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Abstract

This dissertation analyzes three scheduling problems motivated by real life situa-

tions. In many manufacturing and service industries, scheduling is an important

decision-making process. Unfortunately, scheduling problems are often computation-

ally challenging to solve, and even modeling a scheduling problem can be difficult.

Chapter 2 considers single-facility non-preemptive scheduling problems with long

time horizons having jobs with time windows (i.e., release times and due dates). I

combine constraint programming (CP) and mixed integer linear programming (MILP)

using a hybrid method: logic-based Benders decomposition. I first divide the long

time horizon into segments to make the problem tractable. This gives rise to two

versions of the single-facility scheduling problem: segmented and unsegmented. In

the segmented problem, each job must be completed within one time segment. In the

unsegmented problem, jobs can overlap two or more segments. I analyze different ob-

jective functions, and introduce relevant Benders cuts. I find that for the segmented

problem, logic-based Benders decomposition is always superior and should be used

from the start. For the unsegmented problem, I find that logic-based Benders decom-

position is not necessarily the fastest method, but clearly the most robust. Hence, I

suggest a strategy of applying CP first, and if it fails to solve the problem within a

few seconds, switching to logic-based Benders decomposition.

Chapter 3 addresses the problem of staffing in a service center with cross-trained

agents, heterogeneous customers, and quality guarantees, inspired by a large IT ser-

vices delivery organization. Agents are either high or low skilled, and serve customer

requests that are also heterogeneous - with respect to both their complexity and

their priority: (i) Higher priority customer requests preempt lower priority customer

requests in the queue; and (ii) Less skilled agents can only service low complexity

requests, while highly skilled agents can service all types of requests. I capture this

service center’s operations using a multi-server queue under a preemptive-resume pri-
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ority service discipline, and model it as a Markov chain. I then apply approximation

and bounding techniques to evaluate different control policies: I consider the class of

threshold-based priority policies that prioritize the requests according to the number

of each class of requests in the system. Four different types of customer requests

can be successfully analyzed by our method: our method is accurate and fast when

compared to simulation. I also provide managerial insights about the capacity provi-

sioning problem at the service center, such as how to set thresholds, how to negotiate

costs with customers, and what mix of agents to hire. I demonstrate that threshold-

based policies can be simple but effective, and that they might decrease the total cost

without any changes in the service center.

In Chapter 4, I analyze a project scheduling problem with disruptions, cross-

trained agents, heterogeneous projects and quality guarantees where the durations

of a project’s tasks/disruptions and the arrivals of the projects are uncertain. This

problem is inspired by a real problem at a large, global SDO’s service center. Analysis

of real data shows that considering delays in the release times and processing times

are sufficient to capture the uncertainty in the system. The goal is to find a robust

and effective assignment and schedule of tasks for each agent. I develop a robust

scheduling model based on logic-based Benders decomposition, in which uncertainty

is captured by an uncertainty set which might not include the least likely outcomes.

Then, I simplify this robust scheduling model by the convexity theorem I prove.

v



Acknowledgements

I would like to express my deepest gratitude to my advisor Dr. Alan Scheller-Wolf

for his wonderful guidance over the years, his patience, and his generous help with

my professional development. I would like to express my sincere gratitude to Dr.

Aliza R. Heching and Dr. John N. Hooker for their invaluable guidance, inspiration,

and encouragement. This thesis would not be possible without Dr. Scheller-Wolf,

Dr. Heching, and Dr. Hooker’s endless support. I also would like to thank Dr.

Willem-Jan van Hoeve for his support, insightful suggestions, his time and effort in

evaluating my work. It has been an honor working with such prominent figures in

the Operations Management and the Operations Research communities.
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1 INTRODUCTION

Three scheduling problems motivated by real life situations are analyzed in this dis-

sertation. In many manufacturing and service industries, scheduling is an important

decision-making process: how to optimize the allocation of resources to tasks over

given time periods. Different objective functions can be optimized, such as finding

a feasible solution, minimizing makespan (finishing time of the last scheduled task),

and minimizing total cost. If a task cannot be finished on time, a penalty can be

charged both in the form of loss of goodwill and proportional to the tardiness of the

delivery. However, solving scheduling problems is nontrivial; in fact, since scheduling

problems are computationally hard to solve, even modeling a scheduling problem can

be difficult.

Inspired by the importance of scheduling in real life, I study three practical

scheduling problems. In Chapter 2, I solve single-facility non-preemptive schedul-

ing problems over a long time horizon, with tasks with deterministic durations but

different release times and deadlines. Chapter 2 contributes to the scheduling lit-

erature by being the first to model the single-facility scheduling model with long

time horizons using a hybrid method - logic-based Benders decomposition- and by

providing insights by comparing the performance of logic-based Benders decompo-

sition with state-of-art models. In Chapter 3, I analyze a service center at a large,

global, IT services delivery organization (SDO) with cross-trained agents, hetero-

geneous customer requests, and service level agreements. I model the system as a

multi-server queueing system and apply approximation and bounding techniques to

evaluate different control policies. Chapter 3 contributes to the queueing and service

science literature by demonstrating a simple but effective request-assignment policy,
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and providing managerial insights about the potential benefits of a such policy. In

Chapter 4, I study a similar problem as Chapter 3: a project scheduling problem at a

large IT SDO with cross-trained agents, heterogeneous projects, and service quality

guarantees. Durations of projects’ tasks and arrival times are uncertain. In addition,

projects are subject to random disruptions. Chapter 4 contributes to the scheduling

literature by developing a novel robust scheduling model using uncertainty sets, and

by characterizing the robust model under polyhedral uncertainty sets.

Chapter 2 considers single-facility non-preemptive scheduling problems with long

time horizon having jobs with time windows (i.e., release times and due dates). I com-

bine constraint programming (CP) and mixed integer linear programming (MILP)

using a hybrid method: logic-based Benders decomposition. I first divide the long

time horizon into segments, for example, an annual production plan is separated into

weekly plans. Thus, rather than break the problem into facility assignment and job

scheduling, I decompose it into smaller scheduling subproblems on segments of the

time horizon. The master problem assigns jobs to time segments, and subproblems

schedule jobs within each segment. This allows us to deal with long time horizons

that would otherwise make the problem intractable.

I consider two versions of the single-facility scheduling problem: segmented and

unsegmented. In the segmented problem, each job must be completed within one time

segment. The boundaries between segments might therefore be regarded as weekends

or shutdown times during which jobs cannot be processed. In the unsegmented prob-

lem, jobs can overlap two or more segments. I analyze different objective functions:

finding a feasible solution, minimizing makespan, or minimizing total tardiness, and

introduce relevant Benders cuts.

I find that for these problems, logic-based Benders scales up more effectively than

state-of-the-art CP and MILP solvers, especially for the segmented problem. The

logic-based Benders decomposition solves much larger instances of the feasibility and
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makespan problems, and its speed advantage increases rapidly as the problem size in-

creases. For the unsegmented problem, logic-based Benders decomposition continues

to dominate MILP while being much slower than CP on most of the smaller instances.

However, CP begins to lose its ability to solve instances as they scale up, whereas

logic-based Benders decomposition continues to solve them. Logic-based Benders

decomposition is therefore not necessarily the fastest method, but clearly the most

robust. Because CP solves unsegmented instances quickly if it solves them at all, I

suggest a strategy of applying CP first, and if it fails to solve the problem within a few

seconds, switching to logic-based Benders decomposition. For segmented instances,

logic-based Benders decomposition is always superior and should be used from the

start. To our knowledge, logic-based Benders decomposition has not previously been

applied to a single-facility scheduling with a long time horizon. I show that using

logic-based Benders decomposition is particularly useful for these problems.

Chapter 3 addresses the problem of staffing in a service center with cross-trained

agents, heterogeneous customers, and quality guarantees. I model a system, inspired

by a large IT SDO, with agents who are either high or low skilled. These agents serve

customer requests that are also heterogeneous - with respect to both the complex-

ity and their priority: (i) Higher priority customer requests preempt lower priority

customer requests in the queue; and (ii) Low skilled agents can only service low com-

plexity requests, while high skilled agents can service all types of requests. I capture

this service center’s operations using a multi-server queue under a preemptive-resume

priority service discipline, and model this system as a Markov chain. However, as

an exact solution of such a system is numerically intractable, I apply approximation

and bounding techniques to evaluate different control policies.

I consider the class of threshold-based priority policies that prioritize the requests

according to the number of each class of requests in the system. By approximating

the interval of time during which the agent is busy without interruption, I turn
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the intractable Markov chain into a tractable one, allowing application of standard

Matrix Analytic Methods. I show that four different types of customer requests can be

successfully analyzed by our method: our method is accurate and fast when compared

to simulation. I also provide managerial insights about the capacity provisioning

problem at the service center. To the best of our knowledge this chapter is the first

to consider the following combination of factors within a service center model: (i)

agents are differentiated according to their level of expertise, which may limit the

specific classes of requests they can serve; (ii) requests require different skill levels

and also may belong to different priority classes; higher priority class requests can

preempt lower priority class requests; (iii) threshold policies are utilized; and (iv) the

system does not operate under a heavy traffic regime. I contribute to the queueing and

service science literature by demonstrating a simple but effective request-assignment

policy, and providing managerial insights, such as, how to set thresholds, how to

negotiate costs with customers, and what mix of agents to hire.

In Chapter 4, I analyze a project scheduling problem with disruptions, cross-

trained agents, heterogeneous projects and quality guarantees where the durations

of a project’s tasks and the arrivals of the projects are uncertain. This problem is

inspired by a real problem at a large, global SDO’s service center. Analysis of real data

shows that considering delays in the release times and processing times are sufficient

to capture the uncertainty: Since the number of projects in the service center is very

large, ignoring uncertain arrivals of the projects and solving the scheduling problem

with the already existing projects in the service center on a rolling basis represent the

service center’s operations well. The goal is to find a robust and effective assignment

and schedule of tasks for each agent. We do this using a robust scheduling model,

in which uncertainty is captured by an uncertainty set which might not include the

least likely outcomes.

I develop my robust scheduling model based on logic-based Benders decomposi-
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tion. This hybrid model has three stages: The first stage is the master problem that

finds the assignment of tasks to agents. The second and the third stages are the sub-

problems scheduling these assigned tasks for each agent considering the uncertainty

set. For the sake of illustration, I consider only the case in which delays in the release

times are uncertain, as disruptions are typically much more variable than the pro-

cessing times. I prove that the objective function is convex in terms of these delays

when the uncertainty set is a polyhedron. Interestingly, the three-stage decomposi-

tion above is simplified into a two-stage decomposition by using the convexity analysis

I prove. Chapter 4 contributes to the scheduling literature by introducing a novel

robust scheduling model in which the uncertainty is represented by an uncertainty

set. I also simplify logic-based Benders decomposition under polyhedral uncertainty

sets. To the best of our knowledge, this is the first work solving a project scheduling

problem with uncertainty using robust optimization with uncertainty sets.

My dissertation widens our knowledge of deterministic and stochastic models for

three practical scheduling problems. To our knowledge, the second chapter is the first

attempt to solve a pure scheduling problem (including any side constraints) with logic-

based Benders decomposition. In the third chapter, I contribute an approximation

method to provide managerial insights for a service center’s operations with cross-

trained agents, heterogeneous customers and quality guarantees. Current numerical

experiments show that the approximation method is accurate and fast. In Chapter

4, I contribute a novel robust project scheduling model to capture an SDO’s service

center’s operations with disruptions, cross-trained agents, heterogeneous projects and

quality guarantees. There is much future work to be done in each of these problem

domains but I am confident that the findings of this dissertation will guide future

studies on similar, or even more complex problems.

5



2 SINGLE-FACILITY SCHEDULING BY

LOGIC-BASED BENDERS DECOMPOSITION

Logic-based Benders decomposition can combine mixed integer programming and

constraint programming to solve planning and scheduling problems much faster than

either method alone. We find that a similar technique can be beneficial for solving

pure scheduling problems as the problem size scales up. We solve single-facility non-

preemptive scheduling problems with time windows and long time horizons. The

Benders master problem assigns jobs to predefined segments of the time horizon,

where the subproblem schedules them. In one version of the problem, jobs may not

overlap the segment boundaries (which represent shutdown times, such as weekends),

and in another version, there is no such restriction. The objective is to find feasible

solutions, minimize makespan, or minimize total tardiness.

2.1 Introduction

Logic-based Benders decomposition (Hooker and Ottosson, 2003) is a generalization

of Benders decomposition that accommodates a much wider range of problems. In

contrast with the classical Benders method, the subproblem can in principle be any

combinatorial problem, not necessarily a linear or nonlinear programming problem.

For example, it can be a scheduling problem solved by constraint programming (CP),

a method well suited to scheduling.

This flexibility has led to the application of logic-based Benders decomposition

to planning and scheduling problems that naturally decompose into an assignment

and a scheduling portion. The Benders master problem assigns jobs to facilities using

This chapter is joint work with John N. Hooker.
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mixed integer programming (MILP), and the subproblem uses CP to schedule jobs on

each facility. This approach can reduce solution time by several orders of magnitude

relative to methods that use MILP or CP alone (Hooker, 2004, 2005b,a, 2006, 2007a;

Jain and Grossmann, 2001; Thorsteinsson, 2001).

In this paper, we investigate whether a similar technique can solve pure schedul-

ing problems, which lack the obvious decomposition that one finds in planning and

scheduling. Rather than break the problem into facility assignment and job schedul-

ing, we decompose it into smaller scheduling subproblems on segments of the time

horizon. The master problem assigns jobs to time segments, and subproblems sched-

ule jobs within each segment. This allows us to deal with long time horizons that

would otherwise make the problem intractable.

In particular, we solve single-facility non-preemptive scheduling problems with

time windows in which the objective is to find a feasible solution, minimize makespan,

or minimize total tardiness. In one version of the problem, which we call the seg-

mented problem, each job must be completed within one time segment. The bound-

aries between segments might therefore be regarded as weekends or shutdown times

during which jobs cannot be processed. In a second version of the problem, which

we refer to as unsegmented, jobs can overlap two or more segments. We address both

variants.

Obvious cases of single-facility scheduling include machine scheduling in a man-

ufacturing plant or task scheduling in a computer with one processor. Less obvious

cases occur when a complex plant is scheduled as one facility, as for example when

a paint manufacturing plant must be committed to produce one color at a time

(French, 1982). A multistage process with a single bottleneck may also result in a

single-facility model (Pinedo, 1995).

The paper is organized as follows. After a survey of previous work, we present a

brief introduction to logic-based Benders decomposition, and state pure MILP and
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CP models for the single-facility scheduling problem. We then describe a logic-based

Benders approach to the segmented feasibility, makespan, and tardiness problems.

We do the same for the unsegmented feasibility and makespan problems, for which

the Benders cuts are considerably more complex. We then present computational

results. We conclude that the relative advantage of the Benders approach increases

rapidly as the time horizon and number of jobs grow larger, particularly for segmented

feasibility and makespan problems. The Benders method is not necessarily faster on

unsegmented instances, but it is more robust and the only method to solve them all.

2.2 Previous Work

Logic-based Benders decomposition was introduced in (Hooker, 1995; Hooker and

Yan, 1995), and a general theory was presented in (Hooker, 2000; Hooker and Ottos-

son, 2003). Application to planning and scheduling was proposed in (Hooker, 2000)

and first implemented in (Jain and Grossmann, 2001).

Classical Benders decomposition derives Benders cuts from dual or Lagrange mul-

tipliers in the subproblem (Benders, 1962; Geoffrion, 1972). However, this presup-

poses that the subproblem is a linear or nonlinear programming problem. Logic-based

Benders decomposition has the advantage that Benders cuts can, at least in principle,

be obtained from a subproblem of any form by solving its inference dual (Hooker,

1996). The solution of the dual is a proof of optimality for fixed values of the mas-

ter problem variables (whence the name “logic-based”). The core idea of Benders

decomposition is that this same proof may establish a bound on the optimal value

when the master problem variables take other values. The corresponding Benders

cut enforces this bound in the master problem.

Logic-based Benders cuts must be designed specifically for each class of prob-

lems, but this provides an opportunity to exploit problem structure. The Benders
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framework is also natural for combining MILP and CP, because one method can be

used to solve the master problem and the other the subproblem. This is particularly

advantageous when the subproblem is a scheduling problem, for which CP methods

are well suited (Baptiste et al., 2001; Hooker, 2007b). The combinatorial nature of

the scheduling problem is no longer a barrier to generating Benders cuts.

Logic-based Benders cuts have some resemblance to cuts generated in oracle-

based optimization (e.g., (Babonneau et al., 2007)) but differ in several respects. The

Benders subproblem contains a different set of variables than the master problem and

cuts, while in oracle-based optimization, the subproblem and cuts contain the same

variables. The solution of the master problem, rather than a query point, defines the

Benders subproblem, and Benders cuts can in principle be derived from any proof of

optimality for the subproblem.

Additional applications of logic-based Benders include logic circuit testing (Hooker

and Yan, 1995), propositional satisfiability (Hooker and Ottosson, 2003), multi-

stage facility scheduling (Harjunkoski and Grossmann, 2002), dispatching of auto-

mated guided vehicles (Corréa et al., 2004), steel production scheduling (Harjunkoski

and Grossmann, 2001), real-time scheduling of computer processors (Cambazard

et al., 2004), traffic diversion (Chu and Xia, 2004), batch scheduling in a chemical

plant (Maravelias and Grossmann, 2004a,b) (and, in particular, polypropylene batch

scheduling (Timpe, 2002)), stochastic constraint programming (Tarim and Miguel,

2006), customer service with queuing (Terekhov et al., 2005), and scheduling of dis-

tributed processors for computation (Benini et al., 2005; Cambazard et al., 2004).

In all of these applications, the subproblem is a feasibility problem rather than an

optimization problem, which simplifies the task of designing Benders cuts. Effective

Benders cuts can nonetheless be developed for optimization subproblems, based on

somewhat deeper analysis of the inference dual. This is accomplished for planning

and scheduling problems in (Hooker, 2004, 2005b,a, 2006, 2007a), where the objective
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is to minimize makespan, the number of late jobs, or total tardiness. The subproblem

is a cumulative scheduling problem, in which several jobs may be processed simulta-

neously subject to resource constraints.

Other applications of logic-based Benders to optimization include 0-1 program-

ming (Hooker and Ottosson, 2003; Chu and Xia, 2004), mixed integer/linear pro-

gramming (Codato and Fischetti, 2006), tournament scheduling (Rasmussen, 2008;

Rasmussen and Trick, 2007), location/allocation problems (Fazel-Zarandi and Beck,

2009), shift selection with task sequencing (Barlatta et al., 2010), single- and multi-

stage batch chemical processes (Maravelias, 2006), multimachine assignment schedul-

ing with a branch-and-cut approach (Sadykov and Wolsey, 2006), and single-facility

scheduling in the present paper. Temporal decomposition similar to that employed

here is applied in (Bent and Hentenryck, 2010) to large-scale vehicle routing problems

with time windows. However, unlike a Benders method, the algorithm is heuristic

and does not obtain provably optimal solutions. In addition, no cuts or nogoods are

generated.

To our knowledge, logic-based Benders decomposition has not previously been ap-

plied to single-facility scheduling. A broad survey of single-facility scheduling meth-

ods for minimizing tardiness can be found in (Koulamas, 2010), which assumes that

all release dates are equal. Four MILP formulations of single-facility scheduling are

analyzed in (Keha et al., 2009), where it is observed that the discrete-time model is

most widely used and yields the tightest bounds. We use this model for our compar-

isons with pure MILP.
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2.3 Logic-Based Benders Decomposition

Logic-based Benders decomposition is based on the concept of an inference dual.

Consider an optimization problem

min f(x)

C(x)

x ∈ D
(2.1)

where C(x) represents a constraint set containing variables x, and D is the domain

of x (such as Rn or Zn). The inference dual is the problem of finding the tightest

lower bound on the objective function that can be deduced from the constraints:

max v

C(x)
P

` (f(x) ≥ v)

v ∈ R, P ∈ P

(2.2)

Here C(x)
P

` (f(x) ≥ v) indicates that proof P deduces f(x) ≥ v from C(x). The

domain of variable P is a family P of proofs, and the dual solution is a pair (v, P ).

When the primal problem (2.1) is a feasibility problem with no objective function,

the dual can be viewed as the problem finding a proof P of infeasibility.

If (2.1) is a linear programming (LP) problem min{cx | Ax ≥ b, x ≥ 0}, the

inference dual becomes the classical LP dual (assuming feasibility) for an appropriate

proof family P . Namely, each proof P corresponds to a tuple u ≥ 0 of multipliers,

and P deduces the bound cx ≥ v when the surrogate uAx ≥ ub dominates cx ≥ v;

that is, uA ≤ c and ub ≥ v. The dual therefore maximizes v subject to uA ≤ c,

ub ≥ v, and u ≥ 0. Equivalently, it maximizes ub subject to uA ≤ c and u ≥ 0,

which is the classical LP dual.
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Logic-based Benders decomposition applies to problems of the form

min f(x, y)

C(x, y)

x ∈ Dx, y ∈ Dy

(2.3)

Fixing x to x̄ defines the subproblem

min f(x̄, y)

C(x̄, y)

y ∈ Dy

(2.4)

Let proof P solve the inference dual of the subproblem by deducing the bound

f(x̄, y) ≥ v∗. A Benders cut v ≥ Bx̄(x) is derived by identifying a bound Bx̄(x)

that the same proof P deduces for any given x. Thus, in particular, Bx̄(x̄) = v∗. The

kth master problem is

min v

v ≥ Bxi(x), i = 1, . . . , k − 1

x ∈ Dx

(2.5)

where x1, . . . , xk−1 are the solutions of the first k − 1 master problems. The optimal

value vk of the master problem is a lower bound on the optimal value of (2.3), and

each Bxi(x
i) is an upper bound. The algorithm terminates when vk is equal to the

minimum of Bxi(x
i) over i = 1, . . . , k.

Classical Benders decomposition is the result of applying logic-based Benders

decomposition to a problem of the form

min f(x) + cy

g(x) + Ay ≥ b

x ∈ Dx, y ≥ 0

(2.6)

The subproblem is an LP:

min f(x̄) + cy

Ay ≥ b− g(x̄)

y ≥ 0

(2.7)
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whose inference dual is the LP dual. Its solution u defines a surrogate uAy ≥ u(b−

g(x̄)) that dominates cy ≥ v∗ and therefore deduces that f(x̄)+cy ≥ f(x̄)+u(b−g(x̄)).

The same u deduces f(x)+cy ≥ f(x)+u(b−g(x)) for any x, and we have the classical

Benders cut v ≥ f(x)+u(b−g(x)). When the subproblem is infeasible, the dual has an

extreme ray solution u that proves infeasibility because uA ≤ 0 and u(b− g(x)) > 0.

The Benders cut is therefore u(b− g(x)) ≤ 0.

In practice, the solution of the subproblem inference dual is the proof of optimality

obtained while solving the subproblem. The simplest type of Benders cut is a nogood

cut, which states that the solution of the subproblem cannot be improved unless

certain xj’s are fixed to different values. For example, we might observe that only

part of the master problem solution appears as premises in the optimality proof,

perhaps xj = x̄j for j ∈ J . Then the optimal value of the subproblem is at least v∗

so long as xj = x̄j for j ∈ J . This yields a nogood cut v ≥ Bx̄(x) with

Bx̄(x) =

{
v∗ if xj = x̄j for j ∈ J
−∞ otherwise

If the subproblem is infeasible, then perhaps xj = x̄j for j ∈ J appear as premises in

the proof of infeasibility. A nogood cut states simply that xj 6= x̄j for some j ∈ J .

Further analysis of the optimality proof may yield analytic Benders cuts that

provide useful bounds when xj 6= x̄j for some j ∈ J . We may also be able to infer

valid cuts by re-solving the subproblem when some of the premises xj = x̄j are

dropped. All of these techniques are illustrated below.

2.4 The Problem

In the unsegmented problem, there are n jobs to be processed, and each job j has

release time rj, deadline (or due date) dj, and processing time pj. If we let J =

{1, . . . , n}, the problem is to assign each job j ∈ J a start time sj so that time
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windows are observed:

rj ≤ sj ≤ dj − pj, j ∈ J

and jobs run consecutively:

sj + pj ≤ sk or sk + pk ≤ sj, all j, k ∈ J with j 6= k

We minimize makespan by minimizing maxj∈J{sj + pj}. To minimize tardiness, we

drop the deadline constraints sj ≤ dj − pj and minimize

∑
j∈J

max{sj + pj − dj, 0} (2.8)

The segmented problem is the same except for the additional constraint that each

job must be completed within one segment [ai, ai+1] of the time horizon:

ai ≤ sj ≤ ai+1 − pj for some i ∈ I, all j ∈ J

Notation is summarized in Table 4.2.

2.4.1 MILP Formulation

In the discrete-time MILP formulation of the problem, binary variable zjt = 1 when

job j starts at time t. Let T be the set of discrete times, and assume rj, dj ∈ T for

each j. The unsegmented problem is written

min [objective function] (a)∑
t∈T

zjt = 1, j ∈ J (b)∑
j∈J

∑
t̄∈Tjt

zjt̄ ≤ 1, t ∈ T (c)

zjt = 0, all t ∈ T with t < rj, j ∈ J (d)

zjt = 0, all t ∈ T with t > dj − pj, j ∈ J (e)

zjt ∈ {0, 1}, j ∈ J, t ∈ T (f)
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Table 2.1: Nomenclature for the segmented problem.

