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Dissertation Abstract

This dissertation focuses on the perishable inventory theory with health-care applications,

the multi-variate input modeling for stochastic simulations, and temporal and bivariate

dependence modeling for interarrival and service times of the queueing systems. This disser-

tation contributes to the perishable inventory theory by introducing the critical level policy

for the first time with application from the blood platelet inventory management. Moreover,

this dissertation introduces the Vector-Auto-Regressive-to-Anything (VARTA) method as

an advanced simulation input modeling to analyze the impact of temporal and bivariate

dependent interarrival and service times in the queueing systems. A synopsis of the three

chapters of the dissertation follows.

Chapter 1: “Blood Platelet Inventory Management with Protection Levels and Substitu-

tion”

We consider a discrete-time inventory system for a perishable product that has distinct de-

mand streams for product of different ages; an example of such a system is blood platelets.

In addition to inventory holding, outdating and shortage costs, our model includes substi-

tution costs when a demand for a certain-aged item is satisfied by a different-aged item.

Our objective is to minimize the expected cost over an infinite time horizon. We introduce

the critical level policy to the perishable inventory literature, protecting the newest items

against excessive Downward substitution, borrowing an approach from the spare parts liter-

ature. This reserves these newest items for future demand for procedures needing younger

items (i.e. fresher blood platelets). We model the problem as a Markov Decision Process

(MDP) and evaluate the costs of a common heuristic replenishment policy (with and with-

out a protection level) against extant “near optimal” policies in the literature. We show

that the protection level policy may outperform other policies, particularly if supplies are

capacitated.

Chapter 2: “Failure Probability of VARTA in Higher Dimensions”

Vector-Autoregressive-To-Anything (VARTA) is a highly flexible model for driving large-

scale stochastic simulations by generating samples of stationary multivariate time series

with arbitrary marginal distributions. The construction of this model relies on a stable
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vector autoregressive process with a positive definite autocorrelation matrix. We show that

there exists multivariate time-series input processes for which the conditions of stability and

positive definiteness are violated. We investigate the likelihood of this event with increasing

number of component time-series processes and order of dependence by extending the onion

method, which is used for sampling positive definite correlation matrices for random vectors,

to sample positive definite autocorrelation matrices for multivariate time series. We find

that the failure probability of VARTA reaches one with increasing number of component

time series and order of dependence, but at a rate very much dependent on the rate of

decay in temporal dependencies. We conclude with a discussion on an approximation of

VARTA that might enable the simulation practitioner to avoid the failure of VARTA in

high-dimensional settings.

Chapter 3: “The Impact of Dependence on Single-Server Queueing Systems”

In this study, we use advanced simulation input modeling to study the impact of bivariate

and temporal dependencies among interarrival and service times on the performance of a

single-server queue. The distinguishing feature of our study from those in the literature is to

consider a wide variety of distributional shapes for the probability density functions of the

interarrival and service times, and the patterns that arise in the temporal dependencies of

the interarrival and service times. We generate dependent interarrival and service times via

using the Vector-Auto-Regressive-to-Anything method, which has never before been used in

queueing systems. We investigate the impact of dependent interarrival and service times

on the average waiting time of M/M/1, M/G/1 and G/M/1 systems. We show that high

variance and positive skewed nonexponential distributions decrease the performance of the

single-server system. We also compare impact of temporal dependencies in interarrival and

service times for M/M/k systems (k ≥ 2) with the M/M/1 system, and conclude that the

effect of dependence decreases in multi-server systems. Our main contribution is to combine

this advanced input modeling method with queueing theory for investigating the impacts of

dependent interarrival and service times on the average waiting time.
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Chapter 1

Blood Platelet Inventory
Management with Protection Levels
and Substitution

We consider a discrete-time inventory system for a perishable product that has distinct de-

mand streams for product of different ages; an example of such a system is blood platelets.

In addition to inventory holding, outdating and shortage costs, our model includes substi-

tution costs when a demand for a certain-aged item is satisfied by a different-aged item.

Our objective is to minimize the expected cost over an infinite time horizon. We introduce

the critical level policy to the perishable inventory literature, protecting the newest items

against excessive Downward substitution, borrowing an approach from the spare parts liter-

ature. This reserves these newest items for future demand for procedures needing younger

items (i.e. fresher blood platelets). We model the problem as a Markov Decision Process

(MDP) and evaluate the costs of a common heuristic replenishment policy (with and with-

out a protection level) against extant “near optimal” policies in the literature. We show

that the protection level policy may outperform other policies, particularly if supplies are

capacitated. 1

1.1. Introduction

One week after the 9/11 terrorist attacks, Altman [4] reminded the American public about

the perishability of blood. He stated, “Few people realize that blood is perishable and cannot

be stored indefinitely. Blood centers function more as pipelines than banks, and there is a

steady need for donors.” Altman’s emphasis on the need of more blood donors stems from

1Co-authors: Itir Karaesmen and Alan Scheller-Wolf
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the perishability of blood, and also points to the importance of effective utilization of blood

resources. Of course, blood is not needed only in times of crisis; the American Red Cross

states that “every 2 seconds an American needs blood,” which shows that blood inventory

management decisions could be life-saving, every day.

Not only is the utilization of blood very important, but in addition Wilson et al. [90]

show that handling blood products has recently become increasingly expensive. For instance,

he cites statistics from the Canadian Institute for Health Information showing that the total

expenditures of the Canadian Blood Services increased 51% in 2001-02 compared to an

increase in health care costs of 25% on average. Furthermore, the 2005 Blood Collection

and Utilization report states 8.4% of surveyed hospitals in the US reported that elective

surgery was postponed on one or more days in 2004 due to blood inventory shortages. In

addition, more than 1.5 million components of blood platelets are transfused each year in

the US (Sullivan et al. [80]), while at the same time 17% of platelet units collected in the US

were outdated in 2004. Recently Landro [51] reports a decrease in overall blood collection

in 27% of the US blood centers because of the swine-flu pandemic, and she emphasizes the

blood centers’ plans to allocate blood to the sickest patients. All of these statistics show

that it is crucial that society should find ways to reduce costs and improve utilization within

blood supply chains, so as to make the best use of limited blood resources.

Blood inventory management has been extensively studied in the OM literature. We refer

readers to the survey papers of Nahmias [65], Prastacos [73], Pierskalla [71] and Karaesmen

et al. [45]. Blood products are prototypical examples of age-based perishable products for

which consumers have specific preferences, differentiating by product age. However, papers

with age-differentiated demand in multi-product, multi-period settings are limited in the

literature. An exception is Haijema et al. ([37], [36]), who analyze the perishable inventory

problem of blood platelets, which are the most expensive and the most perishable blood

product, having only four to six days of shelf life. In their study, demand for “young”

platelets come from oncology and hematology, while demand for “any” aged blood comes

from traumatology and general surgery. They use a combined Markov Decision Process

(MDP) and simulation approach to find near-optimal heuristics in their setting. Recently,

Kopach et al. [48] construct a red blood cell inventory management system with two demand

rates (urgent/ non-urgent). They use a queueing model with simulation to compare different

control techniques using data from the Canadian Blood Services.

We consider an age differentiated product with three periods of lifetime, under an heuris-
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tic inventory policy, NIS (see Karaesmen et al. [45]). This policy orders a constant amount

of New items in each period; this is a very common inventory replenishment practice in

grocery stores and blood banks, and has also been shown to be effective in the literature

(Deniz et al. [27]). Our model includes Upward and Downward substitution, in which Old

blood platelets could be given to New blood platelet demand in Upward substitution, and

vice versa in Downward substitution. Haijema et al. ([37], [36]) refer to Upward substitution

as mismatch; according to the industry example in Haijema et al. ([37], [36]) from a Dutch

blood bank, Upward substitution is very common in practice. Our model includes (possibly

negative) costs for substitution, as well as (positive) costs if blood is outdated or if demand

is left unsatisfied. Moreover, as blood banks and hospitals have limited space and blood

must be refrigerated, we include an inventory cost.

Historically blood platelet transfusion was shown to reduce death from bleeding in pa-

tients with acute leukaemia in the 1950s (Hersh et al. [39]). Since then, transfusion of

platelets has grown to be a significant part of treatment of conditions such as cancer, or-

gan transplant, haematopoietic stem cell transplantation, marrow failure, AIDS, hepatitis,

cardiovascular surgery and traumatology [79]. In addition to the treatments mentioned in

Haijema et al. [37], in which oncology patients request the freshest platelets and trauma-

tology patients have no preference on the age of the blood platelet, Fontaine et al. [30]

reports that platelet demand from organ transplant operations is realized a couple of hours

in advance of the operation and it is treated as an emergency receiving the freshest blood

platelets. Moreover, a recent review of blood platelets and liver transplantation stated that

“platelets are critically involved in liver injury and in liver generation via serotonin-mediated

mechanisms” [70]. Therefore, our model with three age-differentiated demand streams can

be seen as a model for practice in which transplant patients need new-aged platelets (3 pe-

riods of shelf time), cancer and hematology patients need medium aged platelets (2 periods

of shelf time) (or fresher), and traumatology patients have no preference on the age of blood

platelets. Note that in the current study of Fontaine et al. [30] in the Stanford Blood Center,

the hospital blood bank doesn’t release blood platelets for two days after donation due to

testing. Therefore, the practical shelf life of blood platelets are often three days, and our

modeling framework that considers blood platelets with three periods of lifetime fits the

practice in such a blood bank.

With respect to the transfusion of blood platelets, there is no cross-matching of blood

types unless the blood platelets contain a significant amount of red blood cells [79]. Currently
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in transfusion medicine, plateletphresis, which is an automated method to separate platelets

from other whole blood components, allows the collection of blood platelets, while returning

plasma and red blood cells to the donor (The unit cost of producing blood platelet by

plateletphresis is $538.72 on average [2]). Regarding transfers from other blood banks in

case of inventory shortages, Brodheim et al. [15] considers a cycle stock model for red blood

with life time of m periods; then, Prastacos [73] develops an allocation policy of red blood

cells in a regional blood bank with n locations. His objective is to minimize expected average

shortages and expected average outdates in this region. Fontaine et al. [30] reports that

there is no trade of blood platelets in practice between different blood banks due to the

high perishability of blood platelets; however, hospitals are able to get the freshest platelets

from other blood centers or hospitals in the time shortage. Thus, modeling a single product,

blood platelets at a single location, without considering different blood types in our study

agrees with transfusion practice.

One issue confronted in blood banks is the need to maintain stocks of fresh inventory.

To protect such inventory, we introduce the critical level policy to the perishable inventory

literature, borrowing it from the spare parts literature. This policy protects the newest

items against excessive downward substitution, possibly leaving some demand for the oldest

blood unsatisfied in order to reserve the freshest blood for future demand requesting younger

blood platelets (like transplants or oncology). Our main goal is to evaluate the effectiveness

of using the NIS heuristic along with a critical level, as compared to the “near optimal” but

more complex policies in the literature.

As mentioned above, this protection level policy is related to the critical level inventory

policies for single product and multiple demand systems in spare parts inventory management

(Veinott [85], Topkis [84], Deshpande et al. [28], Arslan et al. [6], Dekker et al. [26],

Kranenburg and van Houtum [49], Zhao et al. [92]). In this research stream, there are

multiple demand streams that are prioritized, a single non-perishable product of a single age

in inventory, and the goal is to set a reorder level along with a critical number; when the

inventory falls below this critical number the low priority demand will not be served. For

the first time, we introduce a critical level type inventory policy to multi-product, multi-

period perishable inventory systems. Considering the transfusion practice given above and

our modeling framework comprised of three age-differentiated groups of blood platelets,

protecting New-aged blood platelets against excessive demand of Old-aged platelets could

help, because protecting New-aged platelets for a period (day) against excessive demand
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from the traumatology department may allow serving more cancer patients in the future.

In addition to the efficient utilization of blood platelet inventories, Moroff [63] from the

American Red Cross explains another crucial issue in the transfusion of platelets. He points

out the substantial increase in usage of blood platelets over the last 15-20 years in the US,

because of the enhanced supportive care required by cancer patients and the use of stem cell

transplants. He also states that the total demand from patients receiving blood platelets is

increasing, because of the aging population and “aggressive medical practices.” The demand

for blood platelets is increasing in Europe, too. Condon [24] reports an over 50% increase

in demand between 2001 and 2006 in Ireland. Another similar demand increase for platelets

recently caused critical shortage for cancer patients in Scotland in 2009 (Moss 2009). Such

shortages may also come about due to factors such as epidemics and disasters, that can

reduce the overall platelet supply dramatically. For instance, Landro [51] reports that 27%

of the US blood centers faced reductions in overall blood collections due to the swine-flu

pandemic. Therefore, hospital blood bank managers increasingly face capacities on platelet

shipments from blood centers. In this study, we show that our protection policy may be

particularly helpful when there is a capacity on platelet supply.

In the next section, we introduce the details of the modeling framework of our blood

platelet inventory management problem with substitution, protection levels and capacities.

1.2. The model

Considering the transfusion practice in US blood banks, the actual shelf life of platelets is

about three days [30]. Therefore, in our model we have three age-differentiated stocks of

blood platelets: New, Medium and Old. At the beginning of every period, a fixed num-

ber of the newest blood platelets are ordered from a capacitated supply with no lead-time.

This assumption is reasonable since blood platelet donors typically donate platelets regularly

according to a schedule [30]. Unused blood from the previous period ages: New platelets

become Medium-aged, Medium-aged become Old platelets, and Old platelets become out-

dated.

In the critical level protection model, we protect the newest blood platelet against exces-

sive demand of Old items. In other words, there is no limit on substitution from New-aged

item inventory to Medium-aged item demand or Medium-aged inventory to Old-aged item

demand. (There is no need to protect n-aged items against excessive n+1-aged item demand
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since n-aged item will age to n+1 in the next period and we are in a discrete-time framework

with all demand filled at the end of a period.) The demand process is discrete and nonneg-

ative for all periods. We assume that the demand process is iid for each demand stream

denoted by D3, D2 and D1, as New, Medium and Old respectively (the subscript denotes

the number of periods of lifetime remaining). Demand processes that are not iid still fit our

modeling framework, but they would make the transition probabilities and one-period cost

expressions more complicated.

The shortage, inventory holding and outdating costs are denoted as pi, hi for i = 1, 2, 3,

and m respectively. In addition to considering outdating costs, we include shortage and

substitution costs. As an example, the demand to New-aged blood platelets, which is pri-

marily needed for organ transplants, are realized a couple hours before the operation [30].

If such blood is unavailable and the transplant is postponed, we capture this in shortage

costs. If such donors are unavailable, but instead older blood platelets are available for use,

our modeling framework captures this situation in substitution costs. We denote downward

substitution costs as αAB
D when substituting A to B for AB = {NM,NO, MO}; and we

use αEF
U for the Upward substitution when substituting E to F for EF = {MN, ON, OM}.

Finally, we use S to denote the (constant) New blood platelet inventory level before demands

are realized. Recall that we assume infinite supply of platelets (S may be constrained and

we analyze this capacitated case in Section 1.6) and zero lead time.

We can thus represent our model’s states as (i, j), where i and j denote the inventory

levels of Medium and Old blood platelets before demand is realized: Our inventory control

problem is a discrete Markov Chain (MC) with (S + 1)2 states. Since our discrete MC is

positive recurrent, we can easily find the limiting probabilities, πij for all i, j = 0, 1, ..., S.

Then, we can represent the expected cost as

S∑

i=0

S∑

j=0

πijCij (1.1)

where πij is the limiting probability and Cij is the one-period cost of state (i, j).

We give examples of the cost expressions below. Note that these costs are based on

substitution assumptions which specify the substitution priorities. In the expressions we use

the following assumptions:

• Excessive demand of New items gets priority for substitution over excessive Medium

or Old item demand.
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• Excessive Medium-item demand gets priority for substitution over excessive Old item

demand.

• Inventory of a specific age satisfies its own demand to the extend possible before being

used for substitution.

• We substitute items of the “closest” available age.

For instance, if we are short New items, we substitute from Medium first and then from

Old item inventory, if both have excessive inventory. However, if we are short Medium items,

we substitute from Old items first, only after satisfying excessive New item demand from

excess Old item inventory. Similarly, if we are short both New and Old items, we satisfy

New item demand first, and then Old. Other substitution rules of course are possible. These

will change our specific cost expressions, but not our general solution framework.

1.2.1. No protection level (c=0)

Our model without protection level extends the NIS policy studied in Deniz et al. [27] from

two periods of life time to three periods. In addition to the limiting probabilities, we need to

calculate expected one-period costs, Cij, for each state (i, j). The expected one-period cost,

Cij, is the summation of expected one-period shortage cost, expected one-period inventory

cost, expected one-period outdating cost and expected one-period substitution cost.

Limiting probabilities

Recall that state (i, j) corresponds to inventory level of i for Medium-aged platelets and j for

Old-aged platelets after demand is realized. The limiting probabilities, πij, are formulated

for fixed order level, S, in four different cases of the state space: (0, 0), (0, k), (k, 0) and (i, j)

for 1 ≤ k ≤ S and 1 ≤ i, j ≤ S. First, π00 is

π00 =
S∑

i=0

S∑

j=0

πij [Pr (D3 + D2 + D1 ≥ S + i + j)

+ Pr (D3 ≥ S,D3 + D2 ≥ S + i,D3 + D2 + D1 < S + i + j)].

There are two possible ways of transferring from state (i, j) to state (0, 0) depending on

the total demand. The first term shows the case when the total demand exceeds the total

available inventory. In addition, the second term is for the case when the total demand is

less than the total available inventory. Since our perishable product, blood platelet, ages
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for each period and outdates after Old-age (3 days), D3 ≥ S and D3 + D2 ≥ S + i finish

all New-aged and Medium-aged inventory. Therefore, state (i, j) goes to state (0, 0) even if

there are left-over Old-aged platelets after demand is realized, because these left-over Old

platelets outdate.

For 1 ≤ k ≤ S, the limiting probability, π0k, is

π0k =
S∑

i=k

S∑

j=0

πij [Pr (D3 ≥ S, D3 + D2 = S + i− k, D1 ≤ j)

+ Pr (D3 ≥ S,D3 + D2 + D1 = S + i− j − k, D1 > j)].

There are two possible different transitions from (k, j) to (0, k) for 1 ≤ k ≤ S and 0 ≤ j ≤ S

depending on whether there is substitution for Old platelets. Note that there is no transition

from state (i, j) to (0, k) for 0 ≤ i < k and 1 ≤ k ≤ S, because transition to state (0, k)

requires at least k amount of Medium-aged platelet inventory before demand is realized.

For 1 ≤ k ≤ S, the limiting probability, πk0, is

πk0 =
S∑

i=0

S∑

j=0

πij [Pr (D3 = S − k, D2 + D1 ≤ i + j, D2 ≥ i)

+ Pr (D3 = S − k, D2 + D1 = i + j, D2 < i)

+ Pr (D3 + D2 + D1 = S + i− j − k, D3 < S − k)].

There are three different possible transitions to state (k, 0) from state (i, j) for 1 ≤ k ≤ S

and 0 ≤ i, j ≤ S. Since we need to go state (k, 0), there should be exactly k amount of

New-aged platelet left-over inventory after demand is realized. If D3 < S−k, then extra New

platelet inventory exceeding k is used for downward substitution to excessive older platelet

demands, and the total demand should be equal to S + i− j − k.

Finally, the rest of the limiting probabilities, πij for 1 ≤ i, j ≤ S, are calculated by

πij =
S∑

k=j

S∑

l=0

πkl [Pr (D3 = S − i,D2 = k − j,D1 ≤ l)

+ Pr (D3 = S − i,D1 + D2 = k + l − j, D1 > l)].

Note that there is no transition from state (k, l) to (i, j) for 0 ≤ k < j and 0 ≤ l ≤ S, because

transition to state (i, j) requires at least j amount of Medium-aged platelet inventory before

demand is realized. Hence, two possible transitions to state (i, j) from (k, l) exist depending

on the value of Old platelet demand, D1.
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Shortage costs

There are three unit shortage costs: p3, p2 and p1. In state (i, j), the expected one-period

shortage cost for New platelets is

p3E
[(

(D3 − S)+ − (i−D2)
+ − (j −D1)

+
)+

]
. (1.2)

Note that implicit in this expression is the assumption that each stock of inventory serves

its demand first, and any left-over inventory is first used to satisfy demand for New items.

The expected one-period shortage cost for Medium-aged platelets is

p2E

[(
(D2 − i)+ − (S −D3)

+ −
(
(j −D1)

+ − (D3 − S)+
)+

)+
]
. (1.3)

Similarly implicit in this expression is the assumption that each stock of inventory serves its

demand first, and any left-over inventory is first used to satisfy demand for New items, then

excessive Medium item demand. Hence,
(
(j −D1)

+ − (D3 − S)+
)+

) states that excessive

Medium platelet demand is satisfied from left-over Old platelet inventory only after these

left-over Old platelets are used for excessive New platelet demand.

Finally, the expected one-period shortage cost for Old platelets is

p1E
[(

(D1 − j)+ − (S + i−D2 −D3)
+

)+
]
. (1.4)

Inventory holding costs

As there are three ages of blood platelets and outdating of left-over Old platelets, there are

only two different inventory costs: New-aged and Medium-aged. Left-over New platelets

are refrigerated and age to Medium in the next period; thus in state (i, j), the expected

one-period inventory holding cost for New platelets is

h3E
[(

(S −D3)
+ − (D1 + D2 − i− j)+

)+
]
. (1.5)

Note that this expression implicitly assumes Medium and Old inventories are used in substi-

tution for each other before New items are substituted. Similarly we can find the expected

one-period inventory holding cost for Medium platelets:

h2E
[(

(i−D2)
+ − (D3 − S)+ − (D1 − j)+

)+
]
. (1.6)
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Outdating cost

There is no inventory cost for Old platelets, because left-over blood platelets after three

periods (5-6 days from donation) become medical waste in transfusion practice. Therefore,

the hospital blood bank manager incurs an outdating/waste cost for these left-over Old

platelets. The expected one-period outdating cost for state (i, j) is

mE

[(
(j −D1)

+ − (D2 − i)+ −
(
(D3 − S)+ − (i−D2)

+
)+

)+
]
. (1.7)

Again this expression incorporates our substitution assumptions that excessive demand for

New platelets is first satisfied from Medium item inventory, then Old platelet left-over in-

ventory.

