaluation is that it creates a strategic substitutability in the agents�payo¤s that

encourages them to collude on an undesirable equilibrium that has the agents tak-

ing turns making each other look good� they alternate between (work, shirk) and

(shirk, work).

The remainder of the dissertation is organized as follows. Chapter 2 reconciles

independent analysts� disciplining role over a¢ liated analysts� recommendation
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bias and the observed herding behavior among �nancial analysts. Chapter 3 studies

relational contracting based on subjective/non-veri�able performance measures as

a foundation for bonus pools. Chapter 4 concludes with two extensions.



CHAPTER 2

Independent and A¢ liated Analysts: Disciplining and

Herding

ABSTRACT: The paper investigates strategic interactions between an inde-

pendent analyst and an a¢ liated analyst when the analysts�information acquisi-

tion and the timing of their recommendations are endogenous. Compared to the

independent analyst, the a¢ liated analyst has superior information but faces a

con�ict of interest. I show that the independent analyst�s recommendation, albeit

endogenously less informative than the a¢ liated analyst�s, disciplines the a¢ li-

ated analyst�s biased forecasting behavior. Meanwhile, the independent analyst

sometimes herds with the a¢ liated analyst in order to improve forecast accuracy.

Contrary to conventional wisdom, I show that herding with the a¢ liated analyst

may actually motivate the independent analyst to acquire more information up-

front, reinforce his ability to discipline the a¢ liated analyst, and bene�t investors.

2.1. Introduction

This paper investigates strategic interactions between an independent analyst

and an a¢ liated analyst when the analysts�information acquisition and the timing

12
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of their recommendations are endogenous. In the paper, I di¤erentiate a¢ liated

analysts from independent analysts by two features: (a) the a¢ liated analyst faces

a con�ict of interest and (b) he has superior information compared to the inde-

pendent analyst.

These two features have been widely noted by regulatory bodies, practitioners,

and researchers. For example, the Global Analyst Research Settlement (Global

Settlement) between the United States�regulators and the nation�s top investment

�rms directly addresses con�icts of interest between research and investment bank-

ing businesses. An example of superior information a¢ liated analysts receive is

con�dential, non-public information they obtain in the due diligence process as an

underwriter in an Initial Public O¤ering (IPO). The inappropriate release of such

con�dential information in a restricted period prior to Facebook�s IPO was the fo-

cus of the Commonwealth of Massachusetts�case against Citigroup.1 Empirically,

Lin and McNichols (1998), Barber et al. (2007), and Mola and Guidolin (2009)

document evidence suggesting that a¢ liated analysts face con�icts of interest when

issuing stock recommendations, while Jacob et al. (2008) and Chen and Martin

(2011) document evidence suggesting that analysts receive superior information

because of their a¢ liations with the company.

On one hand, researchers argue that independent analysts�incentives are more

aligned with investors and �nd the existence of independent analysts disciplines

a¢ liated analysts�biased forecasting behavior (e.g., Gu and Xue, 2008). Consistent

1http://www.sec.state.ma.us/sct/current/sctciti/Citi_Consent.pdf
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with the disciplining argument, the Global Settlement requires investment banks

to acquire and distribute three independent research reports along with their own

reports for every company they cover. On the other hand, since independent

analysts�information is inferior, it is reasonable to suspect they have incentives to

herd with a¢ liated analysts, given the well-documented herding behavior among

�nancial analysts (e.g., Welch, 2000; Hirshleifer and Teoh, 2003).

If independent analysts herd with a¢ liated analysts, to what extent is their

disciplining role compromised? Casual intuition suggests that herding would jeop-

ardize the ability to discipline, which is consistent with the prevailing view in acad-

emic research that analysts�herding behavior discourages information production

and is undesirable from the investor�s perspective. In the Abstract of Herding

Behavior among Financial Analysts: A Literature Review, Van Campenhout and

Verhestraeten (2010) write:

Analysts� forecasts are often used as an information source by

other investors, and therefore deviations from optimal forecasts

are troublesome. Herding, which refers to imitation behavior as

a consequence of individual considerations, can lead to such sub-

optimal forecasts and is therefore widely studied.

Contrary to conventional wisdom, this paper shows that the independent an-

alyst�s disciplining role and herding behavior may reinforce each other. I show

that if the independent analyst�s informational disadvantage is large, herding with
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the a¢ liated analyst actually motivates the independent analyst to acquire more

information upfront, reinforces his disciplining role, and ultimately bene�ts the

investor.

The model has three players: an a¢ liated analyst, an independent analyst, and

an investor. Each analyst acquires a private signal about an underlying, risky asset

(the �rm) and publicly issues a stock recommendation at a time that is strategi-

cally chosen. When choosing the timing of their recommendations, both analysts

face a trade-o¤ between the accuracy and timeliness of their recommendations.2

Compared to the independent analyst, the a¢ liated analyst is assumed to face

a con�ict of interest but has superior information. To model the a¢ liated ana-

lyst�s con�ict of interest, I assume he receives an additional reward (independent

of the reward for timeliness and accuracy) if the investor is convinced to buy the

stock. To model the independent analyst�s informational disadvantage, I assume

the signal he endogenously acquires is less precise than the a¢ liated analyst�s sig-

nal due to exogenous higher information acquisition costs. The precision of the

analysts�information is interpreted as a �rm-wide choice (e.g., hiring a star analyst

or devoting more resources to a speci�c industry) and is assumed to be publicly

observed.

Due to his con�ict of interest, the a¢ liated analyst has an incentive to over-

report a bad signal in order to induce the investor to buy the stock. The model

2See Schipper (1991) and Gul and Lundholm (1995) on the tradeo¤ between accuracy and time-
liness of recommendations.
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shows that the independent analyst disciplines the a¢ liated analyst�s biased fore-

casting behavior in equilibrium. Intuitively, since the independent analyst�s rec-

ommendation provides information to the investor, the extent the a¢ liated analyst

can misreport his signal without being ignored by the investor is bounded by the

quality of the independent analyst�s recommendation.

The independent analyst�s herding behavior also arises in equilibrium. Since

the analysts�recommendations can be either favorable or unfavorable, the only rea-

son for the independent analyst to delay his recommendation is to herd with the

a¢ liated analyst. In equilibrium, the a¢ liated analyst�s unfavorable recommenda-

tion is more informative than his favorable recommendation, so the independent

analyst�s expected bene�t from waiting is higher if his private signal is good. The

endogenous bene�t of waiting, together with an exogenous cost of waiting, leads

to a conditional herding equilibrium under which the independent analyst reports

a bad signal immediately but waits and herds with the a¢ liated analyst upon

observing a good signal.

Surprisingly, conditional herding causes the independent analyst to acquire

more information and play a greater disciplining role than if he were prohibited

from herding. The reason is that herding introduces an indirect bene�t to infor-

mation acquisition. By acquiring better information and reporting a bad signal

right away, the independent analyst motivates the a¢ liated analyst to truthfully

reveal a bad signal more often �this is the disciplining role. The a¢ liated ana-

lyst�s more accurate reporting means that the independent analyst who receives a
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good signal too will be more accurate, since he herds with the a¢ liated analyst.

This indirect bene�t of information acquisition derived from herding motivates the

independent analyst to acquire better information upfront. That is, there is an

induced complementarity between the independent analyst�s ex-post herding and

ex-ante information acquisition.

Empirical Implications

First, the model predicts a positive association between independent analysts�

degree of herding3 with a¢ liated analysts and the informativeness of a¢ liated

analysts�recommendations for �rms with high information acquisition costs. The

predicted association is negative for �rms with low information acquisition costs.

Second, the model predicts that the dispersion between a¢ liated and indepen-

dent analysts� recommendations decreases over time. Moreover, the decrease of

dispersion is driven by independent analysts�recommendations converging to a¢ l-

iated analysts�recommendations but not vice versa. The prediction of a shrinking

dispersion is consistent with O�Brien et al. (2005) and Bradshaw et al. (2006) who

found that a¢ liated analysts�recommendations are more optimistic than indepen-

dent analysts�only in the �rst several months surrounding public o¤erings, while

there is no di¤erence afterwards.4

Regulatory Implications

3Welch (2000) proposes a methodology for estimating the degree of herding.
4O�Brien et al. (2005) write �we choose public o¤erings as a starting point because the �nancing
event allows us to distinguish a¢ liated from una¢ liated analysts.�
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First, the model shows a¢ liated analysts can be disciplined by independent

analysts even when the latter�s recommendations are less informative and involve

herding behavior. The result that the independent analyst herding with the af-

�liated analyst may actually bene�t the investor is relevant in the light of the

Jumpstart Our Business Startups Act (JOBS Act). The JOBS Act permits af-

�liated analysts to publish research reports with respect to an emerging growth

company any time after its IPO.5 The paper suggests that making it possible for

independent analysts to herd with a¢ liated analysts right after the IPO may in-

crease independent analysts�disciplining role and bene�t investors.6

Second, the paper points out that regulations mitigating a¢ liated analysts�

con�icts of interest such as the Global Settlement can hurt the investor in some

cases. The reason is that such regulations may crowd out independent analysts�

incentives to acquire information. The result o¤ers a rationale for the evidence in

Kadan et al. (2009) who found the overall informativeness of recommendations

has declined following the Global Settlement and related regulations.

The paper proceeds as follows. Section 2.2 reviews the literature. Section

2.3 lays out the model, and Section 2.4 characterizes the equilibrium. Section

5�Jumpstart Our Business Startups Act � Frequently Asked Questions About Re-
search Analysts and Underwriters�. http://www.sec.gov/divisions/marketreg/tmjobsact-
researchanalystsfaq.htm
6Before the JOBS Act, a¢ liated analysts were restricted by the federal securities laws from
issuing forward looking statements during the �quiet period,� which extends from the time a
company �les a registration statement with the Securities and Exchange Commission until (for
�rms listing on a major market) 40 calendar days following an IPO�s �rst day of public trading.



19

2.5 delivers the main point of the paper by illustrating how herding behavior

motivates the independent analyst to acquire better information and enhances

his disciplining role over the a¢ liated analyst in equilibrium. Section 2.6 develops

more detailed empirical and regulatory implications. Section 2.7 discusses the

robustness of the main results. Section 2.8 concludes the paper. Appendix A

speci�es results deferred from the main text, and Appendix B presents all proofs.

2.2. Related Literature

The paper is related to the herding literature. Banerjee (1992) and Bikhchan-

dani, Hirshldifer andWelch (1992) are two seminal papers showing that agents may

rationally ignore their own information and herd with their predecessor�s action

for statistical reasons. Scharfstein and Stein (1990) and Trueman (1994) develop

models where herding is driven by the agents�reputation concern. Arya and Mit-

tendorf (2005) show the manager may purposely disclose proprietary information

in order to direct herding from outside information providers. While the classical

herding literature assumes that agents act in an exogenous sequential order, the

sequence of actions is endogenous in my model. Existing herding models show

that herding behavior and the loss of information are inherently linked, while my

paper �nds a setting where herding behavior leads to more information acquisition

ex-ante and more information being revealed ex-post.

The endogenous timing of analysts�actions was �rst studied by Gul and Lund-

holm (1995), who model the trade-o¤ between the accuracy and the timeliness of
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a forecast. Guttman (2010) gives conditions under which the time of the two an-

alysts�forecasts cluster together or separate apart. In Gul and Lundholm (1995)

and Guttman (2010), the analysts have homogeneous incentives. By modeling

two analysts with heterogeneous incentives, my paper captures some institutional

di¤erences between a¢ liated and independent analysts and generates results that

cannot be derived from earlier work.

Prior research has studied information acquisition in settings with a single ana-

lyst. Fischer and Stocken (2010) study a cheap-talk model and draw the conclusion

that the analyst�s information acquisition depends on the precision of public in-

formation. While the public information is provided by a non-strategic party in

Fischer and Stocken (2010), both information providers behave strategically in my

model. Langberg and Sivaramakrishnan (2010) endogenizes the analyst�s informa-

tion acquisition in a voluntary disclosure model similar to Dye (1985) and show

the analyst�s feedback can induce less voluntary disclosure from the manager.7

My model contributes to this literature by developing an induced complementar-

ity between the independent analyst�s ex-post herding and ex-ante information

acquisition.

The independent analyst�s disciplining role in my model shares features of the

disciplinary role of accounting information. Among others, Dye (1983), Liang

(2000), and Arya et al. (2004) show that accounting information disciplines other

7Taking the analyst�s information acquisition as given, Arya and Mittendorf (2007) and Mitten-
dorf and Zhang (2005) also model interactions between an analyst and a manager.
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softer sources of information in principal-agent contracting settings. Like account-

ing information which is usually considered to be less informative and less timely

than other information sources such as managers�voluntary disclosures, the inde-

pendent analyst�s recommendation in my model is also (endogenously) less infor-

mative and less timely than the a¢ liated analyst�s recommendation.

Empirically, Gu and Xue (2008) document independent analysts�disciplining

role: a¢ liated analysts�forecasts become more accurate and less biased when in-

dependent analysts are following the same �rms than when they are not. They

also document that independent analysts� forecasts are less accurate than a¢ li-

ated analysts forecast ex-post. Both �ndings are consistent with predictions of

my model. In addition, Gu and Xue (2008) argue their results suggest that inde-

pendent analysts are better than a¢ liated analysts in representing ex-ante market

expectations, which is in line with the model�s assumption that the independent

analyst�s incentive is more aligned with the investor.

The model�s assumption that analysts face a trade-o¤ between accuracy and

timeliness of their recommendations is motivated by empirical evidence. Schipper

(1991) discusses the tradeo¤between timeliness and accuracy of analysts�forecasts.

Cooper et al. (2001) document that analysts forecasting earlier have greater im-

pact on stock prices than following analysts, and Loh and Stulz (2011) �nd similar

results in the context of analysts�recommendation revisions. Regarding the in-

centive to issue accurate forecasts, Mikhail et al. (1999), Hong and Kubik (2003),

Jackson (2005), and Groysberg et al. (2011) document evidence that analysts are
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rewarded for issuing accurate forecasts through higher payments, promising future

careers, better reputations, and/or less turnover.

2.3. Model Setup

The model considers an economy consisting of an underlying, risky asset (the

�rm) and three players: an a¢ liated analyst, an independent analyst, and an

investor. Whether an analyst is a¢ liated or independent is commonly known, and

I will specify their di¤erences later. The value of the �rm is modeled as a random

state variable ! whose prior distribution is also commonly known. Each analyst

acquires a private signal about the value of the �rm and then publicly issues a

stock recommendation at a time that is strategically chosen. After observing both

analysts�recommendations, the investor updates her belief about the value of the

�rm and makes an investment decision.

2.3.1. Endogenous Private Information Acquisition

The value of the �rm is modeled as a state variable ! 2 fH;Lg with the common

prior belief that both states are equally likely. At t = 0, the beginning of the game,

the independent analyst (indicated by the superscript I) acquires his private signal

yI 2 Y I = fg; bg about the underlying state ! at cost c(p), where p 2 [1
2
; 1] is the

precision of yI and is de�ned as follows
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(2.1) p = Pr(yI = gj! = H) = Pr(yI = bj! = L)

The cost of information acquisition c(p) increases in the precision p of the signal

in a convex manner and is assumed to be

(2.2) c(p) = e� (p� 1
2
)2

where e is a positive constant commonly known, and a greater e means acquiring

information becomes more costly. The cost of not acquiring any information is

zero, i.e., c(p = 1
2
) = 0.

At the same time, the a¢ liated analyst (indicated by the superscript A) is

endowed with a private signal yA 2 Y A = fg; bg whose precision pA 2 [1
2
; 1] is

de�ned analogously as in (1). Assuming the a¢ liated analyst costlessly receives

his signal with a �xed precision pA is a simpli�cation not crucial to the model. It

is enough to assume the cost of information acquisition is su¢ ciently lower for the

a¢ liated analyst so that he acquires more precise information in equilibrium.8

8I obtain qualitatively similar results by assuming both analysts simultaneously acquire infor-
mation, and the a¢ liated analyst�s information acquisition cost is c(pA) = e

2 � (p
A � 1

2 )
2. I am

unable to obtain closed-form solutions for one of the key cuto¤ conditions under this alternative
setup.
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Conditional on the realization of the state !, the signals received by the two

analysts are independent. That is,

(2.3) Pr(yA; yI j!) = Pr(yAj!) Pr(yI j!);8p

From each analyst�s perspective, the conditional independence assumption says

the other analyst�s private signal is more likely to be the same as his own signal

than to be di¤erent.

The paper assumes the precision (not the realization) of the analysts�signals,

pA and p, is observable. One can interpret the precision as the �rm-wide research

quality. In practice, it takes time and e¤ort for the research �rm to increase its

information precision, such as setting up a larger research group for the industry,

hiring a star analyst, or becoming part of the managers�network. These actions and

investments have to be made up front and are, to a substantial extent, observable

to the market.

2.3.2. Endogenous Timing of Public Recommendations

After observing their private signals at t = 0, both analysts simultaneously choose

either to issue a stock recommendation immediately at t = 1 or to defer the

recommendation to t = 2. While deferring a recommendation is costly (which will

be made precise shortly), doing so may be worthwhile as recommendations issued
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at t = 1 (if any) are observable and provide additional information to the analyst

who waits until t = 2 to issue his recommendation.

Since each analyst issues only one recommendation in the model, a speci�c

analyst can issue a recommendation at t = 2 if and only if he was silent earlier at

t = 1. To be concrete, denote rIt as the recommendation issued by the independent

analyst at time t 2 f1; 2g and RIt as his action space at t. Then we have

(2.4) rI1 2 RI1 = f bH; bL; ;g
where rI1 = ; means keeping silent at t = 1, and

(2.5) rI2 2 RI2 =

8><>: f bH; bLg if rI1 = ;
; if rI1 2 f bH; bLg

The a¢ liated analyst�s action space RA1 (and R
A
2 ) is de�ned analogously as R

I
1

(and RI2).

The analyst�s small message space f bH; bLg is less restrictive than might be
thought initially: Kadan et al. (2009) document that most leading investment

banks adopted a three-tier recommendation system similar to (Buy, Hold, Sell)

after the Global Settlement and related regulations were implemented in 2002.9

9A small message space is also assumed in most herding models (e.g., Scharfstein and Stein, 1990;
Banerjee, 1992; Trueman 1994).
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2.3.3. Analyst and Investor Payo¤s

The independent analyst maximizes his payo¤ function U I by choosing both

what and when to recommend:

(2.6) U I = Accurate+ � � Timely � c(p)

where Accurate and Timely have values of either zero or one and c(p) is the cost

of information acquisition de�ned in (2.2). Accurate = 1 if his recommendation

rA is consistent with the realization of the state !, and 0 otherwise. Timely =

1 if the independent analyst makes a non-null recommendation (rI1 2 f bH; bLg)
early at t = 1, and Timely = 0 if he defers his recommendation to t = 2. The

positive constant � is the reward for issuing a timely recommendation and can be

equivalently understood as the cost of deferring a recommendation to t = 2.

U I captures the analyst�s trade-o¤ between the timeliness and accuracy of his

recommendation, �rst discussed by Schipper (1991) and supported by subsequent

empirical �ndings (e.g., Cooper et al., 2001; Loh and Stulz, 2011; Hong and Kubik,

2003; Jackson, 2005).10

The a¢ liated analyst maximizes his payo¤ function UA by choosing both

what and when to recommend:

(2.7) UA = Accurate+ � � Timely + ��Buy
10The timeliness is also noted by practitioners. In an interview with the Wall Street Journal, an
analyst said, �it is better to be �rst than to be out there saying something that looks like you�re
following everyone else.�(Small Time, in Big Demand. The Wall Street Journal, June-05-2012.)
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where Accurate and Timely are de�ned the same way as in the independent an-

alyst�s payo¤ (2.6). Buy = 1 if the investor eventually chooses to �Buy� after

observing both recommendations, and 0 otherwise.

� � Buy in UA captures the a¢ liated analyst�s con�ict of interest, and the

positive constant � measures the degree of the con�ict of interest. Due to his

con�ict of interest, the a¢ liated analyst has an incentive to misreport his bad

signal in order to induce the investor to buy. Among others, Dugar and Nathan

(1995), Lin and McNichols (1998), Michaely and Womack (1999), and Mola and

Guidolin (2009) document evidence suggesting a¢ liated analysts face con�icts of

interest and tend to issue optimistic recommendations.

