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Abstract

My dissertation concentrates on several aspects of supply chain management and eco-

nomic valuation of real options in the natural gas and liquefied natural gas (LNG) industry,

including gas pipeline transportation, ocean LNG shipping logistics, and downstream stor-

age.

Chapter 1 briefly introduces the natural gas and LNG industries, and the topics studied

in this thesis.

Chapter 2 studies how to value U.S. natural gas pipeline network transport contracts

as real options. It is common for natural gas shippers to value and manage contracts by

simple adaptations of financial spread option formulas that do not fully account for the

implications of the capacity limits and the network structure that distinguish these contracts.

In contrast, we show that these operational features can be fully captured and integrated

with financial considerations in a fairly easy and managerially significant manner by a model

that combines linear programming and simulation. We derive pathwise estimators for the

so called deltas and structurally characterize them. We interpret them in a novel fashion as

discounted expectations, under a specific weighing distribution, of the amounts of natural

gas to be procured/marketed when optimally using pipeline capacity. Based on the actual

prices of traded natural gas futures and basis swaps, we show that an enhanced version of

the common approach employed in practice can significantly underestimate the true value of

natural gas pipeline network capacity. Our model also exhibits promising financial (delta)

hedging performance. Thus, this model emerges as an easy to use and useful tool that natural

gas shippers can employ to support their valuation and delta hedging decisions concerning

natural gas pipeline network transport capacity contracts. Moreover, the insights that follow

from our data analysis have broader significance and implications in terms of the management

of real options beyond our specific application.

Motivated by current developments in the LNG industry, Chapter 3 studies the operations

of LNG supply chains facing both supply and price risk. To model the supply uncertainty, we

employ a closed-queuing-network (CQN) model to represent upstream LNG production and

shipping, via special ocean-going tankers, to a downstream re-gasification facility in the U.S,

which sells natural gas into the wholesale spot market. The CQN shipping model analytically

generates the unloaded amount probability distribution. Price uncertainty is captured by

the spot price, which experiences both volatility and significant seasonality, i.e., higher prices

in winter. We use a trinomial lattice to model the price uncertainty, and calibrate to the

extended forward curves. Taking the outputs from the CQN model and the spot price model

as stochastic inputs, we formulate a real option inventory-release model to study the benefit
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of optimally managing a downstream LNG storage facility. This allows characterization of

the structure of the optimal inventory management policy. An interesting finding is that

when it is optimal to sell, it is not necessarily optimal to sell the entire available inventory.

The model can be used by LNG players to value and manage the real option to store LNG

at a re-gasification facility, and is easy to be implemented. For example, this model is

particularly useful to value leasing contracts for portions of the facility capacity. Real data

is used to assess the value of the real option to store LNG at the downstream re-gasification

facility, and, contrary to what has been claimed by some practitioners, we find that it has

significant value (several million dollars).

Chapter 4 studies the importance of modeling the shipping variability when valuing and

managing a downstream LNG storage facility. The shipping model presented in Chapter

3 uses a “rolling forward” method to generate the independent and identically distributed

(i.i.d.) unloaded amount in each decision period. We study the merit of the i.i.d. assumption

by using simulation and developing an upper bound. We show that the model, which uses

the i.i.d. unloaded amount, provides a good estimation of the storage value, and yields a

near optimal inventory control policy. We also test the performance of a model that uses

constant throughput to determine the inventory release policy. This model performs worse

than the model of Chapter 3 for storage valuation purposes, but can be used to suggest the

optimal inventory control policy, especially when the ratio of flow rate to storage size is high,

i.e., storage is scarce.

Chapter 5 summarizes the contributions of this thesis.
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Chapter 1

Introduction

Natural Gas is a major principal source of energy. Since it is environmental clean, and there

is abundance of natural gas in the world, many power plants use it as fuel. It plays an

increasing important role in serving day-to-day energy needs.

The natural gas supply chain includes upstream production, in the United States (U.S.)

or foreign countries, transportation, and storage. There are two types of transportation: nat-

ural gas pipeline and liquefied-natural-gas (LNG) ships. The pipeline-based transportation

system consists of a complex network of pipelines, which can quickly and efficiently transport

natural gas from supply areas to demand areas. However, it is impractical to use pipelines

across oceans. LNG is natural gas cooled to liquid state. Liquefaction reduces the volume of

natural gas by a factor of more than 600, thus makes storage and long distance ocean ship-

ping practical. After being loaded to special ships, LNG is shipped to downstream storage

facilities, where it is regasified and sold into the wholesale market through pipeline delivery.

This thesis studies several aspects of supply chain management and economic valuation of

real options in the natural gas and LNG industries, including gas pipeline transportation,

ocean LNG shipping logistics, and LNG downstream storage.

Natural gas prices in the U.S. are set by market forces. Buying and selling of natural

gas by market players drives the movement of natural gas prices, which can change often,

and sometimes drastically over time. Thus, natural gas prices in the U.S. are very volatile.

There are two distinct markets for natural gas: the spot market, and the futures market.

The spot market entails transactions with daily delivery of natural gas. The futures market

consists of trades with delivery of natural gas at least one month, and up to 72 months, in

the future. Physical delivery under a futures contract is rare. Thus, futures trading is mainly

a financial, rather than physical, trading activity. Market players also trade other natural

gas based financial derivatives, such as options and basis swaps. The New York Mercantile

Exchange (NYMEX) and the IntercontinentalExchange (ICE) are the main exchanges for
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the trading of these contracts.

The main players in the natural gas industry are producers, interstate pipeline companies

(IPCs), local distribution companies (LDCs), marketers, and end users. Natural gas whole-

sale markets in the U.S. have been deregulated since the mid-1980s. The pipeline system is

owned and operated by pipeline companies. Interstate pipelines are regulated by the Fed-

eral Energy Regulatory Commission (FERC). FERC requires that pipeline companies make

their transport capacity available to shippers in a non-discriminatory basis. Shippers must

contract with pipeline companies to use their transport capacity. Transport contracts can be

viewed as real options: when the natural gas price at the delivery market is higher than the

price at the receipt market net of transportation cost, shippers use transport contracts to

capture the positive price differences; otherwise, they do not use their transport contracts.

There are two types of transport contracts: firm and interruptible. Interruptible contracts

are usually short-term contracts. Under this type of contract, the pipeline companies have

no obligation to provide the transport service. Firm contracts give shippers the right to

transport up to a specified amount of natural gas between specified locations, and require

the pipeline companies to guarantee service. Firm contracts have an option-like structure:

shippers pay a premium (demand charge) to pipeline companies to reserve transport capacity

and an execution fee (strike price or commodity charge) to physically ship the gas. The focus

of Chapter 2 in this thesis is on firm contracts.

Most transport contracts have a network structure that includes multiple receipt/delivery

points, that is, shippers can ship gas from several receipt markets to several delivery markets

under the same contract. Some contracts have dedicated capacity, that is, each receipt or

delivery point has a pre-specified maximum capacity. Shippers cannot transport more than

this amount of gas from (or to) each point. Flexible receipt/delivery contracts allow shippers

to choose where they want to buy/sell natural gas, so long as the total quantity shipped does

not exceed the contract capacity.

It is common for natural gas shippers to value transport contracts by simple adaptations

of financial spread option formulas, which do not fully account for the implications of the

capacity limits and the network structure that distinguish these contracts. Chapter 2 studies

the real option valuation problem of transport capacity by taking the network structure and

capacity flexibility of transport contracts fully into account.

Motivated by current developments in the LNG industry worldwide, Chapter 3 studies

the operations of LNG supply chains facing both supply and price risk. In 2006, U.S. gas

imports accounted for 15% of total gas consumption: 2% are LNG imports and 13% are

pipeline imports. According to the Energy Information Administration (EIA), total U.S.

gas imports will rise to 28% of total gas consumption by 2025, LNG imports will increase to
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20%, and pipeline imports will decrease to 8%. Thus, LNG is expected to play an increasingly

important role in the U.S. This expansion requires the development of more import facilities

in the U.S. There are currently four existing conventional LNG import terminals, and 40

proposed or under-construction projects in the U.S. The existing four terminals are also

expanding their storage and regasification capacities. This growing industry needs a model

to support decisions on developing, valuing, and managing LNG import terminals, which

can be interpreted as real options on the price of natural gas.

Chapter 3 studies the integrated LNG supply chain with a focus on the valuation of down-

stream storage and regasification terminals. Chapter 4 studies the importance of modeling

shipping variability when valuing and managing downstream LNG storage.
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Chapter 2

Computing and Delta Hedging the

Economic Value of Natural Gas

Pipeline Network Capacity

2.1 Introduction

Natural gas is a major energy source in the United States (U.S.) and other industrialized

countries; in the U.S. it accounts for 24% of total energy consumption. Furthermore, the

Energy Information Administration (EIA 2006 [19]) has projected that gas consumption of

the U.S. will steadily grow by 1% per year from 2006 to 2030. In North America natural gas

is traded on both spot and forward markets at different geographical locations. Gas Daily, a

widely circulated industry newsletter, includes 84 pricing points. These locational markets

are connected by a web of about 160 interstate pipelines.

The New York Mercantile Exchange (NYMEX) and the IntercontinentalExchange (ICE)

trade financial contracts associated with about 40 locational markets. These contracts in-

clude futures with physical delivery at Henry Hub, Louisiana, basis swaps (forward financial

contracts on price differences between Henry Hub and other markets), and put and call

options on NYMEX futures. There are also over the counter (OTC) markets. Together

NYMEX, ICE, and these OTC markets provide market participants with a high level of

price transparency.

While natural gas wholesale markets in the U.S. are unregulated, interstate pipeline

companies are regulated entities. They act as common carriers that do not own the gas they

transport. Shippers, that is, those who own the gas being transported by pipelines, must

contract with pipeline companies for portions of their transport capacity to receive service.

Pipelines sell their capacity through sealed bid auctions run on their web sites. Interstate
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Table 2.1: Points and quantities of a network transport contract on the Transco pipeline

(Source: Transco web site).

Point Type Capacity (MMBtu/day)

Zone 3 Delivery 1,816

Zone 4 Delivery 111,366

Zone 1 Receipt 18,932

Zone 2 Receipt 27,841

Zone 3 Receipt 21,160

Zone 3 Receipt 43,433

Zone 3 Receipt 1,816

pipeline minimum and maximum contract rates (prices) are regulated, and shippers need to

form their own valuations of pipeline capacity when they bid for securing it. Pipelines face

a similar problem when determining a minimum acceptable price for their capacity.

Pipeline companies sell two basic types of transport contracts: firm and interruptible.

Interruptible contracts are generally short term (1 month or less) best effort contracts, that

is, pipelines are not obligated to provide interruptible transportation services to shippers.

In contrast, firm contracts are long(er) term guaranteed contracts that give shippers the

right to transport up to a given quantity of natural gas during each period in their term.

Firm contracts have an interesting option-like structure: shippers pay a per unit premium

(demand charge) to reserve transport capacity and a per unit execution fee (commodity

charge) to use it. A large fraction of pipeline capacity in the U.S. is sold in advance on a

firm basis.

As discussed by Eydeland and Wolyniec (2003 [21]), shippers can value pipeline capacity

as a real option on natural gas prices at different locations connected by a pipeline. In par-

ticular, pipeline capacity between two locations can be valued as a spread option on natural

gas prices at these locations. Their argument is that shippers employ pipeline capacity to

support the following trade: they purchase natural gas at a receipt market and inject it into

the pipeline, which in turn transports and delivers it to the delivery market, where shippers

finally sell the gas on the spot market. (To be precise, this argument applies when the

shipper is a merchant but can be shown to hold when the shipper is a natural gas producer,

industrial consumer, or local distribution company; see Secomandi 2007 [52].)

Secomandi (2007 [52]) provides some empirical evidence that shippers do in fact use

spread option pricing methods to value point-to-point pipeline transport capacity. But not

all transport contracts have this simple structure; they often feature a network structure that
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includes multiple receipt/delivery points. That is, shippers can ship gas from several receipt

markets to several delivery markets under the same contract. Table 2.1 shows the points and

capacities of a real network transport contract on the Transco pipeline (the meaning of the

point capacities is explained in more detail in §2.2). Conversations with practitioners reveal

that simple adaptations of the spread option pricing approach are widespread in practice

for the valuation of network contracts. However, their network structure and capacity limits

imply that in this case the spread option valuation logic may no longer apply in exact terms.

Thus, in general, these spread option based methods are heuristics that yield suboptimal

valuations of network contracts for pipeline capacity.

Objectives and contributions. To the best of our knowledge, the effectiveness of

spread option based heuristic models is not currently known. Our first objective is to develop

an exact model to compute the economic value of network pipeline capacity, and compare its

performance against that of heuristic spread option based models. Our second objective is

to assess the practical viability of pricing this capacity by risk neutral valuation techniques,

that is, by assuming that financial replication of the economic value of this capacity by

dynamic trading of futures (delta hedging) is possible in practice. Our third objective is to

study how the contract value changes in price-related parameters, including initial prices,

volatilities, and correlations.

We contribute to the literature as follows. We develop and analyze a linear programming

and simulation (LPS) based model that, aside from simulation error, exactly values natural

gas pipeline network transport capacity. We establish a parity type decomposition of the

value of this capacity that extends the classical put-call parity result for European call and

put options (Hull 2000 [30]). We derive two spread option based models, respectively based

on linear and convex programming, which yield a lower bound (LB) and an upper bound

(UB) on the exact value of capacity. Our LB model appears to be an enhanced version

of spread option based models employed in practice, and we take it as a proxy for current

practice. Our UB provides an additional benchmark for our LPS model.

Using an Ito based representation of the evolution of futures prices at different geograph-

ical locations, we apply the pathwise derivative computation method (Glasserman 2004 [25])

to obtain unbiased estimators of the so called deltas, that is, the number of futures contracts

to be dynamically traded to replicate the economic value of network pipeline capacity (Hull

2000 [30]). In addition, we establish structural properties of the deltas and interpret them

as discounted expectations, under a specific weighing distribution, of the amount of natural

gas procured/marketed when optimally using pipeline capacity.

We also conduct an analysis of the effectiveness of our LPS model relative to the L/UB

models based on real natural gas prices. We show that the LB model can significantly
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undervalue network transport capacity, by 5-25% in different cases, relative to our LPS

model. The UB model largely overvalues this capacity, which further indicates that it seems

difficult for spread option based models to generate accurate valuations of this capacity.

Perfect delta hedging can capture the exact value change along the time. We test the delta

hedging performance of our LPS model on real data and measure the discrepancy of estimate

value at time 0 and total realized value at time T . If the contract value is perfectly delta

hedged, the discrepany is zero. Our numerical results show that our LPS model obtains

encouraging results.

In addition to the deltas, we are also interested in the sensitivity analysis with respect

to the other price parameters. We use the central difference method to compute the other

derivatives of price parameters, and numerical examples to illustrate how the contract values

change with the initial futures prices, volatilities, correlations, and time to maturity.

Relevance. While practicing managers in the energy and commodity industries have

embraced real option thinking and tools, application of these ideas tends to overlook impor-

tant operational aspects of the real assets being managed. As previously discussed, in our

setting this amounts to using spread option based models for the valuation of network trans-

port capacity. Our work brings to light the importance of faithfully capturing the operational

aspects of these assets when valuing them. Moreover, conversations with practitioners reveal

that our formal interpretation of the deltas is consistent with how these quantities tend to

be used in practice, that is, as “projections” for how much to buy/sell when a contract is

used. Thus, this interpretation provides theoretical support for practice.

In particular, our LPS model is a tool that natural gas traders and risk managers of firms

engaged in the shipping of natural gas can employ to value pipeline network capacity and

support related trading and hedging activities. These firms include producers, merchants,

industrial consumers, utilities, and local distribution companies. Our data driven assessment

of model performance, both in terms of valuation and financial hedging abilities, the sim-

plicity of our model, and its fast computation time make our LPS model a good candidate

for practical implementation and adoption.

While our models and insights are specific to one type of real option in the natural gas

industry, they have relevance beyond our specific application. Our models can be extended

to value and hedge other real options in the energy and commodity industries associated with

the management of refining, processing, shipping, transportation, and distribution capacity

for various commodities, such as, oil, coal, and biofuels. We expect our insights to remain

pertinent in these settings.

Our sensitivity analysis studies the movement of the contract value with respect to the

price parameters. The analysis is interesting and useful for practitioners. Shippers can use
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Table 2.2: Relationship of the LPS model to the existing models for exotic options’ valuation.

Receipt Set Delivery Set Receipt Set Delivery Set

Case Cardinality Cardinality Capacity Capacity Model

1 1 > 1 Dedicated Dedicated Spread option

2 > 1 1 Dedicated Dedicated Spread option

3 > 1 > 1 Flexible Flexible Rainbow option

4 > 1 > 1 Dedicated Dedicated LPS

5 > 1 > 1 Flexible Dedicated LPS

6 > 1 > 1 Dedicated Flexible LPS

this information to support their trading activities in financial markets.

Novelty. Our work contributes to the real option literature that deals with applications

in the energy and commodity industries. Geman (2005 [24]) provides a recent introduction to

this field. Schwartz (1997 [50]) and Seppi (2002 [54]) review the stochastic processes typically

used in this literature to model the evolution of spot prices. Smith and McCardle (1998

[57], 1999 [58]) discuss the valuation of oil and gas investments by focusing on production

activities. Enders et al. (2008 [16]) value extraction and technology scaling options in natural

gas production. Kamat and Oren (2002 [34]) and Baldick et al. (2006 [2]) value interruptible

electricity contracts. Tseng and Barz (2002 [62]) and Tseng and Lin (2007 [63]) consider the

valuation of power generation assets. Jaillet et al. (2004 [31]) and Keppo (2004 [36]) analyze

the valuation of electricity and natural gas swing contracts. Wang et al. (2007 [64]) and

Secomandi (2007 [53]) value liquefied natural gas and commodity storage assets, respectively.

Caldentey et al. (2007 [8]) study the long-term operation of an underground copper mining

project. Hahn and Dyer (2008 [26]) value oil and gas switching options. Mart́ınez-de-Albéniz

and Simón (2007 [42]) study the optimal trading of a commodity between two geographical

locations when the trader has market power. In contrast to these authors, we study a

different problem, the valuation of natural gas pipeline network transport capacity, which

does not appear to have been studied in the literature.

Deng et al. (2001 [13]), Eydeland and Wolyniec (2003 [21]), and Secomandi (2007 [52])

consider simplified versions of the problem studied here, that is, the valuation of point-to-

point electricity transmission and natural gas transportation assets. Given the point-to-point

nature of these assets, their valuation through spread options is appropriate. In this paper

we study the network version of this problem, which is significantly richer than its point-to-

point counterpart and requires a different solution approach for accurate valuation purposes

(our LPS model).

Our contract valuation problem can be interpreted as the valuation of an exotic option.
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Special cases of this problem, characterized by different flexibilities in the usage of the

capacity of different receipt and delivery points (see §2.2 for details), can be addressed using

existing models available in the financial engineering literature (see, e.g., Hull 2000 [30,

Chapter 18]). Table 2.2 relates our LPS model to this literature by varying the cardinalities

and the capacity flexibilities of the receipt and delivery point sets. If a contract has either

one receipt point or one delivery point and both the receipt and delivery point sets have

dedicated capacities (cases 1-2), then the problem reduces to the valuation of a collection of

spread options (see Carmona and Durrleman 2003 [9] for a review of spread option valuation

models). If the receipt or delivery point sets have flexible capacity (case 3), then our contract

valuation problem is equivalent to the valuation of a rainbow option (Stulz 1982 [60], Johnson

1987 [33], and Boyle and Tse 1990 [5] deal with the valuation of such options). Otherwise

(cases 4-6), the existing models do not capture the entire richness of our problem, and our

LPS model is needed to solve it exactly. Obviously, our model also applies in cases 1-3.

No exact closed form formulas are available for the valuation of spread and rainbow

options under the typical models used to represent the evolution of equity or commodity

prices. Thus, simulation must be used to value these options exactly, but there exist closed

form approximate formulas to price these options (see the previously stated references).

While we also use simulation and closed form spread option approximation formulas in

this paper, a novel feature of our work is combining these techniques with linear/convex

optimization methods.

Our work is distinct from most of the extant real option literature in that we assess both

the valuation and delta hedging performance of our LPS model based on real data. The

test of the delta hedging ability of valuation models on real data is not typically carried out

in this literature. Our computation of the deltas is based on applying the pathwise method

discussed by Broadie and Glasserman (1996 [7]) and Glasserman (2004 [25]). A significant

element of novelty in our application of this technique is that the terminal payoff of our

real option is given by the solution of a linear program, rather than being a closed form

expression, as is typical in the valuation of equity options (Broadie and Detemple 2004 [6]).

By invoking envelope theorems (Milgrom and Segal 2002 [43]), we can apply the pathwise

method to our setting. Moreover, our interpretation of the delta hedges as special discounted

expectations of the quantities optimally procured/marketed at contract expiration leverages,

in a specific and novel manner, our pathwise delta expressions.

Our numerical examples show that the contract values are convex, decreasing first, and

then increasing, in price volatility when the relevant prices are highly positively correlated.

This “V” shape behavior is uncommon for single-asset options, but has been already observed

for spread options (Eydeland and Wolyniec 2003 [21], pp.344-345). Our sensitivity analysis
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shows that this behavior continues to occur for network-type options.

Organization. The remainder of this chapter is organized as follows. We present our

LPS model in §2.2 and analyze it in §2.3. We introduce our L/UB models in §2.4. We

discuss delta hedging related aspects in §2.5, and discuss the central difference method to

compute the other Greeks in §2.6. We empirically assess the performance of our models and

conduct our sensitivity analysis in §2.7, and briefly conclude in §2.8. An appendix contains

supportive materials.

2.2 Model

Figure 2.1(a) conceptually illustrates a natural gas pipeline network. Gas flows from receipt

points, through connecting points, to delivery points. Pipeline managers market their ca-

pacity in the form of contracts that specify a collection of time periods (term), two sets of

receipt and delivery points, the capacity limits at each of these points, and the set of links

that connect the receipt points to the delivery points.

The point capacities indicate how much natural gas a shipper owning such a contract

can inject/withdraw at each receipt/delivery point in each time period in the contract term.

These contracts do not specify link capacities, which are instead implicitly expressed by the

point capacities. The contract capacity is equal to the sum of the capacities of the receipt or

the delivery points. Thus, the logistical structure of a network contract can be represented

as a bipartite graph with node capacities. We denote the sets of receipt and delivery points

(nodes) by R and D, respectively, and let m and n be their cardinalities. Figure 2.1(b)

illustrates three possible (m:n) contract networks: (1:n), (m:n), and (m:1).

Two typical contract terms are the November-March (heating season) and April-October

terms, but multiyear contracts are also common. A contract is really a collection of subcon-

tracts, one for each period in the contract term, because during each such period shippers

have the option to ship natural gas up to the maximum contract capacity, that is, capacity

unutilized in a given period cannot be utilized at a later time. Thus, without loss of gen-

erality, we only consider contracts with a single period term, which we denote by T . By a

slight abuse of notation we also denote by T the time that corresponds to the beginning of

this period.

The receipt and delivery points of a network contract are associated with natural gas

market hubs. During time period T , the shipper owning this contract purchases natural

gas at one or more receipt points and ships it to one or more delivery points, where the

delivered natural gas is sold. Purchases and sales occur during the same time period because

natural gas is received and delivered simultaneously by the pipeline (but, clearly, the received
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Figure 2.1: Conceptual representations of natural gas pipeline and contract networks.

natural gas is not the same delivered natural gas). The problem studied in this paper is that

of computing at the current time, which we denote 0, the economic value of a given network

contract for usage of pipeline transport capacity during time period T (> 0).

This problem can be tackled via risk neutral valuation techniques (see, e.g., Luenberger

1998 [39, Chapters 8-9] and Duffie 2001 [15, Chapters 2 and 6]). This requires that a futures

market exists at each point of a given network transport contract. In the U.S., the main

financial contracts relevant for valuation purposes are NYMEX natural gas futures, whose

delivery point is Henry Hub, Louisiana. This is a very liquid market with up to 72 different

monthly maturities. In addition, NYMEX and ICE trade basis swaps, which are locational

price differences relative to Henry Hub. Basis swaps are purely financial contracts that do

not entail physical delivery.

While there exist fewer basis swaps than physical markets, a basis swap typically “cov-

ers” more than one market hub. This is quite natural, as price movements at more than

one market hub are closely correlated, so that given the costs of maintaining a financial

contract (basis swap) fewer financial contracts have been developed than physical markets.

For example, the Houston Ship Channel basis swap is clearly associated with the Houston

Ship Channel physical market, but this basis swap can also be associated with the nearby

Katy Hub, which does not feature a separate basis swap. Also, while futures exist only at

Henry Hub, by definition of basis swap it is clear that the sum of the Henry Hub futures

price for a given maturity and the basis swap price for the same maturity yields a futures

price for the basis swap location. Hence, valuation by risk neutral methods is possible even

for contracts that involve a large number of markets.

Natural gas futures contracts are settled three business days prior to the beginning of a

given month. Time T corresponds to this time. Thus, we assume that this is when the shipper

decides how much natural gas to ship during time period T , that is, the ensuing month.

This also occurs in practice when shippers “nominate” their monthly shipping decisions to
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pipelines during the so called bid week, which is the week prior to each shipping month

(Eydeland and Wolyniec 2003 [21, Chapter 1]). However, shippers can modify their monthly

nominations within the shipping month, e.g., in response to changes in the spot prices relative

to the settled futures prices. We do not model these daily nomination updates, but our model

can be modified in a straightforward manner to capture their effect on the contract value

by dividing monthly time period T into weekly or daily subperiods. Thus, replication of the

contract cash flows during time period T can be performed by trading futures contracts at

each receipt/delivery point. If T were to be less than one month, this replication could be

performed in practice using balance of the month/week or Gas Daily options (see Eydeland

and Wolyniec 2003 [21, Chapter 4]).

We introduce some additional notation to describe our LPS model. The capacities of each

receipt point i ∈ R and delivery point j ∈ D are denoted Ci and Cj, respectively, and are

measured in MMBtu per month. The contract capacity is then C :=
∑

i∈RCi ≡
∑

j∈D Cj.

The per unit usage charge to ship natural gas during time period T on link i-j, i ∈ R,
j ∈ D, is denoted Kij; this is the commodity rate of link i-j and is measured in $/MMBtu.

