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Abstract

Linear programming has been a successful tool in combinatorial optimization to achieve
polynomial time algorithms for problems in P and also to achieve good approximation
algorithms for problems which are N"P-hard. We demonstrate that iterative methods give
a general framework to analyze linear programming formulations of combinatorial opti-
mization problems. We show that iterative methods are well-suited for problems in P
and lead to new proofs of integrality of linear programming formulations. We then use
the new proofs as basic building blocks for obtaining approximation algorithms for various

extensions which are NP-hard.

In this thesis, we focus on degree bounded network design problems. The most stud-
ied problem in this class is the MINIMUM BOUNDED DEGREE SPANNING TREE problem
defined as follows. Given a weighted undirected graph with degree bound B, the task
is to find a spanning tree of minimum cost that satisfies the degree bound. We present
a polynomial time algorithm that returns a spanning tree of optimal cost and maximum
degree B+ 1. This generalizes a result of Furer and Raghavachari [37] to weighted graphs,
and thus settles a 15-year-old conjecture of Goemans [42] affirmatively. This is also the

best possible result for the problem in polynomial time unless P = N'P.

We also study more general degree bounded network design problems including the
MINIMUM BOUNDED DEGREE STEINER TREE problem, the MINIMUM BOUNDED DE-
GREE STEINER FOREST problem, the MINIMUM BOUNDED DEGREE k-EDGE CONNECTED
SUBGRAPH problem and the MINIMUM BOUNDED DEGREE ARBORESCENCE problem. We
show that iterative methods give bi-criteria approximation algorithms that return a solu-
tion whose cost is within a small constant multiplicative factor of the optimal solution and
the degree bounds are violated by an additive error in undirected graphs and a small mul-
tiplicative factor in directed graphs. These results also imply first additive approximation

algorithms for various degree constrained network design problems in undirected graphs.

We demonstrate the generality of the iterative method by applying it to the degree
constrained matroid problem, the multi-criteria spanning tree problem, the multi-criteria
matroid basis problem and the generalized assignment problem achieving or matching best

known approximation algorithms for them.
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Introduction

Combinatorial optimization deals with obtaining efficient solutions to discrete problems.
In a seminal paper, Edmonds [26] advocated that an algorithm be considered efficient if
the number of atomic operations the algorithm takes to return a solution is polynomial in
the problem size. On the contrary, an algorithm which requires superpolynomial number
of operations is not considered efficient. For example, in many cases, a brute force search

can be exponential in the problem size, and hence, not considered efficient.

This leads to a natural classification of problems into simple and hard problems,
depending on whether one obtains a polynomial time algorithm for them. Cook [17] for-
malized this classification by introducing the complexity classes P and NP, and the notion
of N P-completeness. Cook [I7] and Karp [55] proved that a large class of natural com-
binatorial optimization problems are NP-complete and that we cannot hope to obtain
polynomial time algorithms for such problems, unless P = NP. Over the years, most
combinatorial optimization problems have been proven to be in P or are NP-complete.

Importantly, most practical problems are N'P-complete.

For many problems in P, fast polynomial time algorithms which solve the problems
optimally have been developed (see Schrijver [91]). For example, the problems of computing
minimum spanning trees and matchings in graphs have polynomial time algorithms. On
the other hand, one cannot obtain polynomial time exact algorithms for N P-complete
problems, unless P = NP. For such problems, the focus has been to seek algorithms
which try to solve these problems approximately. An important area of research is to
compute bounds on the worst case performance of approximate algorithms that run in

polynomial time, as compared to the optimum solutions [49] ©99].

A large class of N'P-complete problems are obtained by introducing side constraints
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to simple problems. In this thesis we demonstrate that iterative methods give a general
methodology for dealing with such side constraints. First, we give new iterative proofs
that natural linear programming formulations for these simple problems are integral. We
then extend the integrality results to LP relaxations of NP-hard problems to obtain ap-
proximation algorithms. We apply this framework to degree constrained network design
problems and obtain (almost) optimal approximation algorithms and, in some cases, we

also obtain additive approximation algorithms.

1.1 Definitions

Given a minimization problem, let S be the set of all feasible solutions. The value of the
objective function for any A € S is denoted by f(A). Let S* = argmin, f(A) denote an

optimum solution. An algorithm is called a (multiplicative) a-approximation algorithm if

f(8) <af(57)

where S is the solution returned by the algorithm. An algorithm is called an additive

a-approximation algorithm if

f(8) < f(5) +

Additive approximation algorithms are rare and have been obtained for a selected
few problems, including edge-coloring [100], coloring in planar graphs [2], bounded-degree
spanning and Steiner trees [37), 42].

Bi-criteria approximation algorithms We also consider problems which have two ob-
jective functions f and g and one seeks a solution which minimizes both objectives si-
multaneously. A standard approach is to give a bound for one of the objective functions,
say g(S) < B and seek the best solution with respect to the other objective, f. Let
S* = argims{f(S) : g(S) < B}. A multiplicative («, 3)-approximation algorithmn returns
a solution S such that

f(S) < af(57) and g(5) < B

One may also seek bi-criteria approximation algorithms where one of the objective

function is violated by an additive amount and the other by a multiplicative factor.

In this thesis, we will study bounded-degree network design problems. The most
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studied problem in this class is the MINIMUM BOUNDED-DEGREE SPANNING TREE (MBDST)
problem which is defined as follows. Given an undirected graph with degree upper bound
B, on each vertex v and a cost function on the edges, the task is to find a spanning tree of
minimum cost which satisfies all the degree bounds. Observe that we have two objective
functions in the MBDST problem, degree and cost and the goal is find bicriteria approx-
imation algorithms. The cost is usually approximated by a multiplicative factor but the

degree is approximated by a combination of a multiplicative factor and an additive amount.

Degree constrained versions of more general network design problems, the STEINER
TREE problem, the STEINER FOREST problem, the ARBORESCENCE problem, and the
STRONGLY K-EDGE CONNECTED subgraph problem, are similarly defined. We will obtain
bi-criteria approximation algorithms for the above problems which approximate both the

cost and the degree of the solution.

1.2 Our Contributions and Results

In this thesis, we propose iterative methods as a general technique to achieve structural
results for simple combinatorial optimization problems, and use this as a building block

for obtaining approximation algorithms for NP-hard variants.

The first step of the iterative method is the application to underlying base problem
that is polynomial time solvable and showing that a natural linear programming relaxation
has integral vertex solutions. The integrality is shown in an inductive manner and gives
new integrality proofs for the following problems. These results were obtained jointly with
Lau and Ravi [68] and appear in Chapter Bl

Theorem 1.1 The iterative method shows that a natural linear programming relazations
for the following problems has integral vertex solutions.

Minimum spanning tree.

Mazimum weight bipartite matching.

Minimum cost arborescence.

Minimum cost base in matroids.

Cuds e o~

Minimum cost perfect matching in general graphs.

The real power of the new proofs, obtained via the iterative method, is realized when

we consider NP-hard variants of the underlying simply problems. The crucial observation is
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that a large class of NP-hard problems are simple problems with additional side constraints.
For example, adding degree bound constraints to the minimum spanning tree problem gives

us the MINIMUM BOUNDED-DEGREE SPANNING TREE problem.

We introduce the iterative relaxation method to deal with the additional side con-

straints. A generic relaxation step proceeds as follows.

Iterative Relaxation. Fix a threshold 3. If there is a constraint ), a;x; < b such that
>, a; < b+ (3 then remove the constraint.

For problems where variables take values from {0,1}, the iterative relaxation step
ensures that the corresponding constraint can only be violated by an additive error of § even
after it is removed. This step is crucial in achieving additive approximation algorithms.
We also note that the iterative relaxation method is similar to the techniques of Beck and
Fiala [6] result on discrepancy of sets. One application of the iterative relaxation technique

gives us the following results that we obtain jointly with Lau [96] and appears in Chapter [l

Theorem 1.2 There exists a polynomial time algorithm for the MINIMUM BOUNDED-
DEGREE SPANNING TREE problem which returns a tree of optimal cost such that the degree
of any vertex v in the tree is at most B, + 1. Here, the optimal cost is the cost of the

manimum cost tree which satisfies the degree bounds exactly.

Theorem 2] is the optimal result for the MBDST problem unless P = NP and

positively resolves a conjecture of Goemans [42].

Iterative rounding technique was introduced by Jain [53] for approximation general
network design problems and works as follows for typical cut-covering formulations of

general connectivity problems.

Iterative Rounding. Fix a threshold a > 1. If there is a variable x; which the LP sets

to a value of at least é then pick the corresponding element in the integral solution.

We extend the work of Jain [53] and use the two steps, rounding and relaxation,
in various combinations to derive strong approximation algorithms for a large class of

problems.

e We obtain bi-criteria approximation algorithm for the MINIMUM BOUNDED-DEGREE
STEINER TREE problem, the MINIMUM BOUNDED-DEGREE STEINER FOREST prob-
lem and the MINIMUM BOUNDED-DEGREE STEINER NETWORK problem. The so-

lution returned by the algorithm costs at most twice the optimal solution and the
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Network Topology Single Criterion Previous Bi-criteria Our results
Cost Degree
Spanning Tree 1 B +1 37 (1,B +2) [42] (1,B+1)
Steiner Tree 1.55 [90] B+ 1 |37] (4,2B + logn) [61] (2,B+3)
Steiner Forest 2 [1] B+ 3" (O(logn),O(logn)) (2,B+3)
k-EC Subgraph 2 [53] B+ O(k)* (klogn, klogn) [33] (2,B+ O(k))
Steiner Network 2[63] | B+ O(rmax)* - (2, B+ O(rmaz))
k-Strongly EC 2 [101] 3B + 5* - (3,3B+5)
Arborescence 1 2B +2* - (2,2B +2)

Table 1.1: Results on Minimum Cost Degree-Bounded Network Design Problems, where * denotes
that our results on bi-criteria approximation also improve the single-criterion guarantees.

degree of any vertex violates its degree bound by an additive amount which depends
on the maximum connectivity requirement. These results were obtained jointly with
Lap Chi Lau [70] improving on the previous results obtained jointly with Lau, Naor
and Salavatipour [69] and are presented in Chapter

e As a corollary to the previous results, we also obtain first additive approximation al-
gorithms for the BOUNDED-DEGREE STEINER FOREST problem and the BOUNDED-
DEGREE K-EDGE CONNECTED SUBGRAPH problem for bounded k.

e We obtain constant factor bi-criteria approximation algorithm for the MINIMUM
BOUNDED-DEGREE ARBORESCENCE problem and the MINIMUM K-ARC CONNECTED
SUBGRAPH problem where both the cost and the maximum degree of the solution
is within constant multiplicative factor of the optimal solution. These results were
obtained jointly with Lap Chi Lau, Seffi Naor and Mohammad Salavatipour [69] and
are presented in Chapter G

We also show applications of iterative methods to other combinatorial optimization

problems and give the following results in Chapter [1

e We obtain a 2-approximation algorithm for the generalized assignment problem
matching the result of Shmoys and Tardos [95].

e We obtain a polynomial time approximation scheme (PTAS) for the multi-criteria
spanning tree problem and the multi-criteria matroid basis problem. These results
were obtained jointly with R. Ravi [89)].

e We obtain an additive approximation algorithm for the degree constrained matroid

problem which generalizes the MINIMUM BOUNDED DEGREE SPANNING TREE prob-
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lem and MINIMUM CROSSING TREE problem. This result was obtained jointly with

Kiraly and Lau [58] which also contain results on degree constrained submodular

flow problem that are not included in this thesis.

1.3 Related Work

Exact LP Formulations. Linear programming has been used in combinatorial opti-
mization soon after the simplex algorithm was developed by Dantzig [23] in the 1940’s.
Earlier combinatorial results of Konig [63] and Egervary [32] on bipartite matchings and
results of Menger [75] on disjoint paths in graphs were interpreted as integrality of lin-
ear programming formulations for these problems. Many other problems like maximum
flow, assignment and transportation were also shown to be solvable by formulating lin-
ear programs for these problems which are integral. Edmonds [26] 27, 28] 29] formulated
linear programs for basic problems like matching, arborescence, matroids, matroid inter-
section and showed that the formulations are integral. Total Dual Integrality [31] and Total
Unimodularity [11] were developed as general techniques to show the integrality of linear
programming formulations. The uncrossing technique, which is used to simplify compli-
cated set-systems while preserving certain structural properties, has played a crucial role
in combinatorial optimization (see [28] [31] [35] [44] for some applications). The uncrossing
technique plays an important role in the results in our work as well and appears throughout
the thesis. We refer the reader to Schrijver [91], 93] and Nemhauser and Wolsey [80], Cook

et al [18] for extensive historical as well as technical details for above mentioned topics.

Network Design. Much focus has been given to designing approximation algo-
rithms for network design problems; we refer the reader to [65] for a survey. Primal-dual
algorithms initially played a central role in achieving strong approximation algorithms
for network design problems starting with Agarwal, Klein and Ravi [I] and Goemans
and Williamson [43]. The techniques were then applied to general connectivity problems
(see [4I]) with moderate success. A breakthrough result is due to Jain [53] who gave
a 2-approximation algorithm for the edge-connectivity SURVIVABLE NETWORK DESIGN
problem and introduced the iterative rounding framework. This result considerably gen-
eralized and improved previous work on network design problems. Later, the iterative

rounding approach was applied to other settings including network design problems in
directed graphs [38] [I01] and undirected graphs [14] 34].

Degree Constrained Network Design. Network design problems with degree

constraints have been studied extensively lately. A simpler setting is minimizing the max-
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imum degree of a subgraph (without considering the cost) satisfying certain connectivity
requirements. A well-known example is the MINIMUM DEGREE SPANNING TREE (MDST)
problem, where the objective is to find a spanning tree of smallest maximum degree. This
problem is already NP-hard as it generalizes the HAMILTONIAN PATH problem. Fiirer
and Raghavachari [37] gave an elegant approximation algorithm returning a solution with
maximum degree at most one more than the optimal solution developing on the work on
Win [106]. Furer and Raghavachari [37] also generalized their result to the MINIMUM
DEGREE STEINER TREE problem. Ravi, Raghavachari, and Klein [59] [87] considered the
MINIMUM DEGREE k-EDGE-CONNECTED SUBGRAPH problem, and gave an approxima-
tion algorithm with performance ratio O(n%) for any fixed § > 0 in polynomial time,
and O(logn/loglogn) in sub-exponential time. Recently, Feder, Motwani and Zhu [33]

obtained a polynomial time O(k logn)-approximation algorithm.

For the general problem of finding a minimum cost subgraph with given connectiv-
ity requirements and degree bounds B, on every vertex v, the most-studied case is the
MINIMUM BOUNDED-DEGREE SPANNING TREE (MBDST) problem. The first approxi-
mation was an (O(logn),O(logn))-algorithm by [86]. This was subsequently improved in
a series of papers [12, [13] [60, [62] 8] using a variety of techniques which included pri-
mal dual algorithms, Lagrangian relaxation, push-preflow framework and LP rounding
algorithms. Recently, Goemans [42] made a breakthrough for this problem by giving a
(1, B, + 2)-approximation algorithm. The algorithm in [42] uses matroid intersection and

graph orientation algorithms to round a linear programming relaxation for the problem.

Very little was known for more general connectivity requirements before our work.
For the MINIMUM BOUNDED-DEGREE STEINER TREE problem, there is an (O(logn), O(logn))
approximation algorithm [86]. This bound was improved to (O(1), O(B,+logn))-approximation
by [6I], but the algorithm runs in quasi-polynomial time.

How to Read this Thesis

The thesis can certainly be read in a linear fashion. We highlight the dependence in
various sections which may help the reader to jump to their favorite part of the thesis.
We discuss linear programming basics and definitions in Chapter 2] which will be used
throughout the thesis. In Chapter Bl we apply the iterative framework to show integrality
of linear programming relaxations for basic combinatorial optimization problems. It is
recommended that the reader read Section B.I] for a simple application of the iterative

method and Section where the uncrossing technique is illustrated.
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The latter half of the thesis deals with constrained versions of the simple base prob-
lems in Chapter Bl Chapter @l on the MINIMUM BOUNDED-DEGREE SPANNING TREE
problem and Section on MULTI-CRITERIA SPANNING TREE problem build on material
in the spanning tree Section Algorithms for the MULTI CRITERIA MATROID BASIS
problem and the DEGREE CONSTRAINED MATROIDS in Chapter [ develop on the itera-
tive algorithm for matroid basis problem in Section B.4l Algorithms for the MINIMUM
BOUNDED-DEGREE ARBORESCENCE problem in Section [6.2] develops on Section B3] on the
arborescence problem. The treatment of generalized assignment problem in Section [7.]

develops on the bipartite matching problem in Section Bl

In Chapter Bl we consider degree constrained versions of general network design prob-
lems in undirected graphs which develops on the work of Jain [53]. In Chapter [ we consider
degree constrained network design problems in directed graphs which develops on work of
Gabow [38]. Nonetheless, we have made an effort to make these sections as much self-

contained as possible.



Linear Programming Basics

In this chapter we discuss some linear programming basics. We also prove a crucial rank
lemma which will be used throughout the thesis. We close by reviewing some standard

graph and set notation used in the thesis.

2.1 Linear Programs and Vertex Solutions

Using matrix notation, a linear program is expressed as follows.

minimize e

subject to Az > b
z > 0

If  satisfies (Ax > b,x > 0), then x is feasible. If there exists a feasible solution to an
LP, it is feasible; otherwise it is infeasible. An optimal solution x* is a feasible solution such
that ¢’ 2* = min{c’z s.t.Az > b,z > 0}. The LP is unbounded (from below) if YA € R, 3
feasible 2 such that ¢’z < \. The space of all feasible solutions P = {x : Az > b,z > 0} is
a called a rational polyhedron if all entries of A and b are rational. In this thesis we work

only with rational polyhedra.

There are different forms in which a general linear program can be represented in-
cluding the normal form and the standard form. Simple linear transformations show that

these forms are identical to the general linear program we consider above [16].

11
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Definition 2.1 Let P = {x : Ax > b,x > 0} CR™. Then x is a vertex of P if there does
not exist y # 0 such that x +y,x —y € P.

For any polyhedron P, we define P; to denote the convex hull of all integral vectors
in P,ie. P;=conv{x:Ax >b,x>0,2 € Z"}.

Definition 2.2 P is called integral polyhedron if P = Py, i.e., P is the convex hull of all

integral vectors in P.

We call a linear program min{cz : € P} integral if P is integral. The following
equivalent conditions follow easily (see Schrijver [93], pages 231-232) and condition (2) is
used to show the integrality of a polyhedron throughout the thesis.

Theorem 2.3 The following conditions are equivalent.

1. P 1s integral.

2. min{cz|z € P} is attained by an integral vector, for each ¢ for which the minimum

18 finite.

We now show basic properties about vertex solutions. Most proofs are standard
and we give a short sketch. The reader is referred to Chvatal [I6] or lecture notes by
Goemans [40] for details. The following lemma directly implies Theorem 23]

Lemma 2.4 Let P = {x : Az > b,z > 0} and assume that min{c’z : x € P} is finite.
Then Nz € P,3 a vertex ' € P such that c'x' < c¢Tx. i.e., there is always a vertex optimal

solution.

Proof: The idea of the proof is that by using the definition of a vertex, we can move from
a current optimal solution to one that has more zero components or more tight constraints
and is closer to being a vertex. Let A; denote the i** row of A and b; denotes the t"-

coordinate of the vector b.
Consider x such that it is optimal but not a vertex. That implies there exists y # 0

such that x +y € P and x —y € P. Therefore,

Alx +y)
Az —y)

=

z+y>0
z—y >0

(AVARAV
S
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Let A= be the submatrix of A restricted to the rows which are at equality at z and
b= be the vector b restricted to these rows. Hence, we have A=z = b=. Hence, we must
have A=y > 0 and A=(—y) > 0. Subtracting, we get A=y = 0. Since x is optimal, the
following holds,

'z < T(x+y)
cl'e < T(x—vy)
= cTy = 0

Moreover, since y # 0, without loss of generality assume there exists j such that
y; < 0 (if not then consider —y). Consider x 4+ Ay for A > 0 and increase A until x + Ay is

no longer feasible (due to the non-negativity constraints). Formally, let

) . X Aix —b;
A* = min{ min — min =
Jiyi<0 —y; i A;xe>bi, Ajy<0 —Aiy

}

Now x 4+ A"y is a new optimal solution with one more zero coordinate or one extra
tight constraint. Since z +y > 0 and x —y > 0, if 2; = 0 then y; = 0. Therefore, the
coordinates that were at 0, remain at 0. Moreover A= (z + y) = Az = b since A~y = 0,
hence tight constraints remain tight. Hence this process terminates with at a vertex as

claimed. ]

The next theorem relates vertex solutions to corresponding non-singular columns of

the constraint matrix.

Lemma 2.5 Let P = {x : Ax > b,x > 0}. For x € P, let A= denote the matriz
consisting of rows of A which are satisfied at equality by x and A, denote the submatriz
of A= consisting of the columns corresponding to the nonzeros in x. Then x is a vertex iff

AZ has linearly independent columns (i.e., A7 has full column rank).

Proof: (<) If x is not a vertex, we will show that A7 has linearly dependent columns. By
the hypothesis, there exists y # 0 such that A=y = 0 (see the proof of the previous lemma).
Therefore A (the columns where y has a nonzero coordinate) has linearly dependent
columns. By the observation made at the end of the previous proof, z; = 0 = y; = 0.

Therefore, A} is a submatrix of A7. Therefore, the columns of A7 are linearly dependent.

(=) We want to show that if A7 has linearly dependent columns then x is not a

vertex. By the hypothesis, there exists y # 0 such that A7y = 0. Complete y to an
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n-dimensional vector by setting the remaining coordinates to 0. Now by construction,
A~y = 0. Moreover, by construction y; = 0 whenever x; = 0. Also note that there exists
€ # 0 such that x + ey > 0 and = — ey > 0. Moreover = + ey and x — ey are feasible since
A(x + ey) = Az + €Ay > b and A(z — ey) > b for small enough € > 0. Hence, x is not a

vertex. 0

We get the following Rank Lemma that will form a basic ingredient of all iterative
proofs which states that each vertex solution is determined by n linearly independent

constraints at equality where n is the number of variables (See Schrijver [93], page 104).

Lemma 2.6 (Rank Lemma) Let P = {x : Az > b,x > 0} and let x be a vertex of
P such that z; > 0 for each i. Then any mazimal number of linearly independent tight

constraints of form A;x = b; for some row i of A equals the number of variables.

Proof: Since x; > 0 for each i, we have A7 = A~. From Lemma [2.35]it follows that A~ has
full column rank. Since the number of linearly independent columns equals the number
of non-zero variables in x and the row rank of any matrix equals the column rank [52]
we have that the row rank of A= equals the number of variables. Then any maximal
number of linearly independent tight constraints is exactly the maximal number of linearly

independent rows of A= which is exactly the row rank of A= and hence the claim follows.
O

2.2 Solving Linear Programs

In this section, we briefly mention various methods of solving linear programs.

2.2.1 Simplex Algorithm

Simplex algorithm was developed in 1940’s by Dantzig [23] for solving linear programs to
optimality. The idea of the simplex algorithm is to move from vertex to vertex ,along edges
of the polyhedron, until we reach the optimal vertex solution. An important implemen-
tation issue is that vertices and edges of the polyhedron are not specified explicitly but
represented by sets of linearly independent tight constraints (basis) as given by Lemma 2.6
Unfortunately, such a representation need not be unique and leads to technical issues (de-
generacy) which need to be addressed. We refer the reader to Chvatal [16] for details. Many
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variants of the simplex algorithm have been considered, each defined by which neighboring
vertex to move to. Although the simplex algorithm works efficiently in practice, there are

examples where each variant of the simplex algorithm runs in exponential time.

2.2.2 Polynomial Time Algorithms

Polynomial time algorithms for solving linear programs fall in two categories: The ellipsoid
algorithm [56] and interior point algorithms [54]. We refer the reader to Nemhauser and
Wolsey [80] and Wright [I08] for details about these algorithms. Both these algorithms
solve linear programs to give near optimal solution in polynomial time. Moreover, there
are rounding algorithms [80] which convert a near optimal solution to an optimal vertex

solution.

Theorem 2.7 [80] There is a polynomial time algorithm which returns an optimal vertex

solution to a linear program.

2.2.3 Separation and Optimization

In this thesis, we will encounter linear programs where the number of constraints is ex-
ponential in the size of the problem (e.g. in the spanning tree problem in Chapter @l we
will write linear programs where the number of constraints is exponential in the size of
the graph) and it is not obvious that one can solve them in polynomial time. We use the
notion of separation to show that sometimes exponentially sized linear programs can be

solved in polynomial time.

Definition 2.8 Given z* € Q™ and a polyhedron P = {x : Ax = b,z > 0}, the sepa-
ration problem is the decision problem whether x* € P. The solution of the separation
problem is the answer to the membership problem and in case xz* ¢ P, it should return a

valid constraint wax > mg for P which is violated by x*, i.e., ma* < mg.

The framework of ellipsoid algorithm argues that if one can solve the separation
problem for P in polynomial time then one can also optimize over P in polynomial time.
Theorem 2.9] of Grotschel, Lovasz and Schrijver [45] showed that polynomial time sep-
aration is equivalent to polynomial time solvability of a linear program. The basis of
this equivalence is the ellipsoid algorithm. We now state the equivalence formally (see
Schrijver [93], Chapter 14 for details). The size of a rational number is defined to be
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log(|p| + 1) + log g and the size of a set of inequalities Az < b is defined to be the sum
of sizes of entries in A and b plus mn where A is a m by n matrix. Let for each i € N,
P(i) be a rational polyhedron and suppose that we can compute, for each i € N, in time
polynomially bounded in log i, the natural numbers n; and o; where P(i) C R™ and such
that P, has a representation of size at most ;. Then the separation problem for P(7)
for ¢« € N is said to polynomial time solvable if there exists an algorithm, which for input
(i,y), with i € Nand y € Q"' solves the separation problem for P(i) in time polynomially
bounded by logi and size(y). The optimization problem is polynomial time solvable for

P(i) for i € N defined similarly, after replacing separation for optimization.

Theorem 2.9 [/5] For any class P(i) where i € N, the separation problem is polynomially

time solvable if and only if the optimization problem is polynomial time solvable.

Clearly, one can solve the separation problem by checking each constraint but for
problems where the number of constraints is exponential in size such a method is not
polynomial time. For problems we consider in this thesis, efficient separation oracles have

been obtained and we will give details whenever such an occasion arises.

2.3 Definitions

Laminar Family. Given a set V, £ C 2", a collection of subsets of V, is called laminar if
for each A, B € L we have either ANB = ¢ or A C B or B C A. The following proposition

about the size of a laminar family are standard and will be used in later chapters.

Proposition 2.10 A laminar family £ over the ground set V' without singletons (subsets

with only one element) has at most |V| — 1 distinct members.

