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Abstract

This thesis focuses on the design and analysis of discrete-event stochastic simulations involv-

ing correlated inputs, input modeling for stochastic simulations, and application of OM/OR

techniques to the operations of food banks. This thesis contributes to the stochastic simu-

lation theory by describing how to jointly represent stochastic and parameter uncertainties

in stochastic simulations with correlated inputs, and decompose the variance of the simu-

lation output into terms related to stochastic uncertainty and parameter uncertainty. Such

a decomposition would be beneficial for developing data collection schemas to reduce the

parameter uncertainty in stochastic simulations. Furthermore, this thesis contributes to the

vehicle routing theory by being the first work to rigorously study the 1-Commodity Pickup

and Delivery Vehicle Routing Problem (1-PDVRP) that arises in the context of food rescue

programs of food banks. A synopsis of the three chapters of the thesis follows.

Chapter 1: “Accounting for Parameter Uncertainty in Large-Scale Stochastic Simulations

with Correlated Inputs”

This chapter considers large-scale stochastic simulations with correlated inputs having Normal-

To-Anything (NORTA) distributions with arbitrary continuous marginal distributions. Ex-

amples of correlated inputs include processing times of workpieces across several workcenters

in manufacturing facilities and product demands and exchange rates in global supply chains.

Our goal is to obtain mean performance measures and confidence intervals for simulations

with such correlated inputs by accounting for the uncertainty around the NORTA distri-

bution parameters estimated from finite historical input data. This type of uncertainty is

known as the parameter uncertainty in the discrete-event stochastic simulation literature.

We demonstrate how to capture parameter uncertainty with a Bayesian model that uses

Sklar’s marginal-copula representation and Cooke’s copula-vine specification for sampling

the parameters of the NORTA distribution. The development of such a Bayesian model well

suited for handling many correlated inputs is the primary contribution of this chapter. We

incorporate the Bayesian model into the simulation replication algorithm and the Bayesian

simulation replication algorithm for the joint representation of stochastic uncertainty (i.e.,

the uncertainty that is due to the random numbers used in the simulation) and parameter un-

certainty in the mean performance estimate and the confidence interval. Using the Bayesian
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simulation replication algorithm, we further decompose the variance of the simulation out-

put into terms related to stochastic uncertainty and parameter uncertainty. Such a variance

decomposition might be beneficial for developing data-collection schemas to reduce param-

eter uncertainty in stochastic simulations. A comprehensive numerical analysis shows that

our model improves both the consistency of the mean line-item fill-rate estimates and the

coverage of the confidence intervals in multi-product inventory simulations with correlated

demands.

Chapter 2: “Comparison of Least-Squares and Bayesian Inferences for Johnson’s SB and

SL Distributions”

Johnson translation system is a flexible system of distributions with the ability to match

any finite first four moments of a random variable. This chapter considers the problem

of fitting lognormal and bounded distributions of the Johnson translation system to finite

sets of stationary, independent and identically distributed input data. The focus on the

Johnson translation system is due to the flexibility it provides in comparison to the standard

input models that are built in commercial input-modeling software. Specifically, Johnson’s

lognormal family is a positively skewed distribution with one-sided bounded support, while

Johnson’s bounded family contains two-sided bounded distributions capturing a wide variety

of unimodal and bimodal distributional shapes. The bounded supports of these distributions

make it difficult to obtain robust parameter estimates via the use of the maximum likelihood

estimation method. However, the least-squares estimation method used for fitting Johnson

translation system does not suffer from the existence of bounded supports; and it outperforms

well-known fitting methods of matching moments and percentiles. Another fitting method

that is frequently used for distributions with bounded supports as an alternative to the

maximum likelihood estimation method is the Bayesian method. The main goal of this

chapter is to investigate the relative performance of the least-squares estimation method and

the Bayesian method in fitting the parameters of the distributions from Johnson’s lognormal

and bounded families, and provide guidelines to the simulation practitioner on when to use

each fitting method.

Chapter 3: “Food Banks Can Enhance Their Operations with OR/OM Tools: A Pilot

Study with Greater Pittsburgh Community Food Bank”

Food assistance programs have been challenged to serve an increasing number of low-income

families in the recent economic downturn. Soaring demand is combined with diminishing
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supply (donations) attributed to both recession and donors’ improved inventory manage-

ment. As a remedy for food demand-supply mismatch, many food banks, whose primary

goal is to reach as many needy people as possible, are trying to purchase more food by re-

ducing their operational costs and by improving fundraising. In this study, we work together

with our local food bank, Greater Pittsburgh Community Food Bank (GPCFB), in order to

achieve the following two goals: First, by using the limited available data we illustrate the

extent to which GPCFB is being affected by the recent economic downturn. We identify

how they can collect better data for future use. We believe this will help GPCFB in their

fundraising efforts. Second, we focus on the 1-PDVRP that arises in the context of the food

rescue program of GPCFB. We present a thorough study on the state-of-the-art solution

methods for the 1-PDVRP, utilizing technologies Mixed Integer Programming, Constraint

Programming, and Constraint-based Local Search, and evaluate potential cost savings with

respect to the current practice of GPCFB. The results indicate substantial cost savings,

being at least 10% on the largest instance, which can be used to purchase more food and

to reach more people in need. In addition to the practical value of this work for GPCFB,

this study contributes to the theory by being the first academic work to provide a rigorous

treatment of the 1-PDVRP. Overall, this study not only seeks to help GPCFB, but it is

intended as a good starting place for other food banks around the U.S as they struggle with

similar issues.
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Introduction

This thesis focuses on the following three areas of Operations Management: design and

analysis of stochastic simulations involving correlated inputs, input modeling for stochastic

simulations, and application of OM/OR tools to the operations of food banks. There are

three main chapters, which are self-contained and stand on their own. The first chapter

demonstrates how to account for both stochastic uncertainty and parameter uncertainty in

the estimation of mean performance measures and confidence intervals of stochastic simu-

lations with correlated inputs. Furthermore, this chapter describes how to decompose the

variance of the simulation output into terms related to stochastic uncertainty and parameter

uncertainty. The second chapter investigates the performance of the least-squares estimation

method and the Bayesian method in estimating the parameters of the distributions from the

lognormal and bounded families of the Johnson translation system. The third chapter is as

a result of a collaborative study with Greater Pittsburgh Community Food Bank (GPCFB)

focusing on the analysis of demand and supply data of GPCFB, and a thorough study of

the 1-Commodity Pickup and Delivery Problem (1-PDVRP), which arises in the context of

the food rescue program of food banks.

The common practice in performing stochastic simulations involving correlated inputs

is to estimate multivariate input models using historical data sets of finite length and to

drive the simulations with the random variates generated from the estimated models. How-

ever, this practice ignores the parameter uncertainty (i.e., uncertainty around the estimated

parameter values of a given probability distribution) and accounts only for stochastic un-

certainty (i.e., uncertainty that is due to the dependence of the simulation output on the

simulation’s random input streams) in the simulation output analysis. Consequently, it

provides not only an inaccurate estimate for the mean performance measure but also under-

coverage of the confidence interval. The first chapter, “Accounting for Parameter Uncertainty

in Large-Scale Stochastic Simulations with Correlated Inputs” develops a Bayesian model

for the joint representation of stochastic uncertainty and parameter uncertainty in the es-

timation of mean performance measures and confidence intervals of stochastic simulations

involving correlated inputs. Additionally, this chapter decomposes the variance of the sim-

ulation output into terms related to stochastic uncertainty and parameter uncertainty. We
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illustrate that our model improves both the consistency of the mean line-item fill-rate esti-

mates and the coverage of the confidence intervals in multi-product inventory simulations

with correlated demands.

In the second chapter, “Comparison of Least-Squares and Bayesian Inferences for John-

son’s SB and SL Distributions,” we consider the fitting of the lognormal and bounded families

of the Johnson translation system to independent and identically distributed input data. We

describe the use of the Bayesian method for Johnson’s lognormal and bounded distributions,

and compare the goodness of the Bayesian fits to those obtained from the least-squares

estimation method.

Finally, in the third chapter, “Food Banks Can Enhance Their Operations with OR/OM

Tools: A Pilot Study with Greater Pittsburgh Community Food Bank,” we collaborate with

GPCFB, and perform a comprehensive analysis of their demand and supply data to validate

the belief that GPCFB is facing increasing challenges to meet its demand due to the recent

economic crises. Our analysis shows that the demand data is obscured; we identify the

reasons and propose solution methods that will help GPCFB to gather more accurate data.

Additionally, this chapter presents a rigorous study of the 1-PDVRP, utilizing technologies

Mixed Integer Programming (MIP), Constraint Programming (CP), and Constraint-Based

Local Search (CBLS), and finds that CBLS provides significant cost savings with respect to

the current practice of GPCFB. This chapter can serve as a template for others, who are

willing to help their local food banks with similar issues.
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Chapter 1

Accounting for Parameter
Uncertainty in Large-Scale Stochastic
Simulations with Correlated Inputs 1

1.1. Introduction

In recent years, large-scale discrete-event stochastic simulation has become a tool that is used

routinely for the design and analysis of manufacturing and service systems. Two important

components of the large-scale stochastic simulation are multivariate input modeling and

output analysis. Multivariate input modeling is the estimation of an appropriate multivari-

ate probability distribution that characterizes the stochastic behavior of the system inputs.

Output analysis is the study of the simulation output data to estimate the distributional

properties (e.g., mean, probability, or quantile) of the performance measure.

In this paper, we are interested in the case where the objective of the output analysis

is to predict a mean performance measure and a confidence interval. There are three main

sources of uncertainty to account for in the output analysis: stochastic uncertainty, model

uncertainty, and parameter uncertainty. Stochastic uncertainty arises from the dependence

of the output on the simulation’s random input streams (Helton 1997). Model uncertainty

arises due to the uncertainty around the selection of an appropriate family of distributions

for the system inputs, while parameter uncertainty arises due to the uncertainty around the

parameter values of a given probability distribution (Raftery et al. 1996).

The goal of this paper is to account for the stochastic uncertainty and the parameter

uncertainty in the estimation of the mean performance measure and the confidence interval

of the stochastic simulation with correlated inputs. Accounting for parameter uncertainty

1This chapter is a forthcoming article in the journal Operations Research with co-author Bahar Biller.
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in a stochastic simulation is not common practice. The simulation often starts with fitting a

probability distribution to the historical input data of finite length. Although the parameters

of the fitted distribution are shown to have asymptotical properties (e.g., consistency and

normality) for the number of historical data points approaching infinity, the simulation is

driven with the probability distribution estimated from the finite historical input data. The

output data obtained from the simulation are analyzed for predicting the mean performance

measure and constructing the confidence interval. This practice of using the estimated

probability distribution for driving the simulation ignores both the model uncertainty and

the parameter uncertainty, and accounts only for the stochastic uncertainty in the output

analysis. Consequently, the simulation analyst obtains not only an inconsistent estimate for

the mean performance measure, but also an inconsistent coverage for the confidence interval.

The problem of accounting for model uncertainty and/or parameter uncertainty in stochas-

tic simulations has been studied by a number of researchers including Cheng and Holland

(1997, 1998, 2004), Chick (1997, 1999, 2001), Barton and Schruben (2001), and Zouaoui

and Wilson (2003, 2004). Cheng and Holland (1997) made the first attempt to show the

dependence of the simulation output on stochastic and parameter uncertainties. They con-

tinued the study of this problem in Cheng and Holland (1998) and Cheng and Holland

(2004). However, using frequentist techniques to represent parameter uncertainty did not

allow the incorporation of any relevant information other than the historical input data into

the simulation output. Furthermore, the problem of accounting for model uncertainty re-

mained unsolved. As a result of following the Bayesian Model Averaging (BMA) approach,

Chick (1999, 2001) captured not only stochastic uncertainty and parameter uncertainty, but

also model uncertainty. Although the BMA approach had been used in a number of differ-

ent settings to capture model uncertainty and/or parameter uncertainty (e.g., Draper 1995,

Hoeting et al. 1999, and George 1999), it was Chick (1997, 1999, 2001) who outlined the basic

methodology for implementing the BMA approach in discrete-event stochastic simulations.

Chick’s formulation led to the simulation replication algorithm that allowed the simula-

tion analyst to capture both model uncertainty and parameter uncertainty by sampling in-

put distributions and their parameters from Bayesian posterior density functions before each

replication. This made it possible to drive the simulation without using a single distribution

and a single set of parameter values. Consequently, the use of the simulation replication al-

gorithm improved the consistency of the mean performance estimate and the coverage of the

confidence interval. However, the simulation replication algorithm did not provide separate
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estimates for the variances due to different sources of uncertainty. The Bayesian simulation

replication algorithm introduced by Zouaoui and Wilson (2003) provided a solution for the

problem of decomposing the variance in the simulation output data into variances due to

stochastic and parameter uncertainties. They extended their framework to also account for

model uncertainty in Zouaoui and Wilson (2004).

The focus in these papers has been on discrete-event stochastic simulations with inde-

pendent inputs. However, building large-scale simulations may require the development of

multivariate input models. Examples of multivariate inputs include the processing times of a

workpiece across several workcenters in a manufacturing facility (Xu 1999) and the product

demands and exchange rates in a global supply chain (Kouvelis and Su 2007). In this paper,

we focus on simulations with multivariate inputs that have stochastic dependencies among

them, and we describe how to account for both stochastic uncertainty and parameter uncer-

tainty in their output analyses. Although the BMA approach formulated in Chick (2001)

can accommodate the stochastic dependencies among the inputs, the simulation analyst still

needs a Bayesian model that works for simulations with many correlated inputs. Also, it

is not clear how to sample the parameters of the joint distribution of the correlated inputs

before each replication so that the Bayesian model is easily incorporated into the simula-

tion replication algorithm. The development of a Bayesian model, which overcomes these

challenges and leads to a fast sampling algorithm well suited for handling a large number of

correlated inputs, is the primary contribution of our paper to the discrete-event stochastic

simulation literature. We also decompose the simulation output variance into variances due

to stochastic and parameter uncertainties. Since the simulation replication algorithm does

not allow us to obtain such a decomposition of the simulation output variance, we use the

Bayesian simulation replication algorithm introduced by Zouaoui and Wilson (2003) for this

purpose.

We represent multivariate inputs using random vector X = (X1, X2, . . . , Xk)
′ denoting a

collection of k correlated components, each of which is a real-valued input random variable.

We characterize the joint stochastic behavior of these correlated inputs with the flexible

Normal-To-Anything (NORTA) distribution of Cario and Nelson (1997). Thus, we con-

struct our k−dimensional random vector X = (X1, X2, . . . , Xk)
′ by first taking Zi as the ith

component of a k−dimensional standard normal random vector Z = (Z1, Z2, . . . , Zk)
′ with

positive definite k × k correlation matrix Σk. Then we obtain Xi = F−1
i (Φ(Zi);Ψi) for

i = 1, 2, . . . , k, where Fi is the arbitrary continuous marginal cumulative distribution func-
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tion (cdf) of component i with parameter vector Ψi and Φ is the cdf of the standard normal

random variable. A random vector constructed in this way is said to have a k−dimensional

NORTA distribution. From this point on, we call the parameters of this distribution, Ψi,

i = 1, 2, . . . , k, and Σk, the NORTA parameters.

Considering a stochastic simulation with inputs having a k−dimensional NORTA dis-

tribution, we demonstrate how to account for parameter uncertainty (i.e., the uncertainty

around the values of the NORTA parameters estimated from finite historical input data) in

the mean performance estimate and the confidence interval. More specifically, we develop

a Bayesian model that samples NORTA parameters from their Bayesian posterior density

functions before each replication of the simulation replication algorithm. This allows us to

drive the stochastic simulation without using a single set of NORTA parameters. However, it

is a challenging task to develop such a Bayesian model as the number of NORTA parameters

needed to sample increases very quickly with k, the number of components. For example,

if each of the k components are exponentially distributed, we need to sample k different

parameters for the component marginal distributions and 2k different parameters for the

gamma distributed components. In addition to the parameters of the component marginal

distributions, we need to sample k(k − 1)/2 correlations of Σk in a way that the resulting

correlation matrix is positive definite.

We overcome the challenge of sampling a large number of NORTA parameters using

Sklar’s marginal-copula representation together with Cooke’s copula-vine specification. Sklar’s

marginal-copula representation allows us to write the joint posterior density function as the

multiplication of the marginal posterior density functions and the posterior normal copula

density function. Thus, we separate the problem of sampling the parameters of the com-

ponent marginals from the problem of sampling the dependence parameters of the NORTA

distribution. Furthermore, Cooke’s copula-vine specification enables us to represent the

k−dimensional posterior normal copula density function as the product of k(k − 1)/2 two-

dimensional posterior normal copula density functions. Therefore, we do not need to satisfy

any algebraic constraints for positive definiteness.

We organize the remainder of the paper as follows. In Section 1.2, we describe the

NORTA distribution and present a copula-based representation for its joint density func-

tion. We use this representation in Section 1.3 for developing a Bayesian model that samples

NORTA parameters. In Section 1.4, we describe how to incorporate the Bayesian model into

the simulation replication algorithm (Section 1.4.1) and the Bayesian simulation replication
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algorithm (Section 1.4.2) for estimating the mean performance measure and the confidence

interval that accounts for both stochastic uncertainty and parameter uncertainty. In Sec-

tion 1.5, we decompose the variance of the simulation output into terms related to stochastic

uncertainty and the parameter uncertainty using the Bayesian simulation replication algo-

rithm of Section 1.4.2. In Section 1.6, we show that our model allows the simulation analyst

to improve both the consistency of the mean line-item fill-rate estimates and the coverage

of the confidence intervals in multi-product inventory simulations with correlated demands.

We conclude with a summary of results in Section 1.7. For clarity in the presentation of the

results, we moved the implementation details of sampling NORTA parameters to an online

companion.

1.2. The NORTA Distribution and Its Copula-Based

Representation

We introduce the k−dimensional NORTA distribution in Section 1.2.1 and provide a copula-

based representation for its joint density function in Section 1.2.2.

1.2.1. The k−dimensional NORTA Distribution

We characterize the joint stochastic behavior of correlated inputs Xi, i = 1, 2, . . . , k using

the NORTA distribution of Cario and Nelson (1997). The central idea is to transform a

standard multivariate normal random vector into the random vector referred to as having a

NORTA distribution. Specifically, we let

X =
(
F−1
1 (Φ(Z1);Ψ1) , F

−1
2 (Φ(Z2);Ψ2) , . . . , F

−1
k (Φ(Zk);Ψk)

)′
,

where Fi (·;Ψi), i = 1, 2, . . . , k are arbitrary marginal cdfs with parameter vectors Ψi,

i = 1, 2, . . . , k and the base vector Z = (Z1, Z2, . . . , Zk)
′ is a k−dimensional standard

normal random vector with k × k positive definite correlation matrix Σk ≡ [ρ(i, j); i, j =

1, 2, . . . , k]. In this characterization, ρ(i, j) is the Pearson product-moment correlation be-

tween Zi (i.e., Φ−1[Fi(Xi;Ψi)]) and Zj (i.e., Φ−1[Fj(Xj;Ψj)]), while the transformation

Xi = F−1
i (Φ(Zi);Ψi) ensures that Xi has cdf Fi(·;Ψi). A more detailed description of the

NORTA distribution is available in Biller and Ghosh (2006).
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1.2.2. A Copula-Based Representation for the NORTA Distribu-
tion

We first present a brief review of the copula theory. Next, we derive a copula-based rep-

resentation for the NORTA distribution using Sklar’s marginal-copula representation and

Cooke’s copula-vine specification.

Copula Theory

We begin this section with the definition of a k−dimensional copula (Nelsen 1999, Definition

2.10.6). The first condition of this definition provides the lower bound on the distribution

function and insures that the marginal distributions of the copula are uniform, while the

second condition insures that the probability of observing a point in a k−box is non-negative:

Definition 1 A k−dimensional copula is a function Ck: [0, 1]k → [0, 1] with the following

properties: (1) For every u = (u1, u2, . . . , uk) in [0, 1]k, Ck(u) = 0 if at least one coordinate of

u is 0, and if all coordinates of u are 1 except u�, then Ck(u) = u� for � = 1, 2, . . . , k. (2) For

every a = (a1, a2, . . . , ak) and b = (b1, b2, . . . , bk) in [0, 1]k such that a ≤ b, i.e., a� ≤ b�, � =

1, 2, . . . , k, and for every k−box [a,b], i.e., [a1, b1]×[a2, b2]×. . .×[ak, bk], the Ck−volume given

by ∆b
aCk (t) = ∆bk

ak
∆

bk−1
ak−1 · · ·∆b2

a2
∆b1

a1
Ck (t) with ∆b�

a�
Ck (t) = Ck (t1, . . . , t�−1, b�, t�+1, . . . , tk)−

Ck (t1, . . . , t�−1, a�, t�+1, . . . , tk) is ≥ 0.

The use of a copula for understanding the joint distribution of a random vector has been

studied extensively for the last two decades (Schweizer 1991, Joe 1997, Nelsen 1999). In

this paper, we restrict our attention to Sklar’s theorem, which describes how to extract the

dependence structure of a random vector from its joint distribution with arbitrary continuous

marginal distributions (Nelsen 1999, Theorem 2.10.9):

Theorem 1 Let Hk be a k−dimensional distribution function with continuous marginal cdfs

Fi(·;Ψi), i = 1, 2, . . . , k. Then there exists a k−dimensional unique copula Ck such that for

all xi, i = 1, 2, . . . , k in �,

Hk (x1, x2, . . . , xk) = Ck (F1(x1;Ψ1), F2(x2;Ψ2), . . . , Fk(xk;Ψk)) . (1.1)

Conversely, if Ck is a k−dimensional copula and Fi(·;Ψi), i = 1, 2, . . . , k are continuous

distribution functions with parameter vectors Ψi, i = 1, 2, . . . , k, then the function Hk defined

in (1.1) is a k−dimensional distribution function with marginal cdfs Fi(·;Ψi), i = 1, 2, . . . , k.
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The major implication of this theorem is that copula Ck is the joint distribution function

of Ui ≡ Fi(Xi;Ψi), i = 1, 2, . . . , k, where Ui, i = 1, 2, . . . , k are the probability integral trans-

forms of Xi, i = 1, 2, . . . , k. Thus, each of the random variables Ui, i = 1, 2, . . . , k follows a

uniform distribution in [0, 1], regardless of the distributions of the input random variables

Xi, i = 1, 2, . . . , k. More importantly, Ck can be interpreted as the dependence struc-

ture of the joint cdf Hk and written as Ck(u1, u2, . . . , uk) =Hk(F
−1
1 (u1;Ψ1), F

−1
2 (u2;Ψ2),. . .,

F−1
k (uk;Ψk)), where F−1

i (·;Ψi) is the generalized inverse of marginal cdf Fi(·;Ψi) (Nelsen

1999, Corollary 2.10.10).

Another important implication of the representation in (1.1) is that a joint probability

density function (pdf) can be written as a product of marginal pdfs and copula density

function, which encodes all of the information about the stochastic dependencies among

the components. More specifically, for differentiable marginal cdfs Fi(·;Ψi), i = 1, 2, . . . , k

and differentiable copula Ck, the k−dimensional pdf, which is denoted by hk below, can be

written as

hk (x1, x2, . . . , xk) =
k∏

i=1

fi(xi;Ψi)

× ck

(
F1(x1;Ψ1), F2(x2;Ψ2), . . . , Fk(xk;Ψk)

)
.

In this representation, fi(·;Ψi) is the pdf of Xi, i.e., fi(x;Ψi) ≡ ∂Fi(x;Ψi)/∂x, and ck is the

k−dimensional copula density function given by ∂kCk(u1, u2, . . . , uk)/(∂u1∂u2 . . . ∂uk). This

copula density function takes the value of 1 when Xi, i = 1, 2, . . . , k are independent and

therefore, the joint density function reduces to the product of only the marginal pdfs.

Sklar’s Marginal-Copula Representation and NORTA

The use of Sklar’s theorem for representing a k−dimensional NORTA distribution shows

that the k−dimensional random vector with the NORTA distribution and the k−dimensional

normal random vector share the same copula:

Corollary 1 Let X = (X1, X2, . . . , Xk)
′ correspond to a k−dimensional random vector with

a NORTA distribution characterized by continuous marginal cdfs Fi (·;Ψi), i = 1, 2, . . . , k and

positive definite correlation matrix Σk. Then there exists a k−dimensional unique normal

copula that represents the dependence structure of X.
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The key to the proof of this corollary is that the joint cdf Hk of Xi, i = 1, 2, . . . , k is given

by

Hk (x1, x2, . . . , xk) = Φk

(
Φ−1[F1(x1;Ψ1)],Φ

−1[F2(x2;Ψ2)], . . . ,Φ
−1[Fk(xk;Ψk)];Σk

)
,

where Φ−1 is the functional inverse of Φ and Φk(· ;Σk) is the k−dimensional standard normal

cdf with correlation matrixΣk. Since the normal copula is the dependence function implicitly

assumed whenever the multivariate normal distribution is used, the dependence structure of

a k−dimensional NORTA distribution is represented by a k−dimensional normal copula.

The joint pdf of the k−dimensional NORTA distribution, hk can now be written as the

multiplication of the k component marginal density functions and the k−dimensional normal

copula density function; i.e.,

hk (x1, x2, . . . , xk) =
k∏

i=1

fi(xi;Ψi) (1.2)

× φk

(
Φ−1[F1(x1;Ψ1)],Φ

−1[F2(x2;Ψ2)], . . . ,Φ
−1[Fk(xk;Ψk)];Σk

)
.