The fuel coefficient associated with shipping natural gas on link i-j during time period T is

φij ∈ [0, 1]; this coefficient is used to model the fuel required by the compressor stations to

ship one unit of natural gas on this link, which is φij/(1 − φij), and must be procured by

the shipper. The futures prices at time t ∈ [0, T ] with maturity at time T for receipt and

delivery points i ∈ R and j ∈ D are Fi(t, T ) and Gj(t, T ), respectively. (If t = T then these

are spot prices.) The risk free interest rate is r; we employ continuous compounding in this

paper so that the risk free discount factor from time t > 0 back to time 0 is exp(−rt).
Let v(T ) denote the value of the contract cash flows at contract execution time T for

a given realization of prices Fi(T, T ) and Gj(T, T ), ∀i ∈ R, j ∈ D (v(T ) clearly depends

on these prices but for notational simplicity this dependency is omitted from our notation).

This quantity is the optimal value of the following linear program P, where sets D(i) and

R(j), respectively, include the delivery and receipt points connected to receipt point i ∈ R
and delivery point j ∈ D:

P: v(T ) := max
x

∑

i∈R

∑

j∈D(i)

[
Gj(T, T )−

Fi(T, T )

1− φij
−Kij

]
xij (2.1)

s.t.
∑

j∈D(i)

xij 6 Ci, ∀i ∈ R (2.2)

∑

i∈R(j)

xij 6 Cj, ∀j ∈ D (2.3)

xij > 0, ∀i ∈ R, j ∈ D(i). (2.4)

In model P we assume that all cash flows incurred during time period T are accounted for at
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time T . As of time 0, the optimal objective function value of model P is a random variable,

denoted ṽ(T ), which depends on the uncertain prices at the receipt and delivery points that

will prevail at time T . The contract value at time 0, denoted V (0, T ), is the expected value

computed under the risk neutral measure of random variable ṽ(T ) discounted by the risk

free factor:

V (0, T ) := e−rTE0[ṽ(T )].

Here E0 denotes the time 0 conditional expectation with respect to the joint distribution of

random vector (F̃i(T, T ), G̃j(T, T ), i ∈ R, j ∈ D) under the risk neutral measure given price

vector (Fi(0, T ), Gj(0, T ), i ∈ R, j ∈ D). This measure exists under standard assumptions

that we suppose to hold here (Hull 2000 [30] and Luenberger 1998 [39]). These assumptions

are fairly realistic in our setting given the existence of traded futures contracts at different

geographical locations in North America, as previously discussed. We compute V (0, T ) by

simulating time T futures prices’ realizations, optimally solving linear program P for each

such realization to obtain v(T ), averaging these values, and discounting back to time 0.

Model P assumes that the point capacities are dedicated. Some contracts in practice

have a more flexible structure. Contracts with flexible capacities allow shippers to combine

the capacities of different receipt/delivery points for usage at a single such point. Three

broad classes of flexible capacity contracts include those with capacity flexibility associated

with either their receipt or delivery points, but not both, and those with fully flexible receipt

and delivery points (of course one may think of even more cases than these, in which only

a subset of points have flexible capacities). For brevity, we do not provide the modified

formulations of model P for these three cases.

2.3 Analysis

In this section we discuss properties of the optimal solution of model P and decompose the

contract value as the sum of its intrinsic and extrinsic values (defined below).

Optimal solution of model P. An optimal solution to model P can be computed by

linear programming. Since the cardinalities of the receipt and delivery point sets are small

(less than 10 in practice), this can be done very efficiently, even if large cardinality LP

is efficient. In fact one may question why linear programming is needed for this purpose;

in other words, one may wonder if the following simple greedy algorithm (GA) would be

sufficient to optimally solve model P.

Given a sample realization of futures prices at time T :

Step 1. Set vGA(T )← 0, RCi ← Ci, ∀i ∈ R, and DCj ← Cj, ∀j ∈ D.
Step 2. Set price spread coefficients Sij(T, T )← Gj(T, T )−Fi(T, T )/(1−φij)−Kij, ∀i ∈ R,
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Figure 2.2: Contract network for Example 1.

j ∈ D(i), sort them in decreasing order, and store them in a stack.

Step 3. If the stack is empty, stop and return vGA(T ). Otherwise, remove the first element

Sij(T, T ) from the stack. Set xij ← min{RCi,DCj} and vGA(T )← vGA(T ) + Sij(T, T )xij.

Step 4. Set RCi ← RCi − xij and DCj ← DCj − xij. Go to Step 3.

Example 1 shows that GA can fail to yield an optimal solution to P, even in rather simple

settings.

Example 1 (GA suboptimality). Consider the 2 receipt and 2 delivery point dedicated

capacity contract displayed in Figure 2.2, where the numbers above/below each point are

their capacities. Let the fuel rate of each link be zero. The time T prices are F1 = $8.80,

F2 = $8.90, G1 = $9.62, and G2 = $9.82, with their MMBtu units and arguments removed

for ease of notation (a simplification also made below with reference to other quantities of

interest). Let the commodity rates be K11 = $0.01 and K12 = K21 = K22 = $0.02. The price

spreads net of the commodity rates are S11 = $0.81, S12 = $1.00, S21 = $0.7, and S22 = $0.9.

The GA solution is xGA11 = 0, xGA12 = 1, 000, xGA21 = 2, 000, and xGA22 = 3, 000, and its value is

vGA(T ) = $5, 100. An optimal solution to P is instead x∗11 = 1, 000, x∗12 = 0, x∗21 = 1, 000,

and x∗22 = 4, 000, and its value is v(T ) = $5, 110. If K11 is set equal to the other commodity

rates, that is, $0.02, the GA solution is unchanged but is now also optimal (the previous

optimal solution also remains so).

The cause of the suboptimality of GA in Example 1 resides in the point capacity con-

straints. In this example, link 1-2 has the highest spread (S12 = $1.00), so one would be

tempted to send as much gas as possible through this link. However, the capacity of re-

ceipt point 1 is 1,000. This means that if link 1-2 is fully utilized, then the only way to

utilize the capacity of delivery point 1 is to ship gas from receipt point 2 to this delivery

point, which implies utilizing the link with the lowest spread (S21 = $0.70). Thus, it is

optimal to avoid using the highest valued link 1-2, fully utilize the capacity of delivery point
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1 by shipping gas along links 1-1 and 2-1, and fully utilize the capacity of delivery point 2

by shipping gas here from receipt point 2. More formally, starting from the GA solution,

the contract network exhibits the feasible improving cycle (i = 1, j = 1, i = 2, j = 2,

i = 1): the change in objective function value of sending one unit of flow through this cycle

is S11 − S21 + S22 − S12 = K21 − K11 + K12 − K22 = 0.01 > 0, and the resulting solution

satisfies all the capacity constraints. Hence, the GA solution can be made optimal by not

shipping gas along the highest valued link. Thus, somewhat surprisingly, as a consequence

of the point capacity constraints, it is optimal to ship gas along the least valued link but not

along the highest valued link.

In Example 1, all the fuel rates are equal. When all the links also have identical com-

modity rates then GA optimally solves P. This is an instance of the following general result.

Proposition 1 (GA optimality). GA optimally solves model P if all the fuel rates φij and

commodity rates Kij, ∀i ∈ R, j ∈ D(i), are equal to constants φ and K, respectively.

To gain intuition into the nature of this result, it is useful to introduce purchase and sale

decision variables pi =
∑

j∈D(i) xij and sj =
∑

i∈R(j) xij for receipt and delivery points i and

j, respectively, and to define F ′
i (T, T ) := Fi(T, T )/(1 − φ) −K. In this case, model P can

be equivalently reformulated as follows:

P′: v(T ) := max
p,s

∑

j∈D

Gj(T, T )sj −
∑

i∈R

F ′
i (T, T )pi

s.t. 0 6 pi 6 Ci, ∀i ∈ R
0 6 sj 6 Cj, ∀j ∈ D
sj 6

∑

i∈R(j)

pi, ∀j ∈ D

pi 6
∑

j∈D(i)

sj, ∀i ∈ R
∑

i∈R

pi =
∑

j∈D

sj.

It is now clear that model P′ can be solved to optimality in a sequential fashion as follows.

Form two lists by ordering the selling prices in decreasing order and the purchasing prices

in increasing order. Make equal sale and purchase profitable decisions, in the sense that the

sale revenue exceeds the purchase cost, by repeatedly selecting the locations corresponding

to the top elements of each of the two lists, setting their sale and purchase amounts equal

to the minimum of their respective remaining point capacities, updating these capacities

accordingly, and removing a selling/purchase price whenever the remaining capacity of its

corresponding point becomes zero. This algorithm is evidently equivalent to GA.
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Contract value decomposition. Analogous to the well known put-call parity result

in the valuation of standard options (Hull 2000 [30]), we now establish an extended parity

result for the valuation of a network contract. Given nonnegative and finite vector x(0) :=

(xij(0),∀i ∈ R, j ∈ D(i)), where the suffix indicates that this vector is determined at time

0, we define

V 1(0, T ;x(0)) :=
∑

i∈R

∑

j∈D(i)

e−rT
[
Gj(0, T )−

Fi(0, T )

1− φij
−Kij

]
xij(0)

V 2(0, T ;x(0)) := e−rTE0[ṽ
2(T ;x(0))]

v2(T ;x(0)) := max
x′(T )

∑

i∈R

∑

j∈D(i)

[
Gj(T, T )−

Fi(T, T )

1− φij
−Kij

]
x′ij(T ) (2.5)

s.t.
∑

j∈D(i)

xij(0) + x′ij(T ) 6 Ci, ∀i ∈ R (2.6)

∑

i∈R(j)

xij(0) + x′ij(T ) 6 Cj, ∀j ∈ D (2.7)

x′ij(T ) > −xij(0), ∀i ∈ R, j ∈ D(i). (2.8)

The vector x′(T ) in (2.5)-(2.8) can be interpreted as an update of the flow vector x(0) at time

T given the realization of prices at this time. Continuing the analogy with the well know

put-call parity result, V (0, T ) corresponds to the value of a “call” option and V 2(0, T ;x(0))

to that of a “put” option. Define xij(T ) := xij(0)+x
′
ij(T ), ∀i ∈ R, j ∈ D(i). Replace x′ij(T )

by xij(T )−xij(0) in (2.5)-(2.8), so that the decision variables of this linear program become

xij(T ). It is clear that these variables satisfy the constraints of model P. By defining x∗(T )

to be an element of

argmax
x(T )

∑

i∈R

∑

j∈D(i)

[
Gj(T, T )−

Fi(T, T )

1− φij
−Kij

]
[xij(T )− xij(0)] s.t. (2.6)-(2.8),

and denoting by x̃∗ij(T ) the random variable associated with one of its elements, we can write

V 2(0, T ;x(0)) = e−rTE0




∑

i∈R

∑

j∈D(i)

[
G̃j(T, T )−

F̃i(T, T )

1− φij
−Kij

]
[x̃∗ij(T )− xij(0)]





= e−rTE0




∑

i∈R

∑

j∈D(i)

[
G̃j(T, T )−

F̃i(T, T )

1− φij
−Kij

]
x̃∗ij(T )





−
∑

i∈R

∑

j∈D(i)

e−rTE0

[
G̃j(T, T )−

F̃i(T, T )

1− φij
−Kij

]
xij(0)

= V (0, T )−
∑

i∈R

∑

j∈D(i)

e−rT
[
Gj(0, T )−

Fi(0, T )

1− φij
−Kij

]
xij(0)

= V (0, T )− V 1(0, T ;x(0)),
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where the third equality follows since Fi(0, T ) = E0[F̃i(T, T )] and Gj(0, T ) = E0[G̃j(T, T )].

Thus, the above analysis shows that the following result holds.

Proposition 2 (Network contract value parity). Given 0 6 x(0) <∞ (componentwise),

it holds that V (0, T ) = V 1(0, T ;x(0)) + V 2(0, T ;x(0)).

Let xI(0) denote an optimal solution of the following intrinsic value model, where the

adjective intrinsic indicates that the time 0 futures prices appear in the objective function

of the following model, and we ignore price uncertainty:

V I(0, T ) := max
x(0)

∑

i∈R

∑

j∈D(i)

e−rT
[
Gj(0, T )−

Fi(0, T )

1− φ −Kij

]
xij(0) s.t. (2.2)-(2.4).

This allows us to decompose the contract value V (0, T ) into the sum of intrinsic value

V I(0, T ) ≡ V 1(0, T ;xI(0)) and extrinsic value V E(0, T ) := V 2(0, T ;xI(0)): V (0, T ) =

V I(0, T ) + V E(0, T ), where the adjective extrinsic indicates that this is the value that can

be attributed to price uncertainty.

2.4 Bounds

In this section we derive lower and upper bounds on V (0, T ). The intrinsic value V I(0, T )

is also a lower bound (LB) on V (0, T ), but we derive the following stronger LB denoted

V LB(0, T ):

PLB : V LB(0, T ) := max
x(0)

∑

i∈R

∑

j∈D(i)

e−rTE0

[
G̃j(T, T )−

F̃i(T, T )

1− φ −Kij

]+
xij(0) s.t. (2.2)-(2.4).

That V LB(0, T ) 6 V (0, T ) follows from the observation that any optimal solution to PLB is

feasible to P over all sample path. The coefficients of the decision variables in the objective

function of PLB are spread options. These values can be computed by simulation or numer-

ical methods, and good closed form approximation formulas, such as Kirk’s (1995 [37]; see

Appendix 2.9.1), are also available (Carmona and Durrleman 2003 [9]). Obviously if such

approximations are used one also obtains an approximate LB.
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We compare the two LBs, then have V LB(0, T ) > V I(0, T ), because

V I(0, T ) = max
x(0)

∑

i∈R

∑

j∈D(i)

e−rT
[
Gj(0, T )−

Fi(0, T )

1− φ −Kij

]
xij(0)

= max
x(0)

∑

i∈R

∑

j∈D(i)

e−rT
[
E0[Gj(T, T )]−

E0[Fi(T, T )]

1− φ −Kij

]
xij(0)

6 max
x(0)

∑

i∈R

∑

j∈D(i)

e−rTE0

[
G̃j(T, T )−

F̃i(T, T )

1− φ −Kij

]+
xij(0)

= V LB(0, T )

The first equality follows from the well known property that futures prices are martingales

under the risk neutral measure (also used in establishing Proposition 2). Therefore, the LB

model provides a tighter estimation than the intrinsic model.

We have anecdotal evidence that PLB is related to spread option based models employed

in practice. We conjecture that such models differ from PLB in that practitioners solve it

using a simple greedy search algorithm analogous to the one presented in §2.3. Thus, with

dedicated capacity, such models provide a weaker LB on V (0, T ) than V LB(0, T ) does.

We use Lagrangian duality applied to P to obtain our UB. Let λi and µj, respectively, be

the Lagrange multipliers for each constraint (2.2) and (2.3) in P. The Lagrangian function

for P is

L(x, λ, µ;T ) =
∑

i∈R

∑

j∈D(i)

[
Gj(T, T )−

Fi(T, T )

1− φij
−Kij

]
xij −

∑

i∈R

λi


 ∑

j∈D(i)

xij − Ci




−
∑

j∈D

µj


 ∑

i∈R(j)

xij − Cj




=
∑

i∈R

∑

j∈D(i)

[
Gj(T, T )−

Fi(T, T )

1− φij
−Kij − λi − µj

]
xij +

∑

i∈R

λiCi +
∑

j∈D

µjCj,

where T in L(x, λ, µ;T ) indicates that this problem is solved with knowledge of time T

prices.

By Lagrangian duality, it holds that v(T ) = minλ,µ>0 maxx>0 L(x, λ, µ;T ). Each feasible

decision variable xij in model P must satisfy the inequality 0 6 xij 6 min{Ci, Cj}. Thus,

to maximize L(x, λ, µ;T ) over x, we set xij = min{Ci, Cj} if the coefficient of xij is positive

and xij = 0 otherwise, which yields

v(T ) = min
λ,µ>0

∑

i∈R

∑

j∈D(i)

[
Gj(T, T )−

Fi(T, T )

1− φij
−Kij − λi − µj

]+
min{Ci, Cj}+

∑

i∈R

λiCi +
∑

j∈D

µjCj

︸ ︷︷ ︸
L′(λ,µ;T )

.
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Given vectors λ and µ, let L̃′(λ, µ;T ) denote the random value of L′(λ, µ;T ), e.g., as seen

from time 0. By definition of V (0, T ), we obtain upper bound V UB(0, T ) as follows:

V (0, T ) = e−rTE0[ṽ(T )] = e−rTE0

[
min
λ,µ>0

L̃′(λ, µ;T )

]
6 min

λ,µ>0
e−rtE0[L̃

′(λ, µ;T )] =: VUB(0, T ).

Thus, we obtain the following result.

Proposition 3 (Bounds). The following inequalities hold:

V I(0, T ) 6 V LB(0, T ) 6 V (0, T ) 6 V UB(0, T ).

Since it is easily verified that L′(λ, µ;T ) is a jointly convex function of λ and µ, V UB(0, T )

can be easily computed, provided that each of the following terms can be efficiently evaluated:

E0

[
G̃j(T, T )−

F̃i(T, T )

1− φij
−Kij − λi − µj

]+
, ∀i ∈ R, j ∈ D(i).

These terms are spread options on futures prices’ differences with a strike price (commodity

rate) adjusted to account for the marginal values, as seen from time 0, of the capacity of

receipt point i and delivery point j. As previously stated, there exist good closed form

approximations for computing such option values. Similar to the LB case, if one employs

such approximations one obtains an approximate UB.

2.5 Delta Hedging

It is well known that, in theory, financial replication of the value of a commodity derivative

can be done by dynamically constructing portfolios of futures contracts (Black 1976 [4]).

This is the celebrated delta hedging method, which requires the computation of the partial

derivatives of the contract value with respect to changes in the current futures prices, that is,

the deltas. In this section we show how delta hedging gives us a natural method to empirically

test the valuations generated by our LPS model. We also discuss the computation of unbiased

deltas, characterize, and interpret them by employing an Ito based model of futures price

evolution. In practice, it is common to consider additional value sensitivities (“greeks”)

due to second order price effects or changes in other parameters associated with the model

employed to describe the evolution of futures prices, e.g., their volatilities and correlations.

For brevity, here we only focus on the deltas.

Delta hedging and LPS model testing. Since delta hedging is well known, we

only provide a very brief discussion of how it applies in the context of this paper to make

the exposition self contained. The receipt and delivery point deltas at time t ∈ [0, T )
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are δFi (t, T ) := VFi(t,T )(t, T ) and δGj (t, T ) := VGj(t,T )(t, T ), where Vθ(t, T ) := ∂V (t, T ; θ)/∂θ

for θ ∈ {Fi(t, T ), Gj(t, T )}. Delta hedging consists of “shorting” the deltas at each time

t ∈ [0, T ). In other words, the number of futures contracts to trade at time t at receipt and

delivery points i and j are Mi(t, T ) := −δFi (t, T ) and Nj(t, T ) := −δGj (t, T ), respectively.
In theory, these futures positions must be continuously updated, in which case, letting

dFi(s, T ) and dGj(s, T ) denote “generic” Ito based stochastic dynamics of prices Fi(s, T )

and Gj(s, T ), ∀i ∈ R and j ∈ D, it is well known (see, e.g., Shreve 2004 [55]) that under

some regularity conditions the change in the contract value between times 0 and T satisfies

V (T, T )− V (0, T ) = −
[∑

i∈R

∫ T

0

Mi(s, T )dFi(s, T ) +
∑

j∈D

∫ T

0

Nj(s, T )dGj(s, T )

]

︸ ︷︷ ︸
CH(0, T )

⇒ V (T, T ) + CH(0, T ) = V (0, T ),

where the term CH(0, T ) is the cumulative delta hedging value between times 0 and T .

In practice, the delta positions can only be changed a finite number of times. Thus,

suppose that updating of these positions occurs at the start of a finite number of discrete time

intervals, each of length ∆t, that partition the time interval [0, T ]. Denote T (∆t) the set that
includes the times corresponding to the end of each of these time intervals. Let t ∈ T (∆t)
and define ∆Fi(t, T ) := Fi(t, T )− Fi(t−∆t, T ), ∆Gj(t, T ) := Gj(t, T )−Gj(t−∆t, T ), and

H(t, T ) :=
∑

i∈R

Mi(t−∆t, T )∆Fi(t, T ) +
∑

j∈D

Nj(t−∆t, T )∆Gj(t, T ).

In practice we can approximate CH(0, T ) by ĈH(0, T ) :=
∑

t∈T (∆t)H(t, T ) to obtain

V (T, T ) + ĈH(0, T ) ≈ V (0, T ). (2.9)

Expression (2.9) is useful for empirically assessing the valuation yielded by our LPS

model. Under a specific Ito based model of the futures prices’ evolution, for example (2.10)-

(2.14) below, our LPS model computes V (0, T ) at time 0. This value is obviously model

based, that is, it depends on the probabilistic assumptions behind the futures price evolution

model. However, we can compute both V (T, T ) and ĈH(0, T ) on a sequence of real future

prices observed between times 0 and T , for example, daily closing prices. These values are

data rather than model based. (Even though the positions Mi(·, T ) and Nj(·, T ) that enter
the computation of ĈH(0, T ) are model based, the quantities ∆Fi(t, T ) and ∆Gj(t, T ) needed

to compute H(·, T ) are data based.) We refer to the ratio

V (T, T ) + ĈH(0, T )− V (0, T )

V (0, T )
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as the discrepancy of our LPS model. Measuring this discrepancy on real price data provides

us with an empirical method to assess the practical relevance of the valuations computed by

our LPS model. While the logic underlying these arguments is well known to practitioners,

as stated in §2.1, it is rarely employed in the academic literature to test the performance of

a real option valuation model.

Delta computation, characterization, and interpretation. In the remainder of

this section, we employ the following Ito based model of the evolution of futures prices at

the receipt and delivery points under the risk neutral measure:

dFi(t, T ) = Fi(t, T )σ
F
i (t, T )dW

F
i (t), ∀i ∈ R (2.10)

dW F
i (t)dW F

i′ (t) = ρFFii′ (t)dt, ∀i, i′ ∈ R (2.11)

dGj(t, T ) = Gj(t, T )σ
G
j (t, T )dW

G
j (t), ∀j ∈ D (2.12)

dWG
j (t)dWG

j′ (t) = ρGGjj′ (t)dt, ∀j, j ′ ∈ D (2.13)

dW F
i (t)dWG

j (t) = ρFGij (t)dt, ∀i ∈ R, j ∈ D. (2.14)

Here, σFi (t, T ) is the volatility function (of time t) of the futures price at receipt point i

with maturity at time T , dW F
i (t) is an increment to a standard Brownian motion, and

ρFFii′ (t) is the instantaneous time t correlation between dW F
i (t) and dW F

i′ (t). The notation

for the futures price at delivery point j has an analogous interpretation, and ρFGij (t) is the

instantaneous time t correlation between dW F
i (t) and dWG

j (t), with i ∈ R and j ∈ D.
Model (2.10)-(2.14) captures important models available in the literature. For example,

it includes as a special case a generalized version of the celebrated Black (1976 [4]) model

of commodity futures prices, whereby all the volatilities and instantaneous correlations are

constants. Additionally, consider the model of Schwartz (1997 [50]), where the natural

logarithm of the spot price at location i ∈ R, denoted XF
i (t), follows the well known mean

reverting process dXF
i (t) = κFi [ξ

F
i − XF

i (t)]dt + σFi dW
F
i (t), with κFi the speed of mean

reversion, ξFi the long-term level of XF
i (t), and σ

F
i its volatility. In this case, it holds that

σFi (t, T ) = σFi exp[−κFi (T − t)]. Given two distinct receipt points i and i′, whose associated

terms dW F
i (t) and dW F

i′ (t) have constant instantaneous correlation ρFFii′ , it is also easy to

verify that ρFFii′ (t) = ρFFii′ . Analogous considerations apply to the delivery point futures prices

and their correlations with the receipt point futures prices.

Below, we apply the pathwise method described by Glasserman (2004 [25, §7.2]) to

obtain unbiased estimates of the deltas by simulation. Denote by v(T ; θ) the dependence on

scalar parameter θ of the optimal solution value to optimization problem P, and ṽθ(T ) :=

∂ṽ(T ; θ)/∂θ its pathwise partial derivative with respect to θ, that is, the random variable

that can take values dv(T ; θ)/dθ. A direct application of the pathwise derivative estimation
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method would suggest that

Vθ(t, T ) = e−r(T−t)Et[ṽθ(T )],∀t ∈ [0, T ]. (2.15)

But v(T ; θ) is the optimal solution value to linear program P, a case not explicitly discussed

in Glasserman (2004 [25, §7.2]). We can invoke envelope theorem results available in Milgrom

and Segal (2002 [43], in particular their Corollary 4) to establish the validity of (2.15). This

establishes part (a) of Proposition 4, while its part (b) is proved in Appendix 2.9.2.

Proposition 4 (Deltas). (a) Under model (2.10)-(2.14), unbiased deltas at time t ∈ [0, T )

can be computed as follows:

δFi (t, T ) = − e−r(T−t)

Fi(t, T )(1− φ)
Et


F̃i(T, T )

∑

j∈D(i)

x̃∗ij(T )


 , ∀i ∈ R (2.16)

δGj (t, T ) =
e−r(T−t)

Gj(t, T )
Et


G̃j(T, T )

∑

i∈R(j)

x̃∗ij(T )


 , ∀j ∈ D. (2.17)

(b) Moreover, the value V (t, T ) is convex and decreasing in each time t receipt point initial

futures price, and convex and increasing in each time t delivery point initial futures price,

or, equivalently, the receipt point delta is negative, the delivery point delta is positive, and

both of them increase in their corresponding time t futures prices.

The structural properties in part (b) of this result formalize a natural behavior of the

value of capacity in the receipt and delivery futures prices under model (2.10)-(2.14). The

formulas in part (a) are obviously useful for computational purposes. Moreover, as shown

below, they also offer an interesting operational and marketing interpretation of the delta

positions Mi(·, T ) and Nj(·, T ).
Consider any time t ∈ [0, T ). Conditional on time t information, it is clear that random

variables F̃i(T, T )/Fi(t, T ) and G̃j(T, T )/Fi(t, T ) have means equal to one under the risk

neutral measure. Since these random variables are nonnegative, expressions (2.16)-(2.17)

suggest that they can be interpreted as “random weights” for the random variables optimal

amounts procured at receipt point i and marketed at delivery point j at time T , respectively,

that is,
∑

j∈D(i) x̃
∗
ij(T ) and

∑
i∈R(j) x̃

∗
ij(T ). Thus, the quantities δFi (t, T ) and δGj (t, T ) can

be interpreted as discounted expected weighted amounts of natural gas optimally procured

and marketed at these points at time T . We make this interpretation precise below by

introducing the concept of a weighing distribution.

