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Abstract

Essay 1:Financial Intermediation, Trust, and Asset Values

In thin financial markets where intermediation is necessary to facilitate exchange, the

intermediary may have an informational advantage in addition to his cost advantage for

acquiring the security. If all information is eventually revealed, the intermediary may

have an incentive to truthfully reveal the value of the security to a customer as soon as

he learns it rather than attempting to profit from the asymmetric information. Whether

this incentive is sufficiently strong depends on the patience of the intermediary and the

probability that he will have future interactions with the same client. This probability

depends on the value of the security because declining values lead to increased risk that

the intermediary will fail. I study a model of repeated interaction between clients and

intermediaries that takes into account the correlation between value and continuation

probabilities. The model captures the unresponsiveness of thinly traded securities to

bad news and explains the breakdown in liquidity following declines in asset values.

This fact can help explain why relatively illiquid securities, such as those based on

subprime mortgages, can experience apparent bubbles and crashes.

Essay 2:Imperfect Monitoring and Fixed Spreads in the Market for IPOs

Characteristics of the investment banking industry, particularly the extreme concen-

tration of spreads at exactly 7%, seem consistent with some form of collusion through

which underwriters can extract surplus from the IPO. I present a model of investment

banking that, under the assumption of optimal collusion, generates a distribution of

spreads qualitatively similar to that observed. The model is extended to show that

underpricing and spread rigidity may arise together, each one reinforcing incentives to

engage in the other.

Essay 3:Social Capital as Economic Overlap

This paper presents a model of endogenous social capital where location decisions can

generate the necessary means to sustain cooperative behavior in the absence of legal

institutions or social conventions. By choosing to locate close to each other, agents

create public goods that facilitate cooperative behavior on other endeavors. The model

can serve to explain both initial agglomeration decisions and cooperation in extra-legal

environments, even in the absence of frequent repetition.
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1.1 Introduction

For many assets that trade in relatively thin markets, a significant decline in perceived

value appears to lead markets in that asset to freeze up. Liquidity within a market

seems to disappear after a downward price movement. This phenomenon is puzzling

because it is not obvious that a downward movement in perceived value should ad-

versely affect the gains from trade associated with an asset. Furthermore, markets

appear to respond less quickly to information that a security is overpriced than to

information that it is underpriced, introducing downward price stickiness and sudden

crashes. These phenomena are often seen as evidence of uncertainty aversion or irra-

tional behaviorial biases in asset markets (see, for example, Routledge and Zin [2004]).

I show that both of these phenomena can appear in a model where customers repeat-

edly purchase securities from an intermediary who has superior information about the

value of the asset. Asymmetric price responsiveness and periodic liquidity breakdowns

arise because the inventory risk borne by the intermediary affects the incentives for the

intermediary to behave honestly and for the customer to trust her intermediary.

In many financial transactions, like those taking place in public equity markets,

the role of a financial intermediary is limited to matching buyers and sellers, and the

intermediary has little economic interest in the asset transacted and little information

advantage. In contrast, here I focus on markets with trade that is less frequent and

where the price and value of the asset are less transparent. Examples include markets

for municipal bonds, high-yield corporate debt, and mortgage-backed securities. The

model here will rely on three characteristics of financial intermediation in opaque mar-

kets. First, the financial intermediary holds an inventory of the traded asset that can

be sizable for securities initially being placed.1 This is important here since fluctuations

in the value of the inventory change the likelihood that an intermediary will survive.

Second, the financial intermediary is better informed about the value of the asset. This

assumption is natural in a market without transparent pricing and where the final pur-

chasers are generally retail investors or relatively unsophisticated delegated portfolio

managers. In this situation, an intermediary will have an opportunity to attempt to

exploit this private information to effectively cheat the customer, although eventually

the customer will learn the true value of the asset. Third, financial intermediaries

1These inventories are generally obtained directly from issuers or created through securitization of
loans. Brunnermeier and Pedersen [2007] notes the tendency for market makers to be net long in the
assets in which they specialize and cites the relevant direct evidence (Ibbotson [1976] and Hameed
et al. [2005]).
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transact repeatedly and a large portion of their value is represented by profits on fu-

ture trades. This last characteristic will be crucial in mitigating the adverse selection

problem arising from the intermediary’s better access to information.

The requirement that the intermediary hold an inventory in the asset which he

trades exposes the intermediary to risks associated with changes in the value of that

asset. Since financial intermediaries make extensive use of leverage and short-term

borrowing in general, they face the constant risk that they will not be able to meet

some obligation if they face unexpected adverse conditions. In this paper, we treat this

risk as the risk that the business fails; specifically, sufficient adverse events will cause

an intermediary to cease to do business with clients, at least for a significant period

of time. The crucial link between this risk of collapse, liquidity, and asset prices arises

because perhaps the most significant risk faced by an intermediary is that the value

of his inventory will decline to the point where he is effectively insolvent. Specifically,

we assume that the probability that the interaction between the intermediary and the

customer comes to an end is a function of the value of the asset that the intermediary

attempts to sell the customer; when the value of the asset falls, the intermediary is

more likely to face financial distress. This in turn causes the intermediary to discount

the potential gains from maintaining a cooperative trading relationship more after he

has learned that the value of his inventory has fallen.

This is effectively a reduced form approach to modeling the incentives facing a

levered financial intermediary. Lowery and Routledge [2008] explore in more detail but

in a simpler strategic interaction the effect of capital structure on the incentives of an

intermediary. They find that indeed the increased risk of bankruptcy resulting from

adverse changes in the financial position of an intermediary will decrease the relative

weight the intermediary gives to future profits relative to current gains.2

The link between liquidity breakdowns, price stickiness, and bankruptcy risk is

relatively straightforward once the role of repetition in inducing the intermediary to

behave honestly is considered. Since the customer eventually learns the true value

of the asset, he can change his behavior depending on whether the intermediary has

behaved honestly in the past.3 Naturally, when the intermediary is sufficiently patient

2That paper considers several other mechanisms through which leverage affects the ability of in-
termediaries and customers to sustain cooperative trade and find an ambiguous relationship between
leverage and the ability to sustain cooperative trade. Ultimately, however, leverage will cause suffi-
ciently severe negative shocks to the worth of the intermediary to undermine cooperation in a manner
similar to what is described here.

3For simplicity, here we consider a perfect monitoring game where the intermediary is able to
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relative to the available short-term benefits to cheating the customer, he can be induced

to reveal his private information about the security. When the customer knows that

the intermediary cares relatively more about future trading opportunities versus short-

term gains, the customer can then safely trust that the intermediary will accurately

reveal his private information. If public information arrives that the value of the asset

has fallen and thus the intermediary is at risk for bankruptcy, the customer will be less

willing to trust the further information provided by the intermediary and trade will

become less frequent. Information about the value of the asset, however, is most likely

available to the intermediary before it is available to the customer. Thus, when bad

news about the value of the asset first develops, the intermediary is likely to learn first

that he is at risk of bankruptcy. He therefore has no incentive to honestly report the

true value of the asset to the customer since he can profitably cheat the customer by

refusing to reveal the bad news and because the customer, thinking the value is still

high, will be prepared to trust the intermediary. This second effect is what leads to

asymmetric price responses; the intermediary will hide bad news for as long as possible,

perhaps even falsely reporting good news and generating an asset price “bubble” where

prices rise while intrinsic value falls. Eventually, however, the customer will learn both

that he has been cheated in the past and that the intermediary has no incentive to

behave honestly in the future. Thus, bubbles will be followed not only by crashes but

by periods of illiquidity.

In the model, the asymmetry in price response arises because the intermediary is

selling assets and thus prefers the price to be high. If, however, we instead consider an

intermediary who also purchases securities from customers, we would not then observe

symmetric stickiness or reverse bubbles. Bubbles arise because of the coincidence of

two events following the intermediary’s discovery of surprisingly bad news about the

asset. First, the intermediary no longer has an incentive to invest in maintaining a

trusting relationship with the customer. Just as importantly, however, the customer

must be prepared to believe the lie the intermediary tells. Since asset values are at

least somewhat persistent, the customer’s prior beliefs will make him susceptible to a

lie reporting a small change in value. Following surprisingly good news, on the other

hand, an intermediary would have an opportunity to cheat customers who need to sell

their assets by pretending that the value has not changed. Surprisingly good news,

however, will make the intermediary care more about the future because his risk of

observe exactly the final payoff of the asset and, consequently, the customer will know for certain if
the intermediary reported the true value honestly.
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failure has declined; an intermediary making a secondary market as well as a primary

market will still maintain a long position in the asset, if for no other reason than that

short positions in such assets are not feasible.

By assuming that the rate at which players discount the future changes as a function

of a random state variable, this paper adds to the very small literature on repeated

games with random discount rates. Baye and Jansen [1996] proves anti-folk theorems

in the context of such games, while Dal Bo [2007] is the only application of such games

that I am aware of. These types of games can be viewed as special cases of games with

random payoffs where efficient cooperation breaks down, most notably Rotemberg and

Saloner [1986]. The paper also relates to the theory of asymptotically finite games

(for example, Bernheim and Dasgupta [1995], Jones [1998], and Jones [1999]) which is

concerned with games where the likelihood that the game ends changes over time in a

deterministic fashion.

The implications of intermediation for the pricing of thinly traded assets explored

in this paper are complementary to those explored by Duffie et al. [2005]. I abstract

from the effects on bargaining in the market by assuming a fixed “fair” division of

surplus between customers and intermediaries, while they abstract from asymmetric

information and inventory concerns, focusing on the role of bargaining in the price

setting process. Another paper considering similar observations about asymmetric

price responsiveness, Hong et al. [2000], documents that “bad news” appears to enter

stock prices slowly. The authors argue that this is consistent with the behavioral model

presented in Hong and Stein [1999] if informed insiders, specifically managers, prefer

for the asset price to be high. While my model is designed to capture a very different

trading environment in which prices are not publicly observable, it is related in the

sense that the downward price stickiness arises from the intermediary’s preference for a

higher price. My model, however, admits the possibility that that information provided

by the informed insider is not verifiable and therefore can apply to environments where

rumor and misinformation can exist.

Carlin et al. [2008] also consider the role of repetition in maintaining cooperation,

and therefore liquidity, in financial markets; they focus is on interdealer markets with

symmetric information. More generally, the importance of repetition to maintaining

profitable trade has been explored in, for example, Greif et al. [1994], Routledge and

von Amsberg [2003], Greif [1993], Greif [2006], and Dixit [2004].

This paper is organized as follows. First, I present a general model of repeated trade

in an over the counter market. I then consider a very simple example of the model where

9



the asset value follows a finite Markov chain. This example introduces the concept

of downward price stickiness (or bubbles), liquidity crises, and market unraveling. I

then introduce a model with an infinite state space and solve (numerically) for the

equilibrium of the stage game induced by a simple strategy of punishing any lie by

refusing all future trade. This equilibrium presents more clearly the effects identified

in the finite case. Finally, I present a limit result showing that market unraveling can

lead to bubbles, crashes, and liquidity crises of arbitrary severity.

1.2 The Game

This section presents the financial intermediation game in a general, indefinitely re-

peated setting. This general model nests the numerical examples treated in the next

two sections and the more abstract model treated later in the paper.

Two players, an intermediary I and a customer C, meet in every period T =

{1, 2, ...}. There is a security with a value process {vt}∞t=0, where vt ∈ Vt ⊂ V . Each

player receives a signal at the beginning of each period, xIt for the intermediary and

xCt for the customer.

The customer’s signal, xCt , is common knowledge, while xIt is the private information

of the intermediary. The value process vt is correlated with xIt and weakly correlated

with xCt . That is, the customer’s signal may be uninformative in some periods. Let

F I = {FIt}∞t=0 and FC = {FCt}∞t=0 be the filtrations of the intermediary and the

customer, respectively, with FCt ⊆ F It . That is, the intermediary’s information is finer

than the customers. To avoid issues associated with imperfect monitoring, however,

we assume that FCt = F It infinitely often.

The stage game proceeds as follows: Each agent observes his signal. Then, simul-

taneously, the intermediary chooses a price rt ∈ Vt while the customer chooses the set

of prices that he will accept, At ⊆ Vt. In equilibrium, we will see that this is equivalent

to assuming that the customer chooses a threshold above which he will not purchase

the security. We do not impose thresholds in the general model and thus permit the

customer to potentially learn precise information about the value of the asset from

the intermediary’s offer. In the finite example we do restrict attention to threshold

strategies for simplicity.

If rt ∈ At, payoffs are

Intermediary: cI + (rt − vt)

10



Customer: cc + (vt − rt)

Otherwise, both players receive zero. Here, {cI , cc} represent the gains to trade

between the intermediary and the customer, reflecting different preferences for holding

the security and the cost advantage for the intermediary in obtaining the security. The

“fair” division of surplus between the intermediary and the customer is also given exoge-

nously. We assume in the initial examples that there are infinitesimal costs associated

with switching intermediaries and an infinitesimal probability that the intermediary

is a commitment type who always chooses rt = vt. By appropriately choosing these

parameters, we can guarantee that the best response of the customer after learning

that his intermediary has charged a price above vt is to switch intermediaries. As is

standard, we ignore these infinitesimal quantities in the analysis.4

The game is repeated indefinitely, continuing with probability δt(vt) in each period,

where δ′t(vt) ≥ 0. Note that the continuation probability can depend both on the value

and the period.

1.3 Example: Higher Frequency Information

I first analyze a simple four state version of the model that can demonstrate the basic

relationship between continuation probabilities, liquidity, and the response of prices to

information.

Here we assume that the uninformed agent learns the truth in every other period

but has to make an uninformed decision about whether to buy at a given price in the

intervening period. In this case, we can investigate how price responds to bad news

when such news is only available to the intermediary.

4This assumption serves two purposes, one primarily expositional and one more fundamental. In
the absence of the chance to switch intermediaries, the worst available punishment would be reversion
to the static Nash equilibrium, which would provide small but positive continuation values to the
intermediary. By assuming that the customer would change intermediaries, this continuation value
can simply be set at zero. More fundamentally, if we seek the equilibrium that provides the greatest
trade or the highest payoffs, grim trigger strategies are not optimal. A customer may learn that
the intermediary has lied, but if the intermediary lied in a period where he could not have been
expected to tell the truth (because continuation values are too low) the optimal equilibrium would
require forgiveness. Assuming the ability to switch intermediaries allows us to focus on simple grim
trigger strategies. It is also arguably more realistic, as customers are unlikely to continue to engage
in business with someone they know is opportunistically seeking to cheat them. Finally, we assume
that the intermediary will “tremble” and tell the truth with infinitesimal, positive probability, and
that this probability is very large relative to the probability of facing a commitment type. This
eliminates strategies where the intermediary seeks to influence the posterior beliefs about him being
a commitment type in any way except avoiding revealing himself with certainty.

11



Let Vt = V = {1, 2, 3, 4} and xIt = vt for all t, while xCt = vt for all odd t and ∅ for

even t. {V }∞t is a homogenous Markov chain with transition matrix
0.5 0.3 0.15 0.05

0.2 0.5 0.2 0.1

0.1 0.2 0.5 0.2

0.05 0.15 0.3 0.5

 .

Let cI = 0.5 and cc = 0.2. Let δt = 1 if t is odd. That is, the game never ends after

a period with symmetric information. This assumption is strictly to simplify algebra.

For even number periods, let δt(vt) ≡ δvt , where δ1 < δ2 < δ3 < δ4. That is, the security

continues to exist with higher probability when the value is high. Note that a proper

subgame begins in each odd numbered period, since both intermediary and customer

know the full history and the current state at this point. I refer to each two period

unit of time starting with an odd period as a stage. See Figure 2.1 for a summary of

play in each stage.

In this example, the intermediary learns the true value of the security before trad-

ing, while the customer receives this information only every other period. In periods

where vt is not common knowledge before trading occurs, vt is revealed immediately

before the beginning of period t+1. For example, a firm issuing junk bonds will disclose

information at regular intervals as required by accounting regulations, but intermedi-

aries specializing in the industry will collect information relevant to the value between

these disclosures.

We will consider simple strategies of the following form: The strategy has two

phases. In the initial phase, the buyer and intermediary engage in the “fair” transaction

in the odd periods.5 In the even period, the buyer chooses a threshold that depends on

the previous odd period (note that the threshold will be mixed), and the intermediary

reports a value. If the intermediary’s report turns out to be true, the game remains

in this phase. Otherwise, the customer switches intermediaries. The customer then

enters into a new relationship with an intermediary starting in the original phase, thus

continuing to obtain the same payoffs. The intermediary, however, no longer receives

any payoffs from interactions with this particular customer.

Given the assumption that strategies take this form, the game can be summarized

5Recall that the “fair” transaction refers to the transaction that a customer would complete with
a commitment type intermediary.
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as a finite game in a manner reminiscent of Abreu et al. [1990] and Spear and Srivastava

[1987]. That is, the payoff to the intermediary of a particular strategy can be decom-

posed into the payoff for the current stage and the promised continuation values. In

this case, the promised continuation value is exactly zero after every false report. For

the continuation value following a truthful report, define γi as the continuation value

for telling the truth in an even numbered period where the true value is i. Note that

this is sufficient to cover all possible continuations since the value process is a one-stage

Markov chain and complete punishment is always triggered by any misreport. Also,

define Ui as the expected present value of play starting in an odd period where the

value observed by the intermediary is i. Furthermore, define the stage-game payoff for

the intermediary in an even period where the previous odd period had value i and the

even period has value j as uij. We can now write Ui as follows:

Ui =
1

2
+

4∑
k=1

P (k|i)(uik + 1truth,ikγk),

where 1truth,ik is an indicator of whether a truthful report ever occurs when value k

follows an odd period value of i. This expression for Ui is something of an abuse of

notation since uik will not be well defined when the intermediary is playing a mixed

strategy in which he sometimes tells the truth and sometimes overstates the value of

the security. When the intermediary does play a mixed strategy, uik will represent the

stage game payoff when he is honest.

The simplest way to analyze this game is to assume continuation values that can

be promised to the intermediary after each even period (which will depend only on

the current state in said even period). Assuming these continuations allows for the

calculation of the possibly mixed strategies in each stage, taking into consideration

the future benefits available to the intermediary for telling the truth. From these

continuation values and the implied stage game payoffs, it is then possible to back out

the probability of the game ending following a realization of each value. This approach

is simpler than assuming continuation probabilities and then calculating continuation

values because the continuation values are determined by the strategies that are played

after each of the eight possible two-period price realizations, and these strategies are

again determined by the available continuation values.

From the assumed continuation values, it is straightforward to calculate the implied

13



Even State Value
1 2 3 4

Odd State Value

1 1.11 2 3 4
2 1.7 2 3 4
3 2.43 2.09 3 4
4 2.54 2.38 3 4

Table 1.1: Average Price following each price path realization

Even State Value
1 2 3 4 overall

Odd State Value

1 0.90 0.50 0.30 0.21 0.66
2 0.57 0.50 0.30 0.21 0.45
3 0.78 0.93 0.60 0.40 0.64
4 0.73 0.78 0.60 0.40 0.53

Table 1.2: Liquidity following each price path realization

discount factor in terms of the Ui:

δi =
γi∑4

k=1 P (k|i)Uk

Since it is straightforward to calculate uik (the payoff in a particular stage) given the

assumed continuation values,6 the above expression gives the continuation probability

associated with each value that is consistent with the assumed continuation values (γi).

For example, if we assume the customer can “reward” the intermediary with con-

tinuations of {0.25, 0.5, 1, 1.5} following values in an even period of {1, 2, 3, 4}, respec-

tively, the implied continuation probabilities are δ = {0.169, 0.324, 0.578, 0.827}. High

continuation values are indeed associated with high probabilities of the game continu-

ing. That is, telling the truth is more valuable when the security value is high because

the probability that the game ends is lower.

Continuing with this example, we can look at the strategies played by the customer

and the intermediary for each realization of the two-period price path and show how

the breakdown in trust leads to downward price stickiness and liquidity breakdowns.

Table ?? shows the average price of a transaction observed in the market following

an odd period of row and an even period of column. That is, with a commitment to

truth telling, all rows would read 1,2,3,4. This table shows that after “good news”

6For certain parameterizations, this game may have multiple equilibria. I focus on the Pareto-
dominant equilibria when possible. I don’t know yet the extent or importance of multiple equilibria.
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Value 1 2 3 4 overall
1 0.90 0.50 0.30 0.21 0.66
2 0.57 0.50 0.30 0.21 0.45
3 0.78 0.93 0.60 0.40 0.64
4 0.73 0.78 0.60 0.40 0.53

Table 1.3: Liquidity following each price path realization

about the asset value becomes available to the intermediary, it is immediately reflected

in price; an increase in the value of the security between the common knowledge, odd

numbered period and the even period where only the intermediary knows the value is

immediately reflected in the price. Bad news does not fully enter the price. Instead, a

large drop in value is hidden by the intermediary since he now knows (1) the game will

probably end soon so he should attempt to squeeze as many profits as possible from

the customer and (2) the customer is expecting a high value (since the price process is

persistent) and will be willing to believe a false, high report. Thus, an econometrician

who had ex post access to the time series of news available to the intermediary would

conclude that prices respond more slowly to bad news. This sluggishness will effectively

result from deception on the part of the intermediary. This deception takes one of two

forms; for certain large price drops (from 3 to 1 or 4 to 1) the intermediary mixes over

lies, sometimes reporting 2 and sometimes reporting 3. This mixing makes detecting

the lie more difficult. For other price drops, the intermediary will mix between reporting

the truth and reporting higher values. In principle, it is possible that an intermediary

would lie after an increase from a low value to another still low value (say, report 3 or

4 after an increase from 1 to 2), but this is ruled out by the decreasing probability of

the game stopping and the persistence in the underlying value process.

Table ?? shows the related liquidity story. Each cell is now the probability that the

transaction goes through at any price, given a price path of row then column. The most

revealing comparison here is between stages that begin with vt = 3 and stages that

begin with vt = 2. The market is more liquid when starting from 3 than 2 regardless

of the realized value in t + 1. This comparison follows from the fact that a customer

must use the period t information about the value to estimate the probability that the

game will continue after period t + 1, which will determine whether the intermediary

has an incentive to report the truth. Liquidity is also high when the stage starts in

the very lowest state, but this is an artifact of the assumption that the security cannot

fall below this level. The intermediary knows that the customer will not trust any

15



reports since the customer’s belief about the probability that the game continues is

pessimistic, but the intermediary can credibly report that the value of the security is

1 since this is the lower bound of possible values. Liquidity also breaks down slightly

at the upper bound (that is when the initial value is 4) simply because 4 is the most

likely value to arise but is also the most profitable cheat given any other realization. A

more symmetric problem where, for example, the information about value came from

discrete time observations of Brownian motion would exhibit more monotonicity in

liquidity but would also be far less simple to solve.

Two relevant simulated price processes are included in Figures 1.2 and 1.3 to demon-

strate downward price stickiness and relative liquidity. Recall that there is asymmetric

information only in even-numbered periods. The solid red line (which is always above

the solid blue line) represents the average price in the market, while the solid blue line

represents the value as observed by the intermediary. The dashed line, for comparison,

is the price process in a one-shot version of the game. Liquidity in each even period

is denoted by an asterisk (with the scale along the y-axis) and, for comparison, x’s

denote the liquidity in the one-shot version.

1.3.1 Discussion

This section considers how the characteristics of the equilibrium of the stage game

relate to price responsiveness and liquidity in a repeated asset market. We first con-

sider the question of liquidity. In this model, liquidity in the over the counter market

is measured by the probability that trade will occur. When available continuation

values are very high, this probability is clearly one since the intermediary will never

prefer to cheat. These continuation values can, in turn, be supported by high continu-

ation probabilities and, crucially, a high probability that the asset value remains high.

When the value is sufficiently persistent, high continuation probabilities are sufficient

to guarantee high continuation values. When the asset price is not persistent or the

continuation probability is very sensitive to small changes in value, it will be more

difficult to maintain cooperation.

When cooperation can be sustained for high values, liquidity will break down as the

value declines. As the value of lying increases relative to the value of honest reporting,

the customer will have to decrease the value of lying by lowering the probability that he

will accept a report of a given increase in the value in order to keep the intermediary

mixing between honest reports and lies. As continuation probabilities get very low,
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no cooperative equilibrium can be sustained and the game will resemble a standard

lemons market, where trade occurs only after the lowest realizations. Furthermore, the

asset price will cease to reveal the intermediary’s information even if trade occurs.

When the asset value is relatively high but not very high, on the other hand, trade

will occur frequently. Following the worst possible realizations the intermediary will lie

about the asset value with positive probability. The customer will of course anticipate

this possibility. The customer will still accept the trade with positive probability, but

now the price does not perfectly convey the underlying information of the intermediary.

Trust has effectively partially broken down, and the customer’s beliefs following a

trading period now place positive probability on two values. This decrease in the

informativeness of price introduces the possibility of large price swings. Specifically, if

very bad news arrives, intermediaries lie and report good news instead, and then more

bad news arrives in the following period, we can see either a breakdown in liquidity

or a large swing in price where the price change from one period to the next exceeds

the feasible change in value of the asset. Once public information has confirmed that

the value is low customers will know that they cannot trust the intermediaries and

liquidity will dry up. For simplicity, we have assumed that public information from the

previous period is revealed before each trading period, but in principle several periods

could lapse between public signals. In such a case prices could deviate even more from

fundamental values. The customer would continue to place positive probability on the

true path of the asset value but observed prices might diverge significantly from that

value, particularly since once an intermediary starts to lie he would continue to do

so until the next public signal. Solving the model in this case of persistent private

information is quite challenging technically and computationally7 and will be pursued

in future research.

Finally, we have focused exclusively on the sell side. For the class of securities under

consideration, this is a reasonable simplification since we are concerned with OTC se-

curities without an active secondary market and thus without observable market prices.

If we were to consider an intermediary who both places initial offerings and makes a

secondary market the results would be substantially the same. The intermediary would

still be long in the security for institutional and legal reasons and thus more exposed to

bankruptcy following surprisingly bad news rather than surprisingly good news. When

facing someone who wanted to sell the security, he would prefer to claim that the true

7See, for example, Williams [2008a], Williams [2008b], and Fernandes and Phelan [2000].
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value was in fact low. The intermediary could effectively only get away with such a

lie if the value had actually increased; the customer will tend not to believe very bad

reports when he is trying to sell the security because refusing to sell after such reports

will seldom prevent him from making a fair transaction. So, the intermediary will only

be in a position to successfully cheat the selling customer after a surprising increase in

the value of the asset. This is exactly when the intermediary has the least incentive

to cheat since he is most likely to remain in business. Thus, the microstructure of the

market generates asymmetries between the incentives to try to cheat buyers and the

incentives to try to cheat sellers and explains the apparently asymmetric behavior of

price deviations from fundamentals.

1.4 Continuous Values

The previous section demonstrates why a dealer facing inventory risk will prefer to

honestly report good news while hiding bad news. It also shows that trade may become

less frequent after bad news becomes common knowledge. The discreteness of the space

of possible values, however, limits the analysis and introduces the contrary finding that

assets may trade very frequently when public information indicates that the value is

very low. Untangling the relative importance of these effects requires considering a

more general, or at least more realistic, model of the asset value. In this section, I

present such a model and describe behavior in a stage game that would be induced

by the dynamic game described. Significant issues arise in attempting to guarantee

the existence and optimality of such an equilibrium in the fully dynamic game, but

even this simplified framework can provide intuition for how prices and liquidity will

respond to the private information available to intermediaries. Analysis of the fully

dynamic version of the game is the subject of ongoing research.

In this section, we assume that the customer knows the distribution of the value

of the asset while the intermediary knows the value exactly. In an explicit dynamic

setting equivalent to that investigated above, the parameters of this distribution would

arise from the previous public signals received by the customer and the information

that he could infer from the reports of the intermediary. We assume that the customers

can reward honest reports with a continuation payoff γ(v), which is increasing in v.8

The solution to this stage game can be characterized in a straightforward manner given

8For technical reasons, we allow the customer to choose to prevent the intermediary from receiving
γ(v) even if he responds truthfully.

18



the restrictions on strategies imposed by the presence of a commitment type and the

exogenously given division of fair surplus.

Several characteristics of the equilibrium are immediate and will be useful for main-

taining notational simplicity.

1. The customer must play a mixed strategy above some threshold.

2. The probability that the customer accepts the report is weakly decreasing in the

report and strictly decreasing if said probability is less than 1.

