
Essays on equilibrium computation, MDD-based constraint programming

and scheduling

Samid Hoda

April 2010

Tepper School of Business

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

John N. Hooker (Chair)

Javier Peña

Willem-Jan van Hoeve

François Margot

Samuel Burer

Submitted in partial fulfillment of the requirements for thedegree of Doctor of Philosophy in

Algorithms, Combinatorics and Optimization

Abstract

This thesis addresses three topics: solving the Nash Equilibrium problem for two-player zero-sum games

presented in extensive form, constraint programming usingmultivalued decision diagrams and scheduling

cranes in a factory.

In the first chapter, we develop a first-order method based on asmoothing technique of Nesterov that

allows us to solve problems that are several orders of magnitude larger than was possible previously.

The second chapter investigates constraint programming based on multivalued decision diagrams (MDDs).

We present a systematic framework for designing filtering algorithms for MDDs as well as concrete instanti-

ations for several different global constraints. We also discuss some ideas for primal heuristics and branching

schemes using MDDs. The third chapter describes our implementation of a solver for constraint satisfaction

problems where the domain-store has been replaced by MDDs. In the fourth chapter we present a case

study of propagatingamong constraints using our framework and provide more evidence that MDD-based

propagation can result in enormous reduction in the size of the search tree and solution time.

In the final chapter of this thesis we address the problem of scheduling a pair of cranes that share a track

to best follow a production schedule. We focus on the problemof solving the optimal control problem for

the trajectories and present a dynamic programming solution.

Contents

1 Introduction 1

2 Computing Nash Equilibria 3

2.1 Introduction 3

2.2 Smoothing techniques 4

2.3 Treeplexes 7

2.4 Uniform treeplexes 12

2.5 Implementation 17

2.5.1 Nesterov’s Excessive Gap Technique 17

2.5.2 Complexity of each EGT iteration 19

2.5.3 Heuristics 20

2.6 Computational results 23

2.6.1 Experimental setup 23

2.6.2 Experimental comparison of prox functions 25

2.6.3 Experimental comparison of the heuristics 26

2.6.4 Application to Texas Hold’em poker 26

2.6.5 Memory requirements 29

2.6.6 Speedup from parallelizing the matrix-vector product 31

2.7 Conclusions and future research 31

3 MDD-based Constraint Programming 33

3.1 Introduction 33

3.2 Constraint Programming Preliminaries 34

ii

3.3 MDDs and MDD-Based Constraint Solving 36

3.4 A Framework for MDD Propagation 39

3.4.1 An inequality propagator 39

3.4.2 The General Framework 41

3.4.3 Propagatingxi = xj . 42

3.4.4 Propagatingxi 6= xj . 42

3.4.5 Propagatingxi < xj . 43

3.4.6 Propagating theAll-DifferentConstraint . 44

3.4.7 Propagating Two-sided Inequality Constraints 44

3.4.8 Propagatingamong Constraints . 46

3.4.9 Propagating thesequenceConstraint . 47

3.4.10 Propagating the Generalized Cardinality Constraint 47

3.4.11 Propagating theUnary ResourceConstraint 48

3.4.12 Propagating theelementConstraint . 49

3.5 Reusing Domain Propagators 49

3.5.1 Motivation 49

3.5.2 Using Domain Information 50

3.5.3 A Faster Framework for Reusing Domain Propagators 51

3.5.4 The Relationship with ‘Specialized’ Propagators 52

3.5.5 A Scheme for the Partial Updating of Node Information 53

3.6 Achieving MDD consistency 54

3.7 Primal Heuristics and Branching Strategies 56

3.7.1 MDD-Based Constraint Optimization and Strong Branching 56

3.8 Conclusion 56

4 An MDD-based Constraint Programming System 58

4.1 Introduction 58

4.2 Working with Finite-Domains 58

4.3 The MDD Implementation 60

4.4 Specifying a Problem 63

4.5 TheCONSTRAINT class . 65

4.6 Constraint-Based Search 71

4.6.1 TheSOLVER class . 73

4.7 Conclusions and Future Work 75

5 Propagating Among Constraints 78

5.1 MDD Filtering Heuristics for Among 79

5.2 Refining the MDD 80

5.3 Experimental Results 81

5.3.1 Random Instances 82

5.3.2 Nurse Rostering Instances 83

5.4 Conclusion 87

6 Optimal Movement of Factory Cranes 89

6.1 Introduction 89

6.2 Previous Work 91

6.3 The Optimal Trajectory Problem 92

6.4 Canonical Trajectories 95

6.5 Dynamic Programming Recursion 100

6.6 Reduction of the State Space 101

6.7 Experimental results 102

6.8 Conclusions and Future Research 107

Bibliography 110

List of Figures

2.1 Comparison of the entropy and Euclidean prox functions.The value axis is the gapǫ (Equa-

tion 2.2). .. . 25

2.2 Experimental evaluation of Heuristic 1. The value axis is the gapǫ (Equation 2.2) 26

2.3 Heuristic 2 applied at different intervals. The value axis is the gapǫ (Equation 2.2) 27

3.1 (a) MDD forx1 = x2. (b) MDD after processing foramong((x1, x2), {1}, 0, 1) 37

5.1 An MDD in which the solid edge fromp1 to p3 (representingx2 = 1) is redundant for the

constraintamong((x1, x2, x3, x4), {1}, 2, 2). 79

5.2 Refining MDD (a) by splitting nodep3 yields (b), which after filtering for the constraint

among((x1, x2, x3, x4), {1}, 2, 2) yields (c). 81

5.3 (σ = 1) Comparing the effect of MDD width in terms of backtracks (a)and time (b). 83

5.4 (σ = 2.5) Comparing the effect of MDD width in terms of backtracks (a)and time (b). . . . 84

5.5 (σ = 5) Comparing the effect of MDD width in terms of backtracks (a)and time (b). 84

5.6 (σ = 7.5) Comparing the effect of MDD width in terms of backtracks (a)and time (b). . . . 84

6.1 Sample space-time trajectory for one task. The shaded vertical bars denote processing,

which in this case consists of loading and unloading. 95

6.2 Extremal trajectory for the left crane (a) when the destination is to the right of the origin,

and (b) when the destination is to the left of the origin. 96

6.3 Canonical trajectory for the left crane (leftmost solidline). 96

6.4 Optimal solution of the 10-job instance. 104

6.5 Optimal solution of the 30-job instance. 105

6.6 Optimal solution of the 60-job instance. 105

v

6.7 Evolution of the state space size for the 10-job instance. The horizontal axis is the time

stage, and the vertical axis the number of states. 106

6.8 Evolution of the state space size for the 30-job instance. 106

6.9 Evolution of the state space size for the 60-job instance. 107

List of Tables

2.1 Problem sizes (when formulated as a linear program) for the instances used in our experiments. 24

2.2 Average CPU time per EGT iteration for the instances usedin our experiments. 24

2.3 Memory footprint in gigabytes of CPLEX interior-point method (IPM), CPLEX simplex,

and our EGT algorithms. 30

2.4 Effect of parallelization for theTexas instance. 31

5.1 Nurse rostering instances. The effect of MDD width when finding one feasible solution. . . . 85

5.2 Nurse rostering instances. The effect of MDD width when finding all feasible solutions. . . . 86

5.3 Nurse rostering instances: MDD filtering compared to state-of-the-art domain filtering. . . . 87

6.1 Possible state transitions for cranec using an interval-valued state variable for processing

time. .. 108

6.2 Computational results for subsets of the 60-job problem. 109

6.3 Effect of state space reduction on state space size and computation time. Each instance

is solved for 10 different jobs assignments and sequencings. “Before” and “after” refer to

results before and after state space reduction, respectively. 109

vii

Acknowledgements

I acknowledge so and so.

viii

The dedictation

Chapter 1

Introduction

This thesis consists of three main parts. In the first part we introduce smoothing techniques for solving the

Nash equilibrium problem for two-player zero-sum sequential games. Although this problem can be solved

using linear programming, the resulting formulations for ‘practical’ problems are intractable. One of our

goals is to solve the Nash equilibrium problems for games that arise from ‘heads-up’ poker. For example,

the payoff matrix (which appears as part of the linear programming formulation) for Texas Hold’em poker

has more than1018 nonzero entries.

Our approach follows a current trend of applying first-orderalgorithms to non-smooth optimization

problems. A key feature of these algorithms is their low computational cost per iteration, which makes

them particularly attractive for large problems. We adapt Nesterov’s smoothing techniques for computing

approximate equilibria. We also develop two heuristics that speed up the algorithm significantly and present

a matrix decomposition that provides enormous memory savings. These techniques enable us to solve

problems orders of magnitude larger than the prior state-of-the-art.

The next part of this thesis studies constraint programmingwhich the domain store has been replaced

by a more descriptive data structure: a multivalued decision diagram (MDD).

A key weakness of the domain store is that it transmits a limited amount of information. It cannot

account for any interaction among the variables, because any solution in the Cartesian product of the variable

domains is consistent with it. This restricts the ability ofthe domain store to pool the results of processing

individual constraints and provide a global view of the problem.

Multivalued decision diagrams(MDDs) [28] generalize binary decision diagrams (BDDs) [2,1], which

1

have long been used for circuit design/verification [10, 32]and very recently for optimization [7, 21, 22].

The MDD for a constraint set is essentially a more compact representation of a branching tree, obtained by

superimposing isomorphic subtrees. The shape of the resulting MDD depends on the order in which one

branches on the variables.

A primary research issue in applying MDDs to solving CSPs is whether there exist fast and effective

propagation algorithms for constraints. Until now (to the best of our knowledge) there were MDD propaga-

tion algorithms for the following constraints: (one-sided) inequality constraints [3],alldiff [3], equality

constraints [23], andamong constraints. The reasoning used for designing propagationalgorithms for each

of the constraints seemed to be ad-hoc. We present a systematic method for extending the reasoning used

to propagate constraints in the traditional domain store setting to design MDD propagation algorithms. We

will demonstrate the efficacy of the method by designing MDD propagation algorithms for several important

classes of constraints. We also show how this technique can be used effectively to reuse traditional filtering

algorithms for domain stores.

We conclude our work with MDD-based propagation by considering a case-study for problems that

consist of severalamong constraints. Such models arise in employee scheduling and production sequencing

problems. We show that there are substantial improvements in search time and search tree reductions. In

fact, our experiments demonstrate that the amount of propagation obtained by the MDD is substantial, even

for MDDs of very small width. There are huge savings in computation time for many of the more difficult

problem instances that we considered. For example, to solveone specifically hard instance, the domain store

needed 1,012,562 backtracks and 1684.7 seconds of computation time, while our MDD store with maximum

width of four reduced this to two backtracks and 0.04 secondsof computation time.

The final chapter is a study of a crane scheduling problem in which a list of jobs is assigned to two

cranes that share a track and cannot travel past each other. Given an assignment of jobs to cranes and the

sequence of jobs on each crane we solve the problem of generating an optimal space-time trajectory for both

cranes via dynamic programming. The natural state space of the dynamic program is intractable and we

introduce two techniques that are necessary to solve the problem using our formulation. The first technique

restricts trajectories to canonical trajectories withoutsacrificing optimality; the second technique involves a

novel state space description that represents many states implicitly as a Cartesian product of intervals. The

chapter concludes with some computational experiments illustrating our algorithm.

2

Chapter 2

Smoothing techniques for computing Nash

Equilibria of Sequential Games

2.1 Introduction

The Nash equilibria of two-person, zero-sum sequential games are the solutions to

min
x∈X

max
y∈Y
〈y, Ax〉 = max

y∈Y
min
x∈X
〈y, Ax〉 (2.1)

whereX andY are polytopes defining the players’ strategies andA is the payoff matrix [60, 30, 55, 61].

When the minimizer plays a strategyx ∈ X and the maximizer playsy ∈ Y, the expected utility to

the maximizer is〈y, Ax〉 and, since the game is zero-sum, the minimizer’s expected utility is 〈y,−Ax〉.

Problem (2.1) can be expressed as a linear program, but the resulting formulations are prohibitively large

for most interesting games. For instance, the payoff matrixA in (2.1) for limit Texas Hold’em poker has

dimension1014 × 1014 and contains more than1018 non-zero entries. Problems of this magnitude are

far beyond the capabilities of state-of-the-art general-purpose linear programming solvers. Even solving a

substantially smaller game with a106×106 payoff matrix containing 50 million non-zeros with conventional

linear programming solvers is computationally demanding both in terms of time and memory [17].

We present a novel algorithmic approach for finding approximate solutions to (2.1). To this end, we

define polytopes calledtreeplexesand concentrate on solving (2.1) whenX andY are polytopes of this

type. Treeplexes generalize simplexes and include as a special case the strategy sets of sequential games.

Our approach follows a current trend of applying first-orderalgorithms to non-smooth optimization prob-

3

2.2. SMOOTHING TECHNIQUES

lems [27, 31, 43, 46, 47]. A key feature of these algorithms istheir low computational cost per itera-

tion, which makes them particularly attractive for large problems. We adapt Nesterov’s smoothing tech-

niques [46, 47] for approximating (2.1). In particular, we develop first-order algorithms that takeO(1/ǫ)

iterations to computex ∈ X andy ∈ Y such that

0 ≤ max
v∈Y
〈v, Ax〉 −min

u∈X
〈y, Au〉 ≤ ǫ. (2.2)

Such a pair of strategies is called anǫ-equilibrium.

The simplicity and the low computational cost per iterationof our algorithm enables the computation

of near-equilibria for enormous sequential games. An implementation based on our approach has been

successful in obtainingǫ-equilibria for sequential games where the payoff matrixA is of size108× 108 and

contains more than1012 entries (Section 2.6). These games are abstracted poker games with108 information

sets and1012 leaves in the game tree. This problem size (as measured by thenumber of leaves) is over four

orders of magnitude larger than what can be handled by solving the linear programming formulation via

conventional solvers, such as interior-point methods [17,16]. Our implementation is a key component of

several successful poker-playing computer programs for full-scale Heads-Up Texas Hold’em poker [18, 19].

This chapter is organized as follows. Section 2.2 summarizes Nesterov’s smoothing technique as it

applies to problem (2.1). We highlight that technique’s crucial ingredient, a pair of suitableprox-functions

for the setsX andY. Section 2.3 presents our main idea, a template for constructing suitable prox-functions

for treeplexes. Section 2.4 considers the special case ofuniform treeplexes. For these treeplexes we provide

explicit bounds on the number of iterations needed for finding an ǫ-equilibrium. Sections 2.5 and 2.6

present some computational experience with an implementation based on our approach. Finally, Section 2.7

summarizes the main conclusions and discusses ideas for future work.

2.2 Smoothing techniques

Problem (2.1) can be stated as

min
x∈X

f(x) = max
y∈Y

φ(y) (2.3)

where

f(x) = max
y∈Y

〈y, Ax〉 and φ(y) = min
x∈X
〈y, Ax〉.

4

2.2. SMOOTHING TECHNIQUES

The functionsf andφ are respectively convex and concave non-smooth functions.The left-hand side of (2.3)

is a standard convex minimization problem of the form

h̄ := min{h(x) : x ∈ X}. (2.4)

First-order methodsfor solving (2.4) are algorithms for which a search direction at each iteration is obtained

using only the first-order information ofh, such as its gradient or subgradient. Whenh is smooth with

Lipschitz gradient, there is a first-order algorithm for finding a pointx ∈ X such thath(x) ≤ h̄ + ǫ after

O(1/
√

ǫ) iterations [44]. Whenh is non-smooth, subgradient algorithms can be applied, but they have a

worst-case complexity ofO(1/ǫ2) iterations [20]. However, that pessimistic result is basedon treatingh as

a black-boxwhere the value and subgradient are accessed via an oracle. For non-smooth functions with a

suitable max structure, Nesterov devised first-order algorithms requiring onlyO(1/ǫ) iterations by applying

a cleversmoothing technique[46, 47]. In this paper, we adapt that smoothing technique for solving problem

(2.1).

The key component of Nesterov’s smoothing technique is a pair of prox-functionsfor the setsX and

Y. These prox-functions are used to construct smooth approximationsfµ ≈ f andφµ ≈ φ. To obtain

approximate solutions to (2.3), gradient-based algorithms can then be applied tofµ andφµ.

Definition 2.2.1. AssumeQ ⊆ R
n is a convex compact set. A functiond : Q → R is aprox-functionif it

satisfies the following properties

• d is strongly convex inQ, i.e., there existsσ > 0 such that for allx,y ∈ Q, andα ∈ [0, 1]

d(αx + (1− α)y) ≤ αd(x) + (1− α)d(y) − 1

2
σα(1− α)‖x − y‖2. (2.5)

The largest value of the constantσ that satisfies (2.5) for a particular norm‖ · ‖ is thestrong convexity

modulusof d with respect to‖ · ‖. Note that the specific value of the strong convexity modulusσ

depends on its associated norm‖ · ‖.

• min{d(x) : x ∈ Q} = 0.

When d : Q → R is differentiable, (2.5) can be equivalently stated in either of the following two

forms [45]:

d(y) ≥ d(x) + 〈∇d(x),y − x〉+ 1

2
σ‖x− y‖2 for all x,y ∈ Q. (2.6)

5

2.2. SMOOTHING TECHNIQUES

〈∇d(x)−∇d(y),x − y〉 ≥ σ‖x− y‖2 for all x,y ∈ Q. (2.7)

AssumedX anddY are prox-functions for the setsX andY respectively. Then for any givenµ > 0, the

smooth approximationsfµ ≈ f andφµ ≈ φ are

fµ(x) := max{〈x, Ay〉 − µdY(y) : y ∈ Y}, φµ(y) := min{〈x, Ay〉 + µdX (x) : x ∈ X}.

The following result of Nesterov provides the theoretical foundation of our first-order algorithms for

solving (2.1). LetDX := max{dX (x) : x ∈ X}, and letσX denote the strong convexity modulus of

dX . Let DY andσY be defined likewise forY anddY . The operator norm ofA used below is defined as

‖A‖ := max{〈y, Ax〉 : ‖x‖, ‖y‖ ≤ 1}, where the norms‖x‖, ‖y‖ are those associated withσX andσY .

Theorem 2.2.2(Nesterov [46, 47]). There is a procedure based on the above smoothing technique that after

N iterations generates a pair of points(xN ,yN) ∈ X × Y such that

0 ≤ f(xN)− φ(yN) ≤ 4 ‖A‖
N + 1

√

DXDY
σXσY

. (2.8)

Furthermore, each iteration of the procedure performs someelementary operations, three matrix-vector

multiplications byA, and requires the exact solution of three subproblems of theform

max
x∈X

{〈g,x〉 − dX (x)} or max
y∈Y

{〈g,y〉 − dY(y)}. (2.9)

In Section 2.5, we will present an explicit algorithm as stated in Theorem 2.2.2. Before that, we first

provide a method for solving the subproblems in (2.9) as these are critical steps in the algorithm. These

subproblems can be phrased in terms of the conjugate of the functionsdX anddY [25]. The conjugate of

d : Q→ R is the functiond∗ : R
n → R defined by

d∗(s) := max{〈s,x〉 − d(x) : x ∈ Q}.

If d is strongly convex andQ is compact, then the conjugated∗ is Lipschitz continuous, differentiable

everywhere, and

∇d∗(s) = argmax{〈s,x〉 − d(x) : x ∈ Q}.

(For a detailed discussion see [25].)

For an algorithm based on Theorem 2.2.2 to be practical, the subproblems (2.9) must be solvable quickly

since their solution is required three times at each iteration of the algorithm. In other words, the conjugates

d∗X andd∗Y and their gradients∇d∗X and∇d∗Y should be easily computable. This motivates the following

definition.

6

2.3. TREEPLEXES

Definition 2.2.3. AssumeQ ⊆ R
n is a compact convex set. We say thatd : Q→ R is anice prox-function

for Q if it satisfies the following three conditions:

(i) d is continuous and strongly convex inQ, and differentiable in the relative interior ofQ.

(ii) The conjugated∗ satisfiesd∗(0) = 0.

(iii) The conjugate functiond∗ and its gradient∇d∗ are easily computable.

Example 1. For thek-dimensional simplex∆k, the entropy functiond(x) = ln k +
∑k

i=1 xi ln xi, and the

Euclidean distance functiond(x) = 1
2

∑k
i=1(xi − 1/k)2 are nice prox-functions. Indeed, for the entropy

prox-function, the gradient of the conjugate∇d∗(s) is given by the closed-form expression

∇id
∗(s) =

esi

∑k
j=1 esj

, i = 1, . . . , k.

Furthermore, as discussed in [27, 46], the entropy functionhas strong convexity modulus equal to one for

theL1-norm‖x‖ :=
∑k

j=1 |xj |.

For the Euclidean prox-function, the gradient of the conjugate∇d∗(s) is given by the expression

∇id
∗(s) = (si − λ)+, i = 1, . . . , k,

whereλ ∈ R is such that
∑k

j=1(sj − λ)+ = 1. This value ofλ can be found inO(k ln k) steps via a binary

search in the sorted components ofs. Furthermore, from (2.7) it follows that the Euclidean prox-function

has strong convexity modulus equal to one for the Euclidean norm‖x‖ :=
√

∑k
j=1 x2

j .

2.3 Treeplexes

This section presents the essential elements of our approach. We define the class oftreeplexpolytopes and

provide a generic technique for constructing nice prox-functions for treeplexes, using as building blocks any

family of nice prox-functions for simplexes. This allows usto create practical first-order algorithms based

on Theorem 2.2.2 for solving the saddle-point problem (2.1)over treeplexesX andY.

A treeplex can be seen as a tree whose nodes are simplexes. Thetree structure endows the treeplex with

a certain kind of sequential characteristic. In particular, treeplexes include the types of polytopes that arise

in the computation of Nash equilibria of sequential games. The latter is an immediate consequence of the

sequence formformulation of Nash equilibria for sequential games, as detailed in [60, 61, 30, 55].

7

2.3. TREEPLEXES

Definition 2.3.1. The class of treeplexes is recursively defined as follows:

• Basic sets:Every standard simplex∆m :=
{

x ∈ [0, 1]m :
∑m

j=1 xj = 1
}

is a treeplex.

• Cartesian product:If Q1, . . . , Qk are treeplexes thenQ1 × · · · ×Qk is a treeplex.

• Branching: If P ⊆ [0, 1]p andQ ⊆ [0, 1]q are treeplexes andi ∈ {1, . . . , p} then

P i Q :=
{

(x,y) ∈ R
p+q : x ∈ P, y ∈ xi ·Q

}

is a treeplex.

The Branching operation in Definition 2.3.1 has the following sequential interpretation: the vectorx is

the set of “current stage” decision variables, and the vector y is the set of “next stage” decision variables

following the i-th current decision variablexi. Notice that a treeplex can be written in the form{x ≥ 0 :

Ex = e} for some matrixE with entries in{−1, 0, 1} and vectore with entries in{0, 1}, see [60, 61].

In the sequel we will often need to compare the norm of a vector(x,y) ∈ R
p+q with those ofx ∈

R
p,y ∈ R

q. This requires a certain compatibility of the norms in the spacesRp, Rq, andR
p+q. Henceforth,

we shall make the following mildnorm-embedding assumption:

‖x‖ = ‖(x,0)‖, ‖y‖ = ‖(0,y)‖. (2.10)

We now present our general procedure for constructing nice prox-functions for treeplexes. The con-

struction relies on the followingdilation operation from convex analysis [25]. Given a compact setK ⊆ R
d

and a functionΦ: K → R, define the set̄K ⊆ R
d+1 as

K̄ :=
{

(x,y) ∈ R
d+1 : x ∈ [0, 1], y ∈ x ·K

}

,

and define the function̄Φ: K̄ → R as

Φ̄(x,y) =











x · Φ
(

y

x

)

if x > 0,

0 if x = 0.

Proposition 2.3.2. If K is compact andΦ is continuous inK, thenΦ̄ is continuous inK̄. Also if(x,y) ∈ K̄

is such thatx > 0 and∇Φ (y/x) exists, then∇Φ̄ (x,y) exists and

∇xΦ̄(x,y) = Φ
(

y

x

)

−
〈

∇Φ
(

y

x

)

, y

x

〉

,

∇yΦ̄(x,y) = ∇Φ
(

y

x

)

.

(2.11)

8

2.3. TREEPLEXES

Proof. The continuity follows via a straightforward limiting argument: Assume(xi,yi), (x,y) ∈ K̄ and

(xi,yi)→ (x,y). If x > 0 thenyi/xi,y/x ∈ K andyi/xi → y/x. SinceΦ is continuous, we get

Φ̄(xi,yi) = Φ(yi/xi)→ Φ(y/x) = Φ̄(x,y).

On the other hand, ifx = 0 thenxi → 0. Consequently,

|Φ̄(xi,yi)| = |xiΦ(yi/xi)| ≤ xi max{Φ(z) : z ∈ K} → 0 = Φ̄(x,y).

Finally, the identities in (2.11) follow by applying the chain rule.

Assume we are given a family of nice prox-functionsdm for ∆m, m ∈ Z
+. Using this family, we

recursively construct functions for treeplexes as follows:

• Basic sets:ForQ = ∆m, let dQ := dm.

• Cartesian product:If Q1, . . . , Qk are treeplexes andQ = Q1 × · · · ×Qk, let

dQ(x1, . . . ,xk) :=

k
∑

i=1

dQi
(xi)

wheredQ1
, . . . , dQk

are nice prox-functions for their respective treeplexes.

• Branching: If P ⊆ [0, 1]p andR ⊆ [0, 1]r are treeplexes,i ∈ {1, . . . , p}, andQ = P i R, let

dQ(x,y) := dP (x) + d̄R(xi,y) (2.12)

wheredP anddR are nice prox-functions forP andR.

Theorem 2.3.3.The functionsdQ defined above are nice prox-functions for each treeplexQ.

To prove Theorem 2.3.3, it suffices to show that the properties of nice prox-functions are preserved

for the Cartesian product and Branching steps. Since the Cartesian product step is straightforward, we

concentrate on the Branching step as stated in the followingproposition.

Proposition 2.3.4. AssumeP ⊆ [0, 1]p andR ⊆ [0, 1]r are treeplexes,i ∈ {1, . . . , p}, andQ = P i R.

Furthermore, assumedP anddR are nice prox-functions forP andR respectively and

dQ(x,y) := dP (x) + d̄R(xi,y).

Then

9

2.3. TREEPLEXES

(i) dQ is continuous and strongly convex inQ and differentiable in the relative interior ofQ.

(ii) d∗Q and∇d∗Q are computable via the following expressions

d∗Q(u,v) = d∗P (ũ) (2.13)

∇d∗Q(u,v) = (∇d∗P (ũ),∇id
∗
P (ũ) · ∇d∗R(v)) (2.14)

where

ũj =











uj if j 6= i,

ui + d∗R(v) if j = i.

Proof.

(i) The continuity ofdQ in Q and the differentiability in the relative interior ofQ follow from (2.12) and

Proposition 2.3.2. SincedQ is continuous inQ, to prove its strong convexity, from (2.7) it suffices to

show that there existsσ > 0 such that

〈∇dQ(x,y) −∇dQ(x̃, ỹ), (x,y) − (x̃, ỹ)〉 ≥ σ‖(x,y) − (x̃, ỹ)‖2 (2.15)

for all (x,y) and(x̃, ỹ) in the relative interior ofQ.

Assume(x,y) and(x̃, ỹ) are in the relative interior ofQ. Setz := y/xi andz̃ := ỹ/x̃i. From (2.12),

Proposition 2.3.2, and some elementary calculations we get

〈∇dQ(x,y) −∇dQ(x̃, ỹ), (x,y) − (x̃, ỹ)〉 = 〈∇dP (x)−∇dP (x̃),x− x̃〉

+ xi · (dR(z)− dR(z̃) + 〈∇dR(z̃), z̃− z〉)

+ x̃i · (dR(z̃)− dR(z) + 〈∇dR(z), z − z̃〉) .

Therefore, sincedP anddR are strongly convex, (2.6) yields

〈∇dQ(x,y) −∇dQ(x̃, ỹ), (x,y) − (x̃, ỹ)〉 ≥ σP ‖x− x̃‖2 + 1
2σRxi‖z− z̃‖2 + 1

2σRx̃i‖z− z̃‖2

= σP ‖x− x̃‖2 + σRx̂i‖z− z̃‖2,
(2.16)

wherex̂i = xi+x̃i

2 andσP , σR > 0 are the strong convexity parameters ofdP anddR respectively.

Next, we bound the right-hand side of (2.15). Applying the triangle inequality and using the norm-

embedding assumption (2.10), we get

‖(x,y) − (x̃, ỹ)‖ ≤ ‖x− x̃‖+ ‖xiz− x̃iz̃‖

= ‖x− x̃‖+ ‖1
2(xi + x̃i)(z − z̃) + 1

2 (xi − x̃i)(z + z̃)‖

≤ ‖x− x̃‖+ x̂i‖z− z̃‖+ 1
2 |xi − x̃i|‖z + z̃‖.

