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Abstract

An operations manager makes operational decisions in the face of a, by definition, uncer-

tain future. In this thesis we develop tools that can improve the quality of operational

decision making by modeling the stochastic environment and analyzing the trade-offs that

the operations manager faces within this environment. We examine three specific settings:

The question of how to best leverage technology is fundamental to almost any industry.

Using real data from EQT Corp. (an integrated natural resources company operating natural

gas wells throughout the Appalachian basin) we analyze the interaction between the real

options to scale different technologies and the real option to scale the extraction rate. We

find that the values of these options are highly interdependent and their optimal use is

rather complex. We bring to light data-driven managerial principles guiding the use of

these options and provide a very effective heuristic control policy.

Prioritizing demand streams is common in inventory management. In many settings

(e.g. a central warehouse), some demands can be backordered while others are lost when not

immediately satisfied. A critical level (CL) policy reserves some inventory for future high-

priority demand by backordering current, lower-priority, demands. We develop an efficient

algorithm to find the optimal CL policy in this setting, and compare the performance to

the globally optimal policy. We find that although the CL policy performs (slightly) worse,

it is almost insensitive to variations in the lead time distribution.

Emergency Department (ED) demand for care is by its very nature hard to predict

accurately. As ED capacity is regularly outstripped by demand, EDs attempt to decrease
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the inflow of patients during such periods of “crowding.” We use real data to model the

Pittsburgh (PA) Emergency Medial Services (EMS) system and evaluate the impact of sev-

eral coordination mechanisms between ambulances and/or hospitals on the timeliness of

care and total hospital revenues. We find that coordination mechanisms in which hospi-

tals share certain indicators with EMS crews can significantly outperform the coordination

mechanisms currently used in practice in term of quality of care, without being detrimental

to hospital revenues.
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Chapter 1

Introduction

Operational decisions are made on a day-to-day basis (Simchi-Levi et al. 2008) and include a

wide range of choices made in the businessLength of stay data (days) by Acuity world. These

decisions typically involve expectations about the future; hence they involve uncertainty

about this future. Stochastic models are used to inform a present-time decision maker

about how the uncertain future may affect the outcome of his decision. In this thesis

we explore stochastic models, including queueing models, and analyze how these models

can be used to increase the quality of decisions made. Specifically, we consider decisions

regarding maintenance of assets, providing service to customers, or where to optimally route

ambulance patients. This thesis analyzes the different trade-offs seen by an operations

manager and finds optimal strategies for the corresponding problems.

Throughout this thesis we will analyze real-world problems which all require the oper-

ations manager to deal with an uncertain future. In Chapter 2, we analyze the optimal

technology deployment decision for a natural gas property. In this setting the uncertainty

we consider is the volatility of the natural gas price, which is complicated by the seasonality

of the cost structure. In Chapter 3, we consider the problem of an inventory manager who

wants to differentiate between classes of customers. We analyze an inventory management

policy that helps the inventory manager minimize his cost in the face of uncertainty in

1
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demand. In Chapter 4, we consider the problem of the coordination of Emergency Medical

Services (EMS). Not only is the demand for EMS support random, one also deals with

random treatment times once a patient has been transported to a hospital. In Chapter 5,

we conclude. In the remainder of this introduction we introduce the subsequent chapters

in more detail and illustrate what binds them together.

Interaction between Scaling Options in Natural Gas Production

This first study is the outcome of a research project studying questions of technology uti-

lization and production management with managers at EQT Corp., an integrated natural

resources company that operates natural gas wells throughout the Appalachian basin. One

of the primary operational problems encountered when drilling for natural gas is that liquids

gather in the well bore. Once too much liquid has accumulated, the well stops producing

until the liquid is removed, which can be done in a variety of ways. We use a real options

framework to model two different types of technologies that can be used, either separately

or together, to (i) monitor a well, in order to react to gathering liquids quickly, and (ii)

deal with the accumulated liquids.

In addition, the operations manager has the option to scale the natural gas extraction

rate, by pausing production. This could be advantageous because natural gas is a commod-

ity sold into the volatile spot market. In the face of this volatility the operations manager

needs to form expectations about the future, in order to make decisions about technology

deployment and extraction scaling in the present. We develop a model that provides data-

driven managerial principles regarding the trade-offs that need to be made by the operations

manager when making technology choices.

We use a stochastic dynamic program to bring these principles to light. Since the

optimal decision structure is rather complex, we also study a simplification of the optimal

deployment and extraction policy and show that this simplified policy can still obtain almost

100% of the optimal value. Finally, we determine when the technology and extraction scaling

options that we analyze are complements or substitutes. The principles that we develop
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can not only help an operations manager who is drilling for natural gas, but also can be

helpful to managers of other natural resource production processes, e.g. the extraction of

oil and mining.

Inventory Rationing for a System with Heterogeneous Customer Classes

In many business settings a product is sold to different classes of customers, who may have

different values to the business. In this setting one can imagine that customers might receive

different levels of service, commensurate with their respective values. We consider a case in

which the demand that the operations manager has to satisfy originates from two classes

of customers, that are primarily distinguished by their willingness to wait for the product.

In such a setting the operations manager has to deal with several sources of uncertainty:

Not only does he face uncertainty regarding the delivery lead times of his own outstanding

orders, he also faces uncertain customer demands.

Uncertainty in delivery lead times is typically dealt with using inventory. We propose

that the operations manager imposes a specific type of inventory allocation policy, a critical

level policy, to deal with the uncertainty in customer demands. A critical level policy reserves

inventory for potential future demands from more important customers by backordering the

less important demand as soon as inventory is at or below a certain critical level.

We model this problem using a continuous review base stock replenishment policy in

which demand and lead times are stochastic. Modeling the system as a Markov chain,

we develop an exact and efficient procedure to determine the performance of any given

parameter pair for the base stock and critical level policies. We then leverage this procedure

to find the parameters of the optimal policy. Next we compare the performance of our

critical level policy with two more näıve allocation policies as well as the globally optimal

policy. From this comparison we learn that the critical level policy performs rather well.

Furthermore, we find that although the globally optimal policy is rather sensitive to the

degree of replenishment lead time variability, the critical level policy appears to be fairly

robust. Hence the critical level policy appears to be an effective tool for an operations
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manager dealing with these sources of uncertainty while wanting to differentiate between

different classes of customers.

Ambulance Traffic Coordination

Demand for emergency medical services is almost by definition uncertain: As a patient

you typically do not see an emergency coming. However, you still rely on the health care

system to effectively and efficiently take care of you once you need their services. We

consider the emergency services consisting of both the ambulance service that may provide

transportation to the hospital, as well as the emergency care provided in the Emergency

Department (ED) at the hospital. The ED typically is part of a larger hospital setting and

relies on the Inpatient Department (ID) of the hospital to provide care to patients once

they have received their initial treatment at the ED. As patients may also visit the ID for

elective procedures, the emergency services is one part of a complex system. In addition,

supply and demand of emergency services are often unbalanced, the operations manager

must manage the supply of emergency services such that effective and efficient care can be

provided.

A common way trying to match demand with supply within emergency service systems

is by redirecting incoming ambulance traffic away from a hospital that is already short in

resources. This is typically done using a diversion policy which requests that ambulances

take their patients elsewhere. We develop a simulation model to analyze this and various

other mechanisms that the operations manager could use to disseminate information about

the speed with which care can be provided to incoming patients. The mechanisms we

evaluate range from the case in which no information is provided by the hospital and EMS

crews update the information about the status of a hospital on their own, to the case in

which hospitals communicate detailed indicators, capturing the current patient load, as

well as metrics that aim to take future developments into account. Our simulation model

is able to capture many real-world complexities. We calibrate our model to the situation

that exists in Pittsburgh (PA): Here 7 EDs are located within a small geographical area.
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Due to this proximity, there is the potential for routing ambulance traffic to the hospital

that is best able to provide care to a patient. We show that several of the commonly

used policies to avoid or reduce crowding in EDs perform reasonably well. However, in

reality these policies cannot be implemented in isolation as EMS crews typically use their

own experience to take patients to a hospital where they believe expedient care can be

provided. We illustrate that the use of outdated information (or experience) by EMS crews

can significantly decrease the quality of care. We introduce two coordination mechanisms

that significantly outperform the other mechanisms by spreading demand for emergency

care more evenly, without decreasing hospital revenues.

In these three chapters we deal with situations in which an operations manager has to

cope with uncertainty while having to provide an adequate level of service. Whether the

operations manager is operating gas wells, managing inventory, or coordinating ambulance

traffic, taking this uncertainty into account is crucial to him making effective decisions.



Chapter 2

Interaction between Scaling

Options in Natural Gas

Production1

2.1. Introduction

One of the fundamental questions in almost any industry is how to best leverage the use

of technology; companies are typically faced with an assortment of technology options and

must decide how to dynamically manage them to maximize the value of their assets. This

is particularly true in the extraction industry: For example production managers at an oil

or natural gas production company are constantly challenged with evaluating technology

adoption choices to deal with liquid load-up, a phenomenon that retards extraction from a

well.

Two types of technologies that help deal with liquid load-up in natural gas wells are (i)

flow enhancement technology (ET) that increases the instantaneous production level as well

as the total extractable reserves, and (ii) communication technology (CT) that increases
1This chapter has been published as Enders et al. (2010) .

6
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operational efficiency, boosting the instantaneous production level, but also increasing the

rate at which a reservoir is depleted. ET examples include continuous flow, whereby one

simply uses the gas flow to bring liquids to the surface, and soap and blow, which comprises

periodically manually dropping a soapstick into the well to transform the liquids into foam,

which is more easily carried to the surface by the gas flow. CT examples include manually

collecting production (flow rate) data and monitoring a well’s status (operating or not)

on a periodic basis by a human operator, and automated continuous data collection and

monitoring of the well through electronic data transmission.

These examples illustrate that ET and CT can be deployed at different “levels” that can

be modified over time. These modifications may be contingent on the natural gas flow rate

and the prevailing natural gas price, which fluctuates over time, as well as the technology

adjustment costs, which may be seasonal. Thus, one can interpret the choices of ET and

CT levels as real options to scale the production level (Trigeorgis 1999, p. 2). A third real

option that is available to natural gas production managers, and more generally commodity

production managers, is the option to scale the extraction rate by pausing production. This

option consists of temporarily ceasing production from a well, often in anticipation of an

increase in price.

While versions of these three real options have been considered in separate streams

of literature, the study of their interaction has received very little attention. We explore

the nature of this interaction in cooperation with production managers at EQT Corp.,

an integrated energy company with emphasis on natural gas supply, transmission, and

distribution in the Appalachian area (www.eqt.com). To do so we develop and analyze a

stochastic dynamic programming model, with uncertain natural gas price evolution modeled

as in Jaillet et al. (2004). Our work significantly extends the existing models of well behavior

(e.g., Tarek 2006) to capture how modifying technology levels affects the flow rate evolution.

Our work also stands out for its unique use of a novel data set that includes over 20 years

of production data from a natural gas well that is part of the Eastern Kentucky production



2.1. Introduction 8

portfolio of EQT Corp. Our model integrates this production data with financial data

describing the well’s cost structure and natural gas price data available from the New York

Mercantile Exchange (NYMEX), in order to establish the marginal and joint values of the

three scaling options. Our model also includes the option to abandon a well, but we do not

focus on its valuation, as our main interest is on how these three scaling options interact

with each other.

We find that all options, especially the ET scaling option, have substantial value by

themselves. That the application of technology to natural gas extraction could add signifi-

cant value is to be expected. However, our finding that pausing could have significant value,

under certain conditions, was surprising to the EQT Corp. managers who participated in

this study. More broadly, pausing is often ignored in practice (Slade 2001, Dugan 2006,

Sciullo 2006, Al-Harthy 2007), because the conventional wisdom among managers is often

to maximize the production rate, under the premise that the value of any gas not produced

during a given time period is effectively lost due to financial discounting.

When used together, the ET and CT scaling options behave as complements, in the

sense that each option is worth more when used in combination with the other option

than when used alone. This is also true of the combination of CT scaling and pausing

options. In contrast, the ET scaling and pausing options behave as substitutes. Moreover,

the ET scaling option and the portfolio that includes the CT scaling and pausing options

are complements, and so are the CT scaling option and the portfolio that includes the ET

scaling and pausing options; this means that each technology scaling option is worth more

when used together with the remaining technology and extraction scaling options rather

than alone. In contrast, the pausing option and the portfolio that includes the ET and CT

scaling options are substitutes. Finally, the option value of the portfolio that includes all

the technology and extraction scaling options exceeds the sum of the individual values of

these options. The insights behind these results are not immediate; we provide detailed

supportive explanations.
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We also find that stochastic variability in the natural gas price increases the value of all

the scaling options, but in unique ways. The pausing option derives almost its entire value

from this stochastic variability, which is surprising given the marked seasonality (determin-

istic variability) in the natural gas forward curve. In contrast, stochastic variability only

slightly increases the values of the technology scaling options, which seems expected.

Finally, we show that the optimal scaling option deployment policy is rather complex.

We thus seek a simpler yet effective approach to managing the portfolio of scaling options.

We find that immediately setting the two technology scaling options at their highest levels

and afterwards managing the pausing option in conjunction with the abandonment option

yields essentially the same value as the complex optimal policy. This approach is useful

because it drastically simplifies the deployment of the portfolio of scaling options with

almost no decrease in value.

Our results contribute to the practice-based literature in operations management by

providing data-driven managerial principles (Fisher 2007, p. 374) pertaining to the value

and management of technology and extraction scaling options in natural gas production.

These principles are specifically significant to natural gas production managers and, poten-

tially, to managers of other natural resource production processes, such as the extraction of

oil and mining, two activities that encompass similar volatile environments and production

processes.

We proceed as follows. We review the relevant literature in Section 2.2, introduce our

model in Section 2.3, and discuss the data used in our study in Section 2.4. We present our

results on the valuation and deployment of the technology and extraction scaling options in

Section 2.5 and Section 2.6. We conclude in Section 2.7 where we also discuss limitations

of our work and potential additional research avenues.
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2.2. Literature Review

Early on, Grayson (1960) recognized the need for a quantitative approach to support drilling

decisions by oil and gas operators, to step away from rules of thumb and pure expert

judgment that were commonly used in practice. Durrer and Slater (1977) provide a thorough

review of operations research methods used in petroleum and natural gas production up to

the late 1970’s. Most of the more recent literature on the optimal operation and valuation

of commodity projects, including oil and gas ventures, uses the real option approach to

value and optimize managerial flexibility (Dixit and Pindyck 1994, Smith and McCardle

1999, Trigeorgis 1999).

Brennan and Schwartz (1985) consider the decision to open, close or abandon a mine

using replicating portfolios. Olson and Stensland (1988) analyze the optimal shutdown

decision when the extraction cost is fixed, as in Clarke and Reed (1990), who consider oil

well valuation and abandonment decisions using stopping rules. Smith and McCardle (1998)

use the integrated option pricing and decision analytic approach of Smith and Nau (1995)

to value oil properties. They consider the decision to open, close or abandon a property, and

provide thresholds for each decision in terms of production rates and prices. Lund (2000)

analyzes the value of flexibility in offshore petroleum projects. Kamrad and Ernst (2001)

study the optimal production policy with yield and price uncertainty for a mining concern

when the resource to be exploited is nonhomogeneous. Cortazar et al. (2001) evaluate the

exploration, development, and extraction phases of a copper mine with investment timing

flexibility, and open, close or abandonment decisions during the extraction phase. Lumley

and Zervos (2001) consider the effect of switching costs in pausing and restarting a mining

project. Similar to most of these papers, we study the option to pause production, i.e.,

scale the extraction rate. Different from these papers, we also investigate the interaction

between this real option and the real options to scale the ET and CT levels in natural gas

production.
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ET and CT are discussed in detail in the natural gas and petroleum engineering litera-

ture, for example, by Coleman et al. (1991a – 1991c), Clegg et al. (1993), and Coşkuner and

Strocen (2003). However, these authors do not quantify the economic value of optimally

managing these technologies as real options, as we do in this chapter. Moreover, we extend

the commonly used models of natural gas production (e.g., Tarek 2006) to incorporate the

effects of scaling the ET and CT levels on the flow rate evolution, consistent with the em-

pirical observations available in the petroleum engineering literature (Coşkuner and Strocen

2003).

The CT scaling option that we investigate is akin to the optimization of preventive

maintenance decisions studied by Kamrad and Lele (1998) in a manufacturing environment

with random yield and output prices. Unlike their model, in our model the scaling of CT

is reactive and impacts the evolution of the extraction rate, not only the instantaneous

production rate. Moreover, different from Kamrad and Lele (1998), we investigate the

interaction of the CT scaling option with the ET scaling and production pausing options.

Our work is also related to the paper by Moel and Tufano (2002) who study opening

and closing decisions of gold mines’ managers as a function of industry and firm level

characteristics. But their focus is descriptive, and their aim is to empirically test whether

gold mines’ managers opening and closing decisions are consistent with the basic predictions

laid out in Brennan and Schwartz (1985). Our focus is prescriptive, and our aim is to

bring to light model-based and data-driven principles that could be used by managers to

inform their decisions on how to manage technology and extraction scaling options in the

production of natural gas and other commodities. Moreover, Moel and Tufano (2002) do

not include technology scaling decisions in their analysis. This is an important distinction

as these scaling options significantly increase the value of the property and managing them

optimally is not straightforward.
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2.3. Model

In this section we present our stochastic dynamic programming model that optimizes tech-

nology and extraction scaling decisions during a finite time horizon. Let T denote the end

of this time horizon, which is assumed to be divided into a set of equal length time periods

(see Figure 2.1). We normalize this length to one. Even though we assume that the well’s

flow rate and the natural gas price evolve in continuous time, in our stochastic dynamic

program decisions are made only at times 0, 1, . . . ,T− 1, the start of time periods 1, . . . ,T.

(That is, the stages of this model correspond to the times 0, 1, . . . ,T.) The state of our

stochastic dynamic program at time t is the vector (p, q, x, y), which includes the natural

gas spot price, p ∈ R+; the well’s flow rate, q ∈ R+; and the ET and CT levels, x and y.

We assume that there are X + 1 and Y + 1 possible ET and CT levels, which belong to sets

X := {0, . . . , X} and Y := {0, . . . , Y }, respectively. Thus, the state space in any stage is

the set S := {(p, q, x, y) : p ∈ R+, q ∈ R+, x ∈ X , y ∈ Y}.

At time T, if still operational, the well is abandoned (which could be required by con-

tractual agreements). At each time t < T, the production manager decides how to operate

the well in time period t+ 1. Specifically, this manager decides whether to

1. Produce using the currently deployed technology.

2. Abandon the well and forego the opportunity of ever producing from it again. (When

abandoning, all equipment at the well is removed.)

3. Pause production and leave all the equipment as is, to potentially resume production

or abandon the well at a future time.

4. Invest or divest in ET and/or CT, and either produce or pause during time period

t+ 1.

Figure 2.1: Timeline
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We denote by a := (a1, a2, a3) the action vector in a given state and stage. This vector

specifies the new ET level, a1, the new CT level, a2, and whether to produce, a3 = 1,

pause, a3 = 0, or abandon, a3 = −1. We denote the action set at time t < T by A(t) :=

{(a1, a2, a3) : a1 ∈ X , a2 ∈ Y, a3 ∈ {−1, 0, 1}}. Decisions on the technology levels made

at time t < T are immediately implemented, so the system in period t + 1 operates at

technology levels a1 and a2. This is reasonable because of the limited magnitude of the

changes that need to be made to the well.

The cash flows in stage t are determined by the gas price, pt, and the flow rate, qt, at

time t, taking into account the instantaneous implementation of the decision a at time t

and any cost associated with this decision. Since many gas (and oil) wells are located in

remote areas, weather conditions can significantly impact their operational and investment

costs. Therefore, the relevant costs in our model are time dependent. We consider:

• Preventive maintenance cost cMt that is associated with basic seasonal maintenance

jobs. This cost is paid in every stage up to abandonment.

• Operating cost cOt (x, y) that depends on the currently employed technology levels x

and y. When a well is paused or abandoned, no operating cost in incurred.

• Investment cost cIt (x, y, a1, a2), to change the technology levels from (x, y) to (a1, a2).

We assume the investment cost is separable in technology type, i.e., cIt (x, y, a1, a2) =

cIEt (x, a1)+cICt (y, a2), where cIEt (x, a1) and cICt (y, a2) are the costs of changing the ET

level and CT level, respectively. The investment cost is positive when the technology

level is increased and may be negative if the technology level is decreased, due to the

salvage value of the equipment.

• Abandonment cost cAt that may be positive or negative depending on whether the

well is sold or needs to be dismantled at no salvage value. When a well is abandoned,

the installed ET and CT need to be dismantled at costs cIEt (x, 0) and cICt (y, 0),

respectively.
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The stochastic component of our model is the price process. We assume that the nat-

ural gas spot price evolves according to an exogenously specified stochastic process that is

not affected by the flow rate evolution and the manager’s operational decisions. This is

consistent with other models used in the literature (e.g., Smith and McCardle 1998). In our

numerical analysis in Sections 2.5 and 2.6 we use the seasonal mean reverting price process

of Jaillet et al. (2004). Schwartz (1997) and Seppi (2003) provide excellent reviews of the

typical reduced-form models of the evolution of commodity prices that are employed in the

real option literature.

We model the well’s flow rate as a deterministic process. Although other authors, such as

Smith and McCardle (1998), have used stochastic models of flow rate evolution, our choice

is motivated by modeling simplicity, i.e., it allows us to capture the effect of technology

scaling on the flow rate evolution in a parsimonious fashion, as discussed below. In addition

the deterministic model corresponds well with models used in practice, as discussed below.

We leave the extension to a stochastic case of our model to future research, as pointed out

in Section 2.7.

The flow rate at time t + 1, qt+1, with t < T, depends on the time t flow rate, qt, and

the action vector, A(t). If the well is abandoned then qt+1 is set equal to 0. Otherwise,

if ET and CT are unmodified, then qt+1 is equal to qt if the well is paused, and changes

to qt exp[−µ(x, y)] if the well is producing, where µ(x, y) > 0 is the technology dependent

decline rate of the well’s flow rate. When the ET and CT technology levels are unchanged,

this model of exponential flow rate decline is commonly used in the petroleum engineering

literature (see, e.g., Tarek 2006); in particular, the positive decline rate is consistent with the

behavior of mature wells, as we model here. If the well is not abandoned, modifying either

one of the current ET or CT levels affects both qt and µ(x, y). We capture these effects by

embedding petroleum engineering models of natural gas well liquid load-up behavior (Clegg

et al. 1993 and Coleman et al. 1991a-1991d) into the exponential flow rate decline model.



2.3. Model 15

40

50

60

70

80

90

100

w
ra
te

(M
CF
/m

on
th
)

Scaled process

Actual process

0

10

20

30

0 10 20 30 40 50 60

Fl
ow

Time

Figure 2.2: Sketch of the actual and scaled flow rate processes.

We introduce the notion of nominal flow rate, denoted by q̄t. This is the flow rate at an

idealized CT level that would ensure a production yield equal to 100%. For ET level x, the

nominal flow rate evolves according to the exponential model with decline rate µ̄(x) (we

discuss how we model this rate below). We relate the flow rate qt to the nominal flow rate

q̄t by using the production yield ρ(y) ∈ (0, 1), which depends on the employed CT level y.

Specifically, if the time t nominal flow rate is q̄t and the ET and CT levels are x and y, then

the flow rate and its decline rate satisfy the identities qt ≡ ρ(y)q̄t and µ(x, y) ≡ ρ(y)µ̄(x).

This means that our representation of the flow rate is a smoothed version of an underlying

flow rate model with load-up events (see Figure 2.2).

We model the production yield ρ(·) as follows. CT affects how quickly one can respond to

a situation in which a well is loaded up with liquid. Wells that are operational are assumed

to load-up according to a geometrically distributed time to failure with mean 1/λ, where

λ > 0. Loaded-up wells are assumed to return to operational status through corrective

maintenance, i.e., recover, with a geometrically distributed time with mean 1/η(y), where

η(y) > 0 depends on the employed CT level y. We define the production yield at CT level

y as the fraction of time that a well is operational: ρ(y) := 1/[1 + λ/η(y)]. We assume that

this quantity increases in the CT level y by assuming that η(y) does so, which is natural,

i.e., the mean recovery time decreases in the CT level y.



2.3. Model 16

We now discuss the effect of changing the ET and CT levels from (x, y) to (a1, a2) at

time t, when the flow rate is qt. Using the identities that relate the flow rate to the nominal

flow rate and their decline rates, the CT change from level y to level a2 has two effects:

(i) it modifies the flow rate from qt to ρ(a2)qt/ρ(y), as qt/ρ(y) is the nominal flow rate

corresponding to qt; (ii) it modifies the decline rate from µ(x, y) ≡ ρ(y)µ̄(x) to ρ(a2)µ̄(x).

Notice that if a2 > y, then this CT change increases the rate of decline of the flow rate; this

implies that the new flow rate also increases.

The ET change from level x to level a1 affects both the flow rate and its decline rate.

Notice that if a1 > x, then this change instantaneously raises the flow rate and reduces

its decline rate; this is consistent with the empirical observations made by Coşkuner and

Strocen (2003), which are reflected in our data set, as discussed in Section 2.4. We use the

given function δ(x, a1), with δ(x, a1) > 1 for x < a1, to model the effect on the flow rate

qt of changing the ET level from x to a1 as follows: qt immediately changes to δ(x, a1)qt.

To model the effect on the decline rate of changing the ET level from x to a1, we first

must model the decline rate of the nominal flow rate µ̄(0). We use the function γ(x) for

this purpose: We assume that γ(0) = 1 and that γ(·) is an increasing function. We then

define the decline rate of the nominal flow rate at ET level x, relative to its value at level

0, as µ̄(x) := γ(x)µ̄(0). Changing the ET level from x to a1 changes the decline rate of the

nominal flow rate from γ(x)µ̄(0) to γ(a1)µ̄(0). Thus, this change modifies the decline rate

of the flow rate from ρ(y)γ(x)µ̄(0) to ρ(y)γ(a1)µ̄(0).

We aggregate the effects of changing technologies through the flow rate transition func-

tion ft(qt, x, y, a); this function yields the flow rate at time t+ 1: qt+1 = ft(qt, x, y, a). We

define this function as follows:

ft(qt, x, y, a) :=


0 if a3 = −1,

δ(x, a1)ρ(a2)
ρ(y) qt if a3 = 0,

δ(x, a1)ρ(a2)
ρ(y) exp[−ρ(a2)γ(a1)µ̄(0)]qt if a3 = 1.

(2.1)
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If the well is abandoned the flow rate drops to 0; otherwise, the flow rate immediately

changes to δ(x, a1)ρ(a2)qt/ρ(y) and stays at this level if the well is paused, and declines

exponentially from this level with decline rate ρ(a2)γ(a1)µ̄(0) if the well produces during

the next period.

We now formulate our stochastic dynamic program. We assume that there exists a

natural gas futures market, e.g., NYMEX, that is arbitrage free and complete. Thus, we

employ a risk-neutral valuation approach (Luenberger 1998, Smith 2005). We use the one

period risk free discount factor α. We let p̃t be the random variable denoting the natural

gas price at time t. We denote by 1{·} the indicator function that is 1 if its argument is

true and 0 otherwise. We let rt(p, q, x, y, a) denote the following immediate payoff function

associated with action a ∈ A(t) in state (p, q, x, y) ∈ S at time t = 0, . . . ,T− 1:

rt(p, q, x, y, a) :=


−cIt (x, y, a1, a2)− cAt if a3 = −1,

−cMt − cIt (x, y, a1, a2) if a3 = 0,

−cMt − cIt (x, y, a1, a2)− cOt (a1, a2) + pδ(x, a1)ρ(a2)
ρ(y) q if a3 = 1.

The optimal value function of our model, Vt, satisfies the following Bellman equations:

Vt(p, q, x, y) = max
a∈A(t)

vt(p, q, x, y, a), ∀t = 0, 1, . . . ,T− 1, (p, q, x, y) ∈ S

vt(p, q, x, y, a) := rt(p, q, x, y, a) + 1{a3 6= −1}αE[Vt+1(p̃t+1, ft(q, x, y, a), a1, a2)|pt]

VT(p, q, x, y) := −cIT(x, y, 0, 0)− cAT , ∀(p, q, x, y) ∈ S.

2.4. Data

In this section we discuss how we, in cooperation with production managers at EQT Corp.,

assessed the costs of operating our subject natural gas well located in Eastern Kentucky

owned and operated by EQT Corp., the costs of investing and divesting in technology,

and the well performance parameters. We focus our attention on this particular well as it
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Figure 2.3: Historical (monthly) production data for the well studied in this chapter.

provides insights into the effect of technology change. We also discuss the estimation of the

parameters of the natural gas price process.

Our well was drilled in the late 1950’s. Although the flow rate of wells may show non-

exponential decline behavior early in a well’s life cycle (Garb and Larson 1989), we can

safely assume our well has entered its phase of exponential flow rate decline. Our well was

operated as a continuous flow well until 2003; in January 2003 it was equipped with soap

and blow technology. (These types of ET technologies are described in Section 2.1.) We let

0 and 1 denote the continuous-flow and soap-and-blow ET levels, respectively. Data on the

well’s operational status has always been obtained periodically; we let this data collection

approach be CT level 0. The possibility of employing an automated and continuous data

collection approach, which we indicate by CT level 1, was being investigated at EQT Corp.

at the time of this study.

Figure 2.3 shows monthly production data from the well from 1986 to 2009 (MCF = one

thousand cubic feet). After the technology change in January 2003, the flow rate of our well

increased and its decline rate decreased, which is consistent with our flow rate modeling
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approach discussed in Section 2.3. We used this data to estimate the parameters of our well

flow rate evolution model.

After consultation with production managers at EQT Corp. we eliminated production

rates of zero because they presumably originated from a failure of the measurement de-

vice. We also excluded “very low” production rates, two data points before the technology

change, because they were deemed part of irregular well behavior caused by external fac-

tors. In addition, the well became unoperational for the five months before the change in

technology. This led to a build-up of pressure and thus likely caused elevated production

rates immediately after the well was brought back online. Thus, we eliminated the first five

exceptionally high production rates after production resumed.

We estimated the parameters of the process describing the flow rate evolution using

linear regression on the natural logarithms of the flow rate data. The estimate for µ(0, 0) is

8.32% per year, and that of µ(1, 0) is 3.19% per year; hence γ(1) = 0.38. Thus upgrading

ET from continuous flow to soap and blow leads to significant operational improvement.

We averaged the twelve retained data points immediately before and after the ET change

in January 2003 to estimate the flow rate before and after this change. These values are

27.8 MCF/Day and 33.36 MCF/Day, which provides an estimate of 1.20 for δ(0, 1). The

estimate is consistent with the observations of Coşkuner and Strocen (2003), on which our

model of flow rate behavior is based.