3. The intermediary will always report the truth above some threshold and always

lie below some threshold.9

4. The lie told will be increasing in the true value for all values that generate lies.

The proofs of each of these characteristics are almost immediate so we will simply

state the basic logic. For characteristic (1), observe that if the customer were to believe

all reports, the intermediary would prefer to report arbitrarily high values regardless

of the true value. But, if the customer were to always refuse to buy at some value, the

intermediary would never find it profitable to lie and report such a value. Then, the

customer must believe, and therefore accept, any report of this value. So, the customer

must mix between accepting and rejecting above some threshold. The probability of

accepting must decline in the reported value because otherwise the intermediary would

strictly prefer to make the higher report rather than the lower report conditional on

lying since the continuation value available does not depend on what lie was told but

only on whether a lie was told. Given such a decreasing probability of accepting a

report, characteristics 3 and 4 arise. The lie is increasing in the true value because

the intermediary is relatively more concerned about getting rid of securities with low

values than securities with high values. Effectively, the costs of failing to sell a high

value security at a given price are lower than the costs of failing to sell a low value

security at that same price. The threshold arises from this fact and the fact that γ(v)

is increasing in v.

From the above characteristics, we can characterize an equilibrium with the follow-

ing objects. Let v? be the smallest value which the intermediary reports truthfully and

let λ : (0, v?)→ (λ?,∞) give the lie told by the intermediary for any value less than v?,

where λ? is the infimum of the lies. Finally, let πA : (λ?,∞)→ (0, 1) be the probability

9We will confine attention to problems where these thresholds are identical for ease of exposition.
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that a customer accepts a report that might be associated with a lie. It is immediate

that λ and πA will be continuous in equilibrium.10

We can now write the payoffs to the intermediary and customer given a true value

v and a report r as:

• If v = r and customer accepts:

customer: cc

intermediary: cI + γ(v)

• If v 6= r and customer accepts:

customer: cc + v − r

intermediary: cI + r − v

• If v = r and the customer rejects:

customer: 0

intermediary: γ(v)

• If v 6= r and the customer rejects:

customer: 0

intermediary: 0

An equilibrium of the game will then be defined as a function λ that leads the

customer to be indifferent between accepting and rejecting any offer greater than λ?

and a function πA that makes λ(v) the optimal lie when the intermediary observes that

the true value is v < v?. It must also be the case that limv→v?− π
A(λ(v))(cI+λ(v)−v) =

πA(v)cI+γ(v), that is, the intermediary strictly prefers to tell the truth at the threshold

but strictly prefers to tell lies below the threshold.

We can first find conditions for λ by imposing the requirement that the customer

be indifferent between purchasing and not purchasing securities at any report greater

than λ?. In order to do this, we must calculate the expected value of accepting a

10The function λ will necessarily be continuous, but the domain may not be connected. To simplify
exposition we assume that γ induces a connected set for lies.
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report, which must be equal to zero. Letting f be the distribution of the asset value,

that expectation is given as11

f(v)

f(v) + λ′(v)f(λ(v))
(cc + v − λ(v)) +

λ′(v)f(λ(v))

f(v) + λ′(v)f(λ(v))
cc.

Thus, we have the condition that, for all v < v?,

f(v)(cI + v − λ(v)) + λ′(v)f(λ(v))cc = 0.

This identifies λ up to a constant as the solution to a nonlinear differential equation.

The λ that solves this equation will necessarily be unbounded; very large values are

associated with very low values of the density since the density is single peaked but has

support over (0,∞), and thus λ′(v) must go to∞ for the indifference condition to hold.

Since v? must be finite (since πA(v) → 0 as v → ∞), we know v? = limr→∞ λ
−1(r).

This will serve, effectively, as the boundary condition.

We can now find conditions for πA. This probability must be chosen by the customer

to make the intermediary prefer to report λ(v) when the true value is v. As such, the

solution to the problem:

max
r
πA(r)(cI + r − v)

must be λ(v) for all v. The first order condition is then

π̇A(r)(r − v − cI) + πA(r) = 0

which in equilibrium gives the differential equation

π̇A(r)(r − λ−1(r)− cI) + πA(r) = 0

which has a solution of the form:

πA(r) = k exp

{
−
∫ r 1

s− λ−1(s) + cI
ds

}
with initial condition

πA(λ?) = 1.

11We arrive at this expression by considering the expected value of a report of v ∈ (λ(v)−ε, λ(v)+ε)
as ε→ 0. This is the only calculation for the regular conditional distribution consistent with the Borel
σ-algebra.

21



Thus,

πA(r) =
1

exp
{∫ r

λ?
1

s−λ−1(s)+cI
ds
} .

We have thus solved for the equilibrium, up to finding λ? such that

lim
r→∞

λ−1(r) = v? (1.1)

lim
v→v?

πA(λ(v))(λ(v)− v + cI) = cI + γ(v). (1.2)

Note that the probability of accepting a report of v? must be one by the assumption

that the intermediary plays a pure strategy since, were λ? < v?, any report r < v?

would always be associated with a lie and would therefore be rejected.12

If it is possible to find a λ? such that the above holds, then that defines a perfect

Bayesian Nash equilibrium, where we define off-equilibrium path beliefs to induce the

customer to reject with probability 1 and the intermediary to expect not to receive

the reward or have the deal accepted even if he reports the truth. Since, however, the

payoff to following the optimal lie function is not monotonic, it is not immediate that

there will not be some region entirely below the posited threshold where telling the

truth is slightly preferred to lying if the customer always rewards the intermediary for

honest behavior, even off the equilibrium path. Furthermore, the customer must accept

with probability one any report of a value less than cc. Whether these complications

are important will depend on the shape of the γ function. In the dynamic game, there

will be significant freedom in the choice of γ, so an equilibrium with these basic char-

acteristics will exists. This equilibrium would not necessarily be optimal in the sense

of producing the most frequent honest trade if the maximum available continuations

grow slowly in the value.13

Figure 1.4 shows an example of the strategy of the intermediary in an equilibrium

of the form described here. The asset value is distributed lognormally. When the true

value of the asset turns out to be relatively high, the continuation values available are

sufficient to induce the intermediary to reveal his private information. When the true

value is low, and in particular when the true value is low relative to the prior of the

customer, the intermediary will find cheating tempting. The lies the intermediary tells

12The customer will only accept reports that he knows are lies when the report is less than cc. We
ignore this for the time being and treat those cases separately.

13In this case, λ will be continuous but over unconnected support and πA would exhibit a kink,
significantly complicating the analysis.
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are not only increasing in the value, but are increasing particularly steeply. The slope

of the lie function is determined by the need to keep the customer indifferent between

buying and refusing to buy the security. The very highest values of the asset, however,

must occur relatively infrequently since the density function must decrease toward zero.

In order to induce the customer to be just willing to purchase following such a high

report, the lie function must become increasingly and, in the limit, infinitely steep.

When the lie function is very steep, any small interval of reports of a very high value

is associated with an extremely small interval of low values that would generate lies of

those values. This is the only way in pure strategies for the intermediary to induce the

customer to be indifferent between purchasing and not purchasing following very high

reports.14

A crucial point of this example is that when the possible values of the security

are not bounded from above, the possible divergence between the true value and the

reported value is also not bounded. Securities with low values will be reported as

having higher values, and for some low values the report will be extremely high. In

this sense, a bubble can arise; bad news about the security can generate reports of

very good news. This is the exact behavior that was observed by certain sectors of

Bear Sterns immediately before its collapse( Goldstein and Henry [2007]). In the credit

default swap market, another type of exotic and thinly traded security, bond insurers

remained “upbeat” even after learning about the extent of their exposure to losses.15

Another point to take away from this example is that the posterior beliefs of a

customer about the true value of the asset will be markedly “bimodal.” That is,

reports of values in some high region will be associated with true values either in that

region or in a much lower region. If information gleaned from intermediary reports is

used to make irreversible decisions about real investments, this has potentially serious

consequences. While the customer will form the correct beliefs given the observed

report, the ability to adjust activities to take into account the possibility that the

underlying state is vastly different may be limited and adjustments costs may be high

following the eventual revelation of the true state. In this sense, the breakdown in

information transmission associated with financial intermediation in opaque markets

may end up having spillover effects in the real economy. Only for certain moderate

14Were we to confine attention to finite but extremely fine price reports, this same effect would have
to be achieved through mixed strategies, complicating the analysis significantly.

15“ACA Financial Guarantee “has never been in better financial condition’ said...[the] chief financial
officer.” Pulliam and Ng [2008]
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levels of the value will the customer be able to certainly trust the intermediary since the

smallest lie told will, in general, exceed the lowest value for which the intermediary tells

the truth. These periods where the customer learns that truth with certainty following

the report of the intermediary are, of course, the only states in which the customer

expects positive profit. As the available continuation values increase, the smallest lie

will also increase, making prices more informative and providing the customer with

greater expected profits.

1.5 Bubbles, crashes, and crises: How bad can they

be?

This section addresses the question of how severe a bubble or liquidity crises could

be in the environment described here. A partial answer to this question is given by a

limit result which indicates that infinitesimal information that agents learn about the

value process can lead to changes in behavior in equilibrium that are easily interpreted

as liquidity crises or bubbles, and these events can be as severe as possible given the

specification of the game. To understand this result, we first describe in more detail

the basic mechanisms that lead to the behavior described in this paper.

There are two basic dynamics governing the extent to which cooperation can be

maintained in the types of games considered here. First, there is a direct effect associ-

ated with the probability that the game ends. Other things equal, a higher probability

of continuing the game leads to (weakly) more cooperation being sustainable, and thus

to more liquidity. The second dynamic is slightly more subtle. The ability to sustain

cooperation depends not just on the likelihood that the game continues but also on the

likelihood that the game continues along a path where cooperation is maintained.

While the primary effect of the reputations concerns addressed here can be under-

stood largely through the first channel, the second channel will greatly influence the

qualitative and quantitative characteristics of the equilibria that may arise. Specifi-

cally, the sensitivity of the degree of cooperation to small informational events will be

determined primarily through the second channel. This section discusses the role of

this second channel and presents a result showing that this potential for cooperation

to unravel along certain paths can lead to arbitrarily sudden and severe liquidity crises

and arbitrarily explosive price bubbles.

First, we note that it is trivial to construct equilibria in settings similar to those
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treated in previous sections where the second channel is of primary importance. Ba-

sically, if values are very persistent, cooperation can be maintained even when the

probability of continuing is relatively moderate since future periods are likely to also

be associated with such moderate probabilities of continuing. If, however, values (and

therefore continuation probabilities) are less persistent, the value may increase or de-

crease. Increases would lead to more likely continuations, while decreases would lead to

less likely continuations in future periods. Decreases, however, will have the secondary

effect of causing the game to enter an “uncooperative phase” where liquidity breaks

down and the gains to trade vanish, at least until the value rises again. The risk of

entering such phases decreases the available punishments since the threat of reverting

to a punishment phase is far less potent when there is a significant chance that the

payoffs even for cooperating are low. This effect has the potential to completely unravel

cooperation, even in periods where the game continues almost surely.

As mentioned, constructing such an example is a simple task but does not provide

much insight into what characterizes situations in which this unraveling takes place.

Such insights are important because this potential unraveling can lead to catastrophes

in the sense that seemingly small changes in beliefs can induce both liquidity crises

and bubbles. Fortunately, a reasonably straightforward application of the theory of

asymptotically finite games developed in Bernheim and Dasgupta [1995] can provide

some insights into the scenarios in which liquidity and price informativeness may dis-

appear quickly. In the remainder of this section, we develop a limit result for a subclass

of intermediation games. The goal of this exercise is to show that the unraveling of

cooperation associated with the inability to sustain cooperation when the game is very

likely to end can lead very small changes in the beliefs of the players about the exoge-

nous state of the game to generate catastrophic changes in the behavior of the players.

To understand why this is the case, it is necessary to first introduce the concept of

an asymptotically finite game and describe the fundamental results on this important

class of indefinitely repeated games.

The basic idea of asymptotically finite games is that when the probability of the

game continuing declines deterministically toward zero, equilibria providing payoffs

higher than perpetual play of the stage game Nash equilibrium16 can be sustained

16This theory is concerned exclusively with games with a unique stage game Nash equilibrium
to avoid overlapping with Benoit and Krishna [1985]. We will follow this tradition by focusing on
intermediation games with unique Markov strategies. Given the importance of inventory in the model,
this focus is without loss of excessive generality.
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only when the probability of continuing falls sufficiently slowly to permit an orderly

unwinding of cooperation. If the probability changes too quickly or the action space is

discrete, such a gradual unwinding is impossible. Specifically, Bernheim and Dasgupta

[1995] are able to precisely characterize the set of games with asymptotically finite

horizons in which payoffs strictly superior to the stage game Nash equilibrium can be

obtained. Somewhat remarkably, this characterization depends exclusively on the rate

at which the continuation probability descends toward zero; if limτ→∞
∑τ

k=1
1
2k

ln δk is

summable, some cooperation, in the sense of actions that lead to payoffs that Pareto

dominate the payoffs in the stage game Nash equilibrium, can be sustained in equilib-

rium for a very general class of games.

Such a clean characterization is, unfortunately, unavailable in the setting we con-

sider. To see why, note that in general neither the intermediary nor the customer will

know what “path” to the end of the game they will follow. In a given period, punish-

ments sufficient to enforce better than Markov17 equilibrium payoffs will be available

only if the game is sufficiently likely to remain on a path on which cooperation is main-

tained. But, of course, which paths involve cooperation will depend in part on the

extent to which cooperation can be maintained at the value in question, and so forth.

Consequently, the problem is fundamentally recursive.18 It is, however, fairly simple

to answer the question of how important this unraveling effect may be. Specifically,

by looking at a game that is close in the appropriate sense to the Bernheim and Das-

gupta [1995] setting, we can see that a very small change in beliefs about the process

describing the value of the asset can lead to an arbitrarily severe drop in liquidity and

arbitrarily large bubbles.

To see this, we will construct a highly stylized version of the financial intermediation

game. This version of the game focuses on the importance of information about the

path the game is likely to follow. This information would generally be revealed in

the information about the current value and possibly also in the information about

value changes. That is, a large drop in value may signal not only that the future

distribution of values is lower (due to the persistence of value), but may also signal

17We are, of course, considering a dynamic, rather than simply repeated, game. This concern is of
little importance as long as the strategy space and payoffs of the game are stationary up to the most
recent period where all information is common knowledge. This clearly conflicts with the specific
examples described in previous sections but is consistent with the general approach where customers
care directly only about changes in value rather than the value itself.

18It is natural to ask whether an algorithm similar to that developed in ? can be constructed to
compute equilibria for this type of game. This is likely to be the case, but remains for future research.
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that the likelihood of large drops is higher than previously believed. Here, we assume

simply that the intermediary and customer may observe some “bad news” event B that

alters their beliefs about the path that the values during the common knowledge periods

follow. We also assume that the game can only end immediately before some common

knowledge period, there are m periods where the intermediary learns more information

about the value than the customer following every common knowledge period, and

the probability of the game ending depends exclusively on the most recent common

knowledge value. The game is stationary in the sense that vt+1 − vt is distributed

identically to vt+1+(m+1) − vt+(m+1) whenever vt+1 is not common knowledge, for all t.

That is, if we call each set of periods starting with a common knowledge period and

ending the period before the next common knowledge period a “stage” the game is

effectively a repeated (rather than a more general dynamic) game since the strategy

space is identical up to a constant and the payoffs are identical in all periods. This

environment and additional technical assumptions19 guarantee that when the path of

the value in common knowledge periods is deterministic and eventually declines such

that the probability of the game continuing reaches zero at an infinite horizon, the game

is strategically equivalent to a repeated game with an asymptotically finite horizon.

To simplify exposition, we will index stages with k to distinguish them from periods,

indexed with t. The notation vk will refer to the value of the asset at the beginning

of the stage, and δ(vk) will designate the probability that the game ends after a stage

where the value begins at vk. We consider the following game. For the first K? stages,

vk follows a deterministic process where vk remains sufficiently high such that δ(vk)

remains in some small neighborhood of 1. After stage K?, if even B did not occur

in an period, vk declines deterministically at a rate such that δ(vk−K?) = aλ(2−ε)k−K? .

If, however, event B did occur, δ(vk−K?) = aλ(2+ε)k−K
?

. As long as δ is a continuous

function of vk, the event B contains, in a sense, a trivial amount of information about

the value process as ε→ 0.

Our goal is now to show that the trivial information event B can completely unravel

cooperation in the following sense. There exist games of the form described such that, if

B arrives in a common knowledge period, behavior in any equilibrium that is not Pareto

dominated switches from perfect liquidity and informative prices to repeated play of

19Intermediaries observe and arbitrarily fine but finite coarsening of the true value but report
prices from an infinite, compact interval of the real line in each period, while customers choose the
percentage of the offering to purchase following a report within some small exogenously given interval.
Assumptions A-C of Bernheim and Dasgupta [1995] are satisfied.
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the stage game Nash equilibrium, which we interpret as a liquidity crisis. If B should

arrive in a period that is not common knowledge, then the crisis will not begin until the

next stage begins (and the customer learns B); in the intervening periods we will have

a bubble, where the intermediary reports almost the highest possible value and the

customer purchases nearly all20 of the offered security with arbitrarily high probability.

This result is a limit result; as the probability of the event B occurring decreases

toward zero, behavior is as described. The basic point is that, when B is unlikely,

players who have not observed B will play as if they are playing an asymptotically

finite game where the likelihood that the game ends increases slowly enough to permit

payoffs that exceed the stage game Nash equilibrium. When the end of the game is

sufficiently far off, a folk theorem holds and for an arbitrarily large number of initial

stages the game proceeds as if it were infinitely repeated with almost no discounting.

Should B occur, however, the agents would start playing as if they were playing an

asymptotically finite game with a rapid decrease in the probability of continuing. Since

the equilibrium value set for asymptotically finite games is discontinuous in the rate at

which the value declines in the distant future, this switching can produce arbitrarily

sudden changes in behavior in the dynamic game we consider, even when agents only

very slightly change their beliefs about the process governing the exogenous variables.

Clearly, as B becomes more likely or the learning process about the future trajectory

of values becomes more smooth the severity of the crises and bubbles will wane in the

sense that the drop in liquidity and the deviation of prices from fundamentals will be

lower. The point of the exercise here is to show that the contribution of the unraveling

of cooperation can, in principle, generate crises and bubbles of effectively unbounded

severity, and thus it should not be surprising that we do, in fact, observe bubbles and

crashes of otherwise surprising magnitude in environments similar to those described

here.

This section concludes by formalizing the above argument by explicitly invoking

the appropriate results from Bernheim and Dasgupta [1995]. The first proposition

establishes that all cooperation will cease after event B:

Proposition 1. If event B occurs in stage k < K?, no subgame starting at k′ > k

involves play of any strategy other than the stage game (or, equivalently, Markov) Nash

equilibrium.

Proof. Note first that the concept of a subgame does, in fact, impose restrictions in this

20Not almost all, in the formal sense
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game since all uncertainty across stages in the game is resolved after event B occurs.

All subgames follwoing event B must involve no cooperation by theorem 2 of Bernheim

and Dasgupta [1995].

The above proposition is sufficient to demonstrate that event B, which contains

a trivial amount of information about the value process, completely undoes any co-

operation that was being sustained up to event B. It remains only to show that, in

some games, the degree of cooperation that can be sustained before event B is nearly

complete:

Proposition 2. Assume event B occurs in every period with probability η, conditional

on B not having occurred before. Then, for every K ∈ N and ε > 0, there exists an η

and K? such that any individually rational payoff of the stage game can be achieved in

the first K rounds.

Proof. It is immediate from proposition 4 of Bernheim and Dasgupta [1995] that any

individually rational payoff can be sustained in the first K periods for sufficiently large

K? when η = 0 and δ(vk−K?) = aλ(α− ε
2

)k−K
?

.

Now, suppose δ(vk−K?) = aλ(α−ε)k−K? when η > 0 but event B happens not to occur

before K?. We can now construct an equilibrium where, for small enough η, agents

achieve any individually rational payoff for the first K periods. This equilibrium simply

calls for exactly the same strategies to be played as in the equilibrium for η = 0. To see

that no agent has an incentive to deviate from such a strategy for η sufficiently small,

observe that at stage K?−1 both players would strictly prefer to adhere to the strategy

assigned in the game with η = 0 mentioned immediately above when η is close enough

to zero. This is immediate because the difference between the payoff to adhering to the

strategy and the payoff to reverting to Nash equilibrium is strictly greater than in the

η = 0 case because the game is more likely to continue in each period conditional on

B not occurring, but we can make the probability that B occurs between K? − 1 and

K? arbitrarily small. Now, backwards induction shows that no player has an incentive

to deviate at any point in the game, unless they observe B.

1.6 Policy Implications

This paper argues that the proximate cause of both liquidity breakdowns and the failure

of prices to respond smoothly to bad news is the vanishing incentives for financial
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intermediaries to provide truthful information about a security when the value of the

security falls. The incentives disappear because the intermediary’s specialization in and

exposure to the asset in question imply that the intermediary will be less likely to be in

a position to complete profitable transactions in the future. When the intermediary’s

customers are aware that the intermediary will behave opportunistically in the short

run, they hesitate to buy from him except at the lowest possible prices. If, on the other

hand, the intermediary’s customers are unaware of the decline, then the intermediary

will take advantage of their continued trust and will not inform them of the adverse

news. Customers, in turn, will have to take into consideration this risk when deciding

how frequently to buy securities and at what price, thus making the market less liquid

even in good states.

This situation presents two possible concerns for policymakers. First, from a tradi-

tional social-planner perspective, agents do not reach an unconstrained Pareto-optimal

allocation. Gains to trade that would be realized if information were symmetric are

lost. Second, customer’s effectively face being cheated by their intermediary. From a

strictly economic perspective, it is hard to argue that this is a problem since the cus-

tomer fully anticipates this possibility when deciding to engage in trade. The customer

can in fact guarantee that he is not cheated by only agreeing to buy the security when

the intermediary offers it at a very low price, but this will be neither best for him nor

an optimal equilibrium. From a policy perspective, however, such “cheating” may be

viewed as undesirable. Furthermore, if there are externalities from having information

flow from intermediaries to customers then the lack of consistent truthful reporting of

private information has additional costs. It seems quite plausible that a well function-

ing, liquid market would have positive spillover effects on other markets since liquidity

problems appear to have a tendency to spread among seemingly unrelated sectors.

Taking as given that the policy maker does not have access to the private informa-

tion of the intermediary and cannot simply take over the trading business to exploit

its own symmetric ignorance with the customer, a natural policy to consider is one of

bailing out intermediaries in financial distress. This policy is particularly relevant in

the case where the game stops because of bankruptcy caused by overexposure rather

than by the actual disappearance of a market. If an intermediary can always count on

transfers or easy loans from the government or central bank when he faces bankruptcy,

he will continue to provide accurate information about the security since his business

will not be in danger following a collapse in the intrinsic value of his holdings.

This conclusion, however, should not be taken as a policy recommendation. Such
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a policy could prove quite costly. Eliminating the possibility of large losses on an in-

termediary’s portfolio might encourage the intermediary to take on more correlated

risk than necessary for its core business, requiring that the social planner engage in

frequent and large bailouts. A policy based on making collateralized loans to interme-

diaries in distress would also present a problem. Ideally, a lender of last resort makes

collateralized loans at a penalty rate to balance-sheet solvent but illiquid financial in-

termediaries. Here, the illiquidity of the market is a result of the insolvency of the

intermediary, meaning that the loans made by a central bank would lead to losses with

high probability. In particular, if the social planner intervenes in a period of illiquidity

by purchasing securities that are not traded or making loans backed by those securities,

he may face large losses if he bases his valuation of the security on the recent prices

in the market since the prices that prevail before a market becomes illiquid may be

based on false reports of good news. Furthermore, if the intermediary expects that he

may be able to sell his inventory to the social planner at prices closer to those that

prevailed before the liquidity event, he will no longer have an incentive to sell even

the worst securities at at pooling price. Thus, the increase in liquidity that might

be observed in the very worst states can be undermined by even the suggestion that

the government will purchase “toxic” assets. The social planner then must carefully

balance the benefits of eliminating bankruptcy risks with the costs of interfering with

the incentives for prudent behavior by the intermediary.

Finally, a policy of subsidizing the takeover of a distressed intermediary, as sug-

gested in Acharya and Yorulmazer [2008] in the context of banks and implemented by

the Federal Reserve in response to the Bear Stearns debacle, would be counterproduc-

tive in the context of this model. Maintaining a policy of forcing a firm in distress to

close and hand over its assets to another firm rather than permitting it to attempt to

save itself for as long as possible will lead employees to act as if they have an even

shorter time horizon and may lead to unraveling of liquid trading in even less distressed

states.

1.7 Conclusion

This paper has proposed a general framework for considering asymmetric information

between intermediaries and customers in thin asset markets. The model takes into

consideration the potential gains from trade and the role of repetition in maintaining
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trust. The key feature of the model is that the degree of trust between the customer

and the intermediary is a function of the underlying value of the asset since the value

of the asset determines the probability that profitable trading opportunities will arise

in the future. Examples that demonstrate the role of this link in liquidity breakdowns

and price stickiness show that certain qualitative characteristics of asset prices can

be understood as resulting from the breakdown in trust that occurs when values fall.

Further work is needed to apply the model to a richer environment that will allow the

full implications of this interaction to be developed.
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1.8 Appendix

1.8.1 Description of Equilibrium in section 1.3

The strategy of the retail customer is measurable with respect to the common knowl-

edge (odd numbered) period value. That strategy is summarized in the following table:

Threshold

1 2 3 4

Odd State Value

1 1
2

1
5

3
35

3
14

2 1
2

1
5

3
35

3
14

3 0 2
5

1
5

2
5

4 0 2
5

1
5

2
5

The intermediary’s strategy is, of course, more complex as it is measurable with

respect to both the odd and even period states. The following four tables summarize

the strategy:

Odd State: 1 Odd State: 2

1 2 3 4 1 2 3 4

Truth

1 17
21

3
20

1
30

1
140

Truth

1 11
504

5
8

1
9

1
28

2 0 1 0 0 2 0 1 0 0

3 0 0 1 0 3 0 0 1 0

4 0 0 0 1 4 0 0 0 1

Odd State: 3 Odd State: 4

1 2 3 4 1 2 3 4

Truth

1 0 4
9

5
9

0

Truth

1 0 1
3

2
3

0

2 0 8
9

0 1
9

2 0 17
27

0 10
27

3 0 0 1 0 3 0 0 1 0

4 0 0 0 1 4 0 0 0 1

Here, each table represents the strategy of the intermediary following the realization

of the value in the common knowledge period given in the table heading. Then, the row

represents the true value in the next period (which is not observable to the customer)

and the column represents the probability that the intermediary will give the report

associated with that column.

The above equilibrium implies the following payoffs to the intermediary following

each pair of realizations. These payoffs are the uik from the main text. Recall that

if an intermediary plays a mixed strategy that sometimes calls for truth telling and
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sometimes calls for lying, the associated uik is when the intermediary tells the truth.

Even

1 2 3 4

Odd 1 1
2

1
4

3
20

3
28

2 1
2

1
4

3
20

3
28

3 3
2

1
2

3
10

1
5

4 3
2

1
2

3
10

1
5

It is now straightforward to verify that the continuation values posited in the main

text, γ = {0.25, 0.5, 1, 1.5} are in fact the continuations implied by the equilibrium

here. It is of course necessary to note that states 31 and 41 involve always lying when

making said calculation.

We can also calculate the price transition matrix:

1 2 3 4

1 0.452 0.342 0.156 0.051

2 0.077 0.609 0.212 0.103

3 0 0.248 0.543 0.210

4 0 0.144 0.327 0.529

The asymmetry of the above matrix compared to the state transition matrix high-

lights the asymmetry of price response to news. It is also informative to summarize

the posteriors of the customer following the reports of the intermediary in order to see

how well the customer can estimate the state following a transaction. It is clear that

such price information is not fully informative as it would be in a frictionless economy;

furthermore, even the information that is revealed to the customer is not generally

available to non-participants in the trade, so the informativeness of trade is limited to

those engaged in the trade.