Indices
j ∈ J job
i ∈ I segment of the time horizon
t ∈ T time

Sets
J set of jobs ({1, 2, ..., n})
I set of segments
T set of discrete times
Tjt set of discrete times at which job j running at time t can start
Ji set of jobs assigned to segment i by the master problem
J(t1, t2) set of jobs whose time windows fall within [t1, t2]

Parameters
rj release time of job j
dj deadline (or due date) of job j
pj processing time of job j
ai start time of segment i
ȳij solution value of yij in the master problem
r̃ij starting time of the effective time window of job j on segment i

d̃ij ending time of the effective time window of job j on segment i
εij slack of job j on segment i
r̄ tuple of distinct release times
d̄ tuple of distinct deadlines
M∗i minimum makespan of segment i

Variables
sj start time of job j
zjt = 1 if job j starts at time t
M makespan over all segments
Mi makespan of segment i
Tj tardiness of job j
vj segment in which job j is processed
yij = 1 if job j is processed in segment i
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where Tjt = {t̄ | t − pj + 1 ≤ t̄ ≤ t}. Constraint (b) requires that every job be

assigned a start time. The clique inequality (Fulkerson, 1971; Padberg, 1973) in (c)

ensures that jobs do not overlap. Constraint (d) prevents a job from starting before

its release time, and (e) prevents it from ending after its deadline.

The feasibility problem seeks a feasible solution and consists of the constraints

(b)–(f). The makespan problem minimizes the makespan M subject to (b)–(f) and

M ≥ (t+ pj)zjt, j ∈ J, t ∈ T

The tardiness problem minimizes
∑

j∈J Tj subject to (b)–(d), (f), and

Tj ≥
∑
t∈T

(t+ pj)zjt − dj, j ∈ J

Tj ≥ 0, j ∈ J
(2.9)

where Tj is the tardiness of job j.

The segmented problem consists of the above and the additional constraints

zjt = 0, for t = ai+1 − pj + 1, . . . , ai+1 − 1, all i ∈ I, j ∈ J (2.10)

2.4.2 CP Formulation

In principle, a CP model of the unsegmented problem is quite simple. Again letting

sj be the start time of job j, a model is

min [objective function] (a)

rj ≤ sj ≤ dj − pj, j ∈ J (b)

noOverlap(s, p) (c)

(2.11)

where s = (s1, . . . , sn) and p = (p1, . . . , pn) in constraint (c), and where noOverlap is

a global constraint that requires the jobs to run sequentially. The makespan problem

minimizes maxj∈J{sj+pj} subject to (b)–(c). The tardiness problem minimizes (2.8)

subject to (b)–(c) without the upper bound in (b).
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The segmented problem can be formulated by introducing a variable vj with

domain I that indicates which segment job j is assigned. We then add to (2.11) the

constraints

avj ≤ sj ≤ avj+1 − pj, j ∈ J

2.5 Segmented Feasibility Problem

We now apply logic-based Benders decomposition to the problem of finding a feasible

schedule. The master problem assigns jobs to time segments, and the subproblem

decouples into a scheduling problem for each segment. We first address the segmented

problem, for which the time horizon is already divided into segments [ai, ai+1] for

i ∈ I.

2.5.1 Master Problem

The master problem is an MILP formulation in which binary variable yij = 1 when

job j is assigned to segment i.

∑
i∈I

yij = 1, j ∈ J

Benders cuts

Relaxation

yij ∈ {0, 1}, j ∈ J, i ∈ I

Benders cuts are developed below. The master problem also contains a relaxation of

the problem, expressed in terms of the master problem variables. This results in more

reasonable assignments in the early stages of the Benders algorithm and therefore

reduces the number of iterations. The relaxation is described in Section 2.5.3 below.

Given a solution ȳij of the master problem, let Ji = {j | ȳij = 1} be the set of

jobs it assigns to segment i. The subproblem decomposes into a scheduling problem
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for each segment:

rj ≤ sj ≤ dj − pj
ai ≤ sj ≤ ai+1 − pj

}
, j ∈ Ji

noOverlap(s(i, ȳ), p(i, ȳ))

where s(i, ȳ) is the tuple of variables sj for j ∈ Ji, and similarly for p(i, ȳ). The

subproblems are solved by CP.

In each iteration of the Benders algorithm, the master problem is solved for ȳ.

If the resulting subproblem is feasible on every segment, the algorithm stops with a

feasible solution. Otherwise, one or more Benders cuts are generated for each segment

on which the scheduling subproblem is infeasible. These cuts are added to the master

problem, and the process repeats. If at some point the master problem is infeasible,

so is the original problem.

2.5.2 Benders Cuts

The simplest Benders cut for an infeasible segment i is a nogood cut that prevents

assigning the same jobs (perhaps among others) to that segment in subsequent iter-

ations: ∑
j∈Ji

(1− yij) ≥ 1

This cut is quite weak, however, because it can be satisfied by omitting just one

job in Ji from the future assignments to segment i. The cut can be strengthened

by identifying a smaller set J̄i ⊂ Ji of jobs that appear as premises in the proof of

infeasibility for segment i. This yields the cut

∑
j∈J̄i

(1− yij) ≥ 1

Unfortunately, standard CP solvers do not provide this kind of dual information.

We therefore seek to identify heuristically a smaller set J̄i that creates infeasibility.
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A simple heuristic is to remove jobs from Ji one at a time, checking each time if the

scheduling problem on segment i is still infeasible. If it becomes feasible, the job is

restored to Ji (Algorithm 1). This requires repeated solution of each subproblem,

but the time required to do so tends to be small in practice.

Algorithm 1: Strengthening nogood cuts for the feasibility problem.

Let J̄i = Ji = {j1, . . . , jk};
for ` = 1, . . . , k do

if the jobs in J̄i \ {j`} cannot be scheduled on segment i then
Remove j` from J̄i

This heuristic may be more effective if jobs less likely to lead to feasibility are

removed first. Let the effective time window [r̃ij, d̃ij] of job j on segment i be its time

window adjusted to reflect the segment boundaries. Thus

r̃ij = max{min{rj, ai+1}, ai}
d̃ij = min{max{dj, ai}, ai+1}

Let the slack of job j on segment i be

εij = (d̃ij − r̃ij)− pj

We can remove the jobs in order of decreasing slack, which means they are indexed

so that

εi1 ≥ · · · ≥ εik

2.5.3 Relaxation

The convergence of a Benders method can often be accelerated by augmenting the

master problem with some valid inequalities in the master problem variables, resulting

in a relaxation of the original problem.

A simple relaxation in the present case requires that jobs be scheduled so that

for every time interval [t1, t2], the set J(t1, t2) of jobs whose time windows fall within
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[t1, t2] has total processing time at most t2 − t1. Thus

J(t1, t2) = {j ∈ J | t1 ≤ rj, dj ≤ t2}

It suffices to enumerate, for each segment, distinct intervals of the form [rj, dk] for all

j, k with rj ≤ dk. So we have the relaxation

∑
`∈J(rj ,dk)

p`yi` ≤ d̃ik − r̃ij, all i ∈ I and all distinct [rj, dk]

Algorithm 2 generates a relaxation with fewer redundant constraints. Note that it

fixes yij = 0 when job j’s time window does not overlap segment i.

Algorithm 2: Generating a relaxation for the segmented feasibility problem.

Let r̄1, . . . , r̄t be the distinct elements of {r1, . . . , rn};
Let d̄1, . . . , d̄u be the distinct elements of {d1, . . . , dn};
for all i do

for all j = 1, . . . , t with ai < r̄j < ai+1 do
for all k = 1, . . . , u with d̄k < ai+1 do

Generate the inequality
∑

`∈J(r̄j ,d̄k) p`yi` ≤ d̄k − r̄j
Generate the inequality

∑
`∈J(r̄j ,∞) p`yi` ≤ ai+1 − r̄j ;

for all k = 1, . . . , u with ai < d̄k < ai+1 do
Generate the inequality

∑
`∈J(0,d̄k) p`yi` ≤ d̄k − ai

Generate the inequality
∑

` p`yi` ≤ ai+1 − ai;
Set yi` = 0 for all ` ∈ J(0, ai);

Set yi` = 0 for all ` ∈ J(ai+1,∞);

2.6 Unsegmented Feasibility Problem

We now suppose that the jobs are not required to fit inside segments of the time

horizon. We create segments [ai, ai+1] solely for purposes of decomposition, which

means that a job can overlap two or more segments. This leads to several cases that

complicate the master problem and the Benders cuts.
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Table 2.2: Additional nomenclature for the unsegmented problem.

Sets
Ji0 set of jobs that are fully processed in segment i

Parameters
x̄ij solution value of xij in the master problem
ȳij solution value of yij in the master problem
ȳijk solution value of yijk in the master problem, for k ∈ {0, 1, 2, 3}
āi updated start time of the segment i

Variables
xij amount of time job j is processed during segment i
yij = 1 if at least a portion of job j is processed in segment i
yij0 = 1 if all of job j is processed in segment i
yij1 = 1 if a portion of job j is processed at the start of segment i
yij2 = 1 if a portion of job j is processed at the end of segment i
yij3 = 1 if a portion of job j is processed throughout segment i
αi = 1 if xij ≤ x̄ij and segment i begins while job j is in process
βi = 1 if xij ≤ x̄ij and segment i ends while job j is in process
γi = 1 if xij1 + xij2 ≤ x∗i and segment i begins while job j1 is

in process and ends while job j2 is in process

2.6.1 Master Problem

Let continuous variable xij indicate the amount of time that job j processes during

segment i. Then ∑
i∈I

xij = pj, j ∈ J

xij ≥ 0, i ∈ I, j ∈ J
(2.12)

The assignment of jobs (or portions of jobs) to segments is governed by several binary

variables as introduced in Table 2.2.
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We have the constraints∑
i∈I

yij ≥ 1, j ∈ J (a)

yij = yij0 + yij1 + yij2 + yij3, i ∈ I, j ∈ J (b)∑
j∈J

yij1 ≤ 1,
∑
j∈J

yij2 ≤ 1,
∑
j∈J

yij3 ≤ 1, i ∈ I (c)

yij1 ≤ yi−1,j,2 + yi−1,j,3, i ∈ I, i > 1, j ∈ J (d)

yij2 ≤ yi+1,j,1 + yi+1,j,3, i ∈ I, i < n, j ∈ J (e)

yij3 ≤ yi−1,j,3 + yi−1,j,2, i ∈ I, i > 1, j ∈ J (f)

yij3 ≤ yi+1,j,3 + yi+1,j,1, i ∈ I, i < n, j ∈ J (g)∑
i∈I

yij0 ≤ 1,
∑
i∈I

yij1 ≤ 1,
∑
i∈I

yij2 ≤ 1, j ∈ J (h)

y1j1 = y1j3 = ynj2 = ynj3 = 0, j ∈ J (i)∑
i∈I

yij3 ≤
⌊

pj
ai+1 − ai

⌋
, j ∈ J (j)

yij, yij0, yij1, yij2, yij3 ∈ {0, 1}, i ∈ I, j ∈ J (k)

(2.13)

Constraint (a) ensures that every job is assigned to at least one segment. Constraints

(b) define yij. Constraints (c) ensure that at most one partial job is processed first,

last, or throughout a segment. Constraints (d)–(g) require contiguity for the portions

of a job. Constraints (h) say that a job can start, finish, or execute completely in

at most one segment. Constraints (i) give boundary conditions. Constraints (j) are

redundant but tighten the continuous relaxation of the MILP formulation.

To connect xij with the binary variables, note that we have the following disjunc-

tion for each i, j:(
yij = 0
xij = 0

)
∨
(
yij0 = 1
xij = pj

)
∨
(
yij1 = 1
xij ≤ pj

)
∨
(
yij2 = 1
xij ≤ pj

)
∨
(

yij3 = 1
xij = ai+1 − ai

)
Using the standard convex hull formulation of a disjunction of linear systems (Jeroslow,

1987), this becomes:

xij1 ≤ pjyij1, xij2 ≤ pjyij2

xij = pjyij0 + xij1 + xij2 + (ai+1 − ai)yij3
xij1, xij2 ≥ 0

(2.14)
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The master problem consists of (2.12)–(2.13), (2.14) for all i ∈ I and j ∈ J , Benders

cuts, and a relaxation. The Benders cuts are described in the next section.

To formulate the subproblem, suppose that the solution of the current master

problem is ȳij, ȳij0, ȳij1, ȳij2, x̄ij for all i, j. Define

Ji = {j | ȳij = 1}
Ji0 = {j | ȳij0 = 1}

The subproblem must take into account whether the master problem assigned certain

jobs to begin or end a segment. A general formulation of the subproblem on segment

i is

rj ≤ sj ≤ dj − pj
āi ≤ sj ≤ āi+1 − pj

}
, j ∈ Ji0

noOverlap(s(i, ȳ0), p(i, ȳ0))

(2.15)

where

āi =

{
ai + x̄ij1 , if ȳij11 = 1 for some j1 ∈ J
ai, otherwise

āi+1 =

{
ai+1 − x̄ij2 , if ȳij22 = 1 for some j2 ∈ J
ai+1, otherwise

Also s(i, ȳ0) is the tuple of variables sj for j ∈ Ji0, and similarly for p(i, ȳ0). Note

that if a portion of some job j3 spans the entire segment (ȳij33 = 1), the constraint

set is empty.

The relaxation is similar to that for the segmented problem but must account for

jobs that run in two or more segments. The relaxation is generated by Algorithm 3.

2.6.2 Benders Cuts

The Benders cuts generated for an infeasible segment i depend on whether there are

partial jobs assigned to the beginning or end of the segment.
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Algorithm 3: Generating a relaxation for the unsegmented feasibility problem.

Let r̄1, . . . , r̄t be the distinct elements of {r1, . . . , rn};
Let d̄1, . . . , d̄u be the distinct elements of {d1, . . . , dn};
for all i do

for all j = 1, . . . , t with ai < r̄j < ai+1 do
for all k = 1, . . . , u with d̄k < ai+1 do

Generate the inequality
∑

`∈J(r̄j ,d̄k) p`yi`0 ≤ d̄k − r̄j
Generate the inequality

∑
`∈J(r̄j ,∞) xi` ≤ ai+1 − r̄j ;

for all k = 1, . . . , u with ai < d̄k < ai+1 do
Generate the inequality

∑
`∈J(0,d̄k) xi` ≤ d̄k − ai

Generate the inequality
∑

` xi` ≤ ai+1 − ai;
Set yi` = 0 for all ` ∈ J(0, ai);

Set yi` = 0 for all ` ∈ J(ai+1,∞);

• Case 1. There are no partial jobs in segment i. Then we can use the simple

nogood cut ∑
j∈Ji0

(1− yij0) ≥ 1 (2.16)

This can be strengthened as in the segmented problem by removing some jobs

that are not necessary for infeasibility (Algorithm 1 with Ji0 replacing Ji).

• Case 2. There is a partial job only at the start of the segment (say, job j1).

We solve a modified subproblem by maximizing xij1 rather than checking for

feasibility with xij1 = x̄ij1 . That is, we maximize xij1 subject to (2.15) with

āi = ai and āi+1 = ai+1.

– Case 2a. The modified subproblem is infeasible. Because feasibility is

not restored by reducing xij1 to zero, we again use the cut (2.16) and

strengthen it by removing some jobs that are not necessary for feasibility.

Suppose now that the modified subproblem is feasible, and let x∗ij1 be the max-

imum value of xij1 . We know x∗ij1 < x̄ij1 , because otherwise segment i would be

feasible.
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– Case 2b. x∗ij1 = 0. Here, job j1 must be removed as the first job if the

other jobs in the segment are completely processed. We have the Benders

cut

(1− yij11) +
∑
j∈Ji0

(1− yij0) ≥ 1

– Case 2c. x∗ij1 > 0. Now the Benders cut can say that either xij1 ≤ x̄ij1 or

one of the other jobs must be dropped. We introduce 0-1 variable αi that

is 1 when xij1 ≤ x̄ij1 . Then we have the cut

αi +
∑
j∈Ji0

(1− yij0) ≥ 1

xij1 ≤ x̄ij1 + pj1(1− αi)
αi ∈ {0, 1}

(2.17)

The cut can be strengthened by removing jobs in Ji0 until x∗ij1 ≥ x̄ij1

(Algorithm 4).

Algorithm 4: Strengthening nogood cuts for the unsegmented feasibility prob-
lem.

Let J̄i0 = Ji0 = {j2, . . . , jk};
for ` = 2, . . . , k do

Let x∗ij1 be the maximum of xij1 subject to (2.15) with āi = ai and

Ji0 = J̄i0 \ {j`}
if x∗ij1 < x̄ij1 then

Remove j` from J̄i0

• Case 3. There is a partial job only at the end of the segment (say, job j2). The

cuts are similar to Case 2. The modified subproblem finds the maximum value

x∗ij2 of xij2 subject to (2.15) with āi = ai and āi+1 = ai+1.

– Case 3a. The modified subproblem is infeasible. We use cut (2.16) and

strengthen it as before.
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– Case 3b. x∗ij2 = 0. We have the Benders cut

(1− yij22) +
∑
j∈Ji0

(1− yij0) ≥ 1

– Case 3c. x∗ij2 > 0. We have the cut

βi +
∑
j∈Ji0

(1− yij0) ≥ 1

xij2 ≤ x̄ij2 + pj2(1− βi)
βi ∈ {0, 1}

(2.18)

The cut can be strengthened by removing jobs in Ji0 until x∗ij2 ≥ x̄ij2 .

• Case 4. There are two partial jobs in the segment, namely j1 at the start and

j2 at the end. We solve a modified subproblem by finding the maximum value

x∗i of xij1 + xij2 subject to (2.15) with āi = ai and āi+1 = ai+1.

– Case 4a. The modified subproblem is infeasible. We use cut (2.16) and

strengthen it as before.

– Case 4b. The modified subproblem is feasible but x∗i = 0. Then j1 and j2

must be removed as the first and last jobs if the other jobs are completely

processed, and we have the Benders cuts

(1− yij11) +
∑
j∈Ji0

(1− yij0) ≥ 1

(1− yij22) +
∑
j∈Ji0

(1− yij0) ≥ 1

– Case 4c. The modified subproblem is feasible and 0 < x∗i < x̄ij1 + x̄ij2 . In

this case the Benders cuts says that either (a) xij1 +xij2 ≤ x∗i , or (b) j1 or

j2 must be removed as the first or last job if the other jobs are completely
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processed:

γi + (1− yij11) + (1− yij22) +
∑
j∈Ji0

(1− yij0) ≥ 1

xij1 + xij2 ≤ x∗i + (pj1 + pj2)(1− γi)
γi ∈ {0, 1}

This cut can be strengthened by removing jobs from Ji0 until x∗i ≥ x̄ij1 +

x̄ij2 .

– Case 4d. The modified subproblem is feasible and x∗i ≥ x̄ij1 + x̄ij2 . Then

if x∗ij1 , x
∗
ij2

are defined as before, we must have either x∗ij1 < x̄ij1 as in Case

2, or x∗ij2 < x̄ij2 as in Case 3. This is because the feasible set for (xij1 , xij2)

is a box with the upper right corner possibly cut off with a 45o line. If

x∗ij1 < x̄ij1 , we add cut (2.17) as in Case 2c. If x∗ij2 < x̄ij2 , we add cut

(2.18) as in Case 3c. Either cut can be strengthened as before.

2.7 Segmented Makespan Problem

We now address the problem of minimizing makespan when jobs must complete

processing within a time segment. The subproblem is itself a minimization problem

and therefore generates two types of Benders cuts: strengthened nogood cuts similar

to those developed above, and cuts that bound the makespan. The bounding cuts

can themselves be based on a nogood principle or a deeper analysis of the inference

dual (analytic Benders cuts).

2.7.1 Master Problem

The master problem for segmented makespan problem is
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min M∑
i

yij = 1, j ∈ J

Benders cuts

Relaxation

yij ∈ {0, 1}, all i, j

Given a solution ȳij of the master problem, the subproblem decomposes into a

minimum makespan problem for each segment i. It minimizes Mi subject to (2.5.1)

and

Mi ≥ sj + pj, all j ∈ J with ȳij = 1

Thus the makespan on a segment is understood to be the completion time of the

last job on the segment, not the completion time minus ai. If M∗
i is the minimum

makespan on segment i, the optimal value of the original problem is maxi∈IM
∗
i . Note

that if no jobs are assigned to segment i, the constraint set is empty, and M∗
i = −∞.

Obviously, the latest segment that contains one or more jobs controls the overall

makespan.

The relaxation described for the feasibility problem is also valid for the makespan

problem. In addition, we can give the following bound on the makespan for each

distinct rj:

M ≥ r̃ij +
∑

`∈J(rj ,∞)

xi`, i ∈ I, j ∈ J

Algorithm 5 generates a relaxation with fewer redundant constraints.

2.7.2 Strengthened Nogood Cuts

If the scheduling problem on segment i is infeasible, we use the same strengthened

nogood cuts as in the segmented feasibility problem. If segment i has a feasible
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Algorithm 5: Generating a relaxation for the makespan problem.

Let r̄1, . . . , r̄t be the distinct elements of {r1, . . . , rn};
for all i do

for all j = 1, . . . , t with ai < r̄j do
Generate the inequality M ≥ r̄j +

∑
`∈J(r̄j ,∞) xi`

Generate the inequality M ≥ wi +
∑

`∈J xi`;

for j = 1, . . . , n do
Generate the inequality wi ≥ aiyij

schedule with minimum makespan M∗
i , the simplest nogood cut is

M ≥M∗
i

(
1−

∑
j∈Ji

(1− yij)

)

This says that the makespan for subproblem i cannot be less than M∗
i unless at least

one job is removed from Ji. The cut can be strengthened to

M ≥M∗
i

1−
∑
j∈J̄i

(1− yij)

 (2.19)

where J̄i ⊂ Ji is a smaller set of jobs that results in the same minimum makespan

M∗
i . A simple heuristic for computing J̄i appears as Algorithm 6. The jobs can be

removed in order of increasing r̃ij + pj, and we therefore index the jobs in Ji so that

r̃i1 + p1 ≤ · · · ≤ r̃ik + pk

Algorithm 6: Strengthening nogood cuts for the makespan problem.

Let J̄i = Ji = {j1, . . . , jk};
for ` = 1, . . . , k do

if the minimum makespan is M∗i when jobs in J̄i \ {j`} are assigned to segment i

then
Remove j` from J̄i

Another way to obtain additional cuts is to use a two-tiered bound. Let Mi(J)

be the minimum makespan that results when jobs in J are assigned to segment i, so
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that in particular Mi(Ji) = M∗
i . Let Zi be the set of jobs that can be removed, one

at a time, without affecting makespan, so that

Zi = {j ∈ Ji |Mi(Ji \ {j}) = M∗
i }

Then for each i we have the cut

M ≥Mi(Ji \ Zi)

1−
∑

j∈Ji\Zi

(1− yij)


in addition to (2.19). This cut is redundant and should be deleted when Mi(Ji\Zi) =

M∗
i .

2.7.3 Analytic Benders Cuts

The reasoning we use to obtain analytic Benders cuts is similar to that used in

(Hooker, 2007a). Let Pi be the minimum makespan problem on segment i, with

minimum makespan M∗
i . Let J ′i = {j ∈ Ji | rj ≤ ai} be the set of jobs in Ji with

release times before segment i, and let J ′′i = Ji \ J ′i . Suppose we remove the jobs in

S ⊂ J ′i from segment i and let M̂i be the minimum makespan of the problem P̂i that

remains. We first show that

M∗
i − M̂i ≤ pS + max

j∈J ′i
{d̃ij} −min

j∈J ′i
{d̃ij} (2.20)

where pS =
∑

j∈S pj.

Consider any optimal solution of P̂i and extend it to a solution s of Pi by schedul-

ing the tasks in S sequentially after M̂i. Because S ⊂ J ′i , these jobs start after their

release time. The makespan of s is M̂i + pS. If M̂i + pS ≤ minj∈J ′i{d̃ij}, then s is

clearly feasible for Pi, which means M∗
i ≤ M̂i + pS and (2.20) follows. On the other

hand, if M̂i + pS > minj∈J ′i{d̃ij}, we have

M̂i + pS + max
j∈J ′i
{dj} −min

j∈J ′i
{dj} > max

j∈J ′i
{dj} (2.21)
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Because M∗
i ≤ maxj∈J ′i{dj}, (2.21) implies (2.20).

Thus if the jobs in S ⊂ J ′i are removed from segment i, we have from (2.20) a

lower bound on the resulting optimal makespan M̂i. If one or more jobs in J ′′i are

removed, this bound is no longer valid. We have the following Benders cut

M ≥M∗
i −

∑
j∈J ′i

pj(1− yij) + max
j∈J ′i
{dj} −min

j∈J ′i
{dj}

−M∗
i

∑
j∈J ′′i

(1− yij) (2.22)

when one or more jobs are removed from segment i, and M ≥M∗
i otherwise, provided

yij = 1 for at least one j ∈ Ji. The second summation in (2.22) takes care of the case

where one or more jobs in J ′′i are removed. If yij = 0 for all j ∈ Ji, the cut is simply

M ≥ 0.

We can linearize this cut by writing the following for each i:

M ≥M∗
i −

∑
j∈J ′i

pj(1− yij)− wi −M∗
i

∑
j∈J ′′i

(1− yij)−M∗
i qi

qi ≤ 1− yij, j ∈ Ji

wi ≤
(

max
j∈J ′i
{dj} −min

j∈J ′i
{dj}

)∑
j∈J ′i

(1− yij)

wi ≤ max
j∈J ′i
{dj} −min

j∈J ′i
{dj}

where binary variable qi = 1 when yij = 0 for all j ∈ Ji. The cut can be strengthened

by replacing Ji, J
′
i and J ′′i with J̄i, J̄

′
i , and J̄ ′′i , where J̄i is computed as in Algorithm 6,

J̄ ′i = {j ∈ J̄i | rj ≤ ai}, and J̄ ′′i = J̄i \ J̄i.

2.8 Unsegmented Makespan Problem

The master problem for the unsegmented makespan problem minimizes makespan M

subject to (2.12)–(2.14), Benders cuts, and a relaxation. The subproblem on each
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segment i minimizes makespan Mi subject to (2.15) and

Mi ≥ sj + pj, all j ∈ J with ȳij0 = 1

Mi ≥ ai + x̄ij, all j ∈ J with ȳij1 = 1

Mi ≥ ai+1, if ȳij2 = 1 or ȳij3 = 1 for some j ∈ J

The relaxation is the same as for the segmented makespan problem.