Proof: The proof is by induction on the size of the ground set. If |[V| = 2, clearly the
claim follows. Let n = |V| and the claim be true for all laminar families over ground sets
of size strictly smaller than n. Let S be a maximal set in the laminar family which is not
equal to V. Each set in £, except for V, is either contained in S or does not intersect
S. The number of sets in £ contained in S (including S itself) is at most |S| — 1 by the
induction hypothesis. The sets in £ not intersecting with S form a laminar family over the
ground set V' \ S and hence there are at most |V| — |S| — 1 such sets. Along with V| this
gives a total of at most |[S| —1+|V|—|S| -1+ 1= V] —1 sets. O
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(a) (b) (c)

Figure 2.1: In Figure (a), the laminar family £ over base set U. In Figure (b), the forest
corresponding to £ when singletons are not part of £. Here |£| = 5 and |[U| = 7. In
Figure (c), the forest corresponding to £ when singletons are part of £. Here |£] = 12 and
Ul =7.

The following corollary follows immediately from Proposition 2.10] since addition of

singleton sets to the family can add at most |V| new members.

Corollary 2.11 A laminar family L over the ground set V has at most 2|V| — 1 distinct

members.

The laminar family £ defines a directed forest Fr in which nodes correspond to sets
in £ and there exists an edge from set R to set S if R is the smallest set containing S.
We call R the parent of S and S the child of R. A parent-less node is called a root and a
childless node is called a leaf. Given a node R, the subtree rooted at R consists of R and
all its descendants. We will abuse notation and use £ to represent both the set family and
the forest Fp.

Cross-Free Family. A pair of sets A, B C V are crossing if all of the sets AN B, A —
B,B— A,V —(AUB) are nonempty, and a family of sets £ = {41, Aa, ..., Ay} is cross-free

if no two of its sets are crossing.

Chain. A family £ C 25 is a chain if A € L,Be L, then AC B or BC A. Observe that

every chain is a laminar family but not vice-versa.

For subsets A, B C U we define AAB = (A\ B)U (B \ A).

Graph Notation. Given a undirected graph G = (V, E) and a subset of vertices S C V
we let §(S) denote the set of edges with exactly one endpoint in S, i.e., §(S) = {e € E :
leN S| = 1}. We also denote 6({v}) by d(v) for a vertex v € V. For subsets of vertices
S, T CV,let E(S,T) denote the set of edges with one endpoint in S and other in T and
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E(S) = E(S,S) be the set of edges with both endpoints in S. For an edge e € E, the
graph G\ e denotes the graph obtained after deleting the edge e and the graph G//e denotes
the graph obtained after contracting the endpoints of e (and deleting e). The graph G \ v
denotes the graph obtained after deleting the vertex v from G and each edge incident at
v. For aset F C E, let x(F) denote the vector in RIZl: the vector has an 1 corresponding
to each edge e € I, and 0 otherwise. This vector is called the characteristic vector of F,

and is denoted by x(F).

Given a directed graph D = (V, A) and a subset of vertices S C V we let 67(9)
denote the set of arcs with their head in S and tail in S, i.e. §(S) = {(u,v) € A:u €
S,v ¢ S} We let 6°4(S) = {(u,v) € A:u ¢ S,v € S}. For subsets S, T C V we let
E(S,T) ={(u,v) € A:u e S,v e T}. The graph D\ a denotes the directed graph formed
after deleting arc a and graph D/(u,v) is the graph formed after contracting the arc (u,v)

in a single vertex.

Function Notation. A function f : 2¥ — R is called submodular if for each subset
S, T CV we have
FE)+ F(T) = f(SUT)+ f(SNT)

while it is supermodular if for each subset S, T C V we have

f)+ (M) < f(SUT)+ f(SNT).



Exact Linear Programming Formulations

In this chapter we study various problems where an explicit linear description of all fea-
sible integer solutions for the problem is known. In other words, there are explicit linear
programming relaxations for these problems which are integral. These linear programming
relaxations are well-studied in literature and have been shown to be integral via different
proof techniques. We will use the iterative method to give yet another proof of integral-
ity of these relaxations. In later chapters of the thesis, these iterative proofs will act as a
stepping stone for achieving approximation algorithms for constrained versions of problems

considered here.

All proofs follow the same overall outline we describe now. First we give the natural
linear programming relaxation for the problem which is known to be integral. The second
step is to give a characterization of any vertex solution through independent tight con-
straints which define the vertex uniquely. This step involves using the uncrossing technique.
Although these characterization results are standard, we prove them here for completeness
and to illustrate the uncrossing method. The most important ingredient of the proof is the
final step, where we give a simple iterative procedure which constructs an integral solution
using the optimum solution to the linear program. The iterative procedure, in each step,
either selects an element in the integral solution which the linear program sets to a value
of 1 or, deletes an element which the linear program sets to a value of 0. The technical
heart of the argument involves showing that the procedure can always find such an element
which the linear program sets to an integral value (0 or 1). This involves crucially using

the characterization of the vertex solution by tight independent constraints.

We consider the bipartite matching problem in Section Bl the minimum spanning
tree problem in Section B.2] the minimum arborescence problem in Section B.3], the mini-

mum matroid basis problem in Section B.4land the perfect matching problem in Section 3.5l

19
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3.1 Matching in Bipartite Graphs

Given a graph G = (V, E), a subgraph H of G is called a matching if dg(v) < 1 for all
v € V. The matching is called perfect if dg(v) =1 for all v € V. Given a weight function
w : F — R the weight of a matching is defined to be the sum of the weights of the edges
in the matching. A maximum weight perfect matching is a perfect matching of maximum

weight.

Finding matchings in bipartite graphs is a fundamental problem which has played
a crucial role in development of combinatorial optimization. Kuhn [67] building on the
work of Egervéary [32] gave the famous Hungarian method which gives a polynomial time
algorithm for the problem. Birkhoff [§] noted that the linear program for the bipartite
matching problem given in Figure Bl is integral. Other proofs to show the integrality of
the linear program have been given by von Neumann [102] [103], Dantzig [22], Hoffman
and Wielandt [50], Koopmans and Beckmann [64], Hammersley and Mauldon [46], Tomp-
kins [98] and Mirsky [76] (see the survey by Mirsky [77] and Schrijver [91], Chapter 18 and
references therein). In this section, we use the iterative method to give a new proof that the
linear programming relaxation for the bipartite matching problem is integral. This proof
will serve as a stepping stone for obtaining an approximation algorithm for the Generalized

Assignment problem in Section [T.1]

3.1.1 Linear Program

Given a bipartite graph G = (V3 U V5, E) and a weight function w : E — R, the linear
programming relaxation for the maximum weight bipartite matching problem is given by
the following LPpy(G).

maximize w(z) = Z We Te
ecll
subject to Z Te < 1 Yoe ViU,
e€é(v)
z. > 0 Vee &

Figure 3.1: The Bipartite Matching Linear Program.

Polynomial Time Solvability. Observe that the linear program LPpgy/(G) is

compact, i.e., the number of constraints and variables is polynomially bounded in the size
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of the problem. Hence, the linear program can be solved optimally in polynomial time

using the Ellipsoid algorithm or interior point algorithms (see Section 2Z2.2]).

We prove the following theorem by an iterative algorithm in the next section.

Theorem 3.1 Given any weight function w there exists an integral matching M such that

w(M) > w - x where x is the optimal solution to LPpp(G).

Observe that the Theorem [B.I] as a corollary implies the following theorem.

Theorem 3.2 The linear programming relazation LPpy(G) is integral.

3.1.2 Characterization of Vertex Solutions

Before we prove Theorem B.I] we give a characterization of vertex solutions of LPpgys in

the following lemma which follows by a direct application of the Rank Lemma.

Lemma 3.3 Given any vertex solution x of linear program LPpy(G) such that xo > 0
for each e € E there exists W C Vi U Va such that

1. 2(6(v)) =1 for each v € W and x is the unique solution to the constraints {z(0(v)) =
l:ve W}

2. The vectors {x(6(v)) : v € W} are linearly independent.

3. |W|=|El.

3.1.3 Iterative Algorithm

We now give the algorithm which constructs an integral matching of weight at least the
optimal solution to LPpp(G) proving Theorem Bl The algorithm is a simple iterative
procedure and shown in Figure

We prove the correctness of the algorithm in two steps. First, we show that the
algorithm returns a matching of optimal weight if the algorithm always finds an edge e
with x, = 0 in Step Bal or an edge e with x, = 1 in Step Rhl. In the second part, we show
that the algorithm will always find such an edge completing the proof.
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Iterative Bipartite Matching Algorithm
1. Initialization F « 0.
2. While E(G) # ()

(a) Find a vertex optimal solution x of LPpp(G) and remove every edge e with
z. = 0 from G.

(b) If there is an edge e = {u,v} such that . = 1 then update F «— F U {e},
G — G\ {u,v}.

3. Return F'.

Figure 3.2: Bipartite Matching Algorithm.

Claim 3.4 If the algorithm, in every iteration, finds an edge e with x. = 0 in Step
or an edge e with x. = 1 in Step 20, then it returns a matching F of weight at least the
optimal solution to LPpp(G).

Proof: The proof will proceed by induction on the number of iterations of the algorithm.

The base case is trivial when the algorithm proceeds for only one iteration.

If we find an edge e such that z. = 0 in Step 2al of the algorithm, then the residual
problem is to find a matching in the graph G’ = G \ {e}. The residual solution z,es, x
restricted to G’, is a feasible solution to the linear programming relaxation of the residual
problem. By induction, the algorithm returns a matching F' C E(G’) with weight at least
the optimal solution to LPpy(G’). Since w(F') > w-xyes = w-x, the induction hypothesis

holds in this case.

In the other case, if we find an edge e = {u,v} such that z. = 1 in Step 2Bl of the
algorithm then the residual problem is to find a matching which contains the edge e. This
is exactly the matching problem in graph G’ = G\ {u,v}. Moreover x,s, = restricted
to edges in G, is a feasible solution to the linear programming relaxation for the residual
problem. Inductively, the algorithm will return a matching F” of weight at least the weight
of the optimum solution of LPg(G’), and hence w(F') > w - Zyes, since . is a feasible
solution to LPpp(G’). The algorithm returns the matching F' = F' U {e} and we have

w(F) = w(F') +we and w(F') > w - Tyes

which implies that

W(F) > W+ Tpes +We =w -
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since x, = 1. Therefore, the weight of the matching returned by the algorithm is at least

the weight of the LP solution x, which is a lower bound on the optimal weight. g

We now complete the proof of Theorem [B.1] by showing that the algorithm always
finds an edge e such that . = 0 or 2z = 1. The proof of the following lemma crucially

uses the characterization of vertex solutions given in Lemma B.3]

Lemma 3.5 Given any vertex solution x of LPpy(G) there must exist an edge e such

that x. =0 or z. = 1.

Proof: Suppose for sake of contradiction 0 < z, < 1 for each edge e € E. Lemma [B.3]
implies that there exists W C V;UV5 such that constraints corresponding to W are linearly
independent and tight and |E| = [W].

Claim 3.6 We must have degg(v) = 2 for each v € W and degg(v) = 0 for each v ¢ W.

Proof: Firstly, degp(v) > 2 for each v € W else we have z. = 1 or 2, = 0 for some edge
e € E since x(d(v)) = 1 for each v € W. But then we have

AW|=2(E| =) degp(v) = > degu(v)+ Y degp(v)

veV veW vgW
W[+ ) degr(v)

vgW

v

which implies that equality must hold everywhere in deggp(v) > 2 for each v € W and
degp(v) = 0 for each v ¢ W. O

Hence, F is a cycle cover of vertices in W. Let C be any such cycle with all vertices in .

Since C'is an even cycle because G is bipartite we also have

Do x6)= Y x(6(v)

veCnNVy veCNVa

which contradicts the independence of constraints in condition (2) of Lemma B3 O

Thus we obtain from Lemma B35l that the Algorithm in Figure B2 returns a matching
which weighs at least the weight of the linear program. This completes the proof of
Theorem [3.1]
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3.2 Minimum Spanning Trees

Given a graph G = (V, E), a spanning tree is a minimal connected subgraph of G. In an
instance of the minimum spanning tree problem, we are given a graph with a cost function

¢ : E — R on the edges and the goal is to find a spanning tree of minimum cost.

The minimum spanning tree problem is a fundamental optimization problem and
is a poster child problem for illustrating greedy algorithms, many variants of which have
been obtained, starting from Boruvka [L0], Kruskal [66] and Prim [83]. Edmonds [29]
gave a linear programming relaxation (see Figure [3.3) for the minimum spanning tree
problem and showed that it is integral. Various other proofs have been given to show
the integrality of the linear program . Indeed, the famous spanning tree algorithms of
Boruvka, Prim and Kruskal [91] can all be interpreted as primal-dual algorithms and thus
imply the integrality of the linear program. It follows from Edmonds |27, 29] that the linear
description in Figure is totally dual integral (TDI) and thus as a corollary imply that
the linear program is integral. Algorithms for decomposing fractional solutions into convex
combination of spanning trees [20} [82] also imply the integrality of the linear program. We

refer the reader to Magnanti and Wolsey [74] for a survey on spanning trees.

In this section we will give another proof of the integrality of linear program in Fig-
ure using the iterative method. Actually, we give two iterative algorithms which show
that the linear program is integral. In Chapter @ both these algorithms are extended to
algorithms for the degree constrained spanning tree problem . The first iterative algorithm
extends to the MINIMUM BOUNDED-DEGREE SPANNING TREE problem when only upper
bounds on the degrees are present in Section L.l The second algorithm extends when both

upper and lower degree bounds are present in Section .3l

3.2.1 Linear Program

A linear programming relaxation for the minimum spanning tree problem, given by Ed-
monds [29], is shown in Figure B3l The linear program is also related to the study of the
Travelling Salesman Problem. Recall that for a set S C V', we denote E(S) to be the set
of edges with both endpoints in S. The linear program LPs7(G) is as follows.

Observe that in any spanning tree 7" and subset S C V we have E(T)NE(S) < |S|-1
and hence the above linear program is a relaxation to the minimum spanning tree problem.

We will show the integrality of the linear program using the iterative method.
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minimize E Ce Te

ecl
2(E(S)) < |S]-1 VYScV
z(E(V)) = [V[-1
e > 0 Vee &

Figure 3.3: Linear program for minimum spanning tree problem.

Theorem 3.7 [29] Every vertex solution to LPsr(G) is integral and corresponds to the

characteristic vector of a spanning tree.

Before we give the iterative algorithm and proof of Theorem B.7] we show that one
can optimize over the linear program LPs7(G) in polynomial time. We show this by giving
a polynomial time separation oracle for the constraints in the linear program LPsp(G) (see
Magnanti and Wolsey [74]). Alternatively, a compact equivalent linear program was given
by Wong [107] thus implying that the linear program LPgsr(G) is solvable in polynomial

time.

Theorem 3.8 There is a polynomial time separation oracle for the constraints in the linear

program LPsp(G).

Proof: Given a fractional solution x the separation oracle needs to find a set S C V such
that x(E(S)) > |S| — 1 if such a set exists. It is easy to check the equality z(E(V)) =
|V| — 1. Thus, checking the inequality for each subset S C V is equivalent to checking
mingcyv{|S| — 1 — z(E(S))} < 0. Using z(E(V)) = |V| — 1 we obtain that it is enough
to check ming{|S| — 1+ z(E(V)) —z(E(S))} < |V| — 1}. We show that solving 2|V| — 2

min-cut problems suffice to check the above.

Fix a root vertex r € V. For each k € V \ {r}, we construct two minimum cut
instances, one which checks the inequality for all subsets S containing r but not k& and
the other checks the inequality for all subsets S containing k& but not r. We outline the
construction for the first one, the second construction follows by changing the roles of r
and k.

We construct a directed graph G with vertex set V and arcs (i, §) and (j,7) for each
edge {i,7} in G. We let the weight of edges (7, 7) and (j,) to be %TJ} We also place arcs
from each vertex v € V'\ {r, k} to k of weight 1 and arcs from r to each vertex v € V'\ {r}



26 CHAPTER 3. EXACT LINEAR PROGRAMMING FORMULATIONS

Figure 3.4: Blue edges into k have cost 1 and red edges between 7 and j cost I{TJ} Black edges

Ze

from r to j cost Zeeé(j) 5. The solid edges are part of the cut and the dotted edges are not.

of weight > .c50) 5 = x(éz(v)). Consider any cut (S,V \ S) which separates r from k.

Edges of weight one contribute exactly |S| — 1. The edges between i and j of weight %

contribute exactly w. The edges from r to rest of the vertices contribute ZU¢ g M.

Thus the total weight of the cut is exactly

S|~ 1+ ‘”(‘25)) +> $(52(”)) = IS| — 1+ 2(E(V)) - 2(E(S)).
v¢S

Hence, checking whether the minimum cut separating r from £ is strictly smaller than
|[V| — 1 checks exactly whether there is a violating set S not containing k but containing
. U

3.2.2 Characterization of Vertex Solutions

In this section we give a characterization of a vertex solution to the linear program L Ps7(G)
by a small set of tight independent constraints. There are exponentially many inequalities
in the linear program LPsp(G), and a vertex solution may satisfy many inequalities as
equalities. To analyze a vertex solution, an important step is to find a small set of tight
inequalities defining it. If there is an edge e with z, = 0, this edge can be removed from
the graph without affecting the feasibility and the objective value. So henceforth assume

every edge e has z. > 0. The characterization is well-known (see Cornuejols et al [19],
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Goemans [42]) and we include it here for completeness and to illustrate the uncrossing
technique which will occur at multiple occasions in the thesis.
Uncrossing Technique

We use the uncrossing technique to find a good set of tight inequalities for a vertex solution
in the linear program LPsr(G). As mentioned earlier, the uncrossing method is used
extensively in combinatorial optimization and the discussion here will give an illustration
of the method. Recall that E(X,Y") denotes the set of edges with one endpoint in X and
other in Y. The following proposition is straightforward and states the supermodularity
of function F(X).

Proposition 3.9 For XY CV,
X(E(X)) +x(E(Y)) < x(E(X UY)) + x(E(X NY)),

and equality holds if and only if E(X \Y,Y \ X) = 0.

Proof: Observe that
X(E(X)) + x(E(Y)) =x(E(X UY)) +x(E(XNY)) - x(E(X \Y,Y \ X))

and proof follows immediately. (See Figure [3.3]). O

X Y

Figure 3.5: Edges labelled a, b, d and e are counted once both in LHS and RHS while edges
labelled ¢ are counted twice.

Given a vertex solution z of the linear program LPgsp(G), let F = {S | z(E(S)) =
|S| — 1} be the family of tight inequalities for a vertex solution x in the linear program

LPs7(G). The following lemma shows that the family F can be uncrossed.
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Lemma 3.10 IfS,T € F and SNT # (), then both SNT and SUT are in F. Furthermore,
X(E(S)) +x(E(T)) = x(E(SNT)) + x(E(SUT)).

Proof: Observe that

S| =1+ |T| -1 = =z(E(S))+z(E(T))
< z(E(SNT))+z(E(SUT)))
< |1SNT|-1+|SUT|-1

S| =1+ 7] — 1.

The first equality follows from the fact that S,T € F. The second inequality follows from
Proposition B9 The third inequality follows from constraints for S NT and S UT in the
linear program LPsp(G). The last equality is because |S|+|T| = |SNT|+ |SUT]| for any
two sets S, 7.

Equality must hold everywhere above and we have z(E(SNT))+ z(E(SUT)) =
|ISNT|—14|SUT|—1. Thus, we must have equality for constraints for S NT and
SUT, ie,z(E(SNT))=|SNT|—1and 2(E(SUT)) =|SUT|— 1, which implies that
SNT and SUT are also in F. Moreover, equality holds for Proposition and thus
X(E(S\T,T\ S)) =0 and x(E(S)) + x(E(T)) = x(E(SNT)) + x(E(SUT)). 0

Denote by span(F) the vector space generated by the set of vectors {x(E(S)) | S €
F}. The following lemma states that a maximal set of independent tight constraints can

be chosen to form a laminar family.
Lemma 3.11 [53] If £ is a mazimal laminar subfamily of F, then span(L) = span(F).

Proof: Suppose, by way of contradiction, that £ is a maximal laminar subfamily of F
but span(L) € span(F). For any S ¢ L, define intersect(S,L) to be the number of
sets in £ which intersect S, i.e. intersect(S,L) = {T € £ | S and T intersect}|. Since
span(L) C span(F), there exists a set S € F with x(E(S)) ¢ span(L). Choose such a
set S with minimum intersect(S, L). Clearly, intersect(S,L) > 1; otherwise LU {S} is
also a laminar subfamily, contradicting the maximality of £. Let T be a set in £ which
intersects S. Since S,T € F, by Lemma B.I0 both SNT and SUT are in F. Also,
both intersect(S NT, L) and intersect(S UT, L) are smaller than intersect(S, L), proved
in Proposition B.I2l Hence, by the minimality of intersect(S, L), both SNT and SUT
are in span(L). By Lemma B0l x(E(S))+x(E(T)) = x(E(SNT))+x(E(SUT)). Since
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Figure 3.6: The figure illustrates the different cases for sets R, R; and Ry, which intersect
S non-trivially and are in the laminar family £.

X(E(SNT)),x(E(SUT)) are in span(L) and T" € L, the above equation implies that
X(E(S)) € span(L), a contradiction. It remains to prove Proposition .12

Proposition 3.12 Let S be a set that intersects T € L. Then intersect(S NT, L) and
intersect(S UT, L) are smaller than intersect(S, L).

Proof: Since £ is a laminar family, for a set R € £ with R # T, R does not intersect
T (either RC T, T C Ror TNR =10). So, whenever R intersects SNT or SUT, R
also intersects S. See Figure for different cases of R. Also, T intersects S but not
SNT or SUT. Therefore, intersect(S NT, L) and intersect(S UT, L) are smaller than
intersect(S, L) by at at least one (i.e. T'). O

This completes the proof of Lemma [3.111 O
Thus we obtain the following characterization using the Rank Lemma and the Lemma[3.1T]

Lemma 3.13 Let = be a vertex solution of the linear program LPsp(G) such that x. > 0

for each edge e and let F = {S CV : x(E(S)) = |S|— 1} be the set of all tight constraints.

Then there exists a laminar family L C F such that

1. The vectors {x(E(S)) : S € L} are linearly independent.

2. span(L)—=span(F).
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3. |C| = |El.

3.2.3 Iterative Algorithm

In this subsection, an iterative procedure to find a minimum spanning tree from a vertex
optimal solution of the linear program LPgsp(G) is presented. The procedure is generalized

in Section 1] when degree constraints are present. The algorithm is shown in Figure B.71

Iterative MIST Algorithm
1. Initialization F « ().
2. While V(G) # 0

(a) Find a vertex optimal solution x of the linear program LPgsp(G) and remove
every edge e with . = 0 from G.

(b) Find a vertex v with exactly one edge e = wv incident on it, and update
F — FU{e}, G— G\ {v}.

3. Return F'.

Figure 3.7: Iterative MST Algorithm.

We first show that the algorithm always finds a leaf vertex in Step Rhl Then we

show that the solution returned by the algorithm is optimal.

Lemma 3.14 For any vertex solution x of the linear program LPsp(G) with x. > 0 for

every edge e, there exists a vertex v with deg(v) = 1.

Proof: Suppose each vertex is of degree at least two in the support E. Then |E| =
% > vey deg(v) > |V|. Since there is no edge e with x. = 0, every tight inequality is of the
form z(E(S)) = |S| — 1. Recall from Lemma BI3 there there is a laminar family £ with
|E| = |L£]. By Proposition 210, |£] < |V|— 1 and hence |E| < |V| — 1, a contradiction. [J

The remaining thing to check is the returned solution is a minimum spanning tree,

which is proved in the following theorem.

Theorem 3.15 The Iterative MST Algorithm returns a minimum spanning tree in poly-

nomial time.
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Proof: This is proved by induction on the number of iterations of the algorithm. If
the algorithm finds a vertex v of degree one (a leaf vertex) in Step 2(b) with an edge
e = {u, v} incident at v, then we must have z. = 1 since x(d(v)) > 1 is a valid inequality
for the linear program (Subtract the constraint z(E(V —wv)) < |[V|—2 from the constraint
z(E(V)) = |V| —1). Intuitively, v is a leaf of the spanning tree. Thus, e is added to
the solution F' (initially F' = (), and v is removed from the graph. Note that for any
spanning tree 7" of G’ = G\ {v}, a spanning tree T = T" U {e} of G can be constructed.
Hence, the residual problem is to find a minimum spanning tree on G \ v, and the same
procedure is applied to solve the residual problem recursively. Observe that the restriction
of x to E(G’), denoted by s, is a feasible solution to the linear program LPgr(G’). By
induction, the algorithm will return a spanning tree F’ of G’ of cost at most the optimal
value of the linear program LPgsr(G’), and hence ¢(F') < ¢ - Xyes, a8 Tyes 18 a feasible

solution to the linear program LPgsp(G’). Therefore,
c(F) = c(F") 4 cc and c(F') < ¢+ Tpes

which imply that
¢(F)<c Xpes+Ce=c-x

as . = 1. Hence, the spanning tree returned by the algorithm is of cost no more than
the cost of an optimal LP solution x, which is a lower bound on the cost of a minimum
spanning tree. This shows that the algorithm returns a minimum spanning tree of the

graph. U

Remark. If z is an optimal vertex solution to the linear program LPsp(G) for G, then the
residual LP solution s, x restricted to G’ = G \ v, remains an optimal vertex solution
to the linear program LPs7(G’). Hence, in the Iterative MST Algorithm we only need to

solve the original linear program once and none of the residual linear programs.

Theorem BI5 also shows that the linear program LPs7(G) is an exact formulation

of the minimum spanning tree problem showing the proof of Theorem [B.71

3.2.4 TIterative Algorithm II

In this section, we give another iterative procedure to find a minimum spanning tree from
a vertex optimal solution of the linear program LPgsp(G) is presented. The alternate
method is useful is addressing degree constraints in Section .3l The algorithm is shown
in Figure 3.8l
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Iterative MST Algorithm II
1. Initialization F « ().
2. While V(G) # 0

(a) Find a vertex optimal solution x of the linear program LPs7(G) and remove
every edge e with z, = 0 from G.

(b) Find an edge e = {u,v} such that . = 1 and update F' «— FU{e}, G — G/e.

3. Return F'.

Figure 3.8: Iterative MST Algorithm II.

Following the discussion in Section B.2.3]it is enough to show that the algorithm will
terminate. An argument similar to one in proof of Theorem [B.I5] will show that the output

of the algorithm is a minimum spanning tree.

Lemma 3.16 For any vertex solution x of the linear program LPsp(G) with x. > 0 for
each edge e there exists an edge f such that xy = 1.

Proof: Lemma B.I4] already gives one proof of the fact by showing that there exists a

vertex v such that deg(v) = 1. We give two other alternate proofs of this lemma.

