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1   Introduction 

 Many activities require the acquisition of new skills.  If individuals become discouraged 

early during skill development, they are likely to quit, potentially depriving them of what could 

have otherwise been a positive experience.  This research examines individuals' predictions of 

their own learning curves during the early stages of skill acquisition, and finds a systematic bias:   

Early overconfidence at the point of conceptual understanding of a novel task gives way to 

underconfidence immediately following initial experience with the task, which is evident in both 

predictions of long term learning and in short term performance forecasts.  This sudden reduction 

in confidence is referred to as the 'all-thumbs effect'.  I argue that it results from the failure to 

recognize how quickly automaticity develops in the acquisition of a new skill.   

 In the first essay, I document the all-thumbs effect, examine its generality across several 

tasks, and demonstrate its consequences for product devaluation and abandonment during the 

pivotal early skill acquisition stage.  For products that require skills to use, such as computers, 

cell phones and sports equipment, consumers' purchase and usage decisions often depend on 

their prediction of the speed with which they will acquire the relevant skills.  I find that after 

initially trying to use a new skill based product, consumers become discouraged in their own rate 

of learn and devalue or discard the product.  I find that an important consequence of the all-

thumbs effect is that people give up on products and activities that would have become beneficial 

if only they persisted.   

 Secondly, I investigate whether information about the all-thumbs effect can help learners 

mitigate the effect.  In one experiment, participants are informed about the all-thumbs effect and 

then allowed to revise their learning curve predictions.  Similar to previous overconfidence 
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debiasing attempts (Lichtenstein et. al, 1982), I find that people ignore the information provided 

to them and persist in all-thumbs behavior.   

 In the second essay, I focus on investigating the mechanism underlying the all-thumbs 

effect.  I argue that the all-thumbs effect occurs due to a failure to appreciate how rapidly a task 

is automated.  Consistent with the proposed theory, I find that the all thumbs effect is 

exacerbated when the task is less automated.  Additionally, I find greater underprediction for the 

initial phases of learning.   

 Another important research area that I investigate is the generalizability of the all-thumbs 

effect.  I find that the all-thumbs effect is immune to prior experience and prediction elicitation 

modes, and find support for the bias in both motor and cognitive skill acquisition.   

 This dissertation documents an important bias in skill acquisition and new product 

adoption.  I document important effects of the bias and investigate the underlying causes.  In nine 

experiments and seven distinct learning tasks, I find that the all-thumbs effect is robust to many 

different classifications of skill learning and debiasing techniques. 
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2   All-Thumbs:  Underpredicting Learning Curves Following Initial 

Experience with a Product 
 

 Since the seminal investigation of the diffusion of the hybrid corn seed innovation in 

Iowa (Ryan and Gross 1943), the issue of how people adopt new products has motivated research 

from a variety of perspectives. Factors governing the adoption of new products have been 

examined in marketing (Rogers 1976), economics (Katz and Shapiro 1986; Tirole 1988), strategy 

(Leonard-Barton 1992), information systems (Venkatesh and Davis 2000) and health care 

(Budman, Portnoy, and Villapiano 2003). The primary focus of this research has been on firm 

strategies and product characteristics that facilitate product adoption. Among the major findings 

is that two of the most important factors influencing the adoption and consumer's adoption 

intention (Davis, Bagozzi, and Warshaw 1989) of a new product are ease of use and perceived 

usefulness (Davis 1989).  

Bagozzi, Davis, and Warshaw (1992) find that intentions to try a new technology are best 

forecast by consumer attitudes towards the process of learning, and their expected reactions to 

success and failure. Many consumer products that can increase consumer well-being are 

discarded by new users due to challenging initial product learning experiences. One category of 

goods for which initial product experience is particularly important is the domain of skill based 

products (Burson 2007; Murray and Haubl 2007), which require consumers to acquire skills to 

fully realize and appreciate the product's benefits. Examples include sporting goods (e.g. skis and 

sailboards), do it yourself products (e.g. home improvement, furniture) and electronic devices 

and appliances (e.g. computers, cameras, and bread-makers). For such products, besides 

perceived product benefits, adoption and ultimate usage is likely to be based in part on 

consumers’ perception of their own abilities to master usage of the product.    
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There is some evidence that initial learning often serves as a barrier to new product 

adoption. A recent doctoral dissertation reports that consumers spend an average of only 20 min. 

trying to operate new electronics items before they give up, and that 50% of products returned to 

electronic stores that consumers claim to be defective are actually fully functional (den Ouden et 

al. 2006). There is also considerable anecdotal evidence that consumers either discard new 

products or do not fully utilize them. A survey conducted in the UK examined consumer usage 

of newly purchased kitchen items. The findings revealed that between 60-72% of consumers 

purchasing yogurt makers, plastic bag sealing devices, juicers and coffee machines ultimately 

fail to make use of their acquisitions (www.esure.com/news). Another survey of five hundred 

people found that 22% of respondents did not learn how to use a high technology gift they had 

received in the past year (http://techdigest.tv).  

In this paper, we investigate how consumers form perceptions of their own ability to 

acquire skills. We contrast their perceptions with their actual ability to learn and find that 

consumers make a systematic error that we term the 'all-thumbs' effect. The all-thumbs effect 

refers to consumers' underconfidence in their own speed of mastery during the early stages of 

experience with a product. More generally, in our studies we observe the general patterns that, 

prior to any hands-on experience with a task, consumers are overconfident about both their initial 

mastery of a task and their speed of learning. This overconfidence quickly transmutes to 

underconfidence about their own speed of learning when consumers begin the skill acquisition 

process–the all-thumbs effect. We also find that consumers continue to erroneously underpredict 

their abilities during the pivotal early stages of learning, though calibration eventually improves 

with experience.  



 8 

We demonstrate the generality of the all-thumbs effect with studies that span tasks 

involving visuo-spatial and fine motor skills, and also that the effect is robust across different 

measures of performance and learning. We also investigate a behavioral consequence of the 

effect, finding that the all-thumbs effect dynamically impacts product valuations, with high 

initial product valuations declining after product trial. We conclude with a discussion of the 

managerial implications of the all-thumbs effect, suggesting that consumer learning curves 

should be considered in planning promotional and advertising campaigns for skill based 

products.    

 

2.1.1 Self-Assessments of Future Performance 

 

 The extensive literature on self-predictions of performance reveals that, although accurate 

assessments of performance allow consumers to make better purchasing decisions (Alba and 

Hutchinson 2000), consumers do not generally predict their own future performance accurately 

(Morwitz 1997). Mabe and West (1982) conduct a meta-analysis on the relationship between self 

perceptions of knowledge and actual performance and found that the correlation ranged from a 

high of .47 for athletics (motor skills) to a low of .17 for interpersonal skills.  

 A well established finding is that people have a strong optimistic bias for many activities 

(Dunning, Heath, and Suls 2004; Epley and Dunning 2006; McGraw, Mellers, and Ritov 2004), 

including using product features (Zhao, Meyer, and Han 2007). People tend to overate 

themselves both when it comes to predicting their own absolute performance (e.g., the planning 

fallacy, Buehler, Griffin, and Ross 1994) and predicting relative performance (e.g. the better-

than-average effect, Kruger and Mueller 2002). Exceptions to the general finding of 
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overconfidence have been found on difficult tasks, where worse than average ratings are found 

(Kruger 1999).    

 The measurement methods for investigating over(under)confidence have been classified 

as overestimation and overplacement (Moore and Small forthcoming). Over(under)estimation 

occurs when people predict that they will do better(worse) on the task than their actual 

performance. Over(under)placement occurs when a person predicts that they will do 

better(worse) than others on a task. Moore and Healy (2007) find that overestimation and 

overplacement are negatively correlated. Their conclusion is that on easy tasks people 

underpredict how well they will do and overestimate how well they will do relative to others. 

Because information about the self is so critical in determining both overestimation and 

overplacement, we focus on self-predictions of overestimation. This is a critical mental exercise 

in developing skills and determining whether a product will be beneficial.   

 

2.1.2 Skill Acquisition 

 

A robust finding in the literature on skill acquisition is the power law of learning, 

according to which learning is initially rapid, decelerates with experience, and loosely conforms 

to a power function (Newell and Rosenbloom 1981). The power law is one of the most 

fundamental principles of learning and has been illustrated for a wide range of tasks. Most of the 

classifications in Fleishman's classic (1975) taxonomy of auditory, visual, and perceptual motor 

skill tasks have been shown to follow the power law of learning (Newell and Rosenbloom 1981).  

Ackerman (1987) reviews the stages of skill acquisition and finds similarity in the two 

major skill acquisition frameworks. Fitts (1964) provides one of the most widely used 
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frameworks where he defines three stages of skill acquisition as cognitive (or information 

gathering stage), associative (or trial stage) and autonomous (or experience phase). In the first 

stage, the learner is focused on gathering the facts needed to understand and perform the task. In 

the second, or trial phase, the learner begins to try out the movements required for the task and 

may begin practicing. Normally, the learner also begins receiving feedback during the second 

stage of learning. The third, or experience phase, is when the learner begins to achieve a high 

level of skill performance. In this stage, the learner’s actions are fast, smooth, accurate, effortless 

and largely removed from the learner’s awareness—very similar to the concept of automaticity. 

In an alternative framework, Anderson (1982) describes skill acquisition in terms of the changes 

in knowledge structure from stage 1 (the declarative stage), to stage 2 (knowledge compilation), 

and finally stage 3 (procedural knowledge). But Ackerman and others view the main insights in 

the two frameworks to be complementary. 

As a skill is acquired, the neural mechanisms governing learning also undergo important 

changes. For example, Haier et al. (1992) quantified the cerebral glucose metabolic rate (GMR) 

in Tetris video game players and found that after four to eight weeks of daily practice, GMR in 

cortical surface regions decreased despite a seven-fold increase in performance. Haier's findings 

support the notion that there is a reorganization of active brain areas with experience. Later 

experiments with more sophisticated brain imaging techniques have shown that during initial 

novel skill learning the control network (a network of discrete regions of the brain that control 

goal processing, attention and decision making) is initially very active but becomes less active 

with experience (Chein and Schneider 2005; Schneider and Chein 2003). The control network is 

primarily active during controlled processing, which is slow and effortful, but flexible, and is 

less active during automatic processing (Hill and Schneider 2006).  
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When the control network is active during initial skill learning, we posit that it is very 

difficult for a person to imagine performing the task in a state where the task has been automated 

and the control network is less active. This leads learners to predict that future execution of the 

task will require more effort than it actually will. Predictions of future behavior are powerfully 

influenced by what is experienced in the present, a finding known as "projection bias" 

(Loewenstein, O’Donoghue, and Rabin 2002) and has been shown to influence such diverse 

phenomenon as thirst (Van Boven and Loewenstein 2003) and product ownership (Loewenstein 

and Adler 1995). When comparing consumers who are engaged in controlled versus automatic 

processing, an effect closely analogous to projection bias would imply that, when engaged in 

controlled processing, it is difficult to fully appreciate the benefits in task performance that are 

likely to come from automation. Conversely, once a skill has been automated, consumers are 

likely to find it difficult to recall the level of effort that is required for skill acquisition. For 

example, Hinds (1999) finds that experts make greater errors in predicting novice performance 

than do other novices, positing that the error results from the expert's failure to recall the initial, 

difficult, period of mastery. As a consequence of the failure of consumers in a controlled state to 

appreciate how rapidly a task is automated, they are likely to underestimate their future 

performance.  