Downward substitution costs

This (possibly negative) mismatching cost is incurred when traumatology patients (Old

platelet demand) are treated with fresher platelets (New or Medium). Similarly treating

oncology patients with the freshest (New) blood platelet incurs a downward substitution

cost. Thus, there are three different downward substitution costs in our modeling framework:

New to Medium, New to Old and Medium to Old. One may wonder why the blood bank

manager would incur any (positive) cost in satisfying demand needing Old platelets with

fresher platelets. The supply of blood platelet inventory is often constrained, so the order

size of the freshest platelets is limited. Therefore, there is an opportunity cost in using

platelets and the hospital blood bank manager should incur positive downward substitution

costs.

Explicitly, the cost of downward substituting New items to satisfy excessive demand of

Medium items is

αNM
D E

[
min

{
(S −D3)

+ ,
(
(D2 − i)+ − (j −D1)

+
)+

}]
. (1.8)

In this expression,
(
(D2 − i)+ − (j −D1)

+
)+

states that New to Medium downward substi-

tution happens if there is still extra Medium platelet demand after Old to Medium Upward

substitution, because of our assumption on substitution priorities.

For the downward substitution from New to Old, the expected one-period cost is

αNO
D E

[
min

{(
(S −D3)

+ − (D2 − i)+
)+

,
(
(D1 − j)+ − (i−D2)

+
)+

}]
. (1.9)

10



In any demand realization and inventory state, excessive demand for Old platelets is first

satisfied from left-over Medium platelet inventory (Medium to Old downward substitution),

then from left-over New platelet inventory (New to Old downward substitution). Hence,(
(D1 − j)+ − (i−D2)

+
)+

represents the amount of excessive demand for Old platelets need-

ing left-over New platelets. However, extra demand for Medium platelets are satisfied first

from this left-over New platelet inventory (New to Medium downward substitution); then,

excessive demand for Old platelets could use New items if there are such available left-overs.

Considering the last downward substitution, the expected one-period cost of Medium to

Old in state (i, j) is

αMO
D E

[
min

{(
(i−D2)

+ − (D3 − S)
)+

, (D1 − j)+
}]

. (1.10)

Note that excessive demand for New platelets has priority on left-over Medium platelet

inventory over extra Old platelet demand. Hence, Medium to New Upward substitution

occurs before Medium to Old downward substitution.

Upward substitution costs

The mismatching cost used in Haijema et al. [37] corresponds to Upward substitution cost

in our model. Since patients needing fresh blood platelets are treated with older platelets,

Haijema et al. [37] reports that patients often suffer from this mismatching. In our model,

there are three different Upward substitution costs: Medium to New, Old to New and Old

to Medium. The expected one-period Medium to New Upward substitution cost is

αMN
U E

[
min

{
(D3 − S)+ , (i−D2)

+
}]

. (1.11)

Note that excessive New platelet demand is satisfied from left-over Medium platelet inventory

regardless of Old platelet demand because of the substitution priority.

As for Old to New Upward substitution, the expected one-period cost is

αON
U E

[
min

{(
(D3 − S)+ − (i−D2)

+
)+

, (j −D1)
+

}]
. (1.12)

Similar to Medium to New, excessive New platelet demand has priority over left-over Medium

platelet inventory.

Finally, the expected one-period Old to Medium Upward substitution cost is

αOM
U E

[
min

{
(D2 − i)+ ,

(
(j −D1)

+ − (D3 − S)+
)+

}]
. (1.13)
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Note that excessive Medium platelet demand is satisfied from left-over Old platelet inven-

tory after this left-over inventory is used for excessive New platelet demand because of the

substitution priorities.

1.2.2. Positive protection level (c>0)

In our heuristic for the protection level model, we set a fixed level, c; limiting New platelet

substitution to Old platelet demand: We only permit New to Old substitution when the

New inventory level, after satisfying New and excessive Medium demand, is greater than

c. If we are short Medium platelets, there is no protection against satisfying this excessive

demand by New item inventory, since left-over New platelets will age to Medium in the

next period. The limiting probabilities, πij, and costs, Cij, change slightly with the addition

of the protection level, c. In the Cij expressions, only the shortage cost of Old items, the

inventory cost of New items and the downward substitution cost of New to Old will change,

because protecting unsold New-item inventory against excessive demand of Old-item affects

substitutions involving these quantities.

Limiting probabilities

Compared to the limiting probabilities of the model without protection level, only πi0’s for

0 ≤ i ≤ c change, because in other states the protection against excessive Old platelet

demand has no effect. Firstly, the limiting probability of state (0, 0), π00, is

π00 =
S∑

i=0

S∑

j=0

πij [Pr (D3 ≥ S, D2 + D1 ≥ i + j) + Pr (D3 < S,D3 + D2 ≥ S + i)

+ Pr (D3 ≥ S,D2 ≥ i,D2 + D1 < i + j)].

Note that the transition from state (i, j) to (0, 0) simply depends on the total demand of

New and Old platelets when D3 ≥ S. Since there is a positive protection level in the model,

transition to state (0, 0) is affected when D3 ≤ S. Therefore, D3 + D2 ≥ S + i ensures that

there is no left-over New platelet inventory even with the protection level.

Considering the transition to state (k, 0) for 1 ≤ k < c, there is no downward substitution

from left-over New platelet inventory to excessive Old platelet demand; because left-over

inventory is already lower than c after D3 is realized and excessive Medium platelet demand

is satisfied from any left-over New-item inventory. Then, πk0 for 1 ≤ k < c, it is

πk0 =
S∑

i=0

S∑

j=0

πij [Pr (D3 = S − k, D2 < i, D2 + D1 = i + j)
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+ Pr (D3 = S − k, D2 + D1 ≤ i + j,D2 ≥ i)

+ Pr (D3 + D2 + D1 = S + i− j − k, D3 < S − k, D2 > i)

+ Pr (D2 > i, D1 > j, D3 + D2 = S + i− k)].

In the transition probability, the first term represents the case when there is only downward

substitution from left-over Medium platelet inventory to excessive Old platelet demand and

a total i−D2 amount of left-over Medium platelet inventory is substituted. In contrast to the

first term, the left-over Old platelet inventory is used by excessive Medium platelet demand

in the second term of the transition probability. As for the third term, the left-over New

platelet inventory beyond k is used by excessive Medium platelet demand, because there is

no protection against New to Medium downward substitution. Finally, the fourth term is

almost the same as the third term except for excessive Old platelet demand; however there

is no downward substitution from New to Old since k < c.

The transition to state (c, 0) is very similar to the transition to state (k, 0) for 1 ≤ k < c.

Then, πc0 is

πc0 =
S∑

i=0

S∑

j=0

πij [Pr (D3 = S − c,D2 < i,D2 + D1 = i + j)

+ Pr (D3 = S − c,D2 + D1 ≤ i + j, D2 ≥ i)

+ Pr (D3 + D2 + D1 = S + i− j − c,D3 < S − c,D2 > i)

+ Pr (D2 > i,D1 > j, D3 + D2 = S + i− c)

+ Pr (D3 + D2 + D1 ≥ S + i− j − c,D3 < S − c,D2 ≤ i)].

Note that the first four terms of the transition probability from state (i, j) to (c, 0) are the

same as the previous case, πk0, when k = c. The fifth term of the transition probability

represents the case when c amount of left-over New platelet inventory is protected against

excessive Old platelet demand.

Costs

Recall that only shortage cost for Old platelets, inventory holding cost for New platelets and

New to Old downward substitution cost change for the model without protection level. The

expected one-period shortage cost for Old platelets becomes

p1E

[(
(D1 − j)+ −

(
(i−D2)

+ − (D3 − S)+
)+ −

(
(S −D3)

+ − (D2 − i)+ − c
)+

)+
]
.(1.14)
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Note that
(
(i−D2)

+ − (D3 − S)+
)+

represents how many left-over New platelet units are

used for excessive Medium platelet demand because of the substitution priority and no

protection on New to Medium downward substitution. Then,
(
(S −D3)

+ − (D2 − i)+ − c
)+

ensures that a restricted amount of left-over New platelet inventory is substituted to satisfy

excessive Old item demand up to the protection level, c.

Considering positive protection levels in our model, the hospital blood bank manager

stochastically carries more left-over New platelets. Hence, the expected one-period inventory

holding cost of New platelets increases to

h3E
[(

(S −D3)
+ − (D2 − i)+ − γ

)+
]
, (1.15)

where γ = min
{(

(S −D3)
+ − (D2 − i)+ − c

)+
,
(
(D1 − j)+ − (i−D2)

+
)+

}
. Similar to the

shortage cost for New platelets,
(
(S −D3)

+ − (D2 − i)+ − c
)+

enables the manager to pro-

tect some left-over New platelet inventory against excessive Old platelet demand and carry

them as Medium platelet to the next period.

Finally, the New to Old downward substitution cost becomes

αNO
D E

[
min

{(
(S −D3)

+ −
(
(D1 − j)+ − (i−D2)

+
)+

)+

, c

}]
. (1.16)

Again the protection level, c, in the expression just ensures that excessive Old platelet

demand won’t be satisfied after the threshold value, c, of left-over New platelet inventory.

1.3. Computational Complexity

Recall that our modeling framework aims to improve the decision making process of the

hospital blood bank manager, whose objective is to minimize the expected cost. In her

decision process, she has to decide a fixed order level, S, and the protection level, c, so as to

minimize:

S∑

i=0

S∑

j=0

πijCij.

For every, S and c, we need to compute πij and Cij for (S + 1)2 states. To calculate

both πij and Cij, we first need to calculate the transition probabilities. Denote by M3

the maximum demand the hospital can realize for New-aged blood platelets in a period,

and M2 and M1; these values are for Medium-aged and Old-aged items, respectively. For
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Table 1.1: Values of cost variables used in comparison results
Variable Value
Shortage 750
m 150
h3 1
h2 1
Mismatching 200

simplification, we can assume M1 = M2 = M3 = Md. For a given S and c, we can calculate

πij’s in a couple of seconds. However, significant computational effort is needed to compute

the Cij’s. For instance, for a fixed S and c the complexity is on the order of O (M3
d ) for each

(i, j) to compute a Cij, because we must calculate the expectations over D1, D2 and D3 for

each i, j.

Considering an exhaustive search on the order and protection levels, we need to compute

(S + 1)2 number of Cij’s for every S and c since no structural results are apparent. Since

there are total of (Smax − 1) Smax/2 different (S, c) pairs, we need to calculate costs, Cij,

that many times. Notice that, Smax = 3Md in the worst case scenario. Therefore, the total

complexity for calculating Cij’s is in order of O (1.5M4
d (3Md − 1)). In a realistic scenario

assuming Md = 100, we need to calculate around 4.5 × 1010 different Cij’s (the overall

complexity is 3 × 1013 in Haijema et al. [37]). In a small size example, Md = 5, the total

time to calculate expected cost is over two hours on a dual-core Intel Pentium computer.

In light of this complexity, we use simulation to compare our heuristic with the existing

near-optimal heuristics in the literature [37]. Thus, we run a sample path for fixed S and c

over 1 million periods to calculate costs directly.

1.4. Numerical Results

In this section, we compare our protection level policy with existing policies presented in

Haijema et al. [37] using real cost data from a Dutch blood bank. Then, we analyze the

robustness of our results to different demand models, and summarize the corresponding

managerial insights. In Section 1.5, we perform sensitivity analysis about our twelve cost

parameters; then we analyze the capacitated order level case in Section 1.6.

Table 1.1 summarizes the unit cost values given in Haijema et al. [37]. Recall that we

modify their model to fit our framework: We assume that there are three age differentiated

demand streams instead of two. We initially adopt their costs. Their “mismatching cost”

15



Table 1.2: Comparison with cost data from Haijema et al. [37]
NIS NISprot 1D 2D

S∗ 12 12 17 (17,14)
c∗ 0 0 0 0
cost∗ 486.75 486.75 506.60 482.65
Shortage 37.53 37.53 20.77 16.32
Holding 7.65 7.65 5.93 6.41
Outdating 307.99 307.99 164.60 194.77
Downward substitution 102.62 102.62 185.46 149.35
Upward substitution 30.96 30.96 129.83 115.80
Total substitution 133.58 133.58 315.30 265.15

represents both Upward and downward substitution costs in our model such that

αNM
D = αNO

D = αMO
D = αMN

U = αON
U = αOM

U = 200.

In addition to this, all shortage costs are the same for all ages:

p3 = p2 = p1 = 750.

As for the demand process, we choose a Poisson process for all demand streams with

mean 7, 2 and 1 for New, Medium and Old platelet demands, respectively. Haijema et al.

[37] report 70% of demand the blood bank in their study is for “young” and 30% is for “any”

blood platelets. Since our modeling framework separates “any” demand into Medium and

Old-aged platelets, we initially choose 20% for Medium and 10% for Old-aged platelets. Later

we will change our demand stream to get insights about the impact of demand structure on

the protection level policy.

Table 1.2 shows the costs for four different policies: NIS, NIS with positive protection

level and the 1D and 2D policies from Haijema et al. [37]. 1D policy consider one order-

up-to level for total inventory and 2D policy takes both total inventory and freshest platelet

inventory into account. However, we only focus on order-up-to level for freshest platelet

inventory since we extend NIS policy with protection levels. Deniz et al. [27] shows that

NIS policy is efficient and widely used in transfusion practice and grocery stores. The first

three rows represent the optimal order level, S∗, the optimal protection level, c∗, and the

minimum cost of a sample path of one million periods. In this table, (17, 14) represents the

total order level and order level of New-items for the 2D heuristic policy; the cost values are

in terms of million. According to the simulation results, NIS with positive protection level
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Table 1.3: Comparison with modification of shortage costs
NIS NISprot 1D 2D

S∗ 12 12 17 (17,13)
c∗ 0 2 0 0
cost∗ 478.84 451.47 504.71 460.56
Shortage 29.29 8.63 18.87 9.69
Holding 7.65 10.91 5.93 6.66
Outdating 307.99 358.07 164.29 112.43
Downward substitution 103.03 46.43 185.60 279.84
Upward substitution 30.88 27.43 130.02 51.93
Total substitution 133.91 73.86 315.63 331.77

is not beneficial; it performs worse than 2D and NIS without protection level policies. This

result is intuitive. Because there is no priority difference between the three age-differentiated

demand streams (p3 = p2 = p1 = 750), there is no benefit to reserving New platelets for

future excessive Medium platelet demand. The major cost differences between the NIS and

1D policies are outdating, upward substitution and total substitution costs. The NIS policy

has almost twice the outdating cost as 1D and 2D. However, 1D and 2D have significantly

higher substitution costs than NIS. In addition, NIS has more holding cost than 1D and 2D

policies. These results all arise from the same behavior: Since both 1D and 2D policies take

the total inventory level into account, unlike NIS, they are more adaptive to higher inventory

levels than NIS and tend to hold less inventory. Therefore, we observe more substitution costs

and less outdating and inventory holding costs in 1D and 2D than NIS. Note that 2D has

higher downward substitution than 1D because of the extra order-up-to level for the freshest

platelets. The trade off between 1D and 2D is paying more on downward substitution cost

and saving on outdating cost, because 2D will order to bring new platelets up to 14 even if

this causes the total inventory exceeds 17.

In order to effectively apply a “critical level” type policy in our modeling framework, we

need different priorities across different demand streams. Furthermore, as the demand from

organ transplants and oncology patients are typically more important than traumatology

patients because of the emergency or risk, it is reasonable to assume p3 > p2 > p1. Thus

in a second simulation run, we choose p3 = 1000, p2 = 750 and p1 = 300; these results are

presented at Table 1.3. In this case NIS with a protection level of two outperforms all other

policies when the hospital blood bank manager has different shortage costs for different aged

blood platelets. The protection level policy has the highest holding and outdating costs
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because of carrying protected left-over New platelet inventory. However, the protection

level policy has lower substitution and shortage costs. Incurring lower substitution cost is

intuitive since reserving freshest platelets limits the substitution. However, lower shortage

cost in a protection level policy is not obvious since rejecting excessive Old platelet demands

incurs a shortage cost. In fact, NIS with protection level of two has more shortage cost

for Old items than NIS without protection level. On the other hand, the protection level

decreases shortage costs for both New and Medium items because it reserves inventory. Since

there is more social cost of losing demand from organ transplants and cancer patients, the

protection level policy decreases overall shortage cost. Note that the managerial value of our

protection level policy is clearly shown in Table 1.3 as a decrease in shortage and substitution

costs. Even if the protection policy increases outdating and holding costs, the benefit from

substitution and shortage costs is larger for this case.
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Figure 1.1: Different demand models

We now analyze the robustness of our results to the demand structure. For instance,

some hospitals in the US serve primarily oncology patients (i.e. cancer treatment centers)

and these hospitals’ blood bank managers might face more demand from oncology patients.

Figure 1.1 shows cost comparisons of the four different policies in four different demand

settings with two different shortage cost settings. “Mostly New” corresponds to demand for
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60% New, 10% Medium, 30% Old; “Balanced” corresponds to demand for 30% New, 40%

Medium, 30% Old; “Mostly Medium” corresponds to demand for 10% New, 60% Medium,

30% Old; “Mostly Old” corresponds to demand for 10% New, 30% Medium, 60% Old. The

first plot corresponds the case when p3 = p2 = p1 = 750. Intuitively there is no incentive

to protect if age-differentiated demand stream is not prioritized, hence the protection level

is zero. Except for the “Mostly Medium” case, NIS outperforms both 1D and 2D policies

in all cases. For this case, since most demand is for Medium platelets, and 2D is a more

adaptive policy than NIS, 2D benefits more on the outdating cost than NIS benefits from

the substitution cost in “Mostly Medium” case.

In the second plot of Figure 1.1, we use p3 = 1000, p2 = 750 and p1 = 300 to put

more social cost on losing organ transplants and cancer patients. In all demand structures,

NIS with positive protection level outperforms other policies because of prioritizing demand

from high-risk patients. The cost gap between NIS with positive protection level and other

policies increases as the proportion of demand for fresher platelets increases. This result is

intuitive since the penalty cost of losing high-risk patients is high.

In our experiments in this section, we show that a protection level policy may be beneficial

for a blood bank manager if the shortage cost of losing demand from high-risk patients is

high; a protection level policy can decrease the substitution and holding costs significantly

but increases the outdating and holding costs. However, the manager has no incentive to

protect if there is no prioritization of high-risk patients over elective surgeries or traumatology

patients. In this case, 1D and 2D may be better than the NIS policy because they are more

adaptive than NIS. In the next section, we analyze the sensitivity of our results on the cost

parameters used in the model and provide managerial insights.

1.5. Sensitivity analysis on the cost parameters

In the previous section we showed that a protection level policy may be beneficial for the

hospital blood manager if she has different priorities for blood platelet demand from different

departments in the hospital: Hence, ordered shortage costs, p3 > p2 > p1, allows a protection

level policy to possibly be superior. To explore the relative importance of other parameters,

we perform a sensitivity analysis for the minimum cost of our four different policies on each

of the 12 cost parameters: We calculate the minimum cost for each policy and vary the cost

parameter of interest. In our base analysis, we use the original cost data shown in Table
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1.1. The demand process is the same as the original data from the Dutch blood bank [37]:

Poisson with mean 7 for New, 2 for Medium and 1 for Old. We performed similar sensitivity

analyzes with different demand streams, but the conclusions were unchanged.
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Figure 1.2: Shortage (p3, p2, p1) and outdating (m) cost parameters

Three plots of Figure 1.2 show our numerical results conveying changes with respect to

the shortage cost parameters. The plots for p3 and p2 have similar impact on the optimal

policy: There is no protection level as p3 and p2 get closer to zero because of the decrease in

value of protecting. But, for higher values of p3 and p2 the manager may choose to reserve

the freshest platelets if the social cost of losing these patients is high enough; in these cases

NIS with positive protection level policy outperforms other policies. However, there is no

incentive to protect for high values of p1. Therefore, NIS with positive protection level

outperforms other policies with high margin if p1 gets closer to zero, because low p1 takes

away one of the downside of the protection level policy. The last plot in Figure 2 is for m

and the result is similar to p1. Since the outdating cost is the other downside of a protection

level policy, NIS with a positive protection level policy outperforms other policies as m gets

closer to zero. But unlike the result in p1, 1D and 2D outperform NIS for large values of m.
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This result is intuitive, because both 1D and 2D are more adaptive policies than NIS, which

allow them to better control outdating cost.
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Figure 1.3: Substitution costs: αNM
D , αNO

D , αMO
D and αMN

U

Three plots of Figure 1.3 show our numerical results analyzing the Downward substitution

parameters. The plots for all Downward substitution parameters have similar impact on the

optimal policy: Since substitution cost is significant in both 1D and 2D, NIS outperforms

both these policies in high values of these cost parameters. Conversely both 1D and 2D

are better than NIS as these Downward substitution parameters get closer to zero, because

incurring these substitutions become cheaper. This result is intuitive because both 1D and

2D are more adaptive than NIS and Downward substitution occurs more in order to reduce

outdating. For high values of these cost parameters, the protection level policy outperforms

the other policies the most in the case of αNO
D , because saving substitution cost from New

to Old substitutions is the advantage of the protection level policy and higher αNO
D results

increase the cost gap between our protection level policy and other policies. As for the

first Upward substitution cost parameter, αMN
U , plot, the protection level policy is better

than the other policies with low values of this parameter, because there are stochastically
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more Medium item inventory in protection level policy and the manager may incur more

substitution from Medium to New (This is a potential second-order benefit of protection).

However, NIS without protection level outperforms other policies as αMN
U increases. The

cost lines are almost flat after a certain value of αMN
U because there is very little Upward

substitution in the optimal policies after this point.
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Figure 1.4: Substitution (αON
U , αOM

U ) and holding costs (h3, h2)

The analysis with respect to the remaining two Upward substitution and holding cost

parameters are shown in Figure 1.4. NIS outperforms both 1D and 2D in high values of αON
U

but the protection level policy slightly outperforms NIS without protection level in low values

of αON
U . This result is intuitive because the protection policy carries more inventory than NIS

without a protection level and thus substitution from Old to New occurs is more commonly

in the protection level policy. Regarding the other Upward substitution cost parameter αOM
U ,

the 2D policy outperforms other policies for low values αOM
U . Note 1D and 2D incur more

Upward substitution costs – See Table 1.3. As for the holding cost parameters, h3 and h2,

in Figure 1.4, the protection level policy outperforms other policies with very low h3 and

h2; but 2D outperforms the rest as h3 and h2 increase. These results are intuitive since the

protection level policy carries more inventory. However, the holding cost is not a big cost
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factor in blood platelet inventory management; hence low values of h3 and h2 are realistic

assumptions.