The investor makes her investment decision d 2 fBuy;NotBuyg at t =

3 after observing both analysts� recommendations, including the timing of the

recommendations. The investor�s payo¤ U Inv is determined by her investment

decision as well as the realization of the value of the �rm.11

(2.8) U Inv =

8>>>><>>>>:
1 if d = Buy and ! = H

�1 if d = Buy and ! = L

0 if d = NotBuy

Figure 1 summarizes the timeline of the game.

11The paper does not model the market microstructure, speci�cally the supply of the share and
the endogenous pricing function. Instead, the paper focuses on the strategic interactions between
the two analysts and the information production in equilibrium.



28

2.3.4. Two Central Frictions: Incentives and Information

Central to the model are strategic interactions caused by two frictions: (a) the

a¢ liated analyst�s con�ict of interest and (b) the independent analyst�s informa-

tional disadvantage. These two frictions di¤erentiate the a¢ liated analyst from

the independent analyst in the model.

To introduce the independent analyst�s informational disadvantage, it is helpful

to analyze a benchmark case in which the independent analyst is the only analyst

in the economy. In the benchmark case, the independent analyst forecasts at t = 1

and independently in the sense that rI = bH if and only if yI = g. Denoting p� as

the optimal precision chosen by the independent analyst in the benchmark case,

then p� solves the following non-strategic optimization problem

(2.9) p� = argmax
p2[ 1

2
;1]

p� e� (p� 1
2
)2

Solving the program, we obtain p� = 1+e
2e
. To capture the independent analyst�s

informational disadvantage, I assume p� < pA, which is equivalent to the following
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assumption on the parameters of the model

(2.10) e >
1

2pA � 1

As will be shown later, the assumption e > 1
2pA�1 is a su¢ cient condition

under which the signal the independent analyst acquires is less precise than the

a¢ liated analyst�s signal in equilibrium. The assumption is supported by empirical

evidence such as Jacob et al. (2008) who found a¢ liated analysts receive superior

information compared to the information independent analysts receive.

The a¢ liated analyst�s con�ict of interest is captured by the term ��Buy in

his payo¤ function (2.7), and � measures the degree of the con�ict of interest. To

avoid trivial analyses, I assume the con�ict of interest is neither too weak nor too

strong, that is

(2.11) 2pA � 1 + � = � � � � � = 2pA � 1
1� pA + p�(2pA � 1)

If the a¢ liated analyst�s con�ict of interest is too weak (� < �), he can perfectly

reveal his private signal through his recommendation. If the a¢ liated analyst�s

con�ict of interest is too strong (� > �), he cannot credibly communicate his

private signal at all. I characterize equilibria for � < � and � > � in Appendix A

for completeness.
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2.4. Equilibrium Analysis

This paper�s equilibrium concept is Perfect Bayesian Equilibrium.12 What

makes the analysis challenging is the endogenous order of the analysts� actions

as it complicates the possible history of the game and therefore players� strate-

gies.13 I present the analysis in two steps: I �rst analyze a benchmark case (in

Subsection 4.1) where only the independent analyst can choose the timing of his

recommendation and then allow both analysts to choose the timing of their rec-

ommendations (in Subsection 4.2). The reason to analyze the benchmark case is

twofold. First, it is the simplest setting in which the independent analyst�s disci-

plining role and herding behavior arise endogenously, and therefore represents a

simpler model in which key tensions of the game can be illustrated. Second, the

equilibrium characterized in the benchmark case carries over to the more general

game both qualitatively and quantitatively.

2.4.1. Endogenous Timing of Independent Analyst�s Recommendation

For the moment, suppose the a¢ liated analyst issues his recommendation at t = 1

and focus on the independent analyst�s strategy. The analysis also illustrates the

steps used in solving the more general game in Subsection 4.2.

12A pro�le of strategies and system of beliefs (�; �) is a Perfect Bayesian Equilibrium of the
extensive form game with incomplete information if it satis�es two properties: (i) the strategy
pro�e � is sequentially rational given the belief � and (ii) the belief � is derived from strategy
pro�le � by Bayes Rule for any information set H such that Pr(Hj�) > 0.
13For example, when issuing a recommendation early at t = 1, the analyst is not sure whether it
will be observed by the other analyst when making recommendations.
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2.4.1.1. Properties simplifying the equilibrium analysis. Before solving the

game using backward induction, I specify some properties (necessary conditions of

the two analysts�strategies) of the equilibrium. These properties, which hold in the

general game where both analysts can choose the timing of their recommendations,

narrow the search for an equilibrium to a smaller family of strategies.

While the a¢ liated analyst can bias his recommendation in both directions,

the following lemma tells us that focusing on over-reporting is without loss of

generality.

Lemma 2. The a¢ liated analyst never under-reports his good signal in equi-

librium, i.e., Pr(rA = bLjyA = g) = 0.
Proof. All proofs are in Appendix B.

The following lemma narrows the search of the independent analyst�s forecast-

ing strategy in equilibrium.

Lemma 3. If the independent analyst keeps silent at t = 1 in equilibrium, it

must be that he herds with the a¢ liated analyst�s recommendation rA1 at t = 2 for

any rA1 6= ;.

The lemma establishes a perfect correlation between waiting at t = 1 and herd-

ing behavior at t = 2 in equilibrium. The intuition is as follows: the independent

analyst will not receive any informational gain from waiting (to observe rA) unless

his �nal recommendation is di¤erent from what he would have recommend if he did
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not wait, i.e., rI(yI ; rA) 6= rI(yI). In the language of voting theory, information

about the a¢ liated analyst�s signal is valuable to the independent analyst only

when it is pivotal.14 Two conditions are necessary for the independent analyst who

receives yI to bene�t from waiting to observe the a¢ liated analyst�s recommenda-

tion rA: rA disagrees with his own signal yI , and the independent analyst herds

with rA in the sense that rI2 = rA. Since waiting is costly, it must be accompa-

nied by a subsequent herding in equilibrium. This intuition leads to the following

proposition.

Proposition 4. (Endogenous Bene�t of Waiting) In equilibrium, the indepen-

dent analyst�s expected gain from waiting to observe rA is at least weakly higher if

he receives a good signal than if he receives a bad signal.

The proposition opens the gate for endogenous timing of the independent ana-

lyst�s recommendation: since the independent analyst�s bene�t of waiting depends

on the realization of his private signal while the cost of waiting � is exogenous, in-

dependent analysts observing di¤erent signals may choose to forecast at di¤erent

times in equilibrium.

The intuition for Proposition 4 is as follows. We know from Lemma 3 that the

independent analyst does not bene�t from waiting unless he subsequently herds

14The argument does not depend on the analyst�s signal space being binary; it applies even if
one introduces any continuous signal for the analysts. Instead, the analysts�small message space
is critical to the argument. Herding would have not been in equilibrium if the analysts had a
continuous message space.
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with the a¢ liated analyst�s recommendation indicating a di¤erence in the two an-

alysts� signals. Therefore upon observing yI = b (or yI = g), the independent

analyst�s informational gain from waiting can be measured by the informativeness

of the a¢ liated analyst�s favorable recommendation bH (or unfavorable recommen-

dation bL). Given his incentive to over-report the bad signal, the a¢ liated analyst�s
unfavorable recommendation is more informative than his favorable recommenda-

tion in equilibrium, which implies the independent analyst�s informational gain

from waiting is higher if he observes a good signal than a bad signal.15

2.4.1.2. Equilibrium. The game is solved by backward induction. Taking the

independent analyst�s precision choice p � 1
2
at t = 0 as given, the following lemma

characterizes the unique subgame equilibrium.

Lemma 5. When only the independent analyst can choose the timing of his

recommendation, the unique subgame equilibrium following a given p � 1
2
is

(i) Independent Forecasting Equilibrium if � � (pA�p)(2p�1)
pA+p�1 , in which the

independent analyst forecasts independently at t = 1, or

(ii) Conditional Herding Equilibrium if � < (pA�p)(2p�1)
pA+p�1 , in which the in-

dependent analyst upon observing a bad signal forecasts bL at t = 1, but upon

observing a good signal waits and subsequently herds with the a¢ liated analyst�s

recommendation at t = 2.

15Rigorously, the probability that rA disagrees with yI is lower if yI = g. However, as shown
in the proof, the potential bene�t of changing a recommendation upon disagreement more than
o¤sets the lower probability of that disagreement.
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In both cases, the a¢ liated analyst over-reports his bad signal with probability

� = pA�p
pA+p�1 . The investor bases her investment decision on the a¢ liated analyst�s

recommendation unless rA = bH but rI = bL, in which case she does not buy with
probability ��(2pA�1)

�(1�pA�p+2pAp) .

The result is simple: given the initial precision choice p, the subgame equi-

librium depends on the value of the exogenous cost of deferring recommendations

to t = 2. If deferring his recommendation is extremely costly (� � (pA�p)(2p�1)
pA+p�1 ),

the independent analyst forecasts early (and thus independently) regardless of the

realization of his signal. If waiting becomes less expensive, the independent ana-

lyst waits and herds with the a¢ liated analyst�s recommendation after observing

a good signal, since the informational gain from waiting is higher in this case

(Proposition 4).

It is worth noting that while Lemma 5 is derived as a mixed strategy equilib-

rium, the results do not hinge on the randomization of mixed strategies. I show

in Section 7 that the main results of the paper are preserved in a richer game in

which the equilibrium is in pure strategies.

The following proposition endogenizes the independent analyst�s precision choice

at t = 0 and speci�es the overall equilibrium of the benchmark considered in this

Subsection.

Proposition 6. When only the independent analyst can choose the timing of

his recommendation, the unique Perfect Bayesian Equilibrium is
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(i) Independent Forecasting Equilibrium if � � �, in which the precision p = p�.

(ii) Conditional Herding Equilibrium if � < �, in which the precision p = pch.

The players� strategies in each equilibrium are speci�ed in Lemma 5, � =

4pApch�pA�pch
pA+pch�1 � e2(1�2pch)2+2e+1

2e
, p� = 1+e

2e
, and pch 2 (1

2
; pA) is the unique real

root to the cubic function16

(2.12) 2(pA + pch � 1)2(e� 2epch) + (2pA � 1)2 = 0

The condition on � in Proposition 6 ensures that (a) the precision p speci�ed

in the proposition is ex-ante optimal when the independent analyst chooses it, and

(b) the equilibrium is sequentially rational (thus satis�es the conditions in Lemma

5) for the speci�ed p.

2.4.2. Endogenous Timing of Both Analysts�Recommendations

Allowing both analysts to choose the timing of their recommendations substan-

tially increases the possible history of the game and therefore leads to a much

larger strategy space for each player. However as shown in the lemma below, the

equilibrium characterized in the benchmark (studied in Subsection 4.1) continues

to be an equilibrium of the general game.

Lemma 7. For � � � (� < �), the Independent Forecasting Equilibrium (Con-

ditional Herding Equilibrium) characterized in Proposition 6 is an equilibrium of

16The cubic function has a unique real root and two non-real complex conjugate roots.
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the general game in which the timing of both analysts�recommendations is endoge-

nous.

The proof in Appendix B also shows that the equilibrium survives standard

equilibrium re�nements, particularly the Cho-Kreps�s Intuitive Criterion and the

(more demanding) Universal Divinity Criterion developed by Banks and Sobel.17

When the timing of both analysts�recommendations is endogenous, the possi-

ble history of the game increases and therefore the players�strategy spaces grow

exponentially. To maintain tractability, I con�ne attention to equilibria where the

a¢ liated analyst�s waiting decision is in pure strategies. Equilibria with this prop-

erty are summarized in the following lemma, and they are equilibria even if one

allows for arbitrary mixed strategies.18

Lemma 8. In addition to the equilibrium characterized in Lemma 7, another

equilibrium emerges for small � in which the a¢ liated analyst forecasts at t = 2

while the independent analyst forecasts at t = 1. Details of the additional equilib-

rium are speci�ed in Appendix A.

17I adopt the de�nition 11.6 in Fudenberg and Tirole (1991). Denote D(t; T;m) as the set
of the investor�s mixed-strategy best responses to an out-of-equilibrium message m and beliefs
concentrated on the support of the a¢ liated analyst�s type space T = fg; bg that makes a type-
t a¢ liated analyst strictly prefer sending out m to his equilibrium message. Similarly denote
D0(t; T;m) as the set of mixed best responses that makes type-t exactly indi¤erent. In my
context, an equilibrium survives the Universal Divinity (or D2) criterion if and only if for all the
out-of-equilibrium messages m, the equilibrium assigns zero probability to the type-message pair
(t;m) if there exists another type t0 such that D(t; T;m) [D0(t; T;m) � D(t0; T;m).
18See Theorem 3.1 in Fudenberg and Tirole (1991): In a game of perfect recall, mixed strategies
and behavior strategies (mixed strategies of extensive-form games) are equivalent. Then the
claim is true by the de�nition of a Nash Equilibrium.
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Figure 2 illustrates the lemma and shows the equilibrium (or equilibria) ob-

tained for di¤erent values of the parameters. The shaded area in Figure 2 shows

that both the Conditional Herding Equilibrium and the additional equilibrium

characterized in Lemma 8 are equilibria of the game for small �.

In the additional equilibrium characterized in Lemma 8, the a¢ liated analyst

issues his recommendation later than the independent analyst. The independent

analyst chooses his non-strategic precision p� and forecasts early at t = 1 because

he correctly conjectures that the a¢ liated analyst always forecasts at t = 2. The

a¢ liated analyst issues bH if his own signal is good or the independent analyst issuesbH. If the a¢ liated analyst receives a bad signal and the independent analysts
issues bL, what the a¢ liated analyst issues depends on �: he issues bL if � is small,
while he randomizes between bL and bH if � is large. The additional equilibrium

fails the Universal Divinity Criterion for the small � case. In addition, while the

paper assumes the cost of waiting � is identical for both analysts, the a¢ liated
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analyst with more precise information may have a higher cost of waiting than the

independent analyst, which would also rule out the additional equilibrium in which

the a¢ liated analyst forecasts later than the independent analyst.19 Throughout

the remainder, I con�ne attention to the Conditional Herding Equilibrium and the

Independent Forecasting Equilibrium (recall that one or the other of the two, but

not both, exists for a given set of parameters).

The independent analyst�s endogenous herding decisions in the Conditional

Herding Equilibrium has a subtle e¤ect on his ex-ante information acquisition pch.

As will be shown in Section 5, herding with the a¢ liated analyst in equilibrium can

motivate the independent analyst to acquire more information than he would ac-

quire without herding (pch > p�) and reinforce his ability to discipline the a¢ liated

analyst�s biased forecasting behavior.

2.5. Herding Reinforces Disciplining

This section delivers the main point of the paper. The independent analyst�s

disciplinary role over the a¢ liated analyst�s forecasting strategy is important to

understand the result and is formalized in the following lemma.

19Gul and Lundholm (1995) make a similar assumption and Zhang (1997) develops a model in
which players with more precise signals choose to take actions earlier because of the information
leakage. Nevertheless, the multiple equilibria problem can be seen as a limitation of this study
and of signaling models in general. Using equilibrium re�nements to narrow the set of equilibrium
is itself controversial, because of the strong assumptions the re�nements make. An alternative
approach is to accept all equilibria as equally plausible. In my model, this would mean accepting
that either the a¢ liated or the independent analyst might forecast �rst. Since the Conditional
Herding Equilibrium is the one that best captures the notion of disciplining (which is the focus
of the paper) and seems consistent with observed analyst behavior, I focus on that equilibrium.
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Lemma 9. (The Independent Analyst�s Disciplinary Role) In equilibrium, the

a¢ liated analyst will over-report his bad signal less often if the independent analyst

acquires better information. Formally, we have d
dp
� < 0 in equilibrium, where

�
:
= Pr(rA = bHjyA = b).
Intuitively, as the independent analyst acquires more information, the investor

puts more weight on the independent analyst�s recommendation when making her

investment decision, which means relatively less weight is given to the a¢ liated

analyst�s recommendation. Less attention from the investor makes the a¢ liated

analyst endogenously care more about being accurate since the only reason he

may over-report a bad signal is to convince the investor to buy the stock. In other

words, the endogenous weight the a¢ liated analyst puts on the accuracy of his

recommendation increases if the independent analyst acquires better information

upfront. The independent analyst�s disciplining e¤ect is consistent with Gu and

Xue (2008) who �nd that the a¢ liated analysts�recommendations become more

accurate and less biased when independent analysts are following the same �rms

than when they are not.

Lemma 9 shows that the e¤ectiveness of the independent analyst�s disciplining

role depends on how much information he acquires ex-ante, while the ex-post

herding per se is irrelevant. Therefore instead of asking how the independent

analyst�s herding behavior a¤ects his disciplining role, the real question is how the

herding behavior a¤ects the independent analyst�s ex-ante information acquisition
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(and thus the ability to discipline the a¢ liated analyst). The next Proposition

shows that the independent analyst�s ex-post herding behavior will motivate better

information acquisition ex-ante (and therefore reinforces the disciplining role) if his

informational disadvantage is large.

Proposition 10. (Herding Motivates Better Information Acquisition) The in-

dependent analyst acquires more precise information in the Conditional Herding

Equilibrium than in the Independent Forecasting Equilibrium if and only if his

informational disadvantage is large. Formally, pch > p� , e > 1
(
p
2�1)(2pA�1) .

Why does the independent analyst spend more e¤ort acquiring private infor-

mation, knowing that he will discard that information ex-post half of the time

(whenever yI = g) and herds with the a¢ liated analyst? Analyzing the marginal

bene�t of information acquisition from the independent analyst�s perspective pro-

vides the answer. In the Conditional Herding Equilibrium, the marginal bene�t

is

(2.13)
1

2
� 1| {z }

Direct bene�t

+
1

2
f�(p) +

bene�t of herdingz }| {
(pA � p)

disciplinez }| {
d

dp
[��(p)]g| {z }

Indirect bene�t associated with disciplining

where �(p) is the equilibrium probability that the a¢ liated analyst over-reports

his bad signal.

The �rst term corresponds to the independent analyst observing a bad signal,

in which case he will forecast rI = bL immediately. In this case, acquiring better
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information mechanically increases the likelihood of his recommendation being

accurate at a marginal rate of 1.

The second term corresponds to the independent analyst observing a good sig-

nal, in which case he will wait and herd with the a¢ liated analyst at t = 2. In this

case, information acquisition has an indirect bene�t. As the independent analyst

acquires more information, the a¢ liated analyst faces more stringent discipline and

his best response is to truthfully report an unfavorable recommendation rA = bL
more often (i.e., d

dp
[��(p)] > 0). The response by the a¢ liated analyst in turn

implies that the independent analyst observing a good signal is more likely to enjoy

a precision jump of (pA� p) by herding with the a¢ liated analyst�s (more precise)

unfavorable recommendation bL. It is the very ex-post herding behavior that al-
lows the independent analyst to bene�t from the discipline e¤ect he provides and

motivates him to acquire more information than he would have acquired were he

forced to forecast independently.

In the Independent Forecasting Equilibrium, the marginal bene�t of informa-

tion acquisition comes solely from the direct bene�t, discussed in the �rst term of

equation (2.13). Therefore, the independent analyst acquires more information in

the Conditional Herding Equilibrium if and only if the indirect bene�t via herding

dominates the direct bene�t. As the precision choice p decreases in the information

acquisition cost e, the condition e > 1
(
p
2�1)(2pA�1) in Proposition 10 simply puts a

lower bound on the potential precision jump pA� p, above which the indirect ben-

e�t outweighs the direct bene�t. To illustrate Proposition 10, Figure 3 compares
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the independent analyst�s information acquisition p� and pch as a function of the

information acquisition cost parameter e, in which pA = 0:95.
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Figure 3: Herding motivates better information acquisition if  e>e*
(pA=0.95)

Conditional Herding Equilibrium

Independent Forecasting Equilibrium

What is the e¤ect of the independent analyst�s herding behavior on the in-

vestor�s payo¤? The answer is not clear at this point: while the independent

analyst may acquire better information in the Conditional Herding Equilibrium

(Proposition 10), he sometimes discards that information and herds with the a¢ l-

iated analyst who by assumption faces a con�ict of interest. The following propo-

sition summarizes the result.

