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Abstract

This thesis presents approximation algorithms for some sequencing
problems, with an emphasis on vehicle routing. Vehicle Routing Prob-
lems (VRPs) form a rich class of variants of the basic Traveling Salesman
Problem, that are also practically motivated. The VRPs considered in this
thesis include single and multiple vehicle Dial a Ride, VRP with Stochastic
Demands, Directed Orienteering and Directed Minimum Latency. Other
sequencing problems studied in this thesis are Permutation Flowshop
Scheduling and Maximum Quadratic Assignment.
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Chapter 1

Introduction

Broadly speaking, a sequencing problem is an optimization problem where feasible
solutions are specified by a set of orderings on some ground-set. Well-known classes
of sequencing problems include machine scheduling, vehicle routing, and assign-
ment problems. Due to the complicating nature of constraints in typical sequencing
problems, most of them are NP-complete and hence we do not expect efficient (i.e.
polynomial time) exact algorithms. The two main approaches to practical solutions
of such problems are (i) exact algorithms that compute the optimal solution but
take exponential time in the worst case, and (ii) heuristic algorithms that run in
polynomial time but find near-optimal solutions. An approximation algorithm is an
efficient heuristic along with a worst-case guarantee on the quality of near-optimal
solutions found by it.

This thesis presents approximation algorithms for a suite of sequencing problems,
with emphasis on the class of vehicle routing problems. Vehicle Routing Problems
(VRPs) are defined on a set of locations with distances between pairs of locations
(also known as metric space), and involve serving a set of client requests using an
available fleet of vehicles. Examples of client requests are: visiting some set of
locations, moving a set of objects from their source to destination locations etc. The
precise problem is determined by the nature of these client requests and additional
constraints on the vehicles. More details on vehicle routing can be found in [148].
The most basic VRP is the well-studied Traveling Salesman Problem [129, 7] which
involves computing a minimum length tour visiting all locations.

1
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1.1 Basics

The optimization problems encountered in this thesis have the property that all
feasible solutions have non-negative objective values. An optimization problem is
referred to as a minimization or maximization problem depending on whether the
goal is to minimize or maximize the objective value. An algorithm A for a minimiza-
tion (resp. maximization) problem is said to be an α-approximation algorithm if for
every instance I of the problem, A returns a solution with objective value at most
α (resp. at least 1/α) times the optimal value of I. The parameter α is also called
the approximation guarantee or approximation ratio; α may depend on the input
instance I, and in this case it is represented as a function α(I). The approximation
guarantee α = 1 precisely for an exact algorithm; so the approximation guarantee
of any algorithm is always at least 1.

We define the following three classes of algorithms based on their running time
as a function of the input size n (below c > 0 is any constant).

• Polynomial time: running time is O(nc).

• Quasi-polynomial time: running time is O(2logc n).

• Exponential time: running time is O(2n
c
).

As is standard, an algorithm is considered efficient if its running time is polynomial
in the input size. The P 6= NP conjecture states that NP-complete problems do
not admit exact polynomial time algorithms. However even quasi-polynomial time
exact algorithms for NP-complete problems are considered extremely unlikely.

The approximability threshold of an optimization problem refers to the best
achievable approximation ratio for the problem in polynomial time, under suitable
complexity-theoretic assumptions. For example, the approximability threshhold of
the minimum k-center problem is two: it admits a 2-approximation algorithm [86],
and no better guarantee is possible unless P =NP [88]. Combinatorial optimization
problems display a wide variety of approximability thresholds, as illustrated in the
following.

• Knapsack problem: fully polynomial time approximation scheme (FPTAS) [89],
weakly NP-hard.

• Minimum makespan on identical machines: polynomial time approximation
scheme (PTAS) [87], strongly NP-hard.
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• Max-Coverage: e
e−1

(algorithm [118, 37], hardness of approximation [94]).

• Asymmetric k-center: Θ(log∗ n) (algorithm [121], hardness of approxima-
tion [35]).

• Set-Cover: lnn (algorithm [92, 106, 36], hardness of approximation [49]).

• Group Steiner tree on trees: O(log2 n)-approximation algorithm [61], Ω(log2−ε n)
hardness of approximation for every constant ε > 0 [77].

• Independent Set: trivial n-approximation algorithm, Ω(n1−ε) hardness of ap-
proximation for every constant ε > 0 [83].

A finite metric space is represented as a tuple (V, d) where V is a vertex set of
finite cardinality (usually denoted |V | = n) and d : V × V → R+ is a distance
function that satisfies the triangle inequality: d(u, v) + d(v, w) ≥ d(u,w) for all
u, v, w ∈ V . The metric is said to be symmetric if d(u, v) = d(v, u) for all u, v ∈ V ;
otherwise the metric is called asymmetric. For a symmetric (resp. asymmetric)
metric (V, d) and subset S ⊆

(
V
2

)
(resp. S ⊆ V × V ), we define d(S) :=

∑
e∈S d(e).

Unless mentioned otherwise, we only deal with symmetric metrics. We also assume
(by scaling) that the smallest non-zero distance in any metric is at least one.

1.2 Thesis Contribution and Results

The main focus of this thesis is on Vehicle Routing Problems. The VRPs that we
consider capture various aspects such as capacity constraints, multiple vehicles,
transshipment, uncertain demands, and asymmetric distances.

We start with the single vehicle Dial-a-Ride problem in Chapter 2, where a set of
objects need to be transported from their sources to respective destinations by means
of a single capacitated vehicle. Then we study the Dial-a-Ride problem (Chapter 3)
when multiple vehicles are available to move objects and the objective is to minimize
the makespan of the resulting schedule. The setting in multi-vehicle Dial-a-Ride
permits transshipment (also called preemption) of objects at intermediate vertices.
On the other hand, the single vehicle Dial-a-Ride problem does not allow transship-
ment of objects. The third problem we study, stochastic VRP (Chapter 4), models
demand uncertainty in the basic capacitated vehicle routing problem (CVRP). Here
the algorithm only has access to a distribution on the demands, and the true demand
at any vertex is observed only when that vertex is visited. In the final chapter on
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vehicle routing (Chapter 5) we generalize two well-studied VRPs (orienteering and
minimum latency problems) to the case where the underlying metric is asymmetric.

A secondary goal in this thesis is the study of other sequencing problems, and
in this direction we consider the permutation flowshop scheduling and maximum
quadratic assignment problems. Permutation flowshop scheduling (Chapter 6) is
a classic machine scheduling problem that involves computing an optimal order
for jobs to enter a flowshop. Finally, Chapter 7 studies the maximum quadratic
assignment problem which is a basic problem in combinatorial optimization general-
izing several known problems (eg. traveling salesman, linear arrangement, dense k
subgraph). Given two n× n symmetric non-negative matrices, the objective here is
to permute the two matrices so as to maximize the resulting dot-product.

We now describe these problems in some more detail, and state the main results
obtained. Formal definitions, related work and detailed results appear in the respec-
tive chapters. The first four chapters are on vehicle routing.

Single Vehicle Dial a Ride. Chapter 2 studies the basic non-preemptive Dial-a-Ride
problem. Given an n-vertex metric space (V, d), a depot r ∈ V , a set of m demand-
pairs {(si, ti)}mi=1, and a single vehicle of capacity k, the goal is to find a minimum
length tour of the vehicle starting (and ending) at r that moves each object i from
its source si to destination ti such that the vehicle carries at most k objects at any
point on the tour. It is required that the tour be non-preemptive, i.e. once an object
is picked up from its source, it remains in the vehicle until dropped at its destination.
We give an O(

√
min{n, k} · log2 n)-approximation algorithm for this problem, that

improves the previously best known guarantee (in terms of n) of O(
√
k · log n) [28].

An interesting aspect of our approach is that it also gives similar approximation
guarantees for substantially more general cost functions. We also consider the effect
of the number of preemptions in single vehicle Dial-a-Ride, and show that for every
Dial-a-Ride instance, there is a tour that preempts each object at most once and
has length at most O(log2 n) times the optimal tour that may preempt arbitrarily.
On the other hand, even for Dial-a-Ride instances on the Euclidean plane, there is
an Ω̃(n1/8) gap between optimal preemptive and non-preemptive tours. Hence the
major difference in tour-length occurs between zero and one preemption per object.

Multi-Vehicle Dial a Ride. In Chapter 3, we consider the Dial-a-Ride problem with
multiple identical vehicles (i.e. same speed and capacity) where the vehicles may
have different depot-locations. Here we consider the preemptive version where an
object may be left at intermediate vertices while being transported from source
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to destination, and multiple vehicles may be involved in moving the same object.
The goal is to compute a schedule of all vehicles that together move objects from
their sources to destinations. We give an O(log3 n)-approximation algorithm for
minimizing the maximum completion time (a.k.a. makespan) in preemptive multi-
vehicle Dial-a-Ride. There is an Ω(log1/4−ε n) hardness of approximation for even
preemptive single vehicle Dial-a-Ride [66]. We also give improved approximation
ratios in the following two special cases: when the underlying metric is induced by
a graph excluding some fixed minor, and when there is no capacity constraint.

Stochastic Demands VRP. In the stochastic vehicle routing problem (SVRP), a
single vehicle of capacity Q ∈ N is used to distribute units of an identical item
from a depot to vertices in an n-vertex metric (V, d), where demands are uncertain
and represented by some probability distribution D over {0, 1, · · · , Q}V . The exact
demand at a vertex is determined only when that vertex is visited. The objective is
to compute a strategy of visiting vertices (starting and ending at the depot) such
that all realized demands are satisfied and the expected tour length is minimized. We
note that this strategy may be adaptive, i.e. at any point in the tour, the next vertex
to visit may depend on the demands observed until then. The complexity of SVRP
depends on the representation of distribution D. The most general setting is where
we are only given black-box access to the distribution D; however it turns out that
no o(n) approximation ratio is possible in this generality. We consider two natural
ways of describing D, that make SVRP more tractable.

• Explicit demand distribution. Here D is specified by m demand scenarios,
where each scenario i ∈ [m] specifies demands qiv ∈ {0, 1, · · · , Q} at all vertices
v ∈ V and the probability pi of its occurrence (where

∑m
i=1 pi = 1). We give an

O(log2 n · logm) approximation algorithm in this setting, using a connection
to the group Steiner tree problem [61]. We also show that this problem is at
least as hard to approximate as ‘latency group Steiner tree’, for which O(log2 n)
is the best known approximation ratio, and there is an Ω(log1−ε n) hardness of
approximation [77].

• Independent demand distribution. Here D is specified by means of a de-
mand random variable ξv (in the range {0, 1, · · · , Q}) at each vertex v ∈ V ,
where the random variables {ξv}v∈V are independent of each other. We obtain
a simple randomized approximation algorithm achieving the following worst-
case guarantees: (1 + α) under split-delivery VRP (demands can be served
in multiple visits), and (2 + α) for unsplit-delivery VRP (each demand must
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be served in a single visit); above α denotes the best approximation ratio
for the traveling salesman problem. This result matches (up to an additive
o(1) term) the corresponding best known guarantees for the deterministic
versions [5, 6]. Moreover, our algorithm produces an a priori strategy that
always visits vertices in the same order.

Vehicle Routing on Asymmetric Metrics. We study two vehicle routing problems
on asymmetric metrics in Chapter 5. The symmetric counterparts of these problems
are very well-studied and (small) constant factor approximation ratios are known.
However, the problems are considerably harder in asymmetric metrics. First we con-
sider the directed orienteering problem, that involves computing a bounded-length
path from specified origin to destination vertices, visiting the maximum number of
vertices. We provide an O(log2 n)-approximation algorithm for this problem, which
is the first polynomial-time poly-logarithmic approximation guarantee. Combined
with previously known reductions, this result also implies poly-logarithmic approxi-
mation ratios for other directed VRPs such as vehicle routing with time-windows.
In the second part of this chapter, we study the directed latency problem: given
an asymmetric metric and a depot vertex, the goal is to compute a tour originat-
ing at the depot that minimizes the sum of arrival times at all vertices. This is a
variant of the well-known asymmetric traveling salesman problem (ATSP), where
the objective is minimizing total tour length. We give an LP-based reduction (in
quasi-polynomial time) from directed latency to the related asymmetric traveling
salesman path problem (ATSP-path) that implies an O(ρ · log3 n)-approximation algo-
rithm for directed latency, where ρ is the integrality gap of a natural LP-relaxation to
ATSP-path. We conjecture that ρ = O(log n); however the best bound that we obtain
here is ρ = O(

√
n). We also show that the directed latency problem is at least as

hard to approximate as ATSP, for which O(log n) is the best known approximation
ratio.

The last two chapters concern other well-known sequencing problems.

Permutation Flowshop Scheduling. In a flowshop, there are m machines located
in order 1 through m, and n jobs each of which consists of a sequence of operations
on the machines (in the fixed order 1 to m). A permutation schedule involves pro-
cessing all jobs subject to the constraint that each machine process all the jobs in the
same order. The goal in permutation flowshop scheduling is to compute a schedule
(which corresponds to a permutation on the jobs) that minimizes the completion
time of the last job (i.e. makespan). In Chapter 6 we obtain an O(

√
min{m,n})-
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approximation algorithm for the permutation flowshop problem, relative to the triv-
ial lower-bounds of maximum job-length and machine-load. This result also bounds
the worst-case gap between permutation and ‘non-permutation’ schedules in the
flowshop problem by Θ(

√
min{m,n}); instances showing an Ω(

√
min{m,n}) gap

were known earlier [124]. Furthermore, the algorithm for minimizing makespan
can be used to obtain an O(

√
min{m,n})-approximation algorithm for the weighted

completion time objective, improving substantially over the previously best known
bound of ε ·m (for any constant ε > 0) [142].

Maximum Quadratic Assignment. The input to the quadratic assignment prob-
lem [22] consists of two n × n symmetric non-negative matrices W = (wi,j) and
D = (di,j). The objective in maximum quadratic assignment (Max-QAP) is to obtain
a permutation π : [n] → [n] that maximizes the quantity

∑
i,j∈[n],i 6=j wi,j · dπ(i),π(j).

We present an O(
√
n · log2 n)-approximation algorithm for Max-QAP, which is the

first non-trivial approximation guarantee for this problem. We note that Max-QAP
generalizes the notorious dense-k-subgraph problem, for which n1/3−δ (here δ > 0 is
a small fixed constant) is the best known approximation ratio. We also consider the
special case when one of the matrices W or D satisfies triangle inequality (i.e. it rep-
resents distances in a symmetric metric); in this case we obtain a 2e

e−1
-approximation

ratio, improving over the previously best-known bound of four [9].

1.3 Thesis Outline

We now discuss some common threads between different chapters and provide
an outline for reading this thesis. As mentioned earlier, Chapters 2–5 are on
vehicle routing, Chapter 6 is on permutation flowshop scheduling, and Chapter 7
is on maximum quadratic assignment. Moreover, Chapters 2–4 deal with VRPs on
symmetric metrics, whereas Chapter 5 deals with asymmetric metrics.

There is a natural progression from Chapter 2 (single vehicle Dial-a-Ride) to
Chapter 3 (Dial-a-Ride with multiple vehicles). Additionally, some structural proper-
ties of Dial-a-Ride tours (from Chapter 2) are used in Chapter 3. It is suggested that
these two chapters be read in that order. The other chapters are self contained and
can be read independently of each other.

Single vehicle Dial-a-Ride (Chapter 2) and stochastic demands VRP (Chapter 4)
both generalize the classic capacitated VRP, albeit in different ways. Dial-a-Ride
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incorporates multicommodity demands, and SVRP models probabilistic demands.
Not surprisingly, the Haimovich-Kan [73] algorithm for capacitated vehicle routing
is used/extended in both these chapters.

The main problems of study in Chapter 5 (asymmetric VRPs) are orienteering and
minimum latency, in directed graphs. Both these objectives are also encountered in
Chapter 4, however in the context of the group Steiner tree problem (in symmetric
metrics). Hence the analysis in these two chapters bear some similarity.

The well-known dense-k-subgraph problem is generalized in different ways in
Chapters 2 and 7. Given an undirected graph G and bound k, dense-k-subgraph
involves choosing k vertices in G that induce the maximum number of edges. Maxi-
mum quadratic assignment (Chapter 7) is a generalization that involves embedding
any arbitrary graph (instead of just the k-clique) onto another so as to maximize
the number of common edges. The main subroutine used in the single vehicle Dial-
a-Ride algorithm of Chapter 2 is the k-forest problem, which is another extension of
dense-k-subgraph. In k-forest, the cost of choosing any vertex-subset comes from
an arbitrary underlying metric (instead of being the size of this subset).

The permutation flowshop scheduling problem (Chapter 6) and the k-forest
problem (Chapter 2) are both related to increasing subsequences in permutations.
This connection is utilized in obtaining algorithms for both these problems. Further-
more, the approach used for minimizing weighted completion time in permutation
flowshop is similar to that for directed minimum latency (Chapter 5).



Chapter 2

Single vehicle Dial-a-Ride

2.1 Introduction

This chapter studies the single vehicle Dial-a-Ride problem, where given a metric
space with objects having sources and destinations, and a vehicle of some capacity
k, the goal is to find a route for this vehicle so that each object can be taken from
its source to destination without exceeding the capacity of the vehicle at any point,
such that the length of the vehicle route is minimized. We require that the route be
non-preemptive, i.e. once an object is picked up from its source, it remains in the
vehicle until delivered to its destination. It turns out that the non-preemptive Dial-
a-Ride problem is closely related to a generalization of the Steiner forest problem
called k-forest, that we now introduce.

In the Steiner forest problem, we are given a set of vertex-pairs in a metric, and
the goal is to find a forest such that each vertex-pair is connected in the forest. This
is a generalization of the Steiner tree problem, where all the pairs contain a common
vertex called the root; both the tree and forest versions are well-understood funda-
mental problems in network design, and constant factor approximation algorithms
are known [130, 4, 68]. An important extension of the Steiner tree problem studied
in the late 1990s was the k-MST problem, where one sought the least-cost tree that
connected any k of the terminals: several approximation algorithms were given
for the problem, culminating in the 2-approximation of [63]. The k-MST problem
proved crucial in many subsequent developments in network design and vehicle
routing [29, 45, 17, 13]. One can analogously define the k-forest problem where
one needs to connect only k of the pairs in some Steiner forest instance: surprisingly,

9
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very little is known about this problem, which was first studied formally only re-
cently [74, 138]. We give simpler and improved approximation algorithms for the
k-forest problem, and show how this implies good approximation bounds for the
Dial-a-Ride problem.

2.1.1 The k-Forest Problem

Our starting point is the k-forest problem.

Definition 1. Given an n-vertex metric space (V, d), and demand pairs {si, ti}mi=1 ⊆
V × V , find the least-cost subgraph that connects at least k pairs.

We note that demand pairs may be repeated; so k and m may be super-
polynomial in n. The k-forest problem is also a generalization of the (minimiza-
tion version of the) well-studied dense-k-subgraph problem, where given a graph
G = (V,E) and a target k ≤ |E|, the goal is to compute a minimum cardinality sub-
set U ⊆ V of vertices that induce at least k edges. Despite several attempts, nothing
better than an O(n1/3−δ)-approximation is known for dense-k-subgraph (δ > 0 is
some fixed constant); improving upon this is a long-standing open question. The
k-forest problem was first defined in [74], and the first non-trivial approximation
was given by [138], who gave an algorithm with an approximation guarantee of
O(min{n2/3,

√
m} log n). We obtain the following improved approximation guaran-

tee for k-forest in Section 2.2.

Theorem 2. There is an O(min{√n · log k,
√
k})-approximation algorithm for the

k-forest problem.

The proof of this theorem involves two algorithms, both reducing the k-forest
problem to the k-MST problem in different ways and achieving different approxima-
tion guarantees. The first algorithm (giving an approximation of O(

√
k)) uses the

k-MST algorithm to find good solutions on the sources and the sinks independently,
and then uses the Erdős-Szekeres theorem on monotone subsequences to find a
“good” subset of these sources and sinks to connect cheaply; details are given in
Section 2.2.1. The second algorithm starts off with a single vertex as the initial
solution, and uses the k-MST algorithm to repeatedly find a low-cost tree that
satisfies a large number of pairs having one endpoint in the current solution and
the other endpoint outside; this tree is then used to greedily augment the current
solution and proceed. Choosing the parameters (as described in Section 2.2.2) gives
us an O(

√
n) approximation.
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2.1.2 The Dial-a-Ride Problem

The Dial-a-Ride problem is formally defined as follows.

Definition 3. Given an n-vertex metric space (V, d), a starting vertex (or root) r, a set
of m objects with source-destination pairs {(si, ti)}mi=1, and a vehicle of capacity k, find
a minimum length tour of the vehicle starting (and ending) at r that moves each object
i from its source si to its destination ti such that the vehicle carries at most k objects at
any point on the tour.

Each demand-pair in the Dial-a-Ride problem corresponds to an object that is
to be moved from the specified source to destination. We use the terms: demand-
pair, object, and pair interchangeably. In the preemptive Dial-a-Ride problem, after
picking up an object from its source, it may be left at some intermediate vertices
before being delivered to its destination. In this paper we will mainly be concerned
with the non-preemptive Dial-a-Ride problem, where once an object is picked up
from its source, it remains in the vehicle until dropped at its destination. A note on
the parameters: using triangle inequality, any feasible non-preemptive tour can be
short-cut over vertices that do not participate in any demand-pair; hence we can
assume that every vertex is an end point of some demand-pair, i.e. n ≤ 2m. Again,
we allow multiple demand-pairs between the same pair of vertices; so the number
of objects m and the vehicle capacity k may be larger than any polynomial in n.

We now mention two lower bounds for the preemptive Dial-a-Ride problem
that are used in Chapters 2 and 3. The Steiner lower bound is the minimum length
TSP tour on the set of all sources and destinations; and the flow lower bound
equals

∑m
i=1

d(si,ti)
k

. Note that for any Dial-a-Ride instance, the cost of an optimal
preemptive tour is at most that of an optimal non-preemptive tour.

The approximability of the non-preemptive Dial-a-Ride problem is not very
well understood: the previous best upper bound is an O(

√
k log n)-approximation

algorithm due to [28], whereas the best lower bound that we are aware of is APX-
hardness. We establish the following (somewhat surprising) connection between
the Dial-a-Ride and k-forest problems in Section 2.3.

Theorem 4. Given an α-approximation algorithm for k-forest, there is an O(α · log2 n)-
approximation algorithm for the Dial-a-Ride problem.

In particular, combining Theorems 2 and 4 gives us an O(min{
√
k,
√
n} · log2 n)-

approximation guarantee for Dial-a-Ride. Of course, improving the approximation
guarantee for k-forest would improve the result for Dial-a-Ride as well.
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Our results match the previous best bound up to a logarithmic term, and give
an improvement when the vehicle capacity k � n, the number of nodes. More
interestingly, our algorithm for Dial-a-Ride easily extends to generalizations of
the Dial-a-Ride problem. In particular, we consider a substantially more general
vehicle routing problem where the vehicle has no a priori capacity, and instead
the cost of traversing each edge e is an arbitrary non-decreasing function ce(l) of
the number of objects l in the vehicle; setting ce(l) to the edge-length de when
l ≤ k, and ce(l) = ∞ for l > k gives us back the classical Dial-a-Ride setting. In
Section 2.3.2, we show that this general non-uniform Dial-a-Ride problem admits
an O(

√
n · log2m) approximation guarantee. Another extension we consider is the

weighted Dial-a-Ride problem. In this, each object may have a different size, and the
total size of the items in the vehicle must be bounded by the vehicle capacity; this is
also known as the pickup and delivery problem [133]. We show in Section 2.3.3 that
this problem can be reduced to the (unweighted) Dial-a-Ride problem at the loss
of only a constant factor in the approximation guarantee: so weighted Dial-a-Ride
admits an O(

√
n log2 n)-approximation algorithm.

We also consider the effect of preemptions in the Dial-a-Ride problem (Sec-
tion 2.4). It was shown in [28] that the gap between the optimal preemptive and
non-preemptive tours could be as large as Ω(n1/3). We show that the real difference
arises between zero and one preemptions: allowing multiple preemptions does
not give us much added power. In particular, we show in Section 2.4 that for any
instance of the Dial-a-Ride problem, there is a tour that preempts each object at most
once and has length at most O(log2 n) times an optimal preemptive tour (which may
preempt each object an arbitrary number of times). Motivated by obtaining a better
guarantee for Dial-a-Ride on the Euclidean plane, we study the preemption gap in
such instances. We show that even in this case, there are instances having an Ω̃(n1/8)
gap between optimal preemptive and non-preemptive tours. This preemption gap
relies on the connection between the Dial-a-Ride and k-forest.

2.1.3 Related Work

The k-forest problem: The k-forest problem is relatively new: it was defined by
[74]. An Õ(k2/3)-approximation algorithm for even the directed k-forest problem
can be inferred from [27]. Recently, [138] gave an O(min{n2/3,

√
m} log n) approx-

imation algorithm for k-forest. The k-forest problem is a generalization of k-MST,
for which a 2-approximation is known [63].
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Dense k-subgraph: As shown in [74], the k-forest problem also generalizes the
dense-k-subgraph problem [52]. The best known approximation guarantee for
the dense-k-subgraph problem is O(n1/3−δ) where δ > 0 is some constant, due to
[52], and obtaining an improved guarantee has been a long standing open prob-
lem. Strictly speaking, [52] study a potentially harder problem: the maximization
version of dense-k-subgraph, where one wants to pick k vertices to maximize the
number of edges in the induced graph. However, nothing better is known even
for the minimization version of dense-k-subgraph (where one wants to pick the
minimum number of vertices that induce k edges). Moreover, the approximability
of these two versions of dense-k-subgraph are polynomially related [74]. The mini-
mization dense-k-subgraph problem on graph G reduces to k-forest by considering
an unweighted star-metric, with leaves corresponding to vertices of G and pairs
corresponding to edges of G.

Dial-a-Ride: Dial-a-Ride problems form an interesting subclass of Vehicle Routing
Problems that are well studied in the operations research literature. Savelsberg and
Sol [133] and Cordeau and Laporte [39] survey several variants of non-preemptive
Dial-a-Ride problems that have been studied in the literature.

While the Dial-a-Ride problem has been studied extensively in the operations
research literature, relatively little is known about its approximability. The currently
best known approximation ratio for non-preemptive Dial-a-Ride is O(

√
k log n) due

to [28]. We note that their algorithm assumes instances with unweighted objects.
[100] give a 3-approximation algorithm for the Dial-a-Ride problem on a line metric;
in fact, their algorithm finds a non-preemptive tour that has length at most 3 times
the lower bounds for the preemptive version. A 2.5-approximation algorithm for
single source special case of Dial-a-Ride (also called the capacitated vehicle routing
problem) was given in [73]; again, this algorithm outputs a non-preemptive tour
with length at most 2.5 times the preemptive lower bounds. The k = 1 special
case of Dial-a-Ride is also known as the stacker-crane problem, for which a 1.8-
approximation is known [58]. For the preemptive Dial-a-Ride problem, [28] gave
the current-best O(log n) approximation algorithm, and [66] showed that it is
Ω(log1/4−ε n) hard to approximate. Recall that no super-constant hardness results
are known for the non-preemptive Dial-a-Ride problem.
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2.2 Algorithms for the k-forest problem

In this section, we study the k-forest problem, and give an approximation guarantee
ofO(min{√n,

√
k}). Our approach is based on approximating the following “density”

variant of k-forest.

Definition 5. Minimum-ratio k-forest. Given an n-vertex metric space (V, d), m
pairs of vertices {si, ti}mi=1, and a target k, find a tree T that connects at most k pairs,
and minimizes the ratio of the length of T to the number of pairs connected in T .

Observe that given any forest F connecting some set of pairs, one of the trees in
F has ratio (length to number of connected pairs) at most that of F . Hence even if
we relax the above definition to consider any forest, the optimal ratio solution can
be assumed to be a tree. Given any feasible solution T to minimum-ratio k-forest,
Ratio(T ) denotes the ratio of length of T to the number of pairs connected in T .

We present two different algorithms for minimum-ratio k-forest, obtaining ap-
proximation guarantees of O(

√
k) (Section 2.2.1) and O(

√
n) (Section 2.2.2); these

are then combined to give the claimed result for the k-forest problem. Both our
algorithms are based on reductions to the k-MST problem, albeit in very different
ways. As is usual, when we say that our algorithm guesses a parameter in the
following discussion, it means that the algorithm is run for each possible value of
that parameter, and the best solution found over all the runs is returned. As long
as only a constant number of parameters are being guessed and the number of
possibilities for each of these parameters is polynomial, the algorithm is repeated
only a polynomial number of times.

2.2.1 An O(
√
k) approximation algorithm

In this section, we give an O(
√
k) approximation algorithm for minimum ratio

k-forest, which is based on a simple reduction to the k-MST problem. The idea is
to look at the optimal solution S to minimum-ratio k-forest and consider an Euler
tour of this tree S—a theorem of Erdős and Szekeres on increasing subsequences
implies that there must be at least

√
|S| sources which are visited in the same order

as the corresponding sinks. We use this existence result to combine the source-sink
pairs to create an instance of

√
|S|-MST from which we can obtain a good solution;

the details follow. Below S denotes an optimal ratio tree, that covers q pairs and
has length B; let D denote the largest distance between any demand-pair that is
covered in S (note D ≤ B).
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The O(
√
k) approximation algorithm proceeds as below. Define a new metric

l on the set {1, · · · ,m} of pairs as follows. The distance between pairs i and j,
li,j

.
= d(si, sj) + d(ti, tj), where (V, d) is the original metric. This metric represents

solutions of a special structure: any tree M covering pairs Π can be expressed as
M = Ms ∪Mt ∪ {f} where Ms (resp. Mt) is a tree connecting all sources (resp.
destinations) in Π and f is any edge connecting a pair in Π. The algorithm guesses
the number of pairs q and the largest demand-pair distance D in the optimal tree
S (there are at most m choices for each of q and D). The algorithm discards all
pairs (si, ti) such that d(si, ti) > D (all the pairs covered in the optimal solution S
still remain). Then the algorithm runs the unrooted k-MST algorithm [63] with
target b√qc, in the metric l, to obtain a tree T on the pairs P . From T , we easily
obtain trees T1 (on all sources in P ) and T2 (on all sinks in P ) in metric d such
that d(T1) + d(T2) = l(T ). Finally the algorithm outputs the tree T ′ = T1 ∪ T2 ∪ {e},
where e is any edge joining a source in T1 to its corresponding sink in T2.

Due to the pruning on pairs that have large distance, d(e) ≤ D and the length
of T ′, d(T ′) ≤ l(T ) + D ≤ l(T ) + B. We now argue that the cost of the solution T
found by the k-MST algorithm l(T ) ≤ 8B. Consider the optimal ratio tree S (in
metric d) that has q pairs {(s1, t1), · · · , (sq, tq)}, and let τ denote an Euler tour of
S. Suppose that in a traversal of τ , the sources of pairs in S are seen in the order
s1, · · · , sq. Then in the same traversal, the sinks of pairs in S will be seen in the
order tπ(1), · · · , tπ(q), for some permutation π. The following fact is well known (see,
e.g., [144]).

Theorem 6. (Erdős and Szekeres) Every permutation on {1, · · · , q} has either an
increasing subsequence of length b√qc or a decreasing subsequence of length b√qc.

Using Theorem 6, we obtain a set M of p = b√qc pairs such that (1) the
sources in M appear in increasing order in a traversal of the Euler tour τ , and
(2) the sinks in M appear in increasing order in a traversal of either τ or τR

(the reverse traversal of τ). Let j0 < j1 < · · · < jp−1 denote the pairs in M in
increasing order. From statement (1) above,

∑p−1
i=0 d(s(ji), s(ji+1)) ≤ d(τ), where

the indices in the summation are modulo p. Similarly, statement (2) implies that∑p−1
i=0 d(t(ji), t(ji+1)) ≤ max{d(τ), d(τR)} = d(τ). Thus we obtain:

p−1∑
i=0

[d(s(ji), s(ji+1)) + d(t(ji), t(ji+1))] ≤ 2d(τ) ≤ 4B

But this sum is precisely the length of the tour j0, j1, · · · , jp−1, j0 in metric l. In other
words, there is a tree of length 4B in metric l, that contains b√qc vertices. So, the
cost of the solution T found by the k-MST approximation algorithm is at most 8B.
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Now the final solution T ′ has length at most l(T ) + B ≤ 9B, and Ratio(T ′) ≤
9
√
qB
q
≤ 9
√
kB
q
. Thus we have an O(

√
k) approximation algorithm for minimum

ratio k-forest.

2.2.2 An O(
√
n) approximation algorithm

In this section, we show an O(
√
n) approximation algorithm for the minimum ratio

k-forest problem. The approach is again to reduce to the k-MST problem; the idea is
rather different: either we find a vertex v such that a large number of demand-pairs
of the form (v, ∗) can be satisfied using a small tree (the “high-degree” case), or we
use a repeated greedy procedure to cover most vertices without paying too much
(since we are in the “low-degree” case, covering most vertices implies covering most
pairs too). The details follow.

Let S denote an optimal solution to minimum ratio k-forest, and q ≤ k the
number of demand pairs covered in S. We define the degree ∆ of S to be the
maximum number of demand-pairs (among those covered in S) that are incident
at any vertex in S. The algorithm first guesses the following parameters of the
optimal solution S: its length B (within a factor 2), the number of pairs covered
q, the degree ∆, and the vertex w ∈ S that has ∆ demand-pairs incident at it.
Although, there may be an exponential number of choices for the optimal length, a
polynomial number of guesses within a binary-search suffice to get a B such that
B ≤ d(S) ≤ 2 · B. The algorithm then returns the better of the two procedures
described below.

Procedure 1 (high-degree case): The algorithm assigns a weight to each vertex u,
equal to the number of pairs having an end point at u and the other end point at w
(the guessed ∆-degree vertex in S). Then we run the k-MST algorithm [63] with
root w and a target weight of ∆, resulting in a solution tree H. Since the degree of
vertex w in the optimal solution S is ∆, there is tree rooted at w of length d(S) ≤ 2B,
that contains at least ∆ pairs having one end point at w. Hence the k-MST instance
has a feasible solution of length 2B, and the length of solution H is at most 4B
(since the algorithm of [63] is a 2-approximation). Thus Ratio(H) ≤ 4B/∆ = 4q

∆
B
q
.

Procedure 2 (low-degree case): Set t = q
2∆

; note that q ≤ ∆·n
2

and so t ≤ n/4. We
maintain a current tree T (which is initialized to T ← {w}), and iteratively do the
following:

1. Shrink T to a single vertex s in metric (V, d), and run the k-MST algorithm [63]



2.2 Algorithms for the k-forest problem 17

with root s and a target of t new vertices. Let T0 denote the resulting tree.

2. If T0 has length at most 4B, set T ← T ∪ T0 and continue to the next iteration.

3. If T0 has length more than 4B (or if T already has all vertices) then terminate.

The tree T at the end of these iterations is output as the solution to minimum
ratio k-forest. Since t new vertices are added in each iteration, the number of
iterations is at most n

t
; so the length of T is at most 4n

t
B. We now show that T

contains at least q
2

demand-pairs. Consider the set S \ T (recall, S is the optimal
solution). It is clear that |V (S) \V (T )| < t; otherwise the k-MST instance in the last
iteration (with the current T ) would have S as a feasible solution of length at most
2B (and hence would find one of length at most 4B). So the number of pairs covered
in S that have at least one end point in S\T is at most |V (S)\V (T )| ·∆ ≤ t ·∆ = q/2
(as ∆ is the degree of solution S). Thus there are at least q/2 pairs contained in
S ∩ T , in particular in T . Thus T is a solution with Ratio(T ) ≤ 4n

t
B · 2

q
= 8n

t
B
q
.

The better solution among H and T from the above two procedures has objective
value at most min{4q

∆
, 8n
t
} · B

q
= min{8t, 8n

t
} · B

q
≤ 8
√
n · B

q
≤ 8
√
n · d(S)

q
. So this

algorithm is an O(
√
n) approximation to the minimum ratio k-forest problem.

2.2.3 Approximation algorithm for k-forest

Given the two algorithms for minimum ratio k-forest, we can use them in a standard
greedy fashion (i.e., keep picking approximately minimum-ratio solutions until we
obtain a forest connecting at least k pairs); the standard set cover analysis can be
used to show an O(min{√n,

√
k} · log k)-approximation guarantee for k-forest. The

O(
√
k · log k) part of the bound can be improved slightly to O(

√
k). This uses a

tighter analysis of the greedy set-cover algorithm [27]. Lemma 1 from [27] implies
the following in our context: Suppose there is an f(k) approximation algorithm
for minimum ratio k-forest, where f(x)/x is a decreasing function of x. Then the
greedy algorithm for the k-forest problem achieves an approximation guarantee of∫ k

0
f(x)/x dx. Using f(k) = O(

√
k), we obtain an O(

√
k) approximation for k-forest,

implying the guarantee in Theorem 2.

We note that this greedy approach to solving the k-forest problem may not even
give an o(n) approximation bound when k is super-polynomial in n. In this case
however, our O(

√
n)-approximation algorithm for minimum ratio k-forest can be

used within the Lagrangian relaxation framework of [138] (in place of Theorem 3)
to obtain an O(

√
n · log n) approximation for k-forest.



18 Chapter 2: Single vehicle Dial-a-Ride

2.3 Applications to Dial-a-Ride problems

In this section, we study applications of k-forest to the Dial-a-Ride problem (Def-
inition 3), and some generalizations. A natural solution-structure for Dial-a-Ride
involves servicing objects in batches of at most k each, where a batch consisting of a
set S of demand-pairs is served as follows: the vehicle starts out being empty, picks
up each of the |S| ≤ k objects from their sources, then drops off each object at its
destination, and is again empty at the end. If we knew that the optimal solution has
this structure, we could obtain a greedy framework for Dial-a-Ride by repeatedly
finding the best ‘batch’ of k demand-pairs. However, the optimal solution may
involve carrying almost k objects at every point in the tour, in which case it can not
be decomposed to be of the above structure. In Theorem 7, we show that there is
always a near optimal solution having this ‘pick-drop in batches’ structure. Building
on Theorem 7, we obtain approximation algorithms for the classical Dial-a-Ride
problem (Section 2.3.1), and two interesting extensions: non-uniform Dial-a-Ride
(Section 2.3.2) and weighted Dial-a-Ride (Section 2.3.3).

Theorem 7. Given any instance of Dial-a-Ride, there exists a feasible tour τ satisfying
the following conditions:

1. τ can be split into a set of segments {S1, · · · , St} (i.e., τ = S1 · S2 · · ·St) where
each segment Si services a set Oi of at most k objects such that Si is a path that
first picks up each object in Oi and then drops each of them.

2. The length of τ is at most O(logm) times the length of an optimal tour.

Proof: Consider an optimal non-preemptive tour σ: let d(σ) denote its length, and
|σ| denote the number of edge traversals in σ. Note that if in some visit to a vertex v
in σ there is no pick-up or drop-off, then the tour can be short-cut over vertex v, and
it still remains feasible. Further, due to triangle inequality, the length d(σ) does not
increase by this operation. So we may assume that each vertex visit in σ involves a
pick-up or drop-off of some object. Since there is exactly one pick-up and drop-off
for each object, we have |σ| ≤ 2m+ 1. Define the stretch of a demand-pair i to be
the number of edge traversals in σ between the pick-up and drop-off of object i.
The demand-pairs are partitioned as follows: for each j = 1, · · · , dlog(2m)e, group
Gj consists of all pairs having stretch between 2j−1 and 2j. We consider each group
Gj separately.

Claim 8. For each j = 1, · · · , dlog(2m)e, there is a tour τj that serves all the pairs in
group Gj, satisfies condition 1 of Theorem 7, and has length at most 6 · d(σ).
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Proof: Consider tour σ as a line L, with every edge traversal in σ represented by
a distinct edge in L. Number the vertices in L from 0 to h, where h = |σ| is the
number of edge traversals in σ. Note that each vertex in V may be represented
multiple times in L. Each object is associated with the numbers of the vertices (in
L) where it is picked up and dropped off.

Let r = 2j−1, and partition Gj as follows: for l = 1, · · · , dh
r
e, set Ol,j consists

of all objects in Gj that are picked up at a vertex numbered between (l − 1)r and
lr − 1. Since every object in Gj has stretch in the interval [r, 2r], every object in Ol,j

is dropped off at a vertex numbered between lr and (l + 2)r − 1. Note that |Ol,j|
equals the number of objects in Gj carried over edge (lr − 1, lr) by tour σ, which is
at most k. We define segment Sl,j to start at vertex number (l − 1)r and traverse all
edges in L until vertex number (l + 2)r − 1 (servicing all demand-pairs in Ol,j by
first picking up each object between vertices (l − 1)r and lr − 1; then dropping off
each object between vertices lr and (l + 2)r − 1), and then return (with the vehicle
being empty) to vertex lr. Clearly, the number of objects carried over any edge in
Sl,j is at most the number carried over the corresponding edge traversal in σ. Also,
each edge in L participates in at most 3 segments {Sl,j | 1 ≤ l ≤ dh/re}, and each
edge is traversed at most twice in any segment. So the total length of all segments
{Sl,j} is at most 6 · d(σ). We define tour τj to be the concatenation S1,j · · ·Sdh/re,j. It
is clear that this tour satisfies condition 1 of Theorem 7.

Applying this claim to each group Gj, and concatenating the resulting tours, we
obtain the tour τ satisfying condition 1 and having length at most 6 log(2m) · d(σ) =
O(logm) · d(σ).

Remark: The ratio O(logm) in Theorem 7 is almost best possible. As mentioned in
[65], there are instances of Dial-a-Ride on an unweighted line, where every solution
satisfying condition 1 of Theorem 7 has length at least Ω(max{ logm

log logm
, k

log k
}) times

the optimal non-preemptive tour. These instances consist of n = 2k + 1 equally
spaced vertices on a line, numbered 1 through n+ 1 from left to right, with demand-
pairs {(j ·2i, (j+ 1)2i) | 0 ≤ i ≤ k, 0 ≤ j ≤ 2k−i−1}. It can be seen that the optimal
non-preemptive tour has length O(n), whereas any tour satisfying condition 1 of
Theorem 7 has length at least Ω(n · logn

log logn
). So, if we only use solutions of this

‘pick-drop’ structure, then it is not possible to obtain an approximation factor (just
in terms of capacity k) for Dial-a-Ride that is better than Ω(k/ log k). The solutions
found by the algorithm for Dial-a-Ride in [28] also satisfy condition 1 of Theorem 7.
It is interesting to note that when the underlying metric is a hierarchically well-
separated tree (HST), [28] obtain a solution of such structure having length O(

√
k)

times the optimum, whereas there is a lower bound of Ω( k
log k

) even for the simple
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case of an unweighted line (which is not an HST).

2.3.1 Classical Dial-a-Ride

Theorem 7 suggests a greedy strategy for Dial-a-Ride, based on repeatedly finding
the best batch of k objects to service. This greedy subproblem turns out to be
the minimum ratio k-forest problem (Definition 5), for which we already have an
approximation algorithm. The next theorem sets up this reduction.

Theorem 9. A ρ-approximation algorithm for minimum ratio k-forest implies an
O(ρ log2m)-approximation algorithm for Dial-a-Ride.

Proof: The algorithm for Dial-a-Ride is as follows.