The normal copula density function φk is further given by

φk

(
Φ−1[u1],Φ

−1[u2], . . . ,Φ
−1[uk];Σk

)
≡ ∂kΦk (Φ

−1[u1],Φ
−1[u2], . . . ,Φ

−1[uk];Σk)

∂u1∂u2 . . . ∂uk

,

≡ |Σk|−1/2 exp

{
−1
2
ς ′
(
Σ−1

k − Ik
)
ς

}
, (1.3)

where ui ≡ Fi(xi;Ψi) for i = 1, 2, . . . , k, ς ≡ (Φ−1[u1],Φ
−1[u2], . . . ,Φ

−1[uk])
′, and Ik is the

k−dimensional identity matrix. Thus, the copula density function φk captures all of the

information about the dependence structure of X using correlations ρ(i, j), i, j = 1, 2, . . . , k.

Cooke’s Copula-Vine Specification and NORTA

A vine is a graphical model for constructing high-dimensional joint distributions using a

series of two-dimensional (conditional) distributions. It has been introduced in Cooke (1997),

studied extensively in Bedford and Cooke (2001, 2002) and Kurowicka and Cooke (2003),

and described comprehensively in Kurowicka and Cooke (2006). In this paper, we use a vine

for representing NORTA’s normal copula density function in (1.3).

More specifically, we represent the joint distribution of the base random variables of

the k−dimensional NORTA distribution (i.e., Zi ≡ Φ−1[Fi(Xi;Ψi)], i = 1, 2, . . . , k) with a

regular vine defined as follows (Definition 4.4, Kurowicka and Cooke 2006):
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Definition 2 V is a vine on k elements under the following conditions: (1) V = (T1, T2
,. . .,Tk−1). (2) T1 is a connected tree with nodes N1 = {1, 2, . . . , k} and edges E1; for i =

2, 3, . . . , k−1, Ti is a connected tree with nodes Ni = Ei−1. V is a regular vine on k elements

if additionally the following condition is satisfied: (3) For i = 2, 3, . . . , k − 1, if {a, b} ∈ Ei,
then #a∆b = 2, where ∆ denotes the symmetric difference. In other words, if a and b are

nodes of Ti connected by an edge in Ti, where a = {a1, a2} and b = {b1, b2}, then exactly one

of the ai equals one of the bi.

1

2 3 4 5

1 , 2 1 , 3 1 , 4
1 , 5

2 , 3 | 1

2 , 4 | 1

2 , 5 | 1
3 , 4 | 1 , 2

3 , 5 | 1 , 2

4 , 5 | 1 , 2 , 3

Z

Z

Z Z Z

1 , 2 2 , 3

1 , 3 | 2

1 , 4 | 2 , 3

1 , 5 | 2 , 3 , 4

1 2 3 54

3 , 4 4 , 5

2 , 4 | 3 3 , 5 | 4

2,5|3,4

ZZZZZ

1 , 2 2 , 3

1 , 3 | 2

1 , 4 | 2 , 3

1 , 5 | 2 , 3 , 4

1 2 3

5

4

3 , 4

3 , 5

2 , 4 | 3
2 , 5 | 3

4,5|2,3

Z Z Z

Z

Z

Figure 1.1: Three different regular vine specifications for the 5−dimensional NORTA distri-
bution

No unique regular vine exists for representing the dependence structure of the NORTA

distribution. Figure 1.1 provides examples of three different regular vines, each of which can

be used for representing the dependence structure of the 5−dimensional NORTA distribution.

The first two vines are known as the C−vine and the D−vine, introduced in Bedford and

Cooke (2002). Our solution approach works for any of these vines as well as any regular

vine constructed as described in Definition 2. Since using different regular vine specifications

leads to different sampling algorithms for NORTA’s dependence parameters, we use a C−vine
for describing our solution approach in the remainder of the paper due to the ease of its

implementation (Section 6.4.2, Kurowicka and Cooke 2006).

We represent NORTA’s k−dimensional normal copula density function in (1.3) with a

C−vine on Φ−1[Fi(Xi;Ψi)], i = 1, 2, . . . , k. This vine has the following unconditional and con-

ditional correlations assigned to its edges: ρ(1, i), i = 2, 3, . . . , k and ρ(j−1, i; 1, 2, . . . , j−2),
i = j, j + 1, . . . , k, j = 3, 4, ..., k. While ρ(1, i) is the (unconditional) correlation between
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random variables Φ−1[F1(X1; Ψ1)] and Φ−1[Fi(Xi;Ψi)], ρ(j−1, i; 1, 2, . . . , j−2) is the (condi-
tional) correlation between conditional random variables Φ−1[Fj−1(Xj−1;Ψj−1)]|Φ−1[F�(X�;Ψ�)],

� = 1, 2, . . . , j − 2 and Φ−1[Fi(Xi; Ψi)] |Φ−1[F�(X�;Ψ�)], � = 1, 2, . . . , j − 2.

Since the dependence structure of the NORTA distribution is represented by a normal

copula (Corollary 1), the conditional correlation ρ(j − 1, i; 1, 2, . . . , j − 2) is also the partial

correlation (i.e., the correlation between the orthogonal projections of Φ−1[Fj−1(Xj−1;Ψj−1)]

and Φ−1[Fi(Xi;Ψi)] on the plane orthogonal to the space spanned by Φ−1[F�(X�;Ψ�)], � =

1, 2, . . . , j − 2) (Morales et al. 2006). Recursive formulas exist that allow the identification

of the partial correlations from the correlations of Σk (Yule and Kendall 1965).

All of the (partial) correlations in the C−vine specification of the k−dimensional NORTA

distribution are algebraically independent. Therefore, they do not need to satisfy any alge-

braic constraints for positive definiteness. Furthermore, the resulting copula-vine specifica-

tion uniquely determines the correlation matrix Σk:

Corollary 2 For the C−vine on Φ−1[Fi(Xi;Ψi)], i = 1, 2, . . . , k, there is a one-to-one cor-

respondence between the set of k×k positive definite correlation matrices of the form Σk and

the set of correlations ρ(1, i), i = 2, 3, . . . , k and partial correlations ρ(j−1, i; 1, 2, . . . , j−2),

i = j, j + 1, . . . , k, j = 3, 4, ..., k of the k−dimensional NORTA distribution.

The proof of this corollary is from the application of Theorem 4.4 of Kurowicka and Cooke

(2006) to the copula-vine specification of the NORTA distribution. Therefore, all assignments

of the numbers between −1 and 1 to the edges of the C−vine (and to the edges of any arbitrary

regular vine) are consistent in the sense that there is a NORTA distribution realizing these

(partial) correlations.

We are now ready to replace hk(x1, x2, . . . , xk), the joint pdf of the k−dimensional

NORTA distribution in (1.2), with the product of the k component marginal density func-

tions and the k(k − 1)/2 two-dimensional normal copula density functions, each of which is

associated with an edge of the C−vine:

=
k∏

i=1

fi(xi;Ψi)

×
k∏

i=2

φ2

(
F1(x1;Ψ1), Fi(xi;Ψi);Σ2(1, i)

)

×
k∏

j=3

k∏
i=j

φ2

(
Φj−1|1,2,...,j−2

(
Φ−1[Fj−1(xj−1;Ψj−1)]|Φ−1[F�(x�;Ψ�)], � = 1, 2, . . . , j − 2

)
,
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Φi|1,2,...,j−2

(
Φ−1[Fi(xi;Ψi)]|Φ−1[F�(x�;Ψ�)], � = 1, 2, . . . , j − 2

)
;

Σ2(j − 1, i; 1, 2, . . . , j − 2)

)
(1.4)

In this representation, Σ2(1, i) is the two-dimensional correlation matrix with correlation

ρ(1, i) as its (1, 2)th entry (i.e., Σ2(1, i) ≡ [1 ρ(1, i); ρ(1, i) 1]). Similarly, Σ2(j−1, i; 1, 2, . . . , j−
2) ≡ [1 ρ(j − 1, i; 1, 2, . . . , j − 2); ρ(j − 1, i; 1, 2, . . . , j − 2) 1]. Additionally, Φs|1,2,...,j−2 is

the marginal cdf of the conditional random variable Φ−1[Fs(Xs;Ψs)]|Φ−1[F�(X�;Ψ�)], � =

1, 2, . . . , j−2 with mean µs|1,2,...,j−2 and variance σ2
s|1,2,...,j−2 that can be obtained using The-

orem 3.3.4 of Tong (1990) with the recursive formulas of Yule and Kendall (1965). Appendix

B describes how to do this for a 5−dimensional NORTA distribution.

1.3. Bayesian Model for Sampling NORTA Parameters

The key to the development of our Bayesian model is to separate the sampling of the compo-

nent parameter vectors from the sampling of the (partial) correlations using Sklar’s marginal-

copula representation and Cooke’s copula-vine specification. Therefore, in Section 1.3.1 we

first focus on the ith component of the NORTA vector and describe how to sample param-

eter vector Ψi. Then we discuss the sampling of correlation ρ(1, i) and partial correlation

ρ(j−1, i; 1, 2, . . . , j−2) in Section 1.3.2. Finally, in Section 1.3.3 we describe how to sample

all parameters of the k−dimensional NORTA distribution (i.e., Ψi, i = 1, 2, . . . , k, ρ(1, i),

i = 2, 3, . . . , k, and ρ(j − 1, i; 1, 2, . . . , j − 2), i = j, j + 1, . . . , k, j = 3, 4, . . . , k) using the

sampling algorithms of Sections 1.3.1 and 1.3.2.

1.3.1. Sampling the Parameters of the Component Marginal Dis-

tributions

Well-established literature exists on Bayesian probability theory for sampling the parameters

of the standard families of distributions (Gelman et al. 2000, Carlin and Louis 2000).

Assuming the availability of the historical data of finite length, this section describes how

to use this literature to sample the parameters of the ith component having the exponential

distribution or the gamma distribution of the standard input-modeling packages.

First, we choose the distribution of the ith componentXi as exponential with scale param-

eter βi; i.e., fi(xi; βi) = β−1
i exp(−xiβ

−1
i ). Therefore, we can write the likelihood function∏n

t=1 fi(xi,t; βi), which describes the joint pdf of the historical data xi,t, t = 1, 2, . . . , n of
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length n, as β−n
i exp(−β−1

i

∑n
t=1 xi,t). The next step is to construct a prior density function

πi(βi) on scale parameter βi. We do this with the conjugate2, inverse gamma prior with

shape parameter θi and scale parameter νi; i.e., πi(βi) = νθi
i Γ

−1(θi)β
−(θi+1)
i exp(−νiβ−1

i ). Fi-

nally, we denote the vector of the historical data available for the ith component with xi and

combine the prior density function with the likelihood function using Bayes’ rule to obtain

the posterior density function pi(βi|xi) of parameter βi (Bernardo and Smith 1994):

pi(βi|xi) ∝ πi(βi)
n∏

t=1

fi(xi,t; βi) ∝ β
−(n+θi+1)
i exp

{
−νi +

∑n
t=1 xi,t

βi

}
(1.5)

Thus, representing parameter uncertainty for component Xi reduces to the sampling of β−1
i

from a gamma distribution with shape parameter n+θi and scale parameter (νi+
∑n

t=1 xi,t)
−1,

for which an efficient algorithm is available in Appendix A.1.

Next, we consider a gamma component with shape parameter αi and scale parameter

βi; i.e., fi(xi;αi, βi) = xαi−1
i Γ−1(αi)β

−αi
i exp(−xiβ

−1
i ). We use Bayes’ rule for combining

Jeffreys’ prior density function πi(αi, βi) ∝ β−1
i with the likelihood function of xi and obtain

the following joint posterior density function for the parameters of the gamma component

(Son and Oh 2006):

pi(αi, βi|xi) ∝ πi(αi, βi)
n∏

t=1

fi(xi,t;αi, βi) =
β−αin−1
i

[Γ(αi)]n

(
n∏

t=1

xαi−1
i,t

)
exp

{
−
∑n

t=1 xi,t

βi

}

Parameters αi and βi can be sampled from this joint posterior density function using the

Markov Chain Monte Carlo (MCMC) method. The idea behind the MCMC method is

to simulate a random walk in the space of (αi, βi) that converges to the joint posterior

density function pi(αi, βi|xi) (Gilks et al. 1996). A widely used MCMC method is the Gibbs

sampler algorithm (Geman and Geman 1984, Gelfand and Smith 1990). We describe the

implementation of this algorithm for the parameters of the gamma distribution in Appendix

A.2.

1.3.2. Sampling the (Partial) Correlations

First, we describe the sampling of correlation ρ(1, i). Since the focus is on the correla-

tion between random variables Φ−1[F1(X1;Ψ1)] and Φ−1[Fi(Xi;Ψi)], we provide an explicit

2A prior density function is said to be conjugate to a likelihood function if the resulting posterior density
function is in the same family of distributions as the prior density function (Bernardo and Smith 1994).
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representation of their joint density function φ2(F1(x1;Ψ1), Fi(xi;Ψi);Σ2(1, i)):

|Σ2(1, i)|−1/2 exp

{
−1
2

(
Φ−1[F1(X1;Ψ1)]
Φ−1[Fi(Xi;Ψi)]

)′ (
Σ−1

2 (1, i)− I2
)( Φ−1[F1(X1;Ψ1)]

Φ−1[Fi(Xi;Ψi)]

)}
Thus, defining

S2(1, i|Ψ1,Ψi,x1,xi) ≡
n∑

t=1

(
Φ−1[F1(x1,t;Ψ1)]
Φ−1[Fi(xi,t;Ψi)]

)(
Φ−1[F1(x1,t;Ψ1)]
Φ−1[Fi(xi,t;Ψi)]

)′

and using the trace operator (tr), we can represent the likelihood function associated with

the dependence structure (i.e.,
∏n

t=1 φ2(F1(x1,t;Ψ1), Fi(xi,t;Ψi);Σ2(1, i))) as follows:

|Σ2(1, i)|−n/2 exp

{
tr

(
−1
2
S2(1, i|Ψ1,Ψi,x1,xi)

(
Σ−1

2 (1, i)− I2
))}

(1.6)

The form of this likelihood function suggests the use of the inverse Wishart density function

as a conjugate prior for Σ2(1, i) (Rossi et al. 2006). Therefore, we follow Jeffreys’ invari-

ance principle (Kass and Wasserman 1996) and choose prior density function π(Σ2(1, i)) ∝
|Σ2(1, i)|−3/2 for correlation matrix Σ2(1, i). The right-hand side of this representation cor-

responds to the inverse Wishart density function with zero degrees of freedom and serves

as a diffuse prior density function. Furthermore, it coincides with the beta prior density

function of Barnard et al. (2000) with ν = 0.

Combining the prior density function π(Σ2(1, i)) with the likelihood function in (1.6)

using Bayes’ rule leads to the following conditional posterior copula density function:

p (Σ2(1, i)|Ψ1,Ψi,x1,xi) ∝ |Σ2(1, i)|−(n+3)/2 exp

{
tr

(
−1
2
S2(1, i|Ψ1,Ψi,x1,xi)Σ

−1
2 (1, i)

)}
Thus, sampling ρ(1, i) reduces to the sampling of the correlation matrix Σ2(1, i) from the

inverse Wishart density function with parameters n and S2(1, i|Ψ1,Ψi,x1,xi). An algorithm

for sampling Σ2(1, i) is provided in Appendix A.3.

Next, we consider the partial correlation ρ(j − 1, i; 1, 2, . . . , j − 2) between conditional

random variables Φ−1[Fj−1(Xj−1;Ψj−1)]|Φ−1[F�(X�;Ψ�)], � = 1, 2, . . . , j − 2 and

Φ−1[Fi(Xi;Ψi)]|Φ−1[F�(X�; Ψ�)], � = 1, 2, . . . , j − 2. Similarly, we choose the conjugate,

inverse Wishart prior density function

π (Σ2(j − 1, i; 1, 2, . . . , j − 2)) ∝ |Σ2(j − 1, i; 1, 2, . . . , j − 2)|−3/2

for partial correlation matrixΣ2(j−1, i; 1, 2, . . . , j−2). This leads to the conditional posterior
copula density function p(Σ2(j − 1, i; 1, 2, . . . , j − 2)|Λj ,x) of the form

∝ |Σ2(j − 1, i; 1, 2, . . . , j − 2)|−(n+3)/2

× exp

{
tr

(
−1
2
S2(j − 1, i; 1, 2, . . . , j − 2|Λj,x)Σ

−1
2 (j − 1, i; 1, 2, . . . , j − 2)

)}
,

25



where x is the kn−dimensional vector of the historical data; Λj is the vector of NORTA

parameters Ψm, m = 1, 2, . . . , k, ρ(1, m), m = 2, 3, . . . , k, and ρ(� − 1, m; 1, 2, . . . , � − 2),

m = �, � + 1, . . . , k, � = 3, 4, . . . , j − 1; and S2(j − 1, i; 1, 2, . . . , j − 2|Λj,x) is the two-

dimensional matrix defined by

n∑
t=1


 Φ−1[Fj−1(xj−1,t;Ψj−1)]−µj−1|1,2,...,j−2

σj−1|1,2,...,j−2

Φ−1[Fi(xi,t;Ψi)]−µi|1,2,...,j−2

σi|1,2,...,j−2




 Φ−1[Fj−1(xj−1,t;Ψj−1)]−µj−1|1,2,...,j−2

σj−1|1,2,...,j−2

Φ−1[Fi(xi,t;Ψi)]−µi|1,2,...,j−2

σi|1,2,...,j−2


′

.

Therefore, sampling ρ(j−1, i; 1, 2, . . . , j−2) reduces to the sampling of the partial correlation

matrix Σ2(j−1, i; 1, 2, . . . , j−2) from the inverse Wishart density function with parameters

n and S2(j − 1, i; 1, 2, . . . , j − 2|Λj,x).

An alternative to the use of conjugate, inverse Wishart priors for the (partial) correla-

tions of the copula-vine specification is to use non-informative priors (Liechty et al. 2004).

These priors include Jeffreys’ prior (Jeffreys 1961), log-matrix prior (Leonard and Hsu 1992),

reference prior (Berger and Sun 2008), uniform shrinkage prior (Daniels 1999), and uniform

prior (Barnard et al. 2000). Barnard et al. (2000) further note that π(ρ) = (1 − ρ2)(ν−3)/2,

which is a beta density function with shape parameters (ν−1)/2 as well as a uniform density

function for ν = 3, can be chosen as a prior density function for ρ ∈ [−1, 1]. Selecting any

of these prior density functions for the (partial) correlation requires the use of the MCMC

method. Therefore, more computational effort is needed than that required by the sampling

of the (partial) correlation from the inverse Wishart density function.

1.3.3. Sampling All NORTA Parameters

Motivated by the decomposition of the joint pdf in (1.4) into separate terms associated with

the component marginal distributions and the (partial) correlations, we independently choose

a prior density function for each of the NORTA parameters. Specifically, we select prior den-

sity functions πi(Ψi), i = 1, 2, . . . , k for component parameter vectors Ψi, i = 1, 2, . . . , k,

utilizing the well-established Bayesian literature on standard families of distribution as de-

scribed in Section 1.3.1. Assuming the probabilistic independence of the (partial) correla-

tions, we choose prior density functions π(Σ2(1, i)), i = 2, 3, . . . , k for correlation matrices

Σ2(1, i), i = 2, 3, . . . , k, and π(Σ2(j − 1, i; 1, 2, . . . , j − 2)), i = j, j + 1, . . . , k, j = 3, 4, . . . , k

for partial correlation matrices Σ2(j − 1, i; 1, 2, . . . , j − 2), i = j, j + 1, . . . , k, j = 3, 4, . . . , k.

The selection of the prior density functions for the (partial) correlation matrices is discussed

in Section 1.3.2.
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Since different regular vine specifications are characterized by different (partial) corre-

lations, the probabilistic independence of the partial correlations of the C−vine does not

imply the probabilistic independence of the partial correlations of any other regular vine.

Therefore, if the simulation analyst chooses to represent the dependence structure of the

NORTA distribution with a different regular vine, then she must assume the probabilistic

independence of the partial correlations of that vine. This assumption not only provides

flexibility in choosing prior density functions for NORTA’s dependence parameters, but also

allows the use of the existing literature on Bayesian inference for correlation matrices without

being challenged by the high-dimensional nature of the large-scale stochastic simulations.

Assuming the availability of the k−dimensional historical data of length n (i.e., xi,t,

i = 1, 2, . . . , k, t = 1, 2, . . . , n), we use Bayes’ rule for combining the prior density functions

with the likelihood function
∏n

t=1 hk(x1,t, x2,t, . . . , xk,t), i.e.,

n∏
t=1

k∏
i=1

fi(xi,t;Ψi)

×
n∏

t=1

k∏
i=2

φ2

(
F1(x1,t;Ψ1), Fi(xi,t;Ψi);Σ2(1, i)

)

×
n∏

t=1

k∏
j=3

k∏
i=j

φ2

(
Φj−1|1,2,...,j−2

(
Φ−1[Fj−1(xj−1,t;Ψj−1)]|Φ−1[F�(x�,t;Ψ�)], � = 1, 2, . . . , j − 2

)
,

Φi|1,2,...,j−2

(
Φ−1[Fi(xi,t;Ψi)]|Φ−1[F�(x�,t;Ψ�)], � = 1, 2, . . . , j − 2

)
;

Σ2(j − 1, i; 1, 2, . . . , j − 2)

)
,

and obtain the following joint posterior density function:

∝
k∏

i=1

pi(Ψi|xi)︷ ︸︸ ︷[
πi(Ψi)

n∏
t=1

fi(xi,t;Ψi)

]

×
k∏

i=2

p(Σ2(1,i)|Ψ1,Ψi,x1,xi)︷ ︸︸ ︷[
π (Σ2(1, i))

n∏
t=1

φ2

(
F1(x1,t;Ψ1), Fi(xi,t;Ψi);Σ2(1, i)

)]
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×
k∏

j=3

k∏
i=j

p(Σ2(j−1,i;1,2,...,j−2)|Λj ,x)︷ ︸︸ ︷[
π (Σ2(j − 1, i; 1, 2, . . . , j − 2))

n∏
t=1

φ2

(
Φj−1|1,2,...,j−2

(
Φ−1[Fj−1(xj−1,t;Ψj−1)]|Φ−1[F�(x�,t;Ψ�)], � = 1, 2, . . . , j − 2

)
,

Φi|1,2,...,j−2

(
Φ−1[Fi(xi,t;Ψi)]|Φ−1[F�(x�,t;Ψ�)], � = 1, 2, . . . , j − 2

)
;

Σ2(j − 1, i; 1, 2, . . . , j − 2)
)]

(1.7)

Thus, the joint posterior density function of the NORTA parameters is the product of

the k marginal posterior density functions pi(Ψi|xi), i = 1, 2, . . . , k; the two-dimensional

posterior copula density functions p(Σ2(1, i)|Ψ1,Ψi,x1,xi), i = 2, 3, . . . , k associated with

the first tree of the C−vine; and the two-dimensional posterior copula density functions

p(Σ2(j − 1, i; 1, 2, . . . , j − 2)|Λj,x), i = j, j + 1, . . . , k associated with the (j − 1)th tree

of the C−vine for j = 3, 4, . . . , k. Appendix B provides an explicit representation of this

posterior density function for the 5−dimensional NORTA random vector with exponentially

distributed components.

The form of the joint posterior density function in (1.7) allows us to develop a fast,

(k(k+1)/2)−stage algorithm for sampling the NORTA parameters. We provide the resulting

algorithm in Figure 1.2. In the first k stages, we sample parameter vectors Ψi, i = 1, 2, . . . , k

(i.e., Ψ̃i, i = 1, 2, . . . , k) from posterior density functions pi(Ψi|xi), i = 1, 2, . . . , k, as de-

scribed in Section 1.3.1 for exponentially and gamma distributed components. This al-

lows us to account for the uncertainty around the parameters of the marginal distributions

of the components. The next k − 1 stages sample Σ2(1, i), i = 2, 3, . . . , k (i.e., Σ̃2(1, i),

i = 2, 3, . . . , k) from posterior density functions p(Σ2(1, i)|Ψ̃1, Ψ̃i,x1,xi), i = 2, 3, . . . , k us-

ing Ψ̃i, i = 1, 2, . . . , k obtained in the first k stages of the algorithm. We sample each of

these k − 1 correlation matrices as described in Section 1.3.2 and set the (1, 2)th entry of

Σ̃2(1, i) to ρ̃(1, i) for i = 2, 3, . . . , k. This allows us to account for the uncertainty around

the (unconditional) correlations of the C−vine specification. In the remaining stages, we

capture the uncertainty around the partial correlations. To do this, we first construct vector

Λ̃j with the sampled NORTA parameters; i.e., Ψ̃m, m = 1, 2, . . . , k, ρ̃(1, m), m = 2, 3, . . . , k,

and ρ̃(�− 1, m; 1, 2, . . . , �− 2), m = �, �+ 1, . . . , k, � = 3, 4, . . . , j − 1. Then, we characterize

the conditional normal cdfs Φi|1,2,...,j−2 and Φj−1|1,2,...,j−2 by obtaining their means µi|1,2,...,j−2

and µj−1|1,2,...,j−2 and variances σ2
i|1,2,...,j−2 and σ2

j−1|1,2,...,j−2 from Λ̃j via Theorem 3.3.4 of
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Tong (1990) and the recursive formulas of Yule and Kendall (1965). We use the resulting

cdfs for determining the posterior density function p(Σ2(j − 1, i; 1, 2, . . . , j − 2)|Λ̃j ,x). We

sample Σ2(j−1, i; 1, 2, . . . , j−2) (i.e., Σ̃2(j−1, i; 1, 2, . . . , j−2)) from this posterior density

function as described in Section 1.3.2 and set the (1, 2)th entry of Σ̃2(j−1, i; 1, 2, . . . , j−2) to
ρ̃(j−1, i; 1, 2, . . . , j−2). Repeating this for i = j, j+1, . . . , k and j = 3, 4, . . . , k allows us to

account for the uncertainty around the partial correlations of the C−vine specification. Ap-

pendix B provides a detailed implementation of this NORTA parameter sampling algorithm

for the 5−dimensional NORTA distribution with exponentially distributed components.