2.8.1 Strengthened Nogood Cuts

If the scheduling problem on segment i is infeasible, we generate the same strength-

ened nogood cuts as in the unsegmented feasibility problem. Suppose, then, that

segment i has a feasible schedule with minimum makespan M∗
i . As before, we let

Ji = {j | ȳij = 1} and Ji0 = {j | ȳij0 = 1}.

• Case 1. There are no partial jobs in segment i. Then we have the nogood cut

M ≥M∗
i

(
1−

∑
j∈Ji

(1− yij0)

)

This cut can be strengthened as in the segmented problem. We also have the

cut

M ≥Mi(Ji \ Zi)

1−
∑

j∈Ji\Zi

(1− yij0)


where Zi is computed as before.

• Case 2. A partial job j2 is assigned to the end of the segment. In this case the

minimum makespan on the segment is M∗
i = ai+1 unless j2 is removed from the

end. The Benders cut is simply

M ≥M∗
i yij22 (2.23)
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• Case 3. There is no partial job at the end of the segment but a partial job j1

at the start. The nogood cut is

M ≥M∗
i

(
1− (1− yij11)−

∑
j∈Ji0

(1− yij0)

)

which can be strengthened by heuristically removing jobs from Ji0.

2.8.2 Analytic Benders Cuts

To analyze the subproblem more deeply we partition Ji0 as follows:

J ′i0 = {j ∈ Ji0 | rj ≤ ai}
J ′′i0 = {j ∈ Ji0 | rj > ai}

We consider the same three cases as above.

• Case 1. There are no partial jobs in segment i. The nogood cut is very similar

to that obtained for the segmented case:

M ≥M∗
i −

∑
j∈J ′i0

pj(1− yij0)− wi −M∗
i

∑
j∈J ′′i0

(1− yij0)−M∗
i qi

qi ≤ 1− yij0, j ∈ Ji0

wi ≤
(

max
j∈J ′i0
{dj} − min

j∈J ′i0
{dj}

)∑
j∈J ′i0

(1− yij0)

wi ≤ max
j∈J ′i0
{dj} − min

j∈J ′i0
{dj}

The cut can be strengthened as before.

• Case 2. This yields only the nogood cut (2.23).

• Case 3. There is no partial job at the end of the segment but there is a partial

job j1 at the start of the segment. We will investigate the effect on makespan

of reducing job j1’s processing time in segment i below its current assignment
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x̄ij1 . Let δ = x̄ij1 − xij1 be the amount of the reduction. The Benders cuts

generated depend on whether one or more jobs start at their release times in

the minimum makespan schedule.

– Case 3a. Some job j ∈ Ji starts at its release time in the optimal solution

s∗ of the subproblem on segment i. That is, s∗j = rj for some j ∈ Ji0. Let

k be the first such job. We may assume that j1 and all jobs between j1

and k are scheduled contiguously in s∗ (i.e., there is no idle time between

them). Now suppose the jobs between j1 and k are scheduled δ earlier,

and δ is increased to the value δ∗ at which one of these jobs hits its release

time. Thus

δ∗ = min
j∈Ji0

{
s∗j − r̃ij

∣∣ s∗j < sk
}

This increases by δ∗ the gap ∆i between the job k′ immediately before k

and job k, where ∆i = rk − s∗k′ − pk′ . Suppose further that for a given

δ ≤ δ∗, no job after k is short enough to be moved into the gap ∆i+δ while

observing its release time. Then we know that the minimum makespan

remains at M∗
i when job j1’s processing time is reduced by δ, assuming no

jobs are removed from segment i.

To write the corresponding Benders cut, let pmin be the processing time of

the shortest job that can be moved into the gap ∆i + δ∗. Thus

pmin = min
j∈Ji0

{
pj
∣∣ s∗j > s∗k, r̃ij + pj ≤ rk, pj ≤ ∆i + δ∗

}
Then the minimum makespan remains M∗

i if pmin > ∆i+δ (again assuming

no jobs are removed from segment i). We introduce a binary variable ηi

that is 0 when this inequality is satisfied. This yields the Benders cut
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M ≥Mi
∗(1− ηi)−Mi

∗
∑
j∈Ji

(1− yij)

x̄ij1 − xij1 + ∆i ≤ pmin + (x̄ij1 + ∆i − pmin)ηi − ε
x̄ij1 − xij1 + ∆i ≥ pmin − (pj1 − x̄ij1 + pmin −∆i)(1− ηi)

where ε > 0 is a small number. When ηi = 1, this cut is of no value, but

a simpler cut becomes useful:

M ≥

(
ai +

∑
j∈Ji0

pj

)
ηi + xij1 −Mi

∗
∑
j∈Ji

(1− yij)

It says that the jobs after j1 can at best be scheduled contiguously.

– Case 3b. No job starts at its release time in the optimal solution of the

subproblem. That is, s∗j > rj for all j ∈ Ji0. Thus all jobs are scheduled

contiguously. As δ = x̄ij1 − xij1 increases, minimum makespan decreases

by an equal amount, at least until a job in Ji0 hits its release time. At

this point we can increase δ by another ε and check whether minimum

makespan continues to decrease by ε. If so, we can further increase δ

until another job hits its release time, and so forth until makespan stops

decreasing at the margin, at which point we revert to Case 3a. We now

write a Benders cut that allows makespan to decrease at the same rate δ

increases up to δ ≤ δk∗ .

To make this more precise, let s∗(δ) be the minimum makespan solution

on segment i when xij1 is fixed to x̄ij1 − δ rather than x̄ij1 , and let M∗
i (δ)

be the corresponding minimum makespan. Let δ0 be the value of δ at

which the first job hits its release time, so that

δ0 = min
j∈Ji0
{s∗(0)− r̃ij}
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Now define

δk = δk−1 + min
i∈Ji0
{s∗(δk−1)− r̃ij}

and let k∗ be the smallest k for which M∗
i (δk + ε) = M∗

i (δ). Then we

generate the Benders cut

x̄ij1 − xij1 ≤ δk∗ + (x̄ij1 − δk∗)λi
M ≥Mi

∗(1− λi)− (x̄ij1 − xij1)−Mi
∗
∑
j∈Ji

(1− yij)

where λi ∈ {0, 1}. This cut is useless when λi = 1, but the following cut

is helpful in this case:

M ≥ aiλi + xij1 +
∑
j∈Ji0

pjλi −Mi
∗
∑
j∈Ji

(1− yij)

After generating these cuts, we move to Case 3a.

2.9 Segmented Tardiness Problem

The objective in the tardiness problem is to minimize total tardiness. We study the

segmented version of the problem. Analysis of the unsegmented tardiness problem is

more complex and is left to future research.

2.9.1 Master Problem

The master problem for the segmented tardiness problem is

min
∑
i∈I

Ti

Ti ≥ 0, i ∈ I∑
i

yij = 1, j ∈ J

Benders cuts

Relaxation

yij ∈ {0, 1}, all i, j

36



Given a solution ȳij of the master problem, the subproblem for each segment i is:

min
∑
j∈Ji

max{sj + pj − dj, 0}

rj ≤ sj

ai ≤ sj ≤ ai+1 − pj

}
j ∈ Ji

noOverlap(s(i, ȳ), p(i, ȳ))

(2.24)

The relaxation for the feasibility problem must be modified to make it valid for

the tardiness problem, because deadlines are now due dates. The only hard deadlines

are the upper bounds ai+1 of the segments. We have the relaxation∑
`∈J(rj ,∞)

p`yi` ≤ ai+1 − r̃ij, i ∈ I, j ∈ J

Algorithm 7 generates a relaxation with fewer redundant constraints.

Algorithm 7: Generating a relaxation for the tardiness problem.

Let r̄1, . . . , r̄t be the distinct elements of {r1, . . . , rn};
for all i do

for all j = 1, . . . , t with ai < r̄j do
Generate the inequality

∑
`∈J(r̄j ,∞) p`yi` ≤ ai+1 − r̄j

Generate the inequality
∑

` p`yi` ≤ ai+1 − ai

We also use a bound on tardiness that is developed in (Hooker, 2007a).

T ≥
∑
i∈I

T i

T i ≥
∑
j∈J

T ′ij, i ∈ I

T ′ij ≥ ai +

j∑
`=1

pπ(`)yij − dj − (1− yij)

ai +
∑
`∈Hij

pπ(`) − dj

 , i ∈ I, j ∈ J

T ′ij ≥ 0, all i, j

Here Hij = {1, . . . , j} \ (J(0, ai) ∪ J(ai+1,∞)) is the set of jobs with time windows

that overlap segment i. The jobs are indexed so that d1 ≤ · · · ≤ dn, and π is a

permutation of the indices for which pπ(1) ≤ · · · ≤ pπ(n).
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2.9.2 Strengthened Nogood Cuts

If the tardiness problem on segment i is infeasible, we use the same strengthened no-

good cuts as in the feasibility problem. Otherwise, let T ∗i be the minimum tardiness.

If T ∗i > 0, we use the strengthened nogood cut

Ti ≥ T ∗i

1−
∑
j∈J̄i

(1− yij)

 (2.25)

where J̄i ⊂ Ji is a smaller set of jobs that result in the same minimum tardiness

T ∗i . A simple heuristic for computing J̄i appears as Algorithm 8. The jobs can be

removed in order of decreasing tightness εij, but note that εij can be negative.

Algorithm 8: Strengthening nogood cuts for the tardiness problem.

Let J̄i = Ji = {j1, . . . , jk};
for ` = 1, . . . , k do

if the minimum tardiness is T ∗i when jobs in J̄i \ {j`} are assigned to segment i

then
Remove j` from J̄i

Another way to strengthen the cuts is to use a two-tiered bound similar to the

makespan case. Let Ti(J) be the minimum makespan that results when jobs in J are

assigned to segment i. If we define

Zi = {j ∈ Ji | Ti(Ji \ {j}) = T ∗i }

then we have the cut

Ti ≥ Ti(Ji \ Zi)

1−
∑

j∈Ji\Zi

(1− yij)


in addition to (2.25). This cut is redundant and should be deleted when Ti(Ji \Zi) =

T ∗i .
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2.9.3 Analytic Benders Cuts

Let Pi be the subproblem on a segment i with a feasible schedule, and let T ∗i be

the minimum tardiness of Pi. When T ∗i > 0, we generate an analytic Benders cut

as follows. Let P̂i be the minimum tardiness problem that results when the jobs in

S ⊂ Ji are removed from Pi. Let T̂i be the minimum tardiness of P̂i, and F̂i a solution

of P̂i that achieves tardiness T̂i. Let

rmax
i = max {max{rj | j ∈ Ji}, ai}

be the last release time of the jobs in Ji, or ai, whichever is larger. Because Pi is

feasible, we know rmax
i ≤ ai+1.

Let M̂i be the makespan of an optimal solution of P̂i. We construct a solution

Fi of Pi by adding the jobs in S to F̂i. In particular, we schedule the jobs in S

contiguously after max{rmax
i , M̂}, in arbitrary order. The makespan of Fi is at most

rmax
i +

∑
`∈Ji

p`

because in the worst case, all the jobs in the optimal solution of P̂i are scheduled

after rmax
i . The tardiness incurred in Fi by each job j ∈ S is therefore at most

(
rmax
i +

∑
`∈Ji

p` − dj

)+

where (α)+ = max{α, 0}. Thus the total tardiness of Fi is at most

T̂i +
∑
j∈S

(
rmax
i +

∑
`∈Ji

p` − dj

)+

(2.26)

Fi is feasible if all the jobs finish before ai+1. So we know Fi is feasible if

rmax
i +

∑
`∈Ji

p` ≤ ai+1 (2.27)
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In this case, the tardiness (2.26) is an upper bound on T ∗i , and we have

T̂i ≥ T ∗i −
∑
j∈S

(
rmax
i +

∑
`∈Ji

p` − dj

)+

This leads to the Benders cut

T̂i ≥


T ∗i −

∑
j∈Ji

(
rmax
i +

∑
`∈Ji

p` − dj

)+

(1− yij), if (2.27) holds

T ∗i

(
1−

∑
j∈Ji

(1− yij)

)
, otherwise

2.10 Problem Generation

We generated random instances by selecting parameters uniformly from intervals as

follows:

rj ∈ [0, αR]

dj − rj ∈ [γ1αR, γ2αR]

pj ∈ [0, β(dj − rj)]

where R is the length of the time horizon, measured by the number of segments.

Thus γ1 and γ2 control the width of the time windows, and β controls the processing

time relative to the window width.

We set parameters as indicated in Table 2.3. We distinguished tight from wide

time windows for segmented problems, because wider windows could result in less

effective propagation and/or relaxations. The remaining parameters were chosen

to obtain instances that are (a) nontrivial to solve and (b) usually feasible for the

optimization problems (less often feasible for the feasibility problems). To accomplish

this, we adjusted β and γ2 empirically to sample instances near a phase transition

where average problem difficulty peaks and there is a mix of feasible and infeasible

instances. This required adjusting β to different values as the problem scaled up.
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Table 2.3: Parameters for generation of problem instances.

Segmented Problems Unsegmented
Feasibility Makespan Tardiness Feas. & Makespan

α 0.5

γ1 0.5 for tight windows 0.25
0.25 for wide windows

γ2 1.0

β Tight windows: 0.025 for ≤ 13 segs. 0.05 1/15 for 5-8 segs.
1/20 for 6–8 segs. 0.032 for > 13 segs. 1/20 for 9-12 segs.
1/24 for 10 segs. 1/30 for 12-16 segs.
1/28 for 12 segs. 1/35 for >16 segs.
1/32 for 14 segs.

Wide windows:
0.035

2.11 Computational Results

We formulated and solved the instances with IBM’s OPL Studio 6.1, which invokes

the ILOG CP Optimizer for CP models and CPLEX for MILP models. We used

OPL’s script language to implement the Benders method. We generated 10 instances

for each problem size and type, for a total of 580 instances.

Tables 2.4 and 2.5 display computational results for the segmented problems. The

advantage of logic-based Benders increases rapidly as the problem scales up, relative

to both CP and MILP. The Benders method failed to solve only 4 of 420 instances

within ten minutes, while CP failed to solve 247 and MILP failed to solve 113.

Table 2.6 displays computational results for the unsegmented problems. The

Benders method continues to have a substantial advantage over MILP, but it is

considerably slower than CP on the easier problems. However, examination of the

individual instances reveals that the Benders method is more robust. The Benders

method solved all 160 unsegmented instances, while CP failed to solve 20 instances

within ten minutes. CP was very fast for the instances it solved (average of 0.79

seconds), but Benders solved the remaining instances in an average of only 5.94
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Table 2.4: Computation times in seconds for the segmented problem with tight time
windows. The number of segments is 10% the number of jobs. Ten instances of each
size are solved.

Feasibility Makespan Tardiness
Jobs CP MILP Bndrs CP MILP Bndrs CP MILP Bndrs

60 0.1 14 1.9 60 7.7 6.4 0.1 16 3.0
80 181∗ 45 2.7 420∗ 147 11 63∗ 471∗ 20
100 199∗ 58 4.3 600∗ 600 17 547∗ 177∗ 11
120 272∗ 137 4.8 600∗ 600 39 600∗ 217∗ 2.9
140 306∗ 260∗ 6.8 600∗ 432∗† 33 600∗ 373∗ 5.0
160 314∗ 301∗ 8.0 600∗ 359∗ 14
180 600∗ 350∗† 4.8 600∗ 557∗† 5.3
200 600∗ † 5.8 600∗ 600∗† 6.6

∗Solution terminated at 600 seconds for some or all instances.
†MILP solver ran out of memory for some or all instances, which are omitted from the
average solution time.

seconds. This suggests that one ought to try CP first, and if it fails to solve the

problem in a few seconds, switch to Benders.

The volatility of CP may be due to the fact that filtering and bounds propagation

can be effective on a long time horizon when time windows interact in a certain way,

but when this does not occur, a huge search tree is generated. This phenomenon may

not affect the Benders method because the scheduling segments are small enough to

result in limited search trees even when propagation is ineffective.

We also investigated the effectiveness of analytic Benders cuts. They incur greater

overhead than nogood cuts, because each analytic cut requires multiple inequalities

in the master problem. This could offset faster convergence. To test this hypothesis,

we re-solved all the instances with nogood cuts but without analytic cuts (Table 2.7).

We found that for segmented problems, the analytic cuts make little difference on

the average when time windows are narrow. However, they bring significant and oc-

casionally dramatic reductions in computation time for wide time windows. Because

these cuts do no harm (on the average) in either case and are advantageous for wider

time windows, it is advisable to use them. As for unsegmented problems, the analytic
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Table 2.5: Average computation times in seconds for the segmented problem with
wide time windows. The number of segments is 10% the number of jobs. Ten in-
stances of each size are solved.

Feasibility Makespan Tardiness
Jobs CP MILP Bndrs CP MILP Bndrs CP MILP Bndrs

60 0.05 12 1.9 0.2 16 5.8 0.2 8.0 2.3
80 0.28 22 2.5 180∗ 59 9.0 1.5 94 3.7
100 0.14 37 3.8 360∗ 403∗ 14 79∗ 594∗ 85∗

120 0.13 61 5.0 540∗ 600∗ 25 600∗ 251∗ 183∗

140 61∗ 175 7.0 600∗ 600∗ 107 600∗ 160∗ 4.3
160 540∗ 216∗ 4.8 600∗ 562∗ 157
180 600∗ 375∗† 4.5 600∗ 535∗ 10
200 600∗ † 5.5 600∗ 560∗ 6.9

∗Solution terminated at 600 seconds for some or all instances.
†MILP solver ran out of memory for some or all instances, which are omitted from the
average solution time.

cuts are clearly beneficial and should be used.

2.12 Conclusion

We adapted logic-based Benders decomposition to a pure scheduling problem that

lacks the natural decomposability of the planning and scheduling problems to which

the method has been previously applied. The master problem assigns jobs to segments

of the time horizon rather than to machines or other resources.

We generate instances that are (a) nontrivial to solve and (b) usually feasible for

the optimization problems. We compute the computation time for these instances

with varying time horizons. If an instance has a longer time horizon than the other

instances, the number of jobs of that instance is also larger than the others. Thus,

solving an instance may become hard with longer time horizons due to the increases

in the number of jobs and the length of the time horizon.

We find that for single-facility scheduling, logic-based Benders scales up more

effectively than state-of-the-art CP and MILP solvers. This is especially true for the

segmented problem, in which jobs are not permitted to overlap segment boundaries.
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Table 2.6: Average computation times in seconds for the unsegmented problem.
The number of segments is 10% the number of jobs. Ten instances of each size are
solved,

Feasibility Makespan
Jobs CP MILP Bndrs CP MILP Bndrs

60 0.10 11 2.8 0.2 24 5.1
80 0.14 21 3.7 0.7 376∗ 8.7
100 0.25 35 7.0 1.1 600∗ 21
120 0.43 57 23 0.4 600∗ 93
140 0.72 97 65 1.2 600∗ 115
160 420∗ 188 9.0 241∗ 549∗ 67
180 123∗ 307∗ 79 61∗ 600∗ 168
200 180∗ 410∗ 29 180∗ 587∗ 21

∗Solution terminated at 600 seconds for some or all instances.

Table 2.7: Effect of analytic Benders cuts on computation time. The last three
columns show the percent of instances in which analytic cuts reduced computation
time by more than the stated amount.

Problem class % reduction % of instances with reduction
Average Maximum > 0% > 20% > 50%

Segmented makespan:
tight windows 0 45 46 14 0
wide windows 12 85 79 46 11

Segmented tardiness:
tight windows −4∗ 37 60 6 0
wide windows 7 99 62 36 8

Unsegmented:
makespan 12 64 76 59 8

∗Reflects three very negative outliers.
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The Benders method solves much larger instances of the feasibility and makespan

problems, and its speed advantage increases rapidly as the problem size increases. It

is somewhat faster on the tardiness problem.

The Benders master problem becomes more complex for the unsegmented prob-

lem, in which jobs may overlap segment boundaries. Benders decomposition continues

to dominate MILP while being much slower than CP on most of the smaller instances.

However, CP begins to lose its ability to solve instances as they scale up, whereas

Benders continues to solve them, usually in a few seconds. Benders is therefore not

necessarily the fastest method but clearly the most robust.

CP solves unsegmented instances quickly if it solves them at all. This suggests a

strategy of applying CP first, and if it fails to solve the problem with a few seconds,

switch to Benders. For segmented instances, Benders is always superior and should

be used from the start.

Possible future research includes the development of Benders cuts for the unseg-

mented tardiness problem. In addition, convergence might be accelerated with the

generation of multiple cuts, or by a “warm start” that adds a collection of Benders

cuts to the initial master problem, as in (Aggoun and Vazacopoulos, 2004; Maravelias,

2006). The length of time segments might be adjusted dynamically for better per-

formance. Finally, other forms of decomposition can be explored.
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3 STAFFING OF A SERVICE CENTER

WITH CROSS-TRAINED AGENTS,

HETEROGENEOUS CUSTOMERS, AND

QUALITY GUARANTEES

We model a service center at a large, global IT services delivery organization with

cross-trained agents and multiple request classes. Agents may be classified as either

high or low skilled and customer requests may be classified as simple or complex.

Highly skilled agents can serve both simple and complex requests while low skilled

agents can only serve simple requests. In addition, customer requests are tagged with

a priority; higher priority requests preempt lower priority requests.

We model this system as a multi-server queueing system. Exact solution of the

system is numerically intractable. We therefore apply approximation and bounding

techniques to evaluate different control policies. Our goals are twofold: (i) to create a

new method to determine an appropriate static agent base, and (ii) to determine an

effective request-assignment policy. We introduce and analyze different approxima-

tions, capturing the operations of the service center with increasing fidelity. Our work

demonstrates that a simple but effective request-assignment policy can meet the ser-

vice level goals for different prioritized requests utilizing an appropriately determined

static agent base.

3.1 Introduction

Customer service centers play a vital role in today’s business world, offering remote

or on site service to customers. These centers are expected to achieve low operating

This chapter is joint work with Aliza R. Heching, and Alan Scheller-Wolf.
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costs while maintaining high service quality. These conflicting objectives make the

management of service centers very challenging.

We are motivated by a service center at a large, global, IT services delivery

organization; we describe a multi-server queueing model that captures this service

center’s operations. Service center agents are differentiated according to their level of

expertise (high skilled and low skilled denoted by H and L, respectively). Customer

requests belong to different priority classes ({1, ...,m}, where 1 denotes the highest

priority class) and are of varying complexity (high or low denoted by H and L,

respectively). Thus, each customer request is tagged with two labels: the priority

class to which it belongs, {1, ...,m}, and the complexity level of the request, H or L.

H customer requests can only be served by high skilled agents, whereas L customer

requests can be served by either low skilled agents or high skilled agents.

The task of the service center manager is to determine an effective request-

assignment policy given a fixed static high and low skilled agent base, so as to most

efficiently meet service level goals for the different customer classes. For example,

finishing at least a high percentage of customer requests on time is an important

goal to achieve for a service center. The aim of this paper is to create an algorithm

to analyze this multi-server queueing system under a preemptive-resume assump-

tion and to determine an appropriate static agent base and a simple but effective

request-assignment policy. We also evaluate the benefit of this policy relative to

other benchmark policies.

The remainder of the chapter is organized as follows. In Section 3.2 we survey

recent work on service center operations. Our queueing models capturing the service

centers’ operations, and solution strategies for these queueing models are introduced

in Section 3.3. Computational results and insights are explored in Section 3.4. Ex-

tensions, future work, and concluding comments are provided in Section 3.5.

47



3.2 Literature Survey

Since the 1970s, service centers have been a fertile area for research with the aim of

understanding their performance characteristics and managing their operations (Se-

gal, 1974; Baskett et al., 1975; Henderson and Berry, 1976; Reiser and Lavenberg,

1980; Whitt, 1999; Garnett et al., 2002; Brown et al., 2005; Pot et al., 2008). Oper-

ational complexity increases in service centers that serve different types of requests

requiring different agent skills. Here, it is important to consider multi-skilled agents

as mentioned by Aksin et al. (2007), rather than a single pool of homogeneous agents.

Stochastic service systems with multi-skilled agents were first described by Schwartz

(1974). In this setting, the agent skill mix becomes another decision variable in the

capacity planning problem, i.e., the problem of determining the number of agents

required to satisfy the service goals associated with customer requests.

In general, to solve capacity planning problems with a fixed agent base, the perfor-

mance of the system must first be calculated. Fundamental outputs, such as response

times and the long-run fraction of time that agents are busy, are used to illustrate the

performance of the service center (Gans et al., 2003). The two most common alter-

natives for evaluating service center performance are simulation models and analytic

queueing models (Aksin et al., 2007).

Agnihothri et al. (2003) used simulation to quantify the impacts of several features

of a service center, such as server utilization or the coefficient of variation of the service

time, on the characteristics of the optimal multi-skilled workforce at a center with

two types of jobs. Wallace and Whitt (2005) used simulation to propose a staffing

algorithm for a fixed number of multi-skilled agents with a fixed number of extra

waiting spaces and different call types. Cezik and L’Ecuyer (2008) used simulation

to model a contact center with multi-skilled agents and abandonment.

With respect to the use of analytic queueing models to analyze multi-skilled ser-
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vice center performance, different methods have been used, depending on the arrival

rate and the number of agents. Within the Halfin-Whitt heavy traffic regime, Harri-

son and López (1999) and Harrison and Zeevi (2004) studied dynamic scheduling of

a multi-class queue with abandonment. Whitt (2002) considered an M/M/s queue

with a single customer class and customer abandonment, deriving the sensitivity of

performance to changes in model parameters. Garnett et al. (2002) proposed rules

of thumb for the design of a large call center with impatient customers. Armony

(2005) analyzed a large scale system with multiple server pools and a single customer

class. The authors proposed an asymptotically optimal routing policy. In addition,

they show that a heterogeneous server system outperformed its homogeneous server

counterpart.