1. C = φ.

2. Until there are no uncovered demand-pairs, do:

(a) Solve the minimum ratio k-forest problem, to obtain a tree C covering kC ≤ k
new pairs.

(b) Set C ← C ∪ C.

3. For each tree C ∈ C, obtain an Euler tour on C to locally service all demand-pairs
(pick up all kC objects in the first traversal, and drop them all in the second traversal).
Then use a 1.5-approximate TSP tour on the sources, to connect all the local tours,
and obtain a feasible non-preemptive tour.

Consider the tour τ and its segments as in Theorem 7. If the number of uncovered
pairs in some iteration is m′, one of the segments in τ is a solution to the minimum
ratio k-forest problem of value at most d(τ)

m′
. Since we have a ρ-approximation

algorithm for this problem, we would find a segment of ratio at most O(ρ) · d(τ)
m′

.
Now a standard set cover type argument shows that the total length of trees in C
is at most O(ρ logm) · d(τ) ≤ O(ρ log2m) · OPT, where OPT is the optimal value of
the Dial-a-Ride instance. Further, the TSP tour on all sources is a lower bound on
OPT, and we use a 1.5-approximate solution [34]. So the final non-preemptive tour
output in step 5 above has length at most O(ρ log2m) · OPT.

This theorem is in fact stronger than Theorem 4 claimed earlier: any approx-
imation algorithm for k-forest implies an algorithm with the same guarantee for
minimum ratio k-forest. Note that, m and k may be super-polynomial in n. However,
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we show in Section 2.3.3 that with the loss of a constant factor, even the weighted
Dial-a-Ride problem can be reduced to classical Dial-a-Ride where the number of
objects m ≤ n4. Based on this and Theorem 9, a ρ approximation algorithm for
minimum ratio k-forest actually implies an O(ρ log2 n) approximation algorithm
for Dial-a-Ride. Using the approximation algorithm for minimum ratio k-forest
(Section 2.2), we obtain an O(min{√n,

√
k} · log2 n) approximation algorithm for

the Dial-a-Ride problem.

Remark: If we use the O(
√
k) approximation for k-forest, the resulting non-

preemptive tour is in fact feasible even for a
√
k capacity vehicle! As noted in

[28], this property is also true of their algorithm, which is based on an entirely
different approach.

2.3.2 Non-uniform Dial-a-Ride

The greedy framework for Dial-a-Ride described above is actually more generally
applicable than to just the classical Dial-a-Ride problem. In this section, we consider
the Dial-a-Ride problem under a substantially more general class of cost functions,
and show how the k-forest problem can be used to obtain an approximation al-
gorithm for this generalization as well. In fact, the approximation guarantee we
obtain by this approach matches (up to logarithmic factors) the best known for
the classical Dial-a-Ride problem. Our framework for Dial-a-Ride is well suited for
such a generalization since it is based on directly approximating a near-optimal
solution; this approach is not too sensitive to the cost function. On the other hand,
the algorithm in [28] is based on obtaining a good lower bound, which depends
heavily on the cost function. Thus it is unclear whether their techniques can be
extended to handle such a generalization.

Definition 10. Non-uniform Dial-a-Ride. Given an n vertex undirected graph G =
(V,E), a root vertex r, a set of m demand-pairs {(si, ti)}mi=1, and a non-decreasing cost
function ce : {0, 1, · · · ,m} → R+ on each edge e ∈ E (where ce(l) is the cost incurred
by the vehicle in traversing edge e while carrying l objects), find a non-preemptive tour
(starting and ending at r) of minimum total cost that moves each object i from si to ti.

Note that the classical Dial-a-Ride problem is a special case when the edge costs
are given by: ce(l) = de if l ≤ k and ce(l) = ∞ otherwise, where de is the edge
length in the underlying metric. We may assume (without loss in generality) that
for any fixed value l ∈ [0,m], the edge costs ce(l) induce a metric on V . Similar to
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Theorem 7, we have a near optimal solution with a ‘batch’ structure for the non-
uniform Dial-a-Ride problem as well, which implies the algorithm in Theorem 12.

Corollary 11. Given any instance of non-uniform Dial-a-Ride, there exists a feasible
tour τ satisfying the following conditions:

1. τ can be split into a set of segments {S1, · · · , St} (i.e., τ = S1 · S2 · · ·St) where
each segment Si services a set Oi of demand-pairs such that Si is a path that first
picks up each object in Oi and then drops each of them.

2. The cost of τ is at most O(logm) times the cost of an optimal tour.

Proof: We only give a proof sketch highlighting how the proof of Theorem 7 carries
over to this case. We may again assume that the number of edge traversals in the an
optimal tour σ is at most 2m: this uses triangle inequality in the edge-costs ce(l) for
any fixed l ∈ [m]. The definitions of groups {Gj | j = 1, · · · , dlog(2m)e}, and {Ol.j}
for each 1 ≤ j ≤ dlog(2m)e are identical to those in Theorem 7. The traversal Sl,j
serving any group Ol.j has the property that the number of objects carried over any
edge in Sl,j is at most that carried over the same edge in σ: this implies that the cost
of Sl,j is at most that of σ between vertex numbers (l − 1)r and (l + 2)r − 1. Finally
concatenating all the local tours Sl,j, we obtain the desired property.

Theorem 12. A ρ-approximation algorithm for minimum ratio k-forest (for all values
of k) implies an O(ρ log2m)-approximation algorithm for non-uniform Dial-a-Ride. In
particular, there is an O(

√
n log2m)-approximation algorithm.

Proof: Corollary 11 again suggests a greedy algorithm for non-uniform Dial-a-Ride
based on the following greedy subproblem: find a set T of uncovered pairs and a
path τ0 that first picks up each object in T and then drops off each of them, such
that the ratio of the cost of τ0 to |T | is minimized. However, unlike in the classical
Dial-a-Ride problem, in this case the cost of path τ0 does not come from a single
metric. Nevertheless, the minimum ratio k-forest problem can be used to solve this
subproblem as follows.

1. For every k = 1, · · · ,m:

(a) Define length function d(k)
e = ce(k) on the edges.

(b) Solve the minimum ratio k-forest problem on metric (V, d(k)) with bound k, to
obtain tree T ′k covering nk ≤ k pairs.
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(c) Obtain an Euler tour Tk of T ′k that services these nk objects, by picking up all
objects in one traversal and then dropping them all in a second traversal.

2. Return the tour Tk having the smallest ratio c(Tk)
nk

(over all 1 ≤ k ≤ m).

Assuming a ρ-approximation algorithm for minimum ratio k-forest (for all values
of k), we now show that the above algorithm obtains a 16ρ-approximate solution to
the greedy subproblem. The cost of tour Tk in step 1c is c(Tk) ≤ 4 · d(k)(T ′k), since
Tk involves traversing a tour on tree T ′k twice and the vehicle carries at most nk ≤ k

objects at every point in Tk. So tour Tk has c(Tk)
nk
≤ 4

d(k)(T ′k)

nk
= 4 · Ratio(T ′k) (recall

that Ratio(F ) for any solution to minimum ratio k-forest is the ratio of length of
F to the number of pairs connected by F ). Let τ denote the optimal path for the
greedy subproblem, T the set of objects that it services, and t = |T |. Let T1 denote
the last 3

4
t objects that are picked up, and T2 denote the first 3

4
t objects that are

dropped off. It is clear that T1 ∩ T2 has at least t/2 objects; let T ′ ⊂ T1 ∩ T2 be any
subset with |T ′| = t/4. Let τ ′ denote the portion of τ between the t

4
-th pick up and

the 3t
4

-th drop off. Note that when path τ is traversed, there are at least t
4

objects in
the vehicle while traversing each edge in τ ′. So the cost of τ , c(τ) ≥∑e∈τ ′ ce(t/4).
Also τ ′ contains the end points of all objects in T ′ ⊇ T1 ∩ T2. Hence τ ′ corresponds
to a feasible solution F ′ (covering pairs T ′) to minimum ratio k-forest with bound
k = t/4 in metric d(t/4). Solution F ′ has Ratio(F ′) = (

∑
e∈τ ′ ce(t/4))/ t

4
≤ 4c(τ)

t
. Thus

the ρ-approximate solution T ′t/4 has Ratio(T ′t/4) ≤ 4ρ c(τ)
t

. So the tour Tt/4 has ratio
c(Tk)
nk
≤ 4 · Ratio(T ′k) ≤ 16ρ c(τ)

t
. Thus we have a 16ρ-approximation algorithm for the

greedy subproblem.

Based on Corollary 11, it can now be shown (as in Theorem 9) that a ρ′-
approximation algorithm for the greedy subproblem implies an O(ρ′ · log2m)-
approximation algorithm for non-uniform Dial-a-Ride. Using the above 16ρ-approximation
for the greedy subproblem, we have the theorem.

2.3.3 Weighted Dial-a-Ride

So far we worked with the unweighted version of Dial-a-Ride, where each object has
the same weight. In this section, we extend our greedy framework for Dial-a-Ride
to the case when objects have different sizes, and the total size of objects in the
vehicle must be bounded by the vehicle capacity. Here we only extend the classical
Dial-a-Ride problem and not the generalization of Section 2.3.2. The problem
studied in this section is also known as the pickup and delivery problem [133].



24 Chapter 2: Single vehicle Dial-a-Ride

Definition 13. Weighted Dial-a-Ride. Given a vehicle of capacity k ∈ N, an n-vertex
metric space (V, d), a root vertex r, and a set of m objects {(si, ti, wi)}mi=1 (with object
i having source si, destination ti and an integer size 1 ≤ wi ≤ k), find a minimum
length (non-preemptive) tour of the vehicle starting (and ending) at r that moves each
object i from its source to its destination such that the total size of objects carried by
the vehicle is at most k at any point on the tour.

The classical Dial-a-Ride problem is a special case when wi = 1 for all objects.
The main result of this section (Theorem 15) reduces weighted Dial-a-Ride to the
classical Dial-a-Ride problem with the additional property that the number m of
objects is small (polynomial in the number of vertices n). This shows that in order
to approximate weighted Dial-a-Ride, it suffices to consider instances of the classical
Dial-a-Ride problem with a small number of objects. The next lemma shows that
even if the vehicle is allowed to split each object over multiple deliveries, the
resulting tour is not much shorter than the tour where each object is required to be
served in a single delivery (as is the case in weighted Dial-a-Ride). This lemma is
the main ingredient in the proof of Theorem 15. In the following, for any instance
of weighted Dial-a-Ride, we define the unweighted instance corresponding to it as
a classical Dial-a-Ride instance with vehicle capacity k, having wi (unweighted)
objects with source si and destination ti (for each 1 ≤ i ≤ m).

Lemma 14. Given any instance I of weighted Dial-a-Ride, and a solution τ to the
unweighted instance corresponding to I, there is a polynomial time computable solution
to I having length at most O(1) · d(τ).

Proof: Let J denote the unweighted instance corresponding to I. Define line L
as in the proof of Theorem 7 constructed by traversing τ from r: for every edge
traversal in τ , add a new edge of the same length at the end of L . Note that
there is a 1-1 correspondence between edges in L and edge-traversals in τ . For
each unweighted object in J corresponding to object i in I, there is a segment in
τ (correspondingly in L ) where it is moved from si to ti. So each object i ∈ I
corresponds to wi segments in τ (each being a path from si to ti). For each object
i in I, we assign i to one of its wi segments picked uniformly at random: call this
segment li. For an edge e ∈ L , let Ne =

∑
i:e∈li wi denote the random variable

which equals the total weight of objects whose assigned segments contain e. Note
that the expected value of Ne is exactly the number of unweighted objects carried
by τ when traversing the edge corresponding to e. Since τ is a feasible tour for J ,
E[Ne] ≤ k for all e ∈ L .
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Consider a random instance R of Dial-a-Ride on line L with vehicle capacity
k and objects as follows: for each object i in I, an object of weight wi is to be
moved along segment li (chosen randomly as above). Clearly, any feasible tour for
R corresponds to a feasible tour for I of the same length. Note that the flow lower
bound for instance R is F =

∑
e∈L de

Ne
k

, and the Steiner lower bound is
∑

e∈L de =

d(τ). Using linearity of expectation, E[F ] ≤ ∑e∈L de
E[Ne]
k
≤ ∑e∈L de = d(τ). Let

R∗ denote the Dial-a-Ride instance on line L obtained by assigning each object i in
I to the segment corresponding to it (among its wi segments) that has the smallest
number of edges. Clearly this assignment minimizes the flow lower bound (over
all assignments of objects to segments). So R∗ has flow bound ≤ E[F ] ≤ d(τ), and
Steiner lower bound d(τ).

Finally, we note that the 3-approximation algorithm for Dial-a-Ride on a line [100]
extends to a constant factor approximation algorithm for the case with weighted ob-
jects as well (this can be seen directly from [100]). Additionally, this approximation
guarantee is relative to the preemptive lower bounds. Thus, using this algorithm on
R∗, we obtain a feasible solution to I of length at most O(1) · d(τ).

Theorem 15. Suppose there is a ρ-approximation algorithm for instances of classical
Dial-a-Ride with at most O(n4) objects. Then there is an O(ρ)-approximation algorithm
for weighted Dial-a-Ride (with any number of objects). In particular, there is an
O(
√
n log2 n) approximation for weighted Dial-a-Ride.

Proof: Let I denote an instance of weighted Dial-a-Ride with objects {(wi, si, ti) :
1 ≤ i ≤ m}, and τ ∗ an optimal tour for I. Let P = {(s1, t1), · · · , (sl, tl)} be the
distinct pairs of vertices that have some demand-pair between them, and let Ti
denote the total size of all objects having source si and destination ti. Note that
l ≤ n(n − 1). Let Phigh = {i ∈ P : Ti ≥ k

2
}, Plow = {i ∈ P : Ti ≤ k

l
}, and

P ′ = P \ (Phigh ∪ Plow). We now show how to separately service objects in Plow,
Phigh and P ′.

Servicing Plow: The total size in Plow is at most k; so we can service all these pairs
by using a 1.5-approximate tour [34] on sources and destinations, and traversing it
twice: once to pick up all objects and once to drop them. Note that the length of
this tour is at most 3 times the Steiner lower bound, hence at most 3 · d(τ ∗).

Servicing Phigh: Let C be a 1.5-approximate minimum tour on all the sources.
The pairs in Phigh are serviced by a tour τ1 as follows. Traverse along C, and when a
source si in Phigh is visited, traverse the direct edge to the corresponding destination
ti and back, as few times as possible so as to move all the objects between si and ti,
as described next. Note that every object to be moved between si and ti has size
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(the original wi size) at most k, and the total size of such objects Ti ≥ k/2. So these
objects can be partitioned such that the size of each part (except possibly the last) is
in the interval [k

2
, k]. So the number of times edge (si, ti) is traversed to service the

demand-pairs between them is at most 2d2Ti
k
e ≤ 2(2Ti

k
+ 1) ≤ 8Ti

k
. Now, the length of

tour τ1 is at most d(C) +
∑

i∈Phigh 8d(si, ti)
Ti
k
≤ d(C) + 8

k

∑m
i=1wi · d(si, ti). Note that

d(C) is at most 1.5 times the minimum tour on all sources (Steiner lower bound),
and the second term above is the flow lower bound. So tour τ1 has length at most
O(1) times the preemptive lower bounds for I, which is at most O(1) · d(τ ∗).

Servicing P ′: We know that the total size Ti of each pair i in P ′ lies in the
interval (k/l, k/2). Let I ′ denote the instance of weighted Dial-a-Ride with objects
{(si, ti, Ti) : i ∈ P ′} and vehicle capacity k; note that the number of objects in I ′
is at most l. The tour τ ∗ restricted to the objects corresponding to pairs in P ′ is
a feasible solution to the unweighted instance corresponding to I ′ (but it may not
be feasible for I ′ itself). However Lemma 14 implies that the optimal value of I ′,
OPT(I ′) ≤ O(1) · d(τ ∗).

Next we reduce instance I ′ to an instance J of weighted Dial-a-Ride satisfying
the following conditions: (i) J has at most l objects, (ii) each object in J has size at
most 2l, (iii) any feasible solution to J is feasible for I ′, and (iv) the optimal value
OPT(J ) ≤ O(1) · OPT(I ′). If k ≤ 2l, J = I ′ itself satisfies the required conditions.
Suppose k ≥ 2l, then define p = bk

l
c; note that k ≥ l · p ≥ k − l ≥ k

2
. Round up

each size Ti to the smallest integral multiple T ′i of p, and round down the capacity
k to k′ = l · p. Since each size Ti ∈ (k

l
, k

2
), all sizes T ′i ∈ {p, 2p, · · · , lp}. Now let

I ′′ denote the weighted Dial-a-Ride instance with objects {(si, ti, T ′i ) : i ∈ P ′} and
vehicle capacity k′ = lp.

One can obtain a feasible solution for I ′′ from any feasible solution σ for I ′ by
traversing σ a constant number of times as follows. Consider simulating a traversal
of a capacity k vehicle α along σ by 16 capacity k′ vehicles {βg}16

g=1, each running
in parallel along σ. The objects {i | T ′i ≤ k

4
} are served by vehicles {βg}8

g=1, and
the rest by vehicles {βg}16

g=9. Whenever vehicle α picks-up an object i, one of the
vehicles {βg}16

g=1 picks up i: if T ′i ≤ k
4
, any vehicle {βg}8

g=1 that has free capacity
picks up i; if T ′i >

k
4
, any vehicle {T ′g}16

g=9 that is empty picks up i. It can be seen that
if some object is not picked by any vehicle {βg}16

g=1, then there must be a capacity
violation in α (since k′ ≥ k

2
and T ′i ≤ max{2Ti, k′}).

So the optimal value of I ′′ is at most O(1) ·OPT(I ′). Now note that all sizes and
the vehicle capacity in I ′′ are multiples of p; scaling down each of these quantities
by p, we get an instance J equivalent to I ′′ where the vehicle capacity is l (and every



2.4 The Effect of Preemptions 27

object size is at most l). This instance J satisfies all the four conditions claimed
above.

Since J has at most l objects (each of size ≤ 2l), the unweighted instance
corresponding to J has at most 2l2 ≤ 2n4 objects. Thus, this unweighted instance
can be solved using the ρ-approximation algorithm for such instances, assumed in
the theorem. Then using the algorithm in Lemma 14, we obtain a solution to J , of
length at most O(ρ) · OPT(J ) ≤ O(ρ) · OPT(I ′) ≤ O(ρ) · d(τ ∗). Since any feasible
solution to J corresponds to one for I ′, we have a tour servicing P ′ of length at
most O(ρ) · d(τ ∗).

Finally, combining the tours servicing Plow, Phigh and P ′, we obtain a feasible
tour for I having length O(ρ) · d(τ ∗), which gives us the desired approximation
algorithm.

Theorem 15 also justifies the assumption logm = O(log n) made at the end of
Section 2.3. This is important because in general m may be super-polynomial in n.

2.4 The Effect of Preemptions

In this section, we study the effect of the number of preemptions in the Dial-a-
Ride problem. We mentioned two versions of the Dial-a-Ride problem (Definition 3):
in the preemptive version, an object may be preempted any number of times, and
in the non-preemptive version objects are not allowed to be preempted even once.
Clearly the preemptive version is least restrictive and the non-preemptive version
is most restrictive. One may consider other versions of the Dial-a-Ride problem,
where there is a specified upper bound P on the number of times an object can be
preempted. Note that the case P = 0 is the non-preemptive version, and the case
P = n is the preemptive version. In Theorem 16, we show that for any instance of
the Dial-a-Ride problem, there is a tour that preempts each object at most once (i.e.,
P = 1) and has length at most O(log2 n) times an optimal preemptive tour (i.e.,
P = n). This implies that the real gap between preemptive and non-preemptive
tours is between zero and one preemption per object. A tour that preempts each
object at most once is called a 1-preemptive tour.

Theorem 16. Given any instance of the Dial-a-Ride problem, there is a 1-preemptive
tour of length at most O(log2 n) times the Steiner and flow lower bounds. Such a tour
can be found in randomized polynomial time.

Proof: Let LBpmt denote the preemptive lower bound for the given Dial-a-Ride
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instance, namely maximum of the Steiner and flow lower bounds. We first show
how general Dial-a-Ride instances can be reduced to instances where the metric is
a hierarchically well-separated tree T having O(log n) levels. This uses the results
on probabilistic tree embedding [46], and only increases the expected value of the
preemptive lower bound by an O(log n) factor. Then we show how to obtain a 1-
preemptive tour on such tree-instances having length O(log n) times the preemptive
lower bound. The resulting 1-preemptive tour has the property that each object is
moved non-preemptively in two phases: first from its source to the least-common-
ancestor (lca) of its source and destination, and then from the lca to its destination.

Applying the probabilistic tree embedding of [46] to the given metric (V, d),
we obtain a tree metric T such that the optimal preemptive tour in T has length
O(log n) times that in (V, d), and any feasible solution in T corresponds to one in
(V, d) of the same length. Additionally, the tree T has O(log dmax

dmin
) levels, where dmax

and dmin denote the maximum and minimum (non-zero) distances in the original
metric. Let OPTpmt denote the optimal value of the original preemptive Dial-a-Ride
instance. We first observe that using standard scaling arguments, it suffices to
assume that for metric (V, d), dmax

dmin
is polynomial in n. Without loss of generality,

any preemptive tour involves at most 2m ·n edge traversals: each object is picked or
dropped at most 2n times (once at each vertex), and every visit to a vertex involves
picking or dropping at least one object (otherwise the tour can be shortcut over
this vertex-visit at no increase in length). By retaining only vertices within distance
OPTpmt/2 from the root r, we preserve the optimal preemptive tour and ensure
that dmax ≤ OPTpmt. Now consider modifying the metric by setting all edges of
length smaller than OPTpmt/2mn

3 to length 0; the new distances are shortest paths
under the modified edge lengths. So any pairwise distance decreases by at most
OPTpmt

2mn2 . Clearly the length of the optimal preemptive tour only decreases under
this modification. Since there are at most 2mn edge traversals in any preemptive
tour, the increase in tour length in going from the new metric to the original metric
is at most 2mn · OPTpmt

2mn2 ≤ OPTpmt/n. Thus at the loss of a constant factor, we
may assume that dmax/dmin ≤ 2mn3. Furthermore, Theorem 14 also holds for
preemptive Dial-a-Ride; so we may assume (at the loss of an additional constant
factor) that the number of objects m ≤ O(n4). So we have dmax/dmin ≤ O(n7) and
hence tree T has O(log n) levels.

The tree T resulting from [46] has several Steiner vertices that are not present
in the original metric; so the tour that we find on T may actually preempt objects at
Steiner vertices, in which case it is not feasible in the original metric. However as
shown in [69], these Steiner vertices can be simulated by vertices in the original
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metric (at the loss of a constant factor). Based on the preceding observations, we
assume that the underlying metric is a tree T on the original vertex set having
l = O(log n) levels, such that the expected value of the preemptive lower bound is

˜LBpmt = O(log n) · LBpmt.

We now partition the demand-pairs in T into l sets with Di (for i = 1, · · · , l)
consisting of all pairs having their least common ancestor (lca) in level i. We service
each Di separately in a 1-preemptive manner using a tour of length O( ˜LBpmt). Then
concatenating the tours for each level i, we obtain the theorem.

Servicing Di: For each vertex v at level i in T , let Lv denote the pairs in Di that
have v as their lca, and let LBpmt(v) denote the preemptive lower bound for the
Dial-a-Ride instance with pairs Lv and root v. Note that for each v, the Dial-a-Ride
instance on Lv is restricted to the subtree under vertex v; so

∑
v LBpmt(v) ≤ ˜LBpmt.

Consider the following two instances of capacitated vehicle routing derived from
Lv: Sv has vertex v as the common destination and {sj | j ∈ Lv} are the respective
sources; and Tv has vertex v as the common source and {tj | j ∈ Lv} are the
respective destinations. Since the sj − tj path of each pair j ∈ Lv crosses vertex v,
we have d(sj, tj) = d(sj, v) + d(tj, v). This implies that the preemptive lower bounds
of both Sv and Tv are at most LBpmt(v). Hence, using the capacitated vehicle routing
algorithm of [73] gives the following two non-preemptive tours: σ′v (for instance
Sv) that moves objects in Lv from their sources to v, and σ′′v (for instance Tv) that
moves objects in Lv from v to their destinations. Furthermore, the approximation
guarantee from [73] (see Section 2.1) implies that d(σ′), d(σ′) ≤ 2.5 · LBpmt(v).
Finally, the concatenation σ′v · σ′′v is a 1-preemptive tour servicing Lv having length
at most 5 · LBpmt(v).

We now run a depth-first-search on tree T to visit all vertices v in level i, and
use the algorithm described above for servicing objects Lv when v is visited in
this traversal. This results in a tour servicing Di, having length at most 2 · d(T ) +
5
∑

v LBpmt(v). Since 2 · d(T ) is the Steiner lower bound, and
∑

v LBpmt(v) ≤ ˜LBpmt.
Thus the tour servicing Di has length at most 6 · ˜LBpmt.

Finally concatenating the tours for each level i = 1, · · · , l, we obtain a 1-
preemptive tour on tree-instance T of length O(log n) · ˜LBpmt, which translates
to a 1-preemptive tour on the original metric having length O(log2 n) · LBpmt.

Preemption Gap in the Euclidean Plane. Motivated by obtaining an improved
approximation for Dial-a-Ride on the Euclidean plane, we next consider the worst
case gap between an optimal non-preemptive tour and the preemptive lower bounds.
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As mentioned earlier, [28] showed that there are instances of Dial-a-Ride where the
ratio of the optimal non-preemptive tour to the optimal preemptive tour is Ω(n1/3).
However, the metric involved in this example was the uniform metric on n points,
which can not be embedded in the Euclidean plane. The following theorem shows
that even in this special case, there is a polynomial gap between non-preemptive
and preemptive tours, and so preemptive lower bounds do not suffice to obtain a
sub-polynomial approximation ratio for non-preemptive Dial-a-Ride.

Theorem 17. There are instances of Dial-a-Ride on the Euclidean plane where the
optimal non-preemptive tour has length Ω( n1/8

log3 n
) times the optimal preemptive tour.

Proof: Consider a square of side 1 in the Euclidean plane, in which a set of n
demand-pairs {si, ti}ni=1 are distributed uniformly at random (each demand point is
generated independently and is uniformly from the square). The vehicle capacity is
set to k =

√
n. Let R denote a random instance of Dial-a-Ride obtained as above.

We show that in this case, the optimal non-preemptive tour has length Ω̃(n1/8) with
high probability. We first show the following claim.

Claim 18. With high probability, the minimum length of a tree connecting k pairs in
R is Ω( n

1/8

logn
).

Proof: Take any set S of k =
√
n demand-pairs, say {si, ti}ki=1. Note that the

number of such sets S is
(
n
k

)
. Set S has 2k vertices, each generated uniformly at

random. It is well-known that there are pp−2 different labeled trees on p vertices
(see e.g. [149], Ch.2). The term labeled emphasizes that we are not identifying
isomorphic graphs, i.e., two trees are counted as the same if and only if exactly the
same pairs of vertices are adjacent. Thus there are at most (2k)2k−2 such trees on set
S. Consider any labeled tree T on vertices S, and root it at the source vertex with
minimum label (here s1). We assume that T has been generated using the “Principle
of Deferred Decisions”, i.e., vertices will be generated one by one according to some
breadth-first ordering of T . We say that an edge is short if its length is at most c

αk
(c

and α ∈ (0, 1
2
) will be fixed later).

If T has length at most c, it is clear that at most an α fraction of its edges
are not short. So Pr[length of T ≤ c] ≤ ∑H Pr[edges in H are short], where H
in the summation ranges over all edge-subsets of T with |H| ≥ (1 − α)2k. For a
fixed H, we bound Pr[edges in H are short] as follows. For any edge (v, parent(v))
(note parent(v) is well-defined since T is rooted), assuming that parent(v) is fixed,
the probability that this edge is short is p = π( c

αk
)2. So we can upper bound the
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probability that edges H are short by p|H| ≤ p(1−α)2k. So we have Pr[length of T ≤
c] ≤ 22k · p(1−α)2k, as the number of different edge sets H is at most 22k.

By a union bound over all such labeled trees T , the probability that the length of
the minimum spanning tree on S is less than c is at most (2k)2k · 22k · p(1−α)2k. Now
taking a union bound over all k-sets S, the probability that the minimum length of
a tree containing some k pairs is less than c is at most

(
n
k

)
(2k)2k22kp(1−α)2k. Since

k =
√
n, this term can be upper bounded as follows:

(ek)k(4k)2kπ(1−α)2k(
c

αk
)(1−α)4k ≤ 500kk3k(

c

αk
)(1−α)4k

= [500 · ( c
α

)4−4α(
1

k
)1−4α]k ≤ 2−k

The last inequality above holds when c ≤ α
1000
· k1/4−3α/(1−4α). Setting α = 1

log k
,

Pr[∃ k1/4

8000 · log k
length tree connecting some k pairs in R] ≤ 2−k

So, with probability at least 1− 2−
√
n, the minimum length of a tree containing k

pairs in R is at least Ω( n
1/8

logn
).

From Theorem 7, we obtain that there is a near optimal non-preemptive tour
servicing all the objects in segments, where each segment (except possibly the last)
involves servicing a set of k

2
≤ t ≤ k objects. Although the lower bound of k/2 is not

stated in Theorem 7, it is easy to extend the statement to include it. This implies
that any solution of this structure has at least n

k
= k segments. Since each segment

covers at least k/2 pairs, Claim 18 implies that each of these segments has length
Ω(n1/8/ log n). So the best solution of the structure given in Theorem 7 has length
Ω( n

1/8

logn
k). But since there is a near-optimal solution of this structure, the optimal

non-preemptive tour on R has length Ω( n1/8

log2 n
k).

On the other hand, the flow lower bound for R is at most n
k

= k, and the Steiner
lower bound is at most O(

√
n) = O(k) (an O(

√
n) length tree on the 2n points can

be constructed using a
√

2n×
√

2n gridding). So the preemptive lower bounds are
both O(k); now using the algorithm of [28], we see that the optimal preemptive
tour has length O(k log n). Combined with the lower bound for non-preemptive
tours, we obtain the Theorem.

Credits: The results in this chapter are from “Dial a Ride from k-forest” [70],
obtained jointly with Anupam Gupta, MohammadTaghi Hajiaghayi and R. Ravi. We
also thank Alan Frieze for help in proving Theorem 17.





Chapter 3

Multi vehicle Dial-a-Ride

3.1 Introduction

The multi-vehicle Dial-a-Ride problem involves routing a set of m objects from their
sources to respective destinations using a set of q vehicles starting at t distinct depot
nodes in an n-node metric. Each vehicle has a capacity k which is the maximum
number of objects it can carry at any time. As in the single vehicle case, there are
two versions of multi-vehicle Dial-a-Ride based on whether or not vehicles may use
nodes in the metric as preemption (a.k.a. transshipment) points. In this chapter, our
main focus is on the preemptive version, where an object may be left at intermediate
locations while being moved from source to destination. There are two natural
objectives in multi-vehicle Dial-a-Ride problems: total completion time or makespan
(i.e. maximum completion time) over the q vehicles. As observed below, the total
completion time objective is very similar to single vehicle Dial-a-Ride. We study the
more interesting makespan objective in this chapter.

The total completion time objective in preemptive multi-vehicle Dial-a-Ride
admits a straightforward O(log n)-approximation along the lines of the single vehicle
problem [28]: Using the FRT tree embedding [46], one can reduce the problem
to tree-metrics at the loss of an expected O(log n) factor, and there is a simple
constant approximation for this problem on trees. The maximum completion time
or makespan objective turns out to be considerably harder. Due to non-linearity
of the makespan objective, the above reduction to tree-metrics does not hold.
Furthermore, the makespan objective does not appear easy to solve even on trees.

Unlike in the single-vehicle case, note that an object in preemptive multi-vehicle

33
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Dial-a-Ride may be transported by several vehicles one after the other. Hence
it is important for the vehicle routes to be coordinated so that the objects trace
valid paths from respective sources to destinations. For example, a vehicle may
have to wait at a vertex for other vehicles carrying common objects to arrive. The
multi-vehicle Dial-a-Ride problem captures aspects of both machine scheduling and
network design problems; this connection is more evident in the next subsection.

3.1.1 Problem Definition and Preliminaries

We represent a finite metric as (V, d) where V is the set of vertices and d is a
symmetric distance function satisfying triangle inequality. For subsets A,B ⊆ V
we denote by d(A,B) the minimum distance between a vertex in A and another
in B, so d(A,B) = min{d(u, v) | u ∈ A, v ∈ B}. For a subset E ⊆

(
V
2

)
of edges,

d(E) :=
∑

e∈E de denotes the total length of edges in E.

The multi-vehicle Dial-a-Ride problem (mDaR) consists of an n-vertex metric (V, d)
representing travel times between vertices, m objects specified as source-destination
pairs {si, ti}mi=1, q vehicles having respective depot-vertices {rj}qj=1, and a common
vehicle capacity k. A feasible schedule is a set of q routes, one for each vehicle
(where the route for vehicle j ∈ [q] starts and ends at rj), such that no vehicle
carries more than k objects at any time and each object is moved from its source to
destination. The completion time Cj of any vehicle j ∈ [q] is the time when vehicle
j returns to its depot rj at the end of its route (the schedule is assumed to start
at time 0). The objective in mDaR is to minimize makespan, i.e. min maxj∈[q] Cj.
We denote by S := {si | i ∈ [m]} the set of sources, T := {ti | i ∈ [m]} the set
of destinations, R := {rj | j ∈ [q]} the set of distinct depot-vertices, and t := |R|
the number of distinct depots. Unless mentioned otherwise, we only consider the
preemptive version, where objects may be left at intermediate vertices while being
moved from source to destination.

Single vehicle Dial-a-Ride. The following are lower bounds for the single vehicle
problem: the minimum length TSP tour on the depot and all source/destination
vertices (Steiner lower bound), and

∑m
i=1 d(si,ti)

k
(flow lower bound). Charikar and

Raghavachari [28] gave an O(log n) approximation algorithm for this problem based
on the above lower bounds. A feasible solution to preemptive Dial-a-Ride is said to
be 1-preemptive if every object is preempted at most once while being moved from
its source to destination. Theorem 16 in Chapter 2 showed that the single vehicle
preemptive Dial-a-Ride problem always has a 1-preemptive tour of length O(log2 n)
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times the Steiner and flow lower-bounds.

Lower bounds for mDaR. The quantity
∑m
i=1 d(si,ti)

qk
is a lower bound similar to

the flow bound for single vehicle Dial-a-Ride. Analogous to the Steiner lower
bound above, is the optimal value of an induced nurse-station-location instance. In
the nurse-station-location problem [44], we are given a metric (V, d), a set T of
terminals and a multi-set {rj}qj=1 of depot-vertices; the goal is to find a collection
{Fj}qj=1 of trees that collectively contain all terminals T such that each tree Fj
is rooted at vertex rj and maxqj=1 d(Fj) is minimized. Even et al. [44] gave a
4-approximation algorithm for this problem. The optimal value of the nurse-station-
location instance with depots {rj}qj=1 (depots of vehicles in mDaR) and terminals
T = S ∪ T is a lower bound for mDaR. The following are some lower bounds
implied by nurse-station-location: (a) 1/q times the minimum length forest that
connects every vertex in S ∪ T to some depot vertex, (b) maxi∈[m] d(R, si), and (c)
maxi∈[m] d(R, ti). Finally, it is easy to see that maxi∈[m] d(si, ti) is also a lower bound
for mDaR.

3.1.2 Results

We first consider the special case of multi-vehicle Dial-a-Ride (uncapacitated mDaR)
where the vehicles have no capacity constraints (i.e. k ≥ m). This problem is
interesting in itself, and serves as a good starting point before we present the
algorithm for the general case. We prove the following theorem in Section 3.2.

Theorem 19. There is an O(log t)-approximation algorithm for uncapacitated pre-
emptive mDaR.

The above algorithm has two main steps: the first one reduces the instance (at a
constant factor loss in the performance guarantee) to one in which all demands are
between depots (a “depot-demand” instance). In the second step, we use a sparse
spanner on the demand graph to construct routes for moving objects across depots.
We also construct an instance of uncapacitated mDaR where the optimal value is
Ω(log t/ log log t) times all our lower bounds for this problem. This suggests that
stronger lower bounds are needed to obtain a better approximation ratio than what
our approach provides.

We obtain an improved guarantee for the following special class of metrics (eg.
planar metrics). This algorithm uses the notion of sparse covers in such metrics [97].
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Theorem 20. There is an O(1)-approximation algorithm for uncapacitated mDaR on
metrics induced by graphs that exclude any fixed minor.

In Section 3.3, we study the capacitated preemptive mDaR problem, and obtain
the main result of this chapter. Recall that there is an Ω(log1/4−ε n) hardness of
approximation for even single vehicle preemptive Dial-a-Ride [66].

Theorem 21. There is an O(log3 n) approximation algorithm for preemptive mDaR.

This algorithm has four key steps: (1) We preprocess the input so that demand
points that are sufficiently far away from each other can be essentially decomposed
into separate instances for the algorithm to handle independently. (2) We then
solve a single-vehicle instance of the problem that obeys some additional bounded-
delay property (Theorem 27) that we prove; This property combines ideas from
algorithms for light approximate shortest path trees [95] and capacitated vehicle
routing [73]. The bounded-delay property is useful in randomly partitioning the
single vehicle solution among the q vehicles available to share this load. This
random partitioning scheme is reminiscent of the work of Hochbaum-Maase [85],
Baker [12] and Klein-Plotkin-Rao [97], in trying to average out the effect of the
cutting in the objective function. (3) The partitioned segments of the single vehicle
tour are assigned to the available vehicles; However, to check if this assignment is
feasible we solve a matching problem that identifies cases when this load assignment
must be rebalanced. This step identifies stronger lower bounds for subproblems
where the current load assignment is not balanced. (4) We finish up by recursing on
the load rebalanced subproblem.

3.1.3 Related Work

Dial-a-Ride problems with transshipment (the preemptive version) have been stud-
ied in [109, 110, 115]. These papers consider a more general model where pre-
emption is allowed only at a specified subset of vertices. Our model (and that
of [28]) is the special case when every vertex can serve as a preemption point. It
is clear that preemption only reduces the cost of serving demands: [115] studied
the maximum decrease in the optimal cost upon introducing one preemption point.
[109, 110] also model time-windows on the demands, and study heuristics and a
column-generation based approach; they also describe applications (eg. courier
service) that allow for preemptions. Another preemptive routing problem that has
been studied is truck and trailer routing [25, 135]. Here a number of capacitated
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trucks and trailers are used to deliver all objects. Some customers are only accessible
without the trailer. The trailers can be parked at any point accessible with a trailer
and it is possible to shift demand loads between the truck and the trailer at the
parking places.

Paepe et al. [41] provide a classification of Dial-a-Ride problems using a notation
similar to that for scheduling and queuing problems: preemption is one aspect in
this classification.

As mentioned in the previous chapter, the best known approximation guarantee
for the preemptive single vehicle Dial-a-Ride is O(log n) [28], and an Ω(log1/4−ε n)
hardness of approximation (for any constant ε > 0) is shown in [66]. The non-
preemptive version appears much harder and the best known approximation ratio
is min{

√
k log n,

√
n log2 n} (Charikar and Raghavachari [28], Chapter 2); however

APX-hardness is the best known lower bound.

The uncapacitated case of preemptive mDaR generalizes the nurse-station-
location [44], for which a 4-approximation algorithm was given. Nurse-station-
location is the special case of uncapacitated mDaR when each source-destination
pair coincides at a single vertex.

3.2 Uncapacitated Preemptive mDaR

In this section we study the uncapacitated special case of preemptive mDaR, where
vehicles have no capacity constraints (i.e. capacity k ≥ m). We give an algorithm
that achieves an O(log t) approximation ratio for this problem (recall t ≤ n is the
number of distinct depots). Unlike in the single vehicle case, preemptive and non-
preemptive versions of mDaR are very different even without capacity constraints.

Preemption gap in Uncapacitated mDaR. Consider an instance of uncapacitated
mDaR where the metric is induced by an unweighted star with q leaves (where q
is number of vehicles), all q vehicles have the center vertex as depot, and there
is a demand between every pair of leaf-vertices. A preemptive schedule having
makespan 4 is as follows: each vehicle j ∈ [q] visits leaf j and brings all demands
with source j to the root, then each vehicle j visits its corresponding leaf again,
this time delivering all demands with destination j. On the other hand, in any
non-preemptive schedule, one of the q vehicles completely serves at least q demands
(since there are q2 demands in all). The minimum length of any tour containing



38 Chapter 3: Multi vehicle Dial-a-Ride

the end points of q demands is Ω(
√
q), which is also a lower bound on the optimal

non-preemptive makespan. Thus there is an Ω(
√
q) factor gap between optimal

preemptive and non-preemptive tours.

The algorithm for uncapacitated preemptive mDaR proceeds in two stages. Given
any instance, it is first reduced (at the loss of a constant factor) to a depot-demand
instance, where all demands are between depot vertices (Subsection 3.2.1). Then
the depot-demand instance is solved using an O(log t) approximation algorithm
(Subsection 3.2.2).

3.2.1 Reduction to depot-demand instances

We define depot-demand instances as those instances of uncapacitated mDaR where
all demands are between depot vertices. Given any instance I of uncapacitated
mDaR, the algorithm UncapMulti (Figure 3.1) reduces I to a depot-demand instance.
We now argue that the reduction in UncapMulti only loses a constant approximation
factor. Let B denote the optimal makespan of instance I. Since the optimal value of
the nurse-station-location instance solved in the first step of UncapMulti is a lower
bound for I, we have maxqj=1 d(Fj) ≤ 4B.

Claim 22. The optimal makespan for the depot-demand instance J is at most 17B.

Proof: Consider a feasible schedule for J involving three rounds: (1) each
vehicle traverses (by means of an Euler tour) its corresponding tree in {Fj}qj=1 and
moves each object i from its source-depot (the source in instance J ) to si (source
in original instance I); (2) each vehicle follows the optimal schedule for I and
moves each object i from si to ti (destination in I); (3) each vehicle traverses its
corresponding tree in {Fj}qj=1 and moves each object i from ti to its destination-
depot (the destination in J ). Clearly this is a feasible schedule for J . From the
observation on the nurse-station-location instance, the time taken in each of the
first and third rounds is at most 8B. Furthermore, the time taken in the second
round is the optimal makespan of I which is B. This proves the claim.

Assuming a feasible schedule for J , it is clear that the schedule returned by
UncapMulti is feasible for the original instance I. The first and third rounds in I ’s
schedule require at most 8B time each. Thus an approximation ratio α for depot-
demand instances implies an approximation ratio of 17α + 8 for general instances.
In the next subsection, we show an O(log t)-approximation algorithm for depot-
demand instances (here t is the number of depots), which implies Theorem 19.
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Input: instance I of uncapacitated preemptive mDaR.

• Solve the nurse-station-location instance with depots {rj}qj=1 and all
sources/destinations S ∪ T as terminals, using the 4-approximation algo-
rithm [44]. Let {Fj}qj=1 be the resulting trees covering S ∪ T such that each
tree Fj is rooted at depot rj .