Define F(·, T ) := (Fi(·, T ), i ∈ R) and G(·, T ) := (Gj(·, T ), j ∈ D), and recall that these

arem and n dimensional vectors, respectively. Consider them+n dimensional random vector
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(F̃(T, T ), G̃(T, T )) and let vector u denote one of its realizations. Given t ∈ [0, T ), let ψt(u)

be the risk neutral joint probability density function (pdf) of this random vector under model

(2.10)-(2.14) conditional on (F(t, T ),G(t, T )). Let u−i be vector u with the i-th of its first m

components removed, and denote F̃−i(T, T ) random vector F̃(T, T ) with its i-th component

removed. Let ψt(u−i|ui) be the risk neutral joint pdf of random vector (F̃−i(T, T ), G̃(T, T ))

conditional on Fi(T, T ) and (F(t, T ),G(t, T )), and ψFi

t (ui) the risk neutral marginal pdf of

random variable F̃i(T, T ) given Fi(t, T ) under model (2.10)-(2.14). Define

wFi

t (u) :=
uiψt(u)

Fi(t, T )
.

Since wFi

t (u) > 0 and F̃i(T, T ) is a martingale under the risk neutral measure, it holds that

∫

<m+n
+

wFi

t (u)du =

∫

<m+n
+

uiψt(u)

Fi(t, T )
du =

∫

<+

ui
Fi(t, T )




∫

<m+n−1

+

ψt(u−i|ui)du−i
︸ ︷︷ ︸

1


ψFi

t (ui)dui

=
1

Fi(t, T )

∫

<+

uiψ
Fi

t (ui)dui

︸ ︷︷ ︸
Fi(t,T )

= 1.

Thus, we call wFi

t (u) the Fi(t, T )-weighing joint pdf. Similarly we define w
Gj

t (u) := uiψt(u)/Gj(t, T )

and call it the Gj(t, T )-weighing joint pdf. Denote Ew,Fi

t and E
w,Gj

t expectations taken using

wFi

t (u) and w
Gj

t (u), respectively. Then, for ∀i ∈ R, we obtain

δFi (t, T ) = − e−r(T−t)

Fi(t, T )(1− φ)
Et


F̃i(T, T )

∑

j∈D(i)

x̃∗ij(T )




= −e−r(T−t)
∫

<m+n
+


 ∑

j∈D(i)

x̃∗ij(T )

1− φij
uiψt(u)

Fi(t, T )


 du

= −e−r(T−t)
∫

<m+n
+


 ∑

j∈D(i)

x̃∗ij(T )

1− φij
wFi

t (u)


 du

= −e−r(T−t)Ew,Fi

t


 ∑

j∈D(i)

x̃∗ij(T )

1− φij


 .

Applying a similar logic to δGj (t, T ) yields that δGj (t, T ) = e−r(T−t)E
w,Gj

t

[∑
i∈R(j) x̃

∗
ij(T )

]
.

Thus, Mi(t, T ) and Nj(t, T ) are the discounted expected quantities of natural gas optimally

procured at location i and marketed at location j, respectively, at time T , with expectations

taken under the Fi(t, T )-weighing and Gj(t, T )-weighing pdfs.
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Table 2.3: Definitions of the Greeks in our natural gas transport valuation problem

Name Description

Delta The rate of change in the contract value with an initial price

Vega The rate of change in the contract value with a price volatility

Gamma The rate of change of delta with an initial price

Eta The rate of change in the contract value with a correlation between two prices

Theta The rate of change of the contract value with the passage of time

The managerial implication of this analysis is that delta hedging defines dynamic pro-

curement and marketing policies that are consistent with the optimal exercise of the network

contract real option. In other words, if a shipper delta hedges and takes delivery of the long

futures positions and delivers under the short futures positions at maturity time, then this

player will receive at each receipt point exactly the natural gas procured there under an op-

timal exercise policy. Once shipped, this natural gas also matches that needed to satisfy the

short futures positions at each delivery point, which are also equal to the amount of natural

gas marketed under an optimal exercise policy. (These interpretations remain valid even if

the shipper closes the relevant futures positions and procures and sells natural gas on the

spot market.) These arguments put on solid theoretical grounds a common interpretation

among natural gas merchants of the deltas of simpler spread option based models, that is,

as “expected” amounts procured/marketed at the capacity usage time.

2.6 Computing the Other Greeks

An important advantage of using the pathwise method to compute the deltas is that we can

calculate the deltas and the contract value at the same time. However, it is well known that

the pathwise method can not be used to compute Gammas, which are the second derivatives

of the contract value with respect to the initial prices. Thus, we use the central difference

method to compute the other Greeks defined in Table 2.3 (Hull 2000 [30]). Of course, we

can also use the central difference method to compute the deltas. According to Broadie and

Detemple (2004) [6], the central difference method and the pathwise method, when the latter

is applicable, provide very close derivative estimates.

Denote V (t, T ; θ) the dependence of V (t, T ) on scalar parameter θ. As before, Vθ(t, T )

denotes the first derivative of V (t, T ) with respect to θ, and we indicate by Vθ,θ(t, T ) the sec-

ond derivative of V (t, T ) with respect to θ: Vθ(t, T ) ≡ ∂V (t,T ;θ)
∂θ

, Vθ,θ(t, T ) ≡ ∂2V (t,T ;θ)
∂θ2

. In §2.7,
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we estimate these quantities for each relevant parameter, using the following expressions:

V̂θ(t, T ) =
V (θ + h)− V (θ − h)

2h
, (2.18)

V̂θ,θ(t, T ) =
V (θ + h)− 2V (θ) + V (θ − h)

4h2
(2.19)

where h is a “small” positive rea number. It is important to point out that central difference

estimates are biased (Glasserman 2004 [25]).

2.7 Empirical Results

In this section we present our empirical results on the valuation and delta hedging perfor-

mance of our LPS model relative to those of our L/UB models and to the perfect delta

hedging case, respectively, and numerically compute and investigate the Greeks. Before dis-

cussing these results, we illustrate the data used in our numerical experiments and their

setting.

Data description and price model estimation. We base our numerical experiments

on the Transco pipeline system, which extends from Texas to New York (NY) City, New

Jersey, and Pennsylvania. It has six pricing zones. Here we focus on zones 1-4. Zones 1

and 2 are in Texas, Zone 3 covers Louisiana and Mississippi, and Zone 4 is in Alabama. For

these zones and Henry Hub, Louisiana, we obtained daily closing spot prices covering the

period 1/2/2001-12/1/2006 and futures prices for December 2006 delivery during the period

11/28/2005-11/28/2006 (11/28/2006 was the closing date of the December 2006 NYMEX

natural gas futures contract). The spot prices for zones 1-4 and Henry Hub correspond to the

spot prices reported by Gas Daily and are available, for example, from Platts. We obtained

futures prices for Henry Hub from NYMEX and for the other zones from an energy trading

company.

Figures 2.3 and 2.4 display the spot and futures price data sets, respectively. The spot

prices at different locations appear to move closely together. The futures prices exhibit more

heterogeneity as the time to maturity increases. We assume that the natural logarithms

of the spot prices at these locations follow correlated mean reverting processes (see §2.5).
We estimate their parameters using a standard linear regression method based on the spot

price data (Clewlow and Strickland 2000 [11], pp.28-29). In this case, recall from §2.5 that

under the risk neutral measure the time t volatility function of the maturity T futures price

at a given location i is σi(t, T ) = σi exp[−κi(T − t)] where κi and σi, respectively, are the

mean reversion rate and volatility of the natural logarithm of the spot price at location i

(here and below the superscripts used in §2.5 on the quantities σi, κi, and ρij are omitted).

26



0

5

10

15

20

Jan-01 Jan-02 Jan-03 Jan-04 Jan-05 Jan-06

P
ric

e 
($

/M
M

B
tu

)

Henry Hub Zn1 Zn2 Zn3 Zn4

Figure 2.3: Relevant spot price data.

Moreover, the instantaneous correlation between the standard Brownian motions that drive

the evolution of the two futures prices at locations i and j is ρij, which is also the correlation

between those associated with the natural logarithms of the spot prices at locations i and j.

Since we have available futures prices at each location of interest and we work with the risk

neutral measure, the only parameters we need for valuation and replication purposes are κi,

σi, and ρij with i, j ∈ {Henry Hub, Zones 1-4} (if i = j then ρij = 1).

Table 2.4 reports the estimates of these parameters. A 95% confidence interval for the

mean reversion rate for Henry Hub κ̂H is [1.864, 2.083]. Similarly, the 95% confidence inter-

vals for the mean reversion rates for Zones 1-4 are [2.571, 2.819], [2.639, 2.899], [2.123, 2.357],

and [2.143, 2.377], respectively. Since we use linear regression to estimate the price param-

eters, we do not have the standard errors, and therefore the confidence intervals, for the

relevant price volatilities and correlations.

We use the estimates, reported in Table 2.4, in the experiments described below. Henry

Hub has smaller mean reversion rate and spot volatility estimates that the other markets.

The estimates of the correlation coefficients are almost all above 90% and reflect the men-

tioned behaviors of the spot prices during the observation period.

Figure 2.5 displays the open interests and trading volumes for the futures markets of

Henry Hub and Zones 3-4 (we do not have these data for Zones 1 and 2). Table 2.5 reports

the trading volume statistics for each spot market. As expected, Henry Hub is the most

liquid point both in terms of futures and spot markets. Zone 3 comes in second, while these

figures are clearly lower in the other markets. However, a significant amount of trading

also occurs on ICE and OTC markets, and Figure 2.5 does not include data associated
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Figure 2.4: Relevant December 2006 maturity futures price data.

Table 2.4: Price model parameter estimates.

Henry Hub Zone 1 Zone 2 Zone 3 Zone 4

Mean reversion rate (κ) 1.974 2.695 2.769 2.240 2.260

Standard error of estimate of κ 0.056 0.063 0.066 0.060 0.060

Spot volatility 0.854 0.927 0.988 0.914 0.925

Correlation Matrix

Henry Hub Zone 1 Zone 2 Zone 3 Zone 4

Henry Hub 1 0.906 0.932 0.955 0.948

Zone 1 0.906 1 0.893 0.910 0.912

Zone 2 0.932 0.893 1 0.925 0.927

Zone 3 0.955 0.910 0.925 1 0.982

Zone 4 0.948 0.912 0.927 0.982 1

Table 2.5: Spot market trading volumes in our data set.

Daily Volume (1,000 MMBtu/day) Henry Hub Zone 1 Zone 2 Zone 3 Zone 4

Average 2,077 73 103 732 162

Maximum 11,133 436 497 2,529 971

Minimum 148 1 11 6 2
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Figure 2.5: Futures open interest and trading volume for the December 2006 maturity for

select NYMEX markets (1 contract = 10,000 MMBtu).
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Figure 2.6: Contract networks used in our empirical study.

Table 2.6: Commodity and fuel rates (Source: Transco pipeline online information system).

Commodity Rate ($/MMBtu)

Henry Hub Zone 1 Zone 2 Zone 3 Zone 4

Henry Hub n.a. 0.00652 0.00507 0.00268 0.01372

Zone 1 0.00652 0.00162 0.00401 0.00652 0.01756

Zone 2 0.00507 0.00401 0.00251 0.00507 0.01611

Zone 3 0.00268 0.00652 0.00507 0.00268 0.01372

Zone 4 0.01372 0.01756 0.01611 0.01372 0.01121

Fuel Rate (%)

Henry Hub Zone 1 Zone 2 Zone 3 Zone 4

Henry Hub n.a. 1.05 0.78 0.39 2.14

Zone 1 1.05 0.27 0.66 1.05 2.80

Zone 2 0.78 0.66 0.39 0.78 2.53

Zone 3 0.39 1.05 0.78 0.39 2.14

Zone 4 2.14 2.80 2.53 2.14 1.75

with these trading activities. While different markets appear to exhibit different liquidity

levels, in our experiments we assume that they are all equal. This is clearly a simplification,

but accounting for heterogeneity in liquidity levels across markets would require estimating

market specific transaction costs, such as bid-ask spreads, which goes beyond the scope of

this paper.

Experiment setting. We consider the three contract networks shown in Figure 2.6,

which we choose based upon examination of real contracts available on the Transco pipeline

online information system. Network (a) models a contract with one receipt and two delivery

points (1R-2D), (b) a contract with two receipt and two delivery points (2R-2D), and network

(c) a contract with two receipt and three delivery points (2R-3D). The numbers associated
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Table 2.7: Valuation results for the dedicated capacity case.

Contract Networks

T − t 1R-2D 2R-2D 2R-3D

(month) LB UB I E LB UB I E LB UB I E

1 1 1 0.23 0.77 0.95 1.58 0.63 0.37 0.92 1.62 0.66 0.34

3 1 1 0.17 0.83 0.94 1.65 0.51 0.49 0.91 1.70 0.54 0.46

6 1 1 0.14 0.86 0.93 1.66 0.47 0.53 0.90 1.71 0.50 0.50

9 1 1 0.14 0.86 0.92 1.66 0.45 0.55 0.89 1.72 0.48 0.52

12 1 1 0.14 0.86 0.92 1.66 0.45 0.55 0.89 1.72 0.48 0.52

with each point are the point capacities, expressed in MMBtu/day. The term of each contract

is the December 2006 month. We use the commodity and fuel rates reported in Table 2.6,

which are available from the Transco pipeline online information system. We obtain the risk

free rate from the relevant Treasury curve.

We solve the L/UB models by valuing each relevant spread options using Kirk’s (1995

[37]) approximation formula (see Appendix 2.9.1). In the LB case, we also benchmarked our

results when each relevant spread option is valued by simulation. Since we do not observe

noticeable differences in the resulting valuations, we only report the results based on Kirk’s

formula. (We do not do this benchmarking in the UB case because we would have to simulate

futures prices while simultaneously optimizing the spread option effective strike prices; in

the LB case these strike prices are given before the optimization takes place.) We value each

contract using our LPS model based on 100,000 samples for the futures prices in less that 1

Cpu second.

Valuation results. We first discuss the fully dedicated capacity case, then we consider

three additional flexible capacity cases. We report the valuations yielded by our L/UB

models as fractions of those of our LPS model. For the latter valuations we also display their

relative intrinsic and extrinsic values. We do this for 1, 3, 6, 9, and 12 month(s) to contract

expiration.

Dedicated capacity. Table 2.7 reports the relevant figures for this case. The L/UBs are

tight in the 1R-2D contract cases. The result for the LB model is as expected, since a

dedicated contract with one receipt point can be valued as a collection of spread options (see

Table 2.2 in §2.1). In this simple case the UB is also tight. This network contract exhibits

a large extrinsic value. This is due to the two spread options being almost at the money at

contract inception, which implies that there is significant uncertainty as to whether these

spreads would expire in or out of the money. As expected, the importance of the extrinsic

31



value increases with the number of months left until contract expiration.

The LB valuations of the 2R-2D and 2R-3D contracts are 5-8% and 8-11%, respectively,

below those of the LPS model when the time to expiration is one month, and become

somewhat looser when this time becomes longer. This is due to the fact that the LB model

is unable to fully capture the extrinsic value embedded in these contracts. To illustrate,

consider the 2R-2D contracts. The LB model assigns zero and positive flows, respectively,

to the Zone 1-3 and Zone 1-4 spread options at each of the considered contract inception

times. If the Zone 1-4 spread is out of the money at contract expiration, according to the

LB model optimal solution no injection is made in Zone 1. However, it is possible that the

Zone 1-3 spread is in the money at this time, and it may be optimal to ship natural gas

from Zone 1 to Zone 3, which is feasible in our LPS model but impossible in the LB model.

Moreover, even when both the Zone 1-3 and Zone 1-4 spread options expire in the money, it

may be optimal to ship natural gas from Zone 1 to Zone 3, rather than from Zone 1 to Zone

4. Without fully capturing these features, the LB model underestimates the contract value.

The UB valuations of the 2R-2D and 2R-3D contracts are very loose, which shows that

the UB models cannot be usefully employed for valuation purposes when a contract includes

more than point in both the receipt and delivery sets.

Interestingly, the extrinsic values of the 2R-2D and 2R-3D contracts are lower than those

in the 1R-2D contract case but are nevertheless significant, ranging from 34% to 55%. This is

due to the fact that the Zone 1-4 spread is deep in the money at each contract inception time

and will be used with high probability at the expiration time. Thus the contract intrinsic

values play a larger role in cases 2R-2D and 2R-3D than in case 1R-2D.

Flexible capacity. We use the 2R-2D contracts to investigate how increasing capacity

flexibility affects the comparisons between our L/UB and LPS models. We consider three

additional cases: receipt flexibility, delivery flexibility, and receipt and delivery flexibility.

In each of these cases, a shipper is free to use all the receipt/delivery capacity at a single

point in its respective set of points. It is not clear that the relative performance of our

LB model would deteriorate relative to our LPS model. With flexibility in the receipt or

delivery capacity, at expiration it is optimal to procure or market natural gas from a single

receipt or delivery point, and the LB model would do this. However, this model must select

these points a priori and, consequently, may not yield the correct contract valuations. These

aspects appear to affect the LB model performance in different directions and it does not seem

clear which aspect would have relatively more importance. It is also not clear how different

capacity flexibility structures would affect the contract intrinsic and extrinsic values.

Table 2.8 reports the relevant valuation results (this table includes the dedicated capacity

case for ease of visual comparison). The LB model undervalues the contract by 6-13% with
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Table 2.8: Valuation results under different capacity flexibility cases for the 2R-2D contract

network.
Receipt

Month(s) to Dedicated Flexibility

Expiration LB UB I E LB UB I E

1 0.95 1.58 0.63 0.37 0.94 1.17 0.86 0.14

3 0.94 1.65 0.51 0.49 0.90 1.22 0.73 0.27

6 0.93 1.66 0.47 0.53 0.88 1.23 0.68 0.32

9 0.92 1.66 0.45 0.55 0.87 1.23 0.66 0.34

12 0.92 1.66 0.45 0.55 0.87 1.23 0.65 0.35

Delivery Receipt and Delivery

Month(s) to Flexibility Flexibility

Expiration LB UB I E LB UB I E

1 0.84 1.47 0.61 0.39 0.85 1.43 0.78 0.22

3 0.81 1.52 0.48 0.52 0.78 1.56 0.65 0.35

6 0.80 1.53 0.44 0.56 0.76 1.60 0.60 0.40

9 0.80 1.54 0.43 0.57 0.75 1.61 0.58 0.42

12 0.80 1.54 0.42 0.58 0.75 1.61 0.57 0.43
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Table 2.9: LPS model delta hedging performance under different capacity flexibility cases

for the 2R-2D contract network.
Discrepancy (%)

Month(s) to Receipt Delivery Receipt and Delivery

Expiration Dedicated Flexibility Flexibility Flexibility

1 1.78 1.60 1.65 3.06

2 1.93 5.54 3.27 5.63

3 0.33 4.61 4.43 4.55

4 2.03 6.24 5.68 5.47

5 2.38 6.77 7.02 6.74

6 3.92 7.63 8.33 8.05

7 2.36 6.07 5.54 5.83

8 2.84 6.61 5.89 6.26

9 3.27 7.23 6.32 6.74

10 1.96 5.67 4.34 4.89

11 1.85 5.69 4.22 4.98

12 1.64 5.88 4.16 5.08

flexible receipt capacity, by 16-20% with flexible delivery capacity, and by 15-25% with

flexible receipt and delivery capacity. Thus, the relative LB valuations decrease with capacity

flexibility than in the dedicated capacity case, and these valuations are lower when flexibility

is added to the delivery rather than the receipt capacity. This occurs because at contract

inception the receipt point prices are more far apart from each other than are the delivery

prices. For example, with 6 months to maturity, the Henry Hub and Zone 1 futures prices

are $9.758 and $8.796, respectively, while the Zone 3 and Zone 4 futures prices are $9.873

and $9.963, respectively. Thus, the choice of which receipt point will be used at the contract

expiration time with flexible receipt capacity seems relatively more clear than the choice

of which delivery point will be used at this time with flexible delivery capacity. A similar

argument also explains why the intrinsic value is relatively more important with flexible

receipt capacity than in both the cases with dedicated and flexible delivery capacity.

Delta hedging. As explained in §2.5, delta hedging gives us a way to assess the accuracy

of our LPS model by measuring what we named the discrepancy ratios. We focus on the 2R-

2D contract under the four capacity flexibility cases previously discussed. We perform delta

hedging on each of the Henry Hub and Zones 1, 3, and 4 futures markets once a day during

the time period 12/1/2005-11/27/2006. To measure the effect of the time to expiration we

compute twelve different contract values V (0, T ) each time by sliding the contract inception
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date by one month, that is, we slide time 0 forward by one month each time. In each of

these cases we also recompute the associated value for the expression V (T, T ) + ĈH(0, T ).

Table 2.9 reports the discrepancy ratios [V (0, T )−V (T, T )− ĈH(0, T )]/V (0, T ) for each

of the contract inception dates. These discrepancies range from 0.33% to 8.33%. These

values do not seem to display a monotonic pattern as the time to expiration increases: if

one were to superimpose a pattern on these values, they roughly increase up to 6 months to

maturity and then decrease when the number of months to expiration increases further.

However, it does seem that the discrepancies are lower in the dedicated capacity case than

in the flexible capacity cases. This can be explained as follows: as the futures prices change

over time, based on the interpretation of the deltas established in §2.5, in the dedicated

capacity case one would anticipate that the discounted expected weighted amounts of natural

gas procured and marketed at the receipt and delivery points should be more stable than

in the flexible capacity cases. Thus, one would expect the change in the contract value to

be relatively more “predictable” and the discrepancies to be lower in the former case than

the latter cases. Undr perfect delta hedging setting, the change of the contract value can be

captured through delta hedging along the time. That is, the discrepancy of estimate value

at time 0, V (0, T ) and total realized value at time T , V (T, T ) + ĈH(0, T ), should be zero, if

the contract value is perfectly hedged. The results in Table 2.9 indicate that the replicating

performance of our LPS model is encouraging.

Greeks. We analyze the Greeks by only considering the 2R2D case. We let the time

to maturity be 6 months. At this contract valuation time (t), the futures prices at Henry

Hub, and Zones 1-4 are $9.758, $8.796, $9.873, and $9.963, respectively. We use the central

difference method to estimate all the Greeks defined in Table 2.3. Table 2.10 displays the

estimates of the Greeks. We also use the pathwise method to estimate the deltas. The

deltas estimated using these two methods are very close, which is consistent with the results

of Broadie and Detemple (2004) [6]. Therefore, using the central difference method and the

pathwise method provides essentially equal delta hedging (replication) performance.

Table 2.10 shows that the contract value (a) is decreasing in the initial prices of the receipt

points (negative deltas), and increasing in those of the delivery points (positive deltas); (b)

is convex in the receipt and delivery points initial prices (positive Gammas); (c) is increasing

in price volatilities (positive vegas); (d) is decreasing in the instantaneous price correlations

(negative etas); and (e) for fixed contract maturity date, the contract value decreases when

the time to maturity decreases (negative theta).

We further analyze the behavior of the contract value over a range of the relevant pa-

rameters in Figures 2.7-2.11 by varying one parameter at a time. That is, we conduct a

comparative statics analysis. The vertical axis of these figures is per unit contract value
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Central Difference Method Pathwise Method

Greek Estimate Standard Estimate Standard

Deviation Deviation

Henry Hub Delta -0.27804 0.00035 -0.27802 0.00023

Zone 1 Delta -0.26655 0.00039 -0.26655 0.00029

Zone 3 Delta 0.32965 0.00034 0.32966 0.00028

Zone 4 Delta 0.29502 0.00028 0.29503 0.00019

Henry Hub Gamma 0.46059 0.0024

Zone 1 Gamma 0.13624 0.0019

Zone 3 Gamma 0.04512 0.0012

Zone 4 Gamma 0.30801 0.0023

Henry Hub Vega 0.12855 0.00063

Zone 1 Vega 0.01719 0.00064

Zone 3 Vega 0.37144 0.00079

Zone 4 Vega 0.43082 0.00081

Henry Hub - Zone 3 Eta -1.5103 0.0023

Henry Hub - Zone 4 Eta -1.5529 0.0032

Zone 1 - Zone 3 Eta -0.5540 0.0012

Zone 1 - Zone 4 Eta -0.4488 0.0010

Henry Hub - Zone 1 Eta -0.2432 0.0007

Zone 3 - Zone 4 Eta -1.1679 0.0021

Theta -0.1730 0.0009

Table 2.10: Estimation of the Greeks
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Figure 2.7: Comparative statics on initial prices

(unit: $/MMBtu), that is, the contract value divided by the total contract capacity. We

only consider the dedicated capacity and flexible receipt-and-delivery capacity cases. We

obtain similar results in the remaining cases.

Initial Prices. We change the initial receipt price of Zone 1 or the initial delivery price

of Zone 3. Figure 2.7 shows that the contract value is convex and decreasing in this initial

receipt price, and convex and increasing in this delivery price, which is consistent with

Proposition 4.

Price Volatilities. We change the price volatility of Zone 1 in two cases: (i) keeping

the original correlations shown in Table 2.4, which are greater than 0.893; and (ii) setting

all of these to zero. In case (i), panels (a) and (b) of Figure 2.8 show that the contract

value is convex, decreasing first, and then increasing in this price volatility. In case (ii),

panels (c) and (d) of Figure 2.8 show that the contract value is convex and increasing in this

price volatility. Thus, how the contract value changes with volatility depends on the price

correlations. We obtain similar results for the delivery price volatility.
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Figure 2.8: Comparative statics on price volatilities
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The “V” shape behavior of the contract values displayed in panels (a) and (b) of Figure 2.8

has also been observed by Eydeland and Wolyniec 2003 [21] for the point-to-point transport

contract case. Here, we show that this effect persists in the network case.

Receipt-Delivery (Cross) Price Correlations. In this experiment we change one cross

correlations and set the other correlations to zero. Panels Figure (a)-(d) and (e)-(h) of 2.9

display how the contract value changes in four cross correlations for the dedicated capacity

and flexible receipt and delivery capacity cases, respectively. The results show that the

contract values are decreasing in the cross correlations. This is intuitive, since the value of

a spread option also decreases in the correlation between the prices of the underlying assets.

Receipt-Receipt (R-R) and Delivery-Delivery (D-D) Correlations. Figure 2.10 shows

that the contract value also decreases in the R-R and D-D price correlations in both the

dedicated and flexible receipt and delivery capacity cases.