Proof 1. Lemma [B.I3] and Proposition shows that |E| = |[V| — 1 and since
2(E) =|V|—1 and x(e) < 1 for all edges e € E (by considering the constraint z(E(S)) =
|S| — 1 for a size two set S), we must have x. = 1 for all edges e € E proving integrality.
Thus we have that directly either z. = 0 or z, = 1 for all edges e rather than for a single

edge.

Proof 2. Observe that by Lemma B.I3] there are |£| linearly independent tight
constraints of the form z(E(S)) = |S| — 1 with |E| = |£|. We now show a contradiction to

this through a counting argument.

We assign one token for each edge e to the smallest set containing both the endpoints.
Thus, we assign a total of |E| tokens. Now, we collect at least one token for each set in £
and some extra tokens giving us a contradiction to Lemma B.I3l Actually, we collect two
tokens for each set S € L. Let S be any set in £ with children Ry,..., Ry where k > 0.
We have

z(E(S)) = |S[ -1
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and for each i,
(E(R;)) = |Ri| — 1

Subtracting, we obtain

2(B(S) = 3 @(B(R) = S| = 3[Rl +k—1

i

— 2(A) =8| = > IR +k—1

where A = E(S)\ (U; E(R;)). Observe that S obtains exactly one token for each edge in A.
If A=, then x(E(S)) = >, x(E(R;)) which contradicts the independence of constraints.
Moreover, |A| # 1 as xz(A) is an integer and each . is fractional. Hence, S receives at

least two tokens. O

This completes the proof of Lemma [B.16] showing the correctness of Iterative Algo-
rithm IT.

3.3 Arborescences

Given a directed graph D and a root vertex 7, a (spanning) r-arborescence is a subgraph
of D so that there is a directed path from r to every vertex in V — r. The minimum cost
(spanning) arborescence problem is to find a spanning r-arborescence with minimum total
cost. The problem generalizes the minimum spanning tree problem and efficient algorithms
for computing a minimum cost arborescence were given by Chu and Liu [15], Edmonds [27]
and Bock [9]. Edmonds [28] gave an integral linear program for the minimum arborescence
problem which we state in Figure Integrality of the linear program follows directly
from the algorithms for the minimum arborescence problem [9, 15, 27]. Edmonds and
Giles [31] and Frank [35] used the uncrossing method on the dual of the linear program to
show that the linear description in Figure is totally dual integral.

In this section we give an iterative algorithm to show that the linear program in
Figure is integral. The iterative algorithm is then extended in Section to give an

approximation algorithm for the degree constrained arborescence problem.
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3.3.1 Linear Program

We now give a linear program for the minimum arborescence problem given by Ed-
monds [28] in Figure B0 The linear program LPFP,,;(D) requires that there is a directed
path from a fixed vertex r to every vertex in V — r. Or equivalently, by Menger’s theo-
rem [75], it specifies that there is at least one arc entering every set which does not contain

the root vertex.

minimize E Ca Tq

acA
z(6™(S)) > 1 VSCV—r
:17(5@"(21)) =1 VoeV\{r}
z(0"(r)) = 0
Tz, > 0 YVac A

Figure 3.9: Linear Program for the Minimum Cost Arborescence.

Separation Oracle

Although the number of constraints is exponential in the size of the problem, the availability
of an efficient separation oracle ensures the polynomial solvability of the linear progrma
LP,,(D). The separation oracle is quite straightforward. Given any solution z, the
separation oracle first constructs a graph with arc weights as x,. It then computes the
min-cut from the root vertex r to every other vertex. If every min-cut is at least 1, it is
easy to see that the solution is feasible. If there exists a min-cut of value less than 1, the
violating constraint is precisely the set of vertices that this cut separates. The equality
constraints can be checked one by one since there is only one constraint for each vertex for

a total of |V| constraints.

Compact Formulation

Wong [I07] and Maculan [73] observed that the minimum arborescence problem can be
formulated as a compact linear programming problem. We now give the compact linear
program in Figure B0l The basic ideas is to use the equivalence of flows and cuts. This
compact formulation also shows how to solve the equivalent linear program in Figure

in polynomial time.



3.3. ARBORESCENCES 35

minimize E Ca Tq

acA
Z f, =1 VveV —r
a€d™ (v)
Z fd — Z foa =0 VoeV—-rYueV —r—u,
ae&i”(v) ae&out(v)
Yo=Y fo= -1 YveV —r
ae&in(v) ae&out(v)
To > fq Vae AVveV —r,
z(6™(w) = 1 VoeV\{r}
W Ta > 0 Vac AVveV —r,

Figure 3.10: Compact Linear Program for the Minimum Cost Arborescence.

3.3.2 Characterization of Vertex Solutions

As in the case of the minimum spanning tree problem in Section B.2] the uncrossing tech-
nique is used to find a small set of tight inequalities that defines a vertex solution of
the linear program LP,.;(D). This characterization follows from results of Edmonds and

Giles [31] and Frank [35] and we include the proofs here for completeness.

Let F = {S | (6"(S)) = 1} be the family of tight inequalities for a vertex solution
z in the directed LP. The following proposition states the standard fact that cuts in a

graph are submodular.
Proposition 3.17 For X,Y CV,
X (X)) + x(F(V)) = x(F (X UY)) + (" (X N Y)),
and equality holds if and only if E(X \Y, Y\ X)=0 and E(Y \ X, X \Y) = 0.
Proof: Observe that
X6 (X)) +x (6™ (Y)) = X (8™ (XUY))+x (8™ (XNY ) +x(B(X\Y, Y \X))+x(E(Y\X, X\Y)),
and the proof follows immediately. O

The following lemma shows that the family F can be uncrossed.
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Lemma 3.18 IfS,T € F and SNT # (), then both SNT and SUT are in F. Furthermore,
X(0"(8)) + x(6™(T)) = x(6™ (S NT)) + x(6"(SUT)).

Proof:

1+1

2(6™(S)) + =(8™(T))
> z(6™(SNT)) +z(6™(SUT))
> 1+1

The first equality follows from the fact that S,T € F. The second inequality follows from
Proposition BI7l The third inequality follows from the constraints for SN7T and SUT in
the linear program LP,(D).

Equality must hold everywhere and we have z(6(S N T)) + z(6™(SUT)) = 2.
Thus, we must have equality for constraints for SNT and SUT, i.e., x(6™(SNT)) =1
and z(6™(S UT)) = 1, which implies that SN T and S UT are also in F. Moreover,
equality holds for Proposition BIT and thus x(E(S\T,T\ S)) Ux(E(T\ S,S\T)) =10
and x(6"(5)) + x (0" (T)) = x(6™(S N T)) + x (6™ (S U T)). O

Denote by span(F) the vector space generated by the set of vectors {x(6(5)) | S €
F}. The following lemma says that a vertex solution is characterized by tight inequalities

whose corresponding sets form a laminar family.
Lemma 3.19 If £ is a mazimal laminar subfamily of F, then span(L) = span(F).

Proof: The proof follows the same lines as in the case of undirected spanning trees and is
omitted. 0

Thus we get as a corollary our main characterization result.

Lemma 3.20 Let x be any vertex solution of the linear program LP,,.,(D) such that z, > 0
for each a € A. Then there exists a laminar family L such that x is the unique solution to

the following linear system.

z(6™(S) =1 VS eL.

Moreover, the characteristic vectors {x(6"(S)) : S € L} are linearly independent and
L] = |A]
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3.3.3 [Iterative Algorithm

We now present the iterative algorithm to obtain an integral optimal solution to the LP in
Figure B9l The algorithm is similar to the Iterative MST Algorithm in Section The
main difference is that after we pick an arc a = wv with z, = 1, we contract {u,v} into a

single vertex.

Iterative Arborescence Algorithm
1. Initialization F' « ().
2. While V(D) # 0

(a) Find a vertex optimal solution z of the linear program LP,.;, and remove
every arc a with z, = 0 from D.

(b) Find an arc a = wv with z, = 1, and update F' «— F U {a}, D «— D/{uv}.

3. Return F'.

Figure 3.11: Iterative Arborescence Algorithm.

As in minimum spanning trees, assuming the algorithm terminates successfully, it is

easy to show that the returned solution is a minimum spanning arborescence.

Theorem 3.21 The Iterative Arborescence Algorithm returns a minimum cost arbores-

cence 1n polynomial time.

Proof: The proof follows the same argument as in for undirected spanning trees. g

The key step is to prove that the algorithm will terminate. For the iterative relaxation
technique to converge, we would need at each stage, to find an arc a with either x, =1 or

24 = 0 which we show in the following lemma.

Lemma 3.22 For any vertex solution x of the directed LP, either there is an arc with

z, = 0 or there is an arc with x4, = 1.

Before we begin the proof, let us recall that there exists a laminar family £ such that
it represents a linearly independent set of tight constraints(Lemma [B.20). The proof, by
contradiction, is based on a token argument (as in earlier proofs). The idea of the argument

is to assume that there is no arc with x, =0 and x, = 1, and then derive a contradiction
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by showing that the number of constraints (that is, the number of sets in £) is smaller
than the number of non zero variables (that is, the number of arcs) - contradicting the
Lemma [3.200

Two different counting arguments will be presented for the contradiction. The first
argument is quite straightforward but we include a more involved argument which is ex-

tended to degree constrained arborescence problem in Section

Counting Argument 1

Suppose for sake of contradiction 0 < x, < 1 for all @ € A. But, we have x(§(v)) > 1 for
each v € V' \ {r}. Hence, we must have |6 (v)| > 2 for each v € V' \ {r}. Thus

A=Y ") = Y 2=2V] -2

veV veV\{r}

But from Lemma B.20] we have the maximal linearly independent constraints form
a laminar family over the ground set V' \ {r}. From Corollary ZT1] we have that |£]| <
2(]V|—1)—1 = 2|V|—3. But this contradicts the Rank Lemma since |A| > 2|V |—2 > |L].

Counting Argument 2

We now give another counting argument which is more involved but is useful in extending
to MINIMUM BOUNDED-DEGREE ARBORESCENCE problem in Section [6.2]

For each arc, one token is assigned to its head. So the total number of tokens assigned
is exactly |E|. These tokens will be redistributed such that each subset S € £ is assigned
one token, and there are still some excess tokens left. This will imply |E| > [£| and thus

contradicts Lemma [3.191 The following lemma shows that such a redistribution is possible.

Lemma 3.23 For any rooted subtree of the forest L # () with root S, the tokens assigned
to vertices inside S can be distributed such that every node in the subtree gets at least one

token and the root S gets at least two tokens.

Proof: The proof is by induction on the height of the subtree. The base case is when S
is a leaf. Since z(6"(S)) = 1 and there is no arc with z, = 1, there are at least two arcs
in §7(S), and therefore S gets at least two tokens.
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For the induction step, let .S be the root and Ry,..., R be its children. By the
induction hypothesis, each node in the subtree rooted at R; gets at least one token and R;
gets at least two tokens. Since R; only needs to keep one token, it can give one token to S.
Suppose k > 2, then S can collect two tokens by taking one token from each of its children,
as required. So suppose k = 1. If there is an arc e which enters S but not to Ry, then S
can collect two tokens by taking one token from R; and one token from e. Suppose such
an arc does not exist, then 6*(S) C §(R). Since z(6(S)) = 2(6"*(R)) = 1 and there is
no arc with z, = 0, this implies §"*(S) = §(R). Hence x(6"(S)) = x(6"*(R)), but this
contradicts the linear independence of the characteristic vectors for sets in £ (recall that
L can be chosen to satisfy the properties in Corollary B.20]). Therefore, such an arc must
exist, and S can collect two tokens, as required. This completes the proof of the induction
step. O

Applying Lemma B.23] to each root of the forest £ we obtain that the number of
tokens is at least |£| + 1 which implies that |E| > |£], contradicting Corollary B.201 This
completes the proof of Lemma [3.22] and hence Theorem B.21] follows.

3.4 Matroid Basis

In this section we consider the minimum cost matroid basis problem. We first define the
matroid structure, which generalizes spanning trees and a host of other interesting objects.
Then, we give the linear programming relaxation, first given by Edmonds [30], for the
minimum cost matroid basis problem. We then give an iterative algorithm to show the
integrality of the linear program. This iterative algorithm is then extended in Section [T.4]

to give approximation algorithms for the degree constrained matroid basis problem.

Matroids were introduced by Whitney [105] and equivalent systems were considered
by Nakasawa [79)], Birkhoff and van der Waerden [104].

Definition 3.24 A pair M = (S,Z) is a matroid if for A,B C S,

1. AcZand BCA — Becl.

2. A,B€T and |B|>|Al = Jz € B\ A such that AU{z} € T.

S is called the ground set of the matroid M. A set A C S is independent if A € T
else it is called dependent. An inclusionwise maximal set A € T is called a basis of M.

Observe that Property 2l implies that all bases have the same cardinality.
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Examples of Matroids

1. Graphic Matroid [8, 105]. Given a connected graph G = (V, E), the graphic
matroid of G is defined as Mg = (E,Zg) where Zg = {F C E|F is a forest }.

2. Uniform Matroid. Given a set S and an integer £ > 0 the uniform matroid of
rank k is defined as M% = (S, Z%) where ZF = {T C S : |T| < k}.

3. Linear Matroid [97]. Let A be an m x n matrix and S = {1,...,n}. For any 1 <
i < n,let A* denote the i*"-column of A. The linear matroid over matrix A is defined
as My = (S,Z4) where Ty = {T C S : A’ for i € T are linearly independent}.

4. Matroid Restriction. Let M = (S,7) be a matroid and 7' C S. Then the matroid
restriction of M to the set T' is the matroid My = (T,Zr) where Zr = {R: R €
I,RCT}.

It is straightforward to verify that the above examples satisfy the properties of ma-
troids and we refer the reader to Lawler [71], Schrijver [91], 94] for historical and technical

details on matroids.

Definition 3.25 (Rank function) Given a matroid M = (S,Z), the rank function r :
2% — 7 of the matroid M is defined as ry(T) = maxycr ez |U|.

We will drop the subscript M from the rank function 7, when the matroid M is
clear from the context. Observe that A € 7 iff r(A) = |A|. We also use the following
important property about the rank function of matroids. Here we include a proof for

completeness.

Lemma 3.26 [I05] Let r be the rank function of matroid M = (S,Z). Then r is a
submodular function, i.e., for all A, B C S, we have r(A) +r(B) >r(ANB)+r(AUB).

Proof: Let r(AN B) = ki, r(AU B) = ky. This implies that 3V C AN B such that
r(V) = |V| = ki. Similarly, there exists U C AU B such that r(U) = |U| = ka. Moreover,
since every independent set can be extended to a basis, we can assume that V C U and
by definition of V' we must have U N AN B = V. Since, U is independent, we have
r(A) > |[UNA| and r(B) > |U N B|. Now, we have

[UNA+|UNB|=|UN(AUB)|+|UN (AN B)|
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— r(A)+7(B) > r(AUB) +r(AN B)

since [UN(AUB)| =k; and [UN(ANB)| = |V| = ks. O

We now define two important operations on matroids and their effect on the rank

function. For details, we refer the reader to Oxley [81].

Definition 3.27 (Deletion) Given a matroid M = (S,7) and x € S we define M \ x =
(S\{z},Z') where ' = {T'\ {z} : T € I} to be the matroid obtained by deleting = from
M. The rank function of M x, r1 is related to the rank function r of M by the formula
ri(T) =r(T) for T C S\ {z}.

Definition 3.28 (Contraction) Given a matroid M = (S,Z) and x € S we define
M/x = (S\{z},Z") where " = {T C S\ {z} : TU{x} € T} is the matroid obtained by
contracting x in M. The rank function of M /{x}, ra, is related to the rank function of M
by the formula ro(T) =r(TU{z}) —1 for T C S\ x.

We now consider the problem of finding a minimum cost basis in a matroid. Given
a matroid M = (5,7) and a cost function ¢ : S — R, the task is to find a basis of M
of minimum cost. In the special case of graphic matroids the problem generalizes the
minimum spanning tree problem which we studied in Section B2l Interestingly, the greedy
algorithm gives an efficient algorithm for the minimum cost matroid basis problem [84]

and is precisely the structure where greedy algorithm always work [29 [39].

3.4.1 Linear Program

In Figure B.12] we give a linear programming relaxation L P, (M) for the minimum cost
matroid basis problem given by Edmonds [29]. Edmonds [28] 29|, B0] also showed that the

linear program is integral.

Solving the linear program. Observe that the above linear program is expo-
nential in size and hence, an efficient separation routine is needed to separate over these
constraints. The separation routine needs to check that z(T) < r(T') for each T' C S.
The polynomial time solvability follows from submodular minimization [45]. Also, Cun-
ningham [20] provides a combinatorial algorithm for such a separation routine which as an

input uses the independence oracle for matroid M.

We prove the following theorem of Edmonds [29] via the iterative method.
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maximize Z Cele
ecS
subject to x(S) = Z$e = r(9)
ecS
x(T) = Z$e < (1) vTCS
- z. > 0 Vee S

Figure 3.12: Linear Program for the Minimum Cost Matroid Basis.

Theorem 3.29 [29] Every vertex optimal solution to the LP,q (M) is integral.

Before we prove the theorem, we characterize vertex solutions via a structured set
of tight independent constraints. Again the uncrossing method plays a crucial role. The
characterization follows from the results of Edmonds [28] and we include the proof outline

for completeness.

3.4.2 Characterization of Vertex Solutions

We now give a characterization of the vertex solutions of the linear program L P, (M) by

a small set of tight independent constraints.

We now use an uncrossing argument to show that independent set of tight constraints
defining a vertex of LP,,q¢(M) can be chosen to form a chain. Given a vertex solution x of
LPy (M) let F ={T C S:x(T) =r(T)} be the set of tight constraints. We now show

that F is closed under intersection and union.

Lemma 3.30 If U,V € F, then both UNV and UUV are in F. Furthermore, x(U) +
XV)=x(UNV)+x(UUV).

Proof:
r()+r(V) = zU)+z(V)
= z(UNV)+z(UUV)
< rUnNV)+r(UUYV)
< r(U)+rV).
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The first equality is by the fact that U,V € F. The second equality follows from basic set
properties. The third inequality follows from the constraints in the LP,q(M). The last

equality is because of properties of rank function r as shown in Lemma, [3.20]

Since there are no elements in U \ V and V' \ U in the support of z, we have x(U) +
XWV)=x(UNV)+x(UUV). O

Lemma 3.31 If £ is a mazimal chain subfamily of F, then span(L) = span(F).

Proof: The proof follows exactly the same argument as in Lemma BI1l. We show exactly
where the argument differs and why we obtain a chain in this case while we could only

argue a laminar structure in Lemma [3.1T]

Lemma [330] shows that two tight sets A and B can always be uncrossed and not
only when A and B intersect as was the case in Lemma B.I0l Hence, even if A, B are two
tight sets and AN B = (), we can uncross them and ensure that no such two sets exists in

family of constraints defining x. U

Thus we have the following characterization given by Edmonds [28].

Lemma 3.32 Let x be any vertex solution of the linear program LP,q(M). Then there

exists a chain L such that x is the unique solution to the following linear system.
z(T)=r(T) VI €L

Moreover, the characteristic vectors {xp : T € L} are linearly independent and |L| = |S].

3.4.3 Iterative Algorithm

We now give an iterative algorithm which constructs an integral solution from the optimal

vertex solution to linear program LP,,,;(M). The algorithm is shown in Figure B.I3l

We now show that the iterative algorithm returns an optimal solution. We first show
that the algorithm always finds an element with z. € {0,1}. Then we show using a simple
inductive argument that the solution returned by the algorithm is optimal, thus proving
Theorem [3.29

Lemma 3.33 For any vertex solution x of the LPyq (M) with xo > 0 for every element

e, there exists an element e with x, = 1.
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Iterative minimum cost matroid basis algorithm
1. Initialization B « 0.
2. While B is not a basis

(a) Find a vertex optimal solution x of the LP,,.:(M) and delete every element
e with z, = 0 from M, i.e., M «— M\ e.

(b) If there is an element e such that z, = 1 then and update B «— B U {e},
M — Mle.

3. Return B.

Figure 3.13: Iterative Minimum Cost Matroid Basis Algorithm.

Proof: Suppose for contradiction 0 < z. < 1 for each e € S. Then the number of variables
is exactly |S|. Since there is no element e with x. = 0, every tight inequality is of the form
x(T) = r(T). By Lemma [B31] there are |£]| linearly independent tight constraints of the
form x(T) = r(T) for T € L where L is a chain. Since 0 < xz, < 1 for each element, thus
there is set of size one in the chain. Therefore, we have |[£| < |S| — 1 from Lemma 210
which is a contradiction to Lemma B.32] O

It remains to check that the returned solution is a minimum cost basis, which is

proved in the following theorem.

Theorem 3.34 The Iterative Matroid Basis Algorithm returns a minimum cost basis in

polynomial time.

Proof: This is proved by induction on the number of iterations of the algorithm. The
base case is trivial to verify. Let M = (S,Z) denote the matroid in the current iteration.
If the algorithm finds an element e such that z. = 0 we update the matroid to M \ e.
Observe that z restricted to S\ {e}, say 2/, is a feasible solution to LP,q(M \ e). This is
easily checked using the rank function of M \ e which is the same as rank function of M
by Definition By induction, we find a basis B of M \ e of cost at most ¢-z’. Observe
that B is also a basis of M and costs at most ¢ -2’ = ¢- z. Hence, the induction claim is

true in this case.

Now, suppose the algorithm selects an element e such that . = 1. Then the al-
gorithm updates the matroid M to M/e and B to BU {e}. Let r denote the rank func-

tion of M and r’ denote the rank function of M/e. We now claim that z restricted to
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S\ {e}, say 2/, is a feasible solution to LP,,.(M/e). For any set T C S\ {z}, we have
Z(T) =z(TU{e}) —xe = 2x(TU{e}) =1 < r(T'U{e}) —1 =r/(T). By the induction
hypothesis, we obtain a basis B’ of M /e of cost at most ¢ - 2’. Observe that B’ U {e} is a
basis of M by Definition B:228 and costs at most ¢- 2’ + ¢(e) = ¢- z as required. This shows

that the algorithm returns a minimum cost basis of matroid M. U

3.5 Perfect Matchings in General Graphs

In this section, we consider the problem of finding a minimum cost perfect matching in
a graph G = (V, E) with even number of vertices. The minimum cost matching problem
in bipartite graph, which we considered in Section Bl is considerably simpler than in
general graphs. Indeed the linear programming relaxation considered in Section B.Ilfor the
bipartite matching problem has strictly fractional vertex solutions for general graphs. Ed-
monds [25] gave a linear programming formulation for the minimum cost perfect matching
problem which is integral and the famous primal-dual Blossom algorithm which was the
first polynomial time algorithm for the problem. The Blossom algorithm also provides a
proof of the integrality of the linear program. Subsequently, other proofs of integrality were
given including, finding a decomposition of a fractional solution into convex combination
of matchings [3, O2], characterizing all the facets of the matching polytope [4], [5I]. We
refer the reader to the text by Lovasz and Plummer [72] for details about the matching

problem.

In this section, we will show the integrality of the linear program given by Ed-

monds [25] using the iterative method.

3.5.1 Linear Program

Given a graph G = (V, E) with an even number of vertices and a cost function ¢ : £ —
R+, the linear programming relaxation for the perfect matching problem is given by the
following LPy(G).
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minimize clx) = Z Ce Te
ecll
subject to Z e = 1 YveV
e€d(v)
subject to Z re > 1 VS CV.,I|S| odd,
e€d(S)

w
=
o
8
)

> 0 Vee &

Observe that if G is not bipartite then the above linear program is not integral if we
do not include the odd-set inequalities ([B.9]) as shown in Figure B.141

Figure 3.14: In the above figure, if the cost of the cut edge is large, then the all-half solution on
the triangles is an optimal solution to the linear program with degree constraints. Thus the odd
set inequalities that cut such solutions off are necessary.

We prove the following theorem showing integrality of the linear program.

Theorem 3.35 [25]] Every vertex optimal solution to the linear program LPy(G) is in-
tegral.

We give an iterative algorithm proving Theorem [B.35] but first we give a characteri-

zation of a vertex solution of LPy(G).

3.5.2 Characterization of Vertex Solutions

We prove the following crucial lemma characterizing vertex solutions. Again the uncrossing
technique and the rank lemma forms the basis of the argument. The characterization
follows directly from the results of Cunningham and Marsh [2I]. We include the proofs

here for completeness.
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Lemma 3.36 Given any vertez solution x of LPy(G) let the set of tight constraints T =
{S:2(8(5)) =1,5 CV, |S|odd}. Then there exists a laminar family L C T such that

1. x(8(S)) for S € L are linearly independent vectors.

2. GIS] is connected for each set S € L.

3. span({x(0(S)) : S € L}) = span({x(6(S)) : S € 1}).
Before we give the proof of Lemma [B.36] we first prove the following claims.

Lemma 3.37 If A,B €1 and AN B # 0, then one of the following is true

1. AnNBert, AUB €T and x(0(A)) + x(6(B)) = x(6(ANB)) + x(6(AU B))

2. A\Ber, B\Aec 7 and x(6(4)) +x(0(B)) = x(6(A\ B))+ x(6(B\ 4))
Proof: Let A, B € 7. First assume AN B is odd. Then AU B is also odd. Hence, we have
2=141<z(0(ANB))+z(0(AUB)) <z(6(A)) +z(6(B)) =2

Hence, all inequalities are satisfied at equality implying that all cross-edges between A and
B have a value of 0 in = (and hence not present in the support). Therefore, AN B € T,
AUB e T and x(6(A)) + x(6(B)) = x(6(ANB)) + x(6(AU B)).

A similar argument shows that second case holds when AN B is even in which case
|A\ B| and |B\ A| are odd. O

Claim 3.38 If S € 7 such that G[S] is not connected then there exists R C S such that
R e 7 and §(R) = 4(5).

Proof: Let S € 7 be a set such that G[S] is not connected. The let Ry,..., Ry be the
connected components of G[S] where Ry is of odd cardinality (such a component must
exist as |S] is odd). Now, we have 6(R1) C §(S) but 1 < z(6(R1)) < x(8(S5)) = 1. Hence,
equality must hold everywhere and in the support graph, we have 6(Ry) = §(5). O

Now we prove Lemma [3.30

Proof of Lemma[3.36t From the Rank lemma, it follows that any set of maximally
independent tight constraints satisfies conditions (1) and (3). Claim B:38 shows that it is
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enough to concentrate on the tight constraints for odd sets which are connected. Let
7 = {S € 7 : G|S] is connected}. Then Claim B38 implies that span({x(6(S)) : S €
7'}) = span({x(6(5)) : S € 7}).