(2.17)

10

2.3. TREEPLEXES

SinceR is compact, the valueM := max{‖ζ‖ : ζ ∈ R} is finite. Therefore from (2.17) we get

‖(x,y) − (x̃, ỹ)‖ ≤ (1 + M)‖x − x̃‖+ x̂i‖z− z̃‖.

Now, by the Cauchy-Schwarz inequality,

‖(x,y) − (x̃, ỹ)‖2 ≤
(

(1 + M)2
1

σP
+

x̂i

σR

)

(

σP ‖x− x̃‖2 + σRx̂i‖z− z̃‖2
)

.

Sincex, x̃ ∈ P ⊆ [0, 1]p we get

‖(x,y) − (x̃, ỹ)‖2 ≤
(

(1 + M)2
1

σP
+

1

σR

)

(

σP‖x− x̃‖2 + σRx̂i‖z− z̃‖2
)

. (2.18)

From (2.16) and (2.18) it follows that (2.15) holds for

σ =
1

(1+M)2

σP
+ 1

σR

> 0.

(ii) For a given vector(u,v) ∈ R
p+r we have

d∗Q(u,v) = sup{〈(u,v), (x,y)〉 − dQ(x,y) : (x,y) ∈ Q}

= sup{〈u,x〉 + 〈v,y〉 − dP (x)− d̄R(xi,y) : x ∈ P, y ∈ xi · R}

= sup{〈u,x〉 − dP (x) + xi · (〈v, z〉 − dR(z)) : x ∈ P, z ∈ R, xi > 0}

= sup{〈u,x〉 − dP (x) + xi · d∗R(z) : x ∈ P}

= sup{〈ũ,x〉 − dP (x) : x ∈ P}

= d∗P (ũ).

(2.19)

The third and fourth steps above hold by the continuity ofd̄R anddP . Hence (2.13) is proven. To prove

(2.14), observe that the maximizer in the second to last stepin (2.19) isx̄ = ∇d∗P (ũ). Next, consider two

cases depending on the value ofx̄i. If x̄i > 0 then the maximizer in the third step in (2.19) isz̄ = ∇d∗R(ṽ),

and consequently the maximizer in the first step in (2.19) is(x̄, x̄i · z̄). If x̄i = 0 then the maximizer in

the first step in (2.19) is(x̄,0). In either case the maximizer in the first step in (2.19) is∇d∗Q(u,v) =

(x̄, x̄i · z̄) = (∇d∗P (ũ),∇id
∗
P (ũ) · ∇d∗R(v)).

Remark2.3.5. We can generalize the above construction and results to weighted versions of the prox-

functions. More precisely, in the Branching step, we can define dQ(x,y) := wP dP (x) + wRd̄R(xi,y)

for some constantswP , wR > 0. We will elaborate on this idea to obtain prox-functions yielding better

complexity guarantees for uniform treeplexes.

11

2.4. UNIFORM TREEPLEXES

2.4 Uniform treeplexes

In this section we derive complexity results for first-ordersmoothing algorithms for the problem (2.1) in the

special case whenX andY areuniformtreeplexes. This special case of (2.1) covers the formulation of Nash

equilibrium for instances of many interesting games. Indeed, as will be discussed in Section 2.6, uniform

treeplexes naturally arise in multi-round sequential games such as poker.

Definition 2.4.1. Assume that a treeplexQ ⊆ [0, 1]q , an index setI = {i1, . . . , ib} ⊆ {1, . . . , q}, and a

positive integerk are given. DefineQr, r = 1, 2, . . . , as follows

• Q1 := Q× · · · ×Q (k times).

• Qr+1 := Q̂r × · · · × Q̂r (k times), where

Q̂r := Q I Qr := {(x,y1, . . . ,yb) : x ∈ Q, yj ∈ xij ·Qr, j = 1, . . . , b}.

We will refer to Qr as ther-th uniform treeplex generated byQ, I, k and will sometimes write it as

Q(Q, I, k, r).

Remark2.4.2. Notice that the operationI is the same as the operationi appliedb times. More precisely,

Q I Qr = Q i1 Qr i2 · · · ib Qr.

Given a nice prox-functiondQ for Q and constantswr > 0, r = 1, 2, . . . , consider the following

weighted version of our previous construction of prox-functions for treeplexes.

• ForQ1 = Q× · · · ×Q (k times) let

dQ1
(x1, . . . ,xk) :=

k
∑

j=1

dQ(xj)

• ForQr+1 = Q̂r × · · · × Q̂r (k times), let

dQr+1
(u1, . . . ,uk) :=

k
∑

j=1

d
Q̂r

(uj),

whered
Q̂r

is defined as follows

d
Q̂r

(x,y1, . . . ,yb) := wr · dQ(x) +
b
∑

j=1

d̄Qr(xij ,y).

12

2.4. UNIFORM TREEPLEXES

We now present an explicit iteration complexity bound for a first-order smoothing algorithm for the

saddle-point problem (2.1), whenX andY are uniform treeplexes. As in Theorem 2.2.2, the norm ofA,

‖A‖ is the induced operator norm ofA, where the underlying norms are those associated withσQ andσQ̃.

In particular, the result below holds for any choice of norms.

Theorem 2.4.3.SupposeA, X , Y, dX , anddY satisfy the following conditions:

(i) X = Q(Q, I, k, r) ⊆ R
m andY = Q(Q̃, Ĩ, k̃, r̃) ⊆ R

n.

(ii) The prox-functionsdX , dY are constructed as above with weightswj = (kM)2(bk)j , j = 1, . . . , r−1

andw̃j = (k̃M̃)2(b̃k̃)j , j = 1, . . . , r̃−1 respectively, whereb = |I|, b̃ = |Ĩ|, M := max{‖u‖ : u ∈

Q}, M̃ := max{‖u‖ : u ∈ Q̃}.

Then afterN iterations the procedure from Theorem 2.2.2 yields(x,y) ∈ X × Y such that

0 ≤ f(x)− φ(y) = max
v∈Y
〈v, Ax〉 −min

u∈X
〈y, Au〉 ≤ 4‖A‖G

N + 1

√

DQDQ̃

σQσQ̃

, (2.20)

whereG = mn(kMr)(k̃M̃ r̃).

The crux of the proof of Theorem 2.4.3 is Lemma 2.4.4, which bounds the ratio of the maximum value

to the strong convexity modulus for the prox-functions for uniform treeplexes. This ratio can be seen as a

measure of the prox-function’s quality. Lemma 2.4.4 provides an estimate of this ratio for the prox-functions

dQr constructed above, provided the weightswr are chosen judiciously.

Lemma 2.4.4. AssumeQ andQr, r = 1, 2, . . . , are as in Definition 2.4.1. Letσ, σr, D, Dr, andM be

defined as follows

σ := strong convexity modulus ofdQ, σr := strong convexity modulus ofdQr ,

D := max{dQ(z) : z ∈ Q}, Dr := max{dQr(z) : z ∈ Qr},

M := max{‖z‖ : z ∈ Q}, Mr := max{‖z‖ : z ∈ Qr}.

(i) The strong convexity moduliσr of dQr , r = 1, 2, . . . satisfy

σr+1 ≥
1

k(1+Mr)2

wrσ
+ bk

σr

. (2.21)

13

2.4. UNIFORM TREEPLEXES

(ii) If wr = (kM)2(bk)r, r = 1, 2, . . . then

Dr

σr
≤ b2r−2k2r+2r2M2 D

σ
. (2.22)

Proof.

(i) Let σ̂r be the strong convexity modulus ofd
Q̂r

. From the construction ofdQr , it follows thatσr+1 ≥

σ̂r/k. Hence it suffices to bound̂σr. Proceeding as in the proof of Proposition 2.3.4(i), it follows that

for all w = (x,y1, . . . ,yb) andw̃ = (x̃, ỹ1, . . . , ỹb) in the relative interior ofQ̂r we have

〈∇d
Q̂r

(w)−∇d
Q̂r

(w̃),w − w̃〉 ≥ wrσ‖x− x̃‖2 + σr

b
∑

j=1

x̂ij‖zj − z̃j‖2 (2.23)

and

‖w − w̃‖ ≤ (1 + Mr)‖x− x̃‖+

b
∑

j=1

x̂ij‖zj − z̃j‖, (2.24)

wherezj = yj/xij , andz̃j = ỹj/x̃ij for j = 1, . . . , b. Applying the Cauchy-Schwarz inequality to

(2.24) we get

‖w − w̃‖2 ≤
(

(1 + Mr)
2

wrσ
+

∑b
j=1 x̂ij

σr

)



wrσ‖x− x̃‖2 + σr

b
∑

j=1

x̂ij‖zj − z̃j‖2




≤
(

(1 + Mr)
2

wrσ
+

b

σr

)



wrσ‖x− x̃‖2 + σr

b
∑

j=1

x̂ij‖zj − z̃j‖2


 .

(2.25)

From (2.23), (2.25), and the continuity ofd
Q̂r

we obtain

σ̂r ≥
1

(1+Mr)2

wrσ
+ b

σr

,

which yields (2.21) sinceσr+1 ≥ σ̂r/k.

(ii) Let Mr := max{‖z‖ : z ∈ Qr}. We haveM1 ≤ kM andMr+1 ≤ k(M + bMr), so

1 + Mr ≤ kM(bk)r, r = 1, 2,

Hencewr ≥ (1+Mr)2

(bk)r , and consequently (2.21) yields

1

(bk)r+1σr+1
≤ 1

bσ
+

1

(bk)rσr
.

Therefore, sinceσ1 ≥ σ/k, it follows that

1

(bk)rσr
≤ r

bσ
, r = 1, 2, (2.26)

14

2.4. UNIFORM TREEPLEXES

On the other hand, from the construction ofQr anddQr we have

D1 ≤ kD, Dr+1 ≤ k(wrD + bDr), r = 1, 2, . . .

so,

Dr ≤ kD



(bk)r−1 +

r−1
∑

j=1

wj(bk)r−1−j



 .

Thus

Dr ≤ kD
(

(bk)r−1 +
∑r−1

j=1 wj(bk)r−1−j
)

= kD
(

(bk)r−1 + (kM)2
∑r−1

j=1(bk)j(bk)r−1−j
)

= kD(1 + (kM)2(r − 1))(bk)r−1

≤ krD(kM)2(bk)r−1.

(2.27)

Finally, (2.22) follows by putting together (2.26) and (2.27).

Proof of Theorem 2.4.3.SinceX = Q(Q, I, k, r) ⊆ R
m, Lemma 2.4.4 yields

DX
σX
≤ b2r−2k2r+2r2M2 DQ

σQ
.

In addition, a simple induction argument shows the dimension m of X = Q(Q, I, k, r) satisfiesm =

kq · (bk)r−1
bk−1 . Therefore

DX
σX
≤ m2k2r2M2 DQ

σQ
. (2.28)

Similarly,
DY
σY
≤ n2k̃2r̃2M̃2

DQ̃

σQ̃

. (2.29)

The iteration bound (2.20) now follows from (2.8), (2.28), and (2.29).

For the special case when the norm inR
q and eachRqr is the Euclidean norm, we can sharpen the bound

in Lemma 2.4.4, and thus also the bound in Theorem 2.4.3.

Lemma 2.4.5. Assumeb,M,D,Dr, σ, andσr, are as in Lemma 2.4.4, and the norm inR
q and eachRqr is

the Euclidean norm. Ifwr = kM2kr, r = 1, 2, . . . , then

Dr

σr
≤ b2r−2kr+1r2M2 D

σ
. (2.30)

15

2.4. UNIFORM TREEPLEXES

Proof. For the Euclidean norm we haveσr+1 = σ̂r, whereσ̂r is the strong convexity modulus ofd
Q̂r

.

Next, we proceed to bound̂σr as in the proof of Lemma 2.4.4. For allw = (x,y1, . . . ,yb) and w̃ =

(x̃, ỹ1, . . . , ỹb) in the relative interior ofQ̂r the inequality (2.23) holds. Next, instead of (2.24) we can use

‖w − w̃‖2 = ‖x− x̃‖2 +

b
∑

j=1

‖xijz
j − x̃ij z̃

j‖2

≤ ‖x− x̃‖2 +

b
∑

j=1

(

|xij − x̃ij |Mr + x̂ij‖zj − z̃j‖
)2

.

Hence, by the Cauchy-Schwarz inequality, we get

‖w − w̃‖2 ≤ ‖x− x̃‖2 +

(

M2
r

wrσ
+

b

σr

)



wrσ‖x− x̃‖2 + σr

b
∑

j=1

x̂ij‖zj − z̃j‖2




≤
(

(1 + M2
r)

wrσ
+

b

σr

)



wrσ‖x− x̃‖2 + σr

b
∑

j=1

x̂ij‖zj − z̃j‖2


 .

(2.31)

Thus, the bound in Lemma 2.4.4 can be sharpened to

σr+1 = σ̂r ≥
1

1+M2
r

wrσ
+ b

σr

. (2.32)

Furthermore, in this caseM2
1 = kM2 andM2

r+1 ≤ k(M2 + bM2
r) which implies

1 + M2
r ≤ kM2(bk)r.

Hencewr ≥ 1+M2
r

br , and consequently (2.32) yields

1

br+1σr+1
≤ 1

bσ
+

1

brσr
.

Therefore, sinceσ1 = σ, it follows that

1

brσr
≤ r

bσ
, r = 1, 2, (2.33)

On the other hand, sinceD1 = kD andDr+1 ≤ k(wrD + bDr), it follows that

Dr ≤ kD
(

(bk)r−1 +
∑r−1

j=1 wj(bk)r−1−j
)

= kD
(

(bk)r−1 + kM2
∑r−1

j=1 kj(bk)r−1−j
)

≤ kD(1 + kM2(r − 1))(bk)r−1

≤ k2rDM2(bk)r−1.

(2.34)

Finally (2.30) follows by putting together (2.33) and (2.34).

16

2.5. IMPLEMENTATION

2.5 Implementation

In this section we describe an implementation to solve (2.1)based on Nesterov’sexcessive gap tech-

nique[46] and the prox-functions constructed in this paper. We present Nesterov’s algorithm specialized for

the problem (2.1). We also give a complexity analysis of eachiteration of this algorithm when applied to

games with uniform treeplexes and describe two heuristics that were incorporated in our implementation.

2.5.1 Nesterov’s Excessive Gap Technique

AssumedX anddY are nice prox functions forX andY respectively. ForµX , µY > 0 consider the pair of

problems:

fµY
(x) := max{〈y, Ax〉 − µYdY(y) : y ∈ Y}, φµX

(y) := min{〈y, Ax〉 + µXdQ(x) : x ∈ X}.

Algorithm 3 below, due to Nesterov [46, Section 5], generates iterates(xk,yk, µk
X , µk

Y) with µk
X , µk

Y de-

creasing to zero and such that the followingexcessive gap conditionis satisfied at each iteration:

fµY
(x) ≤ φµX

(y). (2.35)

Notice thatf(x) ≥ φ(y) for all x ∈ X , y ∈ Y. Thus if (x,y, µX , µY) satisfy the excessive gap condition

(2.35) andx ∈ X , y ∈ Y, then

0 ≤ φ(y) − f(x) ≤ µXDX + µYDY . (2.36)

(See [46, Lemma 3.1].)

Consequently, if the iterates(xk,yk, µk
X , µk

Y) satisfy (2.35), thenf(xk) ≈ φ(yk) whenµk
X andµk

Y are

small.

The building blocks of our Algorithm 3 are the proceduresinitial andshrink defined next.

By Lemma 5.1 of [46], the following procedureinitial finds a starting point(µ0
X , µ0

Y ,x0,y0) that

satisfies the excessive gap condition (2.35).

Algorithm 1. initial(A, dX , dY)

1. µ0
X := µ0

Y := ‖A‖√
σX σY

2. x̂ := ∇d∗X (0)

17

2.5. IMPLEMENTATION

3. y0 := ∇d∗Y

(

1
µ0
Y

Ax̂

)

4. x0 := ∇d∗X

(

∇dX (x̂) + 1
µ0
X

ATy0
)

5. Return(µ0
X , µ0

Y ,x0,y0)

The following procedureshrink enables us to reduceµX andµY while maintaining (2.35).

Algorithm 2. shrink(A,µX , µY , τ,x,y, dX , dY)

1. x̆ := ∇d∗X

(

− 1
µX

ATy

)

2. x̂ := (1− τ)x + τ x̆

3. ŷ := ∇d∗Y

(

1
µY

Ax̂

)

4. x̃ := ∇d∗X

(

∇dX (x̆)− τ
(1−τ)µX

ATŷ

)

5. y+ := (1− τ)y + τ ŷ

6. x+ := (1− τ)x + τ x̃

7. µ+
X := (1− τ)µX

8. Return(µ+
X ,x+,y+)

By Theorem 5.2 of [46], if the input(µX , µY ,x,y) to shrink satisfies (2.35) then so does

(µ+
X , µY ,x+,y+) as long asτ satisfiesτ2/(1− τ) ≤ µXµYσXσY/‖A‖2.

We are now ready to describe Nesterov’s Excessive Gap Technique Algorithm (EGT) specialized to

(2.1).

Algorithm 3. EGT(A, dX , dY)

1. (µ0
X , µ0

Y ,x0,y0) = initial(A, dX , dY)

2. For k = 0, 1, . . .:

(a) τ := 2
k+3

(b) If k is even: // shrinkµX

18

2.5. IMPLEMENTATION

i. (µk+1
X ,xk+1,yk+1) := shrink(A,µk

X , µk
Y , τ,xk,yk, dX , dY)

ii. µk+1
X := µk

X

(c) If k is odd: // shrinkµY

i. (µk+1
Y ,yk+1,xk+1) := shrink(−AT, µk

Y , µk
X , τ,yk,xk, dY , dX)

ii. µk+1
Y := µk

Y

By [46, Theorem 5.2], the iterates generated by procedureEGT satisfy (2.35). In addition, by [46,

Theorem 6.3], afterN iterations, AlgorithmEGT yields pointsxN ∈ QX andyN ∈ QY with

0 ≤ max
x∈QX

〈AyN ,x〉 − min
y∈QY

〈Ay,xN 〉 ≤ 4 ‖A‖
N

√

DXDY
σXσY

. (2.37)

2.5.2 Complexity of each EGT iteration

We next give a complexity bound on the number of arithmetic operations performed in each EGT iteration.

We provide our estimate in term of the size of thegame treein the extensive formrepresentation of the

sequential game. The extensive form is a full description ofthe game given by a tree whose nodes correspond

to the possible states of the game, branches that correspondto players’ moves, payoffs at the tree’s leaves,

and information sets. For a detailed exposition on the extensive form representation, see, e.g., [51].

We shall refer to the number of nodes in the game tree as thesize of the game tree.We show next that

for games with uniform treeplexes the total number of basic arithmetic operations in each EGT iteration is

linear in the size of the game tree. To that end, notice that aside from negligible updates, two consecutive

iterations in the EGT algorithm require the following operations:

(i) three matrix-vector products of the formAx and three of the formATy for somex andy

(ii) one calculation of the form∇dX (x) and one of the form∇dY(y) for somex andy

(iii) three calculations of the form∇d∗X (u) and three of the form∇d∗Y(v) for someu andv

Hence it suffices to show that each of these operations requires a number of basic arithmetic operations that

is linear in the size of the game tree.

Let flops(〈expression〉) denote the number of arithmetic operations needed in the calculation of

〈expression〉. We next estimate this number for each of the calculations in(i), (ii), and (iii) above.

19

2.5. IMPLEMENTATION

For (i), if the payoff matrixA is represented in explicit sparse form, thenflops(Ax) andflops(ATy)

are less than or equal to twice the number of non-zero entriesin A because each of these calculations requires

one scalar multiplication and at most one addition for each non-zero inA. Since the number of non-zero

entries inA is bounded by the number of leaves in the game tree [60, 61], itfollows thatflops(Ax) and

flops(ATy) are linear in the size of the game tree.

For the calculations in (ii), assumeX = Q(Q, I, k, r) ⊆ R
m andY = Q(Q̃, Ĩ , k̃, r̃) ⊆ R

n. The

construction of the uniform treeplexQ(Q, I, k, r) and a straightforward induction argument shows that for

genericx ∈ X , z ∈ Q,

flops(∇dX (x)) =
(bk)r − 1

bk − 1
· k · flops(∇dQ(z)) + m ≤ m · (flops(∇dQ(z)) + 1).

Likewise, for genericy ∈ Y, w ∈ Q̃,

flops(∇dY(y)) ≤ n · (flops(∇dQ̃(w)) + 1).

Since bothm andn are smaller than the size of the game tree [60, 61], it followsthatflops(∇dX (x)) and

flops(∇dY(y)) are sublinear in the size of the game tree.

Finally, for the calculations in (iii), again assumeX = Q(Q, I, k, r) ⊆ R
m andY = Q(Q̃, Ĩ, k̃, r̃) ⊆

R
n. An inductive argument similar to those in Section 2.4 showsthat for genericu ∈ R

m, s ∈ R
q

flops(∇d∗X (u)) ≤ m · (flops(∇d∗Q(s)) + 1),

and for genericv ∈ R
n, t ∈ R

q̃

flops(∇d∗Y(v)) ≤ n · (flops(∇d∗
Q̃
(t)) + 1).

Thus bothflops(∇d∗X (u)) andflops(∇d∗Y(v)) are sublinear in the size of the game tree.

Consequently, the overall number of arithmetic operationsin each iteration of the EGT algorithm is

bounded by a small factor of the size of the game tree. Furthermore, the matrix-vector multiplications

Ax, ATy dominate the total number of arithmetic operations.

2.5.3 Heuristics

AlgorithmEGT has worst-case iteration-complexityO(1/ǫ) and already scales to problems much larger than

is possible to solve using state-of-the-art linear programming solvers (as we demonstrate in the experiments

20

2.5. IMPLEMENTATION

later in this paper). In this section we introduce two heuristics for further improving the speed of the

algorithm, while retaining the guaranteed worst-case iteration-complexityO(1/ǫ). The heuristics attempt

to decreaseµX andµY faster than prescribed by the EGT algorithm while maintaining the excessive gap

condition (2.35). This leads to overall faster convergencein practice, as our experiments will show.

Heuristic 1: Aggressiveµ reduction

The first heuristic is based on the following observation: although the valueτ = 2/(k + 3) computed

in step 2(a) of AlgorithmEGT guarantees the excessive gap condition (2.35), this is potentially an overly

conservative value. Instead we can use an adaptive procedure to choose a larger value ofτ . Since we

now can no longer guarantee the excessive gap condition (2.35) a priori, we are required to do aposterior

verification which occasionally necessitates an adjustment in the parameterτ . In order to check (2.35), we

need to compute the values offµY
andφµX

. Observe that

φµX
(y) = −µXd∗X

(

− 1

µX
ATy

)

and

fµY
(x) = µYd∗Y

(

1

µY
Ax

)

.

Therefore, bothfµY
andφµX

are easily computable sincedX , dY are nice prox-functions by construction.

To incorporate Heuristic 1 in AlgorithmEGT we extend the procedureshrink as follows.

Algorithm 4. decrease(A,µX , µY , τ,x,y, dX , dY)

1. (µ+
X ,x+,y+) := shrink(A,µX , µY , τ,x,y, dX , dY)

2. While−µ+
Xd∗X

(

− 1
µ+

X

ATy+
)

< µYd∗Y

(

1
µY

Ax+
)

// τ is too big

(a) τ := τ/2

(b) (µ+
X ,x+,y+) := shrink(A,µX , µY , τ,x,y, dX , dY)

3. Return(µ+
X ,x+,y+, τ)

By Theorem 4.1 of [46], when the input(µX , µY ,x,y) to decrease satisfies (2.35), the procedure

decrease will halt.

21

2.5. IMPLEMENTATION

Heuristic 2: Balancing and reduction ofµX and µY

Our second heuristic is motivated by the observation that after several calls to thedecrease procedure, one

of µX andµY may be much smaller than the other. This imbalance is undesirable because the larger one

contributes the most to the worst-case bound given by (2.36). Hence after a certain number of iterations

we perform abalancingstep to bring these values closer together. The balancing consists of repeatedly

shrinking the larger one ofµX andµY .

We also observed that after such balancing, the values ofµX andµY can sometimes be further reduced

without violating the excessive gap condition (2.35). We thus include a final reduction step in the balancing

heuristic.

This balancing and reduction heuristic is incorporated viathe following procedure. (We chose the pa-

rameter values0.9 and1.5 based on some initial experimentation.)

Algorithm 5. balance(A,µX , µY , τ,x,y, dX , dY)

1. WhileµX > 1.5µY // shrinkµX

(µX ,x,y, τ) := decrease(A,µX , µY , τ,x,y, dX , dY)

2. WhileµY > 1.5µX // shrinkµY

(µY ,y,x, τ) := decrease(−AT, µY , µX , τ,y,x, dY , dX)

3. While0.9µYd∗Y

(

1
0.9µY

Ax

)

≤ −0.9µXd∗X

(

− 1
0.9µX

ATy

)

// decreaseµX andµY if possible

(a) µX := 0.9µX

(b) µY := 0.9µY

4. Return(µX , µY ,x,y, τ)

We are now ready to describe the variant ofEGT with Heuristics 1 and 2.

Algorithm 6. EGT-2

1. (µ0
X , µ0

Y ,x0,y0) = initial(A, dX , dY)

2. τ := 0.5

22

2.6. COMPUTATIONAL RESULTS

3. For k = 0, 1, . . .:

(a) If k is even: // ShrinkµX

i. (µk+1
X ,xk+1,yk+1, τ) := decrease(A,µk

X , µk
Y , τ,xk,yk, dX , dY)

ii. µk+1
Y = µk

Y

(b) If k is odd: // ShrinkµY

i. (µk+1
Y ,yk+1,xk+1, τ) := decrease(−AT, µk

Y , µk
X , τ,yk,xk, dY , dX)

ii. µk+1
X = µk

X

(c) If k mod 100 = 0 // balance and reduce

(µk
X , µk

Y ,xk,yk, τ) := balance(A,µk
X , µk

Y , τ,xk,yk, dX , dY)

2.6 Computational results

We implemented AlgorithmEGT-2 in C++ and ran the computational experiments on an IBM eServer

p5 570 with 128 gigabytes of RAM and four 1.65 GHz processors.We next report some computational

experiments as well as an interesting application to the design of poker-playing programs.

2.6.1 Experimental setup

We tested the algorithm on five abstractions of poker games ranging from relatively small to very large. An

abstractionof a game is a smaller game that captures some of the main features of the original game [8,

17, 57, 16]. The approach of abstracting a game and then solving for the equilibrium of the abstracted

game is a practical way of constructing good strategies for the original game [8, 17, 16, 18, 19], and is the

state-of-the-art approach to generating poker-playing programs.

We chose these problems because we wanted to evaluate the algorithms on real-world instances, rather

than on randomly generated games (which may not reflect any realistic setting). Table 2.1 provides the

sizes of the test instances. The first three instances,10k, 160k, andRI, are abstractions of Rhode Island

Hold’em poker [57] computed using theGameShrinkautomated abstraction algorithm [17]. The first two

instances are lossy (non-equilibrium preserving) abstractions, while theRI instance is a lossless abstraction.

TheTexas andGS4 instances are lossy abstractions of Texas Hold’em poker [15, 18].

23

2.6. COMPUTATIONAL RESULTS

Name Rows Columns Non-Zero Entries

10k 14,590 14,590 536,502

160k 226,074 226,074 9,238,993

RI 1,237,238 1,237,238 50,428,638

Texas 18,536,842 18,536,852 61,498,656,400

GS4 299,477,082 299,477,102 4,105,365,178,571

Table 2.1: Problem sizes (when formulated as a linear program) for the instances used in our experiments.

Table 2.2 provides the average time per EGT iteration of our implementation for each of the test problems

both with and without the heuristics.

Name EGT with heuristics EGT without heuristics

(time in secs) (time in secs)

10k 0.10 0.10

160k 1.28 1.20

RI 7.65 6.53

Texas 2,400 1,420

GS4 42,400 28,000

Table 2.2: Average CPU time per EGT iteration for the instances used in our experiments.

Due to the enormous size of theGS4 instance, we do not include it in the experiments that compare

better and worse techniques within our algorithm. Instead,we use the four smaller instances to find a good

configuration of the algorithm, and we use that configurationto tackle theGS4 instance. We then report on

how well the resulting strategies on theGS4 instance did in the AAAI-08 Computer Poker Competition.