The production data from our example well did not have high enough granularity to

estimate the yield function ρ(·), so we used up to 50 years of production data for a set

of 135 of EQT Corp.’s soap and blow wells to estimate the yield. We identified periods

during which these wells were loaded up and estimated ρ(0) as the average fraction of time

that the wells were producing, i.e., we directly estimated the quantity 1/[1 + λ/η(0)]. This

leads to an estimate for ρ(0) of 90%. As no data was available on the effect of continuous

monitoring, we assumed ρ(1) to be equal to 99%, as this CT level would enable a more

timely resolution of liquid load-up situations.
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Table 2.1: Cost parameters for summer (winter).

CT (monitoring frequency)
Periodic (0) Continuous (1)

ET
Continuous flow (0) 100 (105) 110 (115.5)
Soap and blow (1) 250 (262.5) 275 (288.8)

(a) Operating cost ($/month).

ET CT
Investment (0→ 1) 1,000 (1,050) 8,000 (8,400)
Divestment (1→ 0) 300 (315) -2,667 (-2,540)

(b) Technology investment and divestment costs ($).

The relevant costs were estimated using various sources within EQT Corp. For confi-

dentiality, these costs do not specifically represent those of our well, but are representative

for this type of well. We distinguish between summer (April through October) and winter

(November through March). Costs during the summer are as follows (winter costs are 5%

higher): The maintenance cost is $321 per month. The abandonment cost is $36,250. The

cost of operating the well is $100 per month with continuous flow ET and $250 per month

with soap and blow ET, both at the lowest CT level, i.e., periodic monitoring. We estimated

a 10% higher operating cost with continuous monitoring. The investment cost to move from

continuous flow to soap and blow is $1,000. The divestment cost to move from soap and

blow to continuous flow is $300. The CT that enables continuous monitoring costs $8,000

to install and has a salvage value of $2,677. Table 2.1 summarizes these costs (the winter

cost are in parentheses).

We use NYMEX natural gas futures prices and prices of options on natural gas futures

traded on 5/29/2009 to estimate the parameters of the price model of Jaillet et al. (2004).

Figure 2.4 displays the NYMEX natural gas forward curve on this date, along with the fit
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Figure 2.4: NYMEX natural gas forward curve on 5/29/2009 and model fit.

of our model. This curve exhibits significant seasonality. The model of Jaillet et al. (2004)

features twelve deterministic monthly seasonality factors and a deseasonalized spot price,

whose natural logarithm evolves as a single factor mean reverting process. The parameters

of this model are the current level of this factor and its volatility, speed of mean reversion,

and long term level; this last parameter is however not needed for valuation purposes

(Jaillet et al. 2004). We used the method described by Lai et al. (2009) to estimate these

parameters. This yielded an estimate of the natural gas spot price on 5/29/2009 equal

to $3.38 (the actual spot price was $3.92), estimates of the volatility and speed of mean

reversion parameters equal to 67% and 1.05, and estimated seasonality factors (displayed

in Table 2.2) ranging between 0.946 (May) and 1.081 (January).

Table 2.2: Seasonality factors of the natural gas price.
Month Jan Feb Mar Apr May Jun

Seasonality factor 1.081 1.076 1.043 0.953 0.946 0.955
Month Jul Aug Sep Oct Nov Dec

Seasonality factor 0.967 0.971 0.970 0.977 1.016 1.059
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2.5. Valuation Results

In this section we discuss the scaling option valuation results obtained by applying our

stochastic dynamic program to the data described in Section 2.4 (we do not discuss the

value of the abandoning option as our focus is on the technology and extraction scaling

options).

We consider a 100-year horizon, with monthly stages. We use an annualized risk free

discount rate of 5%. We implement a discrete time and space version of the price evolution

model using a trinomial tree constructed by applying the method described by Jaillet et al.

(2004), using monthly time intervals and the estimated natural gas spot price on 5/29/2009

as the initial price level. As the natural gas forward curve on 5/29/2009 only includes 144

monthly maturities, we reuse the last 12 prices in this forward curve to generate a 100 year

forward curve that we use to calibrate this trinomial tree.

We also implement a discrete time and space version of the flow rate evolution, because

modifications to the flow rate due to pausing and technology changes preclude the use of a

single decline curve. We set the starting flow rate level equal to 27.8 MCF/Day; this is the

average flow rate level of the 12 retained data points immediately preceding the ET level

change discussed in Section 2.4. We use a grid in which the natural logarithms of the flow

rate at the start of each month are equally spaced. The lowest flow rate considered is 0.001

MCF/Day, and each next value on the grid is a 1% increase on the previous. The largest

value on the grid for the ET level 0 is 30.59 MCF/Day, which is the smallest grid value that

exceeds 27.8 MCF/Day multiplied by 0.99/0.90 (as the time 0 CT level is 0). For the ET

level 1 the largest value on the grid is 36.96 MCF/Day, which is the smallest entry on the

grid that exceeds 30.59 MCF/Day multiplied by 1.20. If transitioning from one stage to the

next according to (2.1) leads to a flow rate that is not on the grid, we linearly interpolate

between the optimal value functions corresponding to the adjacent grid values.

The value of an option is the difference between the optimal value functions of our
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model in the initial stage, given the initial flow rate and price, with and without this option

as part of the available decisions. The option value of a portfolio of options is calculated

in a similar manner. We consider both the intrinsic and total (intrinsic plus extrinsic)

values of an option. The former is the option value when the natural gas spot price evolves

deterministically (approximated by setting the volatility parameter equal to 0.00001). The

latter includes the effect of positive price volatility, i.e., set to its estimated value discussed

in Section 2.4.

We find it useful to display our results using the cubes in Figure 2.5. The three axes

of each cube correspond to the availability of an option (at −1 an option is not available,

at +1 it is). Panels (a) and (b) of Figure 2.5 show the intrinsic and total option values,

respectively, measured as percent increases from the base value of $445,478. This is the value

of the well when (i) it cannot be paused, (ii) no technology is available, and (iii) there is no

price volatility. We select this as the base case because it allows us to distinguish between

extrinsic and intrinsic values, and it yields the lowest value function for our model, thus

making all the considered option values positive.

We discuss the option valuation results in detail in Sections 2.5.1-2.5.3, and provide

a summary of our valuation results in Section 2.5.4. We point out that the real option

valuations and managerial insights that we discuss are specific to the data that we use.

2.5.1 Technology Scaling Options

The left vertices of the cubes in Figure 2.5 display the valuation results of the technology

scaling options, in isolation from the extraction scaling option; i.e., pausing is not available.

The ET scaling option has the largest total option value, increasing the well’s total

value by 110.6%, while the CT scaling option yields a 2.2% increase in total value (see

Figure 2.5(b)). The value of the ET scaling option is entirely intrinsic. This value is

obtained through access to larger reserves – recall that the flow rate level increases and

its decline rate decreases when the ET level increases. The value of the CT scaling option
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Figure 2.5: Valuation results; the displayed figures are percent increases over the well’s
intrinsic value without scaling options ($445,478)

exhibits very little sensitivity to price volatility: its intrinsic value is 2.0% in Figure 2.5(a),

and its total value is 2.2% in Figure 2.5(b). As CT affects the speed at which one extracts

natural gas, the high CT level allows one to produce at a higher rate when prices are

high; conversely the low CT level allows one to reduce production, i.e., save natural gas,

when prices are low. However, the additional value brought about by this flexibility in the

presence of price volatility is minimal.

The total value of the ET scaling option in the presence of the CT scaling option increases

from 110.6% to 121.7% − 2.2% = 119.5%. The total value of the CT scaling option in the

presence of the ET scaling option increases from 2.2% to 11.1%. Thus, the two technology

scaling options can be seen as complements: Considering both options simultaneously adds

121.7% to the well’s total value, 8.9% more than the sum of the two options’ individual

values. As both technology options yield a percent increase in the immediate flow rate,

their complementarity stems from the benefit of adding a percent increase to a higher flow

rate, i.e., the flow rate obtained after increasing the level of one of the two technologies.
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2.5.2 Extraction Scaling Option

The front, bottom vertices of the cubes in panels (a) and (b) of Figure 2.5 display the values

of the extraction scaling option; i.e., pausing without any technology option. Pausing has

little value without price volatility: The total value of this option is 5.6%, compared with an

intrinsic value of 0.4%. Pausing can be used to delay production from a well during periods

with low prices (it has other uses as well; see Example 3 in Section 2.6.1); i.e., to “save

up gas” by postponing production until the price rises. Thus, pausing can be interpreted

as a storage option, used when prices are low, which also saves operating costs. However,

deterministic variations in prices, as expressed by the marked seasonality of the natural gas

forward curve (see Figure 2.4 in Section 2.4), are not sufficient for this storage option to

have significant value, which instead requires stochastic price variability.

2.5.3 Portfolio of Technology and Extraction Scaling Options

The right, top, and rear vertices of the cubes in Figure 2.5 display the option value of a

portfolio of technology and extraction scaling options. Lowering the CT level and pausing

have a similar function, i.e., they help “save up” natural gas, but pausing also saves the

operating cost and does not require capital outlays. Given their similarity one would expect

these options to behave as substitutes. However this is not the case here. Combining pausing

with the CT scaling option increases the total value of the pausing option from 5.6% to

6.8% and the total value of the CT scaling option from 2.2% to 3.4%. The CT scaling and

pausing options can hence be seen as complements, as their combined value of 9.0% exceeds

the sum of their individual values, 7.8%.

This is consistent with the following observations. When the CT scaling option is avail-

able, operating CT at its high level increases the decline rate of the well’s flow rate. This

exhausts the well sooner, which extends the amount of time during which pausing can be

used without the wasting of production (the interval between the time the well is exhausted

and the end of the horizon or the time when financial discounting renders production vir-
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tually worthless). Conversely, pausing can be used to limit the costly reduction of the CT

level, i.e., from its high to its low level, whenever the well is operated at the high CT

level and this reduction would be otherwise beneficial, e.g., when prices are low (recall that

the salvage value of the continuous monitoring technology is significantly lower than its

associated initial capital outlay).

Using the pausing option in conjunction with the ET scaling option has an opposite

effect. The total values of these options when used in isolation are 5.6% and 110.6%,

respectively. However, once these options are jointly used their total values decrease to

1.1% and 106.1%, respectively. The pausing and ET scaling options can hence be seen as

substitutes. This substitution effect can be explained as follows. Deploying ET at its high

level increases the immediate flow rate and decreases its rate of decline. When the flow rate

is sufficiently high, as it appears to be in our computational experiments, using the pausing

option in conjunction with the high ET level would indeed amount to wasting production,

by postponing it until much later in the horizon.

When we consider pausing in conjunction with the two technology scaling options, the

substitution effect between pausing and the ET scaling option dominates the complemen-

tarity effect between pausing and the CT scaling option, as the total value of pausing in

the absence of ET and CT, 5.6%, is higher than its total value in the presence of these two

options, 1.6%. Hence, the pausing option and the portfolio that includes the two technology

scaling option are substitutes.

Comparing the relevant vertices of the cubes in Figure 2.5 indicates that there is a com-

plementarity relationship between each technology scaling option and each pair of the other

two options. This reinforces our previous finding that the technology scaling options are

complements. It also suggests that the complementarity between these options is stronger

than the substitution relationships previously described.

Finally, we observe that the total option value of the portfolio that includes all the

three scaling options, 123.4%, whose intrinsic value is 121.7%, is higher than the 110.6% +
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2.2% + 5.6% = 118.4% increase brought about by employing the three options individually.

Although this result is implied by the complementarity between the CT scaling and pausing

options and the complementarity between the ET scaling option and the portfolio that

includes the two other scaling options, its magnitude is notable.

2.5.4 Summary

We summarize our valuation results as follows: When used in isolation, the ET, CT, and

extraction scaling options increase the value of the well by 110.6%, 2.2%, and 5.6%, respec-

tively. The relative values of these options reflect their usages: Exercising the ET scaling

option increases the size of the extractable reserve, a first order effect; exercising the CT

scaling or the pausing options improves operational efficiency and effectiveness, respectively,

second order effects. Our finding on the value of pausing contrasts with practice, where this

option is typically equated to wasting production, and thus avoided if possible. The values

of the technology scaling options are almost entirely intrinsic, while the value of pausing

is almost fully extrinsic. Individual options and the portfolio that includes the two other

relevant options are complements, excluding the ET scaling option and portfolio that con-

sists of the CT scaling and pausing options. Likewise, the option value of the portfolio that

includes all the three scaling options exceeds the sum of the values of the individual options.

2.6. Deployment Policies

In this section we study how to effectively deploy the technology and extraction scaling

options together with the abandonment option; i.e., we analyze the optimal exercise of

these options. We begin in Section 2.6.1 by studying the optimal deployment results of

our model numerically, finding that the optimal deployment of the three scaling options is

complicated. This prompts us to explore a simpler – more practical – approach to their

deployment in Section 2.6.2, which captures most of their combined value.
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2.6.1 Optimal Deployment Policy

In this subsection we illustrate numerically that optimally deploying the three scaling op-

tions is rather complicated. We consider the same setting as in Section 2.5. Regarding the

optimal deployment of the three scaling options, one might expect:

1. The optimally employed ET and CT levels to increase in the gas price and the flow

rate; and

2. Pausing to be used primarily when prices are low (Smith and McCardle 1998, p. 211,

and our discussion in Section 2.5.2).

However, this is not true in general, as shown in Examples 1-4 below. These examples

are based on Figure 2.6, which illustrates the optimal deployment of the technology and

extraction scaling options, as well as the abandonment option, in different time periods as

a function of the flow rate and the natural gas price. The labels associated with each region

of this figure indicate the type of optimal action in each such region, and also indicate the

optimal deployed levels of ET and CT as the pair {x, y}. Figures 2.6(a) and 2.6(b) pertain

to January and April, respectively, but they are also representative of the other winter and

summer months indicated; Figure 2.6(c) is October. For ease of interpretation, Figure 2.6

uses log scales, but the labels and the tickmarks are in the original units to facilitate intuition

about the magnitudes displayed. In these examples the initial technology level pair is {1, 0}.

Similar results are obtained with different initial technology levels.

Example 1 Consider any flow rate below 2 MCF/Day in Figure 2.6(a). At this flow rate,

the optimally deployed ET level is nonmonotonic in the natural gas price (a similar behavior

occurs for the CT level when the starting technology level pair is {0, 1}).

Example 2 Consider any price above 3 $/MCF in Figure 2.6(a). At this natural gas price,

the optimally deployed ET level is nonmonotonic in the flow rate (we observe a similar

behavior for the CT level when the starting technology level pair is {0, 1}).
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(a) January – March, November, De-
cember.

(b) April – September.

(c) October.

Figure 2.6: Optimal technology deployment and operating decisions in different stages as
functions of the flow rate and the natural gas price with the ET level equal to 1 and the
CT level equal to 0. The captions of the panels indicate the period(s) for which the panel
is representative: the month pertaining to the displayed panel is italicized.
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Example 3 Consider a price roughly equal to 3 $/MCF in Figure 2.6(a). At this natural

gas price, the optimal pausing decision is nonmonotonic in the flow rate. For gas prices

near this level it is optimal to pause at low flow rates, produce at flow rates between 1 and

2 MCF/Day and at very high flow rates, while it is optimal to pause for flow rates between

2 and 30 MCF/Day. At low flow rates, and even for high natural gas prices, pausing is

used to delay abandoning until summer, as shown in Figure 2.6(b), when abandoning is

cheaper. (At high flow rates pausing is used to save up gas, as discussed in Section 2.5.2.)

This exemplifies how the seasonality of the cost structure affects the optimal policy. This is

further illustrated in Example 4.

Example 4 Figure 2.6(c) shows that in the “Pause {0, 0}” and “Pause {1, 1}” regions it

is optimal to change one of the technology levels, which are initially at the {1, 0} levels, and

delay production at the new technology level. This occurs because in winter, which starts in

November, the cost structure is less favorable than in summer.

2.6.2 Heuristic Deployment Policy

Given the complex structure of optimally deploying the three scaling options, we seek a

simpler, but still effective approach to their deployment. We start by studying the benefit

of actively managing the deployment of the technology scaling options over time, comparing

our valuation results discussed in Section 2.5 with those obtained by running our model by

fixing ET and CT at given levels throughout the time horizon. Figure 2.7 displays the

relevant total value increases relative to the base case. Note that we still actively manage

the pausing and abandonment options (the former option when it is available).

Comparing the cubes in Figures 2.5(b) and 2.7 reveals that actively managing the tech-

nology scaling options yields only a very small increase in the value of the well. Specifically,

only in the absence of the ET scaling and the pausing options is there a positive difference

(for the CT scaling option) in valuations, and even in this case the difference is very small.

Hence, essentially all of the value increase brought about by using an optimal deployment
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Figure 2.7: Valuation results with fixed technology scaling options; the figures displayed
are the percent total value increases relative to the base case ($445,478).

policy can be attained by the following simpler policy: (i) exercise the two technology op-

tions immediately by switching to their high levels, and (ii) optimally manage the pausing

and abandonment options thereafter. Though not explicitly illustrated here, we also expect

this policy simplification to be valuable when managing a portfolio in which a larger set of

technology levels is considered.

2.7. Conclusions

In this chapter we study the interaction between technology and extraction scaling options

in natural gas production by developing and applying a stochastic dynamic program that

uses empirical production and financial data. Our research is grounded in practice; it was

developed in conjunction with production managers at EQT Corp. We bring to light basic

managerial principles related to the drivers of these options’ values and their deployment.

These principles are likely to have managerial relevance in other commodity production

settings, such as oil extraction and mining.

Our work has the potential to be extended in several dimensions. We employ a single-

factor mean reverting model to describe the evolution of the price of natural gas. Although

mean reversion in commodity prices is well documented in the literature (Clewlow and
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Strickland 2000, Chapter 2, Smith and McCardle 1999), more elaborate, multifactor mod-

els of commodity price evolutions are also available, such as the two-factor reduced-form

and equilibrium models of Schwartz and Smith (2000) and Routledge et al. (2000), respec-

tively. Our model uses a deterministic representation of the evolution of the flow rate of a

natural gas well. It would be interesting to extend our work by using a stochastic model

of production, as is often done in the real option literature (see, e.g., Smith and McCardle

1998). This extension might benefit from the application of the method described by Hahn

and Dyer (2008) to model the discrete time and space evolution of correlated mean reverting

processes. In addition, our analysis is based on data pertaining to a specific natural gas

well; it would be of interest to examine the dependence of our conclusions on this data by

replicating our analysis based on data from other wells.

More broadly, one could extend our work to consider the strategic management of the

operations of a natural gas field, which includes multiple wells. This presents additional

research opportunities related to modeling the transfer of technology across wells, the depen-

dence among the flow rates of different wells, and the staffing and routing of maintenance

operators. Moreover, when a production firm has a pre-committed production level and

operates a gas field whose wells’ flow rates are subject to natural decline, there may be

multiple options to maintain production at the pre-committed level, including drilling more

wells. Our research suggests technology deployment as an alternative approach to meet the

pre-committed production level. It would be interesting to evaluate the financial effect of

this flexibility. This would require an even more complete well and operations model to

asses the trade-offs between investing in current wells or drilling new ones. Such a strategic

model could start at the pre-drilling phase, in which case the initial investment costs may

depend on well characteristics that may only be discovered after drilling occurs.



Chapter 3

Inventory Rationing for a System

with Heterogeneous Customer

Classes1

3.1. Introduction

Managers often face demand, and thus differentiate between, customers that expect different

standards of service. One class of industries that recognizes and implements customer

differentiation along these lines are those that deliver and maintain expensive capital goods

requiring high up-times; examples include defense systems (e.g. Deshpande et al. 2003a

and 2003b), semiconductor manufacturing equipment (e.g. Kranenburg and Van Houtum

2008), and mobile phone operating systems (e.g. Möllering and Thonemann 2008). In all

these cases customers are assigned a priority level based on equipment criticality or demand

type, for example demand from a machine that is down may have higher priority than a

replenishment demand from a stockpoint in the network.

Various tools have been developed to differentiate between such customers: a common
1This chapter is joint work with Ivo Adan, Geert-Jan van Houtum, and Alan Scheller-Wolf.

33
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approach is the use of a critical level policy that reserves some inventory for the more im-

portant customer class. Specifically, current state information (e.g. amount of inventory in

hand) is used to deny some customers access to inventory, in order to reserve this stock

to serve more important demands that have yet to arrive. This type of policy yields con-

siderable benefits when compared to cases in which all customers receive the same level

of service, or when separate inventories are kept for each customer class. These types of

problems have been studied under varying assumptions: see e.g. Veinott (1965), Topkis

(1968), Ha (1997a), Cattani and Souza (2002), Dekker et al. (2002), De Véricourt et al.

(2002), Deshpande et al. (2003b), Möllering and Thonemann (2008), and Kranenburg and

Van Houtum (2007, 2008). An assumption common to this literature is that all customer

classes behave similarly, i.e. either all classes leave and the sale is lost when not immediately

satisfied, or all are willing to wait and are backordered.

We study a mixed problem in which one customer class leaves when demand is not

satisfied immediately, while the other customer class is willing to wait while demand is

backordered. This characteristic, in fact, may be the basis of customer differentiation. We

see, at least, three application areas for our model:

1. Consider a retailer that faces demand from both loyal (demanding), long term cus-

tomers with high service level requirements and occasional walk-in customers. One

can imagine the retailer holding back some inventory to serve anticipated demands

from loyal customers while turning down walk-in customers. A situation like this is

described by Gans and Savin (2007) for rental cars.

2. When operating a physical store in combination with an online shop the customers

issuing their demand in the store observe actual inventory and may leave unsatisfied

if the desired item is not available. The online customers can be backlogged when

inventory is low and still be considered satisfied, since they anticipated some lead

time anyways. Cattani and Souza (2002), Swaminathan and Tayur (2003), and more

recently Duran et al. (2008), identify the opportunity to differentiate between types.
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3. An OEM may operate a central warehouse as well as a network of local warehouses

from which it serves its customers. The central warehouse must satisfy replenish-

ment demands from the local warehouses as well as emergency demands directly from

customers; these latter demands occur when a customer’s machine is down and the

nearest local warehouse does not have the desired item. In this case the emergency

demand has priority over replenishment demands, which can be delayed. This sit-

uation was recognized by Alfredsson and Verrijdt (1999), Deshpande et al. (2003a,

2003b), and Möllering and Thonemann (2008), among others.

As mentioned above, nearly all previous papers consider homogeneous customer behavior

– either all customers are willing, or all customers are unwilling to wait. Because of this, the

methods and models used by other papers cannot be readily extended to the heterogeneous

customers that we consider. We further discuss the related literature in Section 3.2.2.

In this chapter we make several contributions.

1. We are the first to thoroughly analyze using a critical level in response to customer

classes reacting differently to being denied an item. This important characteristic in

practice has only been modeled in a limited fashion before.

2. We develop an exact evaluation procedure for a given CL policy using matrix analytic

methods, and prove monotonicity properties of the main performance measures via

sample path analysis.

3. Using these monotonicity properties we develop an efficient optimization procedure,

which avoids enumerating over large numbers of potentially optimal policies.

4. We demonstrate the near-insensitivity of the performance of the optimal CL policy to

lead time distribution variability. This near-insensitivity implies that the assumption

of exponential lead times that is needed in the analysis has little effect on the solution.

5. Finally, we benchmark the performance of the optimal CL policy against the globally

optimal (state dependent) policy and two alternative, more näıve, policies. This
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provides insights into when it makes sense to use a critical level policy. The comparison

of CL policies to the globally optimal is surprisingly absent in the literature: Kaplan

(1969), Dekker et al. (2002), Ha (1997a), and Möllering and Thonemann (2008) all

compare to more näıve policies only. And, when comparisons to the globally optimal

policy are made, this is often only done in oversimplified systems (see e.g. Benjaafar

et al. 2006, who consider only 1 customer class). We show that our CL policy improves

significantly upon the more näıve policies and performs near optimally.

The remainder of the chapter is structured as follows. First we will introduce our

model and review the related literature in Section 3.2. Section 3.3 develops an evaluation

procedure to compute the performance of a CL policy at any desired level of exactness.

An efficient optimization algorithm that bounds the enumeration space using monotonicity

results is presented in Section 3.4. Section 3.5 details our numerical experiment comparing

the performance of the optimal, CL and more näıve, policies, provides insight into sensitivity

with respect to lead time variability, and studies the efficiency of our bounds. Furthermore,

some insight into the structure of the globally optimal policy is provided. Section 3.6

introduces several extensions and outlines how some of these can be incorporated in our

model with relative ease. Section 3.7 presents our conclusions.

3.2. Model and related literature

In this section we first describe of our model as well as our main assumptions. Then, having

detailed our model, we briefly review the related literature and how it compares with our

model.

3.2.1 Model description

We consider a single stockpoint where a single product is kept on stock. Customer classes

are denoted by j = 1, 2; class 1 has the highest priority and its demand is lost if not
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Figure 3.1: An illustration of the critical level policy

immediately satisfied from stock. Class 2 has lower priority and its demand is backordered

if not immediately satisfied. Demands of class j arrive according to a Poisson process with

rate λj , and the total demand rate is denoted by λ = λ1 + λ2. Inventory is controlled

using a continuous review critical level (CL) policy, which reserves inventory for the most

important customer class by backordering class 2 as soon as inventory drops below a certain

critical level. Backorders are delivered as soon as inventory on hand increases above the

critical level.

We impose a static base stock level denoted by S, and let c denote the critical level,

with S, c ∈ N0 := N ∪ {0}. Replenishment orders are assumed to have a exponential lead

times2 with mean µ−1. Orders need not arrive in the order in which they are placed. An

illustration of the behavior of inventory and backorder levels under this policy can be found

in Figure 3.1. Events j = 1, 2 denote demands from customer class j, and R denotes the

arrival of a replenishment order. In Section 3.5.2 we generalize our analytical results to

lead times that have higher variability, distributed as degenerate hyperexponential random

variables. Furthermore, using simulation we investigate the effect of lead times with higher
2The assumption of exponential lead times considerably simplifies the analysis. Furthermore, we expect

that the performance of the optimal CL policy will be fairly insensitive to the distribution of the lead time,
because our model is a combination of the M |G|∞ and M |G|C|C queueing models, both of which have
steady state queue length distributions known to be insensitive to the distribution of the service time, see
e.g. Cohen (1976).
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and lower variability in Section 3.5.2.

We seek to minimize the infinite horizon expected cost of a policy, C(S, c), which can

be separated into three different types of cost. First, a one-time penalty cost pj ≥ 0 is

incurred whenever a demand of class j is not immediately satisfied from stock. Second, a

backorder cost b ≥ 0 is incurred per unit per unit time a (class 2) backorder exists. Third,

an inventory holding cost h ≥ 0 is charged per unit per unit time an item is on hand. We

denote the fraction of demand from class j that is immediately satisfied from stock (the fill

rate) by βj(S, c), the average number of backorders by B(S, c), and the average inventory

by I(S, c). This leads to the following optimization problem:

min
S,c

C(S, c) = min
S,c
{p1λ1(1− β1(S, c)) + p2λ2(1− β2(S, c)) + bB(S, c) + hI(S, c)} ,(3.1)

s.t. c ≤ S,

S, c ∈ N0.

To solve (3.1) we first develop an efficient, exact procedure to determine the cost of a

given CL policy, C(S, c), in Section 3.3. Then we develop an efficient optimization pro-

cedure that eliminates large sets of potentially optimal values for S and c, bounding our

enumeration space, in Section 3.4. We find the optimal S and c by enumerating over the

reduced space.

3.2.2 Related literature

The policy we describe in Section 3.2.1 belongs to the class of rationing or critical level

policies. Veinott (1965) introduced the CL policy, and since then the performance of such

policies has been extensively studied. We focus on the case with a single static critical level.

This in contrast to e.g. Evans (1968), Topkis (1968), Kaplan (1969), Melchiors (2003), and

Teunter and Klein Haneveld (2008); in their papers the critical level depends on the time

remaining until the next replenishment arrives. This also is different from policies in which
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the critical level is state dependent, e.g. Benjaafar et al. (2006). A single static critical level

is easy to explain to practitioners and to implement, as it does not depend on the progress

of items beyond your control, i.e. in the replenishment pipeline. In Section 3.5.3 we will

compare the optimal state dependent policy with our policy.

Within the class of papers having a single, static, critical level, we distinguish problems

by the way customers react to unsatisfied demand. Studies in which demand from each

class is lost when not immediately satisfied have been performed by Ha (1997a), Ha (2000),

Melchiors et al. (2000), Dekker et al. (2002), Frank et al. (2003), and Kranenburg and

Van Houtum (2007). Ha (1997a) studies a continuous review model with a Poisson demand

processes, and a single exponential replenishment server. He proves the optimality of CL

policies and shows that both the base stock level and the critical level are time-independent.

In Ha (2000), Ha (1997a) is extended to include Erlang distributed lead times. Dekker et al.

(2002) consider a model similar to the one studied by Ha (1997a) but assume an ample ex-

ponential replenishment server; they derive exact procedures for determining the optimal

CL policy. Melchiors et al. (2000) generalizes Dekker et al. (2002) by including a fixed order

quantity. They optimize the order quantity, base stock level, and the critical level. Frank

et al. (2003) consider periodic review models with fixed lead times (i.e. ample replenishment

servers) for which they find the optimal policy parameters. Many of the solution approaches

described above are computationally expensive for more than two demand classes. Kranen-

burg and Van Houtum (2007) divide larger problems into subproblems, and develop efficient

heuristic algorithms for these subproblems (one for each customer class). These heuristics

are tested on a large testbed and shown to perform well. This increase in speed allows

for application in a multi-item setting as demonstrated in Kranenburg and Van Houtum

(2008).

The other primary subclass is that in which demands from both classes are backordered

when they cannot be met from stock. This is studied by Nahmias and Demmy (1981), Ha

(1997b), Dekker et al. (1998), De Véricourt et al. (2002), Deshpande et al. (2003b), Duran
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et al. (2008) and Möllering and Thonemann (2008). Nahmias and Demmy (1981) are the

first to evaluate the performance of a system with two classes that are backordered when not

immediately satisfied. They assume that there is at most one outstanding replenishment

order to facilitate their analysis; this assumption remains common to date in this stream

of literature. Ha (1997b) and De Véricourt et al. (2002) derive the optimal allocation

policy in a make-to-stock capacitated assembly system in which demands from all classes

(two classes in Ha 1997b, n classes in De Véricourt et al. 2002) are backordered if not

immediately satisfied. Other than customer behavior when a demand is not immediately

satisfied De Véricourt et al. (2002) use the same assumptions as Ha (1997a). Dekker et al.

(1998) derive an approximation to the performance of a given policy under Poisson demands

and deterministic lead times under a lot-for-lot inventory management policy. Deshpande

et al. (2003b) study a problem with two customer classes and rationing under a (Q, r)

policy, also clearly outlining what complicates the problem when demands are backordered:

(i) one has to determine the order in which backorders are optimally cleared, and (ii) if

the optimal clearing mechanism is used extensive state information is needed. Möllering

and Thonemann (2008) study a periodic review model with arbitrary, discrete, demand

distributions and a lead time that is an integer multiple of the review period. Duran et al.

(2008) consider the finite horizon problem for which they find the optimal policy in terms

how much inventory to reserve, how many demands to backorder (the alternative is to reject

them) and what level to order-up-to.