Summarizing our sensitivity analysis on the cost parameters, the protection level policy

performs better with low values of m, p1, αMN
U , h3 and h2; and high values of p3, p2, αNM

D and

αNO
D . The performance comparison of the protection level and NIS without protection level

depends on the cost of carrying more inventory, outdating and substitution. Because the

protection level policy carries more inventory, it outdates more than NIS without protection

level policy. On the other hand, the NIS without protection level policy pays more shortage

and substitution costs than the protection level policy. As for the performance comparison

of the protection level policy and the 1D and 2D policies, because the 1D and 2D policies

pay more substitution cost and less to outdating costs than the protection level policy, these

two trade-offs primarily determine the performance difference of these policies.

1.6. Capacity on order level

In our previous analysis, there was no capacity on the order level of blood platelets, S; thus,

the hospital blood bank manager could order as many blood platelets as she wanted from

the regional blood center. However, blood platelet supply is often limited and it is exposed

to many risks: Increasing demand from cancer patients, epidemics and natural disasters.

Recently Landro [51] reports a decrease in overall blood collection in 27% of the US blood

centers because of the swine-flu pandemic, and she emphasizes the blood centers’ plans

to allocate blood to the sickest patients due to this reduction. Therefore, we analyze the

performance of the protection level policy when there is a limit on New item inventory.

Figure 1.5 shows when the protection level policy outperforms not protecting with respect

to the tightness of capacity of supply and downward substitution cost. In this simulation

study, we set the cost parameters: p3 = 1000, p2 = 750, p1 = 300, m = 150, h3 = h2 = 1

and αMN
U = αON

U = αOM
U = 200. In addition, we use the following demand stream: Poisson

with mean 7 for New, Poisson with mean 2 for Medium and Poisson with mean 1 Old. (Our

results are robust for different demand models.) The horizontal axis represents the downward

substitution cost from ‘Low’ (0) to ‘Medium’ (375) and ‘High’ (750) and the vertical axis

represents the capacity on order level, S: ‘Loose’ (20) to ‘Medium’ (10) and ‘Tight” (1). In

Figure 1.5, the blue shaded region, ‘Protection’, shows the area in which the protection level

policy outperforms the other policies.
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Figure 1.5: When to protect if order level, S, is limited.

Different perishable goods may fall into different region on Figure 1.5. For instance, ba-

nanas and milk at grocery stores may always lie with the No protection region, because there

is no such downward substitution cost and often the supply of groceries isn’t constrained.

However, blood platelets with limited supply may lie on the Protection region, as the op-

portunity cost of using fresher platelets is high. Furthermore, even if blood platelets with a

low downward substitution cost are usually in the No Protection region, the protection level

policy may perform better during a supply shortage from the regional blood bank (e.g. when

supply is reduced due to epidemics or disasters). In this case protecting the freshest left-over

platelets for future patients needing fresher units is beneficial. This result is very intuitive:

The hospital blood bank manager would choose to serve tomorrow’s cancer patients over to-

day’s elective surgeries because of the high shortage cost for oncology. Recall that capacity

on blood platelets is in fact a major issue currently facing blood platelet supply chains [51].

Therefore, our protection policy may be a helpful managerial decision tool for the hospital

blood bank manager in times when she has capacity on order levels from regional blood

banks.
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1.7. Conclusion

We consider a discrete-time inventory system for blood platelets that has distinct demand

streams for product of different ages. In addition to inventory holding, outdating and short-

age costs, our modeling framework includes substitution costs when a demand for a certain-

aged item is satisfied by a different-aged item. Since the decision maker in our problem is the

hospital blood bank manager, our objective is to minimize the expected cost for the hospital

over an infinite time horizon. We introduce the critical level policy to the perishable inven-

tory literature for the first time, protecting the newest items against excessive downward

substitution. This reserves these newest items for future demand for procedures needing

fresher items. We model the problem as MDP and evaluate the costs of a common heuris-

tic replenishment policy, NIS, (with and without a protection level) against “near optimal”

policies from the literature (1D and 2D).

We show that NIS with positive protection level may outperform the other heuristics

when the hospital blood bank manager has different shortage costs for different aged blood

platelets. Since the blood platelets have three days of actual shelf life in practice, protecting

some of the freshest platelets for one period, i.e. one day or shift of eight hours, against

excessive Old-item demand from traumatology patients stochastically increases Medium-

aged blood platelet inventory in the next period. This protection level policy could improve

the hospital blood bank’s performance when there is a significant difference between the

shortage costs of different aged blood platelets: Protecting some New-aged platelets against

excessive demand from traumatology patients in the current period directly helps the blood

bank manager to satisfy demand of Medium-aged platelets from oncology and hematology

operations in the next period, and indirectly satisfy demand for New-aged transplantation

patients via substitution in the next period as well.

Considering our different costs, we perform a sensitivity analysis on twelve cost param-

eters to investigate the policy yielding the minimum expected cost. We find that NIS with

positive protection level policy outperforms the rest of the policies for certain parameter

settings: low values of cost parameters for outdating, holding, shortage for Old and Upward

substitution from Medium to New; and high values of cost parameters for shortage for New,

shortage for Medium, Downward substitution from New to Medium and New to Old. Since

the protection level policy carries more inventory, and thus outdates more than NIS with-

out a protection level policy, the performance difference between NIS with and without a
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protection level depends mostly on the costs of outdating and substitution. Similarly, the

protection level policy’s performance against 1D and 2D depends on these cost parameters,

especially on the substitution costs. Because both the 1D and 2D policies are more adap-

tive, they incur more substitution costs than the protection level policy while paying less

outdating cost. In other words, the “price of adaptiveness” of the 1D and 2D determine the

value of the protection level policy to the hospital blood bank manager.

We show that our protection level policy may be particularly beneficial when the supply

of blood platelets is tight. In addition, the protection level policy may be beneficial even

if the downward substitution cost is very low in tight supply capacities. This result may

be very useful for hospital blood bank managers to efficiently utilize their blood platelet

inventory in the face of recent decreases in overall blood collection across the US: Protecting

the freshest blood platelets for future demand needing fresher items is especially beneficial

for the hospital blood bank manager if there is a capacity on order levels from regional blood

banks.

In our study, we bring a “critical level” type policy to the multi-age differentiated product

and multi-period perishable inventory literature considering one of the most perishable prod-

ucts, blood platelets. Our protection level policy can possibly improve the hospital blood

bank manager’s decision process and a future collaboration with a US blood bank would

be tremendous opportunity to test our work. In additional future work, we are working on

reducing the search space of optimal order and protection levels, and extending our modeling

framework in a continuous time and nonstationary order level framework. As a final note,

our protection level policy could be interesting for inventory management of other perishable

products or those subject to obsolescence, i.e. electronics and groceries.
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Chapter 2

Failure Probability of VARTA in
Higher Dimensions

Vector-Autoregressive-To-Anything (VARTA) is a highly flexible model for driving large-

scale stochastic simulations by generating samples of stationary multivariate time series

with arbitrary marginal distributions. The construction of this model relies on a stable

vector autoregressive process with a positive definite autocorrelation matrix. We show that

there exists multivariate time-series input processes for which the conditions of stability and

positive definiteness are violated. We investigate the likelihood of this event with increasing

number of component time-series processes and order of dependence by extending the onion

method, which is used for sampling positive definite correlation matrices for random vectors,

to sample positive definite autocorrelation matrices for multivariate time series. We find

that the failure probability of VARTA reaches one with increasing number of component

time series and order of dependence, but at a rate very much dependent on the rate of

decay in temporal dependencies. We conclude with a discussion on an approximation of

VARTA that might enable the simulation practitioner to avoid the failure of VARTA in

high-dimensional settings. 1

2.1. Introduction

An important step in the design of stochastic simulation is input modeling, i.e., modeling the

uncertainty in the input environment of the system being studied. Input modeling is often

characterized as selecting appropriate univariate probability distributions to represent the

primitive inputs of interest, and it would indeed be this simple if the relevant input processes

1Co-author: Bahar Biller
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could be represented as a sequence of independent random variables having identical distri-

butions. When such univariate models do apply, there are a number of software packages

that support automated input modeling; good reviews are available in Vincent [86] and Law

and Kelton [53].

However, these simple models fail to capture the stochastic properties of the input pro-

cesses that exhibit multivariate and/or temporal dependencies that occur naturally in many

service, communications, and manufacturing systems (see [62] and [87] for example stud-

ies). A close look at the existing input-modeling literature reveals that much of the previous

work on time-series input processes for stochastic simulation is based on linear, univariate

time-series models such as the autoregressive moving average process. However, Mallows [60]

shows that the linearity of these models imply normal marginal distributions and there are

many physical situations in which the marginals of the time-series processes are non-normal.

This has led a number of researchers to model time series with marginals from exponential,

gamma, geometric, or general discrete distributions. However, these models allow only lim-

ited control of the dependence structure and a different model is required for each type of

marginal distribution [11].

A way to overcome these limitations is to construct the desired process by a mono-

tone transformation of a Gaussian linear process. For example, Cario and Nelson ([18],

[20]) take this approach to develop models for representing and generating stationary uni-

variate time-series processes with arbitrary marginal distributions. The central idea is to

transform a Gaussian autoregressive process, which Cario and Nelson call the base pro-

cess, into the desired univariate time-series input process that they presume as having an

Autoregressive-To-Anything (ARTA) distribution. The authors manipulate the autocorre-

lations of the Gaussian base process in order to achieve the desired autocorrelations for the

input process. A similar transformation-based model suggested in the simulation input-

modeling literature is the Normal-To-Anything (NORTA) process designed specifically for

random vectors [19]. It is constructed by simply transforming a multivariate Gaussian base

random vector into the desired process via the use of the inverse cumulative distribution

function (cdf). The most recent addition to these transformation-based family of methods

is the Vector-Autoregressive-To-Anything (VARTA) process of Biller and Nelson [12] that

simply pulls together the theory behind the ARTA process and the NORTA process and

extends it to the multivariate time-series inputs.

Although the ARTA/VARTA processes are regarded as two of the highly flexible uni-

28



variate/multivariate time-series models in the current simulation input-modeling literature,

they might fall short in the simulation of some stochastic systems for the following reason:

There exist sets of marginal distributions with feasible dependence structures that are not

representable by the ARTA/VARTA transformations. Both Li and Hammond [56] and Lurie

and Goldberg [58] give examples where this appears to be the case for the NORTA trans-

formation and Ghosh and Henderson [33] prove the existence of a joint distribution that is

not representable as the transformation of the corresponding multivariate normal random

vector. Although these studies focus on random vectors, similar results can be generalized

to time-series input processes and this is what we aim to do in this paper. Biller and Nelson

[8] have shown that if the autocorrelation matrix of the base vector autoregressive process

is positive definite, then the autocorrelation matrix of the input process is positive definite.

In this paper we show that the reverse of this statement is not true. For example, in a

second-order univariate time-series setting with a standard normal marginal distribution,

the positive definiteness of the input autocorrelation matrix requires the base lag-one and

lag-two autocorrelations ρZ(1) and ρZ(2) to satisfy the inequality given by

ρZ (2) >
√

3 sin





12

π

[
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2

)]2

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− cos


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12

π

[
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(
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2
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

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This inequality is denoted by the dashed line in Figure 1. However, not all possible pairs of

ρZ(1) and ρZ(2) satisfy ρZ(2) > 2ρ2
Z(1)−1, which insures the positive definiteness of the base

autocorrelation matrix. This second inequality is denoted by the solid line in Figure 1. Thus,

it is possible for ρZ(1) and ρZ(2) to fail to form a positive definite base autocorrelation matrix

despite the positive definiteness of the input autocorrelation matrix and the likelihood of this

event, which is illustrated in Figure 2.1 by the area between the solid curve and the dashed

curve, is 2.62%. Although the use of the three-dimensional Gaussian distribution as the

base process provides a great deal of flexibility for representing uncertainty in this second-

order univariate time-series setting, it comes at the expense of not working for some input

processes with feasible dependence structures. In their past work, Ghosh and Henderson

[32] and Koruwicka and Cooke [50] investigate the likelihood of the failure of the NORTA

transformation as a function of the number of components of the multivariate process. Our

objective in this paper is to extend their investigation to a k−dimensional pth−order time-

series setting. In other words, we aim to determine the likelihood of the VARTA infeasibility

as a function of the number of component time series and the order of dependence.
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Figure 2.1: Illustration of the second-order ARTA infeasibility.

The rest of the paper is organized as follows. We provide the description of the ARTA

and VARTA transformations and the reasons of their failure in Section 2.2. We introduce the

extension of the onion method of Ghosh and Henderson [32] for sampling positive definite

autocorrelation matrices representative of the stochastic properties of VARTA in Section

2.3. We present the results of our numerical study in Section 2.4 and in Section 2.5, we

conclude with the summary of the paper and the discussion of an approximation to VARTA

the simulation practitioner might use to avoid the failure of VARTA in high-dimensional

settings.

2.2. ARTA/VARTA Transformations and Reasons of

Their Failure

When the problem of interest is to construct a stationary univariate time series {Xt; t =

1, 2, . . .} with given marginal distribution F and first p autocorrelations ρX(h), h = 1, 2, . . . , p,

the basic approach is to construct a pth−order ARTA process [18]. The pth−order ARTA

process (ARTA(p)) defines a time series with uniform marginals on [0, 1] via the trans-

formation Ut = Φ(Zt), where the base process {Zt; t = 1, 2, . . .} is a stationary, standard,

Gaussian autoregressive process of order p with the autocorrelation structure given by ρZ(h),

h = 1, 2, . . . , p. The input time series {Xt; t = 1, 2, . . .} is obtained via the transformation
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Xt = F−1[Φ(Zt)], which ensures that Xt has distribution F by well-known properties of

the inverse cdf. Therefore, the central problem is to select the autocorrelation structure,

ρZ(h), h = 1, 2, . . . , p, for the base process Zt that gives the desired autocorrelation struc-

ture, ρX(h), h = 1, 2, . . . , p, for the input process Xt. It is easily shown that the base

autocorrelation ρZ(h) depends only on the input autocorrelation ρX(h). The determination

of the dependence structure for the base process is thus equivalent to solving p different

correlation-matching problems.

Now we switch our focus to the representation of a stationary k-variate pth−order time-

series input process {Xt; t = 0, 1, 2, . . .}, where Xt = (X1,t, X2,t, . . . , Xk,t)
′, with the fol-

lowing properties: (1) Each component time series {Xi,t; t = 0, 1, 2, . . .} has an arbitrary

continuous marginal distribution denoted by Fi, i.e., Xi,t ∼ FXi
for i = 1, 2, . . . , k and

t = 0, 1, 2, . . .. (2) The dependence structure is specified via Pearson product-moment (or

rank) correlations ρX(i, j, h) = Corr [Xi,t, Xj,t−h] (or ρX(i, j, h) = Corr [Fi(Xi,t), Fj(Xj,t−h)])

for i, j = 1, 2, . . . , k and h = 0, 1, . . . , p. Equivalently, the lag−h autocorrelation matrices

are defined by ΣX(h) = [ρX(i, j, h)](k×k), for h = 0, 1, . . . , p, where ρX(i, i, 0) = 1. Biller

and Nelson (2003) extends the theory behind the ARTA(p) process to represent multivari-

ate time-series process {Xi,t; i = 1, 2, . . . , k, t = 1, 2, . . .} with the k−dimensional pth−order

VARTA process (VARTAk(p)). To do that, the authors choose the base process Zt as the

stationary, standard, Gaussian vector autoregressive process of order p with representation

Zt =
∑p

h=1 αhZt−h + ut (Lütkepohl 1993). The αh, h = 1, 2, . . . , p, are fixed k × k au-

toregressive coefficient matrices and ut = (u1,t, u2,t, . . . , uk,t)
′ is a k-dimensional white noise

vector representing the part of Zt that is not linearly dependent on past observations. The

structure of ut is assumed to be such that E[ut] = 0(k×1) and E[utu
′
t+h] = Σu if h = 0

and E[utu
′
t+h] = 0(k×k) otherwise. Choosing Σu as ΣZ(0) − ∑p

h=1 αhΣ
′
Z(h), where ΣZ(h)

is the lag−h base autocorrelation matrix, ensures that each component series of the base

process Zt, i.e., {Zi,t; t = 1, 2, . . .} for i = 1, 2, . . . , k, is marginally standard normal. Finally,

the ith component input time series {Xi,t; t = 1, 2, . . .} is obtained via the transformation

Xi,t = F−1
i [Φ(Zi,t)].

As in the construction of the ARTA(p) process with k = 1, the challenge associated with

the construction of the VARTAk(p) process is to match the autocorrelation structure of the

Gaussian vector autoregressive base process, ρZ(i, j, h), i, j = 1, 2, . . . , k, h = 01, 2, . . . , p,

to the desired autocorrelation structure of the input process, ρX(i, j, h), i, j = 1, 2, . . . , k,
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h = 01, 2, . . . , p. This correlation-matching problem corresponds to the solution of

ρX(i, j, h) =

∫∞
−∞

∫∞
−∞ F−1

Yi
[Φ(zi)]F

−1
Yj

[Φ(zj)]ϑρZ(i,j,h)(zi, zj)dzidzj − µiµj

σiσj

for ρZ(i, j, h) for a prespecified value of ρX(i, j, h), where ϑρ (·) is the standard bivariate

normal probability density function with correlation ρ, µi = E [Yi,t] and σ2
i = Var [Yi,t]

for i = 1, 2. Thus, the problem of adjusting the correlation structure of the base process

decomposes into pk2 + k(k − 1)/2 correlation-matching problems. Solving the correlation-

matching problems might be a difficult task when the Pearson product-moment correla-

tions are used. Fortunately, the corresponding function has the properties that allows

the implementation of an efficient numerical search procedure to find ρZ(i, j, h) within a

predetermined precision. Good references for numerical search procedures exploiting these

properties are Cario and Nelson [20], Chen [22], and Biller and Nelson [8]. On the other

hand, when rank-type correlations are used, it is possible to find ρZ(i, j, h) analytically via

ρX(i, j, h) = 6/π sin−1(ρZ(i, j, h)/2). To isolate the problem of estimating the probability of

the VARTA infeasibility, we assume the use of rank-type autocorrelations in the remainder

of the paper.

Next, we provide the procedure that generates multivariate time-series data of length n

with component marginal distributions Fi, i = 1, 2, . . . , k and input autocorrelation matri-

ces ΣX(h) = [ρX(i, j, h); i, j = 1, 2, . . . , k] prespecified for h = 0, 1, 2, . . . , p: (1) Solve the

correlation-matching problem for the base autocorrelation matrix ΣZ(h) that would match

the prespecified input autocorrelation matrix ΣX(h) for h = 0, 1, 2, . . . , p. (2) Obtain base

process parameters α1,α2, . . . ,αp and Σu from ΣZ(h), h = 0, 1, 2, . . . , p by using the multi-

variate Yule-Walker equations (Lütkepohl 1993). More specifically, first compute α = ΣΣ−1
Z ,

where α = (α1,α2, . . . , αp) and Σ =
(
ΣZ(1),ΣZ(2),. . .,ΣZ(p)

)
are (k × kp)−dimensional

matrices and

ΣZ =




ΣZ(0) ΣZ(1) . . . ΣZ(p− 2) ΣZ(p− 1)
Σ′

Z(1) ΣZ(0) . . . ΣZ(p− 3) ΣZ(p− 2)
...

...
. . .

...
...

Σ′
Z(p− 1) Σ′

Z(p− 2) . . . Σ′
Z(1) ΣZ(0)




kν×kp

(2.1)

provides the full characterization of the base autocorrelation structure. Then, compute co-

variance matrix ΣY as equivalent to ΣZ(0) − ∑p
h=1 αhΣ

′
Z(h). (3) Obtain starting values

for z−p+1, z−p+2, . . . , z0 using base autocorrelation structure ΣZ(h), h = 0, 1, . . . , ν and base

process parameters α1,. . . ,αp and Σu. Additionally, generate a series of Gaussian white
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noise vectors u1,u2, . . . ,uT . So that, we can generate time series z1, z2, . . . , zT recursively

from zt = α1zt−1 + · · ·+ αpzt−p + ut for t = 1, 2, . . . , T : (i) To generate z−p+1, z−p+2, . . . , z0

as realizations of Z−p+1,Z−p+2, . . . ,Z0, whose joint distribution is given by a nonsingular kp-

dimensional multivariate normal distribution, choose a (kp×kp) matrix Q such that QQ′ =

ΣZ, and then obtain the starting-value vector via (z′0, z
′
−1, . . . , z

′
−p+1)

′ = Q (v1, . . . , vkp)
′,

where the vi’s are independent standard normal random variates. (ii) To obtain an inde-

pendent Gaussian white noise vector, first choose k independent univariate standard normal

variates v1, v2, . . . , vk, and then multiply them with a (k× k) matrix P for which PP′ = Σu

holds. Repeat this procedure for a total of T times to generate u1,u2, . . . ,uT . (4) Finally,

transform the generated base time-series {zi,t; i = 1, 2, . . . , k, t = 1, 2, . . . , T} with standard

normal marginal distributions into the desired process with cdfs Fi, i = 1, 2, . . . , k by im-

plementing the inverse transformation method: Xi,t = F−1
i [Φ (Zi,t)] for i = 1, 2, . . . , k and

t = 1, 2, . . . , T .