Proposition 11. (Herding Bene�ts the Investor) Forcing the independent an-

alyst to forecast independently would make the investor weakly worse-o¤ if and

only if the independent analyst�s informational disadvantage is large, i.e., e >

1
(
p
2�1)(2pA�1) .
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The result con�rms the idea that herding per se does not a¤ect the independent

analyst�s disciplining role. Given the a¢ liated analyst�s incentive to over-report

a bad signal, the independent analyst�s recommendation disciplines the a¢ liated

analyst only when it is unfavorable (rI = bL). In equilibrium, the independent
analyst reports his bad signal immediately while he herds only if his private signal is

good, which does not compromise his ability to discipline the a¢ liated analyst. As

shown in Proposition 10, if the independent analyst�s informational disadvantage is

large, his herding strategy motivates better information acquisition and, therefore,

reinforces the disciplining bene�t enjoyed by the investor.

Figure 4 compares the investor�s utility in the Independent Forecasting Equi-

librium (the dotted line) and the Conditional Herding Equilibrium as a function

of e. Forcing the independent analyst to forecast independently implements the

Independent Forecasting Equilibrium, however doing so weakly decreases the in-

vestor�s payo¤for e > 2:6825 as otherwise the equilibrium would be the Conditional

Herding Equilibrium if the cost of waiting is not too large.
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2.6. Empirical and Regulatory Implications

From Lemma 9 and Proposition 11, we know that the a¢ liated analyst�s rec-

ommendation will become more informative if the independent analyst acquires

better information, which is in line with the disciplining story documented by Gu

and Xue (2008). Since the model derives the necessary and su¢ cient condition

for the independent analyst�s herding behavior to motivate better information ac-

quisition (Proposition 10), it generates predictions about the association between

the independent analyst�s herding behavior and the informativeness of the a¢ l-

iated analyst�s recommendations. Moreover, depending on the characteristics of

the �rm, the sign of the association is di¤erent.
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Corollary 12. The model predicts a positive association between independent

analysts� degree of herding and the informativeness of a¢ liated analysts� recom-

mendations for �rms with high information acquisition costs, while the predicted

association is negative for �rms with low information acquisition costs.

This is a sharp prediction that can be used to test my model. Welch (2000)

proposes a methodology for estimating the degree of herding and proxies for other

variables are common in the existing literature.

The following prediction is about the dynamics of the dispersion of the analysts�

recommendations over time.

Corollary 13. The model predicts that the dispersion between independent and

a¢ liated analysts�recommendations decreases over time even if no new informa-

tion is released.

Traditional wisdom attributes the decrease in the dispersion of analysts�rec-

ommendations to the arrival of new information, which decreases the uncertainty

analysts face and leads to similar opinions. The model o¤ers an alternative and

more endogenous explanation. Instead of relying on exogenous �new�information

available from outside, the decrease of dispersion in my model is caused by how

�old�information is gradually comprehended and used over time inside the analyst

market.
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The corollary explains O�Brien et al. (2005) and Bradshaw et al. (2006) who

�nd that a¢ liated analysts�recommendations are more optimistic than indepen-

dent analysts�recommendations only in the �rst several months surrounding IPOs

and SEOs, while there is no di¤erence between the two recommendations made

later. According to the model, only the independent analysts who observe bad

signals choose to issue recommendations early, which explains the a¢ liated ana-

lysts�optimism at the beginning. We do not expect any di¤erence later on because

independent analysts who choose to wait will herd with a¢ liated analysts�recom-

mendations. In addition, since Proposition 11 shows the optimality of the inde-

pendent analyst�s herding behavior from the investor�s point of view, my model

suggests that the empirical evidence documented above may actually come from

the equilibrium (conditional herding equilibrium) that is favorable to investors.

To the best of my knowledge, this prediction has not been tested outside public

o¤ering settings.

The next corollary addresses a potential, undesirable consequence of regulations

mitigating the a¢ liated analyst�s con�ict of interest.

Corollary 14. Regulations mitigating the a¢ liated analyst�s con�ict of interest

such as the Global Settlement do not necessarily bene�t the investor.

In the model, a smaller � captures the e¤ect of regulations mitigating the

a¢ liated analysts�s con�ict of interest. While it is easy to show d
d�
U Inv = 0 in

equilibrium (which is driven by the mixed strategies), the idea that lowering the
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a¢ liated analyst�s bias does not necessarily bene�t the investor is more general. In

Section 7, I modify the base model so that only pure strategy equilibria exist and

show that lowering the a¢ liated analyst�s con�ict of interest could strictly decrease

the investor�s payo¤. The reason is that the independent analyst tends to put

more trust in the a¢ liated analyst as the latter�s con�ict of interest becomes less

severe. It could be that a smaller � completely wipes out the independent analyst�s

incentive to acquire information ex-ante and therefore the a¢ liated analyst faces

no disciplining, in which case the investor is worse o¤.20

2.7. Robustness of Main Results

Due to simpli�cations made for tractability, the a¢ liated analyst and the in-

vestor play mixed strategies in the base model (see Lemma 5). I show in this

section that the main results of the base model are preserved in a game where only

pure strategy equilibria exist. To ease exposition, I restrict the a¢ liated analyst

to issuing his recommendation at t = 1 (as in Subsection 4.1). The goal is to

demonstrate that results of the paper are not driven by mixed strategies.

2.7.1. Modi�ed setup

Three modi�cations are made to the base model. While the investor is assumed to

be risk neutral with a binary action space fBuy;NotBuyg in the base model, she is

20The reasoning for the second part of Corollary 14 is similar to Fischer and Stocken (2010)
who �nd more precise public information may completely crowd out an analyst�s information
acquisition.
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now assumed to be risk averse (CARA utility) and has a continuous action space.

The investor is endowed with e amount of �dollars�which can be invested between

a risk-free asset and a risky asset (the �rm). The return of the risk-free asset is

normalized to be zero and the return of the risky asset is ! 2 fH = 1; L = �1g

with the common prior belief that both states are equally likely. Both assets pay

out at the end of the game, and the time value of money is ignored for clean

notation. A portfolio consisting of A units of the risk-free asset and B units of the

risky asset costs the investor A + B �m dollars to form and will generate wealth

w to the investor at the end of the game

(2.14) w = A+B �m � (1 + !)

where m is the price of the risky asset when the portfolio is formed.21 The investor

maximizes the following utility function

(2.15) U INV = �e���w

where � > 0 is the coe¢ cient of absolute risk aversion. The model does not allow

short selling of the risky asset and therefore B � 0.

The reward the a¢ liated analyst receives for inducing the investor�s buy action

is modi�ed to be proportional to the units of the risky asset the investor buys. If

21The paper does not model the supply of the share and therefore m is taken as given.
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the investor buys B units of the risky asset, the a¢ liated analyst�s payo¤ function

is

(2.16) UA = Accurate+ ��B

which is a natural extension of UA = Accurate+��Buy used in the base model as

(2.16) incorporates the fact that the risk averse investor will buy di¤erent numbers

of shares of the risky asset in response to di¤erent recommendations.

Finally, instead of having a binary support fb; gg in the base model, the a¢ li-

ated analyst�s private signal yA is now assumed to have a continuous support:

(2.17) yA = ! + �

where ! 2 fH = 1; L = �1g is the return of the risky asset and the noise term �

is normally distributed

(2.18) � � N(0; 1)

and the variance of � is normalized to 1 without loss of generality.22

22The probability density function '(yAj!) satis�es the monotonic likelihood ratio property
(MLRP) in the sense that '(y

Aj!=H)
'(yAj!=L) increases in y

A.
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2.7.2. Equilibrium analysis

As the investor is risk-averse, her holdings of the �rm vary continuously with her

posterior assessment of the �rm. Intuitively, the investor will hold more of the

risky asset if her posterior assessment is more optimistic, which is veri�ed by the

following lemma.

Lemma 15. In equilibrium, the investor buys B units of the risky asset at a

given price m:

(2.19) B =

8><>:
log(

qH
1�qH

)

2���m if qH � 1
2

0 otherwise

and dB
dqH

� 0, where qH = Pr(! = HjrA; rI) is derived using Bayesian Rule given

the prior distribution of ! and both analysts�equilibrium strategies.

The following lemma states the properties of the independent analyst�s strategy

in equilibrium. As in the base model (see Proposition 4), the independent analyst

observing a good signal is more likely to wait and herd with the a¢ liated ana-

lyst, which opens the gate for the endogenous timing of the independent analyst�s

recommendation.

Lemma 16. In equilibrium, the independent analyst will herd with rA if he

keeps silent at t = 1, and the gain from waiting is higher if he observes a good

signal than if he observes a bad signal.
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The following lemma shows that the a¢ liated analyst follows an intuitive

switching strategy in equilibrium.

Lemma 17. In equilibrium, the a¢ liated analyst�s strategy is characterized by

a unique cut-o¤ point s < 0 such that he forecasts bH if and only if the realization

of his signal is greater than s. Formally, rA = bH , yA > s.

With all players�equilibrium strategies in place, we are ready to present the

equilibrium.

Proposition 18. The modi�ed game only has pure strategy equilibria, and the

equilibrium takes one of the following forms

(1) Independent Forecasting Equilibrium where the independent analyst fore-

casts independently at t = 1.

(2) Conditional Herding Equilibrium where the independent analyst forecasts

independently at t = 1 if and only if his signal is bad while otherwise he waits and

herds with the a¢ liated analyst at t = 2.

(3) No Information Acquisition Equilibrium where the independent analyst

does not acquire private information and always herds with the a¢ liated analyst�s

recommendation at t = 2.

In any equilibrium, the investor�s investment strategy is de�ned in Lemma 15 and

the a¢ liated analyst follows a switching strategy described in Lemma 17.
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As in the base model, the endogenous bene�t of waiting leads to a conditional

herding equilibrium, under which the independent analyst reports his bad signal

immediately while he waits and herds with the a¢ liated analyst otherwise.

The main result of the base model, that herding with the a¢ liated analyst

motivates the independent analyst to acquire more information (Proposition 10)

and ultimately bene�ts the investor (Proposition 11), arises in the modi�ed game

as well. Figure 5 plots the precision chosen by the independent analyst in the

Conditional Herding Equilibrium and the Independent Forecasting Equilibrium

(characterized in Proposition 18) as a function of the information acquisition cost

parameter e, in which � = 2, � = 0:05, and � = 0:2. In this example, the unique

equilibrium of the game is the Conditional Herding Equilibrium for all values

of e. It is clear that the independent analyst acquires better information in the

conditional herding equilibrium than in the Independent Forecasting Equilibrium if

his informational disadvantage is large (e > 9:465 in Figure 5), which is consistent

with Proposition 10. One can also check that the investor is strictly better-o¤

in the Conditional Herding Equilibrium for e > 9:465, which is consistent with

Proposition 11.
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2.8. Concluding Remarks

The paper studies how an independent analyst interacts with an a¢ liated an-

alyst. Inspired by features noted by practitioners and academic researchers, the

paper assumes that, compared to the independent analyst, the a¢ liated analyst

faces a con�ict of interest but has superior information. Consistent with our intu-

ition and empirical �ndings, the paper shows that the independent analyst both

disciplines and herds with the a¢ liated analyst. On one hand, the independent

analyst�s incentive is more aligned with the investor and therefore he disciplines

the a¢ liated analyst�s biased forecasting behavior. On the other hand, the inde-

pendent analyst sometimes defers his recommendation and herds with the a¢ liated

analyst as the latter has more precise information.

While traditional wisdom suggests that disciplining and herding are in con�ict

with each other, I show that the independent analyst�s disciplining role and herding
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behavior may actually be complements in equilibrium. In particular, if the inde-

pendent analyst�s informational disadvantage is large, herding with the a¢ liated

analyst actually motivates the independent analyst to acquire more information

upfront, reinforces his disciplining role, and ultimately bene�ts the investor. This

point and other �ndings of the paper are intended to improve our understanding

of independent analysts�role and o¤er a rationale for some empirical observations.

The main point that herding can motivate better information acquisition and

reinforce disciplining seems likely to apply to settings other than a¢ liated and

independent analysts. For example, mutual fund managers base their portfolio

choices on both buy-side and sell-side analysts�forecasts. While sell-side analysts

potentially face con�icts of interest such as trade-generating incentives, it has been

documented that their forecasts are more precise than buy-side analysts (e.g.,

Chapman et al., 2008). The paper suggests that buy-side analysts may serve a

disciplinary role. Moreover, in order to induce buy-side analysts to acquire more

information, fund managers may purposely allow buy-side analysts to herd with

sell-side analysts by passing along the latter�s forecast to buy-side analysts.



CHAPTER 3

A Multi-period Foundation for Bonus Pools

ABSTRACT:1 This paper explores optimal discretionary rewards based on

subjective/non-veri�able performance measures in a multi-period, principal-multi-

agent model. The multi-period relationship creates the possibility of trust between

the principal and the agents. At the same time, the multi-period relationship cre-

ates the possibility of trust between the agents and, hence, creates opportunities

for both cooperation/mutual monitoring (good implicit side-contracting) and col-

lusion (bad implicit side-contracting). When the expected relationship horizon is

long, the optimal contract emphasizes joint performance, which incentivizes the

agents to use implicit contracting and mutual monitoring to motivate each other.

When the expected horizon is short, the solution converges to a static bonus pool.

A standard feature of a static bonus pool is that it rewards agents for (joint) bad

performance in order to make the evaluator�s promises to provide honest evalua-

tions credible. For intermediate expected horizons, the optimal contract allows for

more discretion in determining total rewards, which is typical in practice, but also

sometimes rewards the agents for bad performance. The reason for rewarding bad

performance is di¤erent than in the static setting� paying for bad performance

1This essay is a joint work with Jonathan Glover.

55
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allows the principal to create a strategic independence in the agents�payo¤s that

reduces their incentives to collude. That is if the principal did not have to pre-

vent tacit collusion between the agents in this case, she would not reward the

agents for bad performance. She would instead use a relative performance evalu-

ation scheme. The unappealing feature of relative performance evaluation is that

it creates a strategic substitutability in the agents�payo¤s that encourages them

to collude on an undesirable equilibrium that has the agents taking turns making

each other look good� they alternate between (work, shirk) and (shirk, work).

3.1. Introduction

Discretion in awarding bonuses and other rewards is pervasive. Evaluators

use discretion in determining individual rewards, the total reward to be paid out

to all (or a subset of the) employees, and even in deviating from explicit bonus

formulas (Murphy and Oyer, 2001; Gibbs et al., 2004). A common concern about

discretionary rewards is that the evaluator must be trusted by evaluatees (Anthony

and Govindarajan, 1998).

In a single-period model, bonus pools are a natural economic solution to

the �trust� problem (Baiman and Rajan, 1995; Rajan and Reichelstein, 2006;

2009). When all rewards are discretionary (based on subjective assessments of in-

dividual performance), a single-period bonus pool rewards bad performance, since

the total size of the bonus pool must be a constant in order to make the evaluator�s

promises credible.
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The relational contracting literature has explored the role repeated interac-

tions can have in facilitating trust and discretionary rewards based on subjective/non-

veri�able performance measures (e.g., Baker, Gibbons, andMurphy, 1994), but this

literature has mostly con�ned attention to single-agent settings.2 This paper ex-

plores optimal discretionary rewards based on subjective/non-veri�able individual

performance measures in a multi-period, principal-multi-agent model, which leads

to discretionary rewards. The multi-period relationship creates the possibility of

trust between the principal and the agents, since the agents can punish the princi-

pal for bad behavior. At the same time, the multi-period relationship creates the

possibility of trust between the agents and, hence, creates opportunities for both

cooperation/mutual monitoring (good implicit side-contracting) and collusion (bad

implicit side-contracting) between the agents.

When the expected relationship horizon is long, the optimal contract empha-

sizes joint performance, which incentivizes the agents to use implicit contracting

and mutual monitoring to motivate each other to �work�rather than �shirk.�The

subjective measures set the stage for the managers to use implicit contracting and

mutual monitoring to motivate each other, as in existing models with veri�able

performance measures (e.g., Arya, Fellingham, and Glover, 1997; Che and Yoo,

2001).3

2One exception is Levin (2002), who examines the role that trilateral contracting can have in
bolstering the principal�s ability to commit� if the principal�s reneging on a promise to any one
agent means she will loose the trust of both agents, relational contracting is bolstered.
3There is an earlier related literature that assumes the agents can write explicit side-contracts
with each other (e.g., Tirole, 1986; Itoh, 1993). Itoh (1993) models of explicit side-contracting
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When the expected horizon is short, the solution converges to the static bonus

pool. A standard feature of a static bonus pool is that it rewards agents for (joint)

bad performance in order to make the evaluator�s promises credible.

For intermediate expected horizons, the optimal contract allows for more dis-

cretion in determining total rewards, which is typical in practice, but also rewards

the agents for bad performance. The reason for rewarding bad performance is dif-

ferent than in the static setting� paying for bad performance allows the principal

to create a strategic independence in the agents�payo¤s that reduces their incen-

tives to collude. If the principal did not have to prevent tacit collusion between

the agents, she would instead use a relative performance evaluation scheme. The

unappealing feature of relative performance evaluation is that it creates a strate-

gic substitutability in the agents�payo¤s that encourages them to collude on an

undesirable equilibrium that has the agents taking turns making each other look

good� they alternate between (work, shirk) and (shirk, work).4 While it is natural

to criticize discretionary rewards for bad performance (e.g., Bebchuk and Fried,

2006), our result provides a rationale for such rewards. In this light, individual

performance evaluation can be seen as one of a class of incentive arrangements

can be viewed as an abstraction of the implicit side-contracting that was later modeled by Arya,
Fellingham, and Glover (1997) and Che and Yoo (2001). As Tirole (1992), writes: �[i]f, as is
often the case, repeated interaction is indeed what enforces side contracts, the second approach
[of modeling repeated interactions] is clearly preferable because it is more fundamentalist.�
4Even in one-shot principal-multi-agent contracting relationships, the agents may have incentives
to collude on an equilibrium that is harmful to the principal (Demski and Sappington, 1984;
Mookherjee, 1984).
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that create strategic independence� individual performance evaluation is the only

such arrangement that does not involve rewarding poor performance.

In our model, all players share the same expected contracting horizon (discount

rate). Nevertheless, the players may di¤er in their relative credibility because of

other features of the model such as the loss to the principal of forgone productivity.

In determining the optimal incentive arrangement, both the common discount rate

and the relative credibility of the principal and the agents are important.

There is a puzzling (at least to us) aspect of observed bonus pools. Managers

included in a particular bonus pool are being told that they are part of the same

team and expected to cooperate with each other to generate a larger total bonus

pool (Eccles and Crane, 1988). Those same managers are asked to compete with

each other for a share of the total payout. We extend the model to include an

objective/veri�able team-based performance measure. Productive complementari-

ties in the objective team-based measure can make motivating cooperation among

the agents optimal when it would not be in the absence of the objective measure.

The productive complementarity also takes pressure o¤of the individual subjective

measures, allowing for a greater degree of relative performance evaluation (and less

pay-for-bad performance) than would otherwise be possible. Put di¤erently, the

combination of rewarding a team for good performance but also asking agents to

compete with each other for a share of the total reward is not inconsistent with

motivating cooperation and mutual monitoring. Instead, such commonly observed
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schemes can be an optimal means of motivating cooperation and mutual monitor-

ing when the principal�s commitment is limited. The earlier theoretical literature

on bonus pools did not develop this role for bonus pools because of their focus on

static settings.

In contrast, productive substitutability in the objective team-based measure

may preclude cooperation from being optimal and necessitate even greater pay-for-

bad performance. In such cases, the productive substitutability also necessitates

a strategic complementarity in the way the subjective measures are incorporated

into the compensation arrangement (limiting the use of relative performance evalu-

ation and resulting in more pay-for-bad performance). In particular, the subjective

measures are used to create a payment complementarity that just o¤sets the pro-

ductive substitutability in the objective measure, so that the net e¤ect is an overall

strategic payo¤ independence that is optimal in preventing collusion.

Murphy and Oyer (2001) report that 42% of the �rms they study had discretion

in determining the size of the bonus pool. Such discretion in determining total

rewards is always optimal in our model but is much greater when cooperation

and mutual monitoring is optimal than when they are not and is increasing in

the degree of the complementarity of the agents�actions in the veri�able team-

based measure. Murphy and Oyer (2001) also hypothesize and �nd that (positive)

externalities across divisions are associated with greater use of discretion. Their

reasoning is that such discretion can be used to reward such cooperation. Instead

of productive complementarities creating the demand for discretion, productive
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complementarities facilitate discretion in our model (reversing the direction of

causality).