We now show that any maximal laminar family in 7 is indeed a maximal set of tight
independent constraints proving the lemma. Let £ be a maximal independent laminar
family of 7/. We claim that £ satisfies the properties of Claim B36 It is enough to show
that sets in £ span all sets in 7. Assume that x(6(5)) ¢ span(L) for some S € 7. Choose
one such set S that intersects as few sets of £ as possible. Since £ is a maximal laminar
family, there exists T' € £ that intersects S. From Lemma B.37], we have that SN T and
SUT are also in 7 or S\ T and 7'\ S are in 7. Assume that we have the first case and thus
we have x(0(S)) +x(8(T)) = x(6(SNT)) + x(6(SUT)). Since x(6(S)) ¢ span(L), either
x(6(SNT)) ¢ span(L) or x(6(SUT)) ¢ span(L). In either case, we have a contradiction
because both SUT and SNT intersect fewer sets in £ than S; this is because every set that
intersects S UT or S NT also intersects S. In the other case, we have a similar argument

showing a contradiction. [

3.5.3 Iterative Algorithm

The following is a simple iterative procedure which returns a matching of optimal cost

and also shows that the above linear program is integral. The proof is in two parts. First

Iterative Matching Algorithm
1. Initialization F' < ().
2. While V(G) # 0

(a) Find a vertex optimal solution x of LPy;(G) and remove every edge e with
z. = 0 from G.

(b) If there is an edge e = {u,v} such that z. = 1 then update F' — F U {e},
G — G\ {u,v}.

3. Return F'.

Figure 3.15: Iterative Matching Algorithm.

assume that we can always find an edge e with . = 1 in Step 2hl of the algorithm. We
show that the solution returned F is a matching of G of cost no more than the initial
LP solution z, and hence it is also a minimum cost matching. Then we show that the

algorithm indeed finds an edge with x, = 1. The proof of the following claim is identical
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to proof of Claim [3.4] and is omitted.

Claim 3.39 Assuming that the iterative algorithm finds an edge e such that x. € {0,1}

then the algorithm returns an optimal matching.

It remains to show that the algorithm always finds an edge e such that z. = 1 in

Step 2Bl

Lemma 3.40 Given any vertex solution x of LPy(G) there must exist an edge e such

that x, =0 or x, = 1.

Proof: Suppose for sake of contradiction 0 < z, < 1 for each edge e € FE. Let L be the
laminar family given by Claim We show a contradiction by showing that |E| > |L£].
This is done by a token argument. Initially we give two tokens for each edge and which
gives one each to its endpoint for a total of 2|E| tokens. Now, we collect two tokens for each
member in the laminar family and at least one extra token for total of 2|£|+1 tokens giving

us the desired contradiction. The token redistribution is done by an inductive argument.

Claim 3.41 For any S € L, using tokens for the vertices in S, we can give two tokens to
each set in L in the subtree rooted at S and |5(S)| tokens to S.

Proof: The proof is by induction on the height of the subtree rooted at S.

Base Case. S is a leaf. S can take |6(S)| tokens for one for each edge incident at

some vertex in S.

Induction Case. Let S have children Ry, Ra, ..., Ry (where some of the R; could
be singletons). From induction hypothesis R; receives |0(R;)| tokens. We use these tokens,

one for each edge in 0(R;), and the tokens assigned to S to give two tokens to each R; and
|6(S)| tokens to S.

From Lemima B.36] we have that G[S] is connected. Let H be the connected graph
formed from G[S] by contracting each R; in to a singleton vertex. If H has at least k edges

then, we use two tokens for each such edge to give two tokens to the children. We still
have |§(5)| tokens left, one for each edge in 6(5).

Else, we must have that H has exactly k vertices, fewer than k edges and is connected.
Hence, H must be a tree. As every tree is a bipartite graph, let H; and Hy be the

bipartition. Now, we prove a contradiction to independence of constraints. Let |H;| > |Ha|
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(cardinality of S is odd and therefore the number of vertices in H is odd). Let A =
Ur,em, 6(R;) and B = Upg,en,0(R2). Then 6(S) = AAB. But z(A) = 5 oy, ©(6(R;)) =
|H1| and similarly, x(B) = |Hz|. Thus, we have z(A\ B) > |H;| — |H2| > 1. But, then
we have 1 = 2(6(5)) = 2(AAB) = z(A\ B) + (B \ A) > 1 implying that (B \ A) =0
and B\ A = (). But then the constraints for S and its children in H; are dependent since
z(6(S)) = z(A) — x(B). A contradiction. O

We apply Claim BAT] to each root of every tree in £. If |§(S)| > 3 for any root S
or there is a vertex not in any root then we have an extra token and Lemma holds.
Else, the graph H formed by contracting each root set of £ in to a singleton vertex is a
cycle cover. If the cycle cover contains an even cycle C' then the then the constraints for
odd sets in C' are dependent which is a contradiction. Else, if there is an odd cycle C let
Sc denote the union of sets in C. Observe that S¢ is disjoint union of odd number of odd
cardinality sets and therefore |S¢|is odd. But |§(S¢)| = 0 which contradicts the inequality
z(6(S¢)) > 1. 0

Thus we prove Theorem [B.35] showing the integrality of the linear programming
relaxation LPy/(G) for the perfect matching problem in general graphs.



Minimum Bounded-Degree Spanning Trees

In this chapter we study the MINIMUM BOUNDED-DEGREE SPANNING TREE (MBDST)
problem. Recall that in an instance of the MBDST problem we are given an undirected
graph G = (V, E), edge costs given by ¢ : E — R, degree bound B, > 1 for each v € V
and the task is to find a spanning tree of minimum cost which satisfies the degree bounds.

We prove the following theorem.

Theorem 4.1 There exists a polynomial time algorithm which given an instance of the
MBDST problem returns a spanning tree T such that degp(v) < B, +1 and cost of the tree

T is smaller than the cost of any tree which satisfies the degree bounds.

We prove Theorem 1] using the iterative relaxation technique. We first prove a
weaker guarantee where the degree bound is violated by an additive amount of two in
Section Il This matches the result of Goemans [42] which was the previous best result for
this problem. The proof in this case is simpler and will illustrate the iterative method. In
section 2] we give an algorithm where the degree bound is violated by an additive amount
of one using a fractional token argument. In sectiond.3]we consider the generalization when
both upper and lower degree bounds are present and give an algorithm which returns a
tree of optimal cost which violates the degree bounds by at most an additive amount of

one.

4.1 An Additive 2 Approximation Algorithm

In this section we first present an (1, B, + 2)-approximation algorithm for the MBDST
problem via iterative rounding. This algorithm is simple, and it illustrates the idea of

iterative relaxation by removing degree constraints.

51
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4.1.1 Linear Programming Relaxation

We use the following standard linear programming relaxation for the MBDST problem,
which we denote by LP-MBDST(G, B, W). In the following we assume that degree bounds
are given for vertices only in a subset W C V. Let B denote the vector of all degree bounds

B,, one for each v € W.

minimize clx) = Z Ce Te

ecl
subject to z(BE(V)) = |V]-1
z(E(S) < |S|-1 VScV
z(6(v)) < B, VoeW
ze = 0 VecE

Separation over the inequalities in the above linear program is in polynomial time
and follows from Theorem [B.8 An alternative is to write a compact formulation for the

above linear program [107] which has polynomially many variables and constraints.

4.1.2 Characterization of Vertex Solutions

We first give a characterization of a vertex solution of LP-MBDST(G, B, W). We remove
all edges with x, = 0 and focus only on the support of the vertex solution and the tight
constraints from ([L2)-@4). Let F = {S C V : (E(S)) = |S| — 1} be the set of tight
constraints from (£.2)-(£.3). From an application of Rank Lemma and the characterization

of vertex solutions to the spanning tree polyhedron in Lemma [B.13] we get the following.

Lemma 4.2 Let x be any vertex solution of LP-MBDST(G,B, W) with x. > 0 for each
edge e € E. Then there exists a set T C W with x(6(v)) = B, for each v € T and a
laminar family £ C F such that

1. The vectors {x(E(S)) : S € L} U{x(6(v)) : v € T} are linearly independent.
2. The vector space generated by {x(6(v)) : v € T and span(L)=span(F).

3. L]+ 7| = |E].
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4.1.3 [Iterative Algorithm I

In this section, we give an iterative algorithm which returns a tree of optimal cost and
violates the degree bound within an additive error of two. The algorithm is given in
Figure 1]

MBDST Algorithm
1. Initialization F « ().
2. While V(G) # 0
(a) Find a vertex optimal solution = of LP-MBDST(G, B, W) and remove every
edge e with z, = 0 from G. Let the support of x be E.

(b) If there exists a vertex v € V', such that there is at most one edge e = uv
incident at v in E, then update F' «— FU{e}, G «— G\ {v}, W — W\ {v},
and also update B by setting B, <+ B, — 1.

(c) If there exists a vertex v € W such that degp(v) < 3 then update W «

3. Return F'.

Figure 4.1: MBDST Algorithm.

In the next lemma we prove (by a very simple counting argument) that in each
iteration we can proceed by applying either Step Rhl or Step R& this will ensure that the

algorithm terminates.

Lemma 4.3 Any vertex solution x of LP-MBDST(G,B,W) with . > 0 for each edge
e € E must satisfy one of the following.

(a) There is a vertex v € V' such that degp(v) = 1.

(b) There is a vertexr v € W such that deggp(v) < 3.

Proof: Suppose for sake of contradiction that both (a) and (b) are not satisfied. Then
every vertex has at least two edges incident to it and every vertex in W has at least four
edges incident at it. Therefore, |E| > (2(n—|W|)+4|W])/2 = n+|W|, where n = |V (G)|.

By Lemma [£.2] there is a laminar family £ and a set T" C W of vertices such that
|E| = |L|+|T|. Since L is a laminar family which only contains subsets of size at least two,
from Proposition 2I0lwe have |£] < n—1. Hence, |E| = |L|+|T| < n—1+|T| < n—1+|W|,

a contradiction. O
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We now prove the correctness of the algorithm.

Theorem 4.4 The iterative algorithm in Figure [[.1) returns a tree T of optimal cost such
that degr(v) < B, + 2 for each v € V.

Proof: The proof that the cost of tree returned is at most the cost of the linear program-

ming solution is identical to the proof of Theorem B.71

We show that the degree of any vertex v is at most B, + 2. At any iteration, let F'

denote the set of edges selected and let B!, denote the current residual degree bound of v.
Claim 4.5 While the degree constraint of v is present, degp(v) + Bl = B,.

Proof: The proof is by induction on the number of iterations of the algorithm. Initially,
F = ¢ and B! = B, and the claim holds. At any iteration, whenever we include an edge

e € §(v) in F, we reduce B], by one and hence the equality holds true. U

When the degree bound for the vertex v is removed then at most 3 edges are incident

at v and B), # 0. In the worst case, we may select all three edges in the solution. Hence,
degr(v) < B, — B, +3 < B, + 2

where B!, > 1 is the degree bound of v when the degree constraint is removed. g

4.2 An Additive 1 Approximation Algorithm

In this section, we give an iterative algorithm which returns a tree of optimal cost and
violates the degree bound within an additive error of one proving Theorem Il The

algorithm is given in Figure

The algorithm proceeds as follows. The algorithm maintains a subset W of vertices on
which it places a degree bound. In each iteration, the algorithm finds a vertex v € W such
that the degree of v in the support is at most B, + 1 and removes the degree constraint for
v. Observe that once all the degree constraints are removed we obtain the linear program
for the minimum spanning tree problem which we showed in Section B.2]is integral. Hence,

when W = () and the algorithm terminates and returns a tree.
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MBDST Algorithm
1. While W # ()

(a) Find a vertex optimal solution = of LP-MBDST(G, B, W) and remove every
edge e with z, = 0 from G. Let the support of x be E.

(b) If there exists a vertex v € W such that degg(v) < B, + 1 then update
W — W\ {v}.

2. Return F.

Figure 4.2: Additive +1 MBDST Algorithm.

At each step we only relax the linear program. Hence, the cost of the final solution is
at most the cost of the initial linear programming solution. Thus the tree returned by the
algorithm has optimal cost. A simple inductive argument as in proof of Theorem [£.4] also
shows that the degree bound is violated by at most an additive one. The degree bound is
violated only when we remove the degree constraint and then degp(v) < B, + 1. Thus, in
the worst case, if we include all the edges incident at v in 7', degree bound of v is violated

by at most an additive one. Thus we have the following lemma.

Lemma 4.6 If in each iteration, the algorithm finds a vertex to remove a degree bound
for some vertez v € W and terminates when W = () then the algorithm returns a tree T of

optimal cost and degr(v) < B, + 1 for each v € V.

It remains to show that the iterative relaxation algorithm finds a degree constraint
to remove at each step. From Lemma [£.2] we have that there exists a laminar family £ C F
and 7' C W such that |£|+]|T'| = |E| and constraints for sets in £ are linearly independent.
Observe that if T' = ¢ then only the spanning tree inequalities define the solution . Hence,
2 must be integral by Theorem [B.71 In the other case, we show that there must be a vertex

in W whose degree constraint can be removed.

Lemma 4.7 Let x be a vertex solution to LP-MBDST(G, B,W) such that x. > 0 for each
ec E. Let L andT C W correspond to the tight set constraints and tight degree constraints
defining x as given by Lemma[f.Z If T # ¢ then there exists some verter v € W such that
degp(v) < B, + 1.

Proof: We present a simple proof given by Bansal et al. [5] based on the a fractional token
argument. The proof will build on the second proof of Lemma [3.16] Suppose for the sake
of contradiction, we have T'# ¢ and degp(v) > B, + 2 for each v € W.
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Claim 4.8 We can assume that x(e) € span(L) for each e such that . = 1.

Proof: Since Lemma 2] holds for any maximal laminar family we construct one laminar
family £’ such that x(e) € span(L’). Extending £ to a maximal laminar family £ will give
the desired property. Let Ey = {e € E : z, = 1} and C be any connected component of
the graph induced by E;. Order the edges in E(C)NE; = {ey,...,e-} such that the graph
induced by {eq,...,e;} is connected for each 1 < ¢ < r. Such an ordering exists since C' is
connected. Include the set of vertices spanned by C; = {ej,...,e;} in £'. Such a set is tight
since x(C;) =i and C; contains i + 1 vertices. Moreover the sets {C; : 1 <1i < r} form a
laminar family (actually a chain). Since, x(e;) = x(C;) — x(Ci—1) for each 1 < i < r where
Co = ¢, x(e) € span({x(C;) : 1 < i < r} for each e € E(C). We repeat this argument
for each connected component of F; and include the corresponding chains in £’. Since the
connected components are over disjoint set of vertices, the sets included do not intersect

and the collection of sets form a laminar family proving the claim. 0

We now show a contradiction by a token argument. We give one token for each edge
in E. We then redistribute the token such that each vertex in 7" and each set in £ gets one
token and we still have extra tokens left. This will contradict |E| = |T'|+ |£| (Lemma F2]).

The token redistribution is as follows. Fach edge e € E gives 1_2% to each of its endpoints

for the degree constraints and x. token to the smallest set in £ containing both endpoints
of e.

We now show that each vertex with a tight degree constraint gets one token. Let
v € T be such a vertex. Then v receives 1_29”6 tokens for each edge incident at v for a total
of

Z -z degp(v) — By, 51
2 2
e€d(v)
where the first equality holds since ) . 5(v) Te = B, and the inequality holds since degg(v) >

B, + 2.

Now we show that each member S € £ also obtains one token. S receives x, token for

each edge e such that S is the smallest set containing both endpoints of e. Let Ry,..., Ry
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be the children of S in the laminar family £ where k > 0. We have

P(E(S) = |8]-1
2(E(R;)) = |Ri|—1foreach 1<i<k
k
— 2(B(S)) - Y #(BE(R)) = |S|-1-) (IRl;—1)
i=1 =1
k
= @(4) = [S]-1-) (IR -1)
i=1

Figure 4.3: The solid edges are in A while the dotted edges are not.

where A = E(S) \ (UF_,E(R;)) (see Figure ). Observe that S receives exactly z(A)
tokens which is an integer by the above equation. But if 2(A) = 0 then x(E(S)) =
Zle X(E(R;)) which contradicts the independence. Hence, each set also receives at least

one token.

Now, we argue that there is an extra non-zero token left for contradiction of Lemmal4.2]
If V¢ L then there exists an edge e which is not contained in any set of £ and the x,
token for that edge gives us the contradiction. Similarly, if there is a vertex v € W\ T then
v also collects one extra token and we get the desired contradiction. Moreover, if there is
a vertex v € V' \ T then each edge e incident at v must have z, = 1 else % > 0 tokens
are extra giving a contradiction. But then x(d(v)) € span(L) for each v € V' \ T since
x(e) € span(L) for each e € 6(v) from Claim 8 But we have

> x(6(v)) = 22(E(V))

veV
where each of the term on the left side is either x(d(v)) for v € T or in span(L). But this
is a linear dependence in the set of all tight independent constraints defining the vertex

solution x giving a contradiction. U



58 CHAPTER 4. DEGREE CONSTRAINED SPANNING TREES

This completes the proof of Theorem [A1]

4.3 An Additive +1 Approximation Algorithm

In this section, we consider the MBDST problem when both lower degree bounds A, and
upper degree bounds B, are given. We present an approximation algorithm which returns
a tree T of optimal cost and A, —1 < degr(v) < B,+1 for each v € V. We actually present
an algorithm for a more general problem, the MINIMUM BOUNDED-DEGREE CONNECTING
TREE (MBDCT) problem.

Connecting Tree Problem

The MINIMUM BOUNDED-DEGREE CONNECTING TREE problem is defined as follows.
We are given a graph G = (V, E), degree lower degree bounds A, for each vertex in
U C V and upper degree bounds B, for each vertex v in some subset W C V a cost
function ¢ : E — R, and a forest F' on V. We assume without loss of generality that
E(F)N E(G) = 0. The task is to find a minimum cost forest H such that H U F is
a spanning tree of G and A, < dy(v) < B,. We call such a forest H an F-tree of G,
and a connected component of F' a supernode; note that an isolated vertex of F' is also a
supernode. Intuitively, the forest F'is the partial solution we have constructed so far, and
H is a spanning tree in the graph where each supernode is contracted into a single vertex.
We denote this contracted graph by G/F. Formally V(G/F) = connected components of
F and E(G/F) = edges between different components of F. Observe that when E(F) = ()
the MBDC'T problem is just the MBDST problem.

4.3.1 Linear Program

We need some notation to define the linear programming relaxation for the MBDCT prob-
lem. For any set S C V(G) and a forest F' on G, let F(S) be the set of edges in F' with
both endpoints in S, i.e., {e € F : [en S| = 2}. Note that F(V) is just equal to E(F).
We denote C(F') the sets of supernodes of F. A set S is non-intersecting with F if for each
C € C(F) we either have C' C S or CNS = 0. We denote Z(F) the family of all subsets

which are non-intersecting with F'.

We assume the lower bounds are given on a subset of vertices U C V and upper
bounds on a subset W C V. Let A (B) denote the vector of all lower (upper) degree
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(a) (b)

Figure 4.4: In Figure (a), the dashed edges correspond to F'. In Figure (b), the bold edges
H form an F-tree of G as F'U H is a spanning tree of G' or equivalently, H is a spanning
tree of G/F.

bounds A, (B,) for each v € U (v € W). The following is a linear programming relaxation
for the MBDCT problem which we denote by LP-MBDCT(G, A, B,U, W, F). In the linear
program we have a variable x. for each edge e which has at most one endpoint in any one
component of forest F. Indeed we assume (without loss of generality) that £ does not

contain any edge with both endpoints in the same component of F.

minimize clx) = Z Ce Te

eeE
subject to  z(E(V)) = |V|—|F(V)| -1
#(B(S)) < |S|—-|F(S)|—1 VS eI(F)
z(0(v) > A, YoelU
2(6(v)) < By Yuew
4.11 ze > 0 Vee E

In the linear program, the constraints from (A1)-(48]) and ([@II) are exactly the
spanning tree constraints for the graph G/F, the graph formed by contracting each com-
ponent/supernode of F into a singleton vertex. The constraints from (L.9])-([AI0) are the
degree constraints for vertices in U and W. Hence, from the Theorem B.8 it follows
that we can optimize over LP-MBDCT(G, A, B,U, W, F') using the ellipsoid algorithm in

polynomial time.
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4.3.2 Characterization of Vertex Solutions

We give a characterization result for any vertex solution to LP-MBDCT(G, A, B,W, F).
The proof of the following is straightforward from Rank Lemma and Lemma B.I3] applied
to the spanning tree linear program for the graph G/F.

Lemma 4.9 Let x be any vertex solution of LP-MBDCT(G, A, B,U, W, F) such that x. >
0 for each edge e € E and let F = {S € Z(F) : z(E(S)) = |S| — |F(S)| — 1} U{d(v) :
2(0(v) = Ay v e U J{o(v) : (6(v)) = By : v € W} . Then there exists a set Tyy C U,
Tw C W and a laminar family ) # £ C Z(F) such that
1. The vectors {x(E(S)): S € L} U{x(0(v)) :v e Ty UTw} are linearly independent.
2. span(L U {6(v) : v € Ty UTw})—span(F).

3. |E| =|L|+ |Ty| + |Tw]|

4.3.3 Iterative Algorithm

We now give an iterative algorithm for the MBDCT problem in Figure

MBDCT(G, A, B,U, W, F)
1. If Fis a spanning tree then return () else let F' «— (.

2. Find a vertex optimal solution = of LP-MBDCT(G, A, B,U, W, F) and remove
every edge e with z. = 0 from G.

3. If there exists an edge e = {u, v} such that z, = 1 then F' — {e}, F — F U {e}
and G «— G\ {e}. Also update A, B by setting A, «— A, — 1, B, «— B, — 1 and
A, — A, —1,B, — B, — 1.

4. If there exists a vertex v € U UW of degree two, then update U «— U \ {v} and
W — W\ {v}.

5. Return F' |J MBDCT(G, A, B,U, W, F).

Figure 4.5: Connecting Tree Algorithm MBDCT.

For the correctness of the algorithm MBDCT, we shall prove the following key lemma,

which will ensure that the algorithm terminates.
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Lemma 4.10 A wvertex solution © of LP-MBDCT(G, A, B,U, W, F) with support E must
satisfy one of the following.

(a) There is an edge e such that x. = 1.

(b) There is a vertex v € UUW such that degg(v) = 2.

In MBDCT Algorithm 2, we only remove a degree constraint on v € U U W if v is
of degree 2 and there is no 1-edge. Since there is no 1-edge, we must have A, < 1. If
v € U, then the worst case is A, = 1 but both edges incident at v are not picked in later
iterations. If v € W, then the worst case is B, = 1 but both edges incident at v are picked
in later iterations. In either case, the degree bound is off by at most 1. Following the same

approach in Theorem 4] we have the following theorem.

Theorem 4.11 There is a polynomial time algorithm for the MINIMUM BOUNDED-DEGREE
CONNECTING TREE problem which returns a tree T' such that ¢(T) < c¢-x and degr(v) <
B,+1 for each v € W and degr(v) > A, —1 for each v € U where x is the optimal solution
to the linear program LP-MBDCT(G, A,B,U,W, F).

A Counting Argument

Now we are ready to prove Lemma Let £ be the laminar family and 7" := Ty U Ty
be the vertices defining the solution x as in Lemma .9l Suppose that both (a) and (b) of
Lemma 101 are not satisfied. We shall derive that |£| + |T'| < |E|, which will contradict
Lemma and complete the proof. We will give two tokens to each edge and collect
two tokens for each set in £ and for each vertex in 7' plus an extra token deriving the

contradiction. We do this by induction on the tree representing L.

We call a vertex active if it has degree at least one in the support £. Each component
of F'is called a supernode. Notice that if a supernode C' has only one active vertex v, we can
contract C' into a single vertex ¢, set A, := A, and B, := By, and set c € U < v € U,
and set c € W <= v € W. Henceforth, we call a supernode which is not a single vertex
a nontrivial supernode. Hence a non-trivial supernode has at least 2 active vertices. We
also have degg(v) > 3 for each v € T.

Each edge receives two tokens which it distributes one each of its endpoints. Hence,
each active vertex v € V receives one token for each edge incident at v. Observe that in
the initial assignment each active vertex has at least one excess token, and so a nontrivial

supernode has at least two excess tokens. For a vertex v with only one excess token, if
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Figure 4.6: In the above figure, the red vertices denote the vertices in 7. The blue forest corre-
sponds to the forest for laminar family £ and vertices in 7.

v ¢ T, then v is a degree 1 vertex; if v € T, then v is of degree 3 and B, =1 or B, = 2.

Suppose every vertex v which is active (and hence has excess tokens) gives all its
excess tokens to the supernode it is contained in. We say the number of excess tokens
of a supernode is the sum of excess tokens of active vertices in that supernode. Observe
that the excess of any supernode is at least one as every supernode has at least one active

vertex and each active vertex has at least one excess token.

We call a supernode special if its excess is exactly one.

Claim 4.12 A supernode C' is special only if it contains exactly one active verter v € T

and degg(v) = 3.

Proof: If the supernode C has two or more active vertices then the excess of C' is at
least two. Hence, it must contain exactly one active vertex with exactly one excess token.
Also, there must be at least two edges incident at the supernode as x(5(C)) > 1 is a valid
inequality. Hence, degp(C) > 2. If v ¢ T, then both v and thus C' will have at least two
excess tokens. This implies v € T and degg(v) = 3. O

The induction strategy to reach the contradiction works bottom up in £ (vertices in
T are leaves) assigning two tokens to each set and three or four tokens to the root of the
subtree depending on its features. We describe this next. We contract a special supernode
into a single vertex because it contains only one active vertex. Hence, the only special
supernodes are singleton vertices in 7' with degree exactly three. Special vertices with

degree bounds at most 2 need careful analysis because some node .S € £ may now only get
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three tokens. The following definition gives a characterization of those sets which only get

three tokens.

Definition 4.13 A set S # V is special if:

1. 16(S)| = 3;
2. x(6(9)) =1 or z(6(5)) =2;

3. x(6(9)) is a linear combination of the characteristic vectors of its descendants in L
(including possibly x(E(S))) and the characteristic vectors x(d(v)) of ve SNT;

Observe that special supernodes satisfy all the above properties. Intuitively, a special
set has the same properties as a special supernode. The following lemma will complete the
proof of Lemma [£.10, and hence Theorem .17l

Lemma 4.14 For any rooted subtree of the forest L # 0 with the root S, we can distribute
the tokens assigned to vertices inside S such that every vertex in T NS and every node in
the subtree gets at least two tokens and the root S gets at least three tokens. Moreover, the

root S gets exactly three tokens only if S is a special set or S =V

Proof: First we prove some claims needed for the lemma.

Claim 4.15 If S #V, then |6(S)| > 2.

Proof: Since S # V, z(6(S5)) > 1 is a valid inequality of the LP. As there is no 1-edge,
|0(S)] > 2. O

Let the root be set S. We say a supernode C'is a member of S if C C S but C € R
for any child R of S. We also say a child R of S is a member of S. We call a member R
of S special, if R is a special supernode (in which the supernode is a singleton vertex in
T with degree three from Claim B.I2)) or if R is a special set. In either case (whether the
member is a supernode or set), a member has exactly one excess token only if the member

is special. Special members also satisfy all the properties in Definition .13l

Recall that E(S) denotes the set of edges with both endpoints in S. We denote by
D(S) the set of edges with endpoints in different members of S.
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Claim 4.16 If S € L has r members then x(D(S)) =r — 1.