The success in the implementation of this data-generation procedure is dependent on the

positive definiteness of both the base autocorrelation matrix ΣZ and the variance-covariance

matrix Σu as well as the stability of the underlying vector autoregressive base process, i.e., the

roots of the reverse characteristic polynomial, |I(k×k)−α1z−α2z
2−· · ·−αpz

p| = 0, lie outside

of the unit circle in the complex plane (I(k×k) is the (k×k) identity matrix). It is easily shown

that a stationary vector autoregressive process has a positive definite autocorrelation matrix

and thus, a non-positive-definite base autocorrelation matrix always results in an unstable

base process. However, the failure of the base process to be unstable, despite the positive

definiteness of the base autocorrelation matrix, might appear as a possible reason of failure

in a time-series setting unlike in a random-vector setting. It is shown in Biller and Nelson [8]

that if the underlying base process is a stationary time series, then the input time series is also

stationary and the stationarity of the base process is insured by the construction of a stable

base vector autoregressive process. This can be explained by the fact that any stationary

process with a stable state-space representation can be represented in the form of a stationary

vector autoregressive model. Thus, stability implies stationarity [59], i.e., a non-stationary

process is unstable, but an unstable process is not necessarily nonstationary. A close look

at the existing literature reveals that the difference between stability and stationarity has

been somewhat ambiguous. In the case of the second-order ARTA process, the region of

stability is a triangle bounded by α2 − α1 = 1, α2 + α1 = 1, and −2 ≤ α1 ≤ 2. As

long as the resulting autoregressive coefficients α1 and α2 fall on the boundary or outside
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of this region, the underlying base process is unstable and the base autocorrelation matrix

is not positive definite. Thus, for the second-order ARTA process, stability and positive

definiteness coincide and the positive definiteness of the base autocorrelation matrix appears

to be sufficient for insuring the stationarity of the resulting time series. We investigate

whether this result continues to hold beyond second-order univariate time series in Section

4.

2.3. Sampling Positive Definite Autocorrelation Ma-

trices

Ghosh and Henderson [32] have introduced a method, which is called the onion method,

to sample exactly and quickly from the uniform distribution on the set Ωk = {ΣX(0) :

ΣX(0) = Σ′
X(0),ΣX(0) Â 0, diag(ΣX(0)) = 1} of k×k positive definite correlation matrices

of the k−dimensional NORTA transformation when viewed as a subset of <k(k−1)/2. More

specifically, the procedure of Ghosh and Henderson [32] samples ΣX(0) uniformly from the

convex, closed, compact, and full-dimensional set Ωk in a way that the density f(ΣX(0)) ∝ 1

for any ΣX(0) ∈ Ωk, where f is a function of the k(k−1)/2 upper-diagonal elements of ΣX(0).

This method of uniform sampling of positive definite correlation matrices is iterative in that it

starts with a one-dimensional matrix and then grows out the matrix to the dimension desired

by successively adding an extra row and the corresponding mirrored column chosen from an

appropriate distribution. Ghosh and Henderson [32] report that Marsaglia and Olkin [61] use

a similar matrix-growing approach in their algorithm to sample correlation matrices with a

given set of eigenvalues, but they apply it to transform diagonal elements of arbitrary positive

definite matrices to 1 in order to form correlation matrices from them. Other noteworthy

references include Ouellette [68] discussing the uses of the layering approach and Guttman

[34] proposing a numerical method for computing inverses of large nonsingular matrices.

When compared to these methods, the exact sampling method of Ghosh and Henderson [32]

scales very well with dimension as the uniform sampling of a positive definite correlation

matrix reduces to the problem of sampling from a univariate beta distribution and a joint-

normal independent random vector. Ghosh and Henderson [32] also report that for a given

sample size the results are more accurate in the sense that confidence-interval widths are

smaller for this sampling method. Thus, we choose to extend the onion method of Ghosh

and Henderson [32] to our multivariate time-series setting for sampling positive definite
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autocorrelation matrices representative of the stochastic properties of VARTA. Additionally,

we discuss how to insure a prespecified rate of decay in the temporal-dependence structure.

We first focus on a univariate time-series setting in Section 3.1 and then on a multivariate

time-series setting in Section 3.2.

2.3.1. Univariate Time-Series Setting

The focus of this section is on the sampling of a (p+1)×(p+1) input autocorrelation matrix

ΣX of the form

ΣX =




1 ρX (1) ρX (2) . . . ρX (p− 1) ρX (p)
ρX (1) 1 ρX (1) . . . ρX (p− 2) ρX (p− 1)
ρX (2) ρX (1) 1 . . . ρX (p− 3) ρX (p− 2)
ρX (3) ρX (2) ρX (1) . . . ρX (p− 4) ρX (p− 3)
...

...
...

. . .
...

...
ρX (p− 1) ρX (p− 2) ρX (p− 3) . . . 1 ρX (1)
ρX (p) ρX (p− 1) ρX (p− 2) . . . ρX (1) 1




(p+1)×(p+1)

for the ARTA(p) process. The objective is to generate ΣX in a way that f (ΣX) ∝ 1,

∀ΣX ∈ Ωp+1 == {ΣX : ΣX = Σ′
X ,ΣX Â 0, diag(ΣX) = 1}. To simplify the presentation

of the sampling algorithm, we define notation Σκ for the upper-left κ× κ submatrix of the

autocorrelation matrix ΣX and Σκ−1 for the completed matrix at the (κ− 1)th step, i.e.,

Σκ =

[
Σκ−1 qκ

q′κ 1

]

κ×κ

where qκ = (ρX(κ−1), ρX(κ−2), . . . , ρX(1))′ is a (κ−1)×1 column vector. We additionally

use notation fκ for the marginal density of Σκ at the κth step of the matrix completion

and write fκ (Σκ) as ∝ [det (Σκ)]
p+1−κ

2 , ∀Σκ ∈ Ωκ, 2 ≤ κ ≤ p + 1 (Ghosh and Henderson

2003). Now we are ready to present the closed-form expression for the conditional probability

density function of the vector qκ given Σκ−1:

ϕ (qκ) ∝
[
1− q′κΣ

−1
κ−1qκ

] p+1−κ
2 ,

∀qκ = [ρX(κ− 1),qκ−1]
′ ∈ Ψκ−1 =

{
q ∈ <κ−1 | qtΣ−1

κ−1q ≤ 1
}

Notice that the density ϕ represents the joint density of ρX(κ− 1) and qκ−1 = (ρX(κ−
2), ρX(κ− 3), . . . , ρX(1))′ that has already been sampled in the (κ− 1)th step of the matrix

completion from the probability density function ϕ(qκ−1). More importantly, the problem

of interest is to generate ρX(κ − 1) at κth step of the autocorrelation matrix generation. If
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qκ−1 is fixed at q and Σκ−1 is fixed at M, then we have the following expression for the

conditional density function of ρX(κ− 1) given qκ−1:

ϕ (ρX(κ− 1)) = ϕ (ρX(κ− 1)|Σκ−1 = M,qκ−1 = q)

∝
[
1−

[
ρX(κ− 1) q′

]
M−1

[
ρX(κ− 1)
q′

]] p+1−κ
2

(2.2)

To simplify the derivation of the conditional distribution of ρX(κ− 1), we rewrite matrix

Σk−1 and hence, M as

Σκ−1 =

[
Σκ−2 qκ−1

q′κ−1 1

]
=

[
1 pκ−1

p′κ−1 Σκ−2

]
,

where pκ−1 = (ρX(1), ρX(2), . . . , ρX(κ − 2)) is a (κ − 2)−dimensional row vector. Thus,

fixing pκ−1 at p and Σκ−2 at B leads to

M =

[
1 p
p′ B

]
with M−1 =

[
1 p
p′ B

]−1

=

[
1 + pVp′ −pV
Vp′ V

]
,

where V = (B− p′p)−1. Inserting the expression for M−1 into (2.2) results in the following

expression for ϕ(ρX(κ− 1)):

ϕ (ρX(κ− 1)) ∝
[
1−

[
ρX(κ− 1) q′

] [
1 + pVp′ −pV
Vp′ V

] [
ρX(κ− 1)
q

]] p+1−κ
2

=
[
ρX(κ− 1) (q′Vp′ + pVq)− ρ2

X(κ− 1) (1 + pVp′) + 1− q′Vq
] p+1−κ

2

=
[
Y + ZρX(κ− 1)−Wρ2

X(κ− 1)
] p+1−κ

2

∝

1−

(
2ρX(κ− 1)W − Z√

4Y W + Z2

)2



p+1−κ
2

,

where W = 1 + pVp′, Y = 1− q′Vq, and Z = pVq + q′Vp′. Thus, we generate ρX(κ− 1)

at the κth step using ϕ(ρX(κ − 1))dρX(κ − 1) ∝ [1 − x2](p+1−κ)/2dx, where x2 = (2ρX(κ −
1)W − Z)2/(4Y W + Z2). As a result of changing the variables via x2 = y, the density

function simplifies to ϕ(ρX(κ − 1))dρX(κ − 1) ∝ [1 − y]α2−1yα1−1dy, where α1 = 1/2 and

α2 = (p + 3− κ)/2. Thus, the generation of a value for ρX(κ− 1) at the κth step reduces to

the sampling of y from a univariate beta distribution with parameters 1/2 and (p+3−κ)/2

and solving equality y = (2ρX(κ − 1)W − Z)2/(4Y W + Z2) for ρX(κ − 1). This procedure

can be further modified to account for the decay in the temporal-dependence structure at
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the κth step via |ρX(κ−1)| ≤ Aκ|ρX(κ−2)| for 2 ≤ κ ≤ p+1, where {Ak; k = 3, 4, . . . , p+1}
is a series of constants insuring different rates of decay in temporal dependencies. In this

particular case, the sampling algorithm reduces to sampling from a bounded beta distribution

with parameters α1 = 1/2 and α2 = (p+3−κ)/2 and bounds given by (2AκW |ρX(κ− 2)| −
Z)2/(4Y W + Z2) and (2AκW |ρX(κ− 2)|+ Z)2/(4Y W + Z2).

2.3.2. Multivariate Time-Series Setting

In this section we restrict our attention to the sampling of a k(p + 1) × k(p + 1) input

autocorrelation matrix ΣX of the form

ΣX =




ΣX (0) ΣX (1) . . . ΣX (p)
Σ
′
X (1) ΣX (0) . . . ΣX (p− 1)

...
...

. . .
...

Σ
′
X (p) Σ

′
X (p− 1) . . . ΣX (0)




k(p+1)×k(p+1)

,

where ΣX(h) = [ρX(i, j, h)]k×k is the k × k correlation matrix at lag−h for h = 0, 1, . . . , p.

We sample ΣX in three consecutive steps: We first generate the κ× κ principal minor Σκ =

[ρX(i, j, 0)]κ×κ of ΣX (0) in stages κ = 1, 2, . . . , k, then generate the k−dimensional column

vector qk = (ρX(1, 1, 1), ρX(2, 1, 1), . . . , ρX(k, 1, 1))′ in stage k + 1, and finally generate the

k−dimensional column vector qk = (ρX(1, j, h), ρX(2, j, h), . . . , ρX(k, j, h))′ in stage κ for

κ = k + 3, k + 4, . . . , k(p + 1).

In the first k stages we simply implement the sampling algorithm of Ghosh and Henderson

(2003) to generate the κ × κ principal minors, κ = 1, 2, . . . , k, of ΣX(0), which is simply a

k×k correlation matrix. Since the conditional density function ϕ for the (κ−1)−dimensional

column vector qκ of the κ× κ principal minor is given by

ϕ (qκ) ∝
(
1− q′κΣ

−1
κ−1qκ

) k(p+1)−κ
2 ,∀qκ ∈ Ψκ,

where

Σκ =

[
Σκ−1 qκ

q′κ 1

]

κ×κ

,

we sample qκ at the κth step of the algorithm by (i) first sampling the random variate y from

a beta distribution with α1 = (κ−1)/2 and α2 = (k(p+1)−κ+2)/2, (ii) setting r =
√

y, (iii)

sampling a (κ−1)−dimensional random vector θ = (θ1, θ2, . . . , θκ−1)
′ whose components are

standard normally distributed, and (iv) finally setting qκ = (ρX(1, κ, 0), ρX(2, κ, 0), . . . , ρX(κ−
1, κ, 0))′ = Σ

1/2
κ−1 ω, where ω=(ω1, ω2, . . . , ωκ−1)

′ = (rθ1, rθ2, . . . , rθk−1)
′.
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In the (k + 1)th−stage of the algorithm, we first sample the random variate y from a

beta distribution with α1 = k/2 and α2 = (k(p + 1) − k + 1)/2, set r =
√

y, and then im-

pose conditions |ρX (i, 1, 1)| ≤ Ai1 |ρX (i, 1, 0)|, i = 1, 2, . . . , k to insure decreasing temporal

dependencies. Thus, the joint distribution for qk+1 is given by

ϕ (qk+1) ∝
(
1− q′k+1Σ

−1
k (0)qk+1

) kp−1
2 , ∀qk+1 ∈ Ψk+1.

We generate qk+1 using the polar transformation [47] as a result of which we set qk+1 =

Σ
1/2
X (0) ω, where ω=(rθ1, rθ2, . . . , rθk)

′ whose components have means of 0 and standard

deviations of r and Σ
1/2
X (0) is the Cholesky factorization of the lag−0 correlation matrix

ΣX(0). Thus, the generation of qk+1 is equivalent to the generation of a zero-mean random

vector whose components are identically normally distributed with standard deviations of r

and whose correlation matrix is ΣX(0) and therefore, every component of qk+1 can be gener-

ated using the marginal-conditional characterization of the multivariate normal distribution.

The use of Corollary 3.3.1 and Theorem 3.3.4 of [83] for this purpose further results in a

series of truncated normal distributions. More specifically, the joint distribution of random

variables ρX(i, 1, 1), i = 1, 2, . . . , ` is captured by an `−dimensional normal distribution with

zero-mean vector and a variance-covariance matrix r`Σ
1/2
X (0)[`, `], where Σ

1/2
X (0)[`, `] stands

for the upper-left ` × ` submatrix of Σ
1/2
X (0). Thus, the marginal distribution of ρX(`, 1, 1)

given ρX(`− 1, 1, 1), ρX(`− 2, 1, 1), . . . , ρX(1, 1, 1) is a normal distribution with mean µ` and

variance σ2
` for ` = 2, 3, . . . , k and µ` and σ2

` are determined as follows: We partition the

vector (ρX(`, 1, 1), ρX(`−1, 1, 1), ρX(`−2, 1, 1), . . . , ρX(1, 1, 1))′ into two subvectors given by

s1 = ρX(`, 1, 1) and s2 = (ρX(` − 1, 1, 1), ρX(` − 2, 1, 1), . . . , ρX(1, 1, 1))′, organize the en-

tries of r`Σ
1/2
X (0)[`, `] by reversing the indices in a decreasing order in matrix Σ̄, and finally

partition Σ̄ into submatrices Σ̄1,1, Σ̄1,2 = Σ̄′
2,1, and Σ̄2,2, where Σ̄1,1 is the upper-left 1× 1

submatrix, Σ̄2,2 is the lower-right (`− 1)× (`− 1) submatrix, and Σ̄1,2 is the row submatrix

composed of the first row of Σ̄ associated with the last `−1 columns. In this particular case

µ` = Σ̄1,2Σ̄
−1
2,2s2 and σ2

` = Σ̄1,1−Σ̄1,2Σ̄
−1
2,2Σ̄2,1. Now we can sample a value for ρX(`, 1, 1) from

a truncated normal distribution with mean µ`, variance σ2
` , and truncation characterized by

|ρX(`, 1, 1)| ≤ A`,1|ρX(`, 1, 0)|.
Now we switch our focus to the sampling of column vector qκ in stage κ for κ = k +

2, k + 3, . . . , k(p + 1). We know that the joint distribution of vectors qk and qκ−k−1, where
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qκ = (qk,qκ−k−1)
′ corresponds to the upper column vector in stage κ, is given by

ϕ (qk,qκ−k−1) ∝
[
1−

[
q′k q′κ−k−1

]
Σ−1

κ−1

[
qk

qκ−k−1

]] k(p+1)−κ
2

.

As a result of fixing Σ−1
κ−1 at V, which is further decomposed into k × k submatrix V1,1,

k × (κ− k − 1) submatrix V1,2 (= V′
2,1), and (κ− k − 1)× (κ− k − 1) submatrix V2,2, and

fixing qκ−k−1 at q whose components have already been generated in the previous steps, we

obtain the marginal distribution of qk conditional on qκ−k−1 as follows:

ϕ (qk) ∝
[
1−

[
q′k q′

] [
V11 V12

V21 V22

] [
qk

q

]] k(p+1)−κ
2

∝ [1− q′kV11qk − q′V21qk − q′V′
12qk − q′V22q]

k(p+1)−κ
2

∝ [1− q′kV11qk − (q′V21 + q′V′
12)qk − q′V22q]

k(p+1)−κ
2

∝ [(1− q′kV22qk) + (−q′V21 − q′V′
12)qk − q′V11q]

k(p+1)−κ
2

Next we define scalar B = 1−q′kV22qk, (1×k)−dimensional row vector C = −q′
(
V2,1 + V′

1,2

)
,

and k × k square matrix D = V1,1, and summarize the sampling problem as follows:

ϕ (qk) ∝ [B + Cqk − q′kDqk]
k(p+1)−κ

2 , k + 2 ≤ κ ≤ k (p + 1)

=

[
B

(
1−

[
q′k

D

B
qk − C

B
qk

])] k(p+1)−κ
2

∝
[
1− q′kD̃qk

] k(p+1)−κ
2

where D̃ii = 1
B
Di,i − 1

B
Ci for i = 1, 2, . . . , k. Finally, we use the approach described for

the (k + 1)th−stage to insure prespecified rates of decay in temporal dependencies in stages

k + 2, k + 3, . . . , k(p + 1). The difference appears due to the replacement of Σ
1/2
X (0) with

D̃−1/2, where D̃ii = 1
B

Dii − 1
B

Ci for i = 1, 2, . . . , k.

2.4. Analysis

In this section we generate positive definite autocorrelation matrices using the sampling al-

gorithm of Section 2.3, choose the replication number as 15000, and estimate the likelihood

of the following types of failure: (1) Given that ΣX is positive definite, the base autocorre-

lation matrix ΣZ is not positive definite. (2) Both ΣX and ΣZ are positive definite and the

base process is stable, but the covariance matrix of the white noise Σu is not positive defi-

nite. (3) Given that ΣX, ΣZ, and Σu are positive definite, the base autoregressive process
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is unstable. (4) Both ΣX and ΣZ are positive definite, but neither the covariance matrix of

the white noise vector, Σu, is positive definite nor the base vector autoregressive process is

stable. Thus, the total probability of the VARTAk(p) infeasibility in representing arbitrary

multivariate time series with positive definite autocorrelation matrices is the sum of the

probabilities of these types of failure.

In Section 2.4.1 we restrict our attention to a univariate time-series setting and in Section

2.4.2 to a multivariate time-series setting. We estimate the probability of the VARTA infea-

sibility together with the corresponding 95% confidence interval as a function of the number

of component time series, the order of dependence, and the temporal-dependence decay rate.

We perform our experiments using MATLAB with Intel Pentium 1.6 GHz processor CPU

speed.

2.4.1. Univariate Time-Series Setting

We compute the failure probability of the ARTA(p) process in representing univariate time se-

ries whose autocorrelation structure has the form presented in Section 2.3.1 without any con-

straints insuring any ordering relationships among its autocorrelations ρX(h), h = 1, 2, . . . , p.

We tabulate our findings in Table 2.1 for p = 1, 2, . . . , 20. We observe that the only reason

Table 2.1: Probability of the ARTA(p) infeasibility for p = 1, 2, . . . , 20.
Order of Dependence Failure Probability Order of Dependence Failure Probability

1 (0.00%, 0.00%) 11 (42.56%, 44.50%)
2 (2.31%, 2.93%) 12 (48.85%, 50.81%)
3 (3.45%, 4.21%) 13 (53.74%, 55.70%)
4 (6.44%, 7.44%) 14 (61.53%, 63.43%)
5 (11.26%, 12.52%) 15 (64.93%, 66.79%)
6 (14.49%, 15.89%) 16 (70.30%, 72.08%)
7 (19.35%, 20.93%) 17 (74.89%, 76.57%)
8 (24.20%, 25.90%) 18 (78.63%, 80.21%)
9 (30.06%, 31.88%) 19 (81.93%, 83.41%)
10 (36.39%, 38.29%) 20 (85.60%, 86.94%)

for the ARTA infeasibility is the failure of ΣZ to be positive definite for the given positive

definite ΣX . In other words, the positive definiteness of the base autocorrelation matrix is

sufficient to insure the existence of a stable base autoregressive process. In the next section

we find that this observation does not extend to the multivariate time-series settings.
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In Table 2.1 we additionally report the determinant of ΣX (|ΣX |), the minimum eigen-

value of ΣX (eig(ΣX)), and the sum of the distances between the eigenvalues of ΣX and the

value of zero (eig(all)). As consistent with the previous findings reported for the random-

vector settings, we observe that the ARTA infeasibility occurs as the boundary of the positive

definite input autocorrelation matrices is approached in the univariate time-series setting.

This observation extends readily to the multivariate time-series setting and thus, to the

VARTA infeasibility in the next section. Therefore, we restrict our focus to the computation

of the VARTA infeasibility and its decomposition into different reasons of failure in Section

2.4.2.