We study the combination of these two subclasses of policies; demand from one class

is lost and the other is backordered. So far, this policy has received little attention in

the literature. It is one of several policies compared by Cattani and Souza (2002), who

assume Poisson demand, and a single, exponential, replenishment server. They determine

the parameters of the optimal policy through exhaustive search over a suitably large state

space. Compared to Cattani and Souza (2002), our replenishment system can operate either

a single, several parallel, or an ample number of replenishment servers. We will focus on
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the ample server case as this captures practical settings we wish to model (see below), and

as the other cases are special (and easier) cases. Furthermore we avoid enumeration over

a suitably large state space by the development of bounds on the cost of a policy. Hence,

Cattani and Souza (2002) can be thought of as containing a special case of our problem.

In a practical setting, the ample server assumption is motivated, for example, by the

problems studied by Gans and Savin (2007) or Kranenburg and Van Houtum (2008). Gans

and Savin (2007) studies a car-rental problem in which every car that has been rented has

an exponentially distributed rental period. In Kranenburg and Van Houtum (2008), like

many other papers in the spare parts literature, lead times are negotiated with suppliers

such that the supplier is required to deliver within a specified window, no matter how many

orders are issued. Suppliers are able to meet these requirements as they generally supply a

variety of items to different customers and hence have ample capacity when observed from

the point of view of a single item.

Throughout the literature several assumptions on lead times have been made; we assume

exponential lead times initially, and then generalize to degenerate hyperexponential. In

addition, we determine the cost of the globally optimal policy, without assuming static

critical levels, using dynamic programming, and compare the performance of our policy to

the globally optimal policy and two alternative, more näıve, policies. We also compare the

robustness of both the CL and the globally optimal policy and establish for the first time

that the CL policy is typically more robust to changes in lead time variability than the

globally optimal policy. In fact, the optimal CL policy determined under exponential lead

times may even outperform the globally optimal policy determined under exponential lead

times when they are utilized in situations with non-exponential lead times.

There are some other related fields in the literature that deserve mentioning. In the

revenue management literature policies similar to the critical level policy are commonplace.

Most closely related are booking limits, these limit access to parts of the inventory to specific

demand classes. For a review of the literature we refer the reader to Talluri and Van Ryzin
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(2004). In general the revenue management literature deals with a perishable item (like

a hotel room or an airline seat) that can only be sold once, while we deal with inventory

that can be utilized at any point in time. Wang (2008) study a setting in which customers

are willing to accept flexible delivery, up to a certain deadline. A key differentiator of our

work is that we partition the customers in those that are and are not willing to wait while

their customers are always willing to wait and differ in how long they want to wait. In

addition we focus on different penalty cost to differentiate between customers of specific

types. In spare-parts management the concept of lateral transshipments (see e.g. Paterson

et al. 2009, Wong et al. 2006) relates to our work. Specifically the allocation of inventory to

“own” demand vs demand from another location. Van Wijk et al. (2009) derive the optimal

policy for lateral transshipments between warehouses. Our model resembles theirs, except

for a key assumption, which we will highlight when discussing the optimal policy structure

in Section 3.5.3.

3.3. Evaluation

Our model, under CL policy, (S, c), can be described by a Markov process with states

(m,n), where m ∈ N0 represents the number of items on hand, n ∈ N0 the number of items

backordered. The state space and transition scheme of this policy is depicted in Figure 3.2.

In Figure 3.2 two categories of transitions can be recognized. First, demand-related

transitions that decrease the amount of stock or increase the number of backorders: Tran-

sitions from (m, 0) to (m− 1, 0) occur at rate λ as long as m > c (both classes are served).

If 0 < m ≤ c transitions from (m,n) to (m − 1, n) occur at rate λ1 and transitions to

(m,n + 1) occur at rate λ2 (class 1 is served, class 2 is backordered). If m = 0 the only

demand related transition is from (0, n) to (0, n + 1) which occurs at rate λ2, since class

1 demand is lost. Second, we have supply related transitions that decrease the number of

backorders or increase the amount of inventory: All supply related transition occur at rate
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Figure 3.2: Transition scheme of our critical level policy

(S − m + n)µ since there are S − m + n outstanding orders. If m = c and n > 0 these

transitions go from (m,n) to (m,n − 1) (a backorder is cleared); all other supply related

transitions result in a transition from (m,n) to (m + 1, n).3 Note that states with both

m > c and n > 0 are transient.

Let πm,n denote the steady state probabilities of our Markov chain. Since both customer

classes arrive according to a Poisson process we can use PASTA (Wolff 1982) to evaluate

the cost as defined in (3.1). To do so we need four performance measures, expressed in

terms of πm,n as follows:

β1(S, c) = 1−
∞∑
n=0

π0,n, (3.2)

β2(S, c) =
S∑

m=c+1

πm,0, (3.3)

I(S, c) =
S∑

m=1

mπm,0 +
c∑

m=1

∞∑
n=1

mπm,n, (3.4)

B(S, c) =
c∑

m=0

∞∑
n=1

nπm,n. (3.5)

3In case of N ∈ {0, 1, . . . , } parallel replenishment servers the replenishment rates are Nµ at maximum.
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In the next two subsections we develop an efficient procedure to evaluate the above perfor-

mance measures.

3.3.1 Structure of the Markov process

Our solution procedure exploits the structure of our Markov process. We partition the set

of all states into levels according to the number of backorders n. Level n consists of the

following states:

{(0, 0), (1, 0), . . . , (c, 0), . . . , (S, 0)} for level n = 0,

{(0, n), (1, n), . . . , (c, n)} for level n > 0.

According to this partitioning, the generator Q of the Markov process is given by:

Q =



B0 B1 0 0 0 · · ·

B−1 A0(1) A1 0 0 · · ·

0 A−1(2) A0(2) A1 0 · · ·

0 0 A−1(3) A0(3) A1

...
...

. . . . . . . . . . . .


, (3.6)

where B0, B−1 and B1 are matrices of size (S+1)x(S+1), (c+1)x(S+1) and (S+1)x(c+1)

respectively; and A0(n), A−1(n) and A1 are matrices of size (c+1)x(c+1). A more detailed

description of these matrices is given in Appendix A.1.

Note that Q is a Quasi-Birth-Death process. In case of level independent matrices, i.e.,

A−1(n) ≡ A−1 and A0(n) ≡ A0, standard Matrix Analytic Methods (MAM) can be applied

to compute the steady state distribution (see e.g. Neuts 1981, Lautouche and Ramaswami

1987). In our case, the matrices A−1(n) and A0(n) do depend on level n, which complicates

the computation of the steady state distribution (see e.g. Bright and Taylor 1995). However,

the process’ characteristic that there is only one transition from level n to n−1, from (c, n)

to (c, n − 1) considerably simplifies our analysis. This enables us to determine the πm,n
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exactly, via recursion, as we demonstrate below.

Let πnbe the vector of steady state probabilities at level n:

π0 = (π0,0, π1,0, . . . , πc,0, . . . , πS,0)

πn = (π0,n, π1,n, . . . , πc,n) , n ∈ N

Let π̃nbe the solution to:

π̃0B0 + π̃1B−1 = 0 for n = 0 (3.7)

π̃0B1 + π̃1A0(1) + π̃2A−1(2) = 0 for n = 1 (3.8)

π̃n−1A1 + π̃nA0(n) + π̃n+1A−1(n+ 1) = 0 for n ≥ 2 (3.9)

π̃S,0 = 1, (3.10)

where π̃n is defined similar to πn, but now in terms of π̃m,n instead of πm,n. Note that in

(3.10) π̃n is normalized by setting π̃S,0 = 1 instead of using
∑∞

n=0 πne=1, which cannot be

determined yet.

Note that equations (3.7)-(3.9) relate the steady state probabilities of level n to those of

levels n− 1 and n+ 1 as is standard in applying MAM, however, as A0(n) and A−1(n+ 1)

still depend on n, we cannot readily apply MAM. But the following lemma offers a solution

methodology. Define the (c+ 1)× (c+ 1) matrix A as:

A =


0 · · · 0 1
...

...
...

0 · · · 0 1

 . (3.11)
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Lemma 1 The π̃0, and π̃1 can be determined by solving:

π̃0B0 + π̃1B−1 = 0 for n = 0

π̃0B1 + π̃1A0(1) + λ2π̃1A = 0 for n = 1

π̃S,0 = 1,

and for n > 1 the π̃n follow from:

π̃n = −π̃n−1A1(A0(n) +Aλ2)−1 for n ≥ 2. (3.12)

The proof of Lemma 1, along with all other proofs, can be found in Appendix A.2.

In Lemma 1 the steady state probabilities of levels 0 and 1 can be solved explicitly, and

the steady state probabilities of level n are expressed in terms of level n−1 only, leveraging

the special structure in our Markov process. The original πm,n can then be calculated as

follows:

πn =
π̃n∑∞

n=0 π̃ne
.

As is standard in MAM, the infinite sums in the performance measures introduced in

(3.2) through (3.5) need to be truncated. Next, we develop (tight) bounds for this truncation

error, along with our general solution procedure.

3.3.2 Solution procedure

The performance measures can be written in terms of π̃n, again using PASTA:

β1(S, c) =
∑S

m=1 π̃m,0 +
∑∞

n=1

∑c
m=1 π̃m,n∑∞

n=0 π̃ne
,

β2(S, c) =
∑S

m=c+1 π̃m,0∑∞
n=0 π̃ne

,
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I(S, c) =
∑S

m=1mπ̃m,0 +
∑∞

n=1

∑c
m=1mπ̃m,n∑∞

n=0 π̃ne
,

B(S, c) =
∑∞

n=1 nπ̃ne∑∞
n=0 π̃ne

.

Lower bounds for the infinite sums appearing in these expressions are easily found by

truncation. Upper bounds follow from the next lemma.

Lemma 2 For all ` ≥ 1,

0 ≤
∞∑

n=c+`

nπ̃ne ≤ U(`)

where

U(`) = (π̃0,`, π̃1,`+1, . . . , π̃c,`+c) e (S + `)!
(µ
λ

)S+`
[
λ

µ
φ(S + `− 1)− (S − c)φ(S + `)

]
,

and
φ(`) =

∞∑
k=`

(
λ

µ

)k 1
k!

= e
λ
µ −

`−1∑
k=0

(
λ

µ

)k 1
k!
. (3.13)

The intuition behind Lemma 2 is that the definition of diagonal layers: {(0, n), (1, n +

1),. . . ,(c, n+ c)}, for n ≥ 0 highlights a structural property of the Markov process. The

transition rate from each of the states on a diagonal layer to the right (i.e. down to diagonal

layer n− 1) is (S+n)µ and the flow to the left (i.e. up to the diagonal layer n+ 1) is upper

bounded by λ. This structure is exploited in upper bounding the probability mass above

the truncation level. The proof of Lemma 2 is given in Appendix A.2.2.

Now we can bound our performance measures from above and below by either ignoring

the mass above the truncation level or using the bound from Lemma 2:

∑S
m=1 π̃m,0 +

∑c+`
n=1

∑c
m=1 π̃m,n∑c+`

n=0 π̃ne + U(`+ 1)
≤ β1(S, c) ≤

∑S
m=1 π̃m,0 +

∑c+`
n=1

∑c
m=1 π̃m,n + U(`+ 1)∑c+`

n=0 π̃ne
,∑S

m=c+1 π̃m,0∑c+`
n=0 π̃ne + U(`+ 1)

≤ β2(S, c) ≤
∑S
m=c+1 π̃m,0∑c+`
n=0 π̃ne

,∑S
m=1mπ̃m,0 +

∑c+`
n=1

∑c
m=1mπ̃m,n∑c+`

n=0 π̃ne + U(`+ 1)
≤ I(S, c) ≤

∑S
m=1mπ̃m,0 +

∑c+`
n=1

∑c
m=1mπ̃m,n + cU(`+ 1)∑c+`

n=0 π̃ne
,∑c+`

n=1 nπ̃ne∑c+`
n=0 π̃ne + U(`+ 1)

≤ B(S, c) ≤
∑c+`
n=1 nπ̃ne + U(`+ 1)∑c+`

n=0 π̃ne
,
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where ` ≥ 1. To compute the performance measures at the desired level of accuracy we

start with ` = 1 and increase `, one unit at a time, until the upper and lower bound for

each of the performance measures are sufficiently close. As U(`+ 1) is expected to decrease

very rapidly as ` → ∞, the bounds may already become tight for moderate values of the

truncation level c+ `. In the numerical experiment to be introduced later we observe that,

for a maximum distance between the upper and lower bounds of 10−6, ` varies between 6

and 29 with a mean of 11.9. Also, ` seems to increase in c as, with a higher critical level,

there is more mass below c, which leads to the need of evaluating more levels for accuracy.

Hence we conclude that, in practice, the bounds become tight very rapidly.

These truncation error bounds, and their quality, is important as exact recursive calcu-

lation of the steady state probabilities involves matrix inverses (3.12), which become more

costly for larger values of c. Using these truncation error bounds we limit the number of

matrix inversions.

3.4. Optimization

Recall that our goal is to find the parameters of the optimal CL policy, i.e. the optimal

values of S and c. So far we can determine the performance of a given CL policy, i.e. for

given S and c we can determine the cost (as defined in (3.1)). In this section we build this

evaluation technique into a procedure for finding the optimal S and c parameters.

Even though our evaluation procedure avoids many matrix inversions, some are un-

avoidable to precisely evaluate the performance of each S and c. Here, we develop two sets

of lower bounds on the optimal cost in terms of S and c respectively. These bounds allow

us to eliminate candidate solutions and hence bound the enumeration space. We target to

eliminate candidate solutions with large S and c as the size of the matrices that need to be

inverted grows in S and c.

For the development of these bounds we first need monotonicity results for several
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performance measures with respect to the critical level, c. We obtain these monotonicity

results using sample path arguments. Define X(S, c) as the average pipeline stock, i.e. the

average number of as yet undelivered items that have been ordered from a supplier. We

prove the following monotonicity results:

Theorem 1 The performance measures depend on c in the following manner:

B(S, c) ≤ B(S, c+ 1) i.e. B(S, c) is monotonically increasing in c,

X(S, c) ≤ X(S, c+ 1) i.e. X(S, c) is monotonically increasing in c,

β2(S, c) ≥ β2(S, c+ 1) i.e. β2(S, c) is monotonically decreasing in c. (3.14)

The results in Theorem 1 are in line with the literature for homogeneous customer

classes, e.g. Ha (1997a), Dekker et al. (2002), Deshpande et al. (2003b), Kranenburg and

Van Houtum (2007), and Möllering and Thonemann (2008), but our proof is more involved

due to customer heterogeneity. Using the results from Theorem 1 we develop an efficient

nested procedure to solve the optimization problem from Section 3.2. First, we need a lower

bound for the costs:

Lemma 3 A lower bound for C(S, c) is given by:

C(S, c) ≥ CLB (S, c) := p2λ2(1− β2(S, c)) + (b+ h)B(S, c) + h

(
S − λ

µ

)

The proof of Lemma 3 can be found in Appendix A.2.4. Next, consider the minimum cost

for a fixed value of S, Ĉ(S), and notice that this can be bounded as follows:

Corollary 1 A lower bound function for Ĉ(S) is given by4:

Ĉ(S) ≥ ĈLB (S) := h

(
S − λ

µ

)
4 A stronger lower bound is given by p2λ2(1−β2(S, 0))+(b+h)B(S, 0)+h

(
S − λ

µ

)
but our computational

experience is that the computational gain from this bound does not outweigh the additional computational
cost of computing the bound value.
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To find the optimal S, we increase S, one unit at a time, starting from S = 0. Let the

optimal cost up to a certain value for S be denoted by Ĉ∗(S). We keep increasing S until

Ĉ∗(S) ≤ ĈLB (S + 1) (note that ĈLB (S) increases in S).

We now have a way of bounding S, but for a fixed value of S we also want to limit the

number of values for c that we need to evaluate. This can also be done by using Lemma 3.

Using the monotonicity properties from Theorem 1 we know that CLB (S, c) is increasing in

c for given S. Thus, for given S, we increase c, one unit at a time, starting from c = 0. Let

C̃∗(c) be the optimal cost for a given S up to a certain value for c. We stop increasing c as

soon as C̃∗(c) ≤ CLB (S, c+ 1). A summary of our procedure is given in Algorithm 1.

Figures 3.3(a) and 3.3(b) provide illustrative numerical examples of both of our lower

bound functions. Figure 3.3(a) shows the cost, C(S, c), for S ∈ {0, . . . , 21} and c ∈

{0, . . . ,min(S, 5)}; higher values for c are not displayed for clarity. In this figure, one

can observe two things: (i) the optimal cost function, Ĉ∗(S), is not convex in S which

makes optimization difficult, and (ii) the lower bound is rather tight after the minimum

has been reached. For another instance, Figure 3.3(b) shows the cost, C(S, c), for S = 5

and S = 14 with c ∈ {0, . . . , S}. Here again one can see that the bound is tight, especially

when needed, i.e. for c large. Using our lower bounds we are able to eliminate large parts

of our enumeration space. The general performance of these bounds is analyzed in more

detail in Section 3.5.4.
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Algorithm 1: Find an optimal CL policy(S, c)

S ← 0

Ĉ∗(S)←∞

while Ĉ∗(S) > ĈLB (S + 1)

do



c← 0

C̃∗(c)←∞

while C̃∗(c) > CLB (S, c+ 1)

do



C(S, c)← EvaluatePolicy(S, c)

if C(S, c) < C̃∗(c)

then C̃∗(c)← C(S, c)

c← c+ 1

S ← S + 1
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3.5. Numerical Experiments

In this section we conduct numerical experiments to gain insight into the performance of

our CL policy. Specifically, we seek to answer questions regarding: the performance of the

optimal CL policy as compared to the globally optimal policy and more näıve policies, the

sensitivity of the optimal CL policy to the assumed lead time distribution, the structure

of the globally optimal policy, and the quality of the bounds developed in the previous

section. These questions will be answered in Sections 3.5.1 through 3.5.4, respectively.

Although numerical results have been obtained by many papers in this line of research, to

our knowledge none compares the globally optimal policy, an advanced heuristic (the CL

policy) and näıve policies.

For all of the numerical experiments we create a set of 1500 instances, shown in Table 3.1.

All instances share some common settings, i.e. µ = 1, h = 1 and the level of accuracy in

the evaluation of a given policy, i.e. the distance between the upper and the lower bound of

the performance measures, ≤ 10−6. We vary both the magnitude of demand as well as the

relative share of each customer class, to provide insight into how the customer base affects

the performance of different policies. Furthermore, the cost parameters are changed, both

in magnitude and in relation to each other, as this gives insight into the effect of disparate

customer valuations.

3.5.1 Comparison of CL to globally optimal and more näıve policies

Our aim in this section is to analyze whether a static CL policy is an effective way to

differentiate between customers. To do so, we compare the CL policy to the globally optimal

policy (OPT). To find the OPT policy, we formulate a Markov Decision Process (MDP) and

solve it using linear programming, as outlined by Puterman (1994). The OPT policy does

not assume a single, static, critical level but is allowed to make state-dependent decisions

with respect to class 2 demand and backorders. Details on the MDP formulation and
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λ1 λ2

low λ1 >> λ2 0.1 0.01
λ1 > λ2 0.1 0.05
λ1 = λ2 0.1 0.1
λ1 < λ2 0.05 0.1
λ1 << λ2 0.01 0.1

middle λ1 >> λ2 1 0.1
λ1 > λ2 1 0.5
λ1 = λ2 1 1
λ1 < λ2 0.5 1
λ1 << λ2 0.1 1

high λ1 >> λ2 5 0.5
λ1 > λ2 5 2.5
λ1 = λ2 5 5
λ1 < λ2 2.5 5
λ1 << λ2 0.5 5

(a) Demand parameters.

p1

1 p2 ∈ {0.01, 0.05, 0.1, 0.5}
b ∈ {0.01, 0.05, 0.1, 0.2, 1}

5 p2 ∈ {0.05, 0.25, 0.5, 2.5}
b ∈ {0.05, 0.25, 0.5, 1, 5}

10 p2 ∈ {0.1, 0.5, 1, 5}
b ∈ {0.1, 0.5, 1, 2, 10}

20 p2 ∈ {0.2, 1, 2, 10}
b ∈ {0.2, 1, 2, 4, 20}

50 p2 ∈ {0.5, 2.5, 5, 25}
b ∈ {0.5, 2.5, 5, 10, 50}

(b) Cost parameters.

Table 3.1: Demand and cost parameters for the numerical experiments.

solution can be found in Appendix A.3.

To broaden our comparison, we also consider two, somewhat näıve policies, both of

which: (i) have been used for comparison against CL-type policies (see, e.g. Deshpande

et al. 2003b and Möllering and Thonemann 2008); and (ii) are commonly used in practice

(see e.g. Dekker et al. 2002, Deshpande et al. 2003b, and Möllering and Thonemann 2008).

These policies are:

• First Come First Served (FCFS): All demands are served as long as there is inventory,

when inventory equals zero class 1 demand is lost and class 2 demand is backordered.

In effect this is a critical level policy with c = 0.

• Separate Inventories (SI): Each customer class is served from its own “reserved” in-

ventory.

The CL policy can be seen as a combination of these alternatives, it utilizes inventory

pooling while also “reserving” inventory.

We compare policies i ∈ {CL,FCFS, SI} to the OPT policy by comparing their cost.

Let C∗i be the cost of the optimal policy in class i; we then compare:
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C∗i − C∗OPT

C∗OPT
· 100, (3.15)

for all our instances. For the analysis in this subsection we drop 268 instances where no

demand is satisfied from stock in the CL nor the OPT policy (optimal CL policy has

S = c = 0 and the cost are equal to the cost of the OPT solution), thus worsening the

relative performance of our CL policy compared to the OPT policy.

CL FCFS SI
Average % difference from optimal 2.09 7.17 27.21

Std. Dev. 4.04 11.22 15.89
# instances different 681 829 1232

Average % difference from optimal 3.82 10.73 27.21
Std. Dev. 4.82 15.89 12.26

Table 3.2: Performance of the CL, FCFS, SI policies versus the OPT policy.

First, we compare the average performance over the remaining 1232 instances. Table 3.2

lists the average % difference as defined in (3.15). We see that the CL policy is on average

only 2.09% from the OPT policy, and achieves the OPT policy cost in 45% of the instances.

Compared to OPT, FCFS and SI perform 7.17% and 27.21% worse, respectively. Focussing

only on those instances in which difference is nonzero (681 instances for CL), we see that

the optimality gap does not increase dramatically. Not only are FCFS and SI significantly

outperformed by CL, but they are more unpredictable as well (larger Std. Dev.).

Next we investigate those instances in which the OPT policy outperforms the CL policy

to determine why the CL policy falls short. To do so we have found it useful to look at

two metrics for each instance: The ratio between class 1 and class 2 demand, λ1
λ2

, and the

cost ratio between old and new backorders, λ2p2
b . The latter ratio is an indicator of the

rate at which cost are incurred when denying a class 2 demand an item versus not clearing

a current backorder. Table 3.3 shows that the largest differences between the CL and the

OPT policies occur when class 2 makes up a large fraction of demand, i.e. λ1
λ2

is small5,

5There are no entries having both λ1
λ2

= 10 and 100 < λ2p2
b
≤ 1000 in our test bed.
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highlighting the importance of the size of class 2. The second index is more subtle.

When the rate at which cost for a new backorder is accrued is much higher than the

rate at which existing backorders accumulate cost, i.e. λ2p2
b � 1, big differences between

the CL and OPT policies arise. This occurs because the OPT policy has the opportunity to

differentiate it’s decision regarding clearing backorders state-by-state. When 100 < λ2p2
b ≤

1000, deciding to backorder any new incoming class 2 demand would lead to accruing cost

at a much higher rate than the current backorder cost rate. Therefore, there are states with

positive backorders in which the OPT policy serves new demand, but if a replenishment

order comes in the item is added to inventory, to protect against future backorders. The

CL policy does not allow for this flexibility as there is only a single critical level.

λ1
λ2

= 0.1 λ1
λ2

= 0.5 λ1
λ2

= 1 λ1
λ2

= 2 λ1
λ2

= 10
λ2p2
b ≤ 1 0.14 0.39 0.25 0.19 0.14

1 < λ2p2
b ≤ 10 5.55 3.89 3.72 2.18 1.09

10 < λ2p2
b ≤ 100 12.79 10.03 8.80 4.77 1.72

100 < λ2p2
b ≤ 1000 18.27 14.45 11.42 6.71

Table 3.3: Mean % difference. Under what parameter settings does the OPT policy out-
perform the CL policy?

We performed the same comparison between CL, FCFS and SI. From this we see that

CL improves most upon FCFS and SI when demand is balanced between class 1 and class 2,

but class 2 is still sizeable (table omitted for brevity). In this case the classes are competing

for the same inventory and CL can thus actually make a difference.

Finally, it is interesting to see how much CL improves on FCFS and SI for each problem

instance: How much of the distance from the optimal cost is closed by using a CL policy

instead of FCFS or SI is shown in Figures 3.4(a) and 3.4(b). We see that a CL policy is

always able to close some of the gap of SI (due to pooling) and is able to close more of

the gap whenever the gap is large. Thus introducing something as simple as a single static

critical level into an inventory management system may yield large benefits.
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Figure 3.4: Comparison of CL, FCFS, SI.

3.5.2 Sensitivity to lead time variability

For analytical tractability we assumed an exponential lead time throughout this chapter,

which is in line with many of the other papers in this stream of literature (see Section 3.2).

However, it might be the case that the true lead time is more or less variable than exponen-

tial. In this subsection we will analyze the robustness of both the CL and the OPT policy

to changes in variability in the lead time distribution. Specifically, we will examine how a

policy that is found under one lead time assumption (e.g. exponential), performs if the lead

times follow a different distribution (e.g. degenerate hyperexponential, H∗). As a measure

of variation we use the squared coefficient of variation
(
C2 = var

mean2

)
. Here we return to

analyzing the full set of 1500 instances.

Thus, throughout this section we will at times use different assumptions to find the

parameters for a policy than for actually evaluating it (e.g. we will find a policy assuming

exponential lead times but evaluate its performance assuming actual lead times are H∗).

As a general rule we will use superscripts to indicate the policy and under which lead time

assumptions a policy was identified, and parentheses to indicate under which conditions it
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was evaluated. For example

C∗CL,EXP (H∗) (3.16)

would represent the cost of the optimal CL policy identified under the exponential lead time

assumption and evaluated under H∗ distributed lead times. When both sets of assumptions

are the same, the (·) term is omitted, as is the policy index when this can be done without

confusion.

In the subsections to come we will make the following comparisons. In Section 3.5.2 we

analytically explore the sensitivity of the CL policy to higher variability lead times, using

the H∗ distribution. In Sections 3.5.2-3.5.2, we use simulation to extend our comparison

to more general variabilities, using a Weibull distribution. In Section 3.5.2 we look at the

sensitivity of the optimal CL policy; in Section 3.5.2 we compare the sensitivity of both the

CL and the OPT policy.

Sensitivity of CL policy to higher variability lead times

The procedures introduced in Sections 3.3 and 3.4 only require slight modifications to

accommodate a degenerate hyperexponential distribution (H∗ distribution), which allows

for larger, or equal, variability than exponential6. (The modifications are outlined in

Appendix A.4.) We first compare the parameters of the optimal CL policy for C2 ∈

{1.1, 1.5, 2, 5, 10} with those of the optimal CL policy under an exponential lead time

(C2 = 1). To do so, let S∗,H
∗

and c∗,H
∗

be the optimal CL parameters found assuming H∗

lead times with C2 ∈ {1.1, 1.5, 2, 5, 10}.

In Figure 3.5(a) we plot the % of instances for which S∗,EXP = S∗,H
2
, c∗,EXP = c∗,H

2
,

or both, for varying values of C2. With only a slight increase in variability (C2 = 1.1)

we see that in almost 4% of the instances the optimal c changes and in 5% the optimal S

value changes. However, as C2 increases from 5 to 10, the effect is much less pronounced.

Numerically, we find that, the optimal values of S and c may increase or decrease, but
6Note that the H∗ distribution with C2 = 1 is the exponential distribution.
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Figure 3.5: Sensitivity to lead time variability, all instances.

decreases become more numerous as variability grows. From Figure 3.5(a) it is clear that

over the range of C2 values tested the optimal S value is more sensitive to an increase in

variability than the optimal c value.

Even though the optimal S and c change, we expect that the cost function is flat around

the optimal. To explore this, we analyze how much the cost increases when implementing the

optimal CL solution assuming exponential lead times in a more variable, H∗, environment

(in which the solution may not remain optimal). Specifically (using notation along the lines

of (3.16)), for the CL policy, we calculate

C∗,EXP (H∗)− C∗,H∗

C∗,H∗
· 100, (3.17)

for varying C2, i.e. C2 ∈ {1.1, 1.5, 2, 5, 10}. Figure 3.5(b) displays a boxplot7 of (3.17)

across our 1500 instances. Clearly, on average, the effect of variability is small. Even when

the lead time distribution is 10 times as variable, the mean cost increase is only 5.97%; if 5

times as variable it is 2.69%. For C2 ≤ 2 the maximum difference is 14.30% and the mean

difference is less than 0.37%. This indicates that, even when an exponential distribution is
7See e.g. Montgomery and Runger (1999). The mean is indicated by

⊕
.
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wrongly assumed for the lead time, and the true lead time is more variable, the expected

increase in cost for a CL policy is small, even up to relatively high variabilities. This suggests

that the performance of the CL policy is robust with respect to lead time variability.

Sensitivity of CL policy to higher and lower variability lead times, using simu-

lation

To gain insight into the sensitivity of the CL policy with respect to a wider range of lead

time distributions, simulation is used in this subsection. Our procedure is as follows. Let

P be the set of CL policies with cost within 10% of the optimal CL cost under exponential

lead times:

(S, c) ∈ P ⇔ C(S, c)EXP ≤ 1.1C∗,EXP .

Using simulation, we evaluate the performance of all (S, c) ∈ P under lead times that

follow a Weibull distribution, i.e. for all policies in P we calculate CEXP (Weibull) with

C2 ∈ { 1
32 ,

1
8 ,

1
2 , 1, 2, 5, 10}8. We use 30 simulation runs with 20, 000 customer arrivals each.

On average, |P| = 4.59, with at least 1, the optimal, and at most 27 policies, across our

1500 instances.

At this point we need slightly more specific notation, again defined as outlined in (3.16).