Proof: For every member R of S, we have
2(E(R)) = |R| = |F(R)| -1,

since either R € L, or R is a supernode in which case both LHS and RHS are zero. As
S € L, we have
z(E(S)) =S| = [F(S)] -1

Now observe that every edge of F(S) must be contained in F'(R) for some member R of

S. Hence, we have the following, in which the sum is over R that are members of S.

=[S| = [SNF| 1= (IR~ |F(R)| - 1)
R

= (S| =S IR) + S IFR)| — IF(S)| + > 11
R R R
:(Zl)—lzr—l

R

because |S| =) 5 |R| and |F(S)| = >z |F(R)|. O

Claim 4.17 Suppose a set S # V' contains exactly three special members Ry, Ro, R3 and
|D(S)| > 3. Then S is a special set.

Proof: Note that |[§(S)| = [0(R1)| + [6(R2)| + [6(R3)| — 2|D(S)| = 3+ 3 +3 — 2|D(S)| =
9 — 2|D(S)|. Since S # V, we have |§(S)| > 2 by Claim As |[D(9)] = 3, the
only possibility is that [D(S)| = 3 and |§(S)| = 3, which satisfies the first property of
a special set. Also, we have z(0(S5)) = z(d(R1)) + z(6(R2)) + z(0(R3)) — 22(D(S)). As
each term on the RHS is an integer, it follows that z(0(S)) is an integer. Moreover,
as we do not have an l-edge, z(8(S5)) < |d(S)| = 3 and thus z(5(S)) is either equal
to 1 or 2, and so the second property of a special set is satisfied. Finally, note that
X(6(5)) = x(6(R2)) + x(5(R2)) + x(6(Rs)) + x(B(R1)) + X (B(R2)) + x(E(Rs)) — 2x(E(S)).
Here, the vector x(F(R;)) will be the zero vector if R; is a special vertex. Since Ry, Ro, R3
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satisfy the third property of a special member, S satisfies the third property of a special
set. g

The proof of Lemma 14l is by induction on the height of the subtree. In the base
case, each member has at least one excess token and exactly one excess token when the

member is special. Consider the following cases for the induction step.

1. S has at least four members. Each member has an excess of at least one. Therefore

S can collect at least four tokens by taking one excess token from each.

2. S has exactly three members. If any member has at least two excess tokens, then
S can collect four tokens, and we are done. Else each member has only one excess
token and thus, by the induction hypothesis, is special. If S =V, then S can collect
three tokens, and this is enough to force the contradiction to prove Lemma .10 since
V' is the root of the laminar family. Else, we have z(D(S)) = 2 from Claim
Because there is no 1-edge, we must have |D(S)| > z(D(S)) = 2. Now, it follows
from Claim .17 that S is special and it only requires three tokens.

3. S contains exactly two members Ry, Ro. If both Ry, Ry have at least two excess
tokens, then S can collect four tokens, and we are done. Else, one of the members
has exactly one excess token say R;. Hence, R; is special by the induction hypothesis.
We now show a contradiction to the independence of tight constraints defining x, and

hence this case would not happen.

Since S contains two members, Claim implies 2(D(S)) = 1. There is no 1-edge,
therefore we have |D(S)| = |0(R1, R2)| > 2. Also, Ry is special and thus |§(R;)| = 3.
We claim 6(Ry, Re) = §(Ry). If not, then let e = 6(Ry) \ 6(R1, R2). Then

ze = x(0(R1)) — x(0(R1, Rp)) = x(6(R1)) — x(D(5)).

But xz(0(R1)) is an integer as Rj is special and z(D(S)) = 1. Therefore, z. is an
integer which is a contradiction. Thus §(R;, R2) = 6(R;). But then

X(E(S)) = x(E(R1)) + x(6(R1)) + x(E(Ry))
if Ry is a set (see Figure 7)) or

X(E(S)) = x(E(R1)) + x(6(R1))



66 CHAPTER 4. DEGREE CONSTRAINED SPANNING TREES

if Ry is supernode.

S S
Ry Ry R
Gz (=
(a) (b)

Figure 4.7: If §(R1, R2) = §(R1). In (a) we have R is a set and in (b) Ry is a supernode.

R is special implies that x(6(R;)) is a linear combination of the characteristic vectors
of its descendants and the characteristic vectors {x(d(v)): v € Ry NT}. Hence, in
either case x(E(S)) is spanned by x(E(R)) for R € L\{S} and x(d(v)) forv e SNT

which is a contradiction to the inclusion of S in L.

This completes the proof of Lemma 10, Lemma [A.14] and Theorem ATT] O



Undirected Network Design with Degree

Constraints

In this chapter we consider degree constrained general network design problems in undi-
rected graphs and use iterative methods to achieve approximation algorithms. We prove

the following results.

e In section [5.J] we give a polynomial time algorithm for the MiNIMUM BOUNDED-
DEGREE STEINER NETWORK DESIGN problem which returns a solution of cost at
most twice the optimal and violates the degree bounds by at most an additive error

of 67maz + 3, where 7,4, is the maximum connectivity requirement.

e In section[5.2] we consider the special case of MINIMUM BOUNDED-DEGREE STEINER
FOREST problem when the connectivity requirements are {0,1} for all pairs of ver-
tices. We give a polynomial time algorithm which returns a solution with cost at
most twice the optimal and violates the degree bounds by an additive error of at

most three.

5.1 Minimum Bounded-Degree Steiner Network

Given connectivity requirements r, for all pairs of vertices, a Steiner network is a graph
in which there are at least r,, edge-disjoint paths between v and v for all pairs u,v. In the
MINIMUM BOUNDED-DEGREE STEINER NETWORK problem, we are given an undirected
graph G with an edge cost for each edge, a connectivity requirement for each pair of
vertices, and a degree upper bound B, for each vertex v. The task is to find a minimum

cost Steiner network H of G satisfying all the degree bounds, that is, degy (v) < B, for

67
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all v. This problem captures many well-studied network design problems as special cases.
For instance, a Steiner forest is a Steiner network with 7, € {0,1} for all pairs; k-edge
connected subgraph is a special case when r,, = k for all u,v € V. Even the feasibility
problem of finding a Steiner network satisfying all the degree bounds is already NP-hard
since it generalizes the Hamiltonian path problem. In this section, we prove the following

result.

Theorem 5.1 There exists a polynomial time algorithm for the MINIMUM BOUNDED-
DEGREE STEINER NETWORK problem which returns a Steiner network H of cost at most
20pPT with degree violation at most 6rmqe, + 3. Here OPT s the cost of an optimal solution

which satisfies all the degree bounds, and ry,qq = maxy y{7uw}-

This result develops on the iterative rounding algorithm of Jain [53]. In Lau et
al. [69], we first gave a (2,2B + 3)-approximation algorithm using the iterative relaxation

method. Here we achieve an additive violation in the degree bounds.

5.1.1 Linear Programming Relaxation

We begin by formulating a linear program for the problem. Set f(S) = mar,cgv¢s Tuv
for each subset S C V. It is known that f is a weakly supermodular function [53], that is,

for every two subsets X and Y, either
fX)+fY) < f(XNY)+ f(XUY)
or fX)+ ) S f(X=Y)+ f(Y = X).

The following is a linear programming formulation for the MINIMUM BOUNDED-
DEGREE STEINER NETWORK problem, in which the degree constraints are on a subset of
vertices W C V.

(LP-MBDSN)  minimize > e
ecly
subject to z(6(S)) > f(9) VSCV
z(0(v)) < By Yve W
z. > 0 Veec E
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When f is weakly supermodular function of the form discussed above, the above
linear program can be efficiently separated and therefore, optimized over [53]. Also, if
lower bounds on the degree are present then they can be incorporated with the connectivity
constraints. This is achieved by setting f({v}) < max{L,, f({v}) where L, is the lower
bound on degree of vertex v. It is easy to verify that the updated function f remains

weakly supermodular.

5.1.2 Characterization of Vertex Solutions

Let F = {S | z(6(S)) = f(S5)} be the set of tight constraints from the connectivity
requirement constraints. Recall that two sets X, Y are intersecting if X NY, X —Y and
Y — X are nonempty and that a family of sets is laminar if no two sets are intersecting.

Since

2(8(X)) +2(5(Y)) = 2(6(X NY)) + 2(5(X UY)) and
z(6(X)) +2(6(Y)) = 2(0(X = Y)) + z(6(Y — X))

for any two subsets X and Y due to the cut function § and f is weakly supermodular, it
follows from standard uncrossing arguments (see e.g. [53]) that a vertex solution of the
above linear program is characterized by a laminar family of tight constraints. This can

be shown using an uncrossing argument as in Section [3.2]

Lemma 5.2 Let the requirement function f of (LP-MBDSN) be weakly supermodular, and
let © be a vertex solution of (LP-MBDSN) such that 0 < x. < 1 for all edges e € E. Then,
there exists a laminar family L of tight sets and a set T C W with x(6(v)) = B, for each
v €T such that:

1. The vectors x(8(S)) for S € L and x(6(v)) for v € T are linearly independent.
2. |E| = |L]+|T.

3. For any set S € L, x(6(5)) # x(6(v)) for any v e W.

5.1.3 [Iterative Algorithm

The iterative algorithm is given in Figure Bl In Step Bal we define a set of high degree
vertices Wy, = {v € W| 2665(0) Te > 6 fmaz}, where frq. := maxg f(S). Then in Step 2dl

we only pick an edge e with z, > % when both of its endpoints are not high degree vertices.
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Minimum Bounded-Degree Steiner Network
1. Initialization F «— 0, f'(S) «— f(S) VS C V.
2. While F'is not a Steiner network

(a) Computing a vertex optimal solution:
Find a vertex optimal solution z satisfying f’ and remove every edge e with
ze = 0. Set Wp, «— {v € W| 2665(0) Ze > 6fmar} and B, «— Zeeé(v) z, for
veW.

(b) Removing a degree constraint:

For every v € W with degree at most 4 in the support F, remove v from
w.

(¢) Picking an 1-edge:
For each edge e = (u,v) with . = 1, add e to F, remove e from G, and
decrease B, B, by 1.

(d) Picking a heavy edge with both endpoints low:
For each edge e = (u,v) with z. > 1/2 and u,v ¢ W}, add e to F, remove
e from G, and decrease B, and B, by 1/2.

(e) Updating the connectivity requirement function:

For every S C V: f/(S) « f(S) — |6r(S)].
3. Return F.

Figure 5.1: Algorithm for the Minimum Bounded-Degree Steiner Network.

This is the key step to ensure that the degree bounds are only violated by an additive term
and avoid the multiplicative factor of two on the degree bound improving on the previous

iterative algorithm in Lau et al. [69].

First we show that the algorithm returns the solution with the claimed guarantees for
cost and degree in Theorem [5.1] assuming that the algorithm always proceed to completion
to return a feasible solution F. Then we show in Lemma that for any vertex solution

to the linear program one of the conditions must be satisfied.

Lemma 5.3 If in each iteration one of the conditions in Step [2H, Step or Step 18
satisfied then the algorithm returns a Steiner network with cost at most twice the optimal
linear programming solution to (LP-MBDSN) and degree bound of each vertex is violated
by at most 6rpa: + 3.

Proof: The proof is by a standard inductive argument. We give a short explanation. Note
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that f’ is a weakly supermodular function. Since we always pick an edge with z, > % and
the remaining fractional solution is a feasible solution for the residual problem, the cost of
the solution returned is at most twice the cost of the linear programming solution adapting
the proof of Theorem which we outline below. Let z* denote the optimal solution to

the initial linear program before the start of first iteration.

Claim 5.4 In any iteration, if F' denotes the current partial solution and x denotes the

optimum solution to the residual linear program then

c(F) + 2cx < 2cz”.

Proof: The proof is by induction on the number of iterations. Initially, ' = () and x = z*
and the claim holds. Now suppose the claim holds at a beginning of any iteration. If we
remove a degree constraint in Step 2bl then F' does not change while the linear program is
relaxed and hence its optimum can only decrease. Thus the term ¢(F) + 2cx decreases at

the end of iteration and the claim still holds true.

In the other case, we select an edge e with z. > 1 in Step [@d) or Step (2d). Let
Zres denote the solution z, restricted to edges in G\ e, F/ = F U {e} and let 2’ denote the
optimal solution to the residual linear program formed after this iteration . Since x,.s is a

feasible solution to this linear program we have cx,.s < cx’. Thus we obtain that

c(F") 4 2cx’ < c(F) + ce + 2cxpes < o(F) + 2cx < 2¢2*

where ¢, + 2cx,es < 2cx since x, > % Thus the induction hypothesis also holds in
this case. 0

For the guarantee on the degree bound, firstly observe that for any vertex v, we pick
at most By, — 64 edges in Step 2d incident at v since the degree bound of v is reduced
by one whenever such an edge is picked. In Step Rdl we pick at most 12f,.: — 1 edges
incident at v since the degree bound is reduced by % whenever we include such an edge
and the degree constraint is removed before the bound reaches zero. Moreover, at most 4
edges can be picked incident at v once the degree constraint for v is removed. Hence, the

number of edges picked which are incident at v is at most

Bv - 6fmam + 12fmam —1+4= Bv + 6fmaw +37
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as required. O

For the correctness of the algorithm, we shall prove the following key lemma in
Section [B.I.4] which will ensure that the algorithm terminates with a feasible solution and

complete the proof of Theorem [B.11

Lemma 5.5 Let x be a vertex solution of (LP-MBDSN), and W be the set of vertices with
tight degree constraints, and Wy, = {v € W | Zeeé(v) ZTe > 6fmazt- Then at least one of
the following holds.

1. There exists an edge e with xo = 1.
2. There exists an edge e = {u,v} with x. > 1/2 and u,v ¢ Wp,.

3. There exists a vertex v € W such that degp(v) < 4.

We say a vertex v is owned by a set S if v € S and S is the smallest set in £

containing v.

5.1.4 A Counting Argument

We shall prove Lemma by a counting argument. Suppose, by way of contradiction,
that none of the conditions in the lemma holds. Then each edge e has 0 < z, < 1, and
each edge e with 1 > x, > 1/2 (we call such an edge a heavy edge) must have at least one
endpoint in W}, and each vertex in W must have degree at least five. We give two tokens
for each edge (the token assignment scheme is explained below) for a total of 2| E| tokens.
Then, the tokens will be reassigned so that each member of £ gets at least two tokens,
each vertex in T gets at least two tokens and we still have some excess token left. This
will contradict |E| = |£| + |T'| of Lemma [5.2] and thus completes the proof.

The main difference from Jain’s analysis is the existence of heavy edges (with an
endpoint in W}) which our algorithm is not allowed to pick. In the following, we say a
vertex in Wy, is a high vertex. Since there are heavy edges, a set S € £ may only have
two edges in 0(5), and hence S may not be able to collect three tokens as in the proof of
Jain [53]. To overcome this, we use a different token assignment scheme so that a similar

induction hypothesis as Jain’s would work.

Token assignment scheme: If ¢ = {u,v} is a heavy edge, u € W}, and v ¢ W, then v
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gets two tokens from e and u gets zero token. For every other edge e, one token is assigned

to each endpoint of e.

Co-requirement: We also need to refine the definition of co-requirement from Jain [53]

for the presence of heavy edges. Define

coreq(S) = Z (1/2 — ) + Z (1 —z).

e€d(S), xe<1/2 e€d(S), xe>1/2

It is useful to note that this definition reduces to Jain’s definition if every edge e
with x, > % is thought of as two parallel edges aiming to each achieves a value of % and
Te Ze

sharing the current z. value equally (i.e. each gets %): summing % — % over the two

parallel edges gives 1 — z., the second term.

After this initial assignment, each vertex in V'\ W}, receives at least as many tokens as
their degree. Moreover, each vertex in W\ W}, receive at least five tokens (as their degree is
at least five). Note that a vertex v € Wy, might not have any tokens if all the edges incident
at it are heavy edges. By exploiting the fact that f(S) < fiae, however, we shall show that
vertices in W}, can get back enough tokens during the inductive counting argument. Now
we prove the following lemma which shows that the tokens can be reassigned as discussed

previously.

Lemma 5.6 For any subtree of L rooted at S, we can reassign tokens such that each vertex
inT'NS gets at least two tokens, each set in the subtree gets at least two tokens, and the root

S gets at least three tokens. Moreover, root S gets exactly three tokens only if coreq(S) = %

Proof: We now proceed by induction on the height of the subtree to prove Lemma (.6
We first prove the base case of the induction hypothesis where we also show a crucial
Claim .7} which handles all sets that own some vertices in /. We then use this claim in

the main induction proof to complete the proof of Lemma 5.6l

Base Case of Lemma S is a leaf node. First suppose that S N W), = (). If there
exists v € SN (W \ W), then v has at least five tokens. Since v only needs two tokens,
it has three excess tokens which it can give to S. If there are two such vertices or S
owns another endpoint, then S gets at least four tokens as required. Otherwise, we have
x(6(v)) = x(6(S)) which is a contradiction to the linear independence of characteristic
vectors in Lemma [5.21 Hence, we assume SNW = (). Then S can get at least §(S) tokens
from the vertices owned by S. Note that [6(S)| > 2, as z(d(S)) is an integer and there is
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no l-edge. If |§(S)| > 4, then S gets four tokens. If [6(S)| = 3 and |6(S)| contains a heavy
edge, then S can get four tokens from the vertices it owns, since an endpoint v ¢ W of a
heavy edge has 2 tokens by the token assignment scheme. If it does not contain a heavy
edge, then S receives three tokens and coreq(S) = &. If [§(S)| = 2, then at least one edge
is a heavy edge. If both edges are heavy then S can get four tokens, else if only one edge

is heavy then it gets three tokens and coreq(S) = %

We now consider the case that S owns a vertex in W}, and show that S can collect
enough tokens for the inductive argument. The following claim is the key to deal with
degree constraints, which uses crucially the parameter f,q,. This claim holds even when

S is not a leaf in the laminar family, and will also be used in the induction step.

Claim 5.7 Suppose S owns r > 1 vertices in Wj,. Then the number of excess tokens from
the children of S, plus the number of tokens owned by S, plus the number of tokens left
with vertices in Wy, owned by S is at least 2r + 4.

Proof: Let S have c children. As each child has at least one excess token by the induction
hypothesis, if ¢ > 67 then we have 6r tokens which is at least 2r 4+ 4. Hence, we assume
that ¢ < 6r.

Figure 5.2: In this example, red vertices are in W), which donate tokens for edges incident at
them to the other endpoint. Observe that the tokens for black edges are still available for S which
the tokens for black edges are not.

Let B =), By, > >, 6fmaz = 67 fraz, where the sum is over all vertices v € W,
owned by S. Intuitively, vertices in W}, owned by S would have collected a total of B
tokens if the two tokens at each edge is distributed evenly. But by the token assignment
scheme, vertices in W}, owned by S may not get any token for heavy edges incident on
them. We are going to show that these vertices can still “get back” the two tokens they

need for the inductive argument (see Figure £.2)).
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For a child R of S, as z(6(R)) = f(R) < fmaz, at most fiq, units of B come from
the edges in d(R). Similarly, at most fyqe units of B come from the edges in §(S). Hence,
there are at least finq.(6r — ¢ — 1) units of B coming from the edges with both endpoints
owned by S. Since there is no 1-edge, there are at least fy,4,(6r —c— 1)+ 1 such endpoints
from those edges. Let e = {u,v} be such an edge with v € W}, owned by S. If u € W,
then both u and v get one token from e in the initial assignment. If u ¢ W, then u gets
two tokens from e in the initial assignment, but these two tokens are owned by S. So, the
number of tokens owned by S plus the number of tokens left with vertices in W) owned by
S is at least finqe(6r —c — 1) + 1. Furthermore, S can also collect one excess token from
each child. So, the total number of tokens S can collect is at least fiq.(6r —c—1)+c+1,
which is a decreasing function of ¢. As ¢ < 6r, the number of tokens is minimized at
¢ = 6r — 1, which is at least 6r > 2r 4 4. O

In the base case when S owns a vertex in W, using Claim 5.7 S can collect 2r + 4
tokens. So these tokens can be redistributed so that S has 4 tokens and each vertex in W,

owned by S has 2 tokens, which is enough for the induction hypothesis.

Induction Step: The presence of heavy edges with x, > % introduces some difficul-
ties in carrying out the inductive argument in [53]. We need to prove some lemmas which

work with the new notion of co-requirement and the presence of heavy edges.

For any set S, let wdeg(4(5))
1 1
=l{e€d(S):0<z. < 5}] +2{e€d(S): x> 5}]

be the weighted degree of S. This definition is keeping with the idea that each edge with
Te > % is thought of as two parallel edges. Observe that for any v ¢ W it receives exactly
wdeg(v) tokens in the initial assignment as it gets one token for each edge and two tokens
for all heavy edges incident at it. S can take all the tokens for all the vertices it owns
which are not in W. We call these the tokens owned by S. Let G' = (V, E’) be the graph
formed by replacing each heavy edge e by two edges €’ and €” such that z, = . = %,
Observe that

coreq(S) = Z (1/2 —x) + Z (1—x)

e€d(S), xe<1/2 e€d(9), xe>1/2

= Y /2w,

ecd(S)NE’



76 CHAPTER 5. DEGREE CONSTRAINED UNDIRECTED NETWORKS

and wdeg(6(S)) = |8'(S)| where ¢'(S) = {e € E' : e € 6(S)}. Observe that coreq(S)
is integral or semi-integral (half-integral but not integral) depending on whether §'(S) is
even or odd. We first prove the same technical lemma as in [53] with the new definitions

of co-requirements and weighted degrees.

Claim 5.8 Let S be a set in L which owns « tokens and has (8 children where o+ = 3 and
does not own any vertex of W. Furthermore, each child of S, if any, has a co-requirement

of % Then the co-requirement of S is %

Proof: Since each child R of S has a co-requirement of half, this implies that |¢'(R)|
is odd. Note that we assume S does not own any vertex of W. Using these facts and
that o + 8 = 3, a simple case analysis (as in Exercise 23.3 of [99]) can be used to show
that [0'(S)| is odd. Hence, the co-requirement of S is semi-integral. Now, we show that

coreq(S) < 2 proving the claim. Clearly,

coreq($) = 3" (1/2—x0) <3 coreq(R) + 3 (1/2 — o)
R e

e€d'(S)

where the first sum is over all children R of S and second sum is over all edges for which S
owns a token. Since a+ (3 = 3, there are a total of three terms in the sum. Since, any term
in the first sum is % and in the second sum is strictly less than %, if & > 0, we then have
coreq(S) < % which proves the claim. So, assume o = 0, i.e. S does not own any tokens.
In this case, edges incident to children of S cannot all be incident at S since otherwise
it will violate the linear independence of characteristic vectors in £ in Lemma (5.2, and

therefore we have coreq(S) < 3 coreq(R) = 3 proving the claim. O

We are now ready to prove that the induction step holds, in which S has at least
one child. If S owns a vertex in W}, then Claim (5.7 shows that the induction hypothesis
holds. Henceforth, we assume that S does not own any vertices of Wj. Suppose S owns
some vertices in W \ W},. Each such vertex gets at least five tokens. It needs only two
tokens and hence can give three excess tokens to S. As S has at least one child R, R can

give at least one excess token to S, and hence S gets at least four tokens as required.

For the rest of the cases, we assume that .S does not own any vertex of W, and hence
the remaining case analysis is very similar to that of Jain, with a different definition of

co-requirement.

e S has at least four children. Then S can take one excess token from each child.
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e S has exactly three children. If any child S has two excess tokens or if S owns a
vertex then S can get four tokens. Else, each of the three children of S has a co-
requirement of half and S owns no vertices. Then, by Claim [5.8 we have that S has

co-requirement of % and it only needs three tokens.

e S has exactly two children R; and Ro. If both of them have two excess tokens then
we are done. Else, let 21 have exactly one token and hence it has co-requirement of
% by the induction hypothesis. We now claim that S owns an endpoint. For the sake
of contradiction suppose S does not own any endpoint. Then, if there are « edge
between Ry and Ry in E’ (where we replace each heavy edge by two parallel edges),
we have

|0°(S)] = 16" (R1)| + 16" (R2)| — 20

As R has a co-requirement of half, we have |§'(R1)| is odd and hence 6’(S) and ¢’(R2)
have different parity and hence different co-requirements. The co-requirements of S
and Ro can differ by at most the co-requirement of R; which is exactly half. Since,
X(8'(S)) # x(0'(Ry)) + x(0'(Ry)), there must be an edge between R; and Ry and
therefore, coreq(S) < coreq(Rz) + 3. Similarly, x(&'(R2)) # x(6'(S)) + x(6'(R1))
and therefore there is an edge in §'(S) N §(Ry) which implies that coreq(Ry) <
coreq(S) + % Thus, their co-requirements are equal which is a contradiction. Thus

S owns at least one endpoint.

If S owns at least two endpoints or Rs has two excess tokens, then we have four
tokens for S. Otherwise, by Claim [5.8] we have that co-requirement of S is half and

it needs only three tokens.

e S has exactly one child R. Since both sets S and R are tight we have that x(§(S5)) =
f/(S) and z(6(R)) = f'(R). Since x(6(S)) and x(6(R)) are linearly independent,
subtracting the two equations we have that z(0(S)Ad(R)) (A denotes symmet-
ric difference) is an positive integer. Also, there are no l-edges present and so
|0(S)A0(R)| > 2, and each edge in the symmetric difference gives one token to
S. Thus S owns at least two endpoints. If S owns three endpoints or R has two
excess tokens then S can get four tokens. Otherwise, S has exactly two endpoints
and exactly one child which has co-requirement of % Then by Claim B8 S has a

co-requirement of % .

This completes the proof of Lemma [5.6, which assigns two tokens to each set in the
laminar family £ and each vertex in 1" which is contained in some set S € L. For vertices

in T" which are not contained in any set S € £ we also have enough tokens. Observe that
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each vertex v € W\ W), receives at least five tokens. For vertices in W}, not contained in
any set S € £, an argument identical to Claim Bl with S = V will give at least two tokens

to each vertex in Wy,

Thus we have that 2|E| > 2|£| + 2|T'|, which contradicts Lemma[5.2l Therefore, one
of the conditions in Lemma [5.5] holds, and hence we have Theorem B.11 O

Integrality Gap Example. In Figure 5.3 we show that the linear program (LP-MBDSN)
has an integrality gap of B + Q(74,) and therefore Theorem [5.1]is nearly tight.

T X9

Y oy Y3 Yk

Figure 5.3: In this example, we have a complete bipartite graph B = (X,Y, E) where X = {21, 22}
and Y = {y1,...,yr}. We set the connectivity requirements between y; and y; to be 1 for all 7, j,
between ;1 and x5 to be %, and 0 otherwise. The fractional solution where all edges have fractional
value % is the optimal solution, in which the degree of x; and z2 is equal to g = A%. On the
other hand, it can be seen that in any integer solution, the degree of z1 and x5 must be at least
%k = %A*JZ This example also shows that the any feasible solution must cost twice the cost of

optimal LP solution and must violate the degree bounds by at least == for some vertex v.