Like our paper, Kvaloy and Olsen (2006) study a multi-period, multi-agent

model in which all performance measures are subjective. They exogenously rule

out pay for bad performance, which is an important focus of our paper. Our

extension is closely related to Baldenius and Glover (2012) on dynamic bonus

pools. They take the form of the bonus pool as given, studying the impact of

using a bonus pool with the features of a static one in a multi-period horizon. In

particular, all of their bonus pools have the feature that the total payout does

not depend on the subjective performance measures. In contrast, the focus of this

paper is on optimal contracts, which incorporate discretion in determining the size

of the bonus pool.

Baiman and Baldenius (2009) study the role of non-�nancial performance mea-

sures can have in encouraging cooperation by resolving hold-up problems. The

empirical literature also provides evidence consistent with discretion being used to

reward cooperation (e.g., Murphy and Oyer, 2001; Gibbs et al., 2004). Our model

is consistent with this view in that the discretionary rewards are used to moti-

vate cooperation when possible. Our analysis points out the importance of both

the evaluator�s and the evaluatees�reputation in sustaining cooperation through

mutual monitoring.

The remainder of the paper is organized as follows. Section 3.2 presents the

basic model. Section 3.3 studies implicit side-contracting between the agents that is
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harmful to the principal, while Section 3.4 studies implicit side-contracting between

the agents that is bene�cial to the principal. Section 3.5 characterizes the optimal

overall contract. Section 3.6 studies an extension in which there are both individual

subjective performance measures (as in the rest of the paper) and an objective

team-based performance measure. Section 3.7 concludes.

3.2. Model

A principal contracts with two identical agents, i 2 fA;Bg, to perform two

independent and ex ante identical projects (one for each agent) in each period.

Each agent chooses a personally costly e¤ort ei 2 f0; 1g in each period t, i.e., the

agent chooses either �work�(eit = 1) or �shirk�(eit = 0). Whenever it does not

cause confusion, we drop sub- and superscripts. Each agent�s personal cost of shirk

is normalized to be zero and of work is normalized to be 1. The outcome from

each project, denoted by xi, is assumed to be either high (xi = H > 0) or low

(xi = L = 0).

Agent i�s e¤ort choice stochastically a¤ects the outcome of the project under

his management, in particular q1 = Pr(xi = Hjei = 1), q0 = Pr(xi = Hjei = 0),

and 0 < q0 < q1 < 1. Note that each agent�s e¤ort choice does not a¤ect the

other agent�s probability of producing a good outcome. Throughout the paper,

we assume each agent�s e¤ort is so valuable that the principal wants to induce

both agents to work (ei = 1) in every period. The principal�s problem is to design
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the contract that motives both agents to work in each and every period at the

minimum cost.

Because of their close interactions, the agents observe each other�s e¤ort choice

in each period. Communication from the agents to the principal is blocked� the

outcome pair (xi; xj) is the only signal on which the agents�wage contract can

depend. Denote by wimn the wage agent i receives if his outcome is m and his

peer�s outcome is n; m;n 2 fH;Lg. The wage contract provided to agent i is a

vector wi = fwiHH ; wiHL; wiLH ; wiLLg. Given wage scheme wi and assuming that

agents i and j choose e¤orts level k 2 f1; 0g and l 2 f1; 0g respectively, agent i�s

expected wage is:

�(k; l;wi) = qkqlw
i
HH + qk(1� ql)wiHL + (1� qk)qlwiLH + (1� qk)(1� ql)wiLL:

All parties in the model are risk neutral and share a common discount rate r,

capturing the time value of money or the probability the contract relationship will

end at each period (the contracting horizon). The agents are protected by limited

liability� the wage transfer from the principal to each agent must be nonnegative:

(Non-negativity) wmn � 0;8m;n 2 fH;Lg

Unlike Che and Yoo (2001), we assume the outcome (m;n) is unveri�able. The

principal, by assumption, can commit to a contract form but cannot commit to
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reporting the unveri�able performance outcome (m;n) truthfully.5 Therefore, the

principal must rely on a self-enforcing implicit (relational) contract to motivate

the agents. We consider the following trigger strategy played by the agents: both

agents behave as if the principal will honor the implicit contract until the principal

lies about one of the performance measures, after which the agents punish the

principal by choosing (shirk, shirk) in all future periods. This punishment is the

severest punishment the agents can impose on the principal. The principal will

not renege if:

(Principal�s IC)
2 [q1H � �(1; 1;w)]� 2q0H

r
� maxfwmn+wnm�(wm0n0+wn0m0)g

This constraint guarantees the principal will not claim the output pair from the

two agents as (m0; n0) if the true pair is (m;n). The left hand side is the cost of

lying.6 The agents choosing (shirk,shirk) and the principal paying zero to each

agent is a stage-equilibrium. Therefore, the agents�threat is credible. The right

hand side of this constraint is the principal�s bene�t of lying about the performance

signal.

5In contrast, Kvaloy and Olsen (2006) assume the principal cannot commit to the contract, which
makes it optimal to set wLL = 0. Our assumption that the principal can commit to the contract
is intended to capture the idea that the contract and the principal�s subjective performance rating
of the agents�performance can be veri�ed. It is only the underlying performance that cannot be
veri�ed.
6If she reneges on her implicit promise to report truthfully, the principal knows the agents will
retaliate with (shirk, shirk) in all future periods. In response, the principal will optimally choose
to pay a �xed wage (zero in this case) to each agent.
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3.3. Collusion

In this section of the paper, we derive the optimal contract while considering

only the possibility of negative agent-agent implicit side-contracts (collusion). As-

suming the principal truthfully reports the outcome, both agents choosing work is

a static Nash equilibrium if:

(Static NE) �(1; 1;w)� 1 � �(0; 1;w)

The following two conditions make the contract collusion-proof. First, the

contract has to satisfy the following condition to prevent joint shirking:

(No Joint Shirking) �(1; 0;w)� 1 + �(1; 1;w)� 1
r

� 1 + r

r
�(0; 0;w)

The left hand side is the agent�s expected payo¤ from unilaterally deviating from

(shirk, shirk), or �Joint Shirking,� for one period by unilaterally choosing work

and then being punished inde�nitely by the other agent by playing the stage game

equilibrium (work, work) in all future periods, while the right hand side is his

expected payo¤ from sticking to Joint Shirking strategy.

Second, the following condition is needed to prevent agents from colluding

by �Cycling,�i.e., alternating between (shirk, work) and (work, shirk):

(No Cycling)
1 + r

r
[�(1; 1;w)� 1] � (1 + r)2

r(2 + r)
�(0; 1;w)+

(1 + r)

r(2 + r)
[�(1; 0;w)� 1]
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The left hand side is the agent�s expected payo¤ if he unilaterally deviates by

choosing work when he is supposed to shirk and is then punished inde�nitely with

the stage game equilibrium of (work, work). The right hand side is the expected

payo¤ if the agent instead sticks to the Cycling strategy.

The reason that it su¢ ces to consider only these two conditions is that these

are these two forms of collusion have the agents colluding in the most symmetric

way, which makes the incentives the principal needs to provide to upset collusion

most costly. If the agents adopted a less symmetric collusion strategy, the principal

could �nd a less costly contract that would ensure the agent who bene�ts the least

from collusion would abandon the collusive agreement. The argument is the same

as in Baldenius and Glover (2012, Lemma 1).

It is helpful to distinguish three classes of contracts and point out how they

in�uence the two collusion strategies above. The wage contract creates a strate-

gic complementarity (between the two agents�e¤ort choice) if �(1; 1) � �(0; 1) >

�(1; 0)��(0; 0), which is equivalent to a payment complementarity wHH �wLH >

wHL � wLL. Similarly, the contract creates a strategic substitutability if �(1; 1)�

�(0; 1) < �(1; 0) � �(0; 0), or equivalently wHH � wLH < wHL � wLL. The con-

tract creates strategic independence if �(1; 1) � �(0; 1) = �(1; 0) � �(0; 0), or

wHH � wLH = wHL � wLL. This classi�cation of wage schemes determines the

collusion strategy that is most pro�table/attractive from the agents�point of view

and, thus, the most costly collusion strategy from the principal�s point of view. No
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Cycling is the binding collusion constraint under a strategic payo¤ substitutabil-

ity, while No Joint Shirking is the binding collusion constraint under a strategic

complementarity.7 Investigating when and why the principal purposely designs the

contract to exhibits a strategic complementarity, substitutability, or independence

is the focus of our analysis.

The basic problem faced by the principal is to design a minimum expected

cost wage contract w = fwHH ; wHL; wLH ; wLLg that assures (work, work) in every

period is the equilibrium-path behavior of some collusion-proof equilibrium. The

contract also has to satisfy the principal�s reneging constraint, so that she will

report her assessment of performance honestly. The problem is summarized in the

following linear program:

min
fwHH ;wHL;wLH ;wLLg

�(1; 1)

s:t:

Static NE

No Joint Shirking (LP � 1)

No Cycling

Principal�s IC

Non-negativity

7Mathematically, the No Joint Shirking constraint implies the No Cycling constraint if the con-
tract exhibits a strategic complementarity, and the reverse implication is true if the contract
exhibits a strategic substitutability.
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Since the two agents are symmetric, it is su¢ cient to minimize the expected

payment made to one agent. The following lemma states that the optimal contract

always satis�es wLH = 0.

Lemma 19. Setting wLH = 0 is optimal.

Proof. All proofs of this essay are in the Appendix C. �

The proof of Lemma 19 explores the symmetry between wHL and wLH . The

principal can always provide better incentives to both agents by decreasing wLH

and increasing wHL. Proposition 20 characterizes how the optimal contract changes

as the discount rate increases (both parties become impatient).

Proposition 20. Depending on the value of r, the solution to LP � 1 is

(wLH = 0 in all cases):

(i) IPE: wHH = wHL = 1
q1�q0 ; wLL = 0 for r 2 (0; �

C ];

(ii) BPI : wHH =
(q1�q0)2H�(1+r)(q1+r�1)
(q1�q0)(1�r(q1+r�1)) , wHL = wHH+wLL, wLL =

(q1�q0)2(1+r)H�(1+r)(q1+r)
(q1�q0)(1�r(q1+r�1))

for r 2 (�C ; � 1];

(iii) RPE: wHH =
(1�q1)q1(1+r)+(q1�q0)2(q1(2+r)�1�r)H

(q1�q0)(q21�r(1+r)+q1r(2+r))
, wHL =

(q1�q0)q1(2+r)H�
(1+r)(q 21 +r)

q1�q0
q21�r(1+r)+q1r(2+r)

,

wLL = 0 for r 2 (max(�C ; � 1); �F ];

(iv) BPS: wHH = (1+r)(r�(1�q1)2)�(q1�q0)2(1�q1)(2+r)H
(q1�q0)(2q1+(3�q1)q1r+r2�2(1+r)) , wHL = 2wHH , wLL =

(1+r)((2�q1)q1+r)+(q1�q0)2(q1(2+r)�2(1+r))H
(q1�q0)(2q1+(3�q1)q1r+r2�2(1+r)) for r > max(� 1; �F );
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where � 1 = 2q1�1
(1�q1)2 and �

C ; �F are increasing functions of H, which are speci�ed

in the Appendix C.

We use superscripts �C�, �S�, and �I�to denote a (payo¤) strategic comple-

mentarity, strategic substitutability, and strategic independence induced by the

contract. In Proposition 1, individual performance evaluation (IPE) is optimal if

both parties are patient enough (r � �C). IPE is the benchmark solution� it is

also the optimal contract when the performance measures are veri�able, since the

agents operate independent individual production technologies.

As r increases, IPE is no longer feasible, because the impatient principal has

incentive to lie when the output pair is (H;H). To see this, note that given the

IPE contract, the right hand side of the Principal�s IC constraint is 2
q1�q0 while

the left hand side of the constraint is strictly decreasing in r. As the principal

becomes less patient, she eventually has incentives to misreport the output pair as

(L;L) when it is actually (H;H). The Principal�s IC constraint starts binding at

r = �C . As r increases further, the gap between wHH and wLL must be decreased

in order to prevent the principal from misreporting.

The principal has two methods of decreasing the gap between wHH and

wLL. First, she can decrease wHH and increase wHL� a form of relative per-

formance evaluation (RPE). Second, she can increase wLL so that the contract

rewards bad performance in the sense that both agents are rewarded even though

they both produce bad outcomes, corresponding to solution BPI in Proposition 20.
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This second approach compromises the agents�incentive to work because increas-

ing wLL makes shirk more attractive to both agents; as a result, wHH or wHL needs

to be increased even more to provide enough e¤ort incentive to the agents. One

may think that BPI will never be preferred to RPE. In fact, the only reason that

BPI is optimal is that it is an e¢ cient way of combatting agent-agent collusion

on the Cycling strategy. RPE creates a strategic substitutability in the agents�

payo¤s that makes Cycling particularly appealing. RPE relies on wHL to provide

incentives, creating a strategic substitutability in the agents�payo¤s. Under RPE,

each agent�s high e¤ort level has a negative externality on the other agent�s e¤ort

choice, making the Cycling collusion more di¢ cult (more expensive) to break up

than the Joint Shirking collusion strategy. Since collusion is more costly to pre-

vent for small r, the principal purposely designs the contract to create strategically

independent payo¤s. This intuition and the tradeo¤ between the bene�t and cost

of RPE (increasing wHL) relative to BPI (increasing wHH and wLL) is illustrated

with a numerical example in Figure 6.

In the example, q0 = 0:5, q1 = 0:7, and H = 100. The principal uses IPE if she

is su¢ ciently patient (r � 3:33), while she has to chooses between RPE and BPI

for r > 3:33 (the origin of Figure 6 at which both solutions are equally costly to the

principal). The solid line represents the cost of RPE (Solution iii) relative to BPI

(Solution ii), calculated as q1(1� q1)(wiiiHL � wiiHL), where the superscripts iii and

ii refer the corresponding solutions in Proposition 20. The dotted line measures

the relative bene�t of RPE, or equivalently the cost of increasing wLL and wHH
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under BPI , calculated as q 21 (w
ii
HH � wiiHH) + (1 � q1)2wiiLL. The intersection of

two lines determines the critical discount rate � 1 = 4:4 used to choose between

the two solutions. In this example, bonus pool type contract BPI (pay without

performance) emerges sooner than one might expect, since RPE is feasible for

r < 4:4 and does not make payments for poor performance.

Figure 6: Cost and Bene�t of RPE relative to BPI

In general, BPI emerges sooner than the RPE whenever the agents� credi-

bility to collude is relatively stronger than the principal�s credibility to honor her

promises. We know from Proposition 20 that BPI is optimal if and only if �C < � 1,

which is equivalent to restricting the high output of the project H is not too large,

since �C increases in H while � 1 is independent of H. Note that the principal�s

ability to commit to honoring the IPE contract is enhanced by a high value of H,

since the punishment the agents can bring to bear on the principal is more severe.

Therefore the region over which she can commit to the IPE contract becomes

larger (�C becomes bigger) as H increases. For su¢ ciently large H, �C becomes

so large that once the principal cannot commit to honoring the IPE (r = �C),
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it has already passed the point (� 1) where the two agents can enforce their own

collusion. Once the principal does not have to worry about the tacit collusion be-

tween the agents, she will instead use RPE and avoid the payment made to poor

performance. Coming back to the same numerical example as in Figure 6, if one

increases the value of H from 100 to 128:61, �C will exceed � 1 and the region that

used to be BPI withH = 100 (3:3 < r < 4:4) now becomes IPE since the principal

has a greater ability to commit with a higher H. Moreover, when the principal

loses her commitment at r = �C = 4:4, the agents are already so impatient that

their cycling collusion is of no concern, and therefore the principal will o¤er RPE

(instead of BPI).

Solution BPS emerges as r eventually becomes large enough (both parties be-

come extremely impatient) and BPS is similar to the static bonus pool. As pointed

out in Levin (2003), �the variation in contingent payments is limited by the future

gains from the relationship.� The variation of wage payment is extremely lim-

ited under BPS, because both parties are su¢ ciently impatient (r > max(� 1; �F ))

and (thus) the future gains from the relationship are negligible. As a result, the

principal has to set wHL = 2wHH and also increase wLL to make the contract self-

enforcing. This coincides with the traditional view that bonus pools will eventually

come into play because they are the only self-enforcing compensation form in such

cases.
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3.4. Cooperation and Mutual Monitoring

Agent-agent side contracting can also be bene�cial to the principal: the fact

that the agents observe each other�s e¤ort choice gives rise to the possibility that

they could be motivated to mutually monitor each other to work as in Arya,

Fellingham, and Glover (1997) and Che and Yoo (2001), as long as playing (work,

work) Pareto-dominates all other possible action combinations (including Cy-

clying). Consider the following a trigger strategy used to enforce (work, work):

both agents play work until one agent i deviates by choosing shirk ; thereafter,

agent j punishes i by choosing shirk :

(Mutual Monitoring)
1 + r

r
[�(1; 1;w)� 1] � �(0; 1;w) + 1

r
�(0; 0;w)

Two conditions are needed for agents�mutual monitoring. First, each agent�s

expected payo¤ from playing (work, work) must be at least as high as from by

playing the punishment strategy (shirk, shirk). In other words, (work, work) must

Pareto dominate the punishment strategy from the agents�point of view in the

stage game. Otherwise, (shirk, shirk) will not be a punishment at all:

(Pareto Dominance) �(1; 1;w)� 1 � �(0; 0;w)
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Second, the punishment (shirk, shirk) must be self-enforcing. The following con-

straint ensures (shirk, shirk) will be a stage game Nash equilibrium:

(Self-Enforcing Shirk) �(0; 0;w) � �(1; 0;w)� 1

The following linear program formalizes the principal�s problem:

min
fwHH ;wHL;wLH ;wLLg

�(1; 1)

s:t:

Mutual Monitoring

Pareto Dominance

Self-Enforcing Shirk (LP � 2)

No Cycling

Principal�s IC

Non-negativity

Two points are worth noting. First, since (shirk, shirk) is now Pareto domi-

nated by (work, work) from the agents�point of view, the collusion strategy Joint

Shirking considered in the previous section can be dropped and the contract is

collusion-proof as long as it satis�es the No Cycling constraint. Second, since the

�rst three conditions sustain (work, work) in all periods as equilibrium play, the
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trigger strategy considered in the No Cycling constraint, i.e. playing (work, work)

inde�nitely, is self-enforcing. Proposition 21 characterizes the optimal solution.

Proposition 21. Depending on the value of r, the solution to LP-2 is (with

wLH = 0 in all cases):

(i) JPE1: wHH = 1+r
(q1�q0)(q0+q1+q1r) , wHL = wLL = 0 for r 2 (0; �

A];

(ii) BP1C: wHH =
(q1�q0)2(q0+q1�(1�q1)r)H�(1+r)(q 21 �1+r)

(q1�q0)(q0+q1+(1�q1)q1r�r2) , wHL = 2wLL, wLL =

(q1�q0)2(q0+q1+q1r)H�(1+r)(q 21 +r)
(q1�q0)(q0+q1+(1�q1)q1r�r2) for r 2 (�A;minf� 0; �Dg];

(iii) JPE2: wHH =
(1�q1)q1(1+r)+(q1�q0)2(q0�(1�q1)(1+r))H

(q1�q0)((q1�1)r(1+r)+q0(q1+r)) , wHL =
(1+r)(q 21 +r)

q1�q0
�(q1�q0)(q1+q0+q1r)H

(1�q1)r(1+r)�q0(q1+r) ,

wLL = 0 for r 2 (maxf� 0; �Ag; �C ];

(iv) BP2C: wHH =
q1�q0+q1q0�q 21 +q0r�(q1�q0)2(1�q1)H

(q1�q0)((q1�1)r+q0(q1+r�1)) , wHL =
q0�2q1q0+q 21 +r�2q0r�(q1�q0)3H
(q1�q0)((1�q1)r�q0(q1+r�1)) ,

wLL =
q0(q1�q0)2H�q0(q1+r)

(q1�q0)((1�q1)r�q0(q1+r�1)) for r 2 (maxf�
0; �Cg; �D];

where � 0 = q1+q0�1
(1�q1)2 , �

C is same as in Proposition 20. �A �D are increasing

functions of H and are speci�ed in the Appendix C.