In cases where the system is not in a heavy traffic regime, the system performance

has been analyzed by formulating the system as a Markov chain and applying the

Matrix Analytic Method. Green (1985) formulated a service center model with multi-

skilled agents, and showed that the underlying Markov chain has a matrix analytic

form. Combined with the solution method developed by Neuts (1981), the steady-

state distribution of the queueing system is calculated. A matrix analytic solution

was also applied by Stanford and Grassmann (1993) to analyze a similar model with

both specialized and flexible workers. However, the state space of the queueing

model gets extremely large with multi-skilled agents. In this case the application

of the Matrix Analytic Method (Neuts, 1981) is theoretically possible, but typically

practically infeasible. Thus, approximation methods such as state space truncation

and busy period approximation have been developed to tackle this problem.

Kao and Narayanan (1990, 1991) approximated their two priority class queueing

system by truncating the Markov chain, separately limiting the number of jobs from

each priority class. Using busy period approximations (Harchol-Balter et al., 2003b,

2005; Osogami et al., 2005a,b), intervals of time during which the agent is busy
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without interruption (so-called “busy periods”) can be represented within a Markov

chain framework using a phase-type distribution, by deriving moment approximations

for the length of these busy periods. This approximation can reduce the size of the

chain significantly, enabling the application of standard Matrix Analytic Methods.

Harchol-Balter et al. (2005) found that matching three moments of these busy periods

is usually possible using a phase-type distribution and provides sufficient accuracy -

within a couple percent of simulation - for all of their experiments.

Busy periods approximation can also be used to evaluate the performance of

a “Beneficiary-Donor” model (Harchol-Balter et al., 2003b; Osogami et al., 2005a;

Enders et al., 2009) where one server (the donor) can help the other server (the

beneficiary) with his jobs. This model is common in service facilities such as call

centers and repair facilities. For example, in a repair facility, a technician who can

handle jobs of any difficulty may be a donor server, and a technician who can only

handle jobs that require limited expertise may be a beneficiary server (Green, 1985).

Another example is call centers: a bilingual operator may be a donor server and a

monolingual operator may be a beneficiary server (Stanford and Grassmann, 1993,

2000; Shumsky, 2004), or the donor server may be a cross-trained operator who can

handle all types of calls, whereas a beneficiary server may be a specialized operator

who can handle only a specific type of call (Shumsky, 2004). Often the beneficiary

is considered to be stealing idle cycles from the donor, and the service discipline is

referred to as “cycle stealing” (Osogami et al., 2005b).

Related to the classic Beneficiary-Donor model, threshold type priority policies

in which the donor server helps the beneficiary server, conditional on the number of

requests existing in each queue, have been shown to perform well in diverse settings,

such as inventory systems facing demand from customers with different levels of

patience (Enders et al., 2009), and for task assignment and capacity setting in systems

with prioritized jobs and heterogeneous servers (Harchol-Balter et al., 2003a,b, 2005;
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Osogami et al., 2005b). Threshold policies prevent the build up of a long queue

of lower priority requests when there is a small number of high priority requests.

Harchol-Balter et al. (2005) analyzed M/PH/k queues with m> 2 preemptive-resume

priority classes where there is no distinction between the levels of expertise a job

will require. They introduced a new technique, Recursive Dimensionality Reduction

(RDR) by which the dimensionality of the infinite Markov chains can be iteratively

reduced by using busy period transitions. They used Matrix Analytic Methods to

find the steady-state distribution and calculated the mean response time by Little’s

Law.

We have provided only an overview of service center literature; for a detailed

review of recent literature on service centers, we refer to the works of Aksin et al.

(2007), Mandelbaum (2004) and Gans et al. (2003).

As mentioned in Section 3.1, we are inspired by a service center at a global IT

services delivery organization. We model a multi-server queueing system with cross-

trained agents, heterogeneous customers, and service quality guarantees. The aim of

this paper is to provide a method to solve queueing models so as to perform capacity

planning for this service center (i.e., to determine an appropriate static agent base

and an effective request-assignment policy). Some particulars of the operations of

the service center require us to consider models that are different than those that

appear in the existing literature: In particular, to our knowledge our paper is the

first to consider the following combination of factors within a service center model:

(i) agents are differentiated according to their level of expertise, which may limit the

specific classes of requests they can serve; (ii) requests of different complexity levels

also belong to different priority classes; higher priority class requests can preempt

lower priority class requests; (iii) cycle stealing type threshold policies are utilized;

and (iv) the system does not operate under a heavy traffic regime.
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3.3 The Models

We describe a multi-server queueing system that captures the operations at a global

IT services delivery organization. We first discuss the business setting and then

describe the model. The agents differ according to their levels of expertise: high

skilled and low skilled. In addition, customer requests belong to different priority

classes. Thus, each request is tagged with two labels: the priority class to which it

belongs, and its complexity. Customer requests that require a high level of expertise

can only be served by high skilled agents, whereas requests requiring a low level of

expertise can be served by both low skilled agents and high skilled agents.

There are two important service rules: (i) requests belonging to a higher priority

class always have service priority over requests belonging to lower priority classes;

and (ii) within a priority class, high complexity requests are given service priority,

unless the service policy specifies otherwise. For example, the service policy may

specify that within a priority level, for a sufficiently large volume of low complexity

requests, these requests receive highest service priority until their volume drops below

a prespecified level.

We model this system using a Markov chain to track the number of requests in

the system at any point in time. High and low complexity requests are denoted by

H and L, respectively. The priority classes are denoted by the set {1, 2, ...,m} where

1 represents the highest priority class. The corresponding Markov chain has 2m

dimensions - one for each (priority, complexity) pair. This large state space renders

exact analysis numerically intractable for all but the smallest number of priority and

complexity levels. We therefore apply approximation and bounding techniques to

evaluate different control policies.

To model how the global IT services delivery organization schedules requests,

we consider the class of “threshold-based priority policies.” These policies prioritize
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requests according to the number of each request type in the system, such as: for

any priority level, if the number of low complexity requests exceeds a pre-specified

threshold, the high skilled agent stops serving high complexity requests and serves

low complexity requests until the number of low complexity requests drops below

a pre-specified level. For example, consider a service center to which only 1L (i.e.,

customer requests belonging to priority class 1 with low complexity) and 1H (i.e.,

customer requests belonging to priority class 1 with high complexity) requests arrive.

Under a threshold-based priority policy 1L requests have priority over 1H requests

only when the number of 1L requests equals or exceeds t1L, the threshold at which

high skilled agents will serve requests of type 1L until there are (t1L− 1) 1L requests

in the system. (If 1H requests always have priority over 1L requests, t1L =∞.) This

threshold policy is applied within all priority classes (i.e., {1, 2, ...,m}) possibly with

different parameters tjL; the service rule that requests belonging to a higher priority

class always have priority over requests belonging to lower priority classes is always

valid.

A busy period in the Markov chain is defined as an interval of time during which an

agent is busy without interruption. We use so-called busy period approximations with

our threshold-based priority policy to reduce the size of our (numerically intractable)

Markov chain. For example, a high skilled agent stops serving 1H requests and serves

1L requests as soon as the number of 1L requests is higher than (t1L − 1); the high

skilled agent serves 1L requests without interruption until the number of 1L requests

is (t1L − 1). The period of time during which the high skilled agent serves low

complexity requests (i.e, 1L in the example) until she returns back to serving high

complexity requests (i.e., 1H in the example) is referred to as a “busy period.” We

derive three-moment approximations for the length of the busy periods we consider,

and represent them in our Markov chain by a phase-type distribution with the same

moments.
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Busy period approximations combined with threshold-based priority policies con-

vert our intractable Markov chain into a tractable one, and enable application of

standard Matrix Analytic Method techniques to the service center problem. We

solve the problem in stages. In Section 3.3.1, we first consider a system with only

two agents - one high skilled and one low skilled - and a single priority class. In Sec-

tion 3.3.2 we consider a more complex system where there are two priority classes.

In Section 3.3.3, we generalize the model, first by allowing for n > 2 agents with each

of the two skill levels, and then discussing, in addition, m > 2 priority classes.

3.3.1 System 1: 1H and 1L requests

In this section we consider a system where there is a single priority class and only two

agents: one high skilled agent and one low skilled agent. We denote the high skilled

agent by H and the low skilled agent by L. The high skilled agent serves requests

at rate µH ; the low skilled agent serves requests at rate µL. Consistent with what

is observed in our motivating industry context, the service rate depends only on the

agent type and not on the request type. In this system, only two types of requests

arrive to the service center: 1H and 1L. 1H requests can only be served by the high

skilled agent while 1L requests can be served by both the high and low skilled agents.

We use t1L to denote the threshold at which the high skilled agent gives priority to

1L requests until the number of 1L requests drops below t1L. This system is similar

to that described by Harchol-Balter et al. (2005) and Osogami et al. (2005a,b).

Figure 3.1a depicts the system. We observe two agents: one high skilled and

one low skilled. Customer requests arriving to the system join an agent queue based

upon the complexity of the requests; high complexity requests join the high skilled

agent queue while low complexity requests join the low skilled agent queue. Arcs

from the queues to the agents represent possible service paths a request may follow.

For example, the dashed arc from the low skilled agent’s queue to the high skilled

54



agent represents the situation where there are no 1H requests in the system so a 1L

request may be served by the idle high skilled agent. There are two 1L requests in

the system illustrated in Figure 3.1a: one being served by the low skilled agent and

one waiting in the low skilled agent’s queue, while, the high skilled agent serves a 1H

request.

N1L

N1H

L agent H agent

λ1L λ1H

t1L

1L

1L

1H

(a) When the number of 1L re-
quests is less than t1L

N1L

N1H

L agent H agent

λ1L λ1H

t1L

1L

1L 1H

1L

(b) When the number of 1L requests
equals t1L

Figure 3.1: Representation of the service center for System 1 when threshold for 1L
requests, t1L, is equal to 3. The high skilled agent serves the low skilled agent if the
number of 1L requests, N1L, is above (t1L− 1) or the number of 1H requests, N1H , is zero.
A dashed arc illustrates a possible service path to a high skilled agent that a 1L request
might follow when the number of 1L request is less than t1L. Solid arcs illustrate the service
paths a request can always receive, given the system state.

Under a threshold-based policy, the high skilled agent stops serving 1H requests

and starts serving 1L requests when the number of 1L requests in the system, N1L,

meets or exceeds a threshold value denoted by t1L. Figure 3.1b illustrates this phe-

nomenon. Figure 3.1b depicts one high skilled and one low skilled agent, each with

his own queue. We observe one 1H and three 1L requests in the system. Since the

number of 1L requests is equal to the threshold specified for this system, the high

skilled agent stops serving the 1H request and begins serving 1L requests. The high

skilled agent continues to serve 1L requests until the number of 1L requests in the

system drops below t1L.
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3.3.1.1 Markov Chain of Priority Class 1 Requests

We use a Markov chain to model the system in Figure 3.1. 1L and 1H requests arrive

at rates λ1L and λ1H , respectively. The Markov chain representing this system tracks

the number of 1L requests in the system, N1L, and the number of 1H requests in

the system, N1H , and thus is infinite in two dimensions. However, the threshold-

based policy allows for a simplification of the Markov chain by using busy period

approximation. The simplified Markov chain is illustrated in Figure 3.2 for the case

where t1L = 3.

The simplified Markov chain depicted in Figure 3.2 is infinite in only one dimen-

sion. The numbers of 1L and 1H in the system requests are tracked on the vertical

and horizontal axis, respectively. A state in the Markov chain is defined differently

above and below the threshold value: Until the number of 1L requests reaches t1L, a

state is a pair consisting of the number of 1L and 1H requests in the system. After

that, the pair is represented by t+1L or t+1LD
1L requests and the number of 1H requests

in the system. As depicted in Figure 3.2, we track the exact number of 1H requests

on the horizontal axis; on the vertical axis, we track the number of 1L requests up to

the threshold value, t1L. States denoted by t+1L and t+1LD
signify that there are at least

t1L 1L requests present. States at which the number of 1L requests is illustrated as

t+1LD
are “dummy states” used in the phase-type approximation during a busy period.

Note if we are in state (j1L, 01H) where j ≥ 2 , the service rate is µL + µH , i.e., the

high skilled agent serves 1L requests.

A busy period begins when the number of 1L requests equals (t1L − 1) and a 1L

request arrives. Let’s call this busy period “a type 1L” busy period. During a type

1L busy period, the high skilled agent serves 1L requests, as illustrated in Figure 3.1;

and preempts any 1H requests currently in service. The busy period ends when the

number of 1L requests drops below t1L.
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Figure 3.2: Markov chain of 1L and 1H requests. The threshold for 1L requests,
t1L, is 3. The busy period is represented by a two phase PH distribution via rates t1,
t2, and t12 (with Coxian representation).

3.3.1.2 Moments of a Type 1L Busy Period

We use a phase type distribution (specifically, a Coxian distribution) to match the

first three moments of the distribution of this busy period as in the work of Harchol-

Balter et al. (2005). Harchol-Balter et al. (2005) showed that matching the first three

moments of busy periods is sufficiently accurate.

To calculate the first three moments of a type 1L busy period, we can use the
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Markov chain in Figure 3.3, which tracks 1L requests during a type 1L busy period.

We will use a similar chain in later sections; however, when only 1L and 1H requests

are in the system, we can model the amount of time the high skilled agent serves 1L

requests during a busy period as a simple M/M/1 system. Thus (without jumping

to the Markov chain in Figure 3.3), the closed form of the first three moments and

the expected number of 1L requests during the busy period are known (Adan and

Resing, 2002). Given these moments, the parameters of in the PH distribution (i.e.,

t1, t2, and t12) are calculated via the closed form solution provided by Osogami and

Harchol-Balter (2003).

2 3 4λ1L λ1L λ1L
...

1L requests

μH+μL μH+μL μH+μL

Figure 3.3: Markov chain of 1L requests that can be used to calculate the first three
moments of a type 1L busy period that starts with an arrival of a 1L request when
there are (t1L − 1) (in this case 2) 1L requests in the system. The busy period is the
first passage time from state 3 (t1L) to state 2 (t1L − 1).

3.3.1.3 Expected Response Times of Priority Class 1 Requests

We use the Matrix Analytic Method (MAM) to analyze the stationary probabilities

of the now 1-dimensionally infinite chain. (We describe this in detail in Appendix

A.) We use E
[
NBP

1L

]
to represent the expected number of 1L requests during a type

1L busy period, πBPm to denote the stationary probability of state m in the Markov

chain represented in Figure 3.3, where m is the number of 1L requests in the system

during a busy period. The expected response time of 1H requests, E [T1H ], and 1L

requests, E [T1L], are computed as shown in Equation 3.1 by using the stationary
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probability of state (i1L, j1H), π(i1L,j1H), in Figure 3.2 calculated via MAM:

E [T1H ] =

∑
j

j(
∑
i

π(i1L,j1H))

λ1H

E
[
NBP

1L

]
=

∑
m≥t1L

(m− (t1L − 1))πBPm

1− πBP(t1L−1)

+ (t1L − 1)

E [T1L] =

∑
i≤t1L−1

i(
∑
j

πi1L,j1H ) + E
[
NBP

1L

]∑
j

(π(t+1L)1L,j1H
+ π(t+1LD

)1L,j1H
)

λ1L

(3.1)

where j ≥ 0, and i ∈
{

0, .., t1L − 1, t+1L, t
+
1LD

}
.

The Markov chain depicted in Figure 3.2, representing the case where there is

a single priority class, serves as a building block for more complex systems that we

explore next.

3.3.2 System 2: 1H, 1L, 2H and 2L requests

System 2 builds upon the basic system described in System 1 by considering a second

priority class. In System 2 we continue to model a system with two agents - one high

skilled and one low skilled (denoted by H and L, respectively).

Thus, there are four possible combinations of priority and complexity with which

a request may be tagged: 1H, 1L, 2H, and 2L. 1H and 2H requests can only be served

by the high skilled agent, while 1L and 2L requests can be served by both low skilled

and high skilled agents. There are two threshold values in this system: t1L and t2L:

t1L is the threshold value of 1L requests at which the high skilled agent begins to

serve 1L requests until the number of 1L requests drops below t1L as introduced in

Section 3.3.1; and t2L is the threshold value of 2L requests in the system at which the

high skilled agent begins to serve 2L requests until the number of 2L requests drops

below t2L. However, as described by the service rules in Section 3.3, priority class

1 requests always receive service priority over priority class 2 requests. Accordingly,

the high skilled agent will only begin to serve priority class 2 requests (high or low
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complexity) if there are no priority class 1 requests in the system that the agent can

serve.

Figure 3.4 depicts the queueing system for System 2. Figure 3.4a depicts the

system with two agents: one high skilled and one low skilled. Each agent maintains

its own queue, where high complexity requests (for both priority classes) are queued

in the high skilled agent queue and low complexity requests (for both priority classes)

are queued in the low skilled agent queue. There is one 1H and two 2H requests in

the high skilled agent’s queue, and one 1L and two 2L requests in the low skilled

agent’s queue and the high skilled agent is serving a 1H request. Figure 3.4b depicts

a different scenario where there are only priority class 2 requests in the system: there

are three 2L and two 2H requests. Since the number of 2L requests in the system

equals the threshold value t2L and there are no requests of higher priority in the

system, the high skilled agent begins to serve 2L requests - preempting 2H requests

- until the number of 2L requests drops below t2L.

N1L N1H

L agent H agent

λ1L λ1Hλ2L λ2H

N2L
N2Ht1L

t2L

1L

1L 1H

2L

2L

2H

2H

1H

(a) When the numbers of 1L and 2L
requests are below t2L and t2L, and
there are type 1 requests in the ser-
vice center

L agent H agent

λ1L λ1Hλ2L λ2H

N2L

N2H

t1L

t2L

2L 2L

2H

2H

2L

(b) When the number of 2L re-
quests equals t2L and there are not
any type 1 requests in the service
center

Figure 3.4: Representation of the service center for System 2 when thresholds for 1L
and 2L requests, t1L and t2L, are equal to 3. The high skilled agent serves 2L requests if
N2L ≥ t2L and N1L +N1H = 0; or N1H +N1L +N2H = 0.

60



3.3.2.1 Markov Chain of Priority Class 2 requests

To solve this queueing system, we again model the system as a Markov chain. 1L,

1H, 2L, and 2H requests arrive with rates λ1L, λ1H , λ2L, and λ2H , respectively. If we

model the exact system as a Markov chain, it will be infinite in four dimensions (i.e.,

the number of priority, complexity pairs). Using busy period transitions we reduce

the Markov chain to a 1D infinite chain. Figure 3.5 depicts the simplified Markov

chain.

Response times for priority class 1 requests can be calculated using the Markov

chain depicted in Figure 3.2, since under our service rule, these requests are always

served before priority class 2 requests. Thus, 2H and 2L requests do not interfere

with priority class 1 requests. The aim of this section is to calculate the response

times of 2H and 2L requests in Figure 3.5.

We track the exact number of 2H requests on the horizontal axis, and on the

vertical axis, we track the number of 2L requests up to the threshold value, t2L (i.e.,

3) in Figure 3.5. Unlike the Markov chain of System 1 (Figure 3.2), there are three

distinct state spaces illustrated in Figure 3.5: 0 Priority Class 1, 1+ Priority Class 1,

and 1+
D Priority Class 1.

The three state spaces track the number of priority class 1 requests up to 1, the

number of high skilled agents. (This will continue to hold in cases when there are

more high skilled agents.) Depending on the number of 1L or 1H request in the

system, the service rates at which priority class 2 requests can be served may change:

When the system is in a state in 0 Priority Class 1 state space, both agents can

serve existing 2H and 2L requests. The service rates of the high and the low skilled

agent are thus µH and µL, respectively. Therefore, the Markov chain of 0 Priority

Class 1 state space for 2H and 2L requests is identical the Markov chain of System

1 illustrated in Figure 3.2 except the arrival rates, which are λ2H and λ2L in Figure
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Figure 3.5: Markov chain of 1H, 1L, 2H, and 2L requests. The threshold for 2L
requests is 3. The busy periods are represented by two phase PH distributions (with
Coxian representations).

3.5. There are multiple types of busy periods in this system. We denote these busy

periods based on the request types that started the busy period. The first type we
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discuss is a priority class 1 busy period. When a priority class 1 request arrives (1L

or 1H), the system transfers into 1+ Priority Class 1 state space and a busy period

begins. Let’s call this busy period “a priority class 1” busy period.

The priority class 1 busy period corresponds to the time the high agent cannot

serve priority class 2 requests, as he is busy with priority class 1 requests, until

the system returns to the 0 Priority Class 1 state space. For example, assume the

system is in state (2 2L,1 2H) in 0 Priority Class 1 state space, then a 1L (or a

1H) request arrives. (As µH > µL typically, a 1L request gets routed to the high

skilled agent instead of the low skilled agent.) The system transitions into (2 2L,1

2H) in 1+ Priority Class 1 state space. The priority class 1 request (1L or 1H) has

higher priority than all the 2H requests, thus, the high skilled agent starts serving

the priority class 1 request. Hence, the first three moments of the hitting times

from states (11L, 01H) and (01L, 11H) to state (01L, 01H) in Figure 3.2 are needed to

approximate the priority class 1 busy period between the 1+ Priority Class 1 state

space and the 0 Priority Class 1 state space. Conditional on the state in which a

type 1 busy period starts (state (11L, 01H) or (01L 11H)), the first three moments from

each state to the state (01L, 01H) are aggregated. These three moments of the hitting

times are calculated from the Markov chain illustrated in Figure 3.2 (Osogami and

Harchol-Balter, 2003).

Depending upon the state of the system during the priority class 1 busy period,

the low skilled agent may continue serving 2L requests. For example, suppose a 1L

request arrives before the departure of the existing priority class 1 request. There are

now 2 priority class 1 requests in the system, one of which is a 1L request. The low

skilled agent begins serving the new 1L request. However, during the priority class

1 busy period, the low skilled agent may serve 2L requests, if there is only 1 priority

class 1 request or when there are only 1H requests in the system. We approximate

the amount of time that the low skilled agent is available to serve 2L requests during
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the priority class 1 busy period.

We utilize this approximation because if we wanted to track the exact service rate,

this would require transitions between busy period approximations with different

rates. For example, suppose there are more than t2L 2L requests in 1+ Priority Class

1 state space (during a priority class 1 busy period). Then, the 2L requests can be

served with service rate at most µL. However, if the priority class 1 busy period is

over, the service rate becomes µL + µH . Thus, the service rate changes conditional

on the priority class 1 busy period, which is also approximated by a two phase PH

distribution. Since transitioning between different approximations leads to significant

inaccuracies, we avoid it through the use of a single approximate service rate, µ̃L.

3.3.2.2 Approximate Service Rate µ̃L

The approximate rate, µ̃L, is calculated adjusting the low skilled agent’s service rate

µL by two key factors: the percentage of the time that the low skilled agent can

serve 2L requests during the priority class 1 busy period, and the priority queueing

effect on the low skilled agent. To calculate these two key factors, the stationary

probabilities of the Markov chain illustrated in Figure 3.6 are used to approximate

µ̃L.

In Figure 3.6, the states drawn by dotted lines are the non-busy period states (i.e.,

the high skilled agent can serve priority class 2 requests). The states represented by

double circled nodes are the states at which 2L requests can be served during a

priority class 1 busy period. 2L requests cannot be served in any of the remaining

states in Figure 3.6, since the low skilled agent is busy with 1L requests. Hence, the

percentage of the time that the low skilled agent can serve 2L requests during the

priority class 1 busy period, β, is calculated from the Markov chain illustrated in

64



0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3+,0 3+,1 3+,2 3+,3

3+,0 3+,1 3+,2 3+,3D D D D

λ1L

λ1H

μH

μH

μH

λ1H

λ1H

λ1L

λ1L

λ1H

μH

μH

μH

λ1H

λ1H

λ1L

λ1L

λ1H

μH

μH

μH

λ1H

λ1H

λ1L

λ1L

λ1H

μH

μH

μH

λ1H

λ1H

λ1L

μH

μH+μL

μL

μL μL

μL μL

μL

λ1L λ1L λ1L λ1Lt1 t1 t1 t1

t12 t12 t12 t12

λ1H λ1H λ1H λ1H

λ1H λ1H λ1H λ1H

t2 t2 t2 t2

...

...

...

...

...

1H requests

1L
 r

eq
ue

st
s

Figure 3.6: Markov chain of 1L and 1H requests used to calculate the approximate
service rate for 2L requests during a priority class 1 busy period.

Figure 3.6 where π(i1L,j1H) is the stationary probability of state (i1L, j1H):

β =

π(11L,01H) +
∑
j≥1

π(01L,j1H)

1− π(01L,01H)

(3.2)

In addition to the percentage of time the low skilled agent does not serve 2L re-

quests during a priority class 1 busy period, the priority queueing effect on the low

skilled agent service rate for 2L requests is important, i.e., the fact that 1L requests

preempt 2L requests. We approximate this priority queueing effect via γ; γ approx-
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imates the difference in performance for 2L requests during a priority class 1 busy

period using preemptive-priority queueing discipline and queueing with an approxi-

mate, constant service rate (i.e., µ̃L). We take γ equal to the sum of the stationary

probabilities of the states (in Figure 3.6) where 2L requests are not preempted by

priority class 1 requests at the low skilled agent’s system.

γ = π(01L,01H) + π(11L,01H) +
∑
j≥1

π(01L,j1H) (3.3)

Then, we calculate the approximate low skilled agent’s service rate for 2L requests

during a priority class 1 busy period, µ̃L, as shown in Equation 3.4.

µ̃L = γ ∗ β ∗ µL (3.4)

This simple approximation proved to work surprisingly well in our numerical

experiments.