Time to Maturity. Figure 2.11 shows that the contract value increases in a concave

fashion, when the time to maturity increases, which is expected.

2.8 Conclusions

In this chapter we study the problem of computing and delta hedging the economic value

of natural gas pipeline network transport capacity as a real option on natural gas prices at

different geographical locations, and we use numerical examples to study how the contract

value changes with the price parameters. The novelty of this problem resides in the network

structure of capacity contracts, whereas the extant literature has only considered the point-

to-point case. We develop and analyze an exact model based on linear programming and

simulation that can be optimally solved very efficiently, and derive lower and upper bounds

on the valuations yielded by this model. We study and interpret the financial hedging (delta)

positions of this model as dynamic procurement/marketing policies that are consistent with

the quantities of natural gas optimally purchased/sold at the contract execution time.

We use real data to test the valuation performance of our model against those of our

bounding models, one of which is representative of current practice, and its delta hedging

performance against the perfect replication benchmark, which is not achievable in practice.

Our proposed model significantly outperforms current practice in terms of capacity valuations

(by 5-25%), and exhibits encouraging delta hedging performance. Thus, this model emerges

as a managerially relevant model for practical implementation and usage.

We also perform a comparative statics analysis of the contract value with respect to key

price related parameters. The insights of this analysis are useful to support financial trading

decisions.
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Figure 2.9: Comparative statics on cross price correlations
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Figure 2.10: Comparative statics on R-R and D-D price correlations
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Figure 2.11: Comparative statics on time to maturity
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Our model can be extended to capture additional features of how natural gas pipeline

capacity is sold via contracts in practice. These include right of first refusal clauses that give

shippers the right to renew their transport contracts upon expiration before their capacity

is sold to other shippers, and primary/secondary point and contingent capacity rights that

give shippers different priorities and more flexibility, respectively, in the usage of contracted

capacity. Moreover, our work can be further extended by empirically testing our model on

different data sets, using alternative price models of the evolution of natural gas prices, and

assessing the impact of bid/ask spreads on our model valuation/hedging performance; our

neglecting of this impact is a limitation of our work.

Further applications beyond the natural gas industry are also of interest. Our work can

be extended to deal with the real option valuation of refining, processing, shipping, and

distribution capacity of other commodities, such as coal, oil, and biofuels. In these settings,

modification of our model may include the addition of lead times.

2.9 Appendix of Chapter 2

2.9.1 Kirk’s Spread Option Approximate Valuation Formula

Given receipt and delivery points i and j, suppose that random variables F̃i(T, T ) and

G̃j(T, T ) are jointly lognormally distributed conditionally on their time 0 values Fi(0, T )

and Gj(0, T ) being known. In this case, there is no exact closed form expression for the time

0 value of payoff {G̃j(T, T ) − [Fi(0, T )/(1 − φij) +Kij]}+ when Kij > 0. Denote this value

V K
ij (0, T ). Kirk (1995 [37]) proposed the following approximation formula:

V K
ij (0, T ) = e−rT

{
Gj(0, T )Φ(D1)−

[
Fi(0, T )

1− φij
+Kij

]
Φ(D2)

}

s2ij := Var0

(
ln G̃j(T, T )− ln

{
F̃i(T, T )/[(1− φij) +Kij]

})

D1 :=
ln {Gj(0, T )/[Fi(0, T )/(1− φij) +Kij]}+ s2ij/2

sij
D2 := D1 − sij,

where Var0 is conditional variance given Fi(0, T ) and Gj(0, T ) and Φ(·) is the cumulative

distribution function of the standard normal random variable. When Kij = 0, this formula

reduces to Margrabe’s (1978 [41]) exact formula (see Carmona and Durrleman 2003 [9]).
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2.9.2 Proof of Part (b) of Proposition 4

In futures price model (2.10)-(2.14), σFi (t, T ), σ
G
j (t, T ), ρ

FF
ii′ (t), ρ

GG
jj′ (t), and ρ

FG
ij (t) are not

price dependent. This allows us to write

F̃i(T, T ) = Fi(0, T )ãi(σ
F
i , 0, T )

ãi(σ
F
i , 0, T ) := exp

[
−1

2

∫ T

0

(σFi (u, T ))
2du+

∫ T

0

σFi (u, T )dWi(u)

]

G̃j(T, T ) = Gj(0, T )b̃j(σ
G
j , 0, T )

b̃j(σ
G
j , 0, T ) := exp

[
−1

2

∫ T

0

(σGj (u, T ))
2du+

∫ T

0

σGj (u, T )dWj(u)

]
.

Without loss of generality, focus on time 0. Consider the behavior of V (0, T ) in initial

delivery price Gj(0, T ). To simplify the exposition, remove suffix (0, T ) from Gj(0, T ). Also

remove one of the two T ’s from the arguments of Gj(T, T ) and Fi(T, T ). Notice that given

Gj, it holds that G̃j(T ) = Gj b̃j(σ
G
j , T ), where b̃j(·) is a lognormal random variable that does

not depend on Gj. Fix arbitrary j ∈ D and pick G2
j
> G1

j
. Denote (bj(·), j ∈ D) and

(Fi(T ), i ∈ R) realizations of random vectors (b̃j(·),∀j ∈ D) and (F̃i(T, T ),∀i ∈ R). Denote

G−j := (Gj,∀j ∈ D \ {j}) so that (Gj ,G−j) ≡ (Gj,∀j ∈ D). Indicate by v(T ;Gj ,G−j) and

x∗ij(Gj,G−j) the dependence of v(T ) and x∗ij on (Gj ,G−j), where x
∗
ij is an optimal solution

to model P. We have

v(T ;G2
j
,G−j) =

∑

i∈R(j)

[G2
j
bj(·)−

Fi(T )

1− φij
−Kij]x

∗
ij(G

2
j
,G−j)

+
∑

j∈D\{j}

∑

i∈R(j)

[Gjbj(·)−
Fi(T )

1− φij
−Kij]x

∗
ij(G

2
j
,G−j)

>
∑

i∈R(j)

[G2
j
bj(·)−

Fi(T )

1− φij
−Kij]x

∗
ij(G

1
j
,G−j)

+
∑

j∈D\{j}

∑

i∈R(j)

[Gjbj(·)−
Fi(T )

1− φij
−Kij]x

∗
ij(G

1
j
,G−j)

; by optimality of x∗ij(G
1
j
,G−j)

>
∑

i∈R(j)

[G1
j
bj(·)−

Fi(T )

1− φij
−Kij]x

∗
ij(G

1
j
,G−j)

; since G2
j
> G1

j

+
∑

j∈D\{j}

∑

i∈R(j)

[Gjbj(·)−
Fi(T )

1− φij
−Kij]x

∗
ij(G

1
j
,G−j)

= v(T ;G1
j
,G−j).
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Since this inequality holds for all realizations (bj(·),∀j ∈ D) and (Fi(T ),∀i ∈ R), it follows
that

V (0, T ;G2
j
,G−j) = e−rTE0[ṽ(T ;G

2
j
,G−j)] > e−rTE0[ṽ(T ;G

1
j
,G−j)] = V (0, T ;G1

j
,G−j),

and V (0, T ) increases in Gj . Pick ϕ ∈ (0, 1) and j ∈ D and define Gϕ

j
= ϕG1

j
+ (1 − ϕ)G2

j
.

Notice that

v(T ;Gϕ

j
,G−j) =

∑

i∈R(j)

[Gϕ

j
bj(·)−

Fi(T )

1− φij
−Kij]x

∗
ij(G

ϕ

j
,G−j)

+
∑

j∈D(i)\{j}

∑

i∈R

[Gjbj(·)−
Fi(T )

1− φij
−Kij]x

∗
ij(G

ϕ

j
,G−j)

= ϕ




∑

i∈R(j)

[G1
j
bj(·)−

Fi(T )

1− φij
−Kij]x

∗
ij(G

ϕ

j
,G−j)

+
∑

j∈D(i)\{j}

∑

i∈R

[Gjbj(·)−
Fi(T )

1− φij
−Kij]x

∗
ij(G

ϕ

j
,G−j)





+(1− ϕ)




∑

i∈R(j)

[G2
j
bj(·)−

Fi(T )

1− φij
−Kij]x

∗
ij(G

ϕ

j
,G−j)

+
∑

j∈D(i)\{j}

∑

i∈R

[Gjbj(·)−
Fi(T )

1− φij
−Kij]x

∗
ij(G

ϕ

j
,G−j)





6 ϕ




∑

i∈R(j)

[G1
j
bj(·)−

Fi(T )

1− φij
−Kij]x

∗
ij(G

1
j
,G−j)

+
∑

j∈D(i)\{j}

∑

i∈R

[Gjbj(·)−
Fi(T )

1− φij
−Kij]x

∗
ij(G

1
j
,G−j)





+(1− ϕ)




∑

i∈R(j)

[G2
j
bj(·)−

Fi(T )

1− φij
−Kij]x

∗
ij(G

2
j
,G−j)

+
∑

j∈D(i)\{j}

∑

i∈R

[Gjbj(·)−
Fi(T )

1− φij
−Kij]x

∗
ij(G

2
j
,G−j)





= ϕv(T ;G1
j
,G−j) + (1− ϕ)v(T ;G2

j
,G−j)

This then implies that

V (0, T ;Gϕ) = e−rTE0[ṽ(T ;G
ϕ)] 6 e−rTϕE0ṽ(T ;G

1
j
,G−j) + (1− ϕ)E0ṽ(T ;G

2
j
,G−j)

= ϕV (0, T ;G1
j
,G−j) + (1− ϕ)V (0, T ;G2

j
,G−j),
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and V (0, T ) is convex in Gj .

Consider the behavior of V (0, T ) in Fi(0, T ). Make simplifications to the notation relative

to Fi(0, T ) and Fi(T, T ) analogous to those made to Gj(0, T ) and Gj(T, T ). Fix arbitrary

i ∈ R and pick F 2
i
> F 1

i
. It holds that

v(T ;F 2
j
,F−j) =

∑

j∈D(i)

[Gj(T )−
F 2
i
ai(·)

1− φij
−Kij]x

∗
ij(F

2
j
,F−j)

+
∑

i∈R\{i}

∑

j∈D(i)

[Gj(T )−
Fiai(·)
1− φij

−Kij]x
∗
ij(F

2
j
,F−j)

6
∑

j∈D(i)

[Gj(T )−
F 1
i
ai(·)

1− φij
−Kij]x

∗
ij(F

2
j
,F−j)

+
∑

i∈R\{i}

∑

j∈D(i)

[Gj(T )−
Fiai(·)
1− φij

−Kij]x
∗
ij(F

2
j
,F−j)

6
∑

j∈D(i)

[Gj(T )−
F 1
i
ai(·)

1− φij
−Kij]x

∗
ij(F

1
j
,F−j)

+
∑

i∈R\{i}

∑

j∈D(i)

[Gj(T )−
Fiai(εi)

1− φij
−Kij]x

∗
ij(F

1
j
,F−j),

which then implies V (0, T ;F 2
j
,F−j) 6 V (0, T ;F 1

j
,F−j), so that V (0, T ) decreases in Fj. The

proof of the convexity of V (0, T ) in Fi is analogous to that of the convexity of V (0, T ) in Gj.

¤
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Chapter 3

Valuation of Downstream

Liquefied-Natural-Gas Storage

3.1 Introduction

Liquefied natural gas (LNG) is natural gas cooled to liquid state at -260F; liquefaction

reduces the volume of natural gas by a factor of more than 600, making storage and shipping

practical. Special ocean-going vessels load LNG at liquefaction facilities (for example in

Algeria, Trinidad and Tobago, Australia or Qatar), transport it (for days or weeks), and

unload it at terminals (for example in the U.S., Spain or Japan). At these terminals LNG is

pumped into storage tanks, regasified, and then distributed via pipelines or, sometimes, by

trucks. The Energy Information Administration (EIA) forecasts that local production will

soon be unable to meet demand in most industrialized countries, and expects LNG imports

to play an important role in bridging this gap (EIA 2003 [18], 2006 [20]). This increase in the

world’s natural-gas demand is mainly due to the fact that natural gas is an environmentally

clean and abundant fuel, which has helped to make it the fuel of choice for many new power

generation projects. More specifically, EIA (2006 [20]) forecasts that by 2010 LNG will

become the largest source of U.S. natural-gas net imports.

We are starting to see the unfolding of some of these predicted events, which Jensen (2003

[32]) emphatically refers to as the “LNG revolution”. Several liquefaction capacity expansion

and greenfield projects have been announced, and a number of new terminals have been

proposed in North America (see the website of the Federal Energy Regulatory Commission,

www.ferc.gov/industries/lng.asp, for an up-to-date list of existing, approved, and proposed

terminals in North America). An important feature of these new terminals is their larger

sizes relative to the existing terminals, which should increase the ability of industry players to

store LNG before releasing it into the natural-gas distribution system. Holcomb (2006 [29])
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has recently questioned the effectiveness of storing LNG at a downstream terminal rather

than storing regasified LNG in natural-gas storage facilities. However, obtaining access to

these terminals is necessary to bring LNG into the natural-gas distribution system, at least

when using conventional regasification technology, and requires leasing their storage space

and regasification capacity from their operating companies. Hence, industry players face the

challenge of assessing the value of downstream-terminal leasing contracts, which amounts to

valuing the real option to store LNG at a terminal. Given the discussion in Holcomb (2006

[29]), one can surmise that the value of this real option is not well-understood in practice

(let alone theory).

Focus and research questions. Our interest in this paper is on the modeling and

analysis of the value of LNG downstream storage, focusing on regasification facilities located

in the U.S., where LNG is priced off the New York Mercantile Exchange (NYMEX) natural-

gas futures and basis-swap contracts. Specifically, our objective is to answer the following

research questions. (1) How can one model the operations of an LNG value chain, in par-

ticular those pertaining to downstream storage? (2) What is the structure of the optimal

LNG inventory-management policy at the downstream facility, and how does it interact with

the logistics of inbound shipping? (3) What is the value of the real option to store LNG at

this facility, or, equivalently, what is the value of optimally managing the LNG inventory at

this facility? (4) What is the significance of this value for different players in an LNG value

chain, i.e., LNG integrated-producers and merchants?

Contributions and relevance. We contribute to the literature in the following ways.

On the modeling side, we address question (1) in §3.2 by developing a tractable real-option

model for the valuation of the operations of an LNG chain, with an emphasis on the valua-

tion of downstream storage. We abstract away from the details of upstream liquefaction and

shipping and represent both these activities as a closed queueing network (CQN) of ships,

the shipping model, leveraging and extending the work of Koenigsberg and Lam (1976 [38])

by allowing for Coxian shipping times. This model reflects current practices in the LNG

industry aimed at achieving high utilization of installed liquefaction and shipping capacity.

In contrast to the existing literature, we develop an analytical approach, the rolling-forward

method, to probabilistically incorporate the output of the CQN in a finite-horizon stochastic

dynamic-program, the inventory-release model, which optimizes the inventory-management

policy at the downstream location. Here, we model the evolution of the wholesale spot

price of natural gas as an exogenous stochastic Markov process. As a whole, our model

is extremely practical: the shipping model captures the stochastic nature of the shipping

process (including congestion), and decomposes it from the inventory-release model by us-

ing the rolling-forward method to determine the probability distribution of the number of
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unloaded cargos during an inventory-review period. This decomposition makes our model

computationally tractable.

On the analysis side, we answer question (2) in §3.3 by establishing optimality of a

basestock target policy that depends on the realization, at the inventory-review time, of

the random state variable that models the evolution of the natural-gas spot price. This

is fundamentally a result of the interplay between shipping logistics and finite terminal-

space/regasification-capacity, reflected in a “kinked” inventory and released-quantity feasible

region in the inventory-release model. The basestock targets are nontrivial, in the sense that

when it is optimal to sell, it is not necessarily optimal to sell the entire available inventory.

We decompose the amount of inventory optimally released in each period into a forced sale

and an optional sale: the former addresses the need to make space for incoming cargos, the

latter prevents costly future forced sales or takes advantage of a high natural-gas price. More

specifically, the basestock target is a sell-down-to level for an optional sale after a forced

sale, if any, has been performed. This is a target because it may not be reachable from some

inventory level due to limited regasification capacity. These structural results clarify an

apparent misconception among some practitioners on how to manage LNG storage, which

is summarized by Holcomb (2006 [29]) when he states that “the liquid storage must be

vaporized and depleted before each new cargo of LNG arrives.” In light of our analysis, a

more accurate statement is that some, but not necessarily all, of the stored LNG must be

released before a new cargo arrives. In fact, deciding the optimal amount of LNG to regasify

and sell is, in general, nontrivial.

We use our model to answer questions (3) and (4) in §3.4 by means of a numerical study.

We consider a realistic LNG chain consisting of liquefaction in North Africa, shipping to

Lake Charles, Louisiana, and regasification and sale into the Louisiana natural-gas wholesale

market at the Henry-Hub spot price, where Henry Hub is the delivery location of NYMEX

natural gas futures. We model this price using the one-factor mean-reverting model with

seasonality of Jaillet et al. (2004 [31]), calibrated with actual prices of traded NYMEX

natural-gas futures and options on futures. We use this model in conjunction with our

valuation model to measure the value of downstream storage over a twenty-year horizon,

its sensitivity to parameters of interest, and its relative benefit for different parties. More

specifically, we consider three players: An integrated producer that operates the whole LNG

chain (an unusual case in practice, but one which some producers are currently considering),

and two types of LNG merchants, type one and two for short. The type-one merchant

purchases LNG from a (nonintegrated) producer at its liquefaction facility and ships LNG

to a downstream terminal, where it also manages LNG inventory. This merchant operates

under a free on board (FOB) contract, whereby the change of LNG ownership occurs at
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the upstream facility, and also operates a fleet of vessels to ship LNG to the downstream

facility. The type-two merchant purchases LNG from a (nonintegrated) producer at the

downstream facility. This merchant operates under an ex-ship contract, whereby ownership

changes hands at the regasification terminal, and the producer operates the shipping part

of the chain. We obtain the value of storage by comparing the valuations generated by our

model with optimization of the inventory-release policy and without storage, respectively.

While this value does not depend on the type of player under consideration, we show that

the relative benefit of storage does.

We estimate the value of the real option to store during this twenty-year period to be

in the range of approximately $100-525M, depending on the available storage space. For

our case study this value is $104M for a system with a throughput of 0.74 million tons per

annum (MTPA), a storage space of 3BCF, and a regasification capacity of 1BCF/day, and it

is $526M for a 3.68MTPA throughput, 15BCF storage space, and 1BCF/day regasification

capacity system. Approximately 20-25% of this value is extrinsic, i.e., can be attributed to

natural-gas price volatility (stochastic variability), while the remaining 75-80% is intrinsic,

i.e, can be attributed to natural-gas price seasonality (deterministic variability). We quan-

tify the relative benefit of storage to be small for the integrated producer and significant for

the two merchants. We estimate that an integrated producer of a typical size LNG chain

can increase the value of its operations by roughly 0.5-3% by optimally managing the in-

ventory at the downstream terminal, whereas this benefit rises to about 4-15% for the two

types of merchants (both larger and smaller values are possible for other configurations).

Hence, while we agree with Holcomb (2006 [29]) that an LNG downstream terminal “is a

delivery mechanism” and not a substitute for natural gas (as opposed to LNG) storage, we

also show that optimal management of stored LNG, given the available storage space and

regasification capacity, can significantly enhance the economic value of this terminal. Put

another way, while optimal inventory-management cannot increase process capacity, proper

management of LNG storage can add significant value to an LNG chain by exploiting the

marked fluctuations in the price of natural gas.

We conclude in §3.5 by further discussing the relevance of our results, pointing out

some limitations and possible extensions/applications of our model, and delineating further

research avenues.

Related literature. Our work is related to the real-option literature dealing with

applications in commodity and energy industries. Representative works in this area are the

valuation papers by Smith and McCardle (1998 [57], 1999 [57]) and references therein, Jaillet

et al. (2004 [31]), and Manoliu (2004 [40]), and the recent books by Clewlow and Strickland

(2000 [11]), Eydeland and Wolyniec (2003 [21]), and Geman (2005 [24]). Schwartz (1997
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[50]), Seppi (2002 [54]), Clewlow and Strickland (2000 [11], Chapters 6-8), and Eydeland

and Wolyniec (2003 [21], Chapters 4 and 5) provide reviews on modeling energy prices as

stochastic processes. To the best of our knowledge, this literature has not yet studied the

valuation of LNG operations as we do here, e.g., Geman (2005 [24], pp. 246-249) only briefly

describes the LNG problem setting. While scant, the literature features two important papers

that address the modeling of the shipping stage of an LNG chain: Koenigsberg and Lam

(1976 [38]) and Kaplan et al. (1972 [35]). These works, the former based on CQN methods,

the latter on simulation, endeavor to answer the following purely operational questions: given

a configuration of an LNG system, i.e., the fleet size and its composition, the operational

features of the loading and unloading facilities, and the distance between these facilities,

what is the throughput of the system, i.e., the average amount of LNG delivered from the

liquefaction to the regasification facility in steady state, and what are the utilization rates of

the loading and unloading facilities? These are important questions, which however ignore

the broader issue of valuing, in monetary terms, the LNG flow from the liquefaction to the

regasification facility via the shipping link. While one could obtain a rough estimate of this

value by multiplying the system throughput by an “appropriate average” natural-gas price,

this approach would nevertheless ignore the value of downstream storage. Instead, differently

from the extant literature, we address the downstream LNG storage valuation problem by

modeling the interplay between shipping logistics and inventory management, in the face of

the uncertain evolution of the natural-gas spot price.

Our inventory-release model is related to the literature dealing with the control of the

water level in dams. Hasofer (1966a, b [27] [28]) considers the infinite-depth case, Faddy

(1974 [22]), Pliska (1975 [47]), and Cohen and Rubinovitch (1977 [12]) the finite-depth

case, and Moran (1959 [45]) studies both cases. Our setting is different because our dynamic

program has an additional state variable, tracking the evolution of the natural-gas spot price,

which evolves as a Markov process. In this regard, our work is related to the recent paper

by Secomandi (2007 [53]), who studies the problem of valuing commodity storage assets,

which give their owners the ability to control both the rates of injection and withdrawal of

the commodity into and out of the storage facility. Our model is different from his because

our inflow rate is uncontrollable (random). This feature, combined with the finiteness of

the buffer size, creates a kink in the inventory-release feasible region that differentiates our

setting from his. Our results reflect this basic difference since, in contrast to this author,

we establish existence of a price-independent sell-down-to-level for forced sales and a price-

dependent sell-down-to-target for optional sales. Moreover, differently from Secomandi (2007

[53]), we conduct a model-based analysis of the value of LNG storage using realistic data.
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and LNG Shipping

Inventory-Release ModelShipping Model

Downstream
StorageNatural-Gas Liquefaction LNG Regasification

and Natural-Gas Sale

Figure 3.1: LNG process flow and modeling decomposition: The shipping model captures

natural-gas liquefaction and LNG shipping, the inventory-release model management of

downstream storage, LNG regasification, and natural-gas sale.

3.2 Model

In this section we describe our model for the valuation of LNG downstream storage, hence

addressing research question (1). This model is based on the process-flow diagram of an LNG

value chain illustrated in Figure 3.1. It consists of two integrated models: the shipping model

(§3.2.1), a CQN-based model, and the inventory-release model (§3.2.2), a discrete-time finite-

horizon stochastic dynamic-program. In Figure 3.1, there are two activities and one buffer.

The first activity combines natural-gas liquefaction and LNG shipping; this is the shipping

model. The buffer represents storage at the downstream regasification facility. The second

activity includes LNG regasification and natural-gas sale into the wholesale market; this is

the inventory-release model. The inventory-release model integrates the probabilistic output

of the shipping model, generated by the rolling-forward method, with the management of the

buffer and the second activity. It also uses the probabilistic output of a separate model of

the evolution of the natural-gas spot price: a one-factor mean-reverting model. To maintain

generality, we defer to §3.4 the discussion of the specifics of this model (the analysis in §3.3
also applies to other price models). In our model, we assume that the natural gas spot price

and LNG import amount are independent. We obtain the value of storage by comparing the

value of the LNG chain with optimization of the inventory-release policy to that without

storage; we measure the relative benefit of storage for different players as the additional value

created by this optimal policy relative to the value of their respective operations without

storage (§3.2.3).

3.2.1 Shipping Model

CQN model. Following Koenigsberg and Lam (1976 [38]), we consider the CQN represen-

tation of the LNG shipping system illustrated in Figure 3.2. Ships perform four activities:
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Figure 3.2: Representation of an LNG shipping system as a CQN of ships.

loading at the upstream port, loaded transit to the downstream port, unloading at this port,

and ballast transit to the upstream port. We abstract away from the details of natural-gas

liquefaction, and model the amount of LNG transfered from the liquefaction to the regasi-

fication facility by a fleet of N identical LNG ships, each with cargo size C measured in

cubic meters (CM) fed by an ample supply. As LNG liquefaction facilities are designed to

run at full capacity, being served by an appropriate number of ships to satisfy this capacity

(Flower 1998 [23], p. 96), this abstraction only disregards the stochasticity of output, due to

downtime for example. This tends to be slight (Flower 1998 [23], p. 96). We illustrate the

case of identical ships here, but, as discussed below, we can also account for heterogeneity

in ship types. The fleet is operated at an average speed of s knots, taken as given in this

paper, expressed as nautical miles (NM) per hour. Ships are dedicated and loop between

the liquefaction and regasification facilities, which are located at a distance of D NM apart.

The average transit time of a ship to sail one-way between these facilities at speed s is D/s,

so that the average total transit time is τ T (D, s) := 2D/s. We denote τL(C) and τU(C) the

average loading and unloading times (expressed in hours) of a ship with cargo size C at the

liquefaction and regasification facilities, respectively. If there were neither uncertainty nor

queueing, letting H be the number of operating hours in a year, the capacity of the shipping

system would be Λ := H ·N ·C/[τL(C)+ τT (D, s)+ τU(C)]. We take Λ to be the capacity of

the liquefaction facility, which is typically measured in MTPA. (We present the conversion

factors between the relevant pairs of units of measurement in §3.4.)
To account for uncertainty in shipping operations, we model the loading and unload-

ing blocks as first-come-first-served (FCFS) exponential queues, and the transit blocks as

ample-server (AS) exponential or multistage Coxian queues, which allows more flexibility

in modeling variability than the exponential distribution (Osogami and Harchol-Balter 2006
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[46]). The loading and unloading blocks concisely model the following activities: entering

the port (traversing the entry channel), loading/unloading the ship, and leaving the port

(traversing the exit channel or again the entry channel if there is only one channel at the

given port). Here, randomness in service times does not typically arise when physically load-

ing/unloading the ships, but rather when entering/leaving the port. Uncertainty in transit

time is typically due to changing weather conditions.