Let C(S,c)∈P,EXP (Weibull), and σ(S,c)∈P,EXP (Weibull) be the mean and standard deviation

of cost for the 30 simulation runs of a specific instance. Across all 1500 instances and seven

C2 values, the mean coefficient of variation of the resulting cost:

1
|(S, c) ∈ P|

∑
∀(S,c)∈P

σ(S,c)∈P,EXP (Weibull)
C(S,c)∈P,EXP (Weibull)

equals 0.00942 (maximum observation 0.07387, minimum observation: 4.29 · 10−6). We use
8Comparisons have also been made with Weibull (C2 ∈ { 1

16
, 1

4
, 1.1, 1.5}), deterministic (C2 = 0), Erlang-k

(C2 ∈ { 1
32
, 1

16
, 1

8
, 1

4
, 1

2
}) degenerate hyperexponential (C2 ∈ {1, 1.1, 1.5, 2, 5, 10}), hyperexponential distribu-

tion (H2, C2 ∈ {1, 1.1, 1.5, 2, 5, 10}), and lognormal distribution (C2 ∈ { 1
32
, 1

16
, 1

8
, 1

4
, 1

2
, 1, 1.1, 1.5, 2, 5, 10})

and results were very similar. For brevity we choose not to include these in this chapter.
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these values to construct ±3σ confidence intervals for the cost of all policies. Of partic-

ular importance are the upper and lower bound for the confidence intervals for each C2:

UB(S, c) = C(S,c),EXP (Weibull)+3σ(S,c),EXP (Weibull), LB(S, c) = C(S,c),EXP (Weibull)−

3σ(S,c),EXP (Weibull), which lead to the following classifications for policies (S, c):

• Alternative lower cost: If UB((S, c) ∈ P) < LB((S∗, c∗),

• Alternative higher cost: If UB((S∗, c∗)) < LB((S, c) ∈ P),

• Insignificantly different: All other cases, i.e. the confidence intervals overlap.

Using these classifications, Figure 3.6 summarizes the % difference between the mean

costs:
C(S,c)∈P,EXP (Weibull)− C∗,EXP (Weibull)

C∗,EXP (Weibull)
· 100,

for our range of C2 values. This figure reports on all policies in P that are different from

the optimal CL policy as determined under exponential lead times. At least 28% of the

alternative policies are significantly more expensive (Figure 3.6(c), C2 = 10), whereas at

most 0.22% leads to a decrease in cost (Figure 3.6(a), C2 = 10). An immediate observation

is that we find no significantly better policies when the lead time distribution is less variable

than exponential, or slightly more variable (i.e. C2 ≤ 2), and even when C2 > 2 very few

are significantly better (a maximum of 12 policies when C2 = 10, in Figure 3.6(a)). Overall,

as C2 increases the alternative policies get closer to the cost of the policy that was optimal

under the assumption of exponential lead times. For example, for C2 = 2 in 2011 of the

5384 policies (37.35%) the alternative policies have significantly higher cost, compared to

only 1517 (28.24%) when C2 = 10.

In summary, we see that the optimal CL policy obtained under the assumption of

exponential lead times performs very well under a wide range of lead time distributions

(recall, the results for distribution families other than Weibull are very similar). Only when

the variability is very high we do find other policies that lead to lower cost (in this case

we could potentially solve the model with H∗ distribution for lead times). Furthermore,
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(a) Alternative lower cost (b) Insignificantly different (c) Alternative higher cost

Figure 3.6: % Cost difference for policies (S, c) ∈ P compared with the cost of the optimal
policy determined using the assumption of exponential lead times, both evaluated under
Weibull lead times.

given that policy evaluations take minutes using simulation versus a split second using our

analytical approach, we find no practical reason not to use the exact solution found under

exponential lead times.

Sensitivity of the optimal costs

Having established that the optimal CL policy parameters are largely insensitive to changes

in lead time variability, we now compare the robustness with respect to costs of the optimal

CL and OPT policies, using simulation. We compare the cost of only the optimal policies.

Specifically, using the notation as defined in (3.16), for both the CL and the OPT policies

we calculate
C∗,EXP (Weibull)− C∗,EXP

C∗,EXP
· 100

over 1500 instances under 7 different variabilities (C2 ∈ { 1
32 ,

1
8 ,

1
2 , 1, 2, 5, 10})9, using 30

simulation runs of 20, 000 customer arrivals each. Once again, results for other distributions

(i.e. deterministic, Erlang-k, H∗, H2, and Lognormal) are similar over the same range of

C2 values and are omitted.

In a similar fashion as in Section 3.5.2 we construct±3σ confidence intervals to determine

whether the % difference of costs is significantly different from 0. The results are summarized
9C2 ∈ { 1

16
, 1

4
, 1.1, 1.5} were also evaluated but omitted for brevity.
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(a) CL: Lower cost (b) CL: Insignificantly dif-
ferent

(c) CL: Higher cost

(d) Opt: Lower cost (e) Opt: Insignificantly dif-
ferent

(f) Opt: Higher cost

Figure 3.7: % Cost difference between the cost of the optimal CL and OPT policies, as
determined using the assumption of exponential lead times, evaluated under Weibull lead
times.

in Figure 3.7. There are several observations we can make.

First, we observe that the optimal cost of both the CL ad OPT policies is rather insensi-

tive to the variability of the lead time distribution. Even for C2 = 10, more than 72% (CL)

and 86% (OPT) of the instances have cost that are insignificantly different. Second, we see

that the cost of the OPT policy is less robust than the cost of the CL policy in the face of

changing lead time distributions. Whereas, for example, under the CL policy, 104 instances

have a significantly higher cost when lead times are Weibull distributed (Figure 3.7(c)), for

the OPT policy there are 211 instances (Figure 3.7(f)). Note that all of these occur under

lower variability lead times. Third, the spread in differences is also larger for the globally

optimal policy; compare the interquartile ranges and standard deviations in the two rows of

Figure 3.7. Finally, when lead time variability increases, the globally optimal policy is again
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more sensitive, but now to its benefit (Figures 3.7(a) and 3.7(d)): costs may be significantly

lower under C2 > 1 as compared to the exponential baseline.

In fact, for both the OPT and CL policies, the effect of variability is such that if the

variability increases, the cost tend to decrease. The intuition behind this is that for constant

mean, as variability increases, the median lead time decreases. Occasional long lead times

will decrease inventory and/or increase the number of backorders temporarily, but as long

as there are items on hand this will not affect the number of demands rejected. In contrast,

the increased fraction of shorter lead times increases availability and hence service. This

has also been observed in the exact results for the H∗ distribution. Note that having ample,

or at least multiple, servers is crucial for the existence of this effect.

Finally, we analyze how the cost of the OPT policy and the cost of the optimal CL

policy determined under the assumption of exponential lead times change relative to each

other as variability changes. We simulate 30 runs of 20, 000 arrivals each, with Weibull lead

times under varying C2 (C2 ∈ { 1
32 ,

1
8 ,

1
2 , 1, 2, 5, 10}). We calculate:

C∗CL,EXP (Weibull)− C∗OPT,EXP (Weibull)
C∗OPT,EXP (Weibull)

, (3.18)

i.e. the % difference between the optimal policies in each class once subjected to other lead

time distributions. Recall from Section 3.5.1 that for C2 = 1 the average % difference is

2.09% (for a subset of 1232 instances where the policies are nontrivially different, for all

1500 this is 2.04%).

A paired t-test (with a significance level of 95%) is used to determine how the difference

between the CL and OPT policies changed, relative to their difference under exponential

lead times. Figure 3.8 displays histograms for (3.18) across our 1500 instances, and seven

C2 values. The three panels distinguish whether the difference decreased (3.8(a)), increased

(3.8(c)), or did not significantly change (3.8(b)). The most interesting observation can

be made in Figure 3.8(a). This subfigure contains those instances in which the difference
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(a) Difference decreased
2572 instances

(b) Insignificantly different
11,450 instances

(c) Difference increased
2478 instances

Figure 3.8: Histogram of % cost difference between the cost of the optimal CL policy
as determined under exponential lead times compared to the globally optimal policy as
determined under exponential lead times, both evaluated under Weibull lead times.

decreased significantly; there are 207 instances in which the difference is negative. These

are cases in which, under Weibull lead times, implementing the optimal CL policy leads to

lower cost than implementing the OPT policy. Thus, not only is the CL policy more robust

to changes in the lead time variability, it may also outperform the globally optimal policy

when lead time variability is mis-specified.

Conclusions with respect to sensitivity

From the above discussion we conclude that the optimal CL policy found under the as-

sumption of exponential lead times is rather robust to changes in the variability of the lead

times: When the distribution changes to H∗ more than 70% of the optimal CL policies

remain unchanged, even when C2 increases to 10. In addition, for more general lead times,

when the lead time distribution has C2 ≤ 2 we find, via simulation, no CL alternative

policies with significantly lower cost in the neighborhood of the optimal CL policy found

under exponential lead times. But, when the lead time variability increases, i.e. for C2 > 2,

there are a few instances where the CL policy that is optimal under exponential lead times

is outperformed by an alternative CL policy.

Even though the cost of the OPT as well as the CL policy appear to be largely insensitive

to lead time variability, we find that the OPT policy (found assuming exponential lead times)
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is more insensitive to changes in the lead time distribution. For example, for insignificantly

different policies, when C2 = 1
32 the standard deviation of the cost of the OPT policy is

0.71 versus 0.37 for the CL policy. For C2 = 10 these values are 1.19 for OPT versus 0.88

for CL. In fact, when lead times are not exponential, the OPT policy is even sometimes

outperformed by the optimal CL policy found assuming exponential lead times. In the next

subsection we explore the structure of the OPT policy to determine why it tends to be less

robust than the optimal CL policy.

3.5.3 Structure of the optimal policy

In this section we provide some insight into the structure of the OPT policy by examining a

representative instance in detail. Our model closely relates to the model of Van Wijk et al.

(2009) in which the optimal lateral transshipment policy is derived. However, key to their

analysis is the concept of “proportional allocation” of incoming replenishment orders. In

our setting this would require incoming replenishment orders to be allocated to inventory

or clearing backorders according to probabilities proportional to the number of backorders

and inversely proportional to the inventory level. Under this proportional allocation the

structure of the optimal policy can be proven. Note that the decision how to allocate

incoming replenishments cannot be optimized in this setting, as that would violate the

structural properties of the value function. Hence we resort to numerical analysis of the

optimal policy as that still brings to light how improvements over the CL policy can be

obtained. The instance we discuss here has the following parameters, λ1 = 5, λ2 = 5,

p1 = 1, p2 = 0.5, and b = 0.01. The parameters of the optimal CL policy are S∗ = 11, and

c∗ = 1. Figure 3.9 displays the OPT policy for this instance.

First, we observe that the maximum level of inventory in the OPT policy is 8, as

compared to an order up to level of 11 in the CL policy. Second, the OPT structure does

not show a single critical level, it varies depending on the pipeline stock. If we fix an

inventory level, say I = 1 (on the horizontal axes), we see that for low levels of backorders
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(a) Backorder or serve an incoming class 2 de-
mand?

(b) Clear a backorder or add to inventory?

Figure 3.9: Example of globally optimal actions.

(B ≤ 2) arriving class 2 demand gets backordered, even though there is stock on hand

(Figure 3.9(a)). Furthermore, if a replenishment arrives, no backorders would get cleared

(B ≤ 14, Figure 3.9(b)). As the number of backorders increases, for fixed I (equivalently as

the pipeline stock increases), we observe a threshold above which a class 2 demand would

get served (B ≥ 3, Figure 3.9(a)) or a backorder would get cleared (for some B > 14, not

displayed for clarity, Figure 3.9(b)). This is because for these high levels of pipeline stock,

the policy “expects” another replenishment soon. Also, for certain states, for example at

I = 2 and B = 2, we see that optimally a new class 2 demand is served while a backorder

would not be cleared. This recalls the observation made in Section 3.5.1: The rate at

which cost for new backorders accrues is p2λ2 = 2.5 while a current backorder (if not

cleared) accrues costs at rate 0.01. Thus, at low inventory levels, the OPT policy will serve

new demands while also stockpiling inventory, leaving extant backorders unsatisfied. This

stockpiling offers protection against losing a class 1 demand or needing to backorder a future

class 2 demand. The CL policy does not have this flexibility to distinguish between these

two actions. Note that one undesirable feature of the optimal policy is that, through this

flexibility, it may happen that class 2 customers may end up being served out of order.

Thus, the OPT policy saves on inventory by changing the optimal decisions once inven-
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tory becomes low while at the same time keeping the service levels high. Recall however

that the OPT policy is less robust with respect to lead time variability. This is because

its power relies on conditioning on expected incoming replenishments, which change as C2

changes.

3.5.4 Computational efficiency

The bounds developed in Section 3.4 allow us to limit our enumeration space. To evaluate

the quality of the two bounds we use different measures, as there does not exist a maximum

enumeration value for S, as there exists for c (given S).
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Figure 3.10: Effect of bounds on enumeration.

First the performance of the bound from Corollary 1 is evaluated in Figure 3.10(a). This

figure plots the largest evaluated S value versus the optimal S value over all 1500 instances.

On average, only 0.933 additional S values were evaluated (standard deviation: 0.926).

Thus, the bound on the enumeration over S values is rather effective. The performance of

the bound on enumeration over c from Lemma 3 is evaluated in Figure 3.10(b). Here we

plot the % of cpu time saved against the cpu time needed when enumerating up to S to

find the optimal c. Average savings are 44.8% (standard deviation: 21.1%), which is also

a significant gain. From these results we conclude that our bounding procedures are very

effective in truncating the enumeration space.
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3.6. Extensions

There are several opportunities for extensions of this work. In this section we will present

some, and where possible outline how these fit within our model.

Throughout this chapter we assumed an infinite number of replenishment servers and

mentioned early on that the case with a single or several parallel servers is a special case.

This special case is easier to solve: The generator of the Makov process for finitely many

servers has repeating submatrices and could be evaluated either by our procedure, or by

straightforward application of Matrix Analytic Methods. Since our monotonicity results

require uniformization, these would become easier if there is a maximum replenishment

speed. The bounds developed to avoid complete enumeration should be slightly modified

but would remain conceptually similar.

A second extension is the incorporation of service level constraints, e.g. a minimum frac-

tion of demand that should be satisfied immediately from stock. Although our evaluation

procedure could still be used, the optimization procedure would have to be modified, as

we can no longer use the bounds on cost to truncate our search space but would need to

truncate based on service levels. This should be possible using our monotonicity results.

3.6.1 Multiple Customer Classes

Increasing the number of customer classes would also be an interesting extension. However,

when the number of classes that gets backordered when not immediately satisfied increases

the state space increases geometrically (see e.g. Deshpande et al. 2003b).

If instead the number of classes is increased and only the lowest priority class gets

backordered, the model can be analyzed after some modifications. Let customer classes

be denoted by j = 1, . . . , J ; the priority of the classes decreases in j. Class Js demand is

backordered if not immediately satisfied (i.e. it has the lowest priority and the inventory

level is at or below cJ). Demand for all classes j < J is lost as soon as inventory is at or
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below cj , where c1 , 0. Demands for each class arrive according to a Poisson process with

rate λjand the total demand rate is denoted by λ =
∑j=J

j=1 λj . The transition scheme for

this policy is displayed in Figure 3.11(a).

For the evaluation of our new Markov process we can use the procedure as outlined in

Section 3.3. Lemma 1 straightforwardly holds, and in the proof of Lemma 2 several negative

terms are added to the left hand side of (A.8), but these can then also be omitted when

moving to an inequality in (A.9).

When searching for the optimal policy (S, c1, . . . , cJ), we can still use the lower bounds

from Lemma 3 and Corollary 1 to bound the search space for S and cJ . However, for

the critical levels for the lost sales classes other bounds would need to be developed or

exhaustive search can be used.
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Figure 3.11: Transition diagram for extensions to our policy.

3.6.2 Differentiation between New Demands and Replenishments

Guided by the structure of the optimal policy as displayed in Figure 3.9 we explore a related

extension. A key observation is that incoming class 2 demands are served at inventory levels

at which backordered class 2 demands are not cleared. To mimic this feature we explore

a policy with dual critical levels: If the inventory level is at or below cn, incoming class

2 demands are backordered; Incoming replenishment orders are used to clear backorders
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only if the inventory level equals cb (if inventory is below cb priority is given to inventory

replenishment, and if inventory is above cb there are no backorders). Note that, given our

cost structure, it would never be beneficial to have cn > cb as this would “replace” a current

backorder with a new one, while incurring the one time penalty cost p2. The transition

diagram is illustrated in Figure 3.11(b).

This modification “prioritizes” new demand over old ones and its transition scheme is

displayed in Figure 3.11(b). The structure needed in Lemma 1 is preserved, with slight

modifications to the transition matrices. Also, the concept of diagonal layers as used in the

proof of Lemma 2 can be applied in this case, allowing the calculation of the performance

measures with arbitrary precision.

For the optimization routine to work Theorem 1 should be specialized for the different

critical levels. The bounds to limit the search for the optimal base stock level will hold.

For each base stock level one would have to search over a space of size (S + 2)(S + 1)/2.

Although we expect that bounds on this search space can be developed, this is beyond the

scope of this chapter.

Note that, under this modification, class 2 demand may be served out of order. Although

this would be feasible in an online setting, in many other business settings this would lead

to significant customer dissatisfaction.

3.7. Conclusions

In this chapter we considered a single location, single item, continuous review inventory

model with two types of customers. A critical level (CL) was used to differentiate among

these customers. Modeling this problem as a Markov process allowed us to exploit special

structure to develop an exact and efficient procedure for the evaluation of the performance

of a given policy. Leveraging our evaluation procedure, an efficient optimization procedure

was developed. This procedure exploits the property - which we proved - that some key
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performance measures are monotone in the critical level. As far as we know this is the first

study to consider a system in which different customer classes behave differently when not

immediately served, save for one paper that considers the case with a single replenishment

server. Such heterogeneous customer behavior is important; it can be observed in practice.

We compared the performance of the CL policy with the globally optimal (state depen-

dent) policy and two, more näıve, alternatives. On average the CL policy performs near

optimal (2.09%) and is able to close a large part of the optimality gap from the more näıve

policies, while still being easy to implement. When class 2 (the lower priority, backordered

class) is relatively large, and/or has a high penalty cost rate as compared to the cost of

holding extant backorders, the CL policy is further away from the optimal policy. However,

large benefits over the alternatives are still achieved. Furthermore, we show that our CL

policy is largely insensitive to the amount of variability in the lead times: (i) The optimal

CL policy found assuming exponential lead times remains optimal in many cases as C2

of the lead time varies between 1
32 and 10. (ii) As the lead time variability changes, the

optimal CL policy found under exponential lead times may even outperform the globally

optimal policy found under exponential lead times, and in general is more robust to changes

in lead time variability than the globally optimal policy.

In summary, using a critical level policy, though sub-optimal, achieves good performance

when compared to alternative policies and is furthermore largely insensitive to changes in

lead time variability. Our evaluation and optimization procedures allow for efficiently finding

the optimal parameters of a CL policy (much faster than solving an MDP), thus claiming

much of the improvement of the more complex optimal state dependent policy at a fraction

of the operational cost. This should prove crucial as the problem size grows, considering

more customer classes, more items, or more locations.



Chapter 4

Ambulance Traffic Coordination1

4.1. Introduction

Over the last decade the number of Emergency Departments (EDs) in the US has decreased

while the number of patients seeking care at EDs has increased: Pitts et al. (2008) report

that, in the United States, the annual number of ED visits increased by 32% to 119.2 million

while the number of EDs has decreased by 4.63% to 3,833 between 1996 and 2006. Another

troubling ED trend is that at the same time the number of visits is increasing and resources

are decreasing, there has been an increase in acuity of ED patients, (i.e. the urgency to be

seen by a physician, which ranges from immediate –within 15 minutes– to nonurgent –up to

24 hours), which affects the distribution of patient arrivals to the ED. Lambe et al. (2002)

report an increase of 59% in the number of critical patients and an increase of 36% in the

number of urgent patients in California between 1990 and 1999. Patients of higher acuity

have longer care time (Pitts et al. 2008), laying claim on the scarce resources for longer

amounts of time. Both these trends contribute to crowding at the EDs.

The terms crowding and overcrowding are generally used interchangeably. We use the

term crowding as defined by the American College of Emergency Physicians (2006): “Crowd-
1This chapter is joint work with Masha Shunko, Soo-Haeng Cho, and Alan Scheller-Wolf.
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ing occurs when the identified need for emergency services exceeds available resources for

patient care in the emergency department, hospital, or both.” The fact that decreasing

supply and increased demand as described earlier leads to actual crowded situations is doc-

umented throughout the literature; for example Andrulis et al. (1991) and Richards et al.

(2000) report that 10 to 30 percent of US hospitals report daily crowding. Schneider et al.

(2003) conducted a survey to measure the extent of crowding and found that the number

of ED patients per treatment space in the U.S. on Monday, March 12, 2001 at 7PM was 1.1

on average and 52% of EDs reported having more than one patient per treatment space.

Crowding can have dramatic consequences: Crowded EDs lead to increased patient mortal-

ity (Cameron 2006) and a decreased level of care (Pines and Hollander 2008). In addition,

Blomkalns and Gibler (2004) report that emergency physicians and nurses often work in

an environment in which patients are on stretchers in hallways, decreasing satisfaction for

both health care providers and patients.

In an attempt to combat crowding, incoming ambulances are often redirected to nearby

EDs, a practice known as ambulance diversion. Approximately 500,000 ambulances are

diverted annually in the United States (Burt et al. 2006). Although ambulance diversion

can reduce waiting room crowding, it can also contribute to prehospital deaths, and may

also increase the total out-of-service time (Carter and Grierson 2007), i.e. the total time

it takes an ambulance from the alarm (e.g. 911 call) to the moment it is back in service,

ready to respond to another call. However, the literature suggests that the significance of

this effect depends on local conditions: Neely et al. (1994) found that for diverted patients,

transportation times were 5.0 to 11.6 minutes longer and transportation distances were 1.3

to 4.6 miles further than for nondiverted patients in an urban area with a population of

600,000. In Toronto, increased transportation times were observed for patients with chest

pain in crowded situations (Schull et al. 2002a). However, Carter and Grierson (2007) found

no significant effect on any of the factors constituting total out-of-service times in Winnipeg

(MB, Canada).
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In addition to potentially increasing transportation times due to diversion, crowded EDs

may reduce the availability of Emergency Medical Services (EMS) in a community in other

ways, as EMS crews may find themselves delayed in EDs for extended periods of time,

unable to transfer their patient from the ambulance to the care of the ED (Eckstein et al.

2005). In Los Angeles (CA) EMS crews find themselves waiting for an ED stretcher in 13%

of their transports to EDs (10% of these situations exceed 1 hour) as reported by Eckstein

and Chan (2004). Thus, a diverted ambulance might be subject to a longer transportation

time but a shorter turnaround time at the hospital. This illustrates that diversion may be

particularly beneficial in areas where the negative effect of diversion (longer travel time) is

minimized. This could be either due to several EDs being located in a small geographic

area, or there being abundant ambulance capacity. Some hospitals have a policy to never

divert (e.g. UPMC in Pittsburgh, Guyette 2009). Although this can be perceived as a

service to the community, there may be cases in which diversion is in the best interest of

patients (Williams 2006, Cheung et al. 2006).

In the US EDs do not just care for critically ill patients but also function as a safety net

of the health care system (Hoot and Aronsky 2008): By the Emergency Medical Treatment

and Active Labor Act (EMTALA), an unfunded congressional mandate, EDs are required

to care for patients with no other source of primary care (Moskop et al. 2009). This can

also contribute to crowding. However, problems with crowded EDs have also been reported

in Spain, Australia, Canada, and the United Kingdom (Bradley 2005), countries that have

some form of public/universal health coverage and hence that would not expect to see

patients at their EDs for low acuity medical treatment. Hence, crowding and diversion can

be seen as problems occurring internationally, and not solely due to idiosyncrasies of the

US healthcare system.

Thus, it is not surprising that researchers have considered this problem. At a high level,

Asplin et al. (2003) develop a conceptual model that identifies three areas from which the

problem of crowded EDs can be approached: input, i.e. managing the demand for emergency
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services; throughput, i.e. measures within the ED to provide expedient service; and output,

i.e. ensuring that patients leave the ED as soon as possible. Shah et al. (2006) identify three

solution themes: increased resources, demand management, and operations research.

In this chapter we focus on potential solutions on the input side of the problem from

a demand management perspective. Specifically, we seek to inform decisions regarding

ambulance destination control. We incorporate specific characteristics of the situation in

Pittsburgh (PA) and focus specifically on a 2-mile circle in the center of Pittsburgh that

hosts 7 EDs operated by two hospital systems (see Figure 4.1) that service patients from

all over Allegheny county (and beyond). Of these 7 EDs, 2 are operated by the West Penn

Allegheny Health System (WPAHS), and 5 are operated by the University of Pittsburgh

Medical Center (UPMC). This specific setting significantly reduces one of the negative

effects of diversion: Diversion does not require significantly longer distances as all EDs are

located in a small geographic area. In addition, the City of Pittsburgh EMS is responsible

for prehospital emergency care throughout the City of Pittsburgh. Having a centrally

coordinated EMS service could allow for coordination of ambulance traffic, similar to the

instances described by Barthell et al. (2003) in Milwaukee (WI) and Lagoe et al. (2003) in

Syracuse (NY). But our setting does feature other complicating factors: Differences in ED

size, hospital capacity and the fact that the hospital systems compete for market share.

2 mile

Figure 4.1: Concentration of Pittsburgh hospitals
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In this chapter we explore two methodologies to evaluate methods of dealing with

crowded EDs. We first develop a queueing model to study decision-making strategies in

a setting with two hospitals that use ambulance diversion as a means to avoid or reduce

crowding at their EDs. This policy is similar to the critical level model introduced in Chap-

ter 3: Using a diversion level, a hospital attempts to redirect incoming ambulance traffic

to another hospital when a certain criterion is met (i.e. there are too many patients in the

ED waiting to be transferred to the Inpatient Department, ID). Unfortunately we run into

similar problems as outlined in Section 3.6.1, this Markov chain is multi-dimensional and

lacks sufficient structure to allow for obtaining a solution without truncation. However, we

are still able to illustrate some trade-offs numerically. In this model we maximize the profit

for individual hospitals using hypothetical parameter values.

To better capture many of the complexities that are present in the real world we then

develop a simulation model. In this simulation model we are able to incorporate some

features specific to the situation in Pittsburgh (PA). Specifically, seven EDs are located

near the center of the city, within a circle with a 2-mile radius, which allows for diversion

or coordination of ambulance traffic with minimal increases in transportation times. In the

simulation model we use real data from various sources, enabling us to explore different

coordination mechanisms that can be used to disseminate information about hospital (ED

and ID) status to EMS crews. This information can then be used to help decide to which

hospital to take a patient. In the simulation model we maximize either the quality of care

delivered or the revenues generated by hospitals.

We find that the commonly used coordination mechanism (ambulance diversion) per-

forms reasonably well. However, we suspect, and have supporting anecdotal evidence

(Hostler 2010), that when hospitals set diversion levels too high (from the perspective

of EMS crews) the EMS crew might use their own experience as a guideline in determin-

ing to which hospital they should go. The mechanism that we use to capture the EMS

crews’ use of experience (an Exponentially Weighted Moving Average, EWMA, of observed
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queue lengths) can perform significantly worse, depending on how quickly the EMS crews

update their beliefs. To counter this, we identify two coordination mechanisms that can

significantly increase the average level of care provided without being detrimental to hos-

pital revenues. One of these coordination mechanisms (Join the Shortest Queue, JSQ) is

grounded in queueing theory, and is known to perform well in a variety of settings. The

second coordination mechanism is grounded in the emergency medicine practice field and

aims to predict crowding in EDs based on basic information readily available within an ED

(Weiss et al. 2004). This uses measures of instantaneous utilization of the ED and ID, the

number of patients in the ED requiring ventilators and measures of patient throughput.

The concept of resource pooling, which is what ambulance coordination comes down to,

has been studied in different settings. In the spare-parts literature this concept is studied as

lateral transshipments (e.g. Wong et al. 2006) and it also appears in the call center literature

(e.g. Van Dijk and Van der Sluis 2004). A key differentiator of our paper is that resources are

shared between competing entities and that the we are primarily interested in the effect it

has on the level of care provided to a homogeneous customer group, i.e. patients/customers

do not in principle belong to a specific hospital. In addition we study the effect of different

pooling strategies which (i) are used in practice, (ii) appeal to practitioners, or (iii) are

known to perform well from research done in related fields. We show that it is important

how resources are shared by demonstrating that some intuitively appealing coordination

mechanisms clearly perform worse than others.

The remainder of this chapter will proceed as follows. In Section 4.2 we will review

the literature related to ED crowding. Section 4.3 will introduce a queueing model that

can be used to optimize diversion decisions for a profit-maximizing hospital. Section 4.4

introduces a simulation model that captures significantly more real life features than the

queueing model, specifically detailing the situation in Pittsburgh. Using this simulation

model we analyze several coordination mechanisms for ambulance traffic. The results of

these two models will be discussed in Section 4.5, after which we conclude in Section 4.6.
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4.2. Literature

The issue of ED crowding and ambulance diversion first received national attention with

sporadic reports of crowding in the late 1980s (Olshaker and Rathlev 2006). Over the

years, a multitude of causes and potential solutions have been analyzed. Here we give a

brief overview of the existing research in the field.

Early analysis by the General Accounting Office (GAO 1993) concluded that crowding

was concentrated at urban safety net hospitals and that one of the main causes was ED visits

for non-urgent conditions. Over the last 20 years a multitude of additional explanations

for crowded EDs have been proposed (Krochmal and Riley 1994, Derlet and Richards 2000,

Schull et al. 2002b, Schafermeyer and Asplin 2003, Schull et al. 2003, Reid 2005, Olshaker

and Rathlev 2006, Patel et al. 2006, Allon et al. 2009, Moskop et al. 2009, Olshaker 2009).

The main hypotheses are: (i) Caring for admitted patients in the ED (boarding); (ii)

Increasing acuity; (iii) Increasing demands because of the uninsured; (iv) Inadequate space

in EDs (downsizing of hospital capacity); (v) Nursing shortages; (vi) Delays in arrival

of specialists; (vii) Aging population; (viii) Limited availability of off-hour primary care

physicians; (ix) And more technology for which one gets referred to the ED. However, more

recently the inability to transfer ED patients to inpatient beds (the first of the themes listed

above) has been identified as the most likely root cause of ED crowding (Schull et al. 2003,

Olshaker and Rathlev 2006, Moskop et al. 2009). If ED patients cannot be transferred to

inpatient beds, they stay in the ED, and are classified as boarding patients. According to

Schafermeyer and Asplin (2003) two themes have emerged:

1. “Emergency department crowding is not a problem that can be fixed in the ED itself;

rather, it is the result of a complex series of policy and market forces that have created

a mismatch between the supply of and demand for emergency services”

2. “Despite the complexity of the problem, it is too serious to ignore and unlikely to go

away without thoughtful interventions to alleviate the problem.”
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Several solution approaches have been proposed in the literature. Asplin et al. (2003)

and Shah et al. (2006) introduce complementary frameworks to classify solutions. Asplin

et al. (2003) introduce a conceptual model that distinguishes between the focus on input,

throughput, or output of the ED system. Conversely, Shah et al. (2006) classify solution

themes by increased resources, demand management, or operations research. We focus our

literature review on those papers that, like us, focus on the intersection of input and demand

management.

Barthell et al. (2003) and Lagoe et al. (2003) report on the implementation of an Internet

tool in Milwaukee (WI) and Syracuse (NY) respectively, that disseminates information

about hospital and EMS statuses to all entities in the local health care system on a daily

basis. In case there are significant changes, status updates can be provided more regularly.