Table 2.2: Behavior of ARTA(p), p = 1, 2, . . . , 20 when failure occurs.
p |ΣX | eig(ΣX) eig(all)

2 (0.02236, 0.02653) (0.01087, 0.01277) (2.24, 2.28)
3 (0.01415, 0.01660) (0.01079, 0.01227) (2.74, 2.79)
4 (0.00821, 0.00959) (0.01083, 0.01191) (3.29, 3.35)
5 (0.00531, 0.00615) (0.01184, 0.01276) (3.65, 3.71)
6 (0.00295, 0.00343) (0.01149, 0.01225) (4.14, 4.20)
7 (0.00225, 0.00262) (0.01212, 0.01281) (4.41, 4.47)
8 (0.00119, 0.00139) (0.01152, 0.01213) (4.91, 4.98)
9 (0.00092, 0.00108) (0.01174, 0.01229) (5.16, 5.23)
10 (0.00051, 0.00060) (0.01091, 0.01139) (5.69, 5.76)
11 (0.00038, 0.00045) (0.01095, 0.01142) (5.85, 5.92)
12 (0.00021, 0.00026) (0.00978, 0.01019) (6.36, 6.44)
13 (0.00015, 0.00018) (0.00964, 0.01004) (6.55, 6.62)
14 (9.03E − 05, 10.9E − 05) (0.00871, 0.00906) (7.08, 7.16)
15 (7.08E − 05, 8.94E − 05) (0.00836, 0.00870) (7.27, 7.35)
16 (4.01E − 05, 5.30E − 05) (0.00743, 0.00774) (7.83, 7.93)
17 (3.08E − 05, 3.99E − 05) (0.00689, 0.00718) (8.09, 8.19)
18 (1.89E − 05, 2.50E − 05) (0.00607, 0.00633) (8.54, 8.65)
19 (1.19E − 05, 1.71E − 05) (0.00559, 0.00585) (8.86, 8.97)
20 (7.14E − 06, 1.06E − 05) (0.00489, 0.00512) (9.29, 9.41)

Next we impose constraints insuring different rates of decay in temporal dependencies

via the selection of Aκ, κ = 1, 2, . . . , p + 1 as 1, 1/2, 1/4, and 1/8. The smaller the value of

Aκ, κ = 1, 2, . . . , p+1, the faster the rate of decay in temporal dependencies. We present our

findings for p = 1, 2, . . . , 10 in Table 2.4.1. A close look at Table 2.3 shows the significant

impact of the decay rate on the ARTA infeasibility. The failure probability does not exceed

3% in any of our experimental settings reported for p = 1, 2, . . . , 10. Thus, we conclude that
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Table 2.3: Probability of the ARTA(p) infeasibility with decreasing temporal dependencies.
Order of Dependence Temporal-Dependence Decay Rate

p 1 1/2 1/4 1/8

1 (0.0%,0.0%) (0.0%,0.0%) (0.0%,0.0%) (0.0%,0.0%)
2 (0.5%, 0.8%) (0.3%, 0.5%) (0.4%, 0.6%) (0.2%, 0.4%)
3 (1.3%, 1.7%) (1.1%, 1.5%) (0.7%, 1.0%) (0.6%, 0.8%)
4 (1.7%, 2.2%) (1.2%, 1.5%) (1.0%, 1.3%) (0.9%, 1.3%)
5 (2.0%, 2.4%) (1.2%, 1.6%) (1.2%, 1.6%) (1.1%, 1.5%)
6 (2.3%, 2.8%) (1.5%, 1.9%) (1.4%, 1.8%) (1.3%, 1.6%)
7 (2.4%, 2.9%) (1.6%, 2.0%) (1.7%, 2.2%) (1.5%, 1.9%)
8 (2.4%, 2.9%) (1.5%, 1.9%) (1.5%, 1.9%) (1.5%, 1.9%)
9 (2.2%, 2.7%) (1.8%, 2.3%) (1.5%, 2.0%) (1.6%, 2.0%)
10 (2.0%, 2.5%) (1.6%, 2.1%) (1.6%, 2.0%) (1.4%, 1.8%)

the ARTA transformation is a highly flexible model with the ability of working for most

time-series processes in univariate time-series settings.

2.4.2. Multivariate Time-Series Setting

As in the previous section, we first investigate the likelihood of the VARTA infeasibility

without assuming any relationships among correlations ρX(i, j, h), i, j = 1, 2, . . . , k, h =

0, 1, . . . , p. We report our findings on the VARTA infeasibility in Table 2.4 for a first-order

process whose number of components changes between 2 and 5.

Table 2.4: Probability of the VARTAk(1) infeasibility as a function of k.
Reasons of Number of Components (k)
Failure 2 3 4 5

Reason 1 (20.2%, 21.5%) (31.2%, 32.7%) (42.3%, 43.8%) (49.8%, 51.4%)
Reason 2 (0.9%, 1.2%) (0.6%, 0.9%) (0.5%, 0.7%) (0.0%, 0.0%)
Reason 3 (6.4%, 7.2%) (26.6%, 27.9%) (25.0%, 26.4%) (41.3%, 42.8%)
Reason 4 (1.4%, 1.8%) (1.9%, 2.4%) (4.2%, 4.8%) (6.9%, 7.7%)

Total Failure
Probability (29.6%, 31.0%) (61.4%, 62.9%) (73.2%, 74.6%) (99.9%, 100.0%)

Our focus on the first-order VARTA process is motivated by the fact that any VARTAk(p)

process can be represented as a VARTAkp(1) process [8]. Recall that “Reason 1” in Table

2.4 denotes the failure of ΣZ to be positive definite, “Reason 2” represents the failure of Σu

to be positive definite, “Reason 3” corresponds to the failure of the roots of the reverse char-

acteristic polynomial to satisfy the stability condition, and finally “Reason 4” corresponds
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to the lack of a stable vector autoregressive process whose reverse characteristic polynomial

satisfies the stability condition and the variance-covariance matrix of the white noise vector

is positive definite. We find that the total failure probability reaches the value of one very

quickly, i.e., we estimate the mean failure probability as 99.98% for the five-dimensional

first-order VARTA5(1) process and unlike in the univariate time-series setting, the failure of

ΣZ to be positive definite is not the only reason for the VARTA infeasibility. However, like

in the univariate time-series setting, we find that decay rate in temporal dependencies has

a significant (positive) impact as tabulated in Table 2.5. For |ρX(i, j, h)| ≥ |ρX(i, j, h + 1)|,
h ≥ 1, the mean failure probability for the VARTA5(1) process never reaches the value of

one; instead, it converges to the probability of 41%. We observe that the failure probabil-

Table 2.5: Probability of the VARTAk(1) infeasibility with decreasing temporal dependen-
cies.

# of Components Temporal-Dependence Decay Rate
k 1 1/2 1/4 1/8

2 (3.0%, 3.5%) (2.2%, 2.7%) (1.6%, 2.0%) (1.3%, 1.7%)
3 (26.2%, 27.6%) (18.8%, 20.1%) (10.4%, 11.4%) (7.5%, 8.4%)
4 (34.0%, 35.5%) (22.9%, 24.3%) (11.5%, 12.6%) (7.3%, 8.1%)
5 (37.9%, 44.0%) (23.6%, 24.9%) (10.3%, 11.3%) (5.3%, 6.0%)

ity decreases even more significantly with increasing values of the decay rate in temporal

dependencies.

Next we restrict our attention to a bivariate time-series setting and estimate the like-

lihood of the VARTA infeasibility as a function of the order of dependence p without any

constraints associated with decaying temporal dependencies (see Table 2.6). We observe

Table 2.6: Probability of the VARTA2(p) infeasibility as a function of p.
p Failure Reasons of Failure

Probability Reason 1 Reason 2 Reason 3 Reason 4

1 (29.5%, 31.0%) (20.2%, 21.5%) (0.8%, 1.2%) (6.3%, 7.1%) (1.4%, 1.8%)
2 (88.1%, 89.1%) (8.2%, 9.1%) (3.1%, 3.7%) (64.2%, 65.7%) (10.9%, 12.0%)
3 (97.2%, 97.7%) (13.8%, 14.9%) (0.6%, 0.9%) (54.1%, 55.7%) (26.7%, 28.1%)
4 (99.7%, 99.8%) (17.0%, 18.3%) (0.0%, 0.1%) (54.9%, 56.5%) (25.6%, 27.0%)
5 (100.0%, 100.0%) (18.5%, 19.8%) (0.0%, 0.0%) (50.6%, 52.2%) (28.66%, 30.12%)

that the failure probability increases very rapidly with the order of dependence. Wei [89]

notes that the value of 3 for p appears to be a good approximation for the maximum order
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of dependence in most practical applications. We find that the mean failure probability of

the VARTA2(3) infeasibility is 97.53% with the major reason of failure as the lack of a stable

vector autoregressive process despite the positive definiteness of the base autocorrelation

matrix ΣZ. Thus, unlike in the univariate time-series setting, the positive definiteness of

ΣZ is not sufficient for the existence of a stable vector autoregressive process, i.e., failure

might occur even when the resulting base autocorrelation matrix is positive definite. On the

other hand, the failure probabilities decrease significantly as we assume decaying temporal

dependencies over time (see Table 2.7). Notice that the mean probability of the VARTA2(p)

Table 2.7: Probability of the VARTA2(p) infeasibility with decreasing temporal dependencies.
Order of Dependence Temporal-Dependence Decay Rate

p 1 1/2 1/4 1/8

1 (3.00%, 3.57%) (2.21%, 2.71%) (1.61%, 2.03%) (1.38%, 1.78%)
2 (3.60%, 4.22%) (2.54%, 3.07%) (1.97%, 2.43%) (1.95%, 2.42%)
3 (4.05%, 4.70%) (3.75%, 4.38%) (2.62%, 3.15%) (2.24%, 2.74%)
4 (5.45%, 6.19%) (4.29%, 4.96%) (2.77%, 3.32%) (2.22%, 2.71%)
5 (5.04%, 5.77%) (4.39%, 5.07%) (2.87%, 3.43%) (2.36%, 2.87%)
6 (5.64%, 6.40%) (4.35%, 5.03%) (2.98%, 3.54%) (2.33%, 2.83%)
7 (6.03%, 6.82%) (3.99%, 4.65%) (2.84%, 3.40%) (2.44%, 2.96%)
8 (5.92%, 6.70%) (3.99%, 4.64%) (2.72%, 3.27%) (2.34%, 2.85%)
9 (5.77%, 6.54%) (4.38%, 5.06%) (2.71%, 3.26%) (2.38%, 2.90%)
10 (5.57%, 6.33%) (4.10%, 4.76%) (2.85%, 3.41%) (2.33%, 2.84%)

infeasibility is estimated as 6.43% for |ρX(i, j, h)| ≥ |ρX(i, j, h + 1)|, h ≥ 1. This particular

value of the failure probability is around five times higher than the one computed for the

ARTA(p) process in Section 2.4.1. However, the failure probability is still very low, indicat-

ing a strong support for the applicability of the VARTA2(p) process in a time-series setting

with a high order of dependence.

We conclude this section with the presentation of the mean probability of the VARTAk(p)

infeasibility for p = 1, 2, . . . , 5 and k = 1, 2, . . . , 5 when |ρX(i, j, h)| ≥ |ρX(i, j, h + 1)|, h ≥ 1.

Despite the fact that the VARTA process can get infeasible quickly with increasing dimen-

sions, its performance is very much dependent on the rate of decay in temporal dependencies.

As indicated by the results reported in Table 2.8, VARTA appears to be a highly flexible

model with the ability of representing the stochastic properties of the pth−order multivariate

time-series processes with p ≤ 3 and strictly decreasing temporal dependencies.
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Table 2.8: Mean failure probability of VARTAk(p) with decreasing temporal dependencies.
Order, Number of Components, k

p 1 2 3 4 5

1 (0.0%, 0.0%) (3.0%, 3.5%) (26.2%, 27.6%) (34.0%, 35.5%) (40.2%, 41.7%)
2 (0.5%, 0.7%) (3.6%, 4.2%) (28.9%, 30.3%) (41.7%, 43.3%) (52.9%, 54.5%)
3 (0.8%, 1.2%) (4.0%, 4.7%) (32.7%, 34.2%) (47.5%, 49.1%) (54.8%, 56.4%)
4 (0.8%, 1.1%) (4.3%, 5.0%) (34.1%, 35.6%) (48.8%, 50.4%) (60.4%, 61.9%)
5 (0.7%, 1.0%) (5.6%, 6.3%) (35.3%, 36.8%) (52.4%, 54.0%) (62.8%, 64.3%)

2.5. Conclusion

VARTA is a flexible multivariate input model used for generating stationary multivariate

time series with prespecified marginal distributions and positive definite autocorrelation

matrices. The question we ask in this paper is whether we can represent any stationary mul-

tivariate time series with arbitrary feasible dependence structures. We start our study with

the extension of the exact sampling algorithm of Ghosh and Henderson [32] to our time-series

setting for sampling positive definite autocorrelation matrices. Using the resulting sampling

algorithm, we estimate the likelihood of the ARTA/VARTA infeasibility as a function of the

order of dependence, the number of component time-series processes, and the rate of decay

in temporal dependencies. Our findings suggest that ARTA is a highly flexible model with

the ability of representing the stochastic properties of most univariate time-series processes.

However, without assuming any pattern of decay in temporal dependencies, we find that

the VARTA process fails very rapidly in representing arbitrary multivariate time series as a

function of both the order of dependence and the number of components. We estimate the

mean failure probability as 99.98% for the first-order five-dimensional VARTA5(1) process

and as 100.00% for the fifth-order two-dimensional VARTA2(5) process. In this particular

case, we recommend the simulation practitioner to consider the representation of the VARTA

process via the copula-vine specification of Kurowicka and Cooke [50]. This representation

requires the characterization of the multivariate temporal dependence structure as a mix

of pairwise correlations and pairwise conditional correlations. We refer the reader to Biller

[12] for details on this particular representation of VARTA. However, the probability of the

VARTA infeasibility starts diminishing very quickly with increasing decay rates. When we

assume that |ρX(i, j, h)| ≥ |ρX(i, j, h + 1)|, i, j = 1, 2, . . . , k, h = 1, 2, . . . , p − 1, the mean

failure probabilities for the VARTA5(1) and VARTA2(5) processes decrease to 41.00% and
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5.407%, respectively. Thus, we conclude that VARTA is a highly flexible, easily imple-

mentable method for driving large-scale discrete-event stochastic simulations whose inputs

are represented by multivariate time series with temporal dependencies decaying over time.
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Chapter 3

The Impact of Dependence on
Single-Server Queueing Systems

In this study, we use advanced simulation input modeling to study the impact of bivariate

and temporal dependencies among interarrival and service times on the performance of a

single-server queue. The distinguishing feature of our study from those in the literature is to

consider a wide variety of distributional shapes for the probability density functions of the

interarrival and service times, and the patterns that arise in the temporal dependencies of

the interarrival and service times. We generate dependent interarrival and service times via

using the Vector-Auto-Regressive-to-Anything method, which has never before been used in

queueing systems. We investigate the impact of dependent interarrival and service times

on the average waiting time of M/M/1, M/G/1 and G/M/1 systems. We show that high

variance and positive skewed nonexponential distributions decrease the performance of the

single-server system. We also compare impact of temporal dependencies in interarrival and

service times for M/M/k systems (k ≥ 2) with the M/M/1 system, and conclude that the

effect of dependence decreases in multi-server systems. Our main contribution is to combine

this advanced input modeling method with queueing theory for investigating the impacts of

dependent interarrival and service times on the average waiting time. 1

3.1. Introduction

Most queueing models assume that job interarrival and service times, failure times, and

repair requirements are independent and identically distributed, each being modeled as a

renewal process (see, for example, Kelley [46]). These restricted assumptions lead to models

1Co-authors: Bahar Biller and Alan Scheller-Wolf
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that are very easy to simulate, and which are analytically tractable. Unfortunately, these

models are often poor representations of real-life systems where correlations do, in fact,

exist. It is well known that dependent time-series input processes occur naturally in many

service, telecommunication, and manufacturing systems. For example, Melamed et. al. [62]

observe autocorrelation in sequences of compressed video frame bitrates, while Ware et. al.

[87] report that the times between file accesses on a computer network frequently exhibit

burstiness, as characterized by a sequence of short interaccess times followed by one or more

long ones. Further examples of dependent systems are provided in Section 2.

The goal of this paper is to perform a simulation study to observe the effects of dependence

on the average waiting time of the single-server queue. In the literature, autocorrelations

are often considered in M/M/1 systems with lag-one autocorrelations in interarrival and

service times. In this paper, we go beyond the use of such an input model for interarrival

and service times; we use the Vector-Autoregressive-To-Anything (VARTA) input model

capturing a wide variety of distributional shapes for the probability density functions of in-

terarrival and service times, and lag-two autocorrelations. Specifically, VARTA input model

is introduced by Biller and Nelson [8] to generate multivariate time series for discrete-event

stochastic simulations. Additionally, we use the Johnson translation system [44] to represent

the marginal distributions of interarrival times and service demands. This allows us to con-

sider both unimodal and bimodal distributional shapes with any combination of first four

moments (i.e., mean, variance, skewness, and kurtosis). Therefore, our main contribution

is to combine VARTA as a multivariate input generation technique with queueing theory to

generate insights into the effects of dependence on queueing performance.

A related study is performed by Livny et. al. [57] who examine the impact of autocor-

related, exponentially distributed interarrival and service times on the performance of an

infinite-capacity, single-stage, single-server system without breakdowns (i.e., M/M/1) under

a variety of traffic loads. The authors find that ignoring the autocorrelation in the interar-

rival times and/or the autocorrelation in the service times can predict overly optimistic line

lengths and waiting times. However, we still do not know how the bivariate and temporal

dependencies of different strengths and patterns among interarrival and service times affect

the performance of this infinite-capacity, single-stage, single-server system with arbitrary

marginal distributions. We fill this gap by investigating the impact of dependent inputs

on the queuing performance and understanding how the operating principles (i.e., factory

physics) — that are very well understood under the assumption of independent inputs —
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change with bivariate and temporal dependencies. Considering the advent of increasingly

complex systems, spawned by rapidly evolving technologies such as telecommunication and

manufacturing, where dependencies in model inputs are both common and significant, we

believe providing insight into the impact of dependencies on queuing system performance is

a valuable contribution to both the academic community and practitioners.

Since analytical models can only handle the analysis of quite restricted dependence struc-

tures within queuing systems, we use discrete-event stochastic simulation to perform this

study. The first challenge is thus to find a plausible and yet parsimonious model for repre-

senting the dependencies in the stochastic simulation of the queueing system. We overcome

this challenge by using the VARTA model representing and generating interarrival and service

times with given marginal distributions from the Johnson translation system and positive

definite autocorrelation matrices. We present statistical summaries of queue performance,

exploring a variety of values for factors such as the pattern of dependence, server utilization,

and wide variety of distributional shapes for interarrival and service times. We find that the

average waiting time is monotonically increasing in the positively autocorrelated interarrival

times and/or service times. For example, average waiting time of the M/M/1 system at

50% utilization increases from 0.99935 (independent and identically distributed interarrival

times) to 2.17093 (+0.7 autocorrelated interarrival times). This increase can be explained by

the burstiness caused by positively autocorrelated interarrival times. However, the average

waiting time is not monotonically decreasing in the negatively autocorrelated interarrival

times and/or service times. For example, the average waiting time of the M/M/1 system at

50% utilization increases from 0.85313 (−0.5 autocorrelated service times, and independent

and identically distributed interarrival times) to 0.86746 (−0.7 autocorrelated service times,

and independent and identically distributed interarrival times). This result is consistent with

the literature. However, nonmonotonic behavior of the average waiting time in negatively

autocorrelated interarrival times is a new observation to the literature. This observation

happens in high utilization levels and negative autocorrelations close to minus one. For

instance, the average waiting time of the M/M/1 system at 80% utilization increases from

3.03475 (−0.5 autocorrelated interarrival times, and independent and identically distributed

service times) to 3.03867 (−0.7 autocorrelated interarrival times, and independent and iden-

tically distributed interarrival times). This increase is even higher for −0.99 autocorrelated

interarrival times, in which the average waiting time increases to 10.19664 for this specific

M/M/1 system with 80% utilization level. We investigate this nonmonotonic behavior by
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the analysis of the sample paths of the interarrival and service times. Since we experiment

lag-two autocorrelations, we investigate the impact of the pattern of dependence on the av-

erage waiting time of single-server queue. Moreover, our experimental study shows that the

impact of dependence in interarrival times and/or service demands increase monotonically

as the utilization of the queueing system. Additionally, we investigate the impact of bivari-

ate and temporal dependent interarrival times and/or service times on the performance of

M/G/1 and G/M/1 systems with Johnson marginal distributions.

The rest of the paper is organized as follows. The motivation behind our study is dis-

cussed in Section 3.2. Section 3.3 gives a comprehensive survey of the related literature,

while Section 3.4 introduces the VARTA model for capturing the bivariate and temporal de-

pendencies among interarrival times and service demands with marginal distributions from

the Johnson translation system. Section 3.5 provides a summary of simulation results and

key findings. Finally, the conclusion of our study is presented in Section 3.6, and the related

appendices are followed by the section of conclusions.

3.2. Motivation

Interarrival and service times of service and telecommunication systems are often assumed

to be independent and identically distributed. However, this assumption leads to a poor rep-

resentation of the real system when there are autocorrelations within and across interarrival

and service times. One example of the problem of dependence in queueing systems is given

in call centers: Strongly autocorrelated interarrival times cause burstiness in the call centers

[16]. Accounting dependence is also important in data and voice transfers, such as in ISDN

(Integrated Service Digital Network) and ATM (Asynchronous Transfer Mode) technologies

[29]. Also within the WWW (World Wide Web) environment, the arrival of internet users

to web sites and their “think time” exhibit strong autocorrelation and burstiness [25].

Strong dependencies are also observed among job arrivals, machining times, machine

failure and down times, vendor lead times, and material handling times of manufacturing

systems. However, these dependencies are typically ignored in both production and planning

problems. Altıok [3] states that down and failure times in manufacturing environments are

positively correlated. He reports that observing positive correlation between time to failure

and down time is very common in pharmaceutical manufacturing processes such as, mixing,

blending, and tablet coating. The nozzles over the tablets are frequently replaced, and
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these down times are much shorter than the other common machine failures that occur

less frequently and have longer down times [23]. In other manufacturing applications, the

dependence is significant in the pressure variable of a continuous-flow production line [9], and

the correlation among different parts’ processing times in parallel production line using ATO

(Assemble-to-Order) manufacturing[91], and it also affects the performance of sequential and

ordering systems in JIT (Just-in-Time) manufacturing systems [82].

In service environments, dependence has also been shown to be important in modeling

customer demand for airline tickets, where demand is price sensitive and changes over time

[31]; so, demand shows burstiness and autocorrelation. In fact, service centers, such as

transportation stations, cinema and theaters behave like call centers in telecommunication

industry; hence, the arrival stream of customers is bursty and exhibits strong temporal

dependence.

3.3. Literature Review

In the queueing literature, dependence is typically ignored, despite the fact that there exists

well-known temporal dependencies within as well as between interarrival times and service

demands of computer, telecommunication, manufacturing, and service systems (see Section 2

for industry applications). The studies about the impact of dependence on queueing systems

can be separated into two main categories based on the approach: analytical and simulation.

