Essays on equilibrium computation, MDD-based constraint ppgramming

and scheduling

Samid Hoda
April 2010

Tepper School of Business
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
John N. Hooker (Chair)
Javier Peina
Willem-Jan van Hoeve
Francois Margot

Samuel Burer

Submitted in partial fulfillment of the requirements for ttegyree of Doctor of Philosophy in

Algorithms, Combinatorics and Optimization



Abstract

This thesis addresses three topics: solving the Nash Bruiti problem for two-player zero-sum games
presented in extensive form, constraint programming usingivalued decision diagrams and scheduling
cranes in a factory.

In the first chapter, we develop a first-order method based smaothing technique of Nesterov that
allows us to solve problems that are several orders of madmiarger than was possible previously.

The second chapter investigates constraint programmisepban multivalued decision diagrams (MDDs).
We present a systematic framework for designing filteriggathms for MDDs as well as concrete instanti-
ations for several different global constraints. We alszaés some ideas for primal heuristics and branching
schemes using MDDs. The third chapter describes our impltatien of a solver for constraint satisfaction
problems where the domain-store has been replaced by MDD#hel fourth chapter we present a case
study of propagatingnmong constraints using our framework and provide more evidenaeMDD-based
propagation can result in enormous reduction in the sizhe&earch tree and solution time.

In the final chapter of this thesis we address the problemlefdiding a pair of cranes that share a track
to best follow a production schedule. We focus on the prolésolving the optimal control problem for

the trajectories and present a dynamic programming salutio



Contents

1 Introduction

2 Computing Nash Equilibria

2.1 Introduction

2.2 Smoothing techniques

2.3 Treeplexes

2.4 Uniform treeplexes

2.5 Implementation

2.5.1 Nesterov's Excessive Gap Technique

2.5.2 Complexity of each EGT iteration

2.5.3 Heuristics

2.6 Computational results

2.6.1 Experimental setup

2.6.2 Experimental comparison of prox functions . . . . . . ... .. oL L.

2.6.3 Experimental comparison of the heuristics

2.6.4 Application to Texas Hold’em poker

2.6.5 Memory requirements

2.6.6 Speedup from parallelizing the matrix-vector praduc . . . . . . ... ... ...

2.7 Conclusions and future research

3 MDD-based Constraint Programming

3.1 Introduction

3.2 Constraint Programming Preliminaries

12
17
17
19
20
23
23
25
26
26
29
31
31



3.3 MDDs and MDD-Based Constraint Solving . . . . . . .. . . .. . cu. ... ..... 36
3.4 A Framework for MDD Propagation . . . . . . . . . . . .. . . 39
3.4.1 Aninequality propagator . . . . . . ... e e 39
3.4.2 TheGeneral Framework . . . . . . . . . . . . . .. . 41
343 Propagating; = x; . . . . ... . ... 42
344 Propagating; 7 j . . . . . . 42
345 Propagating; < x; . . . . ... ... 43
3.4.6 Propagatingthal | -Di fferent Constraint . . . .. ............... 44
3.4.7 Propagating Two-sided Inequality Constraints . . ...... . . .. ... ...... 44
3.4.8 Propagatingnmong Constraints . . . . . . . . ... 46
3.4.9 Propagating theequence Constraint . . . . . . . .. ... ... . ... ... 47
3.4.10 Propagating the Generalized Cardinality Congtrain. . . . . .. .. .. ... .. 47
3.4.11 Propagating thénary ResourceConstraint . . .. ... ... ......... 48
3.4.12 Propagating thel enent Constraint . . . . .. ... ... .. .. ......... 49
3.5 Reusing Domain Propagators . . . . . . . . . . . e 49
3.5.1 Motivation . . . . . .. 49
3.5.2 Using Domain Information . . . . . . .. . ... ... ... e 50
3.5.3 A Faster Framework for Reusing Domain Propagators . . . . ... ... ... 51
3.5.4 The Relationship with ‘Specialized’ Propagators 52
3.5.5 A Scheme for the Partial Updating of Node Information. ... . . . ... ... .. 53
3.6 Achieving MDD CONSIStENCY . . . . . . . . . e e 54
3.7 Primal Heuristics and Branching Strategies . . . . .. . ... .. .. ... .. ..., 56
3.7.1 MDD-Based Constraint Optimization and Strong Bramgh. . . . . . . ... ... 56
3.8 Conclusion . . . . e 56
An MDD-based Constraint Programming System 58
4.1 IntroduCtion . . . . . . . e e e e 58
4.2 Working with Finite-Domains . . . . . . . . . . . e e 58
4.3 The MDD Implementation . . . . . . . . . . . . . . e e 60
4.4 SpecifyingaProblem . . . . . .. e e 63



45 TheCONSTRAI NT Class . . . . . . o o o e e e e e e e s e 65

4.6 Constraint-Based Search . . . . . . . . . . . e e 71
46.1 TheSOLVERCIass . . . . . . . . . . e 73

4.7 Conclusions and Future Work . . . . . . . . . . . 75

5 Propagating Among Constraints 78

5.1 MDD Filtering Heuristics for Among . . . . . . . . . . . . . . e 79

5.2 Refiningthe MDD . . . . . . . . e e 80

5.3 Experimental Results . . . . . . . . . . . e e 81

5.3.1 RandomInstances . . . . . . . . . .. .. 82

5.3.2 Nurse Rostering Instances . . . . . . . . . . . . . ... e 83

5.4 Conclusion . . . . . . .. 87

6 Optimal Movement of Factory Cranes 89

6.1 Introduction . . . . . . . .. e e 89

6.2 PreviousWork . . . . . . e 91

6.3 The Optimal Trajectory Problem . . . . . . . . . . . . .. . . . . e 92

6.4 Canonical Trajectories . . . . . . . . . o i e e e e 95

6.5 Dynamic Programming Recursion . . . . . . . . . . . .. e 100

6.6 Reductionofthe State Space . . . . . . . . . . . . . . . e e 101

6.7 Experimentalresults . . . . . . . . . . e e 102

6.8 Conclusions and Future Research . . . . . . ... ... ... ... ... .. .. .... 107

Bibliography 110



List of Figures

2.1

2.2
2.3

3.1

5.1

5.2

5.3
54
55
5.6

6.1

6.2

6.3
6.4
6.5
6.6

Comparison of the entropy and Euclidean prox functidime value axis is the gap(Equa-

tioN 2.2). . . e 25
Experimental evaluation of Heuristic 1. The value axithe gap (Equation2.2) . . . . . . 26
Heuristic 2 applied at different intervals. The valuesax the gap: (Equation 2.2) . . . . . 27
(a) MDD forz; = x2. (b) MDD after processing faanmong((z1,x2),{1},0,1) . ... .. 37

An MDD in which the solid edge from; to p3 (representing:, = 1) is redundant for the
constraintanong((x1, o, 3, 24), {1},2,2). . . . . . . 79

Refining MDD (a) by splitting nodes yields (b), which after filtering for the constraint

among((x1, o, x3,24),{1},2,2) yields (C). . . . . . . .. . 81
(c = 1) Comparing the effect of MDD width in terms of backtracks #4af time (b). . ... 83
(c = 2.5) Comparing the effect of MDD width in terms of backtracks #ad time (b). . . . 84
(c = 5) Comparing the effect of MDD width in terms of backtracks éap time (b). . . . . 84
(c = 7.5) Comparing the effect of MDD width in terms of backtracks #a time (b). . . . 84

Sample space-time trajectory for one task. The shadditalebars denote processing,
which in this case consists of loading and unloading. . . . ...... . . ... ....... 95

Extremal trajectory for the left crane (a) when the deditbn is to the right of the origin,

and (b) when the destination is to the left of the origin. . ...... ... ... ....... 96
Canonical trajectory for the left crane (leftmost sdith@). . . . . . ... ... ... .... 96
Optimal solution of the 10-job instance. . . . . . . . . . . . ... ... 104
Optimal solution of the 30-job instance. . . . . . . . . . . . ... .. .. .. ..... 105
Optimal solution of the 60-job instance. . . . . . . . ... . ... ... ... ...... 105



6.7

6.8
6.9

Evolution of the state space size for the 10-job instanidee horizontal axis is the time
stage, and the vertical axis the numberofstates. . . . . ... ... ... ........ 106
Evolution of the state space size for the 30-job instance. . . . . . ... ... .. .... 106

Evolution of the state space size for the 60-job instance. . . . . . ... ... ... ... 107



List of Tables

2.1 Problem sizes (when formulated as a linear programhéoirtstances used in our experiments. 24
2.2 Average CPU time per EGT iteration for the instances usedr experiments. . . . . . .. 24

2.3 Memory footprint in gigabytes of CPLEX interior-pointetihod (IPM), CPLEX simplex,

andour EGT algorithms. . . . . . . . . . . . e 30
2.4 Effect of parallelization for th&exas instance. . . . . . . . ... .. ... ... ...... 31
5.1 Nurse rostering instances. The effect of MDD width whadifig one feasible solution. . . . 85
5.2 Nurse rostering instances. The effect of MDD width whadifig all feasible solutions. . . . 86
5.3 Nurse rostering instances: MDD filtering compared ttestd-the-art domain filtering. . . . 87

6.1 Possible state transitions for cranasing an interval-valued state variable for processing

6.2 Computational results for subsets of the 60-job problem . . . . . . .. ... ... ... 109
6.3 Effect of state space reduction on state space size andutation time. Each instance
is solved for 10 different jobs assignments and sequencitigsfore” and “after” refer to

results before and after state space reduction, respigctive. . . . . . .. ... ... ... 109

Vii



Acknowledgements

| acknowledge so and so.

viii



The dedictation



Chapter 1

Introduction

This thesis consists of three main parts. In the first partnireduce smoothing techniques for solving the
Nash equilibrium problem for two-player zero-sum sequemames. Although this problem can be solved
using linear programming, the resulting formulations foractical’ problems are intractable. One of our
goals is to solve the Nash equilibrium problems for gamesadtiae from ‘heads-up’ poker. For example,
the payoff matrix (which appears as part of the linear pnogmnéng formulation) for Texas Hold’em poker
has more than0'® nonzero entries.

Our approach follows a current trend of applying first-ord&gorithms to non-smooth optimization
problems. A key feature of these algorithms is their low cataponal cost per iteration, which makes
them particularly attractive for large problems. We adapsfdrov’'s smoothing techniques for computing
approximate equilibria. We also develop two heuristics sipged up the algorithm significantly and present
a matrix decomposition that provides enormous memory gavinThese techniques enable us to solve
problems orders of magnitude larger than the prior statheart.

The next part of this thesis studies constraint programmihigh the domain store has been replaced
by a more descriptive data structure: a multivalued decidiagram (MDD).

A key weakness of the domain store is that it transmits a dichamount of information. It cannot
account for any interaction among the variables, becayssaution in the Cartesian product of the variable
domains is consistent with it. This restricts the abilitytloé domain store to pool the results of processing
individual constraints and provide a global view of the peoi.

Multivalued decision diagram@IDDs) [28] generalize binary decision diagrams (BDDs) 1R which



have long been used for circuit design/verification [10,&&] very recently for optimization [7, 21, 22].
The MDD for a constraint set is essentially a more compagessmtation of a branching tree, obtained by
superimposing isomorphic subtrees. The shape of the irggWtDD depends on the order in which one
branches on the variables.

A primary research issue in applying MDDs to solving CSPslietlver there exist fast and effective
propagation algorithms for constraints. Until now (to theesstof our knowledge) there were MDD propaga-
tion algorithms for the following constraints: (one-sidlétequality constraints [3Rl | di f f [3], equality
constraints [23], andnopng constraints. The reasoning used for designing propagatgmrithms for each
of the constraints seemed to be ad-hoc. We present a systamahod for extending the reasoning used
to propagate constraints in the traditional domain stottingeto design MDD propagation algorithms. We
will demonstrate the efficacy of the method by designing MD8pagation algorithms for several important
classes of constraints. We also show how this technique eaisdd effectively to reuse traditional filtering
algorithms for domain stores.

We conclude our work with MDD-based propagation by congidea case-study for problems that
consist of severanong constraints. Such models arise in employee scheduling raldigtion sequencing
problems. We show that there are substantial improvemardedrch time and search tree reductions. In
fact, our experiments demonstrate that the amount of padmagobtained by the MDD is substantial, even
for MDDs of very small width. There are huge savings in comafiah time for many of the more difficult
problem instances that we considered. For example, to salwepecifically hard instance, the domain store
needed 1,012,562 backtracks and 1684.7 seconds of coinputate, while our MDD store with maximum
width of four reduced this to two backtracks and 0.04 secafide@mputation time.

The final chapter is a study of a crane scheduling problem iictwa list of jobs is assigned to two
cranes that share a track and cannot travel past each otlven & assignment of jobs to cranes and the
sequence of jobs on each crane we solve the problem of gengeaatoptimal space-time trajectory for both
cranes via dynamic programming. The natural state spadeeafiynamic program is intractable and we
introduce two techniques that are necessary to solve thegmnousing our formulation. The first technique
restricts trajectories to canonical trajectories witheartrificing optimality; the second technique involves a
novel state space description that represents many stapdisitly as a Cartesian product of intervals. The

chapter concludes with some computational experimenistiiting our algorithm.



Chapter 2

Smoothing techniques for computing Nash

Equilibria of Sequential Games

2.1 Introduction
The Nash equilibria of two-person, zero-sum sequentialegaane the solutions to

min max(y, AX) = maxmin(y, Ax 2.1
min max(y, Ax) = maxmin(y, Ax) (2.1)

whereX’ and) are polytopes defining the players’ strategies dnid the payoff matrix [60, 30, 55, 61].
When the minimizer plays a strategy € X and the maximizer playg € ), the expected utility to
the maximizer is(y, Ax) and, since the game is zero-sum, the minimizer's expeciéty ig (y, —Ax).
Problem (2.1) can be expressed as a linear program, butgh#img formulations are prohibitively large
for most interesting games. For instance, the payoff matrir (2.1) for limit Texas Hold’'em poker has
dimension10' x 10 and contains more thatD'® non-zero entries. Problems of this magnitude are
far beyond the capabilities of state-of-the-art genewappse linear programming solvers. Even solving a
substantially smaller game withl&% x 10¢ payoff matrix containing 50 million non-zeros with conviemil
linear programming solvers is computationally demandioth fin terms of time and memory [17].

We present a novel algorithmic approach for finding appretérsolutions to (2.1). To this end, we
define polytopes calletteeplexesand concentrate on solving (2.1) whahand)’ are polytopes of this
type. Treeplexes generalize simplexes and include as @bpase the strategy sets of sequential games.

Our approach follows a current trend of applying first-ordigorithms to non-smooth optimization prob-

3



2.2. SMOOTHING TECHNIQUES

lems [27, 31, 43, 46, 47]. A key feature of these algorithmth&r low computational cost per itera-
tion, which makes them particularly attractive for largelgems. We adapt Nesterov's smoothing tech-
niques [46, 47] for approximating (2.1). In particular, wevelop first-order algorithms that take(1/¢)

iterations to compute € X andy € ) such that

0< Ax) — min(y, Au) < e 2.2
< max({v, Ax) — min(y, Au) <e (2.2)

Such a pair of strategies is called aequilibrium.

The simplicity and the low computational cost per iteratarour algorithm enables the computation
of near-equilibria for enormous sequential games. An imgletation based on our approach has been
successful in obtaining-equilibria for sequential games where the payoff matriis of size10® x 10® and
contains more thai0'? entries (Section 2.6). These games are abstracted pokesgeith10® information
sets and 0'? leaves in the game tree. This problem size (as measured Ioyithiser of leaves) is over four
orders of magnitude larger than what can be handled by gph¥ia linear programming formulation via
conventional solvers, such as interior-point methods {67, Our implementation is a key component of
several successful poker-playing computer programs fostale Heads-Up Texas Hold’em poker [18, 19].

This chapter is organized as follows. Section 2.2 summaritesterov’s smoothing technique as it
applies to problem (2.1). We highlight that technique’sctailiingredient, a pair of suitablgrox-functions
for the sets¥’ and). Section 2.3 presents our main idea, a template for corstgusuitable prox-functions
for treeplexes. Section 2.4 considers the special caseifufrm treeplexeskor these treeplexes we provide
explicit bounds on the number of iterations needed for figdin e-equilibrium. Sections 2.5 and 2.6
present some computational experience with an implenmientbised on our approach. Finally, Section 2.7

summarizes the main conclusions and discusses ideas tioe farork.

2.2 Smoothing techniques

Problem (2.1) can be stated as

min f(x) = max P(y) (2.3)

where

f(x) = ma {y, Ax) and ¢(y) = min {y, Ax).



2.2. SMOOTHING TECHNIQUES

The functionsf and¢ are respectively convex and concave non-smooth functibimsleft-hand side of (2.3)

is a standard convex minimization problem of the form
h :=min{h(x) : x € X}. (2.4)

First-order methods$or solving (2.4) are algorithms for which a search directé each iteration is obtained
using only the first-order information df, such as its gradient or subgradient. Wheis smooth with
Lipschitz gradient, there is a first-order algorithm for firgia pointx € X such thath(x) < h + ¢ after
O(1/+/€) iterations [44]. Wherh is non-smooth, subgradient algorithms can be applied,Hayt have a
worst-case complexity a(1/€?) iterations [20]. However, that pessimistic result is basedreatingh as
a black-boxwhere the value and subgradient are accessed via an oraxl@oi-smooth functions with a
suitable max structure, Nesterov devised first-order d@lgos requiring onlyO(1/¢) iterations by applying
a cleversmoothing techniqug6, 47]. In this paper, we adapt that smoothing techniquedtving problem
(2.2).

The key component of Nesterov's smoothing technique is mgigirox-functionsfor the setst’ and
Y. These prox-functions are used to construct smooth appedions f, ~ f and¢, ~ ¢. To obtain

approximate solutions to (2.3), gradient-based algostieam then be applied ), and¢,,.

Definition 2.2.1. Assume() C R" is a convex compact set. A functieh: Q — R is aprox-functionif it

satisfies the following properties

e dis strongly convex irQ, i.e., there exists > 0 such that for allk,y € @, anda € [0, 1]
1
d(ox + (1= a)y) < ad(x) + (1= a)d(y) = Goo(l - a)|x -y (2.5)

The largest value of the constanthat satisfies (2.5) for a particular noin|| is thestrong convexity
modulusof d with respect tg| - ||. Note that the specific value of the strong convexity modulus

depends on its associated nojfm||.
e min{d(x) :x € Q} =0.

Whend : @ — R is differentiable, (2.5) can be equivalently stated in aitbf the following two
forms [45]:

d(y) > d(x) + (Vd(x),y — x) + %O’HX —y|? forall x,y € Q. (2.6)

5



2.2. SMOOTHING TECHNIQUES

(Vd(x) — Vd(y),x —y) > ollx —y|? forall x,y € Q. (2.7)

Assumed y anddy are prox-functions for the sefs and)’ respectively. Then for any givem > 0, the

smooth approximationg, ~ f and¢, ~ ¢ are

Fulx) 1= max{(x, Ay) — udy(y) : ¥ € Y}, 6u(y) i= min{(x, Ay) + pdx(x) : x € X}.

The following result of Nesterov provides the theoreticaliidation of our first-order algorithms for
solving (2.1). LetDy := max{dy(x) : x € X'}, and letoy denote the strong convexity modulus of
dx. Let Dy andoy be defined likewise fop) anddy. The operator norm ofi used below is defined as

| Al :== max{(y, Ax): ||x]],|ly]| < 1}, where the norm§x]||, || y| are those associated withy andoy.

Theorem 2.2.2(Nesterov [46, 47]) There is a procedure based on the above smoothing techriiquefter

N iterations generates a pair of pointg”Y, y) € X x ) such that

< 4llAl [DxDy

0<S6M) = 00™) < 5\ ovoy (2.8)

Furthermore, each iteration of the procedure performs saleenentary operations, three matrix-vector

multiplications byA, and requires the exact solution of three subproblems ofdime

max {(g,x) —dx(x)} o max{(g,y) —dy(y)} (2.9)

In Section 2.5, we will present an explicit algorithm as estiain Theorem 2.2.2. Before that, we first
provide a method for solving the subproblems in (2.9) asettags critical steps in the algorithm. These
subproblems can be phrased in terms of the conjugate of tietidnsdy anddy [25]. The conjugate of

d : Q@ — Ris the functiond* : R™ — R defined by
d*(s) := max{(s,x) —d(x) : x € Q}.

If dis strongly convex and) is compact, then the conjugat¥ is Lipschitz continuous, differentiable
everywhere, and
Vd*(s) = argmax{(s,x) — d(x) : x € Q}.
(For a detailed discussion see [25].)
For an algorithm based on Theorem 2.2.2 to be practical uiygreblems (2.9) must be solvable quickly
since their solution is required three times at each itenadif the algorithm. In other words, the conjugates
d’y anddy, and their gradient§’d?, andVd3, should be easily computable. This motivates the following

definition.



2.3. TREEPLEXES

Definition 2.2.3. Assume) C R" is a compact convex set. We say that() — R is anice prox-function

for Q if it satisfies the following three conditions:
(i) dis continuous and strongly convexdn and differentiable in the relative interior ¢f.
(i) The conjugatel* satisfies?*(0) = 0.
(iif) The conjugate functionl* and its gradien¥/d* are easily computable.

Example 1. For thek-dimensional simplex\, the entropy functiorl(x) = In k + Zle z;In z;, and the
Euclidean distance functiofi(x) = %Z§:1($z‘ — 1/k)?* are nice prox-functions. Indeed, for the entropy
prox-function, the gradient of the conjugaiel*(s) is given by the closed-form expression

Vidi(s) = — =1 .k
o=

Furthermore, as discussed in [27, 46], the entropy fundias strong convexity modulus equal to one for
the L*-norm ||| := 3-F_, [a;.

For the Euclidean prox-function, the gradient of the coafe§y/d*(s) is given by the expression
Vid*(s) = (SZ' - )\)Jr, 1= 1, cee ,k,

where) € Ris such thagg?zl(sj — A\)* = 1. This value of\ can be found irfO(k In k) steps via a binary
search in the sorted componentssofFurthermore, from (2.7) it follows that the Euclidean pifiaxction

has strong convexity modulus equal to one for the Euclidesmix|| := w/Z?zl x?

2.3 Treeplexes

This section presents the essential elements of our agpréde define the class dieeplexpolytopes and
provide a generic technique for constructing nice proxcfioms for treeplexes, using as building blocks any
family of nice prox-functions for simplexes. This allows tescreate practical first-order algorithms based
on Theorem 2.2.2 for solving the saddle-point problem (8vEr treeplexest’ and) .

A treeplex can be seen as a tree whose nodes are simplexesed Bucture endows the treeplex with
a certain kind of sequential characteristic. In partiguli@eplexes include the types of polytopes that arise
in the computation of Nash equilibria of sequential gamese [htter is an immediate consequence of the

sequence forrformulation of Nash equilibria for sequential games, asitkd in [60, 61, 30, 55].

7



2.3. TREEPLEXES

Definition 2.3.1. The class of treeplexes is recursively defined as follows:

m

e Basic setsEvery standard simples,,, := {x eo1m: 3w = 1} is a treeplex.

e Cartesian productif Q4,...,Q; are treeplexes thef; x --- x @}, is a treeplex.
e Branching:If P C [0,1]” and@ C [0,1]? are treeplexes ande {1,...,p} then

P Q= {(x,y) e RPTY . x € P, yExi-Q}
is a treeplex.

The Branching operation in Definition 2.3.1 has the follogvsequential interpretation: the vectois
the set of “current stage” decision variables, and the vegtis the set of “next stage” decision variables
following thei-th current decision variable;. Notice that a treeplex can be written in the fofma > 0 :
Ex = e} for some matrixE' with entries in{—1, 0, 1} and vector with entries in{0, 1}, see [60, 61].

In the sequel we will often need to compare the norm of a veptoy) € RP™¢ with those ofx €
RP,y € R4, This requires a certain compatibility of the norms in thacgsR?, R?, andRP*%. Henceforth,

we shall make the following mildorm-embedding assumption:

[l = 1I(x, 0)][, llyll = 1(0, ). (2.10)

We now present our general procedure for constructing niog-functions for treeplexes. The con-
struction relies on the followindilation operation from convex analysis [25]. Given a compact/sef R?

and a functiond: K — R, define the self’ C R4*+! as

K= {(x,y)eRd“:xe[o,l],yex-K},

and define the functio®: KX — R as

_ mfb(%) if x>0,
P(z,y) =
0 if z=0.

Proposition 2.3.2.1f K is compact and is continuous ink’, then® is continuous inK. Also if(z,y) € K

is such thatr > 0 andV® (y/x) exists, theiW ® (z,y) exists and

Va®(a,y) = @ (7) = (Ve (3).5).

T

(2.11)

Vy®(z,y) =V (¥).



2.3. TREEPLEXES

Proof. The continuity follows via a straightforward limiting anjent: Assuméz,y'), (z,y) € K and

(2%, y%) — (x,y). If x > 0 theny'/x;, y/x € K andy’/z; — y/x. Since® is continuous, we get
O(a',y') = @(y'/a") — O(y/z) = ®(,y).
On the other hand, if = 0 thenz’ — 0. Consequently,
B, y')| = [« B(y' /2')| < 7' max{®(z) :z € K} — 0= B(a,y).
Finally, the identities in (2.11) follow by applying the éhaule. O

Assume we are given a family of nice prox-functiodg for A,,, m € Z*. Using this family, we

recursively construct functions for treeplexes as follows
e Basic setsfFor@Q = A,,, letdg := d,,.

e Cartesian productif Q¢,...,Q; are treeplexes ang = Q1 x --- x Qy, let

k
do(x!, ..., x*) = Zd@i(xi)
1=1
wheredg,, . .., dg, are nice prox-functions for their respective treeplexes.

e Branching:If P C [0,1]” andR C [0, 1]" are treeplexes, € {1,...,p}, andQ = P |i| R, let

do(x,y) = dp(x) + dr(;,y) (2.12)
wheredp anddp are nice prox-functions foP and R.

Theorem 2.3.3.The functionsi defined above are nice prox-functions for each treeflex

To prove Theorem 2.3.3, it suffices to show that the propeiienice prox-functions are preserved
for the Cartesian product and Branching steps. Since thee€lam product step is straightforward, we

concentrate on the Branching step as stated in the folloptiogosition.

Proposition 2.3.4. AssumeP C [0,1]? and R C [0, 1]" are treeplexes; € {1,...,p}, and@ = P m R.

Furthermore, assumép anddp, are nice prox-functions foP and R respectively and

do(x,y) == dp(x) + dr(zi,y).

Then



2.3. TREEPLEXES

(i) dg is continuous and strongly convexdhand differentiable in the relative interior @.

(i) dg, andVdy, are computable via the following expressions

d*Q(u,v) =dp(n) (2.13)
deg(u,v) = (Vdp(a), Vidp(a) - Vdi(v)) (2.14)
where
_ uj if j # 1,

u]' =
wi +dp(v) ifj=1.