3.3.2.3 Moments of a Type 2L Busy Period

The second type of busy period is the busy period of 2L requests started with an

arrival of a 2L request when there are (t2L−1) 2L requests in the system as illustrated

in Figure 3.5. Let’s call this busy period “a type 2L” busy period. We use the Markov

chain in Figure 3.7 to calculate the first three moments of this busy period. The states

in this Markov chain represent the number of 2L requests in the system. When there

are zero priority class 1 requests in the system, the service rate is µL +µH since both

high and low skilled agents serve 2L requests; otherwise the service rate is µ̃L as the

low skilled agent may serve 2L requests depending the number of priority class 1

requests.

After approximating a two phase PH distribution by using the first three moments

of the hitting times from states 3 (t2L) to state 2 ((t2L−1)) calculated from the Markov

chain in Figure 3.7, producing rates t̄1, t̄2, and t̄12 used in Figure 3.5, we reduce the

size of the Markov chain significantly.
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Figure 3.7: Markov chain of 2L requests used to calculate the first three moments
of a type 2L busy period that starts with an arrival of a 2L request when there are
2 (i.e., (t2L − 1)) 2L requests in the system.

3.3.2.4 Expected Response Times of Priority Class 2 Requests

We compute the expected response time of 2H and 2L requests by calculating the

limiting probabilities of the Markov chain in Figure 3.5. We use MAM, similar to

System 1. Let πk(i,j) denote the stationary probability of state (i2L, j2H) at state space

k. The expected response time of 2H request is calculated as follows.

E [T2H ] =

∑
j

j(
∑
k,i

πk(i2L,j2H))

λ2H

(3.5)

where k ∈
{

0 Priority Class 1, 1+ Priority Class 1, 1+
D Priority Class 1

}
, j ≥ 0, and

i ∈
{

0, .., t2L − 1, t+2L, t
+
2LD

}
.

We now calculate the expected response time of 2L requests. We first need to

compute the expected number of 2L requests during a busy period, since we do not

keep track of 2L requests in the Markov chain (Figure 3.5).

We use the Markov chain in Figure 3.8 to estimate the expected number of 2L
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Figure 3.8: Markov chain of 2L requests used to calculate the expected number of
2L requests during a busy period started with an arrival of a 2L request when there
are 2 (i.e., (t2L − 1)) 2L requests in the system.

requests during a busy period. Figure 3.8 is the same as Figure 3.7 except for the

transition rates from state 2 (i.e., (t2L−1)) to state 3 (i.e., t2L). Since the probabilities

of starting a busy period in different state spaces are not the same, the transition

rates from state 2 to states 3 are weighted in Figure 3.8 with coefficients c0, c1+ , and

c1+D
. These coefficients represent the probability of starting a type 2L busy period

in the different state spaces, and are determined by the stationary probabilities of

the Markov chain illustrated in Figure 3.5. Thus, we first solve the Markov chain in

Figure 3.5 by MAM to calculate the stationary probabilities. Then, the coefficients,

c0, c1+ , and c1+D
, are calculated by Equation 3.6.

c0 =
∑
j

π0 Priority Class 1
((t2L−1)2L,j2H)

c1+ =
∑
j

π1+ Priority Class 1
((t2L−1)2L,j2H)

c1+D
=
∑
j

π
1+D Priority Class 1

((t2L−1)2L,j2H)

(3.6)

We compute the expected number of 2L requests during a busy period as shown
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in Figure 3.8, E
[
NBP

2L

]
, and the expected response time of 2L requests,E [T2L] in

Equation 3.7 where π̌ki is the stationary probability of state i at state space k in

Figure 3.8.

E
[
NBP

2L

]
=

∑
i≥t2L

(i− (t2L − 1))(
∑
k

π̌ki )

1− π̌(t2L−1)
+ (t2L − 1)

E [T2L] =

∑
i≤t2L−1

i(
∑
k,j

πki2L,j2H ) + E
[
NBP

2L

]∑
j,k

(πk
(t+2L)2L,j2H

+ πk
(t+2LD

)2L,j2H
)

λ2L

(3.7)

3.3.3 System 3: n > 2 Agents and m > 2 Priority Classes

We now build upon the system described in System 2, increasing the number of

high and low skilled agents, and adding more priority classes. First, we consider a

system with two priority classes and more than two agents in Section 3.3.3.1. Then,

in Section 3.3.3.2, we discuss generalizing the number of priority classes.

3.3.3.1 System 3(i): n > 2 Agents

System 3(i) is based upon System 2 (1L, 1H, 2L, and 2H requests): we increase the

number of high and low skilled agents. The number of high skilled agents is denoted

by nH , whereas, the number of low skilled agents is denoted nL. Each high skilled

agent serves requests with rate µH , and each low skilled agent serves requests with

rate µL. Four types of requests, 1H, 1L, 2H, and 2L, arrive to the service center: 1H

and 2H requests can only be served by high skilled agents; 1L and 2L requests can

be served by high or low skilled agents depending on the threshold policies. There

are two threshold values in this system: t1L and t2L. We denote t1L by the threshold

at which high skilled agents serve 1L requests until the number of 1L requests drops

below t1L as introduced in Sections 3.3.1 and 3.3.2. Similarly, t2L is the threshold

at which high skilled agents serve 2L requests until the number of 2L requests drops

below t2L if the number of priority class 1 requests is less than the number of high
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skilled agents, as priority class 1 requests are always given higher priority in the queue

relative to priority class 2 requests. Note that if the number of 1L requests is above

t1L but below nH , there are idle high skilled agents that can serve 1H requests (if

there are any 1H requests in the system). If there are still idle high skilled agents,

they start serving priority class 2 requests.

Figure 3.9a depicts this system. We observe three low skilled agents (nL = 3)

and two high skilled agents (nH = 2). Customer requests arriving to the system join

an agent queue based upon the complexity of the requests; high complexity requests

join the high skilled agents’ queue while low complexity requests join the low skilled

agents’ queue. There are one 1H and two 2H requests in the high skilled agents’

queue and one 2L request in the low skilled agents’ queue. Two low skilled agents

serve 1L requests and one low skilled agent serves a 2L request. As the number of

1L and 2L requests are below t1L and t2L, respectively, high skilled agents serve 1H

requests as illustrated in Figure 3.9a.

There are three 1H, three 1L, two 2H, and four 2L requests in the system as

depicted in Figure 3.9b. The number of 1L and 2L requests is above threshold values,

t1L and t2L, respectively. Thus, high skilled agents serve two 1L requests preempting

1H requests until the number of 1L requests drops below t1L. The remaining 1L

request is served by a low skilled agent. There are two available low skilled agents

that serve 2L requests. Note that even though the number of 2L request is above

t2L, priority class 1 requests are given higher priority in the queue relative to priority

class 2 requests.

We solve the queueing system by modeling it again as a Markov chain. If we

model the exact system as a Markov chain, it will be infinite in four dimensions (i.e.,

the number of priority, skill level pairs). Using busy period transitions we again

reduce the Markov chain to a 1D infinite chain. Since priority class 1 requests are

given higher priority in the queue relative to priority class 2 requests, we first solve
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(b) When the number of 1L requests equals t1L in the service center. Even
tough the number of 2L requests is above t2L, 1L requests have higher priority
than 2L requests and are served by the high skilled agents.

Figure 3.9: Representation of the service center for System 3 when thresholds for 1L and
2L requests, t1L and t2L, equal 3. The high skilled agents serve 1L requests if N1L ≥ t1L
or N1H < nH and N1L ≥ 0. The high skilled agents serve 2L requests if N2L ≥ t2L and
N1H +N1L ≤ nH or N1H +N1L +N2H < nH and N2L ≥ 0

the system for priority class 1 requests.

3.3.3.1.1 Priority Class 1 Requests

There are nH high skilled and nL low skilled agents in the system. If the number of

1L requests is equal to the threshold value, t1L, with an arrival of 1L request, a busy
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period starts and high skilled agents preempt 1H requests until the number of 1L

requests drops below t1L. If the number of 1L requests in the system, N1L, is above

t1L but below nH , and if t1L < nH , only N1L high skilled agents preempt 1H requests

and start serving 1L requests. The remaining high skilled agents continue serving

their own requests until other 1L requests arrive.

Markov Chain of Priority Class 1 Requests

Figure 3.10 depicts the simplified Markov chain for priority class 1 customers. There

are three low skilled and two high skilled agents in the system as illustrated in Figure

3.10. A state in the Markov chain represents a pair consisting of the number of 1L

and 1H requests until a busy period, and j+ or jD
+ 1L requests and the number of 1H

requests during a busy period that starts when j 1L requests are in the system. We

track the exact number of 1H requests on the horizontal axis; on the vertical axis, we

track the number of 1L requests up to max {t1L, nH}. In case, t1L < nH , we track 1L

requests up to nH in the Markov chain as 1H requests can be served by the remaining

idle high skilled agents during the type 1 busy period. States at which the number of

1L requests is illustrated as max {t1L, nH}D
+ are dummy states used in the Coxian

representation representing states of a busy period. Note in our example if we are in

state (j1L, 01H) where j ≥ 2, the service rate is 2µH + max {0,min {j − 2, nL}}µL,

i.e., two high skilled agents serve 1L requests and if j > 2, the remaining 1L requests

are served by min {j − 2, nL} low skilled agents.

Moments of a Type 1L Busy Period

A busy period that starts with an arrival of 1L request when the number of 1L

requests equals (max {t1L, nH}− 1), and ends when when the number of 1L requests

drops below max {t1L, nH} is defined as “a type 1L” busy period again. As in Sections

3.3.1 and 3.3.2, we use a PH distribution (specifically a Coxian distribution) to match
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Figure 3.10: Markov chain of 1H and 1L requests. The number of high skilled
agent, nH , is 2 and the number of low skilled agent, nL, is 3. The threshold for 1L
requests is 3. The busy periods are represented by two phase PH distributions (with
Coxian representations).

the first three moments of the distribution of a type 1L busy period. Once the busy

period starts, we jump to the Markov chain in Figure 3.11 where a state represents

the number of 1L requests in the system. Note that the service rates of 1L requests

during the busy period differ conditional on the number of low skilled agents and

requests in the service center. The busy period is the time to return to state 2

(t2L − 1) from state 3 (t2L).

Expected Response Times of Priority Class 1 Requests

The stationary probabilities of the now 1-dimensionally infinite chain illustrated in
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Figure 3.11: Markov chain of 1L requests used to calculate the first three moments
of a type 1L busy period started with an arrival of a 1L request when there are 2
(i.e., (t1L − 1)) 1L requests in the system. The number of high skilled agent, nH , is
2 and the number of low skilled agent, nL, is 3.

Figure 3.10 are analyzed by the Matrix Analytic Method (MAM). The expected num-

ber of 1L requests during a busy period in Figure 3.11, E
[
NBP

1L

]
, expected response

time of 1H requests, E [T1H ], and the expected response time of 1L requests, E [T1L],

are computed as shown in Equation 3.1 in Section 3.3.1 by using the stationary

probabilities calculated via MAM.

3.3.3.1.2 Priority Class 2 Requests

Priority class 1 requests are given higher priority in the queue relative to priority

class 2 requests. Thus, we compute the expected response times of priority class 2

requests via using another Markov chain tracking both priority class 1 and 2 customer

requests.

There are nH high skilled and nL low skilled agents in the system. If the number

of 2L requests is brought to the threshold value, t2L, with an arrival of a 2L request,

a busy period starts: high skilled agents that are not serving priority class 1 requests

preempt 2H requests until the number of 2L requests drops below t2L. If the number

of 2L requests in the system, N2L, is at least t2L but below (nH−N1L−N1H), only N2L

high skilled agents preempt 2H requests and start serving 2L requests. The remaining

high skilled agents continue serving their own requests until other 2L requests arrive.
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Markov Chain of Priority Class 2 Requests

We again use busy period transitions to reduce the Markov chain tracking the system

exactly to a 1D infinite chain. Figure 3.12 depicts the simplified Markov chain for

priority class 2 customers. We track the exact number of 2H requests on the horizontal

axis, and on the vertical axis, we track the number of 2L requests up to max {t2L, nH}.

A state in the Markov chain represents a pair consisting of the number of 2L and 2H

requests until a busy period started with an arrival of 2L request, and max {t2L, nH}+

or max {t2L, nH}+
D 2L requests and the number of 2H requests during a busy period.

There are four distinct state spaces illustrated in Figure 3.12: 0 Priority Class

1, 1 Priority Class 1, 2+ Priority Class 1, and 2+
D Priority Class 1. These four state

spaces track the number of priority class 1 requests up to 2, the number of high skilled

agents. Depending on the number of 1L or 1H requests in the system, the service

rates at which priority class 2 requests can be served may change: When the system

is in a state in 0 Priority Class 1 state space, both agents can serve existing 2H and

2L requests. The service rates of a high and a low skilled agent are thus µH and µL,

respectively. Therefore, the Markov chain of 0 Priority Class 1 state space for 2H and

2L requests is identical the Markov chain of System 3(i) illustrated in Figure 3.10

except the arrival rates which are λ2H and λ2L in Figure 3.12. Similar to the system

in Section 3.3.2, there are multiple types of busy periods in the system illustrated in

Figure 3.12. We denote these busy periods based on the request types that started

the busy period. The first type we discuss is the priority class 1 busy period. When

a priority class 1 request arrives (1L or 1H) when there are already (nH − 1) priority

class 1 requests, the system transfers into n+
H Priority Class 1 state space and a busy

period begins. Note that this busy period is also defined as “a priority class 1” busy

period in Section 3.3.2.

The priority class 1 busy period corresponds to the time that there are not any

high skilled agents that can serve priority class 2 requests, as they are all busy with
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Figure 3.12: Markov chain of 1H, 1L, 2H, and 2L requests. The number of high
skilled agents, nH , is 2 and the number of low skilled agents, nL, is 3. The threshold
for 2L requests is 3. The busy periods are represented by two phase PH distributions
(with Coxian representations).

priority class 1 requests, until the system returns to the (nH−1) Priority Class 1 state

space. Hence, the first three moments of the hitting times from states in which the
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number of priority class 1 requests equals nH to states in which the number of priority

class 1 requests equals (nH−1) in Figure 3.10 are needed to approximate the priority

class 1 busy period between the n+
H Priority Class 1 state space and the (nH − 1)

Priority Class 1 state space. Conditional on in which state a type 1 busy period starts,

the first three moments are aggregated by considering the stationary probabilities of

the states where we start the busy period (i.e., states in which the number of priority

class 1 requests equals nH). For example, suppose nH = 2. Referring back to Figure

3.10, possible starting states for a priority class 1 busy period are states (21L, 01H),

(11L, 11H), and (01L, 21H). A busy period ends in state (11L, 01H) or state (01L, 11H).

We first calculate the first three moments of the hitting times from each starting state

to each ending state, using the method in the works of Osogami and Harchol-Balter

(2003). Then, we aggregate the moments by conditioning on in which state the busy

period starts. Then, the priority class 1 busy period is represented by a two phase

PH distribution (via rates t̂1, t̂2, and t̂12) via matching the first three moments of the

hitting times.

Low skilled agents may continue serving 2L requests depending upon the state

of the system during the priority class 1 busy period. For example, suppose there

are three low skilled and two high skilled agents in the system, and 2 1H and 2 1L

requests. If a 1L request arrives, there are now 5 priority class 1 requests in the

system, three of which are 1L requests. A low skilled agent begins serving the new

1L request. Suppose t1L > 3. Then, all low skilled agents serve 1L requests and

cannot serve 2L requests. However, during the priority class 1 busy period, the low

skilled agent may serve 2L requests, if there are 4 or fewer priority class 1 requests

or when there are only 1H requests in the system. We approximate the amount of

time that the low skilled agent is available to serve 2L requests.

Once again,we cannot track the exact service rate since this would require transi-

tions between busy period approximations with different rates. We avoid this through
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the use of a single approximate service rate, µ̃L as in Section 3.3.2.

Approximate Service Rate µ̃L

The approximate rate, µ̃L, is again calculated adjusting the low skilled agent’s service

rate µL by two key factors: the percentage of the time that there are low skilled agents

that can serve 2L requests during the priority class 1 busy period, and the priority

queueing effect on the low skilled agent. The key factors are similar to the ones in

Section 3.3.2, but in this new system, the number of low skilled agents is more than

one. Hence, we need to extend the two key factors based on the ones introduced

before. To calculate these factors, the stationary probabilities of the Markov chain

illustrated in Figure 3.13 are used to approximate µ̃L.

Figure 3.13 is the same figure as Figure 3.10: the Markov chain of priority class

1 requests. In Figure 3.13, the states drawn by only dotted lines are the non-busy

period states (i.e., the high skilled agent can serve priority class 2 requests). There

are three and two available low skilled agents to serve 2L requests during a priority

class 1 busy period at the states represented by triple and double circled nodes with

solid lines, respectively. The states illustrated with double circled nodes where the

second circle is represented with dashed line are the states where only one low skilled

agent is available to serve 2L requests during a priority class 1 busy period. All states

in which the number of 1L requests is represented by 3+ or 3+
D, represent cases where

the number of available low skilled agents to serve 2L requests is at most two. We

jump to Markov chain in Figure 3.14 to calculate the number of available low skilled

agents during the busy period states represented by 3+ or 3+
D 1L requests in Figure

3.13.

In Figure 3.14, we track 1L requests during a busy period started with an arrival

of 1L request when there are (t1L − 1) 1L requests in the system. Thus, the states

represent the number of 1L requests during this busy period. Recall that these 1L
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Figure 3.13: Markov chain of 1L and 1H requests used to calculate the approximate
service rate for 2L requests during a priority class 1 busy period when the number of
high skilled agents is two and the number of low skilled agent is three.

requests get routed to the high skilled agent. Double circled nodes with solid lines

illustrate that two available low skilled agents in the system can serve 2L requests,

whereas, double circled nodes with dashed line illustrate that only one low skilled

agent is available.

2L requests cannot be served in any remaining states in Figure 3.14 (when the

number of 1L requests is above five) since the low skilled agent is busy with 1L

requests. Conditional on being in a type 1L busy period, β(s), the average realized
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Figure 3.14: Markov chain of 1L and 1H requests during a busy period started with
an arrival of 1L request when there are (t1L − 1) 1L requests in the system, used to
calculate the approximate service rate for 2L requests during a priority class 1 busy
period when the number of high skilled agents is two and the number of low skilled
agent is three.

service rate considering only the percentage of the time that there are low skilled

agents that can serve 2L requests during the priority class 1 busy period when there

are s 2L requests in the system (s ≤ nL), is calculated from the Markov chains

illustrated in Figures 3.13 and 3.14. We use π(i1L,j1H) for the stationary probability

of state (i1L, j1H) in Figure 3.13, and πBPm1L
is the stationary probability of state m 1L

in Figure 3.14. Note that, unlike in Equation 3.2, in Equation 3.8, β(s) is calculated

for s 2L requests where s ≤ nL to capture the actual service rate 2L requests realize,

not the available service rate in the system. For example, suppose there are three

available low skilled agents during a priority class 1 busy period and only one 2L

request in the system. The service rate equals µL, not 3 µL. (In Section 3.3.2, we do

not need to consider the realized service rate since nL = 1: there is either an available

agent or not.)

β(s) =

nL−1∑
k=0

min {s, nL − k} (
∑

i+j=nH+k
k≤i≤t1L−1

π(i1L,j1H) +
∑

j≥nH+1

π(k1L,j1H)) + (

nL−1∑
t=1

min {s, nL − t} πBP(nH+t)1L
)

(1−
∑
i,j

i+j<nH

π(i1L,j1H))

(3.8)

To calculate the approximate service rate, we also need to compute the priority

queueing effect on the low skilled agent service rate for 2L requests, i.e., the fact that

1L requests preempt 2L requests. We approximate this priority queueing effect via
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γ(s) where s ∈ {1, ..., nL}; γ(s) captures the difference between solving the queueing

system during a priority class 1 busy period via preemptive-priority queueing and

queueing with an approximate, constant service rate (i.e., µ̃L).

γ(s) = 1−
∑
i,j

i+j<nH

π(i1L,j1H)+

nL−1∑
k=0

min {s, nL − k}
s

(
∑

i+j=nH+k
k≤i≤t1L−1

π(i1L,j1H) +
∑

j≥nH+1

π(k1L,j1H)) + (

nL−1∑
t=1

min {s, nL − t}
s

πBP(nH+t)1L
)

(3.9)

Finally, we calculate the approximate low skilled agent’s service rate for 2L re-

quests during a priority class 1 busy period when there are s 2L requests in the

system, µ̃L(s), as shown in Equation 3.4 where s ≤ nL.

µ̃L(s) = (γ(s). ∗ β(s)) ∗ µL (3.10)

Moments of a Type 2L Busy Period

The second type of busy period is the busy period of 2L requests started with an

arrival of a 2L request when there are (t2L−1) 2L requests in the system as illustrated

in Figure 3.12. Let’s call this busy period “a type 2L” busy period. We use the

Markov chain in Figure 3.15 to calculate the first three moments of this busy period.

The states in this Markov chain represent the number of 2L requests in the system.

When the number of priority class 1 request is zero or one in the system, both high

and low skilled agents can serve 2L requests. During a priority class 1 busy period,

high skilled agents cannot serve priority class 2 requests and the service rate is µ̃L

that changes with respect to the number of 2L requests in the system. For example,

the service rate from state 3 to state 2 in 2+ Priority Class 1 state space in Figure

3.15 is µ̃L(3) as there are three 2L requests in the system.

After approximating a two phase PH distribution by using the first three moments

of the hitting times from states 3 (t2L) to state 2 ((t2L−1)) calculated from the Markov
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Figure 3.15: Markov chain of 2L requests used to calculate the first three moments
of a type 2L busy period started with an arrival of a 2L request when there are 2
(i.e., (t2L − 1)) 2L requests in the system. The number of high skilled agents is two
and and low skilled agents is three.

chain in Figure 3.15, shown with rates t̄1, t̄2, and t̄12, we reduce the size of the Markov

chain illustrated in Figure 3.12 significantly.

Expected Response Times of Priority Class 2 Requests

We compute the expected response time of 2H and 2L requests by calculating the

limiting probabilities of the Markov chain in Figure 3.12, similar to the calculations

in Section 3.3.2. Note that since we have more agents than the system in Section

3.3.2, we need to increase the number of state spaces we track in Figure 3.12 and

modify the computation of the approximate rate for each low skilled agent. We again

use MAM. Let πk(i,j) denote the stationary probability of state (i2L, j2H) at state space
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k. The expected response time of 2H request is calculated as follows.

E [T2H ] =

∑
j

j(
∑
k,i

πk(i2L,j2H))

λ2H

(3.11)

where k ∈
{

0 Priority Class 1, 1 Priority Class 1, 2+ Priority Class 1, 2+
D Priority Class 1

}
,

j ≥ 0, and i ∈
{

0, ..,max {t2L, nH} − 1,max {t2L, nH}+,max {t2L, nH}+
D

}
(max {t2L, nH}

= t2L for the example illustrated in Figure 3.12).

We now calculate the expected response time of 2L requests. Here, we need to

compute the expected number of 2L requests during a busy period, since we do not

keep exact track of 2L requests in the Markov chain (Figure 3.12). We use the Markov

chain in Figure 3.16 to estimate the expected number of 2L requests during a busy

period. The states represent the number of 2L requests in the system. The service

rate for 2L requests changes depending both on the state space and the number of

2L requests in the system.

Figure 3.16 is the same as Figure 3.15 except the transition rates from state 2

(i.e., (t2L − 1)) to state 3 (i.e., t2L). Since the probabilities of starting a busy period

in different state spaces are not the same, the transition rates from state 2 to states

3 are weighted in Figure 3.8 with coefficients c0, c1, c2+ , and c2+D
that are determined

by the stationary probabilities of the Markov chain illustrated in Figure 3.12. The

coefficients are calculated by Equation 3.12.

c0 =
∑
j

π0 Priority Class 1
((t2L−1)2L,j2H)

c1 =
∑
j

π1 Priority Class 1
((t2L−1)2L,j2H)

c2+ =
∑
j

π2+ Priority Class 1
((t2L−1)2L,j2H)

c2+D
=
∑
j

π
2+D Priority Class 1

((t2L−1)2L,j2H)

(3.12)

We compute the expected number of 2L requests during a busy period as shown

in Figure 3.16, E
[
NBP

2L

]
, and the expected response time of 2L requests,E [T2L] in
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Figure 3.16: Markov chain of 2L requests used to calculate the expected number of
2L requests during a busy period started with an arrival of a 2L request when there
are 2 (i.e., (max {t2L, nH} − 1)) 2L requests in the system.

Equation 3.13 where π̌ki is the stationary probability of state i at state space k in

Figure 3.16.

E
[
NBP

2L

]
=

∑
i≥t2L

(i− (t2L − 1))(
∑
k

π̌ki )

1− π̌(t2L−1)
+ (t2L − 1)

E [T2L] =

∑
i≤t2L−1

i(
∑
k,j

πki2L,j2H ) + E
[
NBP

2L

]∑
j,k

(πk
(t+2L)2L,j2H

+ πk
(t+2LD

)2L,j2H
)

λ2L

(3.13)
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3.3.3.2 System 3(ii): Extension to m > 2 Priority Classes

System 3(ii) is based upon System 3(i) (1L, 1H, 2L, and 2H requests, and more than

one high skilled and one low skilled agents). The number of high skilled agents is

denoted by nH , whereas, the number of low skilled agents is denoted nL. The number

of priority classes is denoted by m where m > 2. There are m threshold values in

this system: t1L, t2L, ..., tmL; tiL is the threshold at which high skilled agents serve iL

requests until the number of iL requests drops below tiL if there are any high skilled

agents that do not serve any priority class k requests where k < i (as priority class

k requests are given higher priority in the queue relative to priority class i requests

if k < i). Note that if the number of iL requests is above tiL but below nH , there

are idle high skilled agents that can serve iH requests (if there are any iH requests

in the system). If there are still idle high skilled agents, they start serving priority

class (i+ 1) requests.

To solve this system, the solution approach introduced in Section 3.3.3.1 can

be extended. We use Markov chains to model the system for each priority class.