• Define a depot-demand instance J of uncapacitated mDaR on the same metric
and set of vehicles, where the demands are {(rj , rl) | si ∈ Fj & ti ∈ Fl, 1 ≤
i ≤ m}. For any object i ∈ [m] let the source depot be the depot rj for which
si ∈ Fj and the destination depot be the depot rl for which ti ∈ Fl.

• Output the following schedule for I:

1. Each vehicle j ∈ [q] traverses tree Fj by an Euler tour, picks up all objects
from sources in Fj and brings them to their source-depot rj .

2. Vehicles implement a schedule for depot-demand instance J , and all
objects are moved from their source-depot to destination-depot (using
the algorithm in Section 3.2.2).

3. Each vehicle j ∈ [q] traverses tree Fj by an Euler tour, picks up all objects
having destination-depot rj and brings them to their destinations in Fj .

Figure 3.1: Algorithm UncapMulti for uncapacitated mDaR.

3.2.2 Algorithm for depot-demand instances

Let J be any depot-demand instance: note that the instance defined in the second
step of UncapMulti is of this form. It suffices to restrict the algorithm to the induced
metric (R, d) on only depot vertices, and use only one vehicle at each depot in R.
Consider an undirected graph H consisting of vertex set R and edges corresponding
to demands: there is an edge between vertices r and s iff there is an object going
from either r to s or s to r. Note that the metric length of any edge in H is at
most the optimal makespan B̃ of instance J . In the schedule produced by our
algorithm, vehicles will only use edges of H. Thus in order to obtain an O(log t)
approximation, it suffices to show that each vehicle only traverses O(log t) edges.
Based on this, we further reduce J to the following instance H of uncapacitated
mDaR: the underlying metric is shortest paths in graph H (on vertices R), with one
vehicle at each R-vertex, and for every edge (u, v) ∈ H there is a demand from u to
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v and one from v to u. Clearly any schedule for H having makespan β implies one
for J of makespan β · B̃. The next lemma implies an O(log |R|) approximation for
depot-demand instances.

Lemma 23. There exists a poly-time computable schedule for H with makespan
O(log t), where t = |R|.

Proof: Let α = dlg te + 1. We first construct a sparse spanner A of H as follows:
consider edges of H in an arbitrary order, and add an edge (u, v) ∈ H to A iff the
shortest path between u and v using current edges of A is more than 2α. It is clear
from this construction that the girth of A (length of its shortest cycle) is at least
2α, and that for every edge (u, v) ∈ H, the shortest path between u and v in A is at
most 2α.

We now assign each edge of A to one of its end-points such that each vertex is
assigned at most two edges. Repeatedly pick any vertex v of degree at most two
in A, assign its adjacent edges to v, and remove these edges and v from A. We
claim that at the end of this procedure (when no vertex has degree at most 2), all
edges of A would have been removed (i.e. assigned to some vertex). Suppose for a
contradiction that this is not the case. Let Ã 6= φ be the remaining graph; note that
Ã ⊆ A, so girth of Ã is at least 2α. Every vertex in Ã has degree at least 3, and there
is at least one such vertex w. Consider performing a breadth-first search in Ã from
w. Since the girth of Ã is at least 2α, the first α levels of the breadth-first search is
a tree. Furthermore every vertex has degree at least 3, so each vertex in the first
α − 1 levels has at least 2 children. This implies that Ã has at least 1 + 2α−1 > t
vertices, which is a contradiction! For each vertex v ∈ R, let Av denote the edges of
A assigned to v by the above procedure; we argued that ∪v∈RAv = A, and |Av| ≤ 2
for all v ∈ R.

The schedule for H involves 2α rounds as follows. In each round, every vehicle
v ∈ R traverses the edges in Av (in both directions) and returns to v. Since |Av| ≤ 2
for all vertices v, each round takes 4 units of time; so the makespan of this schedule
is 8α = O(log t). The route followed by each object in this schedule is the shortest
path from its source to destination in spanner A; note that the length of any such
path is at most 2α. To see that this is indeed feasible, observe that every edge of
A is traversed by some vehicle in each round. Hence in each round, every object
traverses one edge along its shortest path (unless it is already at its destination).
Thus after 2α rounds, all objects are at their destinations.
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3.2.3 Tight example for uncapacitated mDaR lower bounds.

We note that known lower bounds for uncapacitated preemptive mDaR are insuffi-
cient to obtain a sub-logarithmic approximation guarantee. The lower bounds we
used in our algorithm are the following: maxi∈[m] d(si, ti), and the optimal value of
a nurse-station-location instance with depots {rj}qj=1 and terminals S ∪ T . We are
not aware of any lower bounds stronger than these two bounds.

We show an instance G of uncapacitated mDaR where the optimal makespan is
a factor Ω( log t

loglog t
) larger than both the above lower bounds. In fact, the instance

we construct is a depot-demand instance that has the same special structure as
instance H in Lemma 23. I.e. the demand graph is same as the graph inducing
distances. Take G = (V,E) to be a t-vertex regular graph of degree ∼ log t and girth
g ∼ log t/ loglog t (there exist such graphs, eg. Lazebnik et al. [103]). Instance G
is defined on a metric on vertices V with distances being shortest paths in graph
G. For every edge (u, v) ∈ E of graph G, there is an object with source u and
destination v (the direction is arbitrary). There is one vehicle located at every vertex
of V ; so number of vehicles q = t.

Observe that both our lower bounds are O(1): the optimal value of the nurse-
station-location instance is 0, and maximum source-destination distance is 1.
However as we show below, the optimal makespan for this instance is at least
g − 1 = Ω(log t/ loglog t). Suppose (for contradiction) that there is a feasible sched-
ule for G with makespan M < g − 1. A demand (u, v) ∈ E is said to be completely
served by a vehicle j iff the route of vehicle j visits both vertices u and v. The
number of distinct vertices visited by any single vehicle is at most M < g: so the
number of demands that are completely served by a single vehicle is at most M − 1
(otherwise these demand edges would induce a cycle smaller than the girth g).
Hence the number of demands that are completely served by some vehicle is at most
t · g < |E|. Let (u, v) ∈ E be a demand that is not completely served by any vehicle,
i.e. there is no vehicle that visits both u and v. Since we have a feasible schedule
of makespan M , the path π followed by demand (u, v) from u to v (or vice versa)
in the schedule has length at most M . The path π can not be the direct edge (u, v)
since demand (u, v) is not completely served by any vehicle. So path π together
with edge (u, v) is a cycle of length at most M + 1 < g in graph G, contradicting
girth of G.
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3.2.4 Improved guarantee for metrics excluding a fixed minor.

We now prove Theorem 20 that gives a constant approximation algorithm for
uncapacitated mDaR on metrics induced by Kr-minor free graphs (for any fixed r).
This improvement comes from using the existence of good ‘sparse covers’ in such
metrics, as opposed to the spanner based construction in Lemma 23. This guarantee
is again relative to the above mentioned lower bounds.

Consider an instance of uncapacitated preemptive mDaR problem on metric (V, d)
that is induced by an edge-weighted graph G = (V,E) containing no Kr-minor (for
some fixed r ≥ 1). We start with some definitions [21]. A cluster is any subset of
vertices. For any γ > 0 and vertex v ∈ V , N(v, γ) := {u ∈ V | d(u, v) ≤ γ} denotes
the set of vertices within distance γ from v. As observed in Busch et al. [21], the
partitioning scheme of Klein et al. [97] implies the following result.

Theorem 24 ([97]). Given Kr-minor free graph G = (V,E,w) and value γ > 0, there
is an algorithm that computes a set Z = {C1, · · · , Cl} of clusters satisfying:

1. The diameter of each cluster is at most O(r2) ·γ, i.e. maxu,v∈Ci d(u, v) ≤ O(r2) ·γ
for all i ∈ [l].

2. For every v ∈ V , there is some cluster Ci ∈ Z such that N(v, γ) ⊆ Ci.

3. For every v ∈ V , the number of clusters in Z that contain v is at most O(2r).

The set of clusters Z found above is called a sparse cover of G.

Theorem 25. There is an O(1)-approximation algorithm for the uncapacitated pre-
emptive mDaR problem on metrics induced by graphs that exclude any fixed minor.

Proof: The reduction in Section 3.2 implies that it suffices to consider depot-
demand instances: An O(1) approximation for such instances implies an O(1)
approximation for general instances. Let J be any depot-demand instance on
metric (V, d) induced by Kr-minor free graph G = (V,E), with a set R ⊆ V of
depot-vertices (each containing a vehicle), and where all demands {si, ti}mi=1 are
between vertices of R. The algorithm is described in Figure 3.2.

Note that γ is a lower bound on the optimal makespan of J . We first claim that
the makespan of the above schedule is at most O(1) · γ. Observe that each depot is
contained in at most O(2r) clusters, and the distance from any depot to the center
of any cluster containing it is at most O(r2) ·γ. Hence the time taken by each vehicle
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Input: Depot-demand instance J on metric G = (V,E,w), depot-vertices R ⊆ V ,
demands {si, ti}mi=1.

1. Let γ = maxi∈[m] d(si, ti) be the maximum source-destination distance.

2. Compute a sparse cover Z = {Cj}lj=1 given in Theorem 24 for parameter γ.

3. For each cluster Cj ∈ Z, choose an arbitrary vertex cj ∈ Cj as its center.

4. For each demand i ∈ [m], let π(i) ∈ [l] be such that si, ti ∈ Cπ(i).

5. Output the following schedule for J :

(a) Each vehicle r ∈ R visits the centers of all clusters containing r, and returns
to r. Vehicle r carries all the objects {i ∈ [m] | si = r} having source r, and
drops each object i at center cπ(i).

(b) Each vehicle r ∈ R again visits the centers of all clusters containing r. Vehicle
r brings all the objects {i ∈ [m] | ti = r} having destination r: each object i is
picked up from center cπ(i).

Output: An O(1)-approximate minimum makespan schedule for J .

Figure 3.2: Algorithm for uncapacitated mDaR on Kr-minor free graphs.

in either of the two rounds above is at most O(r22r) · γ. Since r is a fixed constant,
the final makespan is O(1) · γ.

We now argue the feasibility of the above schedule. Step (4) is well-defined:
for all i ∈ [m], we have si, ti ∈ N(si, γ) and there is some j ∈ [l] with N(si, γ) ⊆ Cj
(i.e. we can set π(i) = j). It is now easy to see that each object i ∈ [m] traces the
following route in the final schedule: si  cπ(i)  ti.

3.3 Preemptive multi-vehicle Dial-a-Ride

In this section we prove our main result: anO(log2m·log n) approximation algorithm
for the preemptive mDaR problem. In the next section we show how to remove the
dependence on m to obtain an O(log3 n) approximation algorithm even for weighted
preemptive mDaR. We first obtain a new structure theorem on single-vehicle Dial-a-
Ride tours (Subsection 3.3.1) that preempts each object at most once, and where
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the total time spent by objects in the vehicle is bounded. Obtaining such a single
vehicle tour is crucial in our algorithm for preemptive mDaR, which appears in
Section 3.3.2. The algorithm for mDaR relies on a partial coverage algorithm Partial
that given subsets Q of vehicles and D of demands, outputs a schedule for Q of
near-optimal makespan that covers some fraction of demands in D. The main steps
in Partial are as follows. (1) Obtain a single-vehicle tour satisfying 1-preemptive and
bounded-delay properties (Theorem 27), (2) Randomly partition the single vehicle
tour into |Q| equally spaced pieces, (3) Solve a matching problem to assign some
of these pieces to vehicles of Q that satisfy a subset of demands D, (4) A suitable
fraction of the unsatisfied demands in D are covered recursively by unused vehicles
of Q.

3.3.1 Capacitated Vehicle Routing with Bounded Delay

Before we present the structural result on Dial-a-Ride tours, we consider the classic
capacitated vehicle routing problem [73] with an additional constraint on object
‘delays’. Recall from Chapter 2 that the capacitated vehicle routing problem (CVRP)
is a special case of single vehicle Dial-a-Ride when all objects have the same source
(or equivalently, same destination). Formally, we are given a metric (V, d), specified
depot-vertex r ∈ V , and m objects all having source r and respective destinations
{ti}i∈[m]. The goal is to compute a minimum length non-preemptive tour of a capacity
k vehicle originating at r that moves all objects from r to their destinations. In
CVRP with bounded delay, we are additionally given a delay parameter α > 1, and
the goal is to find a minimum length capacitated non-preemptive tour serving all
objects such that the time spent by each object i ∈ [m] in the vehicle is at most
α · d(r, ti). The preemptive lower bounds (c.f. Section 2.1) in the context of CVRP
are as follows [73]: minimum length TSP tour on {r} ∪ {ti | i ∈ [m]} (Steiner lower
bound), and 2

k

∑m
i=1 d(r, ti) (flow lower bound).

Theorem 26. There is a (2.5 + 3
α−1

) approximation algorithm for CVRP with bounded
delay, where α > 1 is the delay parameter. This guarantee is relative to the Steiner and
flow lower bounds.

Proof: Our algorithm is basically a combination of the algorithms for light approxi-
mate shortest path trees [95], and capacitated vehicle routing [73]. Let LB denote
the maximum of the Steiner and flow lower bounds. The minimum TSP tour on
the destinations plus r is the Steiner lower bound. The first step is to compute
an approximately minimum TSP tour C: Christofides’ algorithm [34] gives a 1.5
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approximation, so d(C) ≤ 1.5 · LB. Number the vertices in the order in which they
appear in C, starting with r being 0. Using the procedure in Khuller et al. [95], we
obtain a set of edges {(0, v1), · · · , (0, vt)} with 0 < v1 < v2 < · · · < vt < |V | having
the following properties (below v0 = 0).

1. For 1 ≤ p ≤ t, for any vertex u with vp−1 ≤ u < vp, the length of edge (0, vp−1)
plus the path along C from vp−1 to u is at most α · d(0, u).

2.
∑t

p=1 d(0, vp) ≤ 1
α−1
· d(C).

For each 1 ≤ p ≤ t, define tour Cp which starts at r, goes to vp−1, traverses
C until vp, then returns to r. Assign vertices {vp−1, · · · , vp − 1} (and all demands
contained in them) to Cp. Also define tour Ct+1 which starts at r, goes to vt,
and traverses C until r; and assign all remaining demands to Ct+1. It is clear
that Cp (for 1 ≤ p ≤ t + 1) visits each vertex assigned to it within α times the
shortest path from r (using property 1 above). Also, the total length

∑t+1
p=1 d(Cp) =

d(C) + 2
∑t

p=1 d(0, vp) ≤ (1 + 2
α−1

)d(C).

For each Cp, we service the set Dp of demands assigned to it separately. Index
the demands inDp in the order in which they appear on Cp (breaking ties arbitrarily).
Consider a capacitated tour which serves these demands in groups of at most k
each, and returns to r after serving each group. The groups are defined as follows:
starting at index 1, each group contains the next k contiguous demands (until all of
Dp is assigned to groups). By rotating the indexing of demands, there are k different
groupings of Dp that can be obtained: each of which corresponds to a capacitated
tour. As argued in [73] (and is easy to see), the average length of these k tours is at
most d(Cp) + 2

∑
z∈Dp

d(r,z)
k

. So the minimum length tour γp among these satisfies

d(γp) ≤ d(Cp) + 2
∑

z∈Dp
d(r,z)
k

.

The final solution γ is the concatenation of tours γ1, · · · , γt+1. Note that the time
spent in the vehicle by any demand i is at most α · d(r, ti). The length of tour γ is
at most

∑t+1
p=1 d(Cp) + 2

∑
z∈D

d(r,z)
k

, where D is the set of all demands. Note that
2
∑

z∈D
d(r,z)
k

is the flow lower bound for this single-source instance, so it is at most
LB. Hence we obtain the following.

d(γ) ≤ (1 +
2

α− 1
)d(C) + LB ≤ (1 +

2

α− 1
)
3

2
LB + LB = (2.5 +

3

α− 1
)LB

Clearly, solution γ satisfies the desired conditions in the theorem.
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We now consider the single vehicle preemptive Dial-a-Ride problem given by
metric (V, d), set D of demands, and a vehicle of capacity k. The following structural
result (Theorem 27) is a simple extension of Theorem 16 (from Chapter 2). This is
obtained immediately by using Theorem 26 in the proof of Theorem 16, in place of
the [73] algorithm.

Theorem 27. There is a randomized poly-time computable 1-preemptive tour τ ser-
vicing D that satisfies the following conditions (where LBpmt is the maximum of the
Steiner and flow lower bounds):

1. Total length: d(τ) ≤ O(log2 n) · LBpmt.

2. Bounded delay:
∑

i∈D Ti ≤ O(log n)
∑

i∈D d(si, ti) where Ti is the total time
spent by object i ∈ D in the vehicle under the schedule given by τ .

3.3.2 Algorithm for preemptive mDaR

We are now ready to present our algorithm for preemptive multi-vehicle Dial-a-
Ride. The algorithm first guesses the optimal makespan B of the given instance of
preemptive mDaR (it suffices to know B within a constant factor, which is required
for a polynomial-time algorithm). Let α = 1 − 1

1+lgm
. For any subset P ⊆ [q], we

abuse notation and use P to denote both the set of vehicles P and the multi-set of
depots corresponding to vehicles P .

We give an algorithm Partial that takes as input a tuple 〈Q,D,B〉 where Q ⊆ [q]
is a subset of vehicles, D ⊆ [m] a subset of demands and B ∈ R+, with the promise
that vehicles Q (originating at their respective depots) suffice to completely serve
the demands D at a makespan of B. Given such a promise, Partial 〈Q,D,B〉 re-
turns a schedule of makespan O(log n logm) · B that serves a good fraction of D.
Algorithm Partial〈Q,D,B〉 is given below. We set parameter ρ = Θ(log n logm), the
precise constant in the Θ-notation comes from the analysis.

Algorithm Partial〈Q,D,B〉 for capacitated preemptive mDaR.
Input: Vehicles Q ⊆ [q], demands D ⊆ [m], bound B ≥ 0 such that Q can serve all demands
in D at makespan B.

Preprocessing

1. If the minimum spanning tree (MST) on vertices Q contains an edge of length greater
than 3B, there is a non-trivial partition {Q1, Q2} of Q with d(Q1, Q2) > 3B. For
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j ∈ {1, 2}, let Vj = {v ∈ V | d(Qj , v) ≤ B} and Dj be all demands of D induced
on Vj . Run in parallel the schedules from Partial〈Q1, D1, B〉 and Partial〈Q2, D2, B〉.
Assume this is not the case in the following.

Random partitioning

2. Obtain single-vehicle 1-preemptive tour τ using capacity k and serving demands D,
by applying Theorem 27.

3. Choose a uniformly random offset η ∈ [0, ρB] and cut edges of tour τ at distances
{pρB + η | p = 1, 2, · · · } along the tour to obtain a set P of pieces of τ .

4. C ′′ is the set of objects i ∈ D such that i is carried by the vehicle in τ over some
edge that is cut in Step (3); and C ′ := D \ C ′′. Ignore C ′′ objects in the rest of the
algorithm.

Load rebalancing

5. Construct bipartite graph H with vertex sets P and Q and an edge between piece
P ∈ P and depot f ∈ Q iff d(f, P ) ≤ 2B. For any subset A ⊆ P, Γ(A) ⊆ Q denotes
the neighborhood of A in graph H. Let S ⊆ P be any maximal set that satisfies
|Γ(S)| ≤ |S|2 .

6. Compute a 2-matching π : P \ S → Q \ Γ(S), i.e. function s.t. (P, π(P )) is an edge
in H for all P ∈ P \ S, and the number of pieces mapping to any f ∈ Q \ Γ(S) is
|π−1(f)| ≤ 2.

Recursion

7. Define C1 := {i ∈ C ′ | either si ∈ S or ti ∈ S}; and C2 := C ′ \ C1.

8. Run in parallel the recursive schedule Partial〈Γ(S), C1, B〉 for C1 and the following
for C2:

(a) Each vehicle f ∈ Q \ Γ(S) traverses the pieces π−1(f), moving all C2-objects in
them from their source to preemption-vertex, and returns to its depot.

(b) Each vehicle f ∈ Q \ Γ(S) again traverses the pieces π−1(f), this time moving
all C2-objects in them from their preemption-vertex to destination, and returns
to its depot.

Output: A schedule of Q of makespan (16 + 16ρ) ·B that serves an αlg min{|Q|,2m} fraction
of D.
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Lemma 28. If there exists a schedule of vehicles Q covering all demands D, having
makespan at most B, then Partial invoked on 〈Q,D,B〉 returns a schedule of vehicles
Q of makespan at most (16 + 16ρ) ·B that covers at least an αlg z fraction of D, where
z := min{|Q|, 2m} ≤ 2m.

The final algorithm invokes Partial iteratively until all demands are covered:
each time with the entire set [q] of vehicles, all uncovered demands, and bound B.
If D ⊆ [m] is the set of uncovered demands at any iteration, Lemma 28 implies that
Partial〈[q], D,B〉 returns a schedule of makespan O(logm log n) · B that serves at
least 1

4
|D| demands. Hence a standard set-cover analysis implies that all demands

will be covered in O(logm) rounds, resulting in a makespan of O(log2m log n) ·B.

It remains to prove Lemma 28. We proceed by induction on the number |Q|
of vehicles. The base case |Q| = 1 is easy: the tour τ in Step (2) has length
O(log2 n) ·B ≤ ρB, and satisfies all demands (i.e. fraction 1). In the following, we
prove the inductive step, when |Q| ≥ 2.

Preprocessing. Suppose Step (1) applies. Note that d(V1, V2) > B and hence
there is no demand with source in one of {V1, V2} and destination in the other. So
demands D1 and D2 partition D. Furthermore in the optimal schedule, vehicles Qj

(any j = 1, 2) only visit vertices in Vj (otherwise the makespan would be greater
than B). Thus the two recursive calls to Partial satisfy the assumption: there is some
schedule of vehicles Qj serving Dj having makespan B. Inductively, the schedule
returned by Partial for each j = 1, 2 has makespan at most (16 + 16ρ) ·B and covers
at least αlg c · |Dj| demands from Dj, where c ≤ min{|Q|−1, 2m} ≤ z. The schedules
returned by the two recursive calls to Partial can clearly be run in parallel and this
covers at least αlg z(|D1|+ |D2|) demands, i.e. an αlg z fraction of D. So we have the
desired performance in this case.

Random partitioning. The harder part of the algorithm is when Step (1) does
not apply: so the MST length on Q is at most 3|Q| ·B. Note that when the depots Q
are contracted to a single vertex, the MST on the end-points of D plus the contracted
depot-vertex has length at most |Q| · B (the optimal makespan schedule induces
such a tree). Thus the MST on the depots Q along with end-points of D has length
at most 4|Q| ·B. Based on the assumption in Lemma 28 and the flow lower bound,
we have

∑
i∈D d(si, ti) ≤ k|Q| · B. It follows that for the single vehicle Dial-a-Ride

instance solved in Step (2), the Steiner and flow lower-bounds (denoted LBpmt in
Theorem 27) are O(1) · |Q|B. Theorem 27 now implies that τ is a 1-preemptive tour
τ servicing D, of length at most O(log2 n)|Q| ·B such that

∑
i∈D Ti ≤ O(log n) · |D|B,

where Ti denotes the total time spent in the vehicle by demand i ∈ D. The bound
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on the delay uses the fact that maxmi=1 d(si, ti) ≤ B.

Choosing a large enough constant corresponding to ρ = Θ(log n logm), the
length of τ is upper bounded by ρ|Q| ·B (since n ≤ 2m). So the cutting procedure in
Step (3) results in at most |Q| pieces of τ , each of length at most 2ρB. The objects
i ∈ C ′′ (as defined in Step (4)) are called a cut objects. We restrict attention to the
other objects C ′ = D \ C ′′ that are not ‘cut’. For each object i ∈ C ′, the path traced
by it (under single vehicle tour τ) from its source si to preemption-point and the
path (under τ) from its preemption-point to ti are both completely contained in
pieces of P. Figure 3.3 gives an example of objects in C ′ and C ′′, and the cutting
procedure.

Claim 29. The expected number of objects in C ′′ is at most
∑

i∈D
Ti
ρB
≤ O( 1

logm
) · |D|.

Proof: The probability (over choice of η) that object i ∈ D is cut equals Ti
ρB

where Ti is the total time spent by i in tour τ . Using linearity of expectation and∑
i∈D Ti ≤ O(log n) · |D|B, we have the claim.

We can derandomize Step (3) and pick the best offset η (there are at most poly-
nomially many combinatorially distinct offsets). Claim 29 implies (again choosing
large enough constant in ρ = Θ(log n logm)) that |C ′| ≥ (1 − 1

2 lgm
)|D| ≥ α · |D|

demands are not cut. Now onwards we only consider the set C ′ of uncut demands.
Let P denote the pieces obtained by cutting τ as above, recall |P| ≤ |Q|. A piece
P ∈ P is said to be non-trivial if the vehicle in the 1-preemptive tour τ carries some
C ′-object while traversing P . Note that the number of non-trivial pieces in P is at
most 2|C ′| ≤ 2m: each C ′-object appears in at most 2 pieces, one where it is moved
from source to preemption-vertex and other from preemption-vertex to destination.
Retain only the non-trivial pieces in P; so |P| ≤ min{|Q|, 2m} = z. The pieces in P
may not be one-to-one assignable to the depots since the algorithm has not taken
the depot locations into account. We determine which pieces may be assigned to
depots by considering a matching problem between P and the depots in Step (5)
and (6).

Load rebalancing. The bipartite graph H (defined in Step (5)) represents which
pieces and depots may be assigned to each other. Piece P ∈ P and depot f ∈ Q are
assignable iff d(f, P ) ≤ 2B, and in this case graph H contains an edge (P, f). We
claim that corresponding to the ‘maximal contracting’ set S (defined in Step (5)),
the 2-matching π (in Step (6)) is guaranteed to exist. Note that |Γ(S)| ≤ |S|

2
, but

|Γ(T )| > |T |
2

for all T ⊃ S. For any T ′ ⊆ P \ S, let Γ̃(T ′) denote the neighborhood
of T ′ in Q \ Γ(S). The maximality of S implies: for any non-empty T ′ ⊆ P \ S,
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|S|
2

+ |T ′|
2

= |S∪T ′|
2

< |Γ(S ∪ T ′)| = |Γ(S)|+ |Γ̃(T ′)|, i.e. |Γ̃(T ′)| ≥ |T ′|
2

. Hence by Hall’s
condition, there is a 2-matching π : P \ S → Q \ Γ(S). The set S and 2-matching π
can be easily computed in polynomial time.

Tour τ p1

s1

t2
p2

t1

p1

p2

The 1-preemptive tour τ is cut at the dashed lines.

Object 1 is in C ′, it is not cut.

Object 2 is not in C ′, it is a cut object.

s2

S
Γ(S)

P Q

The bipartite graph H

The 2-matching π is shown by dashed edges.

Solved recursively

Each object i ∈ {1, 2} has source si,
preemption-point pi, and destination ti.

Figure 3.3: Cutting and patching steps in algorithm Partial.

Recursion. In Step (7), demands C ′ are further partitioned into two sets: C1

consists of objects that are either picked-up or dropped-off in some piece of S; and
C2-objects are picked-up and dropped-off in pieces of P \ S. The vehicles Γ(S)
suffice to serve all C1 objects, as shown below.

Claim 30. There exists a schedule of vehicles Γ(S) serving demands C1, having
makespan B.

Proof: Consider the schedule of makespan B that serves all demands C ′ = C1 ∪C2

using vehicles Q: this is implied by the promise on instance 〈Q,D,B〉. We claim
that in this schedule, no vehicle from Q \ Γ(S) moves any C1 object. Suppose (for
a contradiction) that the vehicle from depot f ∈ Q \ Γ(S) moves object i ∈ C1 at
some point in this schedule; then it must be that d(f, si) and d(f, ti) ≤ 2B. But since
i ∈ C1, at least one of si or ti is in a piece of S, and this implies that there is some
piece P ∈ S with d(f, P ) ≤ 2B, i.e. f ∈ Γ(S), which is a contradiction! Thus the
only vehicles participating in the movement of C1 objects are Γ(S), which implies
the claim.
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In the final schedule, a large fraction of C1 demands are served by vehicles
Γ(S), and all the C2 demands are served by vehicles Q \ Γ(S). Figure 3.3 shows an
example of this partition.

Serving C1 demands. Based on Claim 30, the recursive call Partial 〈Γ(S), C1, B〉
(made in Step (8)) satisfies the assumption required in Lemma 28. Since |Γ(S)| ≤
|P|
2
≤ |Q|

2
< |Q|, we obtain inductively that Partial 〈Γ(S), C1, B〉 returns a schedule

of makespan (16 + 16ρ) · B covering at least αlg y · |C1| demands of C1, where
y = min{|Γ(S)|, 2m}. Note that y ≤ |Γ(S)| ≤ |P|/2 ≤ z/2 (as |P| ≤ z), which
implies that at least αlg z−1|C1| demands are covered.

Serving C2 demands. These are served by vehiclesQ\Γ(S) using the 2-matching
π, in two rounds as specified in Step (8). This suffices to serve all objects in C2

since for any i ∈ C2, the paths traversed by object i under τ , namely si  pi (its
preemption-point) and pi  ti are contained in pieces of P \ S. Furthermore,
since |π−1(f)| ≤ 2 for all f ∈ Q \ Γ(S), the distance traveled by vehicle f in one
round is at most 2 · 2(2B + 2ρB). So the time taken by this schedule is at most
2 · 4(2B + 2ρB) = (16 + 16ρ) ·B.

The schedule of vehicles Γ(S) (serving C1) and vehicles Q \ Γ(S) (serving C2)
can clearly be run in parallel. This takes time (16 + 16ρ) · B and covers in total
at least |C2| + αlg z−1|C1| ≥ αlg z−1|C ′| ≥ αlg z|D| demands of D. This proves the
inductive step of Lemma 28. Using Lemma 28 repeatedly as mentioned earlier,
we obtain an O(log2m · log n) approximation algorithm. Using some preprocessing
steps (described in the next subsection), we have Theorem 21.

3.3.3 Weighted preemptive mDaR

The multi-vehicle Dial-a-Ride problem as initially defined assumes that all objects
have the same ‘weight’, i.e. each object occupies a unit capacity. In the weighted
mDaR problem, each object i ∈ [m] also has a weight wi, and the capacity con-
straint requires that no vehicle carry a total weight of more than k at any time.
In this section, we obtain an O(log3 n) approximation algorithm for weighted pre-
emptive mDaR. The algorithm first guesses the optimal makespan B of the given
instance. The algorithm serves the demands in two phases: the 1st phase involves
pre-processing ‘heavy demands’ and has a makespan of O(1) ·B; the 2nd phase is
identical to the algorithm Partial in Section 3.3.2 and covers all remaining demands.
For every u, v ∈ V let demu,v denote the total weight of objects having source u and
destination v. Define H = {(u, v) ∈ V × V | demu,v ≥ k/2} to be the vertex-pairs



52 Chapter 3: Multi vehicle Dial-a-Ride

having heavy demands, and Ĥ the set of demands between pairs of H.

Phase I. In this pre-processing step, we cover all demands Ĥ. Below we use the same
notation P ⊆ [q] for a set P of vehicles and the multi-set of depots corresponding
to P . For a subset D ⊆ H of heavy vertex-pairs, let D̂ denote the set of demands
between pairs of D. We describe an algorithm PreProc that is used to serve demands
Ĥ.

Lemma 31. Given any subset Q ⊆ [q] of vehicles and D ⊆ H of heavy demand-pairs
such that there is a schedule of vehicles Q covering demands D̂ with makespan at
most B, PreProc〈Q,D〉 returns a schedule of vehicles Q covering demands D̂ that has
makespan O(1) ·B.

Invoking PreProc〈[q], H〉 gives the desired schedule covering Ĥ at makespan
O(1) ·B. The algorithm PreProc and its analysis follow along the lines of algorithm
Partial in Section 3.3.2. Lemma 31 is proved by induction on |Q|, the base case
|Q| = 1 is trivial, and in the following we consider the inductive step (where
|Q| ≥ 2).

Algorithm PreProc first ensures that each edge of the minimum spanning tree on
Q has length at most 3B, otherwise the problem decouples into two disjoint smaller
problems (as in Step (1) of Partial). Hence we also obtain that the MST on Q plus
all sources/destinations in D has length at most O(1) · |Q|B (c.f. algorithm Partial).
Demands with source u and destination v are referred to as (u, v) demands. For
every (u, v) ∈ D, using a greedy procedure, one can partition all (u, v) demands
such that the total weight of each part (except possibly the last) is between k

2

and k. For any (u, v) ∈ D, let gu,v denote the number of parts in this partition of
(u, v) demands; note that gu,v ≤ 2

k
demu,v + 1 ≤ 4

k
demu,v (since demu,v ≥ k/2). The

flow lower bound resulting from demands D̂ equals 1
|Q|k

∑
(u,v)∈D demu,v · d(u, v) ≥

1
4|Q|
∑

(u,v)∈D gu,v · d(u, v). In the rest of algorithm PreProc, we consider each part in
the above partition of (u, v) demands (for (u, v) ∈ D) as a single object of weight
k; so all the objects in one part will always be moved together. Scaling down
the weights and capacity by k, we obtain the following equivalent unit-weight
unit-capacity instance U : for each (u, v) ∈ D there are gu,v demands with weight 1,
source u and destination v, and each vehicle in Q has capacity 1.

The flow lower bound of the demands Ĥ in the original instance implies that
1

4|Q|
∑

(u,v)∈H gu,v · d(u, v) ≤ B; i.e. the flow bound in U is at most 4|Q|B. Since U
has unit capacity and weights, we can use the Stacker-crane algorithm [58] to obtain
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a single vehicle non-preemptive tour τ serving all demands, having length 1.8 times
the preemptive lower bounds. The single vehicle preemptive lower bounds corre-
sponding to U are: (Steiner bound) TSP on all sources/destinations in D, and (flow
bound)

∑
(u,v)∈H gu,v · d(u, v). As shown above, these are both O(1) · |Q|B. The algo-

rithm next cuts tour τ to obtain at most |Q| pieces P such that each piece has length
O(1) · B. In addition it can be ensured that no demand is ‘cut’: since the vehicle
carries at most one object at any time and each source-destination distance is at most
B. Next, construct bipartite graph H with vertex sets P and Q and an edge between
piece P ∈ P and depot f ∈ Q iff d(f, P ) ≤ 2B; Γ(A) denotes the neighborhood of
any A ⊆ P in H. The algorithm finds any maximal set S ⊆ P with |Γ(S)| < |S|/2
(as in Step (5) of Partial). This implies a 2-matching π : P \ S → Q \ Γ(S) such
that there exists a schedule of vehicles Γ(S) serving demands in the pieces S with
makespan B (c.f. Claim 30). Let C ⊆ D denote the heavy demand-pairs served
in some piece of S. The final schedule returned by PreProc〈Q,D〉 involves: (i)
schedule for vehicles Q \ Γ(S) given by π (covering demand-pairs D \ C); and (ii)
schedule for vehicles Γ(S) obtained recursively PreProc〈Γ(S), C〉 (covering demands
C). The recursively obtained schedule has makespan O(1) · B by the induction
hypothesis (since |Γ(S)| < |Q|, and 〈Γ(S), C〉 satisfies the assumption in Lemma 31);
hence the final schedule also has makespan O(1)·B, which proves the inductive step.

Phase II. Let L = {(u, v) ∈ V × V | 0 < demu,v < k/2} be the vertex-pairs having
light demands. The algorithm for this phase treats all (u, v) demands as a single
object of weight demu,v from u to v; so there are m = |L| ≤ n2 distinct objects. The
algorithm is identical to Partial of Section 3.3.2 for the unweighted case: Theorem 27
generalizes easily to the weighted case, and the preemptive lower bounds stay the
same after combining demands in L. Thus we obtain an O(log3 n) approximate
schedule that covers all remaining demands (setting m ≤ n2).

Theorem 32. There is an O(log3 n) approximation algorithm for weighted preemptive
mDaR.

Credits: This chapter is based on joint work with Inge Li Gørtz and R.Ravi.





Chapter 4

Stochastic Demands Vehicle Routing

4.1 Introduction

The capacitated vehicle routing problem (CVRP) [73] is defined on an n-vertex
metric (V, d) with root/depot r ∈ V , and involves distributing (identical) items
from the depot to other vertices using a single vehicle of capacity Q ∈ N. There
is a demand of qv ∈ {0, 1, · · · , Q} at each vertex v ∈ V . The objective is to find a
minimum length tour of the vehicle that satisfies all demands such that the vehicle
carries at most Q units at any time. There are two versions of the problem: in the
split-delivery CVRP, the demand at a vertex may be satisfied by multiple visits of the
vehicle; whereas in unsplit-delivery CVRP, the entire demand at a vertex must be
satisfied in a single visit by the vehicle.

We consider the situation where the demands are uncertain. Here the exact
demands {qv}v∈V are not known in advance, instead we are only given a demand
distribution D. The actual demand at a vertex is observed only when that vertex is
visited. In this setting, a feasible solution is any strategy of visiting vertices using the
capacitated vehicle such that all realized demands are satisfied. We note that this
strategy may be adaptive, i.e. at any point in the tour, the next vertex to visit may
depend on the demands observed until then. The stochastic vehicle routing problem
(SVRP) is: given metric (V, d) with root r ∈ V , a vehicle of capacity Q ∈ N, and
demand distribution D over {0, 1, · · · , Q}V , compute a strategy of visiting vertices
(starting and ending at r) that satisfies all realized demands, and minimizes the
expected tour length.

The most general setting of SVRP is where we are only given a black-box access
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to the distribution D. However as we show in Section 4.4, no o(n) approximation
ratio can be achieved for the black-box model, assuming a polynomial number of
samples from D. We consider the following two natural ways of describing the
demand distribution, that make SVRP more tractable.

• Independent demand distribution. Here, the demand at each vertex v ∈ V
is specified by a random variable ξv (in the range {0, 1, · · · , Q}), and the
random variables {ξv}v∈V are independent of each other. This setting is
extensively studied in the operations research literature [145, 16, 137], and
is known as the vehicle routing problem with stochastic demands (VRPSD).

• Explicit demand distribution. Here we are givenm demand scenarios, where
each scenario i ∈ [m] specifies demands qiv ∈ {0, 1, · · · , Q} at all vertices v ∈ V
and a probability pi (where

∑m
i=1 pi = 1). For each scenario i ∈ [m], let

qi ∈ {0, 1, · · · , Q}V denote the vector of demands {qiv}v∈V . In the explicit-
demand setting, the realized demands will always be one of q1, · · · , qm, where
qi occurs with probability pi (for all i ∈ [m]).

We refer to any tour that starts and ends at r as an r-tour.

4.1.1 Results

We first consider SVRP under independent demand distributions. We obtain a
randomized approximation algorithm for VRPSD achieving the following worst-case
guarantees: (1 + α) for split-delivery VRPSD, and (2 + α) for unsplit-delivery VRPSD,
where α denotes the best approximation ratio for the traveling salesman problem.
This result matches (up to an additive o(1) term) the corresponding best known
guarantees for the deterministic CVRP. Furthermore, this algorithm gives an a
priori strategy, that visits all vertices in a fixed order. For the split-delivery VRPSD,
[16] had suggested a ‘cyclic heuristic’ and conjectured that it achieves a constant
approximation guarantee; we show that this is indeed the case by giving a 1 + 2α
worst-case bound.

In Section 4.2 we consider SVRP under explicit demands, and present an
O(log2 n · logm) approximation algorithm (recall, n is the number of vertices and m
is the number of scenarios). Our algorithm applies to both split and unsplit delivery
versions of SVRP. We show that even a special case of SVRP under explicit demands
is at least as hard to approximate as the ‘latency group Steiner tree problem’, for
which there is an Ω(log1−ε n) hardness of approximation [77] and O(log2 n) is the
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best known approximation guarantee. The main step of this algorithm lies in solving
the related metric isolation problem that seeks to identify the realized scenario at
minimum expected cost (formal definition in Section 4.3).

The adaptive strategy for the metric isolation problem proceeds in O(logm)
phases, where in each phase it reduces the number of candidate scenarios by a
constant factor: so that after the last phase, it uniquely identifies the realized
scenario. In each phase of this algorithm, we solve a variant of the group Steiner
tree problem. We show that the LP-rounding for group Steiner tree combined with
the greedy approach for the minimum latency problem [29, 45] gives an O(log2 n)
approximation algorithm for the ‘latency group Steiner tree’ problem. This leads
to an O(log2 n · logm) approximation for metric isolation. We also observe that
the approximability of this problem is at least as hard as group Steiner tree [61],
for which O(log2 n · logm) is the best known approximation ratio, and there is an
Ω(log2−ε n) hardness of approximation [77].

We note that in the special case of a weighted-star metric, the metric isolation
problem corresponds to the ‘optimal split tree’ problem [99] (discussed further in
Section 4.3.3). In this case, our approximation guarantee improves to O(logm).
Hence we also obtain an O(logm)-approximation algorithm for the split tree prob-
lem (where m is the number of ‘items’), answering an open question from [2].

Finally in Section 4.4, we study SVRP under black-box distributions. We show
that any algorithm that makes at most nc samples from the black-box distribution
(for any c � n

logn
) has an approximation guarantee Ω(n

c
). This is an information

theoretic lower bound and requires no assumption on the running time of the
algorithm. The basic idea is that a small number of samples from the distribution is
insufficient to learn enough about it to output a good adaptive strategy (whereas an
optimal strategy that knows the precise distribution can perform much better).

Remark. A crucial difference in the explicit-demand and independent-demand
models is the following. As argued in Section 4.2, under independent demands,
the minimum length TSP on metric (V, d) is a lower bound. However the optimal
value of SVRP under explicit demand distributions may be much smaller than the
minimum length TSP. This partly explains the difference in approximability of these
two versions of SVRP.
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4.1.2 Related Work

Capacitated VRP. Let α ≥ 1 denote the best approximation guarantee for the
Traveling Salesman Problem; so α = 3

2
for general metrics [34], and α = 1 + ε (for

any constant ε > 0) for constant dimensional Euclidean metrics [11, 108]. The best
known approximation guarantee for split-delivery CVRP is 1 + α · (1− 1

Q
) [73, 6],

and for unsplit-delivery CVRP is 2 + α · (1 − 2
Q

) [5]. These bounds have been
improved slightly (when Q ≥ 3) to 1 + α · (1− 1

Q
)− 1

3Q3 and 2 + α · (1− 2
Q

)− 1
3Q3

respectively [19].

Independent demands VRP. SVRP under independent stochastic demands (known
as VRPSD in the literature) is extensively studied from a computational view-
point [145, 42, 14, 43, 137]. In terms of worst-case bounds, a ‘cyclic heuristic’
for split-delivery VRPSD was suggested in [16]. This was shown to achieve a
(1 + α + o(1))-approximation in the special case of identical demand distributions;
for general distributions, it was shown to be a Q+ α approximation, and obtaining
a tighter bound was left open. Bertsimas [16] considered two settings for VRP with
independent demands: only the first setting (called Strategy a) applies to VRPSD as
defined in this chapter. The second setting (Strategy b) [16] is more along the lines
of a priori optimization, which is discussed next.