It is easy to check that all the solutions create a strategy complementarity

between the two agents�e¤ort choice (denoted by the C superscript). When r is

small, the optimal contract same as the �Joint Performance Evaluation�(JPE1 )

contract studied in Che and Yoo (2001), i.e., the agents are rewarded only if the

outcomes from both agents are high. Starting from JPE1, as r increases, the

principal has to increase wHH because it becomes more di¢ cult to motive the

impatient agents to mutually monitor each other. However, the principal is also

becoming less patient, and increasing wHH will eventually become too expensive
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for the principal to truthfully report the output (H;H). The principal will have

to choose between JPE2 and BP1C if she cannot credibly commit to honoring the

JPE1 contract. According to Proposition 21, BP1C follows the full commitment

contract JPE1 if and only if �A < � 0. This condition is equivalent to H being not

too large, since �A increases in H while � 0 is independent of H. Using a similar

argument to the one given just after Proposition 20, we know a higher value of

H enhances the principal�s ability to commit to the JPE solution. If H is large

enough, �A will be so large that agent-agent side-contracting becomes fragile even

before the principal�s weakened commitment comes into play. Although increasing

wHH is most e¢ cient in exploiting mutual monitoring between the agents, it comes

at the cost that wLL must also be increased. The principal uses BP1C only if the

agents are still somewhat patient so that the e¢ ciency of wHH in exploiting mutual

monitoring among the agents dominates its cost.

We illustrate the intuition for why and when the BP1C emerges sooner (relative

to JPE2 ) using another numerical example: q0 = 0:5, q1 = 0:9, and H = 100. In

this example, JPE1 violates the Principal�s IC constraint whenever r > �A = 14:12

(the origin of Figure 7) and she has to either increase wHL (JPE2 ) or increase

wLL so that she can increase wHH (BP1C). Similar to Figure 6, the solid line in

Figure 7 represents the relative cost of JPE2 compared to BP1C calculated as

q1(1 � q1)(wiiiHL � wiiHL) while the dotted line is the relative bene�t calculated as

q 21 (w
ii
HH � wiiHH) + (1 � q1)2wiiLL. One can see the principal chooses BP1C over

JPE2 if the two agents are somewhat patient (r < � 0 = 40) when it is e¢ cient
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to use wHH to exploit mutual monitoring. If one sets H � 279:61 instead, �A will

exceed � 0 and the region that used to be BP1C (14:12 < r < 40) is now replaced by

JPE2 as the principal�s ability to commit is greater. Therefore when the principal

loses her commitment, the agents are already so impatient that it is not worth

increasing wHH to induce mutual monitoring at the cost of increasing wLL.

Figure 7: Cost and Bene�t of JPE2 relative to BP1C

A feature of Proposition 21 is that no feasible solution exists when r is large

enough. There is a con�ict between principal�s desire to exploit the agents�mutual

monitoring and her ability to commit to truthful reporting. Once r is su¢ ciently

large, the intersection between the Mutual Monitoring constraint and the Princi-

pal�s IC constraint is an empty set.

3.5. The Optimal Contract

In this section of the paper, we compare the solutions to LP�1 and LP�2 and

characterize the overall optimal contract. The following proposition summarizes

the result.
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Proposition 22. The principal prefers the solution to LP �2 (cooperation) to

the solution from LP � 1 (collusion) if and only if (i) � 0 < �C and r < �C or (ii)

� 0 � �C and r < minf� 0; �Dg.

Not surprisingly, the key determinant of whether motivating cooperation is

optimal is the discount rate. A longer expected contracting horizon gives the

principal more �exibility in the promises she can o¤er and enables the agents to

make credible promises to each other to motivate cooperation. As a result, there is

a solution to LP �1 and a solution to LP �2 that are never optimal in the overall

solution. Of the solutions to LP � 1, IPE is never optimal overall. When the

principal�s ability to commit is strong enough that IPE is feasible, there is always

a preferred solution involving cooperation under LP � 2. Similarly, whenever the

principal�s and the agents� ability to commit is so limited that only BP2C can

be used to motivate cooperation, there is always a solution from LP � 1 that

dominates it.

The principal�s and agents� relative credibility is also key, as the following

numerical examples illustrate. In the �rst example, the agents�ability to commit

is always limited relative to that of the principal, and collusion is never the driving

determinant of the form of the optimal compensation arrangement. Consider the

example: q0 = 0:53, q1 = 0:75, and H = 200, which corresponds to Case (i) in

Proposition 22 (� 0 < �C). When LP � 1 is optimal, RPE is used immediately and

BPI is never optimal.
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The second example also falls under Case (i) of Proposition 22: q0 = 0:47,

q1 = 0:72, and H = 100. The principal�s ability to commit is high relative to the

agents�, but the relative comparison is not as extreme. In this case, we move from

BPI to RPE, since the principal still has enough ability to commit to make RPE

feasible after the discount rate is so large that the agents�collusion is not the key

determinant of the form of the compensation contract (BPI).

Next, consider a numerical example corresponding to Case (ii) in Proposition 22

(� 0 � �C). q0 = 0:53, q1 = 0:75, and H = 100. In this case, the principal�s ability

to commit is low relative to the agents�. Once the discount rate is large enough that

the agents�collusion is not the key determinant of the form of the compensation

contract, the principal�s ability to commit is also quite limited and BPS is the only

feasible solution. The principal�s low relative credibility also leads to BP1C being

optimal in this example when JPE2 was in the previous two examples.
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3.6. Incorporating an Objective Team-based Performance Measure

In a typical bonus pool arrangement, the size of the bonus pool is based, at

least in part, on an objective team-based performance measure such as group or

divisional earnings (Eccles and Crane, 1988). Suppose that such an objective

measure y exists and de�ne p1 = Pr(y = HjeA = eB = 1), p = Pr(y = HjeA =

1; eB = 0) = Pr(y = HjeA = 0; eB = 1), and p0 = Pr(y = HjeA = eB = 0).

Consider the following numerical example: q0 = 0:47, q1 = 0:72, p0 = 0:1,

p = 0:8, p1 = 0:9, r = 5, andH = 27. In this example, the team-based performance

measure y exhibits a large production substitutability8 and cooperation is not feasi-

ble. If only subjective measures are used in contracting, the optimal wage scheme is

w = (wLL; wLH ; wHL; wHH) = (4:27; 0; 8:97; 4:70), or BPI . Once objective measure

is incorporated into the contract, use the �rst subscript on the wage payment to

denote the realization of the objective measure. For example, wHmn is the payment

made to agent i when y is H, xi is m, and xj is n; m;n = L;H. The optimal wage

scheme is w = (wLLL; wLLH ; wLHL; wLHH ; wHLL; wHLH ; wHHL; wHHH) = (0, 0, 0, 0,

2.922, 0, 5.843, 3.675), which creates a strategic substitutability between the two

agents�e¤ort choice. There is a relatively small improvement in expected wages

by introducing y: 9:19 without y and 5:96 with y. The objective measures are

valuable because of their informativeness (Holmstrom, 1979) and because its ver-

i�ability nature compared to x, but the productive substitutability still precludes

corporation from being optimal.

8y exhibits a production substitutability if and only if p1 � p < p� p0.
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Continue with the same example, except now assume p = 0:2, which exhibits

a large production complementarity (p1 � p > p � p0). In this case, productive

complementarity in the objective team-based measure can make motivating co-

operation among the agents optimal when it would not be in the absence of the

objective measure. The optimal wage scheme is w = (0; 0; 0; 0; 0:26; 0; 2:76; 1:38)

and the expected total wages are 2:33, compared to 9:19 without incorporating

the objective measure and 5:96 when the objective measure is incorporated but

has a productive substitutability (p = 0:8). The productive complementarity also

takes pressure o¤ of the individual subjective measures, allowing for a greater de-

gree of relative performance evaluation than would otherwise be possible. The

greater degree of substitutability in the subjectively determined wages reduces the

amount of pay for bad performance (wHLL) to 0:26 from 2:92 when the objec-

tive measure has a productive substitutability (p = 0:8). In this example, agents�

payment is higher if the team performance is good: wHmn > wLmn;8m;n, while

each agent�s reward is higher if the other agent�s individual performance measure

is poor: wHmL > wHmH ;8m. Put di¤erently, the combination of rewarding a team

for good performance but also asking agents to compete with each other for a share

of the total reward endogenously arises from a contract that motivates cooperation

and mutual monitoring when the principal�s commitment is limited. The example

can be viewed as suggesting a new rationale for having employees whose actions

are productive complements grouped into a single bonus pool.
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3.7. Conclusion

A natural next step is to test some of the paper�s empirical predictions. In par-

ticular, the model predicts that the form of the wage scheme will depend on (i) the

expected contracting horizon, (ii) the relative ability of the principal and the agents

to honor their promises, and (iii) the productive complementarity or substitutabil-

ity of a team-based objective measure. A particularly strong prediction is that we

should see bonus pool type incentive schemes that create strategic independence in

the agents�payo¤s in order to optimally prevent collusion. These particular bonus

pool type arrangements should be observed when the agents�ability to collude is

strong relative to the principal�s ability to make credible promises and both are

limited enough to be binding constraints. When the principal�s credibility and

the agents�credibility are both severely limited, we should instead observe bonus

pool type arrangements that create a strategic substitutability in the agents�pay-

o¤s, since these allow for greater relative performance evaluation which is e¢ cient

absent collusion concerns. When instead the arrangement is used to motivate co-

operation and mutual monitoring (which we suspect is more common), we should

see productive and incentive arrangements that, when combined, create strategic

complementarities.



CHAPTER 4

Conclusion

This section concludes with two extensions, reinforcing the idea that investi-

gating strategic interactions of multiple information producers can cast light on

observed accounting practices and institutions. Part one presents an extension

of the model developed in Chapter 2, and the analysis highlights the possibility

that regulations aimed at facilitating information acquisition can actually distort

analysts�incentive to acquire information to the detriment of investors. Part two

presents a new model as an attempt to rationalize the empirical evidence that

�nancial analysts only release a subset of their information by showing that this

practice is in investors�best interest. I show that there is a (endogenous) strategic

complementarity between the two analysts�information acquisition and that the

increase in the quantity of the information might be outweighed by the decrease

in the quality of the information.

Lowering information acquisition cost can discourage information ac-

quisition

83
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The conventional wisdom is that, caeteris paribus, making it cheaper to acquire

information leads to a higher level of information acquisition. While the conven-

tional wisdom is true in a decision problem, it is not immediately clear once we

consider strategic interactions between multiple information producers.

Consider the model developed in Chapter 2 (see Figure 1 in Chapter 2 for the

time line). Let us now allow the independent analyst to defer his information

acquisition from t = 0 to t = 2 when the recommendation issued at t = 1 is

observed. For the purpose of highlighting the main point, I will �x the a¢ liated

analyst�s recommendation at t = 1. The following proposition summarizes the

equilibrium of this modi�ed game.

Proposition 23. The unique Perfect Bayesian Equilibrium of the modi�ed

game is1

(i) Independent Forecasting Equilibrium if the cost of waiting � > �.

(ii) Conditional Herding Equilibrium if � 2 [�; �].

(iii) Random Revising Equilibrium if � � �.

Proof. Similar to the proof of Proposition 1 in Chapter 2. �

Chapter 2 discusses all results except for the Random Revising Equilibrium.

In this equilibrium, the independent analyst does not acquire information upfront.

1The proposition assumes the a¢ liated analyst�s con�ict of interest � 2 [�; �]. For � > � and
� < �, the game has trivial equilibria summarized in the Appendix A of Chapter 2. � and � are
constant. As proved in Chapter 2, the equilibrium continues to be an equilibrium of the general
game where both analysts can choose the timing of their recommendations.
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He will not acquire any information if the a¢ liated analyst issued rA = bL at t = 1;
if rA = bH, he will randomizes between herding with rA and acquiring his own
information with precision p� = 1+e

2e
. The independent analyst overturns rA = bH

whenever he observes a bad signal himself. The strategic interaction between the

two analysts in this equilibrium resembles in many ways the interaction between

managers and auditors discussed in the strategic auditing literature: while the

a¢ liated analyst (manager) has the incentive to over report a bad signal, the

independent analyst (auditor) has the technology to costly verify the reported

good news.

An interesting �nding is that lowering the information acquisition cost can

discourage the independent analyst�s ex-ante information acquisition and hurt in-

vestors.

Claim 24. Lowering information acquisition cost decreases the investor�s util-

ity discontinuously whenever the equilibrium changes to the Random Revising Equi-

librium in which the independent analyst does not acquire information upfront.

In the Random Revising Equilibrium, the independent analyst has the incen-

tive to save the ex-post information acquisition cost after observing the a¢ liated

analyst�s high recommendation. Such incentive jeopardizes the independent ana-

lyst�s ability to discipline the a¢ liated analyst�s biased behavior, and therefore is

undesirable from the investor�s perspective. If we consider the independent ana-

lyst�s payo¤ in the Random Revising Equilibrium as his fallback position of not
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acquiring information upfront, one can show that lowering information acquisition

cost makes this fallback position more attractive. Therefore when the cost of wait-

ing is small, lowering information acquisition cost can sometimes completely wipe

out the independent analyst�s incentive to acquire information upfront and hurt

investors.

More information can be bad: tradeo¤s between quantity and quality

It has been noticed that �nancial analysts only issue a subset of their informa-

tion (e.g., Beyer et al., 2010). For example, analysts forecast earnings per share

(EPS) for a company but normally do not issue the revenue forecast even though

they use the latter in calculating EPS. One can argue this practice is preferred by

�nancial analysts (the supply side) because releasing too many details has propri-

etary cost (such as the risk of revealing the core pricing technology analysts are

using). I propose a model to show that this practice can be in the best interest of

investors (the demand side). That is, even if the investor has the ability to force

analysts to tell all the information they know truthfully, the investor will rationally

choose to let analysts withhold some of their information.

Consider a model where two ex-ante identical analysts sell information to a

continuum of risk-averse investors who subsequently involve in a speculative trad-

ing round in a noisy rational expectation equilibrium. The following time-line

summarizes the sequence of actions.
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Figure 8: Time line

Admati and P�eiderer (1986) study a similar setting where a monopolist sells

information. While Admati and P�eiderer (1986) focus on deriving the information

monopolist�s optimal selling strategy, I introduce multiple analysts, and the focus

is the strategic interaction between the two analysts and how that a¤ects their

endogenous information acquisition.

The economy has one risk-free asset whose value is normalized to one and one

risky asset whose value ev is normally distributed ev � N(v; 1). The economy has

a continuum of identical investors. Each investor is endowed with W0 units of

risk-free asset and is characterized by the following utility function

U = � exp(��W2)

where � is the risk aversion parameter andW2 is the value of the investor�s portfolio

at t = 2. Noisy traders (or liquidity traders) provide the random supply of the

per-capita risky asset z � N(0; �2Z).

Two ex-ante identical analysts acquire private signal about ev and sell their
information to all investors simultaneously at t = 0. Each analyst i 2 f1; 2g
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observes two signals (xi; yi) whose structure is as follows.

xi = ev + �i ; yi = ev + �i
where

�i � N(0; �2�)

�i � N(0; �2�(ei)); ei 2 fL;Hg(4.1)

�i; �j; �i; �j independent

The variance of the signal xi is exogenous while the variance of yi depends on

the analyst�s information acquisition e¤ort ei 2 fL;Hg. The analyst�s personal

cost of choosing ei = H (high information acquisition e¤ort) is e, and the cost of

ei = L is normalized to zero. The e¤ort choice is publicly observed and choosing

high information acquisition e¤ort improves the precision (or lowers the variance)

of the signal of yi as follows

�Good = ��(ei = H) < ��(ei = L) = �Bad

One interpretation of this information structure is that skills required to observe

signal xi are mostly prerequisite for �nancial analysts, while acquiring a precise yi

requires additional work from the analyst. For example, one may think that xi is

the industry knowledge that analysts have to know before following a �rm in that
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industry, and yi is the �rm speci�c knowledge (such as its marketing strategy) that

analysts need to devote additional e¤ort to acquire.

Analysts wants to maximize the total revenue from selling their information

to investors. I compare the two analysts� information acquisition and investors�

payo¤s in two regimes. The �rst regime is a full disclosure regime where each

analyst sells both xi and yi to investors, and the second is a partial disclosure

regime where each analyst only sells yi (the one with endogenous variance) to

investors. To focus on the e¤ect of the number of signals sold on endogenous

information acquisition, I assume that analysts truthfully sell his signals to the

investors.2 Denote Si as the signal(s) sold by analyst i 2 f1; 2g, then we have

Si = fxi; yig in the full disclosure regime and Si = fyig in the partial disclosure

regime. Given forecasts are truthful, the analyst�s objective is to �nd the maximum

price he can charge for his signal(s). To break ties, I assume that investors will

buy the analyst�s information whenever indi¤erent.

For a given level of information acquisition, the subgame from t = 1 is a stan-

dard noisy rational expectation equilibrium setting (see Admati, 1985 for example).

It is then a well known result that there exists a unique linear rational expectation

equilibrium price function ep for the risky asset:
ep = �0 + �1ev � �2ez

2This assumption is similar to the assumption in the voluntary disclosure literature that disclo-
sure, once made, is truthful.
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where �0; �1; �2 are constant.

Restricting to equilibrium with linear price function indicated above, one can

show that there is a unique equilibrium for each pair of information acquisition. In

equilibrium, all investors buy signals from both analysts and the price ci charged

by analyst i 2 f1; 2g is

c1 =
1

2�
log

�
var(evjep; S2)
var(evjep; S1; S2)

�
(4.2)

c2 =
1

2�
log

�
var(evjep; S1)
var(evjep; S1; S2)

�

where ep is the market price and Si is the signal(s) sold by analyst i 2 f1; 2g.

Expression (4.2) is intuitive: the maximum price the analyst i can charge depends

on how much uncertainty his information Si can resolve on top of the uncertainty

already resolved by the information contained in the market price ep and the other
analyst�s signals Sj.

Knowing how their information is valued by the investor, the two analysts

simultaneously choose how much information to acquire the beginning of the game.

The numerical example below lists the two analysts�payo¤s in a 2 � 2 matrix,

and it highlights the trade-o¤ between the quantity and the quality of analysts�

information.
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Compared to the partial disclosure regime (the payo¤ matrix on the left), the

full disclosure regime (on the right) changes the informativeness of the market

price in the way that generates strategic complementarity between two analysts�

information acquisition. The consequence is that the game has two Pareto-ordered

equilibria: both analysts acquiring low quality information (i.e., L;L) Pareto dom-

inates the equilibrium where they both acquire high quality information from the

analysts�perspective. One can check that the investor�s expected equilibrium pay-

o¤ is higher in the partial disclosure regime than in the full disclosure regime

(assuming that analysts choose the Pareto dominant equilibrium between the two

equilibria). In this example, investors are strictly better-o¤ in the partial disclosure

regime where analysts withhold some of their private information, as the increase

in the quantity of the signal is outweighed by the decrease in the quality of the

signal.

One limitation of this result is that analysts� information selling process is

restricted to be truthful. This restriction makes the informativeness of market
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price too high, which means that the value of analysts�information decays too fast.

It seems to be natural that allowing analysts to add noisy to their signals before

selling them to investors encourages analysts�information acquisition because the

value of their information decays at a slower pace. Characterizing the analysts�

optimal way of adding noise and verifying the conjecture that adding noise to

signals bene�t both analysts and investors are left for future research.
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APPENDIX

Appendix

1. Appendix A

Equilibrium for � > � and � < �

(i) For � > �, the game has an equilibrium in which the a¢ liated analyst issues

a �xed recommendation at t = 1, that is rA � bL or rA � bH. The independent
analyst chooses p� = 1+e

2e
and forecasts independently at t = 1, that is rI = bH ,

yA = g. The investor bases her investment decision on rI alone unless the a¢ liated

analyst makes an out-of-equilibrium recommendation, in which case the investor

does not buy.

(ii) For � < 2pA � 1, the game has an equilibrium in which the a¢ liated

analyst truthfully reports his signal at t = 1, i.e., rA = bH , yA = g. For

� � � � � = 2pA � 1 + �, the game has an equilibrium in which the a¢ liated

analyst perfectly signals his signal by the timing of his recommendation: he issuesbH at t = 2 upon observing a good signal while otherwise he issues bL at t = 1.

The independent analyst chooses precision p� = 1+e
2e
and forecasts independently

at t = 1 if � > pA � (p� � c(p�)) while otherwise he acquires no information and

herds with rA at t = 2. The investor bases her investment on rA alone.