Consistent with previous research, we predict that in the information gathering stage, 

prior to experience with a product, people will exhibit overconfidence. However, after gaining 

initial experience with a task, we predict that people will lower predictions to the extent of 

underpredicting their learning. We propose that this decrease in predictions and pessimistic 

outlook on future performance will lead to quitting behavior and reduced valuations for products 
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that require skill acquisition. Finally, in the third, or experience phase, we anticipate self- 

assessments will eventually become accurately calibrated.  

  We conducted four experiments to demonstrate the all-thumbs effect and establish its 

generalizability across several types of skill acquisition tasks. Our focus is on self-assessments, 

not relative assessments of novel skill based product learning. For example, when a consumer 

contemplates purchasing a computer software package such as Quicken or assembling furniture, 

they are primarily interested in how quickly they will be able to learn to use or assemble the 

product, and not whether they will learn to use it quicker than other consumers. Additionally, 

Kruger finds that people focus on themselves and neglect information about others in 

determining relative predictions (1999), indicating the extreme importance of self-assessments 

even in the context of relative performance assessments.   

 We differ from earlier investigations into self-assessment in that we focus not on the 

forecast of ability at a single point but rather at multiple points during the learning process. With 

skill based products, consumers must navigate through an initial learning period. During this 

phase, consumers continually assess the costs and benefits of product usage. Whereas the extant 

literature generally considers predictions for only one upcoming period, our elicitation 

procedures allow us to investigate both short and long term, learning curve and rate of learning 

assessments. 

We calculate overconfidence and underconfidence by comparing actual behavior to 

predicted behavior, similar to the investigation of self-assessment biases conducted by Epley and 

Dunning (2006). We also provide economic incentives for optimal performance and accurate 

self-assessments.     
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2.2 EXPERIMENT 1 

 

In the first experiment we investigate consumers’ perceptions of their ability to acquire a 

skill, and test the hypothesis that, after attempting to use a product, consumers lower their 

performance predictions, switching abruptly from overconfidence to underconfidence. That is, 

we test for a brief but critical lapse, in the early stages of direct experience with a product, in 

what is otherwise a pervasive overconfidence on the part of consumers.  

 

2.2.1 Method and Procedure 

 

Forty-eight participants from a paid subject pool consisting of both students and non- 

students were recruited for a show-up fee of $4 and performance based payments. Subjects 

learned the classic mirror tracing task (Snoddy 1926). This task was selected because it requires 

acquisition of a new skill but is simple enough that the learning rate is rapid. The mirror tracing 

task requires subjects to draw a shape only using a mirror's reflection. Participants were seated at 

a table facing a square mirror that rested at an 85 degree angle. A box was placed between the 

participant and the mirror, with a cloth covering the side of the box facing the participant so that 

subjects could place their hand in the box while tracing. Subjects were asked to trace an 

unbroken line between the boundaries that were formed by two, five pointed stars, with one star 

placed in the interior of the other star (figure 1).  

_______________________ 

Insert figure 1 about here 

_______________________ 
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 Participants were first given two minutes to view a folder containing instructions on 

performing the mirror tracing task. The instructions included the stimuli and evaluation 

procedures. A correctly completed trace required that the participants not cross the inner or outer 

boundary of the star pattern while drawing. If the boundary was touched, it was considered an 

error and participants were instructed to discard the trace and to begin a new drawing 

immediately. Subjects were instructed to correctly trace as many stars as possible in four rounds 

of five minutes each. 

Immediately after viewing the instructions, participants were asked to predict the number 

of correct traces they would be able to complete in the four rounds. These predictions will be 

called “before-experience” (PBE) predictions. After completing the before-experience 

predictions, participants were given two minutes to try the task. At the end of this initial 

experience period, participants again made performance predictions for the four rounds. These 

predictions will be termed “after-experience” (PAE) predictions.    

After these steps, the rounds commenced. All participants in a session began concurrently 

and a buzzer signaled the completion of the five minute round. At the completion of each round, 

the researcher and the subject counted and recorded the number of correctly traced stars. This 

process was repeated for each of the four rounds. After each round, participants made predictions 

for the remaining rounds. These predictions are denoted by Pjn where j indicates the time at 

which the prediction is made and n the trial for which performance is predicted. After the four 

rounds ended, participants were asked to roll a die to receive payment (as described below). 

Finally, subjects were paid, debriefed and dismissed.  
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 The payment incentives were designed to ensure that subjects exerted maximum effort 

and made accurate predictions. Subjects were instructed that they would be paid for each round 

randomly at random either on performance or prediction accuracy. At the end of the task, a die 

was rolled for each of the four rounds. If the number rolled was between one and five, payment 

was based on performance which was 25 cents per trace completed. If a six was rolled, payment 

was based on both prediction accuracy and performance. Specifically, the formula used was 

$.25* (number of traced completed – | number of traces predicted- number of traces completed |). 

The incentive scheme was designed to be easily explained, incentive compatible, and to ensure 

that subjects would be motivated to forecast their own performance as accurately as possible 

while exerting full effort on the task.  

We present the results using the following notations: An represents actual performance 

where n = 1, 4 indicates the round, and before experience and after experience predictions are 

indicated by PBEn and PAEEn, where n indicates the round predicted. Predictions for later rounds 

are indicated by Pjn where j represents the time period when the prediction is made and n is the 

round predicted.  

 

2.2.2 Results 

 

 First, we investigate whether learning in the mirror tracing task follows the power law. 

We find that the power function provides a better fit to the data than the exponential model (table 

1). This confirms previous findings that skill acquisition can be modeled by the power function 

(Newell and Rosenbloom 1981).   

_______________________ 
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Insert table 1 about here 

_______________________ 

 

 Reduction in Predictions after Initial Experience. Next, we compare the predictions made 

before and after they experience the task. As can be seen in table 2, participants lower their 

predictions for all the rounds after acquiring initial experience. The reduction in outlook is 

significantly different for all rounds (all ps<.001).
1
 Thus, moving from the information gathering 

stage to the trial stage of learning, we see an immediate and broad reduction in the participant's 

outlook.  

_______________________ 

Insert table 2 about here 

_______________________ 

 

 Current Predictions. We now examine current predictions of performance in a round 

made immediately preceding the round predicted. Before trying the task, participants 

significantly overpredicted performance (M(PBE1-A1) = 2.73, SD = 7.94, t(47) = 2.38, p < .05, 

Median = 2.50, Z(47) = 2.60, p < .01). After initial experience, the overconfidence turns to 

underconfidence with participants significantly underpredicting performance (M(PAE1-A1) = -

1.21, SD = 3.65, t(47) = 2.29, p < .05, Median = 0.00, Z(47) = -2.10, p < .05).  

 Subjects continue to underpredict their performance before round two (M(P22-A2) = -

2.21, SD = 3.52, t(47) = 4.35, p < .01, Median = -2.00, Z(47) = -3.74, p < .001) as well as round 

                                                 
1
 Round one (M(PBE1-PAE1) = 3.94, SD = 6.12, t(47) = 4.46, p < .001 Median = 3.00, Z(47) = 4.57, p < .001), round 2 

(M(PBE2-PAE2) = 4.75, SD = 7.07, t(47) = 4.66, p < .001, Median = 3.00, Z(47) = 4.63, p < .001), round 3 (M(PBE3-

PAE3) = 5.27, SD = 7.54, t(47) = 4.84, p < .001, Median = 3.00, Z(47) = 4.72, p < .001), and for round four (M(PBE4-

PAE4) = 5.71, SD = 7.66, t(47) = 5.16, p < .001, Median = 3.00, Z(47) = 4.85, p < .001). 
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three (M(P33-A3) = -1.15, SD = 2.85, t(47) = -2.78, p < .01, Median = -1.00, Z(47) = -2.78, p < 

.01). Only at round four does calibration begin to improve to the point where the prediction error 

is not statistically significant (M(P44-A4) = .08, SD = 4.09, t(47) = .14, NS, Median = 0.00, Z(47) 

= .09, NS). 

 Consistent with prior research findings, participants are overconfident before trying the 

new task. As hypothesized, participants underpredict their upcoming round performance after 

initial experience. The underprediction persists until the beginning of round four. Thus, we find a 

significant shift from overconfidence to underconfidence after participants first gain experience 

with the mirror tracing task (see figure 2). This underconfidence persists through the stages of 

the learning curve when performance improvement is particularly steep. 

_______________________ 

Insert figure 2 about here 

_______________________ 

 

 Predictions of Maximum Learning. The decision to persevere with a new task or product 

is contingent on predictions of the level of accomplishment likely to be achieved. We therefore 

examine predictions made for the final round as a proxy for peak performance. Before initial 

experience, participants directionally underpredict performance (M(PBE4-A4) = -3.60, SD = 

12.75, t(47) = -1.96, p < .06, Median = -5.00, Z(47) = -2.18, p < .05). After initial experience, the 

magnitude of inaccuracy increases, producing significant underprediction (M(PAE4-A4) = -9.31, 

SD = 8.19, t(47) = -7.88, p < .001, Median = -9.00, Z(47) = -5.38, p < .001). Participants 

continue to underpredict maximum performance before rounds two (M(P24-A4) = -7.21, SD = 

5.98, t(47) = -8.35, p < .001, Median = -6.00, Z(47) = -5.60, p < .001) and three (M(P34-A4) = -
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2.48, SD = 4.92, t(47) = -3.49, p < .01, Median = -3.00, Z(47) = -3.08, p < .01). By round four, 

predictions become more accurate (M(P44-A4) = .08, SD = 4.09, t(47) = .14, NS, Median = 0.00, 

Z(47) = .09, NS). 

 The results indicate a systematic underconfidence in predicting maximum learning. 

Predictions prior to experience are already pessimistic, but become even more so following 

initial experience. The error is greatest following initial task experience.       

 

2.2.3 Discussion  

 Consistent with earlier literature, we find that learning the mirror tracing task is initially 

steep and then decelerates with experience. We find a bias in predictions that follows a specific 

sequential path: in the initial stage where hands-on experience is yet to be acquired, participants 

are overconfident. This pervasive overconfidence immediately dissipates and lowers to 

underconfidence following initial experience. Though participants correctly forecast 

improvement in performance, the outlook remains systematically pessimistic for both current 

performance and maximum learning. 

              

2.3 EXPERIMENT 2 

 

 Experiment 2 has two main objectives. First, to address the robustness of the all-thumbs 

effect with respect to elicitation method, participants predict task completion times rather than 

their performance in a unit time period. Second, the study examines whether the all-thumbs 

effect can be diminished or eliminated with a fairly heavy-handed form of debiasing.   
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2.3.1 Method and Procedure 

 

 Eighty-two undergraduate students participated in the experiment for a combination of 

extra course credit and performance based payment. We selected a t-shirt folding technique that 

most people are unfamiliar with as the learning task. The procedure involves four steps for 

successful folding. Participants were taught the task using a 40 sec. instructional video that 

demonstrates a novel way to fold a t-shirt which is much quicker than the methods that most 

people normally employ. The task requires acquiring both insight as well as motor skills. The 

instructions from the video are summarized in figure 3.  