Optimal Split Trees. When the underlying metric is a star, the metric isolation
problem turns out to be the optimal split tree problem, which was first studied
in [99]. We give a formal definition and discuss this problem in Section 4.3.3.
Kosaraju et al. [99] gave a greedy algorithm for metric isolation on unweighted
star-metrics that achieves an O(logm) approximation ratio (recall, m is the number
of scenarios). Later, Adler and Heeringa [2] analyzed the same greedy algorithm
for this problem and gave an lnm+ 1 worst-case bound, and showed that this result
also holds for weighted star-metrics but under a uniform probability distribution.
Chakravarthy et al. [24] showed that the optimal split tree problem is Ω(logm)
hard to approximate in general (this uses a non-uniform probability distribution);
and that it is hard to approximate better than 4 when the probability distribution
is uniform. This line of work leaves open the question of approximating general
optimal split trees [2] (i.e. metric isolation on weighted star-metrics with non-
uniform probabilities).

a priori Traveling Salesman. This is another stochastic model for the TSP [91, 15],
which is quite different from our setting. Here we are given a metric (V, d) and
distribution D on the demands; for TSP (which is CVRP when Q =∞), a scenario
is just a subset of vertices that need to be visited, and D is some distribution over
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subsets of V . The goal is to compute an a priori (or a master) tour τ through all
vertices of V , that minimizes the expectation (over scenarios in D) of the length
of tour τ after short-cutting it to include only the vertices of the realized scenario.
This corresponds to a situation where demands at all vertices are known before the
vehicle starts its route (so that it can shortcut accordingly); however, we require a
single master tour to be computed beforehand. On the other hand, in SVRP (that
we study in this chapter) the demand at any vertex is revealed only when that
vertex is visited; and we allow the vehicle-route to be adaptive. The complexity of
a priori TSP also depends on how the distribution D is represented. Schalekamp
and Shmoys [134] give an O(log n) approximation for this problem even under
black-box distributions; in fact their master tour does not even depend on the
distribution. Shmoys and Talwar [141] give a randomized 4-approximation (and
a deterministic 8-approximation) algorithm for a priori TSP under independent
demands; a constant factor approximation for this setting can also be inferred
from [64].

4.2 SVRP under Independent Demands

In this section, we consider SVRP under independent demand distributions. We
are given a metric (V, d) with root r ∈ V , and a demand distribution D specified
by a random variable ξv (in the range {0, 1, · · · , Q}) for each vertex v ∈ V , where
the random variables {ξv}v∈V are independent of each other. The objective is
to compute a strategy of visiting vertices (starting and ending at r) that serves
all realized demands and minimizes the expected tour-length. This is known
as the vehicle routing problem with stochastic demands (VRPSD) in the literature,
eg. [145, 16, 137]. Throughout this section, we let α denote the best approximation
ratio for the TSP.

Without loss of generality, we may assume that none of the demand random
variables is identically zero (such vertices may be safely ignored). Under this
assumption, any feasible policy must visit every vertex with probability 1: otherwise,
since demands are independent, there is a non-zero probability that some demand is
not satisfied (implying that the policy is infeasible). Therefore the minimum length
TSP tour on all vertices in metric (V, d) is a lower bound for VRPSD.

This suggests the following obvious strategy of serving demands: (1) first visit
all vertices using an α-approximate TSP tour and observe all demands; (2) then
(since exact demands are known) serve them using the approximation algorithm
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for CVRP [73, 5, 6]. This gives approximation ratios of (2α + 1) for split-delivery
SVRP, and (2α + 2) for unsplit-delivery SVRP.

We improve over the above näıve approach in two ways. Firstly, our algorithm
achieves improved approximation ratios, that match the best known for the deter-
ministic versions. Secondly, our algorithm also works in the setting where demands
are observed only when they are served (see also Section 4.3.4); whereas the näıve
approach clearly depends on observing demand before serving it.

Given the demand realization qi at each vertex i ∈ V , LB(q) := 2
Q

∑
i∈V qi·d(r, i) is

a lower bound on the optimal solution length for split-delivery VRP (c.f. Haimovich
and Kan [73]). Hence the expected value, E[LB(q)] = 2

Q

∑
i∈V E[ξi] · d(r, i) is a

lower bound for VRPSD (both split/unsplit delivery versions). This lower bound
and the TSP bound were also used in Bertsimas [16].

We now present our algorithms for VRPSD.

Theorem 33. There is a randomized (1 + α)-approximation algorithm for VRPSD
with split-deliveries.

Proof: The algorithm SplitALG proceeds as follows.

1. Compute an α approximate TSP tour τ on all vertices.

2. Number vertices such that r is 0 and τ visits vertices in order 0, 1, 2, · · · , |V | − 1.

3. Choose a uniformly random demand q0 ∈ [0, Q] as demand at the depot.

4. The vehicle starts at vertex 0 (filled to capacity Q), and for i = 0, 1, · · · , |V | − 1 does:

(a) Let Q̃i be the units (of the item) carried by the vehicle when it visits vertex i.

(b) Let qi be the demand observed at vertex i, as it is being served.

(c) If qi ≤ Q̃i then serve the demand at i and move on to vertex i + 1 (with
Q̃i+1 ← Q̃i − qi).

(d) If qi > Q̃i then serve Q̃i units of demand at i and make a visit to-and-from r:

• The vehicle fills up to Q units at r, returns to i and serves the remaining
qi − Q̃i demand at i.

Then move on to vertex i+ 1 with Q̃i+1 ← Q+ Q̃i − qi.

We will bound the expected length of the solution obtained by the above al-
gorithm. In the analysis, we first condition on the realization qi of demands at all
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vertices i ∈ V \ {r}. The demand qr = q0 at the depot r remains uniformly random
in [0, Q]. A vertex i ∈ V is called a break-point if the vehicle executes a refill trip to
r from i (i.e. Step 4d applies at vertex i). This happens precisely when the vehicle
becomes empty at vertex i while there is still unserved demand at i. Observe that
vertex i is a break-point iff there is p ∈ N such that

∑
j<i qj ≤ p ·Q < qi +

∑
j<i qj.

Since q0 (the artificial demand at r) is the only random variable, and it is is uniform
in [0, Q], we have:

Pr[i is break-point] =
qi
Q

The solution length (conditioned on demands {qi}i∈V \{r}) equals d(τ)+2
∑

i 6=r d(r, i)·
I(i break-point), where I(i break-point) is the indicator random variable for i being
a break-point (for each i 6= r). Hence the expected solution length (conditioned on
the demands {qi}i∈V \{r}) is:

d(τ) + 2
∑
i 6=r

Pr[i is break-point] · d(r, i) = d(τ) +
2

Q

∑
i 6=r

qi · d(r, i) = d(τ) + LB(q)

Finally, the expected (unconditional) solution length equals d(τ) + E[LB(q)]. Since
τ is an α-approximate minimum TSP tour and E[LB(q)] is a lower bound for VRPSD,
the expected length of this solution is at most (1 + α) times the optimal value of the
VRPSD instance. Note that algorithm SplitALG only observes demand at a vertex
while serving it; so it gives a feasible strategy even in the SVRPobs setting.

Theorem 34. There is a randomized (2 + α)-approximation algorithm for VRPSD
with unsplit-deliveries.

Proof: The algorithm UnsplitALG is very similar to the split-delivery case and is
given below.

1. Compute an α approximate TSP tour τ on all vertices.

2. Number vertices such that r is 0 and τ visits vertices in order 0, 1, 2, · · · , |V | − 1.

3. Choose a uniformly random demand q0 ∈ [0, Q] as demand at the depot.

4. The vehicle starts at vertex 0 (filled to capacity Q), and for i = 0, 1, · · · , |V | − 1 does:

(a) Let Ũi be the units (of the item) carried by the vehicle when it visits vertex i.

(b) Let qi be the demand observed at vertex i.

(c) If qi ≤ Ũi then serve demand i and move on to vertex i+1 (with Ũi+1 ← Ũi−qi).
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(d) If qi > Ũi then make two visits to-and-from r:

• In the first visit, the vehicle fills up to qi units at r and serves demand i.
• In the second visit, the vehicle fills up to Q+ Ũi − qi units at r, and returns.

Then move on to vertex i+ 1 with Ũi+1 ← Q+ Ũi − qi.

We first condition on the realization qi of demands at all vertices i ∈ V . Again,
vertex i ∈ V is called a break-point if the vehicle executes a refill trip to r from
i (i.e. Step 4d applies at vertex i). We claim that the breakpoints encountered
by Algorithms SplitALG and UnsplitALG (for the same realization of demands) are
identical. This follows from the observation that for all vertices i ∈ V , Q̃i (in
SplitALG) equals Ũi (in UnsplitALG).

Now conditioning only on demands {qi}i∈V \{r}, from the proof of Theorem 33,
we have Pr[i is break-point] = qi

Q
for algorithm UnsplitALG as well. Note that the

solution length in UnsplitALG equals d(τ) + 4
∑

i 6=r d(r, i) · I(i break-point), where
I(i break-point) is the indicator random variable for i being a break-point (for each
i 6= r). Hence the expected solution length (conditioned on {qi}i∈V \{r}) is:

d(τ) + 4
∑
i 6=r

Pr[i is break-point] ·d(r, i) = d(τ) + 2 · 2

Q

∑
i 6=r

qi ·d(r, i) = d(τ) + 2 ·LB(q)

Unconditionally, the expected solution length from UnsplitALG is d(τ) + 2 · E[LB(q)].
Noting that τ is an α-approximate TSP tour, and E[LB(q)] is a lower bound for even
split-delivery VRPSD, we obtain that UnsplitALG achieves a (2 + α) approximation
for unsplit-delivery VRPSD.

We now consider the cyclic heuristic for split-delivery VRPSD suggested in [16].
This involves computing an α-approximate TSP tour τ , and visiting vertices in the
order given by τ while returning to the depot to fill up whenever the vehicle is
empty. This is precisely algorithm SplitALG without the randomly chosen demand at
the depot (i.e. without Step 3). In fact, the algorithm suggested in [16] considers n
different strategies: based on rotating the vertex ordering in τ (obtained by varying
the first vertex visited from r), and picks the one with least expected value. We
prove a constant-factor upper bound for even the (possibly weaker) algorithm that
only considers a single vertex ordering on τ . It was shown [16] that the cyclic
heuristic (using n rotations) achieves a worst case guarantee of α + 1 + o(1) in the
case of identical demand distributions at all vertices, and a Q + α guarantee for
general demands ([16], Theorem 4). Moreover it was conjectured that the worst
case guarantee of the cyclic heuristic is a constant (independent of Q) even with
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general demand distributions. The following theorem shows that this is indeed the
case.

Theorem 35. The cyclic heuristic is a (1 + 2α)-approximation algorithm for split-
delivery VRPSD.

Proof: Let τ visit vertices in the order 0, 1, 2, · · · , |V | − 1 with r being numbered 0.
As in the proof of Theorem 33, we first condition on the demand realization qi at
each vertex i ∈ V . A vertex i ∈ V is called a break-point if the vehicle executes a
refill trip to r from i. Let U be the set of all break-points (including r) and |U | = u.
Then the length of the vehicle’s route is d(τ) + 2

∑
w∈U d(r, w). We now establish

the following key claim.

Claim 36. We have 2 ·∑w∈U d(r, w) ≤ d(τ) + 2
Q

∑
v∈V qv · d(r, v).

Proof: Let the break-points U consist of r = β0, β1, · · · , βu−1 in that order along
τ . For any l ∈ {0, 1, · · · , u − 1} := [u], let τl denote the portion of tour τ between
vertices βl and βl+1 (the indices are modulo u). Note that τ is the concatenation
τ0 · τ1 · · · τu−1, i.e.

∑u−1
l=0 d(τl) = d(τ). For each l ∈ [u], define a subtour originating

and ending at r as πl := (r, βl) · τl · (βl+1, r). Observe that the route τ ′ traced by the
vehicle is precisely the concatenation π0 · π1 · · · πu−1. Since the vehicle capacity
is Q and it makes refill-trips only when it runs out of items, the vehicle delivers
exactly Q units in each segment πl (for 0 ≤ l ≤ u− 2), and Q′ ≤ Q units in the last
segment πu−1. For each l ∈ [u] and vertex i ∈ τl, let Cl(i) denote the number of
units delivered at vertex i by the vehicle in segment πl. For technical reasons, set
Cu−1(r) := Q−Q′. From the preceding discussion, we obtain:∑

i∈τl

Cl(i) = Q, ∀l ∈ [u], and
∑
l|i∈τl

Cl(i) = qi, ∀i ∈ V \ {r} (4.1)

Consider any fixed segment πl (for l ∈ [u]). For any vertex i ∈ τl, let t(i, βl) (resp.
t(i, βl+1)) denote the length along τl, from βl to i (resp. i to βl+1). It follows that
t(i, βl) + t(i, βl+1) = d(τl) for all vertices i ∈ τl. By the triangle inequality, we have:

d(βl, r) ≤ d(βl, i) + d(i, r) ≤ t(βl, i) + d(i, r)
d(βl+1, r) ≤ d(βl+1, i) + d(i, r) ≤ t(βl+1, i) + d(i, r)

}
for all vertices i ∈ τl

Taking a convex combination of the first (resp. second) set of inequalities, with
multiplier Cl(i)/Q for each i ∈ τl, we obtain the following. (Equation (4.1) implies
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that these are indeed convex multipliers.)

d(βl, r) ≤
∑
i∈τl

Cl(i)

Q
·(t (βl, i) + d (i, r)) ; d(βl+1, r) ≤

∑
i∈τl

Cl(i)

Q
·(t (βl+1, i) + d (i, r))

Adding these two inequalities (using properties of t(·) and Cl(·) from above),

d(βl, r) + d(βl+1, r) ≤
∑
i∈τl

Cl(i)

Q
· (t (βl, i) + t (βl+1, i)) + 2

∑
i∈τl

Cl(i)

Q
· d (i, r)

= d(τl)
∑
i∈τl

Cl(i)

Q
+

2

Q

∑
i∈τl

Cl(i) · d(i, r)

= d(τl) +
2

Q

∑
i∈τl

Cl(i) · d(i, r)

Finally adding the above inequality over l ∈ [u], where the indices l are modulo u,

2 ·
∑
w∈U

d(w, r) =
u−1∑
l=0

(d(βl, r) + d(βl+1, r)) ≤
u−1∑
l=0

d(τl) +
2

Q

∑
i∈V

∑
l|i∈τl

Cl(i) · d(i, r)

≤ d(τ) +
2

Q

∑
i∈V \r

qi · d(i, r)

The last inequality uses Equation (4.1). Thus we obtain the claim.

Claim 36 gives 2·∑w∈U d(r, w) ≤ d(τ)+LB(q), which implies that conditioned on
demands {qi}i∈V , the solution length is at most 2 ·d(τ) + LB(q). Taking expectations,
we obtain the desired bound on the cyclic heuristic.

Remarks: We note that our algorithms for VRPSD do not even require knowledge
of the demand distributions at different vertices: it suffices to know just which
vertices have a non-zero demand distribution. This information is used to compute
the α-approximate TSP tour τ on relevant vertices. Furthermore, the algorithms
suggest an a priori strategy that involves visiting vertices in the order given by τ .

Theorem 33 also gives an a priori strategy for SVRP under black-box distribu-
tions, having expected tour length at most α ·Tsp + OPT, where OPT is the optimal
value of the SVRP instance and Tsp is the minimum length tour on all vertices in
(V, d). This strategy does not even depend on the demand-distribution. However
Tsp is not a lower bound for SVRP in general, hence this algorithm does not provide
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any multiplicative approximation guarantee. In fact, as shown in Section 4.4, any
algorithm making at most polynomial number of samples achieves only an Ω(n)-
approximation for SVRP under black-box distributions.

4.3 SVRP under Explicit Demands

In explicit demands SVRP, the distribution D is given by m scenarios, where each
scenario i ∈ [m] specifies demands qiv ∈ {0, 1, · · · , Q} at all vertices v ∈ V and
its associated probability pi (such that

∑m
i=1 pi = 1). For each scenario i ∈ [m],

qi ∈ {0, 1, · · · , Q}V denotes the vector {qiv}v∈V of demands. We assume (without
loss of generality) that qi 6= qj for all 1 ≤ i < j ≤ m. The objective is to compute an
adaptive strategy of visiting vertices starting from r (and finally returning to r) such
that all realized demands are satisfied, and the expected tour length is minimized.
For ease of exposition, we focus only on the split delivery version of SVRP; it is easy
to extend our algorithm to the unsplit delivery version as well. We note that the
minimum length TSP is not a lower bound for SVRP under explicit demands; hence
an approach as in Section 4.2 does not suffice here.

Our algorithm for SVRP relies on the closely related metric isolation problem
(Metric Isolation) which we now define. The input to the metric isolation problem is
the same as that for SVRP: metric (V, d) with root r ∈ V , and a demand distribu-
tion D specified by m demand-vectors {qi}mi=1 with associated probabilities {pi}mi=1

(where
∑m

i=1 pi = 1). However in this case, we seek a strategy of visiting vertices
(starting and ending at r) that precisely determines (i.e. ‘isolates’) the realized
scenario among [m], and has the minimum expected tour length. Again this strategy
may be adaptive. Note that unlike SVRP we do not require the realized demands to
be satisfied; it suffices to observe demands at vertices and stop once the realized
scenario is inferred.

Definition 37. Any feasible solution to Metric Isolation can be represented as a decision
tree T with nodes labeled by vertices of the metric, where:

1. The root node of T and all leaf-nodes are labeled r.

2. Every internal node v of T has at most Q + 1 children {ci(v) | 0 ≤ i ≤ Q},
where ci(v) (if present) denotes the next vertex to be visited from v if the demand
observed at v equals i.
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3. For each scenario i ∈ [m], there is a distinct leaf node li in T such that when
decision tree T is run with realized demands qi, the path from the root node to li
is traced in T .

For each i ∈ [m], let πi denote the path traced in T under scenario i, i.e. the path from
root node to leaf li; this also corresponds to the r-tour traversed in the metric when i is
the realized scenario. The expected isolation cost of the strategy given by decision tree
T is then:

IsolateTime(T ) =
m∑
i=1

pi · d(πi). (4.2)

The first condition implies that the route traced by the vehicle under each
scenario is an r-tour. The second condition is the definition of a decision tree.
The crucial condition is the last one, which ensures that each scenario is correctly
isolated. We may assume that every node in T lies in the path traced under some
scenario; otherwise the subtree under such nodes can be pruned from T . So the last
condition also implies that the leaf nodes of T are in one-to-one correspondence
with the scenarios [m].

Lemma 38. A ρ-approximation algorithm for Metric Isolation implies a (ρ + 5
2
)-

approximation algorithm for SVRP.

Proof: Note that by the assumption qi 6= qj for all distinct i, j ∈ [m], Metric Isolation
is always feasible: the realized scenario can be correctly determined by observing
demands at all vertices. Let σ denote an optimal adaptive strategy for the given
SVRP instance, and OPT its expected length. We show below that the optimal value
of Metric Isolation is at most OPT. For each i ∈ [m], when σ is run under scenario
i, let S

i
denote the demands that are observed at those vertices visited by σ. The

feasibility of σ implies that S
i

contains all the non-zero demands in qi. It follows
that S

i 6= S
j

for all 1 ≤ i < j ≤ m (since qi 6= qj). Thus the demands observed when
σ is executed, identify the realized scenario uniquely. In other words σ induces a
feasible solution to Metric Isolation of value OPT.

The algorithm for SVRP returns the following strategy, that runs in two phases:
(1) Solve Metric Isolation (using the ρ-approximation algorithm), and execute the
resulting strategy to determine the realized scenario (this phase only observes
demands); (2) Then serve only the demands in the realized scenario using the 2.5
approximation algorithm for CVRP [73]. The expected cost spent in the second
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phase is at most 5
2
·∑m

i=1 pi · C∗i ≤ 5
2
· OPT, where C∗i (for each i ∈ [m]) denotes

the minimum length CVRP tour that serves demands qi. Furthermore, as observed
above, the optimal value of Metric Isolation is at most OPT. Hence the expected cost
in the first phase is at most ρ · OPT. This finishes the proof of the lemma.

We note that for unsplit-delivery SVRP, we could just use the corresponding
algorithm [6] in phase (2), to obtain a ρ+ 7

2
approximation algorithm.

Based on this lemma, it suffices to study Metric Isolation. In the next subsection,
we study two variants of the group Steiner tree problem [61] that are useful in the
approximation algorithm for Metric Isolation that we present in Section 4.3.2.

Remark. The strategy for SVRP given in Lemma 38 first explores the metric space
and observes demands (while not serving them), and then serves just the realized
scenario. This reduction depends crucially on the fact that the demand at any vertex
may be observed by just visiting it, as opposed to actually serving its demand. We
show in Section 4.3.4 that our algorithm can be used to obtain an O(log2 n · logm)
approximate adaptive strategy even in the (more constrained) setting where any
demand is determined only upon serving it.

4.3.1 Two Auxiliary Problems

The input to the group Steiner tree problem (GST) consists of metric (V, d) with
root r ∈ V and groups {Xi ⊆ V }gi=1; the goal is to compute a minimum length
r-tour covering all groups. A group i ∈ [g] is said to be covered if any vertex from
Xi is visited by the tour. The best approximation guarantee known for GST is
O(log2 n · log g) [61], and there is an Ω(log2−ε n) hardness of approximation [77]. In
this section, we study two variants of group Steiner tree that are useful in obtaining
an approximation algorithm for Metric Isolation.

In the latency group Steiner tree problem, in addition to the GST input we are
given non-negative weights for each group, and the objective is to compute an
r-tour covering all groups that minimizes the sum of the weighted arrival times (the
arrival time of a group is the distance from r along the tour to the first vertex in
that group). This objective is closely related to Metric Isolation, which measures the
expected time to isolate a scenario, although in an adaptive (rather than linear)
fashion; this observation is formalized and used in the algorithm of Section 4.3.2.
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In the group Steiner orienteering problem, apart from the GST input there are
profits on groups and a length bound; the goal is to compute an r-tour of length at
most B that covers the maximum possible profit. It is well-known (see [18, 29, 45]
on the basic latency problem) that approximations for the orienteering objective
lead to approximations for the latency objective. Following this, we start with an
algorithm for the group Steiner orienteering. Then we show how this implies an
algorithm for latency group Steiner, in fact for a generalization that is encountered
in Section 4.3.2.

Group Steiner Orienteering

The group Steiner orienteering (GSO) problem takes as input, a metric (V, d) with
root r ∈ V , g groups of vertices {Xi ⊆ V }gi=1 with associated profits {vi}gi=1, and a
length bound B. The goal is to compute an r-tour of length at most B that collects
the maximum possible profit. We show that the deterministic algorithm for group
Steiner tree [26] can be used within a standard greedy framework to obtain the
following result for GSO. An algorithm for GSO is said to be an (a, b) bicriteria
approximation if on any instance of the problem (as above), it outputs a solution of
length at most b ·B that obtains at least 1

a
times the profit obtained by any r-tour of

length B.

Theorem 39. There is a (4, O(log2 n)) bicriteria approximation algorithm for GSO,
where n is the number of vertices in the metric.

Proof: Let OPT denote the optimal profit of the given GSO instance. We first
preprocess the given metric to only include vertices within distance B/2 of the root
r (this preserves the optimal solution). Thus the profit contained in any single
vertex is at most OPT. Since the sum of profits at all vertices is at least

∑g
i=1 vi, we

have 1
n

∑g
i=1 vi ≤ OPT. Our algorithm for GSO follows a standard greedy approach

(see eg. Garg [62]). Below we set α = O(log2 n) where the precise constant comes
from the analysis.

1. Solution S ← ∅. Mark all groups as uncovered.

2. Until the length of S exceeds α ·B, do:

(a) Set residual profits:

ṽi :=

{
0 for each covered group i ∈ [g]
vi for each uncovered group i ∈ [g]
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(b) Solve the following LP for the residual GSO to obtain solution (x, y):

max
∑g

i=1 ṽi · yi
s.t. x(δ(S)) ≥ yi ∀S ⊆ V : r 6∈ S, Xi ⊆ S; ∀i ∈ [g]

yi ≤ 1 ∀i ∈ [g]∑
e de · xe ≤ B

x, y ≥ 0

(c) As described in [26] (using probabilistic tree embedding), obtain a span-
ning tree T in metric (V, d) and capacities xT on edges of T such that:∑

e∈T de · xT (e) ≤ O(log n) ·∑e de · xe ≤ O(log n) ·B, and xT supports at
least yi flow from r to Xi for each i ∈ [g].

(d) Round down each xT (e) to an integral multiple of 1
n3 .

(e) For each group i ∈ [g], let y′i be the maximum flow value from r to
Xi under capacities xT , and let fTi (e) (for all e ∈ T ) denote the flow
variables realizing this flow.

(f) Using xT and fTi s, run the deterministic algorithm for ‘density group
Steiner’ (Section 3.2 of [26]) to obtain r-tree A covering groups Â such
that:

d(A)∑
i∈Â ṽi

≤ α · B∑g
i=1 ṽi · y′i

, where α = O(log2 n)

(g) If d(A) ≤ αB then S ′ ← S ∪ A.

(h) If d(A) > αB then: (1) Partition tree A into at most 2 · d(A)
αB

subtrees, each
of length at most αB; let A′ denote the subtree containing maximum
profit. (2) Set S ′ ← S ∪ A′ ∪ {f} where f is any edge from r to A′.

(i) S ← S ′. Mark all groups visited in S as covered.

3. Output an Euler tour on r-tree S.

We now prove that this algorithm achieves a (4, 4α + 2) bicriteria approximation. It
suffices to show that the final solution S has length at most (2α+ 1) ·B and obtains
profit at least OPT

4
.

The increase in length of S in any iteration is at most (α + 1) · B (recall every
vertex is at distance at most B from r); so the final length d(S) ≤ (2α + 1) · B . We
claim that the final solution S contains at least OPT

4
profit. At any iteration, let p(S)
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denote the profit of S, and d(S) its length. Since d(S) > αB upon termination, it
suffices to show that at all iterations in the above algorithm,

p(S) ≥ min

{
OPT

4
,
OPT

2αB
· d(S)

}
(4.3)

We show (4.3) inductively: the base case S = ∅ is trivial. Consider any iteration
where p(S) < OPT/4 (otherwise the claim is trivial). Hence the optimal value of the
LP solved in this iteration

∑g
i=1 ṽi · yi ≥ 3

4
·OPT. After the pruning step (that rounds

down capacities) we reduce the capacity of each edge in T by at most 1
n3 . Since any

cut in the tree T has at most n edges, the capacity of any cut decreases by at most
1
n2 after Step 2d; and by the max-flow min-cut theorem, y′i ≥ yi − 1

n2 for each i ∈ [g]
(in Step 2e). Furthermore, for any i ∈ [g], all the flow variables fTi corresponding
to a maximum r − Xi flow are integral multiples of 1

n3 (since edge capacities xT
are). This latter condition is necessary (due to technical reasons in [26]) for the
algorithm used in Step 2f. We now have:

g∑
i=1

ṽi · y′i ≥
g∑
i=1

ṽi · yi −
1

n2

g∑
i=1

ṽi ≥
3

4
· OPT− 1

n2

g∑
i=1

vi ≥
3

4
· OPT− OPT

n
≥ OPT

2

where the second last inequality follows from 1
n

∑g
i=1 vi ≤ OPT (by the preprocess-

ing). Hence d(A)/p(A) ≤ 2α B
OPT

. We finish by handling the two possible cases
(Steps 2g and 2h):

• d(A) ≤ αB. Now p(S ′) = p(S) + p(A) ≥ OPT
2αB
· d(S) + OPT

2αB
· d(A) = OPT

2αB
· d(S ′).

• d(A) > αB. By averaging, we have p(A′) ≥ αB
2·d(A)

p(A) ≥ OPT
4

; so p(S ′) ≥ OPT
4

.

In either case we have Equation (4.3) for solution S ′.

Partial Latency Group Steiner

In the partial latency group Steiner (Min-LPGST) problem, we are given a metric
(V, d), g groups of vertices {Xi ⊆ V }gi=1 with associated weights {wi}gi=1, root r ∈ V ,
and a target h ≤ g. A group i ∈ [g] is said to be covered (or visited) by r-tour τ if
any vertex in Xi is visited, and the arrival time of such a group i is the length of the
shortest prefix of τ that contains an Xi-vertex. The arrival times of all uncovered
groups are set to be the tour-length. The weighted sum of arrival times of all groups
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is termed latency of the tour. The objective in Min-LPGST is to compute a minimum
latency r-tour that covers at least h groups. We present an (O(log2 n), 4) bicriteria
approximation algorithm for Min-LPGST, i.e. the solution tour visits at least h

4
groups

and has latency at most O(log2 n) times the optimal latency of a tour that visits h
groups. In the following, let Lat∗ denote the optimal value of the given instance
of Min-LPGST, and OPT∗ the length of this tour. The approximation algorithm for
Min-LPGST proceeds as follows (below, we set β := 5

4
, and ρ = O(log2 n) such that

the algorithm of Theorem 39 is a (4, ρ) bicriteria approximation for GSO).

1. Guess an integer l such that βl−1 < OPT∗ ≤ βl.

2. Mark all groups as uncovered.

3. For i = 1, · · · , l do:

(a) Run the GSO algorithm (Theorem 39) on the instance with groups
{Xi}gi=1, root r, length bound βi+1, and profits:

vi :=

{
0 for each covered group i ∈ [g]
wi for each uncovered group i ∈ [g]

(b) Let τ (i) denote the r-tour obtained above. Mark all groups visited by τ (i)

as covered.

4. Construct tour τ ← τ (1) · · · τ (l), the concatenation of the r-tours found in the
above iterations. If d(τ) < ρ · βl then increase its length to ρ · βl (this may only
increase the latencies of groups).

5. Run the GSO algorithm on the instance with groups {Xi}gi=1, root r, length
bound βl, and unit profit for each group. Let σ denote the resulting r-tour.

6. Output the tour π := τ · σ as solution to the Min-LPGST instance.

Claim 40. The tour τ has length Θ(ρ) · OPT∗ and latency O(ρ) · Lat∗.

Proof: The guarantee O(ρ) · OPT∗ on the length bound is immediate from Theo-
rem 39: the length of each τ (i) is at most ρ ·βi. It is also clear that d(τ) ≥ ρ ·OPT∗, by
the increase in Step 4. The proof for bounding the latency is identical to the analysis
for the Minimum Latency Problem [29, 45]. We include it here for completeness.

Fix an optimal solution ζ to the Min-LPGST instance, where d(ζ) = OPT∗ ∈
(βl−1, βl]. For each i ∈ [l], let N∗i denote the total weight of groups visited in ζ by
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time βi; note that N∗l equals the total weight of the groups covered by ζ. Similarly,
for each i ∈ [l], let Ni denote the total weight of groups visited in τ (1) · · · τ (i) (i.e. by
iteration i of the algorithm). Set N0 = N∗0 := 0, and W :=

∑g
i=1wi the total weight

of all groups. The latency of tour τ is upper bounded by T := ρ
β−1

∑l
i=0 β

i+2·(W−Ni).

Note also that the latency of tour ζ, Lat∗ ≥ β−1
β

∑l
i=0 β

i(W −N∗i ).

Consider any iteration i ∈ [l] of the algorithm in Step 3. Note that the optimal
value of the GSO instance solved in this iteration is at least N∗i − Ni−1: the βi

length prefix of tour ζ corresponds to a feasible solution to this GSO instance.
Theorem 39 implies that the profit obtained in τ (i), i.e. Ni −Ni−1 ≥ 1

4
· (N∗i −Ni−1),

i.e. W −Ni ≤ 3
4
· (W −Ni−1) + 1

4
· (W −N∗i ). Using this,

(β − 1)
T

ρ
=

l∑
i=0

βi+2 · (W −Ni)

≤ 4W +
1

4

l∑
i=1

βi+2(W −N∗i ) +
3

4

l∑
i=1

βi+2(W −Ni−1)

≤ O(1) · Lat∗ +
3β

4

l−1∑
i=0

βi+2(W −Ni)

≤ O(1) · Lat∗ +
3β

4
· (β − 1)

T

ρ

Since β = 5
4
, this implies T = O(ρ) · Lat∗, giving the claim.

Remark: The above arguments also give an O(log2 n)-approximation algorithm for
the minimum latency group Steiner problem which is Min-LPGST when h = g. Here
the objective is to minimize the sum of weighted arrival times at all groups (every
group has to be visited). The algorithm for this problem just runs Step 3 until
all groups are covered, instead of stopping after l iterations. A proof identical to
that in Claim 40 implies an O(log2 n) approximation. Furthermore, as shown in
Theorem 55, an α-approximation to latency group Steiner implies an O(α · log g)-
approximation to group Steiner tree. Hence an improvement over the O(log2 n)
ratio for latency group Steiner would also improve the best known bound for the
usual group Steiner tree problem.

Claim 41. The tour σ covers at least h
4

groups and has length O(ρ) · OPT∗.

Proof: Directly from the guarantee on GSO algorithm A (Theorem 39) invoked
on the instance in Step 5: here the optimal profit is at least h, as witnessed by the
optimal solution to the Min-LPGST instance (which has length at most 2l).
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Theorem 42. Tour π covers at least h
4

groups and has latency O(ρ) · Lat∗. Hence there
is an (O(log2 n), 4) bicriteria approximation algorithm for Min-LPGST, where n is the
number of vertices in the metric.

Proof: Since π visits all the vertices in σ, Claim 41 implies that π covers at least
h
4

groups. For each group i ∈ [g], let αi denote its arrival time under tour τ (note
that αi = d(τ) for any group i that is not covered by τ). Claim 40 implies that the
latency of tour τ ,

∑g
i=1wi · αi = O(ρ) · Lat∗. Observe that for each group i that is

covered in τ , its arrival time under tour π is also αi. For any group j not covered in
τ , its arrival time under π is at most d(π) (the tour length) whereas αj = d(τ). Note
that the final tour length d(π) = d(τ) + d(σ) = Θ(ρ) ·OPT∗ and d(τ) ≥ ρ ·OPT∗ (by
Step 4). Hence, the arrival time under π of each group i ∈ [g] is O(1) · αi. Using
Claim 40, we obtain the theorem.

4.3.2 Algorithm for the Metric Isolation Problem

Recall that an instance of Metric Isolation is specified by metric (V, d), root r ∈ V ,
and m scenarios {qi}mi=1 with respective probabilities {pi}mi=1. We give a recursive
algorithm for solving Metric Isolation. Given an input instance as above, we will deal
with sub-instances given by some subset M ⊆ [m] of scenarios with probabilities
{si}i∈M where

∑
i∈M si = 1; we refer to such an instance as 〈M, {si}i∈M〉. Below

we describe a recursive algorithm IsoAlg that represents an adaptive strategy of
isolating the realized scenario amongst M . In the following, [Q] := {0, 1, · · · , Q}.

The algorithm IsoAlg proceeds in several phases. In each phase, it maintains
a candidate set M of scenarios such that the realized scenario lies in M . Upon
observing demands along the tour produced by algorithm Partition (in Step 2), a
new set M ′ ⊆M containing the realized scenario is identified such that the number
of candidate scenarios reduces by a constant factor (i.e. |M ′| ≤ 3

4
· |M |); then IsoAlg

recurses on scenarios M ′. After O(logm) such phases the realized scenario would
be correctly identified.

Algorithm IsoAlg〈M, {si}i∈M〉:

1. If |M | = 1, return this unique scenario as realized.

2. Apply algorithm Partition〈M, {si}i∈M〉 to obtain r-tour τ given by
〈r = v0, v1, v2, · · · , vl, vl+1 = r〉 and an associated partition {Pk}tk=1 of M .
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3. For each k ∈ [t], let s′k :=
∑

i∈Pk si.

4. Traverse tour τ and return directly to r after the first vertex that reveals the
realized scenario to be in some part Pk (for k ∈ [t]).

5. Run IsoAlg〈Pk, { sis′k }i∈Pk〉 to determine the realized scenario.

The next algorithm Partition seeks to find an r-tour τ such that after observing de-
mands on τ , the candidate number of scenarios is reduced by a constant factor. Note
that each vertex v corresponds to a partition Pv = {Fv,y}Qy=0 of M depending on the
observed demand at v (defined formally in Step 1 below). If the largest part in Pv
(hence any other part) was at most a constant fraction of M , then visiting vertex v
suffices to always reduce the number of candidate scenarios by this constant factor.
However the largest part in Pv may be almost all of M , in which case the tour has to
visit more vertices before substantially reducing the number of candidate scenarios.
This is the basic idea behind the group Steiner instance constructed in this algorithm.

Algorithm Partition〈M, {si}i∈M〉:

1. For each v ∈ V and y ∈ [Q], define Fv,y := {i ∈M | qiv = y}, and

y(v)← arg max{|Fv,y| : 0 ≤ y ≤ Q}; Dv ←M \ Fv,y(v)

2. For each i ∈M , set Xi ← {v ∈ V | i ∈ Dv}.

3. Run the algorithm (Section 4.3.1) for the Min-LPGST instance on metric (V, d)
with root r, groups {Xi}i∈M with weights {si}i∈M , and target |M | − 1. Let
τ := 〈r = v0, v1, v2, · · · , vl, vl+1 = r〉 be the r-tour obtained.

4. Obtain partition {Pk}tk=1 of M as follows (Figure 4.1 gives an example):

(a) Initialize k ← 0, N ←M .

(b) For j = 1, · · · , l do:

• Define Rj
x := N∩Fvj ,x for all x ∈ [Q]\{y(vj)}, partitioning N∩D(vj).

• Let Rj
(1), · · · , R

j
(e) be non-empty parts in {Rj

x | x ∈ [Q] \ {y(vj)}}.
• For each f = 1, · · · , e, set Pk+f ← Rj

(f) and ν(k + f)← j.

• Set k ← k + e, and N ← N \D(vj).

(c) If N 6= ∅ then, set Pk+1 ← N , ν(k + 1)← l + 1 and k ← k + 1.
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r = v0 = v4

v1

v2

v3

P2 P3

P4

P5

P6

P1

The shaded regions denote the parts Pks defined along the tour τ .

Tour τ is 〈r = v0, v1, v2, v3, v4 = r〉.

Figure 4.1: An illustration of Step 4 of Partition.

(d) Set t← k.

5. Return tour τ along with the partition {Pk}tk=1.

Constructing decision tree from IsoAlg. Note that the adaptive strategy IsoAlg
implicitly defines a strategy tree as described in Definition 37. We create a path
(r, v1, v2, · · · , vl, vl+1 = r), and for each j ∈ [l+1] hang from node vj, all the subtrees
created in recursive calls to the following instances:

〈Pk, {
si
s′k
}〉, for all k ∈ [t] with ν(k) = j.

Analyzing algorithms IsoAlg and Partition

We first prove the following property that captures ‘subadditivity’ of the Metric
Isolation objective function. This explains why the recursive approach in IsoAlg
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works.

Claim 43. For any partition {Pk}tk=1 of M and s′k =
∑

i∈Pk si (for k ∈ [t]), we have∑t
k=1 s

′
k · OPT(〈Pk, { sis′k }i∈Pk〉) ≤ OPT(〈M, {si}i∈M〉).

Proof: Let T denote the decision tree representing the optimal strategy for the
Metric Isolation instance I0 := 〈M, {si}i∈M〉. Recall the definition of leaf-node li and
path πi (for each scenario i ∈M) from the beginning of Section 4.3. For each k ∈ [t],
let Ik := 〈Pk, { sis′k }i∈Pk〉. Consider a feasible decision tree for Ik given by T induced
on the leaf-nodes {li | i ∈ Pk} (note that it is indeed feasible since T isolates all
scenarios ∪tk=1Pk). Observe that the expected cost of this strategy is

∑
i∈Pk

si
s′k
· d(πi);

hence OPT(Ik) ≤
∑

i∈Pk
si
s′k
· d(πi). Summing over all parts k ∈ [t],

t∑
k=1

s′k · OPT(Ik) ≤
t∑

k=1

s′k ·
∑
i∈Pk

si
s′k
· d(πi) =

∑
i∈M

si · d(πi) = OPT(I0)

The second last equality uses the fact that {Pk}tk=1 is a partition of M .

We now prove that the algorithm is well-defined and establish its performance
guarantee. For any instance J of Metric Isolation, let OPT(J ) denote its optimal
value. Let the original Metric Isolation instance be I = 〈[m], {pi}i∈[m]〉.
Claim 44. The optimal value of the Min-LPGST instance in Step 3 of algorithm
Partition〈M, {si}i∈M〉 is at most OPT(〈M, {si}i∈M〉).

Proof: Let I0 = 〈M, {si}i∈M〉 denote the given Metric Isolation instance, and T
an optimal decision tree corresponding to it. Note that by definition of the sets
{Dv}v∈V , any internal node in T labeled vertex v has one child (namely cy(v)) that
corresponds to the realized scenario being in Fv,y(v) = M \Dv. Consider a path σ
traced from the root of T that always moves from node v to the child corresponding
to M \Dv, until it reaches a leaf-node; let nodes in σ be labeled r, u1, u2, · · · , ul, r
(this defines an r-tour in the metric). Since T is a feasible decision tree for the
Metric Isolation instance, there is a unique scenario a ∈M such that when T is run
under demands qa, it traces the root-leaf path σ. In other words, every scenario
b ∈M \ {a} gives rise to a root-leaf path (the path πb in Definition 37) that diverges
from σ. However from the construction of σ, it follows that the scenarios diverging
from it are precisely ∪lj=1Duj = M \ {a}.

Now consider the r-tour r, u1, u2, · · · , uj, r in metric (V, d) (corresponding to
σ) as a solution to the Min-LPGST instance. The number of groups covered is
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| ∪lj=1 Duj | = |M | − 1, so it is indeed feasible. Furthermore, it is easy to see from
the definition of the isolation cost (4.2) that the latency of this solution is at most
IsolateTime(T ), i.e. at most OPT(I0).

Consider the tour τ := 〈r = v0, v1, · · · , vl, r = vl+1〉 obtained in Step 3 of
Partition. For every i ∈ M , let αi denote the arrival time for group i in tour τ (see
Section 4.3.1 for the definition). Also let Lat(τ) :=

∑
i∈M si · αi denote the latency

of tour τ . Theorem 42 and Claim 44 imply that τ covers | ∪lj=1 Dvj | ≥ |M |
4

groups,
and:

Lat(τ) ≤ ρ · OPT(〈M, {si}i∈M〉), where ρ := O(log2 n) (4.4)

We now show some properties of the partition {Pk}tk=1 constructed in Step 4.

Claim 45. After Step 4 of Partition, we have |Pk| ≤ 3
4
|M | for each k ∈ [t].

Proof: We first show that |Pk| ≤ 1
2
|M | for every part Pk produced in the itera-

tions of Step 4b. This is immediate from the observation that for all vertices v
and x ∈ [Q] \ {y(v)}, |Fv,x| ≤ |M |

2
(since Fv,y(v) is the largest sized part among

{Fv,0, Fv,1, · · · , Fv,Q}).

There may be at most one part that is produced after Step 4b, i.e. the last Pt in
Step 4c. From the construction, it follows that this part is precisely M \ ∪lj=1D(vj).
In other words, these are all the uncovered groups in the solution τ for the Min-
LPGST instance. Theorem 42 implies that τ covers at least 1

4
(|M |− 1) groups; hence

|M \ ∪lj=1D(vj)| ≤ 3
4
|M |. So this extra part has size at most 3

4
|M |.