5.2 Minimum Bounded-Degree Steiner Forest

In this section we study the MINIMUM BOUNDED-DEGREE STEINER FOREST problem
which is a special case MINIMUM BOUNDED-DEGREE STEINER NETWORK problem with
ruw € {0,1} for each pair of vertices u,v € V. We show an improved analysis in this

particular case and prove the following theorem.

Theorem 5.9 There exists a polynomial time algorithm for the MINIMUM BOUNDED-
DEGREE STEINER FOREST problem which returns a Steiner forest F' of cost at most 20PT
with degree violation at most 3 (i.e. degp(v) < B, +3 Yv € F). Here OPT is the cost of

an optimal solution which satisfies all the degree bounds.

The linear program is identical to the linear program in Section G.1lfor the MINIMUM
BOUNDED-DEGREE STEINER NETWORK problem with the extra restriction that f is a
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{0, 1}-valued function. Moreover, the same characterization of vertex solutions follows as

in Lemma which we will use in the next section.

5.2.1 Improved Iterative Algorithm

Our algorithm is an iterative relaxation algorithm as shown in Figure[5.4l We pick a heavy
edge (1 > z, > %) only if both endpoints do not have degree constraints. Also, by only
picking edges with no degree constraints, there is no need to update the degree bounds
fractionally. Note also that the relaxation step has been generalized to remove a degree

constraint when a vertex has degree at most B, + 3.

Minimum Bounded-Degree Steiner Forest
1. Initialization F « 0, f(S) <« f(S) VS C V.
2. While F' is not a Steiner forest

(a) Computing a vertex optimal solution:
Find a vertex optimal solution x satisfying f’ and remove every edge e with
x. = 0.

(b) Removing a degree constraint:
For every v € W with degree at most B, + 3 in the current support graph,
remove v from W.

(¢) Picking an 1-edge:
For each edge e = {u,v} with z. = 1, add e to F, remove e from G, and
decrease B,, B, by 1.

(d) Picking a heavy edge with no degree constraints:
For each edge e = {u,v} with z. > 1 and u,v ¢ W, add e to F and remove
e from G.

(e) Updating the connectivity requirements:

Set f'(S) «— f(S) = 0p(S5).

3. Return F'.

Figure 5.4: Algorithm for Minimum Bounded-Degree Steiner Forest.

The following lemma shows that the algorithm will always terminate successfully.

Lemma 5.10 Every vertex solution x of (LP) must satisfy one of the following:

1. There is an edge e with x. =0 or z. = 1.
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2. There is an edge e = {u,v} with z. > & and u,v ¢ W.

3. There is a vertex v € W with deg(v) < B, + 3.

Note that the updated connectivity requirement function f’ is also a weakly super-
modular function. With Lemma [5.T0] using a simple inductive argument as in the previous
section, it can be shown that the algorithm returns a Steiner forest of cost at most twice
the optimal cost and the degree of each vertex is at most B, + 3. The rest of this section
is devoted to the proof of Lemma 5101

5.2.2 A Refined Counting Argument

The proof of Lemma [B.10]is by contradiction. Let £ be the laminar family and 7" C W
be the set of tight vertices defining the vertex optimal solution x as in Lemma The
contradiction is obtained by a counting argument. Each edge in F is assigned two tokens.
Then the tokens will be redistributed such that each member of £ and each vertex in T’
get at least two tokens, and there are still some extra tokens left. This will give us a
contradiction to Lemma 5.2 that |E| = |£| + |T|.

As before we say an edge is heavy if x, > % If all conditions of Lemma [E.10 do
not hold, we must have that there is no 0-edge and no 1l-edge, every heavy edge has an

endpoint in W, and each vertex v € W has at least B, + 4 edges incident at it.

Token assignment scheme: The two tokens for an edge e = {u,v} are assigned by the

following rules.

1. One token of e is assigned to w and the other token of e is assigned to v.

2. If e = (u,v) is a heavy edge with v € W and wu is not contained in the smallest set
in £ containing v, then the token of e for v is reassigned to the smallest set S € L

containing both u and v (see Figure [.5]).

Classes: Let R be a set in £. An edge e = {u,v} is an out-heavy edge of R if u € R\ W
and v € W\ R and z, > % The following definition is important to the analysis. For a
set R € L, we define R to be of

e Class la: if |§(R)| = 2 and R has one out-heavy edge e with z, > 1.

e Class Ib: if R has two out-heavy edges. (Note that [§(R)| = 2 in this case and each

has value 7).
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Figure 5.5: Rule (2) of the token assignment scheme. This is a new rule which is useful in
collecting an extra token for S. Here, the degree constraint for vertex u has been removed but the
e (lass III: otherwise.

degree constraint for vertex v is present.
1
K ER\ R 5 1 s
4 4 2 2 3 2 2
1
la Ib lla Il

Figure 5.6: The figure shows examples of sets of each class. A vertex without degree constraint is
white, otherwise it is black. (An endpoint without a vertex shown means that this information is
not important.) A heavy edge is represented by a thick line. Note the definition of Class Ia, Class
Ib and Class II require out-heavy edges. The rightmost example is a Class III set, although it has
a heavy edge.

e Class Ila: if |§(R)| = 3 and z. < 3 for each edge e € §(R).

e Class 11b: if R has one out-heavy edge.

The following lemma shows that the tokens can be redistributed so that each member
of £ and each vertex in W gets at least two tokens. The proof is by induction on the laminar

family.

Lemma 5.11 For any subtree of the laminar family L rooted at S, we can redistribute
tokens in S such that

1. Every vertex in T'N .S gets at least two tokens.

2. Class I sets in the subtree get at least two tokens.
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3. Class II sets in the subtree get at least three tokens.

4. Class III sets in the subtree get at least four tokens.

Proof: Here is a brief outline of the proof. First we show in Claim that a set owning
at least two vertices in W can collect enough tokens; this uses the fact that f is a 0-1
function. Then a series of claims, Claim B.I3] Claim 514 Claim and Claim
are used to show that a set owning exactly one vertex in W can collect enough tokens.
Then the remaining cases consider sets which do not own any vertex in W, which rely
crucially on Claim 5171 We remark that Rule (2) of the token assignment scheme and the
asymmetry in the definition of out-heavy edges are used in Claim B.I7 Now we start the
proof by proving Claim (.12

Claim 5.12 If S € L owns two or more vertices in W then the induction claim holds.
Proof: Suppose S owns wy,...,w, € W. Since B, > 1 for all v € W, by Step of

the algorithm, each vertex w; is of degree at least 5. Since f(S) = 1, 6(S) can have at

most two heavy edges. Hence, by the token assignment scheme, there are at least 5r — 2

tokens assigned to wy, ..., w, which have not be reassigned by Rule (2). Since each vertex
in W NS needs only two tokens, there are still 3r — 2 extra tokens left. If » > 2, then §
can collect at least 4 tokens, as required. O

Figure 5.7: Here w; and wq are vertices in W owned by S. The red edges are heavy edges and
there can be at most two such edges in §(7") for any tight set T (here S and its children). Observe
that vertices in W still retain tokens for 2 * 3 — 2 = 4 tokens (for the black edges).

Hence suppose w is the only vertex in W owned by S.

Claim 5.13 Let S be the set that owns w € W. Then w is assigned at least four tokens,

and is assigned exactly four tokens only if:
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1. deg(w) =5, By =1, and there is one heavy edge of 6(S) in é(w).

2. deg(w) = 6, By, = 2, and there are two heavy edges of 6(S) in 6(w). In this case,
0(S) =6(S) Nd(w).

Proof: Since f(S) =1, §(S) can have at most two heavy edges. So w receives one token
for each edge incident at w except for the heavy edges in d(w) Nd(S). By Step D] of the
algorithm, w is of degree at least five. Hence, if there is no heavy edge in 6(S) N d(w), then
w receives five tokens. Suppose that §(S)Nd(w) has only one heavy edge. Thus w receives

deg(w) — 1 > 4 tokens and exactly four tokens only if deg(w) =5 and B, = 1.

Suppose 6(w) N 0(S) has two heavy edges, then B,, = z(d(w)) > 2 since there are
no 0-edges. Therefore, deg(w) > 6 by Step of the algorithm. Thus, w receives at
least deg(w) — 2 > 4 tokens and exactly four tokens ounly if deg(w) = 6, B,, = 2 and
0(S) = 6(w) N§(S) contains two heavy edges. O

We now show via a series of claims that when S owns exactly one vertex in W, there

are enough tokens for S and the vertex w € W it owns.

Claim 5.14 If S owns one vertez in W and has one Class 111 child or two Class 11 children

then there are enough tokens for w and S.

Proof: Let w be the vertex in W that S owns. From Claim [5.13] it follows that w receives
at least four tokens and therefore it has two extra tokens. Each Class III child also receives
two extra tokens by the induction hypothesis and each Class Il child receives one extra
token. Hence, S can collect two tokens from w and two tokens from its Class III child or

the two class II children whichever the case. O

Now, we show that induction hypothesis holds even when S owns exactly one Class
IT child.

Claim 5.15 If S owns one vertex in W and has no Class III child and exactly one Class
II child then there are enough tokens for w and S.

Proof: Following the argument in Claim [5.I4] S can receive at least two extra tokens from
w and one extra token from its class II child, say R;. Let Ro, ..., R; be the class I children

of S where [ > 1 (I =1 implies that there are no class I children) . If w has another extra
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token or S owns an endpoint or §(S) has an out-heavy edge then the claim holds. Thus
any out-heavy edge incident in 0(R;) is in d(w) or is an in-heavy edge in 6(R1). In the
latter case Ry is of Class IIb. Moreover, w satisfies one of the two cases in Claim .13 We

now consider the two cases depending on which of the conditions hold.

1. deg(w) =5, By, = 1, and there is one heavy edge of §(S) in §(w). Thus, w cannot
have another heavy edge incident at it. If R; is of Class IIb then the out-heavy edge
in 0(R;) must also be in 6(S) which contradicts that S needs four tokens. Thus Ry

is of Class Ila and also S does not have any Class I children. But we have

PO(R) = a(3(R) N 6(w)) +2(5(Fr) N 6(S) = 1

£(6(8) = 2(3(S)N8(R)) +2(3(S) N dw)) = 1

z(6(w)) = z(6(w) No(Ry)) +z(5(w) NS(S)) =1
— 2(5w)N3(R)) = #(6(w)N6(S) = w(5(R)N6S)) = 5

But |6(R1)| = 3 thus either |6(R1) Ndo(w)| =1 or [6(R1) N6(S)| = 1. In either case,
there is a heavy edge in 6(R;) contradicting that R; is of Class Ila.

2. deg(w) = 6, By, = 2, and there are two heavy edges of §(S) in §(w). In this case,
0(S) = 6(S) Nd(w). Thus w can have at most one more heavy edge incident at it.

Thus S has at most one class I child Ry. Therefore we have

z(6(R1)) = x(6(R1)No(w)) +x(6(R) N6(R2)) =
z(6(S)) = z(5(S)No(w)) =1
2(6(R2)) = x(d6(w) Nd(R2)) + x(6(w) N(R2))
z(3(w) = z(8(w) N(S)) +z(3(w) NI(Ry)) + z(8(w) N (Ry)) =
— a(8(w) NS(RY) = a(5(w) N 6(R)) = a((Ra) N6(R2)) = 5

Thus again there is a heavy edge in §(R;) and Ry must be of Class ITb. Also Rs is of
class Ib, since there is no edge e in §(Ry) with z, > % Thus, there is a single heavy
edge between R; and Ry. But this edge gives one token to S by Rule 2 giving four
tokens to S.

This completes the proof of Claim [G.15] U
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We now assume that S only has class I children and prove that S can collect enough

tokens.

Claim 5.16 If S has only class I children and own one vertexr w in W, then S can collect

enough tokens.

Proof: If S is of class I then it only needs two tokens which it can take from w. Similarly,
if S is of Class Ila then w must have three extra tokens since there is no heavy edge in
d(S) and therefore the two condition in Claim [5.13] cannot hold. Thus S is of either Class
ITb or Class III. Let Ry,..., R; be the Class I children of S. There is no heavy edge with
one endpoint in one Class I child and another endpoint in another Class I child, by the
definition of Class I child. Let h be the number of out-heavy edges of Ry U...UR; that are
also in 0(.5). The goal now is to collect two tokens for w and 4 — h tokens for S. Observe
that h <1 since S is of Class IIb or Class III.

1. Suppose h = 1. Let ey be an out-heavy edge in 6(S) N d(Ry). Then S is of Class
IIb, and only needs three tokens. If w has at least five tokens, then there are enough
tokens. So assume w has exactly four tokens. Since f(S) = 1 and there is already
a heavy edge e; € §(S), Case (2) of Claim cannot happen. So, by Claim 5.13]
the only possibility is that B,, = 1, deg(w) = 5 and there is one heavy edge f in
0(w) Na(S). Hence §(S) = {e1, f}. Since By, = 1, w does not have any other heavy
edges incident at it. Therefore S has only one child since the out-heavy edge of
another class I child, say Rs, must be incident at §(w). Since |§(w)| =5, [§(R1)| = 2,
and |[0(w) N d(S)| = 1, there must be an edge {w,z} with z € S — R; for which S

owns a token as required.

2. Suppose h = 0. Then every out-heavy edge of R; is incident on w and S is of Class
III. If deg(w) > 8, then w has at least six tokens, and it can give four tokens to S.

Else we have the the following cases.

(a) Suppose deg(w) = 7. Then by Step of the algorithm, B,, < 3. If there
is at most one heavy edge in d(w) N 4(S), then w loses only one token and
has at least six tokens by the token assignment scheme, and this is enough. So
assume that there are two heavy edges in 6(w)Nd(S), and hence |§(w)Ndo(S)| =
|0(S)| = 2. If S owns an endpoint, then S can collect one more token, and this
is enough. So further assume that S does not own an endpoint. Therefore
§(w) \ 6(S) = 6(w,Ut_; R;). We shall prove that this would not happen. Note
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that |6(w,Ul_, R;)| = |§(w) \ 6(S)| = [6(w)| — |6(w) N&(S)| =7 —2 = 5. Since
d(R;) = 2 for each Class I child, this implies that [ > 3. Each R; has an out-
heavy edge e; incident on w. Suppose [ > 4. Since deg(w) = 7, this implies that
By = z(6(w)) > x(0(w) N6(S)) + xe, + Tey + Tey + xe, > 3, a contradiction. So
S must have exactly three children Ry, R, R3. Since |d(w,U!_; R;)| = 5, there
are exactly two children with |0(R;)| = |[0(w, R;)| = 2, say R; and Ry. But then
By =z(8(w)) = z(5(w)N&(S)) +z(5(R1)) +2(6(R2)) +2ey > 1+1+14+1 >3,

a contradiction.

Suppose deg(w) = 6. Then by Step BDl of the algorithm, B,, < 2. If there is no
heavy edge in d(w) N d(S), then w has at least six tokens, and this is enough.
So assume that there is at least one heavy edge in d(w) N 4(.5).

Suppose there are two heavy edges in d(w) N §(S), and hence [§(w) Nd(S)| =
16(S)| = 2. If there are two edges in §(w) with the other endpoint in S —UL_| R;,
then S can collect two more tokens, as required. Otherwise, since deg(w) = 6
and 0(R;) = 2, S must have at least two children R; and Ry. Each R; has a
heavy edge e; incident at w. So, since deg(w) = 6, this implies By, = z(d(w)) >
z(6(w) N6(S)) + xe, + Te, > 2, a contradiction.

Henceforth, we assume that there is exactly one heavy edge f in §(w) N 4o(S).
So, w has at least five tokens, and we need to collect one more token. Each
R; has a heavy edge e; incident at w. If S has at least three children, then
By > xf + ) + Te, + Tey > 2, a contradiction. So S has at most two children.
On the other hand, since S has at least one child, and so By, > xy + 2., > 1
and hence B,, = 2. If S owns an endpoint, then S can collect one more token,

as required. So further assume that S does not own an endpoint.

Suppose S has exactly two children R; and Ry. If 6(w,R1) = J(R;1), then
By > xy + x(0(R1)) + xe, > 2, a contradiction. Hence §(w,R;) = {e1} and
d(w, Re) = {e2}. Suppose 0(Ry, R2) # (). Let §(R1, R2) = {e}. Then .+, =
z(0(R1)) = f(R1) =1, and z¢ + zc, = 2(0(R2)) = f(R2) = 1, and x¢, + ¢, =
z(6(w)) — 2(6(w) N 6(S)) = By — f(S) = 1. Therefore, . = Te, = e, = 3.
But then e is a heavy edge between two Class I children, a contradiction. So
0(R1,R2) = 0. Let Ry = {e1, f1} and Ry = {ea, fo}. The only possibility left
is fi € 0(S) and fo € 6(S). Note that z., + x5, = x(0(R1)) = f(R1) = 1,
and ze, + x5, = 2(0(R2)) = f(R2) = 1, and z¢, + xe, + x(0(w) N 4(S)) =
z(0(w)) = By = 2, and xf, + x5, + x(0(w) N 0(S)) = x(6(5)) = f(5) = L.
Hence z(5(w) N§(S)) = 4. Since f € §(w) NS(S) is a heavy edge, this implies
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that f is the only edge in §(w) N d(S). But then §(w) = {e1,eq, f} and hence

deg(w) = 3, a contradiction.

Henceforth assume that S has exactly one child Ry. If S owns an endpoint, then
S can collect one more token, as required. So further assume that S does not
own an endpoint. We prove that this case would not happen. Then x(§(w) N
8(9)) 4+ z(8(w, Ry)) = (5(w)) = By = 2, and z(86(w, Ry)) + z(6(Ry) N 6(S)) =
2(0(R1)) = f(R1) = 1, and 2(6(w)N6(S5))+x(6(R1)NS(S)) = x(3(5)) = f(5) =
1. Therefore, 6(w,Ry) = 6(R1), and hence x(d(w)) = x(6(R1)) + x(6(5)),

contradicting the linear independence of these vectors.

(c) Suppose deg(w) = 5. Then by Step BBl of the algorithm, B,, < 1 and hence
B, = 1. Each child R; has a heavy edge e; incident on w. So S can have only
one child R;. We cannot have é(w, R1) = §(Ry); otherwise By, > 1. Also, there
is no heavy edge in §(w)Nd(S); otherwise By, > 1. So w has at least five tokens.
If S owns an endpoint, then .S can collect one more token, as required. So further
assume that S does not own an endpoint. Then x(§(w)N§(S)) +z(d(w, Ry)) =
2(8(w) = By = 1, and o(3(w, 1)) + 2(6(F1) N 8(S)2(3(R1)) = F(Ry) = 1,
and z(6(w) N §(S)) + x(6(R1) N do(S)) = x(6(S)) = f(S) = 1. Therefore,
2(6(R1) N(S)) = z(6(w, Ry)) = 2(6(w) N6(S)) = 3. Since §(R;) = 2, there is
only one edge e € §(Ry) N J(S), having z, = % So, e is an out-heavy edge of
Ry in §(5), contradicting h = 0.

This completes the proof of Claim O

We now show that the induction hypothesis holds when S does not own a vertex of
w.

Base Case of Lemma .11k S € L is a leaf node in the laminar family. S gets one token
for each edge in §(S) since S does not own a vertex in W. Therefore, it gets two tokens
only if S is of Class I, three tokens only if it is of Class II, and at least four tokens in any

other case, as required.

Induction step of Lemma .11k The proof is by induction on number of children of
S. Let h be the number of out-heavy edges in S, and let ¢ be the number of tokens that
S can collect. In the following we say a child R is of Type A if R is of Class la or of Class
[Ta. Note that we need h 4+t > 4 if S is not of Type A, and h +t > 3 if S is of Type A.
The following Claim (.17 is crucial and needs the definition of out-heavy edges and Rule

(2) of the token assignment scheme.
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Claim 5.17 Each Class Ib, Class IIb, or Class III child R of S can contribute at least 2
to h +t. Also each Class Ia, Class Ila child can contribute at least 1 to h + t.

Proof: If R is of Class III, then it has 2 excess tokens. If R is of Class IIb, then it has
1 excess token and one out-heavy edge e € 6(R). If e € §(S5), then it contributes 1 to h.
Otherwise if both endpoints of e are in S, then it contributes 1 to ¢ by Rule (2) of the
token assignment scheme. Note that, by definition, an edge can be an out-heavy edge of
at most one child of S, and so its contribution to ¢ will not be double counted. If R is of
Class Ib, then it has 2 out-heavy edges. By the same argument, these edges contributes 2
to h +t. Similarly, if R is of Class la, then it has 1 out-heavy edge, and thus contributes
1 to h +t. Finally, if R is of Class Ila, then it has 1 excess token. O

For the remaining argument we use the following claim which follows from Jain [53]

and is similar to Claim 58]

Claim 5.18 [53/ If S does not own any vertices in W and owns o« tokens and has 3
children all of Class Ila and o+ 3 = 3 then S is of Class Ila.

We now prove a claim which helps us prove the various cases of the induction. The

proofs are similar to proofs in Jain [53].

Claim 5.19 Suppose S is a set which does not own any vertices in W, has « > 1 children
all of which are Type A, owns [ endpoints and has no out-heavy edges in 6(S) for which
one endpoint is owned by S. If o + 3 = 3 then S is of Type A.

Proof: We prove the claim by a case analysis on different values of a.

1. a = 1. Thus 8 = 2. Let R be the child of S. Since x(0(R)) and x(6(S)) are
independent, there must exist edges e € §(R) \ 0(S) and f € §(S) \ 6(R) and S
receives one token for both these edges. Moreover there is no other edge in 6(5)\d(R)
or 6(R) \ 0(S) since § = 2. Now, if R is of Class la then the out-heavy edge in 6(R)
must also be in §(5) since S does not own a vertex in W. In this case S is also of
Class Ia. If R is of Class Ila then . = 25 < 3 and 6(S) = 6(R) U {f}\ {e} and S is

also of Class Ila.

2. o« = 2. Thus 8 = 1. Let Ry and Ry be the children of S. R; and Ry cannot both
be of Class Ia since the out-heavy edge in §(R;) must be in 6(S) for i = 1,2, but
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Thus

then z(6(S)) > 1, a contradiction. First suppose R; is of Class Ia and therefore
Ry is of Class Ila. We cannot have |[0(Ry, Rg)| > 2 since |§(R;1)| = 2, and also
cannot have [0(R2) N d(S)| > 2 since f(S) = x(6(S5)) = 1. So the only possibility is
|0(R1, R2)| = |6(v, R2)| = |0(R2)N(S)| = 1. Hence [0(S)| = 2 and thus S is of Class
Ia, as required. Finally, suppose both Ry and Rs are of Class ITa and 6(S) does not
contain any heavy edges, then from Claim 5.I8 S is of Class Ila, as required.

. a = 3. Let Ry, Ry and R3 be the children of S. As previously argued in the

case of @ = 2, at most one of Ry, Ry, R3 can be of Class la. First suppose that
S has exactly one Class Ia child, say R;. Let 6(Ry) = {e1, f1}, where e is the
out-heavy edge of R;. Assume, without loss of generality, that fi; € §(Rz). Since
f(S) = 1, we must have |§(R2, R3)| = 2; otherwise |§(R3) N d(S)| > 2 and thus
2(6(5)) = me, + 2(5(R3) N(S)) > 2 + 3 =1, since |§(R3)| = 3 and each edge e in
6(Rs) has x. < 3 by the definition of a Class IIa child. Since |§(Rz, R3)| = 2, this
implies that §(S) = 2, and hence S is of Class la and therefore Type A. In the other
case, we have that all three children of S are of Class Ila. Then from Claim it
follows that S must also be of Class Ila.

the claim follows. OJ

Now we complete the inductive argument based on the number of children of S.

. S has at least four children. Then each child can contribute at least 1 to h + ¢, and

so h—+t>4.

.S has exactly three children. If there is a child which is not of Type A, then h4t > 4

by Claim[.17] as required. So assume S has exactly three Type A children Ry, R, R3.
If S owns an endpoint then also A +¢ > 4. So further assume that S does not own
an endpoint. Then S satisfies the conditions of Claim and must be of Type A.
Thus h + ¢t > 3 suffices for S.

.S has exactly two children R; and Rs. If both R; and Ry are not of Type A, since

each can contribute 2 to h + ¢t by Claim [5.17] then we are done.

Suppose Rj is of Type A and Ry is not of Type A. If S owns an endpoint then we

are done. So further assume that S does not own an endpoint. We shall prove that
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this would not happen. In this case

z(0(R1) N6(S)) +z(0(R, Re)) = 2(6(R1)) =1
z(6(R1)N4(S)) + z(0(R2) N(S)) = x(8(5)) =1,
z(6(R2) N0(S)) +x(6(R1, Re)) = 2(6(R2)) =1

Thus we have,

£(3(Ra) N16(5)) = a(3(Rr, B2)) = 2(5(R2) N16(S)) = 2.

Ry cannot be of Class la, since otherwise it has an edge with x, > % Also, Ry cannot
be of Class ITa, since |§(R1)| = 3, either 6(Ry, Rg) or 6(R2) NJ(S) is a single edge e
with x, = %, contradicting Ry is of Class Ila.

So suppose Ry and Ry are of Type A. If S owns two endpoints, then we are done.
By the above argument, S must owns at least one endpoint, and thus h +¢ > 3. If
S has an out-heavy edge for which S owns one endpoint then we have h +¢ > 4 and
we are done. Hence assume that S owns exactly one endpoint v and each out-heavy
edge in §(S) is in 6(R;) for some . Thus S satisfies the condition of Claim and
is of Type A. Thus ¢t > 3 suffices for S.

. S has exactly one child R. By linear independence of x(4(S)) and x(6(R)), S must

own at least two endpoints, and thus h+t > 3. If R is not of Type A, then h+t > 4,
and we are done. If §(S) \ 6(R) has an out-heavy edge or S owns more than two

endpoints then also we have h 4+t > 4 as required. In the remaining case S satisfies
conditions of Claim B.I91and S is of Type A. Therefore, h + t > 3 suffices.

This completes the proof of Lemma B.I1l If some root S of the laminar family is

not of Class I, then there is some excess token left at S by Lemma B.IIl If every root is

of Class I, then there must exist a vertex w € W that is not contained in any root, and so

there is some excess token left at w. This completes the proof of Theorem U



Directed Network Design with Degree Constraints

In this chapter we present bi-criteria approximation algorithms for bounded-degree network

design problems in directed graphs.

e In section[6.1], we consider bounded-degree network design problem in directed graphs
where the connectivity requirements can be specified by a crossing supermodular func-
tion. An example of such network design problems is the k-arc connected spanning

subgraph problem. We give a (2,3B + 5)-approximation algorithm for the problem.

e In section[6.2] we consider the special case of bounded-degree network design problem
in directed graphs here the connectivity requirements are specified by a {0, 1}-valued
intersecting supermodular function. This family of problems includes the MINIMUM
BOUNDED-DEGREE ARBORESCENCE problem. We give an improved (2,2B + 2)-

approximation algorithm for this case.