_______________________ 

Insert figure 3 about here 

_______________________ 

 

 The procedures followed were similar to those in the mirror tracing experiment, with a 

few differences. The practice period was divided into two phases of 40 sec. First, participants 

watched the instructional video once without being allowed to touch the t-shirt. Next, they 

viewed the video again but were allowed to practice folding the t-shirt. The task required was to 

fold two shirts in each of five rounds. Participants were instructed in using a stopwatch. 

Participants began and ended each round by timing themselves. The experimenter 

simultaneously also timed each participant, although the participant's recorded times were 

always used.  

 Each session consisted of between two and six subjects seated facing a computer 

terminal. To their immediate left was a flat empty workspace where participants folded the t-
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shirts. Headsets were provided so that participants would have the flexibility to simultaneously 

fold the t-shirts and listen to the instructional video without disruption. Each work station, 

comprising both the computer terminal and workspace, was partitioned so that it could not be 

viewed by other participants.   

 The compensation scheme was adjusted to motivate subjects to perform maximally, but 

also to be incentive compatible for time predictions. As in the mirror tracing task, participants 

rolled a die at the end of the experiment for each round and were paid based on their 

performance or prediction accuracy. If the die rolled was between one and five, they were paid 

1000 / (number of seconds it took to fold two shirts) in cents. If the die rolled was a six, they 

were paid based on their prediction accuracy. Participants were paid 1000 / (number of seconds it 

took to fold two shirts – | predicted number of seconds it took to fold two shirts - number of 

seconds it took to fold two shirts|).  

 The experiment is a between subjects, single factor design with two conditions: control 

and debias. In the debias condition, we informed participants of the prediction errors 

hypothesized due to the all-thumbs effect. After watching the instructional video, participants in 

the debias condition were told, "When we conducted this study in the past, we have consistently 

found two things. First, we found that before people practice folding the t-shirt, they predict that 

they will do much better than they actually do. Second, once they start folding the t- shirts, they 

predict that they will do worse than they actually do.” As a test that they had understood the 

information (i.e., as a kind of manipulation check), after reading this information, participants 

were asked to circle the correct answer to the following two questions: 1) "Before they start 

practicing, people predict that they will do better / worse than they actually do," and 2) "After they 
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start folding the t-shirts, people predict they will do better / worse than they actually do." Two 

subjects failed to answer both questions correctly and were dropped from the analysis.   

   

2.3.2 Results 

 

 We begin with the dependent measures used in experiment 1. We first discuss the results 

within each condition and later compare the differences. The results for the control and debias 

condition are reported in tables 3a and 3b respectively. 

_______________________ 

Insert table 3a & 3b about here 

_______________________ 

 We investigate whether learning to fold a t-shirt follows the power law. As in experiment 

1, we find that the power function provides a better fit, in each condition, to the data than the 

exponential model (table 3a and 3b). This finding confirms that learning in the t-shirt folding 

task can be characterized by the power law.   

_______________________ 

Insert table 4a & 4b about here 

_______________________ 

 

 Reduction in Predictions after Initial Experience. Consistent with experiment 1, in both 

the control and debias condition, predictions are significantly lowered after initial experience for 

all five rounds (all ps<.05)
2
. 

                                                 
2
  (M(PBE1-PAE1)control =  -8.23, SD = 24.10, t(38) = -2.13, p < .05, M(PBE1-PAE1)debias = -9.15, SD = 26.12, t(40) =  -

2.24, p < .05), round two (M(PBE2-PAT2)control =  -8.33, t(38) =  -2.39, p < .05, M(PBE2-PAE2)debias =  -9.10, SD = 18.47, 
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 Current Predictions. Consistent with experiment 1, participants are overconfident before 

trying the task (M(PBE1-A1)control = 91.19, SD = 199.70, t(38) = 2.85, p < .01, M(PBE1-A1)debias = 

94.22, SD = 166.12, t(40) = 3.63, p < .001). And, as in the prior experiment, subjects are 

underconfident before round two(M(P22-A2)control = -11.12, SD = 29.12, t(38) = -2.39, p < .05, 

M(P22-A2)debias = -19.74, SD = 64.33, t(40) = -1.96, p < .05) and round three(M(P33-A3)control = -

5.27, SD = 9.81, t(38) = -3.35, p < .01, M(P33-A3)debias = -8.69, SD = 30.34, t(40) = -1.83, p < 

.05). Participants become accurate in predicting task learning before round four (M(P44-A4)control 

= .50, SD = 6.51, t(38) = .48, NS, M(P44-A4)debias = -3.88, SD = 15.40, t(40) = -1.62, p < .10), and 

this continues in round five (M(P55-A5)control = -.94, SD=5.67, t(38) = -1.04, NS, M(P55-A5)debias = 

.38, SD = 5.87, t(40) = .42, NS). Unlike experiment 1, however, we find that after the initial trial, 

participants remain overconfident (M(PAEAE1-A1)control = 82.96, SD = 195.80, t(38) = 2.65, p < 

.01, M(PAEAE1-A1)debias = 85.07, SD = 20.35, t(40) = 3.34, p < .01). This was unexpected. In the 

previous experiment, participants understood the task and had obtained significant experience. In 

the t-shirt folding task, many of the participants appeared to be stuck in the information gathering 

stage, attempting to understand what would be required of them. Many of the participants only 

attempted the task once in the t-shirt folding task (practice period = 40 sec., MRound1 = 149 sec.), 

perhaps enough experience for them to realize that they were overly optimistic, but perhaps not 

enough to realize the steepness of the learning curve. Interestingly enough, the effect still 

occurred in both conditions-but later (after round 1) than we had anticipated.  

 

                                                                                                                                                             
t(40) = -3.15, p < .01), round three (M(PBE3-PAT3)control =  -7.33, SD = 19.50, t(38) = -2.35, p < .05, M(PBE3-PAE3)debias 

= -12.37, SD = 38.28, t(40) = -2.07, p < .05), round four (M(PBE4-PAE4)control =  -8.41, SD = 17.23, t(38) = -3.05, p < 

.01, M(PBE4-PAE4)debias = -11.07, SD = 31.15, t(40) = -2.28, p < .05), and round five(M(PBE5-PAE5)control =  -9.31, SD = 

16.58, t(38) = -3.51, p < .01, M(PBE5-PAE5)debias = -9.63, SD = 28.50, t(40) = -2.16, p < .05). 
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 Predictions of Maximum Learning. The results for maximum learning replicate those 

from the mirror tracing task. Before experiencing the task, participants underpredict their peak 

performance but they become more pessimistic following initial experience. This significant 

underprediction in peak performance continues until round four. 
3
 

 

 Comparison between Control and Debias Conditions. Comparing the two conditions, we 

find no significant differences in the reduction of predictions after initial experience or in the 

predictions of current or next period learning. Thus, for all rounds of all the dependant measures, 

the debiasing intervention did not significantly improve participants' prediction accuracy.  

 

 2.3.3 Discussion 

 

The results indicate the all-thumbs effect also robust across different response modes of 

predicting performance. The debiasing approach used appears to have no discernable effect on 

the distinct pattern of the all-thumbs effect. It is, of course possible that other debiasing 

interventions might have more of an effect. For example, participants could be provided with 

average performances for each round. We did not do so as pretests indicated high variances in 

performances.      

  

                                                 
3
  Participants begin by underpredicting peak performance before experience (M(PBE5-A5)control = -4.71, SD = 19.19, 

t(38) =  -1.53, NS, M(PBE5-A5)debias = -7.27, SD = 20.35, t(40) =  -2.29, p < .05) which was followed by increased 

inaccuracy.  They continue to underpredict after initial experience (M(PAE5-A5)control = -14.02, SD = 27.05, t(38) =  -

3.24, p < .01, M(PAE5-A5)debias = -16.91, SD = 31.12, t(40) =  -3.48, p < .001), before round two (M(P25-A5)control = -

11.71, SD = 18.35, t(38) =  -3.99, p < .001, M(P25-A5)debias = -24.96, SD = 45.77, t(40) =  -3.49, p < .01) and before 

round three (M(P35- A5)control = -1.35, SD = 5.48, t(38) =  -3.25, p < .01, M(P35- A5)debias =  -10.13, SD = 33.07, t(40) 

=  -1.96, p < .05). Peak performance predictions begin to be accurate before round four (M(P45- A5)control = -1.35, SD 

= 5.48, t(38) =  -1.55, NS, M(P45- A5)debias = -3.23, t(40) =  -1.55, p < .10), and continue before round five (M(P55-

A5)control = -.94, SD = 5.67, t(38) = -1.04, NS, M(P55-A5)debias = .38, SD = 5.87, t(40) = .42, NS).   
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2.4 EXPERIMENT 3 

 

 The object of experiment 3 was to test if the findings from the earlier experiments were 

the result of demand artifacts created by eliciting predictions before trial. Potentially, the 

underconfidence results could be due to a pendulum shift begun with the elicitation of the earlier 

overly optimistic, inaccurate initial predictions (although anchoring seems intuitively more 

likely). Experiment 3 was designed to eliminate this alternative explanation. Second, we test for 

the existence of the all-thumbs effect on a commercially available product.      

  

2.4.1 Method and Procedure 

   

 Seventy-one students participated in the experiment for extra credit and performance 

based payment. The task selected was typing using the Dvorak format keyboard. The Dvorak 

keyboard layout claims faster typing and less finger movement than the standard QWERTY 

keyboard. While these claims are controversial (Liebowitz and Margolis 1991), we selected the 

Dvorak keyboard due to its lack of familiarity and its commercial availability. Note that mastery 

of the Dvorak keyboard really requires two forms of learning, or one form of learning (of the 

new keyboard) and one form of unlearning (of the QWERTY keyboard).    

   Participants were randomly assigned to one of two conditions (single versus multiple 

predictions) in a single factor, between subjects design. In the multiple predictions condition, as 

in earlier experiments, predictions were elicited before initial experience and after round one. In 

the single prediction condition, participants made performance predictions only after completing 

round one of the task.  
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  The same procedures were followed as in previous experiments. First, participants were 

given two minutes to view the Dvorak keyboard layout and a copy of the words that were 

required to be typed. Then, participants predicted the number of words they would type (if they 

were assigned to the two predictions condition) for both rounds. Next, participants were given 

two minutes to practice with the keyboard. The Dvorak keyboard was attached to a computer 

monitor. The words to be typed were displayed on the screen. At the end of each round, 

participants were instructed that the screen would display the gross words per minute, the 

number of errors typed and the net words per minute. Finally, as in earlier experiments, the 

actual task commenced. In the one prediction condition, predictions were elicited only after 

round one. Participants were paid based on their performance ($.03 * # of words typed) or 

prediction accuracy ($.03*(absolute value|(# of words typed)-(# of words predicted)|).  