Claim 46. After Step 4 of Partition, for all k ∈ [t] and i ∈ Pk, the arrival time of group
i in tour τ is αi =

∑ν(k)
j=1 d(vj−1, vj).

Proof: This is immediate from the construction of partition {Pk}tk=1. For all parts
Pk (with k ∈ [t]) that are produced in Step 4b of Partition, it is clear that ν(k)equals
the index of the first vertex in τ that contains groups of Pk. Hence the claim follows
for all groups in these parts.

For the (possibly absent) single part with ν-value l + 1 produced in Step 4c of
Partition, the groups in this part are not covered by τ . So their arrival time equals
the tour length

∑l+1
j=1 d(vj−1, vj), again as required.

Claim 47. At the end of Step 4 of IsoAlg〈M, {si}i∈M〉 the realized scenario lies in Pk.
The expected length traversed in this step is at most 2 ·Lat(τ) ≤ 2ρ ·OPT(〈M, {si}i∈M〉).
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Proof: Visiting any vertex v reveals which part among {Fv,x | x ∈ [Q]} the realized
scenario lies in. Now consider the construction of partition {Pk}tk=1 in Step 4 of
Partition. Note that for any j ∈ [l], {Pk | ν(k) = j} are all the parts added in the j-th
iteration of Step 4b; also let {Pk | ν(k) = l + 1} (possibly empty) denote the single
extra part added in Step 4c. Clearly tl+1

j=1{Pk | ν(k) = j} = {Pk}tk=1.

This implies that when vertex vj (any j ∈ [l+1]) is visited along τ , it is determined
which part (if any) among {Pk | ν(k) = j} the realized scenario lies in. Thus the
traversal of τ in Step 4 of IsoAlg returns to r from vertex vj (for j ∈ [l + 1]) iff the
realized scenario lies in one of {Pk | ν(k) = j}. Hence Pk correctly contains the
realized scenario after Step 4 of IsoAlg〈M, {si}i∈M〉.

From the above arguments, it follows that for any j ∈ [l + 1], the probability of
returning to r from vertex vj (in Step 4 of IsoAlg) is precisely

∑
k∈[t]:ν(k)=j

∑
i∈Pk si.

So the expected length traversed is:

≤ 2 ·
l+1∑
j=1

( j∑
h=1

d(vh−1, vh)

)
·

 ∑
k∈[t]:ν(k)=j

∑
i∈Pk

si

 (4.5)

= 2 ·
t∑

k=1

ν(k)∑
h=1

d(vh−1, vh)

 ·∑
i∈Pk

si

 (4.6)

= 2 ·
t∑

k=1

∑
i∈Pk

αi · si (4.7)

= 2 ·
∑
i∈M

αi · si (4.8)

Inequality (4.5) follows since the tour-length when returning from vj is at

most 2
(∑j

h=1 d(vh−1, vh)
)

. Equality (4.6) is just an interchange of summation,

equality (4.7) is from Claim 46, and equality (4.8) uses the fact that {Pk}tk=1

partitions M . The last expression is Lat(τ), and from Equation (4.4), we have the
claim.

Lemma 48. The expected length of the strategy given by IsoAlg〈M, {si}i∈M〉 is at most
2ρ · (log4/3 |M |) · OPT(〈M, {si}i∈M〉).

Proof: We prove this by induction on |M |. The base case of |M | = 1 is trivial:
zero length is traversed in this case. In the following assume |M | ≥ 2. Let I0 :=
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〈M, {si}i∈M〉, and for each k ∈ [t], let Ik := 〈Pk, { sis′k }i∈Pk〉. From Claim 47, the
expected length spent in Step 4 of IsoAlg(I0) is at most 2ρ ·OPT(I0). For any k ∈ [t],
since |Pk| ≤ 3

4
|M | (by Claim 45), the inductive hypothesis implies that the expected

length of IsoAlg(Ik) is at most:

2ρ · log4/3 |Pk| · OPT(Ik) ≤ 2ρ(log4/3 |M | − 1) · OPT(Ik).

The probability of recursing on Ik is exactly s′k for each k ∈ [t]. So the expected
length of IsoAlg(I0) is at most:

2ρ · OPT(I0) +
t∑

k=1

s′k · 2ρ · (log4/3 |M | − 1) · OPT(Ik)

≤ 2ρ · OPT(I0) + 2ρ · (log4/3 |M | − 1) · OPT(I0)

= 2ρ · log4/3 |M | · OPT(I0)

where the inequality uses Claim 43.

Thus for any Metric Isolation instance given by metric (V, d), root r, and sce-
narios {qi, pi}mi=1 (as above), the strategy IsoAlg〈[m], {si}i∈M〉 is O(log2 n · logm)-
approximately optimal. This clearly runs in time polynomial in n and m. As
mentioned earlier, it is also easy to modify the description of algorithm IsoAlg
so as to output a decision-tree representation of the resulting strategy (again in
polynomial time). Hence we obtain:

Theorem 49. There is anO(log2 n·logm) approximation algorithm for Metric Isolation,
where n is number of vertices and m is number of scenarios.

4.3.3 Optimal Split Tree Problem

In the optimal split tree problem [99], we are given a set of m items with associated
non-negative weights {pi}mi=1 (that sum to 1) and a collection {Tj}nj=1 of n binary
tests with non-negative costs {cj}nj=1. Each test Tj ⊆ [m] (for j ∈ [n]) is a subset
of the items that correspond to passing the test; so performing test j distinguishes
between items Tj and [m] \ Tj.

Definition 50. A split tree S is a binary tree where each internal node is labeled by a
test, and each leaf node is labeled by an item such that:
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• For each item i ∈ [m] define a path πi in S from the root node to some leaf as
follows. At any internal node, if i passes the test then πi follows the right branch;
if it fails the test then πi follows the left branch.

• For each i ∈ [m], the path πi ends at a leaf labeled item i.

The cost Li of an item i ∈ [m] is the sum of test-costs along path πi; and the cost of the
split tree S is

∑m
i=1 pi · Li.

The objective in the optimal split tree problem is to compute a split tree of mini-
mum cost. As mentioned earlier, O(logm)-approximation algorithms are known for
the optimal split tree problem in the following special cases: equal item-weights [99]
or equal test-costs [2]. We show here that our algorithm for Metric Isolation im-
plies an O(logm) approximation for the optimal split tree problem (under arbitrary
item-weights and test-costs). As mentioned earlier, there is an Ω(logm) hardness of
approximation for this problem [35].

We first observe that the optimal split tree problem is a special case of Metric
Isolation. Given an instance of optimal split tree (as above), consider a metric (V, d)
induced by a weighted star with center r and n leaves corresponding to the tests.
For each j ∈ [n], we set d(r, j) =

cj
2

. The demand scenarios are as follows: for
each i ∈ [m], scenario i consists of a unit demand at each of {j ∈ [n] | i ∈ Tj} and
zero demand at all other vertices. It is easy to see that this Metric Isolation instance
corresponds exactly to the optimal split tree instance.

We now show an O(logm)-approximation algorithm for Metric Isolation instances
on weighted star metrics, which implies the same bound for the optimal split tree
problem. This improvement comes from the following strengthening of Theorem 39.

Corollary 51. There is a (1− 1
e
)-approximation algorithm for group Steiner orienteer-

ing on weighted star metrics.

Proof: We assume (without loss of generality) that the root r is the star-center.
Consider an instance of group Steiner orienteering on a weighted star-metric (V, d)
with center r and leaves [n], g groups {Xi ⊆ [n]}gi=1 with profits {vi}gi=1, and
length bound B. For each j ∈ [n], define set Sj := {i ∈ [g] | j ∈ Xi} of cost
cj := d(r,j)

2
. The group Steiner orienteering instance is equivalent to computing

a collection K ⊆ [n] of the sets with
∑

j∈K cj ≤ B/2 that maximizes f(K) :=∑{vi | i ∈ ∪j∈KSj}. Observe that the latter problem is an instance of maximizing a
monotone submodular function (namely f : 2[n] → R) over a knapsack constraint
(i.e.

∑
j∈K cj ≤ B/2), for which a 1− 1

e
approximation algorithm is known [147].
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Based on the framework in Section 4.3.2, the above constant approximation for
GSO implies the following.

Theorem 52. There is an O(logm)-approximation algorithm for the optimal split tree
problem, where m is the number of items.

4.3.4 Issue of Observing Demands

In the stochastic vehicle routing problem as defined, the exact demand at a vertex
is observed when the vehicle visits that vertex. In this section, we consider a variant
where the demand at a vertex is not determined by merely visiting it, but only when
it is actually served. This setting only applies to the split-delivery version. We refer
to this variant of SVRP as SVRPobs. It is clear that for any instance of the problem,
the optimal value under SVRP is at most that under SVRPobs (since the latter is
more constrained). The algorithm for SVRP does not directly extend to SVRPobs

since Lemma 38 does not hold here (see remark after Lemma 38). However the
following theorem shows that a suitable modification still permits a reduction from
SVRPobs to Metric Isolation.

Theorem 53. A ρ-approximation algorithm for Metric Isolation implies a (2ρ + 7
2
)-

approximation for SVRPobs. Hence there is an O(log2 n · logm)-approximation algo-
rithm for SVRPobs.

Proof: Consider any instance I of SVRPobs given by metric (V, d) with root r ∈ V ,
and m scenarios given by demand-vectors {qi}mi=1 and probabilities {pi}mi=1. Let OPT
denote the optimal value of I considered as an SVRP instance; as noted above, the
optimal value of I under SVRPobs is at least OPT. As argued in Lemma 38, the
optimal value of the Metric Isolation instance corresponding to I is at most OPT.
The algorithm for SVRPobs is:

1. Obtain a ρ-approximately optimal strategy σ for the Metric Isolation instance
of I (given by the algorithm in the assumption).

2. Return the following strategy for SVRPobs(I):

(a) Visit vertices (using the capacity Q vehicle) according to strategy σ while
servicing each vertex as it is visited (so the demands are determined
even in the SVRPobs setting); whenever the vehicle runs out of items, it
performs a refill trip to-and-from r.
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(b) Let k denote the realized scenario, that is identified at the end of σ.

(c) Service all remaining demands in qk using the 5
2
-approximate tour for

CVRP [73].

For the analysis, we condition on a fixed scenario j ∈ [m] (as in the proofs for SVRP
with independent demands). Let τj denote the r-tour followed by σ under scenario
j when demands are only observed (not serviced). Note that when the strategy
for SVRPobs(I) executes step 2a, the resulting r-tour τ ′j is τj along with refill-trips
from some vertices on τj (where the vehicle runs out of items). We refer to any
vertex on τj from which a refill-trip is made as a breakpoint. Let Uj denote the set
of all breakpoints on τj; we always include the root r in Uj. Then the length of
τ ′j is exactly d(τj) + 2

∑
w∈Uj d(r, w). Using Claim 36 (Section 4.2) on tour τj, the

demands served in it, and breakpoints Uj, we obtain:

2 ·
∑
w∈Uj

d(r, w) ≤ d(τj) +
2

Q

∑
v∈V

qjv · d(r, v), ∀j ∈ [m] (4.9)

We now obtain that d(τ ′j) ≤ 2 · d(τj) + 2
Q

∑
v∈V q

j
v · d(r, v) for each j ∈ [m]. In

other words, the expected length of Step 2a is:
m∑
j=1

pj · d(τ ′j) ≤ 2
m∑
j=1

pj · d(τj) +
m∑
j=1

pj ·
(

2

Q

∑
v∈V

qjv · d(r, v)

)
≤ (2ρ+ 1) · OPT

where the last inequality uses the observations: (1)
∑m

j=1 pj·d(τj) equals IsolateTime(σ),

which is at most ρ · OPT; and (2)
∑m

j=1 pj ·
(

2
Q

∑
v∈V q

j
v · d(r, v)

)
is a lower bound

on SVRP(I).

Finally as argued in Lemma 38, since we know the realized scenario in Step 2c,
the expected length here is at most 5

2
· OPT. Thus we have the theorem.

4.3.5 Hardness of Approximation

In this subsection, we provide lower bounds on the approximability of the metric
isolation problem, and SVRP under explicit demands. We first observe that Metric
Isolation is at least as hard to approximate as group Steiner tree. This is almost
identical to the reduction [35] from Set-cover to the optimal split tree problem;
we give a proof for completeness. Combined with the result in [77], the following
theorem implies that Metric Isolation is Ω(log2−ε n) hard to approximate.
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Theorem 54. An α-approximation algorithm for Metric Isolation implies an α+ o(1)
approximation algorithm for group Steiner tree.

Proof: Consider an arbitrary instance of group Steiner tree on metric (V, d) with
root r and groups X1, · · · , Xg ⊆ V ; let OPT denote its optimal value. Assume
without loss of generality that Xi 6= Xj for all i 6= j. We construct an instance of
Metric Isolation as follows. Let V ′ = V ∪ {s} where s is a new vertex, and define
metric d′ on V ′:

d′(u, v) :=

{
d(u, v) for u, v ∈ V
d(u, r) + L for u ∈ V, v = s

, ∀(u, v) ∈
(
V ′

2

)
Above L� αn ·maxu,v d(u, v) is some large value. There are g + 1 scenarios in the
Metric Isolation instance: X1, · · · , Xg and Xg+1 := {s}, with probabilities

pi :=

{
1
gL

if 1 ≤ i ≤ g

1− 1
L

if i = g + 1
,

The root in the Metric Isolation instance remains r. Let OPT′ denote the optimal
isolation time of this instance. We will show that (1−o(1)) ·OPT ≤ OPT′ ≤ OPT+1
which would prove the proposition.

(A) (1− o(1)) · OPT ≤ OPT′. Consider the optimal strategy for the Metric Isolation
instance; let σ denote the r-tour traversed by this strategy under scenario Xg+1.
We now argue that σ is a feasible solution to group Steiner tree. Observe that the
optimal isolation time is at most n ·maxu,v d(u, v)� 1

α
· L: visiting all vertices in V

along any r-tour is a feasible strategy. Since pg+1 = 1− o(1), the r-tour σ does not
visit vertex s (otherwise the objective value would be at least L − 1). Hence σ is
an r-tour in metric (V, d) as well. Furthermore σ must visit at least one vertex from
each {Xi}gi=1: otherwise scenario Xg+1 is not isolated. Thus σ is a feasible solution
to the group Steiner instance. Finally, OPT′ ≥ (1− 1

L
) · d(σ) ≥ (1− 1

L
) · OPT.

(B) OPT′ ≤ OPT + 1. Let τ denote an optimal r-tour for the given GST instance, so
d(τ) = OPT. Consider the following strategy for Metric Isolation:

1. Traverse r-tour τ to determine whether or not Xg+1 is the realized scenario.

2. If Xg+1 is realized, stop.

3. If Xg+1 is not realized, visit all vertices in V along an arbitrary r-tour to
determine the realized scenario.
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For any i ∈ [g + 1], let πi denote the r-tour traversed under scenario Xi in the above
strategy. It is clear that d(πg+1) ≤ d(τ) ≤ OPT, and for all i ∈ [g], d(πi) ≤ L

α
. Thus

the resulting isolation time is at most:

(1− 1

L
) · OPT + g · 1

gL
· L
α
≤ OPT + 1

Thus we have the desired reduction.

In the latency group Steiner problem (LGST), we are given metric (V, d) with
root r, groups {Xi ⊆ V }gi=1 of vertices, and the goal is to compute an r-tour
covering all groups that minimizes the average arrival time at a group. As observed
in Subsection 4.3.1, this is a special case of partial latency group Steiner. We now
obtain the following hardness result for SVRP under explicit demands. Combined
with the result in [77], this implies that SVRP is Ω(log1−ε n) hard to approximate.

Theorem 55. An α-approximation algorithm for SVRP under explicit demands implies
an O(α)-approximation algorithm for LGST, which in turn implies an O(α · log g)-
approximation algorithm for GST.

Proof: We first give the reduction from LGST to SVRP with explicit demands, and
then the reduction from group Steiner tree to LGST.

(I) Reducing LGST to SVRP. Consider an arbitrary instance I0 of LGST with metric
(V, d), root r, and groups {Xi ⊆ V }gi=1; let OPT0 denote its optimal value. By
standard scaling arguments we can assume that every edge in the metric has length
in the range [1, n3]. For each i ∈ [g], let Tspi denote the length of the minimum TSP
tour on vertices Xi, and L := maxgi=1 Tspi. Also set t := dn ·Le; it is clear that t ≤ n5.
We construct a new metric (U, l) as follows: take t disjoint copies of metric (V, d)
and contract all copies of vertex r to a new root s. So we have:

l(u, v) :=

{
d(u, v) for u, v in the same copy of V
d(u, r) + d(v, r) for u, v in distinct copies of V

For this reduction, it suffices to consider the stochastic TSP problem (which is
SVRP with capacity Q =∞); hence each scenario is just a subset of vertices. In fact
we consider a further special case, where upon visiting any vertex v, it is not only
known whether or not there is demand at v, but if there is demand at v it is also
known what the realized scenario is. (Eg. this can be ensured by making copies of
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every vertex v (at zero distance from each other) where each copy of v corresponds
to exactly one of the scenarios that occur at v.)

We now define the stochastic TSP instance I on metric (U, l) with root s. There
are m := t · g scenarios (each with equal probability), for each j ∈ [t] and i ∈ [g],
the Xi-vertices in the j-th copy of (V, d) constitute a scenario. This completes the
description of the stochastic TSP instance I, which is essentially t copies of I0. Let
OPT denote the optimal stochastic TSP objective value of I, and OPTI the optimal
Metric Isolation objective value of I. Note that by construction, the minimum TSP
length for each scenario is at most L; so by Lemma 38, OPTI ≤ OPT ≤ OPTI + L.
Note also that OPTI ≥ Ω(t)� L. Hence we have,

OPTI ≤ OPT ≤ (1 + o(1)) · OPTI (4.10)

This is main purpose of considering the scaled up instance I. The above relation
between the SVRP and Metric Isolation objectives does not hold in arbitrary instances
such as I0. We now establish a sequence of claims that imply OPT = Θ(t) · OPT0,
which suffices to prove the theorem.

Claim 56. The optimal LGST value corresponding to I is (1 + o(1)) · OPTI .

Proof: Observe that for instance I, the Metric Isolation objective is precisely Min-
LPGST where weights are 1

m
each and target h = m−1. Furthermore since I consists

of t copies of the original instance I0, the optimal LGST value corresponding to I
(i.e. Min-LPGST with target m) is (1 + o(1)) times the Metric Isolation value.

Claim 57. The optimal LGST value corresponding to I is O(t) · OPT0.

Proof: Fix an optimal solution ζ to I0; and for each integer i ≥ 1, let Ni denote the
fraction of groups having arrival times between 2i−1 and 2i. So OPT0 ≥

∑
i≥1Ni·2i−1.

We construct a feasible solution to I as follows. For each integer i ≥ 1 do: for every
copy of (V, d) in (U, l), starting from s traverse the 2i-length prefix of ζ and return
to s. It is easy to see that the latency of the resulting solution to LGST on I is at
most

∑
i≥1Ni · (t · 2i+1) = O(t) · OPT0.

Claim 58. The optimal LGST value corresponding to I is Ω(t) · OPT0.

Proof: Fix an optimal solution τ to LGST on I; note that I has a total weight of
one distributed uniformly over all t copies I0. For each integer i ≥ 0, let Li be the
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length of the shortest prefix of τ that contains weight 1− 1
2i

and let τi denote this
prefix. The latency of τ is:

Lat(τ) ≥
∑
i≥1

(Li − Li−1) · 1

2i
=
∑
i≥1

Li ·
(

1

2i
− 1

2i+1

)
=

1

2

∑
i≥1

Li ·
1

2i

We first claim that for every integer i ≥ 1, there is an r-tour σi in metric (V, d)
of length at most 2

t
· Li that covers at least 1− 1

2i−1 fraction of I0-groups. For each
j ∈ [t], let fj ∈ [0, 1] denote the fraction of groups in the j-th copy of I0 that are
not covered by τi. By the definition of τi, we have 1

t

∑t
j=1 fj ≤ 1

2i
. Thus (by Markov

inequality) there is a subset S ⊆ [t] of |S| ≥ t
2

copies with fj ≤ 2
2i

for all j ∈ S. Now
there is some k ∈ S such that the portion of τi in the k-th copy of I0 has length at
most Li

|S| ≤ 2 · Li
t

. Thus the portion of τi in this k-th copy corresponds to an r-tour
σi in metric (V, d) of length d(σi) ≤ 4 · Li

t
that covers at least 1 − 1

2i−1 fraction of
I0-groups.

Consider the solution to I0 which is the concatenation σ1 · σ2 · · · . The latency of
this solution is at most:

d(σ1) +
∑
i≥2

d(σi) ·
1

2i−2
≤ 4 · L1

t
+

16

t
·
∑
i≥2

Li ·
1

2i
≤ 32

t
· Lat(τ)

Thus we have the claim.

Combining Claims 56, 57 and 58 we obtain OPTI = Θ(t) · OPT0. Together
with Equation (4.10), this implies OPT = Θ(t) · OPT0, proving the first part of the
theorem.

(II) Reducing GST to LGST. This is a simple set-covering based reduction. Recall
that any instance I of the group Steiner tree problem consists of metric (V, d) with
root r ∈ V and groups {Xi ⊆ V }gi=1. The goal is to compute a minimum length
r-tour covering all groups. Let A be any ρ-approximation algorithm for LGST; we
now describe how this may be used to obtain an O(ρ · log g)-approximation for GST.

1. Set current r-tour S ← ∅, uncovered groups U ← [g].

2. While (U 6= ∅) do:

(a) Run algorithm A on the LGST instance with metric (V, d), root r and
groups {Xi}i∈U . Let τ be the r-tour obtained, and Lat the average arrival
time of groups in U .
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(b) Let τ ′ be the truncated tour obtained by returning to root r after traversing
length 2 · Lat along τ .

(c) Augment S ← S · τ ′.
(d) Remove from U all groups covered in τ ′.

3. Output S as solution to GST.

Let OPTdenote the optimal value of the given instance I. It is clear that upon
termination, the final solution S is a feasible GST solution. It only remains to bound
the length of S.

Claim 59. The solution S obtained above has length d(S) ≤ O(ρ · log g) · OPT.

Proof: Consider an arbitrary iteration where U ⊆ [g] denotes the set of uncovered
groups. Observe that the optimal value of LGST instance restricted to U is at most
OPT: the arrival time of every group in an optimal GST solution to I is at most
OPT. Thus the average arrival time in τ is Lat ≤ ρ · OPT. So the increase in the
length of S in any iteration is at most 4ρ ·OPT. Also, by Markov inequality, at least
|U |/2 groups have arrival time at most 2 · Lat in tour τ ; i.e. τ ′ covers at least |U |/2
groups from U . Hence the number of uncovered groups (i.e. |U |) decreases by a
factor of two in each iteration; this implies that the number of iterations is at most
dlog2 ge+ 1. The claim now follows.

Thus we have an O(ρ · log g)-approximation algorithm for GST assuming a
ρ-approximation for LGST. This proves the second part of the theorem.

4.4 SVRP under Black-box Distribution

In this section, we study the most general model for SVRP where the demand
distribution D is given by means of a black-box (or an oracle) from which an
algorithm can draw samples. In this setting, every sample from this black-box is
an independent draw from the actual demand distribution D. We provide a strong
information-theoretic lower bound on the approximability of SVRP under black-box
distributions. In fact this lower bound holds even in the special case of stochastic
TSP where the capacity is ∞, so each scenario is just a subset of vertices to visit.
We show that any algorithm that samples from the distribution D at most nc times
(for any c = o(n/ log n)) achieves only an Ω(n/c) approximation ratio; recall that
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n denotes the number of vertices in the underlying metric. In particular, there
is no o(n)-approximation algorithm for the black-box model of SVRP, that makes
polynomially many samples.

Let A be any algorithm for SVRP under black-box distributions that samples
from the distribution at most N := nc times (for some c = o( n

logn
)). We make no

assumption on the running time of A. Given any instance of SVRP, A outputs a de-
cision tree corresponding to an adaptive strategy of visiting vertices (Definition 37);
note that the size of this decision tree may be exponentially large, since we make
no assumption on the running time of A. We will show that there exist instances for
which the solution produced by A has cost Ω(n

c
) times the optimal.

Consider a weighted-star metric (V, d) with center r and 2t leaves A := {ai}ti=1

and B := {bi}ti=1. The edges (r, ai) (for all i ∈ [t]) have length zero, and edges (r, bi)
(for all i ∈ [t]) have length one. The number of vertices in the metric is n = 2t+ 1.
Fix a parameter k := 2c, and let C :=

(
[t]
k

)
be the collection of all k-subsets of [t]. For

any M ∈ C, we define A(M) = {aj | j ∈ M} and similarly B(M) = {bl | l ∈ M}.
Let F denote the set of all functions f : C → C. For every function f ∈ F , define
demand-distribution Df as containing the following scenarios uniformly at random
(each scenario in Df is just a subset of vertices to be visited, specified by a k-subset
of [t]):

Df ≡ {A(S) ∪B(f(S)), for all S ∈ C}

For each function f ∈ F , define instance If of SVRP on metric (V, d) with demand
distribution Df , and infinite vehicle capacity. We will consider the outcome of
algorithm A on these SVRP instances, and show that it performs poorly on at least
one of them.

Claim 60. The optimal value of each instance If is at most 2k.

Proof: This strategy first visits all vertices in A (at zero length) to observe demands
at A(S) for some S ∈ C, and then visits precisely the vertices in B(f(S)). The
resulting tour always has length 2k (since |f(S)| = k).

Note that this strategy relies crucially on the fact that it knows the exact function
f . On the other hand, when algorithm A is run on some instance If , the only
information about function f that it obtains is through a set of N �

(
t
k

)
random

samples from the black-box Df . In the following we show that this information
is insufficient to compute a good solution. Below, u.a.r. stands for uniformly at
random.
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By the definition of functions f that we consider, each sample from the black-
box is of the form A(A′) ∪ B(B′) where A′, B′ ∈ C. Note that for a given set of
samples from the black-box distribution, algorithm A outputs a unique decision
tree. Conditioned on a set Q = {Ai ∪Bi}Ni=1 of samples from the black-box, let T (Q)
denote the decision-tree output by A. For any set Q = {Ai ∪ Bi}Ni=1 of demand-
samples, any function f ∈ F that agrees with Q (i.e. f(Ai) = Bi for all 1 ≤ i ≤ N),
and any scenario S ∈ C, let L(f, S,Q) denote the number of B-vertices visited
under decision-tree T (Q) when the realized demand is A(S) ∪B(f(S)).

Claim 61. For any set Q = {Ai ∪ Bi}Ni=1 of demand-samples and S ∈ C \ {Ai}Ni=1,
Ef [L(f, S,Q)] = Ω(t) where the expectation is taken over u.a.r. function f ∈ F that
agrees with Q.

Proof: Note that conditioned on Q, algorithm A outputs the unique decision-tree
T (Q). We claim that for any S ′ ∈ C, when T (Q) is run with demands A(S) ∪B(S ′),
it visits all the vertices B(S ′). This follows since for any S ′ ∈ C there is some
function f ∈ F that agrees with Q and has f(S) = S ′; and T (Q) must be a feasible
solution to this instance If . Hence T (Q) visits all vertices in A(S) ∪ B(S ′) under
this scenario in Df . Let L̃(S ′, S,Q) be the number of B-vertices visited when T (Q)
is run with demands A(S) ∪B(S ′). Observe that for every f ∈ F that agrees with
Q and has f(S) = S ′, we have L(f, S,Q) = L̃(S ′, S,Q). When f ∈ F u.a.r. over
functions that agree with Q, it is clear that Ef [L(f, S,Q)] = ES′ [L̃(S ′, S,Q)] (where
S ′ ∈ C u.a.r.).

We assume (without loss of generality) that decision-tree T (Q) first visits all
vertices in A, since this has zero length. We focus on the decision tree T (Q,S)
defined as T (Q) conditioned on observing demands at A(S); note that T (Q,S) visits
only B-vertices. As observed above, for any S ′ ∈ C, when T (Q,S) is run with
demands B(S ′) it must visit all the vertices B(S ′), and L̃(S ′, S,Q) is the number of
B-vertices it visits. Let M(S ′, S,Q) ≤ L̃(S ′, S,Q) denote the number of B-vertices
visited by T (Q,S) under demands B(S ′) until the point it visits all of B(S ′). We
now show a lower bound ES′ [M(S ′, S,Q)] ≥ Ω(t) that proves the claim.

Consider running decision tree T (Q,S) under u.a.r. S ′ ∈ C representing de-
mands onB-vertices. Let us condition on traversing some pathO in T (Q,S) from the
root that visits at most t

2
B-vertices, such that some vertex v is the next to be visited

(after O). The outcomes along path O do not include vertex v, which is the first unex-
plored vertex to be visited after O. We have PrS′ [v ∈ S ′ | S ′ consistent with O] ≤ 2k

t
,

since irrespective of the exact outcomes along O there are at least t
2

unexplored
B-vertices and at most k are in S ′. In the traversal of T (Q,S) under u.a.r. S ′ ∈ C,
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whenever a vertex v ∈ S ′ is visited, we term it success. Note that ES′ [M(S ′, S,Q)]
is precisely the expected number of vertex-visits until k successes. Consider a
truncated process P that traverses T (Q,S) under u.a.r. S ′ ∈ C, and stops at the
earlier of k successes or t

2
vertex-visits. The expected number of vertices visited in

P is clearly at most ES′ [M(S ′, S,Q)]. Note that at any point in P, the conditional
probability of success is at most 2k

t
(from above). Now define random process P ′

that performs independent tosses of a coin with heads probability 2k
t

: P ′ keeps
tossing the coin until either the number of tosses exceeds t

2
or at least k heads

are observed. Clearly, the expected number of vertices visited in P is at least the
expected number of tosses in P ′. Finally, it is easy to see that the expected number
of tosses in P ′ is Ω(t).

The next claim is straightforward from the definitions.

Claim 62. For any function f ∈ F , the expected cost of the decision-tree produced
by algorithm A is EA1,··· ,ANES[L(f, S, {Ai, f(Ai)}Ni=1)] where the expectation is taken
over A1, · · · , AN , S ∈ C chosen independently and u.a.r.

Theorem 63. For any algorithm A that makes at most N = nc samples from the
black-box distribution (where c = o(n/ log n)), there is a function f ∈ F such that
algorithm A achieves only an Ω(n

c
) approximation on SVRP instance If .

Proof: For a fixed demand-sample Q = {Ai, Bi}Ni=1, let F(Q) := {f ∈ F | f(Ai) =
Bi, ∀i ∈ [N ]} denote all functions in F that agree with Q. Consider the following
two ways of generating random tuples of the form 〈f,Q = {Ai, Bi}Ni=1〉, where
f ∈ F and A1, · · · , AN , B1, · · · , BN ∈ C.

D1 Pick A1, · · · , AN , B1, · · · , BN ∈ C u.a.r. independently to set Q = {Ai, Bi}Ni=1;
then pick f ∈ F(Q) independently u.a.r.

D2 Pick u.a.r. f ∈ F ; then pick A1, · · · , AN ∈ C independently u.a.r., and set
Bi = f(Ai) for all i ∈ [N ] (again Q = {Ai, Bi}Ni=1).

It is easy to see that the distributions of tuples 〈f,Q〉 resulting from these two
procedures is identical (since F includes all functions mapping C to C).

For any fixed Q = {Ai, Bi}Ni=1, taking expectation over S ∈ C chosen u.a.r.
and independently in Claim 61 implies that ESEf∈F(Q)[L(f, S,Q)] = Ω(t), since
PrS[S 6∈ {A1, · · · , AN}] ≥ 1 − N

|C| ≥ 1
2
. Since S and f are independent, we have
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Ef∈F(Q)ES[L(f, S,Q)] = ESEf∈F(Q)[L(f, S,Q)] = Ω(t). Now taking an outer expec-
tation over Q = {Ai, Bi}Ni=1,

EA1,··· ,AN ,B1,··· ,BNEf∈F(Q)ES[L(f, S,Q)] = Ω(t)

Taking an outer expectation over f ∈ F u.a.r. in Claim 62, the average solution
cost produced by A on instances If is:

EfEA1,··· ,ANES[L(f, S, {Ai, f(Ai)}Ni=1)] = EQEf∈F(Q)ES[L(f, S,Q)] = Ω(t)

where the first equality uses the equivalence of the two distributions (D1) and (D2)
mentioned above. Since the average solution cost on instances corresponding to F
is Ω(t), there is some f ∈ F with solution cost Ω(t) = Ω(n).

Furthermore, Claim 60 implies that the optimal value of every If is at most
2k = 4c. Thus we obtain the theorem.

Credits: The results in this chapter are based on joint work with Anupam Gupta,
Ravishankar Krishnaswamy and R. Ravi.





Chapter 5

VRPs on Asymmetric Metrics

5.1 Introduction

In this chapter, we consider some vehicle routing problems on asymmetric metrics.
An asymmetric metric is given by tuple (V, d) where V denotes the vertex-set and
d : V × V → R+ is a distance function that satisfies the triangle inequality, i.e.
d(u, v) + d(v, w) ≥ d(u,w) for all u, v, w ∈ V . We emphasize that the distances need
not satisfy symmetry, as in the metrics considered in previous chapters; hence for
any u, v ∈ V , d(u, v) 6= d(v, u) in general.

The most basic VRP in this setting is the Asymmetric Traveling Salesman Problem
(ATSP). The best known approximation ratio for ATSP is O(log n) [60] (as opposed
to 3

2
[34] in the symmetric version). Improving this bound is an important open

question in approximation algorithms. The problems considered in this chapter
are variants of ATSP that are also directed counterparts of well-studied VRPs on
symmetric metrics. Network design problems on directed graphs are often much
harder to approximate than their undirected counterparts– the traveling salesman
and Steiner tree problems are well known examples. The currently best known
approximation ratio for the directed Steiner tree problem is O(nε) [27] for any fixed
ε > 0, whereas there is a 1.55-approximation algorithm on symmetric metrics [130].

93
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5.1.1 Problem Definition and Preliminaries

We now define the directed VRPs considered in this chapter. All these problems are
defined over an asymmetric metric (V, d) with |V | = n vertices and a specified root
r ∈ V . Any tour (resp. path) starting at r is called an r-tour (resp. r-path).

Directed k-TSP. Given a target k ≤ n, the goal is to compute a minimum length
r-tour that contains at least k other vertices. This is a generalization of the ATSP,
which is obtained by setting k = n.

Minimum Ratio ATSP. This involves finding an r-tour that minimizes the ratio of
the length of the tour to the number of vertices in it (not including the root r).
Observe that if the requirement that the tour contain the root is dropped, this ratio
problem becomes the minimum mean weight cycle problem, which is exactly solvable
in polynomial time [93]. However, the rooted version which we are interested in is
NP-complete.

Directed Orienteering. Here we are given a length bound D, and the goal is to
find an r-path of length at most D, that visits the maximum number of vertices.
The orienteering problem can also be extended to the setting where there is some
non-negative profit at each vertex, and the goal is to maximize total profit.

Directed Minimum Latency. For a directed path (or tour) π and vertices u, v ∈ V ,
let dπ(u, v) denote the distance from u to v along π; if v is not reachable from
u along π, then dπ(u, v) = ∞. The directed minimum latency problem involves
computing a spanning r-path π that minimizes

∑
v∈V d

π(r, v); the quantity dπ(r, v)
is the latency of vertex v in path π. Another possible definition of this problem
requires an r-tour covering all vertices, where the latency of the root r is set to be
the distance required to return to r (i.e. the total tour length); note that in the
previous definition, the latency of r is zero. As we show later in this chapter, the
approximability of both these versions of directed latency are within a constant
factor of each other. We work with the path version of directed latency.

Bicriteria approximations. Consider any problem P having the form:

min{C(z) : z ∈ S, N(z) ≥ k}
where S is the feasible region, C : S → R+ is the cost function, N : S → R+ is a
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coverage function, and k is the target. Eg., in the directed k-TSP problem, S is the
set of all r-tours; for any z ∈ S, C(z) is the length of tour z, and N(z) is the number
of vertices covered in tour z. An algorithm A for problem P is said to be an (α, β)
bi-criteria approximation, if on each problem instance A obtains a solution y ∈ S sat-
isfying C(y) ≤ α · OPT and N(y) ≥ k

β
, where OPT = min{C(z) : z ∈ S, N(z) ≥ k}

is the optimal value of this instance.

For a directed multigraph G = (V,E) and any S ⊆ V , we denote by δ+(S) =
{(u, v) ∈ E | u ∈ S, v 6∈ S} the edges leaving vertex-set S, and δ−(S) = {(u, v) ∈
E | u 6∈ S, v ∈ S} the edges entering S. When dealing with asymmetric metrics with
vertex set V , the edge set E is assumed to be V × V , unless mentioned otherwise.
For any vector x : E → R+ and F ⊆ E, denote x(F ) :=

∑
e∈F xe.

Multigraph G = (V,E) is called Eulerian if in-degree equals out-degree at each
vertex, i.e. |δ+(v)| = |δ−(v)| for each v ∈ V . Given G = (V,E) and vertices
u, v ∈ V , the directed connectivity from u to v equals the maximum number of
edge-disjoint paths from u to v (or equivalently, the minimum number of edges
whose removal disconnects v from u). Given a directed multigraph G = (V,E) and
edges (u, v), (v, w) ∈ E, the operation of replacing edges (u, v) and (v, w) by a new
edge (u,w) (i.e. E ← (E \ {(u, v), (v, w)}) ∪ {(u,w)}) is called splitting-off. Some
proofs in this chapter make use of the following ‘splitting-off’ theorems for digraphs.

Theorem 64 (Mader [107]). Let G = (U ∪ {v}, E) be a directed multigraph such
that the indegree equals outdegree at v, and the directed connectivity between any
pair of vertices in U is at least k. Then for every edge (v, w) ∈ E there exists an edge
(u, v) ∈ E so that after splitting-off edges (u, v) and (v, w), the directed connectivity
between every pair of vertices in U remains at least k.

Theorem 65 (Frank [57] (Theorem 4.3) and Jackson [90]). Let G = (U ∪ {v}, E)
be an Eulerian directed multigraph. For each edge (v, w) ∈ E there exists an edge
(u, v) ∈ E so that after splitting-off edges (u, v) and (v, w), the directed connectivity
between every pair of vertices in U remains the same.

Remark: Consider any vector x : E → R+ of rational edge-capacities that is Eule-
rian, namely x(δ−(v)) = x(δ+(v)) at all vertices v ∈ V . Let M ∈ N be large enough
that M · xe ∈ N for all e ∈ E. Then M · x corresponds to an Eulerian multi-graph,
for which the above splitting-off theorems apply. Based on this correspondence, we
use splitting-off theorems directly on rational edge-capacities that are Eulerian.



96 Chapter 5: VRPs on Asymmetric Metrics

5.1.2 Results

We present a polynomial time O(log2 n · log k)-approximation algorithm for the
directed k-TSP problem. This is based on an O(log2 n)-approximation algorithm
for minimum ratio ATSP. To the best of our knowledge, this ratio problem has not
been studied earlier. The main ingredient in the algorithm is a splitting-off theorem
on directed Eulerian graphs. This algorithm appears in Section 5.2. We then
use the approximation algorithm for minimum ratio ATSP, to obtain an O(log2 n)
approximation guarantee for directed orienteering (Section 5.3). This answers
in the affirmative, the question of poly-logarithmic approximability of directed
orienteering [17].

For the directed latency problem, we present an LP-based reduction to the Asym-
metric Traveling Salesman Path problem (ATSP-path) [101, 32]. We give an nO(1/ε)

time algorithm for the directed latency problem that achieves an approximation
ratio of O(ρ · nε

ε3
) (for any 1

logn
< ε < 1), where ρ is the integrality gap of an LP

relaxation for the ATSP-path problem (details in Section 5.4). We obtain an upper
bound ρ = O(

√
n) in Section 5.5; however we conjecture that ρ = O(log n). In par-

ticular, our result implies a polynomial time O(n1/2+ε)-approximation algorithm for
directed latency (with any fixed ε > 0), which is the first non-trivial approximation
guarantee for this problem.

5.1.3 Related Work

The best known approximation guarantee for ATSP is O(log n); the first approxima-
tion ratio [60] was dlog2 ne, and since then several papers improved the constant
term, leading to the currently best 2

3
· log2 n bound [53].

All problems considered in this chapter are well-studied in the undirected setting.
Blum et al. [17] obtained the first constant factor approximation algorithm for the
orienteering problem (on symmetric metrics). This was improved to a factor of
3 in Bansal et al. [13], and later to 2 + ε (for any fixed ε > 0) in Chekuri et
al. [30]. Bansal et al. [13] also used orienteering as a subroutine to also obtain
poly-logarithmic approximation algorithms for some generalizations of orienteering:
deadline TSP and vehicle routing problem with time windows. The first constant-factor
approximation algorithm for undirected minimum latency was given by Blum et
al. [18]; following a line of improvements, the currently best known approximation
ratio is 3.59 due to Chaudhuri et al. [29].
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Chekuri and Pal [31] obtained a general approximation algorithm for a class
of VRPs on asymmetric metrics, that runs in quasi-polynomial time. In particular,
their result implies a quasi-polynomial time O(log n)-approximation algorithm for
the directed orienteering problem. Their result also holds for the generalization
when the profit is any monotone submodular set function on the vertices.

The directed latency problem turns out to be closely related to Asymmetric
Traveling Salesman Path (ATSP-path) [101]. ATSP-path is a generalization of ATSP,
where the goal is to compute the minimum length spanning path between specified
end-points. Lam and Newmann [101] were the first to consider this problem, and
they gave an O(

√
n) approximation based on the Frieze et al. [60] algorithm for

ATSP. This was improved to an O(log n) ratio in Chekuri and Pal [32], that extended
the Kleinberg and Williamson [98] algorithm for ATSP. Subsequently Feige and
Singh [53] showed that the approximability of ATSP and ATSP-path are within a
constant factor of each other.

5.2 Directed k-TSP

In this section, we consider the directed k-TSP problem and obtain an O(log2 n ·
log k)-approximation algorithm for this problem. We first obtain an O(log2 n)-
approximation algorithm for the related minimum ratio ATSP (Theorem 69), and
then show how this implies the result for directed k-TSP (Theorem 70). Our
algorithm for minimum ratio ATSP is based on upper bounding the integrality gap
of a suitable LP relaxation for ATSP (Theorem 66), which we study next.

5.2.1 A linear relaxation for ATSP

Consider the following LP relaxation for ATSP on metric (V, d).

min
∑

e de · ze
s.t.

z(δ+(v)) = z(δ−(v)) ∀v ∈ V
(ALP ) z(δ+(S)) ≥ 1 ∀∅ 6= S 6= V

ze ≥ 0 ∀ edges e

This relaxation was also studied in Vempala and Yannakakis [151], where the
authors proved a structural property about basic solutions to (ALP ). We are not
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aware of any previous result bounding the integrality gap of (ALP ). However, the
following stronger LP relaxation (with additional degree equals 1 constraints) was
shown to have an integrality gap of at most dlog ne in Williamson [153].

min
∑

e de · ze
s.t.

z(δ+(v)) = 1 ∀v ∈ V
(ALP ′) z(δ−(v)) = 1 ∀v ∈ V

z(δ+(S)) ≥ 1 ∀∅ 6= S 6= V
ze ≥ 0 ∀ edges e

We give an independent proof using the directed splitting-off Theorem 64 that gives
a dlog ne upper bound on the integrality gap of (ALP ) (Theorem 66). Then we
observe that for any asymmetric metric (V, d), the optimal values of (ALP ) and
(ALP ′) coincide (Theorem 68).