Both implementations report significant decreases in the number of diversion hours. Vilke

et al. (2004a) discuss an experiment in which, in a two hospital system, one hospital is

allocated additional resources to avoid diversion completely for a week. They find that the

reduction of diversion hours at one hospital reduces the number of required diversion hours

at the other hospital to zero as well. This indicates that there is a strong interdependence

effect. Vilke et al. (2004b) and Patel et al. (2006) describe formal coordination mechanisms

and diversion guidelines that have helped to significantly reduce ambulance diversion in

San Diego (CA) and Sacramento (CA). Shah et al. (2006) describe a trial, in Rochester

(NY), in which EMS crews would contact an EMS destination-control physician for patients

requesting transport to either of the two hospitals in the study. The physician would then

direct the ambulance based on patient and system characteristics. Reductions of diversion

hours at the two hospitals, 41% at a university hospital and 61% at a community hospital,

were reported.

It appears that the most tightly integrated and coordinated mechanisms for patient

routing have been developed outside the US. Sprivulis and Gerrard (2005) and Larson

(2008) describe coordination efforts in Western Australia and Edmonton (AB, Canada)
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respectively. Both studies report on the use of a real-time Internet-accessible information

system that provides information on ED status (occupied spaces, emergency inpatients,

waiting room patients, etc.) that helps EMS crews make more informed decisions. Both

these studies report significant decreases in diversion hours and a more balanced workload

between different hospitals. The fact that these studies have been carried out outside the

US could potentially be explained by the structure of the different countries’ respective

health care systems. Both Australia and Canada have systems with universal health care

coverage, which ensures that the patients can be treated everywhere at the same cost to the

patient. This also ensures that EDs will see fewer nonurgent visits; moreover the universal

coverage also removes some of the tension that exists between privately-operated hospitals,

which complicates coordination in the US system. In this chapter we generate insights on

the potential benefits of coordination between privately operated US hospitals.

For a very extensive review of crowding in EDs and the surrounding policy domain we

refer the reader to an excellent review by Bradley (2005).

4.3. Queueing Model

Ambulance diversion is a common approach to reducing crowding in EDs; in particular,

hospitals start diverting ambulances when the number of boarding patients exceeds a pre-

specified threshold (Allon et al. 2009), we call this threshold a diversion level. In this section

we introduce a queueing model that allows us to generate insights into how diversion levels

should be set. We make several simplifying assumptions to keep our model tractable. These

assumptions will be relaxed in Section 4.4, where we more realistically model the situation

as it exists in Pittsburgh. The results obtained from both models will be presented in

Section 4.5. A schematic overview of the patients and how they flow through a hospital can

be found in Figure 4.2.
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Figure 4.2: Schematic flow of patients through a hospital (ED & ID).

In this section we consider 2 hospitals, indexed by j (a table of notation is provided

in Appendix B.1). At each hospital patients arrive to the ED through 2 channels: (i)

Ambulance arrivals, and (ii) Walk-in arrivals. Upon arrival, each patient is triaged and

classified as “high” acuity or “low” acuity. Once triaged, a patient’s progress through the

ED becomes independent of his mode of arrival and is governed by his acuity. In addition,

we consider scheduled arrivals into the Inpatient Department (ID) of the hospital.

Each hospital has a limited number of beds, which we consider as the primary capacity

constraint. We consider three types of beds: (i) Regular ED beds, BjED, (ii) Surge ED

bed capacity, BjSED, which is additional, and more expensive, capacity that can be used

during periods of peak demand, and (iii) Beds in the ID, BjI , to be used for patients that

have transferred from the ED to the ID as well as for scheduled arrivals to the ID.

The state space of hospital j is described by the number of high acuity patients at the

ED (njH), the number of low acuity patients at the ED (njL), and the number of inpatients

(njI), either in the ID or boarding in the ED. We seek to determine the “best” diversion

level for each of the hospitals, and analyze how these policies are interdependent between

the two hospitals. We now describe the patient arrival process, the treatment/departure

process and the cost components that we consider in our model, before constructing and

solving the Markov chain.
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4.3.1 Arrivals

Hospital j observes ambulance arrivals at rate λjA and walk-in arrivals at rate λjW . Upon

arrival these patients are triaged, leading to effective arrival rates of λjAH := λjAPjAH , and

λjAL := λjWPjWH , for high and low acuity ambulance patients at hospital j; and λjWH ,

λjWL for high and low acuity walk-in patients at hospital j. Here PjAH (PjWH) are the

probabilities that an ambulance (walk-in) patient is triaged as high acuity at hospital j.

Scheduled patients arrive with rate λjI . All arrivals are assumed to have exponentially

distributed interarrival times and are independent of other arrivals. After probabilistic

splitting (at the point of assigning an acuity) the interarrival times are still exponentially

distributed. We then merge the arrival streams by acuity to obtain two arrival streams for

high and low acuity patients with rates λjH, and λjL. When a hospital is on diversion, it

attempts to redirect ambulance arrivals to the other hospital; walk-in arrivals are unaffected.

In the situation that we consider here there are three options for the system: (i) Neither of

the hospitals is on diversion: Each sees their own arrivals; (ii) One hospital is on diversion:

The hospital on diversion observes a smaller arrival stream as ambulances get rerouted to

the other hospital (specifically, a fraction pjdiv of ambulance traffic that would prefer to

go to the hospital on diversion will go to the other hospital); (iii) Both hospitals are on

diversion: Each sees its own arrivals. Based on the diversion status the actual arrival rate

observed by the hospital differs from λjH, and λjL, and will be defined as we set up the

Markov chain in Section 4.3.4.

4.3.2 Departures

Patients that are in the hospital depart after receiving a certain (random) amount of treat-

ment. The treatment rates for high acuity, low acuity, and scheduled arrivals are exponen-

tially distributed and respectively have rates: µjH , µjL, µjI . Once treatment in the ED is

complete, a high acuity patient is released/discharged from the hospital with probability

pjHR (low acuity patient: pjLR). A fraction pjHA of high acuity patients are admitted to
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the ID (pjLA for low acuity). Finally, there is a risk that a patient dies while undergoing

treatment, this happens with probability pjHD or pjLD for high and low acuity patients,

respectively. In addition, due to the severity of their injury, high acuity patients that are

waiting (and are not treated at that time) die with rate µjHD. All treatment rates are

independent of each other.

During treatment we assume that the following service policy applies. Patients that

originally arrived to the ID (scheduled arrivals) are treated at the Inpatient Department

(i.e. only occupy beds in the ID). Any patient that should be transferred from the ED to

the ID is transferred whenever this is possible. If the ID is full, these patients stay in the

ED (and occupy a bed there, these are boarding patients). As soon as a bed becomes

available in the ID, a boarding patient is transferred. As interarrival and treatment times

are assumed to be exponentially distributed, it is immaterial which patient is transferred,

but in reality it would probably be the patient that has been boarding the longest. This is

also reflected in the calculation of the National Emergency Department Overcrowding Score

(NEDOCS, http://www.nedocs.org). Beds in the ED that are not occupied by boarding

patients are used to treat ED patients. High acuity patients get pre-emptive resume priority

over low acuity patients: We assume that the treatment of a low acuity patient that was

interrupted resumes treatment from where it was left off.

4.3.3 Cost Components

In this section we consider hospitals that are primarily self-interested; we therefore evaluate

the performance of the diversion policy from a profit perspective. In order to do this, we

assign cost and revenue rates to each state of our system. We are aware that some of

these factors cannot easily be expressed in monetary units; therefore we evaluate a range of

parameter values.

The first category of cost factors are those directly related to the use of our main unit of

capacity: Beds. Cost is accrued at a rate of cjnE when a normal ED bed is occupied. Using

http://www.nedocs.org
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surge capacity in the ED is more expensive and accrues cost at a rate of cjnS . Using a bed

in the ID costs cjnB per period. Furthermore, we consider three other categories of cost.

We assign a cost of cjBB for each scheduled patient at the ID that needs to be rescheduled

when the ID is full (the rescheduling is considered out of the scope of our research, hence

we assume that from our perspective this patient is “lost”). We incur a cost of cjDW for

patients that pass away while waiting and cjDT for patients that pass away while being

treated. The waiting cost is cjW per period.

Revenues are generated dependent on the status of the patient: A high acuity patient

in the ED generates a revenue of rjnH per period and a low acuity patient generates rjnL

per period. Patients in the ID generate revenue at a rate of rjnB. Here we need to make

an important distinction: Patients that have been officially discharged from the ED for

admittance to the ID but have not yet been transferred to the ID are boarding in the

ED. These boarding patients generate revenue at the rate rjnB per period as the services

that they are provided qualify as being provided in an inpatient bed, even though a (more

expensive) ED bed (or ED surge bed) is being occupied.

4.3.4 Setup of the Markov chain

As we assume that interarrival times and treatment times are exponentially distributed,

we can now formulate our problem as a Markov chain. For tractability we limit ourselves

to the case of two hospitals, i.e. j ∈ {1, 2}. This allows us to calculate the steady state

probability distribution, which in turn allows us to calculate the cost of a given policy. We

first describe the specific state-dependent arrival and departure processes before describing

how we solve the Markov chain.

Arrivals

We assume hospitals use a diversion level policy (Allon et al. 2009). Under diversion, a

patient that originates as an arrival to one hospital may end up at another hospital. We

assume that only ambulance patients can be diverted. Whether an ambulance patient is
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diverted depends on the state of the system. In our queueing model, hospitals use use a

binary diversion indicator, Dj ∈ {0, 1}. Let the number of boarding patients in the ED of

hospital j be given by njB := max(0, njI − BjI). We use n̂j to represent the threshold on

the number of boarding patients in the ED of hospital j, such that above this threshold,

the hospital goes on diversion. We let pij be the fraction of patients originally going to

hospital i that go to hospital j instead. Using diversion level n̂j has the following effect on

the system:

Table 4.1: Effect of diversion.
n1B < n̂1 n1B ≥ n̂1

n2B < n̂2
D1 = D2 = 0
p12 = p21 = 0

D1 = 1, D2 = 0
p12 = pjdiv, p21 = 0

n2B ≥ n̂2
D1 = 0, D2 = 1

p12 = 0, p21 = pjdiv

D1 = D2 = 0
p12 = p21 = 0

This diversion model can be seen as a variant of the Join the Shortest Queue (JSQ)

queueing policy. In JSQ, jobs (patients) will choose to go to the server (hospital) with the

shortest queue in an attempt to minimize their waiting time. The variant of JSQ that most

resembles our setting would be Threshold Jockeying (TJ), in which case jobs (patients) will

only transfer to the shorter queue if it is a least a certain amount (threshold) shorter. For

an overview of several of the variants of JSQ policies, see Van Houtum et al. (1998). In our

setting, the decision is not based on queue length but on the number of boarding patients.

However, as boarding patients are generally seen to be the main cause of ED crowding

(Schull et al. 2003, Olshaker and Rathlev 2006, Moskop et al. 2009) they can be seen as a

proxy for queue length.

The effect of diversion is described in Table 4.1. This directly affects the arrival rates in

our model. Hence, we need a translation from base arrival rates (original demands for care)

to actual (or net) arrival rates. Let ΛHj , ΛLj be the net arrival rates of high and low acuity

patients into hospital j. This is a function of the congestion level of hospital j as follows:
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ΛHj = λjA(1− pji)PjAH + λiApijPiAH + λjWPjWH

ΛLj = λjA(1− pji)PjAL + λiApijPiAL + λjWPjWL

Departures

The other state transition is that of departing patients. To determine the effective departure

rates we need to know the number of patients in the ED that are receiving emergency

treatment, which depends on the effective capacity of the ED, which may be reduced by the

number of boarding patients. We use the number of ED beds as our main unit of capacity.

This is in line with the literature (Lambe et al. 2002, Schneider et al. 2003, e.g.) and our

interviews with EMS professionals. Let −→n jI , −→n jH , and −→n jL be the number of ID, high

acuity ED, and low acuity ED patients that are currently receiving treatment at hospital j:

−→n jI = min(njI , BjID),

−→n jH = min(njH , BjED +BjSED − njB),

−→n jL = min(njL, BjED +BjSED − njB −−→n jH)

i.e. the number of high acuity patients that can receive treatment is constrained by the

capacity of the ED and by the number of boarding patients that arrived to the ED earlier

but have not transferred to the ID yet, though they have completed ED treatment. The

number of low acuity patients receiving treatment at any point in time is constrained not just

by the ED capacity and boarding patients, but also by the number of high acuity patients

receiving treatment. Now the actual treatment rates are given by −→n jHµjH , −→n jLµjL, and

−→n jIµjI . Furthermore, njH − −→n jH high acuity patients are waiting for treatment and die

at rate (njH −−→n jH)µjHD.
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Solving the Markov chain

In order to determine the steady state performance (in terms of costs and revenues) of

our system we now need to determine its steady state distribution. Let πS be the steady

state probability of being in state S := (n1H , n1L, n1I , n2H , n2L, n2I). Note that 0 ≤ njH ,

0 ≤ njL, and 0 ≤ njI ≤ BjI + BjED + BjSED. This leaves us with 4 queues of potentially

infinite length. A common approach, introduced in Chapter 2, to solve a Markov chain

that is infinite in one dimension is Matrix Analytic Methods (MAM, see e.g. Neuts 1981).

However, MAM becomes very difficult to apply when there is more than a single infinite

dimension. In a typical JSQ setting one can reduce the number of infinite length queues

by looking at the difference between queue lengths. However, in our setting, with 4 infinite

length queues and priorities between high and low acuity patients in each hospital, there

is no apparent way in which we can reduce the Markov chain to being infinite in fewer

dimensions.

Therefore, we truncate the state space by imposing upper bounds on the sum of njH and

njL, reducing their domains such that 0 ≤ njH +njL ≤ n̄j . Transitions beyond these upper

bounds are cut-off, which is reasonable if n̄j is sufficiently large. In selecting parameter

values we ensure that the probability of being in boundary states is small, which can be

done in a similar fashion as described in Appendix A.3. Having obtained a finite dimensional

Markov chain we can write out the balance equations for each state and solve the resulting

system of approximately (n̄1(B1I + B1ED + B1SED)n̄2(B2I + B2ED + B2SED)) equations.

The solution is given in steady state probabilities; the total profit Mj for hospital j can now

be calculated by adding up the long run average profits of all states (steady state probability

of a state multiplied with the per period cost of the state).

In Section 4.5 we use this Markov chain approach to obtain insights on how diversion

levels should be set in a two hospital setting. Realizing that this Markov chain is not able to

capture many of the intricate details of real ED operations we now introduce a simulation

model that allows us to analyze a more realistic setting.
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4.4. Simulation Model

In this section we detail a simulation model with the goal of analyzing a realistic setting, the

results of which are discussed in Section 4.5.2. For reasons described at the end of Section 4.3

we focus on maximizing the quality of care (as will be operationalized on Page 104) or the

hospital revenue in our simulation model.

In the simulation model we approximate the situation as it exists in Pittsburgh: We

model the seven hospitals within city limits that operate EDs, assuming that all patients that

arrive by ambulance are transported from a location within Allegheny county. Pittsburgh

is located approximately within the center of the county, as can be seen in Figure 4.3.

City of 
Pittsburgh

Figure 4.3: Allegheny County (2010)

We use the Arena software package to build and run our simulation. Figure 4.4 displays

a high-level process flow chart of our simulation model; this is a simplified representation

of the actual Arena simulation model. The simulation model consists of five main modules:

Demand generation, Transportation, Coordination, ED care, and ID care. Throughout this

section we discuss details of each of the modules, as the patient flows through the process.

After discussing the patient flow we discuss the hospital revenues generated throughout the

process in Section 4.4.6.
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4.4.1 Demand generation

In our model we consider two types of patients, those that use services at the ED and

those that arrive at the ID. In this section we outline the underlying model of both types

of patient arrivals.

ED arrivals

In our model we will distinguish ED patients by their acuity, i.e. how urgently they need

care. In practice, ED arrivals are non-stationary in several ways. Not only may the arrival

rate vary over time, but the distribution of acuity or mode of arrival may also shift. In this

section we first determine which factors significantly influence the arrival patterns observed

by an ED and then determine the arrival rates, split by the significant factors. We capitalize

names of variables when referring to parameters in our estimation models.

To determine which factors have a significant influence on the arrival pattern we use

data from the National Health Ambulatory Medical Care Survey (NHAMCS) from 2006

and 2007. From the literature (e.g. Nawar et al. 2007, Pitts et al. 2008) and conversations

with EMS professionals (Patterson 2010) we identified the following potentially significant

factors: Month (January, February, . . .), Day of week (Monday, Tuesday, . . .), Period of day

(Day: 7-15hrs, Evening: 15-23hrs, Night: 23-7hrs), Acuity (Immediate, Emergent, Urgent,

Semi-Urgent, Nonurgent) and Mode of arrival (Ambulance, Walk-in). Time of day was also

identified as a potentially influential factor but eliminated as the data was not granular

enough to run an estimation model with this number of factors and Time of day included;

therefore we use Period of day as a proxy. The NHAMCS data contained two additional

Modes of arrival: Unknown and Public service (non-ambulance). We consider ED arrivals

from which the mode of arrival was Unknown or that arrived by a public service (non-

ambulance, e.g. police) to be walk-in arrivals. We believe that this simplification will not

impact our insights regarding ambulance coordination (this is in line with e.g. Falvo et al.

2007).
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The NHAMCS data do not contain the date of ED visit, only the day of the week and

the month of the visit are recorded. Therefore, we take the total number of arrivals on a

particular day of the week during each month and divide this by the number of occurrences

of that day in that month. For example, in the NHAMCS data for January of 2006 we find

that there were 587 arrivals on Mondays, and there were 5 Mondays in that month. Hence,

on a typical Monday in January we expect 587/5 patient arrivals. These 117.4 arrivals on

a typical Monday in January 2006 arrived during different Periods of the day, had different

Acuity levels, and Modes of arrival. We now use an unbalanced ANOVA to test which

factors have a statistically significant impact on the mean number of arrivals. To ensure

that the error terms are normally distributed, we apply a natural log transformation (pp.

90-91 Tabachnick and Fidell 2001) to the mean number of arrivals. For model fit details

we refer the reader to Appendix B.4.1. With all five factors we obtain an R2 of 72.18%

and conclude that the Day of week is not significant (p = 0.370). We also estimate a

simplified model, eliminating the Month factor. For this model we obtain an R2 of 71.94%,

where the Day of week is again not significant (p = 0.615). Hence we assume the mean

number of arrivals to be affected by 3 factors (Period of day, Acuity, Mode of arrival) for

our simulation model. The mean number of arrivals as a function of these three factors is

displayed in Figure 4.5, for the total of 59,504 retained arrivals (arrivals of Unknown acuity

or where the Arrival time had not been recorded were discarded).

As the NHAMCS data do not identify subsequent arrivals at a hospital (for privacy

reasons), we are unable to estimate a distribution for the interarrival times. Therefore

we assume exponentially distributed interarrival times in line with several papers in the

literature (e.g. Green and Nguyen 2001, Allon et al. 2009) (This would be easy to generalize).

As the NHAMCS is a national data set, we scale the arrival pattern obtained from the data

set to match the mean patient volumes for each of the Pittsburgh EDs (given in Table 4.2).
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Figure 4.5: Mean number of ED arrivals per hour, by Acuity and Period of day, in the
NHAMCS data of 59,504 arrivals in 2006-2007.

ID arrivals

Arrivals to the IDs cannot be obtained from the NHAMCS database. We obtained the

number of discharges for our set of hospitals from “Profiles of U.S. Hospitals,” a public data

source published by Thomson Reuters (2009). This number of discharges is the number of

patients discharged from a hospital during a year; we take this to be the number of patients

treated, see Table 4.2. We assume that these patients arrive homogeneously between 7 a.m.

and 3 p.m. on every weekday (260 weekdays per year). No detailed data on the Shadyside

hospital was available. However, the characteristics of the patients at Shadyside most

resemble those at Presbyterian (Ruffner 2010), hence we scale the number of discharges by

the number of beds and obtain 24,045 discharges at Shadyside per year.

For those ED patients that require ambulance transportation we model the EMS process

in the next section.

4.4.2 Transportation

In this section we describe the process that occurs between the moment that a 911 operator

decides to dispatch an ambulance – the alarm – and the moment that an ambulance returns
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Table 4.2: Pittsburgh hospitals.

Name System Beds Patients/yr

Children’s Hospital of Pittsburgh UPMC 41(1) 65,000(1)

Magee-Women’s Hospital UPMC 14(1) 18,000(1)

Mercy UPMC 28(2) 57,000(2)

Presbyterian UPMC 34(2) 50,000(2)

Shadyside UPMC 31(2) 45,000(2)

Allegheny General Hospital WPAHS 30(2) 45,000(2)

The Western Pennsylvania Hospital WPAHS 25(2) 35,000(2)

Sources:
(1): Personal inquiry at ED
(2): Guyette (2009)

(a) Emergency Departments.

Name System Beds Patients/yr Utilization (%) LOS (days)

Children’s Hospital of Pittsburgh UPMC 260 13,567 77.7 5.5
Magee-Women’s Hospital UPMC 278 27,488 71.7 2.7

Mercy UPMC 364 17,725 65 4.9
Presbyterian UPMC 1263 58,740 76 6.0

Shadyside UPMC 517(4)

Allegheny General Hospital WPAHS 583 29,132 74.4 5.5
The Western Pennsylvania Hospital WPAHS 476 20,316 50.6 4.4

Sources:
(3): Profiles of U.S. Hospitals (Thomson Reuters 2009)
(4): http://www.upmc.com/HospitalsFacilities/Hospitals/Shadyside/Pages/default.aspx

(b) Inpatient Departments(3).

to service and is ready to respond to another alarm. During this complete period an

ambulance is considered to be out-of-service. In line with Spaite et al. (1993) we recognize

4 intervals within this total out-of-service period: (i) Response time, from the alarm until

arrival at the scene of the patient; (ii) Scene time, from arrival at the scene until departure

to a hospital; (iii) Transport time, from leaving the scene to arrival at the hospital; (iv)

Turnaround time, from arrival at the hospital until the ambulance is back in service. In

this subsection we outline the data and our modeling approach for these 4 components of

the out-of-service period.

We assume that walk-in patients transport themselves to a hospital of their preference,

without considering the status of the hospital. To determine the preference of walk-in and

http://www.upmc.com/HospitalsFacilities/Hospitals/Shadyside/Pages/default.aspx
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transported patients for a specific hospital, we use the market share of an ED in Table 4.2.

Response time

Although almost each municipality within Allegheny county has their own EMS agency, the

calls are dispatched through a centralized 911 facility. As modeling individual EMS agencies

is beyond the scope of our research, we assume that ambulances are spread uniformly by

area across the county, hence minimizing the maximum distance to any call (minimizing the

maximum distance is a common metric in the Operations Research literature regarding the

dispatch of emergency services, see e.g. Toregas et al. 1971). Furthermore, we assume the

location of ambulances are continually re-evaluated to minimize this maximum distance.

As ambulances become out-of-service, the remaining, in-service, ambulances each need to

cover a larger area, resulting in an increased maximum response time. We approximate the

response time by using a square grid representing the coverage area. An ambulance located

in the center of a square area of w2
a miles, has an average a response distance, dr, within

its coverage area, of:

dr =
∫ wa

x=0

∫ wa

y=0

(
1
wa

)2
√(

x− wa
2

)2
+
(
y − wa

2

)2
dxdy,

which simplifies to:

dr = 1/6wa
(√

2 + sinh−1(1)
)

= 0.38wa

Now let wAll be the width of Allegheny county, estimated to be 27 miles (assuming the

county, with an area of 730 square miles U.S. Census 2000b is square). The City of Pitts-

burgh has 13 ambulances serving 312,819 residents (U.S. Census 2000b). We approximate

the number of ambulances in the county by scaling the number of Pittsburgh ambulances

by the number of residents of the county (1,215,103, U.S. Census 2000b), leading to an

estimate of 50 ambulances. Let NA be the number of ambulances that are in-service. If the
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NA, in-service, ambulances each cover a square area, the area covered by an ambulance is

w2
all/NA, which has a width of wAll/

√
NA.

We assume that an ambulance with signals (light and sirens) drives at vA = 35 MPH2.

Now the expected response time to any patient, tr, equals:

tr = 0.38 wAll√
NA
/vA

= 0.30√
NA

(4.1)

As unforseen factors influence this we assume this time to be exponentially distributed

with mean tr. The exponential distribution captures the fact that the variance increases as

the mean increases, i.e. the further an ambulance has to drive, the more unforseen events

that may delay it. Again, this is easy to generalize.

Scene time

Upon arrival at the scene, the EMS crew triages and potentially treats the patient. We use

data from Carter and Grierson (2007) as an empirical distribution of scene time. These

data are displayed in Figure 4.6.
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Figure 4.6: EMS Scene time distribution from Carter and Grierson (2007)

2In the center of the range suggested by Inoue et al. (2006), and also in the center of the 30-40 MPH
range reported to the Portsmouth (UK) council meeting (Portsmouth City Council 2006)
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Transport time

Once all activities at the scene have been completed, the ambulance leaves for a hospital. At

this point the EMS crew decide on their destination hospital based on several factors. Two

major factors are the patient’s medical condition and patient preference (Hostler 2009). A

patient with a specific medical condition might need to go to a specific ED (e.g. level I

trauma center). Patient preferences may be guided by past experience, rankings (e.g. by

the Joint Commission on Accreditation of Healthcare Organizations, JCAHO), insurance

status, etc. In addition, the EMS crew may have preferences based on past experience or

knowledge of ED status, but an EMS crew cannot transport a patient to an alternative

hospital without consent of the patient. In Section 4.4.3 we describe different coordination

mechanisms that may inform the EMS crew of current ED status.

As all hospitals that we consider are located in a limited geographical area (see Fig-

ure 4.1) we assume they are co-located at the center of our 2-mile circle. These hospitals

see ED patients from within the city but also the surrounding county. In our model we

include the 7 co-located hospitals and assume that all ED patients they see come from

locations in Allegheny county3. To sample realistic driving distances we obtained the pop-

ulation and location of each of the 91 zipcodes in Allegheny county (U.S. Census 2000a).

Using the coordinates of the center of each zipcode we calculated the distances to the center

of our 2-mile circle. The probability of a distance (i.e. zipcode) being sampled is given by

the fraction of the county’s population that lives in the corresponding zipcode.

Turnaround time

An ambulance that has transported a patient to a hospital is responsible for the patient

until care is transferred to ED personnel. The turnaround time is the time from arrival at

the hospital, which includes the time for transferring care of the patient to ED personnel,
3Some patients may be coming from outside the county, but in these cases other hospitals are more likely

to be nearby and hence preferred. As these other hospitals are at a significant distance from the seven that
we consider we assume that they would not be part of potential mechanism to coordinate traffic.
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potentially cleaning and restocking the ambulance, and returning to their station.

According to the EMTALA a hospital should accept responsibility for any patient pre-

sented to its doorstep. In reality, however, EMS crews may find themselves waiting at

the ED for protracted periods because beds, stretcher spaces, or personnel are not always

immediately available (Eckstein et al. 2005). To mimic the transfer of a patient from EMS

crews to ED personnel we recognize the following three priority levels, based on interviews

with EMS practitioners:

• Immediate: These patients will always be admitted to the ED immediately.

• Emergent & Urgent: These patients should be seen within 60 minutes (15 for Emer-

gent and 60 for Urgent). The ambulance will wait until care of these patients has

been transferred to ED personnel. These patients get priority over the next category.

• Semi-Urgent & Nonurgent: These patients need to be seen within 24 hours (2 hours for

Semi-Urgent, 24 hours for Nonurgent). As long as there are any Emergent or Urgent

patients waiting these patients will not be treated. We assume that the ambulance will

leave without waiting until care of semi-urgent and nonurgent patients has formally

been transferred.

Once an ambulance is no longer responsible for the patient, is cleaned, and restocked,

it can return to service (in the simulation model we only model the transfer of care, not

the time for cleaning and restocking). At this point the ambulance drives to a location

that minimizes the maximum distance as discussed before. The ambulance locations are

uniformly spaced across the county and hence the driving time can be determined similarly

to the driving time to a patient (see equation (4.1)). If we assume an average speed of

25 MPH on this return trip, not using signals, we get an average return driving time of

0.38wAll/25 = 0.38 hours, which we again assume is exponentially distributed4.
4The U.S. Environmental Protection Agency tests the fuel economy of cars at 21.2 MPH and 48.3 MPH,

representing city and highway driving respectively. As it cannot be determined what fraction of an ambu-
lances distance is either city or highway, we feel that a speed of 25 MPH is reasonable since Allegheny county
is mostly considered an urban area (http://www.fueleconomy.gov/FEG/fe_test_schedules.shtml)

http://www.fueleconomy.gov/FEG/fe_test_schedules.shtml 
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4.4.3 Coordination

Several factors influence the decision of to which hospital to transport a patient. Information

about hospital status can be important for EMS crews as taking a patient to a crowded

ED, or a hospital with an overflowing ID, decreases the quality of care received by the

patient (as waiting for care is detrimental) and may also increase the turnaround time for

the ambulance. Not all patients can be convinced to be transported to an ED that is their

first preference though. In Pittsburgh around 90% of patients have an ED preference based

on their insurance or home location, and up to 50% of those with a preference may be

convinced to go elsewhere (Hostler 2010). Hence, about 55% of patients can be convinced

to be taken to an ED based on the judgement of the EMS crew5. We use pdiv to denote the

fraction of patients that can be convinced to be transported to an ED that was not their

initial preference6 and let pdiv vary between 25% and 75%. The EMS crew base their advice

on the information that is available to them at the moment that they leave the scene. We

recognize the following coordination mechanisms that each reveal different information to

the EMS crew (these scenarios are summarized in Table 4.3):

Myopic hospitals: In this scenario no information about hospital status (ED nor ID) is

available to EMS crews or patients. We randomly assign a patient to the ED with a

probability proportional to the market share of ED patients as displayed in Table 4.2.

EMS coordination: As EMS crews visit EDs they observe the number of patients wait-

ing at the ED. As observations by one EMS crew are not immediately relayed to

all other crews we model the estimated queue length as an Exponentially Weighted

Moving Average (EWMA) of the observed queue lengths. The EWMA uses a pa-

rameter α that discounts past observations7. In our setting a higher α means that

information about queueing is relayed faster. We consider both regularly updated in-
5As UPMC Health Plan has about 1.4 million members (UPMC website 2010), this is a large player in

the Pittsburgh area. Hence insurance preference might not strictly be tied to a specific hospital but rather
a hospital system. This is, however, not generally observed by practitioners (Hostler 2010)

6Similar to pjdiv, but for the case where the fraction is independent of the initial hospital preference
7As α increases more weight is given to the most recent observation.
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formation (α ∈ {0.4, 0.6}) and long run average information (α = {0.01, 0.05)). The

average age, a measure of how “old” the estimate is, for an EWMA is 1−α
α . Hence,

for our range of α values we use observations that are on average between 0.67 and

99 ambulance arrivals old, where the latter reflects a long run average.