Proof.
(i) The continuity ofdg in @ and the differentiability in the relative interior 6§ follow from (2.12) and

Proposition 2.3.2. Sincéy is continuous inY, to prove its strong convexity, from (2.7) it suffices to

show that there exists > 0 such that
(Vdg(x,y) = Vdo(%,¥), (x.y) = (%,3)) 2 ol (x,y) — (%,3)]* (2.15)
for all (x,y) and(x,y) in the relative interior of).
Assume(x,y) and(x,y) are in the relative interior af). Setz := y/z; andz := y/z;. From (2.12),
Proposition 2.3.2, and some elementary calculations we get
(Vdg(x.y) — Vig(%,5), (x.y) — (%,3)) = (Vdp(x)— Vdp(%),x ~ )
+ ;- (dr(z) — dr(z) + (Vdgr(2),z — z))

+ .i'i . (dR(i) — dR(Z) + <VdR(Z),Z — Z>) .

Therefore, sincép anddy are strongly convex, (2.6) yields

Y

(Vdg(x,y) — Vg(%,9), (x,¥) — (%,5)) > opllx— |2+ Logaillz — 7| + Lopiil|z — 2|

= oplx - |2 + opaillz - 21,
(2.16)

wherez; = % andop,or > 0 are the strong convexity parametersigfanddy respectively.

Next, we bound the right-hand side of (2.15). Applying thartgle inequality and using the norm-

embedding assumption (2.10), we get

I, y) = &F) < x— %+ ||oiz — 222
= =R+ @+ 3) 2 —2) + A — @)@+ (217)
< lx = %]+ dillz — 2] + Sl — &z + 2]

10



2.3. TREEPLEXES

SinceR is compact, the valug/ := max{||¢|| : ¢ € R} is finite. Therefore from (2.17) we get
1(x,y) = (&3 < (1 + M)|[x = X[ + Zil[z — 2.

Now, by the Cauchy-Schwarz inequality,

Z;

- 1 - . -
I(x,y) = (%, 9)I1° < <(1 + M) — + —> (oplx = x|* + oriillz — 2|%) .
op OR

Sincex,x € P C [0, 1]” we get

I, y) = & ¥)IIP < ((1 +M)*— + %) (opllx = %|* + orillz — 2]%) . (2.18)

op

From (2.16) and (2.18) it follows that (2.15) holds for

1
0=————2>0.
(1+M)2_{_L

op OR

(i) For agiven vectoru,v) € RP*" we have

dQ(Xay) : (Xay) S Q}
dp(x) — dgr(zi,y) :x € P, y € z; - R}

dpv) = supf{{(uv). (x.y)

— sup{(u,x

)~
) =

+
?
<

x; - ((v,z) —dg(z)) :x € P, z€ R, z; > 0}

&.
“U
5

)
= sup{(u,x) —dp(x) + (2.19)
= sup{(u,x) —dp(x) + ;- djp(z) : x € P}

) —dp(x):

= sup{(u,x x € P}

(a,
= dp().
The third and fourth steps above hold by the continuitylgfanddp. Hence (2.13) is proven. To prove
(2.14), observe that the maximizer in the second to lastiatép19) isx = Vd}(a). Next, consider two
cases depending on the valuezof If z; > 0 then the maximizer in the third step in (2.19)is= Vd},(v),
and consequently the maximizer in the first step in (2.19kis; - z). If z; = 0 then the maximizer in
the first step in (2.19) i$x,0). In either case the maximizer in the first step in (2.19Vi$22(u,v) =
(%, i - 2) = (Vdp(0), Vidp () - Vdp(v)). 0
Remark2.3.5 We can generalize the above construction and results tohtesigversions of the prox-
functions. More precisely, in the Branching step, we canngefi)(x,y) := wpdp(x) + wrdr(zi,y)
for some constants)p, wr > 0. We will elaborate on this idea to obtain prox-functionsldileg better

complexity guarantees for uniform treeplexes.

11



2.4. UNIFORM TREEPLEXES

2.4 Uniform treeplexes

In this section we derive complexity results for first-orderoothing algorithms for the problem (2.1) in the
special case wheir and) areuniformtreeplexes. This special case of (2.1) covers the fornmuadf Nash
equilibrium for instances of many interesting games. lades will be discussed in Section 2.6, uniform

treeplexes naturally arise in multi-round sequential gasueh as poker.

Definition 2.4.1. Assume that a treepley C [0, 1], an index setl = {i;,...,3} € {1,...,¢}, and a

positive integelk are given. Defing),., r = 1,2,..., as follows
e ()1 :=Q x---xQ (ktimes).
e Qri1:=Qp x -+ x Q, (k times), where

QT ::QQT = {(X7y1>"'7yb):X€Qa YJ Gxij'QTa ]Zlaab}

We will refer to @, as ther-th uniform treeplex generated by, I, k& and will sometimes write it as

Q.1 k).

Remark2.4.2 Notice that the operatio@ is the same as the operati@ appliedb times. More precisely,

Q. = Q[ [i2] - [1] Q-

Given a nice prox-functionig for @ and constantsvs, > 0, r = 1,2,..., consider the following

weighted version of our previous construction of prox-fimes for treeplexes.

e ForQy =Q x --- x @Q (k times) let
k .
dQl(xl, xR = ZdQ(X])
j=1
e FOrQ, ;1 =0Q, x --- x Q, (k times), let

thLl(ul, ce ,uk) = Zd@r(uj),

whered,, is defined as follows



2.4. UNIFORM TREEPLEXES

We now present an explicit iteration complexity bound forratforder smoothing algorithm for the
saddle-point problem (2.1), wheti and) are uniform treeplexes. As in Theorem 2.2.2, the norm pf
| Al is the induced operator norm df, where the underlying norms are those associated sjtando .

In particular, the result below holds for any choice of norms
Theorem 2.4.3.Supposed, X, )V, dx, anddy satisfy the following conditions:
() X =09(Q,I,k,r) CR™andYy = Q(Q, I, k,7) C R".

(ii) The prox-functionsi, dy are constructed as above with weights = (kM)?(bk)7,j =1,...,r—1
andw; = (kM)?(bk)’, j = 1,...,7 — 1 respectively, where = |I|, b = |I|, M := max{|lu/| : u €
Q}, M := max{[[ul| : u € Q}.

Then afterN iterations the procedure from Theorem 2.2.2 yigldsy) € X' x ) such that

< — = — 1m < .
0 < 70) = 9(y) = waxtv, dx) — minly, 4u) < 5T [ (2.20)

whereG = mn(kMr)(kMF).

The crux of the proof of Theorem 2.4.3 is Lemma 2.4.4, whichriafs the ratio of the maximum value
to the strong convexity modulus for the prox-functions faiform treeplexes. This ratio can be seen as a
measure of the prox-function’s quality. Lemma 2.4.4 presidn estimate of this ratio for the prox-functions

dg, constructed above, provided the weightsare chosen judiciously.

Lemma 2.4.4. Assume&) and @, » = 1,2,..., are as in Definition 2.4.1. Let, o,., D, D,, and M be

defined as follows
o := strong convexity modulus ofly, o, := strong convexity modulus ofly, ,
D :=max{dg(z) : z € Q}, D, := max{dg,(z) :z € Q,},
M = max{||z| : z € Q}, M, := max{||z| :z € Q,}.

() The strong convexity modudi. of dg,, r = 1,2, ... satisfy

1
O-T‘Jrl 2 k(1+Mr)2 % .

wWro or

(2.21)

13



2.4. UNIFORM TREEPLEXES

(i) If w, = (EM)%(bk)", r =1,2,... then

D D
il ) RS Y = (2.22)
g

Oy
Proof.

(i) Let &, be the strong convexity modulus %r. From the construction afy, , it follows thato, ;1 >

a,/k. Hence it suffices to boundl.. Proceeding as in the proof of Proposition 2.3.4(j), it faltothat

forallw = (x,y!,...,y") andw = (x,y!,...,y") in the relative interior of), we have
b . .
(Vdg, (W) = Vdg (W), w —W) > weolx —%|* +0, > & |2 — 7| (2.23)
j=1
and
b . .
lw =Wl < (14 My)x =%+ |27 — 27, (2.24)
j=1

wherez’/ = y’/z; ,andz’ = y7/i;, for j = 1,...,b. Applying the Cauchy-Schwarz inequality to
(2.24) we get

b b
~ 1 + M 2 z = Li; ~ ~ ; ~7q
lw—w|? < <( )y 2 ”) weo|x = %|* + 0, > @il - 7|7
WO Oy —
, = (2.25)
1+ M)? b L
< (M + —> weollx = X|? + 0 Y [z — 2|
WO oy = :

From (2.23), (2.25), and the continuity %r we obtain

NS 1

Op =2 (1+Mr)2 i,

WrO or
which yields (2.21) since, 1 > 6, /k.
(i) Let M, := max{||z|| : z € Q,}. We haveM; < kM andM,; < k(M + bM,), so
1+ M, <kM(k)", r=1,2,....
n 2 .

Hencew, > (12;)%1.) , and consequently (2.21) yields

1 - 1 n 1

(bk)y oy — bo  (bk) o,

Therefore, since; > o/k, it follows that

! =12, (2.26)

<
(bk) o, — bo



2.4. UNIFORM TREEPLEXES

On the other hand, from the construction(@f anddg, we have
D <EkD, Dy < k(wTD + bDT), r=12,...

SO,
r—1

Dy < kD [ (k)" + Y wy(bk)
j=1
Thus
Dy < kD ((0R) + 52t wy(bk) 1)

— kD ((bk)H + (kM)? zg;}(bk)j(bk)rﬂﬂ

(2.27)
= kD(1+ (kM)?(r —1))(bk) !
< krD(EM)?(bk) L.
Finally, (2.22) follows by putting together (2.26) and (2)2
O

Proof of Theorem 2.4.3.SinceX = Q(Q, I, k,r) C R™, Lemma 2.4.4 yields

Dx < b2r—2k2r+2T2M2@.
ox oQ

In addition, a simple induction argument shows the dimensioof X = Q(Q, I, k,r) satisfiesm =

kq - Y=L Therefore

bk—1
D D
LR ) ISV iy (2.28)
ox oQ

Similarly,
Dy 979217220
— < n°krTMT—=. (2.29)
oy 75

The iteration bound (2.20) now follows from (2.8), (2.2&8)dg2.29). O

For the special case when the norniRhand eaclR?" is the Euclidean norm, we can sharpen the bound

in Lemma 2.4.4, and thus also the bound in Theorem 2.4.3.

Lemma 2.4.5. Assumé, M, D, D,., o, ando,, are as in Lemma 2.4.4, and the normif and eachR?" is

the Euclidean norm. v, = kM2E", r =1,2,...,then

D D
il St LRV (2.30)

oy o

15



2.4. UNIFORM TREEPLEXES

Proof. For the Euclidean norm we havg.; = &,, whereg, is the strong convexity modulus de
Next, we proceed to bound, as in the proof of Lemma 2.4.4. For alt = (x,y',...,y") andw =

(%x,¥',...,¥") in the relative interior of), the inequality (2.23) holds. Next, instead of (2.24) we csa u

b
lw —wl* = fx=x|*+) |2’ — 7,7 |”

J=1

IN

b

~ - N ; ~i 2

I = 2P + 37 (s, — 2, M, + 2,127 — 2])°
j=1

Hence, by the Cauchy-Schwarz inequality, we get

b

~ ~ M? b ~ ) S
Iw— W2 < - %]+ (m + a) wralpe =% + 0, 3 !~ |
, = (2.31)
(1 + Mrz) b 112 : i sil2
< w0 + p wyro||x — X|| —|—Urjzlxlj||z Z |
Thus, the bound in Lemma 2.4.4 can be sharpened to
. 1
Opy1 = 0p 2> SES VT (2.32)
Wro E

Furthermore, in this cask/? = kM? andM? ; < k(M? + bM?) which implies

14+ M? < kM?(bk)".

1+M2

Hencew, > —==,

and consequently (2.32) yields

1 - 1 n 1
btlo, 1 ~ bo  bo,.

Therefore, since; = o, it follows that

1
< r=12.... (2.33)

bro, — bo

On the other hand, sinde; = kD andD, 1 < k(w,D + bD,.), it follows that

Dy < kD ((bk) 1 2wy (k) )
= kD ((bk)"' + kM2 " kI (bk)r—1-
(o) SR (k) ) .30
< kD(1+ kM?(r — 1)) (bk)" 1
< Kk*rDM?(bk) 1.
Finally (2.30) follows by putting together (2.33) and (2.34 O

16



2.5. IMPLEMENTATION

2.5 Implementation

In this section we describe an implementation to solve (Bd3ed on Nesterov'sxcessive gap tech-
nique[46] and the prox-functions constructed in this paper. Vésent Nesterov’s algorithm specialized for
the problem (2.1). We also give a complexity analysis of g&fation of this algorithm when applied to

games with uniform treeplexes and describe two heuridtiaswere incorporated in our implementation.

2.5.1 Nesterov’'s Excessive Gap Technique

Assumedy anddy are nice prox functions fak’ and)’ respectively. Fop.x, iy > 0 consider the pair of

problems:

Fuy (%) 1= maxc{{y, A%) — jiydy(y) 1y € V}, b (v) = min{(y, Ax) + pxdg(x) : x € X}.

Algorithm 3 below, due to Nesterov [46, Section 5], genevaterates(x", y*, ik, 1i4)) with 1%, 1%, de-

creasing to zero and such that the followmgessive gap conditida satisfied at each iteration:

fuy (x) < Duz (y)- (2.35)

Notice thatf(x) > ¢(y) forall x € X,y € Y. Thusif(x,y, ux, uy) satisfy the excessive gap condition

(2.35) andx € X, y € ), then
0<¢(y) — f(x) < pxDx + pyDy. (2.36)

(See [46, Lemma 3.1].)

Consequently, if the iterates”, y*, ik, ;%)) satisfy (2.35), therf (x*) ~ ¢(y*) whenyf, and 5, are
small.

The building blocks of our Algorithm 3 are the procedui@dtial andshrink defined next.

By Lemma 5.1 of [46], the following procedurmitial finds a starting poinfu%, 13, x°,y°) that

satisfies the excessive gap condition (2.35).

Algorithm 1. initial(A,dy,dy)

17



2.5. IMPLEMENTATION

3.y 1= Vdj (4 A%)

4. x0 = Vd, (VdX (%) + “LOATy())
X

5. Return(j% 13, x°, ")

The following procedurehrink enables us to redugey andy while maintaining (2.35).

Algorithm 2. shrink(A, px, puy, 7,X,y,dx,dy)

=
M

= Vd, (—uLXATy)

2.x:=(1—-7)x+7%

w
<>

= V3, (£ A%)

= Vi (Vdx (%) = =257 AY)

b
M

5.yt:=01-7)y+7y
6. xT:=(1—-7)x+7%
71 = (= P

8. Return(ub,xt,y™)

By Theorem 5.2 of [46], if the input{uy,py,x,y) to shrink satisfies (2.35) then so does

(1%, py,xT,yT) as long as satisfiesr?/(1 — 1) < pxpyoxoy/||Al%.

We are now ready to describe Nesterov’s Excessive Gap Taohmlgorithm (EGT) specialized to
(2.2).
Algorithm 3. EGT(A, dy,dy)

1. (,ugf,,ug,,xo,yo) = initial(A,dx,dy)

2. Fork=0,1,...:

2
(a) T = %+3

(b) If kiseven: /] shrinkuy

18



2.5. IMPLEMENTATION

. k+1 .

I (/LX—’— axk+1>yk+1) = Shrlnk(AaﬂljfaMl;hTa Xk>yk>andy)
. k 1

i, pit =k

(c) If kisodd: // shrinkuy

i. (My+ yRL xhHL) = shrlnk(—AT,M’jﬂ,,M’f\(,T, y*, x¥ dy,dy)

i. ,u];;“l = ,u’)“;

By [46, Theorem 5.2], the iterates generated by proce®@@E satisfy (2.35). In addition, by [46,

Theorem 6.3], aftelV iterations, AlgorithmEGT yields pointsx’¥ € Qy andy” € Qy with

44| [DxD
0 < max (AyY, %) — min (4y,xV) < LAl [DxDy,
x€Qx YEQy N oxOYy

(2.37)

2.5.2 Complexity of each EGT iteration

We next give a complexity bound on the number of arithmetierapons performed in each EGT iteration.
We provide our estimate in term of the size of th@me treein the extensive forntepresentation of the
sequential game. The extensive form is a full descriptigdh@fjame given by a tree whose nodes correspond
to the possible states of the game, branches that correspqhalyers’ moves, payoffs at the tree’s leaves,
and information sets. For a detailed exposition on the ekterform representation, see, e.g., [51].

We shall refer to the number of nodes in the game tree asitleeof the game tredVe show next that
for games with uniform treeplexes the total number of bastbraetic operations in each EGT iteration is
linear in the size of the game tree. To that end, notice thdedsom negligible updates, two consecutive

iterations in the EGT algorithm require the following opéras:
(i) three matrix-vector products of the forAx and three of the forri ™y for somex andy
(i) one calculation of the fornVdy(x) and one of the formVdy (y) for somex andy
(iii) three calculations of the fornvd’, (u) and three of the fornvds,(v) for someu andv

Hence it suffices to show that each of these operations exjainumber of basic arithmetic operations that
is linear in the size of the game tree.
Let f | ops((expressiohn) denote the number of arithmetic operations needed in theulegibn of

(expressiol. We next estimate this number for each of the calculatior{s,ifi), and (iii) above.

19



2.5. IMPLEMENTATION

For (i), if the payoff matrixA is represented in explicit sparse form, tidrops (Ax) andf | ops(ATy)
are less than or equal to twice the number of non-zero enmtriédecause each of these calculations requires
one scalar multiplication and at most one addition for eamfrzero inA. Since the number of non-zero
entries inA is bounded by the number of leaves in the game tree [60, 6fb}jatvs thatf | ops(Ax) and
f 1 ops(ATy) are linear in the size of the game tree.

For the calculations in (i), assum& = Q(Q,I,k,r) C R™ and) = Q(Q,I,k,7) C R™. The
construction of the uniform treeple®(Q, I, k,r) and a straightforward induction argument shows that for

genericx € X, z € Q,

(bk)" — 1

flops(Vdy(x)) = 1

-k -flops(Vdg(z)) + m <m- (fl ops(Vdg(z)) + 1).
Likewise, for generiey € Y, w € Q,
flops(Vdy(y)) <n-(fl ops(Vdg(w)) +1).

Since bothn andn are smaller than the size of the game tree [60, 61], it folltvasf | ops(Vdr(x)) and
f1 ops(Vdy(y)) are sublinear in the size of the game tree.
Finally, for the calculations in (iii), again assumé= Q(Q,I,k,r) C R™ andy = Q(Q,I,k,7) C

R™. An inductive argument similar to those in Section 2.4 shtives$ for genericu € R™, s € R?
flops(Vdy(u)) <m- (fl ops(Vdg(s)) + 1),

and for generior € R”, t € RY
flops(Vdy(v)) <n-(flops(Vdy(t)) +1).

Thus bothf | ops(Vd% (u)) andf I ops(Vd3,(v)) are sublinear in the size of the game tree.
Consequently, the overall number of arithmetic operationsach iteration of the EGT algorithm is
bounded by a small factor of the size of the game tree. Fumibier, the matrix-vector multiplications

Ax, ATy dominate the total number of arithmetic operations.

2.5.3 Heuiristics

Algorithm EGT has worst-case iteration-complexi}(1/¢) and already scales to problems much larger than

is possible to solve using state-of-the-art linear prognamg solvers (as we demonstrate in the experiments

20



2.5. IMPLEMENTATION

later in this paper). In this section we introduce two hdingsfor further improving the speed of the
algorithm, while retaining the guaranteed worst-caseaiien-complexityO(1/¢). The heuristics attempt
to decrease:x anduy faster than prescribed by the EGT algorithm while maintajrihe excessive gap

condition (2.35). This leads to overall faster convergangaractice, as our experiments will show.

Heuristic 1: Aggressivey reduction

The first heuristic is based on the following observatiorthaigh the value- = 2/(k + 3) computed
in step 2(a) of AlgorithmEGT guarantees the excessive gap condition (2.35), this impallg an overly
conservative value. Instead we can use an adaptive pracédwhoose a larger value of Since we
now can no longer guarantee the excessive gap conditioB)(@ Briori, we are required to do posterior
verification which occasionally necessitates an adjustiimetine parameter. In order to check (2.35), we

need to compute the values ff, and¢,,, . Observe that
* 1 T
Gux(y) = —prady ( —— Ay
Hx

and
P30 = iy ()
X) = Ny —AX | .
Hy Yy [y
Therefore, botty,,,, and¢,,, are easily computable sindg:, dy are nice prox-functions by construction.

To incorporate Heuristic 1 in AlgorithrBGT we extend the procedukshrink as follows.
Algorithm 4. decrease(A, px, uy, 7,%X,y, dx, dy)
1. (u},x+,y+) := shrink(A4, py, uy, 7,X,y,dx, dy)
2. While—ptd, (—EATyﬂ < pyds) (ﬁAx*) Il T is too big
@ 7:=1/2
(b) (M},er,y*) := shrink(A, px, py, 7, X,y,dx, dy)
3. Return(pt,x*,y*,7)

By Theorem 4.1 of [46], when the inpdf.x, 1y, x,y) to decrease satisfies (2.35), the procedure

decrease will halt.

21



2.5. IMPLEMENTATION

Heuristic 2: Balancing and reduction of ux and uy

Our second heuristic is motivated by the observation that aéveral calls to théecrease procedure, one
of ur anduy may be much smaller than the other. This imbalance is urad#sibecause the larger one
contributes the most to the worst-case bound given by (2.B@nce after a certain number of iterations
we perform abalancingstep to bring these values closer together. The balancingiste of repeatedly
shrinking the larger one qfy anduy.

We also observed that after such balancing, the valugs aind .y can sometimes be further reduced
without violating the excessive gap condition (2.35). Waestinclude a final reduction step in the balancing
heuristic.

This balancing and reduction heuristic is incorporatedth@following procedure. (We chose the pa-

rameter value§.9 and1.5 based on some initial experimentation.)
Algorithm 5. balance(A, ux, py, 7,x,y,dx,dy)
1. Whilepy > 1.5uy Il shrink py
(bx,x,y,T) := decrease(A, pux, 1y, 7,X,y,dx,dy)
2. Whilepy > 1.5ux Il shrink piy
(Ly,y,x,7) = decrease(—AT,,uy,,u;(,T,y,x, dy,dx)

3. While0.9uyd5, (s Ax) < ~0.9uxdy (5o AT )

Il decrease.y anduy if possible
(@) px =09y
(b) py := 0.9y
4. Return(py, py,X,y,T)
We are now ready to describe the varianE@T with Heuristics 1 and 2.
Algorithm 6. EGT- 2
1. (u%,ugj,xo,yo) = initial(A,dy,dy)

2. 7:=0.5

22



2.6. COMPUTATIONAL RESULTS

3. Fork=0,1,...:

(a) If kis even: // Shrinkuy

(it xR R ) = decrease(A,u’fy,uS“,,T, xF y¥ dy,dy)
.. k 1
i pl = b,

(b) If k is odd: // Shrinkuy

; k+1

i. (My+ yRL xFHL 1) = decrease(—AT,u’;},u’},T, y*, x¥ dy,dy)
. k 1

i, pht = pk

(c) If & mod 100 = 0 // balance and reduce

(:ul.gc‘a M];)a Xka yka 7—) = balance(A, AUJI.;(’ M§)> T, Xka yka an dy)

2.6 Computational results

We implemented AlgorithnEGT- 2 in C++ and ran the computational experiments on an IBM eServer
p5 570 with 128 gigabytes of RAM and four 1.65 GHz processai& next report some computational

experiments as well as an interesting application to theydes poker-playing programs.

2.6.1 Experimental setup

We tested the algorithm on five abstractions of poker gamesing from relatively small to very large. An
abstractionof a game is a smaller game that captures some of the maindsatfithe original game [8,
17, 57, 16]. The approach of abstracting a game and themngofar the equilibrium of the abstracted
game is a practical way of constructing good strategieshferriginal game [8, 17, 16, 18, 19], and is the
state-of-the-art approach to generating poker-playiog@ms.

We chose these problems because we wanted to evaluate dnighahg on real-world instances, rather
than on randomly generated games (which may not reflect aligtie setting). Table 2.1 provides the
sizes of the test instances. The first three instarioék, 160k, andRI , are abstractions of Rhode Island
Hold’em poker [57] computed using ti@ameShrinkautomated abstraction algorithm [17]. The first two
instances are lossy (non-equilibrium preserving) abstnas, while theRl instance is a lossless abstraction.

TheTexas andGS4 instances are lossy abstractions of Texas Hold’em pokerl@5

23



2.6. COMPUTATIONAL RESULTS

Name Rows Columns | Non-Zero Entries
10k 14,590 14,590 536,502
160k 226,074 226,074 9,238,993
R 1,237,238| 1,237,238 50,428,638
Texas 18,536,842| 18,536,852 61,498,656,400
G4 299,477,082 299,477,102 4,105,365,178,571

Table 2.1: Problem sizes (when formulated as a linear pnogfar the instances used in our experiments.

Table 2.2 provides the average time per EGT iteration ofropiémentation for each of the test problems

both with and without the heuristics.

Name || EGT with heuristics | EGT without heuristics

(time in secs) (time in secs)
10k 0.10 0.10
160k 1.28 1.20
Rl 7.65 6.53
Texas 2,400 1,420
G4 42,400 28,000

Table 2.2: Average CPU time per EGT iteration for the insésnased in our experiments.

Due to the enormous size of tl&S4 instance, we do not include it in the experiments that compar

better and worse techniques within our algorithm. Insteaeluse the four smaller instances to find a good

configuration of the algorithm, and we use that configuratiotackle theGS4 instance. We then report on

how well the resulting strategies on t884 instance did in the AAAI-08 Computer Poker Competition.

Previously, the most effective algorithms for solving sefial games of imperfect information were

based on interior-point methods applied to the linear @ogning formulation of the problem [8, 17]. It

seems desirable to test our algorithm against state-eduthienplementations of such methods. However,

this is not particularly relevant in the context of the peybk we are solving. For example, solving the

relatively small game of Rhode Island Hold’em poker reqii2® GB RAM using CPLEX’s interior-point

24



2.6. COMPUTATIONAL RESULTS

method. The instand8S4 is more than two hundred times larger. Simm@presentinguch a problem in the
explicit representation required by CPLEX and other ilmtepioint solvers would require more th&, 000
GB RAM. The memaory needed for the necessary data structueb,as storing the Cholesky factorization,
would increase this further. Such a requirement is far beythe capability of current hardware. Thus,
it is not even possible to compare the run-time performarfceuo algorithm with linear programming

approaches.