Previously, the most effective algorithms for solving sequential games of imperfect information were

based on interior-point methods applied to the linear programming formulation of the problem [8, 17]. It

seems desirable to test our algorithm against state-of-the-art implementations of such methods. However,

this is not particularly relevant in the context of the problems we are solving. For example, solving the

relatively small game of Rhode Island Hold’em poker required 25 GB RAM using CPLEX’s interior-point

24

2.6. COMPUTATIONAL RESULTS

method. The instanceGS4 is more than two hundred times larger. Simplyrepresentingsuch a problem in the

explicit representation required by CPLEX and other interior-point solvers would require more than80, 000

GB RAM. The memory needed for the necessary data structures,such as storing the Cholesky factorization,

would increase this further. Such a requirement is far beyond the capability of current hardware. Thus,

it is not even possible to compare the run-time performance of our algorithm with linear programming

approaches.

2.6.2 Experimental comparison of prox functions

Our first experiment compared the relative performance of the prox functions induced by the entropy and Eu-

clidean prox functions described in Example 1 earlier in this paper. Figure 2.1 shows the results. (Heuristics

1 and 2, described above, and the memory saving technique described later, were enabled in this experi-

ment.) In all of the figures, the units of the vertical axis arethe number of chips in the corresponding poker

games.

10
-2

10
-1

10
0

10
1

10
2

10
3

0 1 2 3 4 5 6
Time (hours)

10k

Entropy
Euclidean

10
0

10
1

10
2

10
3

0 2 4 6 8 10 12
Time (hours)

160k

Entropy
Euclidean

10
1

10
2

10
3

10
4

0 2 4 6 8 10 12
Time (hours)

RI

Entropy
Euclidean

10
1

10
2

0 12 24 36 48 60 72
Time (hours)

Texas

Entropy
Euclidean

Figure 2.1: Comparison of the entropy and Euclidean prox functions. The value axis is the gapǫ (Equa-

tion 2.2).

The entropy prox function outperformed the Euclidean prox function on all four instances. Therefore,

in the remaining experiments we exclusively use the entropyprox function.

25

2.6. COMPUTATIONAL RESULTS

2.6.3 Experimental comparison of the heuristics

Figure 2.2 demonstrates the impact of applying Heuristic 1:Aggressiveµ reduction. (For this experiment,

Heuristic 2, was not used. The memory saving technique, alsodescribed later, was used.) On all four

instances, Heuristic 1 reduced the gap significantly. On thelarger instances, this reduction was an order of

magnitude.

10
-2

10
-1

10
0

10
1

10
2

10
3

0 1 2 3 4 5 6
Time (hours)

10k

No Heuristics
Heuristic 1

10
0

10
1

10
2

10
3

0 2 4 6 8 10 12
Time (hours)

160k

No Heuristics
Heuristic 1

10
1

10
2

10
3

10
4

0 2 4 6 8 10 12
Time (hours)

RI

No Heuristics
Heuristic 1

10
1

10
2

10
3

0 12 24 36 48 60 72
Time (hours)

Texas

No Heuristics
Heuristic 1

Figure 2.2: Experimental evaluation of Heuristic 1. The value axis is the gapǫ (Equation 2.2)

Figure 2.3 demonstrates the impact of applying Heuristic 2:Balancing and reduction ofµX and µY .

Because Heuristic 2 is somewhat expensive to apply, we experimented with how often the algorithm should

run it. (We did this by varying the constant in line 3(c) of Algorithm EGT-2. For example, when the

figure states “10 iterations”, that means that the heuristicis run once every ten iterations. In this experiment,

Heuristic 1 was turned off, but the memory-saving technique, described later, was used.) Figure 2.3 shows

that it is always effective to use Heuristic 2, although the frequency at which it should be applied varies

depending on the instance.

2.6.4 Application to Texas Hold’em poker

Poker is a game involving elements of chance, imperfect information, and counter-speculation. Game-

theoretic optimal strategies are far from straightforward, often necessitating such tactics as bluffing and

26

2.6. COMPUTATIONAL RESULTS

10
-1

10
0

10
1

10
2

10
3

0 1 2 3 4 5 6
Time (hours)

10k

No Heuristics
10 Iterations

100 Iterations

10
0

10
1

10
2

10
3

10
4

0 2 4 6 8 10 12
Time (hours)

160k

No Heuristics
10 Iterations

100 Iterations

10
1

10
2

10
3

10
4

0 2 4 6 8 10 12
Time (hours)

RI

No Heuristics
10 Iterations

100 Iterations

 60

 70

 80

 90

 100

 110

 120

0 12 24 36 48 60 72
Time (hours)

Texas

No Heuristics
2 Iterations

10 Iterations

Figure 2.3: Heuristic 2 applied at different intervals. Thevalue axis is the gapǫ (Equation 2.2)

slow-playing. For these reasons, and others, poker has beenidentified as an important challenge problem

for the field of artificial intelligence [9]. Just as the development of a computer program capable of beating

the world’s best human chess player was once seen as an important milestone, the development of a poker-

playing program capable of beating the best humans is now seen as an equally important milestone.

The prox-function construction described in Section 2.3 has been instrumental in the development of

some recent programs for playing Texas Hold’em poker. An important difference between different variants

of Texas Hold’em is thebetting structure. Two common betting structures arelimit, in which players may

bet a fixed amount, andno-limit, in which players may bet any number of their chips. Our equilibrium-

finding algorithm computed the strategies for bothGS3[18] andTartanian[19], to programs that play limit

and no-limit Texas Hold’em, respectively.

In 2008, the Association for the Advancement of Artificial Intelligence (AAAI) held the third annual

Computer Poker Competition, where computer programs submitted by teams worldwide compete against

each other.GS4-Beta(a subsequent version ofGS3) placed first (out of nine) in the Limit Bankroll com-

petition andTartanianplaced third (out of four) in the No-Limit competition. (Tartanianactually had the

highest winning rate in the competition, but due to the winner determination rule for the competition, it only

got third place.) This is particularly impressive given thesmall amount of poker-specific knowledge that

27

2.6. COMPUTATIONAL RESULTS

was incorporated into those programs. They instead depend on an equilibrium analysis conducted by our

algorithm (which in turn relies on our prox-function construction) for determining their strategies. As the de-

velopers ofGS3andTartanianpoint out, it is currently not feasible to solve their modelsusing off-the-shelf

linear programming solvers.

The approach used for constructing the above players is based on algorithmically creatinglossyabstrac-

tions of the original game [15, 18, 19]. These abstractions are smaller sequential games that attempt to pre-

serve the strategic properties of the original game. The abstracted game is then solved for anǫ-equilibrium

using the algorithm discussed in this paper. The larger the abstracted game (i.e., the finer the abstraction),

the better the quality of the strategies generally is. The approach of automated abstraction followed by

equilibrium finding was first used in Texas Hold’em in [16], and is nowadays used by basically all of the

competitive poker-playing programs.

For the limit competition, our implementation of the EGT algorithm solved an abstracted game whose

payoff matrix was108×108. For the no-limit competition, our algorithm solved a game with payoff matrix of

size107×107. The uniform treeplexes introduced in Section 2.4 provide aperfect framework for modeling

limit Texas Hold’em poker. For this game, the treeplexQX for the first player is a uniform treeplex. The

“basic” treeplexQ ⊆ [0, 1]14 has the linear descriptionQ = {x ∈ [0, 1]14 : Ex = e} where

E :=



























1 1 1

−1 1 1 1

−1 1 1 1

−1 1 1 1

−1 1 1



























, e :=



























1

0

0

0

0



























.

The fourteen columns ofE represent the possible sequence of actions that the first player can take during

each betting round of the game. Each row inE encodes a simplex over three actions:fold, call, andraise.

(The last row only allows fold and call.) The setI = {2, 3, 5, 6, 8, 9, 11, 12, 14} indexes the sequences that

do not end with a fold. Texas Hold’em is played in four rounds so r = 4. Finally, the value ofk depends on

the quality of the abstraction. The abstractions in [18] range fromk = 6 to k = 40 (thek is actually different

in each round). The treeplexQY for the second player is also a uniform treeplex with similarcharacteristics.

28

2.6. COMPUTATIONAL RESULTS

2.6.5 Memory requirements

One particularly attractive feature of the EGT algorithm isthe fact that the only operation performed on the

matrix A is a matrix-vector product. As a consequence, we can exploitthe problem structure to store only

an implicit representation of the payoff matrixA. This implicit representation relies on a certain type of

decomposition that is present in poker games as well as in themore general class ofgames with ordered

signals[17, 15]. For example, the betting sequences that can occur in most poker games are independent of

the cards that are dealt. We can decompose the payoff matrix based on these two aspects.1

For ease of exposition, we explain the concise representation in the context of Rhode Island Hold’em

poker [57], although the general technique applies much more broadly (and we use it in our Texas Hold’em

games as well). The payoff matrixA can be written as

A =













A1

A2

A3













where

A1 = F1 ⊗B1,

A2 = F2 ⊗B2, and

A3 = F3 ⊗B3 + S ⊗W

(2.38)

for much smaller matricesFi, Bi, S, andW . The matricesFi correspond to sequences of moves in roundi

that end with a fold, andS corresponds to the sequences in round 3 that end in a showdown. The matrices

Bi encode the betting structures in roundi, while W encodes the win/lose/draw information determined

by poker hand ranks. The symbol⊗ in (2.38) denotes theKronecker product.Recall that the Kronecker

product of two matricesB ∈ R
m×n andC ∈ R

p×q, is

B ⊗ C =













b11C · · · b1nC

...
. . .

...

bm1C · · · bmnC













∈ R
mp×nq.

Given the above concise representation ofA, computingx 7→ Ax andy 7→ ATy is straightforward,

and the space required is sublinear in the size of the game tree. For example, in Rhode Island Hold’em,

1The fact that possible betting sequences are independent ofcards has also been exploited by automated abstraction algorithms,

but in a totally different way [17].

29

2.6. COMPUTATIONAL RESULTS

the dimensions of theFi andS matrices are10 × 10, and the dimensions ofB1, B2, andB3 are13 × 13,

205 × 205, and 1,774× 1,774, respectively—in contrast to the matrixA, which is 883,741× 883,741.

Furthermore, the matricesFi, Bi, S, andW are themselves sparse, which allows us to use the Compressed

Row Storage (CRS) data structure that only stores non-zero entries.

Table 2.3 clearly demonstrates the extremely low memory requirements of the EGT algorithms when

using our memory-saving technique. Most notably, on theGS4 instance, both of the CPLEX algorithms

(simplex and interior point) require more than 80,000 GB simply to representthe problem. In contrast,

using the decomposed payoff matrix representation, the EGTalgorithms require only 43.96 GB. Further-

more, in order to solve the problem, both the simplex and interior-point algorithms would require additional

memory for their internal data structures. Therefore, the EGT family of algorithms with our memory-saving

techniques is a significant improvement over the state-of-the-art for large-scale problems.

Name CPLEX IPM CPLEX Simplex EGT

10k 0.082 GB > 0.051 GB 0.012 GB

160k 2.25 GB > 0.664 GB 0.035 GB

RI 25.2 GB > 3.45 GB 0.15 GB

Texas > 458 GB > 458 GB 2.49 GB

GS4 > 80, 000 GB > 80, 000 GB 43.96 GB

Table 2.3: Memory footprint in gigabytes of CPLEX interior-point method (IPM), CPLEX simplex, and our

EGT algorithms.

The memory usage for the CPLEX simplex algorithm reported inTable 2.3 is the memory used after

10 minutes of execution (except for theTexas andGS4 instances which could not run at all using either

CPLEX algorithm). This algorithm’s memory requirements grow and shrink during the execution depending

on its internal data structures. Therefore, the number reported is a lower bound on the maximum memory

usage during execution.

Although the results presented in Table 2.3 are for CPLEX, they apply to any algorithm that requires an

explicit representation of the constraint matrix of the linear program. Since the only matrix operation needed

by our algorithm is a matrix-vector product, we are able to use an implicit representation of the constraint

matrix, as discussed above.

30

2.7. CONCLUSIONS AND FUTURE RESEARCH

2.6.6 Speedup from parallelizing the matrix-vector product

Beyond our time-saving heuristics discussed earlier in this paper, we further reduce the time requirements

of the matrix-vector product by parallelization. We parallelize the operation by simply partitioning the work

into n pieces whenn CPUs are available. The speedup we can achieve on parallel CPUs is demonstrated in

Table 2.4. The instance used for this test is theTexas instance described above. The matrix-vector product

operation scales linearly in the number of CPUs, and the timeto perform one iteration of the algorithm

scales nearly linearly, decreasing by a factor of 3.69 when using four CPUs.

CPUs matrix-vector product EGT iteration

time (secs) speedup time (secs) speedup

1 278 1.00x 1,420 1.00x

2 140 1.98x 730 1.94x

3 93 2.98x 490 2.89x

4 69 4.00x 384 3.69x

Table 2.4: Effect of parallelization for theTexas instance.

2.7 Conclusions and future research

We developed first-order algorithms to approximate Nash equilibria of two-person zero-sum sequential

games by applying Nesterov’s smoothing technique to the saddle-point formulation (2.1) of the Nash equilib-

rium problem. The heart of our approach is a construction of nice prox-functions for the treeplex polytopes

in the saddle-point formulation.

We implemented an algorithm based on our prox-functions andNesterov’s excessive gap technique. We

included two novel heuristics that improve the algorithm’sspeed of convergence considerably. Experiments

show that the algorithm based on the entropy-induced prox function is faster than the algorithm based on the

Euclidean-induced prox function. For poker games and similar games, we introduced a decomposed matrix

representation that reduces storage requirements drastically. Our techniques enable us to solve to near-

equilibrium games that are over four orders of magnitude larger than the largest addressable previously. We

also showed near-perfect speed-up from parallelization, which makes our algorithms particularly appropriate

31

2.7. CONCLUSIONS AND FUTURE RESEARCH

for modern multi-core architectures.

In contrast to a direct first-order approach to solve the linear programming formulation of (2.1) such

as that proposed in [31], our approach automatically yieldsalgorithms that generate feasible strategies

x ∈ X , y ∈ Y throughout execution. This is of crucial importance because points that violate the con-

straints defining the treeplexesX ,Y even slightly are typically meaningless strategies. In particular, unlike

the iterates generated by our algorithm, the iterates generated by an infeasible algorithm would typically

not yield approximate equilibria. Furthermore, the linearprogramming formulation of (2.1) increases the

dimension of the problem substantially since it requires a new variable for each constraint in the description

of the treeplexesX ,Y.

In addition to our first-order smoothing approach to the problem (2.1), it is conceivable that specialized

versions of other algorithmic approaches may also lead to effective algorithms for solving the saddle-point

problem (2.1). For example, a specialized interior-point algorithm could use an appropriately designed itera-

tive method to solve the system of equations at each main iteration. No such approach has been successfully

developed so far.

Another approach we plan to investigate is the use ofstochastic samplingfor approximating the objective

function. This has already been studied in the context of matrix games [27], although that approach was

based on a different optimization algorithm. For large-scale instances, it is quite expensive to evaluate

the matrix-vector product in the objective function (and inthe gradient computations). Speeding up these

operations, in conjunction with strong convergence guarantees, could have a significant impact in practice.

These interesting alternative algorithmic approaches will be the subject of future research.

32

Chapter 3

MDD-based Constraint Programming

3.1 Introduction

The domain store is a fundamental tool for constraint programming, because it propagates the results of

individual constraint processing. It allows the reduced domains obtained for one constraint to be passed to

the next constraint for further filtering.

A weakness of the domain store, however, is that it transmitsa limited amount of information. It accounts

for no interaction among the variables, because any solution in the Cartesian product of the current domains

is consistent with it. This restricts the ability of the domain store to pool the results of processing individual

constraints and provide a global view of the problem.

To address this shortcoming, the authors of [3] proposed replacing the domain store with a richer data

structure, namely a multivalued decision diagram (MDD). Inthis scheme, domain filtering algorithms are

replaced or augmented by algorithms that refine and update the MDD to reflect each constraint. It was

found that MDD-based propagation leads to substantial speedups in the solution of multiplealldiff

constraints, in many instances reducing the search tree from a million or so nodes to a single node. The idea

was extended to equality constraints in [24]. A unified node-splitting scheme for refining the MDD was

proposed in [23] and applied to certain configuration problems.

This chapter is organized as follows. In Section 3.2, we provide a summary of constraint programming

focusing on those aspects that we need. We then motivate the key ideas of MDD-based propagation. Sec-

tion 3.3 provides a formal background on MDD and MDD-based propagation. In Section 3.4 we present a

systematic method for extending traditional domain store filtering techniques to MDD filtering techniques.

33

3.2. CONSTRAINT PROGRAMMING PRELIMINARIES

The following section applies this framework to design propagation algorithms for many of the fundamen-

tal global constraints in constraint programming. We extend this technique to provide a systematic way of

reusing domain store propagators and provide several alternatives for embedding this technique within a

constraint solving system. We then show thatall the specialized algorithms presented, both old and new,

can be understood as more efficient implementations of the technique of reusing currently existing domain

store propagators.

In Section 3.6 we present a short note on the complexity of ourframework. We note that iterating to a

fixed-point requires a number of iterations that is bounded by the number of edges in the MDD. By providing

sufficient conditions on the strength of filtering we show that certain domain propagation techniques in our

framework will achieve MDD consistency in polynomial time.

Finally, Section 3.7 describes some methods for using MDDs to augment branching strategies as well

as how to incorporate MDDs in primal heuristics for solving both constraint satsification and optimization

problems.

3.2 Constraint Programming Preliminaries

Given a variablex, thedomainof x is the set of values that can be assigned tox, and is denoted byD(x).

In this work we only consider variables with finite domains. Generalizing to finite sequences of variables

X = (x1, x2, . . . , xk), the declared domain of solutions is given by the Cartesian product of the domains

of the variables inX, that is,D(x) = D(x1) × · · · × D(xk). A constraintC on X is defined as a subset

of D(X) . A tuple (d1, . . . , dk) ∈ C is asolution to C and also say that(d1, . . . , dk) satisfiesC. A value

d ∈ D(xi) hassupport inC (or is consistent with respect toC) if it belongs to some tuple inC; otherwise

d is unsupported inC (or is inconsistent with respect toC). The constraintC is inconsistentif it does not

contain a solution, that is, it is the empty set; otherwise,C is consistent.

A constraint satisfaction problem, or CSP, is defined by a finite sequence of variablesX =

(x1, x2, . . . , xn), together with a finite set of constraintsC, where each constraintC ∈ C is defined over

a subsequence of variablesscope(C) ⊆ X . The goal is to find an assignmentxi = di with di ∈ D(xi) for

i = 1, . . . , n, such that all that constraints are satisfied. The assignment is called afeasible solutionto the

CSP.

The solution process of constraint programming interleaves constraint propagation(or propagationin

34

3.2. CONSTRAINT PROGRAMMING PRELIMINARIES

short), andsearch. The search process effectively enumerates all possible variable-value combinations. The

search process continues until a feasible solution is foundor proves that no feasible solution exists. We say

that this process constructs asearch tree. Each node in the tree has a declared domain which is a subset of

its parent’s domain. To reduce the exponential number of combinations,constraint propagationis applied

to each node of the search tree: given the current domains anda constraintC, remove domain values that

are inconsistent withC. This is repeated for all constraints until no more domain values can be removed.

The removal of inconsistent domain values is calledfiltering.

Of course we would like filtering algorithms to remove as manyinconsistent values as possible. How-

ever, this goal needs to be balanced against ‘speed’ (that is, time complexity or efficiency) since filtering

algorithms are typically applied at each node of the search tree. Indeed, conventional wisdom tells us that

reducing the search tree through enhanced processing at at each node often does not justify the additional

overhead. In the cases when filtering a constraintC removesall inconsistent values from the domain with

respect toC, we say that the filtering algorithm makesC domain consistent. Formally, a constraintC

on variablesx1, . . . , xk is calleddomain consistentif for each variablexi and each valuedi ∈ D(xi)

i ∈ {1, . . . , k)}, there exists a valuedj ∈ D(xj) for all j 6= i such that(d1, . . . , dk) ∈ C. For historical

reasons, domain consistency is also referred to ashyper-arc consistencyor generalized-arc consistency.

Establishing domain consistency forbinary constraints(constraints defined on two variables) is inex-

pensive. In general, this is not the case for higher arity constraints since the naive approach requires time that

is exponential in the number of variables. However, for someconstraints it is possible to establish domain

consistency much more efficiently by exploiting the underlying structure of the constraint.

The idea of constraint propagation presented above can be generalized so that one propagates a constraint

through aconstraint store: a datastructure that pools the results of individual constraint processing. When

the next constraint is processed (filtered), the constraintstore is in effect processed along with it. Notice

that propagating the results from processing one constraint to the other constraints is a mechanism that

allows a solver to (partially) exploit the global structureinduced by the set of constraints of a CSP, that is, it

approximates the goal of processing all the constraints simultaneously.

In current practice, the constraint store is normally adomain store: constraints are processed by filtering

algorithms that remove values from the variables’ domains and the reduced domains are the starting point

for filtering the next constraint. A domain store also guidesbranching in a natural way. When branching on

a variable, one can simply split the domain in the current domain store.

35

3.3. MDDS AND MDD-BASED CONSTRAINT SOLVING

For more information on constraint programming we refer thereader to [4] and [14].

3.3 MDDs and MDD-Based Constraint Solving

Multivalued decision diagrams(MDDs) [28] generalize binary decision diagrams (BDDs) [2,1], which

have long been used for circuit design/verification [10, 32]and very recently for optimization [7, 21, 22].

The MDD for a constraint set is essentially a more compact representation of a branching tree, obtained by

superimposing isomorphic subtrees. The shape of the resulting MDD depends on the order in which one

branches on the variables.

Formally, anordered MDD is a directed acyclic graph whose nodes are partitioned inton (possibly

empty) subsets orlayersL1, . . . , Ln+1, where the layersL1, . . . , Ln corresponding respectively to variables

x1, . . . , xn. L1 contains a singletopnodeT, andLn+1 contains twobottomnodes0 and1. Thewidthof the

MDD is the maximum number of nodes in a layer, ormaxn
i=1{|Li|}.

All edges of the MDD are directed from an upper to a lower layer; that is, from a node in someLi to a

node in someLj with i < j. For our purposes it is convenient to assume (without loss ofgenerality) that

each edge connects two adjacent layers. LetL(v) denote the layer of the nodev. Each edge out of layeri is

labeled with an element of the domainD(xi) of xi, and no label occurs more than once on the edges leaving

any given node. The setE(p, q) of edges from nodep to nodeq may contain multiple edges, and we denote

each with its label.

An edge with labelv leaving a node in layeri represents an assignmentxi = v. Each path in the

MDD from T to 0 or 1 can be denoted by the edge labelsv1, . . . , vn on the path and is identified with

the assignment(x1, . . . , xn) = (v1, . . . , vn). The MDD as a whole therefore represents a pseudoboolean

functionf for whichf(v1, . . . , vn) has the value 1 whenv1, . . . , vn is a path fromT to 1, and 0 when it is a

path fromT to 0.

It is clear that any pseudoboolean function of finite-domainvariablesx1, . . . , xn can be represented by

an MDD. Any constraint set with finite-domain variables can likewise be represented by an MDD, because

it defines a pseudoboolean function that maps every assignment to its variablesx1, . . . , xn to true or false.

For our purposes, it is convenient to generate only the portion of an MDD that contains paths from

T to 1. The resulting MDD represents assignments tox1, . . . , xn for which f(x1, . . . , xn) = 1. A path

v1, . . . , vn is feasiblefor a given constraintC if setting(x1, . . . , xn) = (v1, . . . , vn) satisfiesC. Constraint

36

3.3. MDDS AND MDD-BASED CONSTRAINT SOLVING

x1

x2

x3

T
.
......
.....
.

.....
.....
...

...
.....
.....

.

.....
......

.

.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
....

p1
......
.......

....
.......
..

.

........
....

.......
......

p2
.....
.....
......
.....
......
.....
......
.....
......
.....
......
.....
.....
......
.....
......

p3

..

..

.

..

..

..

..

..

..

..

.

..

..

..

.

..

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

..

.

..

..

..

.

..

..

..

..
..
..
.
..
..
..
..

.

..

.

..

.

..

..

.

.

.

.

..

.

..

.

..

.

..

.

.

..

..

..

.

..

..

..

..

..

...

1

(a)

T
.
......
.....
.

.....
.....
...

...
.....
.....

.

.....
......

p1
......
.......

....
.......
..

.

........
....

.......
......

p3

..

..

.

..

..

..

..

..

..

..

.

..

..

..

.

..

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

..

.

..

..

.

..

..

..

.

..

..

..

..
..
..
.
..
..
..
..

.

..

.

..

.

..

..

.

.

.

.

..

.

..

.

..

.

..

.

.

..

..

..

.

..

..

..

..

..

...

1

(b)

Figure 3.1: (a) MDD forx1 = x2. (b) MDD after processing foramong((x1, x2), {1}, 0, 1)

C is feasible on an MDD if the MDD contains a feasible path forC.

A constraintC is consistenton a given MDD if every edge of the MDD lies on some feasible path.

Thus consistency is achieved when all redundant edges (i.e., edges on no feasible path) have been removed.

Domain consistency forC is equivalent to consistency on an MDD of width one that represents the variable

domains. That is, it is equivalent to consistency on an MDD inwhich each layerLi contains a single node

pi, andE(pi, pi+1) = D(xi) for i = 1, . . . , n. We will refer to this MDD asMn.

A very simple example illustrates the advantage of MDD-based propagation. Suppose that a constraint

satisfaction problem contains the constraintsx1 = x2 and

among({x1, x2, x3}, {1}, 0, 1), (3.1)

where the domain of eachxi is {0, 1}. The constraint (3.1) requires that at most one of the variables

x1, x2, x3 take the value 1. It is clear that we must havex1 = x2 = 0, and yet neither constraint allows

any domain filtering. Suppose, however, we create the MDD of Figure 3.1(a) to represent the constraint

x1 = x2 (this is actually abinary decision diagram because the variable domains are binary).An edge

leaving a node in thexi layer of the MDD indicates thatxi = 0 (dashed edge) orxi = 1 (solid edge).

The four paths from the top node to the bottom node indicate the four solutions ofx1 = x2, namely

(x1, x2, x3) = (0, 0, 0), (0, 0, 1), (1, 1, 0), (0, 0, 1).

Now if we process the MDD to reflect constraint (3.1), we can immediately delete two solid edges

to obtain the MDD in Fig. 3.1(b), because they lie on no path that satisfies (3.1). This not only curtails

branching by reducing the domains ofx1 andx2 to {0}, but it creates a more restrictive MDD that can be

37

3.3. MDDS AND MDD-BASED CONSTRAINT SOLVING

passed along to any other constraints in the problem for further processing.

The MDD of Fig. 3.1 representsx1 = x2 exactly, but this is not typical of practice, because exact

MDD representations of a constraint can grow exponentiallywith the number of variables. Rather, we start

with a simple MDD that permits all solutions andrefine it each time a constraint is processed. Refinement

is accomplished by adding some nodes and edges to the MDD so asto exclude solutions that violate the

constraint.

The basic operation of refinement isnode-splitting, in which the edges entering a given node are parti-

tioned into equivalence classes, and ideally the node is split into one copy for each equivalence class. The

set of outgoing edges for each copy is the same as the set of outgoing edges of the original node. We note

that determining the equivalence classes may be costly to compute in practice, in which case an approxi-

mation of equivalence is used. We take care that thewidth of the MDD (maximum number of nodes in a

layer) remains within a fixed bound. When splitting a node we merge equivalence classes when necessary in

order to respect this restriction. The resulting MDD is a relaxation in the sense that it may fail to exclude all

assignments that violate the constraint, but it is a much stronger relaxation than a domain store. A principled

approach to node refinement in MDDs is introduced in [23].

We also update the MDD by deleting some edges that can be part of no solution, an operation that

generalizes conventional domain filtering. We will refer toit as MDD filtering. This can lead to further

reduction of the MDD, if after the removal of the edge some other edges no longer have a path to1 or can

no longer be reached by a path from the root.

In the example of Fig. 3.1, the variables have the same ordering in the MDD as in theamong constraint

for which it is filtered. This is not true in general. The MDD isnormally processed with several constraints,

which may imply different natural orderings. It is impossible for the MDD ordering to be optimal for every

constraint. Therefore, we designed our algorithms to be valid for an arbitrary ordering of the variables in

the MDD.

A MDD-based constraint solver is based onpropagationandsearchjust as traditional CSP solvers, but

the domain filtering process at each node of the tree is replaced or supplemented by an MDD refinement

and filtering process. This requires that additional time beinvested at each node, violating the constraint

programmer’s maxim that it is better to process many nodes than spend much time at each one. This maxim,

however, evolved in a context in which domain stores propagated limited information. If more information

can be transmitted to the next constraint, then it may be worth investing more time to obtain this information.