Hospital coordination: Hospitals that want to avoid crowding may benefit from co-

ordination of ambulance traffic (fewer patients, less congestion, better patient care,

etc.). We consider two coordination mechanisms through which hospitals provide

information about their status:

1. Join the Shortest Queue (JSQ): In this coordination mechanism hospitals com-

municate their actual queue length; whenever there are no patients waiting the

number of available ED beds is communicated. EMS crews advise patients to

go to the hospital that has the shortest queue, or the most empty beds. This

coordination mechanisms is similar to an EWMA estimate with α = 1.0 with

additional information if there are empty beds. Note however that an EWMA

estimate with α = 1.0 reflects the situation when an ambulance last visited an

ED, while JSQ operates on current information.

2. NEDOCS: This coordination mechanism summarizes information about the in-

stantaneous utilization8 of the the ED, the instantaneous utilization of the ID,

the time that the longest boarding patient has been boarding and how long the

last patient that was admitted to the ED had waited. A lower NEDOCS score

indicates a lower level of crowding. As the NEDOCS score also incorporates

information from the ID it is “forward looking” in the sense that a full ID may

soon lead to boarding in the ED.

Diversion signalling: A common policy in practice is for hospitals to go “on diversion,”

i.e. they request ambulances not to bring any more patients to their ED. In our model
8Note that the use of the word utilization here means the fraction of beds that are occupied, rather than

the fraction of the population that uses a specific service, as is common in the emergency medicine literature.
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hospitals set their diversion status based on the number of boarding patients (as in

our queueing model, Section 4.3, and is common in practice, see e.g. Medical Advisory

Committee, Pennsylvania 2004).

We recognize that hospitals and patients can have different perspectives on setting

diversion status:

1. From the short run patient’s perspective diversion levels should be set so as to

maximize their quality of care. We consider two cases that reflect the Pittsburgh

situation: a scenario in which only WPAHS sets their diversion level to maximize

patient health outcomes (and UPMC never diverts), and a scenario in which both

WPAHS and UPMC set their diversion levels to maximize the quality of care.

2. Diversion levels can also be used to maximize hospital revenues (or profit). Al-

though Williams (2006) suggests that scheduled patients provide a certain rev-

enue compared to the uncertainty inherent in ED arrivals, Guyette (2009), and

Patterson (2010) argue that ED patients bring large revenues to both the ED

and the ID. A diversion level can thus be used to strike a balance between these

two revenue streams. For this objective we again consider two cases in which

either just WPAHS, or both WPAHS and WPAHS use diversion levels. A hos-

pital is assumed to set its diversion level so as to maximize its revenue. (Recall

that a full ID may cause scheduled arrivals to leave the system)
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Table 4.3: Summary of coordination mechanisms.
pdiv Scenario Usage

{25%, 50%, 75%} Myopic hospitals UPMC & WPAHS
{25%, 50%, 75%} EMS coordination, recent information UPMC & WPAHS

EWMA: α ∈ {0.4, 0.6}
{25%, 50%, 75%} EMS coordination, long run average UPMC & WPAHS

EWMA: α ∈ {0.01, 0.05}
{25%, 50%, 75%} Join the Shortest Queue (JSQ) UPMC & WPAHS
{25%, 50%, 75%} NEDOCS UPMC & WPAHS
{25%, 50%, 75%} Diversion Signalling, WPAHS only

maximize quality of care UPMC & WPAHS
{25%, 50%, 75%} Diversion signalling, WPAHS only

maximize hospital revenue UPMC & WPAHS

4.4.4 Emergency Department care

We approximate the capacity of an ED by the number of beds in the ED. Not only is this

common in the literature (e.g. Lambe et al. 2002, Schneider et al. 2003, Eckstein et al. 2005),

it is also one of the most “rigid” resources required in the treatment of ED patients, staffing

levels for example can be reviewed and adjust hourly (Patterson 2010). In Section 4.4.2 we

have described how ambulance patients arrive at the ED, and walk-in patients transport

themselves. In this section we analyze the duration of time a patient occupies a bed, which

we refer to as the treatment time, as well as the outcome of the ED visit.

ED treatment time

Patients undergo a variety of treatments while in the ED. We use the NHAMCS data from

2006 and 2007 to analyze which factors have a significant impact on the treatment time of a

patient and then estimate the parameters of a probability distribution for treatment times.

The NHAMCS data include: (i) Arrival time, (ii) Wait time until seen by a physician,

and (iii) Length of visit (time between arrival and the ED discharge).

We use the difference between the Length of visit and Wait time as an estimate for the

treatment time, but the actual time during which a bed is out-of-service may be significantly
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longer (as we will address in Section 4.5.2), as a patient may have been assigned a bed long

before he is first seen by a doctor. However, we were unable to obtain more precise data,

and believe that the treatment times obtained in this way provide reasonable base estimates

for the treatment time distribution.

We now use an unbalanced ANOVA to test which factors have a statistically significant

impact on the treatment time. To ensure that the error terms are normally distributed, we

apply a natural log transformation (pp. 90-91 Tabachnick and Fidell 2001) to the treatment

time. Similar to in Section 4.3.1 we suspect that the factors Acuity, Mode of arrival, Period

of day, Month, and Day of week may drive treatment times. The details of the estimation

can be found in Appendix B.4.2. The model with 5 factors model obtains an R2 of 10.17%

and all factors are significant. However, a simplified model that includes only Acuity and

Mode of arrival still obtains an R2 of 9.46%, hence we proceed with a model that only

includes these two factors9.

As we have determined the driving forces behind the length of the treatment we use

Arena Input Analyzer (AIA), a tool within the Arena simulation package (Kelton et al.

1998), to estimate the parameters of various distributions, and select the most appropriate

distribution. The data was well represented by a Gamma distribution, hence in our simula-

tion model the treatment times are modeled as Gamma random variables with parameters

as displayed in Table 4.410.

9Using a model that only includes Acuity we obtain an R2 of 5.99%.
10We considered the Gamma, Weibull, Erlang, Exponential, Lognormal, Beta, Normal, Triangular, and

Uniform distributions. The Gamma distribution is top ranked, by Squared Error, in all but three cases. For
two of these three cases (Semi-Urgent and Nonurgent walk-in patients) the Gamma distribution still had
a p-value below 0.005. For the third case (Nonurgent ambulance patients) the Squared Error for the top
ranked (Erlang) distribution was 0.00106 (p-value of 0.0989) and for the Gamma the Squared Error was
0.00108 (p-value of 0.0486).
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Table 4.4: Parameters for ED treatment times (minutes) by Acuity (NHAMCS).
Ambulance Walk-In

Mean Std Dev Scale Shape Mean Std Dev Scale Shape
Immediate 259 330 230 1.13 192 270 177 1.08
Emergent 291 346 242 1.2 188 243 175 1.08

Urgent 252 297 197 1.28 159 212 144 1.11
Semi-urgent 207 219 172 1.2 111 156 109 1.03

Nonurgent 202 239 203 0.995 94.4 138 99.3 0.951

ED treatment outcome

Patients who leave the ED may do so in different ways: (i) A fraction of the patients are

discharged from the ED and leave the hospital altogether, (ii) a fraction are admitted to

the ID, and (iii) a remainder pass away as a result of the condition for which they sought

treatment. In the literature the ID admission rate is often averaged across all patient

characteristics (Falvo et al. 2007), and the number reported to us in interviews was too

(Guyette 2009). However, the admission rates in the NHAMCS data for 2006 and 2007

are broken down by acuity and we observed a high variability by acuity. We thus estimate

the fractions of patients that leave the ED in each way from the NHAMCS data from 2006

and 2007. Figure 4.7 displays our estimates for the different fractions for ways in which

treatment in the ends.
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In order to compare the quality of care we use a “discounted quality” metric. Although

the reputational, or perceived quality level may differ by hospital, all hospitals in the Pitts-

burgh area are fully certified and have various JCAHO awards. Therefore we set a uniform

basic quality level which is then discounted by the waiting time: 100exp(−Waiting time).

In Section 4.5.2 we use this metric to evaluate the quality of care delivered, and use the

average discounted quality of care to capture the level of care provided by all hospitals

together, on average.

4.4.5 Inpatient care

The ID of a hospital sees two different types of patients. One type are patients that have

been admitted from the ED: A bed in the ID is requested for an ED patient once his/her

treatment in the ED is over. If an ED patient requests a bed in the ID and none are

available, the patient remains in the ED (i.e. the patient is boarded in the ED). The second

type are scheduled patients, their arrival process has been described in Section 4.4.1. In this

section we will analyze the Length Of Stay (LOS) distribution for both types of patients.

Length of stay for admitted ED patients

The NHAMCS data set records the LOS for patients that have been admitted from the

ED. Unfortunately we were not able to fit a model that has normally distributed error

terms and explains a reasonably large percentage of variability (see Appendix B.4.3 for

details). Following the logic for treatment outcomes (Section 4.4.4) we assume that Acuity

is the main factor determining the length of ID stay. We now use AIA to estimate the

distribution of LOS for each of the Acuity categories. Using Squared errors AIA ranked

the Lognormal (3 Acuity levels), Exponential, and Gamma distributions as best fitting

distributions. However, we note that the exponential distribution has a p-value below 0.005

for the estimate of the distribution of LOS for all Acuities11. We thus assume that the LOS
11As Thomson Reuters (2009) only reports mean LOS we prefer a distribution with only a single parameter,

the exponential distribution has only one parameter and shows a good fit.
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for an admitted ED patient is exponentially distributed with the parameters as displayed

in Table 4.5.

Table 4.5: Length of stay data (days) by Acuity (NHAMCS).
Mean Std Dev # Obs Shift Mean

Immediate 6.19 6.68 844 0.5 5.69
Emergent 5.69 7.07 1956 0.999 4.7

Urgent 5.55 5.72 3422 0.999 4.55
Semi-urgent 5.24 4.81 760 0.5 4.74

Nonurgent 5.57 5.59 240 0.5 5.07
Inpatient 5.63 6.15 7222 0.999 4.63

Length of stay for scheduled patients

LOS for scheduled patients could not be obtained from NHAMCS. However, Thomson

Reuters (2009) provides the average LOS for all but one of the Pittsburgh hospitals (see

Table 4.2). We observe that the LOS varies from 2.7 days (Magee-Women’s hospital) to

6.0 days (Presbyterian). We incorporate these differences into our model of patient char-

acteristics seen by the hospitals, these are likely also reflected in the capacities of their IDs

(for which we do have data). For Shadyside hospital only the number of beds is available12.

However, Ruffner (2010) estimates that Shadyside is comparable to Presbyterian in the

sense that the LOS is similar and the number of patients per year is proportional to the

number of beds.

For the distribution of the LOS for scheduled patients we reverse the argument made

by Falvo et al. (2007): Falvo et al. (2007) estimates that the amount of revenues of an

admitted ED patient is similar to the revenues generated by a scheduled arrival. Reversing

their argument we assume that the LOS distribution is similar and hence assume that the

LOS for a scheduled admit is exponentially distributed with a mean equal to the average

LOS as reported by Thomson Reuters (2009)13.
12This hospital is a single entity in the UPMC books with Presbyterian, which might explain why Thomson

Reuters (2009) was not able to get specific data
13If we estimate the LOS for an average ED patient that is admitted (last row in Table 4.5) we get a LOS
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We assume that patients are discharged from the ID every day between the hours of 7

a.m. and 3 p.m.. If a patient’s stay/treatment ends between 3 p.m. and 7 a.m., the patient

is kept in the ID and released the following morning14.

4.4.6 Revenues

As the hospitals in Pittsburgh are part of two different systems (UPMC and WPAHS), co-

ordination between the hospital systems will have an impact on their financial performance.

Therefore we are interested in the revenues obtained from each patient that is seen at a

hospital. Falvo et al. (2007) analyze the lost revenue for hospitals as a result of ambulance

diversion or balking customers (those that leave before being seen/treated). This net rev-

enue measure does not include additional charges by specialists in the hospital, nor does it

reflect the collection rate (i.e. the fraction of billed charges that get paid).

Nevertheless, we use net revenue estimates from Falvo et al. (2007). The net revenues

generated by an ED patient while in the ED depend on the Acuity level of the patient, these

estimates are listed in Table 4.6. ED patients that are admitted to the ID, or scheduled

arrivals to the ID, generate a net revenue of $8,551. Although Falvo et al. (2007) do not

consider net revenues generated by walk-in ED patients that are admitted to the ID, we

assume these net revenues are independent of the mode of arrival.

Table 4.6: Net revenue ($) per acuity category (Falvo et al. 2007).
Acuity Net Rev. ($)

Immediate 3,209
Emergent 1,334

Urgent 963
Semi-Urgent 476

Nonurgent 317

that is within our range from Thomson Reuters (2009). If we fit the distribution the exponential distribution
again has a p-value below 0.005.

14In runs of our simulation model with just scheduled arrivals we obtain occupancy rates which are on
average 4% higher, which could be caused by patients being released in practice before their LOS ends,
towards the end of the day.
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4.5. Results

4.5.1 Results - Queueing model

Using the analytical model as introduced in Section 4.3 we can analyze the effects of a

traditional approach to minimizing ED crowding, i.e. the use of an ambulance diversion

policy. By setting their diversion level, n̂j , hospital j requests ambulances go to hospital i

instead. In this section we numerically explore some of the dependencies between optimal

diversion levels and hospital characteristics that one might observe.

Setting Optimal Diversion Levels

We first explore how the diversion level impacts the optimal profit. We consider two in-

stances (details regarding these instances can be found in Appendix B.2), which only differ

in the cost assigned to patients that die in the ED and the cost of waiting. In the second

instance the cost of a patient dying (waiting) is 1000 (100) times as large as in the first

instance. The optimal profits (losses) are displayed in Figure 4.8. (Note: for readability the

orientation of the axes are not consistent.)

What we observe in Figures 4.8(a) and 4.8(b) is that as the diversion level for one

hospital increases, it increases its own profit and decreases the profit of the other hospital.

This can be explained by the fact that if one requires there to be more boarding patients

before redirecting ambulances, fewer ambulances get redirected. This leads to more patients

being seen in your own ED, and fewer being redirected to the ED of the other hospital. If

a typical patient is profitable this is desirable and hence, diversion levels will be set high.

In Figures 4.8(c) and 4.8(d) we observe the opposite. In this instance a waiting or dying

patient is very expensive; hence, one prefers to minimize the number of patients (to the

lowest possible level, without shutting down the ED completely). In this case any patient

that has to wait, however short, is unprofitable.

These functions are very steep close to a diversion level of 0 for the following reason. As

our state space is 6-dimensional and infinite in four of these dimensions we need to truncate
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Figure 4.8: Optimal profits as a function of diversion levels. Instance 1 has costs for waiting
and mortality, instance 2 has high costs for waiting and mortality.

the state space. In order to minimize the effect of truncation we have set the parameters

such that the steady state probability of states near the truncation is very low; hence the

mean number of (boarding) patients is very low and a chance of diversion level from 0 to 1

has a large effect.

Effect of Capacity

For given hospitals we now know how their diversion levels might be set. In Figure 4.9 we

vary the capacity of the ED in hospital 2. Figures 4.9(a), 4.9(c), and 4.9(e) display the



4.5. Results 109

profits for hospital 1, and Figures 4.9(b), 4.9(d), and 4.9(f) display the profits for hospital

2 (see Appendix B.2 for details about these instances). What we see here is that the profits

for hospital 1 are mostly insensitive to the capacity of hospital 2, they are, however, still

sensitive to the diversion level. Recall that a higher capacity allows for a higher diversion

level.

At hospital 2 we observe that the capacity directly impacts profitability, i.e. one needs

a certain scale in order to avoid crowding and treatment delays, and reach a profitable level

of throughput. What we observe here is in line with the literature (e.g. Allon et al. 2009),

where it is found that the amount of time that a hospital spends on diversion decreases in

the ED size. For hospital 2 it is optimal to set the diversion level as high as possible (i.e.

very rarely divert) and the larger the ED, the less likely it is for the number of boarding

patients to reach this level.

Competitive Insights

From Figures 4.8 and 4.9 we can also obtain competitive insights. When we compare

Figures 4.9(e) and 4.9(f) we observe that it is optimal for both hospitals to set their diversion

levels as high as possible. Now if we check what this does to the profitability of the other

hospital we can make an interesting observation. Independent of where hospital 2 sets their

diversion level, hospital 1 will always make a profit. However, by setting their diversion level

at its highest level hospital 1 can cause hospital 2 to turn a loss. Although this situation

would be optimal from a self interested point of view, it would mean that hospital 2 would

go out of business at some point, which might be undesirable from the patient’s perspective.

Having high diversion levels is similar to a “never divert” policy. The largest hospital

system in Pittsburgh has been operating on a never divert policy “for a long time,” while

the smaller hospital system would divert under some circumstances (Guyette 2009). Here

we see that, under certain parameter settings, this phenomenon can be reproduced in a

simplified model (e.g. with the high diversion levels illustrated in Figures 4.9(e) and 4.9(f)).

However, in reality there is not one, but multiple, hospitals within each hospital system.
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Figure 4.9: Profits as a function of diversion levels and capacity at ED2. The capacity of
the ED at hospital 2 (B2ED) are 5, 6, and 7 in instances 3, 4, and 1 respectively.
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Hence, if one would be able to divert to hospitals within the same system that might be

beneficial. In the next section we will explore several coordination mechanisms that attempt

to divert patients to a hospital where an adequate level of care can be provided, also taking

into account the objectives of the individual hospitals.

4.5.2 Results - Simulation model

In this section we discuss the results from our simulation experiment. We first discuss

some details about how the parameters of the simulation model were set. Then we will

present the results and insights. We will evaluate the different coordination mechanisms on

three metrics: average discounted quality of care, hospital revenue, and ambulance response

times. Ambulance response times are a relevant measure as ambulances that are tied up

at an ED are out-of-service and decrease the number of available ambulances to the public.

Moreover EMS crews are important decision makers.

Simulation Parameters

As we gathered data from various sources we may have inconsistencies, which we discuss

here.

When comparing the utilization of ED beds in our initial simulation runs with what

is observed in reality we saw a significant difference: In our initial simulation runs we

observe ED bed utilization levels in the lower end of the 50-75% range (and almost no

patients waiting). Interviews with ED professionals and our personal experience however

indicate that queueing is a serious issue. This difference between perceived and simulated

performance measures could be explained by the imperfection of our treatment time data (as

explained in Section 4.4.4). Therefore, we apply a scaling factor to the treatment time used

in our simulation model to perform sensitivity analysis. We enumerate potential scaling

factors until the confidence interval for the ED utilization level is centered at the desired

utilization level. We will evaluate the sensitivity of our simulation outcomes for utilization
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levels of: 50, 75, 90, and 95%, all assuming no diversion takes place. See Figure 4.10 for the

95% confidence intervals for the ED treatment times at Allegheny General Hospital for each

scaling factor (only the final scaling factors in our search are displayed). In order to obtain

scaling parameters for every ED, we perform a similar analysis for each ED; for the scaling

factors for other EDs and plots of confidence intervals of the corresponding ED utilizations,

see Appendix B.7.
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Figure 4.10: 95% Confidence intervals for the utilization at the ED at Allegheny General
Hospital, for each scaling factor. Note that the confidence intervals are indeed so small that
they may be hard to see.

Diversion signalling

One of the coordination mechanisms that we consider is diversion signalling. Unfortunately,

no diversion level data exists for the Pittsburgh hospitals as many of them operate on a never

divert policy. We know, for example, that UPMC hospitals have not used a diversion policy

“for a long time” (Guyette 2009, Hostler 2009). According to Guyette (2009), Allegheny

General Hospital (AGH) has used a diversion policy “up to fairly recently,” but has recently

abandoned this policy. Hence, “real” diversion histories cannot be obtained. Therefore, we

use OptQuest (a general purpose optimizer that is able to search for the optimal parameter

settings in an Arena model, Glover et al. 1999) to determine the “optimal” diversion levels.

OptQuest uses a combination of scatter search (Glover 1989), tabu search (see e.g. Glover

and Laguna 1997) and a neural network accelerator (see e.g. Glover et al. 1999). The exact
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mechanics of this optimization methodology are beyond the scope of our work, but at a high

level OptQuest uses the output from the simulation model to determine in which direction

it wants to direct the search for an optimal solution, and then provides new input for the

simulation model (see the diagram in Figure 4.11). In other settings (e.g. Kekre et al. 2008)

this approach has been shown to perform very well.

Optimization
Procedure

Simulation
Model

Input

Output

Figure 4.11: Coordination between optimization (OptQuest) and simulation (Arena)

In Section 4.4.3, when we introduced the diversion signalling coordination mechanism,

we introduced two different objectives: Maximizing the quality of care and maximizing

hospital revenue. For each of these objectives we consider the two cases in which either

only WPAHS hospitals use diversion (as was the case in Pittsburgh until recently) or in

which all hospitals use diversion signalling.

Our interviews with practitioners indicate that there is very little exchange of informa-

tion between hospitals, even if the hospitals belong to the same hospital system (e.g. one

UPMC ED physician could not tell us the number of beds or yearly number of patients of

several other UPMC EDs); hence, we assume that all hospitals set their diversion levels in

isolation (i.e. without considering the reaction of other hospitals to their change in policy).

In order to analyze a system with fully coordinated diversion levels, in which all hospitals

jointly optimize their diversion policies, one would need to solve a global optimization prob-

lem in 7 dimensions (one for each ED), which is outside the scope of this research and is not

applicable in Pittsburgh15. In Appendix B.6 we list the diversion levels that were selected
15We did run several experiments with the goal of finding a globally optimal set of diversion levels for the

case when 75% of patients could be convinced to be taken a hospital that was not their initial preference
(as we expect diversion levels to have the most impact if more patients would oblige to the request by the
hospital). We ran experiments for ED utilization levels of 50, 75, 90, and 95%. Although the optimization
routine was able to eliminate several solutions from the set of potentially optimal solutions, still many
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using optimization on a per hospital basis.

Repetitions & Run length

For every simulation experiment (each coordination mechanism is simulated with 4 utiliza-

tion levels and 3 values for pdiv) we run 20 replications of 1/2 year (183 days)16. Studies that

perform an intervention (i.e. actually make a change to the system in a controlled setting)

in how ED patients are routed use study lengths between 1 week (Vilke et al. 2004a) and 17

months (Patel et al. 2006), with several under 6 months (e.g. Sprivulis and Gerrard 2005,

Larson 2008). Hence, we are confident that both from a statistical as well as a practical

point of view we have picked reasonable simulation settings.

To reduce the amount of variation in our simulation outcomes we apply a variance

reduction technique know as Common Random Numbers (see e.g. Law and Kelton 1999),

which synchronizes the random events between the evaluation of different scenarios.

Simulation Results

In this section we analyze the effect of the coordination mechanisms outlined in Table 4.3 in

Section 4.4.3. We evaluate their effect with regard to several metrics: Average discounted

quality of care for all patient in the simulation (i.e. across the county), Hospital revenues,

and Ambulance response times. However, first we discuss how the optimal diversion levels

are set.

When we compare how the different objectives introduced for the diversion signalling

coordination mechanism influence the optimal diversion level it stands out that there appear

to be many potential solutions for which the objective values are statistically indistinguish-

able. In our simulation model this means that several diversion levels could be optimal.

scenarios are statistically indistinguishable (even though the standard deviation of the estimate of overall
quality was relatively small) and have significantly different parameter values. An example of the progress
of OptQuest can be found in Appendix B.5.

16Based on preliminary experimentation we were confident that this would yield results that are powerful
enough for our purposes. In these preliminary simulation experiments we considered the coordination mech-
anism in which hospitals are myopic and used ED utilization levels of 50, 75, 90, and 95%. We obtained very
narrow 95% confidence intervals for the average discounted quality level (as can be seen in Figure 4.13).
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OptQuest ranks the solutions by highest mean value for the objective under consideration

(even though this mean may not be statistically larger than many of the other means)17.

For an individual hospital it might appear to be optimal to divert all incoming ambulance

traffic from an average discounted quality of care perspective, i.e. the diversion level is set

at 0 (see Appendix B.6). However, for the instances where a diversion level of 0 provides the

highest average discounted quality of care, the average discounted quality of care provided

with a diversion level of 0 is statistically indistinguishable from other diversion levels. On

the other hand, when the highest average discounted quality of care is achieved with a

non-zero diversion level, the performance of the instance with the diversion level equal to

0 is typically statistically different (worse). Figure 4.12 shows instances in which the non-

zero diversion level leads to statistically insignificant, and statistically significant better

performance. We see in Figure 4.12(a) that when a small fraction of patients is willing to

listen (pdiv = .25), setting the diversion level at 0 (attempting to divert all ambulance traffic)

has no effect, as very few patients will change their behavior. But, as pdiv increases to 0.75 in

Figure 4.12(b), the diversion level will have to be increased in order to maximize the average

discounted quality of care: The hospital does not have to be as aggressive in diverting as it

will have more impact as more patients oblige. Hence, setting the diversion higher balances

the patients between the different EDs (setting it at 0 with many patients obliging would

just overload the other EDs). For several instances, in addition to using OptQuest to find

the optimal diversion level, we enumerated over all potential diversion levels and observed

that the hospital revenue has a similar shape as the profit curve described in Figures 4.8

and 4.9 in Section 4.5.1, even though we dealt with a hypothetical set of parameters in that

section.

17In reality the difference between two high diversion level may not be very large, as there may be
practically no difference between never diverting or only diverting when more than 50% of the ED beds are
occupied by boarding patients.
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(a) pdiv = 0.25, not statistically different.
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(b) pdiv = 0.75, diversion level of 0 performs
statistically worse.

Figure 4.12: Confidence intervals for the average discounted quality as a function of the
diversion level at The Western Pennsylvania Hospital.

Average discounted quality of care

In Section 4.4.4 we introduced a discounted quality metric: 100exp(−Waiting time). We

now explore which coordination mechanism is best able to deliver a good average discounted

quality of care over the entire county, i.e. all patients. In Figure 4.13 we plot confidence

intervals for the average discounted quality for each of the coordination mechanisms for

varying levels of pdiv, i.e. the likelihood that a patient can be persuaded to be taken to an

ED that was not his or her initial preference. In Figure 4.13 we limit ourselves to the case

of a utilization of 95%. Qualitatively similar effects are observed for other utilization levels,

these graphs are displayed in Appendix B.8.

In Figure 4.13 the JSQ and NEDOCS coordination mechanisms are identified to per-

form best. Let’s first focus on Figure 4.13(c). If we compare the different versions of the

EWMA18 coordination mechanisms we see that the performance deteriorates as the α pa-
18Recall that in this mechanism no information is disseminated by the hospitals and EMS crews talk

among each other to update the estimate of the queue length at a hospital, then the hospital with the lowest
queue length estimate is selected.
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(c) pdiv = 75%.

Figure 4.13: Average discounted quality for a 95% utilization level
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rameter decreases. This can be explained as follows: As α increases the average age of

the observed queue lengths in the estimate increases. For α = 0.01 the average age of the

observations in the EWMA estimate is almost 100 arrivals old. An average ED in our set

sees 7,280 ambulance arrivals per year (45, 000 ∗ 0.16, where 0.16 is the fraction of patients

that arrives by ambulance), which translates to roughly 20 patients per day. Hence, the

average observation used by EMS crews to determine their best choice of ED is about 5

days old, while the situation in that ED may have changed significantly. Another potential

drawback could be that the EWMA queue estimate causes the arrival stream into an ED to

be rather bursty. That is, if an ED currently has the highest estimated queue length it will

attract little ambulance traffic in the near future (as all estimates only slowly get updated

as α is low). Almost “automatically” the other queues will lengthen and this queue will

become the shortest, by the EWMA estimate (even though walk-in arrivals may have been

coming in throughout the period that ambulance traffic was being diverted), and attract

a significant amount of ambulance traffic. As the decision of which ED to go to is made

before the patient is transported to the ED several ambulances may have based their de-

cision on the same, old, information. Thus directing traffic based on old information can

lead to unnecessary diversion, bursty arrivals, and lower quality. As α approaches 1 we get

close to approximating the JSQ coordination mechanism (note that our version of JSQ is

not a “true” JSQ policy as we also take into account the number of empty beds, if any,

and that JSQ also differs from EWMA in that JSQ uses real time information rather than

observations when an ambulance last visited a hospital).

The coordination mechanisms that use a diversion level (either maximizing average

discounted quality or revenues) show a performance very similar to the performance of the

myopic policy which never diverts. This was to be expected given that many solutions

obtained by OptQuest often proved to be statistically very similar to one another implying

that all share very little diversion. The fact that diversion levels have very little effect on

the average discounted quality could provide comfort to the managers at various Pittsburgh
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hospitals that decided to use a “never divert” policy (Guyette 2009): We show they are

detrimental to the quality of care, and maximize revenues from ED operations.

The very strong performance of both JSQ and NEDOCS can be explained as follows.

These metrics have a higher information content than the diversion level policies in the sense

that they do not just communicate whether an ED is crowded but also provide a measure

to what degree an ED is crowded, i.e. even when the ED is very empty or very full one is

able to rank EDs by these metrics while a diversion signal would either be “on” or “off.”

This higher information content allows these measures to be informative also when none or

all EDs are on diversion. Furthermore, the NEDOCS mechanism also provides insight into

future developments as it also captures the state of the ID, providing information on how

likely the flow through the ED is going to keep moving. Another relative strength of JSQ

and NEDOCS as compared to the EWMA measures is that they have current information,

rather than observations from past visits by ambulances.

We illustrated that the policy most commonly used to mitigate crowded EDs (diversion

signalling) has limited effect on the average health outcomes as defined by our average

discounted quality measure, i.e. it often performs very similar to the policy in which all

patients go to their “preferred” hospital as determined by ED market shares. However,

we show that some others forms of coordination (JSQ, and NEDOCS) can significantly

increase the level of patient care by decreasing the waiting times19. In the specific setting

in Pittsburgh it might not be feasible to use the JSQ or NEDOCS measure on a city wide

scale. However, using them to coordinate ambulance arrivals between hospitals within the

same system may already deliver significant benefits.

We see the same qualitative effect in all scenarios. Comparing Figures 4.13(a) and 4.13(b)

with Figure 4.13(c), we see that the aforementioned effects are less pronounced as pdiv is

lower. This is not unexpected, as fewer patients are willing to adjust their hospital pref-

erence if so advised by an EMS crew, the lesser effect these coordination mechanisms can
19As we took the base quality levels to be equal for all EDs, any improvement in average discounted

quality is due to decreased waiting times.
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have (although even for pdiv = 25% the performance increase of JSQ and NEDOCS over

the other policies is statistically significant).

Hospital revenues

When we defined coordination mechanisms in Section 4.4, we recognized that hospitals may

be maximizing their revenue (or profit) rather than the average discounted quality of care.

So far we have evaluated the effect of coordination mechanisms on the average discounted

quality of care. We now discuss how hospital revenues are impacted. We limit ourselves to

discussing the cases with a utilization of 95% and pdiv = 0.75 as hospital systems would be

impacted most if more patients are diverted.