2.6.2 Experimental comparison of prox functions

Our first experiment compared the relative performanceaptiox functions induced by the entropy and Eu-
clidean prox functions described in Example 1 earlier is gaper. Figure 2.1 shows the results. (Heuristics
1 and 2, described above, and the memory saving techniqueilthss$ later, were enabled in this experi-

ment.) In all of the figures, the units of the vertical axis e number of chips in the corresponding poker

games.
3 10k 3 160k
10 ‘ ‘ ‘ ‘ ‘ 10 ‘ ‘ ‘ ‘ ‘
) Entropy —— Entropy ——
10 Euclidean — — - 1 ) Euclidean — — -
10
]01 L
. . . . . ]00 . . . . ;
0 1 2 3 4 5 6 0 2 4 6 8 10 12
Time (hours) Time (hours)
RI Texas
10* —— 10 —
Entropy —— Entropy ——
Euclidean — — - \Euclidean _——

1

‘ ‘ ‘ ‘ ‘ 10 ‘ ‘ ‘ ‘ ‘

0 2 4 6 8 10 12 0 12 24 36 48 60 72
Time (hours) Time (hours)

Figure 2.1: Comparison of the entropy and Euclidean proxtfans. The value axis is the gapgEqua-

tion 2.2).

The entropy prox function outperformed the Euclidean prmction on all four instances. Therefore,

in the remaining experiments we exclusively use the entgspy function.

25



2.6. COMPUTATIONAL RESULTS

2.6.3 Experimental comparison of the heuristics

Figure 2.2 demonstrates the impact of applying Heuristiddgressiveu reduction. (For this experiment,
Heuristic 2, was not used. The memaory saving technique, @gdscribed later, was used.) On all four

instances, Heuristic 1 reduced the gap significantly. Odalger instances, this reduction was an order of

magnitude.
10k 160k
10° e 10° ————————
) No Heuristics No Heuristics
10 Heuristic 1 — — - 1 Heuristic1 — — -
2
1 107 §
10
10° '
[ e
Rt 10
10" T e TN~
10 —— 10° : e
0O 1 2 3 4 5 6 0O 2 4 6 8 10 12
Time (hours) Time (hours)
RI Texas
10* ‘ ‘ 10° ‘

No Heuristics No Heuristics

Heuristic1 — — - Heuristic1 — — -
3 ]
10 \ -
2|
s 7\ 7 10 —

10! : : : ‘ : 10! : : : : :
0 2 4 6 8 10 12 0 12 24 36 48 60 72
Time (hours) Time (hours)

Figure 2.2: Experimental evaluation of Heuristic 1. Thaueshxis is the gap (Equation 2.2)

Figure 2.3 demonstrates the impact of applying HeuristiB&tancing and reduction ofixy and py.
Because Heuristic 2 is somewhat expensive to apply, we iexeeted with how often the algorithm should
run it. (We did this by varying the constant in line 3(c) of Alithm EGT- 2. For example, when the
figure states “10 iterations”, that means that the heuristion once every ten iterations. In this experiment,
Heuristic 1 was turned off, but the memory-saving technigigscribed later, was used.) Figure 2.3 shows
that it is always effective to use Heuristic 2, although tregfiency at which it should be applied varies

depending on the instance.

2.6.4 Application to Texas Hold’em poker

Poker is a game involving elements of chance, imperfectrimétion, and counter-speculation. Game-

theoretic optimal strategies are far from straightforwasfien necessitating such tactics as bluffing and

26



2.6. COMPUTATIONAL RESULTS

10k 160k
10° e 10* ———————
No Heuristics No Heuristics
102 10 Iterations — — - | 103 10 Iterations — — -
100 Iterations = - - 100 Iterations = - -

o 1 2 3 4 5 6 0o 2 4 6 8 10 12

Time (hours) Time (hours)
4 ‘ RI ‘ Texas

120

No Heuristics 110 "No Heuristics

10 Iterations — — - [ 2 Iterations — — -
10° 100 Iterations = = = 100 10 Iterations - - -
\ L
7\\ J | =

=T e—

10! T 60—
0 2 4 6 8 10 12 0 12 24 36 48 60 72
Time (hours) Time (hours)

Figure 2.3: Heuristic 2 applied at different intervals. Madue axis is the gap (Equation 2.2)

slow-playing. For these reasons, and others, poker hasitdertified as an important challenge problem
for the field of artificial intelligence [9]. Just as the deyginent of a computer program capable of beating
the world’s best human chess player was once seen as an amjpitestone, the development of a poker-
playing program capable of beating the best humans is nowasean equally important milestone.

The prox-function construction described in Section 2.8 been instrumental in the development of
some recent programs for playing Texas Hold’em poker. Aroirigmt difference between different variants
of Texas Hold’em is thdetting structure Two common betting structures dmnit, in which players may
bet a fixed amount, ando-limit, in which players may bet any number of their chips. Our déopiim-
finding algorithm computed the strategies for b&83[18] andTartanian[19], to programs that play limit
and no-limit Texas Hold’em, respectively.

In 2008, the Association for the Advancement of Artificiatdiigence (AAAI) held the third annual
Computer Poker Competition, where computer programs dtdumy teams worldwide compete against
each other.GS4-Betga subsequent version 6GfS3 placed first (out of nine) in the Limit Bankroll com-
petition andTartanianplaced third (out of four) in the No-Limit competitionTdrtanianactually had the
highest winning rate in the competition, but due to the wirdetermination rule for the competition, it only

got third place.) This is particularly impressive given #raall amount of poker-specific knowledge that

27



2.6. COMPUTATIONAL RESULTS

was incorporated into those programs. They instead depersh @quilibrium analysis conducted by our
algorithm (which in turn relies on our prox-function consttion) for determining their strategies. As the de-
velopers ofGS3andTartanianpoint out, it is currently not feasible to solve their modesing off-the-shelf
linear programming solvers.

The approach used for constructing the above players isltmsalgorithmically creatingpssyabstrac-
tions of the original game [15, 18, 19]. These abstractioassmaller sequential games that attempt to pre-
serve the strategic properties of the original game. Thadied game is then solved for amquilibrium
using the algorithm discussed in this paper. The larger lis&racted game (i.e., the finer the abstraction),
the better the quality of the strategies generally is. Thar@gch of automated abstraction followed by
equilibrium finding was first used in Texas Hold’em in [16],dais nhowadays used by basically all of the
competitive poker-playing programs.

For the limit competition, our implementation of the EGT @ighm solved an abstracted game whose
payoff matrix wasl0® x 108. For the no-limit competition, our algorithm solved a ganithywayoff matrix of
size10” x 107. The uniform treeplexes introduced in Section 2.4 provigerdect framework for modeling
limit Texas Hold’em poker. For this game, the treepl@x for the first player is a uniform treeplex. The

“basic” treeplexQ C [0, 1]** has the linear descriptio = {x € [0,1]'* : Ex = e} where

-1 11 0

The fourteen columns o' represent the possible sequence of actions that the figstrptan take during
each betting round of the game. Each rowkirencodes a simplex over three actiofdd, call, andraise
(The last row only allows fold and call.) The set= {2,3,5,6,8,9,11,12, 14} indexes the sequences that
do not end with a fold. Texas Hold’em is played in four rounds s= 4. Finally, the value ok depends on
the quality of the abstraction. The abstractions in [18feftomk = 6 to k = 40 (thek is actually different

in each round). The treeple&y,, for the second player is also a uniform treeplex with sintlaaracteristics.

28



2.6. COMPUTATIONAL RESULTS

2.6.5 Memory requirements

One particularly attractive feature of the EGT algorithnthis fact that the only operation performed on the
matrix A is a matrix-vector product. As a consequence, we can expieiproblem structure to store only
animplicit representation of the payoff matrix. This implicit representation relies on a certain type of
decomposition that is present in poker games as well as imtive general class afames with ordered
signals[17, 15]. For example, the betting sequences that can osgupst poker games are independent of
the cards that are dealt. We can decompose the payoff masedon these two aspeéts.

For ease of exposition, we explain the concise representatithe context of Rhode Island Hold’em
poker [57], although the general technique applies muclkerbmadly (and we use it in our Texas Hold’'em

games as well). The payoff matrik can be written as

Ay
A= A,
Az
where
A1 = F1® By,
Ay = F,® By, and (2.38)

A3 = F3B3+SeW
for much smaller matrices;, B;, S, andWW. The matrices; correspond to sequences of moves in rotind
that end with a fold, and corresponds to the sequences in round 3 that end in a showddwermatrices
B; encode the betting structures in roundvhile W encodes the win/lose/draw information determined
by poker hand ranks. The symb®lin (2.38) denotes th&ronecker product.Recall that the Kronecker

product of two matrice®? € R™*™ andC' € RP*Y, is
an cee blnC
B®C = : : € RMPX™,
b1 C o by C

Given the above concise representatiordofcomputingx — Ax andy — ATy is straightforward,

and the space required is sublinear in the size of the garae Fer example, in Rhode Island Hold’em,

1The fact that possible betting sequences are independeatds has also been exploited by automated abstractiorithigs,

but in a totally different way [17].

29



2.6. COMPUTATIONAL RESULTS

the dimensions of thé; and.S matrices ard0 x 10, and the dimensions d?;, By, and B3 are13 x 13,

205 x 205, and 1,774x 1,774, respectively—in contrast to the matrx which is 883,741x 883,741.
Furthermore, the matrices, B;, S, andWW are themselves sparse, which allows us to use the Compressed
Row Storage (CRS) data structure that only stores non-zdrize.

Table 2.3 clearly demonstrates the extremely low memoryirements of the EGT algorithms when
using our memory-saving technique. Most notably, on®34 instance, both of the CPLEX algorithms
(simplex and interior point) require more than 80,000 GBinto representthe problem. In contrast,
using the decomposed payoff matrix representation, the El@drithms require only 43.96 GB. Further-
more, in order to solve the problem, both the simplex andimtgoint algorithms would require additional
memory for their internal data structures. Therefore, t&d Eamily of algorithms with our memory-saving

techniques is a significant improvement over the statdwefart for large-scale problems.

Name || CPLEXIPM | CPLEX Simplex EGT
10k 0.082 GB > 0.051 GB | 0.012 GB
160k 2.25GB > (0.664 GB | 0.035 GB
R 25.2 GB >345GB | 0.15GB
Texas > 458 GB > 458 GB | 2.49GB
G54 > 80,000 GB > 80,000 GB | 43.96 GB

Table 2.3: Memory footprint in gigabytes of CPLEX interjpoint method (IPM), CPLEX simplex, and our

EGT algorithms.

The memory usage for the CPLEX simplex algorithm reportedahle 2.3 is the memory used after
10 minutes of execution (except for thiexas andGS4 instances which could not run at all using either
CPLEX algorithm). This algorithm’s memory requirementewgiand shrink during the execution depending
on its internal data structures. Therefore, the numberrtegas a lower bound on the maximum memory
usage during execution.

Although the results presented in Table 2.3 are for CPLE&y tpply to any algorithm that requires an
explicit representation of the constraint matrix of thefinprogram. Since the only matrix operation needed
by our algorithm is a matrix-vector product, we are able te as implicit representation of the constraint

matrix, as discussed above.

30



2.7. CONCLUSIONS AND FUTURE RESEARCH

2.6.6 Speedup from parallelizing the matrix-vector product

Beyond our time-saving heuristics discussed earlier is pliper, we further reduce the time requirements
of the matrix-vector product by parallelization. We paghile the operation by simply partitioning the work
into n pieces whem CPUs are available. The speedup we can achieve on paralés SRlemonstrated in
Table 2.4. The instance used for this test isTh& as instance described above. The matrix-vector product
operation scales linearly in the number of CPUs, and the tongerform one iteration of the algorithm

scales nearly linearly, decreasing by a factor of 3.69 whsémgufour CPUs.

CPUs || matrix-vector product EGT iteration
time (secs)| speedup| time (secs)| speedup
1 278 1.00x 1,420 1.00x
2 140 1.98x 730 1.94x
3 93 2.98x 490 2.89x
4 69 4.00x 384 3.69x

Table 2.4: Effect of parallelization for tHEexas instance.

2.7 Conclusions and future research

We developed first-order algorithms to approximate Nashlibga of two-person zero-sum sequential
games by applying Nesterov's smoothing technique to theélegzbint formulation (2.1) of the Nash equilib-
rium problem. The heart of our approach is a constructioriad prox-functions for the treeplex polytopes
in the saddle-point formulation.

We implemented an algorithm based on our prox-functionsNegterov’s excessive gap technique. We
included two novel heuristics that improve the algorithspeed of convergence considerably. Experiments
show that the algorithm based on the entropy-induced pnoction is faster than the algorithm based on the
Euclidean-induced prox function. For poker games and amgihmes, we introduced a decomposed matrix
representation that reduces storage requirements @dasti©ur techniques enable us to solve to near-
equilibrium games that are over four orders of magnitudgelathan the largest addressable previously. We

also showed near-perfect speed-up from parallelizatidwiciwmakes our algorithms particularly appropriate

31



2.7. CONCLUSIONS AND FUTURE RESEARCH

for modern multi-core architectures.

In contrast to a direct first-order approach to solve thealirgogramming formulation of (2.1) such
as that proposed in [31], our approach automatically yiglid®rithms that generate feasible strategies
x € X, y € Y throughout execution. This is of crucial importance beegusints that violate the con-
straints defining the treeplexe¥, ) even slightly are typically meaningless strategies. Inigalar, unlike
the iterates generated by our algorithm, the iterates gergeiby an infeasible algorithm would typically
not yield approximate equilibria. Furthermore, the linpemgramming formulation of (2.1) increases the
dimension of the problem substantially since it requires\a wariable for each constraint in the description
of the treeplexesY’, ).

In addition to our first-order smoothing approach to the fmoi(2.1), it is conceivable that specialized
versions of other algorithmic approaches may also leadféatdfe algorithms for solving the saddle-point
problem (2.1). For example, a specialized interior-poigbathm could use an appropriately designed itera-
tive method to solve the system of equations at each maatier No such approach has been successfully
developed so far.

Another approach we plan to investigate is the ustathastic samplinfpr approximating the objective
function. This has already been studied in the context ofimmgames [27], although that approach was
based on a different optimization algorithm. For largelesdastances, it is quite expensive to evaluate
the matrix-vector product in the objective function (andhe gradient computations). Speeding up these
operations, in conjunction with strong convergence guaes) could have a significant impact in practice.

These interesting alternative algorithmic approachekbeithe subject of future research.

32



Chapter 3

MDD-based Constraint Programming

3.1 Introduction

The domain store is a fundamental tool for constraint pnogning, because it propagates the results of
individual constraint processing. It allows the reducecthdims obtained for one constraint to be passed to
the next constraint for further filtering.

A weakness of the domain store, however, is that it transalitsited amount of information. It accounts
for no interaction among the variables, because any salitithe Cartesian product of the current domains
is consistent with it. This restricts the ability of the ddmstore to pool the results of processing individual
constraints and provide a global view of the problem.

To address this shortcoming, the authors of [3] proposeldei the domain store with a richer data
structure, namely a multivalued decision diagram (MDD)tHis scheme, domain filtering algorithms are
replaced or augmented by algorithms that refine and updat®D to reflect each constraint. It was
found that MDD-based propagation leads to substantialdsgeein the solution of multiplal | di f f
constraints, in many instances reducing the search treednmillion or so nodes to a single node. The idea
was extended to equality constraints in [24]. A unified negktting scheme for refining the MDD was
proposed in [23] and applied to certain configuration pnolse

This chapter is organized as follows. In Section 3.2, weipia summary of constraint programming
focusing on those aspects that we need. We then motivateethel&as of MDD-based propagation. Sec-
tion 3.3 provides a formal background on MDD and MDD-basesppgation. In Section 3.4 we present a

systematic method for extending traditional domain stdteriing techniques to MDD filtering techniques.

33



3.2. CONSTRAINT PROGRAMMING PRELIMINARIES

The following section applies this framework to design @ggtion algorithms for many of the fundamen-
tal global constraints in constraint programming. We edttis technique to provide a systematic way of
reusing domain store propagators and provide severahattees for embedding this technique within a
constraint solving system. We then show thhtthe specialized algorithms presented, both old and new,
can be understood as more efficient implementations of tfetgue of reusing currently existing domain
store propagators.

In Section 3.6 we present a short note on the complexity oframnework. We note that iterating to a
fixed-point requires a number of iterations that is boundethe number of edges in the MDD. By providing
sufficient conditions on the strength of filtering we showt tbertain domain propagation techniques in our
framework will achieve MDD consistency in polynomial time.

Finally, Section 3.7 describes some methods for using M@DEUgmMent branching strategies as well
as how to incorporate MDDs in primal heuristics for solvimgtbconstraint satsification and optimization

problems.

3.2 Constraint Programming Preliminaries

Given a variabler, thedomainof z is the set of values that can be assigned,tand is denoted by (x).
In this work we only consider variables with finite domainser@ralizing to finite sequences of variables
X = (x1,x9,...,7k), the declared domain of solutions is given by the Cartestadyct of the domains
of the variables inX, that is,D(z) = D(z1) x --- x D(xy). A constraintC' on X is defined as a subset
of D(X) . Atuple(dy,...,d;) € Cis asolutionto C and also say thald; . ..,d) satisfiesC. A value
d € D(z;) hassupport inC' (or is consistent with respect 0) if it belongs to some tuple id’; otherwise
d is unsupported irC' (or is inconsistent with respect 1G). The constraint” is inconsistentf it does not
contain a solution, that is, it is the empty set; otherwisés consistent

A constraint satisfaction problemor CSP, is defined by a finite sequence of variablds =
(x1,x9,...,2,), together with a finite set of constrainfs where each constraiit € C is defined over
a subsequence of variablespe(C) C X. The goal is to find an assignment = d; with d; € D(z;) for
i1 =1,...,n, such that all that constraints are satisfied. The assignimealled afeasible solutiorto the
CSP.

The solution process of constraint programming interle@amstraint propagatior(or propagationin

34



3.2. CONSTRAINT PROGRAMMING PRELIMINARIES

short), andsearch The search process effectively enumerates all possibigble-value combinations. The
search process continues until a feasible solution is fauqmtoves that no feasible solution exists. We say
that this process constructsearch tree Each node in the tree has a declared domain which is a subset o
its parent’s domain. To reduce the exponential number ofbdoations,constraint propagations applied

to each node of the search tree: given the current domaina aodstraintC, remove domain values that
are inconsistent witld'. This is repeated for all constraints until no more domailues can be removed.
The removal of inconsistent domain values is cafiédring.

Of course we would like filtering algorithms to remove as mamgonsistent values as possible. How-
ever, this goal needs to be balanced against ‘speed’ (thtinis complexity or efficiency) since filtering
algorithms are typically applied at each node of the searsh tindeed, conventional wisdom tells us that
reducing the search tree through enhanced processing attanede often does not justify the additional
overhead. In the cases when filtering a constréimemovesall inconsistent values from the domain with
respect toC, we say that the filtering algorithm makés domain consistent Formally, a constrain’
on variableszy, ...,z is calleddomain consistenif for each variabler; and each value;, € D(x;)

i € {1,...,k)}, there exists a valué; € D(x;) for all j # i such that(dy,...,d;) € C. For historical
reasons, domain consistency is also referred toypsr-arc consistencyr generalized-arc consistency

Establishing domain consistency floinary constraintg(constraints defined on two variables) is inex-
pensive. In general, this is not the case for higher aritttamts since the naive approach requires time that
is exponential in the number of variables. However, for samestraints it is possible to establish domain
consistency much more efficiently by exploiting the undedystructure of the constraint.

The idea of constraint propagation presented above camegealzed so that one propagates a constraint
through aconstraint store a datastructure that pools the results of individual aanst processing. When
the next constraint is processed (filtered), the constsdone is in effect processed along with it. Notice
that propagating the results from processing one constraithe other constraints is a mechanism that
allows a solver to (partially) exploit the global structimeuced by the set of constraints of a CSP, that is, it
approximates the goal of processing all the constraintsil&imeously.

In current practice, the constraint store is normaltjoanain store constraints are processed by filtering
algorithms that remove values from the variables’ domaimstae reduced domains are the starting point
for filtering the next constraint. A domain store also guideanching in a natural way. When branching on

a variable, one can simply split the domain in the current @iarstore.

35



3.3. MDDS AND MDD-BASED CONSTRAINT SOLVING

For more information on constraint programming we referrdaaler to [4] and [14].

3.3 MDDs and MDD-Based Constraint Solving

Multivalued decision diagram@DDs) [28] generalize binary decision diagrams (BDDs) 12, which
have long been used for circuit design/verification [10,&2] very recently for optimization [7, 21, 22].
The MDD for a constraint set is essentially a more compaaessmtation of a branching tree, obtained by
superimposing isomorphic subtrees. The shape of the irggWtDD depends on the order in which one
branches on the variables.

Formally, anordered MDDis a directed acyclic graph whose nodes are partitionedrinfpossibly
empty) subsets dayersLy, ..., L,1, where the layers,, ..., L,, corresponding respectively to variables
z1,-..,T,. L1 CcONtains a singléop nodeT, and/,, 1 contains twdiottomnodesO and1. Thewidth of the
MDD is the maximum number of nodes in a layeryosx , {|L;|}.

All edges of the MDD are directed from an upper to a lower lajfeat is, from a node in somg; to a
node in some.; with i < j. For our purposes it is convenient to assume (without loggeakrality) that
each edge connects two adjacent layers.Il(eh denote the layer of the node Each edge out of layéris
labeled with an element of the domdiiz;) of ;, and no label occurs more than once on the edges leaving
any given node. The sét(p, ¢q) of edges from nodg to nodeg may contain multiple edges, and we denote
each with its label.

An edge with label leaving a node in layei represents an assignmerit = v. Each path in the
MDD from T to 0 or 1 can be denoted by the edge labels. .., v, on the path and is identified with
the assignmentzy,...,z,) = (v1,...,v,). The MDD as a whole therefore represents a pseudoboolean
function f for which f(vy,...,v,) has the value 1 when, ..., v, is a path fromr to 1, and O when itis a
path fromT to O.

It is clear that any pseudoboolean function of finite-domairiablesx, . . ., z,, can be represented by
an MDD. Any constraint set with finite-domain variables ciéwewise be represented by an MDD, because
it defines a pseudoboolean function that maps every assigrnmis variablesc, . .., z, to true or false.

For our purposes, it is convenient to generate only the gomif an MDD that contains paths from
T to 1. The resulting MDD represents assignments:{o. . . , z,, for which f(xy,...,z,) = 1. A path

v1,. .., vy is feasiblefor a given constrain€ if setting (x4, ..., z,) = (v1,...,v,) satisfiesC. Constraint

36



3.3. MDDS AND MDD-BASED CONSTRAINT SOLVING

T T T
s s
/ s
/ s
7/ Ve
P1 D2 T2 P1
N AN
N N
N N
N AN
p3 T3 ps3
/ /
{ |
| |
\ \
\ \
1 1

Figure 3.1: (a) MDD forr; = x5. (b) MDD after processing faanong((x1,z2),{1},0,1)

C is feasible on an MDD if the MDD contains a feasible pathdor

A constraintC' is consistenton a given MDD if every edge of the MDD lies on some feasiblehpat
Thus consistency is achieved when all redundant edgese(ilges on no feasible path) have been removed.
Domain consistency faf' is equivalent to consistency on an MDD of width one that repngs the variable
domains. That is, it is equivalent to consistency on an MDWlrich each layel.; contains a single node
pi, andE(p;, pi+1) = D(z;) fori =1,...,n. We will refer to this MDD asM,,.

A very simple example illustrates the advantage of MDD-Hgs®pagation. Suppose that a constraint

satisfaction problem contains the constraints= x5 and

anong({x1,z2,z3},{1},0,1), (3.1)

where the domain of each; is {0,1}. The constraint (3.1) requires that at most one of the viasab
1, X9, x3 take the value 1. It is clear that we must hae= x5 = 0, and yet neither constraint allows
any domain filtering. Suppose, however, we create the MDDigiireé 3.1(a) to represent the constraint
x1 = xo (this is actually abinary decision diagram because the variable domains are binday)edge
leaving a node in the; layer of the MDD indicates that; = 0 (dashed edge) ar; = 1 (solid edge).
The four paths from the top node to the bottom node indicagefdlir solutions ofr; = x5, namely
(z1,22,23) = (0,0,0),(0,0,1),(1,1,0),(0,0,1).

Now if we process the MDD to reflect constraint (3.1), we camigdiately delete two solid edges
to obtain the MDD in Fig. 3.1(b), because they lie on no patt Hatisfies (3.1). This not only curtails

branching by reducing the domainsof andz; to {0}, but it creates a more restrictive MDD that can be

37



3.3. MDDS AND MDD-BASED CONSTRAINT SOLVING

passed along to any other constraints in the problem fdndugrocessing.

The MDD of Fig. 3.1 represents; = x, exactly, but this is not typical of practice, because exact
MDD representations of a constraint can grow exponentiaitit the number of variables. Rather, we start
with a simple MDD that permits all solutions anefineit each time a constraint is processed. Refinement
is accomplished by adding some nodes and edges to the MDD teoexslude solutions that violate the
constraint.

The basic operation of refinementriede-splitting in which the edges entering a given node are parti-
tioned into equivalence classes, and ideally the node isisf one copy for each equivalence class. The
set of outgoing edges for each copy is the same as the setgufiogtedges of the original node. We note
that determining the equivalence classes may be costlyrtgate in practice, in which case an approxi-
mation of equivalence is used. We take care thatlth of the MDD (maximum number of nodes in a
layer) remains within a fixed bound. When splitting a node veega equivalence classes when necessary in
order to respect this restriction. The resulting MDD is axation in the sense that it may fail to exclude all
assignments that violate the constraint, but it is a muamnger relaxation than a domain store. A principled
approach to node refinement in MDDs is introduced in [23].

We also update the MDD by deleting some edges that can be pad solution, an operation that
generalizes conventional domain filtering. We will referittas MDD filtering. This can lead to further
reduction of the MDD, if after the removal of the edge someepttdges no longer have a pathitor can
no longer be reached by a path from the root.

In the example of Fig. 3.1, the variables have the same owgl@rithe MDD as in th@nong constraint
for which it is filtered. This is not true in general. The MDDrisrmally processed with several constraints,
which may imply different natural orderings. It is impodsitior the MDD ordering to be optimal for every
constraint. Therefore, we designed our algorithms to biel ¥af an arbitrary ordering of the variables in
the MDD.

A MDD-based constraint solver is based mopagationandsearchjust as traditional CSP solvers, but
the domain filtering process at each node of the tree is reglac supplemented by an MDD refinement
and filtering process. This requires that additional timervested at each node, violating the constraint
programmer’s maxim that it is better to process many nodasspend much time at each one. This maxim,
however, evolved in a context in which domain stores progbbmited information. If more information

can be transmitted to the next constraint, then it may behaowviesting more time to obtain this information.