38

3.4. A FRAMEWORK FOR MDD PROPAGATION

3.4 A Framework for MDD Propagation

A primary research issue in applying MDDs to solving CSPs is whether there exist fast and effective propa-

gation algorithms for constraints. Indeed, there can be a jump in complexity when trying to design filtering

algorithms that arecomplete, that is, achieve domain and MDD consistency respectively.For example, in

[3] the authors demonstrate that although the constraintalldiff has a polynomial-time algorithm that

achieves domain consistency it is NP-hard to achieve MDD consistency on an MDD of polynomial size.

Until now (to the best of our knowledge) there were MDD propagation algorithms for the following

constraints: (one-sided) inequality constraints [3],alldiff [3], equality constraints [23], andamong

constraints. The reasoning used for designing propagationalgorithms for each of the constraints seemed

to be ad-hoc. In this section we will present a systematic method for extending the reasoning used to

propagate constraints in the traditional domain store setting to design MDD propagation algorithms. We

will demonstrate the efficacy of the method by designing MDD propagation algorithms for several important

classes of constraints.

We start by presenting the MDD inequality propagator [3] using the language of the general framework

and then proceed to the formal definitions and present further examples.

3.4.1 An inequality propagator

Suppose that we want to propagate an inequality over a separable function:

∑

j∈J

fj(xj) ≤ b.

We can propagate such a constraint on an MDD by performing shortest-path computations where the length

of an edgee is simplyfL(tail(e))(e). Recall that each edgee is identified with a domain value corresponding

to the variable on the layer of the tail of the edge, that is,L(tail(e)). With each noder in the MDD we will

compute and store(dT , d1), wheredT is the length of the shortest-path from the rootT to the node, andd1

is the length of the shortest-path from the node to the sink1.

We can delete an edgee from the MDD if and only if every path through the edgee has a length greater

thanb, that is, if and only if

dT (tail(e)) + fL(tail(e))(e) + d1(head(e)) > b.

39

3.4. A FRAMEWORK FOR MDD PROPAGATION

This inequality propagator achieves MDD consistency as an edgee is always removed unless there exists a

feasible solution to the inequality that supports it. We canalso use the path length information to refine a

node. For a nodes we can partition the incoming edgesEin(s) into different classes according to the value

of

dT (tail(e)) + fL(tail)(e) + d1(s).

We can computedT for each node using a single top-down pass through the MDD, and similarly we

can computed1 for each node using a single bottom-up pass through the MDD. Now we will frame these

computations explicitly in terms of the operators used in the general framework.

Given a nodes, let Ein(s) denote its set of incoming edges. Lettail(e) denote the tail of the edgee (the

head of the edges inEin(s) is alwayss). Then

dT (s) = min{dT (tail(e)) + fL(s)−1(e) : e ∈ Ein(s)}.

Suppose our inequality is labeled as the constraintC. In our general framework the equation fordT (s)

above is an instatiation of

IC(s) =
⊕

{dT (tail(e))⊗ e : e ∈ Ein(s)}

where for constraintC and informationdT ,

• Ia ⊗ e = Ia + fL(tail(e))(e), and

• Ia ⊕ Ib = min{Ia, Ib}.

Similarly, given a nodes, let Eout(s) denote its set of outgoing edges. Lethead(e) denote the head of

the edgee (the tail of the edges inEout(s) is alwayss). Then

d1(s) = min{d1(head(e)) + fL(s)(e) : e ∈ Eout(s)}.

This is an instantiation of

IC(s) =
⊕

{dT (head(e))⊗ e : e ∈ Eout(s)}

where for constraintC and informationd1,

• Ia ⊗ e = Ia + fL(tail(e))(e), and

• Ia ⊕ Ib = min{Ia, Ib}.

40

3.4. A FRAMEWORK FOR MDD PROPAGATION

3.4.2 The General Framework

Suppose we are given a constraintC and want to compute some informationIC that is ‘local’ to each node

in the MDD. This information can be used for filtering or refining. The computation is local in the sense in

that it must be computable using the information available from its neighbors (incoming or outgoing). This

is not much of a restriction since the information at each node may encode information about predecessors,

successors, incoming or outgoing paths.

Let IC be the set whose elements encode the local node information for a constraintC. LetE be the set

of edges of the MDD. Then we need to define two operations (parameterized by the constraint and the type

of information):

• ⊗ : IC × E → IC , and

• ⊕ : IC × IC → IC .

A top-down pass of our scheme will look a shortest-path computation from the root and computesIC(s) for

a nodes only after the information for all its predecessors has beencomputed by setting

IC(s) =
⊕

{dT (tail(e)) ⊗ e : e ∈ Ein(s)}.

Similarly, a bottom-up pass of our scheme will computeIC(s) for a nodes after the information for all its

successors has been computed by setting

IC(s) =
⊕

{dT (head(e)) ⊗ e : e ∈ Eout(s)}.

A top-down (bottom-up) pass of the MDD visits each edge exactly once and so the passes themselves involve

an amount of work that is linear in the size of the MDD (modulo the work required to compute⊕ and⊗ at

each node).

Next, we present several instantiations of this framework to produce MDD propagation algorithms for

different constraints. To simplify our presentation we will assume that each variablexi is represented by

layeri in the MDD.

41

3.4. A FRAMEWORK FOR MDD PROPAGATION

3.4.3 Propagatingxi = xj

We will focus on the top-down pass since the bottom-up pass will be similar. Without loss of generality

assume thati < j. We define

I(s)⊗ e =























∅, L(s) < i ∨ L(s) ≥ j

e, L(s) = i

I(s), i < L(s) < j

andIa ⊕ Ib = Ia ∪ Ib.

We delete an edgee ∈ E(s, t) whereL(s) = j if e 6∈ I(s).

It is easy to see that a single top-down and bottom-up pass will achieve MDD consistency. Applying

this filtering scheme to an MDD of width one results in the traditional filtering applied to domain stores.

We can also refine the MDD using the information stored at eachnode. Say we are processing the MDD

in a top-down pass and we encounter a nodes with |I(s)| = k > 1. Then we can splits into s1, . . . , sk so

that|I(si)| = 1 for all si. Observe that if we do this as part of our top-down pass then wewill create several

disjoint paths fromxi to xj where each path corresponds to a single value in the domain ofxi. This type of

refinement may be too extreme; in general, we want to bucket values intelligently, for example, by forming

approximate equivalence classes.

Once we refine a node we recompute its information prior to processing its children. This scheme

generalizes easily to propagatingfi(xi) = fj(xj) for functionsfi andfj.

3.4.4 Propagatingxi 6= xj

We will focus on the top-down pass since the bottom-up pass will look almost exactly the same. Without

loss of generality assume thati < j. We define

I(s)⊗ e =























∅, L(s) < i ∨ L(s) ≥ j

e, L(s) = i

I(s), i < L(s) < j

andIa ⊕ Ib = Ia ∩ Ib.

We delete an edgee ∈ E(s, t) whereL(s) = j if e ∈ I(s). Applying this scheme to an MDD of width

one results in the traditional filtering applied to domain stores.

42

3.4. A FRAMEWORK FOR MDD PROPAGATION

We can also refine the MDD using the information stored at eachnode. Say we are processing the MDD

in a top-down pass and we are processing a nodes for which the⊕ operator results inI(s) = ∅ but for

which I(r) 6= ∅ for some incoming neighbors, sayI(ri) 6= ∅ for i = 1, . . . , k. Then we can splits into

s1, . . . , sk so that|I(si)| 6= ∅ for all si, i = 1, . . . , k. Observe that if we do this as part of our top-down

pass then we will create several disjoint paths fromxi to xj where each path corresponds to a single value in

the domain ofxi. Again, this type of refinement may be too extreme; in general, we want to bucket values

intelligently.

This scheme generalizes easily to propagatingfi(xi) 6= fj(xj) for functionsfi andfj.

3.4.5 Propagatingxi < xj

We will focus on the top-down pass since the bottom-up pass will look almost exactly the same. Without

loss of generality assume thati < j. We define

I(s)⊗ e =























∅, L(s) < i ∨ L(s) ≥ j

e, L(s) = i

I(s), i < L(s) < j

andIa ⊕ Ib = Ia ∪ Ib.

We delete an edgee ∈ E(s, t) whereL(s) = j if e ≤ min{I(s)}. Notice that we only need to pass

interval (bounds) information to filter an edge, and in fact,for (one-sided) inequalities we only need one of

the boundaries. With this observation, we define

I(s)⊗ e =























∅, L(s) < i ∨ L(s) ≥ j

[e, e] , L(s) = i

I(s), i < L(s) < j

andIa ⊕ Ib = [min{Ia, Ib},max{Ia, Ib}]. Let ∂−[a, b] = a and∂+[a, b] = b. Then we delete an edge

from e ∈ E(s, t) whereL(s) = j if e ≤ ∂−(s). A single top-down and bottom-up pass achieves MDD

consistency. Applying this scheme to an MDD of width one results in the traditional filtering applied to

domain stores.

This scheme generalizes easily to propagatingfj(xj) ≺ fi(xi) ≺ fj′(xj) where≺ is any total order on

the common codomains of the functionsfi, fj , fj′. To achieve MDD consistency for a two-sided inequality

we need a single top-down and bottom-up pass.

43

3.4. A FRAMEWORK FOR MDD PROPAGATION

3.4.6 Propagating theAll-Different Constraint

Thealldiff constraint is one of the most commonly used global constraints in practical constraint pro-

gramming models. It arises often in sequencing and scheduling problems which are problem domains for

which constraint programming has been extremely effective. The all-different constraint

alldiff(x1, . . . , xn) requires that the variablesx1, . . . , xn take distinct values.

We can frame thealldiff propagator presented in [3] in our framework. First, we summarize that

presentation. To each nodeu we attach four pieces of information for eachalldiff constraintC: Im-

pliedUp, ImpliedDown, AvailUp, and AvailDown. Without loss of generality assume thatscope(C) ⊆

{xi, xi+1, . . . , xj}. Then

ImpliedUpC(s)⊗ e =























∅, L(s) < i ∨ L(s) ≥ j

ImpliedUpC(s) ∪ e, var(s) ∈ scope(C)

ImpliedUpC(s), i ≤ L(s) < j ∧ var(s) 6∈ scope(C)

andImpliedUpa
C ⊕ ImpliedUpb

C = ImpliedUpC
a ∩ ImpliedUpC

b.

We delete an edgee ∈ E(s, t) whereL(s) ∈ scope(C) if e ∈ I(s). Next for AvailUp we have

AvailUpC(s)⊗ e =























∅, L(s) < i ∨ L(s) ≥ j

AvailUpC(s) ∪ e, var(s) ∈ scope(C)

AvailUpC(s), i ≤ L(s) < j ∧ var(s) 6∈ scope(C)

and AvailUpa
C ⊕ AvailUpb

C = AvailUpa
C ∪ AvailUpb

C . Now given some nodes, consider the set of

variablesXs = scope(C) ∩ {xk : k < L(s)}. If |Xs| = |AvailUpC(s)| (that is,Xs forms a Hall Set) the

values inAvailUpC(s) cannot be assigned to any variables not inXs. This allows us to delete edgese with

tail(e) = s such thate ∈ AvailUpC(s).

Notice that ImpliedUp and AvailUp are computed during a top-down pass of the MDD. ImpliedDown

and AvailDown are computed similarly during a bottom-up pass. In [3] the authors use this node information

to design a refining scheme.

3.4.7 Propagating Two-sided Inequality Constraints

This is a generalization of the equality propagator described in [23]. Suppose we are given an inequality

constraintlb ≤ ∑j∈J fj(xj) ≤ ub. Let m = min{J} andM = max{J}. We will store two pieces of

44

3.4. A FRAMEWORK FOR MDD PROPAGATION

information per nodes: PT , the set of all path lengths fromT to s (computed during the top-down pass) and

P1, the set of all path lengths froms to 1 (computed during the bottom-up pass). Then during the top-down

pass we set

PT (s)⊗ e =















0, L(s) < m ∨ L(s) ≥M

⋃

v∈PT (s)

(v + e), otherwise

andIa ⊕ Ib = Ia ∪ Ib. The operations forP1 are defined similarly. We can delete an edgee if and only if

∀vT ∈ PT (tail(e)), ∀v1 ∈ P1(head(e)) : vT + e + v1 6∈ [lb, ub].

Notice that once we delete even a single edge, the information stored at all predecessors and successors

becomes ‘stale’ and the information for these nodes must be recomputed in order to guarantee filtering that

achieves MDD consistency. This follows by noting that deleting an edge results in path lengths that are a

subset of the path lengths that existed when the edge is accounted for. Thus the filtering condition above

with the stale information is weaker than it would be with theupdated information. In other words, not

updating node information as edges are deleted may result inan MDD is a valid relaxation of the MDD that

would arise by updating the information.

However, we will achieve MDD consistency if every time we delete an edge we update the node infor-

mation for all predecessors and successors and repeat this filtering and updating until we reach a fixed-point.

This follows since the filtering condition above is both necessary and sufficient for an edge to be supported

by a feasible solution.

If all the variable domains are binary and iffj(xj) are restricted to a bounded set (e.g,fj(xj) ∈

{−1, 0, 1} for all j ∈ J) then

• the maximum number of filtering iterations required until wereached a fixed point is at most the

number of edges in the initial MDD, and

• computing⊕,⊗ and testing an edge can be done in polynomial time and space (relative to the size of

the MDD).

It follows that iterating this algorithm until we reached a fixed point will achieve MDD consistency in

polynomial time. This type of reasoning is a special case of ageneral principle that will be discussed in

detail in Section 3.6.

45

3.4. A FRAMEWORK FOR MDD PROPAGATION

3.4.8 Propagatingamong Constraints

Theamong constraint is a basic global constraint; it restricts the number of variables that can be assigned a

value from a specific subset of domain values. Formally, ifX = (x1, . . . , xq) is a sequence of variables,S

a set of domain values,0 ≤ ℓ ≤ u ≤ q constants then the constraint

among(X,S, ℓ, u) = {(d1, . . . , dq) : di ∈ D(xi)∀i ∈ {1, . . . , q}, ℓ ≤ |{i ∈ {1, . . . , q} : di ∈ S}| ≤ u}.

We can reduce propagatingamong(X,S, ℓ, u) to propagating a two-sided separable inequality con-

straint,

ℓ ≤
∑

xi∈X

fi(xi) ≤ u,

where

fi(v) =











1, v ∈ S

0, otherwise.

Notice that because eachfi(·) ∈ {0, 1} it follows that we can achieve MDD consistency in polynomialtime.

However, this filtering is too slow in practice. Instead, we simply propagate bounds information. That

is, we can use the inequality propagator for the pair of inequalities (reasoning on the shortest and longest

path lengths). Explicitly, let SP(r, s) be the length of a shortest path fromr to s, and LP(r, s) the length of

a longest path, where the length is defined byfi(xi) for all x ∈ X (andfi = 0 for all x 6∈ X). Then if node

r is in a layer corresponding to a variable inX, we filter an edge ine ∈ E(r, s) if

LP(T, r) + fL(r)(e) + LP(s, 1) < ℓ, or

SP(T, r) + fL(r)(e) + SP(s, 1) > u

These conditions are are sufficient but not necessary for determining the redundancy of an edge. In Sec-

tion 5.1 we provide a small example demonstrating how this condition fails to remove a redundant edge.

The shortest and longest path information can also be used tohelp us refine nodes in the MDD. For

example, we may regard two edgese1 ∈ E(r1, s) ande2 ∈ E(r2, s) as approximately equivalent for the

among constraint if

LP(T, r1) + fL(r1)(e1) = LP(T, r2) + fL(r2)(e2) or,

SP(T, r1) + fL(r1)(e1) = SP(T, r2) + fL(r2)(e2).

Another approximation into equivalence classes is by considering the impact of an edge on the ‘tightness’

of anamong constraint. That is, for each inequality defining theamong constraint, we consider the ‘slack’

46

3.4. A FRAMEWORK FOR MDD PROPAGATION

of an edgee ∈ E(r, s) to beℓ− (SP(T, r) + fL(r)(e) + SP(s, 1)), respectivelyu− (LP(T, r) + fL(r)(e) +

LP(s, 1)). The slack reflects the number of variables that can still be assigned to a value inS without

violating the respective inequality. We say that an edge is ‘tight’ if its slack is at most a given thresholdτ

, and ‘loose’ otherwise. The equivalence classes (with respect to each inequality) then belong to all tight

edges and all loose edges entering a node in the MDD.

3.4.9 Propagating thesequence Constraint

The sequence constraint is a generalization of theamong constraint that states that at leastℓ and at mostu

values inS are assigned toeverysubsequence ofq consecutive variables. Formally, letX = (x1, . . . , xn)

be a sequence of variables,S a set of domain values,0 ≤ ℓ ≤ u ≤ q ≤ n constants then the constraint

sequence(X,S, q, ℓ, u) =

n−q+1
∧

i=1

among({xi, . . . , xi+q−1}, S, ℓ, u).

So we can reduce propagating asequence constraint to propagating its consituentamong constraints.

There is a loss of strength by using this reduction (cf. [58])already when using domain propagation.

We can speed things up when propagating asequence constraint using this reduction provided we

are aware of the global structure. Instead of doing one top-down and bottom-up pass for each of the con-

stituentamong constraints we will do a single top-down and bottom-up pass for thesequence constraint

essentially by ‘gluing’ together the shortest and longest path length information for each of theamongs.

Since each variablexi ∈ X appears in at mostq among constraints, each node in the MDD only needs

to store the shortest and longest path information for theq among constraints that it is involved in. This

drastically reduces the number of times we retrieve the sameMDD information for processing (compared to

serially processing each of theamong constraints). Second, we are now in a position to use the information

at each node to make more global refinement decisions. For example, we consider an edge ‘tight’ for the

sequence constraint only if some prespecified number of constituentamong constraints are ‘tight’ (in the

sense of the previous subsection).

3.4.10 Propagating the Generalized Cardinality Constraint

The generalized cardinality constraint(GCC) is an extension of thealldiff constraint that counts how

many variables take each of a given set of values. As with thealldiff constraint, this is an extremely

useful constraint that appears in many constraint programming models. Formally, ifX = {x1, . . . , xn} is

47

3.4. A FRAMEWORK FOR MDD PROPAGATION

a set of variables,v = (v1, . . . , vm) a vector of values,ℓ = (ℓ1, . . . , ℓm) a vector of lower bounds, and

u = (u1, . . . , um) a vector of upper bounds then the constraint

gcc(X, v, ℓ, u) = {(d1, . . . , dn) : di ∈ D(xi)∀i ∈ {1, . . . , n},

ℓj ≤ |{i ∈ {1, . . . , n} : di = vj}| ≤ uj ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m}} .

Just as with thesequence constraint we can express the generalized cardinality constraint as several

among constraints of a special type:

gcc(X, v, ℓ, u) =

m
∧

i=1

among(X, {vi}, ℓi, ui).

As with with sequence constraint we can leverage the global aspect of the constraint in the refining step.

In fact we can do better than this by reusing the filtering technique based on network flows forgcc (cf.

[26]). We will revisit this point in Section 3.5.

3.4.11 Propagating theUnary Resource Constraint

Consider the following setup: there areN activities to be scheduled on a single machine (resource). Each

activity ai has an earliest possible start timeesti, a latest possible completion timelcti, and a processing

time pi. We will model the problem usingN variablesX = (x1, . . . , xn) wherexi = aj implies that

activity j is theith activity to consume the resource.

Each nodeu in the MDD has three pieces of information:est(u), lct(u), and ImpliedUp(u). Given a

nodes an in outgoing edgee we define

est(s)⊗ e = max{est(s) + pe, este},

andesta ⊕ estb = min{esta, estb}. Similarly,

lct(s)⊗ e = min{lct(s) + pe, lcte},

andlcta ⊕ lctb = max{lcta, lctb}. The ImpliedUp information is defined as for thealldiff constraint.

We delete an edgee ∈ E(r, s) if

[este, lcte] 6⊆ [est(r), lct(r)] or e ∈ ImpliedUp(r).

48

3.5. REUSING DOMAIN PROPAGATORS

3.4.12 Propagating theelement Constraint

We will look at the simplest form of theelement constraint:element (xi, (a1, . . . , am), xj) where the

ak are constants. This means that the variablexj must take thexth
i value in the list(a1, . . . , am), that is,

xj = axi
.

We will focus on the top-down pass since the bottom-up pass will look almost exactly the same. Without

loss of generality assume thati < j. We define

I(s)⊗ e =























∅, L(s) < i ∨ L(s) ≥ j

e, L(s) = i

I(s), i < L(s) < j

andIa ⊕ Ib = Ia ∪ Ib. We delete an edgee ∈ E(s, t) whereL(s) = j if e 6∈ I(s). It is easy to see that a

single top-down and bottom-up pass will achieve MDD consistency. Moreover, when we use this filtering

scheme for an MDD of width one we recover the filtering algorithm for domain stores that achieves domain

consistency.

The information we store at each node can be used to refine the MDD much in the same way the

information forxi = xj is used to refine the MDD.

3.5 Reusing Domain Propagators

3.5.1 Motivation

There has been a lot of research dedicated to finding efficientdomain store propagators. So one possible

intermediate step to finding efficient MDD propagators may beto find an effective way to reuse domain

propagators. We will present one such method based on the framework presented in the previous section.

We start by reviewing a method to reuse domain propagators presented in Section 5 of [3]. In this

scheme the authors consider the family of MDDs{Me} for each edgee of the MDD M obtained by re-

moving all paths inM not containing that edge. From each MDDMe they compute its induced domain

relaxationD×(Me) whosekth component is defined by

D×
k (Me) =

⋃

v∈ layerk

Eout(v).

49

3.5. REUSING DOMAIN PROPAGATORS

For each domain relaxationD×(Me) the algorithm computes the simultaneous fixed-pointDdom of the

domain propagators they wish to reuse. Then for each assignmentxk = α consistent withD×(Me) but not

with Ddom the scheme places a no-goodxk 6= α on the edgee and deletes the edgee if tail(e) = k and

e = α. Otherwise, the scheme ‘moves’ the no-goods towards the layer in the MDD which corresponds to

the variable they restrict, and are only allowed to move pasta node if all paths through that node agree on the

no-good. This ensures that no feasible solutions are removed. The authors note that this type of filtering will

reach a fixed-point after a polynomial number of passes through the MDD, and thus applies each domain

propagator a polynomial number of times.

The scheme we will be presenting is closely related to the scheme presented in [3]. However, using

our framework we will see that all the algorithms in the previous section can be understood as special cases

of this particular setup, including the ‘specialized filtering’ algorithms for the inequality propagator and

alldiff presented in [3]. It is important to note that the specialized algorithms presented earlier are more

efficient since the information they store at each node is smaller and faster to compute than the information

used by the algorithm that follows.

3.5.2 Using Domain Information

Instead of using information tailored to specific constraints through the MDD using⊗ and⊕ (e.g., shortest

paths, time intervals, etc.), we will explicitly use domaininformation. For each nodes let Ms be the MDD

obtained by removing all paths inM not containings. We will be interested in incrementally constructing

(via the top-down and bottom-up passes) an induced domain relaxationD×(Ms) whosekth component is

given by

D×
k (s) =

⋃

v∈ layerk

Eout(v).

We note that the ‘node’ induced domain relaxationD×(Ms) is the union the ‘edge’ domain relaxations

D×(Me) of [3] for all edges leavings.

Consider a nodes on layerk of the MDD. The top-down pass will compute the ‘prefix’ information

for D×(Ms), that is, it will computeD×
i (Ms) for i < k. The bottom-up pass will compute the ‘suffix’

information ofD×(Ms), that is,D×
i (Ms) for i > k.

Let us examine the top-down pass and define⊗ and⊕ for a nodes on layerk. The informationI(s)

stored at each node consists ofn components, where each component (a set) corresponds to thedomain of

50

3.5. REUSING DOMAIN PROPAGATORS

the induced domain relaxation for the node. Then for an edgee ∈ Eout(s)

I(s)⊗ e = (I(s), e, I(head(e)))

and⊕ is the componentwise union, that is,

Ia ⊕ Ib = (Ia
1 ∪ Ib

1, . . . , I
a
n ∪ Ib

n).

The operations for the bottom-up pass are defined similarly.Now we have the option of reusing domain

propagators in the same manner as [3]. For each induced domain relaxationD×(Ms) the algorithm com-

putes the simultaneous fixed-pointDdom of the domain propagators that we wish to reuse. Then for each

assignmentxk = α consistent withD×(Ms) but not withDdom we place a no-goodxk 6= α on the nodes

and delete an edgeα if L(s) = k andα ∈ Eout(s). Otherwise, we ‘move’ the no-goods towards the layer

in the MDD which corresponds to the variable they restrict, and are only allowed to move past a node if all

paths through that node agree on the no-good. This ensures that no feasible solutions are removed.

3.5.3 A Faster Framework for Reusing Domain Propagators

Recall that our specialized algorithms tend to filter edges after computing information from a single top-

down and bottom-up pass. How can we reconcile this with passing no-goods carefully to ensure that feasible

solutions are not discarded?

A domain propagatorp can be viewed as a function that maps domains to domains. In practice, domain

propagators are restricted to beingmonotone(D1 ⊆ D2 ⇒ p(D1) ⊆ p(D2)) anddecreasing(p(D) ⊆ D) in

order to make constraint propagation well-behaved. Finally, propagators must implement relaxations of the

constraints they are modeling, that is, they may not remove any assignment that is supported by a feasible

solution. Such propagators are calledcorrect.

By computing a single bottom-up and top-down pass we ‘cache’the induced domain relaxations for each

node. As soon as we filter a single edge, the induced domains relaxations for all paths involving that edge

becomes ‘stale’. However, provided that the domain propagator is well-behaved in the manner described

earlier, we can still delete edges based on the stale information without worrying about removing feasible

solutions. The price we pay for using stale information for domain propagators that are correct, monotone

and decreasing is weakened filtering, that is, by using staleinformation we may not filter edges that would

otherwise be filtered with updated domain information.

51

3.5. REUSING DOMAIN PROPAGATORS

In fact, the passing of no-goods in the previous schemes is nothing else but an efficient way of updat-

ing the stale domain information in order to make stronger inferences. Observe that updating the no-goods

consistently (that is, only moving a no-good past a node if all paths through that node agree on the no-good)

is just implementing the⊕ operator of the last section in disguise. Recall that the⊕ operator implements

the componentwise union of domains. Since passing a no-goodis essentially passing ‘complemented’ do-

main information, the equivalent⊕ operation becomes the componentwise intersection of (complemented)

domains.

3.5.4 The Relationship with ‘Specialized’ Propagators

How can we relate reusing domain propagators to all the previous ‘specialized’ schemes for MDD filtering?

In each of the specialized algorithms the information stored at a node is a constraint specific ‘summary’ of

the domain relaxation induced by that node.

To make this concrete, let us consider the example of propagating the among constraint:

among(X, {1}, ℓ, u), whereX = (x1, . . . , xn) andD(xi) ⊆ {0, 1} for all xi ∈ X. Domain propaga-

tion for this constraint is easy. Letf0 andf1 denote the number of variables whose domains are fixed to

zero and one respectively. Then

• If f1 > u or ℓ < n− f0 then the constraint is inconsistent.

• If f1 = u then remove 1 from the domains of all unfixed variables.

• If f0 = n− ℓ then remove 0 from the domains of all unfixed variables.

• Otherwise the constraint is domain consistent.

Recall that for each node in the MDD our propagation scheme for among computed the shortest and longest

path from the root to the sink involving that node. In an MDD ofwidth 1 there is but a single path from

the root to the sink. Thus, every node on the path will have thesame information: the shortest and longest

path from the root to the sink. But the shortest path and longest paths from the root to the sink aref1 and

n − f0 respectively. Moreover, the MDD edge filtering conditions for an edgee reduce to testing whether

f0+e < n−ℓ or f1+e > u. And so, the specialized MDD edge filtering scheme is using the same inference

technique as the domain relaxation filtering scheme foramong but with much less overhead (computing and

storing the shortest and longest path lengths instead of thedomain relaxation information).

52

3.5. REUSING DOMAIN PROPAGATORS

Every specialized MDD filtering scheme presented in Section3.4 can be interpreted this way. The infor-

mation stored at each node summarizes domain relaxation information in a way that is sufficient for filtering

edge domains. This can be much more efficient in terms of computation time and memory. However, a key

advantage of storing domain information as opposed to constraint specific information is that the domain

information can be computed once and used as input toseveralexisting domain store filtering algorithms

for various constraints.