 

2.4.2 Results 

_______________________ 

Insert table 5 about here 

_______________________ 

 As can be seen in table 5, the results from the previous experiments replicate. In the 

condition where participants make multiple predictions they are initially overconfident (M(PBE1-

A1) = 14.97, SD = 15.30, t(34) = 5.79, p < .001). After round one, in both conditions, they 

significantly underpredict their performance (M(P22-A2)single = - 2.08, SD = 6.60, t(35) = - 1.90, p 

< .05, M(P22-A2)multiple = - 2.03, SD = 6.62, t(34) = - 1.81, p < .05). The results replicate the over 

and underconfidence of the all-thumbs effect found in tasks where the skill acquired did not 

require relearning.  
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 We next compare the predictions made after round one in both conditions, and conclude 

that there is no significant difference between the round two predictions (F(1,69) = 1.08, NS) or 

the round two prediction variance (Levine Statistic(1,69) = .81, NS). We also conclude that there 

is no significant difference between the round two prediction error (p22-a2, F(1, 69) = .001, NS) 

or the prediction error variance (Levine Statistic(1,69) = .24, NS). Thus, we conclude that 

eliciting the initial, optimistic before trial predictions do not impact the after round one 

predictions.  

 

2.4.3 Discussion 

 

 This experiment eliminates the alternative explanation that demand artifacts lead to 

performance underpredictions. The tendency to underpredict perseveres even in the absence of 

optimistic predictions elicitation prior to experiencing the task. Thus, the all-thumbs error is not a 

vestige of measurement effects or an over-correction of early overly optimistic inaccurate 

predictions. The results also establish the presence of the all-thumbs effect in tasks that involves 

a consumer product.   

 

2.5 EXPERIMENT 4 

 

 Prior research suggests that consumers’ valuations of products are dynamic and increase 

as experience with the product grows (Loewenstein and Strahilevitz 1998). In categories that 

require consumers acquire skills to better exploit product benefits, product valuations should be 

related to self-predictions of future performances. In skill based products, the all-thumbs effect 
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would imply that at the beginning of the learning process, increased experience leads to a 

decrease in valuation. The objective of this experiment is to investigate whether initial 

experience with skill based products leads to decline in product valuations.  

 

2.5.1 Method and Procedure  

 

 Thirty three students participated in the experiment for extra credit. We again selected 

typing with the Dvorak keyboard as the learning task. The same procedures as in experiment 3 

were followed except that there was only one round in the task. As the results have replicated the 

all-thumbs effect in this task, instead of eliciting performance predictions, participants were 

asked to provide their valuation of the Dvorak keyboard. Participants were asked to value the 

keyboard before initial experience and after round one. The valuations were obtained using a 

variation of the Becker, DeGroot and Marshak (1964) procedure. Participants were instructed to 

state the amount of money that the Dvorak keyboard was worth to them. They were told that 

after the experiment, 10% of the participants were to be selected for inclusion in an actual 

drawing for the keyboards. For each participant selected, a random number between $0 and $40 

was drawn. If the number drawn was less than their valuation for the keyboard, then they were 

given the keyboard. If the number drawn was more than their valuation of the keyboard, then 

they received the number drawn in cash.  

   

2.5.2 Results 
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 Before initial experience, participants valued the Dvorak keyboard at $8.30. After round 

one, the keyboards were valued at $6.70. This reduction in valuation after gaining experience 

with the Dvorak keyboard was significant (M = $1.73, SD = 4.11, t(32) = 2.41, p < .05). 

 

2.5.3 Discussion 

 

 The results show that for products which require acquisition of skills, the pessimism 

resulting from the all-thumbs effect can translate into reduced valuation for the product. We find 

that valuations for a skill based product initially decrease, rather than increase with experience. 

This decrease in valuation following initial product experience has important managerial 

implications. Limited product trials of skill based products could be detrimental to product sales. 

Marketing managers must carefully design the initial customer experience for potential skill 

based product customers. This experiment indicates that targeting skill based product sales 

before customers try the task, while they are optimistic, or perhaps after they have passed 

through the difficult all-thumbs phase, would be most successful.  

 

2.6 CONCLUSION 

 

For adoption to occur, consumers must not only purchase the products but fully utilize all 

the features and benefits. To do so, in skill based products, consumers must surmount the 

learning stage of the skill acquisition process. We propose an explanation for why this learning 

phase can appear formidable and therefore lead to quitting. The all-thumbs effect refers to the 

sudden drop in confidence (typically from an initial phase of overconfidence) when consumers 
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begin the skill acquisition process with hands-on experience. The underconfidence lingers during 

the learning phase. Although we eventually observed calibration with experience, in many cases 

we suspect that such calibration is likely to come too late to prevent initial vexation and attendant 

behavioral effects. For example, 25% of first time snowboarders do not take a lesson purely due 

to their optimistic expectation that snowboarding will be easy. After trying, 85% of all 

snowboarders quit and never become long term participants in the sport (NSAA Report, 2003).  

We have demonstrated the generalizability of the effect across three tasks, in different 

types of skill acquisitions, for skills that were new and those that had to be relearned. Crucially, 

the all-thumbs error has the behavioral consequence of lowering product valuations.        

Because the initial stage of new product learning is so turbulent with both overconfidence 

mixed with underconfidence and product valuations are still being formed, we expect marketing 

initiatives to be particularly fruitful during this stage of skill product adoption. Hoch and 

Deighton's (1989) conceptual model of experience learning suggests that when customers are 

learning new, unfamiliar products they are particularly susceptible to management interventions. 

The impact of promotions and incentives to help people persist through the learning curve is an 

obvious avenue for future research. For example, promotional schemes targeted at first-time 

users must be designed so that consumers have sufficient incentives to endure the initial learning 

phase. Promotions such as “first-lesson-free” are likely to be less effective than promotions that 

help first time users to achieve a level of expertise where they are no longer pessimistic about 

their initial learning.  

Because of the consumer behavior implications of all-thumbs, marketing managers of 

skill based products should seek out ways to 'hold consumers hands' during the initial stages of 
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product experience or, at the least, to communicate the message to consumers that "If, at first, 

you don't succeed….try, try again". 
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 TABLE 1. COMPARISON OF POWER VS. EXPONENTIAL FIT  

 

 

 

 

 Model A b Std Error r 

Power Fit Y=ax
b 

6.00 .77 .33 .99 

Exponential Fit Y=ae
bx

 5.21 .31 1.39 .97 
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TABLE 2. RESULTS OF EXPERIMENT 1 (MIRROR TRACING TASK) 

 

  

 Round 1 Round 2 Round 3 Round 4 

 

Traces 

Completed 

 

5.81(5.95)* 

 

 

10.27(8.41) 

 

 

14.35(10.24) 

 

 

17.25(10.74) 

 

 

         

 

Before 

Experience  

Predictions  

8.54(7.53) 

 

 

 

10.58(9.10) 

 

 

 

12.23(10.00) 

 

 

 

13.65(11.04) 

 

 

 

After 

Experience 

Predictions 

4.60(4.41) 

 

 

5.83(5.15) 

 

 

6.96(6.09) 

 

 

7.94(6.83) 

 

 

 

Before Round 

2 Predictions  

8.06(7.37) 

 

9.25(8.45) 

 

10.04(8.81) 

 

 

Before Round 

3 Predictions   

13.21(10.37) 

 

14.77(11.72) 

 

 

Before Round 

4 Predictions       

17.33(11.89) 

 

 

 *Standard deviations are in parenthesis 
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TABLE 3A. RESULTS OF EXPERIMENT 2 (T-SHIRT FOLDING) CONTROL 

CONDITION 

 

 Round 1 Round 2 Round 3 Round 4 Round 5 

Actual Time 144.60(195.68) 43.16(35.60) 30.52(26.87) 27.11(15.36) 22.70(12.16) 

      

Before Experience 

Prediction 

 

53.41(30.59) 44.67(25.78) 36.69(21.81) 31.62(18.99) 27.41(16.39) 

After Experience 

Prediction 

 

61.64(42.43) 53.00(36.66) 44.03(28.91) 40.03(26.52) 36.72(24.96) 

Before Round 2 

Prediction 

 

 54.28(36.69) 43.85(26.63) 37.79(21.88) 34.41(19.98) 

Before Round 3 

Prediction 

 

  35.79(28.29) 28.33(13.18) 25.25(11.87) 

Before Round 4 

Prediction 

 

   26.62(14.71) 24.05(13.90) 

Before Round 5 

Prediction 

 

    23.64(12.90) 

*Standard deviation's are in parenthesis 
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TABLE 3B. RESULTS OF EXPERIMENT 2 (T-SHIRT FOLDING) DEBIAS 

CONDITION 

 

 Round 1 Round 2 Round 3 Round 4 Round 5 

Actual Time 152.90(172.40) 47.90(49.90) 32.40(27.46) 24.87(13.93) 22.09(11.90) 

      

Before Experience 

Prediction 

 

58.68(57.12) 50.61(54.87) 38.39(24.91) 33.66(22.59) 29.37(17.59) 

After Experience 

Prediction 

 

67.83(72.88) 59.71(61.84) 50.76(54.44) 44.73(4.13) 39.00(34.53) 

Before Round 2 

Prediction 

 

 67.63(76.49) 58.37(70.81) 49.12(52.97) 47.05(52.73) 

Before Round 3 

Prediction 

 

  41.10(48.58) 35.27(42.62) 32.22(40.17) 

Before Round 4 

Prediction 

 

   28.76(23.48) 25.32(18.86) 

Before Round 5 

Prediction 

 

    21.71(12.08) 

 *Standard deviations are in parenthesis 

 



 35 

TABLE 4A. COMPARISON OF POWER VS. EXPONENTIAL FIT (CONTROL 

CONDITION) 

 

 

 

 

 

 Model A B Std. Error r 

      

Power Fit Y=ax
b 

142.50 -1.41 8.67 .99 

Exponential Fit Y=ae
bx

 317.41 -.82 17.39 .96 
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TABLE 4B. COMPARISON OF POWER VS. EXPONENTIAL FIT (DEBIAS 

CONDITION) 

 

 Model A B Std. Error r 

      

Power Fit Y=ax
b 

151.30 -1.43 6.73 .99 

Exponential Fit Y=ae
bx

 340.81 -.83 15.89 .97 
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TABLE 5. RESULTS OF EXPERIMENT 3 (KEYBOARD TASK) 

 

   Single Prediction Multiple Predictions 

 Round 1 Round 2 Round 1 Round 2 

Actual Words Typed 14.56(5.71) 20.00(4.88) 17.14 (7.54) 21.60(6.65) 

     

Before Experience Predictions   32.11 (16.33) 40.80(20.94) 

After Round 1 Predictions  17.92 (6.03)  19.57 (7.31) 

*Standard deviations are in parenthesis 
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FIGURE 1. MIRROR TRACING TASK STIMULI 
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FIGURE 2. MIRROR TRACING EXPERIMENT  
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FIGURE 3. OVERVIEW OF THE T-SHIRT FOLDING TASK 
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3. Predictions of Learning Curves 
 

Over a century of research has investigated the functional form of, and psychological 

mechanisms underlying, skill acquisition (Thorndike & Woodworth, 1901).  This research 

generally finds that skill acquisition can be approximated by a power function (Newell & 

Rosenbloom, 1981), with learning that is initially rapid, but which decelerates over time.
1
  

Learning curves of this type have been estimated for perceptual motor-tasks such as juggling 

(Swift, 1905), mirror tracing (e.g., Snoddy, 1926) and learning to use a typewriter (Swift, 1904), 

and for tasks that involve visual processing (Kolers, 1975), memory (Martin & Fernberger, 1929) 

and human-computer interaction (Card, Moran & Newell, 1983; Johnson, Bellman & Lohse, 

2003).  