38



3.4. AFRAMEWORK FOR MDD PROPAGATION

3.4 A Framework for MDD Propagation

A primary research issue in applying MDDs to solving CSPshetiver there exist fast and effective propa-
gation algorithms for constraints. Indeed, there can bergjun complexity when trying to design filtering
algorithms that areomplete that is, achieve domain and MDD consistency respectiviety. example, in
[3] the authors demonstrate that although the constedimtdi f f has a polynomial-time algorithm that
achieves domain consistency it is NP-hard to achieve MDBistency on an MDD of polynomial size.

Until now (to the best of our knowledge) there were MDD pragtéan algorithms for the following
constraints: (one-sided) inequality constraints F]) di ff [3], equality constraints [23], andnong
constraints. The reasoning used for designing propagalgorithms for each of the constraints seemed
to be ad-hoc. In this section we will present a systematichotetfor extending the reasoning used to
propagate constraints in the traditional domain storengeto design MDD propagation algorithms. We
will demonstrate the efficacy of the method by designing MD@pagation algorithms for several important
classes of constraints.

We start by presenting the MDD inequality propagator [3hgghe language of the general framework

and then proceed to the formal definitions and present fugkemples.

3.4.1 Aninequality propagator

Suppose that we want to propagate an inequality over a sspdraction:

> filay) <b.

j€J
We can propagate such a constraint on an MDD by performingesiepath computations where the length
of an edgee is simply f1.i(¢)) (¢). Recall that each edgeis identified with a domain value corresponding
to the variable on the layer of the tail of the edge, thaLisail(e)). With each node in the MDD we will
compute and storglr, d; ), wheredr is the length of the shortest-path from the rdaio the node, and;
is the length of the shortest-path from the node to the &ink

We can delete an edgefrom the MDD if and only if every path through the edgeas a length greater

thany, that is, if and only if

dr(tail(€)) + frgaitie)(€) + di (head(e)) > b.

39



3.4. AFRAMEWORK FOR MDD PROPAGATION

This inequality propagator achieves MDD consistency asdgie eis always removed unless there exists a
feasible solution to the inequality that supports it. We atso use the path length information to refine a
node. For a node we can partition the incoming edgéx”(s) into different classes according to the value

of
dr(tail(e)) + fr(ain(€) + di(s).

We can computel; for each node using a single top-down pass through the MD® sanilarly we
can computel; for each node using a single bottom-up pass through the MO We will frame these
computations explicitly in terms of the operators used sngbneral framework.

Given a nodss, let £ (s) denote its set of incoming edges. ltetl(e) denote the tail of the edge(the

head of the edges iB""(s) is alwayss). Then
dr(s) = min{dr(tail(e)) + frs)—1(e): € € E™(s)}.

Suppose our inequality is labeled as the constréintin our general framework the equation fér(s)

above is an instatiation of
I¢(s) = EB{dT(tail(e)) ®e:ec EM(s)}

where for constrain€' and informationd,
o I“®e =1+ fr(ail(e))(e), and
o I°® I’ = min{I°, I°}.

Similarly, given a node, let E°“!(s) denote its set of outgoing edges. lbetd(e) denote the head of

the edge (the tail of the edges if°“ (s) is alwayss). Then
dy(s) = min{dy (head(e)) + fro)(e): e € E™(s)}.
This is an instantiation of
19(s) = @P{dr(head(e)) @ e: e € B (s)}
where for constrain€' and informationd;,
o [“®e=1"+ fr(uaile)(e), and
o [°® I* = min{I?, I*}.

40



3.4. AFRAMEWORK FOR MDD PROPAGATION

3.4.2 The General Framework

Suppose we are given a constraiihaind want to compute some informatidfi that is ‘local’ to each node
in the MDD. This information can be used for filtering or refigi The computation is local in the sense in
that it must be computable using the information availatdenfits neighbors (incoming or outgoing). This
is not much of a restriction since the information at eachenméy encode information about predecessors,
successors, incoming or outgoing paths.

Let I¢ be the set whose elements encode the local node informati@nconstraint. Let E be the set
of edges of the MDD. Then we need to define two operations ifpetexized by the constraint and the type

of information):
e ®: I xE — I¢, and
° @:ICXICHIC.

A top-down pass of our scheme will look a shortest-path cdatfmn from the root and computé$§'(s) for

a nodes only after the information for all its predecessors has lmsnputed by setting

19(s) = @P{dr(tail(e)) ® e: e € E™(s)}.

Similarly, a bottom-up pass of our scheme will complites) for a nodes after the information for all its

successors has been computed by setting
19(s) = P{dr(head(e)) @ e: e € E™(s)}.

A top-down (bottom-up) pass of the MDD visits each edge dxacice and so the passes themselves involve
an amount of work that is linear in the size of the MDD (moduie tvork required to compute and® at
each node).

Next, we present several instantiations of this frameworgroduce MDD propagation algorithms for
different constraints. To simplify our presentation welagsume that each variahlg is represented by

layeri in the MDD.

41



3.4. AFRAMEWORK FOR MDD PROPAGATION

3.4.3 Propagatingr; = z;

We will focus on the top-down pass since the bottom-up paieisimilar. Without loss of generality

assume that < j. We define

0, L(s)<iVL(s)>j
Is)®e=< e, L(s) =i
I(s), i1 <L(s) <y
and/ @ I* = 1 U I°.
We delete an edgec E(s,t) whereL(s) = jif e € I(s).
It is easy to see that a single top-down and bottom-up passetileve MDD consistency. Applying
this filtering scheme to an MDD of width one results in the itiadal filtering applied to domain stores.
We can also refine the MDD using the information stored at @acle. Say we are processing the MDD
in a top-down pass and we encounter a neaéth |7(s)| = k£ > 1. Then we can split into s', ..., s* so
that|7(s%)| = 1 for all s°. Observe that if we do this as part of our top-down pass thewilvereate several
disjoint paths frome; to z; where each path corresponds to a single value in the domain @his type of
refinement may be too extreme; in general, we want to buckeésantelligently, for example, by forming
approximate equivalence classes.
Once we refine a node we recompute its information prior tagssing its children. This scheme

generalizes easily to propagatirigz;) = f;(z;) for functions f; and f;.

3.4.4 Propagatingz; # z;

We will focus on the top-down pass since the bottom-up padogk almost exactly the same. Without

loss of generality assume thiat j. We define

0, L(s) <iV L(s)>j
I(s)®e= 1 e, L(s)=1i

andl¢ @ Ib = 1N I°.
We delete an edge € E(s,t) whereL(s) = j if e € I(s). Applying this scheme to an MDD of width

one results in the traditional filtering applied to domaiorss.

42



3.4. AFRAMEWORK FOR MDD PROPAGATION

We can also refine the MDD using the information stored at @acle. Say we are processing the MDD
in a top-down pass and we are processing a nofte which the® operator results i (s) = ) but for
which I(r) # () for some incoming neighbors, sdyr;) # () fori = 1,...,k. Then we can split into
st,...,s" sothat|I(s")| # 0 for all s', i = 1,...,k. Observe that if we do this as part of our top-down
pass then we will create several disjoint paths frarto x; where each path corresponds to a single value in
the domain ofr;. Again, this type of refinement may be too extreme; in generalwant to bucket values
intelligently.

This scheme generalizes easily to propagafifig;) # f;(x;) for functions f; and f;.

3.4.5 Propagatingz; < z;

We will focus on the top-down pass since the bottom-up padogk almost exactly the same. Without

loss of generality assume that: j. We define

0, L(s) <iV L(s)>j
I(s)@e=1q e, L(s) =i

andI* @ I =1* U I’
We delete an edge € E(s,t) whereL(s) = j if e < min{I(s)}. Notice that we only need to pass
interval (bounds) information to filter an edge, and in féot,(one-sided) inequalities we only need one of

the boundaries. With this observation, we define

0, L(s)<iVL(s)>j
I(s)®@e=1q Tlee], L(s)=1i

I(s), i<L(s)<yj
and /% @ I° = [min{7%, I*}, max{I¢, I’}]. Letd~[a,b] = a andd*[a,b] = b. Then we delete an edge
frome € E(s,t) whereL(s) = jif e < 07 (s). A single top-down and bottom-up pass achieves MDD
consistency. Applying this scheme to an MDD of width one ltssin the traditional filtering applied to
domain stores.

This scheme generalizes easily to propagafifig;) < fi(z;) < fj(x;) where< is any total order on

the common codomains of the functiofis f;, f;. To achieve MDD consistency for a two-sided inequality

we need a single top-down and bottom-up pass.

43



3.4. AFRAMEWORK FOR MDD PROPAGATION

3.4.6 Propagating theAl | - Di f f er ent Constraint

Theal | di ff constraint is one of the most commonly used global condgrampractical constraint pro-
gramming models. It arises often in sequencing and schreglplioblems which are problem domains for
which constraint programming has been extremely effectivelThe al | - di f f er ent constraint
al 1 di ff (z1,...,z,) requires that the variables, . . ., z,, take distinct values.

We can frame thal | di f f propagator presented in [3] in our framework. First, we swampe that
presentation. To each nodewe attach four pieces of information for eaghl di f f constraintC: Im-

pliedUp, ImpliedDown, AvailUp, and AvailDown. Without lesof generality assume thatope(C') C

{xi, Lig1y--- ,SU]'}. Then
0, L(s)<iVL(s)>j
ImpliedUpq(s) ® e = ¢ ImpliedUp(s) Ue, var(s) € scope(C)
ImpliedUps(s), i < L(s) < j Avar(s) & scope(C)

andImpliedUp¢: & ImpliedUpgw = ImpliedUpc® N ImpliedUpc?.

We delete an edgec E(s,t) whereL(s) € scope(C) if e € I(s). Next for AvailUp we have

0, L(s)<iV L(s)>j
AvailUpg(s) ® e = { AvailUp(s) Ue, var(s) € scope(C)
AvailUp(s), i < L(s) < j Avar(s) & scope(C)

and AvailUp% @ AvailUp?, = AvailUp% U AvailUpZ. Now given some node, consider the set of
variablesX = scope(C) N {xy: k < L(s)}. If | X;| = |AvailUpq(s)| (that is, X forms a Hall Set) the
values inAvailUp(s) cannot be assigned to any variables nakin This allows us to delete edgesvith
tail(e) = s such that € AvailUpq(s).

Notice that ImpliedUp and AvailUp are computed during a tlgpvn pass of the MDD. ImpliedDown
and AvailDown are computed similarly during a bottom-upds [3] the authors use this node information

to design a refining scheme.

3.4.7 Propagating Two-sided Inequality Constraints

This is a generalization of the equality propagator desdriimn [23]. Suppose we are given an inequality

constraintlb < . ; fj(z;) < ub. Letm = min{J} andM = max{J}. We will store two pieces of

44



3.4. AFRAMEWORK FOR MDD PROPAGATION

information per node: Pr, the set of all path lengths frofhto s (computed during the top-down pass) and
Py, the set of all path lengths fromto 1 (computed during the bottom-up pass). Then during the tprd
pass we set

0, L(s)<mVL(s)>M

U (v+e), otherwise
vEPr(s)

andI¢ @ I® = I U I. The operations foP; are defined similarly. We can delete an eddgeand only if
Vor € Pr(tail(e)), Yoi € Pi(head(e)): vp + e+ vy & [Ib, ubl.

Notice that once we delete even a single edge, the informatiored at all predecessors and successors
becomes ‘stale’ and the information for these nodes mustd@mputed in order to guarantee filtering that
achieves MDD consistency. This follows by noting that datgtan edge results in path lengths that are a
subset of the path lengths that existed when the edge is mecbtor. Thus the filtering condition above
with the stale information is weaker than it would be with thdated information. In other words, not
updating node information as edges are deleted may resuit MDD is a valid relaxation of the MDD that
would arise by updating the information.

However, we will achieve MDD consistency if every time weetelan edge we update the node infor-
mation for all predecessors and successors and repeattdhiadi and updating until we reach a fixed-point.
This follows since the filtering condition above is both resagry and sufficient for an edge to be supported
by a feasible solution.

If all the variable domains are binary and ff(z;) are restricted to a bounded set (efg(z;) €

{-1,0,1} forall j € J) then

e the maximum number of filtering iterations required until veached a fixed point is at most the

number of edges in the initial MDD, and

e computing®, ® and testing an edge can be done in polynomial time and spele¢ivie to the size of

the MDD).

It follows that iterating this algorithm until we reached a&efil point will achieve MDD consistency in
polynomial time. This type of reasoning is a special case géreral principle that will be discussed in

detail in Section 3.6.

45



3.4. AFRAMEWORK FOR MDD PROPAGATION

3.4.8 Propagatinganong Constraints

Theanong constraint is a basic global constraint; it restricts thenbar of variables that can be assigned a
value from a specific subset of domain values. Formally{ i (z1,...,z,) is a sequence of variableS,

a set of domain value$, < ¢ < u < ¢ constants then the constraint
among(X, S, 0, u) = {(d1,...,dg): di € D(z;)Vie {1,...,q}, L <|{ie{l,...,q}: d; € S}| < u}.

We can reduce propagatiryrong (X, S, ¢, u) to propagating a two-sided separable inequality con-
straint,

<> filw) <,

T, €X

where

1, vesS

filv) =

0, otherwise

Notice that because eagh(-) € {0, 1} it follows that we can achieve MDD consistency in polynontiiae.
However, this filtering is too slow in practice. Instead, vila@y propagate bounds information. That

is, we can use the inequality propagator for the pair of iaéities (reasoning on the shortest and longest
path lengths). Explicitly, let S, s) be the length of a shortest path fronto s, and LR, s) the length of
a longest path, where the length is definedfly;) for all z € X (and f; = 0 for all z ¢ X). Then if node

r isin a layer corresponding to a variableXxn we filter an edge im € E(r, s) if

LP(T7 T') + fL(r)(e) + LP(S, 1) </, or
SP(T,r) + frey(e) +SP(s,1) > u

These conditions are are sufficient but not necessary fermeting the redundancy of an edge. In Sec-

tion 5.1 we provide a small example demonstrating how thiglitmn fails to remove a redundant edge.
The shortest and longest path information can also be uskdlpous refine nodes in the MDD. For

example, we may regard two edgese E(ri,s) andey € E(ra,s) as approximately equivalent for the

anong constraint if
LP(T,r1) + fr()(er) = LP(T,72) + fi ) (e2) OF,
SP(T,r1) + fry(e1) = SP(T,r2) + frm)(e2)-
Another approximation into equivalence classes is by clamgig the impact of an edge on the ‘tightness’

of ananong constraint. That is, for each inequality defining Hreong constraint, we consider the ‘slack’

46



3.4. AFRAMEWORK FOR MDD PROPAGATION

of an edge: € E(r, s) to bel — (SP(T,r) + fr(e) + SP(s, 1)), respectivelyu — (LP(T',7) + fr(e) +
LP(s,1)). The slack reflects the number of variables that can still dsgaed to a value % without
violating the respective inequality. We say that an edgédst’ if its slack is at most a given threshotd
, and ‘loose’ otherwise. The equivalence classes (withegtsip each inequality) then belong to all tight

edges and all loose edges entering a node in the MDD.

3.4.9 Propagating thesequence Constraint

The sequence constraint is a generalization ofifmeng constraint that states that at ledstnd at most:
values inS are assigned teverysubsequence a@f consecutive variables. Formally, & = (zq,...,z,)

be a sequence of variablesa set of domain value$, < ¢ < u < ¢ < n constants then the constraint

n—q+1
sequence(X,S,q,0,u) = [\ among({zi,...,zitg 1}, S 6 uw).
i=1

So we can reduce propagatingsaquence constraint to propagating its consitueaitong constraints.
There is a loss of strength by using this reduction (cf. [B&®ady when using domain propagation.

We can speed things up when propagatingeguence constraint using this reduction provided we
are aware of the global structure. Instead of doing one tapadand bottom-up pass for each of the con-
stituentanong constraints we will do a single top-down and bottom-up passhfesequence constraint
essentially by ‘gluing’ together the shortest and longesh pength information for each of tterongs.

Since each variable; € X appears in at mogtanong constraints, each node in the MDD only needs
to store the shortest and longest path information forgta@ong constraints that it is involved in. This
drastically reduces the number of times we retrieve the $dBB information for processing (compared to
serially processing each of théong constraints). Second, we are now in a position to use thenveton
at each node to make more global refinement decisions. Far@&awe consider an edge ‘tight’ for the
sequence constraint only if some prespecified number of constit@eming constraints are ‘tight’ (in the

sense of the previous subsection).

3.4.10 Propagating the Generalized Cardinality Constrain

The generalized cardinality constraifGCC) is an extension of thal | di f f constraint that counts how
many variables take each of a given set of values. As withatHedi f f constraint, this is an extremely

useful constraint that appears in many constraint progragnmodels. Formally, itX = {zy,...,x,}is

a7



3.4. AFRAMEWORK FOR MDD PROPAGATION

a set of variablesy = (vq,...,v,,) a vector of values{ = (¢4,...,¢,,) a vector of lower bounds, and

u = (u1,...,uy) avector of upper bounds then the constraint

gcc(X,v,l,u) ={(d1,...,dy): di € D(z;)Vie {1,...,n},

€j§ ]{ie{l,...,n}:di:vj}] SUjViG{I,...,n}, VJE{l,,m}}

Just as with thesequence constraint we can express the generalized cardinalityticons as several
anong constraints of a special type:
m
gec(X,v,4,u) = [\ among(X, {vi}, b, u;).
=1
As with with sequence constraint we can leverage the global aspect of the constraihe refining step.
In fact we can do better than this by reusing the filtering mémine based on network flows fgcc (cf.

[26]). We will revisit this point in Section 3.5.

3.4.11 Propagating thednary Resour ce Constraint

Consider the following setup: there akéactivities to be scheduled on a single machine (resourcagh E
activity a; has an earliest possible start time;, a latest possible completion tindet;, and a processing
time p;. We will model the problem usingV variablesX = (z1,...,z,) wherexz; = a; implies that
activity j is thes*” activity to consume the resource.

Each node: in the MDD has three pieces of informationst(u), lct(u), and ImpliedUgu). Given a

nodes an in outgoing edge we define

est(s) ® e = max{est(s) + pe, est.},
andest® @ est® = min{est?, est’}. Similarly,

let(s) ® e = min{lct(s) + pe, et },

andlct® @ let® = max{lct®, Ict’}. The ImpliedUp information is defined as for thél di f f constraint.

We delete an edgee E(r, s) if

[este, lct.] € [est(r),lct(r)] ore € ImpliedUp(r).

48



3.5. REUSING DOMAIN PROPAGATORS

3.4.12 Propagating theel enent Constraint

We will look at the simplest form of thel ement constraint:el enent (z;, (a1, ..., an),z;) where the
aj, are constants. This means that the variablenust take ther!? value in the list(as, . . ., a,,), that is,
CCJ' = Ag;-

We will focus on the top-down pass since the bottom-up patoek almost exactly the same. Without

loss of generality assume thiat: j. We define

0, L(s) <iV L(s)>j
I(s)@e=1q e, L(s) =i

I(s), i1<L(s) <y

andI® @ I* = I1* U I’. We delete an edgec F(s,t) whereL(s) = jif e ¢ I(s). Itis easy to see that a
single top-down and bottom-up pass will achieve MDD coesisy. Moreover, when we use this filtering
scheme for an MDD of width one we recover the filtering aldoritfor domain stores that achieves domain
consistency.

The information we store at each node can be used to refine B Much in the same way the

information forz; = x; is used to refine the MDD.

3.5 Reusing Domain Propagators

3.5.1 Motivation

There has been a lot of research dedicated to finding effidiemiain store propagators. So one possible
intermediate step to finding efficient MDD propagators maydoéind an effective way to reuse domain
propagators. We will present one such method based on tmevdvark presented in the previous section.

We start by reviewing a method to reuse domain propagat@septed in Section 5 of [3]. In this
scheme the authors consider the family of MDD¥. } for each edge of the MDD M obtained by re-
moving all paths inM not containing that edge. From each MDB, they compute its induced domain
relaxationD* (M, ) whosek!" component is defined by

DX (M) = |J E™(v).

ve layerk

49



3.5. REUSING DOMAIN PROPAGATORS

For each domain relaxatioP* ()M, ) the algorithm computes the simultaneous fixed-pdt™ of the
domain propagators they wish to reuse. Then for each assignm = « consistent withD* (M, ) but not
with D™ the scheme places a no-goog # a on the edge: and deletes the edgeif tail(e) = &k and

e = a. Otherwise, the scheme ‘moves’ the no-goods towards ther laythe MDD which corresponds to
the variable they restrict, and are only allowed to move aastde if all paths through that node agree on the
no-good. This ensures that no feasible solutions are retndiee authors note that this type of filtering will
reach a fixed-point after a polynomial number of passes girabe MDD, and thus applies each domain
propagator a polynomial number of times.

The scheme we will be presenting is closely related to thersehpresented in [3]. However, using
our framework we will see that all the algorithms in the poad section can be understood as special cases
of this particular setup, including the ‘specialized filitgy algorithms for the inequality propagator and
al 1 di ff presentedin [3]. Itis important to note that the specialialgorithms presented earlier are more
efficient since the information they store at each node idlemend faster to compute than the information

used by the algorithm that follows.

3.5.2 Using Domain Information

Instead of using information tailored to specific constimihrough the MDD using and® (e.g., shortest
paths, time intervals, etc.), we will explicitly use domaiformation. For each nodelet M, be the MDD
obtained by removing all paths i not containings. We will be interested in incrementally constructing
(via the top-down and bottom-up passes) an induced domkixatéon D> (M,) whosek™ component is
given by

Di(s)= |J E™(v).

v€ layerk

We note that the ‘node’ induced domain relaxatibn (M) is the union the ‘edge’ domain relaxations
D*(M,) of [3] for all edges leaving.

Consider a node on layerk of the MDD. The top-down pass will compute the ‘prefix’ infagtion
for D*(M;), that is, it will computeD.(Mj) for i < k. The bottom-up pass will compute the ‘suffix’
information of D* (M1,), that is, D, (Mj) for i > k.

Let us examine the top-down pass and definand® for a nodes on layerk. The information!(s)

stored at each node consistsrofomponents, where each component (a set) corresponds dortien of

50



3.5. REUSING DOMAIN PROPAGATORS

the induced domain relaxation for the node. Then for an edge=°“!(s)
I(s) @ e = (I(s),e,I(head(e)))
and« is the componentwise union, that is,
I"eIl"=(full,... 12UIb).

The operations for the bottom-up pass are defined similattyw we have the option of reusing domain
propagators in the same manner as [3]. For each induced daslakationD* (M) the algorithm com-
putes the simultaneous fixed-poibti™ of the domain propagators that we wish to reuse. Then for each
assignment;, = a consistent withD > (M) but not with D™ we place a no-good;, # « on the nodes

and delete an edgeif L(s) = k anda € E°“(s). Otherwise, we ‘move’ the no-goods towards the layer
in the MDD which corresponds to the variable they restrint are only allowed to move past a node if all

paths through that node agree on the no-good. This ensatasalieasible solutions are removed.

3.5.3 A Faster Framework for Reusing Domain Propagators

Recall that our specialized algorithms tend to filter eddesr @omputing information from a single top-
down and bottom-up pass. How can we reconcile this with pggsd-goods carefully to ensure that feasible
solutions are not discarded?

A domain propagatop can be viewed as a function that maps domains to domainsattige, domain
propagators are restricted to bemgnotonegD; C Dy = p(D;) C p(D3)) anddecreasingp(D) C D)in
order to make constraint propagation well-behaved. Bipptbpagators must implement relaxations of the
constraints they are modeling, that is, they may not remayeaasignment that is supported by a feasible
solution. Such propagators are caltamrect

By computing a single bottom-up and top-down pass we ‘cattieehduced domain relaxations for each
node. As soon as we filter a single edge, the induced domdasat®ns for all paths involving that edge
becomes ‘stale’. However, provided that the domain proaiga well-behaved in the manner described
earlier, we can still delete edges based on the stale inf@meithout worrying about removing feasible
solutions. The price we pay for using stale information fomain propagators that are correct, monotone
and decreasing is weakened filtering, that is, by using stédemation we may not filter edges that would

otherwise be filtered with updated domain information.

51



3.5. REUSING DOMAIN PROPAGATORS

In fact, the passing of no-goods in the previous schemestignpelse but an efficient way of updat-
ing the stale domain information in order to make strongéarances. Observe that updating the no-goods
consistently (that is, only moving a no-good past a nodd gaths through that node agree on the no-good)
is just implementing thes operator of the last section in disguise. Recall that¢heperator implements
the componentwise union of domains. Since passing a no-goeskentially passing ‘complemented’ do-
main information, the equivalemt operation becomes the componentwise intersection of (ongnted)

domains.

3.5.4 The Relationship with ‘Specialized’ Propagators

How can we relate reusing domain propagators to all the pusvspecialized’ schemes for MDD filtering?
In each of the specialized algorithms the information st@ta node is a constraint specific ‘'summary’ of
the domain relaxation induced by that node.

To make this concrete, let us consider the example of prdimggahe anong constraint:
anmong(X, {1},4,u), whereX = (z1,...,2,) andD(z;) C {0,1} for all z; € X. Domain propaga-
tion for this constraint is easy. Lét and f; denote the number of variables whose domains are fixed to

zero and one respectively. Then
e If f{ >wuorf <n— fythen the constraint is inconsistent.
e If f1 = uthen remove 1 from the domains of all unfixed variables.
e If fo = n — ¢then remove O from the domains of all unfixed variables.
e Otherwise the constraint is domain consistent.

Recall that for each node in the MDD our propagation schemarfong computed the shortest and longest
path from the root to the sink involving that node. In an MDDwatith 1 there is but a single path from
the root to the sink. Thus, every node on the path will havestiree information: the shortest and longest
path from the root to the sink. But the shortest path and Isihgaths from the root to the sink afe and

n — fo respectively. Moreover, the MDD edge filtering conditions &n edge: reduce to testing whether
fot+e<n—ror fi+e > u. And so, the specialized MDD edge filtering scheme is usiegtime inference
technique as the domain relaxation filtering schemafayng but with much less overhead (computing and

storing the shortest and longest path lengths instead afdhmin relaxation information).

52



3.5. REUSING DOMAIN PROPAGATORS

Every specialized MDD filtering scheme presented in Se@idrcan be interpreted this way. The infor-
mation stored at each node summarizes domain relaxatiommation in a way that is sufficient for filtering
edge domains. This can be much more efficient in terms of ctatipn time and memory. However, a key
advantage of storing domain information as opposed to minstspecific information is that the domain
information can be computed once and used as inpsevteralexisting domain store filtering algorithms

for various constraints.

3.5.5 A Scheme for the Partial Updating of Node Information

As the authors of [3] point out, propagating filtering scherbased on domain propagators to achieve a
simultaneous fixed-point in the MDD will very costly. Indedd our own experiments we have noticed
that there is definitely a cost-benefit tradeoff with appymore ‘agressive’ propagation. This idea is al-
ready present and addressed in modern constraint prograpaystems based on domain stores. Constraint
programming solvers typically employ nontrivial schedglisystems for domain propagation (cf. [56]).