Odd State: 1 Odd State: 2

1 2 3 4 1 2 3 4

Report

1 1 0 0 0

Report

1 1 0 0 0

2 0.2 0.8 0 0 2 0.2 0.8 0 0

3 0.1 0 0.9 0 3 0.1 0 0.9 0

4 0.067 0 0 0.93 4 0.067 0 0 0.93

Odd State: 3 Odd State: 4

1 2 3 4 1 2 3 4

Report

1 Undef. Undef. Undef. Undef.

Report

1 Undef. Undef. Undef. Undef.

2 0.2 0.8 0 0 2 0.15 0.85 0 0

3 0.1 0 0.9 0 3 0.1 0 0.9 0

4 0 0.1 0 0.9 4 0 0.1 0 0.9

The guess-and-verify method of finding an equilibrium used above does not immedi-

ately guarantee uniqueness. That is, it remains possible that, for the posited δ’s, there
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is an equilibrium that involves more trade. This possibility arises because continuation

values higher than those derived here may imply that trade occurs more frequently,

which will in turn support the higher continuation values. As the goal of this paper is

to show that the correlation between continuation probabilities and asset values leads

to liquidity breakdowns and slow transmission of bad news, it is necessary to show

that equilibria of the game that support trade generally exhibit these characteristics.

To show this, we will posit the existence of equilibria where prices and value move

together more and more trade occurs than in the equilibrium derived and show that

such equilibria do not exist.

We can first show that there is no equilibrium in which the intermediary reports

truthfully in every period. This follows from the fact that the continuation promises

required to sustain such truthful reporting in every period are inconsistent with the

continuation payoffs available.

That is, when the intermediary reports truthfully in every period, the only equi-

librium possible will be the one in which the customer sets his threshold at 4 in every

period. This implies that the intermediary will receive a stage game payoff of 1
2

in each

period, his fair share of the surplus. Consequently, we can express the continuation

value available following a realization in an even numbered period of i as

γi = δi

4∑
k=1

P (k|i)Uk

where

Uk =
1

2
+

4∑
j=1

P (j|k)

(
1

2
+ γj

)

Uk = 1 +
4∑
j=1

P (j|k)γj

since the stage game payoff is always 1
2

and the game always remains in the cooperative

phase. Thus, we have

γi = δi

(
1 +

4∑
k=1

P (k|i)
4∑
j=1

P (j, k)γj

)
.

This defines a set of 4 independent linear equations which determine γ uniquely. In
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this example, we have γ = {0.30, 0.60, 1.17, 1.77}. But, in order to sustain truthful

reporting in every period, it must be the case that

1

2
+ γ1 ≥ 3

1

2

since otherwise the intermediary will have an incentive to report 4 following a realiza-

tion in the even period of 1. This clearly does not hold, so truthful reporting in every

period is not an equilibrium.

In the posited equilibrium, state 3 and 4 are always truthfully reported, while state

2 is truthfully reported following the lower states but not always truthfully reported

following the higher states. This characteristic of the equilibrium is central to the

idea that prices are sticky downward. We therefore now show that there is not an

equilibrium where states 2,3, and 4 are always truthfully reported.

Assume there is an equilibrium where states 2,3, and 4 are always truthfully re-

ported. This requires that, following a realization of 2 in an even period, the interme-

diary expects an opportunity to cheat at some point in the future and that opportunity

has present value in excess of 1.4 (since it is impossible to achieve a continuation above

0.60 starting from state 2 and engaging in only fair transactions, as shown in the dis-

cussion of non-existence of a fully truthful equilibrium).21 The value of the cheat is

maximized if it becomes available in the next stage. But the value of the cheat is

bounded above by 3 the intermediary will have at most one opportunity to cheat. Fur-

thermore, the cheat can only occur when the value in the even period of the stage is

1 since, by assumption, truthful reports follow all other realizations. So, the present

value of the cheat is bounded from above by 3× 0.324×P (s1|2), where P (sx|y) is the

probability that the next stage ends in state x conditional on the current state ending

in state y. Note that this is not a very tight upper bound because it assumes that

the retail customer continues to purchase in every period, which would not in general

occur in an equilibrium with lying. The value of the cheat is clearly below 1.4 and

therefore truthful reporting in state 2 cannot always be sustained.

21It is possible for the customer to reduce the value of cheating by refusing to purchase the security
even when said customer believes that the report is true with probability 1. We will assume that the
customer is sufficiently impatient to guarantee that he cannot commit to such a strategy. In any case,
such a strategy will also reduce continuations available and will not increase the set of equilibria.

36



��������	
����
�	
�������
��

���	����

��	����
����	�	

����������
����	�	
����

���	
�
���	
���
���	������

���� �������
������	

�

����� ���

�
�	
�������
��
����������

��� ��� ��� � �

��� ��� � �

��� !���

��"# � �� ����

Figure 1.1: Single Stage
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Chapter 2

Imperfect Monitoring and Fixed

Spreads in the Market for IPOs
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2.1 Introduction

In the U.S., over 95% of privately held firms of intermediate value pay a spread of

exactly 7% to an underwriter when they decide to go public (Chen and Ritter [2000]1).

Very large firms pay lower spreads and very small firms higher. Since the total payment

for investment banking services is determined by the spread and the proceeds of the

offering, this rigidity is surprising. Costs to an underwriter almost certainly contain a

fixed component. Either competition or efficient collusion between underwriters should

thus lead to spreads that fall with the size of the offering.

A debate has developed in the corporate finance literature as to whether this ex-

treme spread rigidity is evidence of collusive behavior by underwriters. Chen and

Ritter [2000], who discovered the pervasiveness of the seven percent spread, argue in-

formally that it is evidence of collusion, while Hansen [2001] argues than coordination

on 7% naturally arises in an efficient contract. The question of whether underwriters

collude on spread offers is important. Standard concerns about inefficient provision

of goods and services in monopolistic or collusive industries apply, but, more impor-

tantly, if underwriters can collude to extract profits that would otherwise have accrued

to entrepreneurs and venture capitalists, the incentives to engage in risky but positive

expected value projects are diminished. If, on the other hand, underwriters are com-

petitive in pricing underwriting services, then incentives for entrepreneurial activity

will be appropriately aligned.

I present a formal model of the IPO process as an infinitely repeated game of

imperfect information with public monitoring. In this context, I show that optimal

collusion by underwriters will lead to spreads qualitatively similar to those observed,

while competition or monopoly provision will imply that spreads depend on the size of

the firm over the entire distribution of firm values.

I assume firms have two incentives to go public. Going public increases the present

value of the firms expected future earnings. This “common value” element of the IPO

process likely follows from improved access to capital markets.2 Going public also

provides private benefits (or implies private costs) to the mangers of the firms, who are

1See also Jay Ritter’s website for more current data.
2Chemmanur and Fulghieri [1999] treat this as the primary motivation for going public, and Hale

and Santos [2006] present direct evidence that having held an IPO for debt reduces the interest rate
charged on bank loans and private bond issues for a firm. Pagano et al. [1998] and Bharath and
Dittmar [2007] also provide useful discussions of the motivations for a firm to go public from the
“common value” perspective.
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ultimately responsible for choosing whether or not to go public. This private element

would follow primarily from preferences for personal liquidity,3 which will vary across

the owners or managers of different firms.

In the model, underwriters collude to extract the most profits possible from issuing

firms. Underwriters exploit their repeated interactions in the IPO market to maintain a

pricing strategy that provides greater profits than one-shot competition. They cannot,

however, collude on the spread schedule that maximizes total profits, even conditional

on the information that they receive about the value of the firm and the preferences of

the managers. Because underwriters receive different signals about the value of the firm,

colluding on a fully efficient spread schedule becomes a game of imperfect monitoring

and consequently bears costs associated with on-equilibrium-path punishments. I show

that underwriters can, under certain circumstances, improve profits by using a partially

rigid spread that calls for high spreads for small firms and a lower, uniform spread for

intermediate and large sized firms. I also argue that the results on cyclical pricing in

Rotemberg and Saloner [1986] explain why very large firms are charged lower spreads.

In addition to demonstrating that collusion is a likely explanation for spread rigidity,

the model also suggests links between unobserved variables in the investment banking

industry, such as the costs of providing underwriting services and the effect of IPOs on

the value of firms, and the observed characteristics of the distribution of spreads. While

estimating the parameters of the model is beyond the scope of the present work, such

an exercise could prove useful in quantifying the costs of collusion and investigating

the welfare effects of anti-collusive policies.

The idea that rigidity in pricing may make collusion easier has been understood

informally in the industrial organization literature for some time. More recently, Athey

et al. [2004] developed a model of collusion in Bertrand competition and show that

under asymmetric and imperfect signals about firm costs, rigid pricing schemes may

be optimal. The techniques applied rely crucially on the assumption that players receive

private information about their own costs, a private value component of payoffs. Their

approach does not readily generalize to cases where participants in the market are

differentially informed but symmetric in all other respects. The model of Hanazono

and Yang [2007] introduces private information over a common value aspect of payoffs,

specifically the state of demand, and shows that in a simple two-state environment

price rigidity can also arise under optimal symmetric collusion. While the tradeoffs

3See Ritter [2003].
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between price rigidity and price flexibility in this model are similar to those that arise

in the auction setting that I consider, the restriction to two states prevents their model

from addressing the extent of rigidity, and in particular it cannot be used to investigate

the partially rigid schedule observed in the cross-section of IPO spreads.

The paper proceeds as follows. I first present a model of the underwriting process. I

then explore the likelihood that spreads will exhibit rigidity when underwriters behave

competitively, as a competitive oligopoly, or as a monopoly. Under each of these

assumptions, price rigidity will only be observed in very special cases that I argue are

unlikely to characterize the underwriting industry.

I then show that partially rigid spreads similar to those observed in the data can

arise when underwriters receive different but informative signals about firm value and

play symmetric strategies in each period. Partially rigid spreads are strictly preferred

to any fully rigid or fully flexible (i.e. everywhere downward sloping) spread and so the

conclusion that partially rigid spreads can arise under collusion with imperfect infor-

mation is robust to small perturbations of any element of the environment considered.

Next, I discuss an extension of the model to permit underpricing and argue that

spread rigidity and underpricing will reinforce each other. When underwriters collude

on a rigid spread to reduce the costs of monitoring collusive agreements they will be

unable to extract all possible rents from those firms that choose to go public. By

introducing an “offer price” stage after the firm has committed to one underwriter, I

show that underpricing has a natural role as a means to capture more of these rents.

I also address the marked difference between IPO spreads, where rigidity is perva-

sive, and SEO spreads, where rigidity is nonexistent. In the SEO market the restriction

to symmetric equilibria is shown to be inappropriate, which in turn permits efficient,

and therefore non-rigid, spread pricing.

The paper concludes with a brief discussion of international differences in the market

for underwriting services and the implications for regulatory policy that follow from

the analysis here.

2.2 Model

This section presents a model of IPO underwriting. The model admits heterogeneity in

firm value and manager preferences for going public. Underwriters receive (potentially

noisy and private) signals about these quantities before bidding for the right to take
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a firm public. The model therefore allows for the possibility of a relationship between

firm value and IPO spreads and can thus provide insight into the source of spread

rigidity over a wide range of firm values.

Firms have two incentives to go public. First, there is a “common value” element

of going public; the net present value of a firm increases when it goes public. Second,

managers of firms have idiosyncratic private incentives to take their firms public (or to

keep their firms private). A detailed examination of the source of the “common value”

or “private value” benefits of taking a firm public is beyond the scope of this paper.

The common value benefits most likely relate to improved access to capital markets,

while private benefits can be thought of as representing a tradeoff between preferences

for control and preferences for personal liquidity.

Institutional constraints prevent a firm from going public without the assistance

of one of the underwriters. In taking a firm public, an underwriter incurs a fixed

cost, which implies that returns to scale are increasing. Certain costs associated with

underwriting, particularly those involving accounting tasks, might increase with the

value of the firm going public. Many costs, however, will have a fixed component; for

example, the costs of certain legal and regulatory tasks would not vary much with firm

value. Other costs, such as those associated with advertising the issue, might actually

fall in firm value as larger firms would tend to be more well known and therefore require

less effort to elicit interest during the book-building process. Post-issue stabilization, a

potentially significant cost to underwriters, also has an ambiguous relationship to firm

value since the expected magnitude of such activity most likely depends both on the

size of the issue and on the riskiness of the price from the perspective of the underwriter

(Prabhala and Puri [1998]), which may be decreasing in the value of the firm.4

Underwriters compete for a sequence of opportunities to take firms public by mak-

ing simultaneous spread offers after they receive their signal about the firms, where

the spread determines the proportion of the common value of the firm that the un-

derwriter receives as fees for facilitating the IPO; the IPO market is thus modeled as

a repeated procurement auction with security bids (see DeMarzo et al. [2005] for a

general treatment of auctions with security bids). I assume that the offer price of the

issue is exactly the true value; that is, book building perfectly reveals the value of the

firm and underwriters have no incentive to underprice offerings. Section 2.5 addresses

4The direction of the change in the costs of stabilization is an empirical question that, to my
knowledge, has not been addressed. Aggarwal [2000] provides a method for determining the extent of
after-market activities by underwriters, and could likely be extended to address this question.
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the role of underpricing in the model considered here. The repeated setting captures

the presence of the established investment banks which dominate the market for IPO

services. The entire structure of the auction is exogenous. This abstracts away from

considerations about optimal security design for IPOs, which has been explored, for

example, in Chakraborty et al. [2008]. Optimal design in the presence of collusion is

left for future research.

Following the bidding for each firm, underwriters learn the true common value of the

firm and the winning bid is made public. This additional information, which becomes

common knowledge among firms, captures a crucial element of the IPO process; before

going public, information about a firm is disaggregate and held privately, whereas after

the IPO there is a perfectly observable summary statistic aggregating such information,

the trading price. This public signal allows the repeated auction to be modeled as a

game of imperfect public monitoring. By confining attention to strategies conditioned

on current private information and the history of the public signal, the repeated inter-

action can be recast in a recursive structure and analyzed using standard techniques

developed in Abreu et al. [1990].

Formally, there is a sequence of short-lived firms and two long lived investment

banks who discount the future at rate δ. Each firm has type {xt, εt}, where xt is value

and εt summarizes the idiosyncratic preferences of the owners and managers of the

firm. Each underwriter, indexed by i, observes a potentially two dimensional signal

{ξit, ηit}, where ξit is informative about xt and ηit is informative about εt. Underwriters

simultaneously submit spread offers αit ∈ [0,∞]. 56 The firm then chooses between the

two underwriters, or decides to remain private.

The payoffs in the stage game can then be summarized as follows:

• If the firm goes public using underwriter i:

firm: (1− αit)βxt + εt

5For expositional clarity, throughout the paper I treat the action space as a continuum. Because
I will use the bang-bang result from Abreu et al. [1986] and Abreu et al. [1990], formally we must
consider arbitrarily fine approximations to the continuous stage game as bang-bang has not, to my
knowledge, been shown to apply to games with continuous action spaces. All of the arguments showing
that the results for the continuous case also apply to the limit of an appropriate discretization of the
game are collected in appendix 2.10.1.

6It is obviously unlikely to observe a bid greater than 1 as that would require payments in excess
of the total value of the firm. Since some of the benefits of going public are not directly related to
the increase in the value of the firm, however, it is possible that managers of very small firms would
pay more than the entire value of the firm in order to realize the private benefits of going public. For
simplicity, I do not rule out even such obviously pathological examples.
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underwriter i: αitβxt − κ

underwriter j: 0

• If the firm does not go public:

firm: xt

underwriter i: 0

underwriter j: 0

Here, β summarizes the common value benefits of going public. Since the IPO

provides a proportional increase in value, going public is more valuable to large firms

from an absolute perspective.

2.2.1 Public History and Equilibrium

After each stage of the game, the true value xt and a public signal at = {mini∈{1,2} α
i
t}

are revealed publicly. For simplicity, I assume that the lowest spread offer is always

reported publicly, regardless of whether the firm decides to go public. See Figure 2.1

for a summary of the timing of the stage game.
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Figure 2.1: Timing of the Game

I will analyze the game by restricting attention to “almost pure strategy symmetric

perfect public equilibria” where this set of strategies is defined as follows:
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Definition 1. A perfect public equilibrium is a profile of public strategies that, for

any public history, specifies a Nash equilibrium for the repeated game starting at that

history. A perfect public equilibrium is symmetric if all players use the same strategy

profile following every history.

The restriction to symmetric equilibria is not innocuous and provides significant

restrictions on the strategies available to the underwriters. Fully efficient collusion in

Bertrand competition (Athey and Bagwell [2001] and Kandori and Matsushima [1998])

and in auctions (Aoyagi [2003] and Aoyagi [2007]) generally relies on exploiting asym-

metric bid rotation schemes and communication. The restriction to strongly symmetric

strategies renders the techniques exploited in these papers out of bounds in my applica-

tion. In fact, permitting even simple bid rotation schemes with pre-play communication

will immediately permit underwriters to collude efficiently in a pure common values

setting, which will imply spreads that do depend on firm value. I interpret the restric-

tion to strongly symmetric equilibria as a restriction to collusive strategies that are not

easily detectable by regulators. Since firms are effectively anonymous to underwriters,

asymmetric collusion would require bid rotation. Anti-trust regulators are experienced

in identifying bidding rings of this type, and maintaining such coordination in a more

complex setting than described here would likely require either an extremely sophis-

ticated initial agreement or regular cartel discussions to resolve questions and assure

continued adherence. Such discussions are the primary means of identifying and prose-

cuting collusion, and thus the restriction to strongly symmetric equilibria makes sense

within the legal framework faced by underwriters. The difference between symmetric

and asymmetric collusion also provides a useful way to understand the differences be-

tween spreads charged on IPOs and spreads charged on SEOs, which do not cluster to

any meaningful extent. This comparison is explored in section 2.6.

Definition 2. An almost pure strategy symmetric perfect public equilibrium is a

symmetric perfect public equilibrium in which in each period underwriters choose pure

actions or choose mixed actions that are consistent with an equilibrium of the one-shot

version of the game.

That is, I consider only strategies that generally call for both long-lived players to

play the same pure strategy action profile following a given public history, with the

action chosen by any underwriter being measurable with respect to the public history

and the current signal received by that underwriter. Only when long-lived players are
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playing as if the game were not repeated can mixed strategies be included.7 And,

the continuation strategy following each history must be a Nash equilibrium of the

repeated game. To avoid cumbersome repetition of this phrase, I will simply refer to

the perfect public equilibria of the game with the understanding that I am referring to

this particular class of perfect public equilibria.

Note that this equilibrium concept implies that all short-lived players must play

their static best response to the long-lived players’ equilibrium actions. For a full

treatment of the concept of symmetric perfect public equilibrium see Mailath and

Samuelson [2006], and for related applications to price rigidity see Hanazono and Yang

[2007] and Athey et al. [2004]. Finally, I introduce a public correlation device to simplify

optimal punishments. This assumption is without loss of substantial generality as such

devices are readily available, particularly in financial markets.

2.3 Spreads under Competition and Perfect Moni-

toring

The primary goal of this study is to show that the concentration of spreads at exactly

one number and the behavior of spreads for the largest and the smallest firms are best

explained by a combination of collusion and imperfect information among underwriters.

To reach this conclusion, it is necessary to consider the likelihood that spreads would

have the documented characteristics in the absence of collusive arrangements of the

type considered. The model presented here will not generate rigid spreads under either

perfect competition or oligopolistic competition, except in certain pathological cases.

As long as signals about firm value are informative, the bid that leads to zero profit

in expectation and the bid that maximizes profits in the one-shot auction will both

depend on the signal. Since for a given spread a more valuable firm will generate a

higher payoff to the underwriter, and since returns to scale are increasing, larger firms

must receive lower spread offers, on average, than smaller firms. This will be true

locally at every point, so contrary to the claims in Hansen [2001] and Torstila [2003] a

competitive underwriting industry will not use a contract with a partially rigid spread.

7Permitting mixed strategies when long-lived players are simply playing stage-game equilibria
permits a larger class of punishment strategies. Optimal collusion will generally take the form of
pure strategies, while stage game play may involve mixed strategies, particularly if the distribution
of signals is not atomless. These mixed strategies are admitted to avoid artificially and unnecessarily
reducing the set of punishments available to long-lived players.
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On the other hand, if underwriters can effectively act as a monopoly, signals about

value will be informative about the reservation spread of the firm as long as manager

preference is not identically zero. Since signals are informative about firm value and

firm value is informative about the distribution of the reservation spread, underwriters

will charge slightly different spreads in response to slightly different signals. If manager

preference were identically zero for all firms and the common value benefit of going

public took exactly the proportional form described, then monopoly spreads would be

rigid, as in Chen [2001]. Any slight perturbation of either of these assumptions would

undo rigidity, and such assumptions cannot account for the increase in spreads charged

on the smallest issues.

The impossibility of observing spreads that are rigid even over a small region is not

sensitive to the parametric assumptions on costs and benefits assumed in the main text

of the paper. Appendix 2.10.2 presents a more general model and argues that almost

all cost and benefit functions will necessarily imply spreads that are not rigid over any

interval. Here, however, I present a parametric example that develops the intuition for

why spreads will not be rigid under competition, oligopolistic competition, or collusion

with symmetric information.

In the absence of potentially imperfect monitoring (that is, when both underwriters

receive the same signal before each auction), the costs and benefit functions above

generate a pattern of spreads that bears some resemblance to the observed spread

distribution but does not imply rigid spreads. Figures 2.2 and 2.3 show examples of

this, first in the case where underwriters both learn the true value of the firm and the

true value of the preferences of the manager and then in the case where they only learn

the value of the firm. Figure 2.4 shows the spreads that would arise under perfect

information and competitive pricing. Details of the straightforward derivation of these

spread schedules can be found in appendix 2.10.6 and 2.10.8.8

8There is no closed form expression for the spread function for unobservable ε; in the appendix,
I solve for the closed form expression when ε is unobserved but distributed uniformly rather than
normally.
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Figure 2.2: Perfect Information Spreads with Collusion: x ∼ U [0, 1000], ε ∼ N(0, 1), β = 1.075, and
κ = 1

In both of these cases, the fact that the signals are identical makes collusion easy

since any deviation from the pure strategy spread schedule prescribed in a collusive

equilibrium is detectable and can therefore be deterred without costs; the perfect pub-

lic equilibrium then coincides with collusion at the monopoly spread schedule. Under

such a collusive outcome, information about firm value and manager preference will

prove useful for choosing the spread offer. When both value and preferences are ob-

served, underwriters will push firms to their participation constraints; that is, firms

will be exactly indifferent between going public at the collusive spread offer and re-

maining private. This participation constraint will depend both on the preferences of

the manager and the offer price. When preferences are not observed, signals about

value effectively become signals about the elasticity of demand for holding an IPO.

Other things equal, a firm with a manager with strong preferences for going public

will be willing to pay a higher spread and will consequently be charged the higher

spread. The value of the firm will determine how sensitive the spread offer is to

individual preferences. More valuable firms will in effect care more about the spread

relative to individual preferences. Spreads above the “common value” benefit of the
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Figure 2.3: Collusive Spreads with Unobservable ε

IPO are costly in the sense that the post-IPO firm is less valuable than the pre-IPO firm

since the payments to underwriters exceed the common value gains. For small firms, the

individual manager benefits of going public can justify the costs, but for very valuable

firms, even ones controlled by a manager with a strong preference for taking his firm

public, the loss associated with holding an IPO at a very high spread will overwhelm

the idiosyncratic private benefits. Symmetrically, firms with managers who prefer to

keep their firms private will require spreads below the common value component of the

benefit of going public. Small firms may demand very low spreads or, in extreme cases,

refuse to go public at any non-negative spread. But, since underwriters must pay a

fixed cost to take a firm public, they will refuse to offer a spread low enough to induce

a small firm with low preference for going public to hold an IPO. The distribution of

spreads for small firms is thus truncated from below, and consequently the average

spread charged to small firms will be high relative to the average spread charged to

larger firms.

Additionally, in the case of observable manager preference, underwriters are as-

sumed to be patient but not arbitrarily patient. Since the value of going public in-

creases with the value of the firm while the optimal spread remains approximately the
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Figure 2.4: Competitive Spreads with Perfect Information

same, larger firms will, on average, prove more profitable for underwriters. Thus, to

sustain an equilibrium, spreads must decrease for such firms so that a deviation will

not be too profitable relative to expected future profits from maintaining collusion.

This is, of course, an application of the result in Rotemberg and Saloner [1986].

Note that the spreads charged when underwriters collude and only value is observ-

able is not necessarily monotone decreasing. For very small firms, the underwriters

will charge a high spread to capture rents from those firms with strong preferences for

going public. In intermediate ranges, charging relatively low spreads may be valuable

because it can induce firms with idiosyncratic preferences for staying private to agree

to go public. For the very largest firms spreads will be higher again since the rela-

tive importance of idiosyncratic preferences decreases. The participation constraints

of very large firms will cluster very tightly around one particular spread, although

the spread function will never be exactly flat. The fact that optimal collusive spreads

asymptote to one particular spread strictly greater than zero will play an important

role in explaining why spreads can be rigid over such a wide range of firm values while

still responding to value for small and large firms.
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2.4 Imperfect Monitoring

We have now seen that when underwriters receive identical signals about firm value

and manager preference they optimally collude on spread offers that call on average

for high spreads for small firms. Spreads for moderate sized firms decline sharply from

these high levels, and the spread offers become more “flat” in the sense that firms of

intermediate size are charged similar, but not identical, spreads.

This section shows that when signals are informative but asymmetric such that

underwriters have private information about the characteristics of the firm optimal

collusion may call for a partially rigid spread. For simplicity, we focus on a model

where underwriters receive conditionally independent signals about the value of the

firm and no signal about the preferences of the manager, but all conclusions will be

robust to admitting minimally informative private signals about manager preference.

Colluding on a rigid or partially rigid spread implies that underwriters ignore infor-

mation that would be useful for setting a spread that extracts the most possible surplus

from issuing firms. The benefit of ignoring such information comes from the fact that

deviations from a rigid spread schedule can be perfectly detected and prevented with

punishments that do not occur along the equilibrium path. A spread schedule that

uses all available information about firms would require a different spread offer for

each signal.9 Since underwriters cannot observe the signal of the other underwriter,

deviations from the prescribed spread schedule cannot be directly observed. The pun-

ishments necessary to enforce such a spread schedule are then triggered by apparent

deviations, and as such will occur along the equilibrium path. This inefficiency will in

certain cases prove more severe than that associated with ignoring private information.

Finally, in the non-identical-signals setting the model still can predict that spreads

will be high for small firms even when rigidity is better than fully separating spreads.

Such a partially rigid spread function can arise without requiring on-path punishments.

An underwriter with a very low signal about firm value will not necessarily have an

incentive to imitate a higher signal (an thus increase his chances of winning the IPO).

If such an action requires him to bid far below the first-best spread offer, the efficiency

loss may exceed the gain to himself of capturing more of the market. Thus, a spread

schedule that calls for most firms to be charged the same spread but for very small

firms to be charge a higher spread can provide greater profits than either a fully rigid

9In certain cases not considered in this section, the spread schedule may be non-monotonic and
thus a measure zero set of signals could call for the same spread offer.
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or fully separating spread function, all without requiring on-path punishments.

For simplicity, I consider a particular class of problems, summarized in the following

assumptions:

Assumption 1.

1. x ∼ U [0, x]

2. ξi =

{
x with probability p

U [0, x] with probability 1− p

3. ε ∼ exp(λ)

4. δ → 1

It follows immediately that ξi ∼ U [0, x] and that

x|ξi ∼

{
ξi w.p. p

U [0, x] w.p. 1− p

Assumption 1.3 indicates that we are in a special circumstance in which the manager-

specific value of an IPO is always positive. This assumption is made only for analytical

tractability, as it helps guarantee that the optimal spread schedule will be weakly

decreasing everywhere.

I now solve for the optimal rigid spread, the optimal two-step self-enforcing spread,

and an approximately optimal fully separating spread. Calculating these spreads makes

it possible to compare the value of each type of equilibrium and to conclude that,

in certain cases, the two-step spread schedule can provide profits higher than any

fully rigid spread or any fully separating spread. From this finding, it is possible to

demonstrate that the optimal collusive spread schedule when a two-step self-enforcing

spread is preferred to either a rigid spread or a fully separating spread will exhibit

characteristics similar to those observed in data. Spreads for intermediate and large

sized firms will almost always be the same, while small firms will be charged spreads

that will decrease on average as the firm gets larger (but remains “small”), but firms

of the exact same value will be charged different spreads with positive probability.