3.5.5 A Scheme for the Partial Updating of Node Information

As the authors of [3] point out, propagating filtering schemes based on domain propagators to achieve a

simultaneous fixed-point in the MDD will very costly. Indeed, in our own experiments we have noticed

that there is definitely a cost-benefit tradeoff with applying more ‘agressive’ propagation. This idea is al-

ready present and addressed in modern constraint programming systems based on domain stores. Constraint

programming solvers typically employ nontrivial scheduling systems for domain propagation (cf. [56]).

Our current approach for MDD propagation involves two passes of the MDD. The first pass is a bottom-

up pass that caches suffix information. We perform no refinement or filtering during the bottom-up pass.

During the top-down pass after we compute the top-down information for a node we can filter the nodes

outgoing edges and split the node if we choose to.1

In order to limit the amount of information updating (equivalent to passing no-goods) we restrict our-

selves to filtering only the outgoing edges of a node we are processing even if our filtering algorithm indi-

cates that we are able to reduce the domains of other variables in induced domain relaxation of that node.

This ensures that we only have to update the top-down (prefix)information of the node we are currently

processing.

Let us be more explicit: suppose we are processing a nodes during the top-down pass and we run our

filtering algorithm on the induced domain relaxation ofs, D×(s). Suppose we want to filter a value from the

domain of a variablexk whose index differs fromL(s). Then we would need to know exactly which nodes

on layerk are connected tos and update only those nodes, otherwise we may remove feasible solutions.

Even if we cache predecessor/successor information along with the domain information, we will eventually

need to update this connectivity information which involves work similar to propagating a no-good froms

towards layerk.

1We can just as easily start with a top-down pass and filter/refine during a bottom-up pass.

53

3.6. ACHIEVING MDD CONSISTENCY

So, by allowing ourselves to filter only outgoing edges ofs we are trading the ability to make stronger

inferences at a much higher cost for weakened filtering with no additional updating of information. Notice

that while suffix information may become very stale during the top-down pass, the prefix information is

more current since a node’s prefix information is computed after all its predeceeding nodes have filtered

their outgoing edges.

Refining is also simple in this setup. Suppose we want to splitthe nodet that we are currently processing

(during the top-down pass) into the nodest1 andt2. Both t1 andt2 will have t’s suffix information and can

compute their prefix information fromt’s prefix information andEin(t).

Remark3.5.1. If we want to reuse domain propagators in this scheme we may want to modify them slightly.

When processing a node, the algorithm outlined above needs to know whether a particular domain value

(edge) in the induced domain relaxation (of the current nodebeing processed) is supported by a feasible

solution. Algorithms that answer this query may be computationally more efficient that traditional domain

store filtering algorithms that attempt to filter all variable domains simultaneously.

Remark3.5.2. There are situations in which we may want to relax the restriction of only filtering a node’s

outgoing edges as described above. For example, if our filtering algorithm indicates that we can reduce the

domain of a variables whose layer is close to the current layer being processed we may want to filter the

corresponding edges, since the work required to do this correctly is a function of the product of the distance

between layers and the maximum width of the MDD.

3.6 Achieving MDD consistency

In this section we restrict ourselves to filtering a given MDDwithout refining. Clearly achieving MDD

consistency is at least as hard as achieving domain consistency. In [3] the authors demonstrate that although

the alldifferent constraint has a polynomial-time algorithm that achieves domain consistency it is

NP-hard to achieve MDD consistency on an MDD of polynomial size.

Let us consider what happens when we iterate our general scheme above for a single constraint until we

reach a fixed point. Assume that testing an edge requires timeand space that is bounded by a polynomial

in the size of the MDD. In particular,⊗ and⊕ require polynomial time and space (which is the case for

computing induced domain relaxation information). Then each top-down and bottom-up pass will require

work that is polynomial in the space and size of the original MDD. Iterating the algorithm to a fixed-point

54

3.6. ACHIEVING MDD CONSISTENCY

requires that each iteration delete at least one edge. Thus the number of (top-down and bottom-up) iterations

required to reach a fixed-point is bounded by the number of edges in the MDD. It follows that the time and

work required to propagate a constraint in our framework to afixed-point is a polynomial function of the

size of the MDD.

This has an important consequence. Since achieving MDD consistency for a constraint may be NP-hard,

it follows that achieving a fixed point in the MDD using our framework may not result in MDD consistency

for a constraint (provided P6= NP). This is true even when we reuse domain propagators that achieve domain

consistency.

However, there are cases in which propagating to a fixed-point is sufficient to achieve MDD consistency.

This idea is related to the standard ‘shaving’ technique in the constraint programming literature. If our

filtering scheme for a constraint is strong enough to delete an edge if and only if the edge is not supported

by any feasible solution then propagating this constraint to a fixed-point will achieve MDD consistency.

In general, this is a much stronger requirement than deleting an edge if and only if it is not witnessed by

a feasible solution of theMDD relaxation induced by the edge. Observe that reusing domain information

essentially discards order dependedent (path dependent) information. This loss is expected in a sense when

designing efficient algorithms since a given MDD may have exponentially many paths (relative to its size).

For example, let us revist the filtering scheme presented in Section 3.4.7 for propagating two-sided

inequalities to a fixed-point, that is, the constraint

lb ≤
∑

j∈J

fj(xj) ≤ ub.

First we consider the case where all variable domains are binary and the codomains of all the separable

functionsfj are restricted to belong to a bounded set (e.g.,fj(xj) ∈ {0, 1} for all j ∈ J). An edge is

deleted if and only if it is not witnessed by any feasible solution. Computing⊗ and⊕ requires polynomial

time and space relative to the size of the MDD. Testing an edge, however, is equivalent to solving a subset-

sum problem. So when the domains of the variables are all binary, this test can be done in polynomial time.

When the domains are not binary then testing an edge can be done in pseudo-polynomial time. In the former

case by iterating the filtering algorithm to a fixed-point we achieve a polynomial time filtering algorithm.

55

3.7. PRIMAL HEURISTICS AND BRANCHING STRATEGIES

3.7 Primal Heuristics and Branching Strategies

So far we have concentrated on ‘dual’ side of using MDDs, thatis, using the MDD as a mechanism to prove

feasibility or infeasibility of a problem. Since the MDD is arelaxation of the feasible set, we can explore

the uses of an MDD from a primal perspective.

For each constraint we define aviolation function that measures how much a potential solution violates

the constraint. This measure should be normalized across constraints. We can now employ any of the

plethora of local search techniques to explore the MDD to finda feasible solution.

In cases where the local search procedure fails to find a feasible solution we can still leverage the

information gained to guide branching. We simply branch in the search tree in a manner that moves us

towards the best solution found by the local search procedure.

3.7.1 MDD-Based Constraint Optimization and Strong Branching

A framework for MDD-based constraint optimization is presented in [3]. A separable objective function
∑

i fi(xi) can be minimized over an MDD using a single shortest-path computation (in the same spirit

as propagating an inequality constraint). Since, an MDD is arelaxation of the space of optimal feasible

solutions the shortest-path calculation provides a lower bound on the optimal value. Thus we can use MDD

relaxation in a branch-and-bound scheme to solve optimization problem.

We can adapt strong branching in this setting. Once we have finished processing a search tree node we

create several temporary copies of the the node’s MDD. Now we‘explore’ a branching choice on each copy

of the MDD but only by doing some minimal amount of propagation (this step needs to be fast). We can

quickly compute a bound on the objective function for each partially propagated branching choice. We then

branch according to the choice that shows the most promise.

3.8 Conclusion

We have presented a general framework for propagating constraints in an MDD. We have described special-

ized filtering procedures for several important classes of global constraints. We also provide a systematic

way of reusing domain store propagators within this framework and provide several alternatives for embed-

ding this technique within a constraint solving system. An interesting corollary is thatall the specialized

56

3.8. CONCLUSION

algorithms presented, both old and new, can be understood asmore efficient implementations of the tech-

nique of reusing currently existing domain store propagators.

Next, we presented a short note on the complexity of our framework. Iterating our scheme to a fixed-

point requires a number of iterations that is bounded by the number of edges in the MDD. By providing

sufficient conditions on the strength of filtering we show that certain domain propagation techniques in our

framework will achieve MDD consistency in polynomial time.

Finally, we provide some thoughts on how to use MDDs to augment branching strategies and how to

incorporate MDDs in primal heuristics for solving both constraint satsification and optimization problems.

57

Chapter 4

An MDD-based Constraint Programming

System

4.1 Introduction

Our goal is to design a general purpose finite-domain MDD-based constraint programming system. This

chapter outlines some of the basic design choices made for our system as well as the motivations for these

choices.

4.2 Working with Finite-Domains

First, let us fix some terminology. Adomainis a finite set of integers. A domain isfailed if it is empty.

A domain isfixed if it is a singleton. The intersection (union) of two domainsis simply their set-theoretic

intersection (resp. union). Finally, domainD1 is strongerthanD2 if D1 ⊆ D2. We will use interval (or

range) notation[ℓ, u] to represent the set of consecutive integers{x ∈ Z : ℓ ≤ x ≤ u}.

Recall our setup for MDDs: each edge leaving layeri is labeled with an element of the domainD(xi)

of xi, and no label occurs more than once on the edges leaving any given node. The setE(p, q) of edges

from nodep to nodeq may contain multiple edges, and we denote each with its label.

An edge with labelv leaving a node in layeri represents an assignmentxi = v. Each path in the

MDD from T to 0 or 1 can be denoted by the edge labelsv1, . . . , vn on the path and is identified with the

assignment(x1, . . . , xn) = (v1, . . . , vn).

58

4.2. WORKING WITH FINITE-DOMAINS

In our implementation we chose to implement MDDs as simple directed graphs, that is, we disallow

multiple edges between nodes. Instead we identify the multiple edges and aggregate the labels into what we

call edge-domains. In an MDD of width one, the edge-domains are the variable domains.

There are several popular representations of domains; the two most common are ranges and bit-vectors.

A range sequencefor a finite set of integersI is the shortest sequence of disjoint intervals

s = ([b1, e1], . . . , [bk, ek]),

with bi < bi+1 such that the intervals coverI (that is,I = ∪k
i=1[bi, ei]). It follows that a range sequence is

unique, consists of non-empty intervals and thatei + 1 < bi+1 for 1 ≤ i < k. A bit vector for a finite set of

integers is simply a string of bits in which theith bit is set to 1 if and only ifi ∈ I.

There are definitely space and time tradeoffs between bit vectors and range sequences and the operations

that are needed to be performed on them. Range sequences are typically implemented using linked-lists

(although balanced binary tree structures do exist but are typically deemed as ‘too heavy’) whereas bit

vectors are usually implemented as consecutive words in memory with additional data to store the minimum

and maximum values. In practice, range sequences are typically used for general purpose applications as

they scale better.

We have decided to implement range sequences to represent edge-domains. The basic building block is

theINTERVAL class which provides the operations:min(), max() andcontains(v)which return the

minimum value of the interval, the maximum value of the interval and true ifmin() ≤ v ≤ max() and false

otherwise.

TheDOMAIN class implements a range sequence as an ordered linked-listof INTERVALS. We have

provided fast implementations for common operations required of domains:

• set to empty(): set the domain to the empty set;

• empty(): is the set is empty?

• size(): returns the number of elements in the set;

• contains(v): does the set containv?

• add(): add an element/list of values/interval to the set;

• remove(): remove an element/list of values/interval from the set;

59

4.3. THE MDD IMPLEMENTATION

• union(): form the union with another set;

• intersection(): form the intersection with another set.

Since it is quite common during constraint processing to iterate over all possible values in a variable’s

domain, theDOMAIN class provides anenumerator object to facilitate such operation. The following

methods describe the functionality of theDOMAIN::enumerator class:

• empty(): is the variable domain empty?

• reset(): reset the enumerator to the first element (if any);

• at end(): is the enumerator at the last element?

• value(): returns the current value;

• move to next(): move to the next value in the domain.

4.3 The MDD Implementation

We decided to implement an MDD as a layered simple directed graph with adjacent nodes belonging to

adjacent layers. Every edge connects two adjacent layers and has an edge domain. This differs from the

‘theoretical’ presentation in Chapter 3 where we allowed multiple edges between nodes and each edge was

labeled with a distinct value.

The NODE Class

TheNODE class has the following data:

• index : a unique identifier that allows for efficient representations of functions from the set of nodes

to pointers of data using arrays of small size;

• layer : indicates the layer of the MDD that the node resides;

• in : an array of pointers to the incoming edges;

• out : an array of pointers to the outgoing edges.

60

4.3. THE MDD IMPLEMENTATION

It is important that each node quickly have access to both itsincoming and outgoing edges for the various

operations required by the MDD. There are a few methods in theclass but they are used mainly for testing

the correctness of the code.

The EDGE class

TheEDGE class has the following data:

• index : a unique identifier that allows for efficient representations of functions from the set of edges

to pointers of data using arrays of small size;

• tail : a pointer to the tail node of the edge;

• head : a pointer to the head node of the edge;

• domain : a pointer to the set of values associated with the edge.

The POOL class

ThePOOL class is a template class that helps implement efficient mapsfrom pool objects to pointers of data.

For example, if we haven nodes then we want to assign each node an unique index between0 ≤ index< n.

If we had a static set of nodes then this could be accomplishedusing a counter. Implementing a function

from nodes to pointers of data can be implemented as an array of the pointers to the desired data.

We would like to keep this simple representation of functions but for a dynamic set of objects such as

the nodes and edges in the MDD. Our simple approach is to keep alist of ‘free’ indices, that is, indices that

were assigned to a node (or edge) but later become free to be re-assigned when their node (or edge) was

deleted.

ThePOOL class has the following data:

• data : an array of the templated type (for our purposes, pointers to NODE or EDGE objects);

• free index store : a list of ‘free’ indices to be re-used indata .

ThePOOL class provides the following interface:

• insert(T): insert T (an object of the templated type) into the pool;

61

4.3. THE MDD IMPLEMENTATION

• remove(index): mark index as free to be re-used. Note: this method doesnot free/delete the

object stored at index;

• size(): return how many elements are in the pool.

Currently, thePOOL class does not provide ‘garbage collection’ since synchronizing various maps/functions

that use the indices provided by the pool would have to be notified and updated to be consistent with the

result of the ‘garbage collection’.

The MDD class

TheMDD class has the following data:

• num vars : the number of variables (layers minus one);

• max width : the maximum number of nodes on any layer in the MDD;

• nodes : a doubly-indexed array of pointers to nodes where the first index indicates the layer of the

nodes. This allows us to quickly iterate over the nodes in a layer;

• edges : a pool of pointers toEDGE objects;

• domains : a cache to store the domain relaxation of the MDD;

• node pool : a pool of pointers toNODE objects.

Next we provide a description of some members of theMDD interface:

• add node(layer): add a node to layer (if possible);

• add edge(tail, head, domain): add an edge to the MDD;

• delete node(v): delete a node in the MDD;

• delete edge(e): delete an edge in the MDD;

• terminal(v): is a node terminal in the MDD?

• intersect domain(v, domain): intersect the domains of the outgoing edges ofv with

domain. This is useful when implementing variable partition branching schemes;

62

4.4. SPECIFYING A PROBLEM

• get domain relaxation(): compute and cache the domain relaxation of the current MDD;

• create domain relaxation(domains): create the domain store relaxation given the do-

mains of the variables;

• cleanup dangling nodes(): delete nodes and edges that do not belong to any path in the MDD

from the root to the sink;

• enumerate(): enumerate all solutions (feasible and infeasible) encoded by the MDD.

Adding and deleting a node on a layer of the MDD always occurs at the end of the array. In particular,

deleting a node from a layer may require swapping pointers sothat the pointer to the node being deleted is at

the end of the array. We use the same procedure for modifying anode’sin andout arrays when deleting

an edge. Thus, it is crucial to iterate over nodes in a layer carefully when performing operations that may

modify the layer (similarly, a nodes incoming or outgoing edges). When performing batch operations that

may delete nodes on a layer (e.g., filtering) you should typically iterate in reverse through the nodes in the

layer. Similarly, when performing batch operations that may add nodes on a layer (e.g., refining) you should

typically iterate in the forward direction through the nodes in the layer.

4.4 Specifying a Problem

In order to specify a constraint satisfaction (or constraint optimization) problem we have provided a simple

interface for users. A user is able to specify his own variables, and constraints and are provided with a

mechanism to add his own constraints. A user is able to specify theGOAL of the problem, which may be to

find a single solution, find all solutions or find an optimal solution. We will provide a quick overview of this

interface.

The VARIABLE class

This is a very simple class that encapsulates data associated with a CSP variable in our setup. The data in

VARIABLE class includes:

• label : every variable must be assigned a unique label (a string) that allows us to refer to that

variable;

63

4.4. SPECIFYING A PROBLEM

• domain : the domain of the variable in the domain relaxation of the MDD;

• mdd index : the layer in the MDD that corresponds to the variable.

The CONSTRAINT class

This is a core class for the solver and will be discussed in detail in Section 4.5.

The PROBLEM class

ThePROBLEM class has the following data:

• status : is the problem feasible, infeasible or is its status currently unknown?

• label : a string that serves as an identifier for the problem;

• goal : indicates whether the solution procedure should look for asingle feasible solution, look for

all feasible solutions or solve an optimization problem;

• solutions : a list of all feasible solutions found by the solver;

• variables : a list of variables (pointers to objects of theVARIABLE class) specified by the prob-

lem;

• constraints : a collection of constraints (pointers to objects of theCONSTRAINT class) specified

by the problem;

ThePROBLEM interface consists of the following methods:

• add variable(var): add the variablevar to the problem;

• add constraint(con): add the constraintcon to the problem;

Currently, a variable is assigned to the layer in the MDD in the order the variable is added to the problem.

We may want to consider generalizing the interface to allow the user to specify a variable’s layer in the

MDD or provide some type of priority scheme to help guide the layer assignment.

64

4.5. THECONSTRAINTCLASS

4.5 TheCONSTRAINT class

A constraintC on variables{x1, . . . , xn} with domains{D(xi)}ni=1 is a subset ofD(x1) × · · · × D(xn).

An assignment of valuesxi = vi ∋ D(xi) is feasiblefor C if (v1, . . . , vn) ∈ C, otherwise we say that the

assignment isinfeasible. This is essentially anextensionaldefinition of constraints which is a popular view

of constraints in the constraint programming community. The set of variables{x1, . . . , xn} involved inC

is known as the scope of the constraintC, denotedscope(C).

If an assignmentxi = v can be extended to a feasible solutions of C we say thatv is supportedor

witnessedby s (for C). The process of removing infeasible values from domains (values not supported by

C) is known asdomain reductionor domain filtering.

Clearly, in most cases it is impossible to work with a constraint presented extensionally. Instead, most

constraints have some underlying structure that allows us to work with a constraint in a more tractable

manner. Constraint solvers typically implement a constraint C using a collection ofdomain filteringal-

gorithms. In MDDs constraints are implemented using a collection of edge filteringalgorithms as well as

node-splittingalgorithms.1

Abstractly, we can view a filtering algorithmφc for a constraintC as a function that maps domains to

domains. More precisely, given a constraintC with scope{x1, . . . , xn} andD =
∏n

i=1 D(xi) a filtering

algorithmφc is a functionφc : D → D. In order for our constraint propagation algorithms to be correct we

require that the edge filtering algorithms are

• monotone: D1 ⊆ D2 ⇒ φc(D1) ⊆ φc(D2), and

• decreasing: φc(D) ⊆ D.

Finally, edge filtering algorithms must implement relaxations of the constraints they are modeling, that is,

they may not remove any assignment that is supported by a feasible solution. Such filtering algorithms are

calledcorrect.

One important (and sometimes overlooked) function of constraints is that they can help guide our outer

search process (see Section 4.6). Consider, for example, the most popular branching scheme: branching on

an unfixed variablexj in which the domain ofxj is partitioned into two or more subsets and the subproblems

are created by restrictingxj to each of these subsets. We can think of a variablexj belonging to a domain

1For MDDs we use the wordpropagateto mean both filtering and refining.

65

4.5. THECONSTRAINTCLASS

as a constraint onxj and that branching onxj is one ‘function’ of this ‘domain constraint’. In general, we

allow a user the capability for a constraint to create subproblems (restrictions) based on the MDD of the

current subproblem (that is, branching on a constraint).

The CONSTRAINT base class

TheCONSTRAINT base class is a virtual class (it cannot be instantiated) which is used as a guide for de-

signing constraints in our solver. When a user creates a new constraint they need to augment the enumerated

typeCONSTRAINT::TYPE to include their constraint class. Currently, we have implemented the following

constraints

• DOMAIN CONSTRAINT: requires that a variable belong to its domain;

• AT MOST: models the constraint
∑

i∈I aixi ≤ b;

• AMONG AT MOST: models the constraint
∑

i∈I δS(xi) ≤ b, whereδS(xi) = 1 if D(xi) ∩ S 6= ∅ and

is equal to zero otherwise;

• CARD AT MOST: models the constraint
∑

i∈I δv(xi) ≤ b, whereδv = 1 if v ∈ D(xi) and is equal to

zero otherwise.

For (basic) scheduling purposes we have included a second enumerated typeCONSTRAINT::STATUS.

We list the possibleSTATUS values and their purpose:

• READY: the constraint is scheduled to be propagated;

• SUSPENDED: the constraint is not currently schedule to be propagated;

• REDUNDANT: the constraint may be safely removed from the problem without affecting feasibility.

The data for theCONSTRAINT class include:

• label : a string (identifier) associated with the constraint;

• variables : a list of pointers the the variables in the constriants scope;

• status : what is the scheduling status for the constraint;

• type : what is the constraint type;

66

4.5. THECONSTRAINTCLASS

• min support index : the first layer in the MDD that the constraint is involved in;

• max support index : the last layer in the MDD that the constraint is involved in.

The datamin support index and max support index are useful to speed up propagation of

a constraint during the top-down and bottom-up passes. For specialized propagators the filtering infor-

mation required by a constraint will typically not need to bepassed between layers outside the range

[min support index , max support index].

TheCONSTRAINT interface consists of the following methods:

• feasible(s): is s a feasible solution to the constraint?

• able to branch(): does the constraint provide an implementation ofbranch()?

• branch(): returns a list of constraints that will provide the restrictions that define each branching

subproblem along with an estimated score (similar to pseudo-costs) to help rank each subproblem

during the outer search;

• initialize info(): initialize the information that the constraint associates with each node of

the MDD;

• compute incoming info(M, v): compute the incoming information required by the constraint

for the nodev in the MDDM (this information is computed during the top-down pass);

• compute outgoing info(M, v): compute the outgoing information required by the constraint

for the nodev in the MDDM (this information is computed during the bottom-up pass);

• compute refining score(M, v): calculate a score that indicates how ‘valuable’ it is for this

constraint to refine the nodev in the MDDM;

• refine incoming(M, v): refine the edges incident tov in the MDDM;

• filter outgoing(M, v): filter the domains of the edges leavingv in the MDDM;

• post process(M): perform any post-processing required once the constrainthas been propagated.

67

4.5. THECONSTRAINTCLASS

The DOMAIN CONSTRAINT class

This class implements the (trivial) constraintxi ∈ D(xi). This constraint class exists solely because

of the generic way in which we branch (we only branch on constraints). There are several common

branching strategies for variables which are captured by the enumerated typeDOMAIN CONSTRAINT::

STRATEGY:

• SPLIT MIN: create two branches, the first branch restricts the variable to the minimum value in the

current domain and the second branch restricts the variableto the remaining values;

• SPLIT MAX: create two branches, the first branch restricts the variable to the maximum value in the

current domain and the second branch restricts the variableto the remaining values;

• SPLIT MID: create two branches splitting the domain of the variable atits midpoint (one branch is

restricted to the smallest values while the other branch is restricted to the largest values);

• SPLIT ALL: create one branch for each value where each branch restricts the variable to exactly one

of the possible values in its domain.

The key data required by theDOMAIN CONSTRAINT class not inherited from the base class isstrategy

which indicates the branching strategy. The interface implements the following methods:

• able to branch(): returns true if the variables current domain is larger thanone and false other-

wise;

• branch(): returns the constraints required to enforce the given branching strategy. The scores

(pseudo-costs) returned are based on the reduction in the size of the variables domain for each restric-

tion;

• filter outgoing(): simply intersects each edge domain with its correspondingvariable domain.

The AT MOST class

This class is used to propagate the constraint

∑

i∈I

aixi ≤ b.

Recall that the information stored at each nodes of the MDD for an inequality constraint consists of:

68

4.5. THECONSTRAINTCLASS

• dT (s): the length of the shortest path from the rootT to the node, and

• d1(s): the length of the shortest path from the node to the sink1,

where the length of an edge-value pair(e, v), e = (s, t) is given byaL(s)v. In terms of the general framework

(see Section 3.4.1) we compute the shortest-path from the root T during a top-down pass through the MDD

using⊗ and⊕ defined as follows for an edge-value pair(e, v) wheree = (s, t)

• dT (s)⊗ v = dT (s) + aL(s)v, and

• Ia ⊕ Ib = min{Ia, Ib}.

Similarly, we compute the shortest-path to the sink1 during a bottom-up pass through the MDD. We remove

a valuev from the domainD(e) of an edgee = (s, t) when every path through the edge-value(e, v) has a

length greater thanb, that is, when

dT (s) + aL(s)v + d1(t) > b.

We also use the informationdT andd1 to refine a node by considering the impact of an edge-value pair on

the ‘tightness’ of the inequality constraint. That is, we consider theslackof an edge-value pair(e, v) where

e = (s, t) to be

b− (dT (s) + aL(s)v + d1(t)).

An edge istight if its slack is at most a given threshold andlooseotherwise. The equivalence classes (with

respect to each inequality) then belong to all tight edge-value pairs and all loose edge-value pairs entering a

node in the MDD.

The data for this class includes:

• coefficients : the coefficientsai in the inequality;

• rhs : the right-hand side of the inequality;

• SP from root : an array that encodes the functions 7→ dT (s);

• SP from sink : an array that encodes the functions 7→ d1(s);

• edge value pairs data: stores the slack of all incoming edge-value pairs for a single node in

the MDD (this is a temporary variable that is used every time anode in the MDD is processed by the

constraint);

69

4.5. THECONSTRAINTCLASS

• refining score : indicates how valuable it is for the solver to let the constraint refine a node in

the MDD (this is a temporary variable that is used every time anode in the MDD is processed by the

constraint).

The interface includes all the methods from the base classCONSTRAINTand adds a single new methodf()

that will be overloaded by the subclassesAMONG AT MOST andCARD AT MOST, since these constraints can

be described as
∑

i∈I

f(aixi) ≤ b.

for a suitable definition off . In theAT MOST class the functionf is just the identify, that is,f(x) = x for

all x.

The AMONG AT MOST class

TheAMONG AT MOST class is a subclass of theAT MOST class in which the functionf has been redefined.

Given a setS the defining inequality for this constraint is

∑

i∈I

fs(xi) ≤ b,

wherefs(xi) = 1 if xi ∈ S and is equal to zero otherwise. The data for this class that augments the

AT MOST class is:

• domain : the setS used to definefs above.

The methodf implements the functionfs.

The CARD AT MOST class

TheCARD AT MOST class is a subclass of theAT MOST class in which the functionf has been redefined.

Given a valuev the defining inequality for this constraint is

∑

i∈I

fv(xi) ≤ b,

wherefv(xi) = 1 if xi = v and is equal to zero otherwise. The data for this class that augments the

AT MOST class is:

• value : the value used to definefv above.

The methodf implements the functionfv.

70

4.6. CONSTRAINT-BASED SEARCH

4.6 Constraint-Based Search

Our outer search algorithm uses the traditional recursive divide-and-conquer strategy of branching search.

Given a problemP that is too difficult to solve as given (typically after constraint propagation) the branching

algorithm creates a series ofrestrictions(or subproblems) P1, . . . , Pk whose union containsP (the restric-

tions should beexhaustive). Ideally, the restrictions are disjoint but we do allow them to overlap. In this

case, we say that we havebranchedon P . Next, the search algorithm attempts to solve each restriction. If

some branchPi is solved then

• the solution process is terminated with a feasible solutionif our goal is to find a feasible solution, or

• the solution is added to the list of feasible solutions forP if our goal is to find all feasible solutions,

or

• the solution becomes the incumbent if it is better than the previous incumbent solution.

If a restriction is too difficult to solve then the search procedure branches further on the restriction. This

solution process continues recursively. To ensure that this procedure terminates, the branching mechanism

must be designed in such a manner so that the problems become more tractable as the number of restrictions

increase.