The 7 hospitals that we used in our study are part of two hospital systems, WPAHS and

UPMC. Figure 4.14 displays the revenues for each hospital system. For WPAHS only the

myopic and the EWMA scenarios with low α are positively identified as having statistically

lower revenues than the other scenarios. All other coordination mechanisms have revenues

that are not statistically different from one another.

From the results in Figure 4.14 we can conclude that those coordination mechanisms

that improve the quality of care and response times do not lead to a statistically significantly

lower revenue, at a hospital system level.

However, as mentioned earlier, the hospitals in Pittsburgh are not very tightly inte-

grated, even within a hospital system. Given this low level of integration we also evaluate

individual hospital revenues as well as individual ED revenues. Figure 4.15 displays the

revenues across different coordination mechanisms for Allegheny General Hospital (AGH);

for results on the other hospitals in our study see Appendix B.9. At the ED level there are

several coordination mechanisms that have revenues that are statistically lower than the

maximum possible level. These coordination mechanisms are: Myopic, EWMA(0.01), and

Diversion signalling (all except the case where WPAHS implements diversion levels that

maximize the optimal discounted quality level). Note however that, although these differ-

ences are statistically significant, the maximum percentage difference between the center of
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(b) UPMC.

Figure 4.14: Hospital system revenues for a utilization of 95% and pdiv = 75%.

the confidence intervals is 1.0%. Although a change in policy could thus have an effect on

ED revenues, this effect is small. At a hospital level, taking into account revenues from ED

and scheduled patients, the statistical significance disappears20. The fact that we observe

only a limited effect on hospital revenues can be explained from a redistribution perspec-

tive. That is, using any of the mechanisms we analyze, traffic gets diverted away from

a congested ED. However, these patients are still treated somewhere, thus diverted traffic

increases the patient volume at another ED. In reverse, the ED that was once congested will
20The maximum percentage difference for AGH shrinks to 0.2%
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attract additional traffic at times that other EDs are more congested. Hence, the amount

of patient treatment that needs to be performed merely gets distributed more equally over

time, an increased number of patients arrive at an ED when it is not congested versus a

decreased arrival rate when an ED is congested. This roughly balances out and keep the

overall revenues practically stable.
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Figure 4.15: AGH revenues for a utilization of 95% and pdiv = 75%.



4.5. Results 123

Ambulance response times

Eckstein et al. (2005) report that ambulance crews may be stuck in an ED for prolonged

periods of time. We now investigate the effect of our coordination mechanisms on the

response time of ambulances. Recall that ambulances that are stuck in an ED reduce the

number of available ambulances in the field, hence increasing the driving distance and time

to patients.

Figures 4.16 and 4.17 plot the response times for ED utilization levels of 50% and 95%.

In Figures 4.16(a) through 4.16(c) we see that only if a large fraction of patients are willing

to reconsider their hospital preference do we observe some effect on ambulance response

times. Comparing the results for a utilization of 50% and those for 95% one should note

the ratio between the shift of the mean (large for the 95% utilization case) as a function

of the information sharing mechanism and the inherent variability in the output. In case

the EDs are heavily utilized (as anecdotal evidence suggests they are, Guyette 2009) the

effectiveness of EMS crews can be greatly enhanced by providing them with good crowding

indicators (e.g. JSQ or NEDOCS) rather than having EMS crews rely on their own past

experience (i.e. EWMA with α = 0.01 or 0.05).
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Figure 4.16: Ambulance response times for an ED utilization level of 50%.
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Figure 4.17: Ambulance response times for an ED utilization level of 95%.
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4.6. Conclusions

In this chapter we studied the effectiveness of different mechanisms to provide EMS crews

and ambulance patients with information about the status of hospitals. This information is

used to decide which hospital will be best able to provide care to the patient with minimal

waiting times, hence improving the quality of care delivered. We investigated a commonly

used coordination mechanism, diversion levels, using a simplified queueing model and then

studied a wider variety of coordination mechanisms, including the diversion level mechanism,

using a simulation model applied to the situation as it exists in Pittsburgh (PA).

We were able to capture many real-world complexities in our simulation model that

could not be captured in the queueing model, however, there are still certain features that

could not be captured. Our model could be extended to capture some of these complexities:

In our models we considered a generic hospital. Although we incorporated data on size

(# beds), patients volumes, and length of stay from specific hospitals they may differ on

more dimensions. Many hospitals provide specific types of care (e.g. Presbyterian is strong

in transplant surgery and Shadyside has a larger cancer center) or provide care to specific

patients populations (e.g. Magee-Women’s Hospital and Children’s Hospital of Pittsburgh).

These differences in patient population may have an effect that is not captured in our data

or model at this point. With insight into patient characteristics we could also obtain better

estimates for ED treatment times, helping to better connect data from different sources.

Patient transportation times have been modeled based on how the population is dis-

tributed across the county. However, the population may shift significantly across the county

as people go to work. Not only may the location of people change, also driving speeds of

ambulances may be affected by such things as rush hour. Although we are confident that

we managed to capture the first order effects on the level of patient care, more detailed data

might help quantify the effect of coordination mechanisms on response times.

In the specific situation in Pittsburgh patients appear to have a rather strong hospi-
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tal preference. Anecdotal evidence (Hostler 2009) suggests that this might be different in

other regions, but also that the loyalty might be to a specific hospital system (e.g. based

on insurance coverage) rather than by specific hospitals. If people actually have a hospital

system preference this could motivate hospitals to divert ambulances within their own hos-

pital system, rather than diverting them at a county level. This would keep the revenues

within the same system while improving the quality of care provided.

Finally, in our simulation study we modeled a system of 7 EDs. Although EDs in

Pittsburgh have very little communication, it could be interesting to see what the effect

is of a diversion level policy in which the diversion levels are set taking into account the

diversion levels at all other EDs. Although this could lead to interesting insights, the

diversion level policy would still suffer from the limited amount of information contained in

a single diversion signal, as opposed to the information contained in the JSQ or NEDOCS

coordination mechanisms.

The two approaches developed to analyze policies to direct ambulance traffic can be

used to inform policy and decision makers in the field. In a stylized setting we showed the

dependencies of the parameter settings in a commonly used policy to avoid congested EDs:

ambulance diversion. We showed how the optimal diversion levels depend on the estimates

for various cost parameters included in our model, and that competing hospitals could set

their diversion levels such that the revenues, and quality of care at the other hospital are

decreased. In this sense diversion levels can be used as a competitive mechanism.

In our simulation study we capture many of the features that are present in a real-

world setting. Using the situation as it exists in Pittsburgh, we estimated realistic models

for patient arrivals and the distribution across patient types using data from the National

Hospital Ambulatory Medical Care Survey, Pittsburgh hospitals, and EMS professionals.

We used these models to simulate the performance of a set of 7 hospitals in the Pittsburgh

area. In our hospital models we incorporated details about the operations within the ED and

the ID, as the interactions between ED and ID have a significant effect on ED operations.
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We introduced and analyzed several coordination mechanisms. These coordination

mechanisms vary significantly in terms of how much information hospitals share. We show

that several of the mechanisms that are commonly used in practice (never divert, or use of

diversion levels) perform reasonably well. However, if a hospital never diverts ambulance

traffic EMS crews may start to rely on their own, and other crews’ experience. The mech-

anism that we used to capture the reliance on past experience led to a significant decrease

in the average quality of care.

As hospitals are not able to restrict the use of EMS crew’s experience, their “never

divert” policies will be overtaken by mechanisms in which EMS crews make their own infer-

ence about the status of a hospital (this may even be the case if diversion levels are set too

high, from the perspective of EMS crews). Hence, policies that provide too little informa-

tion to EMS crews are likely to be replaced in the field by a policy that may significantly

decrease the average discounted quality of care provided.

Two of our coordination mechanisms (JSQ and NEDOCS) disseminate more detailed

information about the status of a hospital. We show that the additional richness in informa-

tion significantly increases the average level of care that can be provided. These mechanisms

merely redistribute the arrivals of patients over time. Hence, the quality of care provided

can be increased without decreasing revenues.



Chapter 5

Conclusions

In this thesis we have analyzed three situations in which an operations manager has to make

decisions in the face of an uncertain future. In each of the chapters we aimed to aid decision

making by providing the operations manager with a model of uncertainty. Using the models

that we provide and analyze the operations manager is able to make better decisions and

evaluate how these decisions could play out in the future. One unifying these is that we

find that thresholds can be used effectively to help the decision maker.

In the first chapter the operations manager is tasked with operating a natural gas well.

As the price of natural gas fluctuates significantly, the operations manager needs to adapt

his decisions not only to the prevailing conditions, but also to expectations about the

future. Using stochastic dynamic programming we analyze the optimal deployment policies

for technology that can be used to enhance production and communication, and guide

decisions on when gas should be produced from the well at all.

In the second chapter, customers request products at random intervals. From the per-

spective of the operations manager not all customers are equal, and hence he wants to

protect some inventory for future requests from more important customers. We show that

a critical level inventory policy is able to provide good levels of service at a reasonable cost.

We compare and contrast the critical level policy with more näıve inventory policies as well
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as with the globally optimal policy and conclude that, while it is easy to implement, the

performance of the critical level policy can be close to that of the globally optimal policy.

In addition, the critical level policy is largely insensitive to the extent of variability in the

replenishment lead times.

In the final chapter we consider a situation that by definition is highly uncertain: pro-

viding emergency care. Emergency Departments (EDs) often observe that demand for

emergency services exceeds supply, which decreases the level of care that can be provided

to patients. We compare different mechanisms that can be used to relay information on

hospital status from the ED to EMS crews. EMS crews use this information to predict the

level of care that their patient will receive and the crew’s own delay at the ED and advise

the patient in hospital selection. Our comparison highlights that (i) some commonly used

policies result in almost indistinguishable levels of quality, (ii) providing no information at

all to EMS crews and leaving them to base decisions on their own experience can be detri-

mental for the level of care, and (iii) providing EMS crews with certain information-rich

indicators can greatly improve the quality of care, possibly without compromising hospital

revenues.

The unifying theme in these three chapters is that, in the face of uncertainty, an opera-

tions manager needs to adapt a model of the uncertain future. Using a model of uncertainty

the operations manager can, when provided with the proper information, greatly enhance

his decision making abilities. In each of the chapters we evaluate policies/machanisms of

different complexity and conclude that in many cases a simple threshold policy might yield

much of the benefits of complex state-dependent policies.

The applicability of the models analyzed in this thesis is not limited to the specific

settings to which we applied them. There is a great variety of operational decisions that

can benefit from the principles that we have uncovered in these specific settings.
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A.1. Detailed structure of the submatrices of the generator

The generator Q as defined in (3.6) consists of six submatrices each of which we describe

here. First, B0 is an (S + 1)× (S + 1) matrix and captures the transitions within level 0 of

the Markov process. Let i and j be the matrix indices, they equate to the level of inventory

+ 1:

B0(i, j) =



−(λ2 + Sµ) if i = j = 1;

−(λ+ (S − i+ 1)µ) if 1 < i ≤ S + 1 and j = i;

(S − i+ 1)µ if 1 ≤ i < S + 1 and j = i+ 1;

λ1 if 1 < i ≤ c+ 1 and j = i− 1;

λ if c+ 1 < i ≤ S + 1 and j = i− 1;

0 otherwise.

Next, B−1 is an (c+1)× (S+1) matrix and describes the transition, through the arrival

of a replenishment order, from level 1 to level 0:

B−1(i, j) =

 (S − c+ 1)µ if i = c+ 1 and j = c+ 1;

0 otherwise.

Third, B1 describes the transitions from level 0 to level 1 through the arrival of a class 2

demand when inventory is at or below the critical level c and is an (S+ 1)× (c+ 1) matrix:

B1(i, j) =

 λ2 if 1 ≤ i ≤ c+ 1 and j = i;

0 otherwise.

For levels 1 and up, A0(n) describes the transitions within level n and is an (c+1)×(c+1)
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matrix:

A0(n)(i, j) =



−((S + n)µ+ λ2) if i = j = 1;

−((S + n− i+ 1)µ+ λ) if 1 < i ≤ c+ 1 and j = i;

(S + n− i+ 1)µ if 1 ≤ i < c+ 1 and j = i+ 1;

λ1 if 1 < i ≤ c+ 1 and j = i− 1;

0 otherwise.

Fifth, the (c + 1)× (c + 1) matrix A−1(n) captures the transitions, by arriving replen-

ishment orders, from level n to level n− 1:

A−1(n)(i, j) =

 (S − c+ n)µ if i = j = c+ 1;

0 otherwise.

Finally, the (c + 1) × (c + 1) matrix A1 describes the transitions from level n to level

n+ 1 by the arrival of class 2 demands when inventory is at or below the critical level:

A1(n)(i, j) =

 λ2 if 1 ≤ i ≤ c+ 1 and j = i;

0 otherwise.
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A.2. Proofs of lemmas and theorems

A.2.1 Proof of Lemma 1

Consider the balance equations (3.7)–(3.10). For n ≥ 1 the third term of the left-hand side

of (3.8) and (3.9) can be written as follows:

π̃n+1A−1(n+ 1) = (0, . . . , 0, π̃c,n+1(S − c+ n+ 1)µ) (A.1)

As can be seen from Figure 3.2 this captures that the only flow from level n+ 1 to level n

is from (c, n+ 1) to (c, n). Now, due to global balance the following relation must hold:

π̃c,n+1(S − c+ n+ 1)µ = π̃nA1e = λ2π̃ne , (A.2)

where e the vector of ones of the appropriate size. Then from (A.1) and (A.2) we get:

πn+1A−1(n+ 1) = λ2πnA, (A.3)

where A is defined in (3.11). Substitution of (A.3) into (3.8), and (3.9) leads to:

π̃0B0 + π̃1B−1 = 0 for n = 0 (A.4)

π̃0B1 + π̃1A0(1) + λ2π̃1A = 0 for n = 1 (A.5)

π̃n−1A1 + π̃nA0(n) + λ2π̃nA = 0 for n ≥ 2 (A.6)

π̃S,0 = 1. (A.7)

Equations (A.4) through (A.7) have a unique solution.

Now π̃0 and π̃1 can be obtained from equations (A.4) and (A.5) with π̃S,0 = 1, and the

vectors π̃n for n ≥ 2 can be recursively calculated from (A.6) which can be rewritten as
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follows:

πn = −πn−1A1(A0(n) +Aλ2)−1 for n ≥ 2,

where (A0(n) +Aλ2)−1 exists, as it is a transient generator. �

A.2.2 Proof of Lemma 2

For the proof of Lemma 2 we first introduce diagonal levels for n ≥ 0 defined as the

set of states: {(0, n), (1, n+ 1), . . . , (c, n+ c)} and the corresponding probability vectors

δ̃n = (π̃0,n, π̃1,n+1, . . . , π̃c,n+c). The balance flow between two subsequent diagonal levels

can be expressed as:

δ̃neλ− π̃0,nλ1 = δ̃n+1e(S + n+ 1)µ. (A.8)

So, leaving out the second term on the left-hand side results in:

δ̃neλ ≥ δ̃n+1e(S + n+ 1)µ. (A.9)

and thus the probability of being at diagonal level n+ 1 can be expressed in the probability

of being at diagonal level n as follows:

δ̃n+1e ≤
λ

µ

1
S + n+ 1

δ̃ne .

Now we can bound the weighted probabilities using a cut off parameter ` ≥ 1. For horizontal

levels n ≥ c + ` we know the weighted probabilities are upper bounded by the weighted

probabilities of the diagonal layers. This works because the lowest diagonal layer, which

gets the same weight ((c+ `) as the lowest horizontal layer includes states below the lowest

horizontal bounding level, and the mass decreases in the level. Furthermore the weight

assigned to each state under the diagonal layer definition is at least as large as under the
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horizontal definition. The weighted diagonal layer can then bound the weighted horizontal

levels as follows: ∑∞
n=c+` nπ̃ne ≤

∑∞
n=`(n+ c)δ̃ne

=
∑∞

k=0(k + `+ c)δ̃`+ke .

Using the following result for the relation between two diagonal levels at distance k

δ̃`+ke ≤
(
λ
µ

)k
1

(S+`+k)...(S+`+1) δ̃`e

=
(
λ
µ

)k
(S+`)!

(S+`+k)! δ̃`e

we can bound
∑∞

n=c+` nπ̃ne as follows:

∑∞
n=c+` nπ̃ne ≤

∑∞
k=0

(
λ
µ

)k
(S+`)!

(S+`+k)! δ̃`e(k + `+ c)

= δ̃`e(S + `)!
(
µ
λ

)S+`
[∑∞

k=0

(
λ
µ

)S+`+k
1

(S+`+k)! (k + `+ c)
]

= δ̃`e(S + `)!
(
µ
λ

)S+`
[∑∞

k=0

(
λ
µ

)S+`+k
1

(S+`+k)! (k + S + `)− (S − c)
∑∞
k=0

(
λ
µ

)S+`+k
1

(S+`+k)!

]

= δ̃`e(S + `)!
(
µ
λ

)S+`
[
λ
µφ(S + `− 1)− (S − c)φ(S + `)

]
where φ(`) is as defined in (3.13). �
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A.2.3 Proof of Theorem 1

Theorem 1 has been stated formulated for Poisson arrivals and exponentially distributed

lead times. We will prove Theorem 1 for general arrivals and for both exponential (§A.2.3)

and degenerate hyperexponential (§A.2.3) lead times.

Exponential lead times

Both class 1 and class 2 orders arrive according to an arbitrary arrival process; let tn denote

the n-th arrival time of an order and in indicates whether it is an arrival of a class 1 (in = 1)

or class 2 (in = 2) order. It is assumed that the sequence tn satisfies 0 < t1 < t2 < · · ·

(thus only single arrivals) and that tn →∞ as n→∞.

The assumption that lead times are exponentially distributed allows us to sample new

lead times for all items in the pipeline immediately after each arrival; let sj,n be the j-th

lead time just after tn, where lead times are ordered such that orders that are outstanding in

both systems appear first, and those that are outstanding in only one system appear later.

Further, let mc(t) denote the number of items on hand, nc(t) the number of backorders and

xc(t) the number of items in the pipeline at time t in the system with critical level c; note

that mc(t), nc(t) and xc(t) are step functions (with steps of size 1) and we assume these

functions are right-continuous (so the number at time t is the same as the number just after

time t).

Using this notation we will prove that, on the same sample path, for all t ≥ 0, the

performance measures depend on c in the following manner:

nc(t) ≤ nc+1(t) (A.10)

xc(t) ≤ xc+1(t) (A.11)

Note that this will give us that the number of backorders and the pipeline inventory are

stochastically increasing in c, which is actually stronger than just the monotonic increase
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in the means. To prove the above relations, we fix a sample path of arrivals to both

systems. Replenishment orders that are common to both systems are also coupled, i.e.

we couple the resampled lead times in both systems. After every customer arrival we

sample max(xc(t), xc+1(t)), we then assign the first min(xc(t), xc+1(t)) to both systems.

The remainder is assigned only to the system with the highest number of outstanding

orders. Hence the sequences remain coupled. The orders in the pipeline are indexed by j

in the order in which they are assigned. As there may be more outstanding orders in one

system than in another, these additional replenishment orders are sampled separately.

At time t = 0 we assume that the on-hand inventory is S, there are no backorders and

the pipeline is empty, so mc(0) = S and nc(0) = xc(0) = 0.

Clearly, for all t ≥ 0,

mc(t) = S − (xc(t)− nc(t)), (A.12)

and the CL policy implies that nc(t) = 0 if mc(t) > c. Let m(t−) denote the stock level just

before t, i.e.,

m(t−) = lim
s↑t

m(s),

and 1[A] the indicator which is 1 if A holds and 0 otherwise.

By induction we will prove that (A.10)-(A.11) hold for [0, tn) for all n ≥ 1. Since

mc(0) = mc+1(0) = S and nc(0) = nc+1(0) = xc(0) = xc+1(0) = 0 and there are no events

during [0, t1) (since the pipeline is empty), it follows that (A.10)-(A.11) hold for t ∈ [0, t1).

Now assume that (A.10)-(A.11) are valid for [0, tn), so just before tn,

nc(t−n ) ≤ nc+1(t−n ), (A.13)

xc(t−n ) ≤ xc+1(t−n ). (A.14)

Then we will show that (A.10)-(A.11) remain valid during [tn, tn+1). At time tn a new
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demand arrives. If in = 1:

nc(tn) = nc(t−n ) ≤ nc+1(t−n ) = nc+1(tn),

so (A.10) is still valid for tn. For xc(tn) we have

xc(tn) = xc(t−n ) + 1[mc(t−n )>0] = xc(t−n ) + 1[xc(t−n )−nc(t−n )<S].

If xc(t−n ) < xc+1(t−n ), then clearly, (A.11) is valid for tn and if xc(t−n ) = xc+1(t−n ), then by

(A.13)

xc(tn) = xc(t−n ) + 1[xc(t−n )−nc(t−n )<S] ≤ x
c+1(t−n ) + 1[xc+1(t−n )−nc+1(t−n )<S] = xc+1(tn). (A.15)

If in = 2: By (A.14)

xc(tn) = xc(t−n ) + 1 ≤ xc+1(t−n ) + 1 = xc+1(tn), (A.16)

so (A.11) is still valid for tn. For nc(tn) we have

nc(tn) = nc(t−n ) + 1[mc(t−n )≤c] = nc(t−n ) + 1[S−xc(t−n )+nc(t−n )≤c].

If nc(t−n ) < nc+1(t−n ), then clearly, (A.10) is valid for tn and if nc(t−n ) = nc+1(t−n ), then by

(A.14)

nc(tn) = nc(t−n ) + 1[S−xc(t−n )+nc(t−n )≤c] ≤ n
c+1(t−n ) + 1[S−xc+1(t−n )+nc+1(t−n )≤c+1] = nc+1(tn).

Hence, (A.10)-(A.11) are valid at time tn.

Now we will show that (A.10)-(A.11) remain valid on (tn, tn+1) for both cases (in = 1

and in = 2). Assume that uj,n := tn + sj,n < tn+1, i.e., the jth replenishment arrives before
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tn+1. First suppose j ≤ min(xc(tn), xc+1(tn)) = xc(tn), thus we have an arrival in both

systems c and c+ 1, and further assume

nc(u−j,n) ≤ nc+1(u−j,n),

xc(u−j,n) ≤ xc+1(u−j,n). (A.17)

Then we will show that (A.10)-(A.11) remain valid at uj,n (thus the arrival preserves (A.10)-

(A.11)). Clearly

xc(uj,n) = xc(u−j,n)− 1 ≤ xc+1(u−j,n)− 1 = xc+1(uj,n),

so (A.11) is still valid for uj,n. For nc(uj,n) we have, provided nc(u−j,n) > 0,

nc(uj,n) = nc(u−j,n)− 1[mc(u−i,n)≥c] = nc(u−j,n)− 1[S−xc(u−j,n)+nc(u−j,n)≥c].

If nc(u−j,n) = 0 or nc(u−j,n) < nc+1(u−j,n), then clearly, (A.10) is valid for uj,n and if 0 <

nc(u−j,n) = nc+1(u−j,n), then by (A.17):

nc(uj,n) = nc(u−j,n)−1[S−xc(u−j,n)+nc(u−j,n)≥c] ≤ n
c+1(u−j,n)−1[S−xc+1(u−j,n)+nc+1(u−j,n)≥c+1] = nc+1(uj,n).

Now suppose we only have an arrival of a replenishment order in the c + 1 system as

min(xc(tn), xc+1(tn)) = xc(tn) < j ≤ xc+1(tn) = max(xc(tn), xc+1(tn)). This implies

xc(u−j,n) < xc+1(u−j,n) and thus (A.11) holds for uj,n. Again, if nc(u−j,n) = 0 or nc(u−j,n) <

nc+1(u−j,n), then clearly, (A.10) is valid for uj,n. If 0 < nc(u−j,n) = nc+1(u−j,n), then, since

nc(uj,n) = nc(u−j,n), we have to show that also nc+1(·) does not decrease, i.e., mc+1(u−j,n) <

c+ 1. It holds

mc+1(u−j,n) = S − xc+1(u−j,n) + nc+1(u−j,n) ≤ S − xc(u−j,n) + nc(u−j,n) = mc(u−j,n) ≤ c,
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where the last inequality follows from nc(u−j,n) > 0. This completes the proof of (A.10)-

(A.11) as, by induction, these relationships hold for all t.

(3.14) remains to be proven. As class 2 customers only get served when there are no

backorders, i.e. nc(t) = 0, and c < mc(t) we focus on times where nc(t) = 0. By (A.11) and

(A.12), we have that

mc(t) = S − xc(t) + 0 ≥ S − xc+1(t) + 0 = mc+1(t)

Consider first the specific inventory levels

c+ 1 ≤ mc+1(t) ≤ mc(t),

and note that when the first inequality holds at equality the system with critical level

c+ 1 does not serve class 2 demand, while the system with critical level c does. When the

first inequality is strict, both systems serve class 2 demand. Hence, the fraction of class

2 demand satisfied from inventory is larger under the system with critical level c. When

mc+1(t) < c+ 1 class 2 customers will not be served in the c+ 1 system but may be served

in the c system and again the fraction of of class 2 demand satisfied from inventory is larger

under the system with critical level c. �

Remark 2 The relation between mc(t) and mc+1(t) is not monotonic in c as is illustrated

by the following example with S = 2, c = 0, t1 = 1, i1 = 2, t2 = 2, i2 = 2, t3 = 3 and

i3 = 1. Replenishments arrive at t = 4 and t = 5. This will lead to the following system as

outlined in Table 2. This shows that mc(t) < mc+1(t) (at t = 2) as well as mc(t) > mc+1(t)

(at t = 5) may happen.
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t = 0 mc(0) = 2 = mc+1(0)
nc(0) = 0 = nc+1(0)
xc(0) = 0 = xc+1(0)

t = 1 mc(1) = 1 = c+ 1 = mc+1(1)
nc(1) = 0 = nc+1(1)
xc(1) = 1 = xc+1(1)

t = 2 mc(2) = 0 < 1 = mc+1(2)
nc(2) = 0 < 1 = nc+1(2)
xc(2) = 2 = xc+1(2)

t = 3 mc(3) = 0 = mc+1(3)
nc(3) = 0 < 1 = nc+1(3)
xc(3) = 2 < 3 = xc+1(3)

t = 4 mc(4) = 1 = mc+1(4)
nc(4) = 0 < 1 = nc+1(4)
xc(4) = 1 < 2 = xc+1(4)

t = 5 mc(5) = 2 > 1 = mc+1(5)
nc(5) = 0 = nc+1(5)
xc(5) = 0 < 1 = xc+1(5)

Table A.1: Example of potential system evolution for S = 2, c = 0

Degenerate Hyperexponential lead times

Definition 1 A sample from a degenerate hyperexponential distribution is drawn from an

exponential distribution with rate µ∗ with probability p and is 0 with probability 1− p.

We will now show that, with degenerate hyperexponential distributed lead times, for all

t ≥ 0, the performance measures depend on c in the following manner:

nc(t) ≤ nc+1(t) (A.18)

xc(t) ≤ xc+1(t) (A.19)

This proof follows along the same lines as the proof of (A.10)-(A.11). First we consider

the points in time when a replenishment order is placed. Let 1[LT>0] be 1 with probability

p (i.e. the lead time is to be drawn from the exponential with rate µ∗), and 0 otherwise.
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Then we modify (A.15) and (A.16) as follows:

xc(tn) = xc(t−n ) + 1[LT>0]1[xc(t−n )−nc(t−n )<S] ≤ xc+1(t−n ) + 1[LT>0]1[xc+1(t−n )−nc+1(t−n )<S] = xc+1(tn)

xc(tn) = xc(t−n ) + 1[LT>0]1 ≤ xc+1(t−n ) + 1[LT>0]1 = xc+1(tn),

As the lead time that is drawn is the same in both system, we know (A.18)-(A.19) are

valid at tn (the argument for (A.18) did not change). To show that (A.18)-(A.19) remain

valid on (tn, tn+1) we need to realize that only replenishment orders with non-zero lead times

actually entered the pipeline. Focussing on these replenishment orders only the arguments

from the proof of §A.2.3 are still valid. Which proves (A.18)-(A.19).

(3.14) for the degenerate hyperexponential case follows directly from the argument for

(3.14) in §A.2.3. �

A.2.4 Proof of Lemma 3

The cost of a certain policy (see equation (3.1)) can be bounded from below as follows:

C(S, c) = p1λ1(1− β1(S, c)) + p2λ2(1− β2(S, c)) + bB(S, c) + hI(S, c)

= p1λ1(1− β1(S, c)) + p2λ2(1− β2(S, c)) + (b+ h)B(S, c) + h (I(S, c)−B(S, c))

≥ p2λ2(1− β2(S, c)) + (b+ h)B(S, c) + h (I(S, c)−B(S, c))

= p2λ2(1− β2(S, c)) + (b+ h)B(S, c) + h (S −X(S, c))

≥ p2λ2(1− β2(S, c)) + (b+ h)B(S, c) + h (S −X(S, S)) (A.20)

≥ p2λ2(1− β2(S, c)) + (b+ h)B(S, c) + h

(
S − λ

µ

)
, (A.21)

where (A.21) follows from (A.20) by the monotonicity results in Theorem 1.
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A.3. Markov Decision Process details

Since all events happen with exponentially distributed interarrival times it is sufficient to

only look at the states of the system when events occur.

A.3.1 States, Events, Decisions, Transitions

The state of the system can be fully specified by:

• The amount of inventory on hand (I);

• The number of backorders (B, note that backorders may exist even if there is inven-

tory).

• The number of items on order (DI, information about when an order is placed is not

needed as long as exponential lead times are used);

• The last event that occurred (E, 1 if the event was such that in the current state

orders can be placed, i.e. a demand was satisfied or backordered, 0 else, i.e. a demand

was rejected or a replenishment arrived).

The state space is denoted by a four-tuple: (I,B,DI,E). In the MDP formulation we

make three additional assumptions to bound the state space and thus also the maximum

transition rate from any state. When solving the MDP we will ensure that these bounds have

insignificant effect on the optimal solution by solving the MDP repeatedly with increasing

bounds, as soon as the total probability mass in all boundary states drops below a threshold

the effect of bounding becomes negligible. i) We assume there exists a maximum inventory

level Î, ii) we assume there exists a maximum number of backorders B̂, and iii) we assume

that as soon as the number of backorders equals B̂ no further class 2 demands will arrive.

Given the three bounding assumptions we get bounds: 0 ≤ I ≤ Î, 0 ≤ B ≤ B̂, and

subsequently 0 ≤ DI ≤ Î − I + B̂, effectively: 0 ≤ DI ≤ Î − I +B. This second bound on

the amount DI is because whenever all replenishment orders arrive before the next demand

one must still be inside the state space.
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Figure A.1: Illustration of the sequence of events

We consider the following decisions at every event:

• a1 = 1: Satisfy class 1 demand as long as inventory is available (I = 0⇒ a1 = 0 since

you have no inventory to act otherwise).

• a2 ∈ {0, 1}: If a class 2 demand occurs whether to serve it or backorder it. If a2 = 0

you would reject (i.e. backorder) the class 2 demand and if a2 = 1 you serve the

demand. (I = 0⇒ a2 = 0 since you have no inventory to act otherwise).