These characteristics are exactly those documented in Chen and Ritter [2000]. Finally,

we demonstrate that if underwriters are less than completely patient and the upper

bound on firm value is high enough, underwriters must demand lower spreads following
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the very highest realizations of their signals about firm value. These elements of the

optimal spread function combine to demonstrate that the “seven percent solution”

almost certainly results from attempts by underwriters to collude to extract as much

surplus as possible from issuing firms.

2.4.1 Optimal Rigid Spread

The optimal rigid spread is the solution to a relatively straightforward univariate max-

imization problem. The only complications are that certain parameter values imply

that spreads should be set either so low as to guarantee that all firms hold an IPO or

so high as to guarantee that no firms hold an IPO. Specifically, when both the costs of

holding the IPO and the mean of the idiosyncratic manager preferences are sufficiently

low, the underwriters will set a rigid spread of αr = 1− 1
β
, which guarantees that even

the firm with ε = 0 holds an IPO. When costs are sufficiently high and the mean of

the manager preference is sufficiently low, no spread leads to positive profit. We will

ignore such cases by imposing a technical restriction on the relationship between the

costs of holding an IPO, κ, and the mean of the distribution of manager preference, λ:
10

Assumption 2.

κλ < 1

The following proposition shows how to derive the optimal rigid spread. The de-

rived expression is an immediate consequence of the necessary condition for an interior

optimum for profit maximization and the proof is thus omitted.11

Proposition 3. The optimal rigid spread is given by αr? = 1− 1
β

+ γ?, where

γ? =

{
γ′ if γ′ > 0

0 otherwise
,

10Note that this condition is not tight, in the sense that there are problems with κλ > 1 where
there is an interior optimum for α; we ignore these cases for simplicity. In general, characterizing the
set of parameter values where conditions hold is tedious and uninteresting; further details on these
sets are available from the author.

11The objective function in this problem fails to be quasiconcave for certain parameter values, but
it is possible to show that there are no more than two local maxima and that identifying the global
maximum is not difficult. Details are omitted to save space.
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and γ′ satisfies

γ′ =
1

βλx
log

[
1 +B + (β − 1 + βγ′)

B2

A

]
with

I. A = 2(1− β)− γ′β(1− κλ)

II. B = γ′βλx.

Charging the optimal rigid spread would imply that firms are ignoring all informa-

tion contained in their signals. This eliminates the difficulties associated with moni-

toring deviations from equilibrium since any deviation can be identified perfectly. It is,

however, possible to increase the profits accruing to the underwriters without requiring

on-path punishments. The following subsection demonstrates the procedure for finding

just such an equilibrium.

2.4.2 Partially Rigid Spread

The benefits of a fully rigid spread come from the elimination of the need for pun-

ishments that occur along the equilibrium path. The costs are that spreads cannot

be chosen optimally to extract as much surplus as possible from the firms given the

information available to the underwriters. However, it is possible to choose a spread

function that both uses information contained in the signals received by the interme-

diaries and does not require punishments along the equilibrium path. This section

presents the form of such a “self-enforcing” spread function, proves the existence of

such spread functions for the case where an optimal rigid spread exists, and describes

the procedure for finding the optimal spread function within a restricted class of such

self-enforcing equilibria. This two-step spread function will call for higher spreads for

the smallest firms and a single, fixed spread for all other firms.

Definition 3. A self-enforcing spread function is a function αse : [0, x] → R+ such

that if players 1 and 2 play α(ξk), k ∈ {1, 2} in the pricing stage following any history

where no deviation has been detected with probability one (that is, in period t, as ⇒
P (∃ξ ∈ [0, x] s.t. αs = αse(ξ)) > 0 for all s < t) and play the stage-game equilibrium

otherwise, then no arbitrarily patient underwriter has an incentive to deviate.
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Such spread functions must take on a very specific form over the range of signals for

which an underwriter would anticipate positive profits. To slightly simplify the discus-

sion, we restrict attention to the class of spread functions that are weakly decreasing

in signals about firm value:

Proposition 4. Let Xp(α) be the set of signals for which an underwriter expects posi-

tive profits in the stage game under spread function α. Then, if α is part of a decreasing

self-enforcing equilibrium, α restricted to Xp(α) is a step function.

Proof. Assume the contrary. This implies that, in some region where expected profits

are positive, the spread function is continuous but not flat. Then, there is some signal

ξ′ such that an arbitrarily small deviation from α(ξ′) is not detectable with proba-

bility one. But, such an arbitrarily small deviation will increase expected profits by
p2

2
(α(ξ′)βξ−κ)e−λx(αβ+ 1−β) since the implied change in α is infinitesimal and the

deviator now captures the entire market when both agents receive the same, correct

signal. Thus, a profitable deviation exists for underwriter type ξ′.

Given this result, I can restrict attention to decreasing step functions without loss

of substantial generality. Such step functions effectively generate partially separating

equilibria. That is, all underwriter types effectively pool with those other types within

their step. Such a self-enforcing step function is guaranteed to exist under general

conditions:

Proposition 5. For any configuration of parameter values for which there is a rigid

spread that implies positive profits, there is some self-enforcing two-step spread.

See the appendix for a proof.

Calculating an optimal two-step self-enforcing spread is a relatively simple multi-

variate optimization subject to a single incentive compatibility constraint since indif-

ference at the threshold implies strict preference away from the threshold, a form of a

single crossing property. The optimization problem can be written as follows:

Let

π(α, x) = αβx− κ

h(α, x) = e−λx(αβ+1−β).
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∫ x

0

(
1x<x?

(
p2

(
1− x?

x

)2

+
2px?

(
1− x?

x

)
x

+ 1x>x?(1− p)2

(
x?

x

)2
)
π(αh, x)h(αh, x)

+

(
1x<x?

(
1−

(
1− x?

x

)(
p2

(
1− x?

x

)
+

2px?

x

)
− x?

x

)
+ 1x>x?

(
1− (1− p)2

(
x?

x

)2
))

π(αl, x)h(αl, x) )
1

x
dx

subject to

1

2

((
p2 +

x?p(1− p)
x

)
π(αh, x?)h(αh, x?)

)
+p(1− p)

∫ x?

0

π(αh, x)h(αh, x)
1

x
dx+ (1− p)2x

?

x

∫ x

0

π(αh, x)h(αh, x)
1

x
dx

≥
1

2

(
p2

(
1− x?

x

)
+ p

(
1 +

x?

x

))
π(αl, x?)h(αl, x?)

+p(1− p)
(∫ x?

0

π(αl, x)h(αl, x)
1

x
dx+

1

2

∫ x

x?
π(αl, x)h(αl, x)

1

x
dx

)
+

1

2
(1− p)2

(
1 +

x?

x

)∫ x

0

π(αl, x)h(αl, x)
1

x
dx.

The existence of such a two-step self-enforcing spread arises because the optimal

spread rises sharply as firms become small. A two-step spread with a relatively high

threshold could be more profitable as it would allow more efficient pricing of the most

valuable IPOs, but it would be impossible to enforce such a spread since the temptation

of the firms near the threshold to bid as if they had a higher signal would be too

strong. Self-enforcement requires that the step be large and that the higher spread

offer be relatively close to the optimal spread offer for the threshold firm. In this case,

when deviating the benefits of capturing more of the market are offset by the costs of

charging a less efficient spread. The costs to the underwriter of holding an IPO play

an important though not absolutely essential role in the nature of the self-enforcing

spread. When underwriting costs (i.e. κ) are relatively high the costs of misreporting

one’s signal following a low signal can be substantial as the market share increase comes

59



largely from winning IPOs that are unprofitable at the lower spread. With very small

or even zero underwriting costs, however, it is still possible to construct two-step self-

enforcing spreads; these will generally call for very high spreads for the very smallest

firms. In this case the self-enforcement is driven exclusively by the fact that signals

about firm value are informative about the expected reservation price of the firm; very

small firms should be charged very high spreads since there is a small chance that

the firm has a high idiosyncratic preference for going public and the firms small size

effectively magnifies this preference. Introducing underwriting costs implies two-step

spreads much closer to what is observed in data.

A two-step self-enforcing spread will not, in general, prove optimal, but we will not

seek to precisely characterize the optimal self-enforcing spread. Instead, it is sufficient

to show that the two-step spread dominates the optimal fully flexible spread in order to

demonstrate that the optimal spread function does not respond to firm size everywhere.

Since relying on the self-enforcing characteristics of step functions is the only way to

decrease the costs associated with monitoring for a fully separating spread and since

such step functions must have thresholds calling for increased spreads for the smallest

firms, we can conclude that if the optimal self-enforcing two step spread provides more

profit than the optimal fully separating spread then the optimal spread function must

call for rigid spreads over a large region of intermediate valued firms and higher spreads

for smaller firms. These smaller firms may face a more complicated spread schedule

than a simple two-step function, but we will show that when a two-step spread is

preferred to either a rigid spread or a fully flexible spread the optimal spread schedule

will exhibit both rigidity over a large region and behavior generally consistent with

observed data for small firms.

2.4.3 Flexible Spreads

We have so far confined attention to spread functions that do not require punishments

along the equilibrium path. These are exactly the partially rigid spreads that appear to

match the empirical data. We now consider instead those spread functions that serve

to fully separate types and thus exploit the information about firm value contained in

the signals to the underwriters. For the class of problems under consideration, this

reduces to searching for the optimal strictly decreasing spread function.

In this section, we discuss a method for deriving an upper bound on the equilibrium

payoffs of a strictly decreasing spread function. We follow a simplified version of
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the dynamic programming approach developed in Abreu et al. [1990]. For details

on implementing the full procedure, see Mailath and Samuelson [2006] and Judd et al.

[2003]. We assume throughout that underwriters have access to a public randomization

device.

The problem of finding the optimal fully separating symmetric perfect public equi-

librium reduces to finding the everywhere downward sloping spread function that satis-

fies all incentive compatibility constraints, conditional on promised continuation values

falling in the interval [v, v?], where v is the payoff associated with the worst symmetric

perfect public equilibrium and v? is the payoff associated with the best such equilibrium.

Incentive constraints take the basic form of requiring that, for every possible misreport,

the increased likelihood of reverting to the “punishment” continuation value following

any deviation from the proposed spread schedule is sufficiently high to overcome any

short-term improvement associated with capturing more market share. Continuation

values must, in turn, be drawn from the set of feasible equilibrium payoffs, [v, v?]. Fur-

thermore, we know from the bang-bang result of Abreu et al. [1986] and Abreu et al.

[1990] that any equilibrium payoff can be achieved with strategies that call for contin-

uation values drawn only from the extreme points of the set of equilibrium values.12

In the symmetric case considered here, this reduces the set of strategies under consid-

eration to those that call for play of the “optimal” spread schedule until punishment

is triggered, followed by perpetual play of the stage game equilibrium following transi-

tion to the “punishment” phase.13 Note that the optimal spread schedule will not be

the spread schedule that a monopolist observing the first order statistic of the signals

would offer. The need to satisfy incentive compatibility constraints will introduce a

tradeoff between choosing an efficient spread schedule and choosing a spread schedule

that does not tempt underwriters to deviate. This will, in general, lead to a spread

function that is distorted downward for larger values.

The problem then becomes to find the optimal spread function and reversion prob-

abilities to maximize the value of the game. Reversion probabilities, of course, cannot

12Readers concerned about the application of the bang-bang theorem to a game with a continuous
action space may consult appendix 2.10.1 for an explanation of the applicability of the results to
games with a finite but arbitrarily fine action space.

13It is straightforward to show that the worst sustainable symmetric perfect public equilibrium
payoff is the worst payoff associated with repeated play of a stage-game symmetric Nash equilibrium
for arbitrarily patient underwriters. When underwriters are not arbitrarily patient, it may be possible
to sustain a lower value as a SPPE payoff for impatient underwriters. However, this value will clearly
be above 0 (a lower bound on the set of individually rational payoffs), and abusing notation slightly
we will continue to refer to this worst value as the stage-game payoff, ΠSG.
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depend directly on whether an underwriter deviated from his assigned bid. Reversion

probabilities can only depend on the public history, specifically the history of the true

value of the firms and the lowest spread offers. The bang-bang restriction, in turn, al-

lows us to consider only those strategies where reversion probabilities depend only the

most recent realization of the public signal. The value of the game, then, will depend

on the probability of reversion given that everyone adheres to the equilibrium strategy.

The dynamic programming approach to solving for this value consists of finding a su-

perset of the set of payoffs sustainable in a perfect public equilibrium, maximizing the

value of the game over all downward sloping spread schedules, reversion probabilities

and continuation values that are, taken together, incentive compatible for every signal

and every possible deviation and where the continuation values fall in the posited su-

perset. The maximum value that can be achieved by solving this problem is also an

upper bound on the set of sustainable perfect public equilibrium payoffs. The same

procedure with minimization replacing maximization gives and new lower bound. This

procedure can be repeated indefinitely to obtain smaller and smaller supersets of the

equilibrium value set, and will iterate to convergence in sufficiently regular programs.

We will be concerned only with calculating a sufficiently restrictive upper bound and

will therefore rely only on the monotonicity of this operator.

To summarize the approach used, note first that it is straightforward to find a su-

perset of the set of symmetric perfect public equilibria. Underwriters would certainly

be able to guarantee themselves at least −ε, where ε can be made arbitrarily small, by

demanding an extremely high “proportion” of the firm in exchange for underwriting

services. If underwriters are allowed to bid α = ∞, it is clear that no perfect public

equilibrium can call for payoffs below 0. On the other hand, we know that it is impossi-

ble for underwriters to do better in equilibrium than would a monopolist who observes

the first-order statistic from the two signals about firm size. Calculating the optimal

spread function for such a monopolist is a relatively simple matter, and the payoffs

associated with playing such a strategy in every period represent an upper bound of

what underwriters can achieve in a collusive equilibrium. Designate this value v0. We

can now maximize the value of the game treating continuation values as choices from

the set [0, v0]. The continuation values, spread schedule, and reversion probabilities

must satisfy the incentive compatibility conditions that prevent any underwriter from

effectively misreporting his signal about the value. The maximum value that can be

achieved by solving this program is an upper bound for the value that can be achieved

in a symmetric perfect public equilibrium. This procedure can now be repeated indef-
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initely to obtain a decreasing upper bound on the equilibrium value set. This upper

bound can then be compared directly to the maximum value that can be achieved

with a rigid spread or a self-enforcing two-step spread function, both of which can be

calculated directly without relying on a dynamic programming approach since neither

require punishments along the equilibrium path.

Details of the procedure can be found in the appendix.

2.4.4 Comparing Values: An Example

We have now established a procedure to find an upper bound on the value of a fully

separating spread schedule under optimal collusion. We can also find the optimal value

that can be achieved with a fully rigid spread or a two-step self-enforcing spread. If

either the fully rigid spread or the two-step self-enforcing spread imply greater value

than the fully separating spread, we can conclude that the optimal symmetric perfect

public equilibrium strategy implies partial price rigidity.

It is clear that, for sufficiently small values of p, a rigid spread will dominate a

flexible spread since the optimal flexible spread without incentive constraints converges

pointwise to the optimal rigid spread. That is, when the private signals contain almost

no information about the value of the firm, even a monopolist would not alter his spread

offer much in light of the information received from the private signals. Maintaining

incentive compatibility, however, remains costly.

It is not as clear, however, that a two-step self-enforcing spread schedule will be

optimal for intermediate values of p. As p → 1, a fully flexible spread will dominate

the two-step spread since the value from the fully flexible spread converges to perfect

information monopoly profits.14 For p → 0, the rigid spread dominates the two-step

spread since the two-step spread requires a large gap between the high spread and the

low spread in order to maintain self-enforcement. A two-step self-enforcing spread will

be optimal over some intermediate range of p if the costs of enforcement of the fully

flexible spread rise sufficiently fast as p decreases relative to the decline in value of

segmenting the market based on spreads. It is difficult to characterize the region of p

for which the two-step spread will dominate. The technique described above, however,

enables us to find examples where exactly this occurs.

Specifically, consider the case where x = 20, β = 1.01, λ = 3, κ = .1, and p = 0.6.

14This follows from the fact that, as p→ 1, the underwriters will have almost perfect information.
Furthermore, the probability that reversion will be triggered is bounded above by 1− p2.
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Then, an upper bound on the value15 that can be achieved with a fully flexible spread

is 0.0416, while the rigid spread gives 0.0432 and the two-step self-enforcing spread

gives 0.0465. This self-enforcing rigid spread calls for a spread offer of 0.22 following

signals below 2.87 and a spread offer of 0.035 for those above this threshold. See figure

2.6 for a plot of the optimal two-step self-enforcing spread and an approximation to the

optimal fully separating spread schedule resulting from the iterative procedure above.

Also, see Figure 2.5 for an approximation of the punishment function ρ necessary to

sustain the optimal flexible spread. Note the shape; small deviations are often more

profitable than large deviations, so the probability of reverting to the punishment phase

are lower following signals that indicate the possibility of a large deviation. For larger

signals, however, payoffs will increase in the size of the deviation, at least initially, as

more and more valuable market share is captured. Thus, the punishment function is

not in general monotonic.

Figure 2.5: Approximate Reversion Function: K = 30

15All values are expressed as the expected normalized discounted sum of payoffs.
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Figure 2.6: Optimal Two-Step Self-Enforcing Spread and Approximate Optimal Fully Separating
Spread

Since the two-step spread is strictly preferred to either the fully rigid or the fully

flexible spread, it is clear that minimal perturbations of the environment will not

undermine the incentives to use a partially rigid spread. That is, small changes in

the distribution of ε, x, or ξ would generate small changes in the value of the two-step

spread and the value of the fully flexible spread, so the two-step spread would remain

more profitable. Minimally informative private signals about manager preference would

also not change the ordering of profitability; the optimal fully separating spread would

now be a function both of the signal about firm value and the signal about manager

preference, but the value of using such a schedule would converge to the value of

ignoring manager preference as the informativeness of the signal decreases. So, in this

sense, spread rigidity can arise for generic parameter values and functional forms for

the relevant structural elements of the IPO industry when spread rigidity is motivated

by the need to collude in an environment with private information. This contrasts

with the scenarios where spreads can be partially rigid under competition, competitive

oligopoly, or monopoly provision, which rely on knife-edge cases to generate spread

rigidity.

65



The example considered in this section is particularly revealing as it represents a

case where, arguably, colluding on a fully separating spread schedule should be rela-

tively easy. With positive probability, both underwriters receive the same signal and

therefore should even in a fully separating equilibrium frequently bid exactly the same

when adhering to a collusive spread schedule. If signals were instead absolutely con-

tinuous, every single stage would result in different bids with probability 1. While the

relative costs of monitoring will depend on the signal structure in a complex manner,

the example presented here suggest that partially rigid spreads would be optimal for

many signaling environments.

2.4.5 Optimal Spreads

The above discussion shows that optimal spreads may exhibit partial rigidity when

underwriters collude but have private information about firms. Deriving the two-step

spread function that provides higher payoffs than the optimal feasible fully separating

spread function is sufficient to show that the optimal spread function must exhibit some

degree of rigidity, but such a two-step spread is not necessarily the optimal feasible

spread schedule. Indeed, data indicate that underwriters do not collude on a two-step

spread schedule. Instead, for small firms, several different spreads are charged, with

the spread generally, but not strictly, declining in firm value.

In this section, I demonstrate that in fact the optimal self-enforcing spread schedule

in the example above must involve more than the single step up. I also argue that all

of these steps must occur over the region of low value firms, where “low value” refers to

those firms whose value is small enough that manager preference plays a very important

role and, as a result, first-best spread offers decline steeply in the signal about firm

value. The empirical implications of a spread function of this type provide a very close

qualitative match to the distribution of spreads documented in Chen and Ritter [2000].

To see that the optimal self-enforcing spread function must call for more than two

steps in the numerical example above, we rely on the following proposition:

Definition 4. An n-step self-enforcing spread function is an n+(n−1)-tuple
{
{αi}ni=1 , {xi}

n−1
i=1

}
where {αi} is a decreasing sequence of spreads and {xi} is an increasing sequence of

thresholds, and x0 = 0 and xn = x, where underwriter j is assigned to demand spread

αi if it has a signal ξj ∈ (xi−1, xi]. Furthermore, the schedule can be enforced without

recourse to on-path punishments.

This is just a generalization of the two-step self-enforcing spread function.
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Proposition 6. Consider an n-step self enforcing spread function
{
{αi}ni=1 , {xi}

n−1
i=1

}
.

If

p2

2
(−κ) +

p(1− p)
2

1

x

∫ x1

0

π(α1, x)h(α1, x)dx

+
(1− p)2

2

x1

x

∫ x

0

π(α1, x)h(α1, x)dx

< 0

then there exists a self-enforcing spread schedule with n + 1 steps that provides higher

payoffs by calling for higher spreads for a subset of signals [0, x1].

Proof. The expression in the proposition is simply the limit of the expected payoff to

an underwriter for adhering to the proposed equilibrium as the signal goes to zero.

If this expression is negative, that implies that underwriters with the smallest signals

expect negative profit. A schedule calling for those underwriters with very small signals

to charge higher spreads would thus be more profitable overall. By choosing the region

for this higher spread to be arbitrarily small but with positive measure, the necessary

changes to the existing steps in order to make the new schedule an equilibrium would

be arbitrarily small. A standard continuity argument then shows that the n + 1 step

spread is an equilibrium.

Applying this proposition to the numerical example shows that there must be at

least 3 steps in the optimal self-enforcing step spread schedule. Note that it is not

immediate that any self-enforcing step spread schedule can be improved upon with a

spread schedule with one additional step. An underwriter with an arbitrarily small

signal may still make positive profits if the profits accruing when he is wrong about

the firm value exceed the losses when he is right. We can, however, conclude that all

of the steps that do arise in an optimal or approximately optimal self-enforcing spread

schedule will have the steps concentrated in the low value region.

To see this, note first that large steps are easier to enforce without on-path pun-

ishments. A small step cannot be easily enforced since total value accruing will not

change much following a deviation from one step to another while the probability of

winning the market will increase appreciably. Therefore, if underwriters want to en-

force a step with a threshold at an intermediate value firm, the large step required to

maintain self-enforcement will generate a large efficiency loss since the first-best spread

schedule becomes relatively flat for intermediate and large sized firms. On the other
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hand, first-best spreads rise sharply as firm value becomes small, so imposing a large

enough step to maintain self enforcement in this region does not involve such a severe

efficiency loss.

Exactly what constitutes the region of “small firms” is difficult to succinctly define,

but the basic intuition is that spreads will be high where the decision to go public is

driven primarily by the idiosyncratic private benefits to managers rather than by the

opportunity to increase the common value of the firm.

The empirical implication of a spread schedule that calls for offering a relatively low,

fixed spread following most signals and offering higher spreads following signals that

the firm value is low, with the exact spread offer for low value firms depending on the

signal in a coarse but non-trivial manner, will prove quite similar to the distribution of

spreads in data. Since signals about firm value are imperfect, the relationship between

true firm value (as measured by the closing price on the first day of trading or, in the

model, the issue price) and realized spread will have the steps overlap. With positive

probability, both the underwriters will receive and incorrect signal. If both of these

incorrect signals are outside the (endogenously determined) step containing the true

value, the realized spread offer will differ from the spread that would be charged if the

signal were correct. If only one signal is incorrect but that signal leads to a spread

offer below that of the correct signal, then again the realized spread will differ from the

spread implied by the schedule. For example, if the true value of the firm were such

that a correct signal would lead to the highest spread offer, but one firm receives an

incorrect signal that the firm is actually of intermediate value, then that firm would

be charged the lower spread.

Note that this argument is not symmetric. A firm of intermediate or high value

will only be charged a high spread if both signals are wrong since the firm can choose

the lowest spread offer. Furthermore, when both signals are wrong and both signals

imply that the firm is small, an already unlikely event, the firm is very likely to decline

to go public since its participation constraint is likely to be violated; the increasingly

tight participation constraint is the primary reason why intermediate value firms are

charged the lower spread in the first place, so clearly very few will agree to go public

if underwriters demand the relatively high spread charged to small firms. Thus, while

small firms will occasionally go public at lower spreads than most firms of their size (as

observed in the data), few if any large or intermediate size firms will be observed going

public at a high spread. This is consistent with the key finding of Chen and Ritter

[2000] that price rigidity is nearly absolute over a significant range of firms while also
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explaining the richer distribution of spreads for smaller firms.16

2.4.6 Impatient Firms

Up to this point, we have demonstrated that a model with private information and

collusion by underwriters generates a relationship between firm value and spreads that

closely resembles the observed data for small and intermediate value firms. In this

section, we show that if underwriters are not arbitrarily patient, spreads may decline

for the very largest firms while continuing to exhibit the same pattern described above

for low and intermediate value firms. Underwriter impatience can thus account for the

decline in spreads observed for the largest firms to hold IPOs.

The intuition for this decline is the same as described for the case where firm value

and idiosyncratic preferences are perfectly observable. After receiving a signal that the

value of the firm is very high, an underwriter expects profits from an optimally chosen

spread to also be very high. If the underwriter is impatient and the signal indicates

that the firm is sufficiently large, the underwriter will not adhere to the optimal ex ante

collusive equilibrium but will instead make an (observable) deviation to undercut the

other underwriter. This will trigger punishments, but the impatient underwriter will

prefer the short-term benefit of the deviation to remaining in the collusive equilibrium.

Given that underwriters are too impatient to enforce optimal collusion, a collusive

scheme that takes this constraint into consideration can provide greater profits than a

naive attempt to collude on the optimal collusive equilibrium that arbitrarily patient

underwriters would choose. The optimal spread schedule for impatient firms requires

lower spread offers following high signals and on equilibrium path punishments, but,

if impatience is only relevant for the very highest signals, the spread schedule will be

effectively unchanged from the arbitrarily patient case except following the very highest

signals.

Thus, collusion with private information and some degree of impatience can produce

spread schedules that respond to firm value at the extremes of the distribution of firm

value but also cause almost all firms of intermediate value to face the exact same

spread. This model then explains the key qualitative characteristics of the “seven

16This point undermines the argument that the observation of 7% spreads in certain small offerings
shows that collusion is not responsible for the price clustering (see Hansen [2001]). Once imperfect
information about value is introduced, observing exactly 7% for certain small firms will not be sur-
prising since only one underwriter need believe that the firm has intermediate, rather than low, value
in order for 7% to arise.
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percent solution.”

To demonstrate the above point formally, we will consider the effect of introducing

impatience to those games with optimal collusive equilibria in the class described for

the numerical example. The following assumption describes the set of problems under

consideration and introduces minimal impatience:

Assumption 3.

1. Parameter values are such that, if underwriters were arbitrarily patient (δ → 1),

they would collude optimally on a spread schedule calling for a rigid spread for

intermediate and large firms and higher spreads for the smallest firms, and would

strictly prefer such a schedule to a fully separating or fully rigid schedule. This

schedule will henceforth be referred to as the arbitrarily patient equilibrium

2. Underwriters are impatient such that, where δ? is the minimal patience needed to

sustain the equilibrium where underwriters are arbitrarily patient, δ < δ?.

3. δ? − δ ≈ 0

These assumptions guarantee that there is some x̂ ∈ [0, x) such that underwriters

have an incentive to deviate from the arbitrarily patient equilibrium if and only if the

signal ξ is in (x̂, x], and that this interval is arbitrarily small. With this δ, underwriters

who attempt to enforce the arbitrarily patient equilibrium will eventually observe an

“off path” deviation and revert to perpetual one-shot equilibrium play. A better sched-

ule, and one that would remain an equilibrium, would call for underwriters to offer a

lower spread following the signals above x̂. This alternative equilibrium would not be

self-enforcing when spreads are chosen optimally since underwriters receiving signals

close to but below x̂ would have an incentive to claim a higher signal. Consequently,

a public signal that the winning bid implied a signal ξ ∈ (x̂, x] but that the true value

x was less than x̂ must trigger reversion to stage game play with positive probability.