6.1 Minimum Degree-Bounded Directed Networks

In this section, we consider a general network design problem with degree constraints
where the connectivity requirement is given by a crossing supermodular function. An
integer function on sets of vertices f : 2V — Z% is called crossing supermodular if the
inequality

f(A)+f(B) < f(ANB) + f(AU B)

holds for every pair of sets A,B C V such that AN B # ) and AUB # V. The
connectivity requirement of k-edge-connected spanning subgraph can be formulated via the
crossing supermodular function f(S) =k, V0 #S C V.

91
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(DLP) minimize zprp = Y cede
ecly
subject to Z xe > f(9), VSCV,r¢s

ecdn(S)

Z T, < Bf',”, Vo e W
e€di (v)

Z r. < B, Vo e Wy
ecdout(v)
0 S Te S Ue, \V/e c E

Figure 6.1: Linear Program for Directed Connectivity.

First we address the MINIMUM BOUNDED-DEGREE DIRECTED NETWORK DESIGN
problem of finding a minimum cost subgraph satisfying crossing supermodular connec-
tivity requirements f and degree bounds B/ and B%* on the in-degree and out-degree,

respectively, for each v € V. We prove the following theorem.

Theorem 6.1 There is a polynomaial time algorithm which given an instance of the MIN-
IMUM BOUNDED-DEGREE DIRECTED NETWORK DESIGN problem returns a solution H of
cost < 3c¢(OPT) and 6% (v) < 3B +5 and 6% (v) < 3B +5 for all v € V where OPT

18 the optimal solution.

6.1.1 Linear Program

Figure shows the linear program (DLP) for the problem. As before U, is the upper
bound on the multiplicity of edge e. We place out-degree bounds for vertices in Wy C V
and in-degree bounds for vertices in Wy C V both of which can be initialized to V initially.

The linear program (DLP) can be optimized in polynomial time (see Frank [35] and
Melkonian-Tardos [101]).

6.1.2 Characterization of Vertex Solutions

Recall that a pair of sets A, B are crossing if all of the sets ANB,A—B,B— A,V —(AUB)
are nonempty, and a family of sets £ = {Ay, A, ..., Ag} is cross-free if no two of its sets

are crossing. For any set A C V', let x(A) denote the incidence vector of the set of arcs
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5 (A).

By an extension of a result in Frank [35] and Melkonian-Tardos [I01] the following

lemma is immediate.

Lemma 6.2 Let the requirement function f be crossing supermodular, and let x be a vertex
solution of the linear program (DLP) such that 0 < x. < 1 for all edges e € E. Then there
exists a cross-free family Q of tight sets and tight degree constraints for Ty C Wy and
T5 C Wy such that

(1) [QI +Th| + [T2] = |E].

(i1) The vectors x(A) for A € Q, x(v) forv € Ty and x(V \ v) forv € Ty are linearly

independent.

(ii3) = is the unique solution to {x(6™(v)) = B",Vo € T} U {z(6°“(v)) =
B Yy e Toy |J {x(0™(A)) = f(A),VA € Q}.

6.1.3 Iterative Algorithm

The algorithm is presented in Figure [£.20 The following lemma ensures that we always
make progress either in Step Rblor Step Bd Observe that the proof of Theorem follows
from Lemma

Lemma 6.3 Given a vertex solution x of (DLP) in Figure [6.1 where f is a crossing

supermodular function, one of the following conditions must be true.

1. There exists v € Wy with |67 (v)] < 6,
2. There exists v € Wy with |6°“* (v)| < 6,

3. There exists an edge e such that x. > %

To prove Lemma [6.3] we first introduce some notation and preliminaries. The cross
free family Q corresponds to a laminar family £ = Z U O with |[£]| = |Q| such that
(6™ (S)) = f(S) for each S € T and z(5°(S)) = z(6™(V — S)) = f(V — S) for each
S € O (see Melkonian-Tardos [L01]). Also, we augment the family £ by including in it
singleton sets corresponding to tight degree constraints in 7} and T5 to obtain £' =Z'UQ’
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1. Initialization F' « (), f' « f, and Yv € Wy: B! = BI" and Yv € Wy : B/o¥ =
B,

2. While f" # () do
(a) Find a vertex solution x with cut requirement f’ and remove every edge e
with z, = 0.

(b) If there exists a vertex v € W; with indegree at most 6, remove v from Wi,
if there exists a vertex v € Wy with outdegree at most 6, remove v from
Ws. Goto (a).

(c) For each edge e = (u,v) with z. > 1/3, add e to F and decrease B.°“! and
B! by 1/3.

(d) For every S C V: f/(S) « f(S) — [6%(9)].
3. Return H = (V, F).

Figure 6.2: Bounded-Degree Directed Graph Algorithm.

where 7/ = TU {v}yer, and O' = O U{v}yer,. Observe that [£'| = |Q| + |Th| + |T2| = |E|.

We call members of 7’ square sets and members of O round sets.

We now prove Lemma The proof is an extension of a similar result (Theorem
3.1) in Gabow [38] where the existence of an edge z, > % is proved when degree constraints
are not present. In the presence of degree constraints we show that either we have an edge
with x, > % or the condition where a degree constraint is removed in Lemma[6.3]is satisfied.
The laminar family £’ corresponds to a forest F over the sets in the laminar family where
B € L' is achild of A € L' if A is the smallest set containing B. A node A of L' is a leaf,
chain node or branching node depending on whether it has 0,1 or > 1 children. A chain
node is a 1-chain node (or 1-node) if it belongs to same family Z’ or O’ as its unique child,

else it is a 2-chain node (2-node).

Proof of Lemma The proof is by contradiction. Suppose neither of the three
conditions holds. We show this leads to the contradiction to the fact that |Q|+|T}|+|T2| =
|£'| = |E|. The argument proceeds by assigning two tokens for each edge (one to each
endpoint of e), and showing by a counting argument that we can collect two tokens for

each member in the laminar family and are still left with some excess tokens.

The token assignment is a detailed argument following Gabow [38] depending on the

different cases of the sets. We point out some simple cases from the argument in Gabow [38]
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and where the presence of degree constraints leads us to give a different argument.

Firstly, we give the following definitions following Gabow [38]. Consider a chain node
S with unique child A. Let e be an edge with an end in S\ A. We will call e p-directed (for
parent-directed) if it is oriented consistent with S’s family (Z' or O’). We call e c-directed

(for child-directed) if it is oriented consistent with A’s family.

The following rule is used to assign the token for endpoint v of edge e.

Definition 6.4 The token for the endpoint v of an edge e is given to node S of L' if one
of the following holds:

1. When S is a leaf, v € S, and e is directed consistent with S’s family, i.e., either
S e and e € §(S) or S € O and e € §°(9).

2. When S is a 1-chain node, v € S\ A for A child of S and e is p-directed (or

equivalently, c-directed).

Observe that each leaf node which corresponds to a degree constraint obtains at least
7 tokens otherwise the degree constraint can be removed. They only need two tokens for
themselves for the counting argument. The five extra tokens are assigned to other nodes

in three different steps, the first of which is the the following lemma.

Lemma 6.5 The number of ends available to leaves of L' can be redistributed to give two
tokens to each leaf and branching node of L' and five tokens to each leaf node which is a

degree constraint.

Proof: A leaf node not corresponding to a degree constraint gets at least four tokens,
for example, S € T receives one token for each edge e € §(S) and |67(S)| > 4 since
z(6™(S)) = f(S) > 1 and there is no edge e with 2, > 3. Leaf nodes which correspond to
degree constraint receive at least seven tokens. Since, the number of branching nodes in
any tree is strictly less than the number of leaves, we can assign two tokens from each of

the leaves to branching nodes giving the claim. g

Now, we still have three extra tokens with the sets corresponding to the degree

constrained leaves, one of which we use in the following lemma.

Lemma 6.6 Each 1-chain node has at least two available ends if each set in L' corre-

sponding to a degree constraint donates one token.
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Proof: Consider a 1-chain node S with a child A where wlog S, A € Z'. If both S, A €7
then we have (6 (S)) = f(S) and x(6"(A)) = f(A). Observe that each edge in the
difference with a non-zero (41 or —1) co-efficient gives one token to S. Independence of
the constraints implies that there must be at least one such edge and the integrality of
f(S) and f(A) implies that there cannot be exactly one such edge. Hence, S obtains two

tokens in this case.

In the other case, we may have that A corresponds to a degree constraint. Then
we do not have integrality since z(0""(A)) = B where A = {v} and B need not be an
integer. But, independence of constraints implies that S receives at least one token and it

borrows another token from A for the induction claim to hold. O

The rest of the proof involves analysis of 2-nodes. Lemma[6.3]follows from Lemma [6.5]
and Lemma if we can show that 2-chains can collect two tokens each for themselves

from the remaining unassigned tokens and two extra tokens with each degree constraint.

We start the analysis by defining a subtree Fg for each 2-chain node S. Fg is the
minimal subtree of F having S as its root and each leaf either a leaf of £’ or a 2-chain node

other than S. In particular, S is always a internal node of tree Fg and not a leaf node.

The various trees Fg can overlap: A 2-chain node S occurs at the root in Fg and
also as a leaf in Fp for T the first 2-chain node that is a proper ancestor of S. It is easy
to see that these are the only 2-possibilities. Also observe that a set corresponding to a

degree constraint can only occur in one tree since it can never be a root in such a tree.

The token assignment is as follows. Each set A corresponding to a degree constraint
gives two its excess tokens to the 2-chain node S where A € Fg. Thus, each 2-chain node S
receives two tokens whenever there is a degree constraint in Fg. In the remaining case we
have that there is no degree constraint in Fg. Then we use the following token assignment

from Gabow [38] (pages 120-125) which states that 2-chain nodes can pay for themselves.

Lemma 6.7 [38] The total number of tokens available for the 2-chain nodes in the above

assignment equals twice the number of such nodes.

We omit the proof of the lemma. This completes the proof of Lemma [
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6.2 Minimum Bounded-Degree Arborescence

We now show how to improve the bounds in the case of intersecting supermodular con-
nectivity requirements. An integer function on sets of vertices f : 2V — Z7% is called

intersecting supermodular if the inequality
f(A)+f(B) < f(ANB) + f(AU B)

holds for every pair of sets A, B C V such that AN B # (). This is a stronger requirement
than crossing supermodularity; for example the connectivity requirements of a strongly k-
edge-connected subgraph cannot be formulated as an intersecting connectivity requirement
function since when AUB =V, f(AUB) = 0. The intersecting supermodular connectivity
requirement nonetheless captures the problem of finding an arborescence rooted at r where
f(S)=1if r ¢ S and 0 otherwise. The linear programming relaxation is identical to the

linear program in Figure [6.Il We prove the following theorem.

Theorem 6.8 There exists a polynomial time algorithm which, given a directed graph G,
a {0,1}-valued intersecting supermodular function f as the connectivity requirement and
degree bounds B™ and BS“ for each vertex, returns a solution H of cost < 2 - c(OPT)
where c(OPT) is the cost of the optimum solution. Moreover, deg%(v) < 2B + 2 and
deg?(v) < 2B +2 for allv V.

Before we prove Theorem we give a stronger characterization of vertex solutions
than in Section [6.1.2]
6.2.1 Linear Program

We use the same linear program (DLP) in Figure 6.1l with the special case that the function
f is intersecting supermodular. Since, intersecting supermodular functions are special cases
of crossing supermodular function, polynomial time solvability follows from the discussion

in the previous section.

6.2.2 Characterization of Vertex Solutions

The following lemma is immediate from Frank [35] and Lemma
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Lemma 6.9 Let the requirement function f be intersecting supermodular, and let x be a
vertex solution of (DLP) such that 0 < xz, < 1 for all edges e € E. Then there exists a
laminar family Q of tight sets and tight degree constraints for Ty C Wy and To C Wy
such that

(1) |9l + | + T3] = |E|

(11) The vectors x(A) for A € Q, x(v) forv € T, and x(V \v) for v € Ty are all

linearly independent.

(iii) = is the unique solution to {x(6"(v)) = Bi",Vv € Ty} U {z(6°“(v)) =
B v € Ty} | {x(6™(A)) = f(A),VA € Q}.

Observe that Lemma differs from Lemma in the fact that, in case of a in-
tersecting supermodular function, we can ensure that the independent set of inequalities
correspond to a laminar family while in the case of a crossing supermodular function we

could only ensure that the independent set of inequalities correspond to a cross-free family.

6.2.3 Iterative Algorithm

The algorithm is identical to the algorithm in Figure except that in Step Bd we only
pick an edge e if z, > % and decrease the degree bounds by 1/2, and also in Step 2D}, we
remove an indegree or outdegree constraint if a vertex’s indegree or outdegree is at most
3. We remark that the half-integrality of degree bounds will be useful later. We now prove
the following lemma which gives Theorem

Lemma 6.10 Given a vertex solution x of (DLP) in Figure[61 where f is an intersecting

supermodular function, one of the following must be true.
1. There exists {v} € Ty with |6 (v)] < 3,
2. There exists {v} € Ty with |5°“*(v)| < 3,
3. There exists an edge e such that x, > %

Proof: Suppose neither of the above conditions hold. Then each vertex with a tight in-

degree constraint must have at least four in-edges and a vertex with a tight out-degree

constraint must have at least four out-edges and each edge e must have z. < % Now,
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we argue this leads to a contradiction to the fact that |Q| + |T1| + |T2| = |E|. We prove
this by the following counting argument. For each edge we assign three tokens. We then
redistribute these tokens such that each constraint gets assigned at least three tokens and

we still have extra tokens.

In the initial assignment, each edge gives one token to the head and two tokens to
the tail of the edge. Hence each vertex gets two tokens for each out-edge incident at it and
one token for each in-edge incident at it. For a vertex v € T, we use one token for each
out-edge at v for the out-degree constraint of v. We use rest of the tokens for in-degree

constraints and connectivity constraints.

Observe that each vertex with an out-degree constraints must have at least four out-
edges incident at it. Hence, when we take one token for each out-edge, we obtain at least

four tokens for the out-degree constraint, i.e., they have one excess tokens.

For each vertex, we have one token for each in-edge and out-edge incident at it
remaining. Moreover, if v ¢ T, we still have two tokens for each out-edge incident at v.
We re-assign these tokens such that we collect at least three tokens for each tight in-degree
constraint in 7} and three tokens for each connectivity constraint in @. We outline this

below.

Observe that @' = Q U {v}yer, is a laminar family where we have the constraints
z(6m(9)) = g(S) where g(S) = f(9) if S € Q and g(S) = B if S = {v} for v € T}. For
the laminar family @', let £’ be the forest on the members of the laminar family. Observe
that each member of T in £ is a leaf and any non-leaf node corresponds to a connectivity
constraint. We use this fact crucially when we use the fact the connectivity requirements
are integral. We say that a vertex v is owned by S € Q if S is the smallest set in Q

containing v. Now, we prove the following lemma.

Lemma 6.11 Given a subtree of L' rooted at S, we can assign three tokens to each tight-
degree constraint in S and three tokens to each set R in the subtree. Moreover, we can
assign 3 + |6°“*(S)| tokens to the root S if S corresponds to a connectivity constraint and

4 + |5°u4(S)| tokens if S corresponds a degree constraint.

Proof: The proof is by induction on the height of the subtree.

Base Case. S is a leaf. If S corresponds to a tight-indegree constraint, we must
have four in-edges incident at S. Else if .S corresponds to a tight connectivity constraint
we have x(67(9)) = f(S) where f(S) is a positive integer. The assumption that there is
no edge with z, > % implies that there must be three edges in 6*(S). For each out-edge
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incident at S, .S can collect one token. Hence, there must be at least three in-edge tokens
(four if S corresponds to a tight degree constraint) and |§°%/(S)| out-edge tokens which

can be assigned to S.

Induction Case. S is not a leaf. Hence, S must correspond to a tight connectivity
constraint. By induction, we assign 3 +|6°“/(R)| tokens to each child R of S (4+ |§°“*(R)|
if R corresponds to a tight degree constraint). Each child R of S donates one token to S
for each edge in 6°“*(R). First observe that we can assign one token to S for each out-edge
e € §°U(S). If the tail of e is in some child R of S, then R has already donated one
token for this edge. Else, the tail has been assigned one token for this edge in the initial

assignment and can give one token to S. Thus S can be assigned one token for each edge

in §°U4(9).

Case 1. S has at least two children R, Ry € Q. Since each tight set has connectivity
requirement exactly 1, we have > p_o f(R) — f(S) > 1. Let I} = ™M (S)\ (Ugd™(R)) and
Fy = (Urd™(R)) \ 6"(S). The above inequality implies that z(F>) > 1. But then we have
|F5| > 3, as there is no edge e with x, > % So S can collect one token for each edge in
F (token assigned to head) and Fy (one of the two tokens assigned to tail) to get three

tokens.

Figure 6.3: Here the solid edges are in F, dashed edges are in F5 and the dotted edges are in
§out(S). S can collect one token for each edge in Fy and Fs.

Case 2. S has exactly one child R € Q. Since f(S5) = f(R) and x(S) and x(R) are
linearly independent, we have |Fj| > 1 and |Fy| > 1, where F} and Fy are defined as in
previous case. So S can collect one token for each edge in Fi, and one token for each edge
in Fy. If S also has a child which is a degree constraint, then we can also collect one excess

token from it. Otherwise, the tail of any edge in F5» does not have a tight degree constraint,
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and thus can contribute two tokens to S. In either case S can collect the desired three

tokens.

Case 3. S has no child in Q. Hence, each child of S must be in 7;. If S has at least
two children or if S owns a vertex in T then S can collect at least one excess token from
each child in 77 and each vertex in T owned by S. Moreover, it can collect one more token
from either an edge in F or in F by linear independence (where F} and Fy are defined as

before), and we are done.

Thus the only case left is that S has only one child R which is a singleton vertex
from 77 and S does not own any vertices in T5. .S can collect one excess token from R and
needs two more. If f(S) = g(R) (Here g(R) = B, where R = {v}), by the argument in
case 2, |Fi| > 1 and |F3| > 1, and S can collect two more tokens. If f(S) # g(R), then
|f(S) — g(R)| is half-integral since f(S) is an integer and g(R) is half-integral. Therefore,
since there is no edge e with . > 3, either [Fi| > 2 or |Fb| > 2, and thus S can collect

two more tokens. O

Lemma reassigns the tokens such that we have three tokens for each member
in Q@ and three tokens for each vertex in 77 and 75. To prove Lemma it remains to
be shown that some tokens are still left in excess. If any root S of the forest £’ has at
least one out-edge, then S has been assigned at least four tokens and one excess token
with S gives us the contradiction. Else, consider any root S. Any e € §(S) must have
its tail at a vertex not owned by any set in @’. If the tail of e has an out-degree constraint
present, it has at least one excess token. Else the out-token for e has not been used in the
above assignment and is the excess token which gives us the contradiction. This proves
Lemma O






Further Applications

In this chapter, we consider more applications of the iterative method. We will extend the
integrality results developed in Chapter Bl and show approximation algorithms for three
problems. The first problem is the generalized assignment problem where we present an
alternate proof of the result of Shmoys and Tardos [95] achieving a 2-approximation. We
then give a PTAS for multi-criteria spanning trees and multi-criteria matroids. We then
consider generalizations of the minimum bounded degree spanning tree problem to degree

constrained matroids.

7.1 Generalized Assignment

In the section, we use the iterative relaxation method to obtain an approximation algorithm
for the generalized assignment problem. The generalized assignment problem models the
problem of scheduling jobs on unrelated parallel machines with costs is defined as follows.
We are given a set of Jobs J and machines M, for each job j and machine 7 there is
a processing time p;; and cost c;;; each machine 4 is available for T; time units and the
objective is to assign each job to some machine such that the total cost is minimized and
no machine is scheduled for more than its available time. A job j assigned to machine ¢
is said to wse time p;; on machine . A machines is said to used for time 7" if all the jobs

assigned to it use a total time of 7.

Shmoys and Tardos [95] gave an algorithm which returns an assignment of cost at
most C' and each machine is used at most 27; time units where C is the cost of the
optimal assignment which uses machine ¢ for at most 7; time units (if such an assignment
is possible). In this section, we prove the result of the Shmoys and Tardos [95] using the

iterative relaxation method. This proof develops on the iterative proof of the integrality
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of the linear program LPpg/(G) for the bipartite matching matching given in Section 311

We prove the following theorem.

Theorem 7.1 [95] There exists a polynomial time algorithm which, given an instance of
the generalized assignment problem, returns a solution of cost at most C' and any machine i
s used for 2T; time units where C 1s the cost of the optimal assignment which uses machine

i for at most T; units.

7.1.1 Linear Programming Relaxation

Before we write the linear program for the problem, we first model the problem as a
matching problem. We start with a complete bipartite G with jobs J and machines M
as the two sides of the bipartite graph. The edge between job j and machine ¢ has cost
c¢ij. The generalized assignment problem can be reduced to finding a subgraph F' of G
such that degp(j) = 1 for each job j € J. The edge incident at j denotes to which
machine job j is assigned. The time constraint at machines can be modelled by specifying
that > . s(@)nF Pij < T; for each machine i. We now strengthen this model by disallowing
certain assignments using the following observation. If p;; > T; then no optimal solution

assigns job j to i. Hence, we remove all such edges from graph G.

We now model the matching problem by the following natural linear programming
relaxation LPg4(G, M') where M’ C M to prove Theorem [Tl Observe that we do not
place time constraints for all machines but a subset M’ C M which can be initialized to

M. We have a variable z, for each e = {i, j} denoting whether job j is assigned to machine

~.

minimize clz) = Z Ce Te
eck
subject to Z e = 1 Vjed
e€6(4)
N pae < T Vie M
e€d(1)
Te > 0 VecE
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7.1.2 Characterization of Vertex solutions

The following lemma follows from a direct application of the Rank Lemma.

Lemma 7.2 Let x be an optimum vertex solution to the linear program LP(G,M') such
that 0 < z;; < 1 for each {i,j} € E(G). Then there exists a subset J' C J and M" C M’
such that

1. Zeeé(j) e = 1 for each 7 € J' and Zeeé(i) pexe = Ty for each i € M" and x is the
unique solution to the these equalities.

2. The constraints corresponding to J' and M" are linearly independent.

3. ||+ |M" = |E(G)]

7.1.3 Iterative Algorithm

The following is a simple iterative procedure which returns a assignment of optimal cost.
Observe that it generalizes the iterative procedure for finding optimal bipartite matchings
in Section Bl The bipartite graph F' with vertex set in M U J returns the assignment
found by the algorithm.

Iterative Generalized Assignment Algorithm
1. Initialization E(F) < (), M" — M.
2. While J # ()

(a) Find a vertex optimal solution x of LPg(J, M, M') and remove every variable
Tij with Tij = 0.

(b) If there is a variable z;; = 1 such that then update F' — FU{ij}, J — J\{j},
T; < T; — pij.

(c) Let J; ={j € J : 255 > 0} for each ¢ € M. If there is a machine ¢ such that
|/il = 1 or a machine ¢ such that |J;| = 2 and )., z;; > 1 then update
M’ — M"\ {i}.

JE€J;

3. Return F'.

Figure 7.1: Generalized Assignment Algorithm.

The following lemma is the crucial lemma which shows that the algorithm makes

progress at each step of the algorithm.



106 CHAPTER 7. FURTHER APPLICATIONS

Lemma 7.3 Consider any vertez solution x of LPga(G,M'") with support E. One of the
following must hold.

1. There exists e € E such that x. € {0,1}.

2. There exists an i € M’ such that deggp(i) = 1 or degp(i) = 2 and D ees(i) Te = 1.

Proof: Suppose for the sake of contradiction both the conditions do not hold. Then each
0 < xz. < 1. Each job j € J in the graph G has degree at least two as Zeew) Te = 1.
Moreover, each machine in M’ has degree at least two, else there is a machine 7 such that
degp(i) = 1. Hence, the total number of edges is at least |M’| + |J|. From Lemma [T.2] we
have that |E| = |J'| + |[M"|. But this possible only if J = J" and M’ = M". Moreover,
if there is a machine ¢ € M \ M’ with some edge incident at it then also we have a
contradiction since then |E| > |[M'| + |J|.

Figure 7.2: Here {j1, jo, j3} are the jobs assigned fractionally to {m1, mz2, ms}. Observe that m;
is a machine to which two jobs are assigned fractionally and x;, y,, + Zj,m, => 1 as required.

Hence, each job and each machine in M’ must have degree exactly two and there
must be no edges incident at any machine in M \ M’. Hence, G is a union of cycles.
Consider any cycle C in the graph G. The total number of jobs in C'is exactly equal to the
total number of machines in C'. All jobs in C' are completely assigned (though fractionally)
to machines in C'. Hence, there must be a machine 7 which is assigned exactly two jobs
fractionally, i.e., degp(i) = 2 and Zjeé(i) x;; > 1. This is a contradiction to part 2 of
condition 2. g

We now show the proof of Theorem [[.I] by a simple induction argument.

Proof of Theorem [Z.1F We first prove that the algorithm returns an assignment
of optimal cost. We claim that at any iteration of the algorithm the cost of assignment
given by F plus the cost of the current linear programming solution to LPga (G, M') is
at most the cost of the initial linear programming solution. This we show by a simple

inductive argument on the number of iterations. Observe that the claim holds trivially
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before the first iteration. In any iteration, if we assign job j to machine ¢ in Step [2b] then
the cost of F' increases by ¢;; and the current linear programming solution decreases by
cijTi; = cij as x;; = 1. Hence, the claim holds true. If we remove a constraint in Step [2d
the cost of F' remains same while we relax the linear program further and the cost of the
current linear program can only decrease. Hence, in this case as well the claim holds. Thus,
finally when F'is a feasible assignment, the cost of assignment given by F'is at most the

cost of the initial linear programming solution which is at most C.

Now, we show for each ¢ that machine ¢ is used at most 27; units. Fix any machine
i. We first argue the following claim. If ¢ € M’, then at any iteration we must have
T! + T;(F) < T; where T} is the residual time left on the machine at this iteration and
T;(F) is the time used by jobs assigned to machine i in the current F'. The proof of the
claim is by a standard inductive argument identical to the argument for the cost. Consider
the step when the machine 7 is removed from M’. There can be at most two jobs assigned
to machine ¢ in later iterations and furthermore, fractionally machine ¢ must be assigned
at least one job. Hence, in either case, we have total time needed by all jobs assigned to
machine ¢ is at most T + T;(F) < T; + maxjp;; < 2T;. This claim completes the proof of
Theorem [Z.1] [ |

7.2 Multi-Criteria Spanning Trees

In this section, we give an approximation algorithm for the MULTI-CRITERIA SPANNING
TREE problem. In this problem, we are given a graph G = (V, E) and (non-negative) cost
functions 2, ¢!, ..., c* on the edges and bounds Ly, Lo, . . ., Ly, for the total edge cost of the
tree under each of the cost functions ¢* for each 1 < i < k. The goal is to find a minimum

0

V-cost tree which has ¢*-cost at most L;.