Theorem 66. The integrality gap of (ALP ) is at most dlog ne.

Proof: This proof has the same outline as the proof for the stronger LP relaxation
(ALP ′) in Williamson [153]. We use the dlog ne approximation algorithm for ATSP
due to Frieze et al. [60], which works by computing cycle covers repeatedly (in
at most dlog ne iterations). In this algorithm, if U ⊆ V is the set of representative
vertices in some iteration, the cost incurred in this iteration equals the minimum
cycle cover on U . Let ALP (U) denote the LP relaxation ALP restricted to a subset
U of the original vertices (and edges induced on U), and OPT(ALP (U)) its optimal
value. Then we have:

Claim 67. For any subset U ⊆ V , the minimum cycle cover on U has cost at most
OPT(ALP (U)).

Proof: Consider the following linear relaxation for cycle cover.

min
∑

e de · xe
s.t.

x(δ+(v))− x(δ−(v)) = 0 ∀v ∈ U
(CLP ) x(δ+(v)) ≥ 1 ∀v ∈ U

xe ≥ 0 ∀ edges e

These constraints are equivalent to a circulation problem on network N which
contains two vertices vin and vout for each vertex v ∈ U . The edges in N are:
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{(uout, vin) : ∀ u, v ∈ U, u 6= v}, and {(vin, vout) : ∀v ∈ U}. The cost of each
(uout, vin) edge is d(u, v), and each (vin, vout) edge costs 0. It is easy to see that the
minimum cost circulation on N that places at least one unit of flow on each edge
in {(vin, vout) : ∀v ∈ U} is exactly the optimal solution to (CLP ). But the linear
program for minimum cost circulation is integral (network matrices are totally
unimodular, c.f. [117]), and so is (CLP ).

Any integral solution to (CLP ) defines an Eulerian subgraph H with each vertex
in U having degree at least 1. Each connected component C of H is Eulerian and
can be shortcut to get a cycle on the vertices of C. Since triangle inequality holds,
the cost of each such cycle is at most that of the original component. So this gives a
cycle cover of U of cost at most OPT(CLP (U)), the optimal value of (CLP ). But
the linear program ALP (U) is more constrained than CLP (U); so the minimum
cycle cover on U costs at most OPT(ALP (U)).

We now establish the monotonicity property of ALP , namely:

OPT(ALP (U)) ≤ OPT(ALP (V )) ∀U ⊆ V

Consider any subset U ⊆ V , vertex v ∈ U , and U ′ = U − v; we will show that
OPT(ALP (U ′)) ≤ OPT(ALP (U)). Let z be any fractional solution to ALP (U).
Applying splitting-off (Theorem 64) repeatedly on vertex v ∈ U (until its degree
is zero), we obtain another fractional solution z′ to ALP (U) where z′(δ+(v)) =
z′(δ−(v)) = 0. Furthermore, due to the triangle inequality, d · z′ ≤ d · z. Now
observe that z′ is a feasible solution to ALP (U ′) (since it is induced on U ′); hence
OPT(ALP (U ′)) ≤ OPT(ALP (U)), and using this inductively we have monotonicity
for ALP .

This suffices to prove the theorem, as the cost incurred in each iteration of the
Frieze et al. [60] algorithm can be bounded by OPT(ALP (V )), and there are at
most dlog ne iterations.

We note that using splitting-off, one can prove a stronger statement than The-
orem 66, which relates the optimal values of (ALP ) and (ALP ′). It was shown
in [153] that the optimal value of (ALP ′) equals the Held-Karp lower bound [84];
so the next theorem shows that for any ATSP instance, the values of the Help-Karp
bound, (ALP ′) and (ALP ) are all equal. A similar result for the symmetric case was
proved in Goemans and Bertsimas [67], which was also based on splitting-off (for
undirected graphs).

Theorem 68. The optimal values of (ALP ) and (ALP ′) are equal.
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Proof: Clearly the optimal value of (ALP ′) is at most that of (ALP ). We will show
that any fractional solution z to (ALP ) can be modified to a fractional solution z′ to
(ALP ′), such that

∑
e de · z′e ≤

∑
e de · ze, which would prove the theorem. Let L ∈ N

be large enough so that L · z is integral, and let H denote a directed multigraph
with L · zu,v edges from u to v, for all u, v ∈ V . From the feasibility of z in (ALP ),
we know that H is Eulerian and has directed connectivity at least L between every
pair of vertices.

If some v ∈ V has degree strictly greater than L, we reduce its degree by one
as follows. Let v′ be any vertex in V \ v, and Pv,v′ denote a minimal set of edges
that constitutes exactly L edge-disjoint paths from v to v′. Due to minimality, the
number of edges in Pv,v′ incident to v is exactly L and they are all edges leaving
v. Since the degree of v is at least L + 1, there is an edge (v, w) ∈ H \ Pv,v′.
Applying Theorem 64 to edge (v, w), we obtain edge (u, v) ∈ H \ Pv,v′ such that the
directed connectivity between vertices of V \ v in H ′ = (H \ {(u, v), (v, w)})∪ (u,w)
remains at least L. Furthermore, by the choice of (v, w), Pv,v′ ⊆ H ′; so the directed
connectivity from v to v′ in H ′ is at least L. Since H ′ is Eulerian, it now follows
that the directed connectivity between all vertex-pairs in H ′ is also at least L. Thus
we obtain a multigraph H ′ from H which maintains connectivity and decreases the
degree of vertex v by 1. Repeating this procedure for all vertices in V having degree
greater than L, we obtain (an Eulerian) multigraph G having directed connectivity
L (between all pairs of vertices) such that the degree of each vertex equals L.

Note that in the degree reducing procedure above, the only operation we used
was splitting-off. Since d satisfies triangle inequality, the total cost of edges in G
(under length d) is at most that of H. Finally, scaling down G by L, we obtain the
claimed fractional solution z′ to (ALP ′).

5.2.2 Minimum ratio ATSP

We now describe the O(log2 n)-approximation algorithm for minimum ratio ATSP,
which uses Theorem 66 and the stronger splitting-off Theorem 65 for Eulerian
digraphs.

Theorem 69. There is a polynomial time O(log2 n)-approximation algorithm for the
minimum ratio ATSP problem.

Proof: The approximation algorithm for minimum ratio ATSP is based on the
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following LP relaxation for this problem.

min
∑

e de · xe
s.t.

x(δ+(v)) = x(δ−(v)) ∀v ∈ V
x(δ+(S)) ≥ yv ∀S ⊆ V − {r} ∀v ∈ S

(RLP )
∑

v 6=r yv ≥ 1

xe ≥ 0 ∀ edges e
0 ≤ yv ≤ 1 ∀v ∈ V − {r}

To see that this is indeed a relaxation, consider the optimal integral r-tour C∗ that
covers l vertices (excluding r). We construct a solution to (RLP ) by setting yv = 1

l

for all vertices v ∈ C∗, and xe = 1
l

for all edges e ∈ C∗. It is easy to see that
this solution is feasible and has cost d(C∗)

l
which is the optimal ratio. The linear

program (RLP ) can be solved in polynomial time using the Ellipsoid algorithm.
The algorithm is as follows:

1. Let (x, y) denote an optimal solution to (RLP ).

2. Discard all vertices v ∈ V \r with yv ≤ 1
2n

; all remaining vertices have y-values
in the interval [ 1

2n
, 1].

3. Define g = dlog2 n + 1e groups of vertices where group Gi (for i = 1, · · · , g)
consists of all vertices v having yv ∈ ( 1

2i
, 1

2i−1 ].

4. Run the Frieze et al. [60] algorithm on each of Gi ∪ {r} and output the r-tour
with the smallest ratio.

Note that the total y-value of vertices remaining after step 2 is at least 1/2. For
any edge capacities z : V × V → R+ and vertices u, v ∈ V , let λ(u, v; z) denote
the directed connectivity from u to v. Consider any group Gi, and edge-capacities
given by x′i := 2i · xi. It is clear (from feasibility of x in RLP ) that x′i is Eulerian,
and for all v ∈ Gi, λ(r, v;x′i) = λ(v, r;x′i) ≥ 2i · yv ≥ 1. Now we split-off vertices
in V \ (Gi ∪ {r}) one by one, using Theorem 65, which preserves the directed
connectivity between vertices of Gi ∪ {r}. This results in (Eulerian) edge-capacities
zi induced on vertices Gi∪ r satisfying λ(r, v; zi), λ(v, r; zi) ≥ 1 for all v ∈ Gi. Hence
zi is a feasible fractional solution to ALP (Gi ∪ {r}). Furthermore, by triangle
inequality, d · zi ≤ d · x′i = 2i(d · x). Now Theorem 66 implies that there exists an
r-tour on Gi of cost at most β = dlog ne times d · zi. In fact, the Frieze et al. [60]
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algorithm applied on Gi + r produces such a tour. We now claim that one of the
r-tours found in step 4 (over all i = 1, · · · g) has a small ratio:

g

min
i=1

β(d · zi)
|Gi|

≤
g

min
i=1

2iβ(d · x)

|Gi|
≤ β

∑g
i=1 d · x∑g

i=1 |Gi|/2i
≤ 4gβ · (d · x)

The last inequality follows from the fact that there is a total y-weight of at least
1/2 after step 2, so 1

2
≤ ∑v 6=r yv ≤

∑g
i=1

1
2i−1 |Gi| = 2

∑g
i=1

|Gi|
2i

. Thus we have a
4gβ = O(log2 n) approximation algorithm for minimum ratio ATSP.

5.2.3 Algorithm for Directed k-TSP

We now describe how minimum ratio ATSP can be used to obtain an approximation
algorithm for the directed k-TSP problem.

Theorem 70. There is a polynomial time O(log2 n · log k) approximation algorithm
for the directed k-TSP problem.

Proof: We use the α = O(log2 n)-approximation algorithm for the related minimum
ratio ATSP problem. Let OPT denote the optimal value of the directed k-TSP
instance. By performing binary search, we may assume that we know the value of
OPT within a factor 2. We only consider vertices v ∈ V satisfying d(r, v), d(v, r) ≤
OPT; this does not affect the optimal solution. Then we invoke the minimum ratio
ATSP algorithm repeatedly (each time restricted to the currently uncovered vertices)
until the total number of covered vertices t ≥ k

2
. Note that for every instance of the

ratio problem that we solve, there is a feasible solution of ratio ≤ 2·OPT
k

(namely,
the optimal k-TSP tour covering at least k/2 residual vertices). Thus we obtain
an r-tour on t ≥ k

2
vertices having ratio ≤ 2α·OPT

k
; so the length of this r-tour is

at most 2αt·OPT
k

. Now, we split this r-tour into l = d2t
k
e di-paths, each containing

at least t
l
≥ k

4
vertices (this can be done in a greedy fashion). By averaging, the

minimum length di-path in this collection has length at most 2αtOPT/k
l

≤ α · OPT.
Joining the first and last vertices in this di-path to r, we obtain an r-tour containing
at least k

4
vertices, of length at most (α+ 2) ·OPT. So we get an (O(α), 4) bi-criteria

approximation for directed k-TSP. This algorithm can now be used as follows. Until
at least k vertices are covered, do:

• Let k′ denote the number of vertices covered so far; run the bi-criteria approx-
imation algorithm with a target of k − k′, restricted to currently uncovered
vertices.
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A standard set cover based analysis implies that this is an O(α · log k)-approximation
algorithm for directed k-TSP.

5.3 Directed Orienteering

In this section, we consider the orienteering problem in asymmetric metrics. We
consider a slightly more general version than the definition in Section 5.1. In the
directed orienteering problem, we are given metric (V, d), length bound D, origin
s ∈ V and destination t ∈ V ; the goal is to compute an s− t directed path that has
length at most D and maximizes the number of vertices visited. A closely related
problem is directed k-path: given metric (V, d), origin s, destination t, and a target
k, find an s-t directed path of minimum length that visits at least k other vertices.
Note that directed k-path reduces to directed k-TSP when s = t.

The algorithm for directed orienteering is based on the following sequence
of reductions: directed orienteering to ‘directed minimum excess’ (Theorem 73),
directed minimum excess to directed k-path (Theorem 72), and directed k-path to
minimum ratio ATSP (Theorem 71). The first two reductions above are identical to
the corresponding reductions for undirected orienteering in Blum et al. [17] and
Bansal et al. [13]. We prove the following bi-criteria approximation guarantee for
directed k-path.

Theorem 71. A ρ-approximation algorithm for minimum ratio ATSP implies a (3, 4ρ)
bi-criteria approximation algorithm for the directed k-path problem.

Proof: We assume (by performing a binary search) that we know the optimal value
OPT of the directed k-path instance within a constant factor, and let G denote the
directed graph corresponding to metric (V, d) (which has an edge of length d(u, v)
from u to v for every pair of vertices u, v ∈ V ). We modify graph G to obtain graph
H as follows: (a) discard all vertices v such that d(s, v) > OPT or d(v, t) > OPT;
and (b) add an extra edge from t to s of length OPT. In the rest of this proof, we
refer to the shortest path metric induced by H as (V, l). Note that each tour in
metric l corresponds to a tour in graph H (using shortest paths in H for each metric
edge); below, any tour in metric l will refer to the corresponding tour in graph H.
Since there is an s-t path of length OPT (in metric d) covering k vertices, appending
the (t, s) edge, we have an s-tour σ∗ of length at most 2 ·OPT (in metric l) covering
k + 1 vertices.
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Now, we run the minimum ratio ATSP algorithm with root s in metric l repeatedly
until either (1) k

2
vertices are covered and the extra (t, s) edge is never used in the

current tour (in graph H); or (2) the extra (t, s) edge is used for the first time in
the current tour (in H). Let σ be the s-tour obtained (in graph H) at the end of this
iteration, and h the number of vertices covered. Note that each s-tour added in a
single call to minimum ratio ATSP, may use the extra (t, s) edge at most once (by
an averaging argument). So in case (1), the (t, s) edge is absent in σ, and in case
(2), the (t, s) edge is used exactly once and it is the last edge in σ. Note also that
during each call of minimum ratio ATSP, there is a feasible solution of ratio 2OPT

k

(σ∗ restricted to the remaining vertices); so the ratio of the s-tour σ, l(σ)
h
≤ ρ · 2OPT

k
.

From σ we now obtain a feasible s-t path τ in metric d as follows. In case (1), add
a direct (s, t) edge: τ = σ · (s, t); in case (2), remove the only copy of the extra
(t, s) edge (occurring at the end of σ): τ = σ \ {(t, s)}. In either case, s-t path τ
contains h vertices and has length d(τ) ≤ 2ρh

k
OPT + OPT. Note that in case (1),

h ≥ k
2
; and in case (2), since the extra (t, s) edge is used, OPT

h
≤ l(σ)

h
≤ 2ρOPT

k
, so

h ≥ k
2ρ

. Hence in either case, τ contains h ≥ k
2ρ

vertices and d(τ) ≤ 4ρh
k

OPT. We
now greedily split τ into maximal paths, each of which has length at most OPT; the
number of subpaths obtained is at most d(τ)

OPT
≤ 4ρh

k
. So one of these paths contains

at least h/(4ρh
k

) = k
4ρ

vertices. Adding direct edges from s to the first vertex on this
path and from the last vertex on this path to t, we obtain an s-t path of length at
most 3 · OPT containing at least k

4ρ
vertices.

As in Blum et al. [17], we define the excess of an s-t di-path as the difference of
the path length and the shortest path distance from s to t. The directed minimum
excess problem is defined as follows: given an asymmetric metric (V, d), origin (s)
and destination (t) vertices, and a target k, find an s-t di-path of minimum excess
that visits at least k other vertices. The next two theorems together reduce the
directed orienteering problem to the directed k-path problem, for which we just
obtained an approximation algorithm.

Theorem 72 (Blum et al. [17]). An (α, β) bi-criteria approximation algorithm for
the directed k-path problem implies a (2α− 1, β) bi-criteria approximation algorithm
for the directed minimum excess problem.

Theorem 73 (Bansal et al. [13]). An (α, β) bi-criteria approximation algorithm for
the directed minimum excess problem implies an dαe · β approximation algorithm for
the directed orienteering problem.

The proofs of Theorems 72 and 73 are identical to the corresponding proofs in
the undirected setting, and are not repeated here. The only difference from the
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undirected case is that we consider bi-criteria guarantees for the directed k-path
and minimum excess problems. We now obtain a result that relates the directed
orienteering problem and minimum ratio ATSP.

Corollary 74. A ρ-approximation algorithm for the minimum ratio ATSP prob-
lem implies an O(ρ)-approximation algorithm for the directed orienteering problem.
Conversely, a ρ-approximation algorithm for directed orienteering implies an O(ρ)-
approximation algorithm for minimum ratio ATSP.

Proof: The first direction follows directly from Theorems 71,72 and 73. For the
other direction, we are given a ρ-approximation algorithm for directed orienteering.
Let D denote the length of some minimum ratio tour σ∗, t the last vertex visited by
σ∗ (before returning to the root r), and h the number of vertices it covers; so the
optimal ratio is D

h
. The algorithm for minimum ratio ATSP first guesses a value D′

such that D′ ≤ D ≤ 2 ·D′, and the last vertex t. Note that we can guess powers of
two for the value of D′, which gives O(log2(n ·dmax)) possibilities for D′ (where dmax
is the length of the longest edge). Also, the number of possibilities for t is at most n;
so the algorithm only makes a polynomial number of guesses. The algorithm then
runs the directed orienteering algorithm with r and t as the start/end vertices and a
length bound of 2D′ − d(t, r) ≥ D − d(t, r). Note that removing the last (t, r) edge
from σ∗ gives a feasible solution to this orienteering instance that covers h vertices.
Hence the ρ-approximation algorithm is guaranteed to find an r-t di-path covering
at least h

ρ
vertices, having length at most 2D′ − d(t, r). Now, adding the (t, r) edge

to this path gives an r-tour of ratio at most 2D′/(h
ρ
) ≤ 2ρD

h
.

Corollary 74 and Theorem 69 imply an O(log2 n)-approximation algorithm for
directed orienteering. Furthermore, any improvement in minimum ratio ATSP
implies a corresponding improvement for directed orienteering.

5.4 Directed Minimum Latency

In this section, we present our algorithm for the directed latency problem. First we
establish the equivalence (up to a constant factor) of the ‘tour’ and ‘path’ versions of
the latency problem. Recall that Path latency involves computing a spanning r-path
π that minimizes

∑
v∈V d

π(r, v) (here dπ(r, r) = 0); and Tour latency involves finding
a spanning r-tour τ that minimizes

∑
v∈V d

τ (r, v) (here dτ (r, r) = d(τ)).
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Theorem 75. The approximability of the path and tour versions of directed latency
are within a factor 4 of each other.

Proof: Reducing Tour-latency to Path-latency. We first show that any approxima-
tion algorithm for path-latency implies the same guarantee for tour-latency. Modify
the given metric (V, d) (for tour-latency) by adding a new vertex r′ with distances
to vertices V as follows: d(v, r′) = d(v, r) and d(r′, v) =∞ for all v ∈ V . It is clear
that any spanning r-path in the modified metric corresponds to a spanning r-tour in
the original metric followed by edge (r, r′) (which has length 0). Hence there is a
correspondence between solutions to tour-latency and path-latency, that maintains
the objective value.

Reducing Path-latency to Tour-latency. Let A be any α-approximation algorithm
for tour-latency (we assume α ≤ n). Set β = d4αe + 1 and define a new metric
(Ṽ , d̃) which is obtained from (V, d) by making β copies of each vertex in V \ r (for
each v ∈ V \ r, all its copies in Ṽ are at distance 0 from each other). Let ˜pLat
(resp. pLat) denote the optimal value of path-latency on d̃ (resp. d); note that

˜pLat = β · pLat. We assume (by scaling) that the smallest non-zero distance in d is 1,
and that there is a finite length spanning r-path in metric d (otherwise the latency
problem is trivial); so pLat ≤ n2dmax where dmax is the maximum finite distance in
d. We further modify metric d̃ by adding dummy edges of length L (exact value to
be set later) from each vertex in Ṽ \ r to r, and let l denote the shortest path metric
on this modified graph. Note that the optimal value of tour-latency on metric l is
tLat ≤ 2 · ˜pLat + L. The algorithm for path-latency on d is as follows.

• For each 0 ≤ i ≤ lg(βn2dmax) do:

1. Set L← 2i and l to be the metric as defined above.

2. Run algorithm A for tour-latency on l to get tour τ . Let π denote the
portion of τ until the first usage of a dummy edge.

3. If π visits at least one copy of each vertex in V , consider this as a feasible
solution to path-latency on d; otherwise skip this iteration.

• Output the best path-latency solution encountered in Step 3 above.

Note that since 1 ≤ ˜pLat ≤ βn2dmax, there is an iteration where ˜pLat ≤ L =
2i ≤ 2 · ˜pLat. We now argue that in this iteration i, the above algorithm gets a
feasible solution in Step 3 with path-latency value (on metric d) at most 4α · pLat.
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The tour τ found by algorithm A has latency (in metric l) Lat(τ) ≤ α · tLat ≤
α(2 · ˜pLat + L) ≤ 4α · ˜pLat. If x denotes the number of unvisited vertices of Ṽ in π
(i.e. when a dummy edge is used for the first time in τ) then Lat(τ) ≥ L · x; hence
x ≤ Lat(τ)/L ≤ 4α · ˜pLat/L ≤ 4α < β. Since Ṽ has β copies of each vertex of V , π
visits at least one copy of each V -vertex: so Step 3 records π as a potential solution.
We modify τ so that it visits all copies of each V -vertex the first time some copy is
visited: this only reduces the latency of τ . After this modification, note that dummy
edges are used in τ only after all vertices Ṽ are visited: in other words, τ induces
a path-latency solution on metric (Ṽ , d̃) of latency value Lat(τ) ≤ 4α · ˜pLat, that
does not use any dummy edge. Hence the corresponding solution π in metric (V, d)
has latency Lat(π) = 1

β
Lat(τ) ≤ 1

β
4α · ˜pLat = 4α · pLat. Thus the best solution to

path-latency on d obtained over all iterations has value at most 4α · pLat, and we
have a 4α approximation algorithm.

The next proposition shows that the directed latency problem is at least as hard
to approximate as the Asymmetric Traveling Salesman Problem.

Proposition 76. An α-approximation for directed latency (path version) implies a
4α-approximation for ATSP. This reduction also holds in the special case of metrics
induced by unweighted digraphs.

Proof: We only present the reduction for unweighted metrics (the general case is
identical). Let A be an α-approximation algorithm for the (path version) directed
latency on unweighted metrics, and G = (V,E) any n-vertex digraph that induces a
shortest-path metric. We show how A can be used to obtain a 4α approximation
for ATSP on G. Pick some root r ∈ V and modify G by adding to it a directed path
of n new vertices U originating at r: let H be the graph so obtained. A candidate
solution for latency on H first visits the vertices V along the optimal ATSP tour
on G and then visits U along the new path: this implies that the optimal latency
on H, Lat∗(H) ≤ 2n(Tsp∗(G) + n) where Tsp∗(G) is the optimal value of ATSP on
G. Note that Tsp∗ ≥ n (G has n vertices), and so Lat∗(H) ≤ 4nTsp∗(G). Note
also that any spanning r-path in H must first visit all the vertices V in some r-tour
(that lies in graph G) and then the vertices U along the new path. Since there
are n vertices (those in U) that appear after the spanning tour on G, we have
Lat∗(H) ≥ n · Tsp∗(G). Thus we have 1

4n
Lat∗(H) ≤ Tsp∗(G) ≤ 1

n
Lat∗(H), which

implies the proposition.

Before presenting the algorithm for directed latency, we define and describe an
LP relaxation for the Asymmetric Traveling Salesman Path (ATSP-path) problem.
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This LP is used in the algorithm for directed latency.

ATSP-path. Here we are given a directed metric (V, d) and specified start and end
vertices s, t ∈ V . The goal is to compute the minimum length s− t path that visits all
the vertices. As mentioned earlier, it is known that the approximability of ATSP-path
and ATSP are equal (up to a constant factor) [53]. We are concerned with the
following LP relaxation of the ATSP-path problem.

min
∑

e de · xe
s.t.

x(δ+(u)) = x(δ−(u)) ∀u ∈ V − {s, t}
x(δ+(s)) = x(δ−(t)) = 1

(ATSP − path) x(δ−(s)) = x(δ+(t)) = 0
x(δ−(S)) ≥ 2

3
∀{u} ⊆ S ⊆ V \ {s}, ∀u ∈ V

xe ≥ 0 ∀ arcs e

The most natural LP relaxation for ATSP-path would have a one in the right-
hand-side of the cut constraints, instead of 2

3
as above. The above LP further relaxes

the cut-constraints, and is still a valid relaxation of the problem. The precise value
in the right-hand-side of the cut constraints is not important for our application:
we only require it to be some constant strictly between 1

2
and 1. Note that if the

right-hand-side of the cut constraints is 1
2

then the LP has infinite integrality gap,
as shown by an instance consisting of two vertex disjoint paths from s to t. In the
rest of this section, we let ρ denote the integrality gap of this LP. We study this LP
further in Section 5.5, where we obtain an upper bound ρ = O(

√
n).

5.4.1 Algorithm for directed latency

We assume (by scaling) that the smallest non-zero distance in the given metric
(V, d) is one, and let dmax denote the largest finite distance. The algorithm for
directed latency is also given a parameter Ω( 1

logn
) ≤ ε < 1: it produces an O(ρ · nε

ε3
)

approximation in nO(1/ε) time.

For the given instance of directed latency on metric (V, d) with root r, let π
denote an optimal latency path, L = d(π) its length, and OPT its total latency. Note
that 1 ≤ L ≤ n · dmax. For any two vertices u, v ∈ V , recall that dπ(u, v) denotes the
length along path π from u to v; note that dπ(u, v) is finite only if u appears before
v on path π. The algorithm first guesses the length L (within factor 2) and the



5.4 Directed Minimum Latency 109

following l = d1
ε
e vertices on the optimal path: for each i = 1, · · · , l, vi is the last

vertex on π with dπ(r, vi) ≤ niε L
n
. We set v0 = r and note that vl is the last vertex

visited by π. Let F := {v0, v1, · · · , vl} denote these breakpoints. Consider the linear
program (MLP ) in Figure 5.1

min
l−1∑
i=0

n(i+1)ε · L
n
·
(∑
u/∈F

yiu

)
(5.1)

zi
(
δ+(u)

)
= zi

(
δ−(u)

)
∀u ∈ V \ {vi, vi+1}, ∀i = 0, · · · , l − 1 (5.2)

zi
(
δ+(vi)

)
= zi

(
δ−(vi+1)

)
= 1 ∀i = 0, · · · , l − 1 (5.3)

zi
(
δ−(vi)

)
= zi

(
δ+(vi+1)

)
= 0 ∀i = 0, · · · , l − 1 (5.4)

zi
(
δ−(S)

)
≥ yiu ∀{u} ⊆ S ⊆ V \ {vi}, ∀u ∈ V \ F, (5.5)

∀i = 0, · · · , l − 1
l−1∑
i=0

yiu ≥ 1 ∀u ∈ V \ F (5.6)

∑
e

de · zi(e) ≤ n(i+1)ε · L
n

∀i = 0, · · · , l − 1 (5.7)

zi(e) ≥ 0 ∀ edges e, ∀i = 0, · · · , l − 1 (5.8)
yiu ≥ 0 ∀u ∈ V \ F, ∀i = 0, · · · , l − 1 (5.9)

Figure 5.1: Linear program (MLP ) for directed latency.

The linear program (MLP ) requires a unit flow zi to be sent from vi to vi+1 (for
all 0 ≤ i ≤ l − 1) such that the total extent to which each vertex u is covered (over
all these flows) is at least 1. The constraints (5.2)-(5.4) ensure that zi represents
a fractional path from vi to vi+1. The constraint (5.5) measures the extent yiu to
which vertex u is covered in flow zi, and constraint (5.6) ensures that each vertex is
covered to extent at least one. In addition, constraint (5.7) enforces the length of
the i-th flow (under the length function d) to be at most n(i+1)ε · L

n
. It is easy to see

that this LP can be solved in polynomial time for any guess {vi}li=1. Furthermore
the number of possible guesses are: log2(n · dmax) for the length L, and nl for the
breakpoints F . Hence we can obtain the optimal solution of (MLP ) over all guesses,
in nO(1/ε) time.

Claim 77. The minimum value of (MLP ) over all possible guesses of {vi}li=0 is at most
2nε · OPT.
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Proof: This claim is straightforward, based on the correct guesses from an optimal
path. Recall that π is an optimal latency path for the given instance. One of
the guesses of the vertices {vi}li=0 satisfies the following condition: each vi (for
i = 1, · · · , l) is the last vertex on π with dπ(s, vi) ≤ niε L

n
. For each i = 0, · · · , l − 1,

define Oi to be the set of vertices that are visited between vi and vi+1 in path π. Let zi

denote the (integral) edge values corresponding to path π restricted to the vertices
Oi ∪ {vi, vi+1}; note that the cost of this flow d · zi ≤ dπ(r, vi+1) ≤ n(i+1)ε L

n
. Also set

yiu = 1 for u ∈ Oi and 0 otherwise, for all i = 0, · · · , l − 1. Note that each vertex
in V \ {vi}li=0 appears in some set Oi, and each zi supports unit flow from vi to all
vertices in Oi; hence this integral solution {zi, yi}l−1

i=0 is feasible for (MLP ). The cost
of this solution is

∑l−1
i=0 n

(i+1)ε L
n
· |Oi| ≤ nεL+ nε

∑l−1
i=1 n

iε L
n
· |Oi| ≤ 2nε · OPT, since

|O0| ≤ n, L ≤ OPT, and each vertex u ∈ Oi (for i = 1, · · · , l− 1) has dπ(r, u) > niε L
n

.

We now assume that we have an optimal fractional solution {zi, yi}l−1
i=0 to (MLP )

over all guesses (with objective value as in Claim 77), and show how to round it to
obtain vi − vi+1 paths for each i = 0, · · · , l − 1, which when concatenated give rise
to one r-path having a small latency objective. We say that a vertex u is well-covered
by flow zi if yiu ≥ 1

4l
. We partition the vertices V \ F into two parts: V1 consists of

those vertices that are well-covered for at least two values of i ∈ {0, 1, · · · , l}, and
V2 consists of all other vertices (i.e. well-covered for only one i ∈ {0, 1, · · · , l}. Note
that each vertex in V2 is in fact covered by some flow zi to the extent at least 3

4
. See

also Figure7.1.

In the next two subsections, we give algorithms to service each of V1 and V2

separately using local paths, and then in Section 5.4.4 we show to stitch all the local
paths into a single spanning r-path.

5.4.2 Servicing vertices V1

We partition V1 into l parts as follows: Ui (for i = 0, · · · , l − 1) consists of those
vertices of V1 that are well-covered by zi but not well-covered by any flow zj for
j > i. Each set Ui is serviced separately by means of a suitable ATSP solution on
Ui ∪ {vi} (see Lemma 79): this step requires a bound on the length of back-arcs
from Ui-vertices to vi, which is ensured by the next claim.

Claim 78. For each vertex w ∈ Ui, d(w, vi) ≤ 8l · niε L
n
.
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vi+2v0 = r

u

vjvi vi+1 vj+1
vl

ww

u is V2-vertex, well-covered in only one piece: i

w is V1-vertex, well-covered in two pieces: i + 1 and j

The portion of the LP solution used to bound the
back-arc (w, vj) (Claim 2) is shown by heavy edges

Figure 5.2: Guessed breakpoints v0, · · · , vl and flows sent by the LP between
consecutive breakpoints.

Proof: Let j ≤ i−1 be such that yjw ≥ 1
4l

; such an index exists by the definition of V1

and Ui. In other words, edge-capacities zj support at least 1
4l

flow from w to vj+1; so
4l · zj supports a unit flow from w to vj+1. Thus d(w, vj+1) ≤ 4l(d · zj) ≤ 4l · n(j+1)ε L

n
.

Note that for any 0 ≤ k ≤ l, zk supports a unit flow from vk to vk+1; hence
d(vk, vk+1) ≤ d · zk ≤ n(k+1)ε L

n
. Now, d(w, vi) ≤ d(w, vj+1) +

∑i−1
k=j+1 d(vk, vk+1) ≤

4lL
n

∑i−1
k=j n

(k+1)ε ≤ 8l · niε L
n
.

We now show how all vertices in Ui can be covered by a vi-tour.

Lemma 79. For each i = 0, · · · , l− 1, there is a poly-time computable vi-tour covering
vertices Ui, of length O( 1

ε2
n(i+1)ε log n · L

n
).

Proof: Fix an i ∈ {0, · · · , l − 1}; note that the edge capacities zi are Eulerian
at all vertices except vi and vi+1. Although applying splitting-off (Theorem 65)
requires an Eulerian graph, we can apply it to zi after adding a dummy (vi+1, vi)
edge of capacity 1, and observing that flows from vi or flows into vi+1 do not use
the dummy edge. So using Theorem 65 on vertices V \ (Ui ∪ {vi, vi+1}) and triangle
inequality, we obtain edge capacities α on the edges induced by Ui ∪ {vi, vi+1} such
that: d · α ≤ d · zi ≤ n(i+1)ε · L

n
and α supports yiu ≥ 1

4l
flow from vi to u and from

u to vi+1, for every u ∈ Ui. Below we use B to denote the quantity n(i+1)ε · L
n
.

Consider adding a dummy edge from vi+1 to vi of length B in the induced metric on
Ui ∪ {vi, vi+1}, and set the edge capacity α(vi+1, vi) on this edge to be 1. Note that
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α is Eulerian, has total cost at most 2B, and every non-trivial cut has value at least
min{yiu : u ∈ Ui} ≥ 1

4l
. So scaling α uniformly by 4l, we obtain a fractional feasible

solution to ATSP on the vertices Ui ∪ {vi, vi+1} (in the modified metric), having cost
at most 8l ·B. Since the Frieze et al. [60] algorithm computes an integral tour of
length at most O(log n) times any fractional feasible solution (see Williamson [153]
or Theorem 68), we obtain a vi-tour τ on the modified metric of length at most
O(l log n) · B. Since the dummy (vi+1, vi) edge has length B, it may be used at
most O(l log n) times in τ . So removing all occurrences of this dummy edge gives
a set of O(l log n) paths from vi to vi+1 in the original metric, that together cover
Ui. Ignoring vertex vi+1 and inserting the direct edge to vi from the last Ui vertex
in each of these paths gives us a vi-tour covering Ui. Finally note that each of the
edges to vi inserted above has length O(l · niε)L

n
= O(l) · B (from Claim 78), and

the number of edges inserted is O(l log n). So the length of this vi-tour is at most
O(l log n) ·B +O(l2 log n) ·B = O( 1

ε2
n(i+1)ε log n · L

n
).

5.4.3 Servicing vertices V2

We partition vertices in V2 into W0, · · · ,Wl−1, where each Wi contains the vertices
in V2 that are well-covered by zi. As noted earlier, each vertex u ∈ Wi in fact
has yiu ≥ 3

4
> 2

3
. We now consider any particular Wi and obtain a vi − vi+1 path

covering the vertices of Wi. Vertices in Wi are covered by a fractional vi − vi+1

path as follows. Splitting off vertices V \ (Wi ∪ {vi, vi+1}) in the fractional solution
zi gives us edge capacities β in the metric induced on Wi ∪ {vi, vi+1}, such that:
β supports at least 2

3
flow from vi to u and from u to vi+1 for all u ∈ Wi, and

d ·β ≤ d · zi (this is similar to how edge-capacities α were obtained in Lemma 5.4.2).
Note that β is a fractional feasible solution to the LP relaxation (ATSP − path)
for the ATSP-path instance on the metric induced by Wi ∪ {vi, vi+1} with start-
vertex vi and end-vertex vi+1. So if ρ denotes the (constructive) integrality gap of
(ATSP − path), we can obtain an integral vi-vi+1 path that spans Wi, having length
at most ρ(d · β) ≤ ρ(d · zi) ≤ ρn(i+1)ε L

n
. This requires a polynomial time algorithm

that computes an integral path of length at most ρ times the LP value; However
even a non-constructive proof of integrality gap ρ′ implies a constructive integrality
gap ρ = O(ρ′ log n), using the algorithm in Chekuri and Pal [32]. So we obtain:

Lemma 80. For each i = 0, · · · , l − 1, there is a poly-time computable vi-vi+1 path
covering Wi of length at most ρ · n(i+1)ε L

n
.
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5.4.4 Stitching the local paths

We now stitch the vi-tours that service V1 (Lemma 79) and the vi − vi+1 paths that
service V2 (Lemma 80), to obtain a single r-path that covers all vertices. For each
i = 0, · · · , l − 1, let πi denote the vi-tour servicing Ui, and let τi denote the vi − vi+1

path servicing Wi. The final r-path that the algorithm outputs is the concatenation
τ ∗ = π0 · τ0 · π1 · · · πl−1 · τl−1. From Lemmas 79 and 80, it follows that for all
0 ≤ i ≤ l− 1, d(πi) ≤ O( 1

ε2
log n) · n(i+1)ε L

n
and d(τi) ≤ O(ρ) · n(i+1)ε L

n
. So the length

of τ ∗ from r until all vertices of Ui∪Wi are covered is at most O(ρ+ 1
ε2

log n) ·n(i+1)ε L
n

(as ε ≥ Ω( 1
logn

)). This implies that the total latency of vertices in Ui ∪Wi along path
τ ∗ is at most O(ρ+ 1

ε2
log n) · n(i+1)ε L

n
· (|Wi|+ |Ui|).

Moreover, the contribution of each vertex in Ui (resp., Wi) to the LP objective is
at least 1

4l
· n(i+1)ε L

n
(resp., 3

4
· n(i+1)ε L

n
). Thus the contribution of Ui ∪Wi to the LP

objective is at least 1
4l
· n(i+1)ε L

n
· (|Wi|+ |Ui|). Using the upper bound on the latency

along τ ∗ for Ui ∪Wi, and summing over all i, we obtain that the total latency along
τ ∗ is at most O(1

ε
ρ+ 1

ε3
log n) times the optimal value of (MLP ). From Claim 77, it

now follows that the latency of τ ∗ is O(1
ε
ρ+ 1

ε3
log n)nε · OPT.

Theorem 81. For any Ω( 1
logn

) < ε < 1, there is an O(ρ+logn
ε3
· nε)-approximation

algorithm for directed latency, that runs in time nO(1/ε), where ρ is the integrality gap
of the LP (ATSP − path). Using ρ = O(

√
n), we have a polynomial time O(n

1
2

+ε)
approximation algorithm for any fixed ε > 0.

We prove the bound ρ = O(
√
n) in the next section. A bound of ρ = O(log n)

on the integrality gap of (ATSP − path) would imply that this algorithm is a
quasi-polynomial time O(log4 n) approximation for directed latency.

5.5 Integrality Gap of ATSP-path

In this section we prove an upper bound of ρ = O(
√
n) on the integrality gap of the

linear relaxation (ATSP − path) (c.f. Section 5.4). Even for the seemingly stronger
LP with one in the right-hand-side of the cut constraints, the best bound on the
integrality gap we can obtain is O(

√
n): this follows from the cycle-cover based

algorithm of Lam and Newmann [101]. As mentioned in Chekuri and Pal [32], it is
unclear whether their O(log n)-approximation can be used to bound the integrality
gap of such a linear program. In this section, we present a rounding algorithm for
the weaker LP (ATSP − path), which shows ρ = O(

√
n). Our algorithm is similar
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to the ATSP-path algorithm of Lam and Newmann [101] and the ATSP algorithm
of Frieze et al. [60]; but it needs some more work as we compare the algorithm’s
solution against a fractional solution to (ATSP − path). We note that the proof
holds for any fixed constant 1

2
< c < 1 in the right-hand-side of the cut-constraints

of (ATSP − path). Furthermore the reduction from directed latency (Theorem 81)
also holds for any constant 1

2
< c < 1. However if c ≤ 1

2
, the integrality gap of the

LP (ATSP − path) is infinite (eg., a graph consisting of two vertex disjoint paths
from s to t).

Let x be any feasible solution to (ATSP − path). We now show how x can be
rounded to obtain an integral path spanning all vertices, of total length O(

√
n)(d ·x).

Let N denote a network (corresponding to the directed metric) on vertices V with
edges between all pairs of vertices, where the cost of each edge equals its metric
length and the capacity of each edge is ∞. An extra (t, s) edge of zero cost and
capacity three is added to N . The rounding algorithm for x is as follows.

1. Initialize the set of representatives R ← V \ {s, t}, and the current integral
solution σ = ∅.

2. While R 6= ∅, do:

(a) Compute a minimum cost circulation C in N [R ∪ {s, t}] (the network N
induced on R ∪ {s, t}) that sends at least 2 units of flow through each
vertex in R. Note that any circulation (in particular C) can be expressed
as an edge-disjoint sum of cycles.

(b) Repeatedly extract from C all cycles that do not use the extra edge (t, s),
to obtain circulation A ⊆ C. Let R′ ⊆ R be the set of R-vertices that have
degree at least 1 in A.

(c) Let B = C \ A; note that B is also a circulation and each cycle in it uses
edge (t, s).

(d) If |R′| ≥ √n, do:

i. Set σ ← σ ∪ A.
ii. Modify R by dropping all but one R′-vertex from each strong compo-

nent of A.

(e) If |R′| < √n, do:

i. Take an Euler tour on B and remove all (at most 3) occurrences of
edge (t, s) to obtain s-t paths P1, P2, P3.
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ii. Restrict each path P1, P2, P3 to vertices in R \R′ by short-cutting over
R′-vertices, to obtain paths P̃1, P̃2, P̃3.

iii. Take a topological ordering s = w1, w2, · · · , wh = t of vertices (R \
R′) ∪ {s, t} relative to the edge-set P̃1 ∪ P̃2 ∪ P̃3.

iv. Set σ ← σ ∪ {(wj, wj+1) : 1 ≤ j ≤ h− 1}.
v. Repeat for each vertex u ∈ R′: find an edge (w,w′) ∈ σ such that
x supports 1

6
flow from w to u and from u to w′, and modify σ ←

(σ \ (w,w′)) ∪ {(w, u), (u,w′)}.
vi. Set R← ∅.

3. Output any spanning s-t walk in σ.

We now show the correctness and performance guarantee of the rounding
algorithm. We first bound the cost of the circulation obtained in Step 2a during any
iteration.

Claim 82. For any R ⊆ V \{s, t}, the minimum cost circulation C computed in step 2a
has cost at most 3(d · x).