Research into novel skill learning (reviewed in Hill & Schneider, 2006) has uncovered 

some of the processes that underlie most skill acquisition.  This research finds that controlled 

processes, which are slow and effortful, but flexible, direct behavior in the initial stages of skill 

acquisition.  Automaticity gradually develops with experience and the repeated pairing of a 

stimulus with a response (Shriffrin & Dumais, 1981; Shiffrin & Schneider, 1977).  Automation 

of a task is normally accompanied by increases in speed, decreases in error, and decreases in the 

subjective feeling of mental effort (Logan, 1988).  Additional processing models include a third 

phase, where learners utilize a mix of controlled to automatic processing (Shiffrin & Schneider, 

1977), and is often referred to as the knowledge compilation (Anderson, 1981), or associative 

learning (Ackerman, 1988), phase of skill acquisition.     

Although the research on learning curves has been exceptionally productive, it has 

largely failed to address a problem of particular importance for decision making.  Decisions 

about whether to pursue, a particular task will not be based on objective learning curves, but on 
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individuals' predictions of their own learning curves.  For example, although learning curves for 

snowboarding and windsurfing are steep (most people can reach a level of acceptable proficiency 

rapidly), people often give up in early stages because initial learning is often frustrating and 

painful.  Whether people end up deriving long-term pleasure from these activities, and more 

generally from activities that require mastery, therefore, is likely to depend on initial predictions 

of the rapidity of learning.
2
 

There is extensive literature on self-predictions of performance (e.g., Buehler & Griffin, 

2003; Koehler & Poon, 2006) across a wide variety of skill domains, including cognitive 

(Dunning et al., 1990), assembly (Byram, 1997), and perceptual-motor skills (Hinds, 1999).  This 

literature has revealed a pervasive optimistic bias both when it comes to existing skills 

(Jagacinski, Isaac & Burke, 1977) and acquisition of new skills (Keren, 1987), a phenomenon 

that Buehler, Griffin and Ross (1994) document and dub the "planning fallacy" (see also Newby-

Clark et al., 2000).  This optimistic bias also impacts judgments of relative performance.  For 

example, 70% of all high school students rate themselves as above average in leadership ability 

while only 2% rate themselves below average (Dunning et al, 2002) leading to a stream of 

research on "The better than average effect."   

 One exception to the general finding of overconfidence in performance predictions comes 

from memory research on judgments of learning.  In tasks involving memorizing word pair 

associations, and then judging how many of the word pairs they will recall, Koriat and coauthors 

(2002) found that participants initially over-predict, then under-predict their own memory, 

which, the authors speculate, results from the failure to appreciate increased memory storage and 

retrieval fluency as word pair associations are memorized.   Several other explanations have been 

proposed for the findings including the anchoring and adjustment mechanism (Scheck and 
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Nelson, 2005), and a mnemonic debiasing account (Koriat et al, 2006 ) while other explanations 

such as retrieval fluency  (Serra and Dunlosky, 2005) or task difficulty (Koriat et al, 2002) have 

been eliminated.  

      In this article, we examine learning curve predictions in a task that requires 

acquisition of a novel skill.  In contrast to prior literature, our focus is on predictions of learning 

curves and perceptions of improvement rather than performance at a single time point, and our 

specific interest is in the impact of early experience on such predictions.  Prior to such 

experience, and consistent with earlier research, we expect that people will exhibit 

overconfidence (c.f., Hinds, 1999).  However, after gaining initial experience with a task, we 

predict that people will exhibit underconfidence as a result of their failure to appreciate the speed 

and effectiveness of the shift from controlled to automatic processing.   

Skill acquisition is initially directed by controlled processes, followed by a gradual shift 

to automatic processes with experience (Anderson, 1981).  When the process is automatic, it is 

likely that people cannot recall the process when it is was controlled.  There is indirect evidence 

that the initial skill acquisition process is improperly judged.  Comparing expert and novices’ 

predictions of the time required for novices to learn new cell phone functions, Hinds (1999) finds 

that novices are more accurate than experts in predicting the performance of first-time users.   

We postulate that during initial experience with a task, when the neural processing is 

controlled, people find it difficult to imagine the process becoming automated.  Because initial 

learning is so slow and effortful, novices likely envision that the rate of skill acquisition will be 

commensurately slow. We therefore expect that immediately after acquiring early experience on 

a difficult task, people will adjust their prediction of their own learning curve downwards.  

Depending on its magnitude, this downward adjustment could be sufficient to result in a shift 
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from overconfidence to underconfidence.  Only when sufficient automation has occurred would 

we expect predictions of subsequent learning to become more accurate.  We term the predicted 

sudden drop in optimism about future learning following initial experience the 'All-Thumbs 

Effect'.  

We present five experiments that document, and examine specific features of, the All- 

Thumbs effect.  Experiment 1 tests for the occurrence of the All-Thumbs effect in the acquisition 

of a new motor skill.  We examine the immediate adjustments made in predictions when the first 

phase of cognitive understanding of a new skill moves to the second phase of initial experience, 

and also examine ongoing predictions of future performance during the process of skill 

development.  We delineate forecasts as either long-term predictions of learning rates and peak 

performances or as short-term performance projections.  Experiment 2 investigates whether the 

All-Thumbs effect is due to the failure to appreciate how quickly automaticity is achieved.  

Experiment 3 examines whether the All-Thumbs effect is mitigated by experience – whether 

people who experience it on one task, and then realize that their initial projections of progress 

were too pessimistic, gain any insight into the effect that they carry over into subsequent tasks.  

Experiment 4 addresses the question of whether the All-Thumbs effect is robust to alternative 

prediction response modes.  Experiment 5 examines whether the All-Thumbs effect potentially 

due to a demand artifact and also explores the generalizability of the effect.   

 

3.1 Experiment 1 

3.1.1 Procedure  

  Fifty-three undergraduate students at Carnegie Mellon University participated in the 

experiment for extra course credit and performance-based payments. The task they performed, 

tying a double bowline knot, was selected to be novel, conceptually simple, and easy to learn.  



 51 

Participants were instructed that, after learning about the task, they would be required to tie as 

many knots as possible in 5 trials of five minutes each. Additionally, they were told that they 

would be asked to predict the number of knots that they could successfully tie in each trial and 

that they would be compensated based on both their speed at tying knots and the accuracy of 

their predictions.    

   Between 1 and 4 participants were run in a single session, seated so that they could not 

see each other.  First, participants were given two minutes to view an animated instructional 

program on a computer that demonstrated the double bowline knot.  The animation detailed the 

sequential steps required to tie the knot. The program ran continually and automatically restarted 

after each demonstration.  After viewing the instructions for two minutes, participants predicted 

the number of knots they could tie in each of the five trials.  These predictions will be referred to 

as “after-instructions” (PAI) predictions.             

Next, during the 'initial experience period', participants were given two minutes of 

experience tying the knot with a 10 inch untied piece of rope with the instructional program still 

showing on the video screen in front of them.  At the end of the two minutes, participants again 

made performance predictions for each of the five trials, which we refer to as “after-experience” 

(PAE) predictions. 

After these steps, the trials commenced.  Each participant was given a box of 10 inch 

ropes.  All participants in a session began simultaneously, and an alarm indicated when the five 

minutes were complete.  At the completion of each trial, both the participant and the researcher 

counted the number of correctly tied knots.  After recording their knot production, participants 

again predicted their performances for the remaining trials.  This process was repeated for each 

of the five trials.   
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 The compensation scheme was structured to motivate maximum effort and accurate 

predictions.  Payment was based either on the level of output (number of knots tied correctly) or 

on the level of output and prediction accuracy.  At the end of the task, a 6-sided die was rolled 

for each of the 5 trials.  If the number rolled was between 1 and 5, payment was based on 

performance and was equal to 5 cents per knot completed.  If a 6 was rolled, participant payment 

was based on both performance and prediction accuracy.  Specifically, the formula used was 

$.05* (number of knots tied – | number of knots predicted- number of knots tied|).   This 

payment scheme ensures that participants will be motivated to perform as well as possible but 

also to guess their own performance as accurately as possible.    

Note that our measure of over- or under-confidence is based on an objective measure of 

accuracy rather than relative (Burson & Klayman, 2007) or probabilitstic measures (Lichtenstein 

et al, 1982).  Since assessments of self are more fundamental, we use absolute measures used in 

planning fallacy literature rather than relative measures.  Probablistic measures were not 

considered due to methodological concerns (Gigerenzer et al., 1991; Juslin et al., 2000).   

3.1.2 Results  

We use the following notation in describing our results: An denotes actual performance 

where n = 1,5 indicates the trial, and the after-instructions and after-experience predictions are 

denoted by PAIn and PAEn where n indicates the trial for which the prediction is made.  Later 

(post-experience) predictions are denoted by Pjn where j indicates the time at which the 

prediction is made and n the trial for which performance is predicted.   Thus, P24 denotes 

prediction made before Trial 2 for performance in Trial 4.  

The results for the after-instruction predictions, after-experience predictions and actual 

knots tied in Experiment 1 are summarized in Figure 1.  We begin by conducting an ANOVA 
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with the repeated factors trail (1-5) and prediction mode (after instruction predictions, after 

practice predictions and actual performance) as independent variables.  Within this omnibus 

ANOVA, we use contrasts to investigate the All Thumbs effect and compare predictions to 

actual knot tying performance. 

After receiving instructions, but before any experience, it can be seen that participants 

were generally overconfident about their initial performance but relatively well calibrated 

thereafter (because their initial overconfidence was compensated for by a tendency to 

underestimate their own speed of learning).  (PAI1 - A1= 1.75, F(1,52)=2.99, p=.04,).  Thirty-six 

percent of the participants were underconfident (U), 19% were accurate and 45% were 

overconfident (O).    

Our main prediction, however, is that participants' forecasts of their long-term rate of 

learning will be adjusted downwards after the new task is initially experienced.  We examine the 

significance of this shift by comparing the predicted slope between periods 1 and 5 after 

instructions (PAI) and after experience (PAE).  After watching the instructional video (after-

instructions), the predicted rate of learning (PAI5 - PAI1/4) is 2.52.  After initial experience, the 

predicted rate of learning (PAE5 - PAE1/4) is 1.79.  The predicted learning slope is significantly 

lower after experience (F(1,52)=11.49, p=.001).  After initial experience, 60% of the participants 

decrease their learning slope prediction after practice while only 19% increase their estimate. 

After experience, participants were, on average, underconfident about their future 

improvement in performance.  While the after-experience slope prediction ((PAE5- PAE1)/4) is 

1.79 knots per period, the actual rate of learning ((A5-A1)/4) of 2.79 knots per period is 

significantly higher (F(1,52)=9.43, p=.002, U = 75% , O = 19%).   
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 Similar to the downward adjustments made in the predictions of slope, there is a 

downward shift in predictions of peak (i.e., end) performance.  The peak performance predicted 

is significantly reduced following experience. (PAI5- PAE5 = 5.57; F(1,52)=18.77, p<.0001).  

Seventy-four percent of participants lowered their prediction after experience, whereas only 17% 

raised their prediction.   