Assumption 3 above guarantees that the probability that such an event will occur along

the equilibrium path is arbitrarily small. Thus, by distorting the spreads down for the

very highest signals, underwriters can avoid triggering the off-schedule deviations that

would occur when attempting to collude on the arbitrarily patient equilibrium. Since

the punishments required to enforce this nearly optimal equilibrium occur infrequently

and the very large realizations of the signal that require downward distortion also occur
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infrequently (since x̂ is arbitrarily close to x and the probability of one of these large

signals is x−x̂
x

), there is no incentive for underwriters to employ a schedule over signals

in the range [0, x̂] that differs qualitatively from that called for in the arbitrarily pa-

tient equilibrium. That is, as δ ↑ δ? the equilibrium that is identical to the arbitrarily

patient equilibrium over [0, x̂] and exploits the most efficient combination of downward

distortions for ξ ∈ (x̂, x] and on-equilibrium-path punishments will provide payoffs

converging to the payoffs to the arbitrarily patient equilibrium. Since a partially rigid

spread schedule is strictly preferred to either a fully separating or fully rigid schedule

in the case of arbitrarily patient underwriters, moving to a rigid or fully separating

spread schedule cannot improve payoffs in the case of minimal impatience.

We will not attempt here to trace out the exact empirical implications of impa-

tience. Since the distribution of large firms is unlikely to be well approximated by a

uniform distribution, and a distribution with a long, thin tail would produce substan-

tially different predictions about spreads charged by impatient underwriters, such an

exercise would provide little in the way of validating or rejecting the model. We have,

however, shown that in the context of the model with private information, impatience

by underwriters will lead to a decrease in the spreads charged to the most valuable

firms without undermining the incentives to apply the partially rigid spread described

in the preceding subsection over the range of signals not near the maximum of the

distribution.

2.5 Underpricing

While the great extent of spread rigidity in the market for IPOs has received significant

attention in financial economics, the tendency for IPOs to be significantly underpriced

has been the subject of far more research. Prominent examples include Loughran and

Ritter [2004], Booth and Chua [1999], and Lowery and Shu [2002]. In this section, I

show that spread rigidity and underpricing may be closely related.

Under the rigid or partially rigid equilibrium described above, underpricing has a

natural role. Underwriters collude to extract as much surplus from firms as possible.

However, given the need to collude on a rigid or partially rigid spread and the imper-

fect information about firm value and preferences, those firms that choose to hold an

IPO will still benefit. That is, firms are not pushed to their participation constraint,

and indeed underwriters are not even extracting all surplus that they could given their
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information. This section shows that underwriters may have an incentive to underprice

issues in order to extract this additional surplus and to exploit any additional infor-

mation received during the book-building process. The opportunity to underprice, in

turn, reinforces the incentives to collude on a rigid or partially rigid spread; part of the

loss from failing to charge the most efficient, flexible spread is recouped through the

underpricing stage without requiring costly punishments.

Admitting underpricing into the analysis requires explicitly considering the choice

of the offer price. Above, I have implicitly assumed that the offer price for the shares

perfectly reflects the true value of the firm. That is, while underwriters have imperfect

information about the value of the firm when bidding to hold the IPO, the book

building process functions perfectly to reveal the true value and there is no incentive

to underprice the offer.

Given the high and highly variable underpricing observed in the industry, these

simplifying assumptions clearly do not capture all important elements of the industry.

Either underwriters remain uninformed about the true value of the firm relative to

information available to the general investing public or they intentionally underprice

issues. It is difficult to believe that the underwriter would be so poorly informed relative

to the first pair of investors to engage in a transaction following the IPO,17 so we proceed

under the assumption that by the end of the book building process the underwriter

has access to all information necessary to accurately price the security. Additionally,

the underwriter is likely to learn more about the preferences of the managers of the

firm and will thus update the distribution of ε.

To introduce underpricing into the model, let the underwriter also have access to

a costly technology for turning underpricing into profits. Specifically, assume that an

underwriter is in a long term relationship with a class of institutional investors who

will “kick back” part of their gains from receiving an underpriced issue. This sort of

behavior is well documented, from the brazen (SEC [2004]) to more subtle quid pro quo.

Underpricing will also have other less direct costs; a large degree of underpricing may

attract scrutiny from regulators or lawsuits from issuers, and too much underpricing

may hurt the reputation of the underwriter and make other firms less likely to choose

that underwriter in the future.

We assume that underwriters are unable to compete on underpricing. Since the

issue price is set very late in the IPO process, underwriters cannot contract on a

17Kirgman et al. [1999] show that an overwhelming proportion of the first day return, the standard
measure of underpricing, is realized on the first trade of that day.
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particular issue price. Thus, if underwriters wished to compete on underpricing, they

would have to send credible signals to the firms that they will not underprice even

when it is profitable to them. Any such signal would be just as observable to the

other long-lived underwriter as it would be to the sequence of short-lived firms, so

underwriters would be able to punish any attempt to use more favorable issue pricing

to capture more of the market.

Formally, we consider the following environment:

• Once the underwriter is chosen to hold the IPO, it observes x perfectly

• With probability µ, the underwriter observes ε

• The underwriter chooses an offer price xo ≤ x, which implies a degree of under-

pricing u = x− xo.

• The firm has an opportunity to withdraw from the issue and receive its reservation

value x (in which case the underwriter receives −κ)

• If the issue proceeds, the payoffs are:

underwriter: αβxo + θtβu− ζtβ2u2, where θt ∼ [0, 1] and ζt ∼ [0,∞)

firm: (1− α)βxo + ε

This environment guarantees that a firm’s participation constraint in the underwriter-

selection stage is unchanged; with positive probability the underwriter will have no

incentive to underprice. That is, if θ < α or ζ sufficiently large, a firm will prefer to

choose xo ≈ x; when this occurs with positive probability, any firm that would choose

to go public at a “fair” offer price will continue to agree to hold an IPO in the selection

stage. Those firms who are almost indifferent between going public at the equilibrium

α and remaining private will often be forced to their participation constraint when ε

is revealed and will often cancel the IPO when ε is not revealed. They, however, still

expect positive unconditional surplus, with the expected surplus decreasing in α.18

18It is not immediate that, in the presence of underpricing, firms would continue to choose the
lowest spread. If underpricing is a costless way to generate additional profits, firms will be indifferent
between a high spread with the expectation of low underpricing and a low spread with the expectation
of high underpricing. The convex costs associated with underpricing guarantee that most firms will
still prefer a low spread to a high spread. It is possible to construct examples even with convex costs
where some small firms prefer larger spreads (since larger spreads serve, in part, to align the interest
of the firm and the underwriter), but these cases are not of particular interest.
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Underwriters will clearly benefit from the introduction of the underpricing stage.

They have more information and another means to extract surplus. Furthermore,

the value of coordinating on a fully flexible spread relative to a self-enforcing step

function is reduced, thus preserving the spread-rigidity result above. That is, the offer-

price phase will allow underwriters to extract some of the surplus lost by coordinating

on a self-enforcing partially rigid spread, still without relying on on-equilibrium path

punishments. Too see this, consider the case where the mass of the distribution of

θ becomes concentrated around 1 while the mass of the distribution of ζ becomes

concentrated around 0, and µ → 1. Then, the underwriter extracts almost the full

surplus from each firm, regardless of the spread offer. Taking a very small firm public

at a relatively low α, however, will still imply an expected loss for the underwriter

unless ε is very high. This situation implies that underwriters would still have an

incentive to coordinate on a step-spread function rather than simply charging a flat,

low spread regardless of the signal.

Under the assumptions presented above, it is straightforward to solve for optimal

underpricing. When the underwriter does not observe ε, it will choose the optimal

offer price taking into account the risk that too much underpricing will cause the firm

to cancel the offer. The underwriter, of course, has effectively received a signal that

the firm has ε ≥ x(αβ+ 1−β), and will therefore maximize conditional on an updated

posterior distribution of ε. The optimal level of underpricing is then given by:

u? =

(
2ζβ

λ(1− 1
x)

+ θ − α
)
−

√(
2ζβ

λ(1− 1
x)

+ θ − α
)2

+ 4ζβ θ−α−αx
λ

2ζβ

if said quantity falls in the interval [0, x]; a negative offer price or an offer price above

the true value is infeasible.

In the cases where the underwriter does observe ε, the issue will never be withdrawn

as the underwriter can now perfectly observe the participation constraint. In cases

where the participation constraint does not bind, underpricing is given by

u? =
θ − α
2ζβ

,

again with the caveat that underpricing must fall in the feasible interval. When the
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participation constraint does bind, optimal underpricing is instead given by

u? =
ε

(1− α)β
−
(
αβ + 1− β
(1− α)β

)
x.

It is immediate that money left on the table will not depend on x when the participation

constraint does not bind. It is less obvious, but nonetheless true, that the expected

value of money left on the table conditional on firm value does not depend on the value

of the firm when the participation constraint does bind. That is, the expected value

of ε conditional on a firm choosing to go public at a given spread increases in x at a

rate that exactly offsets the decrease in x of the degree of underpricing conditional on

ε. This exact balancing is in part an artifact of the modeling structure, in particular

the assumption that the costs of underpricing are convex in the absolute rather than

relative degree of underpricing, but may help explain why the relationship between

money left on the table and firm value is not obviously monotonic.

2.6 Seasoned Equity Offerings

While the spreads on IPOs exhibit remarkable price rigidity, spreads charged for sea-

soned equity offerings demonstrate dependence on issue size and also exhibit variance

even conditional on issue size (See Chen and Ritter [2000], figures 4 and 5.) This

suggests that the logic underlying the collusive solution for IPOs does not apply to

SEOs. Since IPOs and SEOs are fundamentally different in many ways, this difference

should not be taken as evidence that the market for SEOs is more competitive than

that for IPOs, even though spreads on SEOs are on average much lower than those on

IPOs. There are two crucial differences between the market for IPO services and the

market for SEO services. First, there is no asymmetric information about firm value

when a firm is considering holding an SEO since the stock price is already a publicly

observable variable. And, firms holding SEOs, almost by definition, have a preexisting

relationship with one investment bank. Krigman et al. [2001] document that 70% of

firms completing an SEO within three years of their IPO use the same underwriter

as they did for the IPO. This suggests that underwriters may use their preexisting

relationships with various firms to coordinate on an asymmetric bid-rotation scheme,

which would permit flexible spreads on SEOs that make the most use of all information

available to the underwriter who held the firm’s IPO. The lower spreads observed on
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SEOs would then arise not from greater competition amongst underwriters, which is

hard to reconcile with the 70% figure cited above, but from the presence of alternative

sources of capital available to firms that are already public and the relative absence

of idiosyncratic preferences over capital structure among managers of already public

firms.

2.7 International Comparisons

The distribution of IPO spreads varies significantly across countries. In particular,

both the average spread level and the degree of clustering at the modal spread differs

markedly in cross country comparisons. Torstila [2003] presents evidence on spread

rigidity in many countries. In Singapore and Germany the shape of the spread distri-

bution is roughly similar to that in the United States, although spreads are on average

much lower. The Netherlands, Italy, and the United Kingdom all exhibit very little

rigidity, while Hong Kong, India, and Malaysia exhibit rigidity across a wide range

of values without any apparent steps. This observation is broadly consistent with the

model in this paper as collusion can produce any of these outcomes depending on,

among other things, the quality of information available to the underwriting industry

in a country. The exact implications for relative competitiveness in each country are

ambiguous. The presence of rigidity is convincing evidence of collusion, but the ab-

sence of rigidity can imply either competitive pricing or efficient collusion exploiting

bid rotation and communication. However, in each of the countries mentioned above

as not exhibiting rigidity, there is significant variance in the spreads charged for a given

level of offering proceeds. This is some evidence that underwriters are exploiting in-

formation about firm preferences to extract collusive rents. Conditional variance will

arise under either myopic oligopolistic competition or perfect competition, largely as

a result of imperfect signals about firm value. The wide variance relative to the slope

of the average spread, however, is weak evidence for the hypothesis that underwriters

are engaged in efficient collusion.

The relatively low spreads charged outside of the United States also has ambigu-

ous implications for collusion. Lower average spreads in countries where collusion is

apparent imply that the value of access to public capital markets is lower, which will

drive the average reservation spread of private firms lower. Given the relative impor-

tance of public capital markets in the United States, it is not surprising that firms in
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other countries are generally charged spreads lower than 7%. In particular, in coun-

tries where bank financing is an important source of capital for firms, it is unlikely that

many firms would be willing to go public at such high spreads. If, on the other hand,

spreads were determined competitively, the cross-country difference in spreads would

primarily imply differences in costs to underwriters for running IPOs. It is not at all

clear that this activity should be more expensive in the U.S., a country with relatively

efficient and well functioning capital markets and regulatory infrastructure.

2.8 Policy Implications

Collusion in the pricing of IPO services is costly from a social perspective. Inefficiently

high spreads result in fewer IPOs than would be optimal, and the incentives to start

positive expected value firms will be suppressed if much of the value of taking the

company public, which seems to represent a significant fraction of the total value of

the firm (Ritter [1987]), is captured by the underwriters.

Regulatory intervention to reduce or eliminate collusion would therefore seem desir-

able. A natural if blunt approach to such regulation would involve imposing a binding

cap on the spread charged for IPOs. Such a regulation might prove unwise if, as con-

jectured in Chen and Ritter [2000], small firms are charged high spreads in order to

cover the fixed costs associated with taking a firm public. In such a circumstance,

small firms would be effectively excluded from holding IPOs, even when going public

is quite valuable to the firm. The model presented here indicates, however, that the

higher spreads charged to firms with low value are driven in part, and perhaps for

the most part, by “demand” effects rather than “supply” effects. Underwriters charge

higher spreads to small firms in order to capture relatively large fees from those firms

whose idiosyncratic preferences for going public are large. The small value of the firm

effectively magnifies the importance of idiosyncratic preferences to the manager, rela-

tive to his concern about minimizing the fee. As long as underwriters charge higher

spreads to small firms for this reason, a price cap will not drive small firms out of the

market and will instead prove even more beneficial to those firms.
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2.9 Conclusion

We have now seen that the empirically observed distribution of IPO spreads can best

be explained by assuming that underwriters collude on price but receive noisy signals

about firm value and preferences. Attempts to reach optimal collusion in a symmetric

perfect public equilibrium are doomed to failure by the requirement that punishments

occur along the equilibrium path, but underwriters will still capture significant rents.

Collusion, price rigidity, and underpricing are closely linked, as underwriters exploit

underpricing to extract additional surplus from firms. The model suggests links be-

tween unobservable variables relevant for underwriting and observed data, providing a

blueprint for a structural analysis of the industry. Such analysis could guide regula-

tory policy designed to address the social costs associated with collusion in investment

banking.

2.10 Appendix

2.10.1 Finite Approximation

In this appendix, I consider finite approximations to the continuous game described

in the main text. Such finite games will exhibit the bang-bang property, whereas it

is possible that there is some equilibrium of the continuous version of the game that

provides better payoffs than the best bang-bang equilibrium. The arguments below

presuppose familiarity with sections 2.3 and 2.4.

There are two complications that must be considered when treating the continuous

stage game discussed in the main text as an approximation to a stage game with a

finite but arbitrarily large action space. First, it is necessary to show that the payoffs to

the optimal rigid and partially rigid spread schedules are approximated by the payoffs

in the continuous version, and that the optimal strictly decreasing spread function is

an appropriate approximation to the payoffs to a separating equilibrium in the finite

game. The first two of these requirements are trivial. The third is less so because

it is necessary to define the analog in the finite case of a strictly decreasing spread

schedule. To address this, I consider a discretization of the following form. Spreads

can be chosen from a finite subset of [0,M ] with cardinality N , and the spread schedule

must be a decreasing step function. Furthermore, no step can have measure greater

than ι. To approach the continuous case, let M → ∞, N → ∞, and ι → 0. As long
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as these parameters change at an appropriate rate relative to each other, this approx-

imation converges to the continuous game with a strictly decreasing spread schedule

in the following sense. As N → ∞ (at a rate fast relative to the increase in M),

the underwriters cease to be constrained by the finiteness of the action space, while

ι → 0 implies that they cannot exploit spread rigidity to reduce the probability of

triggering punishment. Thus, in the limit, the underwriters will choose a spread that

effectively uses all information available in the signals without exploiting rigidity to

decrease the probability of on equilibrium path punishments. The maximum payoff

to such and equilibrium employing bang-bang strategies converges to the maximum

payoff to the optimal equilibrium supported with bang-bang strategies in the contin-

uous game, and thus the upper bound on payoffs to an appropriate discretization of

the game converges to the upper bound on the payoffs in bang-bang equilibria in the

continuous case. Specifically, if there is some equilibrium of the continuous game in

which payoffs are higher than the best bang-bang equilibrium of the continuous game,

in an arbitrarily fine discretization of the game there is some profitable deviation from

such an equilibrium since such an equilibrium cannot be supported with bang-bang

strategies. This is not a contradiction of the claim that the discretization converges

to the continuous game in the appropriate sense. Assuming there is some better-than-

bang-bang equilibrium in the continuous game, there may be some deviation from the

equilibrium that provides the same payoff to the deviator as adhering. In this case, the

payoffs to the discrete analog of this deviation may give a higher payoff than adhering

to the discrete analog of the better-than-bang-bang equilibrium. As the discretization

becomes increasingly fine, the payoffs from the deviation must converge to the payoffs

from adhering, but they are only equal in the limit and not for any actual finite game.

The second concern when evaluating a discrete version of the game is that the

results from section 2.3 must be interpreted more carefully. These results depended

effectively on showing that spreads will not be locally flat. In any finite approximation

spreads will clearly have flat regions by construction; in fact, the spread schedule will

be a step function. The appropriate approximation here is that as the cardinality of the

finite action space increases, the number of steps will increase, and as the cardinality

goes to infinity so will the number of steps. Furthermore, the measure of the set of

signals generating any single spread will go to zero. This is the appropriate sense in

which spreads will not be rigid in finite approximations to the continuous game under

competition, competitive oligopoly, or monopoly.

That this statement is true follows from the fact that, for any finite strategy with
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underwriters attempting to reach the imposed criteria (zero profits, one-shot equilib-

rium, or optimal monopoly), firms would always “deviate” from prescribed actions with

finite support if they were not restricted to a finite action space. For example, if firms

chose actions such that they would be as “competitive” as possible, then a restriction

to a finite action space would imply that expected profit would be small but positive

for some signals and small but negative for others.19 Thus, when the action space

expands by a sufficiently rich set of additional spreads, the most competitive spread

will have more steps than when the action space was smaller.

Further details on these approximations are available from the author on request.

2.10.2 Competitive and Monopoly Spreads: General Model

This section explores in a more general framework the spread schedules that would arise

in the absence of collusion of the form posited. Specifically, we assume that the common

value benefits of holding the IPO take the form of a potentially nonlinear function β̃,

where β̃′(x) > 0 for all x. I also consider a general, weakly increasing cost function

C(x). Spreads are considered under three alternative assumptions about the process

for bidding for an IPO. First, underwriters are assumed to bid in a “competitive”

market for underwriting services such that they expect zero profit following every

realization of the signal. Second, underwriters bid strategically as in an oligopoly

without collusion. Finally, underwriters act effectively as a monopoly.20 I consider the

conditions necessary to generate intervals over which a fixed spread is charged. In each

of these cases the conditions for flat spreads over some interval of firm value are shown

to rely on very specific relationships among the costs to the underwriter of holding

an IPO, the common value benefits, and the distribution of idiosyncratic preferences.

As such, a slight perturbation of any one of these functions will eliminate the region

of flat spreads. This requirement that the forms of the functions representing the

structural elements of the underwriting industry exhibit remarkable coincidences21 in

order to generate even small regions of fixed spreads will later be seen to contrast with

the simple and robust setting in which collusion with imperfect information leads to

19Here we ignore the irrelevant fact that firms could guarantee themselves zero profit by charging
∞, which is clearly not descriptive of the data and not in the spirit of the competitive assumption.

20Note that of these three solution concepts, only competitive oligopoly represents and equilibrium
of the game as defined above.

21The argument is that spreads will respond to information generically. Defining the appropriate
sense of “generic” and formally proving the statement are tedious, uninteresting, and add little beyond
the intuition presented here. Details are available from the author.
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partially rigid spreads that are qualitatively consistent with observed spreads.

Throughout this section we confine attention to symmetric, pure strategies that call

for weakly decreasing spreads. While these restrictions are in part for simplicity, the

distribution of spreads generated by asymmetric, increasing, or mixed strategies would

not be compatible with observed data.

With these restrictions, I can consider a general, weakly decreasing spread schedule

α(·) where spreads are rigid over some interval [xd, xu] = I ⊂ X. That is, for all ξ ∈ I,

α(ξ) = α ∈ R+. The payoff to one underwriter following a signal in ξ ∈ I conditional

on being among the lowest bidders can then be given in each case by

Π(ξ, α) = A(ξ)E[H(α, x)(αβ̃(x)−C(x))|ξ, ξ′ ∈ I]+(1−A(ξ))E[H(α, x)(αβ̃(x)−C(x))|ξ, ξ′ < xd]

(2.1)

where ξ′ is the signal observed by the other underwriter, A(ξ) =
P (ξ′∈X|ξ)

2
P (ξ′∈X|ξ)

2
+P (ξ′<xd|ξ)

,

and H(α, x) = P (ε > x − (1 − α)β̃(x)). These expressions are, respectively, the

probability of making the same spread offer as the other underwriter and being chosen

to hold the IPO conditional on either making the lowest spread offer or making the same

spread offer and being selected at random,22 and the probability that the firm will agree

to go public given a spread α and firm value x. This expression for expected revenue

can be decomposed into ΠT , the part of the expected profit conditional on winning

that accrues when the auction is a “tie,” and ΠS, the part that accrues when the

underwriter wins outright. The values Π and ΠT will provide the conditions necessary

for spreads to be rigid under competition and competitive oligopoly; a related function

will provide the conditions for monopoly.

2.10.3 Competitive Spreads

Here, we assume that following every signal about firm value the underwriter sets his

spread such that he will earn, in expectation, zero profit. That is, Π(ξ, α) = 0 for all

ξ ∈ X. Under the assumption that spreads are the same for every ξ ∈ I, there is an

additional restriction that ∂Π
∂ξ

= 0 for all ξ ∈ int(I). In fact, ∂nΠ
∂nξ

= 0 for all n and

all ξ ∈ int(I). It is then clear that if signals are informative about value and value is

informative about the probability that a firm will agree to the IPO at a given spread,

flat regions can only occur when there is a remarkable coincidence among the costs of

22Here, we use the convention that if both underwriters offer the same spread, the firm first chooses
between the two underwriters and then consults its participation constraint. This is just a convenience.
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holding an IPO, the common value benefits from an IPO, and distribution of manager

preference.

The following proposition notes one such relationship that would generate flat

spreads; the proof is an immediate consequence of equation 2.1 and is therefore omitted:

Proposition 7. Spread offers are invariant in the signal about firm value over the

interval I ⊂ X if

C(x) = γβ̃(x).

for all x that occur with positive probability following signals in I.

The proposition states that if the costs to the underwriter of arranging the IPO are

exactly proportional to the common value benefits of the IPO, then flat spreads will

be observed. This strict proportionality imposes strong restrictions on the relationship

between the cost function of an underwriter, which will depend on the costs of pro-

viding analyst coverage and engaging in roadshows, and the benefits of being a public

firm, which are related to improved access to capital markets. Relaxing this strict

proportionality will then effectively require that 1−A
A , which is determined entirely by

the joint distribution of firm value and signals, and H(x, α), which is determined by

the distribution of the preference of the manager, to exactly adjust for the lack of pro-

portionality in costs and benefits, an extremely unlikely event. This simple case thus

demonstrates why it is so unlikely to observe flat spreads in a competitive market for

IPO services.

2.10.4 Oligopolistic Competition

When the two firms bid for the right to hold the IPO and seek to maximize their current

payoff (i.e. they do not attempt to collude), spreads are again unlikely to contain regions

with flat areas. In this case, it is possible to derive some simple necessary conditions for

the existence of an interval I over which the spread schedule is flat. These conditions,

however, are not sufficient for a the spread schedule to be flat in the interval.

Proposition 8. A necessary condition for the spread schedule to be flat but greater

than zero over the interval X is that ΠT (ξ, α) = 0.

Proof. If spreads are flat over some interval in equilibrium, a deviation to an infinites-

imally higher spread guarantees that the deviator never wins when both signals are in
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said interval, and an infinitesimal deviation to a lower spread guarantees that the devi-

ator always wins when both signals are in said interval. For both of these deviations to

be unprofitable, it must be the case that the expected profit conditional on both signals

being in the interval be zero at α (since the change in profit accruing in all events other

than ξ, ξi ∈ I changes infinitesimally following an infinitesimal deviation).

The above condition can be satisfied in two ways; either costs are exactly propor-

tional to benefits such that C(x) = γβ̃(x) for all x with positive support following

ξ, ξ′ ∈ X, in which case α = γ satisfies this condition, or H,β̃, and C have a particular

dependence on α and x such that this condition is met for some α. Neither of these

events are likely in the sense that small perturbations of any of the functions would

undo the necessary relationship. Furthermore, this condition is effectively independent

of the differential equation that will determine the symmetric equilibrium in the auc-

tion. Assuming that equilibrium spreads are in fact flat over I, and thus the expected

profit accruing conditional on both signals falling in I is zero, the optimal bid for

an underwriter with a signal in I will be determined by maximizing expected profit

conditional on the other signal not being in I and on the equilibrium spread schedule

outside of the interval. Not only must this happen to give the α that satisfies the zero

profit condition for one particular signal in I, it must do so for all signals in I, an

extremely unlikely event when signals are at all informative.

2.10.5 Monopoly

Several authors (for example Chen [2001]) have argued that fixed spreads can arise

when underwriters collude on the optimal monopoly spread. In this section I argue

that the optimal monopoly spread is unlikely to be characterized by fixed spreads over

a significant region. It is important to draw a distinction between the argument that

spreads are rigid because underwriters collude on a monopoly spread that happens to

be rigid and the argument that rigid spreads arise in a second-best equilibrium where

collusion at monopoly spreads is impossible. First, as I will show below, monopoly

spreads will only be rigid for very specific environments that are unlikely to describe

the IPO process. As such, explanations of spread rigidity based on monopoly pricing

do not really provide theoretical support for the claim that spread rigidity is evidence

of collusion rather than competition; both monopoly pricing and competition generate

rigid spreads in effectively non-generic environments. Furthermore, optimal policy

responses to collusion may differ depending on whether the market is effectively a
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monopoly or only imperfectly collusive. Finally, the empirical implications for costs

and benefits in the IPO industry of the data on spreads will depend crucially on the

exact nature of the collusion in the industry. Attempting to recover empirical facts

relating to the costs to underwriters and the benefits to firms of holding IPOs, while a

daunting task, is worthwhile both because it would inform policy decisions and because

few alternatives for measuring these quantities are available to financial economists.

In this section, I consider the case of a disaggregated monopoly, where the two

underwriters each receive signals and set spreads to maximize joint profits but where

underwriters cannot communicate their signals to each other before bidding.23 This

schedule must by construction satisfy the condition that, following a given signal,

the underwriter receiving the signal cannot unilaterally “deviate” to an infinitesimally

different spread and, by doing so, increase the expected total profits of the two under-

writers. That is, defining Ã(ξ) as the probability of the event ξ′ ∈ I conditional on ξ′

either in I or less that xd, it must be the case that for all24 ξ ∈ I:

d

dα
{ (1−A(ξ))E[H(α, x)(αβ̃(x)− C(x))|ξ, ξ′ < xd]

+A(ξ)E[H(α, x)(αβ̃(x)− C(x))|ξ, ξ′ ∈ I] }

≥ 0

That is, an infinitesimal decrease (to below α, the rigid spread over I) in the spread

offer following a signal ξ ∈ I must decrease the total profit to both underwriters

conditional on {ξ′ ∈ I}
⋃
{ξ′ < xd}. (The marginal decrease is irrelevant if the other

underwriter would have won the IPO at a lower spread that α before the deviation.)

The above expression follows from two facts: after a marginal decrease in the spread on

the rigid interval, the total increase in profits conditional on winning must be negative,

and a deviator to a marginally smaller spread following a signal that calls for the rigid

spread now captures all of IPO’s where the other signal also calls for the rigid spread.25

23Permitting communication will not change the conclusions of this section in any meaningful way,
although the exact environments where fixed spreads will arise will differ.