Proof: The edge values x define a fractional s− t path in network N . Extend x to
be a (fractional) circulation by setting x(t, s) = 1. We can now apply splitting-off
(Theorem 65) on each vertex in V \ R \ {s, t}, to obtain capacities x′ in network
N [R ∪ {s, t}], such that every pairwise connectivity is preserved and (by triangle
inequality) d · x′ ≤ d · x. Note that since neither s nor t is split-off, the extra (t, s)
edge is not modified in the splitting-off steps. So x′ supports 2

3
flow from s to each

vertex in R; this implies that 3x′ is a feasible fractional solution to the circulation
instance solved in step 2a (note that x′(t, s) remains 1, so solution 3x′ satisfies
the capacity of edge (t, s)). Finally, note that the linear relaxation for circulation
is integral (c.f. Nemhauser and Wolsey [117]). So the minimum cost (integral)
circulation computed in step 2a has cost at most 3d · x′ ≤ 3d · x.

Note that each time step 2d is executed, |R| decreases by at least
√
n/2 (each

strong component in A has at least 2 vertices); so there are at most O(
√
n) such

iterations and the cost of σ due to additions in this step is O(
√
n)(d · x) (using

Claim 82). Step 2e is executed at most once (at the end); the next claim shows that
this step is well defined and bounds the cost incurred.

Claim 83. In step 2(e)iii, there exists a topological ordering w1, · · · , wh of (R \R′) ∪
{s, t} w.r.t. edges P̃1∪P̃2∪P̃3. Furthermore, {(wj, wj+1) : 1 ≤ j ≤ h−1} ⊆ P̃1∪P̃2∪P̃3.
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Proof: Note that any cycle in P1 ∪ P2 ∪ P3 is a cycle in B that does not use edge
(t, s), which is not possible by the construction of B (every cycle in B uses edge
(t, s)); so P1 ∪ P2 ∪ P3 is acyclic. It is clear that if P̃1 ∪ P̃2 ∪ P̃3 contains a cycle,
so does P1 ∪ P2 ∪ P3 (each path P̃i is obtained by short-cutting the corresponding
path Pi). Hence P̃1 ∪ P̃2 ∪ P̃3 is also acyclic, and there is a topological ordering (say
w1, · · · , wh) of (R \ R′) ∪ {s, t} relative to edges P̃1 ∪ P̃2 ∪ P̃3. We now prove the
second part of the claim. In circulation C, each vertex of R has at least 2 units of
flow through it; but vertices R \ R′ are not covered (even to an extent 1) in the
circulation A. So each vertex of R\R′ is covered to extent at least 2 in circulation B,
and hence in P1 ∪ P2 ∪ P3. In other words, each vertex of R \R′ appears on at least
two of the three s− t paths P1, P2, P3. This also implies that (after the short-cutting)
each R \R′ vertex appears on at least two of the three s− t paths P̃1, P̃2, P̃3. Now
observe that for each consecutive pair (wj, wj+1) (1 ≤ j ≤ h− 1) in the topological
order, there is a common path P̃k (for some k = 1, 2, 3) that contains both wj and
wj+1. Furthermore, in P̃k, wj and wj+1 are consecutive in that order (otherwise,
the topological order would contain a back edge!). Thus each edge (wj, wj+1) (for
1 ≤ j ≤ h− 1) is present in P̃1 ∪ P̃2 ∪ P̃3, and we obtain the claim.

We also need the following claim to bound the cost of insertions in step 2(e)v.

Claim 84. For any two vertices u′, u′′ ∈ V , if λ(u′, u′′;x) (resp. λ(u′′, u′;x)) denotes
the directed connectivity under x from u′ to u′′ (resp. from u′′ to u′), then λ(u′, u′′;x) +
λ(u′′, u′;x) ≥ 1

3
.

Proof: If either u′ or u′′ is in {s, t}, the claim is obvious since for every vertex v, x
supports 2

3
flow from s to v and from v to t. Otherwise {s, t, u′, u′′} are distinct, and

define capacities x̂ as:

x̂(v1, v2) =

{
x(v1, v2) for edges (v1, v2) 6= (t, s)

1 for edge (v1, v2) = (t, s)

Observe that x̂ is Eulerian; now apply Theorem 65 to x̂ and split-off all vertices
of V except T = {s, t, u′, u′′}, and obtain capacities y on the edges induced on T .
We have λ(t1, t2; y) = λ(t1, t2; x̂) for all t1, t2 ∈ T . Note that since neither t nor s
is split-off, their degrees in y are unchanged from x̂, and also y(t, s) ≥ x̂(t, s) = 1.
Since the out-degree of t in x̂ (hence in y) is 1 and yt,s ≥ 1, we have y(t, u′) =
y(t, u′′) = 0 and y(t, s) = 1. The capacities y support at least 2

3
flow from s to u′; so

y(s, u′) + y(u′′, u′) ≥ 2
3
. Similarly for u′′, we have y(s, u′′) + y(u′, u′′) ≥ 2

3
, and adding

these two inequalities we get y(u′, u′′)+y(u′′, u′)+(y(s, u′)+y(s, u′′)) ≥ 4
3
. Note that
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y(s, u′) + y(s, u′′) ≤ y(δ+(s)) = x̂(δ+(s)) = 1 (the degree of s is unchanged in the
splitting-off). So y(u′, u′′) + y(u′′, u′) ≥ 1

3
. Since y is obtained from x̂ by a sequence

of splitting-off operations, it follows that x̂ supports flows corresponding to all edges
in y simultaneously. In particular, the following flows are supported disjointly in x̂:
F1 that sends y(u′, u′′) units from u′ to u′′, F2 that sends y(u′′, u′) units from u′′ to u′,
and F3 that sends y(t, s) = 1 unit from t to s. Hence the flows F1 and F2 are each
supported by x̂ and do not use the extra (t, s) edge (since x̂(δ+(t)) = x̂(t, s) = 1).
This implies that the flows F1 and F2 are both supported by the original capacities
x (where x(t, s) = 0). Hence λ(u′, u′′;x) + λ(u′′, u′;x) ≥ y(u′, u′′) + y(u′′, u′) ≥ 1

3
.

From Claim 83, we obtain that the cost addition in step 2e(iv) is at most
d(P̃1) + d(P̃2) + d(P̃3) ≤ d(P1) + d(P2) + d(P3) ≤ 3(d · x) (from Claim 82). We now
consider the cost addition to σ in step 2(e)v. Claim 84 implies that for any pair
of vertices u′, u′′ ∈ V , x supports 1

6
flow either from u′ to u′′ or from u′′ to u′. Also

for every vertex u, x supports 2
3

flow from s to u and from u to t. Since σ always
contains an s− t path in step 2(e)v, there is always some position along this s− t
path to insert any vertex u ∈ R′ as required in step 2(e)v. Furthermore, the cost
increase in any such insertion step is at most 12(d · x). Hence the total cost for
inserting all the vertices R′ into σ is at most 12|R′|(d · x) = O(

√
n)(d · x). Thus the

total cost of σ at the end of the algorithm is O(
√
n)(d · x). Finally note that σ is

connected (in the undirected sense), Eulerian at all vertices in V \ {s, t} and has
outdegree 1 at s. This implies that σ corresponds to a spanning s − t walk. This
completes the proof of the following.

Theorem 85. The integrality gap of (ATSP − path) is at most O(
√
n).

Credits: The results in this chapter are from “Poly-logarithmic Approximation Al-
gorithms for Directed Vehicle Routing Problems” [111] and “The Directed Minimum
Latency Problem” [112], obtained jointly with R. Ravi. In independent work, Chekuri
et al. [30] also obtained the results on directed orienteering reported here, although
via different techniques.





Chapter 6

Permutation Flowshop Scheduling

6.1 Introduction

In the flow shop problem, there are m machines located in a fixed order (say, 1
through m), and n jobs each of which consists of a sequence of operations on
machines (in the order 1 through m). For any job j ∈ {1, . . . , n} and machine
i ∈ {1, . . . ,m} the length of the operation of job j on machine i is called its
processing time pij. A schedule for the jobs is feasible if (i) each machine processes
at most one job at any time; (ii) for each job, its operations on the machines are
processed in the fixed order 1 through m; and (iii) each operation (of a job on a
machine) is processed without interruption. The flow shop problem is a special case
of acyclic job shop scheduling [40, 48], which in turn is a special case of the general
job shop scheduling [33, 102].

In this chapter, we study the permutation flow shop problem, which is the flow
shop problem with the additional constraint that each machine processes all the jobs
in the same order. So any feasible schedule to the permutation flow shop problem
corresponds to a permutation of the n jobs. It is well-known [38] that there exists
an optimal schedule for the ordinary flow shop problem having the same processing
order (of jobs) on the first two machines and the same processing order on the last
two machines. So the permutation flow shop problem is equivalent to the ordinary
flow shop problem for m ≤ 3 machines. However, it is easy to construct an instance
with m = 4 machines where no permutation schedule is optimal for the ordinary
flow shop problem.

Two natural objective functions that are typically considered for scheduling
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problems are makespan and weighted completion time. The makespan of a schedule
is the completion time of its last job, i.e. maximum completion time among all jobs.
For the weighted completion time objective, each job j comes with a weight wj ≥ 0,
and the weighted completion time of a schedule is the weighted sum of completion
times over all jobs.

6.1.1 Preliminaries

An instance of the permutation flow shop problem with m machines and n jobs
is given by an m × n matrix P = {pi,j | i = 1, · · · ,m, j = 1, · · · , n} of processing
times, where pi,j is the processing time of job j on machine i. We often denote
the set {1, · · · , n} of all jobs by [n], and the set {1, · · · ,m} of all machines by [m].
Any feasible schedule for permutation flow shop corresponds to a permutation of
the n jobs. Given a permutation π : [n] → [n] of jobs, the complete schedule of
job-operations on machines can be obtained by running jobs on machines in the
order π while maintaining the minimum possible wait-time between operations.
It is convenient to think of π as a mapping from the set of n possible positions to
the set of n jobs. Therefore, π(p) denotes the job located at position p. For any
permutation π of the n jobs and a job j ∈ [n], we use Cπ

j to denote the completion
time of job j under the schedule π; we also denote the makespan of schedule
π by Cπ

max = maxnj=1 C
π
j . Given non-negative weights {wj}nj=1 for the jobs, the

weighted completion time objective of the schedule corresponding to permutation π
is
∑n

j=1 wjC
π
j .

The following are two obvious lower bounds for the permutation flow shop
scheduling problem with the makespan objective: maximum job length (denoted
l := maxnj=1{

∑m
i=1 pi,j}), and maximum machine load (L := maxmi=1{

∑n
j=1 pi,j}). We

refer to max{l, L} as the trivial lower bound. Our algorithms are based on just these
lower bounds.

A monotone path (or critical path) in an m×n matrix is defined to be a sequence
〈(x1, y1), · · · , (xt, yt)〉 of matrix positions such that (x1, y1) = (1, 1), (xt, yt) = (m,n),
and for each 1 ≤ i < t either xi+1 = xi+1 and yi+1 = yi or xi+1 = xi and yi+1 = yi+1.
In particular, this definition implies that each monotone path in an m× n matrix
consists of exactly t = m+ n− 1 positions. We denote the set of all monotone paths
in an m× n matrix byMm,n.

A map τ : [n]→ X ∪ {∅} where X ⊆ [m] is called a partial permutation if there
is a subset Y ⊆ [n] with |Y | = |X| such that (i) τ(Y ) = X (τ is a one-to-one map
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from Y to X); and (ii) τ(z) = ∅ for all z ∈ [n] \ Y . For such a partial permutation τ ,
we refer to the set X as its image, denoted Image(τ). A 0-1 m× n matrix Π is called
a permutation matrix if every row and column has at most one entry that is 1 (all
other entries are 0s). Note that there is an obvious correspondence between partial
permutations and permutation matrices. In the rest of the paper we will use partial
permutations that map a subset of jobs into a set of machines.

6.1.2 Our Results

We give a simple randomized algorithm (Section 6.2) for minimizing makespan in
the permutation flowshop problem, that achieves an approximation guarantee of
2
√

min{m,n}. This guarantee is relative to the trivial lower bounds. The analysis
is based on a connection between the permutation flow shop scheduling problem
and the longest increasing subsequence problem. Hence we answer an open
question from Potts et al. [124], by matching algorithmically the Ω(

√
min{m,n})

gap (between optimal makespan and the trivial lower bound) shown in [124].

We also show how this algorithm can be derandomized to obtain a deterministic
approximation guarantee of 3

√
min{m,n}. This algorithm uses the derandomiza-

tion technique of pessimistic estimators due to Raghavan [128] and certain ideas
from the concentration of increasing subsequences in random permutations [59].
The details are non-trivial and appear in Section 6.3. We note that among algorithms
that are based on the trivial lower bounds, our algorithm is the best possible (up to
a 2
√

2 factor).

We then consider the weighted completion time objective (Section 6.4) and use
our algorithm for minimizing makespan to obtain anO(

√
min{m,n}) approximation

algorithm for this problem. This algorithm uses a natural LP relaxation of the
problem. The LP rounding algorithm is similar to the approach used in Queranne
and Sviridenko [127] (and many other papers on scheduling with the weighted
completion time objective [75, 23, 76]). We also show a matching Ω(

√
min{m,n})

lower bound on the integrality gap of our LP relaxation.

6.1.3 Related Work

Permutation flow shop scheduling has been extensively studied in the operations
research literature and there is a significant body of work devoted to the design of
heuristics for this problem. The survey paper [56] establishes a common framework
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for these heuristics, and describes main classes of algorithms and research directions.

When the number of machines m is a fixed constant, a PTAS is known for the
job-shop scheduling problem with the makespan objective due to Jansen et al. [96]
and the total weighted completion time objective due to Fishkin et al. [55]. It
seems likely that similar techniques yield PTASes for the permutation flow shop
scheduling problem under fixed number of machines. For the ordinary flow shop
problem with the makespan objective, the best known approximation guarantee
is O(logm(log logm)1+ε), where ε > 0 is any constant, due to Czumaj and Schei-
deler [40]; in fact this result holds for the more general class of acyclic-shop
scheduling. Using the general result from [127] one can derive an approximation al-
gorithm with the same performance guarantee for the flow shop scheduling problem
under the weighted completion time objective.

Potts et al. [124] showed a family of instances for permutation flowshop schedul-
ing where the optimal makespan is Ω(

√
min{m,n}) times the trivial lower bound

(max{L, l}). It was an open question in [124] to determine whether this bound
is tight. The previously best known approximation guarantee for the makespan
problem is O(

√
m logm) due to Sviridenko [146]; this guarantee is also relative to

the trivial lower bound. Prior to this, a number of algorithms [131, 119, 120] were
shown to have a (tight) worst case guarantee of dm

2
e. There are also some papers

dealing with additive guarantees for the permutation flowshop problem [139, 146].
Sevastianov [139] gave an algorithm that always produces a schedule of length
at most L + O(m2) maxi,j pi,j. Sviridenko [146] obtained a similar guarantee of
(1 + δ)L+Kδ(m logm) maxi,j pi,j for any δ > 0 (here Kδ is a function depending on
δ alone). The best multiplicative approximation guarantee obtainable from these
results is O(

√
m logm) [146].

Smutnicki [142] gave worst case analyses of several algorithms for the permu-
tation flow shop problem with the weighted completion time objective. Assuming
a ρk approximation guarantee for the problem on k machines, [142] gave an
m
k
ρk approximation algorithm for the problem on m machines. Using the (2 + δ)-

approximation algorithm [140] for the permutation flow shop scheduling problem
with the weighted completion time objective and fixed number of machines, one
could obtain an εm guarantee for minimizing weighted completion time (for any
constant ε > 0). To the best of our knowledge this is the previously best known
result for weighted completion time.
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6.2 Randomized Algorithm for Minimizing Makespan

In this section, we give a randomized Θ(
√

min{m,n}) approximation guarantee for
minimizing makespan in the permutation flow shop problem. From the results of
Potts et al. [124], it follows that this result is the best possible using the known lower
bounds for this problem (namely, machine load and job length). Our algorithm is
extremely simple: always output a permutation chosen uniformly at random. The
rest of this section proves that this algorithm achieves a guarantee of 2

√
min{m,n}.

Given any instance of permutation flow shop, consider the m× n matrix P of
processing times. By standard rounding arguments, we can assume (at the loss of a
1 + o(1) factor) that all entries in P are rational. For the purpose of analysis, we
scale P appropriately and assume all entries are integral. We first show how P can
be decomposed into a collection of smaller matrices having certain properties.

Lemma 86. Given any matrix P ∈ Nm×n, there exist h = max{l, L} permutation
matrices {Πk}hk=1 such that P =

∑h
k=1 Πk, where l = maxnj=1{

∑m
i=1 pi,j} and L =

maxmi=1{
∑n

j=1 pi,j}.

Proof: Define a bipartite multi-graph graph G corresponding to P as follows. G
has vertex bipartition [m] and [n]. For every i ∈ [m] and j ∈ [n], G contains pi,j
parallel edges between i and j. Note that the maximum degree of G is exactly
h = max{l, L}. By the König edge-coloring theorem for bipartite graphs there is
a valid coloring of the edges of G (no two adjacent edges receive the same color)
with h colors. Let E1, · · · , Eh denote the edges in each color class of such a valid
coloring. For each 1 ≤ k ≤ h, let Πk denote the m× n 0-1 matrix that contains 1s in
the positions corresponding to edges of Ek, and 0s everywhere else. Since we have
a valid coloring, each Ek is a matching in G; in other words, the matrices {Πk}hk=1

are all permutation matrices. Further, since each edge of G is assigned some color,
we have P =

∑h
k=1 Πk.

Recall thatMm,n denotes the set of all monotone paths in an m× n matrix. In
this section, m and n are fixed; so we abbreviateM =Mm,n. For any permutation
σ of the n jobs, monotone paths can be used to characterize the makespan of the
schedule resulting from σ as follows:

Cσ
max = max

α∈M

∑
(i,q)∈α

pi,σ(q).

This well-known characterization follows from the fact that the makespan Cσ
max is

lower bounded by the total length of any monotone path since every two consecutive
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operations in such a path are either consecutive operations of the same job or
consecutive operations on the same machine. It is also easy to build a monotone
path that attains the equality. Starting with the operation that finishes last (on
the last machine) include all operations preceding to that operation on the same
machine till the last idle time. Let Jj be the job whose m-th operation starts on the
last machine after that idle time. Include the m− 1st operation of job Jj into the
monotone path. Include all operations preceding that operation on machine m− 1
till the last idle time before that operation and so on.

Consider any permutation matrix Πk (k = 1, · · · , h) in the decomposition of
Lemma 86. Let the 1-entries of Πk be in positions {(xk1, yk1), · · · , (xkr , ykr )}, where
1 ≤ xk1 < · · · < xkr ≤ m and yk1 , · · · , ykr ∈ [n] are distinct elements. Denote
Xk = {xk1, · · · , xkr} and Yk = {yk1 , · · · , ykr}; clearly, |Xk| = |Yk| = r ≤ min{m,n}.
Define the map τk : [n] → Xk ∪ {∅} where τk(ykg ) = xkg (for all 1 ≤ g ≤ r) and
τk(z) = ∅ for z /∈ Yk. Since each Πk is a permutation matrix, it follows that the τk is
a partial permutation for k = 1, . . . , h.

Finally, for any sequence S of elements from [m]∪∅, define I(S) to be the length
of the longest increasing subsequence of numbers in S (ignoring all occurrences of
the null element ∅).

Lemma 87. For any permutation σ on jobs and any monotone path α ∈M,

∑
(i,q)∈α

pi,σ(q) ≤
h∑
k=1

I(τk ◦ σ[n])

Proof: Clearly we have:

∑
(i,q)∈α

pi,σ(q) =
∑

(i,q)∈α

[
h∑
k=1

Πk(i, σ(q))] =
h∑
k=1

∑
(i,q)∈α

Πk(i, σ(q))

Now consider a particular permutation matrix Πk (for k = 1, · · · , h) and the sum∑
(i,q)∈α Πk(i, σ(q)).

Let Sk = {(i, q) ∈ α | Πk(i, σ(q)) = 1}; then the sum
∑

(i,q)∈α Πk(i, σ(q)) =

|Sk|. Since Πk has at most one non-zero entry in each row and column (given
by the partial permutation τk) and α is a monotone path, we obtain that Sk =
{(i1, q1), · · · , (it, qt)} (where t = |Sk|), with the following properties:

1. 1 ≤ i1 < · · · < it ≤ m and {i1, · · · , it} ⊆ Xk.
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2. 1 ≤ q1 < · · · < qt ≤ n.

3. τk(σ(qg)) = ig for all 1 ≤ g ≤ t.

From the above, we have that i1 < i2 < · · · < it is an increasing subsequence of
length t in the sequence τk ◦ σ[n] = 〈τk ◦ σ(1), · · · , τk ◦ σ(n)〉; namely given by the
positions q1 < q2 < · · · < qt. Thus the longest increasing subsequence in τk ◦ σ[n]
has length at least |Sk|. In other words,

∑
(i,q)∈α Πk(i, σ(q)) ≤ I(τk ◦ σ[n]). Summing

this expression over all permutation matrices Πk for k = 1, · · · , h, we obtain the
statement of the Lemma.

Note that the right hand side in the inequality in Lemma 87 does not depend on
the monotone path α; hence using Cσ

max = maxα∈M
∑

(i,q)∈α pi,σ(q), we obtain:

Cσ
max ≤ max

α∈M

h∑
k=1

I(τk ◦ σ[n]) =
h∑
k=1

I(τk ◦ σ[n]). (6.1)

We will also need the following:

Lemma 88 (Logan and Shepp [104]; Vershik and Kerov [152]). The expected length
of the longest increasing subsequence of a uniformly random permutation on r elements
is (2 + o(1))

√
r.

We are now ready for the main theorem of this section.

Theorem 89. Eσ[Cσ
max] ≤ (2 + o(1))h ·

√
min{m,n}. Hence there is a randomized

polynomial time (2
√

min{m,n})-approximation algorithm for the permutation flow
shop problem.

Proof: From linearity of expectation applied to inequality (6.1), it suffices to
bound Eσ[I(τk ◦ σ[n])] for each 1 ≤ k ≤ h. Fix a 1 ≤ k ≤ h: since σ is chosen
uniformly at random over all permutations, the jobs from Yk are ordered uniformly
at random. Thus τk ◦ σ[n] is a uniformly random ordering of the elements Xk

(ignoring occurrences of ∅). Applying Lemma 88, we immediately obtain the
following which proves the theorem.

Eσ[I(τk ◦ σ[n])] ≤ (2 + o(1))
√
|Xk| ≤ (2 + o(1))

√
min{m,n}.

Thus we have a very simple randomized Θ(
√

min{m,n})-approximation algo-
rithm for the permutation flow shop problem, based on the trivial lower bound.
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Potts et al. [124] gave a family of examples where the optimal permutation schedule
has length at least 1√

2

√
min{m,n} times the lower bound. Hence our result is the

best possible guarantee (within a factor of 2
√

2) using these lower bound. We note
that Theorem 89 also implies that for any instance of flow shop scheduling, there is a
permutation schedule of length at most 2

√
min{m,n} times the length of an optimal

non-permutation schedule; hence this resolves positively the open question in Potts
et al. [124] regarding the gap between permutation and non-permutation schedules.

Tight Example. The following simple example shows that the performance guaran-
tee of this randomized algorithm is tight. There are n jobs and m = 2n machines.
Each job j (for 1 ≤ j ≤ n) has processing time 1 on machines j and n + j, and
0 elsewhere. The optimal permutation of jobs is n, n− 1, · · · , 1 which results in a
makespan of 2. However, it follows from Lemma 88 that a random permutation has
expected makespan at least 2

√
n.

6.3 A Deterministic Algorithm

We apply the technique of pessimistic estimators due to Raghavan [128] to derandom-
ize the algorithm of the previous section, and obtain a deterministic Θ(

√
min{m,n})-

approximation guarantee. We first apply the decomposition of Lemma 86 to ob-
tain h permutation-matrices Π1, · · · ,Πh corresponding to P . By assigning weights
w1, · · · , wh ∈ N to each of these permutations, we can ensure that P =

∑h
k=1 wk ·Πk

and h ≤ mn; here
∑h

k=1wk is the trivial lower-bound for the flowhop instance.
This computation can be done easily in polynomial time by iteratively using any
bipartite matching algorithm. There are many more efficient algorithms for com-
puting an edge-coloring in bipartite multigraphs (See the table in Section 20.9b
[136] for running times and references for various edge-coloring algorithms). Fur-
thermore, Lemma 87 implies that for any permutation σ : [n] → [n] of the jobs,
the resulting makespan Cσ

max ≤ C∗(σ) :=
∑h

k=1wk · I(τk ◦ σ), where τks are the
partial permutations corresponding to the permutation-matrices Πks. From the
previous section, we have that Eσ[C∗(σ)] ≤ 2

√
min{m,n} ·∑h

k=1wk. In this sec-
tion, we give a deterministic algorithm that obtains a permutation σ satisfying
C∗(σ) ≤ 3

√
min{m,n} ·∑h

k=1wk.

In particular, we show that given any collection of h partial permutations
τ1, · · · , τh : [n] → [m] ∪ {∅}, each having a non-empty value on at most r ele-
ments, and associated weights {wk}hk=1, there is a polynomial time deterministic
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algorithm that computes a single permutation σ : [n] → [n] satisfying C∗(σ) =∑h
k=1wk · I(τk ◦ σ[n]) ≤ 3

√
r ·∑h

k=1 wk. This immediately implies the desired deter-
ministic approximation guarantee for the permutation flow shop problem since each
partial permutation has an image of size at most r ≤ min{m,n}. In the following,
we refer to a permutation that is chosen uniformly at random as u.a.r. permutation.

The algorithm first computes the partial permutations τk and weights wk for
k = 1, . . . , h, and then builds the solution σ incrementally. In each step i =
1, . . . , n we suitably fix the value of σ(i) that results in a prefix of the permutation
〈σ(1), . . . , σ(i)〉, i.e. we fix jobs located in the first i positions. The choices for σ(i)
in each step i are made in such a way that finally, C∗(σ) ≤ 3

√
r ·∑h

k=1wk. Define
the following quantities for any partial permutation τk (1 ≤ k ≤ h), step 0 ≤ i ≤ n,
and elements a1, · · · , ai ∈ Image(τk) ∪ {∅}:

Ek
i (a1, · · · , ai) :=

expected value of the longest increasing subsequence
in 〈a1, · · · , ai, τ〉, where τ is a permutation
on Image(τk) \ {a1, · · · , ai} picked u.a.r.

Uk
i (a1, · · · , ai) :=

an efficiently computable upper bound on Ek
i (a1, · · · , ai)

(exact definition later).

In the above definitions, the elements a1, · · · , ai represent the values τk ◦
σ(1), · · · , τk ◦ σ(i) respectively, obtained from the first i positions of permutation σ,
that have been fixed thus far. We also define the expected value of function C∗(σ)
in step i as functions of the first i positions of permutation σ (that have been fixed):

Ei(σ(1), · · · , σ(i)) :
expected value Eσ(i+1)···σ(n)[C

∗(σ)], with 〈σ(i+ 1) · · ·σ(n)〉
being u.a.r. permutation on [n] \ {σ(1), · · · , σ(i)}

Note that for any 1 ≤ k ≤ h, since 〈σ(i + 1), · · · , σ(n)〉 is u.a.r. permutation on
[n]\{σ(1), · · · , σ(i)}, we obtain that 〈τk ◦σ(i+1), · · · , τk ◦σ(n)〉 is u.a.r. permutation
on Image(τk) \ {τk ◦ σ(j) : 1 ≤ j ≤ i}. Thus we can rewrite Ei as:

Ei(σ(1), · · · , σ(i)) :=
h∑
k=1

wk · Ek
i (τk ◦ σ(1), · · · , τk ◦ σ(i))

We also define the efficiently computable upper bound on Ei as:

Ui(σ(1), · · · , σ(i)) :=
h∑
k=1

wk · Uk
i (τk ◦ σ(1), · · · , τk ◦ σ(i))



128 Chapter 6: Permutation Flowshop Scheduling

The precise definition of the upper bound functions Uk
i for k = 1, . . . , h and

i = 0, . . . , n appears in the next subsection. In Lemmas 90 and 91, we prove
some important properties of the functions Ui, which allow us to derandomize the
algorithm of the previous section to obtain Theorem 92.

6.3.1 Properties of the pessimistic estimator

Recall the definition ofEk
i (a1, · · · , ai); we now construct an upper bound Uk

i (a1, · · · , ai)
for this expected value. Fix a parameter t = 3

√
r, where r = maxhk=1 |Image(τk)| is

an upper bound on the length of each partial permutation. Define Ski (a1, · · · , ai)
to be the expected number of t-length increasing subsequences in 〈a1, · · · , ai, τ〉,
when τ is u.a.r. permutation on Image(τk) \ {a1, · · · , ai}. We can now upper
bound Ek

i (a1, · · · , ai), the expected length of the longest increasing subsequence in
〈a1, · · · , ai, τ〉, as follows:

Ek
i (a1, · · · , ai) ≤ t · Prτ [〈a1, · · · , ai, τ〉 has no t-length increasing subsequence]

+ r · Prτ [〈a1, · · · , ai, τ〉 contains a t-length increasing subsequence]
≤ t+ r · Prτ [〈a1, · · · , ai, τ〉 contains a t-length increasing subsequence]
≤ t+ r · Ski (a1, · · · , ai)

Define the upper bound Uk
i on the expected value Ek

i as:

Uk
i (a1, · · · , ai) := t+ r · Ski (a1, · · · , ai) ∀1 ≤ k ≤ h

Let Nk
i = Image(τk) \ {a1, · · · , ai} ⊆ [m]; and for any set T , let P(T ) denote the

set of all permutations of the elements of T . We first show that each Uk
i can be

efficiently computed, which implies the same for the functions {Ui}ni=0.

Lemma 90. For any 1 ≤ k ≤ h, i ∈ {0, · · · , n} and a1, · · · , ai ∈ Image(τk) ∪ {∅}, the
value Uk

i (a1, · · · , ai) can be computed exactly in polynomial time.

Proof: Fix any values of 1 ≤ k ≤ h, 0 ≤ i ≤ n and a1, · · · , ai ∈ Image(τk) ∪
{∅}. Clearly it suffices to show that Ski (a1, · · · , ai) can be computed in polynomial
time. We say that a t-length increasing subsequence s is feasible if there is some
permutation τ ∈ P(Nk

i ) such that s is a subsequence in 〈a1, · · · , ai, τ〉. Let I denote
the set of all such feasible t-length increasing subsequences. Then we can partition
I as

(
t {Ij,q | 1 ≤ j ≤ i and 1 ≤ q ≤ t}

)
t I0,0 where:

I0,0 = {τ 0 | τ 0 is a t-length increasing sequence of numbers from Nk
i }
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Ij,q =

{
〈τ ′, τ ′′〉

∣∣∣∣ τ
′ is a q length increasing subsequence in 〈a1, · · · , aj〉

ending at aj 6= ∅, and τ ′′ is a t− q length increasing
sequence of numbers from {e ∈ Nk

i : e > aj}

}
Note that given any j ∈ {1, · · · , i} and q ∈ {1, · · · , t}, one can compute in

polynomial time, the number of q-length increasing subsequences in 〈a1, · · · , aj〉
that end at aj; we denote this quantity by #I(j, q). The computation of #I(j, q) is
based on a dynamic program using the following recurrence:

#I(j, q) =


∑{#I(j′, q − 1) | 1 ≤ j′ < j, aj′ < aj} aj 6= ∅, q ≥ 2
1 aj 6= ∅, q = 1
0 aj = ∅

For ease of notation in the following, let #I(0, 0) = 1. For every 1 ≤ j ≤ i,
denote the set {e ∈ Nk

i : e > aj} by Lj, and also let L0 = Nk
i . Note that, for

each part Ij,q (in the partition of I), its size |Ij,q| = #I(j, q) ·
(|Lj |
t−q

)
(the first term

corresponds to a q length increasing subsequence of 〈a1, · · · , aj〉, and the second
term corresponds to a t− q length increasing sequence from Lj). When τ ∈ P(Nk

i )
is picked u.a.r., the induced permutation on each set Lj (for 0 ≤ j ≤ i) is also u.a.r.
Hence for each part Ij,q, the probability that any particular subsequence s ∈ Ij,q
appears in 〈a1, · · · , ai, τ〉 is exactly 1/(t− q)!. (the last t− q entries of s come from
the random permutation τ). So we have:

Eτ
[
|{s ∈ Ij,q : s is subsequence of 〈a1, · · · , ai, τ〉}|

]
=
∑

s∈Ij,q Prτ
[
s is subsequence of 〈a1, · · · , ai, τ〉

]
= |Ij,q| · 1

(t−q)!
= #I(j, q) ·

(|Lj |
t−q

)
· 1

(t−q)!

Thus, we can write Ski (a1, · · · , ai) as

Eτ∈P(Nk
i )

[
|{s ∈ I : s is subsequence of 〈a1, · · · , ai, τ〉}|

]
=
∑

j,q Eτ∈P(Nk
i )

[
|{s ∈ Ij,q : s is subsequence of 〈a1, · · · , ai, τ〉}|

]
=
∑

j,q #I(j, q) ·
(|Lj |
t−q

)
· 1

(t−q)!

The lemma follows.

Lemma 91. For any 0 ≤ i ≤ n and any prefix (possibly empty) σ(1), · · · , σ(i) ∈ [n]
of a permutation σ,

min
σ(i+1)∈[n]\{σ(1),··· ,σ(i)}

Ui+1(σ(1), · · · , σ(i), σ(i+ 1)) ≤ Ui(σ(1), · · · , σ(i))
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Proof: Fix any i and a prefix σ(1), · · · , σ(i) of a permutation σ, and let M =
[n] \ {σ(1), · · · , σ(i)}. We first prove the following for an arbitrary 1 ≤ k ≤ h:

Ski (τk ◦ σ(1), · · · , τk ◦ σ(i)) =
1

n− i
∑
x∈M

Ski+1(τk ◦ σ(1), · · · , τk ◦ σ(i), τk(x)) (6.2)

For ease of notation, let akj = τk ◦ σ(j) for all 1 ≤ j ≤ i. Let Nk
i = Image(τk) \

{ak1, · · · , aki } ⊆ [m] denote the remaining elements of Image(τk), and nki = |Nk
i |.

Recall that,

Ski (ak1, · · · , aki ) = Eτ [number of t-length increasing subsequences in 〈ak1 · · · aki , τ〉]

where τ ∈ P(Nk
i ) is picked u.a.r. So multiplying both sides of (6.2) by nki ! = |P(Nk

i )|,
we can rewrite its left hand side as:

LHS ′ = nki ! × Ski (ak1, · · · , aki ) =
∑

τ∈P(Nk
i )

#It(a
k
1, · · · , aki , τ) (6.3)

Above, for any sequence s, #It(s) denotes the number of t-length increasing sub-
sequences in s. To compute the right hand side of (6.2), we split the summation
into M (k) = {x ∈ M | τk(x) 6= ∅} and M \M (k) = {x ∈ M | τk(x) = ∅}. Note
that |M | = n − i and |M (k)| = nki . For any x ∈ M \M (k), it is easy to see that
Ski+1(ak1, · · · , aki , τk(x)) = Ski (ak1, · · · , aki ). Now the right hand side of (6.2) (scaled
by nki !) can be written as:

nki ! ×
n− i− nki
n− i Ski (ak1, · · · , aki ) + nki ! ×

1

n− i
∑

x∈M(k)

Ski+1(ak1, · · · , aki , τk(x))

= (1− nki
n− i)LHS

′ + nki ! ×
1

n− i
∑

x∈M(k)

Ski+1(ak1, · · · , aki , τk(x))

Thus in order to prove (6.2), it suffices to show:

LHS ′ = (nki − 1)! ×
∑

x∈M(k)

Ski+1(ak1, · · · , aki , τk(x)) (6.4)

Note that τk induces a bijection between M (k) and Nk
i : |M (k)| = |Nk

i | and τk(M (k)) =
Nk
i . Thus we can rewrite the right hand side in (6.4) as:

(nki − 1)!
∑
y∈Nk

i

Ski+1(ak1, · · · , aki , y) =
∑
y∈Nk

i

∑
τ ′∈P(Nk

i \y)

#It(a
k
1, · · · , aki , y, τ ′)
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To prove (6.4), using the expression for LHS ′ from (6.3), it suffices to show that:∑
τ∈P(Nk

i )

#It(a
k
1, · · · , aki , τ) =

∑
y∈Nk

i

∑
τ ′∈P(Nk

i \y)

#It(a
k
1, · · · , aki , y, τ ′)

Now observe that P(Nk
i ) = ty∈Nk

i
{〈y, τ ′〉 | τ ′ ∈ P(Nk

i \ y)}. Thus the summations
in the two expressions above run over exactly the same set of sequences, and this
implies equality (6.4) which in turn gives equation (6.2). We are now ready to
complete the proof of the lemma.

min
σ(i+1)∈M

Ui+1(σ(1), · · · , σ(i), σ(i+ 1)) ≤ 1

n− i
∑
x∈M

Ui+1(σ(1), · · · , σ(i), x)

=
1

n− i
∑
x∈M

h∑
k=1

wk
[
t+ r · Ski+1(τk ◦ σ(1), · · · , τk ◦ σ(i), τk(x))

]
=
|M |
n− i · t

h∑
k=1

wk +
r

n− i
∑
x∈M

h∑
k=1

wk · Ski+1(τk ◦ σ(1), · · · , τk ◦ σ(i), τk(x))

= t
h∑
k=1

wk + r ·
h∑
k=1

wk ·
1

n− i
∑
x∈M

Ski+1(τk ◦ σ(1), · · · , τk ◦ σ(i), τk(x))

= t
h∑
k=1

wk + r ·
h∑
k=1

wk · Ski (τk ◦ σ(1), · · · , τk ◦ σ(i))
(
Using equation 6.2

)
=

h∑
k=1

wk · Uk
i (τk ◦ σ(1), · · · , τk ◦ σ(i))

= Ui(σ(1), · · · , σ(i))

Thus we have the lemma.

6.3.2 Applying the pessimistic estimators

We now use the upper-bound functions Ui for i = 1, . . . , n described in the previous
subsection to obtain a deterministic approximation algorithm for the permutation
flow shop problem. This algorithm follows the general framework of the method of
pessimistic estimators.

Theorem 92. There is a deterministic polynomial time 3
√

min{m,n} approximation
algorithm for the permutation flow shop scheduling problem with makespan objective.



132 Chapter 6: Permutation Flowshop Scheduling

Proof: We now describe our final deterministic algorithm:

1. Decompose the matrix P of processing times according to Lemma 86, to obtain
h ≤ mn permutation-matrices with corresponding weights {Πk, wk}hk=1, such
that P =

∑h
k=1wk · Πk and

∑h
k=1 wk equals the trivial lower-bound for the

permutation flow shop instance.

2. For each 1 ≤ k ≤ h, τk denotes the partial permutation corresponding to
permutation-matrix Πk.

3. For each i = 1, · · · , n: set σ(i)← x for the value x ∈ [n] \ {σ(1), · · · , σ(i− 1)}
that minimizes the function value Ui(σ(1), · · · , σ(i− 1), x).

As mentioned earlier, the decomposition in step 1 can be carried out in poly-
nomial time using an edge-coloring algorithm. In step 3, the algorithm uses the
efficiently computable functions {Ui}ni=0 (see Lemma 90) to fix the solution σ step
by step. Hence the above algorithm runs in polynomial time. The rest of this proof
shows that it achieves the desired approximation guarantee.

We claim that for each i ∈ {0, · · · , n}, Ui(σ(1), · · · , σ(i)) ≤ W · (t + 2) where
W =

∑h
k=1wk is the trivial lower-bound (recall that t = 3

√
r ≤ 3

√
min{m,n}).

Assuming that the base case (i.e. i = 0) for this claim holds, using Lemma 91
and induction, we obtain that the claim is true for all values of i ≥ 1. It remains
to prove the claim for i = 0: here U0 takes no arguments and is a fixed value
U0 = tW + r

∑h
k=1 wk · Sk0 . From the definition of the Ski s, we have that each Sk0 is

the expected number of t-length increasing subsequences in a u.a.r. permutation of
Image(τk). Since Image(τk) has at most r elements, using linearity of expectation, it
follows that Sk0 ≤

(
r
t

)
· 1
t!

for every k = 1, · · · , h. We have,

U0 ≤ tW + rW

(
r

t

)
1

t!
= tW + rW

r!

(r − t)!t!
1

t!
≤ tW + rW

rt

(t!)2

≤ tW + rW

(
re2

t2

)t
= tW + rW

(
e2

9

)t
= tW + rW

(e
3

)6
√
r

≤ W · (t+ 2)

Now observe that after the last step, En(σ(1), · · · , σ(n)) is exactly the value
C∗(σ) (at this point all positions have been fixed, so there is no randomness left
in the expected value En). Since the function Un upper bounds En, we have
C∗(σ) = En(σ(1), · · · , σ(n)) ≤ Un(σ(1), · · · , σ(n)) ≤ W · (t + 2). Now the theorem
follows from the fact that W equals the trivial lower-bound for the permutation
flow shop instance and r ≤ min{m,n}.
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Remark. The deterministic algorithm described above can be viewed as greedily
fixing the permutation of jobs one by one, where the next job to be added is chosen
according to a certain potential function. This algorithm is similar to the well-known
“insertion heuristic” first suggested by Nawaz, Enscore and Ham [116], that initially
orders jobs in decreasing order of job lengths and inserts them one by one into
the current permutation, always choosing the position for a job in the current
permutation that causes the least increase in makespan. The difference is that
our algorithm adds jobs in the order of the final permutation (so at any point, a
prefix of the permutation is fixed), whereas the insertion heuristic [116] just fixes a
relative ordering of the first few jobs allowing unscheduled jobs to be scheduled in
between later on. This insertion heuristic is known to have excellent performance
in practice [142], but there is no known analytic explanation (there is an Ω(

√
m)

lower bound [120]). A natural way of analyzing such a heuristic would be to define
a potential function that improves on every step of the greedy procedure and relate
this function to the makespan. Although we have not been able to extend our
current analysis to prove an O(

√
m) worst case bound for the insertion heuristic, we

show that another greedy procedure does achieve this bound (Theorem 92), and
these ideas may help in obtaining a tight bound for the insertion heuristic.

6.4 Weighted sum of completion times

In this section, we consider the permutation flow shop problem with the objective
being the weighted sum of completion times. We show that our algorithm for
the makespan objective can be used within an LP-based approach to obtain an
O(
√

min{m,n}) approximation algorithm for weighted completion time. This
approach is similar to that used in Queyranne and Sviridenko [127] (and many
other papers [75, 23, 76]), where the authors considered a class of job shop
problems (these do not have the permutation constraint). We consider the following
linear relaxation for the permutation flow shop problem with weighted completion
time as objective. In fact this LP [127] is a relaxation for even the usual flow shop
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problem (without the permutation constraint).

min
n∑
j=1

wj · Cj, (6.5)

z1,j ≥ p1,j, ∀1 ≤ j ≤ n (6.6)
zi,j ≥ zi−1,j + pi,j, ∀2 ≤ i ≤ m, 1 ≤ j ≤ n (6.7)∑

j∈A

pi,j · zi,j ≥
1

2
(
∑
j∈A

pi,j)
2 +

1

2

∑
j∈A

p2
i,j, ∀A ⊆ [n], 1 ≤ i ≤ m, (6.8)

Cj = zm,j, ∀1 ≤ j ≤ n (6.9)
zi,j ≥ 0, ∀1 ≤ i ≤ m, 1 ≤ j ≤ n (6.10)

Here each variable zi,j denotes the time when job j’s operation on machine
i is completed; and Cj = zm,j is the completion time of job j. Constraints (6.7)
ensure that the operations of each job are performed in the flow shop order. Con-
straints (6.8) are a relaxation of the machine resource constraints. The weighted
completion time objective is captured in (6.5). As shown in Queyranne [126], this
LP can be solved in polynomial time using the Ellipsoid algorithm (the separation
oracle for the exponential-sized constraints (6.8) reduces to a submodular function
minimization [136]). The algorithm first obtains an optimal solution (z, C) to
the above LP. Then it reduces the weighted completion time problem to one of
minimizing makespan as outlined below.