Ravi and Goemans [85] gave an algorithm for two cost functions ¢” and ¢! which,
given a positive €, returns a tree 7' with optimal ¢® cost and ¢'(T) < (1 4 ¢)L;. The
running time of the algorithm is polynomial for any fixed e. We generalize their result and

prove the following result.

Theorem 7.4 Given a graph G = (V, E) and cost functions °,c', ..., c* on the edges and

bounds Ly, Lo, ..., Ly for each of the cost function except ® and given any fived € > 0,
there exists a algorithm which returns a tree of optimal ®-cost and has c¢'-cost at most

(1+€)L;. The running time of the algorithm is polynomial for fized k and e.
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7.2.1 Linear Program

We formulate the following linear programming relaxation for the problem which is a
standard extension of the linear program for minimum spanning tree problem considered
in Section

(LP-MCST) minimize 2Lp

E A,

ecE
subject to z(E(V)) = |V]-1,
z(E(S)) < |S|-1, vScVv
Zc@xe < L V1<i<k
eeE
z. > 0 Vee &

7.2.2 Characterization of Vertex Solutions

We now give a characterization of any vertex solution of the linear program (LP-MCST).
This follows directly from the Rank Lemma and the characterization of vertex solutions of
the spanning tree linear program LPs7(G) in Section B2l (Lemma B.I3)).

Lemma 7.5 Let x be a vertex solution of the linear program (LP-MCST) such that x. > 0
for each edge e and let F = {S C V : x(E(S)) = |S| — 1} be the set of all tight subset
constraints. Then there exists a laminar family LC F and J ={1<i<k:}  .p Clxe =
L;} a subset of tight cost constraints such that

1. The vectors {x(E(S)) : S € L} are linearly independent.

2. span(L)—=span(F).

3. 1L+ |J| = |El.

7.2.3 Iterative Algorithm

The algorithm proceeds in two phases. The first phase is the pruning step which we describe
below. Observe that no feasible solution can include an edge whose ci-cost is more than
L;. We extend this step further and guess all edges in the solution whose c’-cost is at most
7 L;. For any i there can be at most % such edges in the optimal solution. Hence, trying

all such possibilities for inclusion in a partial initial solution takes time m* where m is
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Algorithm for Multi-Criteria Spanning Tree

1. Guess all edges in the optimal solution such that ¢! > 7 Li. Include all such edges in
the solution and contract all such edges. Delete all other edges with ¢, > 7 L; from
G. Update L;.

2. Find a vertex solution x and remove every edge e with . = 0.

0

3. Pick any minimum c’-cost tree in the support graph.

Figure 7.3: Algorithm for Multi-criteria Spanning Trees.

the number of edges in G. There are k cost function to try which amounts to the total
number of choices being at most O(m%) After guessing these edges correctly, we throw
away all other edges which have ¢! cost more than eL; and contract the guessed edges in
the optimal solution. Clearly, the rest of the edges in the optimal solution form a spanning
tree in the contracted graph. Also, now we have an instance where ¢/ < eL; for each e
and 7. We also update the bound L; by subtracting the costs of the selected edges. Let
L denote the residual bounds. We solve the linear program (LP-MCST) with updated
bounds L. The algorithm is given in Figure [[.3]

Now we prove Theorem [.4l

Proof of Theorem [T.4t We first prove the following simple claim which follows
from Lemma

Claim 7.6 The support of (LP—MCST) on a graph with n vertices has at most n+k—1
edges.

Proof: From Lemma [T we have |E| = |[£| + |J]. But [£] < n — 1 since £ is a laminar
family without singletons (see Proposition 2I0) and |J| < k proving the claim. O

Observe that the c’-cost of the tree is at most the cost of the LP-solution and hence
is optimal for the correct guess of heavy edges. Now, we show that the c'-cost is at most
L) + eL;. Observe that any tree must contain n — 1 edges out of the n + k — 1 edges in
the support. Hence, the costliest ¢’-cost tree costs no more than k - %L; = €L} more than
the minimum c’-cost tree. But that the fractional solution picks n — 1 edges whose ci-cost
is at most L]. Thus the cost of the minimum c’-cost tree is at most L) and the fractional
solution which is at most L, and the cost of the costliest ¢;-cost tree in the support costs

no more than L} + e¢L;. Adding the cost of edges guessed in the first step we obtain that
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(LP-MCMB)  minimize ap = Y daz
ecV
subject to z(V) = rV),

z(S) < r(S), vScV
> dare < L V1<i<k
ecV

e > 0 VeeV

Figure 7.4: Linear Program for Multi-Criteria Matroid Basis Problem.

the tree returned by the algorithm costs at most L} + eL; + L; — L} = (1 + ¢€) L;. [

7.3 Multi-Criteria Matroid Basis

In this section we generalize the result of Section to MULTI-CRITERIA MATROID BASIS
problem. In an instance of the MULTI-CRITERIA MATROID BASIS problem, we are given
a matroid M = (V,Z), cost functions ¢! : V — Ry for 0 < i < k, bounds L; for each
1 < i < k and the task is to the find the minimum °-cost basis of M such that ¢-cost is at
most L;. When M is the graphic matroid, this problem reduces to the MULTI-CRITERIA
SPANNING TREE problem which we considered in the previous section. We prove the

following theorem.

Theorem 7.7 Given any € > 0 there exists a polynomial time algorithm which given an
instance of the MULTI-CRITERIA MATROID problem returns a basis B of M of optimal c°-
cost and ¢/(B) < (1 + €)L; for each 1 < i < k. The running time of the algorithm is
polynomaal for fived € and k.

We prove Theorem [.7] using the iterative method.

7.3.1 Linear Programming Relaxation

We now formulate the following linear programming relaxation (LP-MCMB) for the prob-
lem which is a straightforward extension of the linear program for the MINIMUM COST
MATROID BASIS problem considered in Section B.4l Here r denotes the rank function of
the matroid M.
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The polynomial time solvability of the linear program (LP-MCMB) follows from

polynomial time separation for the linear program LP,,,; (M) as discussed in Section B4l

7.3.2 Characterization of Vertex Solutions

The following characterization is immediate from Lemma B.31]

Lemma 7.8 Let x be a vertex solution of the linear program (LP-MCMB) such that x. > 0
foreache € V andlet F ={S CV : x(S) = r(S)} be the set of all tight subset constraints.
Then there ezists a chain C CF and J = {1 < j <k:> .oy ciwe = L;} a subset of tight

cost constraints such that

1. The vectors {x(S) : S € C} are linearly independent.
2. span(C)=span(F).

3. 1C|+ 1] = V.

7.3.3 [Iterative Algorithm

The algorithm generalizes the algorithm given in Section [[.23] for the MULTI-CRITERIA
SPANNING TREE PROBLEM. We first perform a pruning step to guess all elements in the
optimal solution with c’-cost at most E—él for any 1 <4 < k. Then we solve the linear
program (LP-MCMB) for the residual problem and remove all elements which the liner
program sets to a value of zero. We then select the minimum cost basis under cost function

¥ ignoring the rest of the cost functions.
Now we prove Theorem [.71

Proof of Theorem [T.Tt We first prove the following simple claim which follows
from Lemma [T8]

Claim 7.9 The support to the LPyatr0ia 0n a matroid with r(V) = n has at most n + k

elements.

Proof: From Lemma [T8] we have |V| = |C| 4 |J|. But |C| < r(V) since C is a chain and
x(C) equal a distinct integer between 1 and r(V) for each C' € C. Also |J| < k proving
the claim. U
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Algorithm for Multi-Criteria Matroid Basis
1. Guess all elements in the optimal solution such that ¢ > 7L
e Include all such elements in the solution and update the matroid by contracting

these elements (see Definition B.28]).

e Delete all other heavy elements e with ¢! > +L; for any i from M (see Defini-
tion B27).
e Update L;.

2. Find a vertex solution z of (LP-MCMB) for the residual problem and remove every
element e with z. = 0.

0

3. Pick any minimum c”-cost basis in the support.

Figure 7.5: Algorithm for Multi-criteria Matroid Basis.

Observe that the c%-cost of the basis returned is at most the cost of the LP-solution
and hence is optimal. Now, we show that the c’-cost is at most L+ €L;. Observe that any
basis must contain (V) elements out of the (V') + k elements in the support. Hence, the
costliest c¢’~cost basis differs from the minimum c’-cost basis by at most & - %L; =eL!. But
the minimum c’-cost basis has c’-cost at most the cost of fractional basis L, thus proving
Theorem [T17 [ |

7.4 Degree Constrained Matroids

We consider the MINIMUM BOUNDED-DEGREE MATROID BASIS problem, which is a gen-
eralization of the MINIMUM BOUNDED-DEGREE SPANNING TREE problem. We are given
a matroid M = (V,Z), a cost function ¢ : V' — R, a hypergraph H = (V, F), and lower
and upper bounds f(e) and g(e) for each hyperedge e € E(H). The task is to find a basis
B of minimum cost such that f(e) < |BnNe| < g(e) for each hyperedge e € E(H). One
motivation for considering the matroid generalization was the following problem posed by
Frieze [36]: “Given a binary matroid M4 over the columns of a 0, 1-matrix A and bounds
g; for each row i of A, find a basis B of matroid M4 such that there are at most g; ones

in any row among columns in B”. Our main result is the following:

Theorem 7.10 There exists a polynomial time algorithm for the MINIMUM BOUNDED-
DEGREE MATROID BASIS problem which returns a basis B of cost at most OPT such that
fle)=2A+1 < |Bne| <gle)+2A —1 for each e € E(H). Here A = maxycy |{e €
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E(H) : v € e}| is the maximum degree of the hypergraph H and OPT is the cost of an

optimal solution which satisfies all the hyperedge intersection bounds.

This theorem can be improved if only upper bounds (or only lower bounds) are
present. The proof of the improvement uses the proof technique of Bansal et al. [5], who
worked independently on the MINIMUM CROSSING SPANNING TREE problem and obtained

the following result for that special case.

Theorem 7.11 There exists a polynomial time algorithm for the MINIMUM BOUNDED-
DEGREE MATROID BASIS problem with only upper bounds which returns a basis B of cost
at most OPT such that |BNe| < gle) + A — 1 for each e € E(H). An analogous result

holds when only lower bounds are present.

It should be noted that this does not match the result in Section on minimum
bounded-degree spanning trees, since that result violates the degree bounds by at most 1

even when both upper and lower bounds are present.

First we show some applications of the main results. Then we present the proofs of

the main results.

Applications

In this section we highlight some applications of the main results.
Minimum Crossing Spanning Tree

In the MINIMUM CROSSING SPANNING TREE problem, we are given a graph G =
(V,E) with edge cost function ¢, a collection of cuts (edge subsets) C = {C1,...,Cy,}
and bound g; for each cut C;. The task is to find a tree T" of minimum cost such that
T contains at most g; edges from cut C; where C; = §(S;) for some S; C V. See [7] for
various applications of this problem. The MINIMUM BOUNDED-DEGREE SPANNING TREE
problem is the special case where C = {§(v) : v € V}. The following result (see also
[5]) can be obtained as a corollary of Theorem [[IIl Note that d = 2 for the MINIMUM
BOUNDED-DEGREE SPANNING TREE problem.

Corollary 7.12 [Jl There exists a polynomial time algorithm for the MINIMUM CROSSING
SPANNING TREE problem that returns a tree T with cost at most OPT and such that T
contains at most g; +d — 1 edges from cut C; for each i where d = max.cg |{C; : e € C;}|.

Here OPT is the cost of an optimal solution which satisfies all the cut intersection bounds.
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Proof: Let M = (F,T) denote the graphic matroid over the graph G. The hypergraph
H is defined with V(H) = E(G) and E(H) = {C; : 1 < i < m}. Note that A =
max,cy () [{e € E(H) :v € e}| = max.cp(q) [{Ci : e € Ci}| = d. So, using Theorem [L.TT]
we obtain a basis T' of matroid M (which is a spanning tree), such that |[TNC;| < g;+d—1.

U

Minimum Bounded-Ones Binary Matroid Basis

For the MINIMUM BOUNDED-ONES BINARY MATROID BASIS problem posed by
Frieze [36], we are given a binary matroid M4 over the columns of a 0,1-matrix A and
bounds g; for each row ¢ of A. The task is to find a minimum cost basis B of matroid M
such that there are at most g; ones in any row among columns in B. The following result

is obtained as a corollary of Theorem [Z.11]

Corollary 7.13 There exists a polynomial time algorithm for the MINIMUM BOUNDED-
ONES BINARY MATROID BASIS problem which returns a basis B of cost at most OPT such
that there are at most g;+d — 1 ones in any row restricted to columns of B. Here d is the
mazimum number of ones in any column of A and OPT is the cost of an optimal solution

satisfying all the row constraints.

Proof: Let M = M4 and define a hypergraph H where the vertex set is the columns of
A. The hyperedges correspond to rows of A where e; = {A7 : A;; = 1} where A7 is the j*
column of A. Note that A = max,cy (g [{e € E(H) : v € e}| = max; [{i : a;; = 1}| = d,
which is the maximum number of ones in any column of A. So, using Theorem [.I1], we

obtain a basis of M = M4 such that number of ones in any row is at most g; +d —1. [

Minimum Bounded-Degree Spanning Tree Union

In the MINIMUM BOUNDED-DEGREE SPANNING TREE UNION problem, we are given
a graph G = (V, E) with edge cost function ¢, a positive integer k, and lower and upper
degree bounds f(v) and g(v) for each vertex v. The task is to find a subgraph H which is
the union of k edge-disjoint spanning trees and the degree of v in H is between f(v) and
g(v). The MINIMUM BOUNDED-DEGREE SPANNING TREE problem is a special case when
k = 1. Theorem [.TT] implies the following result, which is optimal in terms of the degree

upper bounds.

Corollary 7.14 There exists a polynomaial time algorithm for the MINIMUM BOUNDED-
DEGREE SPANNING TREE UNION problem which returns a subgraph G of cost at most OPT
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which s the union of k edge-disjoint spanning trees and the degree of v in H is at most
g(v) + 1. Here OPT is the cost of an optimal solution which satisfies all the degree upper
bounds given by the function g.

Proof: Let M = (F,Z) denote the union of k graphic matroids over the graph G, which
is a matroid by the matroid union theorem (see Chapter 43 in [91]). The hypergraph
H is defined with V(H) = E(G) and E(H) = {6(v) : v € V(G)}. Note that A =
max,ey () [{e € E(H) :v € e}| = max.cp(q) [{0(v) : v € V(G) Ae € 6(v)}| = 2. So, using
Theorem [[.T1] we obtain a basis T' of matroid M (which is the union of k edge-disjoint
spanning trees), such that |[T'N C;| < g; + 1. O

7.4.1 Linear Program

We now give the linear programming relaxation LP,,,.(M, H) for the MINIMUM BOUNDED-
DEGREE MATROID BASIS problem. Let 7 : 2V — Z_ denote the rank function of matroid

M.
minimize clx) = Z Cyp Ty

veV
subject to z(V) = r(V)
z(S) < r(S) VSCV
fe)<ae) < gle) Ve e B(H)
0< =z, <1 YveV

This linear program is exponential in size but can be separated over in polynomial time
if given an access to the independent set oracle [20]. Given a matroid M = (V,Z) and an
element v € V, we denote by M\ v the matroid obtained by deleting v, i.e., M \v = (V',Z")
where V! = V\{v} and Z' = {S € T : v ¢ S}. We also denote by M /v the matroid obtained
by contracting v, i.e., M/v = (V') where V! = V\{v} and I' = {S\{v} : S € Z,v € S}.

7.4.2 Characterization of vertex solutions

We have the following characterization of an extreme point of the linear program which

follows directly from the Rank Lemma and Lemma B.31]
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1. Initialization B « 0,
2. While B is not a basis do

(a) Find a vertex optimal solution x to LP,,.(M, H). Delete v such that x, = 0.
Update each edge e € E(H) let e «— e\ {v}. Update Matroid M «— M \ v.

(b) For each element v with z, = 1, include v in B and decrease f(e) and g(e) by
1 for each e > v. Update M «— M /v.

(c) For every e € E(H) such that |e] < 2A, remove e from E(H).

3. Return B.

Figure 7.6: Algorithm for the Minimum Bounded-Degree Matroid Basis.

Claim 7.15 Let 7 = {S C V : x(S) = r(S)} be the collection of all tight sets at solution
x. There is a set E' C E of tight hyperedges and a chain L C T such that

1. {x(S): S e L} U{x(e) : e € E'} are linearly independent vectors
2. span({x(S) : S € L}) = span({x(S): S €T}).

3. V| =|E'|+|L].

7.4.3 Iterative Algorithm

The algorithm is given in Figure [[L6l Suppose that the algorithm terminates successfully.
Then Theorem [[.I0follows from a similar argument as in [96], which is sketched as follows.
Firstly, observe that the matroid M is updated to M \ v whenever we remove v such that
x, = 0 and updated to M /v whenever we pick v such that =, = 1. A simple verification
shows that the residual linear programming solution (current LP solution restricted to
V' \ {v}) remains a feasible solution for the modified linear program in the next iteration.
In Step2d we remove a degree constraint hence, the current linear programming solution
remains a feasible solution. Now, a simple inductive argument shows that by only picking
elements with x,, = 1, the cost of the returned basis is no more than the cost of the original
vertex optimal solution. Also, since we only remove a degree constraint of a hyperedge
when it contains at most 2A elements, the degree constraints are violated by at most
2A — 1. Therefore, it remains to show that the algorithm always terminates successfully.
That is, it can always find an element v with x, = 1 in Step 2Dl or it can find a hyperedge
e with |e|] < 2A in Step 2d
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Suppose for contradiction neither of the above conditions hold. Hence, 0 < x, < 1
for each v € V and |e| > 2A for each e € E(H). From Lemma there is a set £/ C F
of tight hyperedges such that {x(S) : S € L} U{x(e) : e € E'} are linearly independent
vectors and |V| = |E'|+|L]. We now derive a contradiction to this by a counting argument.
We assign 2A tokens to each vertex v € V for a total of 2A|V| tokens. We then redistribute
the tokens so that each hyperedge in E’ collects at least 2A tokens, each member of £
collects at least 2A tokens, and there are still at least one extra token. This implies that
2A|V| > 2A|E’| + 2A|L|, which gives us the desired contradiction.

Proof of Theorem The reassignment is as follows. Each element v gives A
tokens to the smallest member in £ it is contained in and one token to each edge e € E’ it
is present in. As any element is contained in at most A edges, thus the distribution is valid
and we distribute at most 2A tokens per element. Now, consider any set S € £ and let
R be the largest set in £ contained in S. We have z(S) = r(S) and xz(R) = r(R). Thus,
we have (S \ R) = r(S) — r(R). As constraints for R and S are linearly independent
and x, > 0 for each v € V, this implies r(S) # r(R). Since r is a matroid rank function,
r(S) — r(R) > 1 as they are both integers. Since 0 < z, < 1, this implies |[S \ R| > 2.
Thus, S can collect at least 2A tokens, A tokens from each element in S\ R, as required.
Consider any hyperedge e € E’. As |e| > 2A and it can collect one token from each element

in e, there are at least 2A tokens for each edge e, as required.

Now, it remains to argue that there is an extra token left. If V' ¢ £ or any of the
elements is in strictly less than A hyperedges of E’ then we have one extra token. Else,
Y ecr X(e) = A - x(V) which gives dependence among the constraints as V' € £. Hence,
we have the desired contradiction, and the proof of Theorem [Z.10] follows. [ |

Now we show how to use the proof technique of Bansal et al [5] to obtain Theo-

rem [T 111

Proof of Theorem [Z.11t The proof for upper bounds is similar to the proof of
Theorem except for the counting argument. The only important difference is that we
remove a hyperedge e if g(e) + A — 1 > |e|; this is possible since in that case the degree
upper bound on e can be violated by at most A — 1. It follows that we may assume that

le] — g(e) > A for all hyperedges.

The proof that [V| > |E'| 4+ |£] if 0 < 2 < 1 goes as follows. Let £ = {S1,...,Sk},
where S1 € So € -+ C Sk, and let Sy := (). Then |e| — xz(e) > A for every e € E’, and
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x(S;\Si—1) =7(S;) —7r(Si=1) > 1fori=1,..., k. Using these inequalities, we obtain that

k

/ le] — z(e) N~ L) .

|E"[+|L] < Z A +Z (9i\Si—1) = Z A {e € E':v € e}|+z(Sk) < |V,
eckE’ i=1 veV

and if equality holds, then [{e € E' : v € e}| = A for every v € V and S = V. But then

A x(Sk) = > .cpr X(e), which contradicts the linear independence of E' and L.

If only lower bounds are present, then we can delete a hyperedge e if f(e) < A —1,
so we may assume that f(e) > A for all hyperedges. To show |V| > |E'| 4+ |£| we use that
xz(e) > A for every e € E' and |S; \ Si—1| — 2(S; \ S;—1) > 1 for i = 1,...,k, where the
latter holds because x(.S; \ Si—1) < |S; \ Si—1] and both are integer. Thus

k
Z11el < 3 TS5 S| - 2(S\ Si)
i=1

ecE’

> X c B v e+ 15 - a(s) < VI
veV

and the claim follows similarly as for upper bounds. [ |



Conclusion

In this thesis, we showed that iterative techniques give a general methodology to deal
with degree constraints in network design problems. The techniques enable us to obtain
almost optimal results for a large class of degree constrained network design problems. In
undirected graphs, we obtained first additive approximation algorithms for a large class of
bounded-degree network design problems which violate the degree bounds by only a small
additive amount. Moreover, the cost of the solution returned is close to optimal. Some of

our main results that we obtained are the following.

e We give a polynomial time algorithm for the MINIMUM BOUNDED-DEGREE SPAN-
NING TREE problem which returns a tree of optimal cost and such that degree of

any vertex v in the tree is at most B, + 1.

e We obtain bi-criteria approximation algorithm for the MINIMUM BOUNDED-DEGREE
STEINER TREE problem, MINIMUM BOUNDED-DEGREE STEINER FOREST problem,
MINIMUM BOUNDED-DEGREE STEINER NETWORK problem. The solution returned
by the algorithm costs at most twice the optimal solution and the degree of any
vertex violates its degree bound by an additive error which depends on the maximum

connectivity requirement.

e As a corollary to the previous results, we also obtain first additive approximation al-
gorithms for BOUNDED-DEGREE STEINER FOREST problem and BOUNDED-DEGREE
K-EDGE CONNECTED SUBGRAPH problem for bounded k.

e We obtain constant factor bi-criteria approximation algorithm for the MINIMUM
BOUNDED-DEGREE ARBORESCENCE problem where both the cost and the maxi-
mum degree of the solution is within constant multiplicative factor of the optimal

solution.

119
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e We use the iterative method for various other problems to obtain a polynomial time
approximation scheme (PTAS) for the multi-criteria spanning tree problem and the
multi-criteria matroid basis problem, 2-approximation for the generalized assignment
problem and additive approximation algorithm for degree constrained matroid basis

problem.

8.1 Further Work

In directed graphs, we gave constant factor bi-criteria approximation algorithms for degree
constrained network design problems which violate both the cost and the degree by a

constant multiplicative factor. Subsequently, using iterative methods, Bansal, Khandekar

1 By
€’ 1—e

and Nagarajan [5] obtained an ( + 4)-approximation algorithm for the MINIMUM
BOUNDED DEGREE ARBORESCENCE problem for 0 < ¢ < % Moreover, they obtain the
first additive approximation algorithm for the bounded-degree arborescence problem with
degree violation at most 2. In order to obtain additive guarantees on the degree bounds,
however, the cost of the solution becomes unbounded. They show that this cost-degree
tradeoff in their result is actually best possible using the natural linear programming

relaxation [0, which is an exact formulation when degree constraints are absent.

Lau and Kiraly [57] used the iterative method to obtain additive approximation

algorithms for the degree constrained submodular flow problem.

8.2 Future Direction

[terative techniques are quite versatile and we showed its application to a wide variety of
degree constrained network design problems and other problems including multi-criteria
spanning tree, multi-criteria matroids, degree constrained matroids and the generalized
assignment problem. A natural question is whether they will have other major applications.
We highlight two problems where these techniques might be useful. The first problem is the
Traveling Salesperson Problem. The TSP problem is essentially a network design problems
with degree constraints and our results on the MINIMUM BOUNDED DEGREE SPANNING
TREE problem do lead to better polyhedral results about the TSP in both the symmetric
and the asymmetric case. A connected graph is called a 1-tree if it contains exactly one
cycle including a special vertex v. Held and Karp [47, 48] showed that any fractional
solution to the well-known subtour elimination LP for the TSP problem can be written as

a convex combination of 1-trees. The following theorem (a weaker version of it was shown
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by Goemans [42]) follows using the ideas in Section

Theorem 8.1 Any fractional solution to the subtour elimination LP for the STSP problem
can be expressed as a convexr combination of 1-trees where the mazimum degree of each 1-

tree 1s at most three.

A similar polyhedral result also follows for the asymmetric TSP problem where the
fractional solution can be represented as a convex combination of weakly connected 1-
tree each having a maximum in-degree and out-degree of three. Whether these results or
further extensions using iterative methods can lead to better approximation algorithms for

asymmetric TSP or symmetric TSP is open.

The second problem we state is the SINGLE SOURCE UNSPLITTABLE MIN-COST FLOW
PROBLEM. In the SINGLE SOURCE UNSPLITTABLE MIN-COST FLOW problem, commodities
must be routed simultaneously from a common source vertex to certain destination vertices
in a given graph with edge capacities and costs; the demand of each commodity must be
routed along a single path so that the total flow through any edge is at most its capacity.
Moreover, the total cost must not exceed a given budget. Skutella [78] gives an algorithm
which finds an unsplittable flow whose cost is bounded by the cost of the initial flow f
and the flow value on any edge e is less than 2f(e) + dyq: where f is a the minimum
cost fractional flow satisfying all capacity constraints and dj,q. is the maximum demand.
Goemans [78] conjectures that there is an unsplittable flow where the flow value on the
edge is at most f(e) + dmae and the flow is of optimal cost. Dinitz et al. [24] prove
this in the version without costs. A special case for the unsplittable flow problem is the
restricted assignment problem. The restricted assignment problem is also a special case of
the generalized assignment problem considered in Section [[Il where p;; € {p;, 0o} for each
machine ¢ and job j. The conjecture holds true for the restricted assignment problem and
this also follows from the result on generalized assignment problem discussed in Section [T.11
Whether the iterative techniques can be used to prove the conjecture of Goemans [78] is

open.

The introduction of the iterative rounding technique by Jain [53] led to its applica-
tions on various network design problems [14], 34] B8] [I01]. Our work adds new relaxation
ideas to iterative techniques and allows us to apply it to a larger set of problems. We
believe that the iterative methods will be further extended and established as a general

technique to achieve approximation algorithms for combinatorial optimization problems.
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