Our current approach for MDD propagation involves two pasge¢he MDD. The first pass is a bottom-
up pass that caches suffix information. We perform no refimtraefiltering during the bottom-up pass.
During the top-down pass after we compute the top-down iin&ion for a node we can filter the nodes
outgoing edges and split the node if we choosé to.

In order to limit the amount of information updating (eques to passing no-goods) we restrict our-
selves to filtering only the outgoing edges of a node we aregzging even if our filtering algorithm indi-
cates that we are able to reduce the domains of other vagiabladuced domain relaxation of that node.
This ensures that we only have to update the top-down (prigfigjmation of the node we are currently
processing.

Let us be more explicit: suppose we are processing a naliging the top-down pass and we run our
filtering algorithm on the induced domain relaxationspD * (s). Suppose we want to filter a value from the
domain of a variable:;, whose index differs froni.(s). Then we would need to know exactly which nodes
on layerk are connected te and update only those nodes, otherwise we may remove feasihitions.
Even if we cache predecessor/successor information alithghe domain information, we will eventually
need to update this connectivity information which invalweork similar to propagating a no-good from

towards layelk.

1We can just as easily start with a top-down pass and filtengefuring a bottom-up pass.

53



3.6. ACHIEVING MDD CONSISTENCY

So, by allowing ourselves to filter only outgoing edges afe are trading the ability to make stronger
inferences at a much higher cost for weakened filtering watladditional updating of information. Notice
that while suffix information may become very stale during tbp-down pass, the prefix information is
more current since a node’s prefix information is computedrall its predeceeding nodes have filtered
their outgoing edges.

Refining is also simple in this setup. Suppose we want tothiglihode that we are currently processing
(during the top-down pass) into the nodesndt,. Both¢; andt, will have t's suffix information and can

compute their prefix information frortis prefix information and=™ (t).

Remark3.5.1 If we want to reuse domain propagators in this scheme we maytewanodify them slightly.
When processing a node, the algorithm outlined above neekisaw whether a particular domain value
(edge) in the induced domain relaxation (of the current rnloeiag processed) is supported by a feasible
solution. Algorithms that answer this query may be companaily more efficient that traditional domain

store filtering algorithms that attempt to filter all variallomains simultaneously.

Remark3.5.2 There are situations in which we may want to relax the regiricof only filtering a node’s

outgoing edges as described above. For example, if ouirfidteigorithm indicates that we can reduce the
domain of a variables whose layer is close to the current lbgang processed we may want to filter the
corresponding edges, since the work required to do thigctbyris a function of the product of the distance

between layers and the maximum width of the MDD.

3.6 Achieving MDD consistency

In this section we restrict ourselves to filtering a given MBhout refining. Clearly achieving MDD
consistency is at least as hard as achieving domain comsystien [3] the authors demonstrate that although
theal | di ff er ent constraint has a polynomial-time algorithm that achievesan consistency it is
NP-hard to achieve MDD consistency on an MDD of polynomiaési

Let us consider what happens when we iterate our generahschbove for a single constraint until we
reach a fixed point. Assume that testing an edge requiresaimdespace that is bounded by a polynomial
in the size of the MDD. In particularp and& require polynomial time and space (which is the case for
computing induced domain relaxation information). Theohetbp-down and bottom-up pass will require

work that is polynomial in the space and size of the origin@ Iterating the algorithm to a fixed-point

54



3.6. ACHIEVING MDD CONSISTENCY

requires that each iteration delete at least one edge. usimber of (top-down and bottom-up) iterations
required to reach a fixed-point is bounded by the number oé®dgthe MDD. It follows that the time and
work required to propagate a constraint in our framework fixed-point is a polynomial function of the
size of the MDD.

This has an important consequence. Since achieving MDOgtensy for a constraint may be NP-hard,
it follows that achieving a fixed point in the MDD using ourrmawork may not result in MDD consistency
for a constraint (provided £ NP). This is true even when we reuse domain propagatorsehesee domain
consistency.

However, there are cases in which propagating to a fixed-posufficient to achieve MDD consistency.
This idea is related to the standard ‘shaving’ techniqueh@donstraint programming literature. If our
filtering scheme for a constraint is strong enough to deletedge if and only if the edge is not supported
by any feasible solution then propagating this constraira fixed-point will achieve MDD consistency.
In general, this is a much stronger requirement than deletmedge if and only if it is not witnessed by
a feasible solution of th#1DD relaxation induced by the edg@®bserve that reusing domain information
essentially discards order dependedent (path dependémtniation. This loss is expected in a sense when
designing efficient algorithms since a given MDD may haveosemtially many paths (relative to its size).

For example, let us revist the filtering scheme presentederti® 3.4.7 for propagating two-sided
inequalities to a fixed-point, that is, the constraint

<> fiz;) < ub.
jed

First we consider the case where all variable domains am@npiand the codomains of all the separable
functions f; are restricted to belong to a bounded set (efg.x;) € {0,1} forall j € J). An edge is
deleted if and only if it is not witnessed by any feasible solu Computings and® requires polynomial
time and space relative to the size of the MDD. Testing an duggever, is equivalent to solving a subset-
sum problem. So when the domains of the variables are aliyyitias test can be done in polynomial time.
When the domains are not binary then testing an edge can ledrdpeeudo-polynomial time. In the former

case by iterating the filtering algorithm to a fixed-point veiave a polynomial time filtering algorithm.

55



3.7. PRIMAL HEURISTICS AND BRANCHING STRATEGIES

3.7 Primal Heuristics and Branching Strategies

So far we have concentrated on ‘dual’ side of using MDDs, ihatsing the MDD as a mechanism to prove
feasibility or infeasibility of a problem. Since the MDD isrelaxation of the feasible set, we can explore
the uses of an MDD from a primal perspective.

For each constraint we definevlation function that measures how much a potential solution \éslat
the constraint. This measure should be normalized acrasstraints. We can now employ any of the
plethora of local search techniques to explore the MDD todifelasible solution.

In cases where the local search procedure fails to find ableasolution we can still leverage the
information gained to guide branching. We simply branchhie search tree in a manner that moves us

towards the best solution found by the local search proesdur

3.7.1 MDD-Based Constraint Optimization and Strong Brancting

A framework for MDD-based constraint optimization is preteal in [3]. A separable objective function
>, fi(xz;) can be minimized over an MDD using a single shortest-pathpeation (in the same spirit
as propagating an inequality constraint). Since, an MDD tiglaxation of the space of optimal feasible
solutions the shortest-path calculation provides a loveeind on the optimal value. Thus we can use MDD
relaxation in a branch-and-bound scheme to solve optimizgtroblem.

We can adapt strong branching in this setting. Once we haighéid processing a search tree node we
create several temporary copies of the the node’s MDD. Novexg@ore’ a branching choice on each copy
of the MDD but only by doing some minimal amount of propagat{this step needs to be fast). We can
quickly compute a bound on the objective function for eaatigity propagated branching choice. We then

branch according to the choice that shows the most promise.

3.8 Conclusion

We have presented a general framework for propagatingreamstin an MDD. We have described special-
ized filtering procedures for several important classeslaifaj constraints. We also provide a systematic
way of reusing domain store propagators within this franmkvemd provide several alternatives for embed-

ding this technique within a constraint solving system. Ateiesting corollary is thadll the specialized

56



3.8. CONCLUSION

algorithms presented, both old and new, can be understootbess efficient implementations of the tech-
nigue of reusing currently existing domain store propagato

Next, we presented a short note on the complexity of our freanle Iterating our scheme to a fixed-
point requires a number of iterations that is bounded by timber of edges in the MDD. By providing
sufficient conditions on the strength of filtering we showt tbertain domain propagation techniques in our
framework will achieve MDD consistency in polynomial time.

Finally, we provide some thoughts on how to use MDDs to audrbeanching strategies and how to

incorporate MDDs in primal heuristics for solving both ctyagt satsification and optimization problems.

57



Chapter 4

An MDD-based Constraint Programming

System

4.1 Introduction

Our goal is to design a general purpose finite-domain MDetamnstraint programming system. This
chapter outlines some of the basic design choices made faystem as well as the motivations for these

choices.

4.2 Working with Finite-Domains

First, let us fix some terminology. Aomainis a finite set of integers. A domain failed if it is empty.
A domain isfixedif it is a singleton. The intersection (union) of two domaiasimply their set-theoretic
intersection (resp. union). Finally, domalwy is strongerthan D, if D1 C D,. We will use interval (or
range) notation/, u| to represent the set of consecutive inteders Z: ¢ < = < u}.

Recall our setup for MDDs: each edge leaving layer labeled with an element of the domdin(x;)
of z;, and no label occurs more than once on the edges leaving @y gode. The set(p, ¢q) of edges
from nodep to nodeg may contain multiple edges, and we denote each with its.label

An edge with label leaving a node in layei represents an assignmerit = v. Each path in the
MDD from T to 0 or 1 can be denoted by the edge labels. . . , v, on the path and is identified with the

assignmentzy,...,x,) = (v1,...,0n).

58



4.2. WORKING WITH FINITE-DOMAINS

In our implementation we chose to implement MDDs as simpteatiéd graphs, that is, we disallow
multiple edges between nodes. Instead we identify the plellidges and aggregate the labels into what we
call edge-domainsin an MDD of width one, the edge-domains are the variablealom

There are several popular representations of domainspthetbst common are ranges and bit-vectors.

A range sequenctr a finite set of integer$ is the shortest sequence of disjoint intervals

s = ([bl, 61], ey [bka ek])>

with b; < b;41 such that the intervals covér(that is,I = UX_, [b;, ¢;]). It follows that a range sequence is
unique, consists of non-empty intervals and that 1 < b,.1 for 1 < i < k. A bit vector for a finite set of
integers is simply a string of bits in which tti bit is set to 1 if and only if € I.

There are definitely space and time tradeoffs between hibkseand range sequences and the operations
that are needed to be performed on them. Range sequencegpiasdiyt implemented using linked-lists
(although balanced binary tree structures do exist butygnedlly deemed as ‘too heavy’) whereas bit
vectors are usually implemented as consecutive words inanewith additional data to store the minimum
and maximum values. In practice, range sequences are ltypisad for general purpose applications as
they scale better.

We have decided to implement range sequences to repreggtiechains. The basic building block is
thel NTERVAL class which provides the operatioms:n() , max() andcont ai ns(v) which return the
minimum value of the interval, the maximum value of the imé¢iand true ifimi n() < v < max() and false
otherwise.

The DOVAI N class implements a range sequence as an ordered linked-liNTERVALS. We have

provided fast implementations for common operations mreguof domains:

e set to_enpty(): setthe domain to the empty set;

enpt y() : is the set is empty?

si ze() : returns the number of elements in the set;

cont ai ns(v) : does the set contaiif?

add() : add an element/list of values/interval to the set;

r enmove( ) : remove an element/list of values/interval from the set;

59



4.3. THE MDD IMPLEMENTATION

e uni on() : form the union with another set;
e i ntersection():form the intersection with another set.

Since it is quite common during constraint processing t@iteover all possible values in a variable’s
domain, theDOVAI N class provides aenuner at or object to facilitate such operation. The following

methods describe the functionality of tb&VAI N: : enuner at or class:

e enpt y() : is the variable domain empty?

reset () : reset the enumerator to the first element (if any);

at _end() : is the enumerator at the last element?

val ue() : returns the current value;

nove_t o_next () : move to the next value in the domain.

4.3 The MDD Implementation

We decided to implement an MDD as a layered simple directegigvith adjacent nodes belonging to
adjacent layers. Every edge connects two adjacent layerfiasman edge domain. This differs from the
‘theoretical’ presentation in Chapter 3 where we allowedtiple edges between nodes and each edge was

labeled with a distinct value.

The NODE Class

The NODE class has the following data:

e i ndex_: aunique identifier that allows for efficient representasiof functions from the set of nodes

to pointers of data using arrays of small size;
e | ayer _: indicates the layer of the MDD that the node resides;
e i n_: an array of pointers to the incoming edges;

e out _: an array of pointers to the outgoing edges.

60



4.3. THE MDD IMPLEMENTATION

It is important that each node quickly have access to botimésming and outgoing edges for the various
operations required by the MDD. There are a few methods icldss but they are used mainly for testing

the correctness of the code.

The EDGE class

The EDGE class has the following data:

e i ndex_: aunique identifier that allows for efficient representasiof functions from the set of edges

to pointers of data using arrays of small size;
e tai |l _: apointer to the tail node of the edge;
e head_: a pointer to the head node of the edge;

e dommi n_: a pointer to the set of values associated with the edge.

The POOL class

ThePQOOL class is a template class that helps implement efficient finaspool objects to pointers of data.
For example, if we have nodes then we want to assign each node an unique index betweémdex < n.

If we had a static set of nodes then this could be accompliskad) a counter. Implementing a function
from nodes to pointers of data can be implemented as an drthg pointers to the desired data.

We would like to keep this simple representation of functitt for a dynamic set of objects such as
the nodes and edges in the MDD. Our simple approach is to kikstpoé ‘free’ indices, that is, indices that
were assigned to a node (or edge) but later become free todmsigned when their node (or edge) was
deleted.

ThePOOL class has the following data:
e dat a_: an array of the templated type (for our purposes, pointeNODE or EDGE objects);
e free.i ndex_store_ alist of ‘free’ indices to be re-used ohat a._.

ThePOCL class provides the following interface:

e insert (T):insert T (an object of the templated type) into the pool;

61



4.3. THE MDD IMPLEMENTATION

e renove(i ndex): mark index as free to be re-used. Note: this method dot$ree/delete the

object stored at index;
e si ze() : return how many elements are in the pool.

Currently, thePOOL class does not provide ‘garbage collection’ since syndhitog various maps/functions
that use the indices provided by the pool would have to bdiedtand updated to be consistent with the

result of the ‘garbage collection'.

The MDD class
The MDD class has the following data:
e numvar s_: the number of variables (layers minus one);
e max_wi dt h_: the maximum number of nodes on any layer in the MDD;

e nodes_: a doubly-indexed array of pointers to hodes where the fidgx indicates the layer of the

nodes. This allows us to quickly iterate over the nodes iryerla
e edges_: a pool of pointers t&eDGE objects;
e domai ns_: a cache to store the domain relaxation of the MDD;
e node_pool _: a pool of pointers tdNODE objects.
Next we provide a description of some members of BB interface:
e add_node( | ayer) : add a node to layer (if possible);

add_edge(tail, head, domain):addan edge tothe MDD;

del et e .node( V) : delete a node in the MDD;

del et e_edge( e) : delete an edge in the MDD;

term nal (v):is anode terminal in the MDD?

e i ntersect domai n(v, donmin): intersect the domains of the outgoing edgesvoivith

domai n. This is useful when implementing variable partition bising schemes;

62



4.4. SPECIFYING A PROBLEM

get _domai n_rel axat i on() : compute and cache the domain relaxation of the current MDD;

creat e domai nrel axati on(domai ns) : create the domain store relaxation given the do-

mains of the variables;

cl eanup_dangl i ng_nodes() : delete nodes and edges that do not belong to any path in tig MD

from the root to the sink;

enurer at e() : enumerate all solutions (feasible and infeasible) enddiyethe MDD.

Adding and deleting a node on a layer of the MDD always occtitheaend of the array. In particular,
deleting a node from a layer may require swapping pointeteadhe pointer to the node being deleted is at
the end of the array. We use the same procedure for modifyimagla’si n_andout _arrays when deleting
an edge. Thus, it is crucial to iterate over nodes in a layafally when performing operations that may
modify the layer (similarly, a nodes incoming or outgoingges)). When performing batch operations that
may delete nodes on a layer (e.g., filtering) you should slfyidterate in reverse through the nodes in the
layer. Similarly, when performing batch operations thayradd nodes on a layer (e.g., refining) you should

typically iterate in the forward direction through the nede the layer.

4.4 Specifying a Problem

In order to specify a constraint satisfaction (or constrajtimization) problem we have provided a simple
interface for users. A user is able to specify his own vaeabbnd constraints and are provided with a
mechanism to add his own constraints. A user is able to sp®iGOAL of the problem, which may be to
find a single solution, find all solutions or find an optimalgmn. We will provide a quick overview of this

interface.

The VARI ABLE class

This is a very simple class that encapsulates data assbeidtte a CSP variable in our setup. The data in

VARI ABLE class includes:

e | abel _: every variable must be assigned a unique label (a strirag) &tiows us to refer to that

variable;

63



4.4. SPECIFYING A PROBLEM

e donmmi n_ the domain of the variable in the domain relaxation of theMD

e ndd_i ndex_: the layer in the MDD that corresponds to the variable.

The CONSTRAI NT class

This is a core class for the solver and will be discussed iaildetSection 4.5.

The PROBLEMclass

The PROBLEMCclass has the following data:

e st at us_: is the problem feasible, infeasible or is its status culyamknown?

| abel _: a string that serves as an identifier for the problem;

e goal _: indicates whether the solution procedure should look fsingle feasible solution, look for

all feasible solutions or solve an optimization problem;
e sol uti ons_: alist of all feasible solutions found by the solver;

e vari abl es_: alist of variables (pointers to objects of thidRI ABLE class) specified by the prob-

lem;

e constrai nt s_ acollection of constraints (pointers to objects of @&NSTRAI NT class) specified

by the problem;
The PROBLEMinterface consists of the following methods:
e add_vari abl e(var) : add the variablear to the problem;
e add_constrai nt (con) : add the constrainton to the problem;

Currently, a variable is assigned to the layer in the MDD m ¢inder the variable is added to the problem.
We may want to consider generalizing the interface to allogv dser to specify a variable’s layer in the

MDD or provide some type of priority scheme to help guide el assignment.

64



4.5. THECONSTRAI NT CLASS

4.5 TheCONSTRAI NT class

A constraintC' on variables{x, . .., z, } with domains{D(x;)}" , is a subset oD (z1) x --- x D(zy).
An assignment of values;, = v; > D(xz;) is feasiblefor C'if (vy,...,v,) € C, otherwise we say that the
assignment isnfeasible This is essentially aextensionablefinition of constraints which is a popular view
of constraints in the constraint programming communitye $bt of variable§z, ..., z,} involved inC

is known as the scope of the constraifitdenotedscope(C).

If an assignmeni;; = v can be extended to a feasible solutionf C we say thaw is supportedor
witnesseddy s (for C). The process of removing infeasible values from domaiafués not supported by
C) is known asdomain reductioror domain filtering

Clearly, in most cases it is impossible to work with a constrpresented extensionally. Instead, most
constraints have some underlying structure that allowsousdrk with a constraint in a more tractable
manner. Constraint solvers typically implement a constral using a collection odomain filteringal-
gorithms. In MDDs constraints are implemented using a ctibe of edge filteringalgorithms as well as
node-splittingalgorithms.*

Abstractly, we can view a filtering algorithi,. for a constraint”' as a function that maps domains to
domains. More precisely, given a constraihtwith scope{z,...,z,} andD = [[!, D(z;) a filtering
algorithm¢.. is a functiong.: D — D. In order for our constraint propagation algorithms to beect we

require that the edge filtering algorithms are
e monotone D; C Dy = ¢.(D1) C ¢.(D5), and
e decreasing¢.(D) C D.

Finally, edge filtering algorithms must implement relagat of the constraints they are modeling, that is,
they may not remove any assignment that is supported by #leaslution. Such filtering algorithms are
calledcorrect

One important (and sometimes overlooked) function of aairgs is that they can help guide our outer
search process (see Section 4.6). Consider, for exampleadist popular branching scheme: branching on
an unfixed variable ; in which the domain of; is partitioned into two or more subsets and the subproblems

are created by restricting; to each of these subsets. We can think of a variableelonging to a domain

1For MDDs we use the worgropagateto mean both filtering and refining.

65



4.5. THECONSTRAI NT CLASS

as a constraint om; and that branching on; is one ‘function’ of this ‘domain constraint’. In generalgw
allow a user the capability for a constraint to create sutlpros (restrictions) based on the MDD of the

current subproblem (that is, branching on a constraint).

The CONSTRAI NT base class

The CONSTRAI NT base class is a virtual class (it cannot be instantiatedgiwisi used as a guide for de-
signing constraints in our solver. When a user creates a oastraint they need to augment the enumerated
type CONSTRAI NT: : TYPEto include their constraint class. Currently, we have impated the following

constraints
e DOVAI N.CONSTRAI NT: requires that a variable belong to its domain;

e AT_MOST: models the constraint’. _; a;z; < b;

el
o AMONGAT_MOST: models the constraint,_; ds(z;) < b, whereds(z;) = 1if D(z;) NS # () and

is equal to zero otherwise;

o CARD_AT_MOST: models the constraint_, ; d,(z;) < b, whereé, = 1if v € D(z;) and is equal to

zero otherwise.

For (basic) scheduling purposes we have included a secanderated typeCONSTRAI NT: : STATUS.

We list the possibl&STATUS values and their purpose:
e READY: the constraint is scheduled to be propagated;
e SUSPENDED: the constraint is not currently schedule to be propagated;
e REDUNDANT: the constraint may be safely removed from the problem witladfecting feasibility.

The data for th&CONSTRAI NT class include:

| abel _: a string (identifier) associated with the constraint;

vari abl es_: alist of pointers the the variables in the constriants scop

st at us_: what is the scheduling status for the constraint;

t ype_: what is the constraint type;

66



4.5. THECONSTRAI NT CLASS

e N n_support _i ndex_: the first layer in the MDD that the constraint is involved in;
e max_support i ndex_: the last layer in the MDD that the constraint is involved in.

The datam n_support i ndex_ and max_support i ndex_ are useful to speed up propagation of
a constraint during the top-down and bottom-up passes. ppaniaized propagators the filtering infor-
mation required by a constraint will typically not need to jp@ssed between layers outside the range
[mM n_support i ndex_, max_support _i ndex].

The CONSTRAI NT interface consists of the following methods:

f easi bl e(s) :iss a feasible solution to the constraint?
e abl e_t o_branch() : does the constraint provide an implementatiomoénch() ?

e branch(): returns a list of constraints that will provide the redtdns that define each branching
subproblem along with an estimated score (similar to pseoedts) to help rank each subproblem

during the outer search;

e initializednfo(): initialize the information that the constraint assocatgth each node of

the MDD;

e conput e_i ncom ng.i nfo(M V) :compute the incoming information required by the constrai

for the nodev in the MDD M(this information is computed during the top-down pass);

e conput e_out goi ng.i nfo(M V) : compute the outgoing information required by the constrai

for the nodev in the MDD M(this information is computed during the bottom-up pass);

e conput erefiningscore(M v): calculate a score that indicates how ‘valuable’ it is fas th

constraint to refine the nodein the MDD M
e refine. ncom ng(M V) : refine the edges incident toin the MDD M
e filter_outgoing(M v):filter the domains of the edges leaviagn the MDD M

e post process(M :perform any post-processing required once the constiambeen propagated.

67



4.5. THECONSTRAI NT CLASS

The DOVAI N.CONSTRAI NT class

This class implements the (trivial) constraint € D(x;). This constraint class exists solely because
of the generic way in which we branch (we only branch on cemsts). There are several common
branching strategies for variables which are captured byetiumerated typBOVAI N.CONSTRAI NT: :
STRATEGY:

e SPLI T_M N: create two branches, the first branch restricts the varimbthe minimum value in the

current domain and the second branch restricts the varialhe remaining values;

e SPLI T_MAX: create two branches, the first branch restricts the vari@mbihe maximum value in the

current domain and the second branch restricts the varialbhe remaining values;

e SPLI T_M D: create two branches splitting the domain of the variabiésanidpoint (one branch is

restricted to the smallest values while the other brancigsicted to the largest values);

e SPLI T_ALL: create one branch for each value where each branch resivecvariable to exactly one

of the possible values in its domain.

The key data required by thaOMAI N.CONSTRAI NT class not inherited from the base classtis at egy _

which indicates the branching strategy. The interface @mgants the following methods:
e abl et o_branch() : returns true if the variables current domain is larger thaa and false other-

wise;

e branch(): returns the constraints required to enforce the givendbiag strategy. The scores
(pseudo-costs) returned are based on the reduction inzlefihe variables domain for each restric-

tion;

e filter_outgoing():simplyintersects each edge domain with its correspondanigible domain.

The AT_MOST class

This class is used to propagate the constraint

Z a;x; <b.

icl
Recall that the information stored at each ned# the MDD for an inequality constraint consists of:

68



4.5. THECONSTRAI NT CLASS

e dp(s): the length of the shortest path from the rd@oto the node, and

e d;(s): the length of the shortest path from the node to the §jnk

where the length of an edge-value p@irv), e = (s, t) is given bya(,)v. Interms of the general framework
(see Section 3.4.1) we compute the shortest-path from titdrduring a top-down pass through the MDD

using® and® defined as follows for an edge-value pgirv) wheree = (s, t)
e dr(s) ®v =dr(s) +agv, and
o I°® I = min{I°, I°}.

Similarly, we compute the shortest-path to the sirduring a bottom-up pass through the MDD. We remove
a valuev from the domainD(e) of an edge: = (s, t) when every path through the edge-valaev) has a

length greater thab, that is, when
dT(s) + ar(s)v + dl(t) > b.

We also use the informatiadi andd; to refine a node by considering the impact of an edge-valueopai
the ‘tightness’ of the inequality constraint. That is, wasider theslackof an edge-value paile, v) where
e = (s,t)tobe

b— (dr(s) + agsyv + di(t)).
An edge igtight if its slack is at most a given threshold alodseotherwise. The equivalence classes (with
respect to each inequality) then belong to all tight eddaevpairs and all loose edge-value pairs entering a
node in the MDD.

The data for this class includes:

e coef fi ci ent s_ the coefficients:; in the inequality;

r hs_: the right-hand side of the inequality;

SP_f r omr oot _: an array that encodes the functior- dr(s);

SP_f romsi nk_: an array that encodes the functien- d;(s);

edge val ue_pai r s_dat a: stores the slack of all incoming edge-value pairs for alsingde in
the MDD (this is a temporary variable that is used every timmede in the MDD is processed by the

constraint);

69



4.5. THECONSTRAI NT CLASS

e refining_score_ indicates how valuable it is for the solver to let the coaisir refine a node in
the MDD (this is a temporary variable that is used every timmede in the MDD is processed by the

constraint).

The interface includes all the methods from the base @aBISTRAI NT and adds a single new methbd)
that will be overloaded by the subclasgddONG AT_MOST andCARD_AT _MOST, since these constraints can

be described as

icl
for a suitable definition of . In the AT_MOST class the functiory is just the identify, that isf(x) = « for

all z.

The AMONG_AT_MOST class

The AMONG_AT _MOST class is a subclass of thd _MOST class in which the functiof has been redefined.

Given a sefS the defining inequality for this constraint is

Zfs(xi) S b,

icl
where fs(z;) = 1if z; € S and is equal to zero otherwise. The data for this class thgineats the

AT_MOST class is:
e domai n_: the setS used to defing; above.

The method implements the functiotf;.

The CARD_AT_MOST class

The CARD_AT_MOST class is a subclass of t#d _MOST class in which the functiofh has been redefined.