Figure 1.2: An algorithm that samples NORTA parameters for capturing parameter uncer-
tainty in a stochastic simulation with k correlated inputs having a k−dimensional NORTA
distribution.

for i = 1, 2, . . . , k do

sample the ith component parameter vector Ψi (i.e., Ψ̃i) from pi(Ψi|xi)

end loop

for i = 2, 3, . . . , k do

sample correlation matrix Σ2(1, i) (i.e., Σ̃2(1, i)) from p(Σ2(1, i)|Ψ̃1, Ψ̃i,x1,xi)

end loop

for j = 3, 4, . . . , k do

construct vector Λ̃j consisting of the sampled NORTA parameters

for i = j, j + 1, . . . , k do

(a) compute the means and variances of cdfs Φi|1,2,...,j−2 and Φj−1|1,2,...,j−2 using Λ̃j,

Theorem 3.3.4 of Tong (1990), and recursive formulas of Yule and Kendall (1965),

and insert them into the density function p(Σ2(j − 1, i; 1, 2, . . . , j − 2)|Λ̃j ,x)

(b) sample partial correlation matrix Σ2(j − 1, i; 1, 2, . . . , j − 2) (i.e., Σ̃2(j − 1, i; 1, 2,

. . . , j − 2)) from the posterior density function p(Σ2(j − 1, i; 1, 2, . . . , j − 2)|Λ̃j,x)

end loop

end loop
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1.4. Estimation of the Mean Performance Measure and

the Confidence Interval

In this section, we let Y be the performance measure whose mean is relevant to the decision-

making process. Our goal is to incorporate the Bayesian model of Section 1.3 into the

simulation replication algorithm of Chick (2001) in Section 1.4.1 and into the Bayesian

simulation replication algorithm of Zouaoui and Wilson (2003) in Section 1.4.2 with the

purpose of generating a point estimate and a confidence interval of EY |x(Y |x) (i.e., the

posterior mean of the output random variables Yr, r = 1, 2, . . . , R of a stochastic simulation

with R replications, given the historical input data vector x and the prior information about

the NORTA parameters).

1.4.1. Simulation Replication Algorithm

We present the simulation replication algorithm for our k−dimensional input process in

Figure 1.3. Step 1 uses our Bayesian model to sample NORTA parameters for each of the

R replications of Step 2. We denote the parameters sampled in the rth replication by Ψ̃r
i ,

i = 1, 2, . . . , k, ρ̃r(1, i), i = 2, 3, . . . , k, and ρ̃r(j − 1, i; 1, 2, . . . , j − 2), i = j, j + 1, . . . , k, j =

3, 4, . . . , k. Step 2 captures both stochastic uncertainty and parameter uncertainty by gener-

ating k correlated input variates x̃r
i , i = 1, 2, . . . , k from the k−dimensional NORTA distribu-

tion with parameters Ψ̃r
i , i = 1, 2, . . . , k, ρ̃r(1, i), i = 2, 3, . . . , k, and ρ̃r(j−1, i; 1, 2, . . . , j−2),

i = j, j + 1, . . . , k, j = 3, 4, . . . , k for r = 1, 2, . . . , R. Thus, the key difference of this algo-

rithm from the one presented in Chick (2001) is its first step where the NORTA parameters

are sampled from their Bayesian posterior density functions.

The proper implementation of the simulation replication algorithm requires the consid-

eration of two important issues: the independent sampling of the NORTA parameters for

each of the R replications and the analysis of the simulation output data yr, r = 1, 2, . . . , R

for estimating a point estimate and a confidence interval of EY |x(Y |x). The first issue arises

when the prior density functions chosen for the component parameter vectors and/or the

(partial) correlations are not conjugate. In this case, we sample the NORTA parameters

using the Gibbs sampler algorithm. When this algorithm is used for generating a distri-

bution parameter from its posterior density function, there often appears auto-correlations

between the values sampled within the chain. There might also appear cross-correlations

between different parameters sampled in different chains. However, the simulation replica-
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Figure 1.3: The simulation replication algorithm that captures stochastic uncertainty and
parameter uncertainty, and generates a point estimate and a confidence interval of EY |x(Y |x).

Step 1

for i = 1, 2, . . . , k do

sample R independent variates of component parameter vector Ψi (i.e., Ψ̃
r
i , r = 1, 2,

. . . , R) from pi(Ψi|xi), independent of the parameters generated for other components

end loop

for i = 2, 3, . . . , k do

for r = 1, 2, . . . , R replications do

sample Σ2(1, i) (i.e., Σ̃
r
2(1, i)) from p(Σ2(1, i)|Ψ̃r

1, Ψ̃
r
i ,x1,xi), independent of the

correlation matrices generated in other replications, and set Σ̃r
2(1, i)[1, 2] to ρ̃r(1, i)

end loop

end loop

for j = 3, 4, . . . , k do

for i = j, j + 1, . . . , k do

for r = 1, 2, . . . , R replications do

sample Σ2(j − 1, i; 1, 2, . . . , j − 2) (i.e., Σ̃r
2(j − 1, i; 1, 2, . . . , j − 2)) from p(Σ2(j − 1,

i; 1, 2, . . . , j − 2)|Λ̃r

j ,x), independent of the partial correlation matrices of other

replications, and set Σ̃r
2(j − 1, i; 1, 2, . . . , j − 2)[1, 2] to ρ̃r(j − 1, i; 1, 2, . . . , j − 2)

end loop

end loop

end loop

Step 2

for r = 1, 2, . . . , R replications do

sample input random variates (i.e., x̃r
i , i = 1, 2, . . . , k) given NORTA parameters of the

rth replication (i.e., Ψ̃r
i , i = 1, 2, . . . , k, ρ̃r(1, i), i = 2, 3, . . . , k, ρ̃r(j − 1, i; 1, 2, . . . , j − 2),

i = j, j + 1, . . . , k, j = 3, 4, . . . , k) and calculate the output yr as a function of the input

random variates x̃r
i , i = 1, 2, . . . , k

end loop

analyze the simulation output data yr, r = 1, 2, . . . , R and generate a point estimate and

a confidence interval of EY |x(Y |x)
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tion algorithm requires the independent sampling of the NORTA parameters for each of its

replications. Therefore, it is important to implement the Gibbs sampler algorithm in a way

that it provides statistically independent values of a NORTA parameter for each of the R

replications. Appendix C describes how to do this using the method of batching.

There are also cases in which the sampling of the NORTA parameters does not require

the use of an MCMC method and thus, the independent sampling of the NORTA parameters

is easy to achieve. One such case occurs when the components of the NORTA vector are

exponentially distributed and conjugate inverse gamma density functions are chosen as the

priors for the scale parameters of the components, while conjugate inverse Wishart prior

density functions are used for the (partial) correlations. Therefore, we can easily generate

R independent sets of NORTA parameters using well-known algorithms for sampling from

gamma and Wishart density functions (Appendix A).

Despite obtaining statistically independent sets of NORTA parameters in the first step of

the simulation replication algorithm, this is an approximation to the independent sampling of

the NORTA parameters when the prior density functions chosen for the component parame-

ter vectors and/or the (partial) correlations are not conjugate. The failure to independently

sample NORTA parameters often leads to dependent simulation output data. Therefore, the

second issue that might arise in the implementation of the simulation replication algorithm

is related to the lack of independence in the output data yr, r = 1, 2, . . . , R. Law (2007)

provides an excellent overview of the methods that have been proposed for the analysis of

dependent simulation output data. In Appendix D, we describe how to use the method of

batching for analyzing the (dependent) output data yr, r = 1, 2, . . . , R to obtain a point

estimate and a confidence interval of EY |x(Y |x).

1.4.2. Bayesian Simulation Replication Algorithm

We provide the Bayesian simulation replication algorithm for our k−dimensional input pro-

cess in Figure 1.4. We use Ψi, i = 1, 2, . . . , k to represent the vectors of the marginal distri-

bution parameters, and Ψmi
i to denote the marginal-distribution parameters sampled in the

mth
i replication. Similarly, Λ represents all (conditional and unconditional) two-dimensional

correlation matrices of the C-vine specification; i.e., Λ is composed ofΣ2(1, i), i = 2, 3, . . . , k,

and Σ2(j − 1, i; 1, 2, . . . , j − 2), i = j, j + 1, . . . , k, j = 3, 4, . . . , k. Λd, on the other hand,

denotes all (conditional and unconditional) correlation matrices sampled in the dth repli-

cation. Furthermore, we use notation x = {xi,t; i = 1, 2, . . . , k, t = 1, 2, . . . , n} for the
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k−dimensional historical input data of length n, and ym1,m2,...,mk,d,r for the output response

from the rth simulation run using the random-number input ur and the sampled input pa-

rameters Ψmi
i , i = 1, 2, . . . , k, and Λd. The first (i.e., the most outer) loop estimates the

uncertainty around the parameter vector Ψ1 of the marginal distribution of the first compo-

nent, while the second loop estimates the uncertainty around the parameter vector Ψ2 of the

marginal distribution of the second component. Similarly, the kth loop estimates the uncer-

tainty around the parameter vector Ψk of the marginal distribution of the kth component.

The (k+1)th loop, on the other hand, estimates the uncertainty around the dependence pa-

rameters, while the (k+2)th (i.e., the most inner) loop estimates the stochastic uncertainty.

Due to the use of the copula-vine specification to represent the uncertainty around the de-

pendence parameter Λ, it is possible to decompose this uncertainty into parts associated

with individual correlations and partial correlations. However, for ease of presentation, we

represent the uncertainty around Λ in a single loop in Figure 1.4.

The analysis of the next section assumes the independence of the simulation output data

ym1,m2,...,mk,d,r, mi = 1, 2, . . . ,Mi, i = 1, 2, . . . , k, d = 1, 2, . . . , D, and r = 1, 2, . . . , R; we refer

the reader to Appendix D for the analysis of the possibly dependent simulation output data

for the proper execution of the Bayesian simulation replication algorithm.

1.5. Output Variance Decomposition

In this section, we use the output data obtained from the execution of the Bayesian sim-

ulation replication algorithm, and estimate both a point estimate for the mean posterior

response EY |x(Y |x) and a posterior response variance as a function of stochastic uncertainty

(λ2), dependence-parameter uncertainty (θ2Λ), and marginal-distribution uncertainty for each

simulation input (θ2Ψi
, i = 1, 2, . . . , k). Following Zouaoui and Wilson (2003), we express the

output response from the rth simulation run as follows:

ym1,m2,...,mk,d,r = y
(
ur,Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k ,Λd
)

= η
(
Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k ,Λd
)
+ er

(
ur,Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k ,Λd
)
(1.8)

The error er(u
r,Ψm1

1 ,Ψm2
2 ,. . .,Ψmk

k ,Λd) is the deviation of the simulation output ym1,m2,...,mk,d,r

from the response-surface η(Ψm1
1 ,Ψm2

2 ,. . .,Ψmk
k , Λd) due to the stochastic uncertainty whose

source is the random-number input ur for that run. Under the assumptions of

Eur

[
er
(
ur,Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k ,Λd
)
| x,Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k ,Λd
]

= 0 (1.9)
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Figure 1.4: Bayesian simulation replication algorithm for the k−dimensional input process.
for m1 = 1, 2, . . . ,M1 replications do

generate the mth
1 sample parameter vector Ψm1

1 from p1 (Ψ1|x1);

set the parameter vector Ψ1 ← Ψm1
1 ;

for m2 = 1, 2, . . . ,M2 replications do

generate the mth
2 sample parameter vector Ψm2

2 from p2 (Ψ2|x2);

set the parameter vector Ψ2 ← Ψm2
2 ;

...
...

...

for mk = 1, 2, . . . ,Mk replications do

generate the mth
k sample parameter vector Ψmk

k from pk (Ψk|xk);

set the parameter vector Ψk ← Ψmk
k ;

for d = 1, 2, . . . , D replications do

generate the dth sample dependence vector Λd from p (Λ|Ψi, i = 1, 2, . . . , k,x);

set the dependence vector Λ← Λd;

for r = 1, . . . , R do

set the random number input u← ur;

perform the rth simulation run using u, Ψi, i = 1, 2, . . . , k, and Λ;

calculate the output response ym1,m2,...,mk,d,r = y(u,Ψ1,Ψ2, . . . ,Ψk,Λ);

end for

compute ym1,m2,...,mk,d =
1
R

∑R
r=1 ym1,m2,...,mk,d,r;

end for

compute ym1,m2,...,mk
= 1

D

∑D
d=1 ym1,m2,...,mk,d;

end for

...
...

...

compute ym1,m2 =
1
M3

∑M3

m3=1 ym1,m2,m3 ;

end for

compute ym1 =
1
M2

∑M2

m2=1 ym1,m2 ;

end for

compute ȳ = 1
M1

∑M1

m1=1 ym1 , which is an unbiased estimate of EY |x(Y | x)
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and

Varur

[
er
(
ur,Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k ,Λd
)
| x,Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k ,Λd
]

= λ2, (1.10)

it holds that

Eur

[
ym1,m2,...,mk ,d,r | x,Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k ,Λd
]

= η
(
Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k ,Λd
)

and

Varur

[
ym1,m2,...,mk ,d,r | x,Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k ,Λd
]

= λ2

for mi = 1, 2, . . . ,Mi, i = 1, 2, . . . , k, d = 1, 2, . . . , D, and r = 1, . . . , R, where λ2 represents

the stochastic uncertainty. This response surface model is known as the classical random

effects model in the statistics literature (Rao 1997). Its use allows us to estimate stochastic

uncertainty λ2 under the assumption of constant error variance; i.e., λ2 does not depend on

the parameters of the multivariate input distribution. Next, we assume that

η
(
Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k ,Λd
)

= ω (Ψm1
1 ,Ψm2

2 , . . . ,Ψmk
k ) (1.11)

+ �d

(
Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k ,Λd
)

formi = 1, 2, . . . ,Mi, i = 1, 2, . . . , k, and d = 1, 2, . . . , D, where�d

(
Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k ,Λd
)

is the deviation of η
(
Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k ,Λd
)
from the response surface ω (Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k )

due to the uncertainty associated with the underlying dependence structure captured in Λd.

Under the assumptions of

EΛd

[
�d

(
Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k ,Λd
)
| x,Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k

]
= 0 (1.12)

and

VarΛd

[
�d

(
Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k ,Λd
)
| x,Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k

]
= θ2Λ, (1.13)

it holds that

EΛd

[
η
(
Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k ,Λd
)
| x,Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k

]
= ω (Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k )

and

VarΛd

[
η
(
Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k ,Λd
)
| x,Ψm1

1 ,Ψm2
2 , . . . ,Ψmk

k

]
= θ2Λ
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formi = 1, 2, . . . ,Mi, i = 1, 2, . . . , k, and d = 1, 2, . . . , D, where θ2Λ represents the uncertainty

in the dependence structure of the multivariate input process.

Finally, we express the output variability due to the uncertainty associated with the

marginal distribution of the ith simulation input using

ϕi (Ψm1
1 ,Ψm2

2 , . . . ,Ψmi
i ) = ϕi−1

(
Ψm1

1 ,Ψm2
2 , . . . ,Ψ

mi−1

i−1

)
(1.14)

+ κi
mi

(Ψm1
1 ,Ψm2

2 , . . . ,Ψmi
i )

for mi = 1, 2, . . . ,Mi. Specifically, κ
i
mi

(Ψm1
1 ,Ψm2

2 , . . . ,Ψmi
i ) is the deviation of

ϕi (Ψm1
1 ,Ψm2

2 , . . . ,Ψmi
i ) from the response surface ϕi−1

(
Ψm1

1 ,Ψm2
2 , . . . ,Ψ

mi−1

i−1

)
due to the

uncertainty in the ith marginal distribution parameters. Under the assumptions of

EΨi

[
κi
mi

(Ψm1
1 ,Ψm2

2 , . . . ,Ψmi
i ) | x,Ψm1

1 ,Ψm2
2 , . . . ,Ψ

mi−1

i−1

]
= 0 (1.15)

and

VarΨi

[
κi
mi

(Ψm1
1 ,Ψm2

2 , . . . ,Ψmi
i ) | x,Ψm1

1 ,Ψm2
2 , . . . ,Ψ

mi−1

i−1

]
= θ2Ψi

, (1.16)

where β = EΨ1 [ϕ
1 (Ψ1) |x] is an unbiased estimator of the mean posterior response EY |x (Y | x),

it holds that

EΨi

[
ϕi (Ψm1

1 ,Ψm2
2 , . . . ,Ψmi

i ) | x,Ψm1
1 ,Ψm2

2 , . . . ,Ψ
mi−1

i−1

]
= ϕi−1

(
Ψm1

1 ,Ψm2
2 , . . . ,Ψ

mi−1

i−1

)
and

VarΨi

[
ϕi (Ψm1

1 ,Ψm2
2 , . . . ,Ψmi

i ) | x,Ψm1
1 ,Ψm2

2 , . . . ,Ψ
mi−1

i−1

]
= θ2Ψi

,

where σ2
Ψi

stands for the uncertainty associated with the marginal distribution parameters

of the ith input.

Based on the assumptions (1.8)-(1.16), the posterior response variance can be written as

Var (y|x) = λ2+θ2Λ+
∑k

i=1 θ
2
Ψi
; i.e., the sum of the three variance components that quantify,

respectively, the stochastic uncertainty, the uncertainty in the parameters of the dependence

structure, and the uncertainty in the marginal distribution parameters.

Using the simulation output data obtained from the Bayesian simulation replication

algorithm of Figure 1.4 and the well-established theory on the classical random-effects model

(Rao 1997), we estimate β, λ2, θ2Λ, and θ2Ψi
, i = 1, 2, . . . , k as follows:

β̂ = ȳ
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λ̂2 =
1∏k

�=1M�D (R− 1)

M1∑
m1=1

M2∑
m2=1

. . .

Mk∑
mk=1

D∑
d=1

R∑
r=1

(ym1,m2,...,mk,d,r − ym1,m2,...,mk,d)
2

θ̂2Λ =
1

D − 1

D∑
d=1

(ym1,m2,...,mk ,d − ym1,m2,...,mk
)2 − λ̂2

R

θ̂2Ψk
=

1

Mk

Mk∑
mk=1

(
ym1,m2,...,mk

− ym1,m2,...,mk−1

)2 − θ̂2Λ
D
− λ̂2

DR

θ̂2Ψi
=

1

Mi − 1

Mi∑
mi=1

(
ym1,m2,...,mi

− ym1,m2,...,mi−1

)2
−

k∑
�=i+1

θ̂2Ψ�∏k
s=i+1Ms

− θ̂2Λ∏k
s=i+1MsD

− λ̂2∏k
s=i+1MsDR

, i = k − 1, k − 2, . . . , 1

Following Zouaoui and Wilson (2003), we construct the 100(1− ϕ)% confidence interval for

β as [y(�M1ϕ/2�), y(�M1(1−ϕ/2)�)], where the quantities y(1) ≤ y(2) ≤ · · · ≤ y(M1) denote the order

statistics of the output data {ym1 ;m1 = 1, 2, . . . ,M1} defined in Figure 1.4.

Such decomposition of the simulation output variance is valuable for the simulation prac-

titioner as it provides him/her a guideline on how to proceed to reduce the uncertainty in the

simulation output. Specifically, if the stochastic uncertainty is high compared to the param-

eter uncertainty, then this suggests to make more replications in the simulation. Conversely,

if the parameter uncertainty is high, then the simulation practitioner needs to collect more

field data to reduce the parameter uncertainty.

1.6. An Inventory Simulation Example

This section performs a numerical study demonstrating the importance of the joint repre-

sentation of stochastic and parameter uncertainties in the estimation of the mean line-item

fill rates3 and the confidence intervals of multi-product inventory simulations with correlated

demands. We refer the reader to Section 1.6.1 for the experimental design and Section 1.6.2

for the results.

3The line-item fill rate compares the number of different products shipped complete to the number of
different products demanded. The use of the line-item fill rate, which is joint across products, is common in
settings where the demands for the items can be correlated as they are frequently used in sets.
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1.6.1. Experimental Design

We consider a periodic-review inventory system with k ≥ 1 different products whose demands

follow a k−dimensional NORTA distribution. We assume the following properties for the

true NORTA distribution: (i) The ith product demand has an exponential distribution with

a mean of 10(k + 1 − i)/k units for i = 1, 2, . . . , k. (ii) Each (partial) correlation in the

C−vine specification of the k−dimensional NORTA demand distribution is 0.30. We let

the number of different products, k take the values of 1, 2, 3, 5, and 10 and manage the

inventories of the products with the base-stock policy assuming zero ordering cost and zero

lead time. More specifically, we identify the base-stock levels Ii, i = 1, 2, . . . , k via the

use of the single-product models, each of which has a non-stockout probability of 0.90; i.e.,

Ii ≡ F−1
i (0.90; 10(k + 1 − i)/k) for i = 1, 2, . . . , k. This results in a true mean line-item fill

rate of 0.90 in each of the k−product inventory simulations.

We assume the availability of the historical demand data of length 100 generated from

the true NORTA distribution. We let Y be the line-item fill rate whose mean is relevant to

the inventory manager and use x for denoting the vector of the historical demand data. We

implement the simulation replication algorithm as described in Section 1.4.1 for generating

a point estimate and a 95% confidence interval of EY |x[Y |x]. We note that the Bayesian

simulation replication algorithm of Section 1.4.2 can also be used, and it produces similar

results. Our goal is to compare the performances of the point estimates and the confidence

intervals obtained from the implementation of our approach to those obtained from stochastic

simulations that consider only stochastic uncertainty. We assess the performance of the point

estimate using the mean absolute percentage error (MAPE) and the mean square error

(MSE), while we evaluate the performance of the confidence interval using the average

confidence-interval half-width (HW) and the average coverage probability (CP) (Zouaoui

and Wilson 2003).

1.6.2. Results

Table 1.1 presents the results obtained when the view of a frequentist is taken and the ex-

ponentially distributed product demands are assumed to be independent. Table 1.2 uses the

Bayesian model and presents the results obtained assuming independent product demands,

despite the increasing strength of dependence with the number of products. Finally, Ta-

ble 1.3 presents the results obtained when both the view of the Bayesian is taken and the
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stochastic dependencies among the product demands are considered. Each of these tables

reports the results for three different values of R (i.e., run length) of the simulation replica-

tion algorithm: 1000, 5000, and 10, 000. As the run length increases, we observe that the

average confidence-interval half-width approaches zero, while the accuracy in the estimation

of the mean absolute percentage error and the mean square error increases. We also observe

that the use of our model allows the simulation analyst to obtain point estimates with lower

mean absolute percentage errors and confidence intervals with higher coverage than those of

the stochastic simulations that account only for stochastic uncertainty.

Specifically, the comparison of the results tabulated in Table 1.1 to those in Table 1.2 and

Table 1.3 shows that the point estimator accuracy for the Bayesian approach is better than

the point estimator accuracy for the frequentist approach. The mean absolute percentage

error is 1.23% in the 2−product setting, while it is 2.12% in the 5−product setting for the

Bayesian approach with a run length of 10, 000 replications (Table 1.3). On the other hand,

for the frequentist approach the mean absolute percentage errors are 1.73% and 4.12% in the

2−product and 5−product settings (Table 1.1). Although the average confidence-interval

half-widths are tighter than their Bayesian counterparts, the frequentist approach delivers

decreasing coverage probabilities with increasing number of products. Since the confidence

intervals of the frequentist approach are centered on biased estimates of the mean line-item

fill rate, the confidence interval coverage eventually drops to zero as the number of products

increases.