However, the original Markov chain modeling the actual system is infinite in 2 ∗

m dimensions. Thus, we use busy period approximations and threshold policies

again to have a 1D infinite Markov chain. First, we solve the system for priority

class 1 requests. Second, we solve the system for priority class 2 requests capturing

the preemptions due to priority class 1 requests by priority class 1 busy periods as

introduced in Sections 3.3.2 and 3.3.3.1. Then, the system for priority class 3 requests

is solved capturing the preemptions due to priority classes 1 and 2 requests since they

are given higher priority in the queue relative to priority class 3 requests. Thus, in

general, the system with priority class i requests is solved by capturing preemptions

of priority classes {1, .., i− 1}. This iterative way of solving systems is repeated for

all priority classes. An important property of this iterative solution method is that
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for priority class i customers, considering the Markov chain of priority class (i − 1)

requests is enough since the Markov chain of priority class (i−1) requests has already

been affected by higher priority classes.

3.4 Computations

We consider System 3(i) in Section 3.3.3.1: n > 2 agents and 2 priority classes. 1L,

1H, 2L, and 2H requests arrive with rates λ1L, λ1H , λ2L, and λ2H , respectively. The

low skilled agents serve only 1L and 2L requests with rate µL. Depending on the

threshold policy, the high skilled agents can serve any requests with rate µH . Load

of mC requests (mth priority class request with C complexity) is represented by ρmC

that equals λm C

µC
over all agents where m = {1, 2}, and C = {L,H}. As before t1L

and t2L denote the thresholds of 1L and 2L requests, respectively.

3.4.1 Data Generation

Typical traffic at the motivating IT SDO’s service centers is high for low complex-

ity requests (≈ 0.70) for each low skilled agent, but moderate for high complexity

requests (≈ 0.60) for each high skilled agent. In addition, the total load of priority

class 1 requests is lower than the total load of priority class 2 requests. Finally the

number of high skilled agents is typically less than the number of low skilled agents

since the salary of a high skilled agent is more than a low skilled agent.

We generate instances capturing these features. We first analyze the expected

number of busy high skilled agents numerically, to provide insights about stability of

the system in Section 3.4.1.1. We then discuss performance in Section 3.4.2. More

computational results for different parameters are illustrated in Appendix B.
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3.4.1.1 Stability of the System

Stability conditions of a system with only priority class 1 requests under a similar

threshold policy are analyzed in the works of Osogami et al. (2005a). However,

deriving stability conditions of priority class 2 requests has not been studied and is

nontrivial, especially for the 2H requests, since the 2H requests are preempted not

only by the priority class 1 requests, but also by the 2L requests depending on the

threshold policy. To our knowledge, deriving closed form stability conditions is not

possible for the priority class 2 requests. The number of high skilled agents is less

than the number of low skilled agents, so stability of the high skilled agents’ queue

is often hard to maintain. Thus, we quantify the expected number of high skilled

agents busy with each request type and compare it with the number of high skilled

agents to check the stability of the system.

To calculate the expected number of high skilled agents busy with 1L requests

preempting requests with high complexity (of priority class 1 or 2), we use the sta-

tionary probabilities of the Markov chain illustrated in Figure 3.10. There are two

events where 1L requests can preempt high complexity requests: (i) the number of

1L requests is above (t1L − 1), and (ii) the numbers of 1L and priority class 1 re-

quests are below t1L and nH , respectively, and the number of 1H requests is less

than nH . In event (ii) the number of priority class 1 requests is below nH , and if

the number of 1L requests is at least 1, high skilled agents first serve 1L requests

before serving any priority class 2 requests, so 2H requests may be preempted by the

1L requests. Thus, we sum the number of high skilled agents busy with 1L requests

after multiplying with the respective state’s stationary probability in which event (i)

or (ii) occurs. Similarly, the expected number of high skilled agents busy with 2L

requests preempting 2H requests is calculated by using the stationary probabilities

of the Markov chain illustrated in Figure 3.12. Note that 1H and 2H requests can
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only be served by the high skilled agents, so their loads are known without utilizing

the Markov chains in Figures 3.10 and 3.12.

We generated several instances and investigate their stability. The following pa-

rameter set is the base set for the remaining part of the computational results in this

section: ρ1L = 0.7, ρ1H = 0.5, ρ2L = 2, and ρ2H = 0.6. In the base parameter set, the

numbers of high and low skilled agents are 2 and 4, respectively. Different parameter

sets are analyzed in Appendix B.
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Figure 3.17: Expected number of busy high skilled agents as a function of t1L and
t2L when ρ1L = 0.7, ρ1H = 0.5, ρ2L = 2, ρ2H = 0.6, nL = 4, and nH = 2.

Figure 3.17 depicts the expected number of high skilled agents busy with 1L, 1H,

2L, and 2H requests as a function of t1L and t2L. When the thresholds are low, the

expected number of busy high skilled agents increases as low complexity requests

are also served by the high skilled agents preempting high complexity requests. For

example, the expected number of high skilled agents when t2L = 3 is higher than the
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case when t2L = 5 since 2L requests are more often served by the high skilled agents

since they preempt 2H requests more frequently.

3.4.2 Accuracy of MAM

To validate our analysis, we simulate the original service center’s operations (i.e.,

without any approximation). For each (t1L, t2L) threshold pair, the number of repli-

cations is 20. Each replication converges at least two-orders of magnitude slower than

MAM. We compare the expected response times of requests calculated by simulation

and MAM, and define the gap as follows.

E[T ]MAM−E[T ]Simulation

E[T ]Simulation
; (3.14)

for example E [T2H ]k is the expected response time of 2H requests calculated by

method k.

The gaps of priority class 1 and 2L requests’ expected response times are always

very small (less than 1%). Thus, Figure 3.18 illustrates the gap of 2H requests’

expected response time between simulation and MAM as a function of t1L and t2L.

The gap decreases as t2L increases, and is very small (less than 2%) when t2L ≥

5 as depicted in Figure 3.18. The gap of 2H request is approximately 10% when

t2L = 3. The reason behind this apparently poor performance is seen numerically

from Figure 3.17: The expected number of high skilled agents busy with all requests

is approximately 1.92, and the simulation’s replications do not converge in two hours

when t2L = 3. Hence, the queue for 2H requests becomes highly loaded. However,

when t2L = 5, the expected number of busy high skilled agent drops below 1.68 in

Figure 3.17, and the gap is small as shown in Figure 3.18. Thus, our approximation

method may not work well for the highly loaded queues. Incorporating another

coefficient in the approximate service rate µ̃L is a future direction which might help

to improve the gap under highly loaded queues. Note though that the simulated
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Figure 3.18: Gap of 2H requests’ expected response time between simulation and
MAM as a function of t1L and t2L when ρ1L = 0.7, ρ1H = 0.5, ρ2L = 2, ρ2H = 0.6,
nH = 2, and nL = 4.

expected response time of 2H requests is above 1840 when t2L = 3, whereas, it is

below 790 as t2L increases. It is very unlikely that a service center manager would

prefer 2H requests to suffer by setting t2L = 3 unless keeping 2H requests longer

in the system is free. Thus, this inaccuracy region is likely to be unimportant in

practical application.

3.4.3 Effect of Threshold

We describe two main effects of thresholds. First, we analyze the effect of the thresh-

old policy on the expected response times. Second, we evaluate the threshold-based

policy by comparing it with two näıve policies.
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3.4.3.1 Expected Response Times

The expected response time of 1H requests decreases and 1L requests increases as t1L

increases, until the expected response times converge to the case of separate queues

at some point after which increasing t1L further does not have any effect as illustrated

in Figure 3.19. When we increase t1L, 1L requests steal fewer cycles from the high

skilled agent which decreases the expected response time of 1H requests. When t1L

is 0, 1H requests are never served so they experience infinite expected response time.

Note that since priority class 1 requests have higher priority than priority class 2

requests, the expected response times of priority class 1 requests do not change if t2L

changes. Note also the effect of t1L on 1H requests’ response time is more dramatic

than its effect on 1L requests’ response time.
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Figure 3.19: Expected response times of priority class 1 requests as a function of
t1L when ρ1L = 0.7, ρ1H = 0.5, ρ2L = 2, ρ2H = 0.6, nH = 2, and nL = 4.

Similarly, expected response times of 2L and 2H requests are illustrated in Figures

3.20a and 3.20b, respectively, as a function of t2L when t1L = 3. The impact of t2L

on 2H requests is higher than 2L requests because when t2L is small, the high skilled

agents’ queue might become highly loaded for the 2H requests as illustrated in Figure

3.17.
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Figure 3.20: Expected response times of priority class 2 requests as a function of
t2L when t1L = 3, ρ1L = 0.7, ρ1H = 0.5, ρ2L = 2, ρ2H = 0.6, nH = 2, and nL = 4.

Finally, in Figure 3.21, the expected response time of 2L and 2H requests are

represented as a function of t1L when t2L = 5. As t1L increases, the expected re-

sponse time of 2H requests decreases as the number of 1L requests served by the high

skilled agents decreases, which pushes 1H and 2H requests back less. Eventually, the

expected response time of 2H requests converges to a value, because priority class 1

requests converge to the case of separate queues at some point after which increasing

t1L further does not have any effect. Thus, 2H requests are preempted by the same

load of 1L requests after this convergence. In Figure 3.21a, the expected response

time of 2L requests first increases as t1L increases, because 1L requests are served

less frequently by the high skilled agent than the other cases with smaller t1L values.

But when t1L is above 11, the expected response time of 2L starts to decrease.

There are two possible reasons to explain this behavior: variability in the service

rates and the gap of the 2L requests’ expected response time. Since the high and low

skilled agents serve with different service rates, increasing t1L might cause variability

in the service rate of 2L requests: As t1L increases, 1L requests stay longer in the

system and are served more frequently by the low skilled agents. Thus, when it is

2L requests’ turn to be served, they might be served by the high skilled agent more
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Figure 3.21: Expected response times of priority class 2 requests as a function of
t1L when t2L = 5, ρ1L = 0.7, ρ1H = 0.5, ρ2L = 2, ρ2H = 0.6, nH = 2, and nL = 4.

often (the number of 2L requests in the low skilled agents’ queue increases more if 2L

requests are preempted by the 1L requests more often) and receive a faster service

rate resulting in the decrease illustrated in Figure 3.21a. The other reason might

be due to the gap of 2L requests’ expected response times as the decrease in the

expected response time depicted in Figure 3.21a is less than 0.1%.

3.4.3.2 Total Costs

There are three näıve policies potentially representing service centers’ operations

with increasing cooperation: (i) Separate queue: high skilled agents serve only high

complexity (1H and 2H) requests, and low skilled agents only serve low complexity

(1L and 2L) requests, (ii) Cycle stealing: high skilled agents can only serve low

complexity requests if they are idle, and (iii) Prioritized cycle stealing: high skilled

agents serve high complexity requests and low skilled agents serve low complexity

requests, priority class 1 customers have higher priority than priority class 2 customer

requests, and if high skilled agents are idle, they can serve low complexity requests.

The cycle stealing policy does not support the IT SDO’s service centers as priority

class 1 requests are more important then priority class 2 requests.
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We model each policy by MAM. The objective is to minimize the total cost which

is a combination of cost of agents and convex cost of expected response times. For

example, the contribution of state i 1L requests to the total cost is the product of

C1L i
2 and the total stationary probability of states in which there are i 1L requests.

(Convex costs capture customers becoming increasingly impatient as delays increase.)

To calculate the total salary of the agents, the numbers of low and high skilled agents

are multiplied with CL and CH , respectively.

t2L

Total cost

9,850,000.00

10,350,000.00

10,850,000.00

11,350,000.00

11,850,000.00

12,350,000.00

12,850,000.00

13,350,000.00

7 9 11 13 15

Our policy

Separate queue

Prioritized
cycle stealing

Figure 3.22: Comparison of our policy and näıve policies when ρ1L = 0.7, ρ1H = 0.5,
ρ2L = 2, ρ2H = 0.6, C1L = C1H = 250k, C2L = 200k, C2H = 100k, nH = 2, and
nL = 4.

We compare the total cost calculated by our threshold policy with the separate

queue and prioritized cycle stealing policies in Figure 3.22. This example allows us

to address the importance of cooperation as the separate queue policy performs the

worst. Thus, hurting the high complexity requests by preempting them and helping

the low complexity requests by routing them to the high skilled agents decrease the

94



total cost. To analyze our approximation and the prioritized cycle stealing policy in

detail, Figure 3.23 is illustrated.

t2L

Total cost

9,935,000.00

9,940,000.00

9,945,000.00

9,950,000.00

9,955,000.00

7 9 11 13 15

Our policy

Prioritized
cycle stealing

Figure 3.23: Comparison of our policy and the prioritized cycle stealing policy
when ρ1L = 0.7, ρ1H = 0.5, ρ2L = 2, ρ2H = 0.6, C1L = C1H = 250k, C2L = 200k,
C2H = 100k, nH = 2, and nL = 4.

The total cost of the prioritized cycle stealing policy is the same as t2L changes

as it is independent on the threshold, whereas the total cost of our policy varies

because setting a low t2L helps 2L requests but hurts 2H requests. Depending on

the unit cost values of 2L and 2H requests, the total cost may increase. Even tough

C2H < C2L, the total cost of our policy is higher than the prioritized cycle stealing

policy when t2L is below 9, because this hurts 2H performance significantly, but

when t2L = 9, the total cost of our policy is lower than the prioritized cycle stealing

policy. As t2L increases, the total costs of the prioritized cycle stealing policy and our

policy converge, because the expected response time converges at some point after

which increasing t2L further does not make any difference in the expected response
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times of priority class 2 requests as illustrated in Figures 3.20a and 3.20b. Thus, the

importance of our threshold-based policy is validated by achieving a lower optimal

cost than the näıve policies.

3.4.4 What Mix of Agents to Hire

One of our goals is to determine an appropriate static agent base. The objective is

again to minimize the total cost. There is a trade-off between the number of agents

and the target times of requests. If the cost of an agent is high, even if hiring that

agent improves expected response times of the requests, it may increase the total

cost.

At the motivating IT SDO’s service centers, the cost of expected response times

of priority class 1 requests is higher than the priority class 2 requests. In addition,

the cost of a high skilled agent is higher than a low skilled agent’s cost. We gener-

ate representative unit costs for the base parameter set and analyze whether hiring

another high skilled agent is good as a function of t2L, illustrated in Figure 3.24.

In Figure 3.24, we compare the service centers with two different agent base: (i) 4

low and 2 high skilled agents, and (ii) 4 low and 3 high skilled agents as a function of

t2L when t1L = 3. The dashed circles represent optimal t2L levels for agent bases (i)

and (ii). For example, the optimal threshold value of 2L requests is 7 (or 11) when

the numbers of high and low skilled agents are 3 (or 2) and 4, respectively. Since the

objective is to minimize the total cost, the service center manager prefers to hire a

high skilled agent if t2L is below 7; otherwise an agent base with 4 low and 2 high

skilled agents determines the minimum cost. Thus, given the costs, one can set the

optimal threshold values. In addition, if the threshold values are fixed, it may be

possible to negotiate costs with customers.

Figure 3.25 represents a service center in which the cost of priority class 2 requests

are not the same as in Figure 3.24: C2L decreases, and C2H increases. The optimal
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Figure 3.24: Analysis of hiring a high skilled agent as a function of t2L when
t1L = 3, ρ1L = 0.7, ρ1H = 0.5, ρ2L = 2, ρ2H = 0.6, C1L = C1H = 300k, C2L = 150k,
C2H = 100k, CL = 1, 000k, and CH = 1, 500k.

total cost is lower in Figure 3.25 than in Figure 3.24.

3.5 Conclusion and Future Work

We model a service center at a large, global, IT services delivery organization with

agents who are either high or low skilled. These agents serve customer requests that

are also heterogeneous - with respect to both the complexity and their priority: (i)

Higher priority customer requests preempt lower priority customer requests in the

queue; and (ii) Low skilled agents can only serve low complexity requests, while high

skilled agents can serve all types of requests. Our goals are to create an algorithm

that can determine an appropriate static agent base and to determine an effective

request-assignment policy.
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Figure 3.25: Analysis of hiring a high skilled agent as a function of t2L when
t1L = 3, ρ1L = 0.7, ρ1H = 0.5, ρ2L = 2, ρ2H = 0.6, C1L = C1H = 300k, C2L = 120k,
C2H = 120k, CL = 1, 000k, and CH = 1, 500k.

A multi-server queueing system under preemptive-resume priority classes is used

to capture this service center’s operations; however, since exact solution of such a

system is numerically intractable, we apply approximation and bounding techniques

to evaluate different control policies. We model the system as a Markov chain by

approximating the interval of time during which the agent is busy without interrup-

tion. Hence, we turn the intractable Markov chain into a tractable one and apply

standard Matrix Analytic Methods. Our work demonstrates that a simple but effec-

tive request-assignment policy can meet the service level goals for different prioritized

customers utilizing an appropriately determined static agent base.

We show that four different types of customer requests can be successfully ana-

lyzed by our method: our method is accurate and fast when compared to simulation.

We also provide initial insights to the essential managerial questions about the capac-
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ity provisioning problem at the service center, such as, how to set optimal threshold

values, how to negotiate costs with customers, and what mix of agents to hire. We

also evaluate the threshold-based policy and two näıve policies. The minimum op-

timal cost is achieved by our threshold-based policy in the numerical experiment,

further revealing that the threshold values may improve the total cost without any

major changes in the service center, such as, agent base or loads.

One possible future direction is updating the approximate service rate µ̃L for

highly loaded high skilled agents’ queue as it may improve the performance of MAM

for 2H requests. Incorporating time varying arrival and service rates is another

potential future work. One solution strategy to handle time varying arrival rates and

service rates is to divide the system in phases: underloaded, overloaded, and critically

loaded (Mandelbaum and Massey, 1995). Another strategy is to increase the safety

staffing above the required level for the expected arrival rate (Gans et al., 2003).
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4 ROBUST PROJECT SCHEDULING AT A

LARGE IT SERVICES DELIVERY

ORGANIZATION

We consider a project scheduling problem at a large IT services delivery organiza-

tion (SDO) with cross-trained agents, heterogeneous projects, schedule disruptions,

and service quality guarantees. Durations of projects’ tasks, disruptions during task

service, and project arrival times are uncertain. System parameters are estimated

using data from the IT SDO. Our goal is to identify an effective schedule of tasks

and assignment of tasks to agents, capturing uncertainties using uncertainty sets in

a robust scheduling model.

We apply logic-based Benders decomposition to solve the scheduling problem with

uncertain parameters. First, a three-stage decomposition is proposed. The master

problem assigns projects’ tasks to agents. Then, Subproblem 1 finds an optimal

sequence without considering uncertainty. In Subproblem 2, uncertainty is captured

by computing the worst-case result given an uncertainty set. If uncertainty sets

are modeled polyhedrally, we prove that the three-stage decomposition is simplified

to a two-stage decomposition combining Subproblems 1 and 2. The master problem

assigns tasks to agents, and the subproblem schedules these assigned tasks considering

the uncertainty set. The objective is to minimize the weighted tardiness.

4.1 Introduction

Project assignment and scheduling is challenging especially in a services delivery or-

ganization where the numbers of agents and projects are large, even in a deterministic

This chapter is joint work with Aliza R. Heching, John N. Hooker, and Alan Scheller-Wolf.
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setting. With the prevalence of uncertainty in real-life, we consider this problem in

a stochastic setting: Ignoring uncertainty may lead to underestimation of projects’

finishing times and cost, leading to dissatisfied customers.

We analyze a project scheduling problem with disruptions, cross-trained agents,

heterogeneous projects and service quality guarantees, where the durations of a

project’s tasks, occurrence of disruptions, and the arrivals of the projects are un-

certain. This problem is motivated by a real problem at a large, global, IT services

delivery organization (SDO). We investigate whether robust optimization, a recent

approach to optimization under uncertainty, can be used when the uncertainties in

the IT SDO are represented by uncertainty sets. Our goal is to find an effective and

robust assignment and schedule of the tasks for each agent.

The remainder of the paper is organized as follows. In Section 4.2 we survey recent

work on project scheduling with uncertainty and alternative solution methods. The

deterministic scheduling and general robust models are introduced in Section 4.3.

In Section 4.4, we introduce logic-based Benders decomposition and apply it to the

robust model from Section 4.3. We propose a three-stage decomposition for our robust

project scheduling problem, and simplify it to a two-stage decomposition in Section

4.5. Concluding comments, extensions, and future work are provided in Section 4.6.

4.2 Literature Survey

Projects are usually managed under high levels of uncertainty stemming from sources

such as resource availability, team competence, commitment of upper management,

and project data (processing times, release dates and due dates). Uncertainty is

very common, thus few projects are completed without time or cost overruns (Pich

et al., 2002). Especially in service centers at large IT services delivery organizations,

assigning and scheduling projects for each agent become quite difficult, due to both
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uncertainties as well as the large numbers of agents and projects.

The project scheduling literature proposes different strategies to cope with uncer-

tainty. A common method is proactive/reactive scheduling : First, a robust baseline

schedule is generated given the distribution of the uncertainty; then, as uncertain-

ties occur, the baseline schedule is updated. Note that it is also possible to fully

reschedule projects with the proactive/reactive scheduling method (Demeulemeester

and Herroelen, 2009). Event-based dynamic programming is another method to solve

the project scheduling problem as studied in (Koole, 2000). This method deals with

event operators (building blocks of the value function) where an operator is associated

with each basic event in the system, such as an arrival at a queue or a service com-

pletion. The uncertainty is captured by the transition probabilities between events,

which are assumed to be known.

An alternative method is scenario-based modeling, which proceeds as follows.

Given the distribution of the uncertainty in the problem, one can generate all sce-

narios (or a modest sample of scenarios). Using the generated scenarios, the problem

can be solved as a deterministic problem. A major drawback is that a large number

of scenarios (even when limiting to a sample of scenarios) makes the problem difficult

to solve (Dembo, 1991). Another method is to define the problem as a multi-stage

stochastic program with recourse. For example, Yen and Birge (2006) modeled an

airline crew scheduling problem with uncertain disruptions as a two-stage stochastic

integer program with recourse. Hence, given the accurate probabilistic description of

uncertainty, a stochastic programming method can be applied. For a detailed review

of stochastic programming solution techniques, we refer to the works of Birge and

Louveaux (2011). However, methods assuming perfect information about the distri-

bution of the uncertainty may suffer, as precise knowledge of the underlying probabil-

ities is usually unavailable in practice. In addition, computational complexity might

increase due to sample size. Hence, robust optimization becomes advantageous due
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to its distribution-free property and computational tractability.

Robust optimization is a leading methodology for handling optimization problems

with uncertainty (Bertsimas et al., 2004). We focus on robust optimization where

uncertainty is modeled as uncertain parameters belonging to a set defined as the

uncertainty set. Our main goal is to solve the problem with respect to an uncertainty

set, thereby identifying a robust solution.

Robust optimization attempts to ensure that the solution remains feasible and

near optimal even if the parameters change (Bertsimas and Thiele, 2006). The first

approach to model parameter uncertainty was proposed by Soyster (1973). He con-

sidered a linear optimization problem where columns of the coefficient matrix are

uncertain and belong to a convex uncertainty set. He constructed a solution that

is feasible for all data in the uncertainty set. Originally a worst-case scenario was

proposed; but this is typically too conservative for practical implementations. To

overcome this overconservatism, Ghaoui and Lebret (1997); Ben-Tal and Nemirovski

(1998); Ghaoui et al. (1998); Ben-Tal and Nemirovski (1999), and Ben-Tal and Ne-

mirovski (2000) studied ellipsoidal uncertainty sets by removing unlikely outcomes of

uncertain parameters. The robust counterpart of some important generic convex op-

timization problems under ellipsoidal uncertainty sets are exactly or approximately

tractable problems which can be solved by interior point methods. However, the

robust counterpart of a linear programming problem becomes a second-order conic

problem. Thus, the complexity of the problem increases with the ellipsoidal uncer-

tainty set.

To avoid this increasing complexity, Bertsimas and Sim (2004), and Bertsimas

et al. (2004) proposed a robust optimization approach with a polyhedral uncertainty

set. This robust counterpart of linear programming problem remains a linear pro-

gramming problem; thus, the method is more tractable, especially in large-scale set-

tings. The level of conservatism can also be controlled via restricting the number of
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parameters that take their worst-case values (Bertsimas and Brown, 2009; Bertsimas

and Sim, 2003, 2004; Conde, 2009; Natarajan et al., 2009; Yaman et al., 2007). Ro-

bust optimization with uncertainty sets is an evolving and relatively new method.

We have provided only an overview of robust optimization literature; for a detailed

review, we refer to the works of Bertsimas and Thiele (2006); Bertsimas et al. (2011)

and Ben-Tal et al. (2009).

As mentioned in Section 4.1, we are inspired by a project scheduling problem

observed at a large IT services delivery organization with cross-trained agents, het-

erogeneous projects, schedule disruptions, and service quality guarantees. Our goal

is to find an effective assignment and schedule of tasks for each agent, capturing the

system uncertainties. We design a novel robust scheduling model to solve this project

scheduling problem.

4.3 The Models

We develop project scheduling models that describe the operations at a large IT

services delivery organization (SDO). We first discuss the business setting and then

describe the models. Our objective is to assign incoming projects’ tasks to agents at

the IT SDO so as to provide timely delivery to customers. The SDO employs several

hundred agents, differentiated according to their skills, who process thousands of

incoming customer projects each year. A project may consist of several tasks that

must be completed in a prescribed order. An agent must have at least the necessary

required skill level to complete the task: For example, suppose Java programming

skill is required for a project’s task. Then, this task must be assigned to an agent

who has at least Java programming skills, but it may be assigned to an agent who

has skills in addition to Java programming skills.

Based on the data sets we have analyzed, late deliveries on projects result pri-
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marily from interruptions to service that require a task to be set aside temporarily.

Examples of such interruptions include cases where the agent may need more informa-

tion from a customer before continuing with the task, authorization from a superior,

and so forth. The resulting delay may be several days. An agent may be able to

work on other tasks during this period, but only if the agent has been assigned other

tasks. The schedule must therefore anticipate this possibility when assigning tasks.