Given a valuev the defining inequality for this constraint is

va(xi) S b,

icl
where f,(xz;) = 1 if z; = v and is equal to zero otherwise. The data for this class thgneats the

AT_MOST class is:
e val ue_: the value used to defing above.
The method implements the functiorf,.

70



4.6. CONSTRAINT-BASED SEARCH

4.6 Constraint-Based Search

Our outer search algorithm uses the traditional recursividetand-conquer strategy of branching search.
Given a problenP that is too difficult to solve as given (typically after carasht propagation) the branching
algorithm creates a series i@strictions(or subproblemg P, . . ., P, whose union contain® (the restric-
tions should beexhaustivi Ideally, the restrictions are disjoint but we do allowrnih& overlap. In this
case, we say that we haleanchedon P. Next, the search algorithm attempts to solve each rastmictf

some branchP; is solved then
e the solution process is terminated with a feasible solufionr goal is to find a feasible solution, or

e the solution is added to the list of feasible solutions foif our goal is to find all feasible solutions,

or
e the solution becomes the incumbent if it is better than tlegipus incumbent solution.

If a restriction is too difficult to solve then the search m@dare branches further on the restriction. This
solution process continues recursively. To ensure thatpificedure terminates, the branching mechanism
must be designed in such a manner so that the problems becoredractable as the number of restrictions

increase.

The SEARCH_NCODE class

The SEARCH NODE class stores data required to describe a restriction of lderoafter some number of
branching steps. This class includes an enumerated3gBRCH.NODE: : STATUS that indicates that the

current search node (subproblem) is:
e FEASI BLE: the subproblem has only feasible solutions, or
e | NFEASI BLE: the surproblem has only infeasible solutions, or
e BOTH: the subproblem has both feasible and infeasible solytimms
o UNKNOWN: the solutions defined by the subproblem have not been dgedlua

The data for this class includes:

71



4.6. CONSTRAINT-BASED SEARCH

M.: a pointer to the MDD used by the search node (subproblem);
e vari abl es_: a container with pointers to the variables in the subpmble
e constrai nt s_ a container with pointers to the constraints defining thgpsoblem;

e branchi ng_constraint > a pointer to the constraint used to restrict the parent anah the

subproblem;
e processed_ indicates whether the search node has been processed;
e st at us_: the status of the solutions encoded by the subproblem;
e scor e_: the score used by the node selection procedure of the aasrtsalgorithm.
The interface for th6&EARCH.NODE class includes the following methods:

e updat e vari abl e.domai ns: update each variable’s domain to reflect the current statheo

MDD (e.g., post-filtering);

e term nal (I evel) :returns true if there are at mdsével unfixed variables in the MDD or if the

subproblem is infeasible and false otherwise;

e cal cul at e.scor e() : compute the actual score for this node (should be invokattpmcessing)

to provide more accurate scoring information for subprotdalerived from this node;

e scorefirst fail ():computesthe sum of the cardinalities of all variable dorsar his scoring

strategy results in a first-fail node selection strategytfierouter search procedure;

e count _unfi xed() : counts the number of unfixed variables.

The BRANCHI NG_STRATEGY class

TheBRANCHI NG_STRATEGY base class is a virtual class (it cannot be instantiateddtwikiused as a guide
for designing branching strategies in our solver. When adeseclops a new branching strategy he needs to
augment the enumerated tyBRANCHI NG.STRATEGY: : STRATEGY to include his strategy. Currently,

we have implemented the following common branching stsateg

e VD_FI RST_FAI L: branch on the variable with the smallest unfixed domain.

72



4.6. CONSTRAINT-BASED SEARCH

The interface consists of a single method:

e get branchi ng.constrai nt (searchnode N): given the search tree nodiefind the con-
straint that will be used to create the restrictions. Raball each constraint ‘knows how to branch on

itself’ (see Section 4.5) for details.

The VD_FI RST_FAI L class

TheVD_FI RST_FAI L class is the subclass BRANCHI NG_STRATEGY that implements variable domain
first fail branching heuristics. It chooses to branch on thgable with the smallest domain. The class
provides an enumerated tyD_FI RST_FAI L: : BREAK_TI ES that the user can set to indicate how to

break ties. There are currently two tie breaking rulescaigih a user can easily augment the list of rules:
e LEX_FI RST: choose the variable with the smallest index;
e RANDOM choose a random variable.

The data for the class consists of the sole member:
e rul e_: indicates the tie-breaking rule.

The interface consists of the method:

e get branchi ng.constrai nt (searchnode N): given the search nodéN returns the

VARI ABLE_DOMAI Nconstraint to use for branching.

4.6.1 TheSCOLVERclass

The data for thé&sOLVER class includes:

pr obl em.: the problem to be solved:;

i nitial _ndd_: a pointer to the initial MDD, typically this will be an MDD ofidth 1;

branchi ng_st r at egy_: a pointer to the branching strategy to use during the sqaxadedure;

term nationl evel _: the number of unfixed variables to declare a search nodartarrand

trigger an enumeration of the MDD;

73



4.6. CONSTRAINT-BASED SEARCH

e nunber f easi bl e_sol ut i ons_: the number of feasible solutions found by the solver;
e t ot al _nodes_cr eat ed_: the total number of search tree nodes created by the solver;

e t ot al _nodes_pr ocessed_: the total number of search tree nodes that were processdaeby

solver;
e nunber _choi ce_poi nt s_: the number of non-terminal nodes in the search;

e nunber i nf easi bl e_.nodes_: the number of terminal nodes in the search that did not aoata

feasible solution;

e ndd_f ai | ur es_ the total number of infeasible solutions enumerated atiteal nodes where all

variables have honempty domains;
e sol uti on_ti me_: the total time required by the solver;

e Q. a priority queue containing the unprocessed search neaésd by their score.

The interface for th&8OLVER class includes:

i nitialize():initializes the data used by the solver;
e setup_ndd() : creates an MDD of width 1 (the domain relaxation) given thgable domains;
e enumner at e_.node() : enumerates all solutions in the MDD checking each for fakts;

e process_nodeserial (): process a search node serially, that is, process the MD[@doh

constraint one at a time and pass the resulting MDD to theamtraint (see Algorithm 2);

e process_choi ce_poi nt (): update the search node’s score, create subproblems basbe o
branching constraint and initialize the scheduling infation for propagating the constraints in each

subproblem (see Algorithm 4);

e process_branchi ng.constraint(): process the branching constraint (this method is is al-

most exactly likepr ocess_constrai nt () ;

e process_constraint(): process a constraint using our general framework, thaiegorm a
bottom-up pass to compute ‘suffix’ information and then fikad refine during the top-down pass

(see Algorithm 3);

74



4.7. CONCLUSIONS AND FUTURE WORK

e sol ve(): run the outer search procedure according to the paramittarshe user has set (see

Algorithm 1).

Algorithm 1: SOLVER::solve()

repeat

N« Q-.pop()

process_node_seri al (N)

D — D*(M); /1 find the domain store relaxation &7

if AisuchthatD; = () then
BC «— branchi ng_strat egy. get _branchi ng_constrai nt (N)

if at a choice pointhen process_choi ce_poi nt (N, BC)

else enuner at e_node (N)
if goal is to find one solution and we have found tmen break;

until @ is empty
if found a feasible solutiothen returntrue

else returnfalse

Algorithm 2: SOLVER::processodeserial(V, BC)
Data: search nodéV and branching constraiiC'

not_in feasible — true
if BC'is nonemptyhen not_infeasible < process_branchi ng_constrai nt (V)

if not_in feasible then
initializeactiveconstraints|)

foreachactive constraintC' do

if process_constrai nt (IV,C)==false then
L returnfalse

returntrue

4.7 Conclusions and Future Work

Our goal was to design a basic constraint programming syistevhich the domain store has been replaced
by an MDD store. We feel that we have achieved this goal. Thtesyis fast and general enough to allow a
user to quickly add filtering and refining methods for conetsga modify the branching strategy and overall

search procedure and to easily evaluate their ideas.

75



4.7. CONCLUSIONS AND FUTURE WORK

Algorithm 3: SOLVER::processonstraint(V, C')

Data: search nodéV, constraintC
M <+ the MDD in N
C.initializelnfo (M)

foreachlayer L. do
M.cl eanup_dangl i ng-nodes (L)

foreachvertexv € L do
L C.conput e_out goi ng.i nfo (M,v); /' compute suffix information

| if |L| == 0 thenreturnfalse

foreachlayer . do
M.cl eanup_dangl i ng-nodes (L)

foreachvertexv € L do
C.conput e_i ncom ng. nfo (M,v); /1 compute prefix information

if L has space and should refinghen
L C.refine.incom ng (M,v)

C.conmput e_i nconi ng.i nfo (M,v)

foreachvertexv € L do
| Cfilter_outgoing(M,v)
| if |L| == 0 thenreturnfalse
returntrue

Algorithm 4 : SOLVER::processhoicepoint(N, BC)
Data: search nodé&V, a constraint to branch afi

N. cal cul atescore(); // compute actual score to give children accurate baselintéirest. score
(branchingconstraints, est. scores) C. br anch ()

foreachbranching constrainBC' do
create a search nodég. for BC

addBC to Np¢'s list of constraints

update scheduling information for constraints\ig¢

Q-push(Vpc)

76



4.7. CONCLUSIONS AND FUTURE WORK

There are several avenues to speed up the solution prodests.wie can add primal heuristics to help
find feasible solutions early in the search. This will be extely important in order to be competetive with
state-of-the-art constraint programming systems forisglgeneral CSPs.

Second, we can add a scheduling system that decides wheaptagaite constraints. This is an important
step in developing a full-fledged constraint programmingfesy since propagating every constraint at each
search tree node may not be worthwhile.

A third avenue is to modify the solver to have a queue of ‘chgiinstead of fully instantiated search
nodes. A choice will consist of a pointer to a parent node amdrestraint branch. Each choice point
registers with the parent node (to do reference countinggnwhen we pop the head of the queue we fully
instantiate the child search node and unregister the clagibehe parent (the parent can delete itself when it
no longer has any choices registered with it). The spacédrasy this can be much less than instantiating
search nodes every time we branch. Instantiating searaksmubr to processing is not much of a problem
for certain search strategies (such as depth-first seantfjrother search patterns one starts paying a price
in terms of memory usage. Finally, when creating a searcle madperform ‘deep-copies’ of the variables,
constraints and MDDs. We can instead record ‘deltas’ fose¢hebjects, that is, how they differ from the
original definitions of the constraints, variables and prsgsors’ MDDs.

Each of these approaches requires a substantial amountlobath in terms of developing a theory and

an effective implementation and are open research prodienMDD-based constraint solving systems.

e



Chapter 5

Propagating Among Constraints

In this chapter we study MDD-based propagationdopng constraints, which are of central importance in
employee scheduling and production sequencing problemsalRhat theanbng constraint can be written
as

among(X, S, ¢, u) (5.2)

wherel! is an index setX is a set of variable$z; | i € I'}, S is a set of domain elements, afd ¢ < u <
|X'|. The constraint requires that at ledstnd at most. of the variables inX take a value ir§. Thus if we
let 6(v) be 1 wherw € S and 0 otherwise, thanpng constraint requires that
/< 25(%‘) <u (5.2)
iel

We experimentally demonstrate that search tree reductidnceamputation time, as compared to the
traditional domain store, can be dramatically reducechdlydor MDDs of relatively small width.

Interestingly, huge savings in computation time are pdsshbrticularly for the more difficult problem
instances that we considered. For example, to solve ondispyg hard instance, the domain store needed
1,012,562 backtracks and 1684.7 seconds of computatia titnile our MDD store with maximum width
of just 4 reduced this to 2 backtracks and 0.04 seconds. Tédsly shows the benefit and potential of

MDD-based propagation f@nong constraints.

78



5.1. MDD FILTERING HEURISTICS FOR AMONG

T x1
s
s
s
s
p1 P2
\
\
N
~N
~ p3 T3

e
e
e
e

Figure 5.1: An MDD in which the solid edge fromy to ps (representingc, = 1) is redundant for the

constraintanong((x1, zo, 3, z4), {1}, 2,2).
5.1 MDD Filtering Heuristics for Among

Although we can filter a MDD foanong in polynomial time (see Section 3.4.8), the computatiofffaire
may not be justified. It is faster to apply a simple sufficieomdition for removing an infeasible edge. For
ananong constraint defined on a set of variabl&s let SR, s) be the length of a shortest path franto

s, and LR, s) the length of a longest path, where the length of an edge éndy its labels (either O or 1).

Then if noder is in a layer corresponding to a variableXn we filter an edge im € E(r, s) if

LP(T,r) +d(e) + LP(s,1) < £, or (5.3)
SP(T,r)+ d(e) +SP(s,1) > u
We updatel. P and .S P after each edge is deleted.
A small example shows that (5.3) is not a necessary condibioredundancy of an edge. The solid edge

from p; to p3 in Fig. 5.1 is redundant for
amng(($1,$2,$3,$4),{1},2,2) (54)

but fails to satisfy (5.3).
A still faster heuristic postpones updatifig® and.S P until all edges are tested. It uses a variation of

(5.3):
LP.(T,r)+0d(e) + LPy(s,1) < ¢ or (5.5)
SP_(T,r)+d(e) + SP_(s,1) > u
in which L P, is an upper bound oh P, andS P_ a lower bound or$ P. Initially we compute tight bounds
LP, andSP_ and use (5.5) to test all the edges for redundancy. Herét ftigunds’ refers to the bounds

LP and SP used in (5.3). Because deleting an edge neversesrédg longest path length nor decreases the

79



5.2. REFINING THE MDD

shortest path length between two nodes, these values reml@rbounds as we delete redundant edges. If
any edges are deleted, we have the option of recomplitingand.S P and repeating the process.

We note that one round of either of these heuristic filteriiggr@thms achieves consistency on an MDD
of width 1, and therefore achieves traditional domain cstesicy foranong. Also, an important aspect of
the above heuristic filtering algorithms is that they can pgliad independent of the variable ordering of

the MDD.

5.2 Refining the MDD

The current MDD can be refined to reflect more accurately angiveong constraint. Consider for example
the MDD of Fig. 5.2(a). No filtering is possible for tle@ng constraint (5.4). However, we can refine the
MDD by splitting nodeps. We observe that the edges coming iptdrom above are nagquivalentin the
sense that the paths fromto p3 containing one edge do not have the same set of feasible etond as
the paths fronT to p3 containing the other edge. We therefore spliinto p5 andp as in Fig. 5.2(b). We
can now filter edge&p’, p4) and(p4, p5) using (5.3), resulting in Fig. 5.2(c).

Splitting results in a tighter relaxation, because ther&ieMDD after splitting allows only two solutions
(x1,x9,23,24) = (0,0,1,1),(1,1,0,0), whereas the filtered MDD before splitting admitted fouusions,
(0,0,0,0), (0,0,1,1), (1,1,0,0), (1,1,1,1). In fact, the MDD after splitting excludes all solutions tha
violate theanong constraint.

In general, edges entering a given node are partitioneceimiiozalence classes, and ideally the node is
split into one copy for each equivalence class. Howeves,rtiay enlarge the width of the MDD beyond the
limit, in which case some of the equivalence classes mustdrgad. Also, edge equivalence may be costly
to compute in practice, in which case an approximation ofvadgnce is used.

The shortest and longest path information can also be ushkdlpous refine nodes in the MDD. For
example, we may regard two edgese E(ri,s) andey € E(ra,s) as approximately equivalent for the

anmong
LP(T, ’I“l) + 6(61) = LP(T, 7‘2) + 6(62) or,

SP(T, 7'1) + 5(61) = SP(T, 7“2) + 5(62).
Another approximation into equivalence classes is by clamgig the impact of an edge on the ‘tightness’ of

ananong constraint. That is, for each inequality defining #eong constraint, we consider the ‘slack’ of

80



5.3. EXPERIMENTAL RESULTS

T 1 T
7 7/ 7
7 7 7
7 7 7
7/ 7/ 7/
1 P2 T2 j2) P2 j2) P2
\ | |
N
N / ! |
N | |
ps z3 D3 jut D3 Py
s | . |
, -
’ \ | ~ !
s |-~ |
Pa Ps T4 P4 P D5 Pa
N AN /7
N N 7
N N 7
N AN Ve
1 1 1
(a) (b) (c)

Figure 5.2: Refining MDD (a) by splitting nodes yields (b), which after filtering for the constraint

anong((x1, z2,x3,x4),{1},2,2) yields (c).

an edge € E(r,s) to bel — (SP(T,r)+ d(e) + SP(s, 1)), respectivelyu — (LP(T,r) 4+ d(e) + LP(s, 1)).
The slack reflects the number of variables that can still Isggasd to a value irt without violating the
respective inequality. We say that an edge is ‘tight’ if iesc& is at most a given threshotd, and ‘loose’
otherwise. The equivalence classes (with respect to eacjuatity) then belong to all tight edges and all
loose edges entering a node in the MDD. For the random inssacansidered in the experimental section,
we setr = 1, while for the nurse rostering instances weset 3.

After a round of node splitting on each layer, we run the fittgiheuristic. If there are multiplanong

constraints, we test for equivalence with respect to alcthestraints and refine for each one individually.

5.3 Experimental Results

We have implemented the algorithms presented in the pre@ection to evaluate the performance of MDD
filtering of anbng constraints. That is, we have built from scratch a congtggiogramming solver that ap-
plies a fixed-width MDD store instead of a domain store (seap@dr 4). All the experiments are performed
using a 2.33GHz Intel Xeon machine with 8GB memory.

The main goal of our experiments is to empirically assessnipact of the width of the MDD on the
resulting search tree size and computation time. We peddrexperiments on randomly generated problem

instances, and on structured ‘nurse rostering’ probletantes.

81



5.3. EXPERIMENTAL RESULTS

5.3.1 Random Instances

The first set of experiments is conducted on randomly geegtliastances. The main parameters that define
these instances are the number of (binary) variablethe number ofanong constraints, the number of
variables in eaclanong constraint, and for eachnong, a lower and upper bound on the number of vari-
ables taking value 1. In addition, the variable indices ichearong are sampled from a normal distribution
(modulon), where the mean is chosen uniformly at random fiidm], while the standard deviation is a
parameter to be arbitrarily chosen. We note that for mangtiga problems, the variable indices in an
anong constraint are nearly consecutive, see for example themasdering instances in the next section.
This would correspond to random instances in which the nbdistxibution from which the variable indices
are sampled has a low standard deviation.

We have experimented with several parameter combinatimrisye will only report results for specific
parameter settings that capture the general qualitativevier over the parameter space. These parameters
are as follows. For all random instances, the number of b$ass0, while eachanong constraint consists
of 5 variables chosen at random with a fixed lower bound of 2umer bound of 3. The variable indices
are chosen from the normal distribution described abovi stdndard deviations = 1,0 = 2.5, 0 = 5
ando = 7.5.

In our random experiments we vary the numbeanbng constraints (from 5 to 200, by steps of 5) in
each instance, and we generate 100 instances for each nufalsérinstance is solved by our MDD solver
using varying widths. Note that width 1 corresponds to tlalitonal domain store. In Figures 5.3-5.6,
we provide scatter plots of the running times and number oktoacks for all instances. The subplots are
arranged to indicate the ‘marginal’ change in solution ton®acktracks due to width, that is, we compare
the results for width 1 vs. width 4, width 4 vs. width 8, widthv8. width 16 and width 16 vs. width
32. Note that these are all log-log plots. Points on the diaboepresent instances for which the measured
guantity are equal (that is, computation time or the numbéaoktracks). Points below the diagonal imply
that the MDD with higher width had a measured quantity less titne the MDD of lower width, while the
opposite holds true for points above the diagonal.

Immediately we notice that increasing the maximum widthhef MDD almost always results in fewer
backtracks. The number of backtracks required by an MDD ditwé never exceeds the number of back-

tracks required by an MDD of width 1. Moreover, for severaltloé harder instances there is already an

82



5.3. EXPERIMENTAL RESULTS

time width 8 (s)
I
)
%
' bacl‘(track‘s width 4

+
T
4+
+
+
St
-

I

1 1
R N AT
.

NS

10t 10° 10t 10? 10° © 10° 10 10° 10t 10° 102 100 10° 10° 10° T 10° 10* 10 10°
time width 1 (s) time width 4 (s) backtracks width 1 backtracks width 4

H
S
. >
QFFHT—— T
S time width 4 (s)

+F E 10?

time width 16 (s)

AN backtracks width 16

rx

. backiracks width 32

*
+%

+x+

o

. . . . . .
10? 10° 10t 10° 10t 10? 10° 10 10" 10 10°
time width 8 (s) time width 16 (s) backtracks width 8 backtracks width 16

(@ (b)

Figure 5.3: § = 1) Comparing the effect of MDD width in terms of backtracks déay time (b).

enormous reduction in the number of backtracks using an MD@idth 4 (in some cases more than 5
orders of magnitude). There are a few difficult instancesafioich using an MDD of width 8 results in at
least one order of magnitude fewer backtracks than thoseresijby an MDD of width 4.

The results for computation time are a little more varied.tRe problems with lower standard deviation
on the variable indicess(= 1 ando = 2.5) it always pays off to use an MDD of maximum width up to 8
except for the very simplest of problems (that is, those lgrob that can be solved in under half a second).
There are several cases where the solution time decreasegibthree orders of magnitude.

For the problems with a higher standard deviation on theats&iindices¢ = 5 ando = 7.5) we
observe that there is not always an absolute decrease iiosalune when we use an MDD of width 4 (or
width 8) instead of an MDD of width 1. However, we would arghattwhen an MDD of low width (width
4 or width 8) performs worse than the traditional domainesi@n MDD of width 1) it does so by a small
margin. On the other hand, there are many difficult instafmreshich the computation time decreases by at
least one order of magnitude. In terms of reducing computdtme the wider MDDs (width 16 and width

32) don't seem to help or hurt much when compared to narroni2bs(width 4 and 8).

5.3.2 Nurse Rostering Instances

We next conduct experiments on a set of instances inspireditse rostering problems, taken from [58].
The instances are of three different classes, and combistramts on the minimum and maximum number
of working days for sequences of consecutive days of givegths. For example, class-/ demands to

work at most 6 out of each 8 consecutive days (max6/8) andhat B2 out of every 30 consecutive days

83



5.3. EXPERIMENTAL RESULTS

10* T T T T T 10° T T T T 107 T T T T T T 10° T T T T
5 - 6 [ P 1 p
07 F 1 102} W, 10* Feo 1
102 (2 E z 0° g e ] g
3 100 £2 10t L3 I BT - 1
10! 8 ] 3 £ - ¢
: 100F3 10° b8 1 1028 9
oLe ] 2 = £
0°rE £ 102 |8 T+ E 3
L 3 = + 10" b€ E
10 10t iy
10° ot
107 102 10° 10° 100 102 120° 10* 10° 10°
time width 1 (s) backtracks width 1
10? T T T 10 10* T T T
g + o
10' b5 1 @ 10° 10° @ E
o + 10° Fos g
10° b5 4 g 10% | { 10%te E
H . H 8
@ 10° Lo =
10t L E ] £ 0t | 1 ,g ]
+
b+ i
1 A 1 10—2 et 1 1 100 =
107 10° 10* 102 102 10t 10° 10* 10° 10 10*
time width 8 (s) time width 16 (s)
(@ (b)
Figure 5.4: ¢ = 2.5) Comparing the effect of MDD width in terms of backtracks déay time (b).
10* T T T T T 10° T T T T 10° T T T T = 10° T T T T
10° F 1 10° F ]
102 B2 ] ) 10t L5
M 10! B2 E 3 E
10t 2 b g 10° [2
ofa 10°Fg p g ]
10° FE b £ 0% |12
10 7 10t F 7
10'2 1 1 1 1 100
10 10° 10! 102 10° 10 10°
time width 4 (s)
102 10° 10*
10' b5 {1 10} E 10° ¢ {1 10’ E
g
10° F§ 1 w°F {1 w0 i 102t E
H]
£
10t LE 1 10th i 10t b J
L L L 102k L L L 1004
107 10° 10* 102 102 10t 10° 10* 10? 10° 10*
time width 8 (s) time width 16 (s)
(@ (b)
Figure 5.5: § = 5) Comparing the effect of MDD width in terms of backtracks day time (b).
10° T T T T 10° T T T T 10° T T T T 10° T T T T
10?2 | 1 102 E 10* Fo 1 10°fe b
ot < ot = 0° § (1 §
10t b3 {1 10tF2 i 10° F 1 10®F i
10° = 1 1 2 i _?3 1 10? ,§ i
£ 2 3 E
10t ,% 1 0t ] 8 3 ]
102 10254
10° 102 10t 10° 10! 102 10° 10°
time width 4 (s)
10° T T T T 10° T T T T
w0 A T S SN e 1 els ]
z @ = =
10t |2 1 108 1 b g
N g 10° k2 i W E
100 2 {1 10°p2 T b £ g
£ £ 10 8 g E
10t | 4 w0tf p E 8
L L L L 102 ’f L L L L 100k
10t 100 10* 10° 10° 102 107 10° 10* 10? 10° 10° 10*
time width 8 (s) time width 16 (s) backtracks width 8 backtracks width 16
(@ (b)

Figure 5.6: ¢ = 7.5) Comparing the effect of MDD width in terms of backtracks d&ay time (b).

84



5.3. EXPERIMENTAL RESULTS

instance Width 1 Width 2 Width4  Width8 Width 16 Width 32 Width 64

size BT CPU BT CPU BT CPU BT CPU BT CPU BT CPU BT CPU

C-I 40 61225 55.63 22443 28.67 8138 12.64 1596 3.84 6 0.07 3 009 .1 O
50 62700 88.42 20992 48.82 3271 12.04 345 2.76 4 008 3 013 1% 0.

60 111024 196.94 38512 117.66 3621 19.92 610 6.89 12 024 &® 02 0.34
70 174417 375.70 64410 243.75 5182 37.05 8891244 43 0.80 B® Q4 0.90
80 175175 442.29 64969 298.74 5025 44.63 8931570 46 1.17 T2 Q2 1.01
C-lI 40 179743 173.45 60121 79.44 17923 32.59 3287 7.27 4 007 4 0®» 011
50 179743 253.55 73942 166.99 9663 38.25 2556 18.72 4 009 12 03 0.18
60 179743 329.72 74332 223.13 8761 49.66 1572 16.82 3 013 18 02 0.24
70 179743 391.29 74332 279.63 8746 64.80 1569 22.35 4 018 22 02 0.34
80 179743 459.01 74331 339.57 8747 80.62 1577 28.13 3 024 32 02 045

C-lll 40 91141 84.43 29781 38.41 5148 9.11 4491 9.26 680 123 7 0.180.18
50 95484 136.36 32471 75.59 2260 9.51 452 386 19 043 7 024 2 O
60 95509 173.08 32963 102.30 2226 13.32 467 547 16 050 6 0280.24
70 856470 1986.15 420296 1382.86 37564 186.94 5978 58.15 2BP0 87 3.12 38 2.29
80 882640 2391.01 423053 1752.07 33379 235.17 4236 65.05 1480 55 3.27 32 2.77

Table 5.1: Nurse rostering instances. The effect of MDD lwighen finding one feasible solution.