On the other hand, the confidence intervals based on the Bayesian approach, even under

the assumption of independent product demands, show much higher coverage probabilities

as they account for the uncertainty around the parameters of the component marginal dis-

tributions as well as the stochastic uncertainty. We find that the mean absolute percentage

error is 3.01% and the coverage probability is 72.96% in the 5−product setting under the

assumption of independent demands (Table 1.2). However, the mean absolute percentage

error increases to 5.14% and the coverage probability decreases to 64.24% in the 10−product
setting, while accounting for the correlations among the product demands results in a mean

absolute percentage error of 3.41% and a coverage probability of 77.83%. Thus, the consider-

ation of the demand correlations further improves both the mean absolute percentage error

of the point estimates and the coverage probability of the confidence intervals, especially as

the number of products increases.
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Table 1.1: The results obtained via frequentist approach assuming independent demands.
R=1000 mean fill rate 95% confidence interval

k MAPE MSE HW CP
1 1.64% 3.44× 10−4 4.12× 10−2 79.90%
2 2.01% 6.60× 10−4 2.93× 10−2 73.60%
3 2.88% 1.21× 10−3 2.44× 10−2 70.90%
5 4.45% 2.56× 10−3 1.19× 10−2 67.10%
10 8.98% 5.98× 10−3 1.35× 10−2 49.40%

R=5000 mean fill rate 95% confidence interval
k MAPE MSE HW CP
1 1.53% 3.40× 10−4 1.34× 10−2 59.50%
2 1.94% 6.30× 10−3 9.43× 10−3 55.20%
3 2.60% 1.12× 10−3 7.78× 10−3 52.30%
5 4.15% 2.13× 10−3 6.05× 10−3 44.80%
10 8.41% 5.73× 10−3 4.27× 10−3 31.70%

R=10000 mean fill rate 95% confidence interval
k MAPE MSE HW CP
1 1.52% 3.31× 10−4 4.26× 10−3 57.10%
2 1.73% 3.61× 10−4 3.02× 10−3 53.20%
3 2.37% 8.91× 10−4 2.47× 10−3 48.70%
5 4.12% 2.09× 10−3 1.91× 10−3 41.90%
10 8.36% 5.29× 10−3 1.32× 10−3 30.20%
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Table 1.2: The results obtained via Bayesian approach assuming independent demands.
R=1000 mean fill rate 95% confidence interval

k MAPE MSE HW CP
1 1.48% 3.06× 10−4 4.86× 10−2 88.35%
2 1.77% 5.70× 10−4 3.05× 10−2 83.12%
3 2.12% 9.70× 10−4 2.97× 10−2 79.88%
5 3.24% 1.85× 10−3 1.82× 10−2 76.10%
10 5.63% 3.47× 10−3 2.01× 10−2 68.24%

R=5000 mean fill rate 95% confidence interval
k MAPE MSE HW CP
1 1.38% 2.90× 10−4 3.26× 10−2 87.29%
2 1.72% 5.30× 10−4 2.41× 10−2 82.18%
3 1.94% 6.00× 10−4 9.03× 10−3 78.57%
5 3.08% 1.52× 10−3 6.82× 10−3 73.36%
10 5.34% 2.99× 10−3 5.94× 10−3 66.87%

R=10000 mean fill rate 95% confidence interval
k MAPE MSE HW CP
1 1.35% 2.73× 10−4 5.12× 10−3 82.83%
2 1.68% 3.46× 10−4 4.02× 10−3 79.52%
3 1.88% 5.87× 10−4 2.98× 10−3 78.04%
5 3.01% 1.50× 10−3 1.62× 10−3 72.96%
10 5.14% 2.82× 10−3 2.62× 10−3 64.24%

Table 1.3: The results obtained via Bayesian approach assuming correlated demands.
R=1000 mean fill rate 95% confidence interval

k MAPE MSE HW CP
2 1.32% 3.27× 10−4 5.20× 10−2 88.76%
3 2.08% 6.54× 10−4 3.98× 10−2 84.02%
5 2.67% 1.17× 10−3 3.01× 10−2 81.45%
10 4.34% 2.32× 10−3 2.62× 10−2 80.00%

R=5000 mean fill rate 95% confidence interval
k MAPE MSE HW CP
2 1.26% 3.01× 10−4 3.65× 10−2 87.93%
3 1.83% 5.78× 10−4 9.87× 10−3 84.00%
5 2.19% 6.67× 10−4 8.05× 10−3 80.43%
10 3.92% 2.07× 10−3 6.13× 10−3 78.12%

R=10000 mean fill rate 95% confidence interval
k MAPE MSE HW CP
2 1.23% 2.92× 10−4 7.02× 10−3 84.72%
3 1.82% 5.76× 10−4 4.72× 10−3 82.61%
5 2.12% 6.54× 10−4 3.61× 10−3 79.28%
10 3.41% 2.02× 10−3 3.06× 10−3 77.83%
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1.7. Conclusion

We consider a large-scale stochastic simulation whose correlated inputs have a NORTA distri-

bution with arbitrary continuous marginal distributions. We investigate how to account for

stochastic and parameter uncertainties in the estimation of the mean performance measure

and the confidence interval of this simulation. Utilizing Sklar’s marginal-copula represen-

tation together with Cooke’s copula-vine specification, we develop a Bayesian model for

the fast sampling of the parameters of the NORTA distribution. The development of such

a Bayesian model, which enables simulation analysts to capture parameter uncertainty in

stochastic simulations with correlated inputs, is the primary contribution of this paper to

the discrete-event stochastic simulation literature. We incorporate the Bayesian model into

the simulation replication algorithm of Chick (2001) and the Bayesian simulation replication

algorithm of Zouaoui and Wilson (2003) for the joint representation of stochastic uncertainty

and parameter uncertainty in the computation of the mean performance estimate and the

confidence interval. We also decompose the variance of the simulation output obtained using

the Bayesian simulation replication algorithm into variances associated with the stochastic

uncertainty and the parameter uncertainty.

We demonstrate the effectiveness of the Bayesian model in decreasing the mean absolute

percentage error of the mean line-item fill-rate estimate and increasing the coverage of the

confidence interval in a multi-product inventory simulation with correlated stochastic de-

mands. The variance decomposition can help the simulation practitioner to decide whether

he/she needs to collect more data to reduce the parameter uncertainty or to make more

replications in the simulation to reduce the stochastic uncertainty.
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Chapter 2

Comparison of Least-Squares and
Bayesian Inferences for Johnson’s SB
and SL Distributions 1

2.1. Introduction

The common approach in building an input model for a discrete-event stochastic simulation

is to use a standard distribution such as beta, exponential, gamma, or normal (Law 2007).

However, the shapes represented by the standard family of distributions are limited and

therefore, they might fail to adequately capture the distributional characteristics of the

historical input data. For example, although widely used in practice, normal distribution is

characterized by its first two moments; it sets the coefficients of skewness and kurtosis to

zero and three, respectively, for any first two moments. Therefore, normal distribution falls

short of capturing the skewness in the historical input data. It is also possible that, despite

its statistical validity, a goodness-of-fit test rejects or accepts all candidate distributions,

depending on the number of available data points. Furthermore, the simulation analyst

might not be familiar with all the standard distributions on a lengthy list that can be used

for input modeling.

The shortcomings of using standard distributions for input modeling are often overcome

by the construction of flexible distributions that are capable of representing a wide variety of

distributional shapes. The well-known flexible distributions of the simulation input-modeling

literature include the curves proposed by Pearson (1895), the Johnson translation system

(Johnson 1949), the generalized lambda distribution (Ramberg and Schmeiser 1974), the

four-parameter distribution introduced by Schmeiser and Deutsch (1977), and the generalized

1This chapter is submitted to the journal INFORMS Journal on Computing with co-author Bahar Biller.
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beta family of distributions (Kuhl et al. 2009). The focus of this paper is on the SL and SB

distributions of the translation system developed by Johnson (1949). Due to the flexibility it

offers in modeling and the ease of its implementation, the Johnson translation system (JTS)

has been one of the popular flexible distribution systems in recent years. It is easy to use,

adjust, and understand. The four-parameter distribution of Schmeiser and Deutsch (1977)

is also easy to use, but the one-to-one relationship between the distribution parameters and

the moments is lost, and the distributional characteristics such as bimodality and heavy

tails are not captured. The distributional shapes that can be represented by the generalized

beta family are also limited in the sense that they are unimodal. The lambda family, on the

other hand, matches any first two moments but limited third and fourth moments, while

the JTS can capture any pair of finite third and fourth moments. Although the curves of

the JTS generally agree with Pearson curves having the same (or nearly the same) first four

moments, the mathematical structure of the distribution functions from the JTS provides a

convenient aid to developing input models for stochastic simulations.

A close look at the existing literature shows that JTS has been used in a variety of fields

including forestry, epidemiology, hydrology, and bioinformatics. A variety of fitting methods

has also been developed for estimating the Johnson parameters, including the method of

matching moments, the method of matching percentiles, the maximum likelihood estimation

(MLE) method, the least-squares estimation (LSE) method, and the Bayesian method. The

method of matching moments is known to lead to highly variable parameter estimates for

small data sets (Slifker and Shapiro 1980), while the estimates obtained by the method of

matching percentiles depend on the choice of percentile points (Chou et al. 1999). Also,

the (threshold) parameters associated with the bounded supports of Johnson’s SL and SB

distributions violate the standard regularity conditions of the MLE method (Hill 1963, Lam-

bert 1970). However, the LSE method introduced by Swain et al. (1988) for fitting target

Johnson distributions to independent data does not suffer from this particular limitation of

the MLE method. Furthermore, Swain et al. (1988) show that the LSE method is superior

to both the method of matching moments and the method of matching percentiles, while

Biller and Nelson (2005) prove the asymptotic consistency of the estimates obtained from

the LSE method. A frequently used method for estimating the threshold parameters of the

bounded distributions is the Bayesian method. This method has been used by a number of

researchers for Johnson’s SL and SB distributions (e.g., Hill 1963, Upadhyay and Peshwani

2001, and Tsionas 2001), and it has been shown to be superior to both the MLE method
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and the method of matching moments. Although the review of the literature suggests that

both the LSE method and the Bayesian method are promising fitting methods for Johnson’s

SL and SB distributions, it is not clear how the goodness of their fits compare to each other.

The goal of this paper is to investigate the relative performance of the Bayesian method

and the LSE method of Swain et al. (1988) in estimating the parameters of Johnson’s SL

and SB distributions, and to provide insights about when to use each fitting method. We

do this by assuming the availability of finite, independent, and identically distributed data

from the SL and SB families of the JTS. We compare the goodness of the fits using the

Kolmogorov-Smirnov and Anderson-Darling test statistics as well as the quantile-quantile

plots. The Bayesian method allows the incorporation of expert opinion into the estimation

procedure via the use of a joint prior density function on the distribution parameters. To

perform a fair comparison between the Bayesian and LSE methods in this paper, we obtain

the Bayesian fits by using a joint noninformative prior density function for the parameters of

the JTS. Our results suggest that the LSE method performs better than the Bayesian method

for highly skewed unimodal distributions of the SB family and the long-tailed distributions

of the SL family. The comparison of the goodness of the fits obtained for other cases does

not suggest any statistically significant difference between the performances of the Bayesian

and LSE methods.

We organize the remainder of the paper as follows. In Section 2.2, we introduce the

JTS, describe the application areas in which it has been found useful, and discuss the fitting

methods proposed for the JTS. We present the LSE method of Swain et al. (1988) and the

statistical properties of its parameter estimates in Section 2.3. We describe the Bayesian

method and provide its implementation details in Section 2.4. We present our experimental

results and discuss our major findings in Section 2.5. Finally, we conclude with future

research directions in Section 2.6.

2.2. Johnson Translation System

Section 2.2.1 introduces the Johnson translation system (JTS) and provides examples of its

application, while Section 2.2.2 reviews the fitting methods used for estimating the param-

eters of the JTS.
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2.2.1. Description and Applications

A random variable X from the JTS has a cumulative distribution function (cdf) of the form

F (x) = Φ

{
γ + δr

[
x− ξ

λ

]}
,

where Φ is the cdf of the standard normal random variable, γ and δ are shape parameters, ξ is

a location parameter, λ is a scale parameter, and r(·) is one of the following transformations:

r(y) =




log (y) for the SL (lognormal) family

log
(
y +
√
y2 + 1

)
for the SU (unbounded) family

log (y/(1− y)) for the SB (bounded) family

y for the SN (normal) family

Within each family, a distribution is completely specified by the values of the parameters γ,

δ, λ, and ξ, and the range of X depends on the family of interest; e.g., X > ξ and λ = 1

for the SL family, ξ < X < ξ + λ for the SB family, and −∞ < X < ∞ for the SU and SN

families of the JTS. There is a unique family (choice of r) for each feasible combination of

the coefficient of skewness and the coefficient of kurtosis that determines parameters γ and

δ. Also, any mean and (positive) variance can be attained by each of the families by further

manipulation of the parameters ξ and λ. The wide range of shapes the probability density

functions (pdfs) of the JTS may represent can be found in Johnson (1987).

JTS has been used successfully for a variety of applications. In this paper, we consider

the SB and SL families of the JTS. Johnson’s SB family has been found useful for applications

of forestry and epidemiology research, while the SL family has been used for the fields of

hydrology and bioinformatics. Specifically, Hafley and Schreuder (1977) show that the SB

family provides a good fit to the distribution of the tree diameter in forest stands. Monness

(1982), Von Gadow (1984), and Parresol (2003) also use the SB family for solving similar

estimation problems. Mage (1980) is the first to use the SB family for modeling environ-

mental airborne concentration measurements. Flynn (2004) discusses that the SB family is a

good model for fitting occupational exposures to airborne contaminants as compared to the

normal distribution and the two-parameter lognormal distribution. Examples of papers that

discuss the applications of the SL family, which is also known as the three-parameter log-

normal distribution, are Stedinger (1980), Singh (1987), Kosugi (1994), and Li et al. (2006).

Stedinger (1980), Singh (1987), and Kosugi (1994) use the SL family to fit the hydrological

46



data, while Li et al. (2006) demonstrate the use of the SL family for analyzing electromigra-

tion data. A more detailed presentation of the application areas of the JTS can be found in

Biller and Gunes (2010b).

2.2.2. Fitting Methods

In this section, we first review the method of matching moments and percentiles, then the

MLE method, and finally the LSE and Bayesian methods, which are the two fitting methods

of interest in this paper.

The Methods of Matching Moments and Percentiles

Although the method of matching moments (Hill et al. 1976) and the method of matching

percentiles (Slifker and Shapiro 1980, Bowman and Shenton 1988, and Bowman and Shenton

1989) are often used for practical applications, they suffer from a number of shortcomings.

The method of matching moments requires the computation of the third and fourth sample

moments that are highly biased especially when the size of the historical data set is small

(Johnson and Lowe 1979). Another problem with this method is that the variances of the

third and fourth moment estimators can be quite high. Also, the existence of the outliers

in the data has a significant impact on the performance of the moment estimators (Slifker

and Shapiro 1980). The method of matching percentiles, on the other hand, requires the

selection of four percentiles of the standard normal distribution as well as the matching of

these percentiles with the corresponding percentiles of the historical data. Therefore, the

estimates obtained by this method depend on the percentiles selected by the user; this is the

major disadvantage of the method of matching percentiles.

The MLE Method

Despite the use of the MLE method for estimating the parameters of many distributions,

threshold parameters violate the standard regularity conditions that ensure the asymptotical

properties of the maximum likelihood estimates (Billingsley 1961). Specifically, the range

of values the random variable from Johnson’s SL family takes (i.e., (ξ,∞)) depends on the

location parameter ξ. Similarly, the range of values the random variable from Johnson’s SB

family takes (i.e., (ξ, ξ + λ)) depends on the location parameter ξ and the scale parameter

λ.
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Hill (1963) shows that the likelihood function describing the joint distribution of the

input data xi, i = 1, 2, . . . , n of length n from Johnson’s SL distribution approaches infinity

as the threshold parameter ξ approaches x(1), where x(1) ≤ x(2) ≤ . . . ≤ x(n) stand for the

order statistics of the input data. Furthermore, the likelihood function approaches a positive

constant as ξ approaches −∞. Therefore, the likelihood function suggests that the maximum

likelihood estimates of the parameters ξ, γ, and δ are ξ̂ = x(1), γ̂ = −∞, and δ̂ = 0, even

though the likelihood function evaluated at these parameter estimates is zero.

Lambert (1970) argues that the findings of Hill (1963) extend to the analysis of Johnson’s

SB distribution. More specifically, the likelihood function approaches ∞ as the threshold

parameters ξ and ξ+λ approach x(1) and x(n)−x(1), respectively, even though the likelihood

function evaluated at these parameter estimates is zero. Also, Siekierski (1992) finds that

the maximum likelihood estimates of Johnson’s SB distribution can take preposterous values

when the distribution is skewed and/or the length of the input data is small. Tsionas (2001)

explains the findings of Siekierski (1992) by the flat portion of the likelihood function that

causes the optimization to proceed slowly and even to be trapped in a neighborhood of a

suboptimal solution.

The difficulty of applying the MLE method to the SL and SB families of the JTS has

been long recognized by Johnson (1949). A number of researchers including Cohen (1951),

Calitz (1973), Cheng and Amin (1983), Ranneby (1984), Cheng and Iles (1987), and Komori

and Hirose (2001) suggest methods to overcome the drawbacks of the MLE method. In the

following section, we consider the use of the LSE method and the Bayesian method for this

purpose.

The LSE Method of Swain et al. (1988) and the Bayesian Method

The LSE method of interest in this paper has been introduced by Swain et al. (1988) for

fitting a Johnson distribution function to independent and identically distributed data via

the minimization of the distance between a vector of uniformized order statistics and their

expected values. The LSE method does not suffer from the shortcomings discussed in the

previous sections for the MLE method and methods of matching moments and percentiles.

We provide a detailed description of the LSE method in Section 2.3.

Another method for distributions with threshold parameters is the Bayesian method.

Unlike the frequentist MLE and LSE methods, the Bayesian method requires the deter-

mination of a joint prior density function for quantifying the initial uncertainty about the
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distribution parameters. The inference is based on the posterior density function, which is

obtained by multiplying the likelihood function with the prior density function and dividing

it by the normalization constant. In many cases, however, it is not possible to calculate

the normalization constant due to the high-dimensional integrals involved in the computa-

tion. This, indeed, limited the use of the Bayesian method in the past for solving estimation

problems. However, the advancement of the Markov Chain Monte Carlo (MCMC) method

in the last decade has made it possible to estimate distribution parameters with any joint

posterior density function. Consequently, the Bayesian method has gained popularity and

is used by an increasing number of researchers; e.g., Smith and Naylor (1987), Green et al.

(1994), Desmond and Yang (1998), and Bermudez and Turkman (2003). A close look at

this literature reveals that Hill (1963), Upadhyay and Peshwani (2001), and Tsionas (2001)

have used the Bayesian method for the JTS. Specifically, Upadhyay and Peshwani (2001)

consider the SL family of distributions and describe the use of the MCMC method for pa-

rameter estimation. This is also the method we use for Johnson’s SL distributions in this

paper. Tsionas (2001), on the other hand, uses the Bayesian method for estimating the

parameters of Johnson’s SB family. He shows that the use of a joint noninformative prior

density function leads to smooth posterior density functions from which the Johnson pa-

rameters are estimated in two consecutive steps. First, the posterior mode estimates of the

shape parameters are obtained from their corresponding marginal posterior density function.

Then, these estimates are inserted into the joint posterior density function and the resulting

joint posterior density function is maximized to estimate the threshold parameters. One

shortcoming of this method is the bias in the estimation of one of the shape parameters. In

this paper, we, for the first time, provide the implementation details of the Bayesian method

via an MCMC method for Johnson’s SB distributions.

The review of the fitting methods for the JTS suggests that the LSE method of Swain et

al. (1988) and the Bayesian method are two promising methods for estimating the parameters

of Johnson’s SL and SB distributions. However, to the best of our knowledge, the performance

of these two estimation methods has not been evaluated with respect to each other. In the

remainder of the paper, we describe the LSE method and the Bayesian method in detail

and compare their performance of fitting Johnson’s SL and SB distributions to limited input

data.
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2.3. The LSE Method of Swain et al. (1988)

In this section, we assume the availability of the independent and identically distributed

input data xi, i = 1, 2, . . . , n of length n, use ψ = (γ, δ, λ, ξ) for the vector of Johnson

parameters, and define Vi(ψ)= γ+ δr[(xi− ξ)/λ] as the transformation of the ith data point

xi to a standard normal random variate. We also assume that random variable Xi has a

Johnson distribution with parameter vector ψ∗ composed of γ∗, δ∗, λ∗, and ξ∗. If all of the

parameter values are correct (i.e., ψ = ψ∗), then Vi(ψ
∗), i = 1, 2, . . . , n are independent

and identically distributed standard normal random variables; i.e., the transformed random

variable R(i) (ψ
∗) = Φ{V(i) (ψ

∗)} has the distribution of the ith order statistic in a random

sample of size n from the uniform distribution on the unit interval (0, 1). Since R(i)(ψ
∗) has

mean ρi = i/(n + 1), R(i)(ψ
∗) can be written as equal to ρi + εi (ψ

∗) so that the εi (ψ
∗),

i = 1, 2, . . . , n are translated uniform order statistics with mean zero and covariance

Cov
(
εj (ψ

∗) , εk (ψ∗)
)

=
ρj (1− ρk)

n + 2

for 1 ≤ j ≤ k ≤ n (Kendall and Stuart 1979).

Next, we let Ro (ψ) ≡ (R(1) (ψ) , R(2) (ψ) , . . . , R(n) (ψ))
′, ρ ≡ (ρ1, ρ2, . . . , ρn)

′, and

ε (ψ) ≡ (ε1 (ψ), ε2 (ψ) , . . . , εn (ψ) )
′, so that ε (ψ∗) ≡ Ro (ψ

∗) − ρ. Since the first and

second moments of the translated uniform order statistics are known and easily computed,

Swain et al. (1988) exploit this fact to develop a single, distribution-free formulation for

the fitting problem. Specifically, the distance between ρ and Ro (ψ) is minimized as a

function of ψ with respect to a metric defined by a quadratic form in the n−dimensional

Euclidean space. If W is the n × n matrix associated with this quadratic form (i.e.,

W = [Cov (εj(ψ
∗), εk(ψ∗)) ; j, k = 1, 2, . . . , n]), then the Johnson parameters can be esti-

mated by solving the following least-squares fitting problem:

minψ ε (ψ)′ Wε (ψ)

subject to ψ ∈ Ψ

The feasible region Ψ, which ensures the feasibility of Johnson’s SB and SL parameters, is

given by

Ψ = {(γ, δ, λ, ξ)′ : δ > 0

λ

{
> x(n) − ξ for f = SB,
= 1 for f = SL,

ξ < x(1) for f = SL and SB}.
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The least-squares fitting problem gives rise to different estimators depending on the form

of the weight matrix W. If it is the n × n identity matrix I, which assumes that the error

terms εi (ψ
∗), i = 1, 2, . . . , n are independent and identically distributed with equal variances,

we obtain the ordinary least-squares estimators for the Johnson parameters. We obtain the

weighted least-squares (WLS) estimators for W 
= I. The statistical theory recommends the

selection of W as a weight matrix as εi (ψ
∗), i = 1, 2, . . . , n are neither independent nor

homoscedastic. Furthermore, the inverse of W can be easily computed and such a weight

matrix yields the minimum variance linear unbiased estimators for the Johnson parameters

(Seber 1977). Nevertheless, we use the diagonal weight matrix defined by

D = diag {1/Var (ε1 (ψ∗)) , 1/Var (ε2 (ψ
∗)) , . . . , 1/Var (εn (ψ

∗))}

and obtain the diagonally-weighted least-squares (DWLS) estimators. Our choice ofD as the

weight matrix is based on the empirical comparison/analysis of Swain et al. (1988), in which

the DWLS estimators are found to be superior to the WLS estimators. Kuhl and Wilson

(1999) explain the poor performance of the WLS estimators by the cancellations that occur

in the objective function ε (ψ)′ Wε (ψ). The resulting objective function contains relatively

little information about the discrepancy between Ro (ψ) and ρ; the WLS estimators do not

provide good estimates of the parameters in the sense that they do not adequately capture

the characteristics of the historical data. Furthermore, Theorem 2 of Biller and Nelson

(2005) indicates that the Johnson parameter estimates obtained from the LSE method with

the diagonal weight matrix are strongly consistent.

2.4. The Bayesian Method

The Bayesian model development starts with the selection of a joint prior density function

quantifying the prior information about the parameters of Johnson’s SL and SB distributions.

The prior density function is then updated with the available input data to obtain the

posterior density function from which the inference is made. Specifically, Section 2.4.1 derives

the joint prior density function of the Johnson parameters and Section 2.4.2 combines the

joint prior density function with the likelihood function of the input data and obtains the

joint posterior density function. Due to the form of the joint posterior density function, we

resort to an MCMC method for obtaining estimates of the Johnson parameters. The idea

behind any MCMC method is to simulate a random walk in the entire parameter space that
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converges to the joint posterior density function of the parameters (Gilks et al. 1996). Then,

the parameters sampled in the simulation are averaged to obtain a final estimate of each

parameter. In this paper, we use the Gibbs sampler; i.e., a widely used MCMC method that

requires the sampling of the Johnson parameters from their conditional posterior density

functions (Geman and Geman 1984, Gelfand and Smith 1990). We present the conditional

posterior density functions and the Gibbs sampler, and discuss the distributional properties

of the Johnson parameter estimates obtained from the Gibbs sampler in Section 2.4.2.

2.4.1. Joint Prior Density Function of the Johnson Parameters

The key to the selection of a joint prior density function for the Johnson parameters is

that random variable r[(X − ξ)/λ] has a normal distribution with mean −γ/δ and standard

deviation 1/δ. Therefore, we treat parameter −γ/δ as the location parameter and denote

it by α in the remainder of the paper. Similarly, we consider 1/δ2 as the scale parameter

and denote it by β. Furthermore, we separate the selection of prior density functions for

parameters α and β from the selection of prior density functions for ξ and λ, and use

Jeffreys’ prior density function for each of these parameters. Specifically, Jeffreys’ prior is

a noninformative prior density function that is often used when little is known about the

distribution parameters; the goal is to extract as much information as possible from the

available input data (Kass and Wasserman 1996). The resulting joint prior density functions

for the parameters of Johnson’s SL and SB distributions are as follows:

Proposition 1 Jeffreys’ joint prior density function for parameters α, β, and ξ of Johnson’s

SL distribution is π(α, β, ξ) ∝ β−1, while Jeffreys’ joint prior density function for parameters

α, β, ξ, and λ of Johnson’s SB distribution is π(α, β, ξ, λ) ∝ β−1λ−2.

Proof 1 Using the existing theory on Jeffreys’ well-known priors for location and scale pa-

rameters, we set π(α) = 1 for parameter α and π(β) = β−1 for parameter β. Thus, we

obtain π(α, β) = β−1 for the joint prior density function of α and β.