 We now identify the stage in the learning process at which the prediction errors are most 

egregious.   To do so, at each stage, we calculate the learning slope predictions for the next two 

trials.  We focus on the after experience predictions.  In the steep, initial part of the learning 

curve, participants predict an improvement of 4.08 knots (SE=.64) between trials 1 and 3 but   

average 7.70 (SE=.59) significantly underpredicting their improvement (PAE3 - PAE1)-(A3-A1)=-, 

F(1,52)=16.77, p=.000).  Between trial 2 and trial 4 the predicted and actual improvements are 

3.14 knots and 5.04 knots respectively.  This difference is also significant (PAE4 - PAE2)-(A4-A2)= 

-1.86, F(1,52)=6.19, p=.01).   By trial 3, participants are better calibrated predicting an 

improvement of 3.47 knots (SE=.54) while improving by 3.07 knots (SE=.46).  The difference is 

no longer significant ((PAE5 - PAE3)-(A5-A3)= -.40, F(1,52)=.40, p=ns).  The findings indicate that 

underpredictions occurs most during the initial, steep portion of the learning curve.  People 

eventually realize that practice makes perfect, but not that most of the perfection comes in the 

initial learning trials
iii

. 

Intermediate Predictions   

The measures discussed earlier were predictions for the future made at the outset, either 

immediately after learning about the task, or immediately after first experiencing it.  What 

happens when participants gain experience with the task, and hence feedback about the accuracy 

of their earlier predictions?  After receiving feedback from trial 1 performance, underconfidence 
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remains.  Before trial 2, participants significantly underpredict performance (F(1,52)=9.09, 

p=.002, p<.01).   Underconfidence continues to persist in predictions made before trial 

3(F(1,52)=11.27, p=.0005).  Participants are still largely underconfident before trial 

4(F(1,52)=3.18, p=.04, p<.05) and calibrate their predictions prior to round 5 (F(1,52)=.007, 

p=.ns).    

3.1.3. Discussion 

 The results reveal a systematic pattern of bias in the prediction of learning curves.  In the 

first phase, after the task is described to participants, there is marginal overconfidence.  In the 

next phase, however, when participants first begin attempting the new task, there is an immediate 

lowering of expectations.  They are less confident, and indeed underconfident, about their long 

term rate of learning and about the ultimate level of performance that they are likely to achieve.  

Moreover, contrary to the normal finding of improved calibration with experience, there is a 

pervasive pessimism in predictions that is not fully overcome until the last trial.  In the next 

experiment, we further examine the impact of experience and feedback on the All-Thumbs 

effect. 

 

3.2 Experiment 2:  All Thumbs and Automaticity 

 We have theorized that the all thumbs effect is due to a failure to appreciate how rapidly 

a task is automated.  A key characteristic of automaticity is the improved ability to complete dual 

tasks simultaneously (Bargh, 1991, Moors & DeHeuver, 2006, Shiffrin and Dumais, 1981).  If 

erroneous predictions of how quickly automaticity develops account for the all thumbs effect, 

inaccuracies in predictions should be more pronounced for tasks that are more controlled such as 

those which require multitasking as compared to single tasking assignments which are more 
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automatic.  In this experiment we examine whether misconstruing how quickly automaticity is 

achieved explains the all thumbs effect.      

3.2.1 Procedure 

 Fifty-two students participated in the experiment for extra course credit and 

performance based pay.  The experimental design was a single factor between participants design 

with two levels (single task and dual task).  In the single task condition, participants learned 

Snoddy’s (1926) classic mirror tracing task, which was chosen as it is a visual-spatial motor 

skill.  The procedure was similar to experiment 1 except that there were four trials of five 

minutes and the payment was 25 cents for each correctly completed trace.      

In the dual task condition, participants were asked to perform mirror tracing along with a 

counting task.  Participants, at the beginning of the experiment, were given an individualized 

four digit number on a sheet of paper kept in front on them. After each trial began, a buzzer was 

sounded every twenty seconds and participants were asked to subtract 7 from the number 

assigned.    This continued until the end of each trial. To ensure that effort was devoted to both 

tasks, the payment mechanism for the counting task was aligned with the mirror tracing task. 

Participants were instructed that they would loose 5% of their mirror tracing earnings for each 

miscalculated number in the round.   

 The experimental procedure began with a description of both tasks to all participants. 

Participants were informed that they would be randomly assigned to either of the two conditions.  

Next participants were asked to make performance predictions first for the single task which was 

followed by eliciting predictions for the dual task.  Then, all participants practiced the dual task 

for two minutes.  After practice, predictions were obtained for the single and dual task in that 
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order.  Once the after practice predictions were obtained, participants were assigned to either the 

single or dual task condition.       

3.2.2. Results 

Single Task  

 We begin by examining the single task condition.  The results are provided in table 2a. 

First, we examine predictions made by participants after receiving instructions on the mirror 

tracing task.   As in experiment 1, participants are initially overconfident (PAI1(Single Task) - A1(Single 

Task)=1.17, SE=.64, F(1,22)=7.57, p=.006, (U)=20%, (O)=68%).   

 Next, we investigate predictions made after experiencing the task.  We find that 

participants significantly underpredict their slope improvement (F(1,22)=56.54, p=.000).  As 

before, participants also significantly reduce their slope predictions after initial experience with 

the task (F(1,22)=18.85, p=.000).  Additionally, participants reduce their peak performance 

predictions (F(1,22) =8.93, p=.0035) after experiencing the task.   

Intermediate Predictions 

 We next investigate underconfidence after participants receive feedback on their 

performance.  As in experiment 1, we find that participants continue to significantly underpredict 

their performance prior to trial 2 (F(1,22) =49.02, p<.000), trial 3 (F(1,22) =15.05, p=.0005) and 

trail 4 (P44 – A4 = -1.50, SE=.73, F(1,24) =27.40, p=.000). 

Dual Task  

 We now discuss the dual task condition results.  As earlier, we begin by looking at 

predictions after instructions.  Participants are directionally overconfident in predicting the 

performance of the dual task (PAI1(Multitask) - A1(Multitask)= .73, SE=.97, F(1,25)=.56, p=.ns  

(U)=34%, (O)=50%).   
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 As before, after initial experience, participants significantly underpredict their 

improvement (F(1,25)=84.48, p=.000).  Participants also significantly reduce their slope 

predictions after initial experience with the task (F(1,25) = 17.38, p=.000). Predictions of peak 

performance also significantly reduce ((F(1,25) =4.27, p=.000) after the practice period.       

Intermediate Predictions 

 The intermediate predictions also replicate.  Participants continue to underpredict their 

performance after receiving feedback before trial 2 (F(1,25)=71.56, p=.000), trial 3 

(F(1,25)=17.82, p=.000) and trail 4 (F(1,25)=4.27, p=.025).   

Single vs. Dual Task 

 The failure to appreciate the development of automaticity can be gauged by first 

comparing the performances in the single and dual task conditions.   At the starting point, trial 1, 

performances are marginally lower in the single task condition (F(1,46)=1.83, p=.086).  At trial 

4, the finishing point, there is no significant difference in performance (F(1,46)=.96, ns).   

Comparing the predictions for the single and the dual tasks shows that’s that the incipient 

predictions however were much lower for the job requiring multitasking.  After instructions, 

participants significantly downgraded their trial four predictions from 10.25 for the single task to 

7.38 for the multi task (F(1,46)=32.53, p=.000).  After initial experience, predictions for trial 4 

performances were revised from 5.35 for the single task to 3.75 for the multitask (F(1,46)=43.94, 

p=.000). 

 While the lowering of predictions are not entirely surprising, the important result is that 

the slope predictions for multitasking were significantly lower than for single tasking after 

instructions (F(1,46)=16.42, p=.000) and also were lower after initial experience (F(1,46)=5.68, 

p=.01).   The actual learning rates in the single and multitask conditions though are the same 
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(F(1,46)=.14, p=ns) and performance rates converge by trial 4.   Though actual learning rates for 

both tasks are similar, participants are much worse in predicting learning rates for dual task skill 

acquisition.  The high discrepancy between predictions and actual learning rates for more 

controlled tasks suggests that the failure to recognize the speed at which automaticity develops 

may account for the all thumbs effect.   

3.2.3. Discussion 

Consistent with our proposed mechanism, we find that in tasks that are more controlled 

as they require multitasking, people are less sanguine.  The experiment shows that the actual 

learning rates in the single and dual tasks were similar.  The increased pessimism particularly of 

the slope predictions in the dual task suggests that people misconstrue the rapidity at which tasks 

are automated.   This experiment also replicates the all thumbs effect in visual spatial skill 

acquisition.           

 

3.3 Experiment 3: All-Thumbs and Previous Experience 

Like learning curves, there is a long tradition of research on knowledge transfer – on the 

improvement in performance on one task as a result of learning a different task (Thorndike & 

Woodworth, 1901) or learning a task in a different context (Lewandowsky et al, 2002) at both 

the individual (Gray & Orasanu, 1987; Gregan-Paxton & Roedder John, 1997) and 

organizational levels (Argote et al., 1990).  At the organizational level, knowledge transfer is 

seen as a source of competitive advantage (Argote & Ingram, 2000), and is facilitated by group 

members' perceived social identity (Kane et al., 2005).  At the individual level, most studies find 

that motor skill transfer is generally small or even negligible, although exceptions have been 

found between tasks that are extremely similar (Schmidt, 1988).   
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Although research on knowledge transfer at the individual level is extensive, the focus 

has generally been on the impact of prior learning on subsequent actual performance rather than 

on predictions of performance.  The first objective of Experiment 2, therefore, is to test if the 

sudden drop in confidence that we have referred to as the All-Thumbs effect recurs when an 

initial experience of all thumbs, followed by corrective feedback, is succeeded by another skill 

acquisition and prediction task.  The second purpose of Experiment 2 was to examine the 

robustness of the All- Thumbs effect by attempting to replicate it with a task different from knot 

tying.  Third, we investigate prediction carry over effects from one task to the next.        

3.3.1. Procedure 

One hundred and twelve undergraduate students participated in Experiment 3.  The 

methodology was similar to Experiment 1 except that there were two stages in each of which 

participants acquired a new skill.  The first task was manipulated between participants while in 

the second task, all participants learned the double bowline knot -- the same knot used in 

Experiment 1.  Unlike Experiment 1, there were only three trials in each stage.       

In the first stage, participants were randomly assigned to one of  three initial task 

conditions in which they learned to tie either a relatively difficult knot (carrick bend) an easier 

knot (zeppelin) or the mirror tracing task used in Experiment 2. 