• a3 ∈ {0, 1}: How to use an incoming replenishment order. If a3 = 0 any incoming

item is added to inventory and if a3 = 1 a backorder is cleared.

• a4 ∈ {0, 1}: How much to order. This order immediately becomes effective and

determines the current size of the pipeline.

We are aware of the fact that ordering at most 1 item at a time may lead to a suboptimal

solution. Since we are mainly interested in how our critical level policy deals with class 2

demand we believe that this restrictions do not limit our insights in this repect.

The timeline, seen in Figure A.1, is as follows: Suppose the state of the system is changed

by the occurrence of an event (a class 1 demand occurs and it is served, a class 2 demand

occurs, or a replenishment order arrives), at (after) the occurrence of an event (i.e. when

one has the knowledge of which event happened) one has to make a decision consisting of
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an action tuple of size 4, {a1, a2, a3, a4} 1. The first three types of decisions become effective

at the occurrence of the next event (i.e. they describe how to handle the next event). The

fourth decision is the decision how much to order, which is immediately implemented and

affects the number of items in the pipeline.

Now that we have specified the available actions we consider the transitions. These depend

on both the event occurring and the action taken:

• At rate λ1 a demand from class one arrives.

– If a1 = 1, i.e. the demand is served, the transition goes to (I − 1, B,DI + a4, 1),

and

– if a1 = 0, i.e. the demand is rejected, the transition goes to (I,B,DI, 0), this is

effectively a fake transition, happening at rate λ1 if a1 = 0 (only if I = 0).

• At rate λ2 a demand from class two arrives (when b < B̂).

– If a2 = 1, i.e. the demand is served, the transition goes to (I − 1, B,DI + a4, 1),

and

– if a2 = 0, i.e. the demand is backordered, the transition goes to (I,B + 1, DI +

a4, 1).

• At rate (DI+a4)µ a replenishment order arrives. When a replenishment order arrives

one has to decide how to use the incoming item. Depending on this decision (a3) the

transition goes to (I + 1− a3, B − a3, DI − 1 + a4, 0).

• At rate [(Î + B̂)− (DI + a4)]µ= (Î + B̂ −DI − a4)µ a ”fake” transition will happen,

this transition goes back to our current state (I,B,DI,E).
1When the event did not change the state of the system (e.g. reject a class 1 customer) the decision

made at the previous event will remain optimal after the current event because events follow a (memoryless)
exponential distribution.
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A.3.2 The LP formulation

Now we have formulated the MDP we use linear programming to determine the optimal

cost. At this point the bounding of the state space and the bounding of the transition rate

out of any state enable us to uniformize (Ross 1997) using the ”fake” transitions introduced

in the previous section.

The LP formulation is based on Sections 8.8.1 and 11.4.4 from Puterman (1994) .

Throughout the LP the variables are such that for each (state, action) combination there

is a variable, denoted by π(I,B,DI,E, a1, a2, a3, a4), which denotes the steady state distri-

bution.

Objective function

The objective function consists of (A.22a) for the holding cost, (A.22b) for the penalty cost

for rejecting a class 1 demand, backordering cost p2 are incurred in those states summed in

(A.22c), i.e. when a class 2 demand is backordered, and finally the cost b are incurred in all

states where the number of backorders exceeds 0, see (A.22d).

min
Î∑
I=1

B̂∑
B=0

Î−I+B∑
DI=0

1∑
E=0

∑
a1∈{0,1}

∑
a2∈{0,1}

∑
a3∈{0,1}

∑
a4∈{0,1}

hIπ(I,B,DI,E, a1, a2, a3, a4)

(A.22a)

+
Î∑
I=0

B̂∑
B=0

Î−I+B∑
DI=0

1∑
E=0

∑
a2∈{0,1}

∑
a3∈{0,1}

∑
a4∈{0,1}

p1λ1π(I,B,DI,E, 0, a2, a3, a4) (A.22b)

+
Î∑
I=0

B̂∑
B=0

Î−I+B∑
DI=0

1∑
E=0

∑
a1∈{0,1}

∑
a3∈{0,1}

∑
a4∈{0,1}

p2λ2π(I,B,DI,E, a1, 0, a3, a4) (A.22c)

+
Î∑
I=0

B̂∑
B=1

Î−I+B∑
DI=0

1∑
E=0

∑
a1∈{0,1}

∑
a2∈{0,1}

∑
a3∈{0,1}

∑
a4∈{0,1}

bBπ(I,B,DI,E, a1, a2, a3, a4)

(A.22d)
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Constraints

A constraint balance equation is needed for each state, (I,B,DI,E), and is of the form

OUT − IN = 0. We use s and a to denote the state and action tuples for brevity. Here we

describe the constraint for s = (I,B,DI,E), assuming this is a state in the interior of the

state space. Defining S as the set of states, now let Γ(s, a) =
∑

j∈S γ(j|s, a); Γ denotes the

total rate out of state s whenever action a is taken and γ(j|s, a) is the probability of going

from state s to state j whenever action a is taken. Due to the uniformization we know that

Γ(s, a) = λ1 + λ2 + (Î + B̂)µ.

The “OUT” part of the constraint would be as follows:

∑
a1∈{0,1}

∑
a2∈{0,1}

∑
a3∈{0,1}

∑
a4∈{0,1}

Γ(I,B,DI,E, a1, a2, a3, a4)π(I,B,DI,E, a1, a2, a3, a4)

(A.23)

Here Γ(I,B,DI,E, a1, a2, a3, a4) consists of:

• λ1 if a1 = 1, and I > 0, since I = 0⇒ a1 = 0;

• λ2 if I > 0, and B < B̂ (interior of state space), or I > 0, and B = B̂, and a2 = 1, or

I = 0, and B < B̂, where the later two are for the boundary states;

• (DI + a4)µ, the speed at which a replenishment will come in.

• λ1 + λ2 + (Î + B̂)µ− (λ1I{a1=1∧I>0} + λ2I{(I>0∧B<B̂)∨(I>0∧B=B̂∧a2=1)∨(I=0∧B<B̂)}
+ (DI +

a4)µ), the fake transitions.

where Icondition = 1 if the condition is true and 0 otherwise.

The ”IN” constraints are more complicated and describe all possible ways to enter state

(I,B,DI,E). They consist of 3 parts. Part (A.24a) deals with the arrival of a class 1

demand. Part (A.24b) handles the arrival of class 2 demand. Part (A.24c) refers to getting

an item delivered and adding it to inventory (a3 = 0), or using the incoming item to clear

a backorder (a3 = 1). The last term of each of the lines below denotes the rate at which

you are going into our state s under consideration from the state in the summation, note
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that this rate is action independent. Recall that we are looking at states from which you

will get into state (I,B,DI,E), (note 0 ≤ DI ≤ Î − I +B), then:

1∑
E=0

∑
a2∈{0,1}

∑
a3∈{0,1}

∑
a4∈{0,1}

I
(I+1,B,DI−a4,E)∈S

π(I + 1, B,DI − a4, E, 1, a2, a3, a4)λ1 (A.24a)

+
1∑

E=0

∑
a1∈{0,1}

∑
a2∈{0,1}

∑
a3∈{0,1}

∑
a4∈{0,1}

I
(I+a2,B−1+a2,DI−a4,E)∈S

π(I + a2, B − 1 + a2, DI − a4, E, a1, a2, a3, a4)λ2 (A.24b)

+
1∑

E=0

∑
a1∈{0,1}

∑
a2∈{0,1}

∑
a3∈{0,1}

∑
a4∈{0,1}

I
(I+a3−1,B+a3,DI+1−a4,E)∈S

π(I + a3 − 1, B + a3, DI + 1− a4, E, a1, a2, a3, a4)(DI + 1)µ

(A.24c)

Furthermore, the fake transitions only lead into states (I,B,DI, 0), as no ordering is

allowed in a fake transition:

1∑
E=0

∑
a1∈{0,1}

∑
a2∈{0,1}

∑
a3∈{0,1}

∑
a4∈{0,1}

I
(I,B,DI−a4,E)∈S

π(I,B,DI − a4, E, 1, a2, a3, a4)
(
λ1 + λ2 + (Î + B̂)µ − (A.25)

(λ1I{a1=1∧I>0} + λ2I{(I>0∧B<B̂)∨(I>0∧B=B̂∧a2=1)∨(I=0∧B<B̂)}
+ (DI + a4)µ)IE=1

)

This indicator function, Icondition is used to effectively truncate the state space.

This leads to the constraint:

(A.23)− (A.24a)− (A.24b)− (A.24c)− (A.25) = 0 (A.26)
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Furthermore we need a ”normalization” constraint:

Î∑
I=0

B̂∑
B=0

Î−I+B∑
DI=0

1∑
E=0

∑
a1∈{0,1}

∑
a2∈{0,1}

∑
a3∈{0,1}

∑
a4∈{0,1}

π(I,B,DI,E, a1, a2, a3) = 1. (A.27)

To find the optimal solution we solve the linear program outlined above using the CPLEX

barrier method. To determine whether the truncation of our state space impacts our optimal

solution, we track the probability mass in the boundary states. Whenever the probability

mass exceeds 10−6 we increase the size of our state space. Since our problem is highly

degenerate and the barrier method returns the solution with the largest support we imple-

mented a second phase in which we minimize the probability mass in the boundary states

while not moving away from the optimal cost.
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A.4. Modifications for degenerate hyperexponential lead times

By setting p and µ∗ as defined in Definition 1 (§A.2.3) properly, this distribution can match

the first and second moment of any distribution with C2 ≥ 1: p = 1− C2−1
C2+1

and µ∗ = pµ.

A.4.1 Modifications in the evaluation of a given policy

In the behavior of the policy there are some changes when the lead times follow the degen-

erate hyperexponential distribution. The main difference is that some of the replenishment

orders get a zero lead time and thus arrive immediately. The modifications to the Markov

process in Figure 3.2 are the following:

• The rate of all transitions from (m,n) to (m− 1, n) gets multiplied by p,

• The transition from (m,n) to (m,n + 1) for m < c gets replaced by two transitions,

one to (m,n+ 1) at rate pλ2 and one to (m+ 1, n+ 1) at rate (1− p)λ2,

• The rate of the transitions from (c, n) to (c, n+ 1) gets multiplied by p

• The replenishment rate µ gets replaced by µ∗ throughout.

The above modifications change the matrices outlined in Appendix A.1 and thus the gener-

ator Q (3.6). Since our special structure is still maintained, the solution procedure remains

the same. In the bounding procedure as outlined in Lemma 2 all λ values get multiplied by

p and µ gets replaced by µ∗.

A.4.2 Modifications in the optimization

Since the monotonicity results do not depend on the specific structure of our Markov process

(see Appendix A.2.3), these still hold and can be applied in the development of the bounds

for the enumeration. Again λ should be replace by pλ and µ by µ∗.
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B.1. Table of notation with chapter 4

BjED Number of regular ED beds in hospital j

BjSED Number of surge ED beds in hospital j

BjI Number of inpatient beds in hospital j

njH (njL) Number of high (low) acuity patients at hospital j

njI Number of inpatients either at the backbone hospital or boarding at hospital j

njB Number of patients boarding in the ED of hospital j

n̄j Waiting room size at hospital j

λjA Ambulance arrival rate to hospital j

λjW Walk In arrival rate to hospital j

λjI Arrival rate to the ID of hospital j

λjAH (λjAL) Ambulance arrival rate of high (low) acuity patients to hospital j

λjWH (λjWL) Walk-In arrival rate of high (low) acuity patients to hospital j

ΛHj (ΛLj ) Net arrival rate of high (low) acuity patients to hospital j

PjAH Probability that an ambulance arrival to hospital j is triaged as high acuity patient

PjWH Probability that a walk-in arrival to hospital j is triaged as high acuity patient

λjH (λjL) Arrival rate of high (low) acuity patients to hospital j

µjH (µjL) Treatment rate of high (low) acuity patients at hospital j

µjI Treatment rate of inpatients at hospital j

µjHD Rate at which high acuity patients that are waiting for service at hospital j die

pjHR (pjLR) Probability that a high (low) acuity patient is discharged after treatment at hospital j

pjHA (pjLA) Probability that a high (low) acuity patient is admitted after treatment at hospital j

pjdiv A ratio of patients willing to be re-routed from hospital j to the suggested hospital

pdiv A ratio of patients willing to be re-routed independent of the original hospital choice

cjnE Cost of using a normal ED bed at hospital j

cjnS Cost of using a surge ED bed at hospital j

cjnB Cost of using an ID bed at hospital j

cjBB Cost of re-scheduling an inpatient if the ID of hospital j is full

cjDT Cost of having a patient die while undergoing treatment at hospital j

cjDW Cost of having a patient die while waiting at hospital j

cjW Cost of making a patient wait at hospital j

rjnH (rjnL) Revenue generated by a high (low) acuity patient at hospital j

rjnB Revenue generated by an inpatient at hospital j

pij Fraction of patients re-directed from hospital i to hospital j

Dj Diversion indicator for hospital j

n̂j Diversion threshold used at hospital j

~njI Number of ID patients currently receiving treatment at hospital j

~njH (~njL) Number of high (low) acuity patients currently receiving treatment at hospital j

πS Steady state probability of being in state S

α Weight given to the most recent observation in EWMA estimation

dR Average distance that an ambulance has to travel to a patient

tR Epected response time to pick up a patient

wa Width of a square area that is serviced by one ambulance crew

va Average speed of an ambulance traveling with signals

wAll Width of Allegheny county

NA Number of ambulances ”in service” in Allegheny county
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B.2. Details of test instances for our queueing model

This table lists the instances used to illustrate the queueing model in Section 4.5.1:
Hospital 1 Hospital 2

Instance 1 2 3 4 1 2 3 4

BjED 8 8 8 8 7 7 5 6
BjSED 3 3 3 3 0 0 0 0

BjI 12 12 12 12 7 7 7 7
n̄j 20 20 20 20 8 8 8 8
λjA 15 15 15 15 15 15 15 15
λjW 60 60 60 60 60 60 60 60
λjI 100 100 100 100 100 100 100 100
µjH 5 5 5 5 5 5 5 5
µjL 45 45 45 45 45 45 45 45
µjI 10 10 10 10 10 10 10 10

µjHD 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
cjnE 1000 1000 1000 1000 1000 1000 1000 1000
cjnS 1200 1200 1200 1200 1200 1200 1200 1200
cjnB 500 500 500 500 500 500 500 500
cjBB 20 20 20 20 20 20 20 20
cjDT 500 500 500 500 500 500 500 500
cjDW 104 107 104 104 104 107 104 104

cjW 10 1000 10 10 10 1000 10 10
rjnH 1500 1500 1500 1500 1500 1500 1500 1500
rjnL 1150 1150 1150 1150 1150 1150 1150 1150
rjnB 700 700 700 700 700 700 700 700
PjAH 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
PjwH 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
pjHR 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
pjHA 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68
pjLR 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
pjLA 0.199 0.199 0.199 0.199 0.199 0.199 0.199 0.199
pjdiv 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.8
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B.3. Distribution of population by ZipCode

This table lists the distance from each ZipCode to the center of the 2-mile radius circle in

which all hospitals are located:
Zip Name Pop. Dist. Prob. Zip Name Pop. Dist. Prob.

15213 Pittsburgh 28,320 0.000 0.0223 15145 Turtle Creek 7,974 9.389 0.0063
15224 Pittsburgh 12,095 1.519 0.0095 15243 Pittsburgh 13,660 9.389 0.0108
15232 Pittsburgh 11,792 1.713 0.0093 15139 Oakmont 6,911 9.651 0.0055
15219 Pittsburgh 19,204 1.781 0.0151 15106 Carnegie 19,074 9.717 0.0150
15201 Pittsburgh 14,326 1.953 0.0113 15133 McKeesport 6,816 9.859 0.0054
15203 Pittsburgh 9,613 1.998 0.0076 15102 Bethel Park 30,825 10.027 0.0243
15217 Pittsburgh 26,425 2.186 0.0208 15132 McKeesport 26,131 10.167 0.0206
15222 Pittsburgh 1,999 2.653 0.0016 15051 Indianola 628 10.763 0.0005
15206 Pittsburgh 32,482 3.065 0.0256 15137 North Versailles 11,053 10.891 0.0087
15210 Pittsburgh 31,216 3.350 0.0246 15035 E. Mc Keesport 2,354 10.927 0.0019
15207 Pittsburgh 13,203 3.351 0.0104 15025 Clairton 17,341 10.998 0.0137
15209 Pittsburgh 12,891 3.667 0.0102 15148 Wilmerding 2,907 11.020 0.0023
15208 Pittsburgh 13,352 4.070 0.0105 15129 South Park 11,458 11.199 0.0090
15212 Pittsburgh 31,850 4.084 0.0251 15241 Pittsburgh 20,616 11.343 0.0163
15211 Pittsburgh 12,477 4.120 0.0098 15024 Cheswick 8,484 12.145 0.0067
15223 Pittsburgh 7,991 4.180 0.0063 15131 McKeesport 9,132 12.158 0.0072
15215 Pittsburgh 13,212 4.627 0.0104 15142 Presto 713 12.504 0.0006
15214 Pittsburgh 17,519 4.637 0.0138 15140 Pitcairn 3,695 12.581 0.0029
15120 Homestead 20,437 4.706 0.0161 15017 Bridgeville 14,530 12.745 0.0115
15227 Pittsburgh 29,621 4.725 0.0234 15049 Harwick 982 12.847 0.0008
15218 Pittsburgh 14,956 4.845 0.0118 15044 Gibsonia 23,196 12.956 0.0183
15233 Pittsburgh 4,876 4.988 0.0038 15146 Monroeville 29,394 13.110 0.0232
15226 Pittsburgh 14,648 5.447 0.0116 15225 Pittsburgh 1,232 13.393 0.0010
15221 Pittsburgh 36,387 5.735 0.0287 15135 McKeesport 5,623 13.507 0.0044
15220 Pittsburgh 19,693 6.246 0.0155 15144 Springdale 4,648 13.759 0.0037
15116 Glenshaw 14,921 6.272 0.0118 15090 Wexford 18,252 13.982 0.0144
15216 Pittsburgh 24,691 6.313 0.0195 15037 Elizabeth 11,676 14.352 0.0092
15234 Pittsburgh 14,911 6.707 0.0118 15076 Russellton 931 14.502 0.0007
15122 West Mifflin 21,861 6.770 0.0172 15007 Bakerstown 345 14.502 0.0003
15104 Braddock 11,434 6.785 0.0090 15064 Morgan 340 14.543 0.0003
15236 Pittsburgh 30,630 7.130 0.0242 15239 Pittsburgh 21,108 14.884 0.0166
15204 Pittsburgh 9,502 7.305 0.0075 15030 Creighton 1,053 15.483 0.0008
15229 Pittsburgh 13,677 7.510 0.0108 15015 Bradfordwoods 1,174 15.947 0.0009
15034 Dravosburg 2,015 7.806 0.0016 15031 Cuddy 576 15.962 0.0005
15228 Pittsburgh 17,723 7.883 0.0140 15143 Sewickley 16,518 16.056 0.0130
15238 Pittsburgh 13,571 7.968 0.0107 15071 Oakdale 9,287 16.090 0.0073
15205 Pittsburgh 22,586 8.157 0.0178 15108 Coraopolis 37,804 16.341 0.0298
15235 Pittsburgh 39,126 8.499 0.0309 15018 Buena Vista 708 16.534 0.0006
15112 E. Pittsburgh 3,616 8.616 0.0029 15084 Tarentum 10,542 16.795 0.0083
15136 Mc Kees Rocks 22,537 8.648 0.0178 15086 Warrendale 284 17.818 0.0002
15110 Duquesne 7,332 8.774 0.0058 15014 Brackenridge 3,543 18.571 0.0028
15101 Allison Park 24,323 8.816 0.0192 15056 Leetsdale 1,215 19.502 0.0010
15202 Pittsburgh 21,022 8.972 0.0166 15046 Crescent 2,242 20.334 0.0018
15147 Verona 18,442 9.145 0.0145 15065 Natrona Heights 11,996 20.335 0.0095
15045 Glassport 4,993 9.236 0.0039 15126 Imperial 6,743 21.291 0.0053
15237 Pittsburgh 42,597 9.253 0.0336
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B.4. Results of statistical analysis

B.4.1 Arrival process

This Appendix describes how the significant factors driving the arrival processes have been

determined. We use unbalanced ANOVA to test which factors are statistically significant

in determining the mean number of arrivals. Table B.1 and Figure B.1 display the results

for the model that included all five factors. Day of week is determined not to be significant

as this factor has a p-value of 0.370.

Table B.1: Model fit results for arrival process (NHAMCS).

Factor Type Levels Values
Month fixed 12 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

DayOfWeek fixed 7 Fri, Mon, Sat, Sun, Thu, Tue, Wed
PeriodOfDay fixed 3 1, 2, 3

Acuity fixed 5 1, 2, 3, 4, 5
ArrivalMode fixed 2 Ambulance, Walk-In

(a) Factors included in the model.

Source DF Seq SS Adj SS Adj MS F P
Month 11 14.01 19.20 1.75 4.72 0.000

DayOfWeek 6 1.68 2.40 0.40 1.08 0.370
PeriodOfDay 2 484.91 568.58 284.29 769.06 0.000

Acuity 4 1654.41 1743.68 435.92 1179.25 0.000
ArrivalMode 1 2318.41 2318.41 2318.41 6271.81 0.000

Error 4630 1711.51 1711.51 0.37
Total 4654 6184.94

S = 0.607994 R-Sq = 72.33% R-Sq(adj) = 72.18%

(b) Analysis of variance for LN(# Arrivals), using Adjusted SS for Tests.

In Table B.2 and Figure B.2 we display the model fit results for a simplified model,

eliminating the Month variable. We observe that the R2 only decreases from 72.18% to

71.94%, leading us to the conclusion that a model without the Month variable is almost as

appropriate for our purposes.
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Figure B.1: ANOVA residual plots for the number of arrivals.

Table B.2: Model fit results for arrival process (NHAMCS), simplified model.

Factor Type Levels Values
DayOfWeek fixed 7 Fri, Mon, Sat, Sun, Thu, Tue, Wed

PeriodOfDay fixed 3 1, 2, 3
Acuity fixed 5 1, 2, 3, 4, 5

ArrivalMode fixed 2 Ambulance, Walk-In

(a) Factors included in the model.

Source DF Seq SS Adj SS Adj MS F P
DayOfWeek 6 1.66 2.37 0.28 0.74 0.615

PeriodOfDay 2 484.40 567.69 242.20 649.48 0.000
Acuity 4 1651.93 1740.76 412.98 1107.44 0.000

ArrivalMode 1 2316.24 2316.24 2316.24 6211.14 0.000
Error 4641 1730.71 1730.71 0.37
Total 4654 6184.94

S = 0.610670 R-Sq = 72.02% R-Sq(adj) = 71.94%

(b) Analysis of variance for LN(# Arrivals), using Adjusted SS for Tests.

The plots of residuals vs. fitted values in Figures B.1 and B.2 shows that the residuals

have different scattering patterns around zero at different factor levels, which indicates that
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Figure B.2: ANOVA residual plots for the simplified model for the number of arrivals.

the variances between subgroups may be unequal. As our sample sizes are unequal we are

likely to find more factors to be significant than when this phenomenon would not be present

(Neter et al. 1996). ANOVA is generally believed to be quite robust for violation of the

“equal variances” assumption (Neter et al. 1996). In addition, we used several procedures

(both Tukey (reported) and Bonferroni) to run the ANOVA and found the same significance

results. Therefore, we are confident that our model with Period of day, Acuity, and Arrival

mode captures the relevant dynamics of the arrival process of our system.
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B.4.2 Treatment time

This Appendix describes how the significant factors driving the treatment time in the ED

have been determined. Table B.3 and Figure B.3 display the results for the model that

included all five factors.

Table B.3: Model fit results for treatment times (NHAMCS).

Factor Type Levels Values
Acuity fixed 6 1, 2, 3, 4, 5, 6

ArrivalMode fixed 2 Ambulance, Walk-In
PeriodOfDay fixed 3 1, 2, 3

Month fixed 12 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
DayOfWeek fixed 7 Fri, Mon, Sat, Sun, Thu, Tue, Wed

(a) Factors included in the model.

Source DF Seq SS Adj SS Adj MS F P
Acuity 5 3951.15 2741.97 548.39 506.82 0.0000

ArrivalMode 1 2290.65 2231.87 2231.87 2062.68 0.0000
PeriodOfDay 2 96.03 97.25 48.62 44.94 0.0000

Month 11 314.78 314.06 28.55 26.39 0.0000
DayOfWeek 6 76.97 76.97 12.83 11.86 0.0000

Error 54673 59157.58 59157.58 1.08
Total 54698 65887.15

S = 1.04020 R-Sq = 10.21% R-Sq(adj) = 10.17%

(b) Analysis of variance for LN(Treatment time), using Adjusted SS for Tests.

Although all factors are significant, we explored options to simplify the model. In

Table B.4 and Figure B.4 we display the estimation results for a simplified model, keeping

only the Acuity and Arrival Mode variables. We observe that the R2 only decreases from

10.17% to 9.64%, leading us to the conclusion that the simplified model still captures the

main features among our factors that drive treatment times.

Inspecting Figures B.3 and B.4 we notice that there are numerous observations with high

standardized residuals and/or high leverage. This may indicate that these observations are

influential outliers. However, Cook’s distance measure, a combined measure of residuals and
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Figure B.3: ANOVA residual plots for treatment times.

Table B.4: Model fit results results for treatment times (NHAMCS), simplified model.

Factor Type Levels Values
Acuity fixed 6 1, 2, 3, 4, 5, 6

ArrivalMode fixed 2 Ambulance, Walk-In

(a) Factors included in the model.

Source DF Seq SS Adj SS Adj MS F P
Acuity 5 3951.1 2774.2 554.8 508.76 0.0000

ArrivalMode 1 2290.6 2290.6 2290.6 2100.42 0.0000
Error 54692 59645.4 59645.4 1.1
Total 54698 65887.2

S = 1.04430 R-Sq = 9.47% R-Sq(adj) = 9.46%

(b) Analysis of variance for LN(treatment time), using Adjusted SS for Tests.

leverage, does not show any abnormalities (all values close to 0), hence no action is required.

Moreover, inclusion of influential outliers would reduce F-values, making significant factors

look insignificant which has not occurred as all factors are still significant.
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Figure B.4: ANOVA residual plots for the simplified model of treatment times.

B.4.3 Length of stay - Nonurgent

We have attempted to use ANOVA to determine which factors have a significant impact

on the LOS for admitted patients. However, regardless of different remedial measures tried

(such as various transformations and a model with weighted least squares) we could not fit

a model that would have normally distributed error terms and would capture a reasonably

large percentage of variability. This indicates that the LOS is impacted by factors that

we are not considering. If we split our data set by Acuity level (as suggested by Guyette,

2009) we can use ANOVA for the Nonurgent arrivals (see Table B.5 and Figure B.5). In

this model none of the factors considered (Month, Day of week, Period of day, Mode of

arrival) were significant. Hence, we decided to split the LOS by Acuity only and estimate

a distribution based on this factor.
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Table B.5: Model fit results for Length of stay (NHAMCS).

Factor Type Levels Values
ArrivalMode fixed 2 Ambulance, Walk-In
PeriodOfDay fixed 3 1, 2, 3

Month fixed 12 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
DayOfWeek fixed 7 Fri, Mon, Sat, Sun, Thu, Tue, Wed

(a) Factors included in the model.

Source DF Seq SS Adj SS Adj MS F P
DayOfWeek 6 5.1687 6.0008 1.0001 2.20 0.044

ArrivalMode 1 0.6433 0.4939 0.4939 1.09 0.298
PeriodOfDay 2 2.4722 2.3972 1.1986 2.64 0.074

Month 11 5.9058 5.9058 0.5369 1.18 0.300
Error 219 99.3611 99.3611 0.4537
Total 239 113.5511

S = 0.673575 R-Sq = 12.50% R-Sq(adj) = 4.51%

(b) Analysis of variance for LN(LOS), using Adjusted SS for Tests.
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Figure B.5: ANOVA residual plots for the LOS for Nonurgent ED arrivals.
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B.5. OptQuest progress

Figure B.6 provides insight into the progress of an OptQuest optimization run. This figure

displays the best objective value obtained up to each point in the optimization, simulation

sequence.

Figure B.6: Progress of an OptQuest optimization run.
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B.6. Optimal diversion levels

The optimal diversion levels for the diversion level policy analyzed in Section 4.5.2 are as

follows:
Utilization 50% 75% 90% 95%

pdiv 0.250.500.75 0.250.500.75 0.250.500.75 0.250.500.75
Average discounted quality

Allegheny General Hospital 1 8 5 8 8 9 3 2 6 8 4 11
Western Pennsylvania Hospital 1 1 1 8 25 25 0 1 1 0 1 1

Children’s Hospital of Pittsburgh 16 22 31 15 21 26 17 18 15 15 15 17
Magee-Women’s Hospital 0 3 9 0 1 2 10 5 5 5 5 6

Mercy 1 3 6 3 5 7 9 10 9 4 5 7
Presbyterian 11 15 15 8 3 15 4 5 9 5 8 7

Shadyside 2 3 8 6 5 10 11 6 3 1 9 3
Hospital revenue

Allegheny General Hospital 12 16 18 8 14 13 12 14 14 10 12 12
Western Pennsylvania Hospital 1 1 1 8 25 25 1 1 1 1 1 1

Children’s Hospital of Pittsburgh 22 25 28 25 20 25 21 19 19 20 24 21
Magee-Women’s Hospital 9 9 9 4 6 3 4 10 5 9 7 5

Mercy 17 20 16 15 19 20 13 21 17 15 16 15
Presbyterian 20 20 16 22 8 22 14 14 16 16 16 16

Shadyside 17 21 20 14 14 15 17 17 18 11 12 11
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(a) The Western Pennsylvania Hospital.
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(b) Children’s Hospital of Pittsburgh.
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(c) Magee-Women’s Hospital.
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(e) Presbyterian.
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(f) Shadyside.

Figure B.7: 95% Confidence intervals for the utilization of specific EDs, for each scaling
factor assuming pdiv = 0.



B.8. Confidence intervals for the average discounted quality 166

B.8. Confidence intervals for the average discounted quality
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Figure B.8: Average discounted quality for the 50% utilization level
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Figure B.9: Average discounted quality for the 75% utilization level
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Figure B.10: Average discounted quality for the 90% utilization level
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Figure B.11: The Western Pennsylvania Hospital revenues for a utilization of 95% and
pdiv = 75%.
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Figure B.12: Children’s Hospital of Pittsburgh revenues for a utilization of 95% and pdiv =
75%.
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Figure B.13: Magee Women’s Hospital Hospital revenues for a utilization of 95% and pdiv =
75%.
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Figure B.14: Mercy revenues for a utilization of 95% and pdiv = 75%.
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(b) ED & ID.

Figure B.15: Presbyterian revenues for a utilization of 95% and pdiv = 75%.
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(b) ED & ID.

Figure B.16: Shadyside revenues for a utilization of 95% and pdiv = 75%.
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