We define the joint prior density function π(ξ) on ξ of Johnson’s SL distribution as

proportional to |I(ξ)|1/2, where I(ξ)≡−E [∂2 log f(X)/∂2ξ] is the expected Fisher information

matrix with E denoting the expectation operator and f denoting the pdf of the random variable

from the SL family. Since the corresponding pdf with λ = 1 and X > ξ is given by

f(x) =
1√

2πβ(x− ξ)
exp

{
−1
2

[
− α√

β
+

1√
β
log (x− ξ)

]2}
,
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Jeffreys’ prior for ξ is proportional to 1; i.e., π(ξ) ∝ 1. This results in a joint prior density

function of the form π(α, β, ξ) = π(α, β)π(ξ) ∝ β−1 for the parameters of the SL distribution.

We define the joint prior density function π(ξ, λ) on (ξ, λ) of Johnson’s SB distribution as

proportional to |I(ξ, λ)|1/2, where I(ξ, λ)≡−E [∂2 log f(X)/ (∂(ξ, λ)∂(ξ, λ)′)] is the expected

Fisher information matrix. Because we separate the selection of π(α, β) from the selection

of (ξ, λ), we take α = 0 and β = 1 without loss of generality (Tsionas 2001). Since the pdf

of random variable X from the SB family with ξ < X < ξ + λ is given by

f(x) =
λ√

2π(x− ξ)(ξ + λ− x)
exp

{
−1
2

[
log

(
x− ξ

ξ + λ− x

)]2}
,

the identification of the joint prior density function π(ξ, λ) requires the evaluation of the

expectations of the following second-order derivatives:

∂2 log f(x)

∂λ2
= −λ−2 − (ξ + λ− x)−2 log

(
x− ξ

ξ + λ− x

)
∂2 log f(x)

∂λ∂ξ
= λ−2 − (x− ξ)−1 (ξ + λ− x)−1

∂2 log f(x)

∂ξ2
= −λ−2 + (x− ξ)−2 log

(
x− ξ

ξ + λ− x

)
To evaluate the expectations of these expressions, we use the following results from Tsionas

(2001), where κ1, κ2, and κ3 denote constants: (i) The SB random variable X has the

representation X = [(ξ+λ) exp(Z)+ ξ]/[1+ exp(Z)], where Z is a standard normal random

variable.

(ii)

E

[
(ξ + λ−X)−2 log

(
X − ξ

ξ + λ−X

)]
= λ−2E

[
Z (1 + exp(Z))2

]
= κ1λ

−2 ∝ λ−2

(iii)

E
[
(X − ξ)−1 (ξ + λ−X)−1] = λ−2E

[
Z (1 + exp(Z))2 / exp(Z)

]
= κ2λ

−2 ∝ λ−2

(iv)

E

[
(X − ξ)−2 log

(
X − ξ

ξ + λ−X

)]
= λ−2E2 [(1 + exp(Z)) / exp(Z)] = κ3λ

−2 ∝ λ−2

Consequently, we find that |I(ξ, λ)| ∝ λ−4; i.e., π(ξ, λ) ∝ λ−2. Therefore, the joint prior

density function for Johnson’s SB distribution parameters is given by π(α, β, ξ, λ) ∝ β−1λ−2.

The use of these joint prior density functions for Johnson’s SL and SB parameters allows

us to perform a fair comparison between the performance of the Bayesian method and the

performance of the LSE method.
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2.4.2. Joint Posterior Density Function and Sampling Algorithms

We start our presentation with the likelihood function ϕ(x|α, β, ξ) describing the joint dis-

tribution of the input data vector x =(x1, x2,. . ., xn)
′ of dimension n from Johnson’s SL

distribution:

ϕ(x|α, β, ξ) = β−n/2∏n
i=1(xi − ξ)

exp

{
− 1

2β

n∑
i=1

[log(xi − ξ)− α]2
}

Similarly, the likelihood function ϕ(x|α, β, ξ, λ) for Johnson’s SB distribution is given by

ϕ(x|α, β, ξ, λ) = β−n/2λn∏n
i=1(xi − ξ)(λ+ ξ − xi)

exp

{
− 1

2β

n∑
i=1

[
log

(
xi − ξ

λ+ ξ − xi

)
− α

]2}
.

Multiplication of these likelihood functions with the joint prior density functions of Propo-

sition 1 leads to a joint posterior density function of the form

h(α, β, ξ|x) ∝ β−n/2−1∏n
i=1(xi − ξ)

exp

{
− 1

2β

n∑
i=1

[log(xi − ξ)− α]2
}

for Johnson’s SL parameters and

h(α, β, ξ, λ|x) ∝ β−n/2−1λn−2∏n
i=1(xi − ξ)(λ+ ξ − xi)

exp

{
− 1

2β

n∑
i=1

[
log

(
xi − ξ

λ+ ξ − xi

)
− α

]2}

for Johnson’s SB parameters.

We obtain Johnson parameter estimates from these joint posterior density functions via

the use of a Gibbs sampler. Specifically, the Gibbs sampler produces a chain of each param-

eter and the estimate of the parameter is obtained by taking the ergodic average of the chain

after proper analysis. We provide the Gibbs sampler for Johnson’s SB distribution in Figure

2.1. It proceeds through iterated sampling from the conditional posterior density functions

p(β|α, ξ, λ,x), p(α|β, ξ, λ,x), p(ξ|β, α, λ,x), and p(λ|β, α, ξ,x) for parameters β, α, ξ, and

λ, respectively. The Gibbs sampler works similarly for Johnson’s SL distribution except that

λ = 1. In both cases, the implementation of the Gibbs sampler requires solutions to the

selection of an appropriate sampling plan, the choice of an appropriate warm-up period (i.e.,

a value for L∗ of Figure 2.1), and the determination of the length of the chain (i.e., a value

for L of Figure 2.1) for the convergence of the chain to the joint posterior density function. A

detailed discussion of these implementation issues can be found in Biller and Gunes (2010a).
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set α, β, ξ, and λ to α0, β0, ξ0, and λ0, respectively, by fitting Johnson curves
via the method of matching moments.

for � = 1, 2, . . . ,L∗,L∗ + 1, . . . ,L replications do

generate β� from conditional posterior density function p(β|α�−1, ξ�−1, λ�−1,x)

generate α� from conditional posterior density function p(α|β�, ξ�−1, λ�−1,x)

generate ξ� from conditional posterior density function p(ξ|β�, α�, λ�−1,x)

generate λ� from conditional posterior density function p(λ|β�, α�, ξ�,x)

end loop

estimate the Johnson parameters as follows:

β̂ =
∑L

�=L∗+1 β
�/(L− L∗) and α̂ =

∑L
�=L∗+1 α

�/(L − L∗)

ξ̂ =
∑L

�=L∗+1 ξ
�/(L − L∗) and λ̂ =

∑L
�=L∗+1 λ

�/(L − L∗)

Figure 2.1: Gibbs sampler for Johnson’s SB parameters α, β, ξ, and λ.

Next, we provide the conditional posterior density functions necessary for the imple-

mentation of the Gibbs sampler. Specifically, p(β|α, ξ,x) of Johnson’s SL distribution and

p(β|α, ξ, λ,x) of Johnson’s SB distribution have the following functional forms:

∝




β−n/2−1 exp
{
− 1

2β

∑n
i=1 [log (xi − ξ)− α]2

}
for the SL distribution

β−n/2−1 exp

{
− 1

2β

∑n
i=1

[
log
(

xi−ξ
λ+ξ−xi

)
− α
]2}

for the SB distribution

Similarly, p(α|β, ξ,x) of Johnson’s SL distribution and p(α|β, ξ, λ,x) of Johnson’s SB distri-

bution are given by

∝




exp
{
− 1

2β

∑n
i=1 [log (xi − ξ)− α]2

}
for the SL distribution,

exp

{
− 1

2β

∑n
i=1

[
log
(

xi−ξ
λ+ξ−xi

)
− α
]2}

for the SB distribution,

while p(ξ|β, α,x) and p(ξ|β, α, λ,x) are defined by

∝




1∏n
i=1(xi−ξ)

exp
{
− 1

2β

∑n
i=1 [log(xi − ξ)− α]2

}
for the SL distribution,

1∏n
i=1(λ+ξ−xi)

exp

{
− 1

2β

∑n
i=1

[
log
(

xi−ξ
λ+ξ−xi

)
− α
]2}

for the SB distribution.

Finally, the conditional posterior density function p(λ|β, α, ξ,x) of Johnson’s SB distribution

is given by

λn−2∏n
i=1(λ+ ξ − xi)

exp

{
− 1

2β

n∑
i=1

[
log

(
xi − ξ

ξ + λ− xi

)
− α

]2}
.
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The sampling of parameter β−1 from p(β|α, ξ,x) reduces to the sampling of a gamma

variate with shape parameter n/2 and scale parameter 2/
∑n

i=1(log(xi − ξ)− α)2 for John-

son’s SL distribution. Similarly, the sampling of parameter β−1 from p(β|α, ξ, λ,x) re-

duces to the sampling of a gamma variate with shape parameter n/2 and scale parameter

2/
∑n

i=1(log((xi − ξ)/(λ+ ξ − xi))− α)2 for Johnson’s SB distribution. Efficient procedures

for sampling random variates from a gamma density function can be found in Law (2007).

The conditional posterior density function of parameter α is logconcave and therefore,

parameter α can be sampled using the adaptive rejection sampling (ARS) algorithm for the

Gibbs sampler (Gilks and Wild 1992). However, neither the conditional posterior density

function of ξ nor the conditional posterior density function of λ is logconcave with a standard

functional form. Therefore, we use the adaptive rejection metropolis sampling (ARMS)

algorithm proposed by Gilks et al. (1995) for sampling parameters ξ and λ. We present the

ARS and the ARMS algorithms in the next sections.

A natural question to ask is whether the Johnson parameter estimates obtained by the

Gibbs sampler are asymptotically consistent. There exists a well established theory on the

asymptotical properties of the Bayesian estimates; i.e., they converge to the true parameter

values as the length of the input data approaches infinity and the joint posterior density

function of the parameters converges in distribution to a multivariate normal density function

(Bernardo and Smith 1994). However, these asymptotical properties cannot be proven for

the improper posterior density functions (Gelman et al. 1995, Section 4.3). In this paper, we

use Jeffreys’ (noninformative) joint prior density function for the parameters of Johnson’s

SL and SB distributions. This allows us to perform a fair comparison between the LSE

method and the Bayesian method, but noninformative priors are improper and they lead

to improper joint posterior density functions. Therefore, we cannot prove the asymptotical

consistency of the Johnson parameter estimates obtained by the Gibbs sampler in Figure

2.1. Nevertheless, Johnson parameter estimates converge to their true parameter values in

each experiment performed in Section 2.5.

Sampling α from p(α|β, ξ,x) via the ARS Algorithm

In this section, we focus on sampling parameter α of Johnson’s SL distribution from p(α|β, ξ,x)
via the ARS algorithm. However, our discussion is readily applicable to parameter α of John-

son’s SB distribution with the modification of the posterior density function.
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For ease of presentation, we denote the posterior density function p(α|β, ξ,x) of Johnson’s
SL distribution with h(α), its logarithm with M(α); i.e.,

M(α) = − 1

2β

n∑
i=1

[log (xi − ξ)− α]2 ,

and the domain of h(α); i.e., the set of α for which h(α) > 0, with D. We represent the set

of � different α values with T� = {αp; p = 1, 2, . . . , �}, where αp, p = 1, 2, . . . , � are arranged

in an ascending order. We use α(p) for the pth lowest element of T�. We define Lp,q(α;T�)

as the straight line passing through points (αp,M(αp)) and (αq,M(αq)) for 1 ≤ p ≤ q ≤ n.

Additionally, we use u�(α) for the piecewise linear function that is defined as the minimum of

Lp−1,p(α;T�) and Lp+1,p+2(α;T�), where αp ≤ α < αp+1. Since the posterior density function

h(α) is logconcave, u�(α) is an envelope (i.e., an upper hull) for M(α); i.e., u�(α) ≥ Mi(α)

for every α ∈ D. Finally, we define the normalized exponential hull of the upper hull as

s�(α) ≡ exp (u�(α)) /
∫
D
exp (u�(α)) dα. Since s�(α) is a piecewise exponential distribution,

α can be easily sampled from s�(α) (Law 2007).

The ARS algorithm is composed of steps of initialization, sampling, evaluation, rejection,

and acceptance, and it proceeds as follows. The algorithm starts with the initialization of

� to 2 and the construction of T2 with α1 = −1 and α2 = +1. These two values have been

reported to provide good starting values for high computational efficiency (Gilks and Wild

1992). In the sampling step, α† and w are generated independently from s�(α) and the

uniform distribution on the unit interval. If w is found to be greater than h(α†)/ exp(u�(α
†))

in the evaluation step, then the algorithm moves to the rejection step. Otherwise, the

algorithm moves to the acceptance step. In the rejection step, α† is used for forming T�+1

whose elements are to be arranged in an ascending order, and the algorithm goes back to

the sampling step. The acceptance step, on the other hand, returns α† as the value sampled

for parameter α.

Sampling ξ from p(ξ|α, β,x) via the ARMS Algorithm

The ARMS algorithm of this section is obtained by appending the Hastings-Metropolis

algorithm (Hastings 1970) to the end of the ARS algorithm of the previous section. We

describe implementation details of this algorithm by focusing on sampling parameter ξ of

Johnson’s SL distribution from conditional posterior density function p(ξ|α, β,x). However,
the approach applies to the sampling of parameters ξ and λ of Johnson’s SB distribution via

the proper modification of the posterior density functions.
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For notational convenience, we denote posterior density function p(ξ|α, β,x) with h(ξ),

its logarithm with M(ξ), and the domain of h(ξ) with D. Similarly, we represent the set

of � different ξ values with T� = {ξp; p = 1, 2, . . . , �}, where ξp, p = 1, 2, . . . , � are arranged

in an ascending order. We use ξ(p) for the pth lowest element of T� and Lp,q(ξ;T�) for the

straight line passing through points (ξp,M(ξp)) and (ξq,M(ξq)) for 1 ≤ p ≤ q ≤ n. We

define piecewise linear function u�(ξ) as the maximum of Lp,p+1(ξ, T�) and the minimum

of Lp−1,p(ξ, T�) and Lp+1,p+2(ξ, T�) for ξp ≤ ξ ≤ ξp+1. We define s�(ξ) as equivalent to

exp (u�(ξ)) /
∫
D
exp (u�(ξ)) dξ. Finally, we let ξ

‡ denote the current value of ξ sampled in the

previous iteration of the Gibbs sampler. Our goal is to replace ξ‡ with ξ† to be sampled from

h(ξ) in the current iteration.

The ARMS algorithm starts with the initialization of � to 2 and the construction of T2

with ξ1 = −1 and ξ2 = +1. Then, ξ† and w are sampled independently from s�(ξ) and the

uniform distribution on the unit interval. If w is greater than h(ξ†)/ exp(u�(ξ
†)), then the

algorithm moves to the ARS rejection step; i.e., ξ† is used for forming T�+1 whose elements

are to be arranged in an ascending order and the algorithm goes back to the independent

sampling of ξ† and w from s�(ξ) and the uniform distribution on the unit interval. Otherwise,

the algorithm moves to the ARS acceptance step; i.e., a uniform random variate, which we

denote by u, is sampled from the unit interval and if u is greater than the minimum of 1 and

h(ξ†)min{h(ξ‡), exp(u�(ξ
‡))}

h(ξ‡)min{h(ξ†), exp (u�(ξ†))}
,

then ξ† is set to ξ‡. Otherwise, ξ† is returned as the value sampled for ξ.

2.5. Numerical Study

Our objective is to evaluate the performance of the LSE method of Section 2.3 with respect

to the performance of the Bayesian method of Section 2.4 for Johnson’s various SL and SB

distributions. We present the design of the experiments in Section 2.5.1 and the results in

Section 2.5.2.

2.5.1. Design of the Experiments

Figures 2.2 and 2.3 present the pdfs of the SL and SB distributions we experiment with

in Section 2.5.2. The title of each plot is an abbreviation for the index of the experiment

performed for the distribution of interest. Tables 2.1 and 2.2 provide the properties of these
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distributions; i.e., the coefficient of variation (σ/µ), the coefficient of skewness (
√
β1), the

coefficient of kurtosis (β2), the 90
th quantile of the Johnson random variable (X0.90), the 95

th

quantile (X0.95), and the 99th quantile (X0.99). Specifically, the SB distributions of Figure

2.2 and Table 2.1 are obtained for ξ = 0 and λ = 1, while the SL distributions of Figure

2.3 and Table 2.2 are obtained for ξ = 0, λ = 1, γ = 0, and three different values of δ that

control the level of skewness and the length of the right tails in the pdfs.
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Figure 2.2: Pdfs of unimodal and bimodal SB distributions

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

x

pr
ob

ab
il

it
y 

de
ns

it
y 

fu
nc

ti
on

 (
x)

SL−I

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

x

pr
ob

ab
il

it
y 

de
ns

it
y 

fu
nc

ti
on

 (
x)

SL−II

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

x

pr
ob

ab
il

it
y 

de
ns

it
y 

fu
nc

ti
on

 (
x)

SL−III

Figure 2.3: Pdfs of Johnson’s SL distributions

In each experiment, we let the number of input data points, n take the values of 30,

50, 100, and 1000. To calculate the goodness of the estimated Johnson cdf F̂ , we use the

Kolmogorov-Smirnov (KS) test statistic (Chakravant et al. 1967) and the Anderson-Darling

(AD) test statistic (Anderson and Darling 1954). Both of these tests compare F̂ to the

empirical cdf Fn. More specifically, the KS test statistic corresponds to the largest distance
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Table 2.1: Properties of the SB distributions illustrated in Figure 2.2
Type Parameters σ/µ

√
β1 β2 X0.90 X0.95 X0.99

SB-I γ = 0, δ = 2 0.2 -8.4 ×10−9 2.6 0.6 0.7 0.8
SB-II γ = 2, δ = 2 0.3 0.5 3.2 0.4 0.5 0.6
SB-III γ = −2, δ = 2 0.3 -0.5 3.2 0.8 0.9 0.9
SB-IV γ = 0, δ = 0.5 0.6 3.1 ×10−9 1.6 0.9 0.9 1.0
SB-V γ = 0, δ = 0.8 0.5 2.1 ×10−9 2.0 0.8 0.9 0.9
SB-VI γ = 0.5, δ = 0.5 0.6 0.4 2.2 0.7 0.8 0.9

Table 2.2: Properties of the SL distributions illustrated in Figure 2.3
Type Parameters σ/µ

√
β1 β2 X0.90 X0.95 X0.99

SL-I δ = 0.5 7.3 414.4 9.2× 106 13.0 26.8 105.0
SL-II δ = 1 1.3 6.2 113.9 3.6 5.2 10.2
SL-III δ = 2 0.5 1.8 8.9 1.9 2.3 3.2

between Fn(x) and F̂ (x); i.e., supx{|Fn(x)−F̂ (x)|}, while the AD test statistic is the weighted

average of the squared differences [Fn(x)− F̂ (x)]2, where the weights are the largest for the

values of F̂ (x) that are closest to zero and one. Therefore, the KS test statistic emphasizes

the discrepancies in the middle, while the AD test statistic indicates the discrepancies in the

tails of the distribution functions.

The results of the next section are averaged over the number of replications necessary

for an absolute error of no more than 0.1 on the KS and AD test statistics. We also provide

the quantile-quantile (Q-Q) plots comparing the ith quantile of the input data x(i) to the ith

quantile of the estimated Johnson cdf F̂−1((i− 1/2)/n) for i = 1, 2, . . . , n. The Q-Q plot is

expected to be approximately linear with a slope of 1 if F̂ (x) is a good fit for Fn(x). Any

departure from linearity indicates a discrepancy between the distribution functions Fn(x)

and F̂ (x). Furthermore, we obtain the Bayesian estimates of the Johnson parameters by

performing a single run of the Gibbs sampler, determining the length of the run (i.e., L of

Figure 2.1) as 60000 iterations using the convergence diagnostic of Heidelberger and Welch

(1983) and the method of batching (Law 2007), and identifying the warm-up period (i.e.,

L∗ of Figure 2.1) as 10000 iterations using the convergence diagnostics of Heidelberger and

Welch (1983) and Geweke (1992).

2.5.2. Results

First, we discuss our findings for Johnson’s SB distributions. The KS and AD test statistics

of the fits obtained for the unimodal distributions via the LSE method and Bayesian method

are presented in Table 2.3. The comparison of the KS statistics reveals no conclusion about
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whether the LSE method or the Bayesian method performs better; the results favor the LSE

method in some cases, while they favor the Bayesian method in others. However, the AD

Table 2.3: The KS and AD test statistics for the unimodal SB distributions
SB-I n = 30 n = 50 n = 100 n = 1000

LSE (KS) 0.57 0.52 0.47 0.47
Bayesian (KS) 0.48 0.51 0.45 0.46
LSE (AD) 0.77 0.25 0.18 0.17
Bayesian (AD) 0.78 0.25 0.23 0.23

SB-II n = 30 n = 50 n = 100 n = 1000

LSE (KS) 0.64 0.54 0.45 0.45
Bayesian (KS) 0.57 0.58 0.53 0.51
LSE (AD) 0.22 0.23 0.12 0.10
Bayesian (AD) 0.36 0.28 0.23 0.21

SB-III n = 30 n = 50 n = 100 n = 1000

LSE (KS) 0.60 0.55 0.46 0.44
Bayesian (KS) 0.58 0.52 0.44 0.43
LSE (AD) 0.24 0.21 0.14 0.14
Bayesian (AD) 0.32 0.30 0.24 0.22

test statistics obtained for the LSE method consistently appear to be smaller than those

obtained for the Bayesian method. This leads us to conclude that the LSE method performs

better than the Bayesian method in capturing the tail behavior of Johnson’s unimodal SB

distributions. The Q-Q plots presented in Figures 2.4, 2.5, and 2.6 also indicate that the LSE

method performs better in capturing especially the right tail behavior of the skewed data;

e.g., the curves of Figure 2.5 corresponding to the Bayesian method exhibit more deviation

from linearity in the right tails. As the number of historical data points increases and the

parameter estimates approach their true values, the Q-Q plots get more linear for both the

LSE and the Bayesian method. Therefore, we present the Q-Q plots of SB-I distribution for

n = 30, n = 50, n = 100, and n = 1000 in Figure 2.4, and the Q-Q plots of the SB-II and

SB-III distributions in Figures 2.5, and 2.6, respectively, for n = 30 and n = 50.

The similar analysis of the test statistics in Table 2.4 and the Q-Q plots in Figures 2.7, 2.8,

and 2.9 obtained for the bimodal SB distributions indicate almost no difference between the

performances of the LSE method and the Bayesian method. Therefore, our conclusion about

the superiority of the LSE method over the Bayesian method in fitting skewed unimodal SB

distributions does not extend to bimodal SB distributions.

We are now ready to present the results for Johnson’s SL distributions. We provide the

KS and AD test statistics in Table 2.5 and the Q-Q plots in Figures 2.10, 2.11, and 2.12.
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Figure 2.4: Q-Q plots for the SB-I distribution
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Figure 2.5: Q-Q plots for the SB-II distribution
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Figure 2.6: Q-Q plots for the SB-III distribution
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Table 2.4: The KS and AD test statistics for the bimodal SB distributions
SB-IV n = 30 n = 50 n = 100 n = 1000

LSE (KS) 0.58 0.46 0.39 0.36
Bayesian (KS) 0.53 0.50 0.42 0.40
LSE (AD) 0.47 0.25 0.12 0.20
Bayesian (AD) 0.47 0.22 0.21 0.10

SB-V n = 30 n = 50 n = 100 n = 1000

LSE (KS) 0.55 0.49 0.44 0.43
Bayesian (KS) 0.63 0.56 0.52 0.50
LSE (AD) 0.23 0.20 0.15 0.12
Bayesian (AD) 0.27 0.22 0.17 0.18

SB-VI n = 30 n = 50 n = 100 n = 1000

LSE (KS) 0.64 0.50 0.42 0.41
Bayesian (KS) 0.66 0.58 0.53 0.53
LSE (AD) 0.67 0.22 0.12 0.10
Bayesian (AD) 0.39 0.36 0.21 0.20

Table 2.5: The KS and AD test statistics for Johnson’s SL distributions
SL-I n = 30 n = 50 n = 100 n = 1000

LSE (KS) 1.99 2.67 5.02 17.50
Bayesian (KS) 2.02 2.54 5.00 17.80
LSE (AD) 3.71 6.66 23.05 277.50
Bayesian (AD) 3.59 6.58 22.80 267.30

SL-II n = 30 n = 50 n = 100 n = 1000

LSE (KS) 0.90 1.13 1.52 3.43
Bayesian (KS) 0.90 0.90 1.50 3.50
LSE (AD) 1.06 1.58 2.69 16.20
Bayesian (AD) 1.04 1.15 2.50 15.80

SL-III n = 30 n = 50 n = 100 n = 1000

LSE (KS) 0.67 0.71 0.74 0.77
Bayesian (KS) 0.61 0.69 0.70 0.72
LSE (AD) 0.32 0.36 0.40 0.70
Bayesian (AD) 0.29 0.34 0.38 0.65
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Figure 2.7: Q-Q plots for the SB-IV distribution

0.4

0.6

0.8

1

Bayesian

n = 30 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Bayesian

LSE

n = 30 

0.2

0.4

0.6

0.8

1
n = 50 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

n = 50 

Figure 2.8: Q-Q plots for the SB-V distribution
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Figure 2.9: Q-Q plots for the SB-VI distribution
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First, we note that the KS and AD test statistics obtained for Johnson’s SL distributions

are larger than those obtained for the SB distributions. Similarly, the Q-Q plots of the SL

distributions are less linear than the Q-Q plots of the SB distributions. These observations

can be explained by the tail behavior of the data from the SL family, which produces outliers

in the data set. We find that the AD test statistics obtained for the Bayesian method are

slightly smaller than the AD test statistics of the LSE method. However, a closer look at the

Q-Q plots shows that the LSE method performs better than the Bayesian method for the

long-tailed SL-I and SL-II distributions, while the Bayesian method performs slightly better

than the LSE method for the short-tailed SL-III distribution. Therefore, we conclude that

the LSE method performs better than the Bayesian method in fitting long-tailed distributions

of the SL family.