The SEARCH NODE class

TheSEARCH NODE class stores data required to describe a restriction of a problem after some number of

branching steps. This class includes an enumerated typeSEARCH NODE::STATUS that indicates that the

current search node (subproblem) is:

• FEASIBLE: the subproblem has only feasible solutions, or

• INFEASIBLE: the surproblem has only infeasible solutions, or

• BOTH: the subproblem has both feasible and infeasible solutions, or

• UNKNOWN: the solutions defined by the subproblem have not been evaluated.

The data for this class includes:

71

4.6. CONSTRAINT-BASED SEARCH

• M : a pointer to the MDD used by the search node (subproblem);

• variables : a container with pointers to the variables in the subproblem;

• constraints : a container with pointers to the constraints defining the subproblem;

• branching constraint : a pointer to the constraint used to restrict the parent and form the

subproblem;

• processed : indicates whether the search node has been processed;

• status : the status of the solutions encoded by the subproblem;

• score : the score used by the node selection procedure of the outer search algorithm.

The interface for theSEARCH NODE class includes the following methods:

• update variable domains: update each variable’s domain to reflect the current state of the

MDD (e.g., post-filtering);

• terminal(level): returns true if there are at mostlevel unfixed variables in the MDD or if the

subproblem is infeasible and false otherwise;

• calculate score(): compute the actual score for this node (should be invoked post-processing)

to provide more accurate scoring information for subproblems derived from this node;

• score first fail(): computes the sum of the cardinalities of all variable domains. This scoring

strategy results in a first-fail node selection strategy forthe outer search procedure;

• count unfixed(): counts the number of unfixed variables.

The BRANCHING STRATEGY class

TheBRANCHING STRATEGY base class is a virtual class (it cannot be instantiated) which is used as a guide

for designing branching strategies in our solver. When a user develops a new branching strategy he needs to

augment the enumerated typeBRANCHING STRATEGY::STRATEGY to include his strategy. Currently,

we have implemented the following common branching strategy:

• VD FIRST FAIL: branch on the variable with the smallest unfixed domain.

72

4.6. CONSTRAINT-BASED SEARCH

The interface consists of a single method:

• get branching constraint(search node N): given the search tree nodeN find the con-

straint that will be used to create the restrictions. Recallthat each constraint ‘knows how to branch on

itself’ (see Section 4.5) for details.

The VD FIRST FAIL class

TheVD FIRST FAIL class is the subclass ofBRANCHING STRATEGY that implements variable domain

first fail branching heuristics. It chooses to branch on the variable with the smallest domain. The class

provides an enumerated typeVD FIRST FAIL::BREAK TIES that the user can set to indicate how to

break ties. There are currently two tie breaking rules, although a user can easily augment the list of rules:

• LEX FIRST: choose the variable with the smallest index;

• RANDOM: choose a random variable.

The data for the class consists of the sole member:

• rule : indicates the tie-breaking rule.

The interface consists of the method:

• get branching constraint(search node N): given the search nodeN returns the

VARIABLE DOMAIN constraint to use for branching.

4.6.1 TheSOLVER class

The data for theSOLVER class includes:

• problem : the problem to be solved;

• initial mdd : a pointer to the initial MDD, typically this will be an MDD ofwidth 1;

• branching strategy : a pointer to the branching strategy to use during the searchprocedure;

• termination level : the number of unfixed variables to declare a search node terminal and

trigger an enumeration of the MDD;

73

4.6. CONSTRAINT-BASED SEARCH

• number feasible solutions : the number of feasible solutions found by the solver;

• total nodes created : the total number of search tree nodes created by the solver;

• total nodes processed : the total number of search tree nodes that were processed bythe

solver;

• number choice points : the number of non-terminal nodes in the search;

• number infeasible nodes : the number of terminal nodes in the search that did not contain a

feasible solution;

• mdd failures : the total number of infeasible solutions enumerated at terminal nodes where all

variables have nonempty domains;

• solution time : the total time required by the solver;

• Q : a priority queue containing the unprocessed search nodes ranked by their score.

The interface for theSOLVER class includes:

• initialize(): initializes the data used by the solver;

• setup mdd(): creates an MDD of width 1 (the domain relaxation) given the variable domains;

• enumerate node(): enumerates all solutions in the MDD checking each for feasibility;

• process node serial(): process a search node serially, that is, process the MDD foreach

constraint one at a time and pass the resulting MDD to the nextconstraint (see Algorithm 2);

• process choice point(): update the search node’s score, create subproblems based on the

branching constraint and initialize the scheduling information for propagating the constraints in each

subproblem (see Algorithm 4);

• process branching constraint(): process the branching constraint (this method is is al-

most exactly likeprocess constraint();

• process constraint(): process a constraint using our general framework, that is,perform a

bottom-up pass to compute ‘suffix’ information and then filter and refine during the top-down pass

(see Algorithm 3);

74

4.7. CONCLUSIONS AND FUTURE WORK

• solve(): run the outer search procedure according to the parametersthat the user has set (see

Algorithm 1).

Algorithm 1 : SOLVER::solve()

repeat
N ← Q.pop()

process node serial (N)

D ← D×(M) ; // find the domain store relaxation ofM

if 6 ∃ i such thatDi = ∅ then
BC ← branching strategy.get branching constraint(N)

if at a choice pointthen process choice point (N, BC)

else enumerate node (N)
if goal is to find one solution and we have found onethen break;

until Q is empty

if found a feasible solutionthen returntrue

else returnfalse

Algorithm 2 : SOLVER::processnodeserial(N , BC)
Data: search nodeN and branching constraintBC

not infeasible← true

if BC is nonemptythen not infeasible← process branching constraint(N)

if not infeasible then
initialize active constraints ()

foreachactive constraintC do

if process constraint (N ,C)== false then
returnfalse

returntrue

4.7 Conclusions and Future Work

Our goal was to design a basic constraint programming systemin which the domain store has been replaced

by an MDD store. We feel that we have achieved this goal. The system is fast and general enough to allow a

user to quickly add filtering and refining methods for constraints, modify the branching strategy and overall

search procedure and to easily evaluate their ideas.

75

4.7. CONCLUSIONS AND FUTURE WORK

Algorithm 3 : SOLVER::processconstraint(N , C)
Data: search nodeN , constraintC

M ← the MDD inN

C.initialize info (M)

foreach layerL do
M.cleanup dangling nodes (L)

foreachvertexv ∈ L do

C.compute outgoing info (M ,v) ; // compute suffix information

if |L| == 0 then returnfalse

foreach layerL do
M.cleanup dangling nodes (L)

foreachvertexv ∈ L do

C.compute incoming info (M ,v) ; // compute prefix information

if L has space and should refinev then
C.refine incoming (M ,v)

C.compute incoming info (M ,v)

foreachvertexv ∈ L do
C.filter outgoing (M ,v)

if |L| == 0 then returnfalse
returntrue

Algorithm 4 : SOLVER::processchoicepoint(N , BC)
Data: search nodeN , a constraint to branch onC

N.calculate score () ; // compute actual score to give children accurate baseline fortheir est. score

(branchingconstraints, est. scores)← C.branch ()

foreachbranching constraintBC do
create a search nodeNBC for BC

addBC to NBC ’s list of constraints

update scheduling information for constraints inNBC

Q.push(NBC)

76

4.7. CONCLUSIONS AND FUTURE WORK

There are several avenues to speed up the solution process. First, we can add primal heuristics to help

find feasible solutions early in the search. This will be extremely important in order to be competetive with

state-of-the-art constraint programming systems for solving general CSPs.

Second, we can add a scheduling system that decides when to propagate constraints. This is an important

step in developing a full-fledged constraint programming system since propagating every constraint at each

search tree node may not be worthwhile.

A third avenue is to modify the solver to have a queue of ‘choices’ instead of fully instantiated search

nodes. A choice will consist of a pointer to a parent node and aconstraint branch. Each choice point

registers with the parent node (to do reference counting). Then when we pop the head of the queue we fully

instantiate the child search node and unregister the choicewith the parent (the parent can delete itself when it

no longer has any choices registered with it). The space required by this can be much less than instantiating

search nodes every time we branch. Instantiating search nodes prior to processing is not much of a problem

for certain search strategies (such as depth-first search) but for other search patterns one starts paying a price

in terms of memory usage. Finally, when creating a search node we perform ‘deep-copies’ of the variables,

constraints and MDDs. We can instead record ‘deltas’ for these objects, that is, how they differ from the

original definitions of the constraints, variables and predecessors’ MDDs.

Each of these approaches requires a substantial amount of work both in terms of developing a theory and

an effective implementation and are open research problemsfor MDD-based constraint solving systems.

77

Chapter 5

Propagating Among Constraints

In this chapter we study MDD-based propagation foramong constraints, which are of central importance in

employee scheduling and production sequencing problems. Recall that theamong constraint can be written

as

among(X,S, ℓ, u) (5.1)

whereI is an index set,X is a set of variables{xi | i ∈ I}, S is a set of domain elements, and0 ≤ ℓ ≤ u ≤

|X|. The constraint requires that at leastℓ and at mostu of the variables inX take a value inS. Thus if we

let δ(v) be 1 whenv ∈ S and 0 otherwise, theamong constraint requires that

ℓ ≤
∑

i∈I

δ(xi) ≤ u (5.2)

We experimentally demonstrate that search tree reduction and computation time, as compared to the

traditional domain store, can be dramatically reduced already for MDDs of relatively small width.

Interestingly, huge savings in computation time are possible particularly for the more difficult problem

instances that we considered. For example, to solve one specifically hard instance, the domain store needed

1,012,562 backtracks and 1684.7 seconds of computation time, while our MDD store with maximum width

of just 4 reduced this to 2 backtracks and 0.04 seconds. This clearly shows the benefit and potential of

MDD-based propagation foramong constraints.

78

5.1. MDD FILTERING HEURISTICS FOR AMONG

x1

x2

x3

x4

T
..
.....
......

.....
......
..

...
......
....

.

......
.....

..

.....
......
.....
......
.....
......
.....
.....
......
.....
......
.....
......
.....
......
...

p1
..
..
.
..
..
.
..

..

..

..

...

..

.

..

...
.....
..

............

............

.

..

..

..

.

..

..

..

..

..

..

.

..

..

..

.

..

..

.

..

..

..

..
..
..
.
..
..
..
.
..
..
..
..
...
..
..
..
...
...
..
...
....
...
.....
...

p2
......
.....
......
.....
.....
......
.....
......
.....
......
.....
......
.....
......
.....
.....

p3
....
......
...

..

......
.....

......
......
.

....
......
..

....
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
.

p4
...
........
..

.

.......
.....

......
.......

...
........
..

p5
..
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
..

1

Figure 5.1: An MDD in which the solid edge fromp1 to p3 (representingx2 = 1) is redundant for the

constraintamong((x1, x2, x3, x4), {1}, 2, 2).

5.1 MDD Filtering Heuristics for Among

Although we can filter a MDD foramong in polynomial time (see Section 3.4.8), the computational effort

may not be justified. It is faster to apply a simple sufficient condition for removing an infeasible edge. For

anamong constraint defined on a set of variablesX, let SP(r, s) be the length of a shortest path fromr to

s, and LP(r, s) the length of a longest path, where the length of an edge is given by its labels (either 0 or 1).

Then if noder is in a layer corresponding to a variable inX, we filter an edge ine ∈ E(r, s) if

LP(T, r) + δ(e) + LP(s, 1) < ℓ, or

SP(T, r) + δ(e) + SP(s, 1) > u
(5.3)

We updateLP andSP after each edge is deleted.

A small example shows that (5.3) is not a necessary conditionfor redundancy of an edge. The solid edge

from p1 to p3 in Fig. 5.1 is redundant for

among((x1, x2, x3, x4), {1}, 2, 2) (5.4)

but fails to satisfy (5.3).

A still faster heuristic postpones updatingLP andSP until all edges are tested. It uses a variation of

(5.3):

LP+(T, r) + δ(e) + LP+(s, 1) < ℓ or

SP−(T, r) + δ(e) + SP−(s, 1) > u
(5.5)

in whichLP+ is an upper bound onLP , andSP− a lower bound onSP . Initially we compute tight bounds

LP+ andSP− and use (5.5) to test all the edges for redundancy. Here, ‘tight bounds’ refers to the bounds

LP and SP used in (5.3). Because deleting an edge never increases the longest path length nor decreases the

79

5.2. REFINING THE MDD

shortest path length between two nodes, these values remainvalid bounds as we delete redundant edges. If

any edges are deleted, we have the option of recomputingLP+ andSP− and repeating the process.

We note that one round of either of these heuristic filtering algorithms achieves consistency on an MDD

of width 1, and therefore achieves traditional domain consistency foramong. Also, an important aspect of

the above heuristic filtering algorithms is that they can be applied independent of the variable ordering of

the MDD.

5.2 Refining the MDD

The current MDD can be refined to reflect more accurately a given among constraint. Consider for example

the MDD of Fig. 5.2(a). No filtering is possible for theamong constraint (5.4). However, we can refine the

MDD by splitting nodep3. We observe that the edges coming intop3 from above are notequivalent, in the

sense that the paths fromT to p3 containing one edge do not have the same set of feasible completions as

the paths fromT to p3 containing the other edge. We therefore splitp3 into p′3 andp′′3 as in Fig. 5.2(b). We

can now filter edges(p′3, p4) and(p′′3 , p5) using (5.3), resulting in Fig. 5.2(c).

Splitting results in a tighter relaxation, because the filtered MDD after splitting allows only two solutions

(x1, x2, x3, x4) = (0, 0, 1, 1), (1, 1, 0, 0), whereas the filtered MDD before splitting admitted four solutions,

(0, 0, 0, 0), (0, 0, 1, 1), (1, 1, 0, 0), (1, 1, 1, 1). In fact, the MDD after splitting excludes all solutions that

violate theamong constraint.

In general, edges entering a given node are partitioned intoequivalence classes, and ideally the node is

split into one copy for each equivalence class. However, this may enlarge the width of the MDD beyond the

limit, in which case some of the equivalence classes must be merged. Also, edge equivalence may be costly

to compute in practice, in which case an approximation of equivalence is used.

The shortest and longest path information can also be used tohelp us refine nodes in the MDD. For

example, we may regard two edgese1 ∈ E(r1, s) ande2 ∈ E(r2, s) as approximately equivalent for the

among

LP(T, r1) + δ(e1) = LP(T, r2) + δ(e2) or,

SP(T, r1) + δ(e1) = SP(T, r2) + δ(e2).

Another approximation into equivalence classes is by considering the impact of an edge on the ‘tightness’ of

anamong constraint. That is, for each inequality defining theamong constraint, we consider the ‘slack’ of

80

5.3. EXPERIMENTAL RESULTS

x1

x2

x3

x4

T
.....
......
..

...
......
....

.

......
......

.....
......
.

.....
......
.....
......
.....
......
.....
......
.....
.....
......
.....
......
.....
......
.....

p1
....
......
...

..

.....
......

.....
......
..

...
......
...

p2
....
.....
......
.....
......
.....
.....
......
.....
......
.....
......
.....
......
.....
......
.

p3
..
........
...

......
......
.

....
......
...

..

......
....

..

........
.....
......
...
.....
......
.....
......
.....
......
.....
......
.....
......
.....
...

p4
........
.....

......
.......

...
........
..

.

.......
.....

p5
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
....

1

(a)

T
.....
......
..

...
......
....

.

......
......

.....
......
.

.....
......
.....
......
.....
......
.....
......
.....
.....
......
.....
......
.....
......
.....

p1
.
..
.
..
.
..
.
..
.

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

p2
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
.

p
′
3
.
.
..
.
...
.
..
.
.

..

.

..

.

..

.

..

.

.

.

.

..

.

..

.

..

.

.

...

p
′′
3
.
.
..
.
...
.
..
.
..
.
.
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.

.............

.............

.............

.............

.............

.............

...........

p4
........
.....

......
.......

...
........
..

.

.......
.....

p5
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
.....
......
....

1

(b)

T
.....
......
..

...
......
....

.

......
......

.....
......
.

.....
......
.....
......
.....
......
.....
......
.....
.....
......
.....
......
.....
......
.....

p1
.
..
.
..
.
..
.
..
.

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

p2
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
.

p
′
3
.
.
..
.
...
.
..
.
..
.
.
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.

p
′′
3
.
.
..
.
...
.
..
.
.

..

.

..

.

..

.

..

.

.

.

.

..

.

..

.

..

.

.

p5
.......
.......
.......
.......
.......
.......
.......
.......
........
.......
.......
.......
.....

p4
......
......
.

....
......
...

..

......
.....

......
......

1

(c)

Figure 5.2: Refining MDD (a) by splitting nodep3 yields (b), which after filtering for the constraint

among((x1, x2, x3, x4), {1}, 2, 2) yields (c).

an edgee ∈ E(r, s) to beℓ− (SP(T, r)+ δ(e)+ SP(s, 1)), respectivelyu− (LP(T, r)+ δ(e)+ LP(s, 1)).

The slack reflects the number of variables that can still be assigned to a value inS without violating the

respective inequality. We say that an edge is ‘tight’ if its slack is at most a given thresholdτ , and ‘loose’

otherwise. The equivalence classes (with respect to each inequality) then belong to all tight edges and all

loose edges entering a node in the MDD. For the random instances considered in the experimental section,

we setτ = 1, while for the nurse rostering instances we setτ = 3.

After a round of node splitting on each layer, we run the filtering heuristic. If there are multipleamong

constraints, we test for equivalence with respect to all theconstraints and refine for each one individually.

5.3 Experimental Results

We have implemented the algorithms presented in the previous section to evaluate the performance of MDD

filtering of among constraints. That is, we have built from scratch a constraint programming solver that ap-

plies a fixed-width MDD store instead of a domain store (see Chapter 4). All the experiments are performed

using a 2.33GHz Intel Xeon machine with 8GB memory.

The main goal of our experiments is to empirically assess theimpact of the width of the MDD on the

resulting search tree size and computation time. We performed experiments on randomly generated problem

instances, and on structured ‘nurse rostering’ problem instances.

81

5.3. EXPERIMENTAL RESULTS

5.3.1 Random Instances

The first set of experiments is conducted on randomly generated instances. The main parameters that define

these instances are the number of (binary) variablesn, the number ofamong constraints, the number of

variables in eachamong constraint, and for eachamong, a lower and upper bound on the number of vari-

ables taking value 1. In addition, the variable indices in eachamong are sampled from a normal distribution

(modulon), where the mean is chosen uniformly at random from[1..n], while the standard deviation is a

parameter to be arbitrarily chosen. We note that for many practical problems, the variable indices in an

among constraint are nearly consecutive, see for example the nurse rostering instances in the next section.

This would correspond to random instances in which the normal distribution from which the variable indices

are sampled has a low standard deviation.

We have experimented with several parameter combinations,but we will only report results for specific

parameter settings that capture the general qualitative behavior over the parameter space. These parameters

are as follows. For all random instances, the number of variables is50, while eachamong constraint consists

of 5 variables chosen at random with a fixed lower bound of 2 andupper bound of 3. The variable indices

are chosen from the normal distribution described above with standard deviationsσ = 1, σ = 2.5, σ = 5

andσ = 7.5.

In our random experiments we vary the number ofamong constraints (from 5 to 200, by steps of 5) in

each instance, and we generate 100 instances for each number. Each instance is solved by our MDD solver

using varying widths. Note that width 1 corresponds to the traditional domain store. In Figures 5.3–5.6,

we provide scatter plots of the running times and number of backtracks for all instances. The subplots are

arranged to indicate the ‘marginal’ change in solution timeor backtracks due to width, that is, we compare

the results for width 1 vs. width 4, width 4 vs. width 8, width 8vs. width 16 and width 16 vs. width

32. Note that these are all log-log plots. Points on the diagonal represent instances for which the measured

quantity are equal (that is, computation time or the number of backtracks). Points below the diagonal imply

that the MDD with higher width had a measured quantity less than the the MDD of lower width, while the

opposite holds true for points above the diagonal.

Immediately we notice that increasing the maximum width of the MDD almost always results in fewer

backtracks. The number of backtracks required by an MDD of width 4 never exceeds the number of back-

tracks required by an MDD of width 1. Moreover, for several ofthe harder instances there is already an

82

5.3. EXPERIMENTAL RESULTS

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

tim
e

w
id

th
 4

 (
s)

time width 1 (s)

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

tim
e

w
id

th
 4

 (
s)

time width 1 (s)

10-2

10-1

100

101

10-2 10-1 100 101

tim
e

w
id

th
 8

 (
s)

time width 4 (s)

10-2

10-1

100

101

10-2 10-1 100 101

tim
e

w
id

th
 8

 (
s)

time width 4 (s)

10-2

10-1

100

101

10-2 10-1 100

tim
e

w
id

th
 1

6
(s

)

time width 8 (s)

10-2

10-1

100

101

10-2 10-1 100

tim
e

w
id

th
 1

6
(s

)

time width 8 (s)

10-2

10-1

100

101

10-2 10-1 100 101

tim
e

w
id

th
 3

2
(s

)

time width 16 (s)

10-2

10-1

100

101

10-2 10-1 100 101

tim
e

w
id

th
 3

2
(s

)

time width 16 (s)

100

101

102

103

104

105

106

100 101 102 103 104 105 106

ba
ck

tr
ac

ks
 w

id
th

 4

backtracks width 1

100

101

102

103

104

105

106

100 101 102 103 104 105 106

ba
ck

tr
ac

ks
 w

id
th

 4

backtracks width 1

100

101

102

103

100 101 102 103

ba
ck

tr
ac

ks
 w

id
th

 8

backtracks width 4

100

101

102

103

100 101 102 103

ba
ck

tr
ac

ks
 w

id
th

 8

backtracks width 4

100

101

102

103

100 101 102 103

ba
ck

tr
ac

ks
 w

id
th

 1
6

backtracks width 8

100

101

102

103

100 101 102 103

ba
ck

tr
ac

ks
 w

id
th

 1
6

backtracks width 8

100

101

102

103

100 101 102 103

ba
ck

tr
ac

ks
 w

id
th

 3
2

backtracks width 16

100

101

102

103

100 101 102 103

ba
ck

tr
ac

ks
 w

id
th

 3
2

backtracks width 16
(a) (b)

Figure 5.3: (σ = 1) Comparing the effect of MDD width in terms of backtracks (a)and time (b).

enormous reduction in the number of backtracks using an MDD of width 4 (in some cases more than 5

orders of magnitude). There are a few difficult instances forwhich using an MDD of width 8 results in at

least one order of magnitude fewer backtracks than those required by an MDD of width 4.

The results for computation time are a little more varied. For the problems with lower standard deviation

on the variable indices (σ = 1 andσ = 2.5) it always pays off to use an MDD of maximum width up to 8

except for the very simplest of problems (that is, those problems that can be solved in under half a second).

There are several cases where the solution time decreases byover three orders of magnitude.

For the problems with a higher standard deviation on the variable indices (σ = 5 andσ = 7.5) we

observe that there is not always an absolute decrease in solution time when we use an MDD of width 4 (or

width 8) instead of an MDD of width 1. However, we would argue that when an MDD of low width (width

4 or width 8) performs worse than the traditional domain store (an MDD of width 1) it does so by a small

margin. On the other hand, there are many difficult instancesfor which the computation time decreases by at

least one order of magnitude. In terms of reducing computation time the wider MDDs (width 16 and width

32) don’t seem to help or hurt much when compared to narrower MDDs (width 4 and 8).

5.3.2 Nurse Rostering Instances

We next conduct experiments on a set of instances inspired bynurse rostering problems, taken from [58].

The instances are of three different classes, and combine constraints on the minimum and maximum number

of working days for sequences of consecutive days of given lengths. For example, classC-I demands to

work at most 6 out of each 8 consecutive days (max6/8) and at least 22 out of every 30 consecutive days

83

5.3. EXPERIMENTAL RESULTS

10-2

10-1

100

101

102

103

104

10-2 10-1 100 101 102 103 104

tim
e

w
id

th
 4

 (
s)

time width 1 (s)

10-2

10-1

100

101

102

103

104

10-2 10-1 100 101 102 103 104

tim
e

w
id

th
 4

 (
s)

time width 1 (s)

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

tim
e

w
id

th
 8

 (
s)

time width 4 (s)

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

tim
e

w
id

th
 8

 (
s)

time width 4 (s)

10-2

10-1

100

101

102

10-2 10-1 100 101 102

tim
e

w
id

th
 1

6
(s

)

time width 8 (s)

10-2

10-1

100

101

102

10-2 10-1 100 101 102

tim
e

w
id

th
 1

6
(s

)

time width 8 (s)

10-2

10-1

100

101

10-2 10-1 100 101

tim
e

w
id

th
 3

2
(s

)

time width 16 (s)

10-2

10-1

100

101

10-2 10-1 100 101

tim
e

w
id

th
 3

2
(s

)

time width 16 (s)

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

ba
ck

tr
ac

ks
 w

id
th

 4

backtracks width 1

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

ba
ck

tr
ac

ks
 w

id
th

 4

backtracks width 1

100

101

102

103

104

105

100 101 102 103 104 105

ba
ck

tr
ac

ks
 w

id
th

 8

backtracks width 4

100

101

102

103

104

105

100 101 102 103 104 105

ba
ck

tr
ac

ks
 w

id
th

 8

backtracks width 4

100

101

102

103

104

100 101 102 103 104

ba
ck

tr
ac

ks
 w

id
th

 1
6

backtracks width 8

100

101

102

103

104

100 101 102 103 104

ba
ck

tr
ac

ks
 w

id
th

 1
6

backtracks width 8

100

101

102

103

104

100 101 102 103 104

ba
ck

tr
ac

ks
 w

id
th

 3
2

backtracks width 16

100

101

102

103

104

100 101 102 103 104

ba
ck

tr
ac

ks
 w

id
th

 3
2

backtracks width 16
(a) (b)

Figure 5.4: (σ = 2.5) Comparing the effect of MDD width in terms of backtracks (a)and time (b).

10-2

10-1

100

101

102

103

104

10-2 10-1 100 101 102 103 104

tim
e

w
id

th
 4

 (
s)

time width 1 (s)

10-2

10-1

100

101

102

103

104

10-2 10-1 100 101 102 103 104

tim
e

w
id

th
 4

 (
s)

time width 1 (s)

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

tim
e

w
id

th
 8

 (
s)

time width 4 (s)

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

tim
e

w
id

th
 8

 (
s)

time width 4 (s)

10-2

10-1

100

101

102

10-2 10-1 100 101 102

tim
e

w
id

th
 1

6
(s

)

time width 8 (s)

10-2

10-1

100

101

102

10-2 10-1 100 101 102

tim
e

w
id

th
 1

6
(s

)

time width 8 (s)

10-2

10-1

100

101

102

10-2 10-1 100 101 102

tim
e

w
id

th
 3

2
(s

)

time width 16 (s)

10-2

10-1

100

101

102

10-2 10-1 100 101 102

tim
e

w
id

th
 3

2
(s

)

time width 16 (s)

100

101

102

103

104

105

106

100 101 102 103 104 105 106

ba
ck

tr
ac

ks
 w

id
th

 4

backtracks width 1

100

101

102

103

104

105

106

100 101 102 103 104 105 106

ba
ck

tr
ac

ks
 w

id
th

 4

backtracks width 1

100

101

102

103

104

105

100 101 102 103 104 105

ba
ck

tr
ac

ks
 w

id
th

 8

backtracks width 4

100

101

102

103

104

105

100 101 102 103 104 105

ba
ck

tr
ac

ks
 w

id
th

 8

backtracks width 4

100

101

102

103

104

100 101 102 103 104

ba
ck

tr
ac

ks
 w

id
th

 1
6

backtracks width 8

100

101

102

103

104

100 101 102 103 104

ba
ck

tr
ac

ks
 w

id
th

 1
6

backtracks width 8

100

101

102

103

104

100 101 102 103 104

ba
ck

tr
ac

ks
 w

id
th

 3
2

backtracks width 16

100

101

102

103

104

100 101 102 103 104

ba
ck

tr
ac

ks
 w

id
th

 3
2

backtracks width 16
(a) (b)

Figure 5.5: (σ = 5) Comparing the effect of MDD width in terms of backtracks (a)and time (b).