24Technically, except on a set that arises with probability zero; we ignore such concerns.
25The analogous condition to guarantee that the underwriter will not increase his spread is just

d

dα

{
(1− Ã(ξ))E[H(α, x)(αβ̃(x)− C(x))|ξ, ξ′ < xd]

}
since, by raising the spread, the underwriter affects profits only when the other underwriter would
have charged a spread higher than the rigid spread.
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If the above inequality does not bind for almost every ξ ∈ I, then there is some

interval over which a marginal decrease in spreads can increase total profits, contradict-

ing the optimality of α(·). But, when the inequality does bind almost everywhere, we

again have a condition that cannot hold in the generic sense described in the discussion

of competition and non-collusive oligopoly.

Spreads will, however, be rigid in the case where firm value is not informative about

the probability that an firm will accept a given spread offer. Specifically, if ε = 0 for

all firms and β̃(x) = βx, a monopolist would charge exactly

α = 1− 1

β

regardless of his signal, since this would guarantee that every firm exactly met its

participation constraint, regardless of its true value.

Rigid spreads over some interval could also arise when manager preference is bounded

from below. It is then possible to find cases where, for a large enough signal, under-

writers will set spreads to guarantee that all firms go public, regardless of manager

preference or firm value. That is, for signals that indicate that the distribution of firms

is skewed toward high values, the monopolist underwriter might prefer to set a spread

that guarantees that the largest possible firm goes public. The costs of failing to serve

such firms may be so high as to make marginal differences in earnings elsewhere irrel-

evant, and the spread may thus be rigid exactly at the level that guarantees that the

largest possible firm will agree to the IPO.

These two cases both involve a discontinuity in the distribution of ε so that the

condition described above does not eliminate them. The second case also presents the

most compelling alternative explanation for spread rigidity as it will involve decreasing

spreads for small firms and flat spreads for large firms. Without extreme assumptions

on the distribution of value and signals about value, however, it cannot generate the

specific pattern observed in data, where spreads appear to step up for small firms

rather than smoothly decreasing toward the flat spread. Furthermore, this explanation

relies on the existence of a largest possible firm value and on significant mass being

concentrated around that value.
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2.10.6 Perfectly Observable Value and Preference

To analyze the game under perfect information, I will proceed under the following

additional assumptions:

Assumption 4.

1. x and ε are common knowledge at the beginning of every period.

2. E[ε] = 0

3. Underwriters are sufficiently patient to sustain any degree of collusion.

The first assumption is just a restatement of the condition that both agents receive

perfect signals at the beginning of the period. The second assumption is just for

simplicity.

The spread that will be charged if the two underwriters can collude perfectly and

set the monopoly price is then given by the following proposition:

Proposition 9. When underwriters act as a monopoly, if

ε ≥ κ− (β − 1)x

the spread function is given by

α? = 1− 1

β
+

ε

βx

and the firm chooses to hold the IPO. Otherwise,

α ≥ 1− 1

β
+

ε

βx

and the firm does not hold the IPO.

Proof. Since the firm is short-lived, he will accept the lowest spread offer as long as his

residual claim on the profits to the public firm plus his idiosyncratic private value for

going public exceed the private value of the firm. Underwriters will force the firm to

its participation constraint:

(1− α)βx− x+ ε = 0

α = 1− 1

β
+

ε

βx
.
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But, underwriters will only make such an offer if it is profitable to them. This condition

is given by (
1− 1

β
+

ε

βx

)
βx− κ > 0

ε > κ− (β − 1)x.

I now consider how spreads behave for very small and very large firms. On average,

very small firms will face arbitrarily high spreads, while larger firms face spreads that

converge to the spread that would be charged to a firm with no idiosyncratic preferences

for going public.

Proposition 10. The expected spread as firms become infinitely valuable and as firms

cease to have any value are given by:

lim
x→∞

E[α|x, ε > κ− (β − 1)x] = 1− 1

β
(2.2)

lim
x→0

E[α|x, ε > κ− (β − 1)x] = ∞. (2.3)

Proof.

E[α|x, ε > κ− (β − 1)x] = E[1− 1

β
+

ε

βx
|x, ε > κ− (β − 1)x]

= 1− 1

β
+

1

βx
E[ε|ε > κ− (β − 1)x].

Since κ − (β − 1)x is decreasing in x and covers the real line, we can conclude that

limx→∞E[ε|ε > κ − (β − 1)x] = 0, while limx→0
1
x
E[ε|ε > κ − (β − 1)x] = ∞ since

E[ε|ε > κ] is positive, and, more generally, d
dx
E[ε|ε > κ − (β − 1)x] > 0 since β > 1.

Thus,

lim
x→∞

E[α|x, ε > κ− (β − 1)x] = 1− 1

β

lim
x→0

E[α|x, ε > κ− (β − 1)x] = 1− 1

β
+∞

= ∞,

establishing the proposition.
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Corollary 1. The variance of the spread conditional on firm value disappears for large

firm values.

Proof. Direct calculation of the variance in spreads conditional on x gives

1

β2x2
E[ε2].

The implications of the above results are as follows. First, without idiosyncratic

preferences all firms would be charged exactly 1 − 1
β
. This is exactly the spread that

captures all of the “common value” of the IPO process, regardless of the size of the

firm. However, this is not a complete explanation for the concentration of spreads at

seven percent; rigidity would not be robust to the introduction of some small degree of

idiosyncratic manager preference, and spreads would not rise at all for small firms, as

they do in the data. With the introduction of manager preferences, spreads do depend

on the value of the firm, but in such a way that the dependence disappears as firms

grow large but matters a great deal for the smallest firms.

I will now address why spreads decrease for the most valuable firms.

2.10.7 Partial Collusion with Impatient Firms

When underwriters are impatient, it will not in general be possible to sustain optimal

collusion for all firm values. When β > 1, more valuable firms provide, on average,

more profitable opportunities for collusion. Consequently, when a very valuable firm

enters and underwriters are insufficiently patient, they will have an incentive to deviate

from an equilibrium that calls for optimal collusion. Thus, to sustain an equilibrium,

spreads must decrease for such firms so that a deviation will not be too profitable

relative to expected future profits from maintaining collusion. This is, of course, an

application of the result in Rotemberg and Saloner [1986].

When ε has distribution F and associated density f , and x has distribution G with

density g over support [x, x],26 the optimal spread can now be expressed as follows:

Proposition 11. When underwriters are impatient and the upper bound on the value

26The existence of a density function for either x or ε is not necessary but is assumed to simplify
notation.
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of firms is sufficiently large, the optimal collusive duopoly spread is given by

α =

{
α? if Πm(x, ε) ≤ Π

Π+κ
βx

otherwise ,

where α? is again the collusive spread schedule when firms are perfectly patient, Π(x, ε)

is the equilibrium profit accruing to the underwriter in a period with a firm of type

(x, ε), Πm(x, ε) is the profit that would accrue to an underwriter if he forces the firm

to its participation constraint, and Π is the largest value satisfying the condition

Π =
∞∑
t=1

δt
(∫ x

x

∫ ∞
−∞

Π(x, ε)f(ε)g(x)dεdx

)
.

The proof of this proposition is standard and is omitted.

The following parametric example highlights the implications of the results in this

section. Let x ∼ U [0, 1000] and ε ∼ N(0, 1) and set β = 1.075 and κ = 1. Note

that this β implies limx→∞ α = 1 − 1
β

= 0.07, the seven percent spread pervasive for

IPOs. Finally, assume that δ is such that Π, the highest level of profits that can be

sustained through collusion, is 50. We can now, for specific draws of x and ε, calculate

the equilibrium spread. Note that, despite the uniform distribution of x, fewer IPO’s

will be observed at low values of x since small firms will not find IPO’s valuable unless

they get an improbably high draw of ε.

This pattern contrasts with the spreads that would be observed if the underwriting

industry were competitive. In this case, patience or impatience would be irrelevant,

and spreads would be given by:

Proposition 12. Competitive underwriters charge spreads

α =
κ

β

1

x
.

The above is an immediate consequence of the zero profit condition for competition,

since it must be the case that αβx = κ. Note that the presence of idiosyncratic manager

preference is irrelevant and spreads smoothly decline toward zero for the most valuable

firms. The conditional variance of the spread charged will, of course, be zero over the

entire distribution of values.
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2.10.8 Perfectly Observable Value and Unobservable Prefer-

ence

The specific environment considered in this section is described formally in the following

assumption:

Assumption 5.

1. x is common knowledge at the beginning of every period.

2. Both underwriters observe F , the unconditional distribution of ε, but receive no

other signal about ε.

3. ε ∼ U [−η, η]

4. Underwriters are sufficiently patient to sustain any degree of collusion.

5. Both underwriters are risk-neutral.

6. Underwriters cannot demand a spread greater than 1.

Since there is no information about ε contained in the signals to the underwriters, a

stationary, symmetric, public pure strategy will be a function mapping signals to spread

offers. And, for any strategy, the public history is sufficient to identify deviations.

Therefore, the underwriters can collude on the monopolist spread. I now derive the

spread function implied by the above assumptions and then discuss the implications.

Proposition 13. The optimal collusive equilibrium spread with symmetric imperfect

information is α? = 1 if x ≤ η+κ
1+β

. Otherwise, the optimal spread is given by

α?(x) =


1− 1

β
+ η

βx
if x ≤ κ−η

β−1

1
2

(
1− 1

β
+ η+κ

βx

)
if x ∈

[
κ−η
β−1

, κ+3η
β−1

]
1− 1

β
− η

βx
if x ≥ k+3η

β−1

The proof is by standard optimization and is omitted.

The first thing to observe is that, unsurprisingly, α?(x)→ 1− 1
β

as x→∞ since the

constraint set collapses to 1− 1
β
. This occurs because, as x grows large, the idiosyncratic

element of preferences for IPO’s becomes relatively unimportant; a firm will accept an

offer of a spread slightly below 1 − 1
β

with probability increasing toward 1. While

the assumption of bounded support for ε makes this effect particularly dramatic, the
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intuition will hold for virtually any distribution of ε independent of x. Even if mass

is concentrated in the negative tails, indicating that most entrepreneurs prefer to keep

their firms private, this mass will eventually constrict into a tight region around 0 as

x grows and financial benefits become the overwhelming concern.

Furthermore, when costs are relatively small, α is declining in value for small firms.

This result holds even if the costs of holding an IPO are zero. That is, the upward

pressure on price as firms get very small does not result entirely, or necessarily at all,

from the need to cover costs.

2.10.9 Proof of Proposition 5

Proof. The proof is by construction. Choose some x? ∈ (0, x), where there is some α

such that the profits accruing to the underwriter of type x? for pooling with all types

x < x? are positive at α (such and x?, α pair must exists by the assumption that there

exists some profitable rigid spread). Now, choose αh to maximize profits of type x?

conditional on pooling with the lower types. The profit accruing to type x? for pooling

with the types higher than x? is clearly greater than the profit for pooling with low

types at αh, continuous in α, and reaches a minimum that is less than zero as α→ 0.

Thus, there is some αl such that type x? is indifferent between pooling with the low

types at αh and pooling with the high types at αl.

Since αh is chosen as the maximum for x?, we know that the difference between the

value of adhering and the value of deviating increases as ξ decreases away from x?. So,

types below x? do not have an incentive to deviate. The same argument shows that

types above x? do not have an incentive to imitate a type below x?.

2.10.10 Flexible Spread Upper Bound

The procedure used to find an upper bound on the set of symmetric perfect public

equilibrium payoffs is described in greater detail here.

Define

R(ρ, α) =

∫ x

0

R(ρ, x, α)
1

x
dx

R(ρ, x, α) =

∫ x

0

ρ(x, y)dF FOS(y)
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ρ(x, y) = P (reversion|x, y = maxα−1(αi)).

That is, R(ρ, α) is the unconditional reversion probability given than the game

reverts to repeated play of the worst one-shot equilibrium strategy with probability

ρ(x, y) when the public signal reveals that the true value of the firm is x and the

private signal implied by the lowest bid under the spread schedule α is y, assuming

that both players use spread schedule α.

Let I be the set of closed intervals on the real line. And, let C be the family of

incentive constraints:

(1− δ)π(w,w) + δEz,y[ρ(z, y)ΠSG + (1− ρ(z, y))v|ξi = w, α, ρ,mi = ξi]

≥ (1− δ)π(w,w′) + δEz,y[ρ(z, y)ΠSG + (1− ρ(z, y))v|ξi = w, α, ρ,mi = w′]

for all w and w′ > w, where mi = α−1(αi); that is, mi is the implicit report of the

signal received by underwriter i when underwriters are both using the spread schedule

α. Here,

π(w,w′) = Eq[1{ξj<w′}?(α(w′)βq − κ)e−λq(α(w′)β+1−β)|ξi = w, α]

where

1{a<b}? =


1 if a < b
1
2

if a = b

0 if a > b

.

These incentive constraints are simply the requirement that an underwriter finds

it optimal to truthfully reveal his signal through his bid rather than attempting to

capture additional market share by decreasing the spread he demands.27

Define B : I→ I such that

B([a, b]) = [a, b′],

with

b′ = max
α,ρ,vh,vl

π(α)− δ

1− δ
R(ρ, α)[vh − vl]

subject to C and vh, vl ∈ [a, b]. The expression for b′ is the maximized present value

27Constraints preventing the underwriter from reporting a signal higher than that which he received
will not bind in the problem of finding the maximum SPPE payoff and so are ignored.
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of the game and is the direct analogy of the expression derived in Abreu et al. [1991].

Let ΠSG be the per-period unconditional expected payoff from repeated play of the

symmetric stage game equilibrium with the lowest payoff, and let v? be the maximum

of the set of symmetric perfect public equilibrium payoffs. We will apply the following

proposition to derive an upper bound on the set of symmetric perfect public equilibrium

payoffs:

Proposition 14. B is a contraction over the domain {[a, b]|a ≤ ΠSG, b ≥ v?}.

Proof. Recall

R(ρ) =

∫ x

0

R(ρ, x)
1

x
dx

R(x, ρ) =

∫ x

0

ρ(x, y)dF FOS(y)

ρ(x, y) = P (reversion|x, y = maxα−1(αi)).

Let R?(α) be the minimal unconditional reversion probability required to maintain

incentive compatibility for all signals when both underwriters use spread schedule α.

Let α? represent the spread schedule used initially in the optimal symmetric perfect

public equilibrium.

By lemma 1 below, we know

v? = (1− δ)π(α?) + δ[R?(α?)ΠSG + (1−R?(α?))v?]

so

v? = π(α)− δ

1− δ
Rα(α?)[v? − ΠSG].

Thus if a = ΠSG and b = v?, a solution to

max
α,ρ,vh,vl

π(α)− δ

1− δ
R(α)[vh − vl]

subject to C and vh, vl ∈ [a, b]. is a?,ρ?,v?, and ΠSG.

If a < ΠSG and/or b > v?, the problem is exactly as above with one or two

constraints relaxed.

Thus,[a, v?] ⊆ B([a, b]).

Lemma 1. Any symmetric perfect public equilibrium payoff can be supported with a

strategy that uses only ΠSG and v? as promised continuation values.
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Proof. The existence of a public correlating device permits the construction of an

absolutely continuous public signal for any discretized version of the game.28 Therefore,

any discrete approximation to the game will satisfy the requirements to apply the bang-

bang result of Abreu et al. [1990]. Since we are considering arbitrarily fine discrete

approximations to the continuous game, this is sufficient to apply the bang-bang result.

Having established that B is a monotone operator, it is straightforward to find

an upper bound on the SPPE payoffs for a strictly decreasing spread function. By

choosing a lower bound below ΠSG, in this case 0, and applying B to [0, v0], we find

a new upper bound v1. This procedure can be repeated to find a (weakly) decreasing

sequence of upper bounds. The maximization procedure is somewhat difficult because

it is necessary to find α and ρ simultaneously. Since the game must be solved as

the limit of a sequence of discrete approximations, this requires maximization over

3∗K+ 2 variables, where K is the number of grid points for the given discretization.29

Fortunately, in the implementation studied a relatively coarse grid appears to give a

good approximation for the continuous game, at least for the purposes of finding the

upper bound. See figure 2.7 for a plot of the calculated upper bounds as a function of

the fineness of the grid; the value appears to reach a maximum around 30 grid points,

indicating that further increases in the number of grid points used would not lead to a

significantly higher upper bound on the value of a fully separating spread.

28The procedure is similar to the procedure when signals are drawn from a finite space. See, for
example, Mailath and Samuelson [2006], remark 2.5.1.

29The procedure used here takes into consideration that ties can occur when one or both signals
are incorrect by chance. The fact that the spread schedule in the case where spreads are restricted to
the rationals is a function mapping a continuum of signals into a countable set is then not a cause for
concern.
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Figure 2.7: Calculated Upper Bound as a Function of Grid Fineness
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Chapter 3

Social Capital as Economic Overlap
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3.1 Introduction

People locate close to each other when engaging in economic activity. Cities form, and

retailers congregate together. Such arrangements impose costs associated with crowd-

ing. The conventional explanation for the benefits that outweigh these costs focuses

on some form of increasing returns to scale technology such as pure public goods. But,

such a technology would in most cases require cooperative behavior or formal institu-

tions to exploit. Of course, cooperation and formal institutions themselves may require

pre-existing social and political structures, which would themselves have to arise from

cooperative interactions among individuals. As such, a model in which agglomeration

and cooperation arise simultaneously would prove useful for analyzing such situations.

I propose a model where two agents must choose a location and also must determine

whether to behave cooperatively with the other agent. The model admits two types of

costs associated with crowding. First, by crowding together agents leave resources and

opportunities in other locations unexploited. Second, crowding together will inevitably

lead to externalities between the agents, implying that each agent will no longer choose

to act in the most efficient manner.

The model also includes an exogenously given opportunity to cooperate on an in-

creasing returns to scale project that will, if successful, increase the value of the eco-

nomic opportunities available. The project can be thought of as a mutually beneficial

capital improvement that requires cooperation between both agents. But, this project

takes the form of a work-shirk game summarized as a prisoner’s dilemma, as is stan-

dard in the literature on governance in the absence of formal institutions (see Greif

[2006], Dixit [2003], and Dixit [2004]). By locating close together and endogenously

generating public goods, agents can effectively commit to cooperate in the work-shirk

game by linking their welfare with that of their neighbor. This link leads to more

efficient cooperation on projects where agents have incentives to cheat each other. In

this sense, economic overlap generated by crowding serves as a form of social capital by

facilitating cooperative behavior in situations where isolated individual agents would

find such cooperation impossible. Location choice can be thought of as determining

how “public” the economy is. More public economies lead to inefficient allocation of re-

sources but can facilitate cooperation on joint projects by forcing agents to care about

the incentives for other agents to contribute to the public good.

I show that location choice will be efficient in the sense that the agents will only

crowd together when the costs of such crowding is outweighed by the benefit of in-
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creased cooperation, and that when overlap is efficient the location decision leads to

the least costly degree of overlap. This efficiency result is robust to relevant alternative

solution concepts. I show by example, however, that in games with more than two

agents efficient location decisions will not be stable and thus agents may end up locat-

ing in an inefficient manner. I also describe how the model can explain differences in

geographic concentration and industry structure in financial services and explore the

implications for the interaction between formal institutions and social capital.

By identifying an element of the social and economic structure that facilitates coop-

eration, this paper contributes to the literature on social capital. Similar attempts to

define this concept and apply it to solving cooperation problems include Routledge and

von Amsberg [2003], where social capital facilitates cooperation by generating repeated

interactions, and Fryer [2006], where group specific investment signals the probability

of repeated interaction. Both of these approaches rely on folk theorems to model coop-

erative behavior, whereas my model explains cooperation without relying on solution

concepts that require repetition of the game and patient agents.

Since social capital here is defined as the degree of overlap between agents and

crowding carries costs, social capital “investment” is costly as in Glaser et al. [2002].

But, social capital differs from other forms of capital, in particular human capital,

in that it must arise from other elements of interaction rather than through direct

investment. My model captures the fact that people cannot directly invest in social

capital but can alter their behavior in a way that leads to optimal accumulation of

this resource. The tradeoffs under consideration are consequently richer and more

complicated than in standard capital accumulation models.

Other papers have explored the link between social capital and the provision of

public goods. This research, however, focuses primarily on the role of social capital in

facilitating the provision of public goods. Higher social capital is generally considered

to lead to higher public good provision. See, for example Knack and Keefer [1997] and,

for a more general discussion of social capital Putnam [2000]. The model of van Dijk

and van Winden [1997] allows the level of public good to feed back into the level of

social capital, but through a different mechanism and again in a repeated setting.

The role of public goods in providing social capital is a consequence of “transfer

invariance” in public goods economies, as described first by Warr [1983] and given a

more complete treatment in Bergstrom et al. [1986]. Small changes in the distribution of

wealth in a public goods economy will not alter the level of provision or the distribution

of utility when all agents choose a positive contribution to the public good. In my
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model, agents exploit this property to locate so that they will not have an incentive to

behave opportunistically when attempting to cooperate.

A more common approach to the interaction between public goods and location

decisions posits the existence of local governments that serve as providers of public

goods. Tiebout [1956] is the seminal paper in this field. Epple et al. [2001] is a

current example of work in this framework. My paper, in contrast, focuses on the

situations in which no government exists to provide public goods. It can thus apply to

economic environments with underdeveloped political institutions or where cooperation

is valuable along dimensions that governments do not encourage, such as collusive

pricing.

The analysis in this paper focuses on the two agent case. I conclude, however, by

introducing a three-agent example that suggests what characteristics of the equilibria

might be robust to a more complicated environment. In this vein, the most closely

related papers include Goyal [2005], who considers the role of strong and weak links

in networks, and Bramoulle and Kranton [2007], who consider the provision, though

not the creation, of local public goods in networks and the stability of such networks.

Additionally, Johnson and Gilles [2000] consider a spatial cost topology in in context

of social networks and social capital that addresses similar questions to those raised

when attempting to extend the model herein to a larger network.

The paper proceeds as follows. In the next section, I present and solve a parametric

example of the model. This example captures the essential elements of the environment

and demonstrates the conditions necessary for agents to reach a cooperative equilib-

rium. Then, I consider a general version of the two-agent model and show that the

results in the example are robust to the dimension of the space and the functional form

of the production function. I demonstrate the existence of an equilibrium in this two-

agent game and provide properties of the equilibrium. Following this, I consider how

the model can be applied to understand differences in the concentration of different

types of financial services firms, and I explore how the model predicts that social capi-

tal will interact with formal institutions. Finally, I present an example that highlights

important characteristics of the game with more than two agents.
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Figure 3.1: Pastures in R2

3.2 Model

There are two agents, i and j. They sequentially choose a location, xi ∈ Rn and

xj ∈ Rn. Each agent can engage in economic activity within a radius of ρ around his

location, and each point is Rn is identical for the purpose of economic activity. Agents

may overlap in the sense that | xi − xj |< 2ρ is permitted. Thus, the second agent’s

arrival decision can be summarized as choosing the degree of overlap with the first

agent, ξ ∈ [0, ρ].

For example, the agents may be shepherds choosing a location on a uniform plain

around which to allow their sheep to graze. If | xi − xj |< 2ρ, where | · | is Euclidian

distance, then the shepherds’ plots overlap. This area can be thought of as an agri-

cultural commons. We will exploit this example for expositional purposes to provide

a more concrete sense of the meaning of the various elements of the model. Alterna-

tive interpretations include stores advertising in a local area around their business or

investment firms searching for investment opportunities near their headquarters. This

second example will be explored in more detail later.

Effort is required to make the land useful. The value of the flock of sheep is an

increasing, concave function of the quality of its grazing land, while the quality of the

grazing land is linear in the effort applied to it by the shepherd. Assume without loss of

generality that the slope of this function is one and the intercept is zero. Each shepherd

is endowed with an initial amount of effort E to spread over his land. Specifically, each

shepherd k ∈ {i, j} chooses a function

ek : Bρ(xk) 7→ R+
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where Bρ(xk) is the closed ball of radius ρ around agent k′s location, ek is integrable

with respect to the Lebesgue measure, and∫
Bρ(xk)

ekdµ ≤ Ek

where x represents coordinates on the plain, and µ is Lebesgue measure on Rn. Thus,

effort does not have to be applied uniformly over the area that an agent controls.

The value of the land when only one agent is on the plane can then be represented

by the function

V (ek) =

∫
Bρ(xk)

v(ek)dµ

where v(·) is increasing and concave. Additionally, let v(0) = 0 so that a free disposal

condition is satisfied; any subset of the area under control can be completely ignored

without a direct cost to the agent. If this condition did not hold, less land might be

preferred to more for a fixed level of effort. This assumption guarantees that total

production will increase in the aggregate area under control of the agents.

If the shepherds choose non-overlapping plots, they will maximize V (ek) subject to

the constraint ∫
Bρ(xk)

ekdµ ≤ Ek.

Now, consider the case in which plots can overlap. Specifically, agents can locate

sufficiently close to each other that part of their pastures are now used by both flocks

(see Figure 3.1). Thus, the value of that land, which will be a function of the total

effort expended on it by the two shepherds, will be divided evenly between them.1

Considering only agent i, the value of his pasture is now

Vi(e) =

∫
Bρ(xk)\A

v(ei)dµ+
1

2

∫
A

v(ei + ej)dµ,

where A is the overlapping portion of the pastures and ek is the effort function of

each agent. Crowding on the shared area is complete; whatever benefit one agent

1Adding an additional cost to overlap to represent fighting over shared product would not quali-
tatively change the predictions of the model. Also, by having the payoffs to the commons multiplied
by something more than 1

2 but less than 1, the model would admit the situation where crowding in
the public good is less than complete. This will encourage greater provision of the public good and
make generating cooperation less costly, but would again not fundamentally change the effects under
consideration.
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receives cannot then accrue to the other agent.2 Recall that the effort function may

take different values at different points on the plane. Specifically, ek(x) 6= ek(y) in

general when x ∈ Bρ(xk) and y ∈ A.

An exogenously specified opportunity for cooperation occurs after the location de-

cision stage and before the effort allocation stage. This consists of a prisoners’ dilemma

that pays off in an effort bonus, not directly in utility. For concreteness, think of this as

some sort of mutual capital investment, with the standard interpretation that cheating

hurts the overall output of the project but is beneficial to the cheater. A work-shirk

game with increasing returns to scale would fit into this paradigm. Thus, the shepherds

play

C D

C β, β θ, η

D η, θ 0, 0

where η > β > 0 > θ, η + θ < 2β.

To summarize, the game consists of three stages. In stage 1, agent 2 chooses ξ ∈
[0, ρ] (with agent 1’s decision irrelevant). In stage 2, each agent’s action space is given

by {C,D}. Finally, in stage 3, each agent chooses ek ∈ {f |
∫
Bk
fdµ ≤ Ek}, where Ek =

ω + Ok and Ok is determined by the actions in the second stage, with ω representing

the initial effort endowment. Payoffs are Vk =
∫
Bk\A

v(ek)dµ+ 1
2

∫
A
v(ek + e−k)dµ.

3.3 Example

This section considers a parameterized version of the model on the real line, with v(e) =

eα, where α ∈ (0, 1). The game is solved by backward induction. We find a minimal

threshold ξ? for overlap that can lead to cooperation in the prisoner’s dilemma stage.

We show how this threshold depends on the parameters η and α, which summarize

the value of cheating in the prisoner’s dilemma and the degree of decreasing returns to

scale in the production function, respectively. We also describe how the two costs of

crowding interact to determine the optimal degree of overlap.

2This type of good is sometimes referred to as an impure public good or a publicly provided private
good (Epple and Romano [1996], for example). In the context of my model, there is no distinction
between a public good with crowding and a pure public good that is half as productive as the private
good.
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Figure 3.2: Pastures in R

This example demonstrates the basic intuition of why agents will choose their lo-

cation efficiently in equilibrium. By varying α, we can also see how efficient locations

can involve no overlap where the economy is effectively completely private, complete

overlap where all production occurs as a public good, and partial overlap where the

economy is characterized by a public good and two private goods. We show that agents

will choose the efficient location in equilibrium.

The equilibrium of the model is summarized by an overlap decision ξ and two effort

allocation functions. It is straightforward to verify that the concavity of the production

function implies that the equilibrium allocation of effort over each agent’s private land

will be uniform3 and that combined effort over the “commons” will also be uniform.

We can therefore without loss of generality consider only equilibria in which each agent

chooses a simple function to allocate effort. That is, each agent chooses one level of

effort for his “private land” and one level of effort over the commons. Thus, we can

represent the action choices in the effort allocation phase as ekp for agent k’s effort level

over his private area, ∀k ∈ {i, j}, and ekc for agent k’s effort over the commons area.