2.6. Conclusion

In this paper, we consider the problem of estimating the parameters of Johnson’s SL and SB

distributions from historical input data of finite length. A close look at the existing literature

suggests that two promising data-fitting methods for Johnson’s SL and SB distributions are

the LSE method of Swain et al. (1988) and the Bayesian method. We contribute to the

discrete-event stochastic simulation literature by describing the use of the Bayesian method

for Johnson’s SL and SB distributions and comparing the performances of these two methods

for historical data sets of different lengths and distributional characteristics. An important

feature of the Bayesian method is its ability to incorporate expert opinion into the estimation

procedure using a joint prior density function on the distribution parameters. Since our goal

is to perform a fair comparison between the Bayesian and LSE methods in this paper,

we assume a joint noninformative prior density function for the distribution parameters;

i.e., little is known about the distribution parameters and the goal is to extract as much

information as possible from the available input data. Our numerical study suggests that

the LSE method performs better than the Bayesian method in capturing the characteristics

of the data generated from skewed unimodal distributions of the SB family and long-tailed

distributions of the SL family.
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Figure 2.10: Q-Q plots for the SL-I distribution
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Figure 2.11: Q-Q plots for the SL-II distribution
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Figure 2.12: Q-Q plots for the SL-III distribution
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Chapter 3

Food Banks Can Enhance Their
Operations with OR/OM Tools: A
Pilot Study with Greater Pittsburgh
Community Food Bank 1

3.1. Introduction

Food banks are private, non-profit organizations that procure food through several channels

and make it available to people in need via agencies. These supply channels are mainly

comprised of food manufacturers and retailers that have been forced to reduce their charity

contributions due to the current market conditions. In addition, they have been holding

fewer defective and surplus items - items that are traditionally considered for donation -

with their ever-improving inventory management systems.

On the demand side, greater number of low-income people are turning to food assistance

programs. In fact, a December 2008 survey conducted by Feeding America, the largest

hunger relief organization in the U.S. affiliated with more than 200 food banks, reports a

30% increase in demand over last year. Among the 160 participating food banks, three-

fourths have had to reduce the amount of food distributed per capita.2 Below we provide a

short summary of these surveys reported by two small-sized (Cincinnati and Cleveland) and

two large-sized (Chicago and New York City) food banks:

• FreeStore Food Bank located at Cincinnati: Reports 25% increase in demand over the

1Part of Section 3.4 of this chapter is published in the Proceedings of the 2010 International Conference on
Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems
(CPAIOR), LNCS 6140, Springer, pp. 176 – 180 with co-authors Willem-Jan van Hoeve and Sridhar Tayur.

2The results of the survey are available from the web site http://feedingamerica.org/newsroom/local-
impact-study.aspx.
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past year. Increasing unemployment, rising food, fuel and mortgage and rent costs are

blamed for the rise.

• Cleveland Food Bank: Reports 7% demand increase in 2008 compared to 2007. In the

beginning of 2009 they are 24% ahead of where they are in 2008. In order to meet the

current demand, they believe they either need more donated food or more dollars to

purchase food.

• Greater Chicago Food Depository: Reports 32% increase during July-October 2008

compared to the same period in 2007. In order to meet rising demand, their member

agencies have made several changes in their operations including distributing smaller

bags to clients, offering less variety of foods, and limiting business hours.

• Food Bank for New York City: Reports 24% increase in the number of people turning

to food assistance from 2007 to 2008 with 2 million people in 2008.

In this environment of rising demand and diminishing donations, in order to meet their

demand food banks have to purchase more food and are in greater need of fundraising calls.

The former requires minimizing operational costs and for the latter more compelling local

data needs to be collected.

We have been working closely with our local food bank, Greater Pittsburgh Community

Food Bank (GPCFB) in two areas: First, we perform a critical review of their demand

and supply data, and help to validate the common belief that due to economic slowdown,

GPCFB is facing increasing challenges. In the demand analysis, we find that the available

demand data is sketchy and potentially erroneous. We identify possible sources of inaccuracy

and provide recommendations to acquire more precise data for future use. Furthermore, in

order to assess the recent changes in demand, we prepare a survey to be distributed to

GPCFB’s member agencies. The results of our survey support the claim that GPCFB’s

demand is increasing. In the supply analysis, we study the capital supply and the product

supply separately. Our findings alert a significant drop in both dimensions. Second, we

consider the 1-Commodity Pickup and Delivery Vehicle Routing Problem (1-PDVRP) that

arises in the context of the food rescue program of GPCFB. We present a thorough study on

the state-of-the-art solution methods for the 1-PDVRP, utilizing technologies Mixed Integer

Programming (MIP), Constraint Programming (CP), and Constraint-based Local Search

(CBLS), and evaluate potential cost savings with respect to the current practice of GPCFB.
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Our results indicate that the CBLS provides solutions of good quality with at least 10% cost

savings on the largest instance (weekly schedule) of GPCFB in a reasonable time. Savings

can be used by GPCFB to purchase more food and to reach more people in need.

Beyond serving GPCFB, the results of this paper are also valuable for many other food

banks around the U.S. with similar issues. Also, this is the first paper, to the best of our

knowledge, that presents a theoretical analysis of the 1-PDVRP.

The remainder of the paper is organized as follows. In Section 3.2, GPCFB is introduced

and its food procurement and distribution processes are explained. The operational aspects

outlined in this section can be generalized to other food banks in the U.S. In Section 3.3, we

present our data analysis. Specifically, Section 3.3.1 analyzes the demand data while Section

3.3.2 analyzes the supply data. In Section 3.4, the 1-PDVRP that arises in the context of

GPCFB’s food rescue program is studied. Section 3.4.1 provides a brief review of the related

literature, while Section 3.4.2 presents different approaches used to model the 1-PDVRP.

Finally, we conclude in Section 3.5.

3.2. A Brief Introduction to GPCFB

Greater Pittsburgh Community Food Bank, located in Duquesne, Pennsylvania, has been

serving to 11 counties including Allegheny, Beaver, Butler and Lawrence since 1980. Like

many others, it is a member of Feeding America (the nation’s food bank network), which is

the major source of supply for many food banks. In Sections 3.2.1 and 3.2.2, respectively, we

present GPCFB’s major supply and distribution channels, while in Section 3.2.3 we review

GPCFB’s daily operations.

3.2.1. GPCFB’s Supply Channels

Feeding America: Feeding America collects food from several manufacturers and retailers,

and makes it available to its network members such as GPCFB. Food banks can either have

some items free of charge or use their bidding shares to purchase popular products. In both

cases, transportation costs add up.

Regional and Local Food Donors: Regional and local manufacturers, wholesalers, retailers

donate food that otherwise would be discarded due to damaged packaging or excess produc-

tion.

Three Rivers Table: Three Rivers Table is GPCFB’s food rescue program. Restaurants, hos-
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pitals, hotels, and similar organizations have good-quality excess food which, if not collected,

would be disposed at the end of the day. GPCFB’s trucks pick up prepared and perishable

food from these organizations and deliver it to the agencies (particularly to onsite programs)

along their way. The vehicle routing problem that is studied in Section 3.4 arises as a result

of this practice.

Food Drives: These are typically organized at picnics and parties where the event attendants

bring a can of food with them for donation to GPCFB. Food drives are vital for GPCFB

and every year they contribute a huge portion of the donated food.

Healthy Harvest: Volunteers harvest excess produce from farmers’ fields for GPCFB. The

harvested vegetables and fruits are distributed to low-income people living nearby, ensuring

their access to fresh produce.

Purchased Food: GPCFB wants to maintain a steady inventory on nutritious but rarely

donated items such as fresh produce, milk, meat and eggs. GPCFB purchases these items

with funds provided by Pennsylvania’s State Food Purchase Program.

Government: Government supplies food to GPCFB through the Commodity Supplemental

Food Program and the Emergency Food Assistance Program. Both programs aim at im-

proving the health of low-income women, children and seniors by providing nutritious United

States Department of Agriculture food to them.

3.2.2. GPCFB’s Distribution Channels

GPCFB distributes food to agencies directly or through other smaller food banks known as

partner distribution organizations (PDO). Each agency demands food from its food bank

based on the program it runs. In return, GPCFB or PDO provides the donated items for

free and the purchased items for a small handling fee.

An agency could be running an onsite or a pantry program or both. Pantries provide a

bag of food and non-food items that will be enough for 2 to 4 weeks whereas onsite programs

serve cooked meal. They include soup kitchens, homeless shelters, after school programs,

senior centers, community centers, etc.

3.2.3. GPCFB’s Daily Operations

Most of the donated and purchased food are picked up by GPCFB trucks. The whole-

sale buying program allows bulk purchases, which should be repacked into smaller bags to

make them ready for distribution. The repacked items are then distributed to the agencies
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according to their orders. However, not all operations follow the pick-up −→ repack −→
distribute path. For example, some wholesalers and manufacturers bring their donations to

GPCFB eliminating the need to pickup. Likewise, repacking is not necessary for the Tree

Rivers Table program, where the prepared food is picked up and delivered consecutively. In

some instances, GPCFB will not have to distribute if agencies prefer to collect their orders

themselves.

3.3. Data Analysis

The goal of this section is to perform a comprehensive data review and analysis to show the

extent to which GPCFB is being affected by the recent economic downturn. We present the

analysis of demand data in Section 3.3.1 and the analysis of supply data in Section 3.3.2.

3.3.1. Demand Analysis

GPCFB collects demand information via agencies. Each agency, depending on the pro-

gram it runs, collects statistics, and then reports to the Agency Relations Department of

GPCFB through surveys each month. Among the two types of agencies, those running onsite

programs and those operating pantry programs, the former types report the number of in-

dividuals served and the number of meals served. The latter types provide extensive reports

including number of households served, number of individuals served, age decomposition

of the individuals, the number of disabled individuals, and the number of new households

(households that did not use the pantry in the last 12 months). This monthly data is used

to determine the trend in demand by GPCFB.

In order to observe the trend in demand over the past few years, one has to separately

identify the number of individuals served by the pantries, the number of individuals served

by the onsite programs and the number of served onsite meals. Among these, we were able

to observe a reliable trend only in the onsite meal quantity (see Figure 3.1) as the rest of the

data is obscured. Next, we explain the problems in data collection and propose solutions to

mitigate them.

Problem: An individual accessing service on a pantry is asked to fill out a “Household Infor-

mation Card”. Ideally, he/she should be able to use the same card for his/her next visits.

For most pantries, however, multiple cards are filled out and it becomes impossible to iden-

tify the number of unique individuals served.
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Figure 3.1: Onsite programs are serving more meals.

Solution: Improving data collection We think the pantries should prepare “Household Infor-

mation Cards” tailored to each month and each individual. A participant requiring service

should fill out the card that has his/her name on it. At the end of the month, by counting

only the number of cards, agencies can identify the unique number of individuals served.

This process is easy as it does not require any digitalization. It is very important to keep

processes simple for the agencies as most of them lack the necessary technology, i.e., com-

puters.

Problem: GPCFB’s survey, conducted monthly to retrieve the demand information from

agencies, can be confusing and hard to interpret. Statistics relying on this survey can pos-

sibly yield inaccurate estimates.

Solution: Improving GPCFB’s survey The questions in the survey should be prepared such

that all staff members working in different agencies, should understand them in the same

way. Therefore, we have made several modifications in the GPCFB’s survey.

Problem: At the beginning of each month, agencies are expected to report the number of

individuals served, otherwise GPCFB uses the most recent agency data to calculate the total

demand. It is not uncommon that some of the agencies fail to report for four to five consecu-

tive months. In some months, almost 40% of the total demand relies on GPCFB’s estimates

based on the recent data. In addition, observed diverging trends in the actual and estimate

numbers further deteriorate the use of GPCFB’s total demand data as a good indicator of

real demand.

Solution: Improving demand estimation We recommend GPCFB to analyze the estimated

and the actual parts of the data separately as opposed to adding them up and reporting the
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sum. This will help GPCFB to see the trend in the actual numbers more clearly.

Due to the above problems in the demand data gathering process of GPCFB, our analysis

in this section does not provide an accurate picture of the trend in demand. In order to assess

a more reliable estimate of demand, we conducted a survey to be filled out by the agencies.

We discuss our findings in the next section.

Agency Survey

We conducted a survey in order to assess the trend in agencies’ demand and to have a better

understanding of agencies’ challenges (see Appendix E). We mailed two kinds of surveys,

a pantry survey and an onsite program survey, to each agency (in total 330 agencies) and

requested each agency to fill out one or both of the surveys depending on the program it

runs. We obtained a 40% response rate with 132 participating agencies. Detailed analysis

of the survey has been shared with GPCFB and we present our major findings here. We

believe this survey in the first place will help GPCFB in its fundraising efforts as it clearly

supports the claim that food assistance programs have been visited more frequently.

Demand of Pantry Programs:

• Of the 92 pantries participated in the survey, 82% report that their demand has been

increasing over the years with a sharp increase in the recent past. The reported rises

range from 15% to 300%.

• 21% have been turning needy people away due to the following reasons enumerated by

their importance:

1. People requesting service are out of service area.

2. Participants come more often than program rules allowed.

3. People request help with their rent and transportation.

4. Participants requesting help are above the income limits.

• Among the pantries that turn people away, 73% suggest people to go to another pantry.

However, the majority of the pantries cannot make sure that those people find service

in the second agency.
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• 46% observe no change in their demand during summer months while 24% claim in-

crease and other 24% report decrease.

• 78% believe that in holidays their demand is increasing.

• 83% think that events (such as superbowl) do not cause any change in their demand.

• 57% report that their clients’ preferences are not affected by TV/branding.

Supply of Pantry Programs:

• 30% report GPCFB as their only source of supply; i.e., 30% completely rely on GPCFB

in their food distribution.

• 74% report GPCFB as their major supplier. As a secondary supplier, 22% benefit from

individual donations, and 17% purchase food through donated money.

• Almost all pantries wish to offer a rich set of food and non-food items to their clients.

However, 25% report shortages in meat, 14% are short in cereal, 13%, 10% and 6.5%

are short in fresh produce, dairy products and toiletries, respectively.

Demand of Onsite Programs:

• Among 59 onsite programs participated in the survey, 60% think that their demand

has increased while 32% believe it is steady.

• Only 8.5% of them turn their clients away.

• 46% think that there is no change in their demand during summer time whereas 24%

report increase and other 24% report decrease in their demand.

• 46% report increase in their demand during holidays.

• 73% believe events like superbowl have no effect on their demand.

• 68% think that their clients’ preferences are not affected by TV/branding.

Supply of Onsite Programs:

• 36% of the onsite programs report GPCFB as their major supplier whereas for 20%

GPCFB is the only source of supply.
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3.3.2. Supply Analysis

We analyze item supply (food and non-food in poundages) and capital supply (in dollars)

separately.

Supply (in poundages):

We compare the trend in GPCFB’s received and distributed products and demonstrate

that received poundages have decreased in 2007 as opposed to the increase in distributed

poundages in that year (see Figure 3.2). While there is a steady trend in the received

and distributed poundages for years 2004-2006, the imbalance in 2007 indicates not only

a higher demand (given that the number of agencies served over the years is steady) but

also a lower supply. We also note that the increase in distributed poundages throughout

the years 2004-2008 is remarkable and personal communication suggests that it reveals the

rise in demand. In order to communicate more recent data, we compare GPCFB’s received
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Figure 3.2: There is a clear increase in distributed poundages, however the received
poundages do not follow the same trend.

products in July 2007-January 2008 (their fiscal calendar) to the received products in July

2008-January 2009 and conclude with a 11% decrease in July 2008-January 2009 (see Figure

3.3). A “received” product belongs to one of the categories: “donation” , “government

commodity” or “purchase”. The decrease in “received” products from 2006 to 2007 is best

explained with the diminishing “government commodity” and “donated” items (see Figure

3.4). The recovery in 2008 comes both from the increase in “donated” products by 4% as a

result of fundraising efforts and the rise in the “purchased” products. This, indeed, supports

the claim that many food banks now have to purchase more products in order to meet
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Figure 3.3: The poundages obtained by GPCFB in July 2008-January 2009 is 11% less than
those obtained in July 2007-January 2008.

rising demand. Although there is a clear increasing trend in the poundage of “purchased”

products over the years that might depend on several reasons, the rise in 2008 is mainly

attributed to the inappropriate donations (low in nutrition). Moreover, GPCFB notes the

further increasing purchases in the last months of 2008 and beginning of 2009 due to the

demand-supply mismatch.
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Figure 3.4: A received product is categorized as a “donation” or “government commodity”
or “purchase”. We note that GPCFB has had to purchase more products in the recent past.

Supply (in dollars):

In this section we compare GPCFB’s total revenue and expenses over the years and show

that both have been rising (see Figure 3.5). However, we detect a greater rate of increase in

expenses compared to revenues for recent past (see Table 3.1). We point out the diminishing

growth rate of the revenue from 2007 to 2008 and the adjustment of expenses accordingly in

2008.

We also decompose GPCFB’s revenues and expenses (see Figures 3.6 and 3.7). “Fundrais-
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Figure 3.5: GPCFB’s revenues and expenses have both been increasing.

Table 3.1: Expenses are growing at a higher pace than revenues. Moreover, 2008 shows a
clear decrease in growth rates of both revenues and expenses.

Year 2004 2005 2006 2007 2008
% Growth in Revenue 12 10 15 14 7
% Growth in Expenses 14 4 18 18 8

ing and grants” contribute a significant portion of the revenues, and they are steadily in-

creasing over the years. On the other hand, “employee benefits and salaries” is the number

one expense for GPCFB followed by “purchased food” and “operating expenses” (operating

expenses include transportation costs).
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Figure 3.6: Fundraising and grants contribute to a significant portion of GPCFB’s revenues.

Among the operating expenses the cost of fuel is worth looking at in more detail.

GPCFB’s fuel cost follows the general trend depicted by the gasoline prices (Figure 3.8).

Fuel costs from 2006 to 2008, however, were steady or decreasing in the midst of an oil

rally due to cancellation of several scheduled routes. Optimizing transportation schedules,
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Figure 3.7: Although expenses are increasing at all categories, we point out the rise in
expenditure for food purchase.

detailed in the next section, offers potential advantages that will enable GPCFB to operate

at full schedule.
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Figure 3.8: Cost of fuel for GPCFB and retail gasoline prices.

3.4. GPCFB’s Pickup and Delivery Problem

As part of the Tree Rivers Table program, which is the food rescue program of GPCFB,

GPCFB’s fixed capacity vehicles pick up prepared food from donors and deliver it along

their way to the onsite programs. The decision faced by GPCFB is to decide on the order

of the pickup and delivery points such that the vehicle’s capacity is never exceeded nor

deceeded along with some additional constraints. The objective is to minimize the total

cost of all routes generated under this program. In its most general form, this problem

is related to pickup and delivery vehicle routing problems. In Section 3.4.1, we provide a
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review of the pickup and delivery vehicle routing problems and conclude that our problem

is named 1-Commodity Pickup and Delivery Vehicle Routing Problem (1-PDVRP), which

has received limited attention. Section 3.4.2 compares off-the-shelf solution methods for 1-

PDVRP, including Mixed Integer Programming (MIP), Constraint Programming (CP), and

Constraint-Based Local Search (CBLS), and compare these approaches by a comprehensive

numerical study that is performed on data provided by GPCFB.

3.4.1. Related Work

Pickup and delivery vehicle routing problems have been studied extensively in the literature.

According to Parragh et al. (2008), two problem classes can be identified: Vehicle Routing

Problem with Backhauls (VRPB) and Vehicle Routing Problem with Pickups and Deliveries

(VRPPD). VRPB considers the transportation of goods from the depot to the delivery

customers and from pickup customers to the depot. VRPPD, on the other hand, deals

with all those problems where goods are transported between pickup and delivery locations.

Figure 3.93 illustrates the classification scheme of Parragh et al (2008). As GPCFB’s problem

considers the transportation between pickup and delivery points, it falls under the category

of VRPB. Furthermore, as each unit picked up can be used to satisfy the demand of each

delivery point, the pickup and delivery points are unpaired, therefore we have an unpaired-

VRPPD. When only one vehicle is considered, the problem is named 1-Commodity Pickup

and Delivery Traveling Salesman Problem (1-PDTSP); in the multi-vehicle case it is named

1-Commodity Pickup and Delivery Vehicle Routing Problem (1-PDVRP).

t r a n s p o r t a t i o n  f r o m  /  t o  a  d e p o t  
                   (VRPB)

G e n e r a l  P i c k u p  a n d  D e l i v e r y  
        P r o b l e m s  ( G P D P )

t r a n s p o r t a t i o n  b e t w e e n  
  c u s t o m e r s ( V R P P D )

u n p a i r e d p a i r e d

T S P C B
V R P C B

T S P M B
V R P M B

T S P D D P
V R P D D P

T S P S D P
V R P S D P

P D T S P  
P D V R P

S P D P
 P D P

S D A R P
 D A R P

Figure 3.9: Pickup and Delivery problems.

3This figure is adapted from Parragh et al. (2008).
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Several solution methods are developed for 1-PDTSP including exact methods, heuristics,

and metaheuristics. A special case of 1-PDTSP in which the number of goods picked up

is equal to the number of goods delivered and the demand (supply) at delivery (pickup)

location is equal to one is studied in Chalasani and Motwani (1999) and Anily and Bramel

(1999). Chalasani and Motwani (1999) propose an approximation algorithm with a worst

case bound of 9.5, while Anily and Bramel (1999) devise a polynomial time iterated tour

matching algorithm. Hernández-Pérez and Salazar-González (2003, 2004a, 2007) develop a

branch-and-cut algorithm for 1-PDTSP, while Hernández-Pérez and Salazar-González (2003,

2004b) propose two heuristic methods that can solve instances up to 500 customers. Recently,

Hernández-Pérez et al. (2009) propose a hybrid heuristic method, which combines a greedy

randomized adaptive search procedure with variable neighborhood search. The proposed

algorithm can solve instances up to 1000 customers.

The only paper that considers the 1-PDVRP, to the best of our knowledge, is Dror et

al. (1998). The authors present different approaches, including MIP, CP and Local Search,

which are applied to instances involving nine locations. The approaches we consider for the

1-PDVRP in the next section are similar in spirit to those of Dror et al. (1998). Our MIP

model is quite different, however. Further, although the CP and CBLS models are based

on the same modeling concepts, the underlying solver technology has been greatly improved

over the years.

3.4.2. Different Approaches to the 1-PDVRP

Input Data and Parameters

Let the set V denote the set of locations, and let O ∈ V denote the origin (or depot) from

which the vehicles depart and return. With each location i in V we associate a number qi ∈ R

representing the quantity to be picked up (qi > 0) or delivered (qi < 0) at i. The distance

between two locations i and j in V will be denoted by dij. Distance can be represented by

length or time units.

Let T denote the set of vehicles (or trucks). For simplicity, we assume that all vehicles

have an equal ‘volume’ capacity Q of the same unit as the quantities q to be picked up (e.g.,

pounds). In addition, all vehicles are assumed to have an equal ‘horizon’ capacity H of the

same unit as the distances d.
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Mixed Integer Programming

Our MIP model is based on column generation. The master problem of our column gener-

ation procedure consists of a set of ‘columns’ S representing feasible routes. The routes are

encoded as binary vectors on the index set V of locations; that is, the actual order of the

route is implicitly encoded. The columns are assumed to be grouped together in a matrix

A of size V by S. The length of the routes is represented by a ‘cost’ vector c ∈ R|S|. We

let z ∈ {0, 1}|S| be a vector of binary variables representing the selected routes. The master

problem can then be encoded as the following set covering model:

Minimize cTz

subject to Az = �1
(3.1)

For our column generation procedure, we will actually solve the continuous relaxation of

(3.1), which allows us to use the shadow prices corresponding to the constraints. We let λj

denote the shadow price of constraint j in (3.1), where j ∈ V . The steps of the column

generation scheme can be summarized as follows.

Column Generation Scheme

Step 1. Solve the master problem and determine the dual variables λj , j ∈ V .

Step 2. Use the dual variables to solve the subproblem, i.e., in computing the objective

function of the subproblem.

Step 3. If the objective function of the subproblem is less than zero, add the generated

column to the master problem and revisit Step 1. Otherwise, stop. Recall that the objective

function of the subproblem is nothing but the reduced cost of the new generated column. In

a minimization problem, any column with negative reduced cost is a candidate to enter the

basis as it can improve the current solution.

Step 4. Solve the master problem as an integer program. Determine the optimality gap.

The subproblem for generating new feasible routes uses a model that employs a flow-

based representation on a layered graph, where each layer consists of nodes representing all
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locations. The new route comprises M steps, where each step represents the next location

to be visited. We can safely assume that M is the minimum of |V |+1 and (an estimate on)

the maximum number of locations that ‘fit’ in the horizon H for each vehicle. We present

the layered graph used for generation new routes in Figure 3.10.
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Figure 3.10: Subproblem route generation schema

We let xijk be a binary variable that represents whether we travel from location i to

location j in step k. We further let yj be a binary variable representing whether we visit

location j at any time step. The vector of variables y will represent the column to be

generated. Further, variable Ik represents the inventory of the vehicle, while variable Dk

represents the total distance traveled up to step k, where k = 0, . . . ,M . We let D0 = 0,

while 0 ≤ I0 ≤ Q. The problem of finding an improving route can then be modeled as

follows.