With this representation, our CQN is a so called multi-class (if there are heterogeneous

ship types) “BCMP-network” having closed-form, product-form stationary distributions, as

defined and proved by Baskett et al. (1975 [3]). Let I be the total number of blocks (four

in Figure 3.2) and Ji the number of Coxian service time stages in block i = 1, . . . , I. The

total number of stages is J =
∑I

i=1 Ji. There are K classes, i.e., each type corresponding to

a different ship type. In each block i, denote nijk the number of ships of class k = 1, . . . , K

in stage j = 1, . . . , Ji. The state of the shipping system is array n = (nijk, i = 1, . . . , I, j =

1, . . . , Ji, k = 1, . . . , K). We denote N the set of all possible states of the system, i.e., the

set of states such that
∑I

i=1

∑Ji

j=1

∑K
k=1 nijk = N . For each block i, we let λijk and µijk,

respectively, be the total arrival and service rates of stage j = 1, . . . , Ji for each class k.

Baskett et al. (1975 [3]) show that the steady-state probability that the random variable

state of the system, ñ, is equal to n ∈ N , i.e., π(n) := Pr{ñ = n}, satisfies the product form

solution π(ñ = n) = Γ
∏I

i=1

∏Ji

j=1

∏K
k=1 γijk(λijk, µijk, nijk); here Γ is a normalizing constant

chosen to make these probabilities sum to 1, and each term γijk(·) is computed as follows:

γijk(λijk, µijk, nijk) =

{
Bijk(λijk, µijk, nijk)

(∑K
k=1 nijk

)
! if block i is FCFS

Bijk(λijk, µijk, nijk) if block i is AS

Bijk(λijk, µijk, nijk) :=
K∏

k=1

1

nijk!

(
λijk
µijk

)nijk

.

For each class k, define N ′
k the subset of states in which at least one ship is unloading,

i.e., N ′
k := {n ∈ N : n31k > 0}, where n31k is the number of ships of class k being unloaded

at the downstream facility (block 3 in Figure 3.2). Once the probabilities π(·)’s are known,

the throughput of the LNG chain is Λ = H
∑K

k=1 µ31k
∑

n∈N ′
k
π(n). Since uncertainty in

shipping operations can create congestion, it holds that Λ 6 Λ.

Rolling-forward method. What we have described so far is well-known in the existing

literature. Here is how we build on these results to more realistically capture the variability in

the unloading distribution. Note that π(n) is the stationary distribution for the ship location

within the network at a given instant in time. The quantity of interest to us is the random

variable ũ(τ), the amount of LNG unloaded at the regasification facility by the ships in the

CQN during a period of time of length τ , e.g., one month. This is a fundamentally different
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quantity from π(n); whereas π(n) is a distribution at a single instant in time, ũ(τ) tracks the

distribution of the evolution of the system over an interval of length τ . The distribution of

ũ(τ) is required in the inventory-release model: for some choice of parameter τ , we need to

know the set of its (nonzero-probability) realizations U(τ) and the probability Pr{ũ(τ) = u}
for each u ∈ U(τ). Our rolling-forward method uses the stationary distribution π(·) as a

starting point for this purpose. We allow the CQN to transition forward through time from

its stationary distribution, tracking the unloaded amounts and their distribution over a time

increment of length τ . To calculate this distribution we uniformize (see, e.g., Asmussen 2003

[1]), condition on the number of “events” that can happen over the time interval of length τ ,

and then calculate the distribution of the number of ships unloaded (or the unloaded LNG

by multiplying this number by the cargo size C) given the number of total events. Given

the dynamics of the system, if τ is finite, it is easy to see that set U(τ) is finite (provided

that the other parameters describing the system take on “sensible” values). Hence, for a

given τ , the distribution of random variable ũ(τ) is a one-dimensional table. We compute

this distribution analytically, i.e., we do not have to use Monte Carlo simulation. Denote

ã(τ) the random number of events that can occur during a period of time of length τ , a

Poisson random variable with opportunely computed mean, and χ̃(τ) the random number of

unloaded ships during this time period. Let a be such that Pr{ã(τ) > a} = ε for arbitrarily

small ε ∈ <+. Denote P (χ|a, n) the probability that χ ships are unloaded during length

of time τ given that the system is initially in state n and a total of a events occur. We

have developed analytical expressions for P (χ|a, n) through a forward recursion in χ, but,

since they are somewhat lengthy, in the interest of space we do not present them here. We

compute the distribution of χ̃(τ), and hence that of ũ(τ) ≡ χ̃(τ)C, as

Pr{χ̃(τ) = χ} =
∑

n∈N π(n)
∑a

a=0 Pr{ã(τ) = a}P (χ|a, n)
1− ε .

Note that the only inaccuracy in the rolling-forward method is its failure to capture the

dependence between unloaded amounts in successive periods of length τ (because we assume

the system returns to its stationary distribution π(n)). As we consider systems with relatively

low variability over long horizons (20-30 years), this dependence is not critical.

3.2.2 Inventory-Release Model

Our focus now turns to the optimal management of the downstream buffer and the LNG re-

gasification and natural-gas sale activity. We employ a finite-horizon periodic-review model.

We define set T := {1, . . . , T} as the set of time periods, with T a finite integer, and use set

T ∪ {T + 1} to index the stages of our stochastic dynamic-program. We define time period
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t ∈ T as the time interval between successive stages t and t+ 1 of length τ . We define time

period T +1 as the last period of interest and denote its length τT+1, which may be different

from τ . Typical values for the length of the finite time horizon are 20-30 years, so if we take

τ to be one month, then T is typically between 240 and 360.

Unloading distributions. We employ random variable ũt to represent the amount of

LNG unloaded at the regasification facility during each time period t ∈ T . We use the rolling-

forward method described in §3.2.1 to construct random variable ũ(τ) and its probability

distribution on set U(τ). We define ũt := ũ(τ) and Ut := U(τ), ∀t ∈ T . As mentioned

previously, this entails the assumption that the random variables in set {ũt, t ∈ T } are

independent and identically distributed. This assumption is required in order to make our

dynamic-program tractable. Note that we perform this step before solving the inventory-

release model, which we formulate below.

Denote xt the inventory available at the downstream facility at the beginning of stage

t ∈ T ∪ {T + 1}. Let 0 and x, respectively, denote the minimum and maximum levels of

inventory that can be held in storage at this facility. Hence, the quantity xt is constrained

to be in set X := [0, x] for all t ∈ T ∪ {T + 1}. This set poses space constraints on the

inventory level at the beginning of each stage. The capacity of the downstream facility during

a given period of time is the maximum amount of LNG that can be regasified and released

during this time period. We denote qT+1 this capacity in the last time period, and assume

that any inventory level xT+1 ∈ X can be regasified during this period, i.e., qT+1 > x.

Since all the other time periods t ∈ T share the same length, we denote q this capacity

for each such time period. Denote qt the amount of LNG actually regasified and released

from downstream storage during time period t ∈ T . Quantity qt is constrained to be in set

Q(xt, ut), ∀t ∈ T , xt ∈ X , ut ∈ Ut. This set poses space and capacity constraints on the

amount of LNG regasified during any time period. Define u the maximum quantity that can

be unloaded during any time period, i.e., u := max{u : u ∈ U(τ)} (recall that Ut ≡ U(τ),
∀t ∈ T ). Given t ∈ T , xt ∈ X , ut ∈ Ut, and quantity qt, the inventory level at time t + 1 is

xt+1 = xt + ut − qt. It must hold that xt+1 ∈ [0, x] and qt ∈ [0, q]. We make the assumption

that u 6 q, which means that in each time period it is possible to unload and regasify the

maximum quantity that could be unloaded in this time period. With this assumption, it

holds that Q(xt, ut) = [max(0, xt + ut − x),min(q, xt + ut)].

Remark 1 (Regasification capacity). The assumption that the regasification capacity in

each period t ∈ T is at least equal to u effectively constrains the fleet composition and/or

speed in every period, and means that the LNG chain throughput is Λ. (In contrast we refer

to Λ as its capacity.)
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Price dynamics and costs. We use the Markovian stochastic process {p̃t, t ∈ T ∪ {T + 1}}
to describe the evolution of a price state-random-variable p̃t with realizations pt ∈ Pt ⊂ <.
The natural-gas spot price at time t ∈ T ∪{T +1} is known function gt(pt) : Pt → <+. This

price is expressed in U.S. dollars per million British thermal units ($/MMBTU). This price

plays a critical role in our model because we use it to convert the physical flow of LNG into

a monetary value: we account for regasification sales during time period t ∈ T ∪ {T + 1}
by multiplying the released quantity, net of regasification fuel losses (explained below), by

the natural-gas price prevailing at the beginning of this time period. (Using the natural-gas

price at the beginning of a time period is a modeling simplification, which we believe is

justified given that the typical length of an LNG project, and hence of the time horizon

in our model, is of the order of 20-30 years.) Here, we assume that the quantity sold does

not affect the market price of natural gas. We also assume that random variable p̃t+1|pt is
independent of random variable ũt, ∀t ∈ T , which means that we assume that the amount

of LNG unloaded in a period does not influence the wholesale-price of natural gas at the

downstream location. While we realize that these two assumptions may not always hold in

practice, we point out that they should be fairly realistic for modeling an LNG system whose

regasification terminal is located in the southearn part of the U.S., e.g., Louisiana, where

the natural-gas spot market is fairly liquid.

Remark 2 (Units of measurement). LNG capacity is typically measured in MTPA,

cargos in CM, and LNG downstream storage space and regasification capacity in BCF and

BCF/day. However, for ease of exposition and consistency with the units of measurement of

the natural-gas price, in the inventory-release model we assume that all the physical quanti-

ties are expressed in MMBTU, i.e., unloaded LNG cargos and LNG inventory are measured

in MMBTU, and regasified LNG and regasification capacity are measured in MMBTU per

(the appropriate) unit of time.

There are operating costs and fuel requirements associated with the physical flows along

the chain. Denote ht(xt) : X → <+ the physical inventory-holding cost charged against the

inventory xt available at the beginning of period t at the downstream terminal (ht(0) = 0).

We assume this function to be (weakly) convex. Let ϕR the fuel (natural gas) needed to

regasify one unit of LNG, i.e., the LNG to natural-gas yield is 1 − ϕR. Finally, denote cUt

the cost of unloading (handling) one unit of LNG in period t at the downstream terminal,

i.e., the per unit cost of receiving a cargo. The operating cost of downstream LNG storage

and regasification in time period t is gt(pt)ϕ
Rqt + ht(xt) + cUt ut. We introduce the operating

costs of natural-gas liquefaction and LNG shipping in period t after having discussed our

stochastic dynamic-program.
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Stochastic dynamic-programming formulation. The following material uses financial-

economics concepts discussed in Luenberger (1998 [39], Chapters 12 and 16) at an introduc-

tory level, and in Duffie (2001 [15], Chapters 2 and 6) at an advanced level. We are interested

in computing the value of an LNG chain at the beginning of the evaluation period, i.e., t = 1.

We assume existence of an arbitrage-free natural-gas futures market at the location of the

regasification facility, e.g., the NYMEX natural-gas futures and basis-swap market in North

America. Since our time horizon is typically longer than the maturity of traded natural-

gas futures contracts, we face an incomplete market setting. Stated differently, the futures

market would only be complete up to the time of the expiration of the last traded futures con-

tract, e.g., seventy-two months for the NYMEX natural-gas futures contract. Hence, there

exist multiple risk-neutral measures that describe the evolution of the stochastic variable p̃t,

for all times t ∈ T ∪ {T + 1}. We define E∗
t [·] := E∗[·|p̃t = pt] as conditional expectation

given the current realization pt of random variable p̃t with respect to a measure in the set

of all the possible risk-neutral measures. Since there is no market for the unloading risk

represented by random variable ũt, ∀t ∈ T , we also face an incomplete market with respect

to this risk. By well-known results (see, e.g., Smith and Nau 1995 [59]), we resolve both

these incompletenesses for valuation purposes by assuming that the LNG chain, or a portion

of it whenever relevant, is operated by a risk-neutral firm.

We now formulate our stochastic-dynamic-programming valuation model. Denote δt the

risk-free discount factor from time t+1 back to time t ∈ T . In each stage t ∈ T ∪{T+1}, the
state of the system is the pair (xt, pt), ∀xt ∈ X , pt ∈ Pt. The optimal value-function in this

state and stage is Vt(xt, pt). We intepret this quantity as the optimal downstream operating

margin-to-go, i.e., this value is the expected optimal revenue minus the expected storage and

regasification operating costs during a period plus the discounted optimal expected-margin

from the next period onward (however this quantity does not account for the liquefaction

and shipping operating costs, which will be included as needed below). This function is

defined as

VT+1(xT+1, pT+1) := gT+1(pT+1)(1− ϕR)xT+1 − hT+1(xT+1),∀xT+1 ∈ X , pT+1 ∈ PT+1

Vt(xt, pt) = E [vt (xt, pt, ũt)] , ∀t ∈ T , xt ∈ X , pt ∈ Pt
vt(xt, pt, ut) := max

qt∈Q(xt,ut)
νt(xt, qt, pt, ut)

νt(xt, qt, pt, ut) := gt(pt)(1− ϕR)qt − ht(xt)− cUt ut + δtE
∗
t [Vt+1(xt + ut − qt, p̃t+1)].

This formulation is interpreted as follows. In the final time period T + 1, any remaining

inventory is released and sold (recall our assumption that qT+1 > x). During each time

period t ∈ T , an amount ut ∈ Ut of LNG is unloaded at the downstream terminal at cost

cUt ut, and becomes available for regasification and sale during time period t; holding cost
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ht(xt) is charged against the initial inventory xt; an optimal amount q∗t (xt, pt, ut) of LNG

from the total available inventory xt + ut is regasified, and a fraction 1− ϕR of this amount

is sold into the wholesale natural-gas spot market at the prevailing price gt(pt). A stochastic

transition to the next period is made to account for the uncertainty in the natural-gas spot

price, taking into account the inventory dynamics.

Producer and merchant optimal value-functions. We can further specify value

functions for the integrated producer and the LNG merchants who purchase LNG from a

nonintegrated producer (see the discussion in §3.1). The integrated producer incurs lique-

faction and shipping operating costs at the beginning of each stage t. Since we do not model

the operational details of natural-gas liquefaction and LNG shipping, we simply denote these

costs at the beginning of stage t as OCL
t and OCS

t (we illustrate these costs in §3.4). As

stated in §3.1, we consider two types of merchants, type 1 is only active in the regasifica-

tion of LNG, and type 2 is also active in the shipping of LNG. Let ˜̀
t the random variable

amount of LNG loaded during period t. We make the same assumptions on ˜̀
t that we make

on ũt, and compute its distribution and support in a fashion analogous to the computation

of those for ũt (we have also developed an extended version of the rolling-forward method

to compute their joint distribution). Denote ζM1
t (pt, `t) and ζ

M2
t (pt, ut) generic time period

t LNG price functions for merchants types 1 and 2, respectively, i.e., the price paid by a

merchant of either type to purchase LNG from a nonintegrated producer. According to

industry practices, these functions depend on the natural gas (or oil) price and the amount

purchased (see, e.g., Miller 1998 [44], pp. 172-176). We will impose more structure on these

functions in §3.4. Also, notice that we introduce merchant-type specific functions because

the type-1 merchant also incurs the shipping operating cost, whereas the type-2 merchant

does not. Thus, ceteris paribus, the price paid by the type-2 merchant should be higher than

that paid by the type-1 merchant because the shipping cost in the former case is incurred by

the nonintegrated producer. The (net) optimal value functions for the integrated producer

and the two merchant types are

V P
T+1(xT+1, pT+1) ≡ V M1

T+1(xT+1, pT+1)

≡ V M2
T+1(xT+1, pT+1) := VT+1(xT+1, pT+1),∀xT+1 ∈ X , pT+1 ∈ PT+1

V P
t (xt, pt) := Vt(xt, pt)−

(
OCL

t +OCS
t

)
, ∀t ∈ T , xt ∈ X , pt ∈ Pt

V M1
t (xt, pt) := Vt(xt, pt)−

{
E
[
ζM1
t (pt, ˜̀t)

]
+OCS

t

}
, ∀t ∈ T , xt ∈ X , pt ∈ Pt

V M2
t (xt, pt) := Vt(xt, pt)− E

[
ζM2
t (pt, ũt)

]
, ∀t ∈ T , xt ∈ X , pt ∈ Pt.

These definitions simply reflect the different roles played by these players.
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3.2.3 The Value and Benefit of Downstream Storage

We define the value of the option to store as the additional value obtained by optimally

managing the downstream inventory relative to the value of regasifying and selling each

incoming cargo upon receipt. It is clear than if we assume that the storage facility is empty

at the beginning of the first stage, i.e., x1 = 0, then the inventory at the beginning of

any other stage under the latter policy is always zero. We make this assumption in this

paper. Thus, we can suppress the inventory level from the state definition of this policy and

denote V t(pt) its value in stage t with realized price state-variable pt. Hence, our stochastic

dynamic-program simplifies to the following Markov reward process:

V T+1(pT+1) := VT+1(0, pT+1) = 0,∀pT+1 ∈ PT+1

V t(pt) = [gt(pt)(1− ϕR)− cUt ]E[ũt] + δtE
∗
t [Vt+1(p̃t+1)], ∀t ∈ T , pt ∈ Pt.

We introduce functions V P
t (·), V M1

t (·), and V M2
t (·) by replacing Vt(0, ·) with V t(·) in the

definitions of functions V P
t (·, ·), V M1

t (·, ·), and V M2
t (·, ·), respectively.

Assuming that x1 = 0, we define the value of storage in stage t and state (xt, pt) as

St(xt, pt) := Vt(xt, pt)− V t(pt),

which is clearly nonnegative. We do not include the type of LNG player in this definition

because

Vt(xt, pt)− V t(pt) ≡ V P
t (xt, pt)− V P

t (pt) ≡ V M1
t (xt, pt)− V M1

t (pt) ≡ V M2
t (xt, pt)− V M2

t (pt).

On the contrary, the benefit of storage, or, equivalently, the relative value of optimizing the

inventory-management policy, does depend on the type of LNG player because the integrated

producers and the two types of merchants have different operating income streams. We define

the benefit of storage for an integrated producer and the two merchant types as follows:

BP
t (xt, pt) :=

St(xt, pt)

V P
t (pt)

≡ V P
t (xt, pt)

V P
t (pt)

− 1

BM1
t (xt, pt) :=

St(xt, pt)

V M1
t (pt)

≡ V M1
t (xt, pt)

V M1
t (pt)

− 1

BM2
t (xt, pt) :=

St(xt, pt)

V M2
t (pt)

≡ V M2
t (xt, pt)

V M2
t (pt)

− 1.

3.3 Optimal Inventory-Management

We now study the structure of the optimal policy to manage LNG inventory at the regasifi-

cation terminal, i.e., we address research question (2). This structure turns out to be a price
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Finite-space kink

Constrained-capacity kinkNote:

Finite-space kink

Note:

(a) A(ut) (b) A′(ut)

Figure 3.3: The inventory-action spaces A(ut) and A′(ut) with the roles played by finite

capacity and space highlighted.

state-variable dependent basestock target policy. We start by characterizing the optimal

value-function in Proposition 5, whose proof is in Appendix 3.6.

Proposition 5 (Optimal value-function). In any stage t ∈ T ∪ {T + 1}, it holds that
(i) Vt(xt, pt) is concave in xt ∈ X for each pt ∈ Pt; (ii) if the probability distribution of

p̃t+1 conditional on p̃t being equal to pt ∈ Pt is stochastically increasing in pt and gt(pt) is

increasing in pt, then Vt(xt, pt) is supermodular in (xt, pt) on X × Pt.

A few comments on this result are in order. Even though we have assumed a convex

physical holding-cost function, the concavity result (i) is fundamentally a consequence of the

kinked inventory-action space A(ut) := {(xt, qt) : x ∈ X , qt ∈ Q(xt, ut)} illustrated in panel

(a) of Figure 3.3. In other words, this property would persist even if one were to set the hold-

ing cost function to be identically zero. In addition, this result does not depend on specific

distributional assumptions for the stochastic processes {ũt, t ∈ T } and {p̃t, t ∈ T ∪{T+1}}.
In point (ii), the assumptions that the probability distribution of p̃t+1 is stochastically in-

creasing in pt and that function gt(pt) is increasing in pt are not restrictive. For example,

they are satisfied when the spot price dynamics follow the mean-reverting model reviewed

by Schwartz (1997 [50]) and extended by Jaillet et al. (2004 [31]) to account for deter-

ministic seasonality, or the short-term/long-term model of Schwartz and Smith (2000 [51]).

Under these assumptions, the supermodularity of the optimal value-function in the price

state-variable and inventory in point (ii) indicates an appealing complementarity relation-

ship between price and inventory: the higher the price state-variable, the more inventory one
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would like to have available to sell. Concavity plays a fundamental role in establishing the

price state-variable dependent basestock target nature of the optimal inventory-management

policy in Proposition 6, and supermodularity allows us to further characterize the behavior

of this structure in the price state-variable in Proposition 7.

Basestock target and forced/optional sales. Define Q′(xt, ut) := [max(0, xt + ut −
x), xt + ut], i.e., remove the effect of the capacity limit q on set Q(xt, ut), and define the

corresponding inventory-action space A′(ut) := {(xt, qt) : x ∈ X , qt ∈ Q′(xt, ut)} (see panel

(b) of Figure 3.3). We define q∗t (xt, pt, ut) and q¦t (xt, pt, ut) as the largest quantities in sets

argmaxqt∈Q(xt,ut) ν(xt, qt, pt, ut) and argmaxqt∈Q′(xt,ut) ν(xt, qt, pt, ut), respectively.

Proposition 6 (Basestock target). In any stage t ∈ T , given a price state-variable

realization pt ∈ Pt, there exists a basestock level bt(pt) ∈ X such that in extended state

(xt, ut, pt) ∈ X × Ut × Pt (i) ignoring the capacity restriction qt 6 q, it is optimal to sell

down to bt(pt) from inventory level xt + ut, i.e., q
¦
t (xt, pt, ut) = max(0, xt + ut − bt(pt)); (ii)

taking the capacity constraint into account, it is optimal to try to sell down to bt(pt), i.e.,

q∗t (xt, pt, ut) = min(qt, q
¦
t (xt, pt, ut)).

Before discussing how one could prove this result, we note that the quantity bt(pt) is

a target because the limited regasification capacity q may make it unreachable from some

initial inventory levels. Also, notice that both q¦t (·, ·, ·) and q∗t (·, ·, ·) cannot be smaller than

max(0, xt + ut − x), which highlights an important connection between shipping logistics

and the management of the regasification terminal in terms of available space: in time

period t one must release an amount of inventory equal to max(0, xt + ut − x) to avoid a

“tank overflow” due to an incoming shipment. Hence, irrespective of the prevailing natural

gas price gt(pt), in extended state (xt, pt, ut) one must execute forced sale qFt (xt, ut) :=

max(0, xt+ut−x). Since the inventory level after performing a positive forced sale is x, this

can be intepreted as the forced-sale basestock level (it is not a target because q > u). We

then call optional sale the difference between feasible sale qt and forced sale qFt (xt, ut) and

denote it q̂t(xt, pt, ut) := qt(xt, pt, ut)− qFt (xt, ut). Hence, an optimal sale q∗t (xt, pt, ut) can be

decomposed as q∗t (xt, pt, ut) ≡ qFt (xt, ut)+ q̂
∗
t (xt, pt, ut), and bt(pt) assumes the interpretation

of basestock target for optimal optional sales. This distinction elucidates the different roles

played by forced and optional sales: the former avoids a tank overflow and is fundamentally

driven by the incoming shipment ut, while the latter prevents costly future forced sales or

takes advantage of a “high” natural gas price gt(pt), and is driven by the residual inventory

and capacity after having performed the forced sale.

This analysis also suggests a simplification of the inventory-management problem that

facilitates establishing the validity of Proposition 6. Since finding an optimal action is
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equivalent to finding an optimal optional sale after having performed the forced sale, we

denote yt the post forced-sale inventory level and, given xt and ut, define it as

yt :=

{
x xt + ut ∈ (x, x+ u]

xt + ut xt + ut ∈ [0, x]
.

This inventory level can only take values in set X . By the definition of the function

νt(xt, qt, pt, ut), the costs ht(xt) and cUt ut do not affect the choice of an optimal optional

sale at time t, and we can restrict our attention for this purpose to state (yt, pt) ∈ X × Pt.
To find an optimal optional sale in this state, we first consider the relaxed problem of

finding an optimal optional sale by ignoring the capacity restriction. Thus, the feasibility

set is simply equal to [0, yt] =: Q̌t(yt) for each yt ∈ X , and the problem to be solved is

maxqt∈Q̌t(yt) ν̌t(yt, qt, pt) where

ν̌t(yt, qt, pt) := gt(pt)(1− ϕR)qt + δtE
∗
t [Vt+1(yt − qt, p̃t+1)].

Consider the capacity constraint on an optional sale q̌t in state (yt, pt). If yt = x, which

occurs if and only if xt ∈ (x, x + u], then q̌t must satisfy q̌t ∈ [0,min(x, q − (xt + ut − x))].
This simply says that in this case q̌t must be nonnegative and cannot exceed the minimum

of the residual inventory, x, and the residual capacity after performing forced sale xt+ut−x,
q− (xt+ ut− x). If yt ∈ [0, x), which occurs if an only if xt+ ut ∈ [0, x], then q̌t must satisfy

q̌t ∈ [0,min(yt, q)]. This condition states that q̌t must be nonnegative and cannot be greater

than the minimum of the available inventory, yt, and the regasification capacity, q (in this

case the forced sale is zero). Thus, an optimal optional sale in state (yt, pt) is

q̌∗(yt, pt) :=

{
min(q̌¦(yt, pt), q − (xt + ut − x)) yt = x

min(q̌¦(yt, pt), q) yt ∈ [0, x)
.

Since it is also clear that an optimal sale in state (xt, pt, ut) satisfies q
∗
t (xt, ut, pt) ≡ qFt (xt, ut)+

q̌∗t (xt+ut−qFt (xt, ut), pt), an optimal optional sale is q̂∗t (xt, pt, ut) ≡ q̌∗t (xt+ut−qFt (xt, ut), pt).
The basestock target bt(pt) stated in Proposition 6 then satisfies bt(pt) ≡ x − q̌¦t (x, pt).