In analytical approach to the problem, the Markov renewal processes are mostly used; on the

other hand, simulation studies use various input generation models such as TES (Transfer-

Expand-Sample) method [62], Minification [54], etc. for generating dependent interarrival

and service times.

The analytical studies are often motivated by telecommunication systems and call cen-

ters, where autocorrelated arrivals in data and voice transfer have significant impact on

performance [29]. In those studies, the dependence is either short-range or long-range. Only

lag-one autocorrelation in interarrival and service times, or correlation between interarrival

and service times is studied in short range. The most common result in those analytical

papers is the demonstration of dramatic performance reduction due to positive autocorrela-

tion in interarrival times. In addition, positive temporal dependence in interarrival times or

positive bivariate dependence between interarrival times and service demands increase the

average waiting time [35].
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Markov arrival and service processes are commonly used to model dependence in analyt-

ical studies; see Runnenburg [74], Hadidi [35], Langaris [52], Heffes et al. [38], Fendick et al.

[29], Szekli et al. [81], Patuwo et al. [69], Boucherie et al. [14], and Shioda [76]. The common

result in these studies is that the performance of the single server queue decreases as the bi-

variate dependence approaches plus one. Additionally, Chao [21] uses a bivariate exponential

distribution to represent dependent interarrival times and service demands. He shows that

average waiting time is monotonically decreasing in the bivariate dependency. Iyer and Man-

junath [41] investigate the impact of only bivariate dependence between interarrival times

and service demands by using various heavy tailed distributions. They use finite mixture of

bivariate distributions to model the joint density of interarrival times and service demands;

thus, this model allows them to capture non-linear dependencies while specifying marginal

distributions. They present a numerical study to capture the effect of numerous parameters

in the model on the waiting time. In a recent study, Xu [91] makes a structural analysis of

a queueing system with multiple classes of autocorrelated arrivals, and blocking. This study

is motivated from assemble-to-order production systems, in which various components are

manufactured or assembled at separate places and the ordering of these components induces

the autocorrelation structure. The paper uses a simple queueing model of Poisson arrivals

and exponential service times with parallel servers and considers only autocorrelated inter-

arrival times. Xu [91] concludes that more positively autocorrelated arrivals improve the

worst component performance, which has the longest queue among parallel servers, by re-

ducing the diversity among the servers. Moreover, the impact of dependencies is considered

under heavy-traffic conditions. Jacobs [43] investigates the effect of bivariate and temporal

dependence within interarrival times and service demands on the average waiting time of a

M/M/1 queue under heavy traffic conditions. The interarrival times and service demands

are generated by a mixed exponential moving average method, called exponential mixed

autoregressive moving average with both autoregression and moving average of order. After

deriving the heavy traffic limiting distribution of the average waiting time, they conclude

that positive bivariate dependence between service and interarrival times decreases the av-

erage waiting time and positive autocorrelation within interarrival times or service demands

increases the average waiting time.

Simulation methodology is used to understand the behavior of the queueing systems with

dependence due to the difficulty in understanding the impact of dependence analytically.

Two widely used methods are the TES (Transfer-Expand-Sample) method [62] and the
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Minification technique [54] to generate short-range dependent interarrival times and service

demands for the queueing simulations. It is found that autocorrelation in interarrival times

has greater impact on the performance than the autocorrelation in service times and average

waiting time is monotonically increasing in autocorrelated interarrivals as a function of the

autocorrelation in service times at a specific utilization level. The impact of the positively

autocorrelated interarrival and service times is monotonically increasing in the utilization of

the queue.

Livny et. al. [57] is the most comprehensive simulation study in the literature. They

analyze the impact of lag-one autocorrelation generated by TES (Transfer-Expand-Sample)

method [62] and Minification technique [54] on an M/M/1 system. They conclude that

introducing autocorrelated arrivals has a greater impact than autocorrelation in service times,

and the pattern of the performance measures depends on the input modeling and the load

of the system. In both TES and Minification techniques, they observe monotonic increase

of the average waiting time in autocorrelation in interarrival times as a function of the

autocorrelation in service times at a certain utilization level; however, the structure is not

monotonic in autocorrelated service times as a function of autocorrelated arrivals. In addition

to bivariate and temporal dependencies within as well as between interarrival times and/or

service demands, another simulation research stream focuses on time-dependent behavior of

interarrival times and/or service times (i.e., the mean of interarrival times and/or service

times varies across time). Thus, there is no bivariate or temporal dependencies in the

queueing system. Nelson and Taaffe [67] study this time-dependent queueing system in

single-server case and multi-server case Taaffe [66]. They develop a numerical method to

evaluate the time-dependent mean, variance, and higher order moments of the number of

jobs via finite sets of differential equations which are integrated numerically. For algorithmic

purposes, Iravani et. al. [42] develop a decomposition algorithm for parallel queues in which

interarrival times are autocorrelated. They extend their algorithm to large systems as an

approximation of the performance measures, and perform numerical examples to test the

accuracy of their decomposition algorithm.

Our work fits in the category of simulation studies of the problem. We use a compre-

hensive input modeling framework, VARTA, for the first time in the literature of dependent

queues. This allows us to represent dependence both in time sequence and among interar-

rival times and service demands. We work on a single-server queue using a flexible system of

distributions known as the Johnson translation system as opposed to assuming exponentially
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distributed inputs. VARTA allows us to introduce cross-correlations between interarrival and

service times of different jobs. In addition to the novelty of our study, we perform simula-

tions to observe the impact of pattern of dependence in the autocorrelations of the first two

lags. Our main results verify the other simulation studies’ findings by using VARTA input

modeling and extend these observations to new cases. Moreover, we explain the nonmono-

tonic behavior of the average waiting time with negatively autocorrelated service times. We

also observe that the impact of temporal dependencies in interarrival times and/or service

demands is monotonically increasing in server utilization. In addition to our results, we

show that positive correlation between interarrival times and service demands increases the

performance of the queue and the impact of correlation is monotonically increasing in both

the utilization of the system and the magnitude of the bivariate dependency.

3.4. VARTA for Modeling Interarrival and Service Times

In this section, we describe how we capture the joint distributional properties of interarrival

times and service demands using VARTA. Specifically, VARTA is a comprehensive multivari-

ate input model for representing and generating multivariate time-series input processes with

marginal distributions from the Johnson translation system, and autocorrelation matrices

represented in product-moment correlations. It achieves flexibility by combining Gaussian

vector autoregressive processes and the Johnson family of distributions to characterize the

process dependence and marginal distributions, respectively.

The VARTA model introduced for representing a stationary k-variate time-series input

process {Xt; t = 0, 1, 2, . . .} has the following properties:

(1) Each component time series {Xi,t; t = 0, 1, 2, . . .} has a Johnson-type marginal distri-

bution that can be defined by FXi
. In other words, Xi,t ∼ FXi

for t = 0, 1, 2, . . . and

i = 1, 2, . . . , k.

(2) The dependence structure is specified via Pearson product-moment correlations ρX(i, j, h) =

Corr [Xi,t, Xj,t−h], for h = 0, 1, . . . , p and i, j = 1, 2, . . . , k. Equivalently, the lag-h

correlation matrices are defined by ΣX(h) = Corr [Xt,Xt−h] = [ρX(i, j, h)](k×k), for

h = 0, 1, . . . , p, where ρX(i, i, 0) = 1.

For instance, in a single-server queueing system with correlated interarrival and service times,

the random vector Xt is two-dimensional (i.e., k = 2) with one component representing the
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interarrival time while the other corresponding to the service time. However, if there is

additional lag-one autocorrelation between interarrival and service times, then the random

vector of interest is four-dimensional; e.g., X1,0 and X1,1 represent interarrival times at times

zero and one, respectively, while X2,0 and X2,1 represent service times for times zero and

one. In this model, we obtain the ith time series via the transformation Xi,t = F−1
Xi

[Φ(Zi,t)],

which ensures that Xi,t has distribution FXi
by well-known properties of the inverse cumu-

lative distribution function. Therefore, the central problem is to select the autocorrelation

structure, ΣZ(h), h = 0, 1, . . . , p, for the base process that gives the desired autocorrelation

structure, ΣX(h), h = 0, 1, . . . , p, for the input process.

We choose the base process Zt as a stationary, standard Gaussian vector autoregressive

process of order p with the representation

Zt = α1Zt−1 + α2Zt−2 + · · · + αpZt−p + ut, t = 0, ±1, ±2, . . . , (3.1)

where Zt = (Z1,t, Z2,t, . . . , Zk,t)
′ is a (k × 1) random vector of the observations recorded

at time t and the αi, i = 1, 2, . . . , p, are fixed (k × k) autoregressive coefficient matrices.

Finally, ut = (u1,t, u2,t, . . . , uk,t)
′ is a k-dimensional white noise vector representing the

part of Zt that is not linearly dependent on past observations; it has a positive definite

(k × k) covariance matrix Σu such that

E[ut] = 0(k×1) and E[utu
′
t−h] =

{
Σu if h = 0,
0(k×k) otherwise.

We generate multivariate time series from this bivariate Gaussian vector autoregressive

process of any required length, say T . In our study, we experiment with lag-one and lag-two

for bivariate and temporal dependencies in interarrival and service times. The algorithm for

generating dependent interarrival and service times are presented for p order of dependence

and length T :

• First, we obtain the starting values, z−p+1, z−p+2, . . . , z0, using the autocorrelation

structure, ΣZ(h), h = 0, 1, . . . , p, and the implied system parameters, α1,. . . ,αp and

Σu. We also obtain a series of Gaussian white noise vectors, u1, u2, . . . , uT . Then we

generate the time series z1, z2, . . . , zT recursively as zt = α1zt−1+· · · + αpzt−p+ut

for t = 1, 2, . . . , T .

• To generate z−p+1, z−p+2, . . . , z0 as realizations of Z−p+1, Z−p+2, . . . , Z0 whose joint

distribution is given by a nonsingular 2p-dimensional multivariate normal distribu-

tion, we choose a (2p × 2p) matrix Q such that QQ′ = ΣZ. Then we obtain the
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starting-value vector as (z0, z−1, · · · , z−p+1)
′ = Q (v1, · · · , v2p)

′, where the vi’s are

independent standard normal random variates. Therefore, this way ensures that the

process starts stationary.

• To obtain the series of independent Gaussian white noise vectors, u1, u2, . . . , uT ,

we first choose two-independent univariate standard normal variates v1 and v2 for

interarrival and service times, and then multiply by a (2 × 2) matrix P for which

PP′ = Σu; that is, ut = P (v1, v2)
′. We repeat this process T times.

We use Johnson family [44] distributions in our simulations. A cumulative distribution

function of any Johnson-type random variable X is specified through

FX(x) = Φ

{
γ + δf

[
x − ξ

λ

]}
,

where γ and δ are shape parameters, ξ is a location parameter, λ is a scale parameter, and

f(·) is one of the following transformations:

f(y) =





log (y) for the SL (lognormal) family,

log
(
y +

√
y2 + 1

)
for the SU (unbounded) family,

log
(

y
1−y

)
for the SB (bounded) family,

y for the SN (normal) family.

We refer the reader to Figure 3.1 for the partition of the two-dimensional plot of β1 and

β2 into regions in which a different Johnson family is used to match the third and fourth

moments.

3.5. Implementation

In this section, we discuss how we select the distributional properties of the interarrival

and service times we experiment with as well as the performance metrics. We additionally

provide the experimental setup and discuss the selection of the simulation run length, warm-

up period, and the number of replications that ensures a prespecified level of error. We

end this section by presenting the simulation results. We use C++ programming language

for our simulations. The VARTA multivariate input generation software is developed in

C++ environment by Biller and Nelson [8]. In our experiments, the autocorrelated data

for processes like interarrival and service times, are generated by this software. We refer
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the reader to Biller and Nelson [8] for further technical details about the code. We choose

the initial conditions (i.e., system state when simulation starts) so as to have an empty

system with idle servers and then apply the replication/deletion approach together with

Welch’s graphical method for determining initial conditions of our simulations. We refer

the reader to Law and Kelton [53] for the estimation of the distributional properties of

the performance measures of interest and a detailed description of the replication/deletion

method. We determine the number of replications needed for a 95% confidence interval of the

average waiting time by following a two-stage procedure. We present simulation results for

M/M/1 with lag-one autocorrelation in interarrival times and/or service times (no bivariate

dependence), M/M/1 with lag-two autocorrelation in interarrival and service times (effect

of dependence pattern), G/M/1 with lag-one autocorrelation in interarrival times and/or

service times, M/G/1 with lag-one autocorrelation in interarrival times and/or service times,

effect of bivariate dependence on M/M/1, G/M/1 and M/G/1, M/M/1 with both bivariate

and temporal dependence (effect of cross-correlation), and the effect of temporal dependent

interarrival and service times in M/M/k systems for k ≥ 2.

3.5.1. First-Order Autocorrelated, Exponentially Distributed In-
terarrival and Service Times

We perform experiments assuming four different utilization levels; 25%, 50%, 80%, and

99%. We fix the service demand process as exponential with mean 1 and change mean of the

exponentially distributed interarrival times to reach the prespecified utilization levels. For

example, the mean of the arrival process is 4 at the utilization of 25%. In each experiment

with respect to the utilization level, the lag-one autocorrelation values for interarrival and

service times are selected from {-0.99, -0.70, -0.50, -0.30, 0.00, 0.30, 0.50, 0.70, 0.99}. In the

tables presenting experiment results, ρA(1) and ρS(1) represent the lag-one autocorrelation

in interarrival times and service times, respectively. The horizontal autocorrelation values

represent ρS(1) and vertical autocorrelations represent ρA(1). Thus, there are 81 different

experiments per utilization level. For example in Table 3.1, 0.391 represents the result

obtained from the M/M/1 system that has interarrival times with lag-one autocorrelation

of 0.30 and service times with lag-one autocorrelation of −0.50. We refer reader to Tables

3.19, 3.20, and 3.21 in the appendix section for experiment results of 50%, 80%, and 99%

utilizations of the M/M/1 system.
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Table 3.1: First-Order Autocorrelated, Exponentially Distributed Interarrival and Service
Times, 25% utilization

ρS(1)
ρA(1) -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
-0.99 0.273 0.204 0.203 0.205 0.210 0.227 0.251 0.309 3.668
-0.70 0.250 0.216 0.217 0.220 0.231 0.253 0.280 0.333 2.471
-0.50 0.268 0.231 0.232 0.237 0.251 0.278 0.307 0.364 2.477
-0.30 0.291 0.252 0.254 0.260 0.277 0.308 0.343 0.405 2.492
0.00 0.357 0.300 0.302 0.310 0.333 0.374 0.419 0.501 2.714
0.30 0.482 0.390 0.391 0.402 0.434 0.489 0.554 0.668 3.182
0.50 0.659 0.513 0.514 0.527 0.567 0.639 0.721 0.868 3.763
0.70 1.065 0.797 0.794 0.814 0.868 0.971 1.083 1.295 4.999
0.99 22.858 19.765 20.021 19.612 20.199 20.587 20.642 22.216 45.340

The average waiting time is monotonically increasing in the utilization level with autocor-

relation in interarrival times and/or service times. Additionally, the average waiting time is

monotonically decreasing as a function of the autocorrelation autocorrelation in interarrival

times and/or service times. These two results confirm the literature. However, the impact of

dependence is interesting in negatively autocorrelated interarrival times and/or service de-

mands. In the literature, nonmonotonic behavior of the average waiting time in negatively

autocorrelated service demands was observed, but nonmonotonic behavior of the performance

in negatively autocorrelated interarrival times is a new observation in the literature. Because

nonmonotonic behavior of the average waiting time in negatively autocorrelated interarrivals

exist when lag-one autocorrelation is close to −1 and/or utilization is close to 100%. For

instance, the average waiting time is 0.273 in 25% utilization with ρA(1) = −0.99 and

ρS(1) = −0.99, which is greater than 0.250 with ρA(1) = −0.70 and ρS(1) = −0.99.

This nonmonotonic observation occurs at ρA(1) = −0.70 and ρS(1) = −0.99 at both

50% and 80% utilizations. However, we observe this nonmonotonic behavior of the average

waiting time at ρA(1) = −0.50 and all ρS(1) values in 99% utilization.

In the literature, nonmonotonic behavior of the average waiting time in negatively auto-

correlated service demands was observed, but nonmonotonic behavior of the performance in

negatively autocorrelated interarrival times is a new observation in the literature. Because

nonmonotonic behavior of the average waiting time in negatively autocorrelated interarrivals

exist when lag-one autocorrelation is close to -1 and/or utilization is close to 100%. We fo-

cus our analysis on the nonmonotonic behavior of the average waiting time in negatively

autocorrelated service demands. When service times are negatively autocorrelated, there
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Figure 3.2: Waiting times of a single sample path for lag-one=-0.9 and lag-one=-0.5 auto-
correlated service times

are clusters of short and long processing times. Due to the clustering of the long processing

times, the system observes more accumulation of jobs/customers in the queue; therefore, it

causes longer waiting times in the queue. When the service times are negatively autocor-

related, a long service time is followed by a short service time. Since there would be no

clustering of long service times as in the case of positive autocorrelation, there would be

enough time for the queue to empty. Thus, we would expect decreasing mean waiting times

as functions of negatively autocorrelated service times. This is indeed the case for negative

service-time autocorrelations that are close to zero. However, as the negative autocorrelation

in service times approaches -1, a very short service time is followed by a very long service

time, during which incoming customers/jobs start accumulating in the queue. This explains

the increasing mean waiting time with negative autocorrelation closer to -1 in service times.

We observe that the increase in mean waiting time at -0.9 (lag-one) autocorrelated service

times for 80% and 50%, lag-one=-0.99 (lag-one) autocorrelated service times for 25%. We

pick 25% utilization level, identical and independently distributed interarrival times, and

set lag-one autocorrelation for the service times from −0.9, −0.5, 0, 0.5, 0.9. We observe

that the mean waiting time increases from 0.30089 to 0.31076 as the lag-one temporal

dependence decreases from −0.5 to −0.9. In order to analyze this nonmonotonic behavior,

we investigate the sample paths of the average waiting time and service times. For example,

when we compare the waiting time time sample path of −0.90 autocorrelated service times

and −0.50 case in Figure 3.2, we observe that there are higher peaks in −0.90 case, which
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autocorrelated service time cases

might be the cause of the nonmonotonic behavior. Therefore, the average waiting time

in −0.90 case, 0.31076, is higher than −0.50 case, 0.30089. Moreover, the impact of

positive autocorrelation is higher than the impact of negative autocorrelation, which shows

the number of customers waiting in queue when the customer leaves the system.

Figure 3.3 shows the histogram created by subtracting the number of cases of waiting

times at specific range for the system with −0.5 autocorrelated service times from corre-

sponding cases of waiting times for the system with −0.9 autocorrelated service times. The

number of jobs with zero waiting time in −0.5 cases is significantly larger than −0.9 case.

We conjecture that the large amount of zero-waiting time incidents outweigh other ones, so

the performance of the queue is better in the system with −0.5 autocorrelation in service

times than the system with −0.9 autocorrelation service times. Therefore, the nonmono-

tonic result, in which average waiting time of −0.5 case is lower than −0.9 case, might be

explained by this far left-tail of the waiting time distribution in −0.5 case.

3.5.2. Second-Order Autocorrelated, Exponentially Distributed In-
terarrival Times or Service Times

In this experiment, we analyze the impact of dependence pattern on the performance of the

single-server system for lag-h, h = 2. The interarrival times and service demands’ lag-one

and lag-two autocorrelations are defined. We set 0.3 as the lag-one and lag-two autocorre-

lations. For instance, (+, +) represents that both lag-one and lag-two autocorrelations are

equal to 0.3. Our conclusions are robust to this value. Note that the average waiting times
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Table 3.2: Second-order autocorrelated, exponentially distributed interarrival times, and
independent and identically distributed service times

Utilization iid (+, +) (+, −) (−, +) (−, −) (−) (+)
25% 0.333 0.500 0.364 0.291 0.260 0.277 0.433
50% 1.005 1.694 1.020 0.909 0.709 0.811 1.358
80% 4.016 7.328 3.849 3.800 2.838 3.264 5.509

Table 3.3: Second-order autocorrelated, exponentially distributed service times, and inde-
pendent and identically distributed interarrival times

Utilization iid (+, +) (+, −) (−, +) (−, −) (−) (+)
25% 0.333 0.391 0.349 0.318 0.302 0.309 0.372
50% 1.005 1.421 1.023 0.959 0.836 0.891 1.225
80% 4.016 6.881 3.891 3.882 3.074 3.425 5.294

in Tables 3.2 and 3.3 are calculated with 95% confidence interval. In the tables (+) means

that lag-one autocorrelation is 0.3 and (−) means lag-one autocorrelation of -0.3. (+) and

(−) are benchmark cases like independent system. In lag-two simulations, (+, +) means

lag-one is 0.3 and lag-two is 0.3; (+, −) means lag-one is 0.3 and lag-two is -0.3. (−, +)

and (−, −) are defined similarly.

In all utilization levels, the average waiting times of different dependence patterns of

autocorrelated interarrival times or service demands satisfy the following order:

(+, +) > (+) > (+, −) > (−, +) > (−) > (−, −).

This result is intuitive because of the temporal dependence decay (see Table 3.4). For in-

stance, the positive autocorrelation doesn’t vanish in (+, +) through time, which gets close

to zero at lag-ten; however it becomes zero at lag-seven for (+). Thus, (+, +) has more

Table 3.4: Temporal Dependence Decay
Lag (+0.3, +0.3) (+0.3, −0.3) (−0.3, +0.3) (−0.3, −0.3) (−0.3) (+0.3)

1 0.300 0.300 -0.300 -0.300 -0.300 0.300
2 0.300 -0.300 0.300 -0.300 0.090 0.090
3 0.138 -0.257 -0.138 0.257 -0.027 0.027
4 0.101 0.018 0.101 0.018 0.008 0.008
5 0.055 0.118 -0.055 -0.118 -0.002 0.002
6 0.036 0.043 0.036 0.043 0.001 0.001
7 0.021 -0.032 -0.021 0.032 0.000 0.000
8 0.013 -0.032 0.013 -0.032 0.000 0.000
9 0.008 0.000 -0.008 0.000 0.000 0.000

10 0.005 0.014 0.005 0.014 0.000 0.000
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Figure 3.4: Lognormal distributions (a) δ = 1 with mean 1.65, (b) δ = 2 with mean 1.13

negative impact on the performance than (+). Similar argument works for (−, −) versus

(−). As for (+, −) versus (−, +), there is slight difference in the decay of temporal depen-

dence except lag-one and lag-two autocorrelations. The sign of the lag-one autocorrelation

has significant impact on the average waiting time than lag-two autocorrelations; hence,

(+, −) increases the average waiting time more. However, the performance of (+, −) and

(−, +) are almost equal to each other in high utilizations because of the diminishing effect

of the pattern of temporal dependence in lag-two autocorrelations.