(min22/30). For clas€-Il these numbers are max6/9 and min20/30, and for «lafis these numbers are
max7/9 and min22/30. In addition, all classes require tdab@tween 4 and 5 days per calendar week. The
planning horizon ranges from 40 to 80 days.

The results are presented in Tables 5.1-5.3. We report tildeniamber of backtracks upon failure (BT)
and computation time in seconds (CPU) for our MDD solver gisifidth 1, 8, and 32. Again, the MDD of
width 1 corresponds to a domain store.

In Table 5.1 we report the results for finding a first feasitdeition. For all problem classes we observe
a nearly monotonically decreasing sequence of backtraukse@lution time as we increase the width up to
32. The rate of decrease of the solution metrics seems tofmnertial in many cases. A typical result
(the instance €-/lIl on 60 days)) shows that where an MDD of width 1 requires 95 [a@é&ktracks and
173.08 seconds of computation time, an MDD of width 32 ontyuiees 6 backtracks and 0.28 seconds of

computation time to find a first feasible solution.

85



5.3. EXPERIMENTAL RESULTS

instance Width 1 Width 2 Width 4 Width 8 Width 16 Width 32 Width 64

size BT CPU BT CPU BT CPU BT CPU BT CPU BT CPU BT CPU

C-I 40 230550 212.01 77941 106.28 17175 30.79 6741 17.09 106 3.1199 3.10 90 3.15
50 238192 339.47 87345 208.68 9362 39.54 2273 18.26 937 10.3378 14.18 669 10.37
60 247500 458.38 93321 292.75 8022 57.35 2068 30.57 394 18.5862 17.32 41 17.35
70 260647 579.09 104411 401.44 9979 75.17 2044 29.12 412 512.0734 1259 259 12.18
80 273187 699.72 111769 501.30 9887 80.71 1621 26.15 133 5.4133 4.72 28 5.24

C-ll 40 518489 469.32 182106 247.56 40279 75.36 8933 22.87 37 0.2440 0.32 35 0.41
50 518499 721.02 219610 500.22 26443 105.36 4598 34.10 32 3 0.3 30 0.43 28 0.57
60 518509 914.14 219839 660.32 25138 142.46 3470 36.99 29 4 04 29 0.66 30 0.87
70 518519 1158.65 219845 830.58 25057 186.03 3580 51.09 3060 0. 28 0.92 28 1.32
80 518529 1312.85 219855 1023.10 25057 230.46 3580 63.89 3178 0 28 1.18 27 1.78

C-lll 40 455495 563.99 157984 363.10 25071 199.13 24319 206.709 2I@1.81 454 159.34 74 163.14
50 1006980 2064.11 575231 1706.58 198368 1035.08 991142B789671 794.05 124141 900.59 3764 716.54
60 1969337 5284.32 815078 3706.08 250889 2466.10 37172QB8BL790 1947.87 331 1785.60 287 1808.53
70 3559033 9374.91 2042509 6751.75 266207 1519.52 838267Z79744195 483.56 1616 341.55 61464 710.98
80 4201778 12042.30 2191133 8574.52 185755 1228.34 224886130 1835 115.38 834 94.62 81 95.88

Table 5.2: Nurse rostering instances. The effect of MDD lwigdhen finding all feasible solutions.

In order to make a comparison to [58], we also report the te$oit computing all feasible solutions. In
Table 5.2 we notice that the results for the reduction in tlmalmer of backtracks is very similar to that for
finding one feasible solution although the sequences arstricly decreasing. For example, the instance
(C-1on 80 days) is solved by the domain store using 273,187 lzaigrwhile the MDD store of width 32
needs only 33 backtracks. This reduction is reflected in 6 @me as well, which is reduced from around
699.72 seconds to around 4.72 seconds for this instancereshls in terms of computation time for those
instances in classd-lll) are not as drammatic as those for the other classes. Thec@&ibe most of the
time is spent enumerating feasible solutions which tendsmoothen’ the total computation time.

In Table 5.3 we compare our results to those presented in(j8Bich were run on a 2.8GHz In-
tel Xeon machine), to provide a comparison with more adwdrfdeering algorithms based on global
constraints for the domain store. In the colunget¢+seq’, advanced filtering algorithms fogcc and
sequence constraints are applied, while the results for colungerseq’ are obtained by applying
one singlegen- sequence constraint. We remark that these instances were spegjfidaligned to be

modeled (perfectly) with a singlgen- sequence constraint, which explains the zero backtracks for

86



5.4. CONCLUSION

instance MDD width1 MDD width 8 MDD width 64 gcc+seq [58] geneq [58]

size BT CPU BT CPU BT CPU BT CPU BT CPU

C-l 40 231k 212.01 6,741 17.09 90 3.15 185k 216.49 0 0.77
50 238k 339.47 2,273 18.26 669 10.37 186k 369.12 0 2.09
60 248k 458.38 2,068 30.57 41 17.35 188k 62199 0 3.60
70 261k 579.09 2,044 29.12 259 1218 196k 84052 0 1.88
80 273k 699.72 1,621 26.15 28 5.24 198k 1,061.62 0 0.61
C-ll 40 518k 469.32 8,933 22.87 35 0.41 394k 39093 0 0.01
50 518k 721.02 4,598 34.10 28 0.57 394k 660.74 0 0.02
60 519k 914.14 3,470 36.99 30 0.87 394k 1,07426 O 0.03
70 519k 1,158.65 3,580 51.09 28 1.32 394k 1,43220 0 0.04
80 519k 1,312.85 3,580 63.89 27 1.78 394k 1,786.62 0 0.05

C-lll 40 455k  563.99 24,319 206.70 74 163.14 328k 417.63 0 34.43
50 1,007k 2,064.11 99,114 878.23 3,764 716.54 457k 1,061.24 150.87
60 1,969k 5,284.32 37,172 1,885.00 287 1,808.53 730k 0)822.0 339.89
70 3,559k 9,374.91 83,826 797.72 61,464 710.98 1,744k BA48 0 60.82
80 4,202k 12,042.30 22,488 302.61 81 95.88 1,847k 7,457.36 18.41

Table 5.3: Nurse rostering instances: MDD filtering comgdopestate-of-the-art domain filtering.

‘genseq’. Clearly, the global constraints allow to reduce furthke search space of the domain store
(compare ‘width 1" with gcc+ seq’ and 'genseq’), but it is interesting that our MDD store performs
much better thangcc+seq’. Namely, these global constraints group together md@iong constraints,
whereas our MDD-store only applies (heuristic) filtering individual anmong constraints. This clearly

shows the power of propagating structural information aigfoan MDD store rather than a domain store.

5.4 Conclusion

We studied MDD-based propagation fmnmong constraints as a more refined alternative to traditional do-
main store filtering algorithms. We presented efficient tstiarMDD filtering algorithms that can be ap-

plied to any variable ordering of the MDD. We have also shoaww these algorithms can be complemented
with MDD refinement procedures based on #mong constraints. Computational results have shown that

MDD-based propagation can dramatically reduce the seg@atesand computation time as compared to a

87



5.4. CONCLUSION

domain store. This provides evidence that domain storesitrbig profitably replaced (or complemented)

by MDD stores in CP solvers.

88



Chapter 6

Optimal Movement of Factory Cranes

6.1 Introduction

Manufacturing facilities frequently rely on track-moudteranes to move in-process materials or equipment
from one location to another. A typical arrangement, andype studied here, allows one or more hoists to
move along a single horizontal track that is normally modrda the ceiling. Each hoist may be mounted
on a crossbar that permits lateral movement as the crogsk#drmoves longitudinally along the track. A
cable suspended from the crossbar raises and lowers g liftiok or other device.

When a production schedule for the plant is drawn up, cranes be available to move materials from
one processing unit to another at the desired times. Thesmay also transport cleaning or maintenance
equipment. Since the cranes operate on a single track, thstylra carefully scheduled so as not to interfere
with each other. One crane may be required to yield (move filtteoway) to permit another crane to pick
up or deliver its load.

The problem is combinatorial in nature because one must migt@ampute a space-time trajectory
for each crane, but must decide which crane yields to an@hérwhen. A decision made at one point
may create a bottleneck that has unforeseen repercussiatslater in the schedule. It is not unusual for
production planners to put together a schedule that seeal®twample time for crane movements, only to
find that the crane operators cannot keep up with the scheflslhe cranes lag further and further behind,
the production schedule must be adjusted in an ad hoc mama#éow them to catch up.

In this chapter we analyze the problem of scheduling twoesamd describe an exact algorithm, based

on dynamic programming, to solve it. The problem data comgiime windows, crane assignments, and

89



6.1. INTRODUCTION

job sequencing. That is, the problem specifies a releasedimdaleadline for each job, an assignment of
each job to a crane, and the order in which the jobs assigneddo crane are to be carried out. Several
objectives are possible, but in our experience the primaa} gas been to follow the production schedule
as closely as possible.

This research is part of a larger project in which both héigrsnd exact algorithms have been devel-
oped for use in crane scheduling software. The heuristibiodemakes crane assignment and sequencing
decisions as well as computing space-time trajectoriasitasmfast enough to accommaodate large problems
involving several cranes. However, once the assignmemsaquencing are given, the heuristic method
may fail to find feasible trajectories when they exist andeegood solutions as a result. We therefore found
it important to solve the trajectory problem exactly for @egi assignment and sequencing, in at least some
of the smaller problem instances, as a check on the heumstiiiod. The exact algorithm has practical value
in its own right, because two-crane problems are commondunsiny, and the algorithm solves instances
of respectable size within a minute or so. Nonetheless, wét ss having an equally important role in the
creation of benchmarks against which heuristic method$eassted and tuned for best performance.

We begin by deriving structural results for the two-cranebpem that restrict the trajectories that must
be considered to certaicanonicaltrajectories. This not only makes the problem tractabledgramic
programming by reducing the state space, but it also aatekethe heuristic solution of larger two-crane
problems by dramatically reducing the possibilities thatsimbe enumerated. Moreover, the canonical
trajectories simplify the operation of the cranes, and eobasafety, by restricting the crane movements
to certain predictable patterns. For example, cranes alwayve at the same speed, never stand at rest
except at a pickup or delivery point, and never yield to aeotitane except when moving alongside that
crane (at a safe distance). In addition, the left crane keethe left as much as possible, and the right crane
to the right.

We then describe a dynamic programming algorithm for thevggdttrajectory problem. The state space
is large, due to the fine space-time granularity with whicl finoblem must be solved, as well as the
necessity of keeping up with which task a crane is perfornaing how long it has been processing that
task. To deal with these complications we introduce a nowk sspace description that represents many
states implicitly as a cartesian product of intervals. Ttagesspace is efficiently stored and updated in a data
structure that uses an array of two-dimensional circul@ugs. These enhancements accelerate solution by

at least an order of magnitude and allow us to solve probldnmesatistic size within a reasonable time. The

90



6.2. PREVIOUS WORK

paper concludes with computational results and directiongirther research.

6.2 Previous Work

To our knowledge, no previous work computes space-timedtajies that allow cranes to yield, and none
obtains structural results that restrict the types of ttajges that must be considered. The literature on crane
scheduling tends to cluster around two types of problemsiement of materials from one vat to another
in an electroplating or similar process (typically referte ashoist schedulingproblems), and loading and
unloading of container ships in a port.

A classification scheme for hoist scheduling problems aggpieg41]. It is assumed in these problems
that each item visits the same vats in the same order, in nagsiscconsecutively. The objective is to
minimize cycle time, which is the time lapse between theyeotrtwo consecutive items into the system.
Much research in this area deals with the single-hoist cygdheduling problem [53, 5, 6, 35, 48, 50, 12, 40].
Because there is only one hoist, the space-time trajecfdtyedoist is not an issue, so long as it picks up
and delivers items at the right time. Even this restrictezbfgm is NP-complete [34].

Several papers deal with cyclic two-hoist and multi-horstiglems. One approach partitions the vats into
contiguous subsets, assigns a hoist to each subset, artilssheach hoist within its partition [62, 63, 65].
A better solution can generally be obtained, however, lpynalig a vat to be served by more than one hoist.
This has been accomplished by careful scheduling of theshmisavoid collisions, based on a case-by-case
analysis of the various ways that they can approach each [@Bge59, 54, 36, 11, 37, 39]. None of these
studies compute space-time trajectories of the hoistslowaine hoist to yield to another. They avoid
collisions by setting departure and arrival times so thainterference is possible when hoists go directly
from one vat to the next.

Although we do not address the assignment of tasks to crantseipresent paper, our problem is
otherwise more general than hoist scheduling problemsverakrespects: (a) rather than requiring that
every item visit the same sequence of stations, we allow gdcto specify an arbitrary subset of tasks in
any order; (b) we solve for an optimal space-time trajectdrgach crane that allows it to make additional
movements in order to yield to the other crane; (¢) we accodateorelease times and deadlines for the
jobs; and (d) we allow for a variety of objective functions.

Port cranes are generally classified as quay cranes and nganreisc Quay cranes may be mounted on a

91



6.3. THE OPTIMAL TRAJECTORY PROBLEM

single track, as are factory cranes, but the schedulinglgamobiffers in several respects. The cranes load
(or unload) containers into ships rather than transferitengs from one location on the track to another. A
given crane can reach several ships, or several holds igke ship, either by rotating its arm or perhaps by
moving laterally along the track. The problem is to assigmes to loading (unloading) tasks, and schedule
the tasks, so that the cranes do not interfere with each ftBeb2, 42, 29, 38, 66].
Yard cranes are typically mounted on wheels and can follosaite paths in the dockyard to move

containers from one location to another. Existing solupproaches schedule departure and arrival times
for the cranes so that they do not interfere with each othdrih®e actual space-time trajectories are not

examined [64, 49].

6.3 The Optimal Trajectory Problem

In practice, a crane scheduling problem typically considta number ofjobs, each of which specifies
severaltasksto be performed consecutively. For example, a job may reghiat a crane pick up a ladle at
one location, fill the ladle with molten metal at a second fimrg deliver the metal to a third location, and
then return the ladle. Tasks may also involve maintenandeckraning activities. The same crane must
perform all the tasks in a job and must remain stationary egpropriate location while processing each
task.

The location and processing time for each task are givenieaselease times and deadlines. We also
suppose that each job has been pre-assigned to a certa@ arahthe jobs assigned to a crane must be
performed in a fixed order. Each job assigned to a given crars fimish before the next job assigned to
that crane begins.

In this study we explicitly account only for the longitudimaovements of the crane along the track. We
assume that the crane has time to make the necessary laténadrical movements as it moves from one
task location to another. This results in little loss of gatity, because any additional time necessary for

lateral or vertical motion can be built into the processinggetfor the task.

92



6.3. THE OPTIMAL TRAJECTORY PROBLEM

The problem data are:

R; = release time of task
D; = deadline for task
L; = processing location (stop) for tagk
P; = processing time for task
¢(j) = crane assigned to tagk
v = maximum crane speed
0, Limax = leftmost and rightmost crane locations
A = minimum crane separation
At = time increment
Note that we refer to the processing location of a taskstsa

If release timesk; and deadline®); are given for each jobrather than each tagk then the task release

time R; is the earliest possible start time for that task:

L L
+Z<P+| +1 — e|>

wherek is the first task in joh. Similarly, the task deadline is the latest possible finistet given the job

_ __Z<’Le L 1’ )

l=j+1

deadline:

wherek’ is the last task in jol.
We suppose for generality that there are crahes. , m, where crane 1 is thkeft craneand cranen
theright crane although we solve the problem only for = 2. T1,,.« is the length of the time horizon. The

problem variables are:

x4 = position of crane: at timet
ye+ = task being processed by cranat timet (O if none)

7; = time at which taski starts processing

Taskj therefore finishes processing at time+ P;. We assume that the tasks are indexed so that tasks

assigned to a given crane are processed in order of incgeiasiices.

93



6.3. THE OPTIMAL TRAJECTORY PROBLEM

The problem withn tasks andn cranes may now be stated

Tet — VAL < zoying < wg + oAt pallet (b)

Yet >0:>xct:Lyct (C)
wct§x0+1,t_A7 c=1,....m—1, all ¢ (d) (61)
RjéTjSDj—f)j, all j (6)
all j
yc(j)t:ja t:Tj,...,’Tj—FPj—At (f)

{C(]) - C(j/), Jj< ]/} = T7; < Ty, a”j,jl (g)
Yet € {0,...,n}, all et

Constraint (a) requires that the cranes stay on the track(l@nthat their speed be within the maximum.
Constraint (c) implies that a crane must be at the right lonathen it is processing a task. Constraint (d)
makes sure the cranes do not interfere with each other. @artste) enforces the time windows, and (f)
ensures that processing continues for the required amétini@once it starts. Constraint (g) requires that
the tasks assigned to a crane be processed in the right order.
We assume that the objectiyér) is a function only of the task start times, because this ifcseft

for practical application and allows us to prove the stradtvesults below. Generally one is interested in
conforming to the production schedule as closely as passibbr instance, one might minimize the lapse
between the release tindg, and the start time;, of the first taskk in a job, or the lapse between the earliest
finish time R, + P, and the completion time,, + P, of the last task’ in a job, or some combination of

these. We used the more general objective
f(T) = Z &7} (Tj - Rj) (62)
J

but normally sety; to a positive value only when tagkis the first or last task of a job. One might also
be concerned that the cranes make no unnecessary moveMéntsn incorporate this into the objective
function only if it has the formf(x, ), but there is no need to do so. By restricting the cranes to the

canonical trajectories defined by the structural resulldieve avoid unnecessary movements.

94



6.4. CANONICAL TRAJECTORIES

¥~ Unloading

time

Loading — |

‘[ distance ‘[

Pickup Delivery
point point

Figure 6.1: Sample space-time trajectory for one task. fiaded vertical bars denote processing, which in

this case consists of loading and unloading.
6.4 Canonical Trajectories

Optimal control of the cranes is much easier to calculatenvitis recognized that only certain trajectories
need be considered, namely those we call canonical trajestoWe will show that when there are two
cranes, some pair of canonical trajectories is optimal.

Let aprocessing schedul®r a given crane consist of the vectorof task start times. We define the
extremaltrajectory for the left crane, with respect to a given preges schedule, to be one that observes the
processing schedule and that, while not processing a tegkysfollows the leftmost trajectory that never
moves in the direction away from the next stop. For exampie ttajectory in Figure 6.1 is not extremal
because the crane moves to the right sooner than necessary.

More precisely, if the next stop (processing location) ig@right of the current stop, then the left crane
follows the canonical trajectory if it leaves the curremipsas late as possible so as to arrive at next stop just
as processing starts (Fig. 6.2a). If the next stop is to tlh@iehe current one, the crane leaves the current
stop as early as possible (Fig. 6.2b). Thus at any time theedsaeither stationary or moving at maximum
speed. The extremal trajectory for the right crane follomesrightmost trajectory: it leaves the current stop
as late as possible if moving to the left, and as early as Iplesisimoving to the right.

A trajectory for the left crane isanonicalwith respect to the right crane if at each moment it is the

rightmost of (a) the extremal trajectory for the left cramel db) the trajectory that runs parallel to and just

95



6.4. CANONICAL TRAJECTORIES

Move as
Wait as soon as
long as possible
possible /

(@) (o)

Figure 6.2: Extremal trajectory for the left crane (a) whiee tlestination is to the right of the origin, and

(b) when the destination is to the left of the origin.

At each moment, follow
extremal trajectory or right
crane’s trajectory, whichever is
further to the left

Depart from
extremal
trajectory

Left crane — - Right crane

Figure 6.3: Canonical trajectory for the left crane (lefgnsolid line).

to the left of the right crane’s trajectory (Fig. 6.3). Moreegisely, trajectoryz] is canonical for the left
crane, with respect to trajectosry for the right crane, if the extremal trajectaty for the left crane satisfies
x)(t) = min{Z; (t), z2(t) — A} at each time. A trajectory for the right crane is canonical with respect t
the left crane if it is the leftmost of the extremal trajegtéor the right crane and the left crane’s trajectory.
That s,z (t) is canonical ift), (t) = max{Za(t), z1(t)+ A}, wherezs(t) is the extremal trajectory. Finally,

a pair of trajectories is canonical if the trajectories aranical with respect to each other.

Theorem 6.4.1.1f the two-crane problem (6.1) has an optimal solution, tseme optimal pair of trajecto-

ries is canonical.

Proof. The idea of the proof is to replace the left crane’s optimakettory with a canonical trajectory

96



6.4. CANONICAL TRAJECTORIES

with respect to the right crane’s optimal trajectory. Therign the right crane a canonical trajectory with
respect to the left crane’s new trajectory, and finally astlig left crane a canonical trajectory with respect
to the right crane’s new trajectory. At this point it is shottiat the trajectories are canonical with respect
to each other. Since these replacements never change #utivdbfunction value, the canonical trajectories
are optimal, and the theorem follows.

Thus letz* = (z7, x3) be a pair of optimal trajectories for a two-crane problent ig 72 be extremal
trajectories for the left and right cranes with respect wphocessing schedules in the optimal trajectories.
Consider the canonical trajectory for the left crane with respect te;, which is given byz) (t) =
min{z; (), 25(t) — A}. We claim that(«, 23) is optimal. First note that it has the same objective fumctio
value ast*, sincez has the same processing schedulejag-urthermore, it is feasible because the cranes

do not interfere with each other, and the speed of the leftecia hever greater than The cranes do not
interfere with each other becausg(t) < x3(t) — A for all ¢, due tox/, (t) < z5(¢) andxi(t) < z5(t) — A.

To show that the speed of the left crane is never more thiasuffices to show that the average speed in
the left-to-right direction between any pair of time pointst, is never more tham, and similarly for the

average speed in the right-to-left direction. The former is

zy(t2) — 24 (t1)  min{Z1(t2), ¥3(t2) — A} — min{71(t1), 27 () — A}

to — t1 to — 11
= t — 7 * _ *
< max T1(t2) Sﬂl(tl)’ x3(ta) — 5(t1) <
to — 11 to — 11

where the first inequality is due to the fact that
min{a, b} — min{c,d} < max{a —¢,b — d}

foranya, b, c, d, and the second inequality due to the fact thaaindx? are feasible trajectories. The speed
in the right-to-left direction is similarly bounded.

Now consider the canonical trajectory, for the right crane with respect t@), given by x4 (t) =
max{Zs(t), x| (t) + A}. It can be shown as above that , z}) is optimal.

Finally, let 2/ be the canonical trajectory for the left crane with respect?, given by z//(t) =
min{z; (t),z5(t) — A}. Again (2}, 2%) is optimal. Sincer/ is canonical with respect te}, to prove the
theorem it suffices to show thaf, is canonical with respect te/; that is,max{zs(t), 27 (t) + A} = 24(¢)

for all t. To show this we consider four cases for each time

97



6.4. CANONICAL TRAJECTORIES

Case 1:z1(t) + A < Zo(t). We first show that

(@] (t), 25(t)) = (Z1(t), 22(t)) (6.3)
by considering the subcases {g)¢) < z;(¢) and (b)z1(¢) < z5(¢). In subcase (a),
24(t) = min{z, (1), 23(t) — A} = a3(t) — A

which implies

w5(t) = max{Za(t), 21 (t) + A} = max{Za(t), 25(t)} = Z2(t)
and

2 (t) = min{Zy, 25 (t) — A} = min{Z1, Z2(t) — A} = 71(¢)
In subcase (b)) (t) = z1(t), which impliesz),(t) = max{Z2(t),Z1(t)+A} = Zo(t) and again (t) = z.
Now from (6.3) we have

max{Zs(t), ] (t) + A} = max{Za(t), Z1(t) + A} = Zo(t) = 25(t)

as claimed.

The remaining cases supposgt) < z1(t) + A and consider the situations in whiefj(t) is less than
or equal taz,(t), betweenz,(t) andzy () + A, and greater tham; (¢) + A.

Case 2:z5(t) < Ta(t) < z1(t) + A. It can be checked that (t), z5(t)) = (Z2(t) — A, Z2(t)) and
max{Za(t), ] (t) + A} = max{Z2(t), Z2(t)} = T2(t) = a4 (¢), as claimed.

Case 3:72(t) < z5(t) < Z1(t) + A. Here(a/ (t), 25(t)) = (x3(t) — A, z5(t)) andmax{Za(t), 27 (t) +
A} = max{Zy(t), 25(t)} = x5(t) = x5(t).

Case 4:Z5(t) < Z1(t) + A < zi(t). Here(z](t), 25(t)) = (Z1(¢), 71 (¢t) + A) andmax{zo(t), 27 (t) +

A} = max{Za(t),Z1(t) + A} = Z1(t) + A = 24 (¢). This completes the proof.

The properties of canonical trajectories allow us to cagrsivery restricted subset of trajectories when

computing the optimum.

Corollary 6.4.2. If the two-crane problem has an optimal solution, then thisran optimal solution with

the following characteristics:

98



6.4. CANONICAL TRAJECTORIES

(a) While not processing a task, the left (right) crane isaraw the right (left) of both the previous and the

next stop.

(b) While not processing a task, the left (right) crane is mgyun a direction toward its next stop if it is to

the right (left) of the previous or next stop.

(c) A crane never moves in the direction away from its next stdess it is adjacent to the other crane at

all times during such motion.

(d) While not processing a task, the left (right) crane carstagionary only if it is (i) at the previous or the

next stop, whichever is further to the left (right), or (ijljacent to the other crane.

Proof.

(a) If crane 1 (the left crane) is to the right of both its poaid and next stop at some timethen
x1(t) > z1(t). This is impossible in a canonical trajectory, in which(t) = min{z(¢), z2(t) — A}. The
argument is similar for crane 2.

(b) Suppose crane 1 is to the right of its previous stop. Du@)tat is not to the right of its next stop,
which must therefore be to the right of the previous stop. ¥fot haver,(¢t) > z1(¢) as in (a), and we
cannot have; () < z;(t), since this means the crane cannot reach its next stop in 8merane 1 is on its
canonical trajectory, which means that it is moving towaschiext stop. The argument is similar if crane is
to the right of the next stop.

(c) From (a) and (b), at a given timtecrane 1 can be moving in the direction opposite its next sty o
if it is at or to the left of both the previous and next stops.isiieans that it will be to the left of both at

timet + At, so thatz; (t + At) < z1(t + At). But since
x1(t + At) = min{z (t + At), zo(t + At) — A}

this means:; (t + At) = zo(t+ At) — A, and crane 1 is adjacent to the other crane. Since crane viagno
left betweert andt + At, it must be adjacent to the other crane at tinas well.

(d) From (a) and (b), a stationary crane 1 must be at or to thbad¢h the previous and the next stop. If
it is at one of them, then (i) applies. If it is to the left of hothenx;(¢) < z1(¢), which again implies that

x1(t) = x2(t) — A, and (ii) holds.