Given this problem simplification, Proposition 6 can be proved in different ways. One is by

adaptation of the method of Secomandi (2007 [53]). Another is by combining results available

in Topkis (1998 [61]) with the supermodularity of function ν̌t(yt, qt, pt) in (yt, qt, pt) ∈ X ×
Pt × Q̌t(yt), which, under the stated assumptions, can be established in a manner similar

to the proof of part (ii) of Proposition 5 in Appendix 3.6. For completeness, we provide a

self-contained proof in Appendix 3.6.

Nontriviality of the basestock target. We now bring to light the nontrivial nature

of basestock target bt(pt) by addressing the following question: If it is optimal to sell, can it
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be optimal to stop selling rather than draining the terminal as much as possible? Formally,

we wish to understand if under an optimal policy it can happen that bt(pt) > 0 in some

stage t for some price realization pt. We show that this can indeed be optimal and that

the reasons that cause this phenomenon reside in the interplay among shipping logistics and

the operational features of the terminal, i.e., the kinks displayed in Figure 3.3. Example 2

focuses on the role played by the finite-space kink, but it is possible to construct a similar

example to show that the constrained-capacity kink can play a similar role.

In Example 2, we take N = 2 and, for simplicity, we consider deterministic price and

shipping dynamics. In particular, we assume that gt(pt) = pt, t = 1, 2, 3. With a slight abuse

of notation, consider prices pL, pM , pH , with 0 < pL < pM < pH , where subscripts L, M, and

H stand for “low,” “medium,” and “high,” respectively. We define the price sets at times 1,

2, and 3 as the singletons P1 := {pM}, P2 := {pL}, and P3 := {pH}. This setting allows us

to construct a simplified representation of the marked seasonality displayed by the NYMEX

natural-gas forward curve, which is discussed in §3.4. In addition, the amount shipped in

each period, ut, t = 1, 2, is deterministic and equal to u such that 0 < u < x (recall our

convention from §3.2.2 that no shipments occur in stage N + 1 = 3). We assume that the

discount factor is equal to one in all time periods, δt = 1, t = 1, 2, 3, and, to emphasize

the role played by the space kink, we set all relevant costs and the fuel loss equal to zero:

ht(·) = 0 for t = 1, 2, 3, OCL
t = OCS

t = 0 and cUt = 0 for t = 1, 2, and ϕR = 0. The intuition

in Example 2 is simple, yet revealing. One would like to sell as much inventory as possible

in period 3 to fetch the high price in this period, pH . However, starting with a full tank in

period 1, if one does not release enough inventory in this period, one must sell a positive

amount in period 2 at the low price, pL. Consequently it is optimal to selectively release

inventory in period 1, avoid a forced sale in period 2, and sell as much as possible in period

3. This argument is now formally established.

Example 2 (Finite space). Consider a terminal with finite buffer size (0 < x < ∞) and

large regasification capacity (q > x+ u). As stated, N + 1 = 3 and the price at time 1 is at

medium level pM , drops to low level pL at time 2, and raises to high level pH at time 3, i.e.,

p1 = pM , p2 = pL, and p3 = pH . In stage 3, it is clear that V3(x3, pH) = pHx3 for x3 ∈ [0, x].

In stage 2, for x2 ∈ [0, x] and q2 ∈ [max(0, x2 + u− x), x2 + u], it holds that

ν2(x2, q2, pL, u) = pLq2 + V3(x2 + u− q2, pH) = (pL − pH)q2 + pH(x2 + u).

Since ν2(·, ·, ·, q2) decreases in q2, it follows that q∗2(x2, pL, u) = qF2 (x2, u) = max(0, x2+u−x),
and V2(x2, pL) = (pL − pH)max(0, x2 + u− x) + pH(x2 + u). In stage 1, consider inventory
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level x1 = x. For q1 ∈ [u, x+ u], it holds that

ν1(x, q1, pM , u) = pMq1 + V2(x+ u− q1, pL)
= pMq1 + (pL − pH)max(0, 2u− q1) + pH(x+ 2u− q1)

=

{
(pM − pL)q1 + 2pLu+ pHx q1 ∈ [u, 2u]

(pM − pH)q1 + pH(x+ 2u) q1 ∈ [2u, x+ u]
.

Therefore, ν1(x, q1, pM , u) reaches a peak at q1 = 2u, and q¦1(x, pM , u) = 2u < x + u < q̄,

which shows that with a full terminal in period 1 it is unconstrained optimal to sell down to

basestock target b1(pM) = x − u > 0. Also notice that a forced sale is avoided in period 2:

qF2 (x− u, u) = 0.

Basestock target behavior. We now study the behavior of bt(pt) in pt.

Proposition 7 (Basestock target and price state-variable). In any stage t ∈ T , if
the probability distribution of p̃t+1 conditional on p̃t being equal to pt ∈ Pt is stochastically
increasing in pt and gt(pt) increases in pt, then basestock target bt(pt) decreases in pt.

This result follows from Theorem 2.8.2 in Topkis (1998 [61], p. 77) and the supermod-

ularity of ν̌t(yt, qt, pt) in (yt, qt, pt) ∈ X × Pt × Q̌t(yt), which can be proved in the manner

previously stated. It says that as the price state-variable increases it is optimal to release

and sell more inventory. Thus, the extended inventory, xt + ut, and price state-variable, pt,

space is partitioned into two regions, one where it is (unconstrained) optimal to sell down to

the basestock target, the other where it is optimal to hold inventory. Example 3 illustrates

this result in a deterministic setting.

Example 3 (Basestock target in Example 2). Consider stage 1 in Example 2. Suppose

now that price p1 can take values in set [p, p], with 0 < p < pL and pH < p <∞. It is easy

to see that for p1 ∈ [p, pL] the basestock target is x, for p1 ∈ (pL, pH) the basestock target is

x− u, and for p1 ∈ [pH , p] it is zero. Thus, b1(p1) decreases in p1 as displayed in Figure 3.4

(note that q̂∗1(·, ·, ·) ≡ q̂¦1(·, ·, ·)). This figure also shows the “hold” and “sell” regions.

3.4 Quantification of the Value and Benefit of Storage

We now report the results of a model-based numerical study of the value and relative benefit

of downstream LNG storage conducted to address research questions (3) and (4). After

illustrating the study set-up, the natural-gas price model used, and its parameter estimation,

we discuss the valuation and benefit assessment results, along with the managerial insights
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Figure 3.4: The structure of the basestock target in Example 3; note that q̂¦1(x1, p1, u) ≡
q̂∗2(x1, p1, u).

Table 3.1: Units of measurement and conversion factors.
MTPA Million Tons per Annum

CM Cubic Meters

NM Nautical Miles

MMBTU Million British Thermal Units

BCF Billion Cubic Feet

1MTPA = 51,982,370MMBTU per annum

1Knot = 1NM per Hour

1MMBTU = 23.6863CM

1BCF = 1,100,000MMBTU
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that follow from them. Table 3.1 reports relevant units of measurements and conversion

factors employed in this study.

Operational parameters and operating costs. Table 3.2 summarizes the operational

parameters and operating costs of the liquefaction, shipping, and regasification stages used

in our numerical experiments. Based on figures reported by Denny (2005 [14]), we take the

liquefaction-capacity cost to be $200M per MTPA, and compute the operating cost per year

of the liquefaction plant as 4% of this capacity cost (Flower 1998 [23], p. 95, reports that

this percentage is between 3 and 5). We consider a fleet of homogeneous ships, each with

a cargo size of 145, 000CM, which is a common size in the LNG industry. We compute the

ship operating cost to be $11.2M/year based on the figures reported by Cho et al. (2005

[10]; see Appendix 3.6), which is roughly consistent with the $12M/year figure reported by

Flower (1998 [23], p. 101). We set the distance between the liquefaction and regasification

facilities equal to 7,000NM, which is roughly equal to the distance between Egypt, an LNG

exporting country, and Lake Charles, Louisiana, which hosts an LNG terminal operated by

Trunkline LNG. We assume that the speed of each ship is 19 knots, a realistic value (Flower

1998 [23], p. 100, and Cho et al. 2005 [10]), which makes a one-way trip approximately 15

days long. The mean service times at the liquefaction and regasification facilities are one

day each, which are representative of typical operations (EIA 2001 [17]). The unloading

(handling) charge and the regasification fuel-loss reflect the “Currently Effective Rates,” as

of 6/26/2006, for firm terminal service of Trunkline LNG. The downstream storage space is

6BCF, which amounts to two cargos (according to EIA 2001 [17], two cargos is the industry

rule of thumb for the size of the receiving tanks). Since the Lake Charles terminal has 9BCF

of storage space and some of the new terminals under development in the U.S. have even

larger sizes, we also consider larger values for this parameter in our analysis. The send-

out capacity is 1BCF/day, which is consistent with the capacity of the Lake Charles and

other terminals in the U.S. Apparently, Trunkline LNG, as well as the other companies that

manage the active regasification terminals in the U.S., do not charge a holding cost, so we

set this to zero in our experiments.

Table 3.3 reports the capacity, throughput, and capacity loss for different fleet sizes

when the loading/unloading and transit times are exponentially distributed. (As discussed

below, we also experimented with Coxian transit times.) In computing these figures, we

assume that ships are operated 365 days per year, 24 hours per day. The capacity losses are

minimal, which indicates little congestion in this system, or, equivalently, short ship waiting

times at the loading and unloading facilities. However, one should not conclude that the

system operations do not exhibit stochastic variability. Table 3.4 displays the probability

mass functions of the number of unloaded cargos per month computed by the rolling-forward

67



Table 3.2: Operational parameters and operating costs.

Liquefaction

Loading Time Operating Cost

1 Day $8M/MTPA

Shipping

Transit Time Distance Speed Ship Size Operating Cost

15 Days 7,000NM 19 Knots 145,000CM $11.2M/(Year, Ship)

Regasification

Variable Costs

Unloading Time Capacity Fuel Loss Unloading Holding

1 Day 1 BCF/Day 1.69% $0.0285/MMBTU -

Note: Processing times exponentially distributed (means displayed); transit time is one way.

Table 3.3: Capacity and throughput for different fleet sizes.

# of Ships Capacity (MTPA) Throughput (MTPA) % Capacity Loss

1 0.74 0.74 0.00

2 1.49 1.48 0.67

3 2.23 2.22 0.45

4 2.97 2.95 0.67

5 3.72 3.68 1.08

6 4.46 4.39 1.57
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Table 3.4: Probability mass functions of the number of unloaded cargos in one month.

# of Ships in the Fleet

# of Unloaded Cargos 1 2 3 4 5 6

0 0.2811 0.0791 0.0223 0.0063 0.0018 0.0005

1 0.5220 0.2937 0.1242 0.0468 0.0166 0.0057

2 0.1777 0.3728 0.2728 0.1462 0.0672 0.0283

3 0.0191 0.1957 0.3038 0.2514 0.1565 0.0832

4 0.0000 0.0513 0.1878 0.2627 0.2333 0.1615

5 0.0000 0.0074 0.0699 0.1762 0.2346 0.2189

6 0.0000 0.0000 0.0166 0.0792 0.1650 0.2144

7 0.0000 0.0000 0.0026 0.0248 0.0834 0.1554

8 0.0000 0.0000 0.0000 0.0055 0.0310 0.0850

9 0.0000 0.0000 0.0000 0.0009 0.0087 0.0356

10 0.0000 0.0000 0.0000 0.0000 0.0018 0.0116

Mean 0.9348 1.8685 2.7995 3.7259 4.6454 5.5426

Standard Deviation 0.7288 1.0297 1.2605 1.4528 1.6161 1.7376

Coefficient of Variation 0.7796 0.5511 0.4503 0.3899 0.3479 0.3135

method for different fleet sizes. The coefficients of variation displayed at the bottom of this

table indicate that there is significant variability in the system.

Natural-gas price model and its estimation. In our study, we assume that regasified

LNG is sold into the Louisiana wholesale natural-gas spot market at the Henry-Hub price.

We model the evolution of this price as a one-factor mean-reverting process with determin-

istic seasonality (Jaillet et al. 2004 [31]). Assuming a seasonality cycle of length one, the

seasonality factors fw, w ∈ [0, 1], must satisfy the normalization condition
∫ 1

0
ln fwdw = 0.

The natural-gas spot price at time t is the product of a deterministic seasonality factor and a

stochastic deseasonalized spot price factor: gt(p̃t) := fw(t)p̃t, with fw(t) the time-t seasonality

factor. With a convenient abuse of notation t, the logarithm of the deseasonalized spot price,

Xt := ln pt, evolves as the Ornstein-Uhlenbeck process

dXt = κ(ξ −Xt)dt+ σdZt. (3.1)

Hence, starting from any given initial value X0, Xt reverts over time to long-term level ξ at

speed κ, and is subject to random shocks, with volatility σ, driven by standard Brownian

motion Zt. As in Jaillet et al. (2004 [31]), we assume that Zt is a Brownian motion under

a risk-neutral probability measure (as discussed in §3.2.2, uniqueness of this measure is not

guaranteed in our setting), which means that the term ξ is already expressed in risk-adjusted
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Figure 3.5: NYMEX natural-gas futures prices on 2/1/2006.

form (see Ross 1997 [48], Schwartz 1994 [49], 1997 [50], Schwartz and Smith 2000 [51], and

Smith 2005 [56]).

As in Jaillet et al. (2004 [31]) we need to estimate fifteen parameters: κ, ξ, σ, and

twelve monthly seasonality factors, f1, . . . , f12. We use NYMEX data for this purpose and

employ a dataset that includes natural-gas futures prices and prices of call and put options

on natural-gas futures covering the period from 2/1/2006 to 2/23/2006. Differently from

the dataset used by Jaillet et al. (2004 [31]), we have many more option prices at our

disposal, so we employ a different estimation approach, which we now describe. Denote

F (t, t′) the time t price of a futures contract for delivery at time t′ > t. It is well known that

F (t, t′) = E∗
t [gt′(p̃t′)], so that under model (3.1), the following expression for lnF (t, t′) holds

(see Jaillet et al. 2004 [31] for details):

lnF (t, t′) = ln fw(t′) + e−κ(t
′−t)Xt + ξ[1− e−κ(t′−t)] + σ2

4κ
[1− e−κ(t′−t)]. (3.2)

By setting t = 0, this expression can be used to fit the price model to observed futures prices.

However, loosely speaking, futures prices only give an indication of average price behavior

and do not allow us to obtain a meaningful estimate of the volatility parameter σ. Option

prices can be used to estimate this parameter. Closed-form expressions for the time-0 prices

of European call and put options on futures price F (t1, t2), 0 < t1 < t2, under model (3.1)

depend on the variance term (see Jaillet et al. 2004 [31])

σ̂2(t1, t2) = e−2κ(t2−t1)(1− e−2κt1)
σ2

2κ
. (3.3)
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Figure 3.6: Black implied volatilities of NYMEX options on natural-gas futures prices on

2/1/2006.

Given the current (time 0) market price of a traded (call or put) European option on a

futures and the futures price, one can use the well-known Black (1976 [4]) formulas for the

option price to compute, by means of standard techniques, the so called implied volatility

parameter σ̂B(t1, t2)/
√
t1, where subscript B stands for Black. We numerically compute

(imply out) a Black’s volatility for each option in our dataset. Since under model (3.1) the

price of a European call/put option on a futures price would match the market price of

the traded option if σ̂2
B(t1, t2)/t1 = σ̂2(t1, t2), the implied volatilities and expressions (3.3)

provide us with an additional set of conditions to estimate the parameter σ.

Figures 3.5 and 3.6 illustrate the futures prices and Black implied volatilities in our

dataset on 2/1/2006 (we have a similar set of data for each trading day of February 2006).

The marked seasonality in futures prices is worth noticing. The decline of the volatilities

with increasing futures price maturity is typical. For each day in our dataset, similarly to

Clewlow and Strickland (2000, p. 160), we compute daily estimates of the price-model param-

eters by minimizing the sum of the squared percentage deviations of observed futures prices

and implied variances subject to nonnegativity constraints on κ and σ, and the constraint∑12
r=1 ln fr = 0 (this is a discretized version of the normalization condition

∫ 1

0
ln fwdw = 0

that assumes a yearly cycle with monthly seasonality factors that are constant within each

month). We then compute estimates of the model parameters by averaging each daily esti-

mate. Table 3.5 displays the parameter estimates and the square root of their mean squared

errors. Compared to the estimates of Jaillet et al. (2004), the most significant differences are
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Table 3.5: Estimates of the natural-gas price model parameters using NYMEX data from

2/1/2006 to 2/23/2006.

Square Root of

Parameter Average Mean Squared Error

Long-term log level (ξ) 1.9740 0.0460

Speed of mean reversion (κ) 0.7200 0.1400

Volatility (σ) 0.6610 0.0550

January factor (f1) 1.1932 0.0157

February factor (f2) 1.1948 0.0155

March factor (f3) 1.1412 0.0495

April factor (f4) 0.9142 0.0114

May factor (f5) 0.8984 0.0106

June factor (f6) 0.8998 0.0181

July factor (f7) 0.9113 0.0159

August factor (f8) 0.9219 0.0135

September factor (f9) 0.9287 0.0098

October factor (f10) 0.9412 0.0063

November factor (f11) 1.0252 0.0034

December factor (f12) 1.1049 0.0093

our higher estimate of the long-term level (1.974 vs. 0.802) and lower estimate of the speed

of mean reversion (0.72 vs. 3.4), which are due to basic differences in the forward curves

between 1997-98 and 2006, the years covered by the data used by Jaillet et al. 2004 and us,

respectively. The estimates of the other parameters seem consistent with each others. Our

mean squared errors are roughly similar to the standard deviations reported by Jaillet et al.

(2004), with the exception of that of the speed of mean reversion, which is much lower in

our case.

Storage valuation. We employ a valuation period of twenty years with monthly in-

tervals starting on 3/1/2006, i.e., t = 1 corresponds to 3/1/2006. This is consistent with

industry practices regarding the valuation of LNG projects (Flower 1998). We discount using

a constant annual risk-free rate equal to 5%. We assume that no inventory is available in the

tank at t = 1, i.e., x1 = 0, and set g1(p1) equal to $8.95/MMBTU, the realized Henry-Hub

natural-gas spot price on 3/1/2006 (note that p1 = g1(p1)/f3 = $8.95/1.1412 = $7.84, where

f3 is the March seasonality factor). We use the parameter estimates shown in Table 3.5

to build a trinomial lattice that represents the evolution of the deseasonalized natural-gas
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Table 3.6: The value of the option to store, S1(0, $7.84) ($M; 1 Cargo = 145,000CM =

3BCF).

Storage Size (# of Cargos)

# of Ships Throughput (MTPA) 1 2 3 4 5

1 0.74 104 199 284 359 424

2 1.48 107 210 308 400 486

3 2.22 107 213 316 415 509

4 2.95 108 215 320 423 522

5 3.68 108 215 321 425 526

6 4.39 107 214 320 422 521

Minimum, maximum.

spot-price during the valuation period. Given the length of this period, we use monthly

time steps, i.e., T := {1, 2 . . . , 240}. We construct this lattice using standard techniques

(see Jaillet et al. 2004 and references therein). However, in the calibration step, we employ

the average of the forward-curve values observed in February 2006 for the first 70 months,

and we extend this curve to the remaining 170 months, for which prices are not observed,

by modifying the latest observed average deseasonalized price according to the seasonality

factor corresponding to each maturity. This lattice is the stochastic process {pt, t ∈ T } used
in our inventory-release model. For computational ease, we implemented this model with an

inventory state space expressed in terms of number of cargos, which means that in our model

implementation the inventory-release actions are multiples of the cargo size. Since this is

not necessarily optimal, our estimates of the value of optimizing the inventory-management

policy are conservative.

Throughput and space effects. Table 3.6 displays the value of the option to store

at time 1, i.e., the quantity S1(0, $7.84). This table employs the throughput levels reported

in Table 3.3 and different levels of storage space. We only consider system configurations

such that the regasification capacity does not impose a constraint on the unloading ships. In

other words, we vary the number of ships, while keeping all the other parameters constant,

in a manner that ensures that our assumption on the terminal regasification capacity made

in §3.2.2 holds, i.e., Pr{ũt > q} = 0, ∀t ∈ T . (To be precise, with 4, 5, and 6 ships this

statement is true provided that we allow 31 days in each month.) The value of storage

varies from $104M (1 ship and 1 cargo of storage space) to $526M (5 ships and 5 cargos of

storage space). Table 3.6 illustrates that the value of storage increases in the available space.

This is intuitive, as more available space allows more effective exploitation of high natural-
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Table 3.7: The extrinsic value of the option to store (% of option value, S1(0, $7.84); 1 Cargo

= 145,000CM = 3BCF).

Storage Size (# of Cargos)

# of Ships Throughput (MTPA) 1 2 3 4 5

1 0.74 23.9 21.6 19.4 18.1 18.6

2 1.48 24.9 24.3 23.1 21.7 20.5

3 2.22 25.2 24.9 24.4 23.6 22.6

4 2.95 25.2 25.1 24.9 24.5 23.8

5 3.68 25.2 25.2 25.0 24.6 24.1

6 4.39 25.2 25.0 24.7 24.2 23.7

gas prices, i.e., V1(0, $7.84) increases while V 1($7.84) remains constant as the storage space

increases. In addition, as one would expect, the marginal benefit of one additional cargo

worth of space decreases in storage size as each additional unit of space is used less often.

More interestingly, Table 3.6 also shows that the value of storage is nonmonotonic in the

number of ships, or, equivalently, throughput. As throughput increases, the total amount

of regasified LNG increases and both V1(0, $7.84) and V 1($7.84) increase. But, due to the

regasification capacity constraint, these values grow closer to each other after a critical level

of throughput, after which the value of storage decreases (see Appendix 3.6 for an intuitive

justification of this statement). While the drop in storage value in going from 5 to 6 ships

is either none or minimal, the basic insight here is that discretionary regasification capacity

must be available for an LNG terminal to have storage value. Otherwise, when throughput

approaches the regasification capacity, one must agree with Holcomb (2006) that an LNG

terminal is a delivery mechanism with little or no storage value.

Extrinsic value. The extrinsic value of the option to store is the amount of option

value that can be attributed to price volatility. We compute this value as follows. We

first obtain the intrinsic value of storage by optimizing the inventory-management policy

under the assumption that the initial forward curve remains constant over time (the zero

volatility case). Then, we compute the extrinsic value by subtracting the intrinsic value

from the total option value. Table 3.7 displays the extrinsic value as a percentage of the

total option value. Interestingly, this value decreases in storage space for all throughput

levels, except when there is only one ship in the fleet and the storage space changes from

four to five cargos worth of space. This behavior of the extrinsic value is nonintuitive but

can be explained as follows. Increasing the available storage space amounts to increasing

the “number” of available (storage) options. As this number grows, the additional space can
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Figure 3.7: Intrinsic value of the option to store at different seasonality levels (6-ship fleet).

be more advantageously used to exploit the seasonality in the natural-gas forward curve.

Since this is a deterministic component of the price dynamics (i.e., the seasonality factors

are deterministic), the additional value of exploiting it is reflected in the increased intrinsic

value of storage.

Seasonality effect. In the natural-gas industry in North America the November-March

period is referred to as the heating season, and these months are called the winter months.

We assess the effect of seasonality by examining the impact on the value of the option to store

of stronger or milder heating seasons, which we achieve by changing the price seasonality

factors of these months. In our setting, the winter months have seasonality factors greater

than one (factors f1, f2, f3, f11, and f12 in Table 3.5). We adjust the magnitudes of these

factors by multiplying them by scaling parameter α. Given a value of α, the scaling parameter

of the non-winter months, β, is then implied by the normalization condition
∑12

r=1 ln fr = 0,

i.e., β = α−5/(12−5). In addition to the base case of α = β = 1.00, we consider two possible

values for α, 1.04 and 0.96, with corresponding β values equal to 0.9724 and 1.0296.

To emphasize the effect of seasonality (deterministic variability), Figure 3.7 displays the

intrinsic value of the option to store for two different storage sizes at these three seasonality

levels with a 6-ship fleet, i.e., Λ = 4.39MTPA. With a strong heating season (α = 1.04 and

β = 0.9724), the option to store appreciates, intrinsically, by about 30% for each of the two

levels of storage space. With a mild heating season (α = 0.96 and β = 1.0296), the option
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Figure 3.8: The value of the option to store at different volatility levels (6-ship fleet).

depreciates by about 28%. These changes reflect the fact that when the seasonality factors

of the winter months increase/decrease, those of the remaining months simultaneously de-

crease/increase, i.e., the amplitude of the seasonal price oscillations, as displayed for example

in Figure 3.5, increases/decreases. We also observe that the seasonality effect is only slightly

more pronounced for the larger storage space.

Volatility effect. Figure 3.8 displays the value of the option to store at two storage

space levels when changing volatility from 0.00 to 1.00 and keeping seasonality at its base

level (α = β = 1.00; when σ = 0 we display the intrinsic value of this option) with a

6-ship fleet, i.e., Λ = 4.39 MTPA. As expected, increasing volatility increases the value of

storage. Taking 70% as the base volatility value, changing volatility can add/subtract about

16/25% in value over the range of considered values. Thus, optimal inventory-management

becomes more important in a more volatile wholesale natural-gas market, in which case fully

capturing the value of the option to store requires making inventory-release decisions based

on a stochastic optimization model.

Shipping time variability effect. Exponential transit times simplify the computations

of the relevant quantities associated with the shipping model, but a coefficient of variation

(CV) equal to 1 is unrealistic for shipping times whose averages are of the order of two or

more weeks. Since our CQN model is a BCMP network, we can readily reduce the variability

of the transit times by increasing the number of Erlang stages in the two shipping blocks

(exponential times correspond to the case of a single Erlang stage). Table 3.8 displays

the effect on the value of storage of reducing the variability in shipping times by varying
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Table 3.8: The relative effect of reduced shipping time variability on the value of the option

to store (displayed values are proportions relative to the case of exponential transit times,

i.e., 1 Erlang stage, CV = 1; storage size = 2 cargos.)

(# of Erlang Stages, CV)

# of Ships (1, 1) (2, 0.7071) (3, 0.5773) (4, 0.5)

1 100 101.43 102.03 102.39

2 100 100.75 101.03 101.17

3 100 100.38 100.50 100.57

4 100 100.18 100.22 100.25

5 100 100.13 100.15 100.16

6 100 100.29 100.37 100.41

CV: Coefficient of variation of transit times.