3.5.3. First-Order Autocorrelated, Exponentially Distributed Ser-
vice Times and Lognormal Interarrival Times

Considering nonexponential marginals, we perform G/M/1 queue simulations relaxing the

assumption of exponential interarrival times at 50% and 80% utilization levels. In deviating

from exponential distribution of interarrival times (M/M/1), we use lognormal distributions

such that the Johnson translation parameters are ξ = 0, λ = 1, γ = 0 and δ = 1, 2.

Figure 3.4 shows these two lognormal distributions with different tails comparing to the

exponential distribution. First plot represents the lognormal distribution with δ = 1 that

has a mean of 1.65 and variance of 4.67. This lognormal distribution is positive skewed and

has higher variance than the exponential distribution with mean 1.65. On the other hand,

the second plot represents the lognormal distribution with δ = 2 that has a mean of 1.13

and variance of 0.36, and it is negative skewed and has lower variance than the exponential

distribution with mean 1.13.

In order to investigate the impact of nonexponential interarrival times with temporal
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Table 3.5: First-Order Autocorrelated, Exponentially Distributed Service and Interarrival
Times, 50% utilization
M/M/1 50% Utilization ρS(1)

ρA(1) -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
-0.99 3.24 0.44 0.42 0.44 0.55 0.79 1.13 1.88 38.12
-0.70 2.19 0.46 0.45 0.47 0.56 0.73 0.95 1.47 31.60
-0.50 2.28 0.51 0.50 0.52 0.60 0.77 0.99 1.47 28.31
-0.30 2.37 0.57 0.56 0.58 0.67 0.84 1.08 1.57 29.40
0.00 2.69 0.72 0.70 0.73 0.82 1.01 1.26 1.78 34.21
0.30 2.93 0.99 0.98 1.01 1.12 1.34 1.61 2.23 34.99
0.50 3.59 1.37 1.36 1.39 1.52 1.77 2.08 2.76 38.90
0.70 5.14 2.25 2.25 2.28 2.43 2.74 3.13 3.90 47.08
0.99 72.36 62.57 63.35 64.65 64.95 66.59 68.64 71.08 135.65

Table 3.6: First-Order Autocorrelated, Exponentially Distributed Service Times and Log-
normal Interarrival Times (δ = 1), 50% utilization
G/M/1 50% Utilization ρS(1)

ρA(1) -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
-0.99 5.05 0.60 0.56 0.60 0.78 1.18 1.72 2.86 47.43
-0.70 2.56 0.54 0.52 0.56 0.67 0.88 1.16 1.77 32.79
-0.50 2.55 0.58 0.56 0.59 0.70 0.91 1.17 1.73 33.95
-0.30 2.58 0.64 0.62 0.66 0.76 0.97 1.24 1.80 30.75
0.00 2.94 0.78 0.77 0.80 0.92 1.14 1.43 2.04 35.82
0.30 3.29 1.07 1.05 1.08 1.22 1.48 1.81 2.49 36.95
0.50 3.93 1.45 1.43 1.48 1.64 1.93 2.30 3.08 40.30
0.70 5.64 2.33 2.32 2.37 2.57 2.93 3.35 4.28 49.83
0.99 73.79 63.86 63.68 64.87 65.00 67.27 73.72 77.57 148.49
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dependence, we experiment with the M/M/1 system as a benchmark to the G/M/1 sys-

tem. Table 3.5 shows the simulation results for the M/M/1 system at 50% utilization level.

The exponential interarrival times have a mean of 1.65 and the exponential service times

have a mean of 0.825. Table 3.6 shows the results for the G/M/1 system with lag-one

autocorrelation in interarrival and service times. The average waiting times of all temporal

dependence cases of interarrival and service times at the G/M/1 system is larger than the

M/M/1 system. This result is intuitive since the lognormal distribution with δ = 1 has

significantly larger variance than the exponential distribution, and it has a longer right tail

than the exponential distribution.

Regarding the impact of dependence with utilization levels on the average waiting time,

the effect increases in utilization. We refer the reader to Table 3.22 for the M/M/1 at 80%

utilization and Table 3.23 for the G/M/1 with lognormal interarrival distributions (δ = 1)

at 80% utilization in the appendix. In addition the utilization effect, the nonmonotonic

behavior of negatively autocorrelated interarrival and service times in the M/M/1 system

occurs in this G/M/1 system as well. For example, the average waiting time of the G/M/1

system at 50% utilization (Table 3.6) with −0.50 lag-one autocorrelation in interarrival

times and 0.70 lag-one autocorrelation in service times is 1.73. However, it increases to

1.77 when the negative autocorrelation in interarrival times becomes −0.70. Therefore,

this nonmonotonic behavior doesn’t change by deviating from the assumption of exponential

distribution in interarrival times.

In addition to lognormal distribution with longer right tail, we experiment with a log-

normal distribution with longer left tail than the exponential distribution. In this case, the

Johnson parameter of δ is equal to two and is plotted in Figure 3.4. Similarly, we need the

simulation results of the M/M/1 system for benchmark purposes. Table 3.7 shows the sim-

ulation results for the M/M/1 system at 50% utilization level. The exponential interarrival

times have a mean of 1.13 and the exponential service times have a mean of 0.565. Table

3.8 shows the results for the G/M/1 system with lag-one autocorrelation in interarrival and

service times. The average waiting times of all temporal dependence cases of interarrival

and service times at the G/M/1 system is smaller than the M/M/1 system. This result is

intuitive since the lognormal distribution with δ = 2 has significantly smaller variance than

the exponential distribution, and it has a longer left tail than the exponential distribution.
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Table 3.7: First-Order Autocorrelated, Exponentially Distributed Service and Interarrival
Times, 50% utilization
M/M/1 50% Utilization ρS(1)

ρA(1) -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
-0.99 2.25 0.30 0.29 0.30 0.38 0.54 0.77 1.30 26.63
-0.70 1.48 0.32 0.31 0.33 0.38 0.50 0.66 0.99 21.93
-0.50 1.55 0.35 0.34 0.36 0.41 0.53 0.68 1.02 21.70
-0.30 1.58 0.39 0.38 0.40 0.46 0.58 0.73 1.07 22.68
0.00 1.74 0.49 0.48 0.50 0.57 0.69 0.87 1.23 23.05
0.30 2.14 0.68 0.67 0.69 0.77 0.92 1.10 1.52 24.44
0.50 2.49 0.94 0.93 0.95 1.04 1.21 1.43 1.87 24.64
0.70 3.48 1.56 1.54 1.56 1.67 1.88 2.13 2.67 27.16
0.99 48.52 42.98 44.29 44.33 44.54 45.24 46.17 47.89 92.72

Table 3.8: First-Order Autocorrelated, Exponentially Distributed Service Times and Log-
normal Interarrival Times (δ = 2), 50% utilization

G/M/1 50% Utilization ρS(1)
ρA(1) -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
-0.99 1.31 0.16 0.15 0.16 0.20 0.29 0.42 0.75 21.85
-0.70 1.16 0.16 0.16 0.17 0.20 0.29 0.41 0.70 20.92
-0.50 1.26 0.17 0.16 0.17 0.21 0.30 0.42 0.71 20.85
-0.30 1.27 0.18 0.17 0.18 0.22 0.31 0.44 0.73 21.66
0.00 1.24 0.20 0.19 0.20 0.24 0.34 0.47 0.78 22.09
0.30 1.38 0.22 0.21 0.23 0.28 0.38 0.53 0.85 23.16
0.50 1.39 0.25 0.25 0.26 0.32 0.44 0.59 0.94 23.66
0.70 1.71 0.32 0.31 0.32 0.39 0.53 0.71 1.11 23.77
0.99 6.43 2.75 2.73 2.75 2.94 3.31 3.76 4.88 39.98
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3.5.4. First-Order Autocorrelated, Exponentially Distributed In-
terarrival Times and Lognormal Service Times

Considering nonexponential marginals for the service times, we perform M/G/1 queue sim-

ulations relaxing the assumption of exponential service times at 50% and 80% utilization

levels. Similar to G/M/1 experiments, we use lognormal distributions such that the Johnson

translation parameters are ξ = 0, λ = 1, γ = 0 and δ = 1, 2. Figure 3.4 shows these two

lognormal distributions with different tails comparing to the exponential distribution. In

order to investigate the impact of nonexponential service times with temporal dependence,

we need to experiment with the M/M/1 system as a benchmark. Table 3.9 shows the sim-

ulation results for the M/M/1 system at 50% utilization level. The exponential interarrival

times have a mean of 3.3 and the exponential service times have a mean of 1.65. Table

3.10 shows the results for the M/G/1 system with lag-one autocorrelation in interarrival and

service times. The average waiting times of all temporal dependence cases of interarrival

and service times at the M/G/1 system is significantly larger than the M/M/1 system. This

result is intuitive since the lognormal distribution with δ = 1 has significantly larger vari-

ance than the exponential distribution, and it has a longer right tail than the exponential

distribution. This result coincides with our previous result in the G/M/1 system. Therefore,

larger variance in either the interarrival times or service times increases the average waiting

time. Similar to the M/M/1 and the G/M/1 systems, the impact of dependence increases in

higher utilization levels. We refer the reader to Table 3.26 for the M/M/1 at 80% utilization

and Table 3.27 for the M/G/1 with lognormal interarrival distributions (δ = 1) at 80%

utilization in the appendix. In addition the utilization effect, the nonmonotonic behavior of

negatively autocorrelated interarrival and service times in the M/M/1 and G/M/1 systems

occurs in this M/G/1 system as well.

In addition to lognormal distribution with longer right tail, we experiment with a log-

normal distribution with longer left tail than the exponential distribution. In this case, the

Johnson parameter of δ is equal to two and is plotted in Figure 3.4. Similarly, we need the

simulation results of the M/M/1 system for benchmark purposes. Table 3.11 shows the sim-

ulation results for the M/M/1 system at 50% utilization level. The exponential interarrival

times have a mean of 2.26 and the exponential service times have a mean of 1.13. Table

3.12 shows the results for the M/G/1 system with lag-one autocorrelation in interarrival and

service times. The average waiting times of all temporal dependence cases of interarrival
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Table 3.9: First-Order Autocorrelated, Exponentially Distributed Interarrival and Service
times, 50% utilization
M/M/1 50% Utilization ρS(1)

ρA(1) -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
-0.99 6.9 0.9 0.8 0.9 1.1 1.6 2.3 3.7 74.7
-0.70 4.4 0.9 0.9 0.9 1.1 1.5 1.9 2.9 58.4
-0.50 4.4 1.0 1.0 1.0 1.2 1.5 1.9 2.9 65.2
-0.30 4.7 1.1 1.1 1.2 1.3 1.7 2.2 3.1 63.6
0.00 5.6 1.4 1.4 1.5 1.7 2.0 2.5 3.6 68.6
0.30 5.9 1.9 1.9 2.0 2.3 2.7 3.3 4.4 69.4
0.50 7.8 2.8 2.7 2.8 3.0 3.5 4.2 5.5 69.7
0.70 9.6 4.5 4.5 4.6 4.9 5.5 6.3 7.7 71.9
0.99 145.8 129.2 131.2 133.6 133.8 128.7 130.4 137.3 263.7

Table 3.10: First-Order Autocorrelated, Exponentially Distributed Interarrival Times and
Lognormal Service Times (δ = 1), 50% utilization
M/G/1 50% Utilization ρS(1)

ρA(1) -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
-0.99 32.8 1.9 1.7 1.6 1.9 2.6 3.78 6.5 136.6
-0.70 24.5 1.8 1.5 1.5 1.7 2.3 3.10 5.1 145.5
-0.50 25.4 1.9 1.6 1.6 1.8 2.3 3.11 5.0 133.6
-0.30 28.3 1.9 1.7 1.7 1.9 2.5 3.23 5.2 139.9
0.00 31.1 2.3 2.0 2.0 2.2 2.8 3.64 5.6 149.4
0.30 29.3 2.9 2.6 2.6 2.9 3.5 4.38 6.4 158.8
0.50 30.1 3.7 3.4 3.4 3.7 4.4 5.29 7.5 165.1
0.70 31.4 5.6 5.3 5.3 5.6 6.3 7.42 9.7 183.6
0.99 180.7 131.3 132.5 135.1 135.2 130.5 138.4 142.6 337.7
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Table 3.11: First-Order Autocorrelated, Exponentially Distributed Service and Interarrival
Times, 50% utilization
M/M/1 50% Utilization ρS(1)

ρA(1) -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
-0.99 4.49 0.61 0.57 0.61 0.75 1.08 1.55 2.59 59.09
-0.70 3.08 0.63 0.62 0.65 0.77 1.00 1.31 2.01 43.58
-0.50 3.12 0.69 0.68 0.71 0.83 1.06 1.36 2.04 42.69
-0.30 3.42 0.78 0.77 0.80 0.92 1.14 1.46 2.13 43.74
0.00 3.35 0.98 0.96 1.00 1.12 1.39 1.72 2.48 45.95
0.30 4.08 1.37 1.35 1.39 1.54 1.84 2.23 3.01 46.04
0.50 4.98 1.88 1.86 1.91 2.09 2.40 2.85 3.74 49.61
0.70 6.70 3.13 3.06 3.14 3.34 3.76 4.27 5.27 58.54
0.99 92.48 88.38 87.22 86.24 90.19 88.15 89.32 90.63 201.19

Table 3.12: First-Order Autocorrelated, Exponentially Distributed Interarrival Times and
Lognormal Service Times (δ = 2), 50% utilization
M/G/1 50% Utilization ρS(1)

ρA(1) -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
-0.99 0.60 0.31 0.31 0.32 0.35 0.40 0.49 0.69 8.69
-0.70 0.51 0.37 0.37 0.39 0.41 0.46 0.53 0.65 5.60
-0.50 0.55 0.43 0.43 0.44 0.48 0.52 0.59 0.71 5.93
-0.30 0.71 0.50 0.51 0.52 0.55 0.61 0.68 0.81 5.70
0.00 0.81 0.67 0.68 0.69 0.73 0.80 0.88 1.03 7.02
0.30 1.21 1.01 1.02 1.03 1.09 1.17 1.27 1.46 7.55
0.50 1.78 1.48 1.50 1.53 1.58 1.66 1.79 2.02 8.22
0.70 3.06 2.67 2.65 2.70 2.74 2.88 3.03 3.33 10.48
0.99 85.29 87.43 86.66 85.77 88.83 86.27 86.97 86.05 117.26

and service times at the M/G/1 system is smaller than the M/M/1 system. This result is

intuitive since the lognormal distribution with δ = 2 has significantly smaller variance than

the exponential distribution, and it also has a longer left tail. Similar to the M/M/1 and the

G/M/1 systems, the impact of dependence increases in higher utilization levels. We refer the

reader to Table 3.28 for the M/M/1 at 80% utilization and Table 3.29 for the M/G/1 with

lognormal interarrival distributions (δ = 2) at 80% utilization in the appendix. In addition

the utilization effect, the nonmonotonic behavior of negatively autocorrelated interarrival

and service times in the M/M/1 and G/M/1 systems occurs in this M/G/1 system as well.
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Table 3.13: Bivariate Dependence Between Exponentially Distributed Interarrival and Ser-
vice Times

Correlation
System -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
M/M/1, 50% 2.52 2.27 2.09 1.91 1.64 1.40 1.25 1.13 1.01
δ = 1
M/G/1, 50% 3.13 2.91 2.72 2.52 2.22 1.93 1.77 1.64 1.51
M/M/1, 80% 10.71 9.65 8.71 7.90 6.62 5.12 4.14 3.28 2.31
δ = 1
M/G/1, 80% 13.05 12.06 11.26 10.37 8.88 7.24 6.12 5.06 3.92
M/M/1, 50% 1.73 1.55 1.43 1.31 1.13 0.96 0.86 0.78 0.69
δ = 2
M/G/1, 50% 1.04 0.95 0.89 0.82 0.73 0.65 0.60 0.56 0.51
M/M/1, 80% 7.28 6.54 6.05 5.45 4.49 3.51 2.83 2.24 1.59
δ = 2
M/G/1, 80% 4.52 4.12 3.82 3.49 2.97 2.43 2.08 1.76 1.38
M/M/1, 50% 1.26 1.13 1.05 0.96 0.82 0.70 0.63 0.57 0.50
δ = 1
G/M/1, 50% 1.37 1.25 1.16 1.06 0.91 0.77 0.69 0.62 0.53
M/M/1, 80% 8.51 7.68 7.01 6.38 5.26 4.07 3.33 2.61 1.85
δ = 1
G/M/1, 80% 9.89 9.12 8.50 7.80 6.58 5.23 4.30 3.41 2.32
M/M/1, 50% 0.86 0.77 0.72 0.66 0.56 0.48 0.43 0.39 0.34
δ = 2
G/M/1, 50% 0.36 0.33 0.30 0.28 0.24 0.21 0.19 0.18 0.17
M/M/1, 80% 5.83 5.22 4.83 4.35 3.60 2.80 2.28 1.79 1.27
δ = 2
G/M/1, 80% 3.23 2.91 2.68 2.44 2.05 1.66 1.41 1.18 0.91
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3.5.5. Bivariate Dependence Between Exponentially Distributed
Interarrival and Service Times

In this experimental setup, there is only bivariate dependence between interarrival and service

times of the same customer. In this simulation, we verify the results of the literature for the

M/M/1 system, in which positively correlated interarrival and service times are expected to

decrease the average waiting time and negatively correlated interarrival and service times

increase the average waiting time. However, we observe same type of result for M/G/1 and

G/M/1 systems, which is new in the literature. Table 3.13 presents the results for M/G/1

and G/M/1 results for 50% and 80% utilization levels with their benchmark results from the

corresponding M/M/1 system. For example, the first row (M/M/1, 50%) shows the average

waiting time of the M/M/1 system at 50% utilization level that the interarrival times are

exponentially distributed with mean 1.65 and service times are exponentially distributed

with mean 3.3. Hence, the second row (M/G/1, 50%, δ = 1) shows the average waiting

time of the M/G/1 system at 50% utilization level that the interarrival time is exponentially

distributed with mean 3.3 and the service time has a lognormal distribution with Johnson

δ parameter equal to one. We refer the reader to Section 5.3 for more details about the

lognormal distribution used in the M/G/1 and G/M/1 experiments.

The impact of correlation is higher in high utilizations for each experimental setup. The

intuition behind this result is that customers tend to wait more in the higher loads, so

the positive/negative correlation between interarrival and service times affects the system

performance more. Regarding the nonexponential marginals for interarrival or service times,

the impact is similar to temporal dependence results in Sections 5.3 and 5.4, so that the

average waiting time increases in both M/G/1 and G/M/1 systems if the Johnson parameter

δ is one for the lognormal distribution because of the higher variance. On the other hand,

average waiting time decreases in both M/G/1 and G/M/1 systems if the Johnson parameter

δ is two for the lognormal distribution because of the smaller variance. In addition to

results for nonexponential marginals, the impact of bivariate dependence is smaller than

temporal dependence on the average waiting of the single-server systems. The main difference

between the impact of bivariate and temporal dependence in interarrival and service times

on the average waiting time is the opposite effect of positive and negative dependencies.

Thus, positive temporal dependence in interarrival and service times increases the average

waiting time; on the other hand, positive bivariate dependence decreases the average waiting
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Table 3.14: First-Order Autocorrelated, Bivariate Dependent and Exponentially Distributed
Interarrival and Service Times

Utilization
Cross-correlation 25% 50% 66.7% 80%

-0.20 1.4092 5.6263 12.5837 26.8565
0.00 0.6285 2.3783 5.2879 11.3116
0.20 0.3219 1.2514 2.8245 6.1180
0.40 0.1548 0.6617 1.5531 3.4551
0.95 0.0001 0.0030 0.0207 0.0890

time. This result is not new to the literature for the M/M/1 systems, but it is new for

nonexponential interarrival or service times.

3.5.6. First-Order Autocorrelated, Bivariate Dependent and Ex-
ponentially Distributed Interarrival and Service Times

In this simulation, we investigate the impact of the cross-correlation between the interar-

rival and service times of two different jobs. The cross-correlation represents the temporal

dependence between interarrival time of job i and service time of job j for i 6= j. This

situation is a proxy for feedback systems in a telecommunication, manufacturing or service

systems, where the manager can affect the service of a customer by observing the interar-

rival time of the previous customer. For example, if a server realizes really short interarrival

times between customers, shorter service times are beneficial for the server in increasing the

customer satisfaction. Thus, the server can adjust the service rate depending on how short

or long the interarrival times are.

Since there are both temporal and bivariate dependent interarrival and service times in

the M/M/1 system, lag-one autocorrelation in interarrival times, lag-one autocorrelation in

service times and the bivariate dependence between the interarrival and service times are

all equal to -0.40. Our results are robust to this initialization of temporal and bivariate

dependencies in the interarrival and service times. In this M/M/1 system, the service time

is exponentially distributed with mean 1 for each utilization level, and the interarrival time

is exponentially distributed with mean 4 for utilization of 25%, 2 for utilization of 50%,

1.5 for utilization of 66.7% and 1.25 for utilization of 80%. We vary the lag-one cross-

correlation from −0.20 to 0.95. Note that the VARTA model cannot generate simulation

input for some extreme cross-correlation values such as −0.99 because of the failure. We

refer the reader to Biller and Civelek [13] for the discussion about the failure probability of
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Table 3.15: First-Order Autocorrelated, Exponentially Distributed Interarrival and Service
Times for M/M/2, 40% utilization

ρS(1)
ρA(1) -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
-0.99 1.225 0.688 0.662 0.689 0.751 0.841 0.904 0.922 1.381
-0.70 0.846 0.235 0.020 0.028 0.094 0.150 0.169 0.194 1.072
-0.50 0.830 0.022 0.017 0.020 0.093 0.147 0.172 0.200 1.017
-0.30 0.851 0.023 0.018 0.020 0.132 0.186 0.217 0.250 1.068
0.00 0.863 0.026 0.020 0.024 0.191 0.213 0.250 0.274 1.101
0.30 0.928 0.258 0.239 0.262 0.328 0.382 0.427 0.484 1.171
0.50 0.943 0.417 0.392 0.418 0.467 0.566 0.590 0.671 1.282
0.70 0.971 0.690 0.673 0.700 0.760 0.821 0.930 0.977 1.301
0.99 1.982 1.348 1.312 1.422 1.621 1.714 1.863 1.926 4.722

this method.