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

tim
e

w
id

th
 4

 (
s)

time width 1 (s)

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

tim
e

w
id

th
 4

 (
s)

time width 1 (s)

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

tim
e

w
id

th
 8

 (
s)

time width 4 (s)

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

tim
e

w
id

th
 8

 (
s)

time width 4 (s)

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

tim
e

w
id

th
 1

6
(s

)

time width 8 (s)

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

tim
e

w
id

th
 1

6
(s

)

time width 8 (s)

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

tim
e

w
id

th
 3

2
(s

)

time width 16 (s)

10-2

10-1

100

101

102

103

10-2 10-1 100 101 102 103

tim
e

w
id

th
 3

2
(s

)

time width 16 (s)

100

101

102

103

104

105

100 101 102 103 104 105

ba
ck

tr
ac

ks
 w

id
th

 4

backtracks width 1

100

101

102

103

104

105

100 101 102 103 104 105

ba
ck

tr
ac

ks
 w

id
th

 4

backtracks width 1

100

101

102

103

104

105

100 101 102 103 104 105

ba
ck

tr
ac

ks
 w

id
th

 8

backtracks width 4

100

101

102

103

104

105

100 101 102 103 104 105

ba
ck

tr
ac

ks
 w

id
th

 8

backtracks width 4

100

101

102

103

104

100 101 102 103 104

ba
ck

tr
ac

ks
 w

id
th

 1
6

backtracks width 8

100

101

102

103

104

100 101 102 103 104

ba
ck

tr
ac

ks
 w

id
th

 1
6

backtracks width 8

100

101

102

103

104

100 101 102 103 104

ba
ck

tr
ac

ks
 w

id
th

 3
2

backtracks width 16

100

101

102

103

104

100 101 102 103 104

ba
ck

tr
ac

ks
 w

id
th

 3
2

backtracks width 16
(a) (b)

Figure 5.6: (σ = 7.5) Comparing the effect of MDD width in terms of backtracks (a)and time (b).

84

5.3. EXPERIMENTAL RESULTS

instance Width 1 Width 2 Width 4 Width 8 Width 16 Width 32 Width 64

size BT CPU BT CPU BT CPU BT CPU BT CPU BT CPU BT CPU

C-I 40 61225 55.63 22443 28.67 8138 12.64 1596 3.84 6 0.07 3 0.09 2 0.10

50 62700 88.42 20992 48.82 3271 12.04 345 2.76 4 0.08 3 0.13 3 0.16

60 111024 196.94 38512 117.66 3621 19.92 610 6.89 12 0.24 8 0.29 5 0.34

70 174417 375.70 64410 243.75 5182 37.05 889 12.44 43 0.80 13 0.59 14 0.90

80 175175 442.29 64969 298.74 5025 44.63 893 15.70 46 1.17 11 0.72 12 1.01

C-II 40 179743 173.45 60121 79.44 17923 32.59 3287 7.27 4 0.07 4 0.07 5 0.11

50 179743 253.55 73942 166.99 9663 38.25 2556 18.72 4 0.09 3 0.12 3 0.18

60 179743 329.72 74332 223.13 8761 49.66 1572 16.82 3 0.13 3 0.18 2 0.24

70 179743 391.29 74332 279.63 8746 64.80 1569 22.35 4 0.18 2 0.24 2 0.34

80 179743 459.01 74331 339.57 8747 80.62 1577 28.13 3 0.24 2 0.32 2 0.45

C-III 40 91141 84.43 29781 38.41 5148 9.11 4491 9.26 680 1.23 7 0.18 60.13

50 95484 136.36 32471 75.59 2260 9.51 452 3.86 19 0.43 7 0.24 3 0.20

60 95509 173.08 32963 102.30 2226 13.32 467 5.47 16 0.50 6 0.283 0.24

70 856470 1986.15 420296 1382.86 37564 186.94 5978 58.12 1826 20.00 87 3.12 38 2.29

80 882640 2391.01 423053 1752.07 33379 235.17 4236 65.05 68014.97 55 3.27 32 2.77

Table 5.1: Nurse rostering instances. The effect of MDD width when finding one feasible solution.

(min22/30). For classC-II these numbers are max6/9 and min20/30, and for classC-III these numbers are

max7/9 and min22/30. In addition, all classes require to work between 4 and 5 days per calendar week. The

planning horizon ranges from 40 to 80 days.

The results are presented in Tables 5.1–5.3. We report the total number of backtracks upon failure (BT)

and computation time in seconds (CPU) for our MDD solver using width 1, 8, and 32. Again, the MDD of

width 1 corresponds to a domain store.

In Table 5.1 we report the results for finding a first feasible solution. For all problem classes we observe

a nearly monotonically decreasing sequence of backtracks and solution time as we increase the width up to

32. The rate of decrease of the solution metrics seems to be exponential in many cases. A typical result

(the instance (C-III on 60 days)) shows that where an MDD of width 1 requires 95,509backtracks and

173.08 seconds of computation time, an MDD of width 32 only requires 6 backtracks and 0.28 seconds of

computation time to find a first feasible solution.

85

5.3. EXPERIMENTAL RESULTS

instance Width 1 Width 2 Width 4 Width 8 Width 16 Width 32 Width 64

size BT CPU BT CPU BT CPU BT CPU BT CPU BT CPU BT CPU

C-I 40 230550 212.01 77941 106.28 17175 30.79 6741 17.09 106 3.1199 3.10 90 3.15

50 238192 339.47 87345 208.68 9362 39.54 2273 18.26 937 10.273378 14.18 669 10.37

60 247500 458.38 93321 292.75 8022 57.35 2068 30.57 394 18.5862 17.32 41 17.35

70 260647 579.09 104411 401.44 9979 75.17 2044 29.12 412 12.05 734 12.59 259 12.18

80 273187 699.72 111769 501.30 9887 80.71 1621 26.15 133 5.4133 4.72 28 5.24

C-II 40 518489 469.32 182106 247.56 40279 75.36 8933 22.87 37 0.2440 0.32 35 0.41

50 518499 721.02 219610 500.22 26443 105.36 4598 34.10 32 0.33 30 0.43 28 0.57

60 518509 914.14 219839 660.32 25138 142.46 3470 36.99 29 0.44 29 0.66 30 0.87

70 518519 1158.65 219845 830.58 25057 186.03 3580 51.09 30 0.60 28 0.92 28 1.32

80 518529 1312.85 219855 1023.10 25057 230.46 3580 63.89 31 0.78 28 1.18 27 1.78

C-III 40 455495 563.99 157984 363.10 25071 199.13 24319 206.70 2039 161.81 454 159.34 74 163.14

50 1006980 2064.11 575231 1706.58 198368 1035.08 99114 878.23 49671 794.05 124141 900.59 3764 716.54

60 1969337 5284.32 815078 3706.08 250889 2466.10 37172 1885.00 71790 1947.87 331 1785.60 287 1808.53

70 3559033 9374.91 2042509 6751.75 266207 1519.52 83826 797.72 24195 483.56 1616 341.55 61464 710.98

80 4201778 12042.30 2191133 8574.52 185755 1228.34 22488 302.61 1835 115.38 834 94.62 81 95.88

Table 5.2: Nurse rostering instances. The effect of MDD width when finding all feasible solutions.

In order to make a comparison to [58], we also report the results for computing all feasible solutions. In

Table 5.2 we notice that the results for the reduction in the number of backtracks is very similar to that for

finding one feasible solution although the sequences are notstrictly decreasing. For example, the instance

(C-I on 80 days) is solved by the domain store using 273,187 backtracks while the MDD store of width 32

needs only 33 backtracks. This reduction is reflected in the CPU time as well, which is reduced from around

699.72 seconds to around 4.72 seconds for this instance. Theresults in terms of computation time for those

instances in class (C-III) are not as drammatic as those for the other classes. This is because most of the

time is spent enumerating feasible solutions which tends to‘smoothen’ the total computation time.

In Table 5.3 we compare our results to those presented in [58](which were run on a 2.8GHz In-

tel Xeon machine), to provide a comparison with more advanced filtering algorithms based on global

constraints for the domain store. In the column ‘gcc+seq’, advanced filtering algorithms forgcc and

sequence constraints are applied, while the results for column ‘genseq’ are obtained by applying

one singlegen-sequence constraint. We remark that these instances were specifically designed to be

modeled (perfectly) with a singlegen-sequence constraint, which explains the zero backtracks for

86

5.4. CONCLUSION

instance MDD width 1 MDD width 8 MDD width 64 gcc+seq [58] genseq [58]

size BT CPU BT CPU BT CPU BT CPU BT CPU

C-I 40 231k 212.01 6,741 17.09 90 3.15 185k 216.49 0 0.77

50 238k 339.47 2,273 18.26 669 10.37 186k 369.12 0 2.09

60 248k 458.38 2,068 30.57 41 17.35 188k 621.99 0 3.60

70 261k 579.09 2,044 29.12 259 12.18 196k 840.52 0 1.88

80 273k 699.72 1,621 26.15 28 5.24 198k 1,061.62 0 0.61

C-II 40 518k 469.32 8,933 22.87 35 0.41 394k 390.93 0 0.01

50 518k 721.02 4,598 34.10 28 0.57 394k 660.74 0 0.02

60 519k 914.14 3,470 36.99 30 0.87 394k 1,074.26 0 0.03

70 519k 1,158.65 3,580 51.09 28 1.32 394k 1,432.20 0 0.04

80 519k 1,312.85 3,580 63.89 27 1.78 394k 1,786.62 0 0.05

C-III 40 455k 563.99 24,319 206.70 74 163.14 328k 417.63 0 34.43

50 1,007k 2,064.11 99,114 878.23 3,764 716.54 457k 1,061.240 150.87

60 1,969k 5,284.32 37,172 1,885.00 287 1,808.53 730k 2,822.09 0 339.89

70 3,559k 9,374.91 83,826 797.72 61,464 710.98 1,744k 5,048.84 0 60.82

80 4,202k 12,042.30 22,488 302.61 81 95.88 1,847k 7,457.36 015.41

Table 5.3: Nurse rostering instances: MDD filtering compared to state-of-the-art domain filtering.

‘genseq’. Clearly, the global constraints allow to reduce further the search space of the domain store

(compare ‘width 1’ with ’gcc+ seq’ and ’genseq’), but it is interesting that our MDD store performs

much better than ‘gcc+seq’. Namely, these global constraints group together multipleamong constraints,

whereas our MDD-store only applies (heuristic) filtering onindividual among constraints. This clearly

shows the power of propagating structural information through an MDD store rather than a domain store.

5.4 Conclusion

We studied MDD-based propagation foramong constraints as a more refined alternative to traditional do-

main store filtering algorithms. We presented efficient heuristic MDD filtering algorithms that can be ap-

plied to any variable ordering of the MDD. We have also shown how these algorithms can be complemented

with MDD refinement procedures based on theamong constraints. Computational results have shown that

MDD-based propagation can dramatically reduce the search space and computation time as compared to a

87

5.4. CONCLUSION

domain store. This provides evidence that domain stores might be profitably replaced (or complemented)

by MDD stores in CP solvers.

88

Chapter 6

Optimal Movement of Factory Cranes

6.1 Introduction

Manufacturing facilities frequently rely on track-mounted cranes to move in-process materials or equipment

from one location to another. A typical arrangement, and thetype studied here, allows one or more hoists to

move along a single horizontal track that is normally mounted on the ceiling. Each hoist may be mounted

on a crossbar that permits lateral movement as the crossbar itself moves longitudinally along the track. A

cable suspended from the crossbar raises and lowers a lifting hook or other device.

When a production schedule for the plant is drawn up, cranes must be available to move materials from

one processing unit to another at the desired times. The cranes may also transport cleaning or maintenance

equipment. Since the cranes operate on a single track, they must be carefully scheduled so as not to interfere

with each other. One crane may be required to yield (move out of the way) to permit another crane to pick

up or deliver its load.

The problem is combinatorial in nature because one must not only compute a space-time trajectory

for each crane, but must decide which crane yields to anotherand when. A decision made at one point

may create a bottleneck that has unforeseen repercussions much later in the schedule. It is not unusual for

production planners to put together a schedule that seems toallow ample time for crane movements, only to

find that the crane operators cannot keep up with the schedule. As the cranes lag further and further behind,

the production schedule must be adjusted in an ad hoc manner to allow them to catch up.

In this chapter we analyze the problem of scheduling two cranes and describe an exact algorithm, based

on dynamic programming, to solve it. The problem data consist of time windows, crane assignments, and

89

6.1. INTRODUCTION

job sequencing. That is, the problem specifies a release timeand deadline for each job, an assignment of

each job to a crane, and the order in which the jobs assigned toeach crane are to be carried out. Several

objectives are possible, but in our experience the primary goal has been to follow the production schedule

as closely as possible.

This research is part of a larger project in which both heuristic and exact algorithms have been devel-

oped for use in crane scheduling software. The heuristic method makes crane assignment and sequencing

decisions as well as computing space-time trajectories, and it is fast enough to accommodate large problems

involving several cranes. However, once the assignments and sequencing are given, the heuristic method

may fail to find feasible trajectories when they exist and reject good solutions as a result. We therefore found

it important to solve the trajectory problem exactly for a given assignment and sequencing, in at least some

of the smaller problem instances, as a check on the heuristicmethod. The exact algorithm has practical value

in its own right, because two-crane problems are common in industry, and the algorithm solves instances

of respectable size within a minute or so. Nonetheless, we see it as having an equally important role in the

creation of benchmarks against which heuristic methods canbe tested and tuned for best performance.

We begin by deriving structural results for the two-crane problem that restrict the trajectories that must

be considered to certaincanonical trajectories. This not only makes the problem tractable fordynamic

programming by reducing the state space, but it also accelerates the heuristic solution of larger two-crane

problems by dramatically reducing the possibilities that must be enumerated. Moreover, the canonical

trajectories simplify the operation of the cranes, and enhance safety, by restricting the crane movements

to certain predictable patterns. For example, cranes always move at the same speed, never stand at rest

except at a pickup or delivery point, and never yield to another crane except when moving alongside that

crane (at a safe distance). In addition, the left crane keepsto the left as much as possible, and the right crane

to the right.

We then describe a dynamic programming algorithm for the optimal trajectory problem. The state space

is large, due to the fine space-time granularity with which the problem must be solved, as well as the

necessity of keeping up with which task a crane is performingand how long it has been processing that

task. To deal with these complications we introduce a novel state space description that represents many

states implicitly as a cartesian product of intervals. The state space is efficiently stored and updated in a data

structure that uses an array of two-dimensional circular queues. These enhancements accelerate solution by

at least an order of magnitude and allow us to solve problems of realistic size within a reasonable time. The

90

6.2. PREVIOUS WORK

paper concludes with computational results and directionsfor further research.

6.2 Previous Work

To our knowledge, no previous work computes space-time trajectories that allow cranes to yield, and none

obtains structural results that restrict the types of trajectories that must be considered. The literature on crane

scheduling tends to cluster around two types of problems: movement of materials from one vat to another

in an electroplating or similar process (typically referred to ashoist schedulingproblems), and loading and

unloading of container ships in a port.

A classification scheme for hoist scheduling problems appears in [41]. It is assumed in these problems

that each item visits the same vats in the same order, in most cases consecutively. The objective is to

minimize cycle time, which is the time lapse between the entry of two consecutive items into the system.

Much research in this area deals with the single-hoist cyclic scheduling problem [53, 5, 6, 35, 48, 50, 12, 40].

Because there is only one hoist, the space-time trajectory of the hoist is not an issue, so long as it picks up

and delivers items at the right time. Even this restricted problem is NP-complete [34].

Several papers deal with cyclic two-hoist and multi-hoist problems. One approach partitions the vats into

contiguous subsets, assigns a hoist to each subset, and schedules each hoist within its partition [62, 63, 65].

A better solution can generally be obtained, however, by allowing a vat to be served by more than one hoist.

This has been accomplished by careful scheduling of the hoists to avoid collisions, based on a case-by-case

analysis of the various ways that they can approach each other [33, 59, 54, 36, 11, 37, 39]. None of these

studies compute space-time trajectories of the hoists or allow one hoist to yield to another. They avoid

collisions by setting departure and arrival times so that nointerference is possible when hoists go directly

from one vat to the next.

Although we do not address the assignment of tasks to cranes in the present paper, our problem is

otherwise more general than hoist scheduling problems in several respects: (a) rather than requiring that

every item visit the same sequence of stations, we allow eachjob to specify an arbitrary subset of tasks in

any order; (b) we solve for an optimal space-time trajectoryof each crane that allows it to make additional

movements in order to yield to the other crane; (c) we accommodate release times and deadlines for the

jobs; and (d) we allow for a variety of objective functions.

Port cranes are generally classified as quay cranes and yard cranes. Quay cranes may be mounted on a

91

6.3. THE OPTIMAL TRAJECTORY PROBLEM

single track, as are factory cranes, but the scheduling problem differs in several respects. The cranes load

(or unload) containers into ships rather than transferringitems from one location on the track to another. A

given crane can reach several ships, or several holds in a single ship, either by rotating its arm or perhaps by

moving laterally along the track. The problem is to assign cranes to loading (unloading) tasks, and schedule

the tasks, so that the cranes do not interfere with each other[13, 52, 42, 29, 38, 66].

Yard cranes are typically mounted on wheels and can follow certain paths in the dockyard to move

containers from one location to another. Existing solutionapproaches schedule departure and arrival times

for the cranes so that they do not interfere with each other, but the actual space-time trajectories are not

examined [64, 49].

6.3 The Optimal Trajectory Problem

In practice, a crane scheduling problem typically consistsof a number ofjobs, each of which specifies

severaltasksto be performed consecutively. For example, a job may require that a crane pick up a ladle at

one location, fill the ladle with molten metal at a second location, deliver the metal to a third location, and

then return the ladle. Tasks may also involve maintenance and cleaning activities. The same crane must

perform all the tasks in a job and must remain stationary at the appropriate location while processing each

task.

The location and processing time for each task are given, as are release times and deadlines. We also

suppose that each job has been pre-assigned to a certain crane, and the jobs assigned to a crane must be

performed in a fixed order. Each job assigned to a given crane must finish before the next job assigned to

that crane begins.

In this study we explicitly account only for the longitudinal movements of the crane along the track. We

assume that the crane has time to make the necessary lateral and vertical movements as it moves from one

task location to another. This results in little loss of generality, because any additional time necessary for

lateral or vertical motion can be built into the processing time for the task.

92

6.3. THE OPTIMAL TRAJECTORY PROBLEM

The problem data are:

Rj = release time of taskj

Dj = deadline for taskj

Lj = processing location (stop) for taskj

Pj = processing time for taskj

c(j) = crane assigned to taskj

v = maximum crane speed

0, Lmax = leftmost and rightmost crane locations

∆ = minimum crane separation

∆t = time increment

Note that we refer to the processing location of a task as astop.

If release times̄Ri and deadlines̄Di are given for each jobi rather than each taskj, then the task release

timeRj is the earliest possible start time for that task:

Rj = R̄i +

j−1
∑

ℓ=k

(

Pℓ +
|Lℓ+1 − Lℓ|

v

)

wherek is the first task in jobi. Similarly, the task deadline is the latest possible finish time, given the job

deadline:

Dj = D̄i −
k′
∑

ℓ=j+1

(|Lℓ − Lℓ−1|
v

+ Pℓ

)

wherek′ is the last task in jobi.

We suppose for generality that there are cranes1, . . . ,m, where crane 1 is theleft craneand cranem

theright crane, although we solve the problem only form = 2. Tmax is the length of the time horizon. The

problem variables are:

xct = position of cranec at timet

yct = task being processed by cranec at timet (0 if none)

τj = time at which taskj starts processing

Taskj therefore finishes processing at timeτj + Pj . We assume that the tasks are indexed so that tasks

assigned to a given crane are processed in order of increasing indices.

93

6.3. THE OPTIMAL TRAJECTORY PROBLEM

The problem withn tasks andm cranes may now be stated

min f(τ)

0 ≤ xct ≤ Lmax

xct − v∆t ≤ xc,t+∆t ≤ xct + v∆t

yct > 0⇒ xct = Lyct



























all c, t

(a)

(b)

(c)

xct ≤ xc+1,t −∆, c = 1, . . . ,m− 1, all t (d)

Rj ≤ τj ≤ Dj − Pj , all j

yc(j)t = j, t = τj , . . . , τj + Pj −∆t











all j
(e)

(f)

{c(j) = c(j′), j < j′} ⇒ τj < τj′ , all j, j′ (g)

yct ∈ {0, . . . , n}, all c, t

(6.1)

Constraint (a) requires that the cranes stay on the track, and (b) that their speed be within the maximum.

Constraint (c) implies that a crane must be at the right location when it is processing a task. Constraint (d)

makes sure the cranes do not interfere with each other. Constraint (e) enforces the time windows, and (f)

ensures that processing continues for the required amount of time once it starts. Constraint (g) requires that

the tasks assigned to a crane be processed in the right order.

We assume that the objectivef(τ) is a function only of the task start times, because this is sufficient

for practical application and allows us to prove the structural results below. Generally one is interested in

conforming to the production schedule as closely as possible. For instance, one might minimize the lapse

between the release timeRk and the start timeτk of the first taskk in a job, or the lapse between the earliest

finish timeRk′ + Pk′ and the completion timeτk′ + Pk′ of the last taskk′ in a job, or some combination of

these. We used the more general objective

f(τ) =
∑

j

αj (τj −Rj) (6.2)

but normally setαj to a positive value only when taskj is the first or last task of a job. One might also

be concerned that the cranes make no unnecessary movements.We can incorporate this into the objective

function only if it has the formf(x, τ), but there is no need to do so. By restricting the cranes to the

canonical trajectories defined by the structural results below, we avoid unnecessary movements.

94

6.4. CANONICAL TRAJECTORIES

Figure 6.1: Sample space-time trajectory for one task. The shaded vertical bars denote processing, which in

this case consists of loading and unloading.

6.4 Canonical Trajectories

Optimal control of the cranes is much easier to calculate when it is recognized that only certain trajectories

need be considered, namely those we call canonical trajectories. We will show that when there are two

cranes, some pair of canonical trajectories is optimal.

Let a processing schedulefor a given crane consist of the vectorτ of task start times. We define the

extremaltrajectory for the left crane, with respect to a given processing schedule, to be one that observes the

processing schedule and that, while not processing a task, always follows the leftmost trajectory that never

moves in the direction away from the next stop. For example, the trajectory in Figure 6.1 is not extremal

because the crane moves to the right sooner than necessary.

More precisely, if the next stop (processing location) is tothe right of the current stop, then the left crane

follows the canonical trajectory if it leaves the current stop as late as possible so as to arrive at next stop just

as processing starts (Fig. 6.2a). If the next stop is to the left of the current one, the crane leaves the current

stop as early as possible (Fig. 6.2b). Thus at any time the crane is either stationary or moving at maximum

speed. The extremal trajectory for the right crane follows the rightmost trajectory: it leaves the current stop

as late as possible if moving to the left, and as early as possible if moving to the right.

A trajectory for the left crane iscanonicalwith respect to the right crane if at each moment it is the

rightmost of (a) the extremal trajectory for the left crane and (b) the trajectory that runs parallel to and just

95

6.4. CANONICAL TRAJECTORIES

Figure 6.2: Extremal trajectory for the left crane (a) when the destination is to the right of the origin, and

(b) when the destination is to the left of the origin.

Figure 6.3: Canonical trajectory for the left crane (leftmost solid line).

to the left of the right crane’s trajectory (Fig. 6.3). More precisely, trajectoryx′
1 is canonical for the left

crane, with respect to trajectoryx2 for the right crane, if the extremal trajectoryx̄1 for the left crane satisfies

x′
1(t) = min{x̄1(t), x2(t) −∆} at each timet. A trajectory for the right crane is canonical with respect to

the left crane if it is the leftmost of the extremal trajectory for the right crane and the left crane’s trajectory.

That is,x′
2(t) is canonical ifx′

2(t) = max{x̄2(t), x1(t)+∆}, wherex̄2(t) is the extremal trajectory. Finally,

a pair of trajectories is canonical if the trajectories are canonical with respect to each other.

Theorem 6.4.1. If the two-crane problem (6.1) has an optimal solution, thensome optimal pair of trajecto-

ries is canonical.

Proof. The idea of the proof is to replace the left crane’s optimal trajectory with a canonical trajectory

96

6.4. CANONICAL TRAJECTORIES

with respect to the right crane’s optimal trajectory. Then assign the right crane a canonical trajectory with

respect to the left crane’s new trajectory, and finally assign the left crane a canonical trajectory with respect

to the right crane’s new trajectory. At this point it is shownthat the trajectories are canonical with respect

to each other. Since these replacements never change the objective function value, the canonical trajectories

are optimal, and the theorem follows.

Thus letx∗ = (x∗
1, x∗

2) be a pair of optimal trajectories for a two-crane problem. Let x̄1, x̄2 be extremal

trajectories for the left and right cranes with respect to the processing schedules in the optimal trajectories.

Consider the canonical trajectoryx′
1 for the left crane with respect tox∗

2, which is given byx′
1(t) =

min{x̄1(t), x
∗
2(t)−∆}. We claim that(x′

1, x
∗
2) is optimal. First note that it has the same objective function

value asx∗, sincex′
1 has the same processing schedule asx∗

1. Furthermore, it is feasible because the cranes

do not interfere with each other, and the speed of the left crane is never greater thanv. The cranes do not

interfere with each other becausex′
1(t) ≤ x∗

2(t)−∆ for all t, due tox′
1(t) ≤ x∗

1(t) andx∗
1(t) ≤ x∗

2(t)−∆.

To show that the speed of the left crane is never more thanv it suffices to show that the average speed in

the left-to-right direction between any pair of time pointst1, t2 is never more thanv, and similarly for the

average speed in the right-to-left direction. The former is

x′
1(t2)− x′

1(t1)

t2 − t1
=

min{x̄1(t2), x
∗
2(t2)−∆} −min{x̄1(t1), x

∗
1(t1)−∆}

t2 − t1

≤ max

{

x̄1(t2)− x̄1(t1)

t2 − t1
,
x∗

2(t2)− x∗
2(t1)

t2 − t1

}

≤ v

where the first inequality is due to the fact that

min{a, b} −min{c, d} ≤ max{a− c, b− d}

for anya, b, c, d, and the second inequality due to the fact thatx̄1 andx∗
2 are feasible trajectories. The speed

in the right-to-left direction is similarly bounded.

Now consider the canonical trajectoryx′
2 for the right crane with respect tox′

1, given byx′
2(t) =

max{x̄2(t), x
′
1(t) + ∆}. It can be shown as above that(x′

1, x
′
2) is optimal.

Finally, let x′′
1 be the canonical trajectory for the left crane with respect to x′

2, given by x′′
1(t) =

min{x̄1(t), x
′
2(t) − ∆}. Again (x′′

1 , x
′
2) is optimal. Sincex′′

1 is canonical with respect tox′
2, to prove the

theorem it suffices to show thatx′
2 is canonical with respect tox′′

1; that is,max{x̄2(t), x
′′
1(t) + ∆} = x′

2(t)

for all t. To show this we consider four cases for each timet.

97

6.4. CANONICAL TRAJECTORIES

Case 1:x̄1(t) + ∆ ≤ x̄2(t). We first show that

(x′′
1(t), x

′
2(t)) = (x̄1(t), x̄2(t)) (6.3)

by considering the subcases (a)x∗
2(t) ≤ x̄1(t) and (b)x̄1(t) < x∗

2(t). In subcase (a),

x′
1(t) = min{x̄1(t), x

∗
2(t)−∆} = x∗

2(t)−∆

which implies

x′
2(t) = max{x̄2(t), x

′
1(t) + ∆} = max{x̄2(t), x

∗
2(t)} = x̄2(t)

and

x′′
1(t) = min{x̄1, x

′
2(t)−∆} = min{x̄1, x̄2(t)−∆} = x̄1(t)

In subcase (b),x′
1(t) = x̄1(t), which impliesx′

2(t) = max{x̄2(t), x̄1(t)+∆} = x̄2(t) and againx′′
1(t) = x̄1.

Now from (6.3) we have

max{x̄2(t), x
′′
1(t) + ∆} = max{x̄2(t), x̄1(t) + ∆} = x̄2(t) = x′

2(t)

as claimed.

The remaining cases supposex̄2(t) < x̄1(t) + ∆ and consider the situations in whichx∗
2(t) is less than

or equal tox̄2(t), between̄x2(t) andx̄1(t) + ∆, and greater than̄x1(t) + ∆.

Case 2:x∗
2(t) ≤ x̄2(t) < x̄1(t) + ∆. It can be checked that(x′′

1(t), x
′
2(t)) = (x̄2(t) − ∆, x̄2(t)) and

max{x̄2(t), x
′′
1(t) + ∆} = max{x̄2(t), x̄2(t)} = x̄2(t) = x′

2(t), as claimed.

Case 3:x̄2(t) < x∗
2(t) ≤ x̄1(t)+∆. Here(x′′

1(t), x
′
2(t)) = (x∗

2(t)−∆, x∗
2(t)) andmax{x̄2(t), x

′′
1(t)+

∆} = max{x̄2(t), x
∗
2(t)} = x∗

2(t) = x′
2(t).