Table 3.9: Summary statistics of the unloading distributions at different levels of shipping

time variability.

Mean CV

# of Coxian Stages # of Coxian Stages

# of ships 1 2 3 4 1 2 3 4

1 0.9348 0.9374 0.9375 0.9375 0.7796 0.6454 0.5826 0.5434

2 1.8685 1.8712 1.8713 1.8713 0.5511 0.4565 0.4123 0.3848

3 2.7995 2.8011 2.8012 2.8012 0.4503 0.3728 0.3370 0.3146

4 3.7259 3.7267 3.7268 3.7268 0.3899 0.3230 0.2922 0.2730

5 4.6454 4.6476 4.6477 4.6477 0.3479 0.2890 0.2617 0.2447

6 5.5426 5.5613 5.5631 5.5635 0.3135 0.2634 0.2391 0.2238
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Table 3.10: The benefit of the option to store for the integrated producer, BP
1 (0, $7.84);

displayed values are percentages.

Storage Size (# of Cargos)

# of Ships Throughput (MTPA) 1 2 3 4 5

1 0.74 2.77 5.31 7.57 9.57 11.28

2 1.48 1.42 2.80 4.10 5.33 6.48

3 2.22 0.95 1.90 2.81 3.69 4.53

4 2.95 0.72 1.43 2.14 2.82 3.49

5 3.68 0.58 1.15 1.72 2.28 2.82

6 4.41 0.48 0.96 1.44 1.90 2.34

Table 3.11: The benefit of the option to store for the type-1 (FOB) merchant, BM1
1 (0, $7.84),

with 2 cargos (6BCF) of storage space; displayed values are percentages.

ηM1

# of Ships Throughput (MTPA) 0.70 0.75 0.80 0.85 0.90

1 0.74 17.23 20.84 26.36 35.86 56.05

2 1.48 9.89 12.19 15.88 22.77 40.22

3 2.22 6.93 8.60 11.35 16.66 31.34

4 2.95 5.33 6.64 8.82 13.13 25.68

5 3.68 4.32 5.41 7.22 10.84 21.76

6 4.41 3.64 4.56 6.11 9.24 18.94

the number of Erlang stages from one to four. Decreasing this variability increases the

value of storage, because, while the mean number of unloaded cargos remains essentially

the same, which makes this comparison meaningful, the reduced variability in the number of

incoming cargos (Table 3.9) allows for an easier planning of released inventory. However, this

increase in value is marginal, or, equivalently, the loss in storage value caused by assuming

exponential transit times is very small, especially at higher throughput levels. These findings

have practical significance since they suggest that a simple version of the shipping model

appears to be adequate for the purposes of storage valuation.

Storage benefit. We now discuss the benefit of inventory management. As in §3.2.3,
we consider an integrated producer who manages the entire chain, a type-1 merchant who

manages the shipping and regasification parts of the chain, and a type-2 merchant who

only manages the regasification stage. Table 3.10 indicates that the benefit of (downstream)

storage for the integrated producer are fairly modest, especially at low levels of storage space.
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Table 3.12: The benefit of storage for the type-2 (ex-ship) merchant, BM2
1 (0, $7.84), with 2

cargos (6BCF) of storage space; displayed values are percentages.

ηM2

# of Ships Throughput (MTPA) 0.75 0.80 0.85 0.90 0.95

1 0.74 18.19 22.26 28.68 40.29 67.69

2 1.48 10.50 13.12 17.50 26.24 52.49

3 2.22 7.36 9.29 12.57 19.43 42.82

4 2.95 5.67 7.18 9.80 15.41 36.14

5 3.68 4.60 5.85 8.02 12.77 31.24

6 4.41 3.88 4.94 6.79 10.90 27.52

This is due to the fact that the value of the flow of LNG is much larger than the value of

storage. Nevertheless, these percentage improvements cannot be ignored. For simplicity, in

the two merchant cases we specify the following LNG price functions: ζM1
t (pt, `t) = ηM1pt`t

and ζM2
t (pt, ut) = ηM2ptut, where η

M1, ηM2 ∈ (0, 1) (these types of functions can be used in

practice; see, e.g., Flower 1998, pp. 172-176). This means that the LNG is priced as a fraction

of the natural gas price at the downstream location. In addition, it is natural to expect that

ηM1 < ηM2, since the type-2 merchant does not incur the shipping cost, and the LNG price

paid by this merchant includes the LNG shipping cost incurred by the LNG seller. Hence,

we consider the following values for these parameters: ηM1 ∈ {0.70, 0.75, 0.80, 0.85, 0.90} and
ηM2 ∈ {0.75, 0.80, 0.85, 0.90, 0.95}. Tables 3.11 and 3.12 present the percentage benefit of

storage for the two types of merchants with 2 cargo of available space (6BCF). Compared to

the integrated producer case, these values are significantly higher, and they are more so for

the type-2 merchant. Also, the benefit of storage increases as the price of LNG increases,

i.e., when ηM1 and ηM2 increase. This benefit quantification shows that optimizing the

management of the inventory held at the regasification facility is of paramount importance

for merchants.

3.5 Conclusions

Motivated by current developments in the LNG industry, in this paper we develop a practical

valuation model of LNG operations with a focus on the valuation of downstream storage. The

unique aspect of our model is the integration of a closed-queuing-network model of natural-

gas liquefaction and LNG shipping with an inventory-release model of LNG regasification and

natural-gas sale into the wholesale spot market. We characterize the structure of the optimal
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inventory-management policy at the downstream facility, and use our model to quantify

the value and benefit of downstream storage for different players. Our results are relevant

both at the theoretical and practical levels. Our theoretical analysis of the structure of the

inventory-management policy extends in a significant manner the work of Secomandi (2007)

to account for the interaction of shipping logistics and the operational parameters of the

regasification facility. The resulting basestock-target structure is nontrivial, because when

it is optimal to sell, it is not necessarily optimal to sell the entire available inventory. While

our focus has been on LNG operations, this analysis remains relevant for other storable-

commodity industries that exhibit uncertainty in the commodity production and distribution

process, e.g., random yield, and/or where storage can be used to take advantage of spot-

price fluctuations. On a practical level, our model can be used by downstream terminal

operators and LNG players to assess the value of leasing contracts on regasification facilities.

Our quantification of the value and benefit of storage also brings to light the importance

of developing tactical-control software to optimize the management of LNG inventoried at

regasification terminals.

We also believe that our model can be used in practice as an economic valuation model

by different parties involved in the development of LNG projects. We explain this statement

below. In the U.S., LNG is priced off the wholesale natural-gas price at a specific location.

The U.S. LNG profitability-threshold is between $2.70/MMBtu and $3.30/MMBtu (Kamin-

ski and Prevatt 2004), and the NYMEX futures curve as of 3/26/2007 fluctuates between

$6.85/MMBtu and $9.59/MMBtu. Hence delivering LNG to the eastern U.S. promises hefty

margins, irrespective of the specific operational configuration of a given project. Never-

theless, developing an LNG project is a long, complex, and expensive process (Greenwald

1998, Chapters 4 and 5). The operational length of a typical LNG project, once the nec-

essary capacity has been installed, is between twenty and thirty years. In addition, five

to ten years can be spent in negotiating the details of the project configuration and build-

ing the needed capacity. Several parties are involved in this process: State agencies of the

producing country, the producer and the buyer, ship builders, several contractors, banks,

and financiers. Numerous contracts are set up to govern the relationships among these

parties: concession/production-sharing/development arrangements, operating/joint-venture

agreements, the front end engineering and design contract, engineering, procurement and

construction contracts, and the sale and purchase agreement (SPA). Negotiation of these

contracts is complex and time consuming, and involves the building of intricate business

relationships among the several parties involved. It is estimated that $200 million or more

can easily be spent in arriving at the final go/no-go decision point. The implication of these

considerations is well-stated by Flower (1998, p. 120, emphasis added):
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[An] economic model of the project’s expected cash flow is an important tool to

have available as the project is developed. It will allow the economic returns of

the project to be monitored [. . . ] as negotiations progress with the LNG buyers

and as arrangements with the host government and lenders are put in place. [. . . ]

[A] common project model [. . . ] can be used jointly by the sponsors as a tool to

aid decision-making during its development. For example, a joint model can be

used to evaluate proposals from the buyers during negotiation of the SPA. This

can help frame responses on issues such as volumes, build-up and price.

In other words, while it may be possible to make a fairly good decision on whether a partic-

ular project should be a go or a no-go based on simple calculations, the process of project

development and contract negotiation can benefit from the availability of a more detailed

mathematical model of the project operations. It is in this sense that we believe that our

model can be useful in practice, in addition to the valuation of downstream storage: (i) it

generates the physical and cash flows corresponding to a given LNG project, and (ii) evalu-

ates them consistently with the market information expressed by traded natural-gas futures

and options prices.

One could apply our model to study other interesting developments that are currently

occurring in the LNG industry. For example, the number of new LNG ships on order

is growing and the composition of the world LNG fleet is changing. Cho et al. (2005)

report that while the most common size for LNG ships is between 135,000 to 145,000CM,

“Qatargas II has [. . . ] set [a] milestone by ordering eight large [LNG carriers]: four of

209,000[CM] and four of 216,000[CM].” They also state that these vessels “will exceed the

largest LNG ship under construction at Chantiers de l’Atlantique, a 153,000 [CM] vessel

ordered by Gas de France (GdF).” These larger vessel sizes reflect the explicit choice of

some industry players to pursue and exploit shipping economies of scale. While these are

well understood in practice, their throughput effects in terms of losses relative to installed

capacity are not usually discussed in the industry press, e.g., in Cho et al. (2005). Here, it

would be interesting to study the net benefit of shipping economies of scale, since employing

larger ships may yield significant reductions in throughput, and, hence, system value, due

to the well-known effects of increased transfer batches in manufacturing environments (see,

e.g., Cachon and Terwiesch 2006, p. 92). Our model can be used to study these aspects.

Companies have also developed new regasification options, most notably Excelerate En-

ergy Energy-Bridge technology, which allows specially designed tankers to regasify LNG

on-board and off-load it to the existing pipeline grid by underwater pipelines (Jensen 2003,

Gold 2004; see also the website of Excelerate Energy, www.excelerateenergy.com). This

technology is now operational at the Gulf of Mexico Energy-Bridge Deepwater Port, located
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100 miles off the Louisiana Cost, and a new development project has been approved in

Massachusetts. While this technology removes the need for costly, and sometimes publicly

opposed, on-land regasification terminals, it requires longer regasification time aboard the

tankers, and increased tanker costs. Hence, industry players face the challenge of assessing

its value relative to that of conventional terminal-based regasification technology. Our model

can be modified to perform this comparison.

Our model can be extended and improved in other directions as well. For example, our

shipping model can accommodate different vessel types and operating conditions, e.g., vessel

speeds. Hence, one could extend our inventory-release model to allow tactical fleet control

in response to market or inventory conditions. Also, while the strength of our approach is its

practicality, our integration of the shipping and inventory-release models reflects a modeling

simplification. Removing this approximation would require modeling the LNG operations

as a stochastic dynamic program that at each point in time also keeps track of the state

of the shipping system, the status of the liquefaction facility, and the inventory available at

the upstream location. Such a model would be difficult to solve optimally using standard

techniques, and its formulation and solution is a challenging area for additional research.

Finally, LNG chains typically encompass, among other parties, a seller and a buyer, whose

commercial relationships, as discussed above, are governed by an SPA. In this paper we

have considered the benefit of downstream storage for different players based on exogenously

specified LNG price functions. More broadly, the study of contractual issues related to the

interactions between the LNG seller and buyer is a promising area for further research.

3.6 Appendix of Chapter 3

Proof of Proposition 5 (Optimal value-function). (i) (Concavity) By induction. Given

the convexity assumption on function hT+1(·), the property clearly holds in stage T + 1.

Make the induction hypothesis that the property also holds in stages t + 1, . . . , T . Hence,

Vt+1(xt+1, pt+1) is concave in xt+1 for given pt+1. This implies that E∗
t [Vt+1(xt+1, p̃t+1)] is

concave in xt+1 given pt. Consider stage t and fix pt ∈ Pt, ut ∈ Ut, x1t , x2t ∈ X with x1t 6= x2t ,

and q1t , q
2
t ∈ Q(xt, ut) with q1t 6= q2t . Define x1t+1 := x1t + ut − q1t , x2t+1 := x2t + ut − q2t , and

xθt+1 := θx1t+1 + (1− θ)x2t+1 for some θ ∈ [0, 1]. Since x1t+1, x
2
t+1 ∈ X , convexity of X implies

that xθt+1 ∈ X . The concavity of E∗
t [Vt+1(xt+1, p̃t+1)] in xt+1 for given pt and the linearity of

expectation imply that

E∗
t [Vt+1(x

θ
t+1, p̃t+1)] > θE∗

t [Vt+1(x
1
t+1, p̃t+1)] + (1− θ)E∗

t [Vt+1(x
2
t+1, p̃t+1)]. (3.4)
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Thus, the definitions of x1t+1 and x
2
t+1 imply that Et[Vt+1(xt+ut− qt, p̃t+1)] is jointly concave

in xt and qt for given pt and ut, and so is νt(xt, qt, pt, ut). This property, the convexity of set

A(ut), and Proposition B-4 in Heyman and Sobel (2004, p. 525) imply that vt(xt, pt, ut) =

maxqt∈Q(xt,ut) νt(xt, qt, pt, ut) is concave in xt for given pt and ut. Concavity of Vt(xt, pt) in xt

for given pt follows since Vt(xt, pt) = E[vt(xt, pt, ũt)], and the property holds in all stages by

the principle of mathematical induction.

(ii) (Supermodularity). By induction. Consider stage T + 1. Since pT+1xT+1 is super-

modular in (xT+1, pT+1) ∈ <2 (see Topkis 1998, Example 2.6.2(c), p. 42), by the assumption

that gT+1(pT+1) increases in pT+1, it follows easily that gT+1(pT+1)xT+1 is supermodular in

(xT+1, pT+1) on the sublattice X×PT+1 ⊂ <2. Then, by Lemma 2.6.1(a)-(b) in Topkis (1998,

p. 49), VT+1(xT+1, pT+1) is also supermodular in (xT+1, pT+1) ∈ X×PT+1 because 1−ϕR > 0

and hT+1(xT+1) is trivially supermodular in (xT+1, pT+1) ∈ X × PT+1. Make the induction

hypothesis that the property also holds in stages t+1, . . . , T . Consider stage t and fix ut ∈ Ut.
Given xt ∈ X and qt ∈ Q(xt, ut), define φt+1(xt, qt, pt+1, ut) := Vt+1(xt + ut − qt, pt+1). Note

that A(ut) ⊂ <2 is a sublattice of <2.

The concavity of Vt+1(xt+1, pt+1) in xt+1 ∈ X for given pt+1 ∈ Pt+1, established in part (i)

of this proposition, and Lemma 2.6.2(b) in Topkis (1998, p. 50) imply that φt+1(xt, qt, pt+1, ut)

is supermodular in (xt, qt) on A(ut) for given pt+1 and ut. Denote zt = (xt, qt) and pick ar-

bitrary z′t and z
′′
t both in A(ut). Supermodularity of φt+1(zt, pt+1, ut) in zt ∈ A(ut) for given

pt+1 and ut means that

φt+1(z
′
t, pt+1, ut)− φ(z′t ∧ z′′t , pt+1, ut) 6 φt+1(z

′
t ∨ z′′t , pt+1, ut)− φt+1(z

′′
t , pt+1, ut), (3.5)

where z′t ∧ z′′t ≡ (min{x′t, x′′t },min{q′t, q′′t }) and z′t ∨ z′′t ≡ (max{x′t, x′′t },max{q′t, q′′t }).
For pt ∈ Pt, define ψt(zt, pt, ut) := E[φt+1(zt, p̃t+1, ut)|p̃t = pt]. Pick p′t, p

′′
t ∈ Pt and,

without loss of generality, assume that p′t 6 p′′t . It will now be established that ψt(zt, pt, ut)

is supermodular in (zt, pt) ∈ A(ut) × Pt, a sublattice of <3, for given ut, which means that

the following inequality holds:

ψt(z
′
t, p

′
t, ut) +ψt(z

′′
t , p

′′
t , ut) 6 ψt(z

′
t ∨ z′′t , p′t ∨ p′′t ≡ p′′t , ut) +ψt(z

′
t ∧ z′′t , p′t ∧ p′′t ≡ p′t, ut). (3.6)

Either (1) z′t and z
′′
t are ordered or (2) they are unordered.

Consider case (1). Assume that z′t 6 z′′t , which means that z′t ∧ z′′t = z′t and z′t ∨ z′′t =

z′′t . Hence, it holds that φt+1(z
′
t, pt+1, ut) = φt+1(z

′
t ∧ z′′t , pt+1, ut) and φ(z′t ∨ z′′t , pt+1, ut) =

φ(z′′t , pt+1, ut), ∀pt+1 ∈ Pt+1. It follows that (3.5) holds as an equality and so does (3.6)
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because

ψt(z
′
t, p

′
t, ut)− ψt(z′t ∧ z′′t , p′t, ut)

= E[φt+1(z
′
t, p̃t+1, ut)− φt+1(z

′
t ∧ z′′t , p̃t+1, ut)|p̃t = p′t] (3.7)

= E[φt+1(z
′
t ∨ z′′t , p̃t+1, ut)− φt+1(z

′′
t , p̃t+1, ut)|p̃t = p′t] (3.8)

= E[φt+1(z
′
t ∨ z′′t , p̃t+1, ut)− φt+1(z

′′
t , p̃t+1, ut)|p̃t = p′′t ] (3.9)

= ψt(z
′
t ∨ z′′t , p′′t , ut)− ψt(z′′t , p′′t , ut). (3.10)

Consider case (2). Assume that x′t > x′′t and q′t < q′′t . Thus, it holds that (x′t ∨ x′′t ) −
(q′t ∨ q′′t ) = x′t − q′′t > x′′t − q′′t . Since Vt+1(xt+1, pt+1) is supermodular in (xt+1, pt+1) it has

increasing differences in pt+1 by Theorem 2.6.1 in Topkis (1998), i.e., given x1t+1, x
2
t+1 ∈

X , with x1t+1 < x2t+1, the quantity Vt+1(x
2
t+1, pt+1) − Vt+1(x

1
t+1, pt+1) increases in pt+1. By

letting x2t+1 := x′t + ut − q′′t and x1t+1 := x′′t + ut − q′′t , this is equivalent to stating that

φt+1(z
′
t ∨ z′′t , pt+1, ut) − φt+1(z

′′
t , pt+1, ut) increases in pt+1 for given ut. This statement, the

assumption that the distribution of p̃t+1|pt stochastically increases in pt, and Corollary 3.9.1

in Topkis (1998, p. 161) imply

E[φt+1(z
′
t ∨ z′′t , p̃t+1, ut)− φt+1(z

′′
t , p̃t+1, ut)|p̃t = p′t]

6 E[φt+1(z
′
t ∨ z′′t , p̃t+1, ut)− φt+1(z

′′
t , p̃t+1, ut)|p̃t = p′′t ]. (3.11)

Expression (3.6) is true because proceeding similarly to the proof of Theorem 3.10.1 in Topkis

(1998) yields that

ψt(z
′
t, p

′
t, ut)− ψt(z′t ∧ z′′t , p′t, ut)

= E[φt+1(z
′
t, p̃t+1, ut)− φt+1(z

′
t ∧ z′′t , p̃t+1, ut)|p̃t = p′t] (3.12)

6 E[φt+1(z
′
t ∨ z′′t , p̃t+1, ut)− φt+1(z

′′
t , p̃t+1, ut)|p̃t = p′t]; by (3.5)

6 E[φt+1(z
′
t ∨ z′′t , p̃t+1, ut)− φt+1(z

′′
t , p̃t+1, ut)|p̃t = p′′t ]; by (3.11)

= ψt(z
′
t ∨ z′′t , p′′t , ut)− ψt(z′′t , p′′t , ut). (3.13)

Hence, ψt(zt, pt, ut) is supermodular in (zt, pt) ∈ A(ut)×Pt for given ut, and δtE[Vt+1(xt+

ut − qt, p̃t+1)|p̃t = pt] is supermodular in (xt, qt, pt) ∈ A(ut) × Pt for given ut by Lemma

2.6.1(a) in Topkis (1998, p. 49). The term gt(pt)(1 − ϕR)qt is supermodular in (qt, pt) on

Q(xt, ut) × Pt, a sublattice of <2, since gt(pt) increases in pt (by assumption) and 1 − ϕR
is positive. Since ht(xt) is trivially supermodular in (xt, qt, pt) ∈ A(ut) × Pt for given ut,

it follows that νt(xt, qt, pt, ut) is supermodular in (xt, qt, pt) ∈ A(ut) × Pt, a sublattice of

<3, for given ut. Theorem 2.7.6 in Topkis (1998, p. 70) then implies that vt(xt, pt, ut) is

supermodular in (xt, pt) on X × Pt for given ut. Since this property holds for each ut ∈ Ut,
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Corollary 2.6.2 in Topkis (1998, p. 50) yields that Vt(xt, pt) is supermodular in (xt, pt) on

X × Pt. Thus, this property holds in all stages by the principle of mathematical induction.

¤.

Proof of Proposition 6 (Basestock target). In arbitrary stage t ∈ T , fix pt ∈ Pt,
pick any two distinct values y1t , y

2
t ∈ X such that y1t < y2t , and define ∆(y1t , y

2
t ) := y21 − y1t ,

so that y2t = y1t +∆(y1t , y
2
t ). It holds that

ν̌t(y
1
t , qt, pt) = gt(pt)(1− ϕR)qt + δtE

∗
t [Vt+1(y

1
t − qt, p̃t+1)]

= gt(pt)(1− ϕR)[qt +∆(y1t , y
2
t )] + δtE

∗
t [Vt+1(y

2
t − (qt +∆(y1t , y

2
t )), p̃t+1)]

−gt(pt)(1− ϕR)∆(y1t , y
2
t )

= ν̌t(y
2
t , qt +∆(y1t , y

2
t ), pt)− gt(pt)(1− ϕR)∆(y1t , y

2
t ). (3.14)

To interpret this equality, think of νt(yt, qt, pt) as a function of qt at different values of

yt for a given value of pt. Equality (3.14) states that the graph of this function at y1t is

the graph of this function at y2t shifted to the left by distance ∆(y1t , y
2
t ), and down by

distance gt(pt)(1 − ϕR)∆(y1t , y
2
t ). Recall that we define q̌¦t (yt, pt) as the largest quantity in

set argmaxqt∈Q̌t(yt) ν̌t(yt, qt, pt). Define y
t
as the largest inventory level yt ∈ X such that

q̌¦t (yt, pt) = 0. Note that y
t
exists since q̌¦t (0, pt) = 0. If y

t
= x then bt(pt) = x. If y

t
6= x,

consider any two distinct inventory levels y1t , y
2
t ∈ (yt, x] such that y2t > y1t > y

t
. Consider a

value qt ∈ Q̌(y1t ) ≡ [0, y1t ] and notice that qt+∆(y1t , y
2
t ) is feasible at y

2
t since qt+∆(y1t , y

2
t ) ∈

[∆(y1t , y
2
t ), y

1
t + ∆(y1t , y

2
t )] = [∆(y1t , y

2
t ), y

2
t ] ⊂ [0, y2t ] ≡ Q̌t(y

2
t ). Since q̌¦(y1t , pt) > 0 and

ν̌t(yt, qt, pt) is concave in qt, equality (3.14) implies that q̌¦(y2t , pt) ∈ [∆(y1t , y
2
t ), y

2]. In fact,

this equality implies that q̌¦(y2t , pt) = q̌¦(y1t , pt) + ∆(y1t , y
2
t ). Therefore

y2t − q̌¦(y2t , pt) = y2t −∆(y1t , y
2
t )− q̌¦(y1t , pt) = y1t − q̌¦(y1t , pt), (3.15)

so that releasing amounts q̌¦(y2t , pt) and q̌¦(y1t , pt) at y2t and y1t , respectively, leads to the

same inventory level. Concavity of ν̌t(yt, qt, pt) in qt, equality (3.14), and the definition of y
t

imply that

q̌¦(y1t , pt) 6 ∆(y
t
, y1), (3.16)

because otherwise q̌¦t (yt, pt) 6= 0, a contradiction. Thus, it holds that

y1t − q̌¦t (y1t , pt) > y1t −∆(y
t
, y1t ) = y

t
,

and therefore bt(pt) > y
t
. We now show that in fact bt(pt) = y

t
. Select y1t to be arbitrarily

close to y
t
, i.e., y1t = y

t
+ ε with ε ∈ <+ and arbitrarily small. From inequality (3.16) and

ε ≡ ∆(y
t
, y1t ), we obtain that

lim
ε→0

q̌¦t (y + ε, pt) 6 lim
ε→0

ε = 0⇒ lim
ε→0

q̌¦t (y + ε, pt) = 0 since q̌¦t (y + ε, pt) > 0.
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Thus, it also holds that limε→0 yt+ε−q̌
¦
t (y+ε, pt) = y

t
, and by equation (3.15) y2t−q̌¦t (y2t , pt) =

y
t
for all y2t ∈ (y

t
+ ε, x], which implies that bt(pt) = y

t
. ¤

Computation of the shipping operating cost in §3.4. Cho et al. (2005) report a

charter rate of $65,000/day for a 145,000CM vessel covering a one-way distance of 7,000NM

at a speed of 19 knots during a period of twenty years (see Table 3 of their paper for

specific details). These authors also state that the charter rate is about 68% of the to-

tal shipping costs, with the remaining 32% being the shipping operating cost. This im-

plies that the shipping operating cost per day for this vessel under the stated conditions is

$65, 000·0.32/0.68 = $30, 588.235. Assuming that the ship is operated 365 days per year, this

translates to $11,164,706 per year. The operating conditions on which these computations

are based are identical to those used in our numerical study.

Explanation of the decreasing value of storage for “high” throughput in §3.4.

Consider a degenerate unloading random variable equal to u. Momentarily, impose the

constraint that the inventory level in period T + 1 be zero, i.e., xT+1 = 0. Suppose that

u = q, so that the rate into the terminal is equal to the maximum rate out of it. In this case,

the value of storage must be zero because no amount of LNG can be stored in any period.