3.3.2. Results of Task 1  

The predictions and performance results are summarized in Figure 2 and presented in 

detail in Table 2.  The figure shows three slopes: the actual slopes, the slope predicted after 

instructions and the slopes predicted after experience.  The results for mirror tracing and easy 

knot conditions replicate experiment 1 for all dependent measures.  For the mirror tracing task, 

participants were initially (after instruction but before experience) directionally overconfident, 
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albeit not significantly so (PAI1 – A1= 2.06, F(1,35)=1.60, p=.11, U=42%, O=47%) for the first 

trial.  More importantly, and consistent with the All Thumbs prediction, participants significantly 

reduced their estimates of learning curves immediately following initial experience (((PAI3 - 

PAI1)-(PAE3- PAE1))/2=1.35, F(1,35)=12.24, p=.0005, D=72%, I=11%), as well as their predictions 

of peak performance ((PAI3)-(PAE3)=7.56, F(1,35)=19.96, p=.000, D=78%, I=17%).  This drop in 

expectations led participants to significantly underpredict their learning slope (((PAE3- PAE1)-(A3-

A1))/2= -3.47, F(1,35)=41.85, p=.000, U=83%, O=8%), an effect that persisted into the second 

trial (P22 – A2=-3.64, F(1,35) =49.63, p=.000, U=75%, O=8%).  A similar pattern of results was 

obtained with the easy (Carrick) knot.
3
 

The results for the hard knot task are consistent with one component of the All-Thumbs  

effect in that participants begin overconfident  about their own learning curve (PAI1 – A1= 3.89, 

(F(1,37)=2.86, p=.04, U=50%, O=42%) and, more importantly, there is a sudden downward 

adjustment in predictions made following initial experience (((PAI3 - PAI1)-(PAE3- PAE1))/2=1.98, 

F(1,37)=4.43, p=.026, D=53%, I=21%, and (PAI3)-(PAE3)=6.92,F(1,37)=4.60,  p=.02, D=58%, 

I=29%).   However initial overconfidence is so extreme that, despite the very large decrease in 

confidence following initial experience, participants did not end up significantly underpredicting 

their learning slopes (((PAE3- PAE1)-(A3-A1))/2= -.19, F(1,37)=.13, p=.ns, U=58%, O=34%).  In 

retrospect, the extreme initial confidence is not surprising, given that substantial research shows 

that people are more overconfident on harder tasks than easier ones (Lichenstein et al., 1982).  

Overall, these results suggest that an important aspect of All-Thumbs Effect, the reduction in 

predictions following experience, is quite robust.     

3.3.3. Results of Task 2 



 62 

 The results of Task 2, which was identical to the task from Experiment 1, replicate the 

All-Thumbs effect – the sudden drop in confidence – whether the task was preceded by the easy 

knot condition, (((PAI3 - PAI1)-(PAE3- PAE1))/2=.39, F(1,36)=3.78, p=.03, D=51%, I=27%) the hard 

knot condition, (((PAI3 - PAI1)-(PAE3- PAE1))/2 =.58, F(1,37)=10.19, p=.003, , D=55%, I=11%) or 

the mirror tracing condition (((PAI3 - PAI1)-(PAE3- PAE1))/2=.93, F(35)=15.03, p=.000, D=58%, 

I=14%).  The basic result of underpredicting the rate of learning also holds, regardless of which 

task came before: (easy knot condition, ((PAE3- PAE1)- (A3-A1))/2=-.59, F(1,36)=4.19, p=.024, 

U=54%, O=32%; hard knot condition, ((PAE3- PAE1)- (A3-A1))/2=-2.09, F(1,37)=14.18, p=.001 

U=74%, O=26%; mirror tracing task condition, ((PAE3- PAE1)- (A3-A1))/2 =-.86, F(1,35)=3.06, 

p=.044, , U=64%, O=36%).  

As in the first skill acquisition task, participants adjust their prediction downwards after 

practice and remained underconfident in their intermediate predictions.  The major impact of 

experience in the first task appears to be a reduction in participants' initial, post-instruction, 

overconfidence in task 2; in the second task of Experiment 2, instead of observing 

overconfidence following instructions (but before experience), there is directional 

underconfidence in the after-instructions predictions for trial 1 in all three experimental 

conditions – i.e., regardless of which task preceded task 2 (easy knot tying condition, PAI1 - A1=-

.05, F(1,36)=.004, p=.95, U=54%, O=35%; hard knot tying condition, PAI1 - A1=-1.74, 

F(1,37)=3.38, p=.03, U=66%, O=29%; mirror tracing condition, PAI1 - A1=-1.67, F(1,35)=2.45, 

p=.06, U=58%, O=39%).
4
   After experiencing the All-Thumbs Effect, we find that pessimism 

carries over and impacts the initial predictions on the second task.  On the second task we 

observe initial pessimism instead of optimism. Apparently, the feedback they received from the 
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previous task had the effect of diminishing their initial overconfidence on the new task, but did 

not impact their reduction in predictions – i.e., the All-Thumbs effect. 

3.3.4. Discussion 

 The results of Experiment 2 suggest that the All-Thumbs effect is robust.   We observed 

an All-Thumbs effect in all three tasks in part one of the experiment, and an All-Thumbs effect 

in the second part, even when it was preceded by an extremely similar task.    The results also 

suggest that the All-Thumbs effect is largely resistant to prior experience.  Despite becoming 

aware that their post-experience predictions were insufficiently optimistic on the first task, this 

did not result in improved post-experience predictions on the second.  Surprisingly, however, 

working on the initial task did largely eliminate the initial overconfidence that was observed in 

the first experiment after instruction but prior to experience.   

 The results show that the all thumbs effect is muted in the hard tasks.   Consistent with 

the all thumbs effect, the initial overconfidence lowers but does not change to persistent 

underconfidence.  This result is consistent with the hard/easy effect that finds overconfidence in 

difficult tasks (Lichtenstein & Fischoff, 1977).  We also observe better calibration in the hard 

task which we suspect is due to ceiling effects.  For very hard tasks, the maximum achievable 

performance rates are low.  Since the peak is low, so is the potential to make errors.     

 

3.4 Experiment 4:  Directly Measuring Changes in Performances 

 So far, we have demonstrated a systematic bias in predicting the rate of skill acquisition.  

However, the predictions elicited from participants in the first two experiments were for their 

absolute performance rather than for changes in performance.  The objective of this experiment 
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is to examine if the bias is robust to alternative prediction elicitation approaches.  Specifically, 

we now measure improvement rates directly.   

3.4.1. Procedure 

 Thirty-three students participated in the experiment for extra course credit and 

performance based payment.  Participants learned the mirror tracing task used in experiment 2.  

The procedures followed were very similar to the mirror tracing task in experiment 2 with the 

following exceptions.  First, the experiment consisted of only three rounds.  Second, as earlier, 

after reading the instructions and after initial experience, participants predicted their round 1 

performance.  Participants were then asked to predict the “additional number of traces” that 

would successfully complete from round 1 to round 3.  After round 1, predictions of 

improvement from round 1 to round 3 were obtained again. 

 The compensation structure was adjusted for the changed prediction elicitation 

procedures.  Participants were compensated similarly to the earlier experiments for round 1.  

However, they were compensated on their improvement or prediction of improvement 

subsequently.  The same procedures as in earlier experiments were followed to determine 

whether payment was based on performance or prediction accuracy. 

3.4.2. Results 

 The prediction and performance results are presented in Table 5 and Figure 4 are 

consistent with previous findings.  Participants are overconfident after instructions (PAI1 – 

A1=2.94, F(1,32)=4.34, p=.02, U=39%, O=52%).   After instructions, participants predicted an 

improvement of 4.73 traces between round 1 and round 3 while after experience, they lowered 

their improvement prediction to 2.21.  In fact, the improvement between round 1 and 3 was 6.82, 

indicating that participants were already underconfident about their own speed of learning 
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following instruction and became even more underconfident following experience.  The 

reduction in expectations regarding participants speed of learning is significantly different before 

and after experience ((PAI3 - PAI1)-(PAE3- PAE1))/2=1.27, F(1,32)=9.57, p=.002, D=85%, I=9%). 

(see Figure 3).  Also, consistent with previous results, participants significantly underpredict 

their actual improvement in learning (((PAE3- PAE1)-(A3-A1))/2= -.83, F(1,32)=45.18, p=.000, 

p<.05, U=79%, O=12%).  

 Prior to trial 2, the underconfidence is maintained.  Subjects predict an improvement of 

3.36 additional traces (SE=.42) while actually completing 6.82 additional traces (SE=.64).  The 

underprediction is significant (F(1,32)=21.79, p=.000).   

3.4.3. Discussion  

 The results show that the All-Thumbs Effect is robust to an alternative prediction 

elicitation approach.  Regardless of whether predictions are made for absolute performances or 

made for performance improvements, there is systematic underconfidence in predicting learning 

rates in the acquisition of a new skill.    

 

3.5 Experiment 5 Mirror Reading 

 Experiment 5 serves two objectives.  First, we test for the generalizability of the effect by 

using a cognitive learning task.  Second, a limitation of the earlier experiments is that multiple 

predictions were elicited from participants.  This procedure lends itself to the potential problem 

of demand artifacts. Through repeated prediction elicitations, participants could possibly become 

more sensitive to the dependent measures as the experiment progresses (Sawyer, 1975) or may 

believe that that the experimenters require them to change their predictions.  We overcome this 

limitation in Experiment 5 by eliciting predictions on only one occasion.   
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3.5.1. Procedure  

 Seventy-nine participants received a $10 show up fee and additional performance based 

pay for participating.  The learning task designed was mirror reading. In mirror reading, 

participants are required to decipher mirror imaged words. The procedure was similar to the 

previous experiments.  Each session consisted of three to eight participants.  The experiment 

consisted of three trials of three minutes each. After the procedure was explained, participants 

were given a sheet containing the words and experienced the task for 30 seconds. The task 

requires that the participants decode and write the words.  Participants were paid $.10 for each 

correctly deciphered word and as before, were also paid based on their prediction accuracy.  The 

words used were all eight-letters presented in normal Times Roman text mirrored using Pic2Pic 

software.  Words with frequency ratings between 10 and 35 according to the Kucera & Francis’s 

(1967) lexicon of English usage were selected.  Examples of words used are "nowadays" and 

"charcoal" (see figure 1).  To ensure that the task difficult did not vary across trials, the set of 

words presented across trials were a combination of identical frequency ratings.  

 The experimental design was a single factor between participants with two levels 

(multiple predictions vs single predictions).  In the multiple predictions condition, predictions 

were elicited after instructions and after experience.  In the single predictions condition, 

predictions were obtained only after experience.  As in experiment 4, participants predicted the 

number of words they would successfully decipher in trial 1 and then predicted the number of 

additional words they would decode in trial 3.  

3.5.2. Results 

Multiple Predictions Condition  
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We first examine whether the All Thumbs effect replicates in the acquisition of a 

cognitive skill.  After instructions, participants actually underpredict their round 1 mirror reading 

performance ((PAI1 - A1) MP =-5.42, SE=3.63, F(1,37)=2.23, p=.08, (U)=73.7%, (O)=31.1%) and 

then become even more pessimistic after experience.  After practicing, participants significantly 

underpredict their first trial performance (PAP1 - A1)MP  =-8.00, SE =2.32, F (1,37) = 11.91, 

p=.0005, (U)=78.9%, (O)=18.4%).   

After instruction, participants predicted an improvement of 11.13 (SE=2.63) words 

between rounds 1 and 3, while actually improving by 8.23 (SE=.82) words (see table 1).  The 

overconfidence in their slope predictions is directional ((PAI3 - PAI1) - (A3 -A1) MP =2.89, 

SE=2.73, F(1,37)=1.12, ns  (U)=44.7% , (O)=50%).  As in earlier experiments, the 

overconfidence dissipates after initial experience.  Comparing  after instructions slope 

predictions with after experience slope predictions reveals that participants significantly reduce 

their slope predictions following experience ((PAI3 - PAI1) - (PAP3 - PAP1) =-4.71, SE = 2.52, 

F(1,37)=3.47, p=.035, (I)=13.2%, (D)=55.3%).  Participants also significantly underpredict their 

performance improvement after experience ((PAP3 - PAP1) - (A3 -A1) MP =-1.82, SE =.83,F (1,37) = 

4.79, p=.0175, (U)=60.5%, (O)=26.3%).   