Details of the additional equilibria summarized in Lemma 8
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For � < b�, the a¢ liated analyst issues his recommendation at t = 2 while the
independent analyst chooses precision p� = 1+e

2e
and forecasts independently at

t = 1. Particularly,

(i) If � � pA+p��1
1�pA+2pAp��p� and � <

b�, the a¢ liated analyst issues bL if and only if
both yA = b and rI1 = bL, and the investor buys if and only if the a¢ liated analyst
issues bH at t = 2.

(ii) If � > pA+p��1
1�pA+2pAp��p� and � <

b�, the a¢ liated issues rA = bH unless both

his signal is bad and the independent analysts issues bL, in which case the a¢ liated
analyst issues bH with probability � = pH�p�

pH+p��1 . The investor bases her investment

decision on rA unless rA = bH but rI = bL, in which case she does not buy with
probability 1� 1�p��pH

�(pH+p��1�2pHp�) .

In both cases, the investor will not buy if the a¢ liated analyst forecasts at

t = 1 (the out-of-equilibrium path). Constants b� = p� + p��+ pA(�� 2p��� 1).
2. Appendix B

Notation: pA (p) is the precision of the a¢ liated (independent) analyst�s signal

yA (yI); � is the cost of deferring a recommendation, e is the information acquisition

cost parameter, and �measures the a¢ liated analyst�s degree of con�ict of interest.

Proof of Lemma 2. Denote �(p) := Pr(rA = bHjyA = b; p) and (p) := Pr(rA =bLjyA = g; p), I will show that in equilibrium (p) = 0. The argument holds for all p
and therefore I will write � and  for simplicity. Denote I bH = Pr(! = HjrA = bH)
and IbL = Pr(! = LjrA = bL) as the informativeness of rA = bH and rA = bL
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respectively. Notice I bH ; IbL 2 [1�pA; pA] are well-de�ned as � � � guarantees both
rA = bL and rA = bH can be observed in equilibrium. It is an important observation

that

(I bH � 12)(IbL �
1

2
) =

(2pA � 1)2(� +  � 1)2
4 (1� ( � �)2) � 0

and that I bH = 1
2
, IbL = 1

2
, � +  = 1.

First, I claim that I bH = 1
2
(thus IbL = 1

2
) cannot hold in equilibrium. Suppose the

opposite is true, then both rA = bH and rA = bH are ignored by the investor, which

means that the a¢ liated analyst is strictly better o¤ by forecasting truthfully, i.e.,

rA = bH if and only if yA = g. However the truthful reporting strategy implies

I bH = IbL = pA and contradicts I bH = IbL = 1
2
. Since I bH = 1

2
cannot be part of an

equilibrium, we are left with two possible scenarios: I bH ; IbL < 1
2
or I bH ; IbL > 1

2
.

Next, I claim that I bH ; IbL < 1
2
cannot hold in equilibrium. Suppose by con-

tradiction that in equilibrium IbL < 1
2
and I bH < 1

2
. Given yA = b, the a¢ li-

ated analyst�s payo¤ is pA + � � E
h
BuyjyA = b; rA = bLi if he forecasts rA = bL,

and is 1 � pA + � � E
h
BuyjyA = b; rA = bHi if rA = bH. The expectation oper-

ator E[�jyA; rA] is taken over yI , taking the independent analyst�s strategy and

the investor�s strategy as given. The independent analyst�s payo¤ function (7)

guarantees that in equilibrium his strategy must satisfy I bH < 1
2
) Pr(rI =bHjyI ;Time) � Pr(rI = bHjyI ;Time)8yI . The Time parameter re�ects that

whether the independent analyst�s information set contains rA depends on the

timing of his recommendation (or waiting strategy), which is measurable only
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with respect to yI and cannot depend on rA. In addition, the investor�s pay-

o¤ function (8) guarantees that in equilibrium her strategy must be such that

I bH < 1
2
) Pr(BuyjrI ; rA = bH) � Pr(BuyjrI ; rA = bL)8rI . Given such prop-

erties of the independent analyst�s strategy and the investor�s strategy, we have

I bH < 1
2
) E

h
BuyjyA = b; rA = bHi � E

h
BuyjyA = b; rA = bLi in equilibrium,

and

I bH < 1

2
) pA+��E

h
BuyjyA = b; rA = bLi > 1�pA+��E hBuyjyA = b; rA = bHi :

Therefore I bH < 1
2
implies that forecasting bL must be a dominant strategy in

equilibrium for the a¢ liated analyst if yA = b. This implies �(p) = 0 for 8p and

thus IbL � 1
2
, a contradiction to the assumption that IbL < 1

2
.

Finally we are left with I bH ; IbL > 1
2
and I claim that (p) = 0 in equilib-

rium. Following the similar argument developed above, one can show I bH > 1
2
)

E
h
BuyjyA = g; rA = bHi � E hBuyjyA = g; rA = bLi and

I bH > 1

2
) pA+��E

h
BuyjyA = g; rA = bHi > 1�pA+��E hBuyjyA = g; rA = bLi :

Therefore, in any equilibrium with I bH > 1
2
, rA = bH is the a¢ liated analyst�s strict

best response upon observing yA = g, and this proves the claim (p) = 0. �
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Proof of Lemma 3. The lemma is surely true if the independent analyst�s private

signal yI and the a¢ liated analyst�s recommendation rA imply the same recommen-

dation, so what is left is the case when yI and rA imply di¤erent recommendations.

Suppose by contradiction that the independent analyst will stick to yI if rA im-

plies di¤erently, which means after all he forecasts independently in the sense that

rI = bL if and only if yI = b. But there is a pro�table deviation for the the in-

dependent analyst by simply forecasting independently at t = 1 and avoiding the

waiting cost �, a contradiction. �

Proof of Proposition 4. Consider the case in which both rA = bH and rA =bL are on the equilibrium path. After observing yI 2 fg; bg with precision p,

the independent analyst will obtain expected utility p + � � c(p) if he forecasts

immediately. On the other hand, if he defers his recommendation to t = 2 in

equilibrium, we know by Lemma 3 that he will herd with rA at t = 2. Let

E
�
GainjyI

�
be the expected informational gain from deferring a recommendation

given yI , we have

E
�
GainjyI = b

�
= p(1� �)pA + (1� p)

�
pA + (1� pA)�

�
� (p+ �)

E
�
GainjyI = g

�
= p

�
pA + (1� pA)�

�
+ (1� p)(1� �)pA � (p+ �):

where � = Pr(rA = bHjyA = b) is the probability that the a¢ liated analyst

over-reports a bad signal, and we know from Lemma 2 that we can ignore the
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under-reporting strategy as long as both rA = bH and rA = bL can be observed in
equilibrium. It is easy to check that

E
�
GainjyI = g

�
� E

�
GainjyI = b

�
= (2p� 1)� � 0:

If only rA = bH (or rA = bL) is reported on the equilibrium path, then rA is

uninformative and the gain from observing it is zero for the independent analyst

regardless of his signal yI . �

Proof of Lemma 5. First, I show that, in equilibrium, the independent analyst

will not defer his recommendation upon observing yI = b. Suppose by contra-

diction this is not the case. Then the independent analyst will also defer his

recommendation upon observing yI = g. The result is the independent analyst

will unconditionally defer his recommendation, and (by Lemma 3) herd with the

a¢ liated analyst�s recommendation rA. Knowing this, the a¢ liated analyst will

forecast rA = bH for all yA, which makes his recommendation completely uninfor-

mative and contradicts the assumption that the independent analyst chooses to

herd in the �rst place.

Upon observing yI = g, the independent analyst will either forecast bH if he

chooses to forecast at t = 1, or herd with rA at t = 2 if he chooses to defer (by

Lemma 3).
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Given the independent analyst�s forecasting strategy and p > 1
2
, the a¢ liated

analyst sets � = Pr(rA = bHjyA = b) = pA�p
pA+p�1 so that the investor is indi¤erent

from �Buy�and �Not Buy�upon observing rA = bH but rI = bL. The investor,
upon observing rA = bH but rI = bL, chooses not to buy with probability � =

��(2pA�1)
�(1�pA�p+2pAp) so that the a¢ liated analyst is indi¤erent between reporting

bH andbL upon observing a bad signal yA = b. One can see that 0 � � � 1 is guaranteed
in the non-trivial region � � � � �.

Given yI = g, the independent analyst obtains an expected payo¤ p+ � � c(p)

if he forecasts early, while his expected payo¤ from waiting (and herding with rA)

is p
�
pA + (1� pA)�

�
+ (1� p)(1� �)pA� c(p). Substituting � from above, simple

algebra shows that the independent analyst will forecast his good signal at t = 1

if and only if

� � (pA � p)(2p� 1)
pA + p� 1 :

Collecting conditions completes the proof. �

Proof of Proposition 6. Denote p� (pch) as the optimal precision the indepen-

dent analyst chooses if the equilibrium of the overall game is the Independent

Forecasting Equilibrium (and the Conditionally herd equilibrium). Then p� satis-

�es

(.1) p� = argmax
p2[ 1

2
;1]

p+ � � e� (p� 1
2
)2;
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which gives p� = 1+e
2e
. pch satis�es

pch 2 argmax
p

1

2
(p+ �) +

1

2

�
p(pA + (1� pA)�) + (1� p)(1� �)pA

�
� e(p� 1

2
)2:

pch is solved from the following f.o.c

(.2) e� 2e� pch + (2pA � 1)2
2(pA + pch � 1)2 = 0:

Since pA + pch � 1 > 0, pch can be solved equivalently from the following cubic

function

2(pA + pch � 1)2(e� 2e� pch) + (2pA � 1)2 = 0:

This equation has a unique real root and two complex conjugate roots for any

pA > 1
2
(Chapter 10 in Irving, 2003), and it is easy to check the second-order

condition is �2e� (2pA�1)2
(pA+p�1)3 < 0.

The independent analyst�s expected payo¤ at t = 0, after plugging in p� and

pch, is denoted as U IIF in the Independent Forecasting Equilibrium and U
I
CH in the

Conditional Herding Equilibrium. Simple algebra shows that

U ICH > U
I
IF , � < �;

where

� =
4pApch � pA � pch
pA + pch � 1 � e

2(1� 2pch)2 + 2e+ 1
2e

:
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Together with the self-ful�lling conditions characterized in Lemma 5, one can

see the overall equilibrium is the Conditional Herding Equilibrium if � is in the

following set

�
� : � < min

�
� ;

(pA � pch)(2pch � 1)
pA + pch � 1

��
= f� : � < �g ;

where the equality is by straightforward algebra (pA�pch)(2pch�1)
pA+pch�1 �� = (2epch�1)2

2e
> 0.

Analogously, the overall equilibrium is the Independent Forecasting Equilib-

rium if � is in the following set

�
� : � > max

�
� ;

(pA � p�)(2p� � 1)
pA + p� � 1

��
;

and the remainder of the proof is to show � � (pA�p�)(2p��1)
pA+p��1 , which veri�es the

proposition.

Proving � � (pA�p�)(2p��1)
pA+p��1 follows the graphic investigation of three claims.

Claim 1: Both � and �� :
= (pA�p�)(2p��1)

pA+p��1 strictly increase in e for e < e� while

strictly decreases in e for e > e� (where e� = 1
(
p
2�1)(2pA�1)). Claim 2: � and ��

achieve the same global maximum value at e = e�, i.e., max� = �(e = e�) =

��(e = e�) = max ��. Claim 3:
��d��
de

�� > ��d�
de

�� holds for e < e� and e > e�.
Proof of Claim 1: For the �� part, �rst notice that �(p) = (pA�p)(2p�1)

pA+p�1 is

strictly concave in p and d�
dp
> 0 if and only if p < 1 � pA + 2pA�1p

2
. As p� = 1+e

2e

and dp�

de
< 0, we know p� < 1 � pA + 2pA�1p

2
if and only if e > e� = 1

(
p
2�1)(2pA�1) .
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Finally, since �� = (pA�p�)(2p��1)
pA+p��1 = �(p = p�), the claim for �� is true by applying

the Chain Rule d��

de
= d��

dp�
dp�

de
and the fact that dp

�

de
< 0.

For the � part, rewrite � as �(e; pch(e)) to emphasize that its second argument

pch is also a function of e. Di¤erentiating �(e; pch(e)) with respect to e,

d

de
�(e; pch(e)) =

@�(e; pch(e))

@e
+
@�(e; pch(e))

@pch
dpch

de
:

Notice that

@�(e; pch(e))

@pch
= 2(e� 2epch) + (2pA � 1)2

(pA + pch � 1)2 = 0:

The last equality comes from the fact that pch is the optimal precision chosen in

the conditional herding equilibrium, and by (.2) that pch satis�es

e� 2epch + (2pA � 1)2
2(pA + pch � 1)2 = 0:

Therefore, d
de
�(e; pch(e)) can be simpli�ed as

d

de
�(e; pch(e)) =

@�(e; pch(e))

@e

=
1

2
(
1

e2
� (2pch � 1)2):

Straightforward calculus shows

d�

de
> 0, pch <

1 + e

2e
:
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We know from Proposition 10 that pch < 1+e
2e
= p� if and only if e < e�. Monotonic

transformation gives
d�

de
> 0, e < e�:

which veri�es Claim 1.

Proof of Claim 2: As both � and �� are continuous functions, the fact that

they achieve their global maximum value at e = e� is a direct consequence of

Claim 1. We know by Proposition 10 that p� = pch = 1 � pA + 2pA�1p
2
at e = e�.

Substituting p� and pch veri�es the claim.

Proof of Claim 3: We know from Claim 1 that d�
de
can be simpli�ed as

1
2
( 1
e2
� (2pch � 1)2), and algebra shows that d��

de
= 1�e(2+e(2pA�1)2�4pA)

e2(e�1�2epA)2 . Simple

algebra shows

dif =
d�

de
� d�

�

de

= �2pch2 + 2pch � 1
2
+

3
2
+ 2

(�1+e�2epA)2 �
4

1�e+2epA

e2
:

Evaluating dif at e = e� we know dif(e = e�) = 0, where the last equation uses

the result from Proposition 10 that pch = p� = 1� pA+ 2pA�1p
2
at e = e�. Since dif

is quadratic in pch which is positive by de�nition, it is easy to verify that

dif � 0, pch � 1� pA + 2p
A � 1p
2

:
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Applying the Implicit Function Theorem to the f.o.c de�ning pch, we have

dpch

de
=

1� 2pch

2e+ (2pA�1)2
(pA+pch�1)3

< 0:

Monotonic transition gives

dif � 0, e � e�:

which, together with Claim 1, veri�es the claim.

Finally pch 2 (1
2
; pA) is easy to show by combining the fact dpch

de
< 0 and the

results of Proposition 10. �

Proof of Lemma 7. One can verify the lemma by replicating the proof of Propo-

sition 6 (players assigning probability one to yA = b on the out-of-equilibrium

path supports the equilibrium). The remainder shows that the speci�ed out-of-

equilibrium belief satis�es both the Intuitive Criterion and the Universal Divinity

Criterion.

For the purpose of equilibrium re�nement, it is su¢ cient to check beliefs as-

signed to the a¢ liated analyst�s out-of-equilibriummessages only.1 As the a¢ liated

analyst forecasts at t = 1 in equilibrium, the game has two out-of-equilibrium mes-

sages: rA = bH at t = 2 and rA = bL at t = 2, which are denoted as rA2 = bH and

rA2 =
bL.

1Since the independent analyst�s payo¤ does not depend on the investor�s action, one can assign
arbitrary beliefs to his out-of-equilibrium actions and those beliefs will survive both equilibrium
re�nement criteria used in the paper.
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Universal Divinity Criterion: I illustrate the argument for the out-of-

equilibrium message rA2 = bH (referred as m for short), and the argument for

rA2 = bL is similar.
Some notation is necessary to apply the criterion. Let BR(�; rI ;m) be the

investor�s pure-strategy best response to the out-of-equilibrium message m, given

the belief � over the a¢ liated analyst�s type (his signal yA 2 fg; bg) and the

independent analyst�s recommendation rI . Similarly let MBR(�; rI ;m) be the

set of mixed-strategy best response to m, given � and rI , that is the set of all

probability distributions over BR(�; rI ;m).

Then de�ne D(t; T;m) to be the set of the investor�s mixed-strategy best re-

sponses to the out-of-equilibrium message m and beliefs concentrated on support

of a¢ liated analyst�s type space T that makes type t 2 fg; bg strictly prefer m to

his equilibrium payo¤.

(.3) D(t; T;m) = [
f�:�(T )=1g

fx 2MBR(�; rI ;m)s:t:u�(t) < u(m;x; t)g:

where x :
= Pr(Buyjm) is the probability that the investor buys the stock upon

observing the out-of-equilibrium message m, u�(t) is the type-t a¢ liated analyst�s

payo¤on the equilibrium path, u(m;x; t) is type-t�s expected payo¤by sending out

m when the investor reacts to it with x, and � = Pr(yA = gjm) is the investor�s

belief that the a¢ liated analyst is good type. Similarly let D0(t; T;m) be the set
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of mixed best responses that make type t exactly indi¤erent. Finally, D(t; T;m)

and D0(t; T;m) are functions of rI , which I will return to later.

Algebra shows that the good type a¢ liated analyst (with yA = g) prefers the

out-of-equilibrium message rA2 = bH to his equilibrium action if

x >
(2pA � 1)

�
�+ e2pA + e(2pA + 2p(1 + �� 2pA)� �)

�
+ �

(2pA � 1 + e)�
:
= A

where p 2 fp�; pchg is the independent analyst�s precision choice in equilibrium.

Likewise, the bad type a¢ liated analyst (with yA = b) prefers sending out rA1 = bH if
x > 2pA�1+�

�
. Furthermore, the following is true under the maintained assumption

� > � (see (2.11))

(.4) A > B:

Now calculateMBR(�; rI ;m), the investor�s mixed-strategy best response. No-

tice the investor�s best response depends not only on her belief about the a¢ liated

analyst�s type, but also on the independent analyst�s recommendation. Denote

��(rI = bL) as the probability of yA = g such that the investor is indi¤erent about
buying or not buying upon observing rI = bL; and similarly ��(rI = bH) as the
probability of yA = g such that the investor is indi¤erent about buying or not

buying upon observing rI = bH. Clearly
��(rI = bH) < ��(rI = bL):
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The set of investor�s mixed best response MBR(�; rI ;m) is

MBR(�; rI ;m) =

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

x = 0 if � < ��(rI = bH)
x 2 [0; 1] if � = ��(rI = bH) and rI = bH
x = 0 if � = ��(rI = bH) and rI = bL
x = 0 if ��(rI = bH) < � < ��(rI = bL) and rI = bL
x = 1 if ��(rI = bH) < � < ��(rI = bL) and rI = bH
x = 1 if � = ��(rI = bL) and rI = bH
x 2 [0; 1] if � = ��(rI = bL) and rI = bL
x = 1 if � > ��(rI = bL):

Therefore

D(g; T;m) = [
f�:�(T )=1g

fx > A \MBR(�; rI ;m)g

=

8><>: x > A if rI = bH
x > A if rI = bL

= x > A:

To understand the second equality, note that set MBR(�; rI ;m) inside the union

operation depends on both � and rI while the union is taken only with respect to

�, and therefore the outcome is a function of rI . The last equality shows that the

set D(good; T;m) degenerates to a deterministic set.



115

Similarly, one can show that D(b; T;m) is as follows:

D(b; T;m) = [
f�:�(T )=1g

fx > B \MBR(�;m)g

=

8><>: x > B if rI = bH
x > B if rI = bL

= x > B:

As we know from (.4) A > B, we have

(.5) D(good; T;m) [D0(good; T;m) � D(bad; T;m):

According to the Universal Divinity Criterion, (.5) means the equilibrium should

assign probability zero to type yA = g upon observing the out-of-equilibrium mes-

sage m, which is consistent with the strategy speci�ed in Lemma 7.

Intuitive Criterion: On one hand, suppose players assign probability one

to yA = g upon observing any of the two out-of-equilibrium messages rA2 = bH
and rA2 = bL. Given the proposed belief, it is easy to show that the a¢ liated

analyst observing yA = b (bad-type) is strictly better o¤ by sending out either of

the two out-of-equilibrium messages than choosing his equilibrium action. This

implies that neither of the out-of-equilibrium messages can be eliminated for the

bad-type a¢ liated analyst by equilibrium dominance used in the Intuitive Criterion

(Cho and Kreps, 1987 Page 199-202). On the other hand, even if any of the out-

of-equilibrium messages can be eliminated for the good-type (yA = g) a¢ liated
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analyst, the bad-type a¢ liated analyst does not have incentive to send out that

message and being identi�ed. �

Proof of Lemma 8. Recall that the details of the additional equilibrium are

stated in Appendix A.