Case 4:x̄2(t) < x̄1(t)+∆ < x∗
1(t). Here(x′′

1(t), x
′
2(t)) = (x̄1(t), x̄1(t)+∆) andmax{x̄2(t), x

′′
1(t)+

∆} = max{x̄2(t), x̄1(t) + ∆} = x̄1(t) + ∆ = x′
2(t). This completes the proof.

The properties of canonical trajectories allow us to consider a very restricted subset of trajectories when

computing the optimum.

Corollary 6.4.2. If the two-crane problem has an optimal solution, then thereis an optimal solution with

the following characteristics:

98

6.4. CANONICAL TRAJECTORIES

(a) While not processing a task, the left (right) crane is never to the right (left) of both the previous and the

next stop.

(b) While not processing a task, the left (right) crane is moving in a direction toward its next stop if it is to

the right (left) of the previous or next stop.

(c) A crane never moves in the direction away from its next stop unless it is adjacent to the other crane at

all times during such motion.

(d) While not processing a task, the left (right) crane can bestationary only if it is (i) at the previous or the

next stop, whichever is further to the left (right), or (ii) adjacent to the other crane.

Proof.

(a) If crane 1 (the left crane) is to the right of both its previous and next stop at some timet, then

x1(t) > x̄1(t). This is impossible in a canonical trajectory, in whichx1(t) = min{x̄1(t), x2(t) −∆}. The

argument is similar for crane 2.

(b) Suppose crane 1 is to the right of its previous stop. Due to(a), it is not to the right of its next stop,

which must therefore be to the right of the previous stop. We cannot havex1(t) > x̄1(t) as in (a), and we

cannot havex1(t) < x̄1(t), since this means the crane cannot reach its next stop in time. So crane 1 is on its

canonical trajectory, which means that it is moving toward its next stop. The argument is similar if crane is

to the right of the next stop.

(c) From (a) and (b), at a given timet crane 1 can be moving in the direction opposite its next stop only

if it is at or to the left of both the previous and next stops. This means that it will be to the left of both at

time t + ∆t, so thatx1(t + ∆t) < x̄1(t + ∆t). But since

x1(t + ∆t) = min{x̄1(t + ∆t), x2(t + ∆t)−∆}

this meansx1(t+∆t) = x2(t+∆t)−∆, and crane 1 is adjacent to the other crane. Since crane 1 is moving

left betweent andt + ∆t, it must be adjacent to the other crane at timet as well.

(d) From (a) and (b), a stationary crane 1 must be at or to the left both the previous and the next stop. If

it is at one of them, then (i) applies. If it is to the left of both, thenx1(t) < x̄1(t), which again implies that

x1(t) = x2(t)−∆, and (ii) holds.

99

6.5. DYNAMIC PROGRAMMING RECURSION

6.5 Dynamic Programming Recursion

The optimal control problem for the cranes is not simply a matter of computing an optimal space-time

trajectory. It is complicated by three factors: (a) each crane must perform tasks in a certain order; (b) each

task must be performed at a certain location for a certain amount of time; and (c) the cranes must not interfere

with each other. We chose to solve the problem with dynamic programming because it has the flexibility to

deal with these additional constraints while preserving optimality (up to the precision allowed by the space

and time granularity). The drawback is a potentially exploding state space, but we will show how to keep it

under control for problems of reasonable size. To simplify notation, we assume from here out that∆t = 1.

There are three state variables for each crane. Two of them arexct andyct as defined in model (6.1), and

the third is

uct =











amount of time cranec will have been processing at timet + 1

(0 if the crane is neither processing nor starts processing at time t)

In principle the recursion is straightforward, although a practical implementation requires careful man-

agement of state transitions and data structures. Letxt = (x1t, x2t), and similarly foryt andut. Also let

zt = (xt, yt, ut). It is convenient to use a forward recursion:

gt+1(zt+1) = min
zt∈S−1(zt+1)

{h(t, yt, ut) + gt(zt)} (6.4)

wheregt(zt) is the cost of an optimal trajectory between the initial state and statezt at timet, h(t, yt, ut) is

the cost incurred at timet, andS−1(zt+1) is the set of states at timet from which the system can move to

statezt+1 at timet + 1. Given the cost function (6.2), the costh(t, yt, ut) is
∑

c hc(t, yt, ut), where

hc(t, yt, ut) =











αyct(t−Ryct) if uct = 1

0 otherwise

The boundary condition is

g0(z0) = 0

whenz0 is the initial state. The optimal cost isgTmax
(zTmax

), wherezTmax
is the desired terminal state.

For each statezt+1 the recursion (6.4) computes the minimumgt+1(zt+1) and the statezt = s−1
t+1(zt+1)

that achieves the minimum. Thuss−1
t+1(zt+1) points to the state that would precedezt+1 in the optimal

trajectory if zt+1 were in the optimal trajectory. For a basic recursion, the cost tablegt+1(·) is stored in

100

6.6. REDUCTION OF THE STATE SPACE

memory untilgt+2(·) is computed, and then released (this is modified in the next section). Thus only two

consecutive cost tables need be stored in memory at any one time. The tables−1
t+1(·) of pointers is stored

offline. Then ifzT is the final state, we can retrace the optimal solution in reverse order by reading the tables

s−1
t+1(·) into memory one at a time and settingzt = s−1

t+1(zt+1) for t = N − 1, N − 2, . . . , 0.

6.6 Reduction of the State Space

We can substantially reduce the size of the state space if we observe that in practical problems, the cranes

spend much more time processing than moving. The typical processing time for a state ranges from two

to five minutes (sometimes much longer), while the typical transit time to the next location is well under

a minute. Furthermore, the state variables representing location and task assignment (xct andyct) cannot

change while the crane is processing.

These facts suggests that the processing time state variable uct should be replaced by aninterval Uct =

[ulo
ct, u

hi
ct] = {ulo

ct, u
lo
ct + 1, . . . , uhi

ct} of consecutive processing times. A single “state”(xt, ut, Uct) =

(xt, ut, (U1t, U2t)) now represents a set of states, namely the Cartesian product

{(xt, yt, (i, j)) | i ∈ U1t, j ∈ U2t}

The possible state transitions for either cranec are shown in Table 6.1. The transitions in the table are

feasible only if they satisfy other constraints in the problem, including those based on time windows, the

physical length of the track, and interactions with the other crane. The transitions can be explained, line by

line, as follows:

1. Because the processing time interval is the singleton[0, 0], the crane can be in motion and can in

particular move to either adjacent location. When it arrives at the next location, the currently assigned

task can start processing if the crane is in the correct position, in which case the state interval is

Uct = [0, 1] to represent two possible states: one in which the task does not start processing at time

t + 1, and one in which it does (the interval is[1, 1] if the deadline forces the task to start processing

at t + 1). If the crane is in the wrong location for the task, the stateremains[0, 0].

2. None of the states in the interval[0, u2] allow processing to finish at timet+1. So all of the processing

time states advance by one—except possibly the zero state, in which processing has not yet started

and can be delayed yet again if the deadline permits it.

101

6.7. EXPERIMENTAL RESULTS

3. The last state in the interval[0, Pyct] allows processing to finish at timet+1. This state splits off from

the interval and assumes one of the processing state intervals in line 1. The other states evolve as in

line 2.

4. Because the task is underway in all states, all processingtimes advance by one.

5. This is similar to line 3 except that there is no zero state.

There is no need to store a pointers−1
t+1(xt, yt, (i, j)) for every state(xt, yt, (i, j)) in (xt, yt, Ut). This

is because whenuct ≥ 2, the state of cranec preceding(xct, yct, uct) must be(xct, yct, uct − 1). Thus we

stores−1
t+1(xt, yt, (i, j)) only wheni ≤ 1 or j ≤ 1.

However, we must store the costgt+1(xt, yt, (i, j)) for every(i, j), because it is potentially different for

every(i, j). Fortunately, it is not necessary to update this entire table at each time period, because most of

the costs evolve in a predictable fashion. Ifi, j ≥ 2, then

gt+1(xy, yt, (i, j)) = gt(xt, yt, (i− 1, j − 1))

So for each pair of tasks(y, y′) we maintain a two-dimensional circular queueQyy′(·, ·) in which the cost

gt+1((Ly, Ly′), (y, y′), (i, j)) (6.5)

for i, j ≥ 2 is stored at location

Qyy′((t + i− 2) modM, (t + j − 2) modM)

whereM is the size of the arrayQyy′(·, ·) (i.e., the longest possible processing time). In each period we

insert the cost (6.5) intoQ only for pairs(i, j) in which i = 2 or j = 2; the costs for other pairs withi, j ≥ 2

were computed in previous periods. Thus only one row and one column of theQ array are altered in each

time period, which substantially reduces computation time. Wheni ≤ 1 or j ≤ 1, the cost (6.5) is stored as

a table entrygt+1(xt, yt, (i, j)) that is updated at every time period, as with pointers.

The arrayQyy′(·, ·) is created when the state((Ly, Ly′), (y, y′), (i, j)) is first encountered withi, j ≥ 2.

The array is kept in memory over multiple periods until it is no longer updated, at which time it is deleted.

6.7 Experimental results

We report computational tests on a representative problem that is based on an actual industry scheduling

situation. There are 60 jobs, each of which contains from twoto eight tasks. We obtain smaller instances

102

6.7. EXPERIMENTAL RESULTS

by scheduling only some of the jobs, namely the first ten (in order of release time), the first twenty, and so

forth. Results on other problems we have examined are similar.

Release times were obtained from the production schedule, but no deadlines were given. We initially set

the deadline of each job to be 40 minutes after each release time, with the expectation that these may have

to be relaxed to obtain a feasible solution.

We divided the 108.5-meter track into ten equal segments, sothat each distance unit represents 10.85

meters. Each crane can traverse the length of the track in about one minute. Because we want the crane

to move one distance unit for each time unit, we set the time unit at six seconds. The 60-job schedule

requires about four hours to complete, which means that the dynamic programming procedure has about

Tmax = 2400 time stages.

Table 6.2 shows computation times obtained on a desktop PC running Windows XP with a Pentium D

processor 820 (2.8 GHz). The assignment and sequencing of jobs used in each instance is the best one that

was obtained by a heuristic procedure. Feasible solutions were found for all the instances except the full

60-job problem. To obtain a feasible solution of this problem, we were obliged to enlarge the time windows

from 40 to 95 minutes by postponing the deadlines. This illustrates the combinatorial nature of the problem,

because the addition of only ten jobs created new bottlenecks that delayed at least one job nearly 95 minutes

beyond its release time. Wider time windows result in a larger state space and thus greater computation

time. Nonetheless, the 60-job problem with 95-minute windows was solved in well under a minute.

The optimal trajectories for selected instances appear in Figs. 6.4–6.6. The horizontal axis represents

distance along the track in 10.85-meter units. The verticalaxis represents time in 6-second units. Thus the

schedule for the 60-job problem spans about 2300 time units,or 230 minutes. The space-time trajectory

of the left crane appears as a solid line, and as a dashed line for the right crane. The left crane begins and

ends at the leftmost position, and analogously for the rightcrane. Note that the cranes are at rest most of the

time. The trajectories are canonical trajectories as defined above, which ensures a certain consistency in the

way the two cranes interact. In the 60-job instance, the leftcrane finishes before the right crane, which may

indicate a poor allocation of jobs to cranes.

Figures 6.7–6.9 track the evolution of state space size overtime. The horizontal axis corresponds to

time stages, which again are separated by six seconds. The number of time stages exceeds the duration of

the optimal trajectory, because trajectories with longer durations are considered in the solution process. The

vertical axis is the number of states at each time stage. The state space size remains quite reasonable, never

103

6.7. EXPERIMENTAL RESULTS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10

’output/solution-time-LEFT.out’
’output/solution-time-RIGHT.out’

Figure 6.4: Optimal solution of the 10-job instance.

exceeding 2000 states, even though the theoretical maximumis astronomical.

We found computation time to be sensitive to the width of the time windows. Typically, only a few

time windows must be wide to allow a feasible solution, because only a few jobs must be delayed so that

others may be completed on time. Yet it is difficult or impossible to predict which are the critical jobs. It is

therefore necessary to be able to solve problems in which allof the time windows are wide, perhaps on the

order of 90 minutes as in the 60-job instance. It was to accommodate wide time windows that we developed

the state space reduction techniques of Section 6.6.

Table 6.3 reveals the critical importance of these techniques. For each of the three problem instances,

the table shows the average time and state space size required to compute the optimal trajectories for ten

different job assignments and sequencings. The assignments and sequencings were those obtained in ten

iterations of a heuristic method. Without the state space reduction technique, the dynamic programming

algorithm could scale up to only 30 jobs, and even then only for narrow time windows. The width of the

time windows is reduced in these experiments to make the problem easier to solve, while still maintaining

feasibility. The 30-job instance has a feasible solution with 35-minute time windows, but larger instances

require wider time windows to achieve feasibility, and thiscauses the state space to explode. However, the

table shows that the state space reduction technique reduces the number of states by a factor of about 20, and

the computation time by a factor of ten. It is this state spacereduction that makes the full 60-job problem

104

6.7. EXPERIMENTAL RESULTS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 2 4 6 8 10

’output/solution-time-LEFT.out’
’output/solution-time-RIGHT.out’

Figure 6.5: Optimal solution of the 30-job instance.

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10

’output/solution-time-LEFT.out’
’output/solution-time-RIGHT.out’

Figure 6.6: Optimal solution of the 60-job instance.

105

6.7. EXPERIMENTAL RESULTS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300 350 400 450

’output/statecount.out’

Figure 6.7: Evolution of the state space size for the 10-job instance. The horizontal axis is the time stage,

and the vertical axis the number of states.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 200 400 600 800 1000 1200 1400 1600

’output/statecount.out’

Figure 6.8: Evolution of the state space size for the 30-job instance.

106

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 500 1000 1500 2000 2500

’output/statecount.out’

Figure 6.9: Evolution of the state space size for the 60-job instance.

tractable.

6.8 Conclusions and Future Research

We presented a specialized dynamic programming algorithm that computes optimal space-time trajectories

for two interacting factory cranes. The state space is economically represented in such a way that medium-

sized problems can be solved to optimality. The technique isuseful both for solving a significant number

of practical problems and as a benchmarking and calibrationtool for heuristic methods that solve larger

problems. Unlike other methods, it specifies precisely how cranes can yield to one another to minimize

delay in carrying out a production schedule.

We also proved structural theorems to show that only certaintypes of trajectories need be considered to

obtain an optimal solution. This not only accelerates solution of the problem, but it permits easier and safer

operation of the cranes.

An obvious direction for future research is to attempt to generalize the structural results to three or

more cranes. This would allow heuristic methods that are capable of solving large, multi-crane problems to

examine fewer trajectories. Another useful research program would be a systematic empirical comparison

of heuristic methods with the exact algorithm described here to determine how best to design and tune a

heuristic algorithm.

107

Table 6.1: Possible state transitions for cranec using an interval-valued state variable for processing time.

State at timet State at timet + 1

1. (xct, yct, [0, 0]) (x′, yct, [0, 0])
1 or (x′, yct, [0, 1])

1,2 or (x′, yct, [1, 1])
1,2,3

2. (xct, yct, [0, u2])
4 (xct, yct, [0, u2 + 1]) or (xct, yct, [1, u2 + 1])2,4

3. (xct, yct, [0, Pyct]) (xct, yct, [0, Pyct]) or (xct, yct, [1, Pyct])
3 or

(xct, y
′, [0, 0])5 or (xct, y

′, [0, 1])2,5 or (xct, y
′, [1, 1])2,3,5

4. (xct, yct, [u1, u2])
4,6 (xct, yct, [u1 + 1, u2 + 1])

5. (xct, yct, [u1, Pyct])
6 (xct, yct, [u1 + 1, Pyct]) or

(xct, y
′, [0, 0])5 or (xct, y

′, [0, 1])2,5 or (xct, y
′, [1, 1])2,3,5

1The next locationx′ is xct − 1, xct, or xct + 1.

2This transition is possible only if taskyct processes at locationx′.

3This transition is possible only if taskyct can start no later than timet + 1.

4Here0 < u2 < Pyct
.

5Tasky′ is the task that follows taskyct on cranec.

6Hereu1 > 0.

108

Table 6.2: Computational results for subsets of the 60-job problem.

Jobs Time Computation

window time

(mins) (sec)

10 40 6.8

20 40 7.6

30 40 15.8

40 40 16.7

50 40 18.8

60 95 48.1

Table 6.3: Effect of state space reduction on state space size and computation time. Each instance is solved

for 10 different jobs assignments and sequencings. “Before” and “after” refer to results before and after

state space reduction, respectively.

Jobs Time Avg number Peak number Average

window of states of states time (sec)

(min) Before After Before After Before After

10 25 3224 139 9477 465 15.8 2.0

20 35 3200 144 22,204 927 82.6 8.6

30 35 3204 216 22,204 940 143.8 15.0

109

Bibliography

[1] S. B. Akers. Binary decision diagrams.IEEE Transactions on Computers, C-27:509–516, 1978.

[2] H. R. Andersen. An introduction to binary decision diagrams. Lecture notes, available online, IT

University of Copenhagen, 1997.

[3] H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann.A constraint store based on multivalued

decision diagrams. In C. Bessiere, editor,Principles and Practice of Constraint Programming (CP

2007), volume 4741 ofLecture Notes in Computer Science, pages 118–132. Springer, 2007.

[4] Krzysztof Apt. Principles of Constraint Programming. Cambridge University Press, New York, NY,

USA, 2003.

[5] R. Armstrong, L. Lei, and S. Gu. A bounding scheme for deriving the minimal cycle time of a single-

transporter N-stage process with time-window constraints. European Journal of Operational Research,

78:130–140, 1994.

[6] P. Baptiste, B. Legeard, M.-A. Manier, and C. Varnier. A scheduling problem optimisation solved with

constraint logic programming. InSecond International Conference on the Practical Application of

Prolog, pages 47–66, London, 1994.

[7] B. Becker, M. Behle, F. Eisenbrand, and R. Wimmer. BDDs ina branch and cut framework. In S. Niko-

letseas, editor,Experimental and Efficient Algorithms, Proceedings of the 4th International Workshop

on Efficient and Experimental Algorithms (WEA 05), volume 3503 ofLecture Notes in Computer Sci-

ence, pages 452–463. Springer, 2005.

[8] D. Billings, N. Burch, A. Davidson, R. Holte, J. Schaeffer, T. Schauenberg, and D. Szafron. Approxi-

mating game-theoretic optimal strategies for full-scale poker. InProceedings of the 18th International

Joint Conference on Artificial Intelligence (IJCAI), Acapulco, Mexico, 2003.

[9] D. Billings, L. Peña, J. Schaeffer, and D. Szafron. The challenge of poker.Artificial Intelligence,

134(1-2):201–240, January 2002. Special Issue on Games, Computers and Artificial Intelligence.

[10] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on

Computers, C-35:677–691, 1986.

110

[11] A. Che and C. Chu. Single-track multi-hoist schedulingproblem: A collision-free resolution based on

a branch-and-bound approach.International Journal of Production Research, 42:2435–2456, 2004.

[12] H. Chen, C. Chu, and J.-M. Proth. Cyclic scheduling of a hoist with time window constraints.IEEE

Transactions on Robotics and Automation, 14:144–152, 1998.

[13] C. F. Daganzo. The crane scheduling problem.Transportation Research Part B, 23:159–175, 1989.

[14] Rina Dechter.Constraint Processing. Morgan Kauffman, 2003.

[15] A. Gilpin. Algorithms for abstracting and solving imperfect information games. PhD thesis, Carnegie

Mellon University, Computer Science Department, 2009.

[16] A. Gilpin and T. Sandholm. A competitive Texas Hold’em poker player via automated abstraction and

real-time equilibrium computation. InProceedings of the National Conference on Artificial Intelli-

gence (AAAI), Boston, MA, 2006.

[17] A. Gilpin and T. Sandholm. Lossless abstraction methodfor sequential games of imperfect informa-

tion. Journal of the ACM, 54(5), 2007.

[18] A. Gilpin, T. Sandholm, and T. B. Sørensen. Potential-aware automated abstraction of sequential

games, and holistic equilibrium analysis of Texas Hold’em poker. In Proceedings of the National

Conference on Artificial Intelligence (AAAI), Vancouver, Canada, 2007.

[19] A. Gilpin, T. Sandholm, and T. B. Sørensen. A heads-up no-limit texas hold’em poker player: Dis-

cretized betting models and automatically generated equilibrium-finding programs. InInternational

Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), Estoril, Portugal, 2008.

[20] J.-L. Goffin. On the convergence rate of subgradient optimization methods.Mathematical Program-

ming, 13:329–347, 1977.

[21] T. Hadzic and J. N. Hooker. Postoptimality analysis forinteger programming using binary decision dia-

grams, presented at GICOLAG workshop (Global Optimization: Integrating Convexity, Optimization,

Logic Programming, and Computational Algebraic Geometry), Vienna. Technical report, Carnegie

Mellon University, 2006.

111

[22] T. Hadzic and J. N. Hooker. Cost-bounded binary decision diagrams for 0-1 programming. Technical

report, Carnegie Mellon University, 2007.

[23] T. Hadzic, J. N. Hooker, B. O’Sullivan, and P. Tiedemann. Approximate compilation of constraints

into multivalued decision diagrams. In P. J. Stuckey, editor, Principles and Practice of Constraint Pro-

gramming (CP 2008), volume 5202 ofLecture Notes in Computer Science, pages 448–462. Springer,

2008.

[24] T. Hadzic, J. N. Hooker, and P. Tiedemann. Propagating separable equalities in an MDD store. In

L. Perron and M. A. Trick, editors,Proceedings of the International Workshop on Integration of Artifi-

cial Intelligence and Operations Research Techniques in Constraint Programming for Combintaorial

Optimization Problems (CPAIOR 2008), volume 5015 ofLecture Notes in Computer Science, pages

318–322. Springer, 2008.

[25] J. Hirriart-Urruty and C. Lemaréchal.Fundamentals of Convex Analysis. Springer-Verlag, Berlin,

2001.

[26] J. N. Hooker.Integrated Methods for Optimization. Springer, 2007.

[27] A. Juditsky, G. Lan, A. Nemirovski, and A. Shapiro. Stochastic approximation approach to stochastic

programming, 2007. Working paper.

[28] T. Kam, T. Villa, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Multi-valued decision diagrams:

Theory and applications.International Journal on Multiple-Valued Logic, 4:9–62, 1998.

[29] K. H. Kim and Y.-M. Park. A crane scheduling method for port container terminals.European Journal

of Operational Research, 156:752–768, 2004.

[30] D. Koller, N. Megiddo, and B. von Stengel. Efficient computation of equilibria for extensive two-

person games.Games and Economic Behavior, 14(2):247–259, 1996.

[31] G. Lan, Z. Lu, and R. Monteiro. Primal-dual first-order methods withO(1/ǫ) iteration-complexity for

cone programming, 2009. To appear inMath. Prog.

[32] C. Y. Lee. Representation of switching circuits by binary-decision programs.Bell Systems Technical

Journal, 38:985–999, 1959.

112

[33] L. Lei, R. Armstrong, and S. Gu. Minimizing the fleet sizewith dependent time-window and single-

track constraints.Operations Research Letters, 14:91–98, 1993.

[34] L. Lei and T. J. Wang. A proof: The cyclic hoist scheduling problem is NP-complete. Working paper,

Rutgers University, 1989.

[35] L. Lei and T. J. Wang. Determining optimal cyclic hoist schedules in a single-hoist electroplating line.

IIE Transactions, 26:25–33, 1994.

[36] J. Leung and G. Zhang. Optimal cyclic scheduling for printed circuit board production lines with

multiple hoists and general processing sequence.IEEE Transactions on Robotics and Automation,

19:480–484, 2003.

[37] J. M. Y. Leung, G. Zhang, X. Yang, R. Mak, and K. Lam. Optimal cyclic multi-hoist scheduling: A

mixed integer programming approach.Operations Research, 52:965–976, 2004.

[38] A. Lim, B. Rodrigues, F. Xiao, and Y. Zhu. Crane scheduling with spatial constraints.Naval Research

Logistics, 51:386–406, 2004.

[39] J. Liu and Y. Jiang. An efficient optimal solution to the two-hoist no-wait cyclic scheduling problem.

Operations Research, 53:313–327, 2005.

[40] J. Liu, Y. Jiang, and Z. Zhou. Cyclic scheduling of a single hoist in extended electroplating lines: A

comprehensive integer programming solution.IIE Transactions, 34:905–914, 2002.

[41] M.-A. Manier and C. Bloch. A classification for hoist schedling problems.International Journal of

Flexible Manufacturing Systems, 15:37–55, 2003.

[42] L. Mocchia, J.-F. Cordeau, M. Gaudioso, and G. Laporte.A branch-and-cut algorithm for the quay

crane scheduling problem in a container terminal.Naval Research Logistics, 53:45–59, 2005.

[43] A. Nemirovski. Prox-method with rate of convergenceO(1/t) for variational inequalities with Lips-

chitz continuous monotone operators and smooth convex-concave saddle point problems.SIAM Jour-

nal on Optimization, 15(1):229–251, 2004.

[44] Y. Nesterov. A method for unconstrained convex minimization problem with rate of convergence

O(1/k2). Doklady AN SSSR, 269:543–547, 1983. Translated to English asSoviet Math. Docl.

113

[45] Y. Nesterov.Introductory Lectures on Convex Optimization: A Basic Course. Applied Optimization.

Kluwer Academic Publishers, 2004.

[46] Y. Nesterov. Excessive gap technique in nonsmooth convex minimization.SIAM Journal on Optimiza-

tion, 16(1):235–249, 2005.

[47] Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program., 103(1):127–152, 2005.

[48] W. C. Ng. A branch and bound algorithm for hoist scheduling of a circuit board production line.

International Journal of Flexible Manufacturing Systems, 8:45–65, 1996.

[49] W. C. Ng. Crane scheduling in container yards with inter-crane interference.European Journal of

Operational Research, 164:64–78, 2005.

[50] W. C. Ng and J. Leung. Determining the optimal move timesfor a given cyclic schedule of a material

handling hoist.Computers and Industrial Engineering, 32:595–606, 1997.

[51] M. Osborne and A. Rubinstein.A Course in Game Theory. MIT Press, Cambridge, MA, 1994.

[52] R. I. Peterkofsky and C. F. Daganzo. A branch and bound solution method for the crane scheduling

problem.Transportation Research Part B, 24:159–172, 1990.

[53] L. W. Phillips and P. S. Unger. Mathematical programming solution of a hoist scheduling problem.

AIIE Transactions, 8:219–321, 1976.

[54] R. Rodosek and M. Wallace. A generic model and hybrid algorithm for hoist scheduling problems.

In M. Maher and J.-F. Puget, editors,Principle and Practice of Constraint Programming (CP 1998),

volume 1520, Pisa, 1998. Springer.

[55] I. Romanovskii. Reduction of a game with complete memory to a matrix game.Soviet Mathematics,

3:678–681, 1962.

[56] Francesca Rossi, Peter van Beek, and Toby Walsh.Handbook of Constraint Programming (Founda-

tions of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA, 2006.

[57] J. Shi and M. Littman. Abstraction methods for game theoretic poker. InComputers and Games, pages

333–345. Springer-Verlag, 2001.

114

[58] W.-J. van Hoeve, G. Pesant, L.-M. Rousseau, and A. Sabharwal. New Filtering Algorithms for Com-

binations of Among Constraints.Constraints, 14:273–292, 2009.

[59] C. Varnier, A. Bachelu, and P. Baptiste. Resolution of the cyclic multi-hoists scheduling problem with

overlapping partitions.INFOR, 35:309–324, 1997.

[60] B. von Stengel. Efficient computation of behavior strategies.Games and Economic Behavior, 14:220–

246, 1996.

[61] B. von Stengel. Equilibrium computation for games in strategic and extensive form. In Noam Nisan,

Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani, editors, Algorithmic Game Theory. Cambridge

University Press, 2007.

[62] L. Wei and T. J. Wang. The minimum common-cycle algorithm for cycle scheduling of two material

handling hoists with time window constraints.Management Science, 37:1629–1639, 1991.

[63] G. Yang, D. P. Ju, W. M. Zheng, and K. Lam. Solving multiple hoist scheduling problems by use of

simulated annealing.Transportation Research Part B, 36:537–555, 2001.

[64] C. Zhang, Y.-W. Wan, J. Liu, and R. J. Linn. Dynamic cranedeployment in container storage yards.

Ruan Jian Xue Bao (Journal of Software), 12:11–17, 2002.

[65] Z. Zhou and L. Li. A solution for cyclic scheduling of multi-hoists without overlapping.Annals of

Operations Research, (online), 2008.

[66] Y. Zhu and A. Lim. Crane scheduling with non-crossing constraint. Journal of the Operational Re-

search Society, 57:1464–1471, 2006.

115