We first consider the final stage of the game, where each agent simultaneously

chooses his effort allocation, taking his total available effort as given. Agent i solves in

this effort allocation stage

max
eip,e

i
c

2(ρ− ξ)(eip)α + ξ(eic + ejc)
α

3Technically, all statements about the effort allocation function are statements about how the
function behaves except on a set of measure zero; we ignore the multiplicity of equilibria generated
by admitting measure-zero differences in actions.
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s.t. 2(ρ− ξ)eip + 2ξeic.

This problem has first order conditions (where λi is the Lagrange multiplier)

2 (ρ− ξ)α
(
eip
)α−1 − λi2 (ρ− ξ) = 0 (3.1)

ξα
(
eic + ejc

)α−1 − λi2ξ = 0 (3.2)

2(ρ− ξ)eip + 2ξeic = Ei. (3.3)

Since in any equilibrium Ei = Ej ≡ E (because asymmetric actions in the prisoner’s

dilemma stage cannot occur in equilibrium), the equilibrium effort functions of both

agents must be identical. This gives the following expression for the effort functions:

ep =
2

1
1−αE

(ρ− ξ) 2
2−α
1−α + ξ

(3.4)

ec =
E

2
[
(ρ− ξ) 2

2−α
1−α + ξ

] (3.5)

eTc =
E

(ρ− ξ) 2
2−α
1−α + ξ

(3.6)

where eTc represents the combined effort of the two agents at each point in the commons.

Thus, defining a = 2
1

1−α , b = 2
2−α
1−α , the value of the game to one agent conditional on

symmetric actions in the prisoner’s dilemma and a fixed overlap can be given as

V (E, ξ) = 2 (ρ− ξ)
(

aE

(ρ− ξ) b+ ξ

)α
+ ξ

(
E

(ρ− ξ) b+ ξ

)α
or

V (E, ξ) =

(
E

bρ+ ξ (1− b)

)α
(aρ+ ξ (1− a)) . (3.7)

It will become clear later that the payoffs along any equilibrium path can be repre-

sented in this form, with ξ and E appropriately chosen. It will also be convenient to

refer to the following functions, which give the value accruing to an agent following

a particular overlap decision and a particular set of actions in the prisoner’s dilemma

stage, assuming equilibrium play in the effort allocation stage:

• Let V (C,C, ξ) be the value accruing to one agent following overlap of ξ and

mutual cooperation in the prisoner’s dilemma.
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• Let VD(D,C, ξ) be the value accruing to an agent who plays D against an agent

who plays C, given overlap ξ.

• Define V (D,D, ξ) and VC(D,C, ξ) analogously.

In general, it will be the case that VD(D,C, ξ) is decreasing in ξ, while V (C,C, ξ) is

initially decreasing but may then increase for ξ close to ρ. VC(D,C, ξ) will, of course,

increase in ξ. The behavior of these functions is best understood by in terms of the

costs of crowding.

3.3.1 Costs of Crowding

These costs consist of two separate components: crowding together reduces the total

area available for use, which is costly since the production function is concave in effort.

I refer to this cost as the area-under-cultivation (AuC) loss. Demange [2005] identifies

a similar tradoff between increasing returns to scale and a desire for variety in the

context of cooperative club formation.

The second cost associated with crowding is the distortion away from efficient effort

allocation that results from introducing public goods into the economy. I shall refer to

this cost as the tragedy-of-the-commons (ToC) loss. The decomposition is useful since

the behavior of the two inefficiencies exhibit important differences. To fully address the

first problem, agents must locate on disjoint plots, while to solve the second problem

agents can either locate on disjoint plots or locate on top of each other. More generally,

the AuC-inefficiency is monotonically increasing in ξ, while the ToC-inefficiency reaches

a global maximum at some ξ ∈ (0, ρ).4

To measure the AuC and ToC effects, use as a benchmark the socially optimal value

of the game for one agent when ξ = 0 and the cooperation decisions in the prisoner’s

dilemma are fixed. Then, as ξ increases from zero, the change in the (egalitarian)

socially optimal payoff for an agent represents the AuC effect, while the difference

between the new social optimum at any ξ and the equilibrium payoff (assuming the fixed

cooperation decision) is the loss from the ToC. The AuC effect measures the change

in the technologically feasibility constraint when agents overlap, while the ToC effect

measures the costs from the creation of a public good and the resulting externalities

on effort. Appendix 3.8.9 demonstrates this decomposition for the parametric case

4This property follows almost immediately from the continuity of the ToC.
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considered in this section. The relative importance of these two costs will play an

important role in determining when cooperation will be maintained.

3.3.2 Maintaining Cooperation

Two approaches are necessary to determine when agents can maintain cooperation.

First, taking ξ as given, note that if the solution to the optimal effort function (the final

subgame) for both agents is interior in the sense that eic > 0 for i ∈ {1, 2} regardless

of the actions taken in the prisoner’s dilemma stage, then cooperation will always be

sustained. This follows from the fact that the marginal product of investment in the

private pasture must be equal for both agents in order for both agents to choose to

invest in the commons; otherwise, one agent could improve his profit by reallocating

effort either to or away from the commons.

To find the cutoff beyond which an agent who is “cheated” in the prisoners dilemma

will refuse to invest in the commons, assume without loss of generality that agent i has

deviated from the cooperative strategy. Now, assume that ejc = 0. Then, by the first

order conditions of the maximization problem (equations 3.1 and 3.2),

eic =
1 + η

2 ((ρ− ξ) a+ ξ)
.

Now, note that the marginal product for an investment in the commons is

ξα
(
eTc
)α−1

.

So, in order for ejc = 0 to hold, it must be the case that the marginal product for

investing in the private plot of the cheated agent must exceed the marginal product of

investing in the commons. Thus, the requirement is that

ξα

(
1 + η

2 ((ρ− ξ) a+ ξ)

)α−1

< 2(ρ− ξ)α
(

1 + θ

2 (ρ− ξ)

)α−1

.

This reduces to the requirement that

1 + η

1 + θ
>

(
ξ

ρ− ξ

) 1
1−α
(

1 +
1

a

(
ξ

ρ− ξ

))
.

This says, as would be expected, that a sufficiently large reward for deviating from
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cooperation or a sufficiently large penalty for continuing to cooperate when the other

agent deviates will result in the cheated agent finding it optimal to invest solely in his

own plot. Note that setting θ = −1, which implies that the cheated agent ends up

with no effort to allocate at all, guarantees that he will not invest in the commons.

The continuity of the right-hand side in θ then guarantees that, for any ρ and η, ξ < ρ,

there exists some θ > −1 such that the cheated agent will choose not to invest in the

commons. Finally, a large enough overlap will always guarantee an interior solution

(and therefore cooperation) when θ > −1.

The concavity of the production function also plays an important role here. As

production becomes linear (α → 1), 1
a
→ 0 and

(
ξ
ρ−ξ

) 1
1−α → 0. Thus the greater the

degree of diminishing returns to effort (that is, the smaller the α), the easier it is to

maintain cooperation by having non-trivial investment in the commons by both agents.

Intuitively, this result follows from the fact that an agent who ends up having less effort

to apply in total will tend to want to free ride off the investment in the commons of

his wealthier neighbor. But, if the returns to investment in his own pasture diminish

very quickly, he will not find it optimal to completely ignore the commons when the

other agent is spreading his effort over his own private pasture and the commons. If,

however, returns are roughly constant, the impoverished agent will not exhaust the

returns in his own pasture before running out of effort.

The importance of the previous discussion follows from the fact that, if the optimal

solution following a deviation from cooperation in the prisoner’s dilemma is interior

for all agents, then cooperation will always be sustained. This conclusion follows

immediately from the fact that, when the game has an interior solution, all agents

must have the same marginal utility of private land; the symmetry of the private plots

then guarantees an egalitarian solution. And, since the total amount of effort available

is higher under cooperation, it is clear that V (C,C, ξ) > VD(D,C, ξ) = VC(D,C, ξ).

That is, an agent is better off continuing to play C in the prisoner’s dilemma stage

instead of deviating to D.

The more interesting cases are those in which the condition for a corner solution

holds. Again, such a solution can be guaranteed for all ξ by choosing θ = −1, so the

following discussion proceeds without considering the possibility of an interior solution

following cheating.

Under this assumption, we find the value of the game to the agent who deviates
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from cooperative play. Recall again that ejc = 0⇒

eic =
1 + η

2 (a (ρ− ξ) + ξ)
(3.8)

eip = 2
α

1−α
1 + η

a (ρ− ξ) + ξ
(3.9)

which then gives the value of the game to the deviator i as

VD(D,C, ξ) =

(
1 + η

2

)α
[aρ+ ξ (1− a)]1−α .

We know that

V (C,C, ξ) =

(
1 + β

bρ+ ξ (1− b)

)α
[aρ+ ξ (1− a)]

and that, in order to sustain cooperation in the prisoner’s dilemma phase, it is necessary

for V (C,C, ξ) ≥ VD(D,C, ξ). This implies a cutoff for cooperation in terms of overlap

of

ξ >
bρ
(

1+η
1+β
− 1
)

2− 1+η
1+β

+ b
(

1+η
1+β
− 1
) .

Since the expression on the right hand side is strictly positive (since b ∈ (4,∞)), this

implies, of course, that no overlap leads to uncooperative play. Furthermore, the right

hand side will always be less than one, so ξ = ρ implies that cooperation will always

prevail when agents locate on top of each other. The threshold for ξ is increasing in η

and decreasing in β, as would be expected. Defining ξ? as the threshold for cooperation,

observe that ξ? = bρ
1
z

+b−1
so ∂ξ?

∂z
= bρ

(1+z(b−1))2
, which is positive. Thus, ξ? is increasing

in z and therefore increasing in η and decreasing in β since z > 0 for all η > β.

The above threshold has all of the properties that one would expect; the stronger

the prisoner’s dilemma and the less concave the production function, the harder it

is to sustain cooperation. To discuss this cutoff in a more concrete fashion, consider

the parameterization (that is without loss of substantial generality) where ρ = 1
2

and

β = 1. Then, figure 3.3 shows the minimal value of ξ that can sustain cooperation

when θ is small enough to guarantee a corner solution. Finally, we can note that the

threshold is increasing in b, and therefore increasing in α, the curvature parameter.

This discussion establishes how play will proceed in any subgame following the

location decision. Now, this information can be used to determine the optimal location.

Again, the optimal location from the social perspective will coincide with the location
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Figure 3.3: Minimal ξ to sustain cooperation

that the agents choose. The value of the game for each possible location appears in

figure 3.4 (normalizing ρ = 1 and β = 1 and assuming α = 1
2

and η = 1.5). Thus, in

this case, the unique Pareto-efficient equilibrium of the game will be to locate at the

ξ threshold and cooperate in the prisoner’s dilemma.5 Furthermore, it should be clear

that there are only three possible ξ’s that can be candidates for efficient equilibrium

for any set of parameter values. Agents will either locate at the threshold and enjoy

the fruits of cooperation while minimizing the necessary but inefficient overlap, or they

will locate on disjoint plots, thus guaranteeing that they will fail to cooperate in the

prisoner’s dilemma but eliminating the inefficiencies from the tragedy of the commons

and the failure to maximize the area under cultivation, or they may locate exactly

on top of each other, guaranteeing cooperation and eliminating the tragedy of the

commons, but minimizing the area under cultivation.

Figure 3.5 presents two parameterizations that result in the first and the third

situation: The intuition behind this result is as follows. If the agents are confronted

with a relatively unimportant opportunity to cooperate (that is, β ≈ 0) but where the

gains from deviating while the other agent cooperates are large, then the overlap nec-

essary to induce cooperation will be too costly to be justified. Agents will then choose

5Other equilibria with an interior overlap are possible; they all involve cooperation in the prisoner’s
dilemma, and an inefficiently large overlap. They are all eliminated by forward induction.
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Figure 3.4: Value of the game as a function of ξ

zero overlap because, taking uncooperative behavior as given, the value of the game

is decreasing in overlap in the relevant region due to the concavity of the production

function and the tragedy of the commons. Adjusting the concavity of the produc-

tion function changes what should be considered a small β and a large η. If, on the

other hand, sustaining cooperation is worthwhile, the agents will often prefer the min-

imal degree of overlap in order to avoid the inefficiencies associated with reducing the

area under cultivation and the tragedy of the commons. The inefficiencies associated

with reducing the area under cultivation are clearly monotonically increasing in ξ for

given behavior in the prisoner’s dilemma. However, the tragedy of the commons is not

monotonic, and indeed reaches a maximum at some interior point of (0, ρ).6 Therefore,

under certain circumstances, once agents have determined that sustaining cooperation

is worthwhile they may choose to “go all the way” and just locate on top of each other.

In particular, as v(·) becomes increasingly linear, the agents will tend to distort effort

away from the commons even for very large common plots. And, the costs of moving

6This follows immediately from the continuity of the tragedy of the commons and the fact that
any measure of this inefficiency would have to be zero at both ξ = 0 and ξ = ρ
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Figure 3.5: Corner Solutions for Overlap

more together to create a total overlap are small since the AuC loss is small when v(·)
is almost a linear function. Thus, in addition to the role α plays in the minimal overlap

necessary to sustain cooperation, α is also an important determinant of the qualitative

characteristics of the equilibrium.

Note two potentially important features of this setup. First, multiple efficient equi-

libria are in fact possible, up to a maximum of three. However, generically it is impos-

sible to have multiple equilibria; the value functions do not contain any regions over

which the set of critical points have measure greater than zero. Second, the assumption

that total labor effort is inelastic is essential for the argument that the tragedy of the

commons is non-monotonic in ξ. If the model were to include a utility specification

that includes leisure, the tragedy of the commons would persist even when agents lo-

cate on top of each other. For example, Schmidtz [2002] documents that before the

privatization of the land settlers at Jamestown were found bowling in the midst of a

famine rather than planting crops on the land from which each settler received an equal

portion of the crop. While the model here does not directly address this situation, it

should be clear that the main result will still hold; the only important difference is that

agents will now never find it optimal to locate on top of each other. To see that there

could still be an interior equilibrium note that, faced with a choice between locating

on disjoint plots or locating on top of each other, agents would still choose the latter

for a sufficiently valuable prisoner’s dilemma. Thus, there still must be a non-trivial

set of games for which equilibrium ξ is interior, even when agents can receive utility

from leisure.
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3.4 General Characteristics of Equilibria

This section considers the general model, where agents locate in Rn and the production

function v(·) is any strictly increasing, continuous, concave function. We confirm that

the qualitative characteristics of the equilibrium described in the example hold for the

general case, including generic uniqueness under forward induction and efficiency of

the location choice. We also show that the sequential arrival game is equivalent to a

simultaneous arrival game, indicating that location choice will be stable.

We first formally define certain objects necessary to consider the general model:

• Define the aggregate plot as B(xi)
⋃
B(xj). That is, the aggregate plot is the

total area used by either agent.

• Define the commons as B(xi)
⋂
B(xj), the area where both agents produce and

consume.

• Define the private plot of agent k as B(xk)
⋂

(B(x−k))
c, the area used by only

agent k.

We also define the following efficiency concepts:

• A sequence of actions generates a first-best outcome if it maximizes total pro-

duction over location decisions, play in the prisoner’s dilemma phase, and effort

allocation.

• A location decision generates a second-best outcome if it maximizes total produc-

tion conditional on equilibrium play in the induced subgame.

We now collect some useful results that are immediate consequences of the concavity

of v(·). The proofs are omitted to save space, and all statements should be understood

to apply except on a set of measure zero:

Proposition 15. • A first-best allocation requires uniform effort over the aggregate

plot.

• Any equilibrium allocation will take the form of of a simple function, where the

steps correspond to the private plot and the commons.
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The above proposition applies also to any game with more than two agents where

effort is allocated over local commons shared between subsets of agents. We there-

fore exploit this proposition to prove existence of equilibrium in the subgame for an

arbitrary (finite) number of agents N :

Lemma 2. Every effort allocation subgame has a pure strategy Nash equilibrium for

N ≥ 1.

Since action choices in the first and second stage are finite, this is sufficient to prove

the existence of an equilibrium for the general game. Furthermore, we can conclude

that no equilibrium allocation will provide a first-best outcome, since first-best will

require uniform effort allocation, cooperation in the prisoner’s dilemma stage, and

measure zero overlap.

We will now return to the case where N = 2 and establish the existence of a second

best equilibrium, in the sense that the location decision will maximize productivity

under the constraint that play in the second and third stages (the cooperation game

and the effort allocation game) is in equilibrium. Furthermore, this efficient equilibrium

is the only equilibrium to survive an intuitive forward induction refinement. Some

simplification and little loss of generality is achieved by assuming, as we will for the

remainder of the paper, that θ = −ω. That is, an agent who plays C against a D

looses all of his effort endowment.

We establish the second-best efficiency result by first ruling out the existence of

equilibria with asymmetric payoffs. Then, we show that this guarantees that the

second-best efficient location decision, which must be either null overlap, complete

overlap, or the minimal overlap necessary to sustain cooperation, must be an equilib-

rium of the game. We then characterize the inefficient equilibria and show that they

are eliminated by forward induction since the location decision is a credible signal of

which equilibrium is expected in the subgame starting in the cooperation stage.

As in the example, we define V (C,C, ξ) as the per agent value of cooperation

in the prisoner’s dilemma following an overlap decision ξ, where effort allocation is in

equilibrium in the subgame and V (D,D, ξ) analogously. Similarly, VC(D,C, ξ) is again

the value that accrues to the agent who plays C when play in the prisoner’s dilemma

is D,C, and VD(D,C, ξ) is the value accruing to the agent who plays D. V, VC , and

VD will henceforth be referred to collectively as the value functions for the first stage.

The following single crossing condition, which is a consequence of the concavity of

v(·), will be useful for establishing existence and uniqueness of the equilibrium. Two
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value functions for the first stage are said to cross at some ξ if the values are equal at

that ξ; for example, V crosses VD at ξ′ if V (C,C, ξ′)− VD(C,C, ξ′) = 0:

Proposition 16. V (C,C, ·) and VD(D,C, ·) cross in ξ at most once.

An almost immediate corollary of proposition 16 is

Lemma 3.

{ξ|VD(D,C, ξ) ≥ V (C,C, ξ)} = {ξ|ξ ≤ ξ?}

for some ξ? ∈ [0, 1].

Now, it is useful to demonstrate that asymmetric play will never occur along the

equilibrium path. The following lemma and proposition show this:

Lemma 4. VC(D,C, ξ) is increasing in ξ.

This lemma simply states the obvious that if an agent looses all of his endowment

in the prisoner’s dilemma phase, he is better off overlapping as much as possible with

his newly wealthy “partner” since that agent will, by virtue of his larger endowment

and higher wealth, provide more effort to the commons.

Proposition 17. For all η, @ an equilibrium in which D,C occurs along the equilibrium

path.

The intuition for this is also straightforward. If an agent were to play C expecting

his opponent to play D, he could increase his own endowment by more than he de-

creased his opponents by deviating to D and replicating the original allocation, with

additional effort to spare.

Note that the above proposition does not rule out the possibility that D,C will

be called for in some subgames. In fact, there exist games where such an outcome

can be supported for a small region of ξ. This is somewhat surprising since in most

cases an overlap small enough to make an agent prefer to refuse to cooperate against a

cooperator will be too small to prevent a cooperator from wanting to deviate against

a non-cooperator.

The preceding proposition is most useful for establishing the following result:

Proposition 18. The sequential arrival game is equivalent to the simultaneous arrival

game for two agents when agents play pure strategies in the location phase.
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Proof. Since play in the prisoner’s dilemma is always symmetric and the plots are

symmetric, all payoffs will be symmetric. So, in a sequential arrival game, the optimal

choice by the second agent will maximize the welfare of both players, subject to strategic

constraints. Therefore, even if the first agent to arrive were given an opportunity

to move, he would have no incentive to do so. Conclude that the sequential and

simultaneous arrival games are payoff, cooperation, and location equivalent.

This proposition is crucial to establishing firm predictions about location in the

model. Since sequential arrival is equivalent to simultaneous arrival, location decisions

are stable in the sense that, following the arrival of the second agent, the first agent will

not have an incentive to move before the start of the rest of the game. This finding does

not hold for larger games, indicating that a simultaneous arrival game and a sequential

arrival game will not have equivalent outcomes. As we will demonstrate by example

in a later section, the efficient network of local public goods in a analogous game with

more than two agents will not always be stable. This fact implies that agents will not

necessarily reach a second best location configuration.

Proposition 19. A pure strategy subgame perfect equilibrium exists.

Following similar logic, we can see that the second-best location decision will be an

equilibrium of the game. That is, if a social planner can control location decisions but

is unable to enforce cooperation or effort allocations, then the social planner cannot

improve upon decentralized location decisions. Thus, we have the following welfare

proposition:

Proposition 20. For any location choice, there exists a pure strategy subgame perfect

equilibrium which provides a weak pareto-improvement over any fixed location.

This result is immediate from the fact that players can choose the location that

maximizes total productivity, and payoffs are symmetric in this case. Any asymmetric

equilibrium of the exogenous location game will have to occur in the region where

V (D,C, ξ) > V (C,C, ξ), and thus the payoff for the agent playing D is worse than the

payoff to each player at V (C,C, ξ?), where ξ? is the threshold for cooperation.

3.4.1 Uniqueness

While the above proposition establishes that agents can in equilibrium reach the

second-best optimal allocation, it does not guarantee that this equilibrium is unique,
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or even that all equilibria are payoff equivalent. Indeed, inefficient equilibria do exist.

We first characterize these equilibria and present a forward induction argument that

selects only the efficient equilibria. These will be essentially unique in that, generi-

cally, the refined equilibrium identifies a single equilibrium overlap; this overlap can

occur only at no overlap, complete overlap, or the minimal overlap necessary to sustain

cooperation.

These inefficient equilibria fall into two categories; those that are inefficient because

cooperation fails when it could have been sustained at reasonable cost, and those that

are inefficient because the overlap is unnecessarily large. We consider these two types

of equilibria in that order.

Proposition 21. • (a) Any equilibrium in which D,D is played must have ξ = 0.

• (b) Such an equilibrium exists if and only if V (D,D, 0) ≥ max{V (C,C, ρ), V (C,C, ξ?)},
where ξ? is such that V (D,D, ξ?) = VC(D,C, ξ?).

Proof. Part (a) just states that if agents will not cooperate, one agent will always have

an incentive to move away so as to avoid the inefficiencies associated with crowding.

Part (b) points out that an agent in a game that is being played uncooperatively can

always force cooperation by deviating to complete overlap or overlap that makes C

dominate D assuming equilibrium play in the final subgame.

(a) V (D,D, 0) > V (D,D, ξ) for all ξ 6= 0, and VD(D,C, 0) > V (D,D, 0), so if

equilibrium calls for (D,D, ) and ξ 6= 0, ξ = 0 and (D,D) is a profitable deviation.

(b) If V (D,D, 0) ≥ max{V (C,C, ρ), V (C,C, ξ?), assume equilibrium calls for D if

ξ < ξ? and C otherwise. Then, all deviations from (D,D), ξ = 0 to ξ < ξ? cannot

be profitable. But, deviations to ρ or ξ? are not profitable by assumption, and since

V (C,C, ξ) does not have a local maximum, ξ ∈ (ξ?, ρ) is not profitable.

If V (D,D, 0) < max{V (C,C, ρ), V (C,C, ξ?)}, then a deviation to either ρ or ξ? + ε

and C is profitable, since the other agent must play C when ξ ∈ (ξ?, ρ].

There are three types of equilibria in which C,C is played: those with ξ = ρ

(complete overlap), those with ξ? = {ξ|VD(D,C, ξ) = V (C,C, ξ)}, and those with

ξ′ ∈ {{ξ|V (C,C, ξ) > VD(D,C, ξ)}
⋂
{ξ|Vc(D,C, ξ) < V (D,D, ξ)}

⋂
{ξ|V (C,C, ρ) ≤ V (C,C, ξ)}}.

The last set is the set of always inefficient equilibria with cooperation. They are

sustained by the (subgame perfect) threat of playing D when ξ is too low, even if ξ could
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sustain cooperation. The existence of these equilibria follows from the fact that, even

when cooperation could be sustained, D is still a best response to D except possibly for

very large ξ. In most cases, this set will not be empty unless V (D,D, 0) ≥ V (C,C, ξ?)

or V (C,C, ρ) ≥ V (C,C, ξ?) (that is, unless the efficient equilibrium involves a corner

solution for ξ). However, a simple forward induction refinement can eliminate these

equilibria. Specifically, if an agent plays ξ ∈ [ξ?, ξ′) as a deviation, he will receive,

at most, V (D,D, ξ) < V (D,D, 0). So, it must be the case that such an action is

associated with the belief that the other agent will play C. Given that the other agent

must be expected to play C, the agent’s own best response is clearly C.7 Thus, by

forward induction, only the most efficient interior equilibrium will survive. Following

this refinement, the choice for location can be reduced to ξ ∈ {0, ξ?, ρ}. The same

forward induction argument eliminates ξ = 0 when V (C,C, ξ?) > V (D,D, 0), so the

prediction of the model is unique as long as V (C,C, ξ?) 6= V (D,D, 0), V (C,C, ξ) 6=
V (C,C, ρ), and V (C,C, ρ) 6= V (D,D, 0)). But, clearly, this will not occur for generic

parameter values (since V (D,D, 0) = V (C,C, ξ?), etc., would occur only for very

specific values of parameters regardless of the functional form of v(·)), so under the

forward induction equilibrium refinement the equilibrium path is unique. In the absence

of the forward induction argument, a continuum of Pareto-ranked interior equilibria

may exist. To summarize, the choice of ξ determines whether the second stage game

will be a prisoner’s dilemma, a coordination game, or a game with a unique, dominance

solvable equilibrium that is efficient. When the game is a coordination game, agents

can credibly signal their intentions, and thus coordinate on the efficient equilibrium.

We will now return to the decomposition of the costs of crowding into the tragedy-

of-the-commons effect (ToC) and the area-under-cultivation effect (AuC). Considering

these effects separately allows us to show that agents will locate at the minimum

threshold necessary to sustain cooperation if they choose any cooperation at all.

We first argue that the ToC effect single peaked. That is, there is no tragedy of

the commons when agents are completely separate or completely overlapped and the

ToC loss has a unique local maximum for ξ ∈ (0, ρ). This also implies that there is

no local minimum for the ToC effect. This result, combined with the monotonicity

of of the AuC effect, guarantees that the optimal cooperative equilibrium will involve

either minimal necessary overlap or total overlap. As such, comparative statics on

minimal overlap are equivalent to comparative statics on optimal location, with one

7Note that while C is not a best response to C in the regular prisoner’s dilemma, it may be a best
response in this case because of how play will occur in equilibrium in the final subgame.
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only needing to verify that the optimal location does not jump to complete or null

overlap.

Proposition 22. The rate of change from the ToC loss is monotonic after reaching

its local maximum.

This proposition and the following lemma are sufficient to prove that the symmetric

payoff functions V (C,C, ξ) an V (D,D, ξ) do not have local maxima.

Lemma 5. The loss from the AuC effect is increasing and convex in ξ.

Lemma 6. V (C,C, ξ) and V (D,D, ξ) do not have local maxima for ξ ∈ (0, ρ).

Proof. Recall that the loss from overlap can be decomposed into the AuC and the ToC

effect. The AuC effect is increasing and convex. The ToC effect is, by construction,

zero at ξ = 0 and zero at ξ = ρ. It is also strictly positive in the interior. Since [0, ρ]

is compact and the ToC effect is continuous, the loss from ToC achieves a maximum

somewhere in [0, ρ]; in fact, we can conclude that the ToC reaches a maximum in the

interior of this set since the ToC clearly is positive for all overlap where ξ ∈ (0, ρ).

At any critical point, we know that the rate of change in the AuC and the rate of

change in the ToC must be equal in absolute value, and the loss from the ToC must

be decreasing. Now, as ξ shrinks from the critical point, the rate of change in the

ToC loss must fall relatively fast since it reaches 0 in the interior of [0, ρ]. The AuC

loss, however, does not reach zero until ξ = 0 at the earliest, since it is increasing and

convex. Thus, unless the rate of change of the ToC loss is non-monotonic between

the critical point and the local maximum, there can be at most one critical point.