Minimize
∑

i∈V
∑

j∈V
∑M

k=1 dijxijk −
∑

j∈V λjyj

subject to
∑

j∈V xO,j,1 = 1∑
j∈V xi,j,1 = 0 ∀i ∈ V \O∑
i∈V xi,O,M = 1∑
i∈V xi,j,M = 0 ∀j ∈ V \O

xO,j,k = 0 ∀j ∈ V \O, ∀k ∈ [1..M ]∑
i∈V xijk =

∑
l∈V xj,l,k+1 ∀j ∈ V, ∀k ∈ [1..M − 1]
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∑
j∈V \O

∑M
k=1 xijk ≤ 1 ∀j ∈ V \O

Ik = Ik−1 +
∑

i∈V
∑

j∈V qixijk ∀k ∈ [1..M ]

0 ≤ Ik ≤ Q ∀k ∈ [0..M ]

Dk = Dk−1 +
∑

i∈V
∑

j∈V dijxijk ∀k ∈ [1..M ]

0 ≤ Dk ≤ H ∀k ∈ [0..M ]∑
i∈V
∑M

k=1 xijk = yj ∀j ∈ V

In this model, the first four sets of constraints ensure that we leave from and finish at the

origin. The fifth set of constraints enforce that we can enter the origin at any time, but not

leave it again. The sixth set of constraints model the flow conservation at each node, while

the seventh set of constraints prevent the route from visiting a location more than once. The

following four sets of constraints represent the capacity constraints of the vehicle in terms of

quantities picked up and delivered, and in terms of distance. The last set of constraints link

together the ‘flow’ variables x with the new column represented by the variables y.

Constraint Programming

Our CP model is based on a well-known interpretation of the VRP as a multi-machine

job scheduling problem with sequence-dependent setup times. In the CP literature, this is

usually modeled using alternative resources (the machines) and activities (the jobs). That

is, each visit to a location corresponds to an activity, and each vehicle corresponds to two

(linked) resources: one ‘unary resource’ modeling the distance constraint, and one ‘reservoir’

modeling the inventory of the vehicle. With each activity we associate variables representing

its start time and end time, as well as a fixed duration (this can be 0 if we assume that

the (un-)loading time is negligible). Further, each activity either depletes or replenishes

the inventory reservoir of a vehicle. The distance between two locations is modeled as

the ‘transition time’ between the corresponding activities. We minimize the sum of the

completion times of all vehicles.

All these concepts are readily available in most industrial CP solvers. We have imple-

mented the model in ILOG Solver 6.6 (which includes ILOG Scheduler). A snapshot of

the ILOG model for a single vehicle is provided in Figure 3.11. It shows that the concepts

presented above can almost literally be encoded as a CP model.
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IloReservoir truckReservoir(ReservoirCapacity, 0);

truckReservoir.setLevelMax(0, TimeHorizon, ReservoirCapacity);

IloUnaryResource truckTime();

IloTransitionTime T(truckTime, Distances);

vector<IloActivity> visit;

visit = vector<IloActivity>(N);

for (int i=0; i<N; i++) {

visit[i].requires(truckTime);

if (supply[i] > 0)

visit[i].produces(truckReservoir, supply[i]);

else

visit[i].consumes(truckReservoir, -1*supply[i]);

}

Figure 3.11: Snapshot of the ILOG Scheduler model for a single vehicle

Constraint-Based Local Search

Our final approach uses CBLS. With CBLS we can express the problem similar to a CP

model, which will then be used to automatically derive the neighborhoods and penalty

function needed to define a local search procedure. Our CBLS is based on the semantics

offered by ILOG Dispatcher (included in ILOG Solver 6.6). These semantics are specifically

designed to model routing problems. A snapshot of the ILOG model for a single vehicle is

provided in Figure 3.12.

ILOG Dispatcher uses the concepts nodes, vehicles, and visits. The nodes are defined by

the coordinates of the locations, and contain as an attribute the amount to be picked up

or delivered. The vehicles contain several attributes, including time, distance, and weight

(load). Vehicles also contain, by default, a ‘unary resource’ constraint with respect to time,

and a ‘capacity’ constraint with respect to the load, similar to the resources in ILOG Sched-

uler. The attributes of visits include the location, the quantity to be picked up (positive) or

delivered (negative), a time window, and possibly other problem-specific constraints.

In a first phase, we create a feasible solution. ILOG Dispatcher uses various heuristics

for this, including a nearest-neighbourhood heuristic that we applied in our experiments.

Where applicable, we started from the current schedule that we extracted from the data.

The second phase improves upon the starting solution using various local search meth-
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class RoutingModel {

...

IloDimension2 _time;

IloDimension2 _distance;

IloDimension1 _weight;

...

}

IloNode node( <read coordinates from file> );

IloVisit visit(node);

visit.getTransitVar(_weight) == Supply);

minTime <= visit.getCumulVar(_time) <= maxTime;

visit.getCumulVar(_weight) >= 0);

IloVehicle vehicle(firstNode, lastNode);

vehicle.setCapacity(_weight, Capacity);

vehicle.setCost(_distance);

Figure 3.12: Snapshot of the ILOG Dispatcher model for a single vehicle

ods. We applied successively the methods IloTwoOpt, IloOrOpt, IloRelocate, IloCross and

IloExchange. Within each method, we take the first legal cost-decreasing move encountered.

Evaluation

Our experimental results are performed on data provided by Greater Pittsburgh Community

Food Bank. Their food rescue program visits 130 locations per week. The provided data

allowed us to extract a fairly accurate estimate on the expected pickup amount for the

donor locations. The precise delivery amounts were unknown, and we therefore approximate

the demand based on the population served by each location (which is known accurately),

scaled by the total supply. We allow the total demand to be slightly smaller than the total

supply, to avoid pathological behavior of the algorithm. We note however, that although this

additional ‘slack’ influences the results, the qualitative behavior of the different techniques

remains the same. The MIP model is solved using ILOG CPLEX 11.2, while the CP and

CBLS model are solved using ILOG Solver 6.6, all on a 2.33GHz Intel Xeon machine.

The first set of instances are for individual vehicles, on routes serving 13 to 18 locations

(corresponding to a daily schedule). The second set of instances group together schedules

over multiple days, ranging from 30 to 130 locations. The results are presented in Table 3.2.
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We report for each instance the cost savings (in terms of total distance traveled) with respect

to the current operational schedule. Here, |V | and |T | denote the number of locations and

vehicles, respectively. The optimal solutions found with MIP and CP took several (2–3)

minutes to compute, while the solutions found with CBLS took several seconds or less. The

time limit was set to 30 minutes.

Table 3.2: Savings obtained with different approaches.
|V | |T | MIP CP CBLS
13 1 12% 12% 12%
14 1 15% 15% 14%
15 1 - 7% 6%
16 1 - 5% 3%
18 1 - 16% 15%
30 2 - - 4%
60 4 - - 8%
130 9 - - 10%

Our experimental results indicate that on this problem domain, our MIP model is out-

performed by our CP model to find an optimal solution (we note that a specialized 1-PDTSP

MIP approach such as Hernández-Pérez (2007) might perform better than our ‘generic’ MIP

model on the single-vehicle instances). Further, the CP model is able to find optimal solu-

tions for up to 18 locations and one vehicle; for a higher number of locations or vehicles,

the CP model is unable to find even a single solution. Lastly, the CBLS approach is able to

handle large-scale instances, up to 130 locations and 9 vehicles. The expected savings are

substantial, being at least 10% on the largest instance.

3.5. Conclusion

Our conclusions can be summarized as follows.

1. Data Analysis: The review of GPCFB’s demand and supply data shows that the

demand data is obscured. The possible sources of inaccuracy are identified and we

recommend ways to help GPCFB to gather more reliable demand data for future use.

By collecting more precise data, GPCFB can improve its fundraising as well as its

planning and execution of purchases.

2. Transportation: The 1-PDVRP, which appears in the context of the food rescue pro-

gram of GPCFB, received very limited attention in the vehicle routing literature. We
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model this problem using three different approaches including MIP, CP and CBLS.

CBLS provides solutions of good quality with at least 10% cost savings compared to

the current practice of GPCFB in designing the weekly schedule of the food rescue

program. Savings can be used to purchase more food and to reach more people in

need.
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Conclusions

This thesis has presented a Bayesian model for the representation as well as the quantifica-

tion of the stochastic uncertainty and the parameter uncertainty in large-scale stochastic sim-

ulations with correlated inputs, the comparison of least-squares and Bayesian inferences for

Johnson’s lognormal and bounded distributions, and a collaborative work with the Greater

Pittsburgh Community Food Bank focusing on their demand and supply data analysis and

the 1-Commodity Pickup and Delivery Vehicle Routing Problem that arises as a result of

their food rescue program.

In the first chapter, we present a Bayesian model for capturing the parameter uncertainty

in addition to the stochastic uncertainty in the mean performance measure and the confidence

interval of a stochastic simulation with correlated inputs. We further decompose the variance

of the simulation output into terms related to stochastic uncertainty and the parameter

uncertainty. Such decomposition of the simulation output variance can be used to reduce the

parameter uncertainty by developing data-collection schemas. We show that our Bayesian

model improves the consistency of the mean line-item fill-rate estimates and the coverage of

the confidence intervals in the simulation of a multi-product inventory system with correlated

demands.

In the second chapter, we compare the least-squares estimation method and the Bayesian

method in fitting the lognormal and the bounded families of the Johnson translation system,

and provide insights for the simulation practitioners on when to use each fitting method.

Our comprehensive experimental analysis shows that the least-squares estimation method

performs better than the Bayesian method for the skewed unimodal distributions of the

bounded family and long-tailed distributions of the lognormal family.

Finally, in the third chapter, we investigate how GPCFB is being affected by the recent

economic downturn. We perform a critical review of their demand and supply data, and

suggest methods to improve their demand data gathering process. Our analysis clearly

shows the diminishing supply and increasing expenses of GPCFB, which forced them to

cancel some of the routes in designing the schedules of their food rescue program. We focus

on the vehicle routing problem that arises in the context of the food rescue program, the

1-PDVRP, with the purpose of investigating potential cost savings. To this end, we model
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the 1-PDVRP using IP, CP, and CBLS, and our results show that CBLS provides at least

10% cost savings over the current practice of GPCFB. This chapter may be a starting point

for others willing to help their local food banks.
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Appendix A

Section A.1 presents an algorithm that generates random variates from a gamma density

function, Section A.2 provides the Gibbs sampler algorithm that samples shape and scale

parameters of a component with a gamma distribution, and Section A.3 describes how to

sample a two-dimensional correlation matrix from an inverse Wishart density function. After

the presentation of each algorithm, we describe how to use the algorithm for supporting our

Bayesian model development.

A.1. Generating a random variate, x of the gamma

random variable X with shape parameter α and

scale parameter β

We consider a random variable, X that has a gamma distribution with shape parameter α

(> 1) and scale parameter β. First, we present the procedure GammaVariate(α,β) that

generates a random variate, x from this gamma distribution. Then, we describe how to use

this procedure for supporting the sampling of the NORTA parameters in Section 1.3 of the

paper.

GammaVariate(α,β) The generation of the gamma random variate x with shape parameter

α and scale parameter β starts with the generation of the gamma random variate x′ with

shape parameter α and scale parameter 1. Then x′ is multiplied by the scale parameter β

to obtain x. Cheng (1977) recommends the following algorithm for doing this (Law 2007):

(1) Prespecify constants a = 1/
√
2α− 1, b = α−ln 4, q = α+a−1, θ = 4.5, and d = 1+ln θ.

(2) Generate independent and identically distributed random variates u1 and u2 from the

uniform distribution on the unit interval.

(3) Let v = a ln[u1/(1− u1)], y = α exp(v), z = u2
1u2, and w = b+ qv − y.

(4) If w + d− θz ≥ 0, then let x′ = y. Otherwise, proceed to the next step.
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(5) If w ≥ ln z, then let x′ = y. Otherwise, go back to the first step.

(6) Return x = βx′.

We use this generation procedure in Section 1.3.1 of the paper as follows:

• We choose the distribution of the ith component Xi as exponential with scale param-

eter βi. Assuming the availability of the historical input data xi,t, t = 1, 2, . . . , n

of length n, we select the conjugate, inverse gamma density function with shape pa-

rameter θi and scale parameter νi as the prior density function on the scale param-

eter βi. We show that the ith component parameter uncertainty can be captured

by sampling β−1
i from the gamma distribution with shape parameter n + θi and

scale parameter (νi +
∑n

t=1 xi,t)
−1. This can be easily done by using the procedure

GammaVariate (n + θi, (νi +
∑n

t=1 xi,t)
−1); i.e.,

β̃−1
i = GammaVariate


n+ θi,

(
νi +

n∑
t=1

xi,t

)−1

 .

• We also consider the case component Xi has the gamma distribution with shape

parameter αi and scale parameter βi. We use Jeffreys’ prior for the parameters of

this gamma component and obtain a posterior density function that allows the sam-

pling of the parameters via the Gibbs sampler algorithm. The resulting Gibbs sam-

pler algorithm is provided in Appendix A.2. One of the steps of this algorithm is

to sample scale parameter β−1
i from the gamma distribution with shape parameter

nαi and scale parameter (
∑n

t=1 xi,t)
−1. This can be done by using the procedure

GammaVariate(nαi,(
∑n

t=1 xi,t)
−1); i.e.,

β̃−1
i = GammaVariate


nαi,

(
n∑

t=1

xi,t

)−1

 .

A.2. Sampling the gamma distribution parameters via

the Gibbs sampler algorithm

Figure A.1 presents the Gibbs sampler algorithm, a widely used Markov Chain Monte Carlo

method that samples shape parameter αi and scale parameter βi of the gamma component

Xi from the parameters’ conditional posterior density functions. Specifically, the conditional
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Figure A.1: Gibbs sampler algorithm for parameters βi and αi of the gamma component.

set β0
i and α0

i to their maximum likelihood estimates

for � = 1, 2, . . . ,L∗,L∗ + 1, . . . ,L replications do

generate β�
i from pi(βi|α�−1

i ,xi) ∝ β
−α�−1

i n−1
i exp {−

∑n
t=1 xi,t/βi}

generate α�
i from pi(αi|β�

i ,xi) ∝
[
β�
i

]−αin / [Γ(αi)]
n∏n

t=1 x
αi
i,t

end loop

analyze the output data β�
i , � = L∗,L∗ + 1, . . . ,L and α�

i , � = L∗,L∗ + 1, . . . ,L for generating

point estimates and confidence intervals of parameters βi and αi

posterior density function pi(βi|αi,xi) of parameter βi is inverse gamma with shape param-

eter nαi and scale parameter
∑n

t=1 xi,t. Therefore, β
−1
i can be sampled using the generation

procedure of Appendix A.1; i.e.,

β̃−1
i = GammaVariate


nαi,

(
n∑

t=1

xi,t

)−1

 .

Although the conditional posterior density function pi(αi|βi,xi) of parameter αi does not

have a standard form, it is a logconcave function; i.e., ∂2log pi(αi|βi,xi)/∂α
2
i ≤ 0. Therefore,

parameter αi can be sampled using the adaptive rejection sampling (ARS) algorithm of Gilks

and Wild (1992). We present this algorithm in the remainder of the section. For ease of

presentation, we denote the conditional posterior density function pi(αi|βi,xi) with hi(αi),

its logarithm with Mi(αi), i.e.,

Mi(αi) = −nαilog(βi)− nlog(Γ(αi)) + αi

n∑
t=1

log(xi,t),

and the domain of hi(αi), i.e., the set of αi for which hi(α) > 0, with Di. We represent the

set of � different αi values with T�(i) = {αi,p; p = 1, 2, . . . , �}, where αi,p, p = 1, 2, . . . , � are

arranged in an ascending order. We use αi,(p) for the pth lowest element of T�(i). We define

Li,p,q(αi;T�(i)) as the straight line passing through points (αi,p,Mi(αi,p)) and (αi,q,Mi(αi,q))

for 1 ≤ p ≤ q ≤ n. Additionally, we use u�(αi) for the piecewise linear function that is

defined as the minimum of Li,p−1,p(αi;T�(i)) and Li,p+1,p+2(αi;T�(i)), where αi,p ≤ αi <

αi,p+1. Since hi(α) is logconcave, u�(αi) is an envelope (i.e., an upper hull) for Mi(αi); i.e.,

u�(αi) ≥ Mi(αi) ∀αi ∈ Di. Finally, we define the normalized exponential hull of the upper

92



hull as s�(αi) ≡ exp (u�(αi)) /
∫
Di

exp (u�(αi)) dαi. Since s�(αi) is a piecewise exponential

density function, αi can be easily sampled from s�(αi) (Law 2007).

The ARS algorithm is composed of the steps of initialization, sampling, evaluation, re-

jection, and acceptance:

Initialization The algorithm starts with the initialization of � to 2 and the construc-

tion of T2(i) with αi,1 = −1 and αi,2 = +1. These two values have been reported to

provide good starting values for high computational efficiency (Gilks and Wild 1992).

Sampling α†
i and w are sampled independently from s�(αi) and the uniform distribu-

tion function on the unit interval.

Evaluation If w is greater than hi(α
†
i )/ exp(u�(α

†
i )), then the algorithm moves to the

rejection step. Otherwise, the algorithm moves to the acceptance step.

Rejection α†
i is used for forming T�+1(i) whose elements are to be arranged in an

ascending order. The algorithm goes back to the sampling step.

Acceptance Return α†
i as the value sampled for αi.

This completes our description of sampling parameters βi and αi from conditional poste-

rior density functions pi(βi|αi,xi) and pi(αi|βi,xi), respectively. We provide further details

of implementing the Gibbs sampler algorithm in Appendix C.

A.3. Sampling a two-dimensional correlation matrix,

Σ2 from the inverseWishart density function with

parameters n and S2

The procedure InverseWishartVariate(n,S2) samples correlation matrix Σ2 from the in-

verse Wishart density function with parameters n and S2 (Rossi et al. 2006):

InverseWishartVariate(n,S2)

(1) Generate random variates a, b, and c, respectively, from a chi-square probability density

function with n degrees of freedom, a standard normal probability density function,

and a chi-square probability density function with n− 1 degrees of freedom.
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(2) Use a, b, and c for constructing the following two-dimensional matrix:

T2 =

( √
a 0
b
√
c

)

(3) Determine matrix W2 that satisfies W′
2W2 = S−1

2 .

(4) Define matrix C2 as the multiplication of the transpose of T2 and W2; i.e., C2 =

T′
2W2.

(5) Return Σ2 = C−1
2 (C−1

2 )′.

We use this procedure for sampling each (partial) correlation matrix of the C−vine spec-
ification of the NORTA random vector:

• In Section 1.3.2, we assume a conjugate, inverse Wishart density function for the (un-

conditional) correlation matrix Σ2(1, i) associated with the correlation ρ(1, i) between

random variables Φ−1[F1(X1;Ψ1)] and Φ−1[Fi(Xi;Ψi)]. We show that sampling cor-

relation ρ(1, i) reduces to the sampling of Σ2(1, i) from the inverse Wishart density

function with parameters n and S2(1, i|Ψ1,Ψi,x1, xi). Therefore, we sample Σ2(1, i)

using the procedure InverseWishartVariate(n,S2(1, i|Ψ1,Ψi,x1,xi)), i.e.,

Σ̃2(1, i) = InverseWishartVariate (n,S2 (1, i|Ψ1,Ψi,x1,xi)) ,

and set the (1, 2)th entry of Σ̃2(1, i) to ρ̃(1, i).

• Section 1.3.2 shows that sampling partial correlation ρ(j − 1, i; 1, 2, . . . , j − 2) reduces

to the sampling of the partial correlation matrix Σ2(j − 1, i; 1, 2, . . . , j − 2) from the

inverse Wishart density function with parameters n and S2(j−1, i; 1, 2, . . . , j−2|Λj,x).

Therefore, we use the procedure InverseWishartVariate(n,S2(j − 1, i; 1, 2, . . . , j −
2|Λj,x)), i.e.,

Σ̃2(j − 1, i; 1, 2, . . . , j − 2) = InverseWishartVariate (n,S2 (j − 1, i; 1, 2, . . . , j − 2|Λj ,x)) ,

and set the (1, 2)th entry of Σ̃2(j − 1, i; 1, 2, . . . , j − 2) to ρ̃(j − 1, i; 1, 2, . . . , j − 2).
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Appendix B

In this section, we consider a 5−dimensional NORTA distribution and assume that compo-

nent Xi is exponentially distributed with scale parameter βi for i = 1, 2, . . . , 5. Our objective

is to describe the implementation of the sampling algorithm presented in Figure 1.2 of the

paper for this NORTA distribution. First, we present the NORTA parameters and their joint

posterior density function in Appendix B.1. Then, we present the recursive formulas of Yule

and Kendall (1965) in Appendix B.2 and Theorem 3.3.4 of Tong (1990) in Appendix B.3.

Finally, we present the NORTA parameter sampling algorithm in Appendix B.4.

B.1. Joint posterior density function of the NORTA

parameters

The first plot in Figure 1.1 of the paper illustrates the C−vine of the 5−dimensional NORTA

distribution. We conclude from this illustration that the NORTA parameters are composed

of the following component scale parameters and the (partial) correlations assigned to the

edges of the vine:

β1 β2 β3 β4 β5

ρ(1, 2) ρ(1, 3) ρ(1, 4) ρ(1, 5)
ρ(2, 3; 1) ρ(2, 4; 1) ρ(2, 5; 1)

ρ(3, 4; 1, 2) ρ(3, 5; 1, 2)
ρ(4, 5; 1, 2, 3)

(B.1)

The joint posterior density function of the NORTA parameters in (B.1) is given by

∝
5∏

i=1

β
−(n+θi+1)
i exp

{
−νi +

∑n
t=1 xi,t

βi

}
(B.2)

×
5∏

i=2

|Σ2(1, i)|−(n+3)/2 exp

{
tr

(
−1
2
S2(1, i|Ψ1,Ψi,x1,xi)Σ

−1
2 (1, i)

)}

×
5∏

j=3

5∏
i=j

(
|Σ2(j − 1, i; 1, 2, . . . , j − 2)|−(n+3)/2

exp

{
tr

(
−1
2
S2(j − 1, i; 1, 2, . . . , j − 2|Λj ,x)Σ

−1
2 (j − 1, i; 1, 2, . . . , j − 2)

)})
.
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The two-dimensional matrices S2(1, i|Ψ1,Ψi,x1,xi) and S2(j − 1, i; 1, 2, . . . , j − 2|Λj ,x) of

this density function are defined in Section 1.3.2 of the paper.

A natural question to ask is how to determine the parameters θi, i = 1, 2, . . . , 5 and

νi, i = 1, 2, . . . , 5 of the component prior density functions. A way to do this is to use

the moment-matching method (Berger 1985). This method starts with asking the decision

maker what the likely values are for certain moments of the unknown parameters (e.g., mean

and variance). Then, the parameters of the prior density function are obtained by equating

the functional forms of the moments of the unknown parameters to the answers gathered

from the decision maker. For example, the following questions can be asked for the ith

component of the NORTA random vector: (1) What is the likely value for the unknown

mean of the scale parameter βi? (2) What is the most likely range for βi? It follows

from the definition of the inverse gamma distribution function that E(βi) = νi/(θi − 1) for

θi > 1 and Var(βi) = ν2
i /(θi − 1)2(θi − 2) for θi > 2. Therefore, if we assume that the

decision maker answers the first question as ai (≡ νi/(θi − 1)) and the second question as bi

(≡ ν2
i /(θi − 1)2(θi − 2)), then the parameters of the component prior density functions are

identified as θi = (a2i − 2bi)/bi, i = 1, 2, . . . , 5 and νi = ai(a
2
i − 3bi)/bi, i = 1, 2, . . . , 5.

B.2. Recursive formulas of Yule and Kendall (1965)

The implementation of the algorithm that samples the NORTA parameters in (B.1) from

the joint posterior density function in (B.2) requires the identification of the unconditional

correlations ρ(2, i), i = 3, 4, 5 and ρ(3, i), i = 4, 5 to characterize the conditional distributions

of the C−vine specification. Fortunately, there exist recursive formulas that allow us to easily

obtain the correlations that are not included in the C−vine specification from the (partial)

correlations of the C−vine specification. For example, the formula

ρ(2, 3; 1) =
ρ(2, 3)− ρ(1, 2)ρ(1, 3)√
1− ρ2(1, 2)

√
1− ρ2(1, 3)

allows us to obtain ρ(2, 3) from ρ(1, 2), ρ(1, 3), and ρ(2, 3; 1) of the C−vine specification so as

to characterize the cdfs of the conditional random variables Φ−1[Fi(Xi;Ψi)]|Φ−1[F1(X1;Ψ1)],

Φ−1[F2(X2; Ψ2)], i = 3, 4, 5 in step (a) of the NORTA parameter sampling algorithm (see

Appendix B.4).

More generally, the partial correlation ρ(1, 2; 3, . . . , k) of the k−dimensional NORTA

distribution can be interpreted as the correlation between the orthogonal projections of
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random variables Φ−1[F1(X1;Ψ1)] and Φ−1[F2(X2;Ψ2)] on the plane orthogonal to the space

spanned by Φ−1[Fi(Xi;Ψi)], i = 3, 4, . . . , k. The recursive formula that relates this partial

correlation to the correlations is given by

ρ(1, 2; 3, 4, . . . , k) =
ρ(1, 2; 3, 4, . . . , k − 1)− ρ(1, k; 3, 4, . . . , k − 1)ρ(2, k; 3, 4, . . . , k − 1)√

1− ρ2(1, k; 3, 4, . . . , k − 1)
√

1− ρ2(2, k; 3, 4, . . . , k − 1)

(Yule and Kendall 1965).