Part (i): � � pA+p��1
1�pA+2pAp��p� ensures that it is a strict best response for the

a¢ liated analyst to issue bL upon observing both yA = b and rI1 = bL. � � b� prevents
the a¢ liated analyst from deviating the equilibrium by issuing recommendations

at t = 1. It is then easy to verify the equilibrium.

Part (ii): � = pA�p�
pA+p��1 is chosen so that the investor is indi¤erent between

"Buy" and "Not Buy" after observing frA = bH \ rI = bLg. Likewise, � = 1 �
1�p��pA

�(pA+p��1�2pAp�) is chosen so that a¢ liated analyst is indi¤erent between issuing
bH

and bL when observing fyA = b; rI = bLg, and 0 � � � 1 requires � > pA+p��1
1�pA+2pAp��p� .

Substituting � and �, one can show � < b� prevents the a¢ liated analyst from
deviating the equilibrium by issuing recommendations at t = 1. �

Proof of Lemma 9. Recall that � = pA�p
pA+p�1 in both the Conditional Herding

Equilibrium and the Independent Forecasting Equilibrium. Simple algebra veri�es

the Lemma. �
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Proof of Proposition 10. From the Proof of Proposition 6 we know p� = 1+e
2e

while pch maximizes

U(p) =
1

2
p+

1

2

�
p(pA + (1� pA)�) + (1� p)(1� �)pA � �

�
� e(p� 1

2
)2

and U 0(p)jp=pch = 0. Also, it is easy to show

U 00(p) = �2e� (2pA � 1)2
(pA + p� 1)3 < 0:

Therefore, U 0(p) is strictly decreasing with respect to p. Evaluating U 0(p) at p = p�,

we obtain

U 0(p)jp=p� =
2(2epA � e)2
(2epA � e+ 1)2 � 1:

Algebra shows

U 0(p)jp=p� > 0 = U 0(p)jp=pch , e >
1

(
p
2� 1)(2pA � 1)

:

Since U 00(p) < 0, U 0(p)jp=p� > U 0(p)jp=pch implies p� < pch. Therefore,

pch > p� , e >
1

(
p
2� 1)(2pA � 1)

:

This completes the proof. �

Proof of Proposition 11. Denote peq as the precision acquired by the indepen-

dent analyst in equilibrium, which is given in Proposition 6, one can show the
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investor�s equilibrium payo¤ is

U Inv(peq) =
(2pA � 1)(2peq � 1)
2(pA + peq � 1)

and
d

dpeq
U Inv(peq) > 0:

This inequality, together with Proposition 10, completes the proof. �

Proof of Corollary 12. Direct implication of Proposition 10 �

Proof of Corollary 13. The dispersion of analysts�recommendation is the ex-

ante percentage that two analysts� recommendation are di¤erent ( bH versus bL)
among all the recommendations observed by the investor up to period t. In the

Conditional Herding Equilibrium, one can show Dispersion1 =
Pr(rA= bH;yI=b)

Pr(yI=b)
and

Dispersion2 = Pr(r
A = bH; yI = b), where the subscript represents period t. It is

clear that Dispersion1 > Dispersion2. �

Proof of Corollary 14. In the text. �
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Proof of Lemma 15. Given the investor�s endowment is e, holding y units of

risky asset and x units of risk-free asset will generate wealth w

w = (1 + !) �m � y + x

= (1 + !) �m � y + e�m � y

= ! �m � y + e:

The second equality makes uses of the budget constraint e = m � y + x. The

optimal holding B is

B = argmax
y�0

qH � �e���(e+my) + (1� qH)� e���(e�my);

where qH = Pr(! = HjrA; rI) is the posterior probability of ! = H. Solving the

program we obtain

B =

8><>:
log(

qH
1�qH

)

2���m if qH � 1
2

0 otherwise.

Simple algebra veri�es the lemma. �

Proof of Lemma 16. The proof of Lemma 3 can be used to prove the �rst part

of the lemma.

To show the second part of the lemma, let us �rst state a necessary condi-

tion for the a¢ liated analyst�s strategy to be in equilibrium. Point-wise mappings

�(yA; p)
:
= Pr(rA = bHjyA; p) and (yA; p) := Pr(rA = bLjyA; p) for 8yA;8p charac-

terize the a¢ liated analyst�s strategy, and I will write �(yA) and (yA) for short
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as the argument below holds for all p. The informativeness of rA is calculated as

follows

I bH = Pr(! = HjrA = bH) = R +1
�1 �(yA)'Hdy

AR +1
�1 �(yA)'Hdy

A +
R +1
�1 �(yA)'Ldy

A

IbL = Pr(! = LjrA = bL) = R +1
�1 (yA)'Ldy

AR +1
�1 (yA)'Ldy

A +
R +1
�1 (yA)'Hdy

A
:

where 'H and 'L are the probability density function of y
A conditional on state

! = H and L. One can show that

(I bH � 12)(IbL �
1

2
) � 0

and (I bH � 1
2
)(IbL � 1

2
) = 0,

R +1
�1 �(yA)'Hdy

A =
R +1
�1 �(yA)'Ldy

A , I bH ; IbL = 1
2
.

Arguments developed in Lemma 2 can be used to show that (1) in equilibrium

I bH ; IbL > 1
2
, and (2) in equilibrium rA = bH is the a¢ liated analyst�s strict best

response for any yA � 0 and therefore

(.6) �(yA) = 1;8yA � 0 in equilibrium.

Now turn to the independent analyst�s expected payo¤by deferring his forecast

to t = 2 after observing a signal yI with precision p, denoted as U It2(y
I ; p). We
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know that waiting implies subsequent herding in equilibrium. Therefore

U It2(b; p) = p �
Z +1

�1
(yA)'Ldy

A + (1� p)
Z +1

�1
�(yA)'Hdy

A

U It2(g; p) = p �
Z +1

�1
�(yA)'Hdy

A + (1� p)
Z +1

�1
(yA)'Ldy

A;

and

U It2(g; p)� U It2(b; p) = (2p� 1)
�Z +1

�1
�(yA)'Hdy

A �
Z +1

�1
(yA)'Ldy

A

�
= (2p� 1)

�Z +1

�1
�(yA)'Hdy

A +

Z +1

�1
�(yA)'Ldy

A � 1
�

� (2p� 1)
�Z +1

0

�(yA)'Hdy
A +

Z +1

0

�(yA)'Ldy
A � 1

�
= (2p� 1)

�Z +1

0

'Hdy
A +

Z +1

0

'Ldy
A � 1

�
= 0:

The inequality is by �(yA) � 0, the second last equality is by �(yA) = 1;8yA � 0

(see (.6)), and the last equality uses the fact that
R +1
0

'Hdy
A +

R +1
0

'Ldy
A = 1

due to the symmetry of ! (i.e., L = �H). �

Proof of Lemma 17. I claim that if (in equilibrium) the a¢ liated analyst chooses

to forecast bL after observing his signal yA = a, he will also forecast bL for any signal
yA < a. Similarly, if (in equilibrium) the a¢ liated analyst chooses to forecast bH
after observing his signal yA = b, then he will also forecast bH for any signal yA > b.
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Denote UA(rA; yA) as the a¢ liated analyst�s expected utility when his private

signal is yA and he forecasts rA. In particular,

UA(rA = bH; yA) = Pr(! = HjyA) + � � E[shares(rA = bH; rI(yI ;Time))jyA]
UA(rA = bL; yA) = Pr(! = LjyA) + � � E[shares(rA = bL; rI(yI ;Time))jyA]:
where shares(rA; rI) is the number of risky asset the investor buys after observing

rA and rI and in equilibrium follows Lemma 15. The expectation operator E[�jyA]

is taken over yI while taking the independent analyst�s strategy rI(yI ;Time) as

given. The Time parameter in rI(yI ;Time) re�ects that whether the independent

analyst�s information set contains rA depends on the timing of his recommendation

(or waiting strategy) which (for a given p) is measurable only with respect to yI .

Then de�ne

� bH�bL(yA) = UA(rA = bH; yA)� UA(rA = bL; yA):
Collecting terms, one can rewrite � bH�bL(yA) as

� bH�bL(yA) = Benefit bH�bL(yA)� Cost bH�bL(yA);

in which

Benefit bH�bL(yA) = ��E[shares(rA = bH; rI(yI ;Time))�shares(rA = bL; rI(yI ;Time))jyA]
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and

Cost bH�bL(yA) = Pr(! = LjyA)� Pr(! = HjyA)

=
'L

'H + 'L
� 'H
'H + 'L

;

where 'H and 'L are the probability density function of y
A conditional on state

! = H and L. From the Monotonic Likelihood Ration Property (MLRP), we know

that 'H
'L
increases in yA and

d

dyA
Cost bH�bL(yA) < 0:

Benefit bH�bL(yA) can be written as follows

�Pr(yI = gjyA)
h
shares(rA = bH; rI(g;Time))� shares(rA = bL; rI(g;Time))i

+�Pr(yI = bjyA)
h
shares(rA = bH; rI(b;Time))� shares(rA = bL; rI(b;Time))i :

Notice that terms in both square brackets above are independent of the realization

of yA. Further, I claim that the following holds in equilibrium, regardless of the

independent analyst�s waiting strategy.

shares(rA = bH; rI(g;Time))� shares(rA = bL; rI(g;Time))(.7)

� shares(rA = bH; rI(b;Time))� shares(rA = bL; rI(b;Time)):
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To see this, we know from Lemma 16 that the independent analyst�s waiting strat-

egy can only take three forms: (i) always wait for 8yI , (ii) wait if and only if

yI = b, and (iii) never wait for 8yI . Since waiting implies herding in equilibrium,

it is easy to check the inequality above holds for case (i) and case (ii). In case (iii),

the independent analyst forecasts independently and one can calculate in this case

h
shares( bH; rI(g))� shares(bL; rI(g))i� hshares( bH; rI(b))� shares(bL; rI(b))i

= log(
p

1� p) � 0:

The equality makes uses of shares(bL; bL) = 0 and veri�es (.7).
MLRP implies d

dyA
Pr(yI = gjyA) > 0. Therefore we have

d

dyA
Benefit bH�bL(yA) > 0;

which makes uses d
dyA

Pr(yI = bjyA) = � d
dyA

Pr(yI = gjyA).

Since � bH�bL(yA) = Benefit bH�bL(yA)� Cost bH�bL(yA), we have
d

dyA
� bH�bL(yA) > 0:

Since � bH�bL(yA) > 0 means rA = bH while � bH�bL(yA) < 0 means rA = bL,
d
dyA
� bH�bL(yA) > 0 veri�es the claim. �

Proof of Proposition 18. Direct implication of Lemmas 15, 16, and 17. �
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3. Appendix C

�A =
1

2

264 (q0 � q1)2q1H � 1� q21+p
((q0 � q1)2q1H � 1� q21)2 + 4(q0 � q1)2(q0 + q1)H � 4q21

375 ;
�C = (q0 � q1)2H � q1;

�D = (q0 � q1)2(q0 + q1)H � q0 � q21;

�F =
1

2

264 (q0 � q1)2(2� q1)H � q � 2q1 + q21+p
((q0 � q1)2(2� q1)H � q � 2q1 + q21)2 + 4(q1 � 2)q1 � 8(q0 � q1)2(q1 � 1)H

375 ;
� 0 =

q1 + q0 � 1
(1� q1)2

;

� 1 =
2q1 � 1
(1� q1)2

:

Note that �A,�C ,�D,and �F are increasing in H, and we assume throughout the

paper that H is larger enough to rank term by comparing the coe¢ cient of the

linear term of H. In particular, we obtain (i) �A < �C < �F and (ii) �C < �D

if and only if q0 + q1 > 1. The agent�s e¤ort is assumed to be valuable enough

(q0 � q1 is not too small) and (q0 � q1)2H > 1 + 1
q1�q0 .

Proof of Lemma 19. One can rewrite LP-1 as follows.

min(1� q1)2wLL + (1� q1)q1wLH + (1� q1)q1wHL + q21wHH

s:t

(1� q1)wLL + q1wLH � (1� q1)wHL � q1wHH 6 �1
q1�q0"Stage NE"
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((2� q1� q0)+ (1� q0)r)wLL+(q1� 1+ q0+ q0r)wLH +((q0� 1)(1+ r)+ q1)wHL�

(rq0 + q0 + q1)wHH 6 �(1+r)
q1�q0 "No Joint Shirking"

(1�q1)(2+r)wLL+(�1+q1(2+r))wLH+((q1�1)(1+r)+q1)wHL�q1(2+r)wHH 6

� 1+r
q1�q0"No Cycling"

((1 � q1)2 � r)wLL + (1 � q1)q1wLH + (1 � q1)q1wHL + (q21 + r)wHH 6 (q1 � q0)H

ICPHH�LL

((1� q1)2 � r)wLL + (q1 � q21 + r
2
)wLH + (q1 � q21 + r

2
)wHL + q

2
1wHH 6 (q1 � q0)H

ICPHH�LL

(1� q1)2wLL + (q1 � q21 � r
2
)wLH + (q1 � q21 � r

2
)wHL + (q

2
1 + r)wHH 6 (q1 � q0)H

ICPHH�HL

(1� q1)2wLL + (q1 � q21 + r
2
)wLH + (q1 � q21 + r

2
)wHL + (q

2
1 � r)wHH 6 (q1 � q0)H

ICPHL�HH

((1 � q1)2 + r)wLL+(1 � q1)q1wLH + (1 � q1)q1wHL + (q21 � r)wHH 6 (q1 � q0)H

ICPLL�HH

((1 � q1)2 + r)wLL+(q1 � q21 � r
2
)wLH + (q1 � q21 � r

2
)wHL + q

2
1wHH 6 (q1 � q0)H

ICPLL�HH

�wLL 6 0; �wHL 6 0; �wHH 6 0; �wLH 6 0.

ICPmn�m0n0 is the family of IC constraints for the principal. ICPmn�m0n0 en-

sures the principal prefers reporting outcomes mn truthfully rather than reporting

m0n0 given the agents� threat to revert to the stage game equilibrium of Joint

Shirking if the principal lies.
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Suppose the optimal solution is w = fwHH ; wHL; wLH ; wLLg with wLH > 0.

Consider the solution w0 =
�
w
0
HH ; w

0
HL; w

0
LH ; w

0
LL

	
, where w

0
LH = 0, w

0
HL =

wHL + wLH , w
0
LL = wLL and w

0
HH = wHH . It is easy to see that w and w0

generate the same objective function value. We show below that the constructed

w0 satis�es all the ICPmn�m0n0 constraints and further relaxes the rest of the con-

straints (compared to the original contract w). Since wLH and wHL have the same

coe¢ cient in all the ICPmn�m0n0 constraints, w0 satis�es these constraints as long

as w does. Denote the coe¢ cient on wLH as CLH and the coe¢ cient on wHL as

CHL for the "Stage NE", "No Joint Shirking," and "No Cycling" constraints. We

can show that CLH � CHL = r > 0 holds for each of the three constraints. Given

CLH > CHL, it is easy to show that w0 will relax the three constraints compared

to the solution w. �

Proof of Proposition 20. By Lemma 19, one can rewrite LP-1 as follows.

min(1� q1)2wLL + (1� q1)q1wHL + q21wHH

s:t

(1� q1)wLL � (1� q1)wHL � q1wHH 6 �1
q1�q0"Stage NE"(�1)

((2� q1 � q0) + (1� q0)r)wLL + ((q0 � 1)(1 + r) + q1)wHL � (rq0 + q0 + q1)wHH 6
�(1+r)
q1�q0 "No Joint Shirking"(�2)

(1 � q1)(2 + r)wLL + ((q1 � 1)(1 + r) + q1)wHL � q1(2 + r)wHH 6 � 1+r
q1�q0"No

Cycling"(�3)

((1� q1)2 � r)wLL + (1� q1)q1wHL + (q21 + r)wHH 6 (q1 � q0)H ICPHH�LL(�4)
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((1� q1)2 � r)wLL + (q1 � q21 + r
2
)wHL + q

2
1wHH 6 (q1 � q0)H ICPHL�LL(�5)

(1� q1)2wLL + (q1 � q21 � r
2
)wHL + (q

2
1 + r)wHH 6 (q1 � q0)H ICPHH�HL(�6)

(1� q1)2wLL + (q1 � q21 + r
2
)wHL + (q

2
1 � r)wHH 6 (q1 � q0)H ICPHL�HH(�7)

((1� q1)2 + r)wLL + (1� q1)q1wHL + (q21 � r)wHH 6 (q1 � q0)H ICPLL�HH(�8)

((1� q1)2 + r)wLL + (q1 � q21 � r
2
)wHL + q

2
1wHH 6 (q1 � q0)H ICPLL�HL(�9)

�wLL 6 0(�10); �wHL 6 0(�11); �wHH 6 0(�12).

Denote the objective function of (LP-1) by f(w), the left-hand side less the

right-hand side of the ith constraints by gi(w), and the Lagrangian Multiplier of the

ith constraint by �i, then the Lagrangian for the problem is L = f(w)+
12X
i=1

�igi(w).

The �rst-order-conditions (FOCs) of the Lagrangian with respect to the three wage

(wLL; wHL; wHH) are as follows:

(FOC�wLL) 1 + �1 � �10 + 2�3 + �4 + �5 + �6 + �7 + �8 + �9 � �1q1

� 2(1 + �3 + �4 + �5 + �6 + �7 + �8 + �9)q1 + (1 + �4 + �5 + �6 + �7 + �8 + �9)q21

+ (�3 � �4 � �5 + �8 + �9 � �3q1)r � �2(�2 + q0 + q1 + (�1 + q0)r) = 0;

(FOC�wHL) �1(�1 + q1) + q1 + q1(2�3 + �4 + �5 + �6 + �7 + �8 + �9

� (1 + �4 + �5 + �6 + �7 + �8 + �9)q1) +
1

2
(�5 � �6 + �7 � �9

+ 2�3(�1 + q1))r + �2(�1 + q0 + q1 + (�1 + q0)r)� �11 � �3 = 0;
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(FOC�wHH) (1 + �4 + �5 + �6 + �7 + �8 + �9)q
2
1 + (�4 + �6 � �7 � �8)r

� �3q1(2 + r)� �2(q0 + q1 + q0r)� �12 � �1q1 = 0

The optimal solution is one that (i) satis�es all 12 constraints, (ii) satis�es

the three FOC above, (iii) satis�es the 12 complementary slackness conditions

�igi(w) = 0, and (iv) all the Lagrangian multipliers are non-negative, i.e. �i > 0.

For r 6 �c, the solution listed below satis�es (i)� (iv) and thus is optimal. Under

this solution, denoted as IPE, the wage payments are derived by solving the fol-

lowing three binding constraints in (LP-1): Stage NE, No Joint Shirking, and wLL.

(No Cycling is also binding, and the Lagrangian multipliers under this solution are

not unique due to the degeneracy of the problem. However �nding one set of �

satisfying (ii)� (iv) is enough to show the optimality.)

The IPE solution is:

wLL = 0, wHL = wHH = 1
q1�q0

�1 = q1, �2 = 0, �3 = 0, �4 = 0,

�5 = 0, �6 = 0, �7 = 0, �8 = 0,

�9 = 0, �10 = 1� q1, �11 = 0, �12 = 0.

Under IPE, the ICPHH�LL constraint imposes the upper bound �
c on r. The

optimal solution changes when r > �c. For �c < r < � 1, the solution is listed

below. This solution, denoted as BP I , is obtained by solving the following three

constraints: ICPHH�LL, No Joint Shirking, and No Cycling.
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The BP I solution is:

wLL =
(q1�q0)2(1+r)H�(1+r)(q1+r)
(q1�q0)(q�r(�1+q1+r)) , wHL = wHH + wLL,

wHH =
(q1�q0)2H�(1+r)(�1+q1+r)
(q1�q0)(q�r(�1+q1+r)) ;

�1 = 0, �2 =
r(1+r+q21r�2q1(q+r))

(q1�q0)(1+r)(�1+(�1+q1)r+r2) , �3 =
r(�1+q0+q1�r+q0r�q21r)

(q0�q1)(1+r)(�q+(�1+q1)r+r2) , �4 =

1+r�q1r
�1�(1�q1)r+r2 ,

�5 = 0, �6 = 0, �7 = 0, �8 = 0,

�9 = 0, �10 = 0, �11 = 0, �12 = 0.