1. Group the jobs [n] based on their fractional completion times Cj. For each
integer a ≥ 0, group Ga consists of all jobs 1 ≤ j ≤ n such that Cj ∈ (2a, 2a+1].
Note that there are at most n non-empty groups.

2. For each non-empty group Ga, run the O(
√

min{m,n}) approximation algo-
rithm for minimizing makespan, to obtain a permutation πa of Ga.

3. Output the permutation of jobs [n] given by π0, π1, · · · .

The remaining analysis is identical to the one in Queyranne and Sviridenko [127];
however it is presented here in the context of permutation flowshop, for the sake
of completeness. For any group Ga, let la = max{∑m

i=1 pi,j | j ∈ Ga} denote the
maximum job length, and La = max{∑j∈Ga pi,j | 1 ≤ i ≤ m} the maximum machine
load. We first prove the following auxiliary lemma.

Lemma 93. For each group Ga, max{la, La} ≤ 2a+2
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Proof: For any job j, constraints (6.7) imply Cj = zm,j ≥ zm−1,j + pm,j ≥ · · · ≥∑m
i=1 pi,j. Hence la = max{∑m

i=1 pi,j | j ∈ Ga} ≤ max{Cj | j ∈ Ga} ≤ 2a+1.

For any machine i, constraint (6.8) applied to subset A = Ga implies
∑

j∈Ga pi,j ·
zi,j ≥ 1

2
(
∑

j∈Ga pi,j)
2. Furthermore, constraints (6.7) imply zi,j ≤ Cj for all machines

i and jobs j. Hence, 1
2
(
∑

j∈Ga pi,j)
2 ≤ ∑j∈Ga pi,j · Cj ≤ 2a+1

∑
j∈Ga pi,j. In other

words,
∑

j∈Ga pi,j ≤ 2a+2 for all machines i. Thus La ≤ 2a+2.

Theorem 94. There is a polynomial time O(
√

min{m,n}) approximation algorithm
for minimizing weighted completion time in the permutation flow shop problem.

Proof: Recall that the approximation guarantee of our algorithm for minimizing
makespan (Section 6.3) is relative to the trivial lower bound. Along with the
Lemma 7.2, we obtain that for each group Ga, the resulting makespan Cmax(πa) ≤
ρ·max{la, La} ≤ ρ·2a+2, where ρ = O(

√
min{m,n}) is the approximation guarantee

for the makespan problem. Under the final permutation 〈π0, π1, · · · 〉, the completion
time of each job in group Ga is at most

∑a
b=0Cmax(πb) ≤ 4ρ

∑a
b=0 2b ≤ 8ρ · 2a. But

in the LP solution, Cj ≥ 2a for all j ∈ Ga and groups Ga. This implies that the
weighted completion time of the final permutation is at most 8ρ times the optimal
LP value.

Integrality gap of the linear program (6.5)-(6.10). We observe that the example
of Potts et al. [124] (comparing permutation and non-permutation schedules) also
gives an Ω(

√
min{m,n}) lower bound on the integrality gap of the linear program

(6.5)-(6.10). So our algorithm is the best possible approximation algorithm based
on this linear programming relaxation. For any n ∈ N, let In denote the following
instance of permutation flow shop: there are n jobs and 2n machines; for each
j = 1, · · · , n, job j has processing time 1 on machines j and 2n + 1 − j, and 0
elsewhere. It was shown in [124] that the optimal makespan C∗max(In) ≥

√
2n for

all n ≥ 1. Consider the objective of minimizing the total completion time for instance
In; i.e. the weighted completion time objective with all weights wj = 1 (1 ≤ j ≤ n).
Note that for any 1 ≤ k ≤ n, any set of k jobs in the instance In is equivalent to
the instance Ik. Hence, for any permutation of the jobs, the completion time of the
k-th job in the permutation is at least C∗max(Ik) ≥

√
2k, for all 1 ≤ k ≤ n. Thus the

optimal total completion time of instance In is at least
∑n

k=1

√
2k = Ω(n3/2). We

now construct a fractional feasible solution (z, C) to the linear program (6.5)-(6.10)
having objective value O(n), which would establish the claimed integrality gap. The
z-variables of each job j ∈ [n] are set as follows: zi,j = 0 for 1 ≤ i < j, zi,j = 1 for
j ≤ i < 2n − j + 1, and zi,j = 2 for 2n − j + 1 ≤ i ≤ 2n. This fixes the fractional
completion-time Cj = z2n,j = 2 for all jobs j, and the objective value is 2n. The
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only non-trivial constraints to check are (6.7) and (6.8). From the construction of
solution (z, C), it follows that constraints (6.7) are satisfied. To see that constraints
are (6.8) are satisfied, consider any machine i: for every A ⊆ [n], the right-hand-side
of (6.8) is either 0 or 1; moreover whenever it is 1, the left-hand-side of (6.8) is 1
as well.

Credits: The results in this chapter are from “Tight Bounds for Permutation Flowshop
Scheduling” [113], obtained jointly with Maxim Sviridenko. Recently and indepen-
dently of our work, Sotelo and Poggi de Aragao [143] designed a deterministic
approximation algorithm for minimizing makespan in the permutation flow shop
problem. The performance guarantee of their algorithm is 2

√
2n+m which is

slightly worse than ours. Although their algorithm and analysis are different from
ours they also use the connection to increasing subsequences in permutations.



Chapter 7

Maximum Quadratic Assignment

7.1 Introduction

Quadratic assignment is a basic problem in combinatorial optimization, which
generalizes several other problems such as traveling salesman [7], linear arrange-
ment [47, 79] and dense k subgraph [50]. The input to quadratic assignment consists
of two n × n symmetric non-negative matrices W = (wi,j) and D = (di,j). Given
matrices W , D, and a permutation π : [n]→ [n], the quadratic assignment objective
is Q(π) :=

∑
i,j∈[n],i 6=j wi,j · dπ(i),π(j).

There are two variants of the Quadratic Assignment Problem. In the Minimum
Quadratic Assignment problem, the objective is to find a permutation π that mini-
mizes Q(π). In this paper we study the Maximum Quadratic Assignment (Max-QAP)
problem, where the objective is to find a permutation π that maximizes Q(π). An
indication of the hardness of approximating this problem is that it contains the well-
known dense k subgraph problem as a special case. As mentioned in Chapter 2, the
best known approximation guarantee for dense k subgraph is n1/3−δ [50] (for some
universal constant δ > 0), and improving this is a long-standing open question.

7.1.1 Our Results

We give an O(
√
n log2 n) approximation algorithm for Max-QAP, which is the first

non-trivial approximation guarantee for this problem. In fact, this bound also holds
when the matrices W and D are asymmetric. Using standard scaling arguments,

137
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our algorithm reduces Max-QAP to a special case (called 0-1 Max-QAP) where the
matrices have only 0-1 entries; in this case matrices W,D naturally correspond to a
pair of undirected graphs. We then present an O(

√
n) approximation algorithm for 0-

1 Max-QAP. We note that 0-1 Max-QAP itself contains the dense k subgraph problem
as a special case. The algorithm for 0-1 Max-QAP involves taking the better of the
following two approaches: (1) The first algorithm outputs a random permutation on
appropriately chosen (equal-sized) dense subgraphs (or submatrices) of W and D.
To find these subgraphs, we use a 2-approximation algorithm for Vertex Cover [150]
in one graph, and an n

k
-approximation algorithm for Dense k Subgraph [50] in

the other graph. (2) The second algorithm uses local search to obtain a constant
factor approximation for a new problem, Common Star Packing, which also defines
a feasible solution to Max-QAP. These results appear in Section 7.2

We also consider a special case of the general Max-QAP, where one of the matri-
ces W or D satisfies triangle inequality. For the Max-QAPwith triangle inequality, we
give a 2e

e−1
≈ 3.16 approximation algorithm, that improves the previously best known

ratio of 4 due to Arkin et al. [9]. Our approach here is as follows. We first define an
auxiliary linear ordering problem and show that it is equivalent (up to a factor 2) to
Max-QAP with triangle inequality. This auxiliary problem generalizes the Maximum
Vertex Cover problem [3, 51]. We obtain an e

e−1
approximation algorithm for the

auxiliary problem, by rounding a natural LP-relaxation for it; this implies the result
for Max-QAP with triangle inequality. These results appear in Section 7.3.

In Section 7.4 we note that a natural LP relaxation (c.f. Adams and Johnson [1])
for Max-QAP can be shown to have an Ω̃(

√
n) integrality gap. On the other hand,

when restricted to Max-QAP with triangle inequality the integrality gap of this LP is
at most 2e

e−1
.

7.1.2 Related Work

Quadratic assignment is an extensively studied combinatorial optimization problem.
The book by Cela [22] surveys several bounding techniques, exact algorithms, and
polynomially solvable special cases. Surveys on the quadratic assignment problem
include Pardalos and Wolkowitz [122], Loilola et al. [105], and Burkard et al. [20].

Approximation algorithms for maximum quadratic assignment have been ob-
tained in many special cases. One that is most relevant to this paper is a 4-
approximation algorithm for Max-QAP when either W or D satisfies the triangle
inequality, due to Arkin et al. [9]. Another closely related special case is the dense k
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subgraph problem, where W represents an undirected graph and D corresponds to
a k-clique. The best known approximation ratio for general dense k subgraph is nc,
where c < 1

3
is some universal constant [50]; whereas in the special case of edge

weights satisfying triangle inequality, Hassin et al. [82] gave a 2-approximation
algorithm.

We now list some other special cases of Max-QAP for which approximation
algorithms have been considered. In capacitated star packing [80, 8], D consists
of a set of vertex disjoint stars, and a 3-approximation algorithm is given in Arkin
et al. [8]. In obtaining our algorithm for 0-1 Max-QAP, we use a variant (called
Common Star Packing) of the capacitated star packing problem, for which we
provide a constant approximation algorithm. Maximum clustering with given sizes
is the special case of Max-QAP when D is the union of vertex disjoint cliques:
assuming that W satisfies triangle inequality, Hassin and Rubinstein [81] gave a
( 1

1/2−3/k
)-approximation algorithm where k is the smallest cluster size. For maximum

clustering under a general W matrix, Feo and Khellaf [54] gave an s-approximation
when each clique has size s.

For dense instances of the 0-1 Max-QAP problem, there is a PTAS known due to
Arora et al. [10]. Dense instances are those where both underlying graphs have
Ω(n2) edges. In our algorithm for Max-QAP with triangle inequality, we encounter
a generalization of a previously studied problem ‘Maximum Vertex Cover’. The
Max-Vertex-Cover problem is APX-hard, and the best known approximation ratio is
4
3
− ε for some universal constant ε > 0, due to Feige and Langberg [51].

Unlike Max-QAP, the Minimum Quadratic Assignment problem remains hard to
approximate even when one of the matrices satisfies triangle inequality. Sahni and
Gonzales [132] showed that the general case of this problem is hard to approximate
to any factor. Queranne [125] later showed that it is NP-hard to approximate this
problem to any polynomial factor, even when D corresponds to a line metric. Special
cases of minimum quadratic assignment, where D is a metric and W corresponds to
certain classes of graphs have been studied in [72, 71, 78].

7.2 General Maximum Quadratic Assignment

The maximum quadratic assignment (Max-QAP) problem is the following: given
two n × n symmetric non-negative matrices W = (wi,j) and D = (di,j), find a
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permutation π of [n] that maximizes:∑
i,j∈[n],i 6=j

wi,j · dπ(i),π(j)

We obtain an O(
√
n log2 n) approximation algorithm for this problem. A special

case of Max-QAP arises when the matrices W and D have only 0-1 entries, we refer
to this problem as 0-1 Max-QAP. At the loss of an O(log2 n) factor, we first reduce
the general Max-QAP to 0-1 Max-QAP: this step uses standard scaling arguments
(Lemma 95). Then we obtain an O(

√
n) approximation algorithm for 0-1 Max-QAP

(Section 7.2.1).

Lemma 95 (Reduction to 0-1 Max-QAP). An α approximation algorithm for 0-1
Max-QAP implies an O(α · log2 n) approximation algorithm for general Max-QAP.

Proof: We assume that neither matrix consists of all zeroes, otherwise the problem
is trivial. By scaling matrices W and D, we assume that the maximum entry in both
matrices is exactly 1. Let OPTdenote the optimal value of this Max-QAP instance
and π the permutation that achieves this; note that 1 ≤ OPT ≤ n2. We now modify
the matrices W and D, by setting to 0 all entries of value smaller than 1

2n2 . This
reduces the optimal value by at most 1

2
≤ OPT

2
, so the optimal value of the modified

instance is at least OPT
2

.

Now partition the entries of matrixW into g = dlg(2n2)e groups so that all entries
in the k-th group lie in the range [ 1

2k
, 1

2k−1 ]. Let Ak denote the n× n 0-1 matrix that
has 1s at all positions corresponding to group k entries and 0s everywhere else.
Then we have 1

2
W ≤ ∑g

k=1
1
2k
Ak ≤ W . By performing an identical operation on

D, we can obtain 0-1 matrices {Bk}gk=1 such that 1
2
D ≤ ∑g

k=1
1
2k
Bk ≤ D. For the

optimal permutation π, we can express the objective value corresponding to π as:∑
i,j∈[n],i 6=j

wi,j · dπ(i),π(j) ≤ 4 ·
∑

i,j∈[n],i 6=j

(
g∑

k=1

1

2k
Ak(i, j)

)
·
(

g∑
l=1

1

2l
Bl(π(i), π(j))

)

= 4

g∑
k=1

g∑
l=1

[
1

2k+l

∑
i,j∈[n],i 6=j

Ak(i, j) ·Bl(π(i), π(j))

]

The left-hand-side above is at least OPT
2

, which implies that there is some pair of
values k, l ∈ {1, · · · , g} such that:

1

2k+l

∑
i,j∈[n],i 6=j

Ak(i, j) ·Bl(π(i), π(j)) ≥ OPT

8g2
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Thus if we could approximate 0-1 Max-QAP within an α factor, applying this
algorithm to the pair 〈Ak, Bl〉 gives a permutation σ where:

OPT

8g2α
≤ 1

2k+l

∑
i,j∈[n],i 6=j

Ak(i, j) ·Bl(σ(i), σ(j))

≤
∑

i,j∈[n],i 6=j

w(i, j) · d(σ(i), σ(j))

The algorithm for Max-QAP would run the α-approximation for 0-1 Max-QAP on
all pairs 〈Ak, Bl〉 (for 1 ≤ k, l ≤ g) and return the best permutation found. From the
above, it follows that this is an O(α log2 n) approximation for general Max-QAP.

7.2.1 Algorithm for 0-1 Max-QAP

In this section, we focus on 0-1 Max-QAP and obtain an O(
√
n) approximation

algorithm. In this case, the problem can be stated in terms of two n-vertex undi-
rected simple graphs G and H, where the goal is to find a one-to-one mapping of
vertices of G to those of H such that the number of common edges is maximized.
For an undirected graph G′, we let E(G′) denote its set of edges. For graph G′ on
vertex-set [n] and permutation π : [n]→ [n], let π(G′) denote the graph on vertices
[n] with edge-set E(π(G′)) = {(i, j) | i, j ∈ [n], (π−1(i), π−1(j)) ∈ E(G′)}. For two
undirected graphs G1 and G2 both defined on vertex set [n], G1 ∩ G2 denotes the
graph on vertices [n] with E(G1 ∩ G2) = E(G1) ∩ E(G2). In graph terms, the 0-1
Max-QAP problem is as follows: given undirected graphs G and H each defined on
vertex-set [n], find a permutation π : [n]→ [n] that maximizes |E(π(G) ∩H)|.

Let π∗ denote the optimal permutation and O = π∗(G) ∩H the optimal graph,
with OPT = |E(O)| edges. It is clear that OPT ≤ |E(G)|, |E(H)|. Suppose that
k is the number of non-isolated vertices (i.e. vertices of degree at least one) in
the optimal graph O. The final algorithm is the better of two algorithms that we
describe next.

Algorithm 1 (Star packing). Before we present the algorithm, we need some
definitions. A star in graph G′ is a subset of edges S ⊆ E(G′) that are all incident
to some common vertex (called the center). The size of a star is the number of
edges in it. A star packing in an undirected graph is a collection of vertex-disjoint
(non-empty) stars. The size vector of a star packing is a tuple 〈c1, · · · , cp〉 where
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p denotes the number of stars and c1, · · · , cp denote the sizes of all stars in this
packing. Given two undirected graphs G and H, a common star packing consists of
star packings S in G and T in H such that S and T have identical size-vectors. The
value of a common star packing given by a pair (S, T ) of star packings is

∑p
i=1 ci

where 〈c1, · · · , cp〉 denotes the common size vector of S and T . In Section 7.2.2, we
give a 5-approximation algorithm for computing a maximum value common star
packing in two graphs.

The first algorithm involves computing an approximate maximum value common
star packing in G and H, using the algorithm in Section 7.2.2. Observe that any
common star packing in graphs G and H of value v naturally corresponds to a
solution to 0-1 Max-QAP on G,H with v edges: map corresponding stars in the
common star packing to each other.

Claim 96. The solution computed by Algorithm 1 has Ω(k) edges.

Proof: Consider the optimal graph O and let F denote any spanning forest in O.
Since there are k non-isolated vertices in O, forest F has at least k/2 edges. For
each tree T in forest F , pick an arbitrary root vertex r and assign a level to each
edge e ∈ T , which equals the number of edges on the path from e to r in tree T .
Observe that we have two star packings: Se consisting of all edges in even levels of
trees in F , and So consisting of all edges in odd levels. It is easy to verify that Se
and So are indeed star packings, and that one of them has at least half the edges
in F . Thus we have a star packing in O with at least k

4
edges. Finally note that

any star packing in O corresponds to a common star packing in G and H. Thus
running a 5-approximation algorithm for maximum value common star packing
gives a solution with at least k

20
edges.

Algorithm 2 (Modified random). The second algorithm involves computing a
random mapping between appropriate dense subgraphs of G and H. Recall that
the optimal graph O has n− k isolated vertices. Let V1, V2 ⊆ [n] respectively denote
the set of G-vertices and H-vertices that are mapped to the isolated vertices in O.
For an undirected graph G′ on vertex-set [n] and subset U ⊆ [n], G′[U ] denotes the
subgraph of G′ induced on U . Observe that either E(G[V1]) = ∅ or E(H[V2]) = ∅:
otherwise, modifying permutation π∗ on vertices V1 would give a solution with more
than OPT edges. Suppose that E(G[V1]) = ∅ (the case E(H[V2]) = ∅ is identical),
then graph G has a vertex cover of size k (namely [n] \ V1). In this case, we run a
2-approximation algorithm for vertex-cover on G that computes a set C ′ ⊆ [n] of 2k
vertices that covers all edges (c.f. Vazirani [150]). Augment the set C ′ by adding to
it, k highest degree vertices from [n] \ C ′ to obtain a set C having 3k vertices.
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C \ C ′

C

C ′

Graph H and its subgraph BGraph G and its subgraph C

B

Figure 7.1: The subgraphs used in random mapping.

Claim 97. |E(G[C])| ≥ OPT.

Proof: Since C ′ is a vertex cover for G, edges of O can be partitioned into: (1)
E1 ⊆ E(O) edges induced on C ′, and (2) E2 ⊆ E(O) edges between C ′ and [n] \ C ′.
By definition, E1 ⊆ E(G[C ′]) ⊆ E(G[C]). Since all edges of O are induced on k
vertices, |E2| is at most the number of edges incident to the k highest degree vertices
in [n] \ C ′ (each of which has its other end-point in C ′). Thus the number of edges
between C ′ and C \ C ′ is at least |E2|. Since |E(G[C ′])| ≥ |E1| (from above), we
have |E(G[C])| ≥ |E1|+ |E2| = OPT.

Next we apply an O(n
k
)-approximation algorithm for dense k subgraph (c.f. Feige

et al. [50]) to compute a 3k-vertex subgraph in H having the maximum number of
edges. Let this solution be induced on vertex set B. Note that H contains a k-vertex
subgraph with at least OPT edges (corresponding to O), so H[B] contains at least
Ω( k

n
) · OPT edges. Figure 7.1 depicts the dense subgraphs in G and H. Algorithm 2

finally returns a uniformly random mapping from C to B (other vertices are mapped
arbitrarily). Observe that the expected number of common edges in such a random
mapping is at least:

1

(3k)2
|E(G[C])| · |E(H[B])| = 1

(3k)2
· Ω
(
k

n

)
· OPT2

= Ω

(
1

nk

)
· OPT2

since G[C] has Ω(OPT) edges and H[B] has Ω( k
n
) · OPT edges.
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Combining algorithms 1 and 2. Finally we output the better of the solu-
tions from Algorithms 1 and 2. The number of edges in this solution is at least

max{Ω(k),Ω( 1
nk

)OPT2} ≥
√

Ω(k · 1
nk
· OPT2) = Ω( 1√

n
) · OPT. We note that the

second algorithm can be easily derandomized using conditional expectation, to give
the following.

Theorem 98. There is an O(
√
n) approximation for 0-1 Max-QAP. Hence there is an

O(
√
n log2 n) approximation algorithm for Max-QAP.

Remarks. A possible simplification to our algorithm could be just to output the
better of maximum common star packing and a uniformly random permutation.
However this algorithm achieves only an approximation ratio Ω(n2/3) as shown by
an example where both graphs G and H are cliques on n2/3 vertices. We note that
this simpler algorithm can in fact be shown to achieve a Θ(n2/3) approximation
guarantee. Hence in our algorithm, it is important to find appropriate dense
subgraphs before applying a random permutation.

A tight example for our algorithm is when G and H are identical
√
n regular

graphs that contain a perfect matching. In this case, both Algorithms 1 and 2 return
solutions of value O(n), whereas the optimal value is ≈ n

√
n.

7.2.2 Maximum Value Common Star Packing

In this section, we consider the maximum value common star packing problem:
given two undirected n-vertex graphs G,H and a number 1 ≤ p ≤ n, compute a
maximum value common star packing in G and H that consists of exactly p stars.
We present a 5-approximation algorithm for this problem. A related problem is
capacitated star packing [8], where given a single weighted complete graph and a
fixed size vector s = 〈s1, · · · , sp〉, the goal is to compute a maximum weight star
packing having size vector s. Arkin et al. [8] gave a 3-approximation algorithm
for capacitated star packing. Our algorithm for common star packing is based on
local-search and is similar to the algorithm in [8].

In Algorithm 1 for 0-1 Max-QAP, we require the maximum value common star
packing when the number of stars p is not fixed: for this purpose we run the
algorithm for fixed p (described below) over all values of 1 ≤ p ≤ n, and pick the
best common star packing.

The algorithm for common star packing always maintains a common star packing
given by a pair of star packings S = {S1, · · · , Sp} in G and T = {T1, · · · , Tp} in H,
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where Si and Ti have the same size (for all 1 ≤ i ≤ p). For a common star packing
〈S, T 〉 as above, we denote by E(S) = tpi=1E(Si) (resp. E(T ) = tpi=1E(Ti)) the set
of edges in S (resp. T ). Observe that the value of this common star packing is
|E(S)| = |E(T )|. We define a bijection σ : E(S) → E(T ) that maps each edge in
E(Si) to some edge in E(Ti) (for every 1 ≤ i ≤ p).

Given any common star packing 〈S, T 〉, a local move is specified by a tuple
〈i, xi, yi, c′i〉 where:

• Index 1 ≤ i ≤ p specifies a pair of stars Si ∈ S and Ti ∈ T .

• Vertices xi ∈ G and yi ∈ H denote new centers of the stars.

• 0 ≤ c′i ≤ n denotes the new (common) size of the stars.

Let v = |E(S)| = |E(T )| denote the value of the common star packing. Applying
move 〈i, xi, yi, c′i〉 to 〈S, T 〉 involves the following modifications (below, two edges
are called independent if they are not incident to a common vertex).

1. Remove edges E(Si) from E(S) and E(Ti) = σ(E(Si)) from E(T ).

2. Let Xi ⊆ E(S) denote the edges of E(S) incident to vertex xi in graph G.
Remove Xi from E(S) and σ(Xi) from E(T ).

3. Let Yi ⊆ E(T ) denote the edges of E(T ) incident to vertex yi in graph H.
Remove Yi from E(T ) and σ−1(Yi) from E(S).

4. Let Ai denote any set of c′i edges incident to vertex xi in G such that edges in
Ai are independent of edges in E(S). If there does not exist such an Ai, the
local move fails.

5. Let Bi denote any set of c′i edges incident to vertex yi in H such that edges in
Bi are independent of edges in E(T ). If there does not exist such a Bi, the
local move fails.

6. Add Ai to E(S) and Bi to E(T ), and augment bijection σ so that σ(Ai) = Bi.

In steps 1-3, we only remove corresponding pairs of edges (under bijection σ)
from E(S) and E(T ). This ensures that after these modifications 〈S, T 〉 remains a
common star packing. Furthermore, the value of 〈S, T 〉 after step 3 is v − |Si| −
|Xi| − |Yi|. If the local move does not fail, then we obtain sets Ai and Bi in steps 4-5.



146 Chapter 7: Maximum Quadratic Assignment

Note that Ai (resp. Bi) corresponds to a c′i size star centered at xi (resp. yi) in
graph G (resp. H). By its definition, star Ai (resp. Bi) can be added to S (resp. T )
to obtain a star packing. Since |Ai| = |Bi| = c′i, after step 6, 〈S, T 〉 is a common
star packing of value v + c′i − |Si| − |Xi| − |Yi|. Finally the local move is said to be
improving iff it does not fail and the increase in value c′i − |Si| − |Xi| − |Yi| > 0.

The algorithm is initialized with S and T being zero-value star packings in
graphs G and H respectively. Then it performs any sequence of improving local
moves, until no further improvement is possible. The value of the solution increases
by at least one in each step, and the maximum value of a common star packing is
n (number of vertices). So the number of iterations is at most n. The number of
local moves at any step is at most n4, and each local move (steps 1-6) can be easily
performed in polynomial time. Thus the entire algorithm runs in polynomial time.

We now argue that any locally optimal solution is a 5-approximate solution.
Let S = {S1, · · · , Sp} in G and T = {T1, · · · , Tp} in H denote the common star
packing at a local optimum, where |Si| = |Ti| = ci for all 1 ≤ i ≤ p. Similarly let
S∗ = {S∗1 , · · · , S∗p} in G and T ∗ = {T ∗1 , · · · , T ∗p } in H denote the optimal common
star packing, where |S∗i | = |T ∗i | = c∗i for all 1 ≤ i ≤ p. For any vertex u ∈ G (resp.
v ∈ H) define τ(S, u) (resp. τ(T , v)) to be the number of edges of E(S) (resp.
E(T )) that are incident at u (resp. v). Also define touch(S∗i ) :=

∑
u∈S∗i

τ(S, u) and
touch(T ∗i ) :=

∑
v∈T ∗i

τ(T , v). Since S, S∗, T , and T ∗ are star packings,

p∑
i=1

touch(S∗i ) ≤ 2

p∑
i=1

ci and
p∑
i=1

touch(T ∗i ) ≤ 2

p∑
i=1

ci (7.1)

Claim 99. For any 1 ≤ i ≤ p, we have c∗i − ci − touch(S∗i )− touch(T ∗i ) ≤ 0.

Proof: Fix a 1 ≤ i ≤ p. Suppose for a contradiction that c∗i − ci − touch(S∗i ) −
touch(T ∗i ) > 0. Let xi ∈ G be the center of star S∗i and yi ∈ H the center of star
T ∗i . Let αi (resp. βi) denote the number of edges in S (resp. T ) incident to xi
(resp. yi). Define c′i = c∗i − touch(S∗i )− touch(T ∗i ) +αi + βi. Consider the local move
〈i, xi, yi, c′i〉. Observe that when this move is applied to 〈S, T 〉, we have |Xi| = αi
and |Yi| = βi in steps 2-3. Since touch(S∗i ) is the number of edges of S incident
to star S∗i and αi is the number of edges in S incident to xi, there are at least
|S∗i |− (touch(S∗i )−αi) edges of star S∗i that are independent of E(S) in step 4. Since
c′i ≤ c∗i + αi − touch(S∗i ), step 4 succeeds. By an identical argument, it follows that
step 5 also succeeds. Finally, the increase in value by this local move is:

c′i − ci − |Xi| − |Yi| = c∗i − ci − touch(S∗i )− touch(T ∗i ) > 0
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But this contradicts the fact that 〈S, T 〉 is a local optimum.

Adding the p expressions given by Claim 99 and using Equation (7.1), we have:
p∑
i=1

c∗i −
p∑
i=1

ci −
p∑
i=1

touch(S∗i )−
p∑
i=1

touch(T ∗i ) ≤ 0

=⇒
p∑
i=1

c∗i − 5

p∑
i=1

ci ≤ 0

Hence any local optimum is a 5-approximate solution.

Theorem 100. There is a 5-approximation algorithm for maximum value common
star packing.

7.2.3 Asymmetric Maximum Quadratic Assignment

We note that our algorithm for the general Max-QAP problem extends readily to
the case when the matrices W,D are asymmetric. The reduction to 0-1 Max-QAP
(Lemma 95) clearly holds in the asymmetric case as well. Hence it suffices to
consider the directed version of 0-1 Max-QAP, where given two n-vertex directed
graphs, the goal is to find a permutation of one graph that maximizes the number
of common directed edges. Following the notation in Section 7.2.1, if k denotes the
number of non-isolated vertices in the optimal graph O, then Claim 96 implies that
O contains a star-packing (in the undirected sense) of size at least k/4. It follows
that there is either an In-star packing (where edges of each star are directed to its
center) or an Out-star packing (where edges of each star are directed away from its
center) having size k/8. The Common Star Packing algorithm of Section 7.2.2 easily
extends to give a constant factor approximation for computing a maximum value
common In-star (resp. Out-star) packing in two directed graphs. So Algorithm 1 is
guaranteed to find a solution of value Ω(k).

In Algorithm 2, we consider both graphs as being undirected. Then exactly as
before, we obtain two 3k vertex subgraphs such that one of them has Ω(1)OPT
edges and the other Ω( k

n
)OPT edges. Finally observe that a uniformly random

mapping of two r-vertex directed graphs having m1 and m2 edges results in m1·m2

r2

common directed edges in expectation. So Algorithm 2 outputs a solution of value
Ω( 1

nk
)OPT2. Thus we obtain the following.

Corollary 101. There is an O(
√
n log2 n) approximation algorithm for asymmetric

Max-QAP.
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7.3 Max-QAP under Triangle Inequality

In this section we treat the special case of the Maximum Quadratic Assignment
Problem where the entries of matrix D satisfy the triangle inequality, i.e. dij + djk ≥
dik for all i, j, k ∈ [n]. Recall that W and D are symmetric.

Let G and H be the complete undirected graphs with edge weights defined by
matrices W and D, respectively. Let M be the matching in graph H (where weights
satisfy triangle inequality) obtained by the straightforward greedy algorithm: pick
the heaviest edge in graph H and delete all incident edges, in the remaining graph
choose the heaviest edge and so on. We will call such a matching M greedy. Note
that |M | = bn/2c since H is a complete graph. Each edge e of graph H is incident
with either one or two edges of matching M . For any edge e ∈ H, let m(e) be the
edge in M with the largest weight that is incident to e. By the construction of the
greedy matching M , we have dm(e) ≥ de for all e ∈ H.

We consider the following modification of the given Max-QAP instance, which
we call the auxiliary problem. Find a permutation π of [n] that maximizes:∑

i,j∈[n],i 6=j

wi,j · dm(π(i),π(j)), (7.2)

i.e. the weight of each edge (i, j) in graph G is multiplied by the weight of edge
m(π(i), π(j)) in graph H (which is incident to the edge (π(i), π(j)) in H). Let OPT∗

be the value of the optimal solution to the Max-QAP instance, and let Aux∗ be the
optimal value of the auxiliary problem (7.2). We first prove a simple lemma based
on triangle inequality.

Lemma 102. Aux∗ ≥ OPT∗ ≥ Aux∗/2

Proof: Since dm(e) ≥ de for all edges e ∈ H, we obtain the first inequality
Aux∗ ≥ OPT∗.

Consider now an optimal solution (permutation) σ for the auxiliary problem
(7.2), that maps vertices of G to those of H. Let σ′ denote the random permutation
where we swap assignments along each edge of matching M with probability 1/2.
More precisely, consider an edge (u, v) ∈M such that i and j are the two vertices
of graph G mapped to the endpoints of this, i.e. u = σ(i) and v = σ(j). We set
σ′(i) = u, σ′(j) = v with probability 1/2, and σ′(i) = v, σ′(j) = u with probability
1/2. This process is repeated independently for all edges of the greedy matching M .
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We now prove that the expected value of the original Max-QAP instance on the
random permutation σ′ is at least Aux∗/2 that would imply the second inequality
of the lemma. Consider an edge (i, j) in graph G, and let σ(i) = u and σ(j) = v. If
(u, v) ∈M , then the expectation of the term corresponding to (i, j) in the objective
function of Max-QAP on permutation σ′ is exactly wijdu,v. If (u, v) 6∈ M and both
u and v are incident to edges from M , then let ū and v̄ be the other endpoints of
edges from M incident to u and v, i.e. (u, ū) ∈ M and (v, v̄) ∈ M . In this case, by
triangle inequality the expectation of the objective function term corresponding to
(i, j) on permutation σ′ is exactly:

wij(du,v + du,v̄ + dū,v + dū,v̄)/4 ≥ wij
max{du,ū, dv,v̄}

2
= wij · dm(σ(i),σ(j))/2

Analogously, if vertex u or v (say v) is the single vertex of H that is not incident
to any edge of the greedy matching M and (u, ū) ∈M , then the expectation of the
objective function term corresponding to (i, j) on permutation σ′ is:

wij(du,v + dū,v)/2 ≥ wij · du,ū/2 = wij · dm(σ(i),σ(j))/2.

Summing up the contribution to the Max-QAP objective over all edges (i, j) ∈ G,
the expected value of permutation σ′ is at least Aux∗

2
which implies OPT∗ ≥ Aux∗/2.

7.3.1 Algorithm for the auxiliary problem

In the rest of the section, we will show how to construct a (1− 1
e
) approximation

algorithm for the auxiliary problem. We consider the following more general
problem. The input is an undirected edge-weighted graph G = (V,E,w) with
nonnegative edge weights we ≥ 0 for e ∈ E and nonnegative numbers {∆i}ni=1. The
goal is to find a permutation π of vertices of graph G that maximizes objective:

2
∑

(i,j)∈E

wij ·
( n∑
p=min{πi,πj}

∆p

)
(7.3)

We first reduce the auxiliary problem (7.2) to one of the above form (7.3). The
weighted graph G is the complete graph on vertex set V = [n] with edge-weights W .
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Let l = bn/2c and D1 ≥ D2 ≥ · · · ≥ Dl be the edge-weights of greedy matching M .
We set ∆2q = Dq−Dq+1 for all 1 ≤ q ≤ l (here Dl+1 = 0), and all other ∆s are set to
0. We also renumber vertices in graph H, in the auxiliary problem (7.2), so that the
edges in the greedy matching M are chosen in the order (1, 2), (3, 4), · · · , (2l−1, 2l).
Now for any permutation π and vertices i, j in G, we have

dm(π(i),π(j)) =
n∑

p=min{π(i),π(j)}

∆p

Hence objective (7.3) equals objective (7.2) for every permutation (note that (7.2)
sums over unordered pairs i, j whereas (7.3) sums over ordered pairs). In the
following, we obtain an approximation algorithm for Problem (7.3).

Problem (7.3) generalizes the Maximum Vertex Cover problem where, given an
edge-weighted undirected graph and a number k, the goal is to find k vertices
that cover the maximum weight of edges. The maximum vertex cover problem is
APX-hard [123] and the best known approximation ratio is ≈ 3

4
[51]. We present a

(1− 1
e
) approximation algorithm for problem (7.3) using a natural LP relaxation. In

the following, x-variables are assignment variables mapping vertices to positions,
and each variable zijs denotes whether either of vertices i, j ∈ V is mapped to some
position in {1, · · · , s} (where s ∈ [n]).

max 2 ·
∑

(i,j)∈E

wij

n∑
s=1

∆szijs,

zijs ≤
s∑
t=1

xit +
s∑
t=1

xjt, ∀(i, j) ∈ E, ∀s = 1, . . . , n (7.4)

zijs ≤ 1, ∀(i, j) ∈ E, ∀s = 1, . . . , n (7.5)∑
i∈V

xit = 1, ∀t = 1, . . . , n (7.6)

n∑
t=1

xit = 1, ∀i ∈ V (7.7)

xit ≥ 0, ∀i ∈ V, ∀t = 1, . . . , n (7.8)
zijs ≥ 0, ∀(i, j) ∈ E, ∀s = 1, . . . , n (7.9)

Our algorithm is quite a natural randomized rounding of the optimal solution
(x∗, z∗) of the above linear program. For each position t = 1, . . . , n we treat con-
straint (7.6) as a density function and choose a vertex i ∈ V at random according
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to this distribution, to assign to position t. After that, each position t = 1, . . . , n has
one chosen vertex. If a vertex is chosen by many positions then we assign it to the
earliest one. The vertices not chosen by any position in the previous step of the
algorithm are assigned to arbitrary empty positions.

We now derive the expected performance guarantee of the algorithm. For each
edge (i, j) ∈ E we estimate its contribution to the objective function:

wij

n∑
s=1

∆s · Pr(i or j is assigned a position ≤ s)

= wij

n∑
s=1

∆s ·
(

1−
s∏
t=1

(1− x∗it − x∗jt)
)

(7.10)

≥ wij

n∑
s=1

∆s

(
1− e−

∑s
t=1(x∗it+x

∗
jt)
)

(7.11)

≥ wij

n∑
s=1

∆s

(
1− 1

e

)
·min

{
s∑
t=1

(x∗it + x∗jt), 1

}
(7.12)

=

(
1− 1

e

)
wij

n∑
s=1

∆sz
∗
ijs

Inequality (7.11) follows from the fact that 1 + x ≤ ex for all x ∈ R, and inequal-
ity (7.12) from 1 − e−x ≥ (1 − 1

e
)x for 0 ≤ x ≤ 1. Therefore, the total expected

objective function value of the rounded solution is at least 1− 1
e

times the optimal
value of the linear programming relaxation. Combined with Lemma 102, we have
the following.

Theorem 103. There is a 2e
e−1

approximation algorithm for Max-QAP with triangle
inequality.

Derandomization. The above randomized rounding algorithm can be derandom-
ized using conditional expectations since we have an exact expression for the ex-
pected objective value (7.10). Similarly, the algorithm in Lemma 102, that obtains
a solution to Max-QAP from one for problem (7.2) can be easily derandomized.
Hence we obtain a deterministic algorithm in Theorem 103.



152 Chapter 7: Maximum Quadratic Assignment

7.4 Some Remarks on an LP Relaxation for Max-QAP

Consider the following integer program for Max-QAP. We have assignment variables
xi,p between vertices of the two graphs, and variables yi,p,j,q denote whether “i maps
to p and j maps to q”. The LP relaxation LP is obtained by dropping the integrality
condition on variables, and is given below.

max
∑

i,j∈[n],i 6=j

wij
∑

p,q∈[n],p 6=q

dpq · yi,p,j,q,

n∑
i=1

xi,p = 1, ∀ 1 ≤ p ≤ n

n∑
p=1

xi,p = 1, ∀ 1 ≤ i ≤ n

n∑
i=1

yi,p,j,q = xj,q, ∀ 1 ≤ p, j, q ≤ n

n∑
p=1

yi,p,j,q = xj,q, ∀ 1 ≤ i, j, q ≤ n

n∑
j=1

yi,p,j,q = xi,p, ∀ 1 ≤ i, p, q ≤ n

n∑
q=1

yi,p,j,q = xi,p, ∀ 1 ≤ i, j, p ≤ n

xi,p ≥ 0, ∀ 1 ≤ i, p ≤ n
yi,p,j,q ≥ 0, ∀ 1 ≤ i, p, j, q ≤ n.

General Max-QAP. The dense k subgraph problem is the special case of Max-QAP
when matrix D is the incidence matrix of a k-clique (i.e. dpq = 1 if 1 ≤ p, q ≤ k,
and dpq = 0 otherwise), and W is the incidence matrix of the input graph. We note
that in the case of dense k subgraph, this LP can be shown to have an integrality
gap of O(

√
n): LP is at least as good as the standard LP for dense k subgraph,

which has integrality gap ≈ n
k

(due to Goemans); in addition LP cannot have value
larger than min{k2,m} (where m is number of edges in the input graph), so its
integrality gap is at most k. The following example shows that this is nearly tight.
Consider k =

√
n, and a random k-regular graph (see Wormald [154] for such

models) corresponding to W . With high probability, the optimal value of the integer



7.4 Some Remarks on an LP Relaxation for Max-QAP 153

program can be bounded by O(k log n). However, the LP solution when all xi,p = 1
n

can be shown to have objective value Ω(k2). This gives an Ω(
√
n

logn
) lower bound on

the integrality gap of LP.

Triangle inequality Max-QAP. We also observe that for Max-QAP with triangle
inequality, our approximation algorithm (Section 7.3) implies the same upper bound
on the integrality gap for the above LP relaxation. Given an optimal solution (x, y) to
LP for Max-QAP, we induce a solution (x̃, z) for the LP relaxation for problem (7.3),
where x̃it = xit for all i, t ∈ [n] and zijs =

∑s
p=1(

∑n
q=1 yipjq +

∑n
q=s+1 yiqjp) for all

1 ≤ i < j ≤ n, s ∈ [n]. One can easily check that zijs ≤ 1 and zijs ≤
∑s

t=1(x̃it + x̃jt):

zijs =
s∑

p=1

n∑
q=1

yipjq +
n∑

q=s+1

s∑
p=1

yiqjp ≤
n∑
p=1

n∑
q=1

yipjq = 1,

and,

zijs =
s∑

p=1

n∑
q=1

yipjq +
s∑

p=1

n∑
q=s+1

yiqjp

≤
s∑

p=1

xip +
s∑

p=1

n∑
q=1

yiqjp

=
s∑

p=1

(xip + xjp)

So (x̃, z) is indeed feasible. As for the first inequality in Lemma 102, we can argue
that the LP-objective (in problem (7.3)) of (x̃, z) is at least the LP-objective of (x, y)
in LP . Then the LP-rounding algorithm for problem (7.3) together with the second
part of Lemma 102 implies that the integrality gap of the above LP for Max-QAP is
at most 2e

e−1
, when one of the matrices satisfies triangle inequality.

Credits: The results in this chapter are from “On the Maximum Quadratic Assignment
Problem” [114], obtained jointly with Maxim Sviridenko.
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