B.3. Theorem 3.3.4 of Tong (1990)

Using the correlations obtained from the recursive formulas of Yule and Kendall (1965) to-

gether with Theorem 3.3.4 of Tong (1990), we characterize the cdfs of the conditional random

variables that appear in the joint posterior density function of the NORTA parameters. We

present Theorem 3.3.4 of Tong (1990) below:

Theorem 3.3.4 (Tong 1990) Let Z be a k-dimensional random vector with mean µ and

correlation matrix Σ. For fixed � < k, consider the partitions of Z, µ, and Σ given by

Z =

(
Z1

Z2

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where

Z1 = (Z1, Z2, . . . , Z�)
′, Z2 = (Z�+1, Z�+2, . . . , Zk)

′,
µ1 = (µ1, µ2, . . . , µ�)

′, µ2 = (µ�+1, µ�+2, . . . , µk)
′,

Σ11 and Σ22 are the correlation matrices of Z1 and Z2, and Σ12 is the matrix of correlations

between Z1 and Z2.

If Z is a k−dimensional normal random vector with mean µ and correlation matrix Σ,

i.e., Z ∼ Nk(µ,Σ), Σ > 0, then for any fixed � < k the conditional distribution of Z1, given

Z2 = z2, isN�(µ1·2,Σ11·2) where µ1·2 = µ1+Σ12Σ
−1
22 (z2 − µ2) andΣ11·2 = Σ11−Σ12Σ

−1
22 Σ21.

B.4. Sampling the parameters of the 5−dimensional

NORTA distribution

We are now ready to present a detailed description of the algorithm that samples parameters

βi, i = 1, 2, 3, 4, 5; ρ(1, i), i = 2, 3, 4, 5; and ρ(j − 1, i; 1, 2, . . . , j − 2), i = j, j + 1, . . . , 5,
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j = 3, 4, 5 to capture parameter uncertainty in a stochastic simulation with 5 correlated

inputs having the NORTA distribution described in Appendix B.1:

Sample the component parameters

The goal is to sample parameters βi, i = 1, 2, 3, 4, 5.

for i = 1, 2, 3, 4, 5 do

• Sample parameter βi from the inverse gamma posterior density function with shape

parameter n+ θi and scale parameter νi +
∑n

t=1 xi,t:

β̃−1
i = GammaVariate


n+ θi,

(
νi +

n∑
t=1

xi,t

)−1



end loop

Sample the correlations associated with the first tree of the C−vine
The goal is to sample correlations ρ(1, i), i = 2, 3, 4, 5.

for i = 2, 3, 4, 5 do

• Define the two-dimensional matrix S2(1, i|β̃1, β̃i,x1,xi) as

S2(1, i|β̃1, β̃i,x1,xi) ≡
n∑

t=1


 Φ−1

[
1− exp

{
−β̃−1

1 x1,t

}]
Φ−1

[
1− exp

{
−β̃−1

i xi,t

}]



 Φ−1

[
1− exp

{
−β̃−1

1 x1,t

}]
Φ−1

[
1− exp

{
−β̃−1

i xi,t

}]

′

,

where x1 = (x1,1, x1,2, . . . ,x1,n)
′ and xi = (xi,1, xi,2, . . . ,xi,n)

′.

• Sample the two-dimensional correlation matrix Σ2(1, i) from the inverted Wishart

density function with parameters n and S2(1, i|β̃1, β̃i,x1,xi):

Σ̃2(1, i) = InverseWishartVariate
(
n,S2(1, i|β̃1, β̃i,x1,xi)

)
• Set ρ̃(1, i) to the (1, 2)th entry of Σ̃2(1, i).

end loop

Sample the partial correlations associated with the second tree of the C−vine
The goal is to sample partial correlations ρ(2, 3; 1), ρ(2, 4; 1), and ρ(2, 5; 1).

Construct vector Λ̃3 using β̃m, m = 1, 2, 3, 4, 5 and ρ̃(1, m), m = 2, 3, 4, 5.

for i = 3, 4, 5 do
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• Determine conditional means µi|1 and µ2|1 and conditional variances σ2
i|1 and σ2

2|1 of

cdfs Φi|1 and Φ2|1 using Theorem 3.3.4 of Tong (1990):

µi|1 = ρ(1, i) Φ−1
[
1− exp

{
−β̃−1

1 x1,t

}]
σ2
i|1 = 1− ρ2(1, i)

µ2|1 = ρ(1, 2) Φ−1
[
1− exp

{
−β̃−1

1 x1,t

}]
σ2
2|1 = 1− ρ2(1, 2)

• Use these conditional distribution functions for defining matrix S2(2, i; 1|Λ̃3,x) as

n∑
t=1


 Φ−1[1−exp{−β̃−1

2 x2,t}]−µ2|1
σ2|1

Φ−1[1−exp{−β̃−1
i xi,t}]−µi|1

σi|1




 Φ−1[1−exp{−β̃−1

2 x2,t}]−µ2|1
σ2|1

Φ−1[1−exp{−β̃−1
i xi,t}]−µi|1

σi|1




′

.

• Sample the partial correlation matrix Σ2(2, i; 1) from the inverted Wishart density

function with parameters n and S2(2, i; 1|Λ̃3,x):

Σ̃2(2, i; 1) = InverseWishartVariate(n,S2(2, i; 1|Λ̃3,x))

• Set ρ̃(2, i; 1) to the (1, 2)th entry of Σ̃2(2, i; 1).

end loop

Sample the partial correlations associated with the third tree of the C−vine
The goal is to sample partial correlations ρ(3, 4; 1, 2) and ρ(3, 5; 1, 2).

Construct vector Λ̃4 using β̃m, m = 1, 2, 3, 4, 5; ρ̃(1, m), m = 2, 3, 4, 5; and ρ̃(2, m; 1), m =

3, 4, 5.

for i = 4, 5 do

• Obtain correlations ρ(2, 3) and ρ(2, i) using the recursive formulas of Yule and Kendall

(1965):

ρ(2, 3) = ρ̃(2, 3; 1)
√
1− ρ̃2(1, 2)

√
1− ρ̃2(1, 3) + ρ̃(1, 2)ρ̃(1, 3)

ρ(2, i) = ρ̃(2, i; 1)
√
1− ρ̃2(1, 2)

√
1− ρ̃2(1, i) + ρ̃(1, 2)ρ̃(1, i)

• Determine conditional means µ3|1,2 and µi|1,2 and conditional variances σ2
3|1,2 and σ2

i|1,2
of cdfs Φ3|1,2 and Φi|1,2 using Theorem 3.3.4 of Tong(1990):

µ3|1,2 =
[ρ̃(1, 3)− ρ̃(1, 2)ρ(2, 3)] Φ−1

[
1− exp

{
−β̃−1

1 x1,t

}]
1− ρ̃2(1, 2)
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+
[ρ(2, 3)− ρ̃(1, 2)ρ̃(1, 3)] Φ−1

[
1− exp

{
−β̃−1

2 x2,t

}]
1− ρ̃2(1, 2)

σ2
3|1,2 = 1− ρ̃2(1, 3)− 2ρ̃(1, 2)ρ̃(1, 3)ρ(2, 3) + ρ2(2, 3)

1− ρ̃2(1, 2)

µi|1,2 =
[ρ̃(1, i)− ρ̃(1, 2)ρ(2, i)] Φ−1

[
1− exp

{
−β̃−1

1 x1,t

}]
1− ρ̃2(1, 2)

+
[ρ(2, i)− ρ̃(1, 2)ρ̃(1, i)] Φ−1

[
1− exp

{
−β̃−1

2 x2,t

}]
1− ρ̃2(1, 2)

σ2
i|1,2 = 1− ρ̃2(1, i)− 2ρ̃(1, 2)ρ̃(1, i)ρ(2, i) + ρ2(2, i)

1− ρ̃2(1, 2)

• Use these conditional distribution functions for defining matrix S2(3, i; 1, 2|Λ4,x) as

n∑
t=1


 Φ−1[1−exp{−β̃−1

3 x3,t}]−µ3|1,2
σ3|1,2

Φ−1[1−exp{−β̃−1
i xi,t}]−µi|1,2

σi|1,2




 Φ−1[1−exp{−β̃−1

3 x3,t}]−µ3|1,2
σ3|1,2

Φ−1[1−exp{−β̃−1
i xi,t}]−µi|1,2

σi|1,2




′

.

• Sample the partial correlation matrix Σ2(3, i; 1, 2) from the inverted Wishart density

function with parameters n and S2(3, i; 1, 2|Λ4,x):

Σ̃2(3, i; 1, 2) = InverseWishartVariate (n,S2(3, i; 1, 2|Λ4,x))

• Set ρ̃(3, i; 1, 2) to the (1, 2)th entry of Σ̃2(3, i; 1, 2).

end loop

Sample the partial correlation associated with the last (i.e., fourth) tree of the

C−vine
The goal is to sample partial correlation ρ(4, 5; 1, 2, 3).

• Construct vector Λ̃5 using β̃m, m = 1, 2, 3, 4, 5; ρ̃(1, m), m = 2, 3, 4, 5; and ρ̃(� −
1, m; 1, 2, . . . , �− 2), m = �, �+ 1, . . . , 5, � = 3, 4.

• Obtain correlations ρ(3, 4) and ρ(3, 5) using the formulas of Yule and Kendall (1965)

via

ρ(3, 4) = ρ(3, 4; 1)
√
1− ρ̃2(1, 3)

√
1− ρ̃2(1, 4) + ρ̃(1, 3)ρ̃(1, 4),

ρ(3, 5) = ρ(3, 5; 1)
√
1− ρ̃2(1, 3)

√
1− ρ̃2(1, 5) + ρ̃(1, 3)ρ̃(1, 5),
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where

ρ(3, 4; 1) = ρ̃(3, 4; 1, 2)
√
1− ρ̃2(2, 3; 1)

√
1− ρ̃2(2, 4; 1) + ρ̃(2, 3; 1)ρ̃(2, 4; 1),

ρ(3, 5; 1) = ρ̃(3, 5; 1, 2)
√
1− ρ̃2(2, 3; 1)

√
1− ρ̃2(2, 5; 1) + ρ̃(2, 3; 1)ρ̃(2, 5; 1).

• Determine conditional means µ4|1,2,3 and µ5|1,2,3 and conditional variances σ2
4|1,2,3 and

σ2
5|1,2,3 of cdfs Φ4|1,2,3 and Φ5|1,2,3 using Theorem 3.3.4 of Tong(1990):

µ4|1,2,3 =


 ρ̃(1, 4)

ρ(2, 4)
ρ(3, 4)


′ 1 ρ̃(1, 2) ρ̃(1, 3)

ρ̃(1, 2) 1 ρ(2, 3)
ρ̃(1, 3) ρ(2, 3) 1


−1




Φ−1
[
1− exp

{
−β̃−1

1 x1,t

}]
Φ−1

[
1− exp

{
−β̃−1

2 x2,t

}]
Φ−1

[
1− exp

{
−β̃−1

3 x3,t

}]



µ5|1,2,3 =


 ρ̃(1, 5)

ρ(2, 5)
ρ(3, 5)


′ 1 ρ̃(1, 2) ρ̃(1, 3)

ρ̃(1, 2) 1 ρ(2, 3)
ρ̃(1, 3) ρ(2, 3) 1


−1




Φ−1
[
1− exp

{
−β̃−1

1 x1,t

}]
Φ−1

[
1− exp

{
−β̃−1

2 x2,t

}]
Φ−1

[
1− exp

{
−β̃−1

3 x3,t

}]



σ2
4|1,2,3 = 1−


 ρ̃(1, 4)

ρ(2, 4)
ρ(3, 4)


′ 1 ρ̃(1, 2) ρ̃(1, 3)

ρ̃(1, 2) 1 ρ(2, 3)
ρ̃(1, 3) ρ(2, 3) 1


−1 ρ̃(1, 4)

ρ(2, 4)
ρ(3, 4)




σ2
5|1,2,3 = 1−


 ρ̃(1, 5)

ρ(2, 5)
ρ(3, 5)


′ 1 ρ̃(1, 2) ρ̃(1, 3)

ρ̃(1, 2) 1 ρ(2, 3)
ρ̃(1, 3) ρ(2, 3) 1


−1 ρ̃(1, 5)

ρ(2, 5)
ρ(3, 5)




• Use these conditional distribution functions for defining matrix S2(4, 5; 1, 2, 3|Λ̃5,x) as

n∑
t=1


 Φ−1[1−exp{−β̃−1

4 x4,t}]−µ4|1,2,3
σ4|1,2,3

Φ−1[1−exp{−β̃−1
5 x5,t}]−µ5|1,2,3

σ5|1,2,3




 Φ−1[1−exp{−β̃−1

4 x4,t}]−µ4|1,2,3
σ4|1,2,3

Φ−1[1−exp{−β̃−1
5 x5,t}]−µ5|1,2,3

σ5|1,2,3




′

.

• Sample the partial correlation matrixΣ2(4, 5; 1, 2, 3) from the inverted Wishart density

function with parameters n and S2(4, 5; 1, 2, 3|Λ̃5,x):

Σ̃2(4, 5; 1, 2, 3) = InverseWishartVariate(n,S2(4, 5; 1, 2, 3|Λ̃5,x))

• Set ρ̃(4, 5; 1, 2, 3) to the (1, 2)th entry of Σ̃2(4, 5; 1, 2, 3).

This completes the sampling of the parameters of the 5−dimensional NORTA distribution

using our Bayesian model. Section 1.4 of our paper describes how to incorporate this sam-

pling algorithm into the simulation replication algorithm of Chick (2001) for the estimation

of the mean performance measure and the confidence interval.
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Appendix C

Appendix A.2 presents the Gibbs sampler algorithm that samples the shape and scale pa-

rameters of the gamma distributed component. The objective of this section is to discuss the

issues that arise in the implementation of this algorithm. Specifically, Section C.1 discusses

the selection of the sampling plan, while Section C.2 elaborates on the choice of the warm-up

period. Finally, Section C.3 describes the identification of the run length that leads to the

convergence of the Markov chain.

C.1. Choosing the sampling plan

There are two major approaches to the use of Markov chains for sampling from posterior

density functions. The first approach generates n independent realizations from the posterior

density function using n separate runs, each of length m, and retains the final state of the

chain. The second approach, on the other hand, uses a single long run. This is also the

approach that has been favored by simulation analysts due to the computational burden

associated with the first approach (Law and Kelton 1984, Bratley et al. 1987). Another

shortcoming of the first approach is the inefficient use of the data. More specifically, only

the last value sampled from each chain is used, while the second approach discards the values

collected during the warm-up period (Smith and Roberts 1983, Tierney 1994). Therefore, we

follow the second approach and sample the values of a parameter from its posterior density

function using a single long chain. Two immediate implementation questions that arise are

how to determine the warm-up period (i.e., a value for L∗ in Figure A.1 of Appendix A.2)

and how to identify the run length of the Markov chain (i.e., a value for L in Figure A.1 of

Appendix A.2). We answer the first question in Section C.2 and provide a solution to the

second question in Section C.3.
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C.2. Determining the warm-up period

The determination of the warm-up period concerns the question of how many of the initially

sampled values should be discarded. The common practice is to answer this question by

a visual inspection of the plots of the values sampled from a single chain (Gilks et al.

1996). Another method of determining the warm-up period is the computation of the auto-

covariances among the sampled values. The central idea is that it is not necessary to discard

more values than those required for the auto-covariances to decay to a negligible level.

Motivated by this idea, Geyer (1992) suggests that it is generally sufficient to discard the

initial 1% or 2% of the sampled values. Another practical way of determining the warm-up

period is the use of the convergence diagnostics (Cowles and Carlin 1996). We recommend the

use of Heidelberger and Welch (1983) convergence diagnostic and Geweke (1992) convergence

diagnostic for a sampling plan based on a single long chain. Both of these diagnostics are

built in the public domain software Bayesian Output Analysis available in S-PLUS and R.

C.3. Determining the chain length

Another practical issue that arises in the implementation of the Gibbs sampler algorithm is

the determination of the chain length. The goal is to run the chain long enough to obtain a

precise estimate of the distribution parameter by taking the average of the values sampled

from the posterior density function. An informal method suggested by Gilks et al. (1996)

for determining the run length is to run several chains in parallel, with different starting

points, and increase the run length as long as the estimates obtained from the chains are not

sufficiently close to each other. Convergence diagnostics such as the Heidelberger and Welch

(1983) convergence diagnostic that explicitly reports whether the chain is long enough are

also used in practice for determining a value for the chain length. However, the computation

of the variances of the parameter estimates is complicated by the correlation between the

successive values of the parameters obtained from the Gibbs sampler algorithm. An informal

approach is to subsample the chain to obtain (nearly) independent samples. Despite the

wide use of this approach, it has been shown that systematic subsampling often increases

the variance of the sample mean estimators (MacEachern and Berliner 1994). Therefore,

it is a better approach to use all of the sampled values together with the utilization of the

literature on correctly calculating the variance of an estimator in the presence of correlated
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data (Carlin and Louis 2000).

A well-known method that can be used for obtaining the variance of an estimator when

the sampled parameter values are correlated is the batching method. Specifically, the (clas-

sical) batching method divides a (single) run of length L− L∗ into m batches of size s (i.e.,

L−L∗ = ms). If the batch means are represented by B1, B2, . . . , Bm, then the overall mean

is given by B̄m =
∑m

i=1Bi/m, while its variance is obtained from
∑m

i=1(Bi−B̄m)
2/(m(m−1))

for s large enough so that the correlation between the batch means is negligible. Thus, it

is important to check whether the correlation between the batch means is statistically zero.

There exist a variety of statistical tests that can be used for this purpose; e.g., the Portman-

teau test (Wei 1990). If the correlation between the batch means is found to be statistically

significant, then the batch size s and therefore, the chain length L are increased and the

procedure is repeated. An alternative method that can be implemented for the proper choice

of m and s is the ABATCH algorithm of Fishman and Yarberry (1997). Also, the discrete-

event stochastic simulation literature has proposed a variety of batching methods that are

alternative to the classical batching method. We refer the reader to Song and Chih (2008)

for a comprehensive review of these batching methods.

We conclude this section with noting that the use of the Gibbs sampler algorithm might

also lead to cross-correlations between the chains of different parameters. For example, the

sampled parameter values {β�, � = 1, 2, . . . ,L} and {α�, � = 1, 2, . . . ,L} of Figure A.1 might

be correlated. It is easy to check the cross-correlations using the descriptive statistics menu of

Bayesian Output Analysis, which simply creates a correlation matrix. High cross-correlations

lead to slow convergence of the Markov chain to the joint posterior density function. In case of

high correlations between the parameter samples, one can try to reparameterize the model

and run the Gibbs sampler algorithm again. Also, the Bayesian literature has proposed

a number of methods for breaking the correlations, including auxiliary variable technique

(Besag and Green 1993, Higdon 1998), hierarchical centering (Gelfand et al. 1995, Roberts

and Sahu 1997, Papaspiliopoulos et al. 2003, and Papaspiliopoulos et al. 2007), orthogonal

parameterization (Hills and Smith 1992), and parameter expansion (Liu et al. 1998, Liu and

Wu 1999). We refer the reader to these references and the references therein for examples of

reparameterization techniques. However, the simulation analyst should be cautious in the

implementation of these methods as many of them are problem specific, and therefore the

success of the method depends on the problem being considered.
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Appendix D

In this section, we assume the availability of the (dependent) output data yr, r = 1, 2, . . . , R

obtained from the simulation replication algorithm and describe how to use the method of

batching for computing a point estimate and a confidence interval of EY |x(Y |x).
First, we perform R replications of the simulation replication algorithm and delete the

first � observations to eliminate the initial-condition bias, which might arise from the de-

pendence of the output on the initial NORTA parameter values sampled in the first step

of the simulation replication algorithm. Mahajan and Ingalls (2004) present a variety of

methods that can be used for choosing a value for �. We implement the crossing of the

means rule (Fishman 1973) using the algorithm developed by Gafarian et al. (1978). Then,

we divide the remaining R − � output data into m batches of size s (i.e., R − � = ms)

and represent the batch means by B1, B2, . . . , Bm. For a value of s that is large enough

for the correlation between the batch means to be negligible, we generate a point estimate

of EY |x(Y |x) via ŷ =
∑m

i=1Bi/m, and construct a 100(1 − α)% confidence interval using

ŷ ± z1−α/2

∑m
i=1(Bi − ŷ)2/(m(m− 1)), where z1−α/2 is the upper 1− α/2 critical point for a

standard normal random variable. Carlin and Louis (2000) recommend the replacement of

z1−α/2 with tm−1,1−α/2, which is the upper 1 − α/2 critical point for the t distribution with

m− 1 degrees of freedom, for a batch size less than 30.

Although the classical batching method is easy to implement, the improper choice of m

and s may lead to inconsistent variance estimates. We obtain consistent confidence intervals

using the ABATCH algorithm of Fishman and Yarberry (1997) and refer the reader to

Alexopoulos (2006) for a survey of the methods for the consistent estimation of the batch

means.
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Appendix E

Survey of GPCFB’s Partner Agencies

Agency Name:

Location:

Survey for pantries

......................................................................................................................

1. How many days in a week is your agency open?

�1 �2 �3 �4 �5 �6 �7

2. How many hours does your agency operate in a day?

�2 − 3 �3 − 4 �4 − 5 �5 − 6 �6 − 7 �7 − 8 � Other (Please

specify)

3. Approximately how many people does your agency serve per week?

4. How many people do you turn away per week?

�0 �1 − 5 �5 − 10 �10− 15 �15 − 20 � Other (Please specify).

5. What is primary reason you turn participants away? (If you have more than one rea-

son, please number it with (1) being the most primary reason).

� Agency serves a limited number of pantry bags.

� Participants came more often than program rules allowed.

� Services needed were not provided by agency.

� Other (Please specify).

6. How frequently do needy people come to the agency? In other words, how many days

will the provided food be enough for the needy people?

� Once a week � Once a month
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� Twice a week � Twice a month

� Other (Please specify).

7. What do you suggest needy people to do when you turn them away?

� Nothing

� Go to another agency.

� Other (Please specify).

8. If your answer to the previous question is “Go to another agency” then of those people

going to the second agency what percentage of them finds service in the second agency?

� % 0 � %1-25 � % 25-50 � %50-75 � %75-99 � %100.

9. Among the participants what percentages are children, adults and elder?

Children: Adults : Elder:

10. Among the participants what percentages are women and men?

Women: Men:

11. Which day of the week is the busiest for the agency in terms of people coming to the

agency?

12. If you can not distribute a crucial item such as bread, what do you do?

13. What is the main source of supply for your agency? (If you have more than one source

of supply please order them with (1) being the most primary source).

� Greater Pittsburgh Community Food Bank.

� Individual donations.

� Corporate donations.

� Purchasing, through donated money.

� Other (Please specify).

14. What kind of goods (food & non-food) does your agency serve to needy people? Please

specify the food type.

15. What are the 5 items that your agency wishes to distribute most? Please rank them

with (1) being the top.
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16. For the specified 5 items, approximately how short is your agency (in terms of lbs/

week)?

17. Do you realize any change in your demand in (please specify the amount of change in

percentages):

Summers: � No change � Increase Decrease

Holidays: � No change � Increase Decrease

Events (like superbowl): � No change � Increase Decrease

18. Do you think participants are effected by TV /Branding? In other words, do you have

participants asking for a particular branded product? If yes, how frequent does that

happen?

19. Do you see any increase in demand in recent years?

Survey for onsite programs

........................................................................................................................................

1. How many days in a week is your agency open?

�1 �2 �3 �4 �5 �6 �7

2. How many hours does your agency operate in a day?

�2 − 3 �3 − 4 �4 − 5 �5 − 6 �6 − 7 �7 − 8 � Other (Please

specify).

3. Approximately how many people does your agency serve per week?

4. How many people do you turn away per week?

�0 �1 − 5 �5 − 10 �10− 15 �15 − 20 � Other (Please specify).

5. What is primary reason you turn participants away? (If you have more than one rea-

son, please number it with (1) being the most primary reason).

� Agency serves a limited number of pantry bags.

� Participants came more often than program rules allowed.

� Services needed were not provided by agency.

� Other (Please specify).
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6. What do you suggest needy people to do when you turn them away?

� Nothing

� Go to another agency.

� Other (Please specify).

7. If your answer to the previous question is “Go to another agency” then of those people

going to the second agency what percentage of them finds service in the second agency?

� % 0 � %1-25 � % 25-50 � %50-75 � %75-99 � %100.

8. Among the participants what percentages are children, adults and elder?

Children: Adults : Elder:

9. Among the participants what percentages are women and men?

Women: Men:

10. Which day of the week is the busiest for the agency in terms of people coming to the

agency?

11. What is the main source of supply for your agency? (If you have more than one source

of supply please order them with (1) being the most primary source).

� Greater Pittsburgh Community Food Bank.

� Individual donations.

� Corporate donations.

� Purchasing, through donated money.

� Other (Please specify).

12. Do you realize any change in your demand in (please specify the amount of change in

percentages):

Summers: � No change � Increase Decrease

Holidays: � No change � Increase Decrease

Events (like superbowl): � No change � Increase Decrease

13. Do you think participants are effected by TV /Branding? In other words, do you have

participants asking for a particular branded product? If yes, how frequent does that

happen?
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14. Do you see any increase in demand in recent years?
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