Under BP I , both the non-negativity of wLL and the Stage NE constraints require

r > �c and �2 > 0 requires r < � 1. The optimal solution changes if r > � 1. For

maxf� 1; �cg < r 6 �F , the optimal solution is listed below. The solution, denoted

as RPE, is obtained by solving the following three constraints: ICPHH�LL, No

Cycling, and wLL.

The RPE solution is:

wLL = 0, wHL =
(q1�q0)q1(2+r)H�

(1+r)(q21+r)

q1�q0
q21�r(1+r)+q1r(2+r)

,

wHH =
(1�q1)q1(1+r)+(q1�q0)2(�1�r+q1r(2+r))H

(q1�q0)(q21�r(1+r)+q1r(2+r))
;

�1 = 0, �2 = 0, �3 =
(1�q1)q1r

r(1+r)�q21�q1r(2+r)
, �4 =

q21
r(1+r)�q21�q1r(2+r)

,

�5 = 0, �6 = 0, �7 = 0, �8 = 0,

�9 = 0, �10 =
r(1+r+q21r�2q1(1+r))
r(1+r)�q21�q1r(2+r)

, �11 = 0, �12 = 0.

Under RPE, the Stage NE constraint and �10 > 0 yields two lower bounds �C

and � 1 on r. ICPHL�LL and the non-negativity of wHH and wHL together require

r 6 �F . wHH > 0 also requires r > s � 2q1�1+
p
(2q1�1)2+4(1�q1)q21
2(1�q1) , and we claim

(maxfs; �C ; � 1g; �F ] = (maxf�C ; � 1g; �F ]. Consider the case where s > �C (as the
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claim is trivial if instead s 6 �C). Since �C increases in H while s is independent

of H, one can show s > �C is equivalent to H < H� for a unique positive H�.

Algebra shows that �F < �C for H < H�. Therefore s > �C implies �F < �C ,

in which case both (maxfs; �C ; � 1g; �F ] and (maxf�C ; � 1g; �F ] are empty sets. For

r > maxf�F ; � 1g, the optimal solution is listed below and denoted as BP S. Under

BP s, the optimal payment is obtained by solving the following three constraints:

ICPHH�LL, ICPHL�LL, and No Cycle.

The BP S solution is:

wLL =
(1+r)((2�q1)q1+r)+(q1�q0)2(�2(1+r)+q1(2+r))H

(q1�q0)(2q1+(3�q1)q1r+r2�2(1+r)) ; wHL = 2wHH ;

wHH =
(1+r)(�(1�q1)2+r)�(q1�q0)2(1�q1)(2+r)H

(q1�q0)(2q1+(3�q1)q1r+r2�2(1+r)) ;

�1 = q1; �2 = 0; �3 =
r

�2�2r�q21r+r2+q1(2+3r)
; �4 =

q1(�2+(�1+q1)r)
2+2r+q21r�r2�q1(2+3r)

;

�5 =
2(1+r+q21r�2q1(1+r))

�2�2r�q21r+r2+q1(2+3r)
; �6 = 0; �7 = 0; �8 = 0;

�9 = 0; �10 = 1� q1; �11 = 0; �12 = 0:

Where the two lower bound �F and � 1 on r are derived from the non-negativity

constraint of wLL and �5. Collecting conditions veri�es the proposition. �

Proof of Proposition 21. The program can be written as follows.

min(1� q1)2wLL + (1� q1)q1wLH + (1� q1)q1wHL + q21wHH

s:t

(2 � q0 � q1)wLL + (q0 + q1 � 1)wLH + (q0 + q1 � 1)wHL � (q0 + q1)wHH 6 �1
q1�q0

"Pareto Dominance" (�1)

(2� q0� q1+ r(1� q1))wLL+ (q0+ q1+ q1r� 1)wLH + (q0+ (q1� 1)(1+ r))wHL�
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(q0 + q1 + q1r)wHH 6 �(1+r)
q1�q0 "Mutual Monitoring" (�2)

(1�q1)(2+r)wLL+(�1+q1(2+r))wLH+((q1�1)(1+r)+q1)wHL�q1(2+r)wHH 6

� 1+r
q1�q0"No Cycling"(�3)

((1 � q1)2 � r)wLL + (1 � q1)q1wLH + (1 � q1)q1wHL + (q21 + r)wHH 6 (q1 � q0)H

ICPHH�LL(�4)

((1� q1)2 � r)wLL + (q1 � q21 + r
2
)wLH + (q1 � q21 + r

2
)wHL + q

2
1wHH 6 (q1 � q0)H

ICPHL�LL(�5)

(1� q1)2wLL + (q1 � q21 � r
2
)wLH + (q1 � q21 � r

2
)wHL + (q

2
1 + r)wHH 6 (q1 � q0)H

ICPHH�HL(�6)

(1� q1)2wLL + (q1 � q21 + r
2
)wLH + (q1 � q21 + r

2
)wHL + (q

2
1 � r)wHH 6 (q1 � q0)H

ICPHL�HH(�7)

((1 � q1)2 + r)wLL + (1 � q1)q1wLH + (1 � q1)q1wHL + (q21 � r)wHH 6 (q1 � q0)H

ICPLL�HH(�8)

((1� q1)2 + r)wLL + (q1 � q21 � r
2
)wLH + (q1 � q21 � r

2
)wHL + q

2
1wHH 6 (q1 � q0)H

ICPLL�HL(�9)

�wLL 6 0(�10); �wHL 6 0(�11); �wHH 6 0(�12); �wLH 6 0(�13);

(�1+ q0)wLL� q0wLH + (1� q0)wHL+ q0wHH 6 1
q1�q0 "Self-Enforcing Shirk"(�14)

We �rst solve a relaxed program without the �Self-Enforcing Shirk�constraint

and then verify that solutions of the relaxed program satisfy the �Self-Enforcing

Shirk�constraint.

Without the �Self-Enforcing Shirk� constraint, the same argument used in

Lemma 19 can be used to show that setting wLH = 0 is optimal. Denote the
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objective function of (LP-2) by f(w) the left-hand side less the right-hand side of

the ith constraints by gi(w), and the Lagrangian Multiplier of the ith constraint by

�i. The Lagrangian for the problem is L = f(w)+
12X
i=1

�igi(w). After setting wLH =

0 and simplifying the problem, FOCs for the three wage payments (wLL; wHL; wHH)

are as follows:

(FOC-wLL)

1��10+2�3+�4+�5+�6+�7+�8+�9�2(1+�3+�4+�5+�6+�7+�8+�9)q1

+ (1 + �4 + �5 + �6 + �7 + �8 + �9)q
2
1 � �1(q0 + q1 � 2)+

(�3 � �4 � �5 + �8 + �9 � �3q1)r � �2(�2 + q0 + q1 + (�1 + q1)r) = 0

(FOC-wHL)

q1+�1(q0+q1�1)+q1(2�3+�4+�5+�6+�7+�8+�9�(1+�4+�5+�6+�7+�8+�9)q1)

+
1

2
(�5��6+�7��9+2�3(�1+ q1))r+�2(q0+(�1+ q1)(1+ r))��11��3 = 0

(FOC-wHH)

q21 + �5q
2
1 + �9q

2
1 � �1(q0 + q1) + �7(q21 � r) + �8(q21 � r)� �3q1(2 + r)+

�4(q
2
1 + r) + �6(q

2
1 + r)� �2(q0 + q1 + q1r)� �12 = 0
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Again, the optimal solution is one that (i) satis�es all constraints in LP-2,

(ii) satis�es the three FOCs above, (iii) satis�es the complementary slackness

conditions �igi(w) = 0 , and (iv) has non-negative Lagrangian multipliers. For

r < �A, the solution listed below satis�es (i) � (iv) and thus is optimal. This

solution, denoted as JPE1, is obtained by solving the three binding constraints:

Mutual Monitoring, wHL, and wLL.

The JPE1 solution is:

wLL = 0; wHL = 0; wHH =
1+r

(q1�q0)(q0+q1+q1r) ;

�1 = q1; �2 =
q21

q0+q1+q1r
; �3 = 0; �4 = 0;

�5 = 0; �6 = 0; �7 = 0; �8 = 0;

�9 = 0; �10 =
q0�2q0q1+q1(1+r�q1r)

q0+q1+q1r
; �11 =

q0q1
q0+q1+q1r

; �12 = 0:

Under JPE1, the ICPHH�LL constraint yields the upper bound on r. The optimal

solution changes when r > �A. For �A < r 6 min(� 0; �D), the solution listed

below satis�es (i)� (iv) and becomes optimal. This solution, denoted as BPIC , is

obtained by solving the following three binding constraints: Mutual Monitoring,

ICPHH�LL, and ICPHH�HL.

The BP1C solution is:

wLL =
(q1�q0)2(q0+q1+q1r)H�(1+r)(q21+r)
(q1�q0)(q0+q1�(�1+q1)q1r�r2) ; wHL = 2 � wLL;

wHH =
(q1�q0)2(q0+q1+(�1+q1)r)H�(1+r)(�1+q21+r)

(q1�q0)(q0+q1�(�1+q1)q1r�r2) ;

�1 = 0; �2 =
�r

q0+q1+q1r�q21r�r2
; �3 = 0; �4 =

q0�(q1�2)((q1�q)r�1)
q0+q1+q1r�q21r�r2

;

�5 = 0; �6 =
2(q0�(q1�1)((q1�1)r�1))
q0+q1+q1r�q21r�r2

; �7 = 0; �8 = 0;
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�9 = 0; �10 = 0; �11 = 0; �12 = 0:

UnderBP1C , the non-negativity of wLL and wHL requires r > �
A, while the Pareto

Dominant constraint and �6 > 0 impose upper bounds �D and � 0 respectively. If

r > � 0, the solution changes because otherwise �6 < 0. For minf� 0; �Ag < r 6 �C ,

the solution is listed below. This solution, denoted as JPE2, is obtained by solving

the following three binding constraints: Mutual Monitoring, ICPHH�LL, and wLL.

The JPE2 solution is:

wLL = 0; wHL =
(1+r)(q21+r)

q1�q0
�(q1�q0)(q0+q1+q1r)H

(1�q1)r(1+r)�q0(q1+r) ;

wHH =
(1�q1)q1(1+r)+(q1�q0)2(q0+(�1+q1)(q+r))H

(q1�q0)((�1+q1)r(1+r)+q0(q1+r)) ;

�1 = 0; �2 =
(q1�1)q1r

(q1�1)r(1+r)+q0(q1+r) ; �3 = 0; �4 =
�q0q1

(q1�1)r(1+r)+q0(q1+r) ;

�5 = 0; �6 = 0; �7 = 0; �8 = 0;

�9 = 0; �10 =
r(q0�(q1�1)((q1�q)r�1))
(q1�1)r(1+r)+q0(q1+r) ; �11 = 0; �12 = 0:

Under JPE2, the non-negativity of wHL requires r > �
A and �10 > 0 yields another

lower bound � 0 on r. The non-negativity of wHH and wHL also requires r > s0 �
q0+q1�1+

p
(q0+q1�1)2+4(1�q1)q0q1
2(1�q1) . In addition, both the Pareto Dominance and No Cy-

cle constraints require r < �C . We claim (maxfs0; �A; � 0g; �C ] = (maxf�A; � 0g; �C ].

The claim is trivial if s0 6 �A and therefore consider the case where s0 > �A.

Since �A increases in H while s0 is independent of H, one can show s0 > �A

is equivalent to H < H 0 for a unique positive H 0. Meanwhile, algebra shows

that �c < �A for H < H 0. Therefore s0 > �A implies �c < �A, in which case

(maxfs0; �A; � 0g; �C ] = (maxf�A; � 0g; �C ] = ?. For maxf� 0; �Cg < r 6 �D and

q1 + q0 > 1, the optimal solution is as follows. This solution, denoted as BP2C ,
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is obtained by solving the three binding constraints: Mutual Monitoring, Pareto

Dominance, and ICPHH�LL.

The BP2C solution is:

wLL =
q0(q1�q0)2H�q0(q1+r)

(q1�q0)((1�q1)r�q0(�1+q1+r)) ; wHL =
(q1�q0)2+r�2q0r�(q1�q0)3H
(q1�q0)((1�q1)r�q0(�1+q1+r)) ;

wHH =
(q0+q1)(q1�1)+q0r+(q1�q0)2(�1+q1)H

(q1�q0)((1�q1)r�q0(�1+q1+r)) ;

�1 =
�q0+(�1+q1)(�1+(�1+q1)r)

(q1�1)r+q0(�1+q1+r) ; �2 =
q0+q1�1

(q1�1)r+q0(�1+q1+r) ; �3 = 0; �4 =
q0(1�q1)

(q1�1)r+q0(�1+q1+r) ;

�5 = 0; �6 = 0; �7 = 0; �8 = 0;

�9 = 0; �10 = 0; �11 = 0; �12 = 0

Under BP2C , the non-negativity of �1 requires q1 + q0 > 1. Given q1 + q0 >

1, the non-negativity of wHH and wHL together yield r > �C and r > s00 �
(1�q1)q0
q0+q1�1 . The other lower bound �

0 on r is generated by intersecting requirements

for � > 0 and for the non-negativity of wHH and wHL. The ICPHH�HL constraint

yields the upper bound on r, i.e. r 6 �D. We claim (maxfs00; �C ; � 0g; �D] =

(maxf� 0; �Cg; �D]. Subtracting q1 from both sides of �C 6 �D and collecting terms,

one obtains s00 6 �C which means �C 6 �D if and only if s00 6 �C . Therefore

(maxfs00; �C ; � 0g; �D] = (maxf� 0; �Cg; �D] is veri�ed. As r becomes even larger,

the problem (LP-2) becomes infeasible because the intersection of the Mutual

Monitoring constraint and the Pricipal�s IC constraint(s) is an empty set.

Finally, tedious algebra veri�es that the solutions characterized above sat-

isfy the �Self-Enforcing Shirk� constraint that we left out in solving the prob-

lem. Therefore adding this constraint back does not a¤ect the optimal objective

value. �
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Proof of Proposition 22. The proposition is proved by showing a sequence of

claims.

Claim 1: LP-1 is optimal for r > maxf�C ; �Dg.

Claim2: BP2C of LP-2 is never the overall optimal contract.

Claim 3: JPE1 of LP2, if feasible, is the overall optimal contract.

Claim 4: JPE2 of LP2, if feasible, is the overall optimal contract.

Claim 5: BP1C of LP2, if feasible, is the overall optimal contract.

Claim 6: minf� 0; �Dg > �C if and only if � 0 > �C .

Using Claims 1 - 5, one can verify the following statement: whenminf� 0; �Dg 6

�C , LP-2 is optimal if and only if r < �C ; otherwise for minf� 0; �Dg > �C ,

LP-2 is optimal if and only if r < minf� 0; �Dg. Claim 6 shows that condition

minf� 0; �Dg > �C is equivalent to � 0 > �C and, thus, is equivalent to the state-

ment in the proposition.

Proof of Claim 1: The claim is trivial as we know from Proposition 2 that LP-2

does not have feasible solution on the region.

Proof of Claim 2: Recall that BP2C of LP-2 is obtained by solving the following

three binding constraints: Mutual Monitoring, Pareto Dominance, and ICPHH�LL.

It is easy to see that �(0; 0;w) = �(0; 1;w) when both Mutual Monitoring con-

straint and the Pareto Dominance constraint are binding, in which case the Mutual

Monitoring constraint can be re-written as follows:

1 + r

r
[�(1; 1;w)� 1] > �(0; 1;w) + 1

r
�(0; 1;w)
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Note this is same as the �Stage NE�constraint in LP-1 and therefore all the con-

straints in (LP-1) are implied by those in (LP-2) under the BP2C solution. In

this case, (LP-2) has a smaller feasible set, so it can never do strictly better than

(LP-1).

Proof of Claim 3: We know from Proposition 2 that JPE1 is the optimal so-

lution of LP2 for r 2 (0; �A], over which the optimal solution of LP1 is IPE

(Proposition 1). Substituting the corresponding solution into the principal�s ob-

jective function, we obtain objJPE1 =
q21(1+r)

(q1�q0)(q0+q1+q1r) and objJPE =
q1

q1�q0 . Algebra

shows objJPE � objJPE1 = q0q1
(q1�q0)(q0+q1+q1r) > 0, which veri�es the claim.

Proof of Claim 4: JPE2 is the solution of LP2 for r 2 (maxf� 0; �Ag; �C ], over

which IPE is the corresponding solution of LP1. Algebra shows that objJPE2 =

(q1�1)q1r(1+r)+q0(q0�q1)2q1H
(q0�q1)((q1�1)r(1+r)+q0(q1+r)) , objIPE =

q1
q1�q0 , and objJPE2 � objIPE 6 0 if and only

if
q0+q1�1+

p
(q0+q1�1)2+4(1�q1)q0q1
2(1�q1) 6 r 6 �C (with equality on the boundary). The

claim is true if maxf q0+q1�1+
p
(q0+q1�1)2+4(1�q1)q0q1
2(1�q1) ; � 0; �Ag 6 r 6 �C , which was

shown in the proof of Proposition 2 to be equivalent to r 2 (maxf� 0; �Ag; �C ].

Therefore, JPE2 is the overall optimal contract whenever it is feasible.

Proof of Claim 5: We know thatBP1C is the solution of LP2 if r 2 (�A;minf� 0; �Dg].

In this region, IPE and BP I are potential solutions in LP1 because the other two

solutions (RPE and BP S) require r > � 1 > � 0. Let us compare �rst BP1C of

LP2 and BP I of LP1. It is easy to show objBP1C =
r(1+r)�(q0�q1)2(q0+q1(1+r�q1r))H
(q0�q1)(q0+q1�(�1+q1)q1r�r2)

and objBP I =
r(1+r)+(q0�q1)2(r(q1�1)�1)H

(q0�q1)(r(q1+r�1)�1) . Tedious algebra veri�es objBP1C < objBP I

for �C < r 6 minf� 0; �Dg where both solutions are feasible.
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Showing BP1C is always more cost e¢ cient than the IPE solution is more involved

and is presented in two steps. We �rst derive the su¢ cient condition for this to be

true and then show that the su¢ cient condition holds whenever both solutions are

optimal in their corresponding program, namely �A < r 6 minf� 0; �C ; �Dg. Given

objBP1C and objIPE de�ned above, one can show that objBP1C < objIPE , r < �,

where

� =
1

2(1� q1)
[((q1 � q0)2H � q1)q1(1� q1)� 1+p

(((q1 � q0)2H � q1)q1(1� q1)� 1)2 + 4(1� q1)((q1 � q0)2H � q1)(q1 + q0)]

Note that if � > �C , then r < � (thus objBP1C < objIPE) is satis�ed triv-

ially for �A < r 6 minf� 0; �C ; �Dg. Consider the opposite case in which � <

�C . For q0 2 [0; q1), one can show that � < �C corresponds to either r <

1+
p
1+4(1�q1)2(�1+q1(3+(q1�2)q1))H

2(1�q1)2H or q1 �
p

q1
H
< r < q1. Since the latter condition

contradicts the maintained assumption that (q1 � q0)2H > q1, we consider r <

1+
p
1+4(1�q1)2(�1+q1(3+(q1�2)q1))H

2(1�q1)2H only. Given r <
1+
p
1+4(1�q1)2(�1+q1(3+(q1�2)q1))H

2(1�q1)2H ,

one can show � > � 0 for any q0 2 [0; q1). Therefore, under the maintained as-

sumption (q1 � q0)2H > q1, � < �C implies � 0 < �. If the choice is between

BP1C and IPE, r 6 minf� 0; �C ; �Dg. Then � 0 < � implies r < �. r < �

implies objBP1C < objIPE whenever both are feasible (which is in the region

�A < r 6 minf� 0; �C ; �Dg).

Proof of Claim 6: The �only if�direction is trivial. To show the �if�direction,
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note that if � 0 > �C , we know q1 + q0 > 1 as otherwise � 0 < 0 < �C . Un-

der the maintained assumption on H, q1 + q0 > 1 implies �D > �C . Therefore,

minf� 0; �Dg > �C if and only if � 0 > �C . �
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