99



6.5. DYNAMIC PROGRAMMING RECURSION

6.5 Dynamic Programming Recursion

The optimal control problem for the cranes is not simply ateradbf computing an optimal space-time
trajectory. Itis complicated by three factors: (a) eacmermust perform tasks in a certain order; (b) each
task must be performed at a certain location for a certairuataf time; and (c) the cranes must not interfere
with each other. We chose to solve the problem with dynanogmming because it has the flexibility to
deal with these additional constraints while preservintinaglity (up to the precision allowed by the space
and time granularity). The drawback is a potentially expigdstate space, but we will show how to keep it
under control for problems of reasonable size. To simpldtation, we assume from here out thst = 1.
There are three state variables for each crane. Two of them.@andy,.; as defined in model (6.1), and

the third is

amount of time crane will have been processing at timer 1
Uct =

(O if the crane is neither processing nor starts procesgitimat)

In principle the recursion is straightforward, althoughragtical implementation requires careful man-
agement of state transitions and data structures.zlLet (x4, z9:), and similarly fory, andu,. Also let

2z = (z, yt, ue). Itis convenient to use a forward recursion:

ger1(zer1) = min - {h(t Yy, ue) + g1(2)} (6.4)
ZtGS_l(Zt+1)

whereg;(z;) is the cost of an optimal trajectory between the initialesttd state, at timet, h(t, y;, uy) IS
the cost incurred at timg and.S—!(z;, 1) is the set of states at tintefrom which the system can move to
statez;,; at timet + 1. Given the cost function (6.2), the cdst, y;, u:) iS > . he(t, ye, ut), Where

CVyct (t - Ryct) If Uet = 1

hc(tv Y, ut) -
0 otherwise

The boundary condition is

go(z0) =0

whenz is the initial state. The optimal cost 4s:

max

(27, )» Wherezp, . is the desired terminal state.
For each state,;, the recursion (6.4) computes the minimygm, (z;+1) and the state, = stjrll(ztﬂ)
that achieves the minimum. Thugrll(ztﬂ) points to the state that would precede in the optimal

trajectory if ;41 were in the optimal trajectory. For a basic recursion, thet tableg; () is stored in

100



6.6. REDUCTION OF THE STATE SPACE

memory untilg; 12(-) is computed, and then released (this is modified in the netiosg. Thus only two
consecutive cost tables need be stored in memory at anyroee Tihe tables, +1( ) of pointers is stored
offline. Then ifzy is the final state, we can retrace the optimal solution inneverder by reading the tables

s;41 () into memory one at a time and setting= s, (z41) fort =N —1,N —2,...,0.

6.6 Reduction of the State Space

We can substantially reduce the size of the state space ibaeree that in practical problems, the cranes
spend much more time processing than moving. The typicalgssing time for a state ranges from two
to five minutes (sometimes much longer), while the typicahsit time to the next location is well under
a minute. Furthermore, the state variables representeggitm and task assignment.{ andy,.;) cannot
change while the crane is processing.

These facts suggests that the processing time state \ewigtdhould be replaced by anterval U, =
[ule, ul] = {ul9, u's ..,ul¥} of consecutive processing times. A single “stafe}, us, Us) =

(¢, ug, (U1, Uge)) NOW represents a set of states, namely the Cartesian product

{(@e, 9, (3,7)) |7 € Ury, j € Ui}

The possible state transitions for either crarsge shown in Table 6.1. The transitions in the table are
feasible only if they satisfy other constraints in the pesb] including those based on time windows, the
physical length of the track, and interactions with the odrane. The transitions can be explained, line by

line, as follows:

1. Because the processing time interval is the singléiof], the crane can be in motion and can in
particular move to either adjacent location. When it agigethe next location, the currently assigned
task can start processing if the crane is in the correctipasitn which case the state interval is
U = [0,1] to represent two possible states: one in which the task dmtestart processing at time
t + 1, and one in which it does (the intervallis 1] if the deadline forces the task to start processing

att + 1). If the crane is in the wrong location for the task, the stateainso, 0].

2. None of the states in the intenjal us] allow processing to finish at time-1. So all of the processing
time states advance by one—except possibly the zero stapehich processing has not yet started

and can be delayed yet again if the deadline permits it.

101



6.7. EXPERIMENTAL RESULTS

3. The last state in the intervil, P, , ] allows processing to finish at tinte- 1. This state splits off from
the interval and assumes one of the processing state itgémiine 1. The other states evolve as in

line 2.
4. Because the task is underway in all states, all procesisigg advance by one.
5. This is similar to line 3 except that there is no zero state.

There is no need to store a pointg‘_rﬁl(xt,yt, (i,7)) for every statexy, y, (4,7)) in (x4, y¢, Up). This
is because when,; > 2, the state of crane preceding(x.t, yct, tet) Must be(xqt, yer, uee — 1). Thus we
stores; ! (x4, ¢, (4, 7)) only wheni < 1orj < 1.

However, we must store the cagt 1 (x4, v¢, (4, 7)) for every(i, j), because it is potentially different for
every (i, j). Fortunately, it is not necessary to update this entireestabkeach time period, because most of

the costs evolve in a predictable fashioni, If > 2, then
Ger1(Ty, Y, (1, 3)) = ge(@e, ye, (i — 1,5 — 1))
So for each pair of taskg, y') we maintain a two-dimensional circular queig, (-, -) in which the cost
ge+1((Ly, Ly ), (y,9'), (3, 7)) (6.5)
fori,j > 2 is stored at location
Qyy ((t +1i—2) mod M, (t + j —2) mod M)

where M is the size of the arrag),, (-,-) (i.e., the longest possible processing time). In each gesie
insert the cost (6.5) int@ only for pairs(i, ) in whichi = 2 or j = 2; the costs for other pairs withj > 2
were computed in previous periods. Thus only one row and oharm of the array are altered in each
time period, which substantially reduces computation tikvdeni < 1 or j < 1, the cost (6.5) is stored as
atable entryy, 1 (x¢, v, (4, 7)) that is updated at every time period, as with pointers.

The arrayQ,,, (-, -) is created when the stateL,, L,/), (v,v'), (4, 7)) is first encountered with j > 2.

The array is kept in memory over multiple periods until it slonger updated, at which time it is deleted.

6.7 Experimental results

We report computational tests on a representative prohheis based on an actual industry scheduling

situation. There are 60 jobs, each of which contains fromtweight tasks. We obtain smaller instances

102



6.7. EXPERIMENTAL RESULTS

by scheduling only some of the jobs, hamely the first ten (deoof release time), the first twenty, and so
forth. Results on other problems we have examined are simila

Release times were obtained from the production schedui@adxdeadlines were given. We initially set
the deadline of each job to be 40 minutes after each relaase With the expectation that these may have
to be relaxed to obtain a feasible solution.

We divided the 108.5-meter track into ten equal segmentthatceach distance unit represents 10.85
meters. Each crane can traverse the length of the track ut @@ minute. Because we want the crane
to move one distance unit for each time unit, we set the timeatrsix seconds. The 60-job schedule
requires about four hours to complete, which means that yhardic programming procedure has about
Tmax = 2400 time stages.

Table 6.2 shows computation times obtained on a desktop R@ng Windows XP with a Pentium D
processor 820 (2.8 GHz). The assignment and sequencinp®tiged in each instance is the best one that
was obtained by a heuristic procedure. Feasible solutiare found for all the instances except the full
60-job problem. To obtain a feasible solution of this profjeve were obliged to enlarge the time windows
from 40 to 95 minutes by postponing the deadlines. Thistifies the combinatorial nature of the problem,
because the addition of only ten jobs created new bottlentngt delayed at least one job nearly 95 minutes
beyond its release time. Wider time windows result in a lagiate space and thus greater computation
time. Nonetheless, the 60-job problem with 95-minute wimslavas solved in well under a minute.

The optimal trajectories for selected instances appeaigs. B.4—6.6. The horizontal axis represents
distance along the track in 10.85-meter units. The vertiga represents time in 6-second units. Thus the
schedule for the 60-job problem spans about 2300 time umit230 minutes. The space-time trajectory
of the left crane appears as a solid line, and as a dashedlinikef right crane. The left crane begins and
ends at the leftmost position, and analogously for the gine. Note that the cranes are at rest most of the
time. The trajectories are canonical trajectories as defab@ve, which ensures a certain consistency in the
way the two cranes interact. In the 60-job instance, theclafe finishes before the right crane, which may
indicate a poor allocation of jobs to cranes.

Figures 6.7-6.9 track the evolution of state space size tiver. The horizontal axis corresponds to
time stages, which again are separated by six seconds. Thigenwf time stages exceeds the duration of
the optimal trajectory, because trajectories with longeations are considered in the solution process. The

vertical axis is the number of states at each time stage. febe space size remains quite reasonable, never

103



6.7. EXPERIMENTAL RESULTS

450 T T T N T
‘output/solution-time-LEFT.out’
‘output/solution-time-RIGHT.out” -
400 E
0p B
i .
300 | I g
L |
L 1
250 o 771 B
[ 1 ‘
- - il
200 —Liiij R ‘ ]
150 - — ] i
100 — ! .
50 | — — E s
- E—
O 74,7 1 1 1 1
0 2 4 6 8 10

Figure 6.4: Optimal solution of the 10-job instance.

exceeding 2000 states, even though the theoretical maxisastronomical.

We found computation time to be sensitive to the width of iheetwindows. Typically, only a few
time windows must be wide to allow a feasible solution, beeaonly a few jobs must be delayed so that
others may be completed on time. Yet it is difficult or impb#sito predict which are the critical jobs. Itis
therefore necessary to be able to solve problems in whiabf #tle time windows are wide, perhaps on the
order of 90 minutes as in the 60-job instance. It was to accodate wide time windows that we developed
the state space reduction technigues of Section 6.6.

Table 6.3 reveals the critical importance of these tectegquror each of the three problem instances,
the table shows the average time and state space size tetpicempute the optimal trajectories for ten
different job assignments and sequencings. The assigsnaedt sequencings were those obtained in ten
iterations of a heuristic method. Without the state spadeaton technique, the dynamic programming
algorithm could scale up to only 30 jobs, and even then omynésrow time windows. The width of the
time windows is reduced in these experiments to make thdgrobasier to solve, while still maintaining
feasibility. The 30-job instance has a feasible solutiothv85-minute time windows, but larger instances
require wider time windows to achieve feasibility, and ttéaises the state space to explode. However, the
table shows that the state space reduction technique rethesaumber of states by a factor of about 20, and

the computation time by a factor of ten. It is this state spadeiction that makes the full 60-job problem

104



6.7. EXPERIMENTAL RESULTS

1600 T T

T T
‘output/solution-time-LEFT.out’
‘output/solution-time-RIGHT.out’ -~

1400 .

1200

1000

800 -

600

400

200

0 2

Figure 6.5: Optimal solution of the 30-job instance.

2500 T T

"outputlsolution-time-'LEFT‘out’
‘output/solution-time-RIGHT.out’ -------

2000

1500

1000 |

0 2

Figure 6.6: Optimal solution of the 60-job instance.

105



6.7. EXPERIMENTAL RESULTS

T T T T T
‘output/statecount.out’

300 350 400 450

0 50 100 150 200 250

Figure 6.7: Evolution of the state space size for the 104aince. The horizontal axis is the time stage,

and the vertical axis the number of states.

1000 T T T T T T
‘output/statecount.out’ -
900 g
800 - E 4
700 é 4
600 E 4
500 g -
P —— ]
— = ]
. _ = .=
0 200 400 600 800 1000 1200 1400 1600

Figure 6.8: Evolution of the state space size for the 304staince.

106



2000 : : ‘ .
. ‘output/statecount.out’ -~

1800 -

1600

1400

1200

1000 [

600

400 - e e |

200 | Sl =

0
0 500 1000 1500 2000 2500

Figure 6.9: Evolution of the state space size for the 60-jstaince.

tractable.

6.8 Conclusions and Future Research

We presented a specialized dynamic programming algoritiandomputes optimal space-time trajectories
for two interacting factory cranes. The state space is endrally represented in such a way that medium-
sized problems can be solved to optimality. The techniqueségul both for solving a significant number
of practical problems and as a benchmarking and calibratohfor heuristic methods that solve larger
problems. Unlike other methods, it specifies precisely haanes can yield to one another to minimize
delay in carrying out a production schedule.

We also proved structural theorems to show that only cetyaies of trajectories need be considered to
obtain an optimal solution. This not only accelerates smubf the problem, but it permits easier and safer
operation of the cranes.

An obvious direction for future research is to attempt toegatize the structural results to three or
more cranes. This would allow heuristic methods that aratapof solving large, multi-crane problems to
examine fewer trajectories. Another useful research pragrvould be a systematic empirical comparison

of heuristic methods with the exact algorithm described: Herdetermine how best to design and tune a

heuristic algorithm.

107



Table 6.1: Possible state transitions for cramsing an interval-valued state variable for processingtim

State at timeé State at timeé + 1

1. (xcta Yet, [07 0]) ('I/’ Yet, [07 0])1 or (,I/, Yet, [0, 1])172 or (‘TI, Yets [15 1])17273

2. (xcta Yet, [07 UZ])4 (xch Yet, [07 ug + 1]) or (xch Yet, [17 U2 + 1])274

3. (xcta Yets [07 Pyct]) (I'Ct, Yet, [07 Pyct]) or (xcta Yets [17 Pyct])3 or

(I'Ct, y/a [07 0])5 or (xcta 3/17 [07 1])2,5 or (xcta yla [17 1])273,5

A (Tepy Yet, [u1, u2))¥S (Tets Yer, [ur + 1, ug + 1))

5. (xctay(:t, [ula Pyct])G (Cﬂct,yct, [U1 + 17Pyct]) or

(Cﬂct, y,a [05 0])5 or (tha y/7 [07 1])275 or (Qﬂcta y/a [15 1])27375

1The next location:’ is zet — 1, Tet, OF Zer + 1.

2This transition is possible only if tagk.: processes at locatior.

3This transition is possible only if tagk.; can start no later than timte+ 1.
‘Here0 < uz < P,,,.

5Tasky' is the task that follows tasi.; on crane.

SHereu; > 0.

108



Table 6.2: Computational results for subsets of the 60-joblpm.

Jobs Time  Computation
window time
(mins) (sec)
10 40 6.8
20 40 7.6
30 40 15.8
40 40 16.7
50 40 18.8
60 95 48.1

Table 6.3: Effect of state space reduction on state spaeenid computation time. Each instance is solved
for 10 different jobs assignments and sequencings. “Béfame “after” refer to results before and after

state space reduction, respectively.

Jobs  Time | Avg number Peak number Average
window of states of states time (sec)
(min) | Before After| Before After| Before After

10 25 3224 139 | 9477 465 | 15.8 2.0
20 35 3200 144 | 22,204 927 | 82.6 8.6
30 35 3204 216 | 22,204 940 | 143.8 15.0

109



Bibliography

[1]
2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

S. B. Akers. Binary decision diagramKEE Transactions on ComputeS-27:509-516, 1978.

H. R. Andersen. An introduction to binary decision diagys. Lecture notes, available online, IT

University of Copenhagen, 1997.

H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemahionstraint store based on multivalued
decision diagrams. In C. Bessiere, edit®rinciples and Practice of Constraint Programming (CP

2007) volume 4741 of_ecture Notes in Computer Scienpages 118-132. Springer, 2007.

Krzysztof Apt. Principles of Constraint ProgrammingCambridge University Press, New York, NY,

USA, 2003.

R. Armstrong, L. Lei, and S. Gu. A bounding scheme fordeg the minimal cycle time of a single-
transporter N-stage process with time-window constraisopean Journal of Operational Research

78:130-140, 1994.

P. Baptiste, B. Legeard, M.-A. Manier, and C. Varnier. gheduling problem optimisation solved with
constraint logic programming. I8econd International Conference on the Practical Appiaraiof

Prolog, pages 47—66, London, 1994.

B. Becker, M. Behle, F. Eisenbrand, and R. Wimmer. BDDa branch and cut framework. In S. Niko-
letseas, editozxperimental and Efficient Algorithms, Proceedings of tteldternational Workshop
on Efficient and Experimental Algorithms (WEA 0&)lume 3503 of_ecture Notes in Computer Sci-

ence pages 452-463. Springer, 2005.

D. Billings, N. Burch, A. Davidson, R. Holte, J. Schaeffé. Schauenberg, and D. Szafron. Approxi-
mating game-theoretic optimal strategies for full-scalkgr. InProceedings of the 18th International

Joint Conference on Atrtificial Intelligence (IJCABcapulco, Mexico, 2003.

D. Billings, L. Pefa, J. Schaeffer, and D. Szafron. Thealenge of poker.Artificial Intelligence
134(1-2):201-240, January 2002. Special Issue on Gamesp@ers and Artificial Intelligence.

R. E. Bryant. Graph-based algorithms for boolean fiamcmanipulation. IEEE Transactions on

ComputersC-35:677—691, 1986.

110



[11] A. Che and C. Chu. Single-track multi-hoist schedulprgblem: A collision-free resolution based on

a branch-and-bound approadhternational Journal of Production Researct?:2435-2456, 2004.

[12] H. Chen, C. Chu, and J.-M. Proth. Cyclic scheduling obahwith time window constraintslEEE
Transactions on Robotics and Automatidd:144—-152, 1998.

[13] C. F. Daganzo. The crane scheduling probl@mansportation Research Part B3:159-175, 1989.
[14] Rina DechterConstraint ProcessingMorgan Kauffman, 2003.

[15] A. Gilpin. Algorithms for abstracting and solving imperfect informatgames PhD thesis, Carnegie

Mellon University, Computer Science Department, 2009.

[16] A. Gilpin and T. Sandholm. A competitive Texas Hold'emmker player via automated abstraction and
real-time equilibrium computation. IRroceedings of the National Conference on Artificial Iritell

gence (AAAL)Boston, MA, 2006.

[17] A. Gilpin and T. Sandholm. Lossless abstraction metfowdsequential games of imperfect informa-

tion. Journal of the ACM54(5), 2007.

[18] A. Gilpin, T. Sandholm, and T. B. Sgrensen. Potentadi@ automated abstraction of sequential
games, and holistic equilibrium analysis of Texas Hold’eokgy. InProceedings of the National

Conference on Atrtificial Intelligence (AAANancouver, Canada, 2007.

[19] A. Gilpin, T. Sandholm, and T. B. Sgrensen. A heads-ugimd texas hold’em poker player: Dis-
cretized betting models and automatically generated ibguin-finding programs. Irinternational

Conference on Autonomous Agents and Multi-Agent SysteANdAS) Estoril, Portugal, 2008.

[20] J.-L. Goffin. On the convergence rate of subgradieningigation methodsMathematical Program-

ming, 13:329-347, 1977.

[21] T.Hadzic and J. N. Hooker. Postoptimality analysisifieger programming using binary decision dia-
grams, presented at GICOLAG workshop (Global Optimizatiategrating Convexity, Optimization,
Logic Programming, and Computational Algebraic GeometwW&nna. Technical report, Carnegie

Mellon University, 2006.

111



[22] T. Hadzic and J. N. Hooker. Cost-bounded binary denisiiagrams for 0-1 programming. Technical

report, Carnegie Mellon University, 2007.

[23] T. Hadzic, J. N. Hooker, B. O'Sullivan, and P. Tiedemarpproximate compilation of constraints
into multivalued decision diagrams. In P. J. Stuckey, edRanciples and Practice of Constraint Pro-
gramming (CP 2008)volume 5202 ol ecture Notes in Computer Sciengages 448-462. Springer,
2008.

[24] T. Hadzic, J. N. Hooker, and P. Tiedemann. Propagateagaable equalities in an MDD store. In
L. Perron and M. A. Trick, editor®roceedings of the International Workshop on IntegratibAndifi-
cial Intelligence and Operations Research Techniques insBaint Programming for Combintaorial
Optimization Problems (CPAIOR 2008)olume 5015 ofLecture Notes in Computer Sciengages
318-322. Springer, 2008.

[25] J. Hirriart-Urruty and C. LemaréchalFundamentals of Convex Analysi§Springer-Verlag, Berlin,

2001.
[26] J. N. Hooker.Integrated Methods for Optimizatiotspringer, 2007.

[27] A. Juditsky, G. Lan, A. Nemirovski, and A. Shapiro. Stastic approximation approach to stochastic

programming, 2007. Working paper.

[28] T. Kam, T. Villa, R. K. Brayton, and A. L. Sangiovannitvientelli. Multi-valued decision diagrams:

Theory and applicationdnternational Journal on Multiple-Valued Logig:9-62, 1998.

[29] K. H.Kim and Y.-M. Park. A crane scheduling method forrfpeontainer terminalsEuropean Journal

of Operational Researgl56:752—-768, 2004.

[30] D. Koller, N. Megiddo, and B. von Stengel. Efficient coutation of equilibria for extensive two-

person gamesGames and Economic Behavjd®(2):247-259, 1996.

[31] G.Lan, Z. Lu, and R. Monteiro. Primal-dual first-ordeetinods withO(1/¢) iteration-complexity for

cone programming, 2009. To appeaMiath. Prog.

[32] C. Y. Lee. Representation of switching circuits by lmindecision programsBell Systems Technical

Journal 38:985-999, 1959.

112



[33] L. Lei, R. Armstrong, and S. Gu. Minimizing the fleet sizéth dependent time-window and single-

track constraintsOperations Research Letters4:91-98, 1993.

[34] L. Leiand T. J. Wang. A proof: The cyclic hoist schedgliproblem is NP-complete. Working paper,

Rutgers University, 1989.

[35] L. Leiand T. J. Wang. Determining optimal cyclic hoishedules in a single-hoist electroplating line.

[IE Transactions 26:25—-33, 1994.

[36] J. Leung and G. Zhang. Optimal cyclic scheduling fompwd circuit board production lines with
multiple hoists and general processing sequen&EE Transactions on Robotics and Automation

19:480-484, 2003.

[37] J. M. Y. Leung, G. Zhang, X. Yang, R. Mak, and K. Lam. Opingyclic multi-hoist scheduling: A

mixed integer programming approadbperations Research2:965-976, 2004.

[38] A.Lim, B. Rodrigues, F. Xiao, and Y. Zhu. Crane schedglivith spatial constraintfNaval Research

Logistics 51:386—406, 2004.

[39] J. Liu and Y. Jiang. An efficient optimal solution to thea-hoist no-wait cyclic scheduling problem.

Operations Resear¢®b3:313-327, 2005.

[40] J. Liu, Y. Jiang, and Z. Zhou. Cyclic scheduling of a dsboist in extended electroplating lines: A

comprehensive integer programming solutitle Transactions 34:905-914, 2002.

[41] M.-A. Manier and C. Bloch. A classification for hoist satiing problems.International Journal of

Flexible Manufacturing System5:37-55, 2003.

[42] L. Mocchia, J.-F. Cordeau, M. Gaudioso, and G. LapoAebranch-and-cut algorithm for the quay

crane scheduling problem in a container termifdval Research Logistic§3:45-59, 2005.

[43] A. Nemirovski. Prox-method with rate of convergen@él /t) for variational inequalities with Lips-
chitz continuous monotone operators and smooth convegavensaddle point problemSIAM Jour-

nal on Optimization15(1):229-251, 2004.

[44] Y. Nesterov. A method for unconstrained convex miniatian problem with rate of convergence

O(1/k?). Doklady AN SSSR69:543-547, 1983. Translated to EnglistSasiet Math. Docl.

113



[45] Y. Nesterov.Introductory Lectures on Convex Optimization: A Basic GauApplied Optimization.

Kluwer Academic Publishers, 2004.

[46] Y. Nesterov. Excessive gap technique in nonsmooth@ominimization.SIAM Journal on Optimiza-

tion, 16(1):235-249, 2005.
[47] Y. Nesterov. Smooth minimization of non-smooth funag. Math. Program, 103(1):127-152, 2005.

[48] W. C. Ng. A branch and bound algorithm for hoist scheulylbf a circuit board production line.
International Journal of Flexible Manufacturing Syster@3t5-65, 1996.

[49] W. C. Ng. Crane scheduling in container yards with iti&me interference European Journal of

Operational Researghl64:64—78, 2005.

[50] W. C. Ng and J. Leung. Determining the optimal move tifegsa given cyclic schedule of a material

handling hoist.Computers and Industrial Engineering2:595-606, 1997.
[51] M. Osborne and A. Rubinstei®s Course in Game ThearMIT Press, Cambridge, MA, 1994,

[52] R. I. Peterkofsky and C. F. Daganzo. A branch and boutdatisa method for the crane scheduling
problem. Transportation Research Part B4:159-172, 1990.

[53] L. W. Phillips and P. S. Unger. Mathematical programgngolution of a hoist scheduling problem.
AlIE Transactions8:219-321, 1976.

[54] R. Rodosek and M. Wallace. A generic model and hybrisbddigm for hoist scheduling problems.
In M. Maher and J.-F. Puget, editoRrinciple and Practice of Constraint Programming (CP 1998)
volume 1520, Pisa, 1998. Springer.

[55] I. Romanovskii. Reduction of a game with complete megyrtora matrix game Soviet Mathematics

3:678-681, 1962.

[56] Francesca Rossi, Peter van Beek, and Toby Watdmdbook of Constraint Programming (Founda-

tions of Artificial Intelligence) Elsevier Science Inc., New York, NY, USA, 2006.

[57] J. Shiand M. Littman. Abstraction methods for game th&o poker. InComputers and Gamggages
333-345. Springer-Verlag, 2001.

114



[58] W.-J. van Hoeve, G. Pesant, L.-M. Rousseau, and A. SalahaNew Filtering Algorithms for Com-
binations of Among Constraint€onstraints 14:273-292, 2009.

[59] C. Varnier, A. Bachelu, and P. Baptiste. Resolutionhaf tyclic multi-hoists scheduling problem with
overlapping partitionsINFOR, 35:309-324, 1997.

[60] B.von Stengel. Efficient computation of behavior stgaés.Games and Economic Behavid#:220-

246, 1996.

[61] B. von Stengel. Equilibrium computation for games iratdgic and extensive form. In Noam Nisan,
Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani, editétdgjorithmic Game TheoryCambridge
University Press, 2007.

[62] L. Wei and T. J. Wang. The minimum common-cycle algaritfor cycle scheduling of two material

handling hoists with time window constraintglanagement Scienc87:1629-1639, 1991.

[63] G. Yang, D. P. Ju, W. M. Zheng, and K. Lam. Solving mukipioist scheduling problems by use of

simulated annealingTransportation Research Part, B6:537-555, 2001.

[64] C. Zhang, Y.-W. Wan, J. Liu, and R. J. Linn. Dynamic crateployment in container storage yards.
Ruan Jian Xue Bao (Journal of Softwarép:11-17, 2002.

[65] Z. Zhou and L. Li. A solution for cyclic scheduling of mntithoists without overlapping Annals of

Operations Researclfonline), 2008.

[66] Y. Zhu and A. Lim. Crane scheduling with non-crossinghswaint. Journal of the Operational Re-

search Society7:1464-1471, 2006.

115