 

Single Predictions Condition 

 In the single prediction condition (SP), participants predict only after experience. After 

experience, participants are pessimistic significantly underpredicting their first trial performance 

(PAP1 - A1 )SP =-11.12, SE =1.55, F (1,40) = 51.51, p=.000, (U)=87.8, (O)=8.3%).   Also 

consistent with the All Thumbs effect, we find that participants significantly underpredict their 
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performance improvement (((PAP3 - PAP1) - (A3 -A1)SP =-2.22, SE= .88, F (1,40) = 6.34, p=.008, 

(U)=56.1%, (O)=31.73%).    

Single vs. Multiple Predictions 

 Finally, we examine if predictions are influenced by repeated measurement.    

Comparisons of the after experience predictions with actual performance in each condition 

reveals no significant difference between the after experience slope predictions in the single 

prediction and multiple prediction conditions ((PAP3 - PAP1)-(A3 -A1), F(1,77)=.11, ns).  There is 

also no significant difference between the after experience point predictions across conditions 

((PAP1 - A1), F(1,77)=1.29, p=ns).  The results indicate that initial prediction elicitations do not 

significantly impact subsequent learning curve predictions.     

3.5.3. Discussion 

 The results of this experiment indicate that the all thumbs effect is also generalizable to 

cognitive learning tasks.  Consistent with prior experiments, participants underpredict their 

learning curves following experience with the task.  Although we do not find initial 

overconfidence in the point predictions of the mirror reading task, we find that participants are 

initially overconfident in their rate of learning.  Additionally, the evidence from the experiment 

eliminates the possibility that the effect is caused by demand artifacts resulting from repeated 

elicitations of performance predictions.   

 

3.6 Conclusion 

 From snow-boarding to using the internet to mastering a new statistical pack or operating 

a new kind of wheelchair, many products require acquisition of new skills.  Many opportunities 

both for business and for consumers are undoubtedly missed when new goods and services are 
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abandoned after adverse initial experiences.  Thus, one recent doctoral dissertation reported that 

50% of products returned to electronic stores that consumers claim to be defective are actually 

fully functional (den Ouden et al., 2006), and that consumers spent an average of only 20 

minutes trying to operate a new product before they gave up.     

 Having documented the All-Thumbs effect, there are many obvious and important lines 

of follow-up research.  First, given the social welfare consequences of the phenomenon, it could 

be helpful to attempt to devise ways to debias the effect, e.g., through product design changes or 

through the provision of information about learning curves.  It might also be helpful to 

incorporate incentives to induce people to work through the all-thumbs phase, despite pessimistic 

predictions of progress, to the point where they become better calibrated about their own 

learning curve.  Finally, both of these goals would be facilitated by a better understanding of the 

cognitive and neural underpinnings of the under-prediction of learning curves.  There is now a 

large volume of research on the neural underpinnings of skill learning, but, despite the 

importance of predictions of such learning, no research to the best of our knowledge addressing 

the neural basis of pessimism with regard to such learning.  For example, is the All- Thumbs 

effect more pronounced for tasks that have an all-or-none, insight-like, quality?  More generally, 

we hope that an awareness of the phenomenon will lead to new tactics to remedy some of its 

most pernicious effects, most notably the tendency to quickly give up on tasks which, if persisted 

on, would yield substantial benefits. 
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Footnotes 

i For an alternative perspective see Haider & Frensch, 2002, Heathcote, Brown & Mewhort, 2000 

ii Whether people persist will also depend critically on their ability to tolerate the immediate frustration of poor 

performance. 

iii We would like to thank an anonymous reviewer for suggesting this analysis and providing this insight. 

iv ((PAE3- PAE1)-(A3-A1))/2=-1.58, F(1,36)=10.27, p=.0015, U=68%, O=19%;  ((PAI3 - PAI1)-(PAE3- 

PAE1))/2=.76, =F(1,36)=6.95, p=.006, D=46%, I=14%; (PAI3)-(PAE3)= 2.43,F(1,36)=4.17, p=.024, D=57%, 

I=27%;  PAI1 – A1= 2.35, F(1,36)=1.49, p=.11, U=46%, O=43%; P2* – A*, F(1,36)=20.20, p=.000, 

v In both knot conditions, participants remained underconfident in their trial 2 predictions (easy knot P2* – A*, 

F(1,36)=6.21, p=.008; hard knot condition P2* – A*, F(1,37)=13.00, p=.001) but participants in the mirror tracing 

condition quickly calibrated (P2* – A*= .11, F(1,35)=.025, p=NS) and were not underconfident. 
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Table 1:  Experiment 1 Predictions and Performance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Trial 1  Trial 2  Trial 3  Trial 4  Trial 5 

                

  Mean S.E.  Mean S.E.  Mean S.E.  Mean S.E.  Mean S.E. 

                

Actual Knots Tied  10.17 .85  14.87 1.02  17.87 1.10  19.91 1.24  21.34 1.25 

                

PAI  11.92 1.40  15.08 1.62  17.30 1.73  20.15 1.91  22.00 2.08 

PAE  9.28 1.05  11.57 1.35  13.36 1.5  14.72 1.64  16.43 1.85 

P2n     13.57 1.04  15.64 1.22  16.98 1.33  18.34 1.40 

P3n        16.72 1.06  18.04 1.15  19.26 1.22 

P4n            19.08 1.20  20.43 1.26 

P5n              21.38 1.33 

N=  53   53   53   53   53  
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Table 2a:  Predictions and Performance for Experiment 2--Single Task 

 

 Trial 1 Trial 2 Trial 3 Trial 4 

 Mean S.E. Mean S.E. Mean S.E. Mean S.E. 

Actual 4.50  0.74 8.09  1.02 11.77  1.29 15.73  1.33 

         

PAI (Single Task) 6.27  0.86 7.73  0.95 9.00  1.03 9.91  1.12 

PAI (Dual Task) 4.77  0.81 5.95  0.93 6.95  0.97 7.36  0.98 

         

PAE (Single Task) 3.09 0.55 3.59  0.56 4.00  0.60 4.50  0.64 

PAE (Dual Task) 2.05 0.38 2.55  0.44 2.95  0.52 3.41  0.55 

         

P2   5.36  0.83 5.86  0.84 6.36  0.83 

P3     9.68  1.24 10.95  1.33 

P4       13.36  1.50 

 



 79 

 

Table 2b:  Predictions and Performance for Experiment 2--Dual Task 

 Trial 1 Trial 2 Trial 3 Trial 4 

 Mean S.E. Mean S.E. Mean S.E. Mean S.E. 

Actual 3.23  0.60 7.54  0.90 10.65  1.04 13.88  1.31 

         

PAI (Single Task) 5.88 .83 7.46 1.00 9.19 1.22 10.54 1.43 

PAI (Dual Task) 3.96  .86 5.27 1.02 6.42 1.21 7.38 1.38 

         

PAE (Single Task) 3.65 0.49 4.42 0.57 5.31 0.71 6.08 0.88 

PAE (Dual Task) 2.35 0.37 2.88  0.43 3.54  0.52 4.04  0.59 

         

P2   4.88  0.80 5.50  0.92 6.31  0.93 

P3     9.15 1.18 10.27  1.37 

P4       12.38  1.38 
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Table 3a:  Experiment 3 Predictions and Performance in Task 1 

 

   Trial 1  Trial 2  Trial 3 

           

Condition    Mean S.E.   Mean S.E.   Mean S.E. 

           

Mirror 

Tracing Actual  7.92 0.97  13.47 1.42  17.94 1.63 

           

 PAI  9.97 1.72  12.58 1.95  15.75 2.40 

 PAE  5.11 1.11  6.67 1.29  8.19 1.48 

 P2n     9.83 1.15  11.61 1.32 

  P3n               17.17 1.93 

Easy Knot  Actual  9.30 0.78  14.00 0.94  16.76 1.14 

           

 PAI  11.65 1.75  15.03 1.93  17.46 2.14 

 PAE  10.73 1.47  13.27 1.66  15.03 1.80 

 P2n     12.54 0.86  14.59 .99 

 P3n               16.24 1.04 

           

Hard Knot  Actual  8.87 0.73  11.92 .89  14.53 .92 

           

 PAI  12.76 2.33  17.39 2.80  22.00 3.75 

 PAE  9.79 1.38  12.79 1.74  15.08 1.90 

 P2n     11.68 .91  13.39 1.07 

  P3n               14.39 .98 
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Table 3b:  Experiment 3 Predictions and Performance in Task 2 (Double Bowline Knot) 

 

   Trial 1  Trial 2  Trial 3 

           

Condition    Mean S.E.   Mean S.E.   Mean S.E. 

           

Mirror 

Tracing Actual  10.25 .95  14.22 1.21  17.86 1.27 

           

 PAI  8.58 .87  12.44 1.10  16.33 1.47 

 PAE  7.89 .88  10.78 1.04  13.78 1.33 

 P2n     14.33 1.18  17.47 1.45 

  P3n         17.67 1.37 

           

Easy Knot  Actual  9.24 .83  12.49 .92  15.22 1.12 

           

 PAI  9.19 .92  12.35 1.04  14.78 1.15 

 PAE  7.89 .74  10.49 .90  12.70 1.04 

 P2n     11.84 .93  14.00 1.04 

 P3n         14.51 1.01 

           

Hard Knot  Actual  10.55 .79  15.53 1.25  19.13 1.39 

           

 PAI  8.82 .83  12.03 1.01  14.37 1.09 

 PAE  8.89 .90  11.42 1.04  13.29 1.10 

 P2n     13.50 1.30  15.03 1.31 

  P3n         17.13 1.39 
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Table 4:  Experiment 4 Predictions and Performance 
 

 

  

Trial 1  

Improvement Between  

Trial 1 and Trial 3 

 

 Mean S.E. Mean S.E. 

     

Actual 4.91 0.85 6.82 0.64 

     

PAI 7.85 1.20 4.73 1.04 

PAE 3.24 .42 2.21 .33 

P2n N/A  3.36 .42 
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Table 5a:  Experiment 5:  Multiple Predictions Condition--Predictions and Performance 

 
  

Trial 1  

Improvement Between  

Trial 1 and Trial 3 

 

 Mean S.E. Mean S.E. 

     

Actual 29.08 1.74 8.23 .82 

     

PAI 23.66 3.35 11.13 2.63 

PAE 21.08 2.42 6.42 .63 
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Table 5b:  Experiment 5:  Single Predictions Condition--Predictions and Performance 
  

Trial 1  

Improvement Between  

Trial 1 and Trial 3 

 

 Mean S.E. Mean S.E. 

     

Actual 30.85 1.53 8.39 .66 

     

PAE 19.73 1.93 6.17 .61 
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Figure Captions 

Figure 1:  Results of Experiment 1 

Figure 2: Results of Experiment 3   

Figure 3a: Results Mirror Tracing Task 

Figure 3b: Results Easy Knot Task 

Figure 3c: Results Hard Knot Task 

Figure 4:  Experiment 4 Slope Prediction Results 

Figure 5:  Stimuli for Experiment 5 
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