Thus, when u is sufficiently high, as it approaches q, from below since u 6 q, the value of

storage decreases to zero. Now, remove the constraint xT+1 = 0, so that the only conditions

imposed on xT+1 are 0 6 xT+1 6 x. Make the realistic assumption that qT > x, i.e., a

full terminal in period 1 can be emptied by time T + 1. If u = q, any amount of LNG not

released in some period t ∈ T must be stored until period T +1, and the maximum amount

of stored LNG during the entire planning horizon is min(uT, x) = min(qT, x) = x. Thus,

the value of storage for any level of throughput that allows storing at least an amount x of

LNG during the entire planning horizon, i.e., for any u 6 q such that uT > x, must be at

least the one obtainable when u = q. In other words, u = q is the level of throughput that

minimizes the value of storage among all those that satisfy uT > x. Therefore, as u > x/T

approaches q, obviously from below, the value of storage decreases in a neighborhood of q.

When the unloading random variable is not degenerate, explaining the decreasing value of

storage after some level of throughput is more involved, but the main intuition provided here

remains relevant.
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Chapter 4

The Importance of Modeling Shipping

Variability When Valuing

Downstream LNG Storage

4.1 Introduction

In Chapter 3, we use a closed-queuing-network (CQN) model to represent the upstream

LNG production and ocean shipping logistics to a downstream regasification facility in the

U.S., which sells to the wholesale spot market. To model supply variability, the shipping

model has two steps: the first step is to analytically compute the stationary distribution

π(n) for the ship locations within the network at a given instant in time; and the second

step is to generate the probability distribution of the unloaded amount to the downstream

LNG storage facility during a certain time period (e.g. a month) using the rolling-forward

method (see section 3.2.1 for details). We thus assume that in every period the unloading

process is independently and identically distributed (i.i.d.). Then we feed this i.i.d. unloaded

amount distribution into the inventory release model together with the stochastic price from

the price trinomial lattice model to value the option to store.

In this chapter, we will focus on studying how important it is to model shipping variability

while valuing or managing a downstream LNG storage facility. Table 3.3 in Chapter 3 shows

that if we ignore the loading/unloading congestion and shipping time uncertainty, we will

overvalue the system throughput, especially when there are several LNG projects sharing the

same loading/unloading ports, which is always the case in the LNG industry. (For example,

Qatar supplies LNG to Asia, Europe and North America.) At the downstream side, U.S.

imports LNG from Trinidad and Tobago, Egypt, Qatar among other countries, and several

LNG projects share the same unloading port at Lake Charles, Louisiana. Therefore Table
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3.3 shows that it is important to model the shipping variability. To validate the shipping

model presented in Chapter 3, we still need to answer the following two questions.

Did we over-simplify the shipping model? In general, if there are more ships arriving in the

current period, we will expect fewer ships arriving in the next period; there is dependence

between the unloaded amounts in consecutive periods. One may thus question the i.i.d.

assumption. To answer this question, we compare the storage values using the i.i.d. unloaded

amount distribution with values found using a simulation model of the shipping process. If

the two values are very close, we can conclude that the shipping model presented in Chapter

3 is a good representation of the realistic shipping process to value LNG storage facilities.

The second question is: can we further simplify the shipping model, if it is not already

over-simplified? Could we simply use the throughput in the inventory release model instead

of the unloaded amount distribution? We only need the first step of the shipping model, π(n),

to compute the throughput; it is much easier and much faster. To answer this question, we

compare the storage values using the constant throughput with the ones using the unloaded

amount distribution or simulation. If the storage values are very close, then we can greatly

simplify the shipping model.

We present our models in section 4.2, and empirically assess the performance of our

models in section 4.3 to answer the above questions.

4.2 Models

We consider the same closed-queuing-network (CQN) presented in Figure 3.2, and model

the loading and unloading blocks as first-come-first-served (FCFS) exponential queues, and

the transit blocks as ample-server (AS) exponential or multi-stage Coxian queues. To test

whether the shipping model in Chapter 3 is over-simplified or can be further simplified, we

propose a benchmark model as follows.

Benchmark Model. Instead of using analytical formulas to compute the unloaded

amount distribution, we use simulation to generate sample paths of unloaded cargos. When

the decision horizon is 20 years with monthly intervals, our shipping simulation model will

output 10,000 (sample size) sample paths each consisting of 240 numbers, which are the

unloaded cargos from period 1 to period 240. Then for each sample path we use the inven-

tory release model to determine the optimal sale quantity in every period, given the price

realization and inventory level, and given perfect information of future LNG cargo arrivals.

Therefore the Benchmark Model provides an upper bound of the LNG storage value.

Next, we define the following models and compare them with the Benchmark Model.

Model 1: We use the rolling-forward method to generate the unloaded amount distribu-
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tion, and use this distribution to value the option to store. This is the model we present in

Chapter 3. We compare this model with the Benchmark Model to test if Model 1 is effective

for valuation purposes.

Model 2 has two steps. First, we input the unloaded amount distribution found by

the rolling-forward method to the inventory release model to obtain the base-stock levels

given each price realization and available inventory level at each period. Thus, Model 2 is a

simulation-based verification of the dynamic program value found by Model 1.

Model 3: We use constant shipping throughput in the inventory release model for

valuation purpose. We use the CQN shipping model to compute the throughput taking the

port congestion into account. After we get the throughput, we assume that a fixed number

of cargos arrive at the downstream LNG storage facility in each period, which is equal to the

throughput, u; in the inventory release model, the arriving supply rate u has no uncertainty.

However, the spot price is still stochastic. We use the trinomial lattice to model the price

uncertainty. Similar to Model 1, the stochastic-dynamic-programming valuation model is

defined as

VT+1(xT+1, pT+1) := gT+1(pT+1)(1− ϕR)xT+1 − hT+1(xT+1),∀xT+1 ∈ X , pT+1 ∈ PT+1

Vt(xt, pt) = max
qt∈Q(xt,u)

νt(xt, qt, pt, u)

νt(xt, qt, pt, u) := gt(pt)(1− ϕR)qt − ht(xt)− cUt u+ δtE
∗
t [Vt+1(xt + u− qt, p̃t+1)].

Model 4: We use Model 3 to get the base-stock levels for each price realization in each

period. Then we simulate the resulting inventory control policy, as in Model 2.

4.3 Numerical Examples

We now use numerical exmples to compare Model 1-4 with the Benchmark Model. We

use the same experiment setting as in Chapter 3, summarized in Table 3.2 (see section 3.4

operational parameters and operating costs part for details).

First, we check the throughputs (mean LNG supply rates) of these models. Model 1 and

3 use the unloaded amount distribution, and constant throughput, respectively, to value the

option to store. We expect the throughputs of these two models to be exactly the same; both

of them are the results of same analytical formulas. Similary, the Benchmark Model, Model

2, and Model 4 use the simulated shipping process, so we expect the throughputs of these

three models to be the same since we use common random variables. Column 3 of Table 4.1

shows that the throughputs using analytical formulas and simulation are very close. This

validates the accuracy of the shipping models.
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System Value. Table 4.1 reports the system values (the discounted expected cash flows)

of the five models over twenty years when the price volatility is set to 0.7, and Table 4.2

displays the system values of Model 1-4 as fractions of those of the Benchmark Model. We

can see that the system values using different models are very close (less than 1% difference)

given any system configuration (fleet size and storage size). This means that we can use any

of these models to estimate the system value.

Storage Value is defined as the system value with the storage facility less the system

value without storage. Generally, the system values are several billion dollars, and storage

values are several hundred million dollars. Table 4.3 shows the storage values (unit: million

dollars), and Table 4.4 displays the storage values of Model 1-4 as fractions of those of

benchmark model, when the price volatility is set to 0.7.

The average value of Model 1 is higher than that of Model 3 (0.9894 vs. 0.9527), and

very close to those of Models 2 and 4. Except for the three special cases, fleet size = 1 ship

and storage size = 3, 4, and 5 cargos, the storage value of Model 3 is significantly lower than

those of Model 1 and the Benchmark Model. This result shows that generally Model 1 using

the unloaded amount distribution is better for valuation purposes than Model 3, since the

storage value estimated by Model 1 is closer to both the values of the Benchmark Model

(0.9894 vs. 1) and those of Model 2 (0.9894 vs. 0.9850).

“Average” in Column 1 of Table 4.4 is defined as the sum of all storage values using Model

1-4 divided by the sum of those of the Benchmark Model. The average value of Model 2 is

slightly higher than that of Model 4 (0.9850 vs. 0.9811), and they are very close to the upper

bound (less than 2% difference). After further comparing the storage values for the different

system configurations (fleet size and storage size), we find that the storage values of Model

4 are much lower than those of Model 2 (0.949 vs. 0.969; 0.921 vs. 0.965, 0.963 vs. 0.975),

when the fleet size is 1 ship and the storage size is 4 and 5 cargos; and when the fleet size

is 2 ships and the storage size is 5 cargos. Except for these special cases, the storage values

of these two models are very close. In these special cases, the ratio of shipping supply rate

to storage size is low. This means that most of the time the maximum send-out rate and

storage space are not binding constraints, and the storage managers have more freedom to

play the store-low-sell-high game: optional sales play a more important role. Therefore in

these cases it is better to consider more detailed available inventory level when generating

the inventory control policy using the unloaded amount distribution rather than using the

constant throughput.

Intrinsic Value is defined as the storage value when the prices are deterministic; we

simply set the price volatility to zero. Table 4.5 shows the intrinsic values (unit: million

dollars), and Table 4.6 displays the intrinsic value of Model 1-4 as fractions of those of the
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Table 4.1: Comparison of the system values of the Benchmark Model and Models 1-4 (unit:

billion dollars)

Model # of Ships Throughput Storage Size (# of Cargos)

(MTPA) 0 1 2 3 4 5

1 0.7424 3.765 3.870 3.968 4.056 4.134 4.202

2 1.4847 7.527 7.634 7.739 7.839 7.933 8.021

Benchmark 3 2.2190 11.247 11.355 11.461 11.566 11.667 11.763

Model 4 2.9574 14.993 15.101 15.208 15.314 15.418 15.519

5 3.6893 18.697 18.804 18.912 19.019 19.124 19.227

6 4.4092 22.348 22.456 22.563 22.669 22.774 22.876

1 0.7412 3.757 3.861 3.956 4.041 4.116 4.181

2 1.4814 7.509 7.615 7.719 7.817 7.909 7.995

Model 1 3 2.2195 11.250 11.357 11.463 11.566 11.665 11.759

4 2.9541 14.971 15.079 15.186 15.291 15.394 15.493

5 3.6831 18.664 18.771 18.879 18.985 19.089 19.189

6 4.3944 22.264 22.371 22.478 22.583 22.686 22.785

1 0.7424 3.765 3.869 3.963 4.048 4.123 4.187

2 1.4847 7.527 7.633 7.736 7.832 7.923 8.009

Model 2 3 2.2190 11.247 11.355 11.460 11.562 11.660 11.753

4 2.9574 14.993 15.100 15.207 15.313 15.414 15.512

5 3.6893 18.697 18.804 18.911 19.018 19.121 19.220

6 4.4092 22.348 22.455 22.562 22.667 22.768 22.867

1 0.7412 3.757 3.858 3.953 4.042 4.125 4.202

2 1.4814 7.509 7.609 7.710 7.806 7.901 7.990

Model 3 3 2.2195 11.250 11.350 11.451 11.552 11.647 11.742

4 2.9541 14.971 15.072 15.172 15.273 15.373 15.468

5 3.6831 18.664 18.764 18.864 18.965 19.065 19.165

6 4.3944 22.264 22.363 22.463 22.563 22.663 22.762

1 0.7424 3.765 3.869 3.964 4.047 4.115 4.167

2 1.4847 7.527 7.633 7.736 7.833 7.922 8.003

Model 4 3 2.2190 11.247 11.355 11.460 11.562 11.660 11.752

4 2.9574 14.993 15.100 15.207 15.312 15.414 15.512

5 3.6893 18.697 18.804 18.912 19.018 19.121 19.219

6 4.4092 22.348 22.455 22.562 22.667 22.768 22.866
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Table 4.2: Comparison of Models 1-4 system values as fractions of those of the Benchmark

Model
Models # of Ships Storage Size (# of Cargos)

0 1 2 3 4 5

1 0.998 0.998 0.997 0.996 0.996 0.995

2 0.998 0.998 0.997 0.997 0.997 0.997

Model 1 3 1.000 1.000 1.000 1.000 1.000 1.000

4 0.999 0.999 0.999 0.999 0.998 0.998

5 0.998 0.998 0.998 0.998 0.998 0.998

6 0.996 0.996 0.996 0.996 0.996 0.996

1 1.000 1.000 0.999 0.998 0.997 0.996

2 1.000 1.000 1.000 0.999 0.999 0.998

Model 2 3 1.000 1.000 1.000 1.000 0.999 0.999

4 1.000 1.000 1.000 1.000 1.000 1.000

5 1.000 1.000 1.000 1.000 1.000 1.000

6 1.000 1.000 1.000 1.000 1.000 1.000

1 0.998 0.997 0.996 0.997 0.998 1.000

2 0.998 0.997 0.996 0.996 0.996 0.996

Model 3 3 1.000 1.000 0.999 0.999 0.998 0.998

4 0.999 0.998 0.998 0.997 0.997 0.997

5 0.998 0.998 0.998 0.997 0.997 0.997

6 0.996 0.996 0.996 0.995 0.995 0.995

1 1.000 1.000 0.999 0.998 0.995 0.992

2 1.000 1.000 1.000 0.999 0.999 0.998

Model 4 3 1.000 1.000 1.000 1.000 0.999 0.999

4 1.000 1.000 1.000 1.000 1.000 1.000

5 1.000 1.000 1.000 1.000 1.000 1.000

6 1.000 1.000 1.000 1.000 1.000 1.000

92



Table 4.3: Comparison of the storage values of the Benchmark Model and Models 1-4 (unit:

million dollars)

Models # of Ships Throughput Storage Size (# of Cargos)

(MTPA) 1 2 3 4 5

1 0.7424 105.4 203.6 291.4 369.3 437.2

2 1.4847 107.1 211.9 312.1 406.2 494.4

Benchmark 3 2.2190 107.5 214.2 318.6 419.4 515.8

Model 4 2.9574 107.6 214.9 321.2 425.3 526.4

5 3.6893 107.6 215.1 322.0 427.3 530.1

6 4.4092 107.5 214.8 321.2 425.9 527.9

1 0.7412 104.0 199.4 284.4 359.3 423.9

2 1.4814 106.8 210.2 308.1 399.9 486.4

Model 1 3 2.2195 107.4 213.5 316.4 415.1 509.4

4 2.9541 107.6 214.7 320.1 422.7 521.9

5 3.6831 107.6 214.9 321.2 425.0 525.5

6 4.3944 107.5 214.3 319.5 422.1 521.3

1 0.7424 103.9 198.5 282.7 357.7 422.0

2 1.4847 106.6 209.4 305.6 396.0 481.9

Model 2 3 2.2190 107.4 213.1 315.2 412.4 505.5

4 2.9574 107.6 214.5 319.6 421.5 519.0

5 3.6893 107.6 214.9 320.9 424.1 523.1

6 4.4092 107.4 214.0 318.9 420.4 518.6

1 0.7412 100.9 196.3 285.5 368.3 445.5

2 1.4814 100.8 201.7 297.1 392.4 481.6

Model 3 3 2.2195 100.7 201.5 302.2 397.5 492.8

4 2.9541 100.6 201.1 301.7 402.2 497.4

5 3.6831 100.3 200.6 301.0 401.3 501.6

6 4.3944 99.8 199.6 299.4 399.2 499.0

1 0.7424 103.7 199.0 281.7 350.3 402.5

2 1.4847 106.7 209.2 306.5 395.3 476.1

Model 4 3 2.2190 107.4 213.1 314.8 412.7 504.4

4 2.9574 107.6 214.5 319.6 420.9 518.9

5 3.6893 107.6 214.9 320.9 424.1 522.5

6 4.4092 107.1 213.9 318.9 420.4 518.4
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Table 4.4: Comparison of the storage values of Models 1-4 as fractions of those of the

Benchmark Model
Models # of Ships Storage Size (# of Cargos)

1 2 3 4 5

1 0.987 0.980 0.976 0.973 0.969

2 0.996 0.992 0.987 0.984 0.984

Model 1 3 0.999 0.997 0.993 0.990 0.988

(Average = 0.9894) 4 1.000 0.999 0.997 0.994 0.991

5 1.000 0.999 0.998 0.995 0.991

6 0.999 0.998 0.995 0.991 0.987

1 0.986 0.975 0.970 0.969 0.965

2 0.995 0.988 0.979 0.975 0.975

Model 2 3 0.999 0.995 0.989 0.983 0.980

(Average = 0.9850) 4 1.000 0.998 0.995 0.991 0.986

5 1.000 0.999 0.997 0.992 0.987

6 0.998 0.996 0.993 0.987 0.982

1 0.957 0.964 0.980 0.997 1.019

2 0.941 0.952 0.952 0.966 0.974

Model 3 3 0.937 0.941 0.949 0.948 0.955

(Average = 0.9527) 4 0.934 0.936 0.939 0.946 0.945

5 0.932 0.933 0.935 0.939 0.946

6 0.928 0.929 0.932 0.937 0.945

1 0.983 0.977 0.967 0.949 0.921

2 0.996 0.987 0.982 0.973 0.963

Model 4 3 0.999 0.995 0.988 0.984 0.978

(Average = 0.9811) 4 0.999 0.998 0.995 0.990 0.986

5 1.000 0.999 0.997 0.992 0.986

6 0.996 0.996 0.993 0.987 0.982
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Table 4.5: Comparison of the intrinsic values of the Benchmark Model and Models 1-4 (unit:

million dollars)

Models # of Ships Throughput Storage Size (# of Cargos)

(MTPA) 1 2 3 4 5

1 0.7424 79.8 157.4 231.7 300.3 358.5

2 1.4847 80.3 159.8 237.9 314.3 388.2

Benchmark 3 2.2190 80.4 160.5 239.9 318.2 395.4

Model 4 2.9574 80.4 160.8 240.8 320.1 398.5

5 3.6893 80.5 160.8 241.0 320.8 399.7

6 4.4092 80.4 160.7 240.8 320.3 398.7

1 0.7412 79.1 156.4 229.2 294.2 345.2

2 1.4814 80.1 159.1 237.1 313.3 386.7

Model 1 3 2.2195 80.4 160.3 239.2 317.3 394.3

4 2.9541 80.4 160.7 240.4 319.3 397.5

5 3.6831 80.5 160.8 240.9 320.3 398.9

6 4.3944 80.4 160.8 240.7 320.0 397.9

1 0.7424 78.9 155.4 228.4 294.3 345.2

2 1.4847 80.1 159.0 235.8 310.9 382.1

Model 2 3 2.2190 80.4 160.2 239.1 317.0 393.6

4 2.9574 80.4 160.6 240.3 319.1 397.0

5 3.6893 80.5 160.8 240.8 320.2 398.7

6 4.4092 80.4 160.7 240.7 319.9 398.0

1 0.7412 75.4 148.8 220.8 291.1 360.3

2 1.4814 75.4 150.7 224.1 297.5 369.4

Model 3 3 2.2195 75.3 150.6 225.8 299.2 372.5

4 2.9541 75.2 150.3 225.5 300.7 373.9

5 3.6831 75.0 150.0 225.0 300.0 375.0

6 4.3944 74.6 149.3 223.9 298.5 373.2

1 0.7424 78.5 154.3 227.8 293.2 342.2

2 1.4847 80.1 158.3 235.2 310.2 383.5

Model 4 3 2.2190 80.4 160.2 238.1 315.2 391.3

4 2.9574 80.4 160.6 240.3 317.9 395.2

5 3.6893 80.5 160.8 240.8 320.1 397.1

6 4.4092 80.4 160.7 240.7 319.9 398.0
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Table 4.6: Comparison of the intrinsic values of Models 1-4 as fractions of those of the

Benchmark Model
Models # of Ships Storage Size (# of Cargos)

1 2 3 4 5

1 0.992 0.994 0.989 0.979 0.963

2 0.998 0.996 0.996 0.997 0.996

Model 1 3 1.000 0.999 0.997 0.997 0.997

(Average = 0.9950) 4 1.000 1.000 0.999 0.998 0.998

5 1.000 1.000 0.999 0.999 0.998

6 1.000 1.000 1.000 0.999 0.998

1 0.990 0.988 0.986 0.980 0.963

2 0.998 0.995 0.991 0.989 0.984

Model 2 3 1.000 0.998 0.997 0.996 0.995

(Average = 0.9932) 4 1.000 0.999 0.998 0.997 0.996

5 1.000 1.000 0.999 0.998 0.998

6 1.000 1.000 1.000 0.999 0.998

1 0.945 0.946 0.953 0.969 1.005

2 0.939 0.943 0.942 0.946 0.951

Model 3 3 0.936 0.938 0.941 0.940 0.942

(Average = 0.9437) 4 0.934 0.935 0.937 0.939 0.938

5 0.932 0.933 0.933 0.935 0.938

6 0.928 0.929 0.930 0.932 0.936

1 0.984 0.980 0.983 0.976 0.955

2 0.998 0.991 0.989 0.987 0.988

Model 4 3 1.000 0.998 0.992 0.991 0.990

(Average = 0.9908) 4 1.000 0.999 0.998 0.993 0.992

5 1.000 0.999 0.999 0.998 0.993

6 0.999 1.000 1.000 0.999 0.998
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Benchmark Model. Except for the special case, fleet size = 1 ship and storage size = 5 cargos,

the intrinsic values using Model 1 are significantly higher than those of Model 3. The intrinsic

values of Model 2 and 4 are very close (0.9950 vs. 0.9908), and very close to those of the

Benchmark Model (less than 1% difference). This means that Model 1, using the unloaded

amount distribution, is much better than Model 3, using the constant throughput for LNG

storage valuation purposes, and both modeling methods of cargo arrivals can yield a near

optimal inventory control policy when there is no price uncertainty (but price seasonality is

still present).

4.4 Conclusions

In this chapter we examine how important it is to model the shipping variability while

valuing and managing the downstream LNG storage; this is an extension of Chapter 3.

Through a numerical study, we validate that the shipping model presented in Chapter 3

is a good representation of the shipping process, and further understand under what kind

of circumstance the model of the shipping process can be simplified. The model using the

unloaded amount distribution provides a good estimation of the storage value, and also yield

a very good inventory control policy. The model using the constant throughput is not as

good as the previous model for storage valuation purposes, but can be used to suggest the

optimal inventory control policy, especially when the ratio of supply arrival rate to storage

size is high.
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Chapter 5

Conclusions

This thesis studies real option valuation problems of natural gas transport capacity and LNG

downstream storage.

Natural gas pipeline capacity contracts are the essential assets for natural gas shippers. It

is common for natural gas shippers to value contracts on this capacity by simple adaptations

of financial spread option formulas, which do not fully account for the implications of the

capacity limits and the network structure that distinguish these contracts. In contrast,

we show that these operational features can be fully captured and integrated with financial

considerations in a fairly easy and managerially significant manner by a model that combines

linear programming and simulation (LPS). We also derive spread option and linear/convex

programming based lower and upper bounds on the economic value of capacity that are

easier to compute (at least approximately). Our lower bound (LB) model appears to be

an enhanced version of models used in practice. Our upper bound (UB) model provides an

additional valuation benchmark. Based on actual prices of traded natural gas futures and

basis swaps, we show that an enhanced version of the common approach employed in practice

can significantly undervalue natural gas pipeline network capacity relative to our LPS model.

We derive pathwise estimators for the so called deltas and structurally characterize them. We

also interpret them in a novel fashion as discounted expectations, under a specific weighing

distribution, of the amounts of natural gas to be procured/marketed when optimally using

pipeline capacity. Our model also exhibits promising financial (delta) hedging performance.

Thus, our LPS model emerges as an easy to use and useful tool that natural gas shippers

can employ to support their valuation and delta hedging decisions concerning natural gas

pipeline network transport capacity contracts. Models currently used in practice (proxied

by our LB model) can significantly undervalue network capacity when compared to our LPS

model, by 5-25% in different cases. Our UB model considerably overvalues this capacity.

The delta hedging performance of our LPS model is encouraging. Thus, our LPS model
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emerges as a managerially relevant model both in terms of practical implementation and

usage. Moreover, the insights that follow from our data analysis have broader significance

and implications in terms of the management of real options beyond our specific application.

The U.S. Energy Information Administration forecasts that local natural-gas production

will be soon unable to meet demand in the U.S. and most other developed countries, and, not

coincidentally, expects liquefied natural gas (LNG) imports to play a major role in bridging

this demand-supply gap during the next several years. A global LNG market is quickly

emerging, with several significant development projects underway. We present a practical

real-option model for the valuation of downstream LNG storage. Our approach is based on a

tractable stochastic dynamic-programming model to determine an optimal release-policy of

downstream inventory released from a regasification terminal into the wholesale natural-gas

market. This model uses a closed queuing network to represent upstream LNG production

and shipping to the downstream regasification facility, and a reduced form model of the

evolution of the natural-gas spot price.

Using our model, we show that the optimal LNG inventory-management policy at the

downstream facility has a basestock-target structure that depends on the realization, at

the inventory-review time, of the random state variable used to model the evolution of

the natural-gas spot price. Contrary to what has been claimed by some practitioners, the

structure of this policy is nontrivial; when it is optimal to sell it is not necessarily optimal to

sell the entire available inventory. We also quantify the value of the real option to store LNG

at this facility, and its relative benefit for different parties involved in an LNG value chain.

While the storage option is equally valuable for LNG merchants and integrated producers,

we find that its relative benefit is significantly higher for the former than the latter parties.

We also study the importance of modeling the shipping variability when valuing and

managing a downstream LNG storage facility. The shipping model presented in Chapter 3

assumes that the unloaded amount in each decision period is independently and identically

distributed (i.i.d.). We study the merit of the i.i.d. assumption by using simulation and

developing an upper bound. We show that the model, that uses the i.i.d. assumption,

provides a good estimation of the storage value, and yields a near optimal inventory control

policy. We also test the performance of a model that uses constant throughput to determine

the inventory release policy. This model performs worse than the model of Chapter 3 for

storage valuation purposes, but can be used to suggest the optimal inventory control policy,

especially when the ratio of flow rate to storage size is high, i.e., storage is scarce.

In our LNG storage valuation model, we assume the natural gas spot price and LNG

import amount are independent. Current LNG imports in U.S. only account for around 2%

of total gas consumption. Thus, LNG imports currently have small impact on U.S. natural
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gas prices. In the future, U.S. LNG imports are expected to grow significantly (EIA 2006,

[19]), and it will be interesting to incorporate their likely larger impact on U.S. natural gas

prices when valuing and managing a U.S. bound LNG supply chain.
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