Since we know V (C,C, 0) > V (C,C, ρ), this critical point, if it exists, must be a local

minimum.

The above assumption and lemma guarantee that the values from symmetric play

are initially decreasing (this is trivial to prove but omitted for brevity) and may achieve

only one local minimum. This guarantees that, if an interior overlap is optimal, the

minimal interior overlap is optimal since, when the minimal overlap is designated by

ξ?, we can conclude V (C,C, ξ) < max{V (C,C, ξ?), V (C,C, ρ)} for all ξ ∈ (ξ?, ρ).

We can now introduce some simple comparative statics results that confirm the

intuition about the tradeoff between overlap and cooperation. Define the minimal

overlap necessary to sustain cooperation as ξ?:
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Proposition 23.
dξ?

dη
> 0.

and
dξ?

dβ
< 0.

These follow from the fact that V (C,C, ξ) is invariant in η while VD(D,C, ξ) is

strictly increasing in η, and vice versa for β. Thus, since ξ? is unique, the crossing

point must move in the stated direction as the effort payoffs change. For small changes

in η or β, this implies that the equilibrium overlap selected by forward induction

will also have these characteristics, with the caveat that, for some η and some β the

equilibrium will jump between the interior overlap and complete overlap.

3.5 Applications and Implications

3.5.1 Financial Services

The fundamental prediction of the model is that when agents have a strong reason to

need to cooperate with each other and when locating close together is not excessively

costly in terms of distortions associated with economic overlap and inefficient cover-

age of the relevant space, they will congregate close together. This intuition can be

applied to consider why certain industries cluster together while others that perhaps

seem closely related tend to be dispersed. One notable example of this contrast is in

the financial services industry. We observe extreme concentration for certain types of

financial services and dispersion for others. Specifically, firms that primarily provide

investment banking services are extremely concentrated. This geographical concentra-

tion can be seen to create economic overlap in a variety of ways. Training of employees

becomes more of a public good when costs of job switching are low, as will occur when

firm headquarters are located within a few blocks of each other. Proprietary informa-

tion, which may be costly to generate, will also be far less private among concentrated

firms. Finally, investment banking firms overlap in an even more significant economic

space in that much of their most profitable activity is undertaken by syndicates of firms.

Firms contribute effort to a joint project (say, an IPO), and then share revenues. Such

an arrangement will clearly lead to distortions from efficient effort on joint projects,

with firms preferring to expend their resources on projects that are not part of the

syndicate and that therefore do not have the public element to them. However, this
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industrial structure can lead to cooperation on other joint endeavors. If one investment

bank must rely on the contributions of other members of a syndicate, said bank is less

likely to exploit an opportunity to gain profit for itself at the cost of seriously weak-

ening its future partner. Such opportunities for cooperation pervade the investment

banking industry, including such things as maintaining non-competitive pricing of ser-

vices (Chen and Ritter [2000] and Lowery [2008]) and providing emergency liquidity

following shocks.

Firms that specialize in identifying underpriced securities for investment opportu-

nities, on the other hand, tend to locate in a far more dispersed fashion. Since it

has been documented that such firms tend to generate a significant part of any excess

returns from investment in securities associated with firms located nearby (Coval and

Moskowitz [2001]), this lack of concentration can be thought of as associated with a

high area-under-cultivation cost. Failing to cover all possible geographic areas leaves

some mispricing unexploited. Furthermore, such investment businesses will have few

valuable opportunities to cooperate as they are effectively engaged in a fixed-sum game.

Any profits accruing to one firm for identifying a mispricing will be unavailable to any

other firm. This situation contrasts sharply with the investment banking firms, where

cooperation to maintain monopoly pricing would prove valuable.

3.5.2 Formal Institutions and Social Capital

One implication of this model is that social capital in the form of economic overlap

and formal enforcement institutions are substitutes. We would thus predict that, as

formal institutions develop that allow agents to commit to cooperate on joint projects,

economic overlap will disappear. In economies without formal institutions, we expect

to see social norms that enforce sharing of wages, housing, and other economic gains

in order to foster cooperation amongst members of a group. Such sharing will of

course undermine incentives to engage in productive activity and individuals will ex-

pend disproportionate effort on activities that generate benefits that cannot be shared.

Evidence of such arrangements can be found in, for example, Venkatesh [2006], who

examines in detail the economic and social arrangements of individuals living outside

the formal economy. As formal contracting makes cooperation feasible between indi-

viduals without links, the gains from breaking away from the inefficient overlap will

lead to a breakup of such cooperative arrangements. This interpretation implies that

the absence of formal institutions will undermine economic growth and development

120



not by directly undermining the ability of individuals to cooperate, but because the

social and economic arrangements necessary to maintain cooperation are inefficient

compared to those that will arise in the presence of formal institutions.

3.6 Three Agent Sequential Arrival

Certain of the elements of the model extend in an obvious way to the case with N > 2

agents. The location decision now determines, for each agent, how he will overlap will

all of the other N −1 agents, although the location decision no longer maps as directly

into an overlap choice. Production is shared evenly among all agents who overlap on a

given area. Thus, one agent may share a bilateral overlap with some other agent but

a trilateral overlap with different agents, for example. The exact specifications of the

dimension of the location space and the shape of each plot will generate restrictions

on the feasible overlap configurations. It is less clear how the second-stage cooperation

opportunity should scale up. Each agent could have a bilateral cooperation opportu-

nity with every other agent, or all agents together could play some form of N -agent

cooperation game. Furthermore, the behavior of the maximum cooperation bonus as

a function of N would have an influence on the optimal and equilibrium networks. A

thorough analysis of such an expanded model are left to future research. This section,

however, considers an example with three agents. Here, I demonstrate that the effi-

ciency result for two agents does not immediately extend to multilateral interactions.

To explore the structures that arise in a larger network, consider a sequential arrival

game with three agents. For expositional purposes, we will first assume that agents

commit to a location without taking into consideration the arrival decisions of future

agents. Thus, the second agent to arrive will locate as if he were playing a two-agent

game. Also, for simplicity, we will initially assume that agents cannot create trilateral

commons. Assume that parameters are such that the second agent will choose a partial

overlap with the first. Now, a third agent must choose how to locate. Under the

assumption that a trilateral commons is prohibited, this reduces to a decision over

how much of a commons to create with one of the agents. Without loss of generality,

assume that the third agent arrives from the left, and designate this agent l. Agent

l intrudes on the private pasture of agent m, and agent r continues to overlap only

with agent m. An example configuration appears in figure 3.6. Consistent with the

two agent game, ξ will parameterize half of the overlap between m and r; however, ε
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Figure 3.6: Three Agent Chain

will parameterize the total overlap between l and m. Consider now an example where

ρ = 1, β = 3, η = 3.1, θ = −1, and α = 0.15. The second agent will enter with

ξ?2 = 0.1039, thus guaranteeing that cooperation between m and r can be sustained.

When the third agent arrives, the cooperation configuration may change. If the third

agent should choose a small but positive overlap with one of the current agents, then

cooperation will completely break down. This follows from the fact that agents m and

r were located such that the would just manage to sustain cooperation. Upon the

intrusion of the third agent, agent m now has a smaller, and therefore less valuable,

private plot. This will tend to make the nonnegativity constraint for contributions by

l bind, breaking any potential link between l and m. The argument for the collapse of

cooperation between m and r is more subtle. After the intrusion, the value of the game

for a fixed cooperation configuration falls for the middle agent, both if he adheres and

if he deviates against the right agent. But, the value of deviating falls slightly more

since the benefit of having the extra effort to distribute over the private plot decreases

as the size of the private plot decreases, whereas the value to the original commons

remains relatively stable.

But, a larger overlap by the entering agent can serve to restore cooperation. In par-

ticular, for certain parameter values, there is an interior overlap by the entering agent

that restores cooperation between m and r and also generates cooperation between l

and r. To see this, observe that, as ε increases, the value of adhering or deviating

from said strategy declines for the middle agent. But, adhering remains better for all

values of ε except ones that almost eliminate the middle agent’s private plot. Note

the difference between this scenario and the previous scenario in which only m and

r were considering cooperating. Now, the right agent is appreciably wealthier, and
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consequently even after a deviation by the middle agent will tend to desire a positive

contribution to the commons. Indeed, his wealth will be 1 + θ + β = 3, which is not

appreciably smaller than the wealth of the middle agent after a deviation, 1 + η = 4.1.

But, as ε becomes large, the nonnegativity constraint of the right agent will begin to

bind as the middle agent desires an increasing level of the right commons, and around

this point it will become better for the middle agent to deviate. The value to the left

agent follows a similar pattern. However, the right agent will, for small ε, prefer to

deviate, as he is the only agent that will contribute to the right commons after all

agents adhere to the proposed cooperation profile. This follows from the fact that

he is relatively wealthy, as the cooperation calls for him to engage in two profitable

prisoner’s dilemmas instead of one. As epsilon grows, however, the situation begins

to reverse as the “outside option” of the middle agent gets worse as his private plot

shrinks. There will, therefore, be a small region of ε over which all contributions to the

commons are interior. Over this region, cooperation may be feasible. It is still pos-

sible that cooperation will break down if the bonus for deviating is large enough, but

for the parameterization discussed here cooperation is maintained over a small region.

The left agent must therefore choose between isolation and this partial overlap that

sustains cooperation in two prisoners’ dilemmas. In this example, the partial overlap

is appealing, and will therefore be selected. As a consequence, the right agent becomes

much better off, while the middle agent, due to the reduction in his private plot, is

worse off.

This raises the obvious question of how the second agent would have optimally

located were he aware that a third agent would arrive. This question is best resolved

by inspecting figure 3.7, which shows the value to each agent as a function of the

overlap between the first two agents, assuming that the third agent locates in his own

best interest. Over the region of small ξ, agent l’s value is flat because he will choose

isolation when ξ is too small to facilitate cooperation; after the increase associated with

a ξ that permits cooperation (and thus induces an interior ε, agent r’s value declines

linearly in ξ, while the value to l and m decline in a nonlinear fashion; the vertical line,

representing the myopic ξ, shows that all agents prefer the smaller, rational ξ?3 to the

myopic ξ?2 .

From this, it is clear that the agent that ends up on the right prefers to locate so

as to induce the third agent to choose an interior overlap. The agent who ends up

being in the middle, however, prefers to choose ξ such that cooperation breaks down

completely. Assuming that agents are risk neutral and that the third agent enters
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with equal probability from either side, the second agent will risk ending up in the

middle. This location will not be the same as the optimal location in the two agent

game. Decreasing ξ, which would destroy cooperation in the two agent game, is now

possible; the third agent will locate so as to restore cooperation, and all agents end

up better off, in expectation, than in the myopic game. In fact, with forward looking

actions by agent 2, the eventual network formed is second best optimal as agents are

all appropriately incentivized to maximize the area under cultivation subject to the

incentive compatibility constraints of the chosen cooperation condition. But, we can

see that this network will not be stable in the sense of Jackson and Wolinsky [1996];

the middle agent, if permitted, will prefer to deviate to isolation after the third agent

joins.8 But, then one of the two remaining agents will prefer to form a link with the

agent who has just left the network, restoring bilateral cooperation with that agent.

Thus, the network will cycle under pairwise stability.

This three agent example shows that the incentives to choose efficient overlap con-

tinue to play a role in games with more than two agents, but the increased complexity

associated with the introduction of indirect links and the need to anticipate future ar-

rival decisions breaks the immediate link between efficient and equilibrium outcomes.

Thus, in games with more than two players, the ability of agents to successfully exploit

cooperation opportunities at minimal cost will depend on the specific elements of the

environment under consideration. This disconnect introduces the possibility that a

social planner could have a useful role in enforcing location decisions even if he cannot

directly enforce cooperation or control effort allocation decisions.

3.7 Conclusion

This paper demonstrates the role that overlapping economic activity can play in fa-

cilitating cooperation. In contrast with the standard Hotelling location problem, the

structure of this model can generate partial overlaps and can therefore rationalize a

variety of geographical and economic arrangements that are observed in superficially

similar settings. A relatively parsimonious explanation for cooperation in finite pris-

oner’s dilemmas is presented, with predictions for cooperative behavior that do not

depend on patience or repetition.

In the context of political economy, this model is complementary to the Tiebout

8In this sense, eliminating overlap is treated as equivalent to breaking a link.
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Figure 3.7: Value for given ξ
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approach to location decisions. Here, agents choose the type of economic unit to develop

based on the underlying tradeoff between the value of and inefficiencies from public

projects, but they lack access to political institutions that can facilitate cooperation

through locally involuntary taxation.9 Since political institutions themselves are a form

of cooperation and presumably develop at a later stage than society itself, a model that

can describe agglomeration without reliance on these institutions is helpful.

3.8 Appendix

3.8.1 proof of lemma 2

Proof. The strategy space of the effort allocation subgame is all non-negative function

ei() such that
∫

Ω
eidµ ≤ Ei. But, as shown above, the concavity of v guarantees

that optimal allocations must be uniform over any plot of a particular public good

configuration. That is, if an area is an overlap between n agents, then that entire

area must have a uniform effort allocation or one agent could make himself (and all

the other agents involved in the plot) better off by reallocating effort. And, we can

restrict attention to equilibria where agents provide uniform effort over each plot in

which they are involved because, for any public plot, the best response to uniform

effort by the other contributors is uniform effort. So, we can reduce the strategy space

to a finite vector, since the number of potential configurations is finite. (For example,

with two agents in R1, there will be at most a private plot and one commons for each

agent, with three agents a private plot, an overlap with one agent, an overlap with the

other agent, and an overlap with both, etc.). It is now clear that the effort budget

constraint is a simplex of the same dimension as the number of configurations. This

implies that each strategy space is a nonempty convex compact subset of a Euclidean

space. Finally, payoffs are continuous and quasi-concave in the strategy space since v

is, by assumption, continuous and concave, and the payoff function can be written as

G∑
j=1

µ(gj)v(eij),

9In the two agent case the location decision is second best when play in the P-D cannot be
controlled. The multilateral case remains to be analyzed.
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where G is the number of configurations, gj is the jth plot in which i is involved

(arbitrarily ordered), and eij is the level of effort agent i puts into each point in plot

gj. This payoff function is then a multiple of a convex combination of univariate

concave functions, which is itself concave. So, by Glicksberg [1952], a pure strategy

Nash equilibrium exists.

3.8.2 Proof of lemma 3

Proof. VD(D,C, 0) = 2ρv
(

1+η
2ρ

)
> 2ρv

(
1+β
2ρ

)
= V (C,C, 0) and V (C,C, ρ) = ρv

(
2+2β

2ρ

)
>

ρv
(

1+η
2ρ

)
, so assumption 2 guarantees that the value functions cross exactly once.

3.8.3 Proof of lemma 4

Proof.

VD(ξ) = (2ρ− 2ξ)v(ep(ξ)) + ξv(ec(ξ)).

Now, let ξ′ < ξ, and assume agent D does not alter the effort allocation from ξ. He

then receives

V ′D = (2ρ− 2ξ)v(ep(ξ)) + 2(ξ − ξ′)v(ec(ξ)) + ξ′v(ec(ξ)),

where the first term is the value of the old private plot,, the second term the value of

the new private plot, and the third the value of the new commons. Now, since ξ′ < ξ,

if the value of the smaller commons exceeds the value of the original, larger commons,

it must be that effort is reallocated to the commons. In order for that to be optimal,

we need
ξ′v′(ec(ξ))

2ξ′
>

(2ρ− 2ξ)v′(ep(ξ))

2ρ− 2ξ
⇒ v′(ec(ξ))

2
> v′(ep(ξ))

which is false by the original optimality conditions, or

ξ′v′(ec(ξ))

2ξ′
>

2(ξ − ξ′)v′(ec(ξ))
2(ξ − ξ′)

⇒ v′(ec(ξ))

2
> v′(ec(ξ)),

which is false since v is increasing. So, effort is reallocated away from the now smaller

commons (and put into the previously common area), making the value of the commons

fall. This implies that Vc must fall as the commons shrinks since the only value that

accrues to the cooperating agent is that from the commons.
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3.8.4 Proof of proposition 17

The following proposition is needed:

Proposition 24. If η + θ < 0 (that is, the total value of the cooperation phase is

less than zero when play is asymmetric), @ an equilibrium where D,C is played in any

subgame.

Proof. Assume that there is an equilibrium with D,C. Any allocation that was feasible

to D before the allocation is feasible to C after the deviation since η < 1. That is,

agent C is gaining more effort than agent D is losing; this is achieved by having both

agents solve agent D’s optimization problem (for D’s welfare, not for C’s welfare after

a deviation to D). Clearly, agent D will not have an incentive to deviate from this

allocation since it was reached by optimizing his welfare given technological constraints.

Thus, V (D,D, ξ) ≥ VC(D,C, ξ) for all ξ. But, from this allocation, if C marginally

and uniformly reduces the effort he puts into the commons and reallocates that effort

to his private plot, the value accruing to him must increase since the marginal value of

his private plot is at a maximum (since it currently receives zero effort) and he does

not have to divide this with the other agent. D’s best response to this action is to

increase his contribution to the commons, so C cannot be worse off.

Proof. Assume D,C is played along the equilibrium path. Then

VD(D,C, ξ) ≥ V (C,C, ξ) (3.10)

VD(D,C, ξ) ≥ V (C,C, ρ) (3.11)

VC(D,C, ξ) ≥ V (D,D, 0) (3.12)

VC(D,C, ξ) ≥ V (D,D, ξ) (3.13)

VC(D,C, ξ) ≥ V (C,C, ρ). (3.14)

These inequalities guarantee, in order, that adhering to the proposed {ξ, (D,C)} equi-

librium satisfies: D will not deviate to playing C at the proposed location; D will

not deviate to total overlap, which brings about C,C play (and a local maximum for

V (C,C, ξ)); C will not deviate to no overlap, which will always imply D,D play and a

global maximum of V (D,D, ξ); C will not deviate to play D at the current location;

and C will not deviate to total overlap, which guarantees C,C.

But, V (D,D, 0) ≥ V (D,D, ξ) for all ξ, so inequality 3 ⇒ 4. And, VD(D,C, ξ) −
VC(D,C, ξ)− (2ρ− 2ξ)v(ep) > 0, so VD(D,C, ξ) > VC(D,C, ξ), so 5→ 2. Now, recall

128



that inequality 1 will hold for sufficiently small ξ; that is, inequality 3 takes the form

of a threshold, by lemma 3.8.2. But, by lemma 4, VC(D,C, ξ) is strictly increasing in

ξ. Therefore, it is sufficient to show that

{ξ|VD(D,C, ξ) = V (C,C, ξ), VC(D,C, ξ) ≥ V (D,D, 0), VC(D,C, ξ) ≥ V (C,C, ρ)} = ∅

in order to establish that no equilibrium where D,C is played exists, since if the

inequalities fail at the threshold, they must fail for all ξ below the threshold.

But, V (D,D, 0) = (2ρ)v
(

1
2ρ

)
and V (C,C, ρ) = ρv

(
1+β
ρ

)
. So, only one of the two

inequality conditions can be operable in any (generic) problem. Specifically, inequality

3 is operable if and only if

2v

(
1

2ρ

)
> v

(
1 + β

ρ

)
;

otherwise, inequality 5 is operable. Which inequality matters will depend on the payoff

to cooperating, the size of the plot, and the curvature of v.

For example, in the parametric CES case, the condition for 3 to be the relevant

constraint becomes

2

(
1

2ρ

)α
>

(
1 + β

ρ

)α
2

1
α

1

2ρ
>

1 + β

ρ

2
1−α
α > 1 + β

β < 2
1−α
α − 1

log(1 + β) <
1− α
α

log(2)

log2(1 + β) <
1− α
α

α <
1

log2(1 + β) + 1
.

So, when v exhibits near constant returns to scale, inequality 5 is operable, while for

extreme diminishing returns to scale, inequality 3 is. As β → ∞, the cutoff falls to

zero, while as β → 0, it increases toward 1.

Now, designate ξ? as the ξ at which inequality 1 holds with equality and assume

VC(C,C, ρ) > VD(D,D, 0) and D,C can occur. But, VC(D,C, ξ) is strictly increas-

ing in ξ and VC(D,C, ξ) ≤ V (D,C, ξ) and equal only at ξ = ρ. So, V (D,C, ξ) ≤
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VD(D,C, ρ) = ρv
(

1+η
2ρ

)
. So,

VC(D,C, ξ?) < ρv

(
1 + β

2ρ

)
VC(D,C, ξ?) > ρv

(
2 + 2β

2ρ

)
.

But, 2 + 2β > 1 + η, so this is a contradiction.

If instead VC(C,C, ρ) < VD(D,D, 0) and D,C occurs,

VD(D,Cρ) < V (C,C, ρ)

V (C,C, ρ) < V (D,D, 0)

VD(D,C, ρ) < V (D,D, 0)

and since VC(D,C, ξ) < VD(D,C, ρ), then VC(D,C, ξ) < V (D,D, 0), which is a con-

tradiction.

3.8.5 Proof of lemma 5

Proof. Where ET = E1 + E2,

AuC loss(ξ) = 4ρv

(
ET

4ρ− 2ξ

)
− (4ρ− 2ξ)v

(
ET

4ρ− 2ξ

)
so

∂AuC loss(ξ)

∂ξ
= −

[
(4ρ− 2ξ) v′

(
ET

4ρ− 2ξ

)(
ET

(4ρ− 2ξ)2

)
(2)− 2v

(
ET

4ρ− 2ξ

)]
= 2

[
v

(
ET

4ρ− 2ξ

)
−
(

ET

4ρ− 2ξ

)
v′
(

ET

4ρ− 2ξ

)]
But, for all f : R+ → R+ such that f is increasing, concave and f(0) = 0, f(x) −
xf ′(x) > 0, so, letting f = v and x = ET

4ρ−2ξ
, AuC loss > 0.

Now,

∂2

∂ξ2
= 2

[
v′(x)

∂x

∂ξ
−
(
v”(x)

∂x

∂ξ
x+

∂x

∂ξ
v′(x)

)]
= 2

[
−v”(x)

∂x

∂ξ

]
.
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But,
∂x

∂ξ
=

2ET

(4ρ− 2ξ)2 > 0,

and

v”(x) < 0,

so AuC loss is increasing and convex in ξ.

3.8.6 Proof of proposition 16

Proof. Assume ∃ξ? such that V (C,C, ξ?) = VD(D,C, ξ?). This implies that, at ξ?, the

benefit to one agent of obtaining extra effort by playing D in the prisoner’s dilemma

phase is exactly offset by the costs to this agent associated with the reduction in the

other agent’s contribution to the commons. As ξ increases above ξ?, the benefit of

having additional effort to allocated over ones private plot declines since the private

plot is smaller and v(·) is concave. At the same time, the costs associated with depriving

the other agent of resources, some of which he would employ in the commons, increases

since that agent’s private plot is also smaller for the larger value of ξ, while the common

plot is larger. Thus, for ξ > ξ?, V (C,C, ξ) > VD(D,C, ξ). Since VD(D,C, 0) >

V (C,C, 0), this completes the proof.

3.8.7 Proof of proposition 19

Proof. Each agent must choose a location on R. Take one agent’s location choice

as given and consider the payoff function for the location choice of the other agent.

All points that lead to no overlap have the same value to that agent since he will

obviously play D in the prisoner’s dilemma and spread his effort uniformly over his

plot. We can then consider only the payoff function for ξ ∈ [0, ρ], where ξ is again

the overlap. Since each location decision generates a subgame with an equilibrium, we

know that the payoff function is well defined for every ξ over the (compact) interval

[0, ρ]. But, the payoff is bounded from above since it could never exceed (for example)

2ρv
(

2+2β
2ρ

)
, so the payoff function in terms of ξ must achieve it’s maximum on [0, ρ].

Now, observe that, whenever play in the prisoner’s dilemma is symmetric, the effort

allocation problem is symmetric and, by the concavity of v, we know that the outcome

will be symmetric. Proposition 17 demonstrates that, in equilibrium, play will be

symmetric. So, whatever optimal choice is made in the location game by the agent we
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are considering will be optimal also for the other agent. Thus, at this location, neither

has an incentive to deviate.

3.8.8 Proof of proposition 22

Proof. Initially, as ξ increases away from zero, more effort per area is put into the

private plot. But, as ξ grows the returns on the private plot diminish more rapidly,

implying that more effort should be invested in the (growing) commons. These two

effects must exactly offset each other at one point since ToC(ξ = 0) = ToC(ξ = ρ) = 0

(by the mean value theorem). But, as ξ grows beyond the point at which dToC
dξ

= 0,

the concavity of v(·) guarantees that the returns to total investment in the private plot

diminish even more rapidly. As the commons is also increasing in size as ξ increases,

the total effect must be a continued decline in the ToC.

3.8.9 Tragedy of the Commons and Area under Cultivation:

Parametric Example

Calculating the value of the game to a single agent with socially optimal effort func-

tions is a simple matter. The production technology is uniform across the area under

cultivation (since the feature that distinguishes the commons from the private plots is

the distributional technology), so a socially optimal effort function will spread effort

uniformly over the AuC. In particular, effort at any location is given by

e =
2E

4ρ− 2ξ
=

E

2ρ− ξ
,

where E = Ei = Ej (where Ei is again agent i’s effort endowment and Ei = Ej because

the focus is on potentially equilibrium path allocations). So,

V so(ξ, E) =
1

2

(
E

2ρ− ξ

)α
(4ρ− 2ξ)

or

V so(ξ, E) = Eα (2ρ− ξ)1−α .

This gives, in the benchmark ξ = 0 case,

V so(E, 0) = Eα (2ρ)1−α .
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Note that the above expression can also be derived from the general value function in

the competitive game since V so = V CE when ξ = 0 (and therefore labor markets are

effectively complete).

This now gives an expression for the total inefficiency resulting from a commons

F T (ξ, E) = Eα (2ρ)1−α −
(

E

bρ+ ξ (1− b)

)α
[aρ+ ξ (1− a)],

the inefficiency from lower land usage

FAuC(ξ, E) = Eα (2ρ)1−α − Eα (2ρ− ξ)1−α

and the inefficiency from the tragedy of the commons

F ToC(ξ, E) = F T (ξ, E)− FAuC(ξ, E)

= Eα (2ρ− ξ)1−α −
(

E

bρ+ ξ (1− b)

)α
[aρ+ ξ (1− a)].

To simplify the following, consider a normalization where E = 1 and ρ = 1
2
. Then

FAuC(ξ) = 1− (1− ξ)1−α (3.15)

F ToC(ξ) = (1− ξ)1−α −
(

1

a+ ξ (1− b)

)α
[2

α
1−α + ξ (1− a)] (3.16)

Note that
∂FAuC(ξ)

∂ξ
=

1− α
(1− ξ)α

> 0,

indicating, as expected, that the inefficiencies from reducing the area under cultivation

are strictly increasing in ξ, while

∂F ToC(ξ)

∂ξ
= − 1− α

(1− ξ)α
+(a− 1)

(
1

a+ ξ (1− b)

)α
+(1− b)α

(
2

α
1−α + ξ (1− a)

)( 1

a+ ξ (1− b)

)1+α

,

which is increasing initially and then decreasing.

Combining these two derivatives, it is clear that the inefficiencies associated with

generating a commons are increasing up to some threshold and then ambiguous after

that. The existence of cases both where the total inefficiency increases monotonically

and where the total inefficiency reaches a maximum at some interior point has already

been demonstrated by example and will depend on the concavity of the production
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function. Note also that, when the strategies in the prisoner’s dilemma are taken as a

given, it can never be the case that ξ = ρ is a global minimum for the total inefficiency

since both elements of the inefficiency are minimized at ξ = 0, while only the ToC is

minimized at ξ = ρ.

To understand the root of this potentially non-monotonic behavior, consider the

effect of increasing the area of the commons. The larger commons now implies that a

greater area is subject to the tragedy of the commons; however, as agents focus more

intensely on their own private plots the returns decline. Not only are they applying

more total effort to the private plot, the size of that plot is shrinking as the commons

increases. At some point, the returns to the private plot can diminish to the point that

it actually becomes more desirable to reallocate effort to the commons as the commons

grows. Since effort in the commons is always sub-optimal, this results in an increase

in value. Note, however, that this increase will not always swamp the loss from the

change in AuC, so not all parameters will induce the uptick for large ξ.
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