Late deliveries on projects are also caused by variability in task processing times.

Data analysis indicates that task processing times can differ by a factor of two or

more for tasks of a given type. This appears to have a less significant impact than

interruptions, since total processing times tend to be measured in hours rather than

days. However, long processing times can upset the schedule if several occur in a

row. There are project classes defined by the customer, required skill, type of project,

country of origin and so on. Longer processing times are somewhat predictable based

on the class, particularly the country of origin.

Interruptions usually occur as processing gets underway, and the agent finds that

key information required to complete the task is missing. This, combined with the

fact that processing times are short, suggest that there is no need to adopt pre-

emptive scheduling model. (If the processing times were long, using a pre-emptive

scheduling model might be necessary.) As the processing times are short in the IT

service center, we treat the interrupted task as having a delayed start time. Under

this modeling approach, the primary uncertainty is in the release time.

The schedule can be re-computed on a rolling basis as projects arrive. Our initial

assumption is that tasks whose processing has already started are not rescheduled.

However, this is not a limiting assumption since task processing times are typically

less than one day.

We adopt a phased approach to addressing this problem. We first model the

deterministic version of the project scheduling problem in Section 4.3.1. We then
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Table 4.1: Nomenclature for the deterministic project scheduling problem.

Indices
j ∈ J task
i agent

Sets
J set of tasks ({1, 2, ..., n})
Si skill set of agent i
S′j required skill set to serve task j

Parameters
rj release time of task j
dj deadline (or due date) of task j
pj processing time of task j
cj unit tardiness cost of task j

Variables
yj agent assigned to task j
sj start time of task j

introduce a general robust model in Section 4.3.2. In Section 4.4, we introduce logic-

based Benders decomposition. First, a three-stage decomposition is proposed to solve

the robust scheduling problem capturing uncertain release times and processing times

in Section 4.5. We describe this decomposition and its properties in Sections 4.5.1

- 4.5.3. Then, in Section 4.5.4, a two-stage decomposition is proposed by using the

convexity analysis of Theorem 4.5.1 and proof of equivalent formulations of Theorem

4.5.3.

4.3.1 Deterministic Project Scheduling Model

We first state the deterministic version of the problem. The notation is summarized

in Table 4.1.

The tardiness cost may reflect priorities (e.g., important clients). If only the

completion time of a project matters, the cost is assigned to the final task of the

project, and the other tasks have zero cost. The precedence graph (J,E) is a directed
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graph in which (j, j′) ∈ E when task j must finish before task j′ starts.

Let α+ = max{0, α}. Assuming no preemption, the problem can be stated as in

(4.1).

min
∑

j cj(sj + pj − dj)+

S ′j ⊂ Syj , all j (a)

sj ≥ rj, all j (b)

noOverlap ((sj|yj = i), (pj|yj = i)) , all i (c)

sj + pj ≤ sj′ , all (j, j′) ∈ E (d)

(4.1)

The objective function minimizes weighted tardiness of tasks. Constraint (a)

ensures that agents have the skills for the tasks they are assigned. Constraints (b)

states that tasks are processed after their release times. The noOverlap constraint in

(c) has the form noOverlap(s, p), which requires that tasks 1, . . . , n with processing

times p = (p1, . . . , pn) be given start times s = (s1, . . . , sn) so that the tasks do not

overlap. Constraint (c) therefore states that the tasks assigned to each agent i do

not overlap. Constraint (d) enforces the precedence graph. An agent who will be

unavailable for a certain period [t, t′] should be pre-assigned a dummy task with a

fixed start time t and duration t′ − t.

4.3.2 General Robust Model

The idea behind robust scheduling is to leave flexibility in the schedule so that it can

be adjusted to accommodate unexpected delays without major disruption. The sim-

plest sort of robust scheduling plans for the worst case. Suppose θ = (θ1, . . . , θm) is a

tuple of uncertain parameters, such as tasks’ processing times or delay costs. If we let

f(x, θ) be the cost of a schedule x when θ represents a tuple of uncertain parameters,

then the worst-case robust scheduling solves the problem minx{maxθ{f(x, θ)}}.

The problem with worst-case scheduling is that it is too conservative. There is

vanishingly small probability that every parameter will take its worst-case value, and
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it makes no sense to plan for this.

If we know the joint distribution of the random variables θ1, . . . , θm, then we can

optimize over all possible realizations of θ that have probability at least ε:

min
x∈X

{
max
θ
{f(x, θ) | Pr(θ) ≥ ε}

}
However, we don’t know the joint distribution. It is hard enough to make realistic

assumptions about the distribution of one parameter, and practically impossible to

characterize the joint distribution of thousands of parameters. We will therefore

abandon this approach.

A recently studied alternative (Bertsimas and Brown, 2009; Bertsimas and Sim,

2003, 2004; Conde, 2009; Natarajan et al., 2009; Yaman et al., 2007) is restricted

robust scheduling, which limits how many parameters can take really bad values. We

suppose that θ belongs to an uncertainty set Θ, which contains θ vectors that we

believe are not too unlikely, without quantifying probabilities as illustrated (4.2).

min
x∈X

{
max
θ∈Θ
{f(x, θ)}

}
(4.2)

r-restricted robust scheduling supposes that at most r parameters take their worst-

case value. However, we will not solve our problem as an r-restricted robust scheduling

problem since there is no evident upper bound on the number of delayed tasks in

the SDO’s service center. Instead, we consider uncertain parameters that belong to

uncertainty sets. This still complicates solution of the problem, but we believe the

decompositions described in the following sections can provide a practical solution.

In the IT SDO’s scheduling problem, the uncertain parameters are the delays

in the release times and the processing times. The delays in the release times are

defined by ∆r where ∆r represents a tuple of the delays, (∆r1, . . . ,∆rn) and belongs

to uncertainty set R. The uncertain processing times are p+∆p where ∆p represents

a tuple of the processing time’s uncertain part, (∆p1, . . . ,∆pn) and ∆p belongs to

uncertainty set P .
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A difficulty with unpredictable processing times is that tasks assigned to a par-

ticular agent may overlap. We thus want to fix the sequence σ rather than the start

times s of tasks when solving the worst-case subproblem, because start times may

have to be adjusted to avoid task overlap. We therefore replace the start time variable

sj with a sequence variable σj, which represents the position of task j in sequence

σ. Note that σ is a single sequence computed for all tasks and agents. Then, (4.2)

becomes (4.3) where f defines the total weighted tardiness of all tasks in terms of the

decision variables: σ, x, ∆r, and ∆p, representing the sequence, the assignment, the

delays in the release times, and the uncertainty in the processing times for all tasks,

respectively.

min
y,σ

 max
∆r ∈ R
∆p ∈ P

{f(σ, y, r + ∆r, p+ ∆p)}

∣∣∣∣∣∣∣S ′j ⊂ Syj

 (4.3)

Now f(σ, y, r + ∆r, p + ∆p) is calculated by first constructing a greedy schedule

based on the given values of (σ, y, r + ∆r, p + ∆p) and then observing the weighted

tardiness of this schedule. The greedy schedule has each agent perform assigned tasks

in the order given by σ.

Let pr(j, σ, y) be the task that immediately is sequenced before task j at the same

agent yj according to the sequence σ and assignment y. If we assume that σ observes

the precedence relations in the graph (J,E), we can write

f(σ, y, r + ∆r, p+ ∆p) =
∑
j

cj(sj + pj + ∆pj − dj)+ (4.4)

where sj is recursively defined for all j = 1, . . . , n by

sj = max

{
rj + ∆rj, spr(j,σ,y) + ppr(j,σ,y) + ∆ppr(j,σ,y), max

(j′,j)∈E
{sj′ + pj′ + ∆pj′}

}
(4.5)
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Each task j starts at the earliest possible time that is defined by the maximum

of the three events formulated in (4.5): (i) the delayed release time of task j, (ii) the

finishing time of the previously scheduled task just before task j at agent yj, and (iii)

the finishing time of all the predecessor tasks. Note that, spr(j,σ,y) = −∞ if task j is

the first task assigned to some agent.

4.4 Logic Based Benders Decomposition

Logic-based Benders decomposition (Hooker and Ottosson, 2003) is a generalization

of Benders decomposition accommodating a much wider range of problems. In con-

trast with the classical Benders method, the subproblem can in principle be any

combinatorial problem, not necessarily a linear or nonlinear programming problem.

For example, it can be a scheduling problem solved by constraint programming (CP),

a method well suited to scheduling.

This flexibility has led to the application of logic-based Benders decomposition to

planning and scheduling problems that naturally decompose into an assignment and

a scheduling portion. Jobs are assigned to facilities by the Benders master problem

using mixed integer programming (MILP), and the subproblem uses CP to schedule

jobs on each facility. This approach can reduce solution times by several orders of

magnitude relative to methods that use MILP or CP alone (Hooker, 2004, 2005b,a,

2006, 2007a; Jain and Grossmann, 2001; Thorsteinsson, 2001).

We apply logic-based Benders decomposition to the general robust problem rep-

resented in (4.2). First, write (4.2) as

min v
v = maxθ∈Θ{f(x, θ)}
x ∈ X

(4.6)
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The master problem for (4.6) is represented in (4.7), with x as the decision variable.

min z
Benders cuts
x ∈ X

(4.7)

The objective in (4.7) is to minimize the objective function z when the decision

variable x is in the feasible set of x vectors, X. The Benders cuts are formulated in

terms of the decision variable x and put lower bounds on the objective function z as

the logic-based Benders decomposition continues to iterate.

Given the optimal solution of the master problem x̄, the subproblem is formulated

in (4.8).

min v
v = maxθ∈Θ{f(x̄, θ} (4.8)

or simply maxθ∈Θ{f(x̄, θ)}. The objective is to calculate the worst-case solution for

the tuple of the uncertain parameters, θ, which is the only decision variable in the

subproblem.

Benders cuts are easy to generate. Let (θ∗, v∗) solve the subproblem. Then for

any x, the restricted worst-case cost is at least f(x, θ∗). So we have a Benders cut

z ≥ f(x, θ∗) (4.9)

Normally, Benders cuts are obtained by solving an inference dual of the sub-

problem. This is unnecessary for the very simple Benders cut illustrated in (4.9).

However, it may be possible to obtain stronger cuts from the dual.

Next, we investigate whether a similar technique can solve a robust project

scheduling problem where the processing times and the delays in the release times

of projects’ tasks are uncertain. First, we introduce a robust scheduling model with

three-stage decomposition in Section 4.5. Then, we simplify the three-stage decom-

position into a two-stage decomposition as shown in Section 4.5.4.
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4.5 Robust Scheduling Model with Three-Stage

Decomposition

To simplify notation, let’s assume all unit tardiness costs of tasks equal 1 (i.e., cj = 1

in (4.1) for all j) for the remaining part of the chapter. Thus, the weighted tardiness of

tasks equals the sum of each task’s tardiness. To decompose the scheduling problem

in (4.3), we write the master problem as

min z
S ′j ⊂ Syj , all j (a)

σj < σj′ , all (j, j′) ∈ E (b)

Benders cuts (c)

yj ∈ {1, . . . ,m}, all j (d)

(4.10)

The objective function minimizes the total tardiness when the decision variables

yj and σ represent the agent to whom task j is assigned, and the sequence of all

tasks, respectively. Constraint (a) ensures that agents have the skills for the tasks

they are assigned. Constraint (b) enforces the precedence graph. Constraints (c)

are the Benders cuts that will be added as the Benders decomposition continues to

iterate. The Benders cuts are written in terms of decision variables yj and σ, and

put lower bounds on the total tardiness, z, in the master problem.

Then, the subproblem is formulated as follows.

maxs,∆r,∆p
∑

j(sj + pj + ∆pj − dj)+

sj = max
{
rj + ∆rj, spr(j,σ̄,ȳ) + ppr(j,σ̄,ȳ) + ∆ppr(j,σ̄,ȳ)

}
, all j (a)

∆p ∈ P, ∆r ∈ R (b)

(4.11)

where (σ̄, ȳ) is the solution of the master problem. The starting time of each task,

the uncertain part of the processing time, and the delay in the release time of each

task are decision variables. Constraints (a) compute the starting time of task j by

calculating the maximum of the delayed release time of task j and the finishing time of
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the task sequenced just before task j at agent yj. Note that the precedence graph has

already been considered while computing the sequence in the master problem, so in

Constraint (b) we do not need to include the finishing time of task j’s predecessors.

If uncertainty sets P and R are polyhedra, this problem can be formulated as an

MILP formulation since the sequence of tasks is fixed.

If (s∗,∆r∗,∆p∗) solves the subproblem, the simplest Benders cut is the nogood

cut

z ≥

{ ∑
j(s
∗
j + pj + ∆p∗j − dj)+ if (σ, y) = (σ̄, ȳ)

−∞ otherwise
(4.12)

Note that the cut can be strengthened by finding a subset of the σjs and yjs that,

when fixed to σ̄j and ȳj, result in the same bound.

One can also use the cut (4.9), which is now

z ≥ f(σ, y, r + ∆r∗, p+ ∆p∗) (4.13)

where f represents the total tardiness function when σ, y,∆r∗, and ∆p∗ are fixed. It

is not obvious how to impose this as a constraint in the master problem, because the

value of f must be calculated for each σ, y exactly. In principle, one can incorporate

the problem of finding the right start times s into a master problem (using only

inequality constraints), because the master problem is a minimization problem. A

different set of variables sk must be used for each Benders cut k. Then the master

problem becomes:

min z
S ′j ⊂ Syj , all j
σj < σj′ , all (j, j′) ∈ E
z ≥

∑
j z

k
j

zkj ≥ skj + pj + ∆pkj − dj, all j, k
skj ≥ rj + ∆rkj , all j, k
skj ≥ skpr(j,σ,y) + ppr(j,σ,y) + ∆pkpr(j,σ,y), all j, k

skj + pj + ∆pkj ≤ skj′ , all (j, j′) ∈ E, all k
skj ≥ 0, all j, k
yj ∈ {1, . . . ,m}

(4.14)
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where the decision variables are z, zk, y, σ, and sk. (∆rk,∆pk) is the solution of the

kth subproblem. It is possible to formulate this as an MILP. However, the MILP

model may become too large as the Benders cuts accumulate.

To overcome the increasing size of the problem, we propose a three-stage decom-

position illustrated in Figure 4.1. The master problem assigns tasks to agents. Then,

given the optimal assignment, Subproblem 1 finds an optimal sequence of tasks. This

sequence is sent to the master problem via a Benders cut which is solved again. This

iterative process continues until the master problem and Subproblem 1 have the same

objective function value. Then, the optimal sequence and assignment are sent to Sub-

problem 2 that captures uncertainty by finding the worst-case given the uncertainty

set. Hence, Subproblem 2 is solved, and the optimal starting times, the processing

times, and the delays in the release times are sent as Benders cuts to the master

problem which is solved again by iterating with Subproblem 1. This iterative pro-

cess continues until the master problem and Subproblem 2 have the same objective

function value.

Master 
Problem

Subproblem 1

Subproblem 2

,

Figure 4.1: Three-stage decomposition.

The master problem is shown in (4.15) where xij is a binary variable indicating
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whether task j is assigned to agent i. If it is, xij equals 1; otherwise 0.

min z

S
′
j ⊂ Si, all j (a)∑
i xij = 1, all j (b)

Relaxations (c)

Benders cuts (d)

xij ∈ {0, 1} (e)

(4.15)

The objective function minimizes the total tardiness. Constraint (a) ensures that

agents have the skills for the tasks they are assigned. Constraint (b) enforces that

every task should be assigned to an agent. Constraints (c) and (d) are relaxations

and Benders cuts, respectively, putting lower bound on the total tardiness, z.

4.5.1 Solving the Sequencing Subproblem

A project’s tasks are typically carried out by a single agent who has at least the

necessary required skill level to complete the tasks in the IT service center. Thus, we

can decompose the problem with respect to agents ignoring the precedence relations

of tasks that are assigned to different agents. However, if a project is not completely

assigned to an agent, then, due to precedence relations between tasks, we may need

to decompose the problem with respect to sets of agents such that a set of agent is

defined by the smallest set of agents assigned to the tasks having precedence relations.

For example, suppose there are four tasks, and task 1 is the predecessor of task 2.

Tasks 1 and 2 are assigned to agents 1 and 3, respectively. And the other tasks are

assigned to agent 2. Hence, there are two sets of agents: {1, 3}, and {2}, that we

need for decomposing Subproblem 1 in this example.

For each iteration k and each agent i, we solve Subproblem 1 represented in (4.16)
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to find an optimal sequence of the tasks assigned to agent i without uncertainty.

min zki
zki ≥

∑
k(s

k
j + pj − dj)+ (a)

disjunctive ((sj | x̄ij = 1), (pj | x̄ij = 1)) (b)

skj ≥ skj′ + pj′ all (j′, j) ∈ E, x̄ij = x̄ij′ = 1 (c)

skj ≥ rj, all j (d)

(4.16)

In (4.16) for agent i and current iteration k, the objective is to minimize agent i’s

total tardiness. Constraint (a) computes the total tardiness for agent i. Given the

optimal assignment of the master problem, x̄ij, constraint (b) computes a disjunctive

sequence for the tasks assigned to agent i by the disjunctive global constraint,

so only one task is served at a time. Constraint (c) enforces the precedence graph.

Constraint (d) states that a task starts after its release time.

The optimal sequence computed by the Subproblem 1 is sent as a Benders cut to

the master problem that is solved again. The iterative process between Subproblem 1

and the master problem continues until they have the same objective function value.

4.5.2 Solving the Uncertainty Subproblem

When Subproblem 1 and the master problem have the same objective function value,

we solve Subproblem 2 represented in (4.17).

max
∑

j(sj + pj + ∆pj − dj)+

sj = max
{
rj + ∆rj, spr(j,σ̄,x̄) + ppr(j,σ̄,x̄) + ∆ppr(j,σ̄,x̄)

}
, all j (a)

∆p ∈ P, ∆r ∈ R (b)

(4.17)

Subproblem 2 captures the uncertainty sets of processing times and release times.

The objective is to maximize the worst-case total tardiness within the uncertainty

sets given sequence σ̄ and assignment x̄. Constraint (a) computes the starting time

of each task j by considering whether they can start at their delayed release times or
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when the previously scheduled task just before task j at the same agent is finished.

Constraint (b) constrains the uncertain parameters to take values from the respective

uncertainty sets.

If we decide to use this three-stage decomposition, we can rewrite Subproblem 2

within a dynamic programming model, since dynamic programming can be effectively

applied to handle uncertainty of the robust scheduling problem given the assignment

and the sequence. At each stage in the dynamic programming model, we schedule

a task in accordance with the given sequence, and the decision is to pick the task’s

uncertain parameters defined by the uncertainty set. To simplify our notation, let’s

assume that the delays in the release times are the only uncertainties at the service

center. (Even if we might have assumed that only the delays in the release times are

uncertain, it will be a valid assumption since the processing times of the tasks are

very short in the IT service center.)

Next, we prove that the optimal values of the uncertain parameters lie in a subset

of extreme points. This result simplifies the three-stage decomposition to a two-stage

decomposition in Section 4.5.4.

4.5.3 Dynamic Programming Formulation

Let’s define the decision variables and the states of the (backward) recursive rela-

tionship for the maximum-total tardiness problem. The decision variable at stage j

is the delay of task j’s release time. The value function is the total tardiness, where

the states are the vector of slack values of the uncertainty set and the ending time

of the previously scheduled task. Note that the delays are represented in the release

times by ∆r where ∆r is a vector of the delays for each task: ∆r = [∆r1, ...,∆rn].

At each stage, the decision is to pick release times that maximize total tardiness

in the schedule from that stage on. The uncertainty set of the delays in release times

is defined by a polyhedral uncertainty set formulated as A ∆r ≤ U and ∆r ≥ 0,
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where the dimension of the A matrix depends on the number of constraints defining

the uncertainty set and the number of tasks. Given the sequence of tasks at each

agent, the recursive relationship on the maximum-total tardiness is shown in (4.18)

for stage j.

gj(uj, ej) = max
∆rj :A.,j∆rj≤uj

((max {rj + ∆rj, ej}+ pj − dj)+

+gj+1(uj − A.,j∆rj,max {rj + ∆rj, ej}+ pj))
(4.18)

where uj is the vector representing the slack values of A∆r ≤ U at the jth iteration,

and ej is the ending time of the previously scheduled task just before task j at the

same agent. The boundary condition is

gn(un, en) = max
∆rn:A·,n∆rn≤un

{(
max{rn + ∆rn, en}+ pn − dn

)+
}

(4.19)

Theorem 4.5.1. The value function

gj+1

(
a− b∆r,max{γ + ∆r, δ}+ ε

)
(4.20)

is convex in ∆r, where a, b, γ, δ, and ε are arbitrary constants.

Proof. The proof is by induction on j = n−1, n−2, . . . , 1. When j = n−1, we have

from (4.19) that (4.20) is

max
∆rn

{(
max

{
rn + ∆rn,max{γ + ∆r, δ}+ ε

}
+ pn − dn

)+
}

It can be seen that this expression is convex in ∆r by repeatedly applying the fact

that max{α+∆r, β} is convex in ∆r for arbitrary constants α, β. And the maximum

of two convex functions is a convex function. Now for the inductive hypothesis, we

suppose that

gj+2

(
a− b∆r,max{γ + ∆r, δ}+ ε

)
(4.21)
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is convex in ∆r, where a, b, γ, δ, and ε are arbitrary constants. Using (4.18), we can

write (4.20) as follows:

max
∆rj+1

{(
max

{
rj+1 + ∆rj+1,max{γ + ∆r, δ}+ ε

}
+ pj+1 − dj+1

)+

+gj+2

(
a− b∆r − A·,j+1∆rj+1,max

{
rj+1 + ∆rj+1,max{γ + ∆r, δ}+ ε

}
+ pj+1

)}
The second line can be rearranged to yield

max
∆rj+1

{(
max

{
rj+1 + ∆rj+1,max{γ + ∆r, δ}+ ε

}
+ pj+1 − dj+1

)+

+gj+2

(
a− b∆r − A·,j+1∆rj+1,max

{
γ + ∆r,max{rj+1 + ∆rj+1 − ε, δ

}
+ ε+ pj+1

)}
(4.22)

We wish to show that (4.22) is convex in ∆r. But (4.22) has the form max∆rj+1
{B+

C}. It can be seen as above that B is convex in ∆r. Furthermore, C has the form

(4.21) and is therefore convex by the inductive hypothesis. Thus B + C is convex

because it is the sum of convex functions. Finally, (4.22) is a maximum over convex

functions and is therefore convex in ∆r, as claimed.

Now we can infer the convexity of the expression that is maximized in the recur-

sion.

Corollary 4.5.2. The expression maximized in recursion (4.19) is a convex function

of ∆rj.

Proof. Because (4.19) has the form gj(uj, ej) = max∆rj{B + C}, it suffices to show

that B and C are convex in ∆rj. But B is clearly convex, and C is convex due to

Theorem 4.5.1.

This corollary implies extreme point solutions for a polyhedral uncertainty set,

but it actually implies something stronger. We know that ∆r1 takes one of the two

extreme values ∆rmin
1 or ∆rmax

1 (min or max of ∆r1 subject to A∆r ≤ U). Also ∆r2
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takes a min or max value subject to A∆r ≤ U and ∆r1 = ∆rmin
1 , or a min or max

value subject to A∆r ≤ U and ∆r1 = ∆rmax
1 , and so forth. It follows that ∆r takes

an extreme point value, and in fact belongs to a special subset of extreme points.

This subset is equal to the set of all extreme points when the uncertainty set is a

simplex.

This results helps us to simplify the three-stage decomposition, and a two-stage

decomposition is introduced in Section 4.5.4.

4.5.4 Robust Scheduling Model with Two-Stage Decompo-

sition

By using Theorem 4.5.1, we show that the optimal solution of Subproblem 2, where

worst-case delays are computed by maximizing the total tardiness given the un-

certainty set and the sequence of tasks, lies at one of the extreme points of the

uncertainty set. Thus, we simplify the three-stage decomposition to a two-stage

decomposition. The notation is summarized in Table 4.2.

Master 
Problem

Subproblem 

Figure 4.2: Two-stage decomposition.

The relation between the master problem and the subproblem is summarized in

Figure 4.2. First, a master problem is solved assigning tasks to agents. Then, the
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Table 4.2: Nomenclature for the two-stage decomposition for the robust scheduling
problem.

Indices
j ∈ J task
i agent
k iteration
` ∈ L extreme point of a polyhedron defining the uncertainty set, L,

for the delays of the release times

Sets
J set of tasks ({1, 2, ..., n})
Si set of agent i’s skills
L set of extreme points defining the uncertainty set for

the delays of the release times

Parameters
dj deadline (or due date) of task j
x̄ij solution value of xij in the master problem
σ∗ robust sequence calculated at the subproblem
∆r∗j delay in the release time of task j in the subproblem

s∗j,` start time of task j in the subproblem when `th extreme point

defines the delays
T ∗k total tardiness at previous iteration k

Variables
xij = 1 if task j is assigned to agent i
T total tardiness
sj,` start time of task j when `th extreme point of the uncertainty set L

defines the delays
∆r`j delay in the release time of task j in the `th extreme point

of the uncertainty set L
σ sequence of tasks
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optimal solution of the master problem becomes parameters for the subproblem where

we schedule tasks with respect to the uncertainty set of the delays in the release times

of the tasks.

The master problem is shown in (4.23). It is an assignment problem that computes

an optimal assignment of tasks to agents at each iteration.

min z

S
′
j ⊂ Si, all j (a)∑
i xij = 1, all j (b)

Relaxations (c)

Benders cuts (d)

xij ∈ {0, 1} , all i, j (e)

(4.23)

The objective function is to minimize tardiness in (4.23) where xij is the decision

variable representing whether task j is assigned to agent i. Constraint (a) ensures

each task is assigned to an agent that has at least required skills to serve that task.