Table 3.14 shows the simulation results for the impact of cross-correlation on the av-

erage waiting time of the M/M/1 system. Positive cross-correlation significantly decreases

the average waiting time. For example, the average waiting time is very close to zero at

25% utilization level with 0.95 cross-correlation. Similar to both impacts of temporal and

bivariate dependencies on the average waiting time, the impact of cross-correlation increases

as a function of the utilization level of the single-server system. This result might gives

a managerial insight for of a feedback system at the server such that positively correlated

interarrival and service times of different jobs might increase the performance of the server.

Note that the impact of the cross-correlation in the literature of dependence modeling in the

queueing systems is new and novel, facilitated by of our input modeling scheme, the VARTA.

3.5.7. First-Order Autocorrelated Exponentially Distributed In-
terarrival and Service Times for Multi-Servers

In this simulation study, we investigate the impact of temporal dependence in interarrival and

service times on the average waiting time of a multi-server system (M/M/k for k ≥ 2). Note

that there is no bivariate dependence between interarrival and service times. Considering

upgrading the single-server system (M/M/1) to multi-server system (i.e., M/M/2), we can

add either another identical server that decreases the utilization of the system by half or

another server with half service rate by also reducing the original server’s rate in order

to keep the utilization level of the system constant. Therefore, we perform experiments

in these two ways at 80% utilization level. Our initial system is an M/M/1 system, in
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Table 3.16: First-Order Autocorrelated, Exponentially Distributed Interarrival and Service
Times for M/M/3, 26.67% utilization

ρS(1)
ρA(1) -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
-0.99 0.241 0.125 0.102 0.104 0.127 0.133 0.140 0.162 0.214
-0.70 0.180 0.018 0.017 0.018 0.020 0.020 0.029 0.033 0.183
-0.50 0.172 0.015 0.011 0.012 0.012 0.013 0.016 0.022 0.170
-0.30 0.183 0.015 0.015 0.016 0.016 0.017 0.018 0.024 0.172
0.00 0.190 0.018 0.018 0.019 0.024 0.025 0.030 0.033 0.191
0.30 0.227 0.041 0.030 0.038 0.040 0.049 0.054 0.061 0.200
0.50 0.233 0.051 0.041 0.044 0.053 0.062 0.075 0.084 0.230
0.70 0.248 0.060 0.055 0.061 0.071 0.084 0.091 0.103 0.246
0.99 0.253 0.148 0.138 0.149 0.159 0.163 0.179 0.190 0.358

which interarrival times are exponentially distributed with mean 1.25 and service times are

exponentially distributed with mean 1.25. The results for impact of temporal dependent

interarrival and service times for this system is shown in Table 3.20.

Tables 3.15 and 3.16 show the result for M/M/2 and M/M/3 with temporal dependent

interarrival and service times. Note that, in these experiments we add identical servers such

that the utilization drops to 40$ for the M/M/2 system and 26.67% for the M/M/3 system.

The theoretical average waiting times for independent and identically distributed interarrival

and service times are 0.1905 and 0.0237 for the M/M/2 and M/M/3 systems, respectively.

The impact of temporal dependence in both the M/M/2 and M/M/3 is similar to the M/M/1

system, but it is weaker. For instance, the average waiting time is 715.131 for the M/M/1

system, in which both interarrival and service times have lag-one autocorrelation of 0.99

(Table 3.20). However, the average waiting time is 4.722 for the M/M/2 system (Table

3.15)and 0.358 for the M/M/3 system (Table 3.16). This is intuitive since adding identical

servers decreases the utilization significantly.

Additionally, we can keep the utilization level constant while increasing the number of

the servers in the system. In the next experiments for the M/M/2 and M/M/3 systems,

the interarrival times are exponentially distributed with mean 1.25. However, the service

times are now exponentially distributed with mean 2 for the M/M/2 system and 3 for

M/M/3 system. Note that the utilization level is 80% in both M/M/2 and M/M/3 systems.

The theoretical average waiting time for independent and identically distributed interarrival

and service times are 3.5556 and 3.236 for these M/M/2 and M/M/3 systems, respectively.

Similar to previous experiments for the multi-server systems, Tables 3.17 and 3.18 show that
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Table 3.17: First-Order Autocorrelated, Exponentially Distributed Interarrival and Service
Times for M/M/2, 80% utilization

ρS(1)
ρA(1) -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
-0.99 9.280 5.812 5.554 5.710 5.823 5.913 6.320 7.812 25.801
-0.70 6.103 2.810 2.619 3.118 3.242 3.318 3.446 3.672 19.300
-0.50 5.952 2.881 2.750 3.027 3.229 3.252 3.302 3.417 18.928
-0.30 6.012 2.910 2.816 3.157 3.414 3.438 3.469 3.631 19.322
0.00 6.038 3.117 2.991 3.218 3.558 4.527 5.278 8.138 20.025
0.30 8.128 3.718 3.450 3.671 4.612 4.691 5.491 9.553 20.912
0.50 9.618 5.016 4.881 5.439 6.222 6.710 6.966 10.157 21.357
0.70 10.392 8.159 7.714 8.557 9.172 9.437 9.865 12.221 23.183
0.99 19.610 18.358 18.273 19.002 19.832 19.920 20.155 21.442 37.001

Table 3.18: First-Order Autocorrelated, Exponentially Distributed Interarrival and Service
Times for M/M/3, 80% utilization

ρS(1)
ρA(1) -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
-0.99 6.038 4.689 3.926 4.115 4.462 4.719 5.102 7.119 14.062
-0.70 4.820 2.739 2.551 2.710 3.183 3.223 3.742 5.528 11.339
-0.50 4.005 2.691 2.400 2.631 2.918 3.038 3.618 4.929 10.018
-0.30 4.017 2.855 2.539 2.957 3.005 3.282 3.990 5.302 10.431
0.00 4.482 2.973 2.687 3.016 3.200 3.517 4.371 7.002 12.093
0.30 4.917 3.192 2.917 3.257 3.326 3.648 4.581 8.013 13.073
0.50 5.400 3.821 3.519 3.953 4.038 4.513 4.956 8.151 14.103
0.70 6.211 4.383 4.014 4.719 5.350 6.410 7.104 8.518 15.821
0.99 13.891 11.038 10.832 11.018 11.984 12.281 12.911 13.431 19.719

the impact of the temporal dependence in both M/M/2 and M/M/3 systems is weaker than

the M/M/1 system. However, the impact of temporal dependence in interarrival and services

times on the average waiting time of multi-server systems is greater than the previous case

with identical servers because of higher utilization levels.

3.6. Conclusion

In this paper, we use an advanced simulation input modeling (VARTA) to study the impact of

bivariate and temporal dependencies among interarrival and service times on the performance

of a single-server queue. The distinguishing feature of our study from those in the literature

is to consider a wide variety of distributional shapes for the probability density functions of

the interarrival and service times and the patterns that arise in the temporal dependencies of
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the interarrival and service times. We investigate the impact of dependent interarrival and

service times on the average waiting time of M/M/1, M/G/1, G/M/1, M/M/2 and M/M/3

systems. Our main contribution is to combine this advanced input modeling method with

queueing theory for investigating the impacts of dependent interarrival and service demands

on the performance of a single-server queue.

In our simulation studies, we observe that positively autocorrelated interarrival times

and/or service times always increase the average waiting time and the impact of this positive

temporal dependence is monotonically increasing in utilization of the system. The average

waiting time is monotonically increasing in the value of autocorrelation in interarrival times

and/or service times. These results confirm the literature. However, the impact of depen-

dence is interesting in negatively autocorrelated interarrival times and/or service demands.

In the literature, nonmonotonic behavior of the average waiting time in negatively autocor-

related service demands was observed, but nonmonotonic behavior of the performance in

negatively autocorrelated interarrival times is a new observation in the literature. Because

nonmonotonic behavior of the average waiting time in negatively autocorrelated interarrivals

exist when lag-one autocorrelation is close to minus one and/or utilization is close to 100%.

As for the impact of dependent service times on the single server queue, the impact of

negative autocorrelation in service time increases nonmonotonically as a function of the auto-

correlation value for all utilization levels. We explain this nonmonotonic behavior by the tail

behavior of the waiting time distribution. The mass shift in the waiting time distribution to

zero causes the nonmonotonic behavior of negatively autocorrelated service times. In addi-

tion to autocorrelated interarrival or service times, positive correlation between interarrival

and service times of the same customer increases the performance of the system. More-

over, positive cross-correlation between interarrival and service times of different customers

increases the performance of the system significantly.

One major contribution of our simulation study is to investigate the impact of temporal

and bivariate dependencies on the average waiting time of single-server queue with nonexpo-

nential marginals for interarrival and service times. We perform simulations for the M/G/1

and G/M/1 systems and use M/M/1 as a benchmark. We use two different lognormal dis-

tributions with two different tails comparing to the exponential distribution. The average

waiting times of all temporal and bivariate dependencies of interarrival and service times

in both G/M/1 and M/G/1 systems is larger than the M/M/1 system for the lognormal

distribution that has longer right tail and higher variance than the exponential distribu-
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tion. On the other hand, the average waiting time decreases in both G/M/1 and M/G/1

systems for the lognormal distribution that has longer left tail and smaller variance than

the exponential distribution. Furthermore, our study is differentiated from other simulation

studies in the literature of dependent queues by combining VARTA as a multivariate input

generation technique with queueing theory in the context of effect of dependence. By using a

novel approach to generate multi-variate input, we introduce cross-correlation, which is the

temporal dependence between interarrival and service times of different jobs at the server.

This situation is a proxy for feedback systems in a telecommunication, manufacturing or

service system, in which the manager can affect the service of a customer by observing the

interarrival time of the previous customer.
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Table 3.19: First-Order Autocorrelated, Exponentially Distributed Interarrival and Service
Times, 50% utilization

ρS(1)
ρA(1) -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
-0.99 4.018 0.536 0.506 0.535 0.666 0.959 1.362 2.293 48.786
-0.70 2.695 0.561 0.548 0.576 0.676 0.883 1.153 1.772 38.937
-0.50 2.663 0.616 0.604 0.633 0.731 0.934 1.200 1.798 39.424
-0.30 2.858 0.691 0.679 0.709 0.811 1.017 1.294 1.897 39.951
0.00 3.161 0.867 0.853 0.886 0.999 1.229 1.525 2.171 40.984
0.30 3.701 1.205 1.186 1.227 1.361 1.626 1.967 2.677 41.721
0.50 4.430 1.663 1.645 1.692 1.843 2.145 2.521 3.325 44.450
0.70 6.073 2.741 2.716 2.766 2.958 3.322 3.780 4.714 45.909
0.99 87.840 77.596 77.484 77.916 78.235 79.369 79.364 82.887 167.239

Table 3.20: First-Order Autocorrelated, Exponentially Distributed Interarrival and Service
Times, 80% utilization

ρS(1)
ρA(1) -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
-0.99 46.02 8.59 8.29 8.75 10.19 13.14 16.69 23.75 361.24
-0.70 29.19 2.41 2.24 2.40 3.04 4.39 6.23 10.55 322.03
-0.50 28.77 2.45 2.28 2.43 3.04 4.34 6.15 10.41 316.78
-0.30 29.91 2.69 2.52 2.67 3.27 4.58 6.38 10.66 321.69
0.00 30.42 3.41 3.24 3.39 4.00 5.34 7.17 11.49 319.54
0.30 32.26 4.92 4.74 4.89 5.54 6.94 8.82 13.28 321.06
0.50 35.26 7.00 6.82 6.99 7.67 9.16 11.08 15.62 330.26
0.70 39.93 11.98 11.76 12.00 12.69 14.19 16.26 21.14 330.74
0.99 398.19 362.89 361.87 365.63 366.38 368.03 368.85 380.219 715.13

Table 3.21: First-Order Autocorrelated, Exponentially Distributed Interarrival and Service
Times, 99% utilization

ρS(1)
ρA(1) -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
-0.99 807.9 535.7 538.4 532.5 534.3 554.2 572.8 603.9 2126.2
-0.70 535.1 65.6 61.2 63.9 79.2 113.8 153.4 238.2 2089.1
-0.50 545.3 59.9 56.2 59.2 74.3 105.4 149.7 240.1 2081.8
-0.30 538.3 63.9 59.9 63.0 79.2 109.2 155.8 237.1 2118.2
0.00 551.5 80.8 74.1 78.3 99.2 124.9 164.3 252.5 2056.6
0.30 563.5 114.5 104.5 113.6 124.9 155.4 193.5 273.29 2096.3
0.50 592.1 157.1 149.9 153.6 167.6 194.6 224.1 309.40 2030.9
0.70 636.4 242.6 242.1 229.4 249.2 283.1 307.5 368.18 2084.2
0.99 2222.7 2051.8 2118.8 2061.4 2114.9 2144.1 2189.8 2074.04 3007.5

78



Table 3.22: First-Order Autocorrelated, Exponentially Distributed Service and Interarrival
Times, 80% utilization
M/M/1 80% Utilization ρS(1)

ρA(1) -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
-0.99 59.2 11.5 10.9 11.6 13.2 17.2 22.1 31.4 407.7
-0.70 39.7 3.2 2.9 3.2 4.0 5.8 8.2 14.3 387.9
-0.50 41.1 3.2 3.0 3.2 4.0 5.7 8.2 13.6 340.6
-0.30 40.5 3.6 3.3 3.5 4.3 6.0 8.5 14.0 361.3
0.00 40.6 4.5 4.3 4.5 5.3 6.9 9.6 14.9 438.9
0.30 41.4 6.5 6.3 6.5 7.4 9.2 11.5 17.7 442.1
0.50 45.4 9.2 8.9 9.2 10.1 12.1 14.5 20.8 448.7
0.70 54.6 15.5 15.6 15.8 16.4 18.7 21.7 28.1 501.6
0.99 506.7 456.8 465.6 474.4 500.7 502.5 512.6 521.8 891.0

Table 3.23: First-Order Autocorrelated, Exponentially Distributed Service Times and Log-
normal Interarrival Times (δ = 1), 80% utilization
G/M/1 80% Utilization ρS(1)

ρA(1) -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
-0.99 99.9 44.2 42.1 43.6 43.6 49.9 56.4 68.0 479.4
-0.70 43.6 4.7 4.5 4.7 5.8 7.8 10.5 17.1 395.9
-0.50 43.2 4.5 4.2 4.4 5.4 7.3 9.9 15.6 397.8
-0.30 41.8 4.7 4.4 4.7 5.6 7.4 10.1 15.7 365.9
0.00 42.1 5.7 5.5 5.7 6.6 8.6 11.1 17.3 453.0
0.30 46.1 8.2 7.9 8.1 9.2 11.1 13.7 20.3 454.7
0.50 47.8 11.6 11.4 11.7 12.7 14.8 17.6 24.2 455.4
0.70 61.4 19.8 19.8 20.2 21.1 23.3 26.4 33.3 610.3
0.99 606.7 585.0 617.7 592.4 590.8 597.8 609.6 617.3 1055.8

Table 3.24: First-Order Autocorrelated, Exponentially Distributed Service and Interarrival
Times, 80% utilization
M/M/1 80% Utilization ρS(1)

ρA(1) -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
-0.99 40.7 7.8 7.5 7.8 9.3 11.9 14.8 21.5 301.2
-0.70 25.2 2.2 2.0 2.2 2.8 3.9 5.7 9.4 280.6
-0.50 26.7 2.2 2.0 2.2 2.8 3.9 5.6 9.4 274.7
-0.30 26.6 2.4 2.3 2.4 2.9 4.2 5.8 9.7 275.8
0.00 26.5 3.1 2.9 3.0 3.6 4.8 6.6 10.5 300.7
0.30 29.6 4.4 4.3 4.4 4.9 6.3 7.8 12.1 303.4
0.50 31.1 6.4 6.2 6.3 6.9 8.2 9.9 14.0 304.5
0.70 37.5 10.9 10.7 10.8 11.4 12.9 14.7 19.1 308.3
0.99 357.8 318.4 313.9 314.6 319.1 325.8 334.5 352.7 717.6
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Table 3.25: First-Order Autocorrelated, Exponentially Distributed Service Times and Log-
normal Interarrival Times (δ = 2), 80% utilization
G/M/1 80% Utilization ρS(1)

ρA(1) -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
-0.99 25.99 1.56 1.37 1.51 2.15 3.54 5.38 9.84 266.26
-0.70 23.46 1.32 1.18 1.29 1.78 2.87 4.48 8.08 264.99
-0.50 25.34 1.35 1.20 1.32 1.80 2.90 4.42 8.14 265.66
-0.30 25.04 1.43 1.28 1.39 1.87 2.98 4.51 8.20 267.60
0.00 23.75 1.59 1.45 1.56 2.07 3.18 4.78 8.60 294.46
0.30 25.29 1.93 1.76 1.89 2.41 3.56 5.19 8.90 295.53
0.50 24.76 2.33 2.20 2.33 2.89 4.05 5.72 9.49 296.35
0.70 27.87 3.28 3.13 3.28 3.88 5.18 6.91 11.17 298.83
0.99 98.30 65.05 64.95 68.18 66.43 68.34 69.94 77.18 391.22

Table 3.26: First-Order Autocorrelated, Exponentially Distributed Service and Interarrival
Times, 80% utilization
M/M/1 80% Utilization ρS(1)

ρA(1) -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
-0.99 74.3 14.3 13.7 14.3 17.0 21.2 27.0 39.9 574.8
-0.70 44.5 4.0 3.7 3.9 5.0 7.3 10.3 17.3 468.9
-0.50 46.6 4.1 3.8 4.0 5.0 7.2 10.2 17.3 407.7
-0.30 49.2 4.4 4.2 4.4 5.4 7.5 10.5 17.5 434.5
0.00 52.3 5.6 5.3 5.6 6.6 8.8 11.9 18.8 459.1
0.30 52.3 8.1 7.9 8.0 9.2 11.5 14.4 22.1 509.7
0.50 60.9 11.6 11.3 11.5 12.6 15.2 18.3 25.8 548.8
0.70 72.2 19.9 19.0 19.8 20.9 23.5 27.1 34.6 582.8
0.99 685.4 633.5 565.0 576.5 580.5 597.7 603.1 609.6 1039.7

Table 3.27: First-Order Autocorrelated, Exponentially Distributed Interarrival Times and
Lognormal Service Times (δ = 1), 80% utilization
M/G/1 80% Utilization ρS(1)

ρA(1) -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
-0.99 188.4 21.7 18.9 19.2 21.2 26.4 34.8 49.9 821.7
-0.70 142.4 7.9 6.4 6.3 7.5 10.5 14.9 25.9 724.2
-0.50 153.2 7.7 6.3 6.2 7.4 10.4 14.8 24.8 709.3
-0.30 155.2 8.2 6.7 6.7 7.8 10.6 15.1 25.8 748.4
0.00 179.2 9.2 7.9 7.9 8.9 12.2 16.2 26.7 756.9
0.30 162.7 12.1 10.4 10.3 11.5 14.5 19.3 29.8 764.5
0.50 182.5 15.5 13.9 13.6 15.2 18.3 22.8 33.8 815.5
0.70 197.7 24.1 21.8 22.0 23.2 26.6 30.8 42.8 820.8
0.99 795.9 642.9 569.6 579.3 584.2 603.4 607.3 614.04 1373.3
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Table 3.28: First-Order Autocorrelated, Exponentially Distributed Service and Interarrival
Times, 80% utilization
M/M/1 80% Utilization ρS(1)

ρA(1) -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
-0.99 50.6 9.8 9.3 9.8 11.4 15.0 18.7 26.7 396.2
-0.70 33.4 2.7 2.5 2.7 3.4 4.9 7.0 12.0 351.8
-0.50 31.6 2.7 2.5 2.7 3.4 4.9 7.0 11.6 336.9
-0.30 32.6 3.0 2.8 3.0 3.6 5.1 7.1 11.9 340.0
0.00 38.3 3.8 3.6 3.8 4.6 6.0 8.2 12.8 344.2
0.30 34.5 5.5 5.3 5.5 6.2 7.8 9.8 15.1 379.1
0.50 40.2 7.8 7.6 7.8 8.6 10.3 12.5 17.2 398.9
0.70 44.6 13.4 13.3 13.6 14.4 16.0 18.2 23.7 414.0
0.99 448.3 434.5 429.6 397.0 400.9 413.0 424.5 442.6 842.6

Table 3.29: First-Order Autocorrelated, Exponentially Distributed Interarrival Times and
Lognormal Service Times (δ = 2), 80% utilization
M/G/1 80% Utilization ρS(1)

ρA(1) -0.99 -0.70 -0.50 -0.30 0.00 0.30 0.50 0.70 0.99
-0.99 14.2 7.0 7.0 7.1 7.9 8.9 10.7 13.7 115.8
-0.70 5.4 1.4 1.4 1.5 1.7 2.2 2.8 4.1 78.6
-0.50 5.1 1.5 1.5 1.6 1.8 2.3 2.8 4.1 70.2
-0.30 5.6 1.8 1.8 1.9 2.1 2.5 3.1 4.3 72.3
0.00 7.1 2.6 2.6 2.7 2.9 3.3 3.9 5.3 79.6
0.30 8.2 4.3 4.2 4.3 4.6 5.1 5.7 7.1 88.9
0.50 11.2 6.5 6.6 6.7 6.9 7.4 8.1 9.6 91.8
0.70 16.7 12.2 12.3 12.5 12.5 13.2 13.7 15.3 102.9
0.99 417.8 430.3 426.7 393.7 399.5 411.2 421.6 437.86 565.9
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