Each task is assigned to only one agent by Constraint (b). We have relaxations and

Benders cuts as introduced in Sections 4.5.5 and 4.5.6 in Constraints (c) and (d),

linking xij variables with the objective function z.

After solving the master problem, we find the optimal assignment at the cur-

rent iteration. To find a robust schedule, the master problem communicates with

the subproblem via sending the optimal assignment of the tasks to the agents, x̄ij.

Thus, given the optimal assignment calculated at the master problem, we solve the

subproblem in (4.24).

min T

T ≥
∑

j(sj ` + pj − dj)+, all ` (a)

noOverlap ((sj|x̄ij = 1), (pj|x̄ij = 1)) , all i, ` (b)

sj ` ≥ rj + ∆r`j, all j, ` (c)

sj ` ≥ sj′ ` + pj′ all (j′, j) ∈ E (d)

(4.24)
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We find the schedule of the tasks assigned to the agents considering the delays

of the release times via a minmax problem in (4.24). Let’s define L the set of all

extreme points of the polyhedron representing the delays of the release times (i.e.,

uncertainty set); rj, pj, and dj are release time, processing time, and deadline of task

j, respectively. The objective function in (4.24) is to minimize maximum tardiness,

T , that is calculated for each extreme point ` in the uncertainty set L. Variable sj `

is the starting time of task j when the delay is defined by the `th extreme point.

Constraint (a) computes the total tardiness. Constraint (b) prevents overlapping of

tasks at agent i via the global constraint, noOverlap, given the optimal assignment

from the master problem, x̄ij. A task j can start only after its release time and the

possible delay (if there is any) as illustrated in Constraint (c). Constraint (d) enforces

the precedence graph.

Theorem 4.5.3. The three-stage decomposition and the two-stage decomposition are

equivalent optimization problems.

Proof. We rewrite the two-stage problem’s subproblem in (4.24). The two-stage

problem minimizes (4.25) over all x̄.

min
s`

max
`


∑
j

(sj ` + pj − dj)+

∣∣∣∣∣
noOverlap ((sj|x̄ij = 1), (pj|x̄ij = 1)) , all i, `

sj ` ≥ rj + ∆r`j, all `

sj ` ≥ sj′ ` + pj′ `, all (j′, j) ∈ E, x̄ij = x̄ij′ = 1


(4.25)

where s` = [s1 `, . . . , sn `] is a vector of the starting times of tasks when the delay of

release times is defined by the `th extreme point of the uncertainty set.

In the three-stage decomposition introduced in Section 4.5.4, the objective is to

minimize the tardiness over possible sequences in Subproblem 1. In Subproblem 2,

the worst-case delay is computed given the sequence. First, given sequence σ̄, let’s
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rewrite Subproblem 2 as follows.

max
`

min
s`


∑
j

(sj ` + pj − dj)+

∣∣∣∣∣
sj ` reflects σ̄

noOverlap ((sj|x̄ij = 1), (pj|x̄ij = 1)) , all i, `

sj ` ≥ rj + ∆r`j, all `


(4.26)

where s` is defined again as the vector of the starting times of tasks when the delay

of release times is defined by the `th extreme point of the uncertainty set.

Then, we combine Subproblem 1 and reformulated Subproblem 2 as illustrated in

(4.26). The resulting formulation is shown in (4.27).

min
σ

max
`

min
s`


∑
j

(sj ` + pj − dj)+

∣∣∣∣∣
sj ` reflects σ

noOverlap ((sj|x̄ij = 1), (pj|x̄ij = 1)) , all i, `

sj ` ≥ rj + ∆r`j, all `

sj ` ≥ sj′ ` + pj′ `, all (j′, j) ∈ E, x̄ij = x̄ij′ = 1


(4.27)

The three-stage problem minimizes (4.27) over all x̄. The formulation in (4.27) is

equivalent to formulation in (4.28) since sj ` reflects σ.

min
s`

max
`

min
s`


∑
j

(sj ` + pj − dj)+

∣∣∣∣∣
noOverlap ((sj|x̄ij = 1), (pj|x̄ij = 1)) , all i, `

sj ` ≥ rj + ∆r`j, all `

sj ` ≥ sj′ ` + pj′ `, all (j′, j) ∈ E, x̄ij = x̄ij′ = 1


(4.28)

But we can simplify (4.28) by deleting the redundant inner minimization over

s`, which yields (4.25). Thus the two-stage and three-stage problems both minimize

(4.25) over all x̄ and are therefore equivalent.

4.5.5 Relaxations of the Subproblem for the Master Problem

We can strengthen the master problem with relaxations of the subproblem, since the

subproblem relaxations allow the master problem to select reasonable assignments
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before many Benders cuts have been accumulated. The first relaxation is illustrated

in (4.29).

T ≥
∑

i T
D
i

TDi ≥
∑

j∈J(0,dk) pijxij − dk ∀i, k
TDi ≥ 0 ∀i

(4.29)

where J(0, dk) is the set of tasks whose time windows (i.e., release time and deadline)

are between 0 and dk (i.e., deadlines are less than dk). For each agent and each

distinct deadline of tasks, suppose all possible tasks that can start and need to be

finished before the chosen distinct deadline are scheduled consecutively. If we assume

that these tasks’ deadlines equal to the chosen distinct deadline, then tardiness value

for each agent, TDi is a valid relaxation computing a lower bound on the tardiness of

agent i.

As a second relaxation, we use a bound on tardiness that is developed by Hooker

(2007a). We assume minj {rj} is zero without loss of generality. (Note that if

minj {rj} 6= 0, this relaxation may become loose.) We index the tasks so d1 ≤

d2 ≤ · · · ≤ dn.

The relaxation is then written as:

T ≥
∑m

i=1

∑n
k=1 T̄ik

T̄ik ≥ 0

T̄ik ≥ (
k∑
j=1

piπi(j)xiπi(j) − dk)− (1− xik)Uik
(4.30)

where Uik =
∑k

j=1 piπi(j) − dk, π is a permutation of the indices for which pπ(1) ≤

· · · ≤ pπ(n).

4.5.6 Benders Cuts

The following nogood cut is added to the master problem at each iteration. We can

also strengthen the cut by finding the smallest set of the tasks that results in the
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same optimal objective function value, T ∗.

z ≥
{

T ∗ if x = x̄
−∞ otherwise

}
(4.31)

4.6 Conclusion

We consider a practical project scheduling problem at a large IT services delivery

organization (SDO) with cross-trained agents, heterogeneous projects, schedule dis-

ruptions, and service quality guarantees. Durations of projects’ tasks, disruptions

during task service, and project arrival times are uncertain. We estimate system

parameters using real data from the IT SDO. Our goal is to identify an effective

schedule of tasks and assignment of tasks to agents, capturing uncertainties in a

robust scheduling model.

We capture the uncertainties by uncertainty sets and use logic-based Benders

decomposition to solve the robust scheduling problem. Due to the processes of the

SDO’s IT service center, we assume the uncertainties are the delays in the release

times of tasks and the processing times. First, we model a three-stage decomposition.

In the master problem, tasks are assigned to agents. Given the optimal assignment of

the master problem, a sequence is computed in Subproblem 1. Then, the worst-case

solution given the uncertainty sets is calculated in Subproblem 2. We prove that

given polyhedral uncertainty sets, the worst-case solution of the second subproblem

lies at one of the extreme points. Thus, we show that we can simplify the three-stage

decomposition to a two-stage decomposition. In the two-stage decomposition, we first

compute the optimal assignment of tasks to agents at the master problem. Then,

we solve a scheduling model with uncertainty in the subproblem. The equivalence of

the three-stage and two-stage decompositions is also proven. In addition, relaxations

and Benders cuts are introduced for the decompositions.

In summary, we introduce a novel robust scheduling method to solve a project
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scheduling problem with uncertainty. We apply robust optimization to capture un-

certainty by uncertainty sets. Possible future research includes development of other

Benders cuts and strengthening them in the decomposition since the bounds are un-

necessarily weak and in many cases a proper subset of tasks are responsible for the

objective function value.
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5 CONCLUSION

Scheduling is an important decision-making process. If not managed properly, a

penalty can be charged both in the form of loss of goodwill and proportional to

the tardiness of the delivery. In this thesis, I aim to deepen the understanding of

scheduling problems in practice, and hope to inspire more related future research.

In Chapter 2, I solve single-facility non-preemptive scheduling problems over a

long time horizon, with tasks with deterministic durations but different release times

and deadlines. I use a hybrid method: logic-based Benders decomposition to solve

this pure scheduling problem. I decompose the long time horizon into time seg-

ments and consider two versions of the single-facility scheduling problem: segmented

and unsegmented. In the segmented problem, each job must be completed within

one time segment. In the unsegmented problem, jobs can overlap two or more seg-

ments. I compare classical methods and our logic-based Benders decomposition in

terms of computation time and memory requirements. I find that for these prob-

lems, logic-based Benders scales up more effectively than state-of-the-art Constraint

Programming (CP) and Mixed Integer Linear Programming solvers, especially for

the segmented problem. I further find that logic-based Benders decomposition is

not necessarily the fastest method, but clearly the most robust for the unsegmented

problem. I suggest a strategy of applying CP first, and if it fails to solve the problem

within a few seconds, switching to logic-based Benders decomposition. For segmented

instances, logic-based Benders decomposition is always superior, and, thus should be

used from the start.

In Chapter 3, I analyze a service center at a large, global, IT services delivery

organization (SDO) with cross-trained agents, heterogeneous customer requests, and
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service level agreements. I model the system as a multi-server queueing system, apply-

ing approximation and bounding techniques to evaluate different control policies, to

determine an appropriate static agent base and an effective request-assignment policy.

I demonstrate a simple but effective request-assignment policy based on thresholds,

and numerically compare this threshold-based policy and two näıve policies, captur-

ing the IT SDO’s service centers’ processes. I reveal that applying the threshold-based

policy might decrease the total cost without any major changes in the service center.

I further find managerial insights about the potential benefits of a such policy, for

example, how to set optimal threshold values, how to negotiate costs with customers,

and what mix of agents to hire.

In Chapter 4, I study a similar problem as Chapter 3: a project scheduling problem

at a large IT SDO with cross-trained agents, heterogeneous projects, and service

quality guarantees. The durations of projects’ tasks and arrival times are uncertain;

in addition, projects are subject to random disruptions. The objective function is to

minimize the weighted total tardiness. I identify an effective schedule of tasks and

assignments to agents by utilizing a novel robust scheduling model based on logic-

based Benders decomposition in which the uncertainties are captured by uncertainty

sets. I prove convexity of the objective function under a structured uncertainty set

(polyhedral). I show that the robust scheduling model is simplified because of this

convexity.

Besides the future work mentioned in the conclusion of each chapter, there are

other directions toward which this thesis can be extended. Characterizing the single-

facility scheduling problems in Chapter 2 to reveal the phase-transition of instances

(where average problem difficulty peaks and there is a mix of feasible and infeasible

instances), especially when solving an instance becomes nontrivial, is an interesting

direction for future research. Another potential future work is to explore different

uncertainty sets capturing time varying projects’ arrival rates in Chapter 4, as this
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is particularly useful to derive insights about the sensitivity of the robust scheduling

model.

130



A MATRIX ANALYTIC METHOD

The 1D-infinite Markov chain is modeled as a quasi-birth-and-death (QBD) process.

Level l denotes the lth column. For instance, in System 1, the number of 1H requests

in the system defines the level, whereas, in System 2, the number of 2H requests in

the system defines the level. The generator matrix, Q, of the process is expressed as

a block diagonal matrix:

Q =


L(0) F (0)

B(1) L(1) F (1)

B(2) L(2) F (2)

. . . . . . . . .


L(i) encodes the (local) transitions within level i, for i ≥ 0, F(i) encodes the (forward)

transitions from level i to level i + 1, for i ≥ 0, and B(i) encodes the (backward)

transitions from level i to level i − 1, for i ≥ 1. After incorporating busy period

transitions, all submatrices will have finite dimensions. The matrices for System 1

are given explicitly in Section A.1.

The stationary probability of being in level i, −→πi , is given recursively by

−→πi = −−→πi−1R
(i).

R(i) records the expected number of visits to the states in level i between two visits

to the level i− 1. l̂ is defined as the level QBD process starts repeating. Then, R(l)

is given recursively by

F (l−1) +R(l)L(l) +R(l)R(l+1)B(l+1) = 0
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when l ≤ l̂, and

R(l) = R

when l ≥ l̂. R is the minimal solution to the following matrix quadratic equation:

F (l̂) +RL(l̂) +R2B(l̂) = 0

−→π0(L0 +R(1)B(1)) =
−→
0

−→π0

∞∑
l=0

l∏
i=1

R(i)−→1 = 1.

We can calculate the mean number of requests by using the stationary probabili-

ties. For instance, in System 1, E[N1L]j1L,k1H and E[N1H ]j1L,k1H denote the expected

number of 1L and 1H requests, respectively, when the system is in state (j1L, k1H).

Deriving the mean number of 1H requests is trivial as the exact number of 1H re-

quests is tracked; see Figure 3.2. However, computing the number of 1L requests is

more complicated and requires conditioning on the state of the Markov chain. For

i = {0, 1, . . . , nlL − 1}, E[N1L]i1L,j1H = i for all j. For i = t+1L, E[N1L]t+1L,j1H
is the

mean number of requests in an M/M/1 system given service rate µH + µL plus the

additional t1L requests as the system is already busy. Using Little’s Law, one can

then calculate the mean response time of each class of request.

Let’s look at L, F , and B matrices of System 1 (1L and 1H requests) introduced

in Chapter 3 explicitly.

A.1 Matrices of System 1: 1H and 1L requests

Suppose we are solving the problem illustrated at Chapter 3. There are two agents

at the service center: one high skilled and one low skilled. 1L and 1H requests arrive

with rates λ1L and λ1H , respectively. A busy period begins when the number of 1L

requests is 3 (i.e., t1L = 3). Then, the submatrices are:
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L(0) =


−σ1 λ1L 0 0 0
µL −σ2 λ1L 0 0
0 µL + µH −σ3 λ1L 0
0 0 t1 −σ4 t12

0 0 t2 0 −σ5



L(i) =


−σ1 λ1L 0 0 0
µL −σ2 λ1L 0 0
0 µL −σ3 λ1L 0
0 0 t1 −σ4 t12

0 0 t2 0 −σ5


where σi is determined so that the sum of each row in the generator matrix Q becomes

zero.

F (i) = λ1HI

where I is an 5x5 identity matrix.

B(i) =


µH 0 0 0 0
0 µH 0 0 0
0 0 µH 0 0
0 0 0 0 0
0 0 0 0 0
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B MORE COMPUTATIONAL RESULTS

FOR CHAPTER 3

Typical traffic at the motivating IT SDO’s service centers is high for low complexity

requests but moderate for high complexity requests as mentioned in Chapter 3. In

addition, the total load of priority class 1 requests is lower than the total load of

priority class 2 requests. Finally the number of high skilled agents is less than the

number of low skilled agents. We generate more instances capturing these features

and analyze their performance numerically in this section.

We consider two cases: (i) ρ1L = 0.4, ρ1H = 0.3, ρ2L = 2.4, ρ2H = 1.1, and (ii)

ρ1L = 0.4, ρ1H = 0.3, ρ2L = 2.6, ρ2H = 1.1. For each case, there are two different

agent bases: (a) nH = 2, nL = 4, and (b) nH = 2, nL = 3.

B.1 Stability of the System

Figures B.1 and B.2 depict the expected number of high skilled agents busy with

1L, 1H, 2L, and 2H requests as a function of t1L and t2L. The available number

of high skilled agents is two which is represented by the dashed line. When the

thresholds are low, the expected number of busy high skilled agents increases as

low complexity requests are also served by the high skilled agents preempting high

complexity requests. The expected number of busy high skilled agents in Figure B.1

is slightly less than the expected number of busy high skilled agents in Figure B.2

since the load of 2L requests is higher in Figure B.2. In addition, in Figures B.1 and

B.2 when t2L = 3, the expected number of busy high skilled agents is more than the

available number of high skilled agents, thus these systems are not stable.
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Figure B.1: Expected number of busy high skilled agents as a function of t1L and
t2L when ρ1L = 0.4, ρ1H = 0.3, ρ2L = 2.4, ρ2H = 1.1, nL = 4, and nH = 2.

B.2 Effect of Threshold

B.2.1 Expected Response Times

The expected response time of 1H requests decreases and 1L requests increases as t1L

increases, until the expected response times converge to the case of separate queues

at some point after which increasing t1L further does not have any effect as illustrated

in Figures B.3 and B.4, respectively, for Cases (i) and (ii). When we increase t1L, 1L

requests steal fewer cycles from the high skilled agent which decreases the expected

response time of 1H requests. The expected response times of priority class 1 increases

as the total number of agents decreases. Note that since priority class 1 requests have

higher priority than priority class 2 requests, the expected response times of priority

class 1 requests do not change if t2L or load of priority class 2 requests changes.
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Figure B.2: Expected number of busy high skilled agents as a function of t1L and
t2L when ρ1L = 0.4, ρ1H = 0.3, ρ2L = 2.6, ρ2H = 1.1, nL = 4, and nH = 2.

In addition, the expected response times of 1H and 1L requests increase when the

number of low skilled agents decreases. Since the increase in 1H requests’ expected

response time is very small, this increase is not obvious in Figure B.3.

Similarly, expected response times of 2L and 2H requests are illustrated in Figures

B.5 and B.6, respectively, as a function of t2L when t1L = 5. The impact of t2L on

2H requests is higher than 2L requests because when t2L is small, the high skilled

agents’ queue might become highly loaded for the 2H requests. In Case (ii) with a

given agent base, the expected response times of priority class 2 requests are higher

than the ones in Case (i) with the same agent base as the load of 2L requests is more

in Case (ii). In addition, when the number of low skilled agents is 3, the expected

response times are higher since 2L requests stay longer in the system and preempt

2H requests more often.
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Figure B.3: Expected response time of 1H requests as a function of t1L, nL ∈ {3, 4},
nH = 2. Case(i): ρ1L = 0.4, ρ1H = 0.3, ρ2L = 2.4, ρ2H = 1.1, and Case(ii): ρ1L = 0.4,
ρ1H = 0.3, ρ2L = 2.6, ρ2H = 1.1.
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Figure B.4: Expected response time of 1L requests as a function of t1L, nL ∈ {3, 4},
nH = 2. Case(i): ρ1L = 0.4, ρ1H = 0.3, ρ2L = 2.4, ρ2H = 1.1, and Case(ii): ρ1L = 0.4,
ρ1H = 0.3, ρ2L = 2.6, ρ2H = 1.1.

B.2.2 Total Costs

In Chapter 3, we introduce two näıve policies potentially representing service centers’
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Figure B.5: Expected response time of 2L requests as a function of t2L when t1L = 5,
nL ∈ {3, 4}, nH = 2. Case(i): ρ1L = 0.4, ρ1H = 0.3, ρ2L = 2.4, ρ2H = 1.1, and
Case(ii): ρ1L = 0.4, ρ1H = 0.3, ρ2L = 2.6, ρ2H = 1.1.
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Figure B.6: Expected response time of 2H requests as a function of t2L when t1L = 5,
nL ∈ {3, 4}, nH = 2. Case(i): ρ1L = 0.4, ρ1H = 0.3, ρ2L = 2.4, ρ2H = 1.1, and
Case(ii): ρ1L = 0.4, ρ1H = 0.3, ρ2L = 2.6, ρ2H = 1.1.

operations with increasing cooperation: (i) Separate queue: high skilled agents serve

only high complexity (1H and 2H) requests, and low skilled agents only serve low
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complexity (1L and 2L) requests, and (ii) Prioritized cycle stealing: high skilled

agents serve high complexity requests and low skilled agents serve low complexity

requests, priority class 1 customers have higher priority than priority class 2 customer

requests, and if high skilled agents are idle, they can serve low complexity requests.
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60,500,000

25 27 29 31 33 35 37 39

Our policy

Separate queue

Prioritized cycle
stealing

Total Cost

t2L

Figure B.7: Comparison of our policy and näıve policies when t1L = 35, ρ1L = 0.4,
ρ1H = 0.3, ρ2L = 2.4, ρ2H = 1.1, C1L = C1H = 400k, C2L = 250k, C2H = 200k,
CL = 7, 000k, CH = 10, 000k, nL = 4, and nH = 2.

The total cost of 1L and 2L requests increases in the separate queue policy, but

since the decrease in the cost of 2H requests is more than the increase in the low

complexity requests’ total cost, the separate queue policy performs the best in Figure

B.7. Thus, hurting the low complexity requests by preventing them to preempt

the high complexity requests improves the total cost. However, in Figure B.8, the

separate queue policy performs the worst because as the load of 2L requests is higher,

preventing the 2L requests to preempt the 2H requests hurts the system more and

increases the cost of 2L requests more than it decreases the cost of 2H requests.

The total cost of a policy in Figure B.7 is lower than the total cost of the same

policy illustrated in Figure B.8 since the total load of the system is higher in Case

139



Total Cost

t2L
59,000,000

59,500,000

60,000,000

60,500,000

61,000,000

61,500,000

62,000,000

62,500,000

63,000,000

63,500,000

64,000,000

25 27 29 31 33 35 37 39

Our policy

Separate queue

Prioritized
cycle stealing

Figure B.8: Comparison of our policy and näıve policies when t1L = 35, ρ1L = 0.4,
ρ1H = 0.3, ρ2L = 2.6, ρ2H = 1.1, C1L = C1H = 400k, C2L = 250k, C2H = 200k,
CL = 7, 000k, CH = 10, 000k, nL = 4, and nH = 2.

(ii) depicted in Figure B.8. In Figures B.9 and B.10, we analyze Case (i) and (ii)

when the number of low skilled agents is 3. In both cases, the separate queue policy

performs the worst. When we decrease the number of low skilled agents to 3 and

apply separate queue policy, we hurt low complexity requests more than we improve

the high complexity requests. Hence, our policy and prioritized cycle stealing policy

perform better than the separate queue policy.

The total cost of our policy is lower than the prioritized cycle stealing policy with

respect to t2L as shown in Figures B.11 and B.12. A similar result is valid for Case

(ii) when the number of low skilled agents is 4. If we increase t1L and t2L enough,

the total costs of the prioritized cycle stealing policy and our policy should converge,

because the expected response time converges at some point after which increasing

t2L further does not make any difference in the expected response times of priority

class 2 requests. Thus, these examples allow us to understand when cooperation is

important and how our policy might improve the total cost.
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Figure B.9: Comparison of our policy and näıve policies when t1L = 35, ρ1L = 0.4,
ρ1H = 0.3, ρ2L = 2.4, ρ2H = 1.1, C1L = C1H = 400k, C2L = 250k, C2H = 200k,
CL = 7, 000k, CH = 10, 000k, nL = 3, and nH = 2.
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Figure B.10: Comparison of our policy and näıve policies when t1L = 35, ρ1L = 0.4,
ρ1H = 0.3, ρ2L = 2.6, ρ2H = 1.1, C1L = C1H = 400k, C2L = 250k, C2H = 200k,
CL = 7, 000k, CH = 10, 000k, nL = 3, and nH = 2.

B.3 What Mix of Agents to Hire

One of our goals is to determine an appropriate static agent base. The objective is
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Figure B.11: Comparison of our policy and the prioritized cycle stealing policy
when t1L = 35, ρ1L = 0.4, ρ1H = 0.3, ρ2L = 2.4, ρ2H = 1.1, C1L = C1H = 400k,
C2L = 250k, C2H = 200k, CL = 7, 000k, CH = 10, 000k, nL = 3, and nH = 2.
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Figure B.12: Comparison of our policy and the prioritized cycle stealing policy
when t1L = 35, ρ1L = 0.4, ρ1H = 0.3, ρ2L = 2.6, ρ2H = 1.1, C1L = C1H = 400k,
C2L = 250k, C2H = 200k, CL = 7, 000k, CH = 10, 000k, nL = 3, and nH = 2.

to minimize the total cost which is a combination of cost of agents and convex cost

of expected response times. As mentioned in Chapter 3, there is a trade-off between
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the number of agents and the target times of requests. If the cost of an agent is high,

even if hiring that agent improves expected response times of the requests, it may

increase the total cost.

We generate representative unit costs for Cases (i) and (ii) and analyze whether

hiring another low skilled agent is advisable as a function of t2L, illustrated in Figures

B.13 and B.14.
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Figure B.13: Analysis of hiring a low skilled agent as a function of t2L when t1L = 5,
ρ1L = 0.4, ρ1H = 0.3, ρ2L = 2.4, ρ2H = 1.1, C1L = C1H = 400k, C2L = 250k,
C2H = 200k, CL = 7, 000k, and CH = 10, 000k.

Even if unit cost of 2L requests, C2L, is higher than unit cost of 2H requests, C2H ,

hiring a low skilled agent does not result in the lowest cost when t2L = 3 as depicted

in Figure B.13. Since 2L requests preempt 2H requests more often when t2L = 3,

hiring another low skilled agent is more expensive than the total cost change due to

the increase in the expected response time of 2H requests and the decrease in the

expected response time of 2L requests. If t2L is between 5 and 9, hiring a low skilled

agent results in the lowest cost. When t2L ≥ 9, hiring another low skilled agent is

not necessary. In Figure B.14, we observe similar behavior of the total cost function.
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However, since load of 2L requests is higher in Case (ii) in Figure B.14 than Case (i)

in Figure B.13, hiring a low skilled agent has an important impact on the total cost

and results in lowest cost except when t2L = 3. Note that, given a fixed t2L the total

cost of Case (ii) is higher than the total cost of Case (i) since the load of 2L requests

is higher.
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Figure B.14: Analysis of hiring a low skilled agent as a function of t2L when t1L = 5,
ρ1L = 0.4, ρ1H = 0.3, ρ2L = 2.6, ρ2H = 1.1, C1L = C1H = 400k, C2L = 250k,
C2H = 200k, CL = 7, 000k, and CH = 10, 000k.
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