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Abstract

Most optimization problems in real life do not have accurate estimates of the prob-
lem parameters at the optimization phase. Stochastic optimization models have
been studied widely in the literature to address this problem. The expected value
optimization is reasonable in a repeated decision making framework. However, it
does not sufficiently guard against the worst case future in more risk averse appli-
cations. The broad purpose of this thesis is to study optimization approachesunder
uncertainty that overcome this shortcoming of a traditional stochastic optimization
model.

We consider new models of uncertainty namely, the “demand-robust” model
and the “chance constrained” model and introduce these in the frameworkof gen-
eral covering problems. We consider uncertainty in the right hand side ofthe con-
straints which is referred to as the demand uncertainty. In the two-stage modelof
“demand-robustness”, we are interested in finding a solution such that theworst
case cost over all realizations of uncertainty is minimized. We prove a general
structural lemma about special types of first stage solutions and provide approxi-
mation algorithms for covering problems such as Steiner tree, min-cut, minimum
multi-cut, vertex cover and facility location. The structural lemma essentially ex-
ploits the following idea: In a two-stage solution, if the first stage help is at least as
costly as the second stage solution for some realization of the uncertain parameters
(referred to as a scenario), then a solution for that scenario can be constructed com-
pletely in the first stage while only losing a factor two in the total cost. We further
extend this idea to develop a ‘guess-and-prune’ algorithm where we ‘guess’ the
worst case second stage cost which allows us to ‘prune’ away a set ofscenarios for
which a complete solution in the second stage has cost at most the worst casecost.
For specific covering problems such as minimum cut and shortest path, we show
that an approximate first stage solution can be constructed for the remainingsce-
narios using ideas from the structural lemma as well as the combinatorial structure
of the problem.

The robust optimization approach guards against the worst case futurebut tends
to be overly conservative if there are some outlier scenarios. To overcome this, we
consider a chance constrained model where we are given a reliability level p and
the idea is to select a “p fraction” of the scenarios and find a robust solution on
the selected scenarios. The remaining (1-p) fraction of the scenarios are consid-
ered as outliers and can be ignored. We consider both one-stage and two-stage
chance constrained covering problems with demand-uncertainty. While it is easy
to obtain bi-criteria approximations for the chance-constrained problems that vio-
late the chance-constraint by a small factor, we consider the problem of satisfying
the chance-constraint strictly. We show that the covering problems in both one-
stage and two-stage chance-constrained models where uncertainty is specified as
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an explicit list of scenarios (with more than one element in each scenario) are at
least as hard to approximate as the densek-subgraph (DkS) problem. We also con-
sider the special case when each scenario has a single demand element and show
that the chance-constrained models reduce to weighted partial covering versions
either directly or via a guess and prune method.

We also consider the model of uncertainty where scenarios (possibly an ex-
ponential number) are specified implicitly by a probability distribution over the
demand-elements. While it is not even clear if the two-stage problem is in NP in
this implicit scenario model, we give approximations for the one-stage problemif
the probability distribution satisfies certain fairly general properties.

In both the above models, we consider uncertainty in the right hand side of the
constraints. We extend our work to consider uncertainty in the constraint matrix
referred to as data uncertainty and study a chance constrained knapsack problem
where each item has a known deterministic profit but the size is random and isdis-
tributed according to a known normal distribution independent of the other items.
We obtain a polynomial time approximation scheme for this problem that selects
a set of items that satisfy the chance-constraint strictly and achieve near optimal
profit.

In the last chapter, we consider the planning problem for post-disaster logistics
where we are required to open a set of emergency response centers such that the
affected areas or the demand locations post disaster such as an earthquake can
be reached from at least one of the emergency response location within agiven
time bound. This problem combines aspects of both demand and data uncertainty
as both the demand and the underlying transport network depend on the disaster
scenario and only realize after the disaster. We develop an efficient sampling based
algorithm to estimate several parameters for a given set of emergency locations
such as the fraction of disaster scenarios where all the demand can be covered and
average fraction of demand covered across all disaster scenarios. We use the data
for the case of Istanbul, Turkey to conduct the computational experimentsand find
that our algorithm is efficient and provides reasonably accurate estimates.
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1
Introduction

In a classical optimization problem, all parameters such as costs and demandsare
assumed to be known deterministically. However, this assumption does not hold
in most real-life applications where more often than not we only know estimates
of the problem parameters. At best, we can assume that a probability distribution
over parameter values is known from historical data. In such applications, classical
deterministic optimization models are not useful as the optimal solutions found by
such models can be very sensitive to even slight changes in the problem parameters.
In this thesis, we study approaches for optimization under uncertainty both from a
point of view of approximation algorithms as well as designing efficient heuristics
to solve these problems exactly.

Stochastic optimization models have been widely studied in the operations re-
search literature to address the problem of uncertain problem parameters[6, 37, 4].
In a two-stage stochastic optimization problem (one with two stages of decision
making), certain decisions are required to be taken before the uncertaintymateri-
alizes. These are called thefirst stage decisionsand the corresponding period is
called thefirst stage. After the uncertainty materializes i.e. the uncertain problem
parameters become known, the first stage decisions can be augmented with more
decisions to construct a feasible solution for the problem. These are calledthesec-
ond stage decisionsor recourse decisionsand the corresponding stage is referred
to as thesecond stageor therecourse stage. A particular realization of all the un-
certain parameters in the problem is referred to as ascenario. Typically, a decision
in the first stage is less costly than the same decision in the second stage but it
may be wasteful in hindsight due to the uncertainty in the problem. On the other
hand, a second stage decision while being costlier is made after the uncertainty has
been resolved completely. The goal is to find a set of first stage and second stage
decisions such that the total expected cost is minimized. In most cases, the crucial
part is selecting the set of first stage decisions. Finding the optimal secondstage
decisions after the uncertain parameters have been resolved is usually a straightfor-
ward problem. Multi-stage models can be considered where uncertain parameters
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CHAPTER 1. INTRODUCTION

are revealed over multiple stages, for e.g., in a multi-period inventory management
problem, uncertain demand is revealed period by period.

Recently, two stage scenario based models of uncertainty have been studied
widely with regard to finding approximation algorithms for combinatorial prob-
lems in [33, 49, 57, 30]. In these models, the uncertainty is specified as an explicit
list of scenarios (i = 1, . . . , l) with associated probabilities (p1, . . . , pl such that
∑l

i=1 pi = 1). Scenarioi realizes with probabilitypi in the second stage. The
second stage cost in scenario i,ci

s = σi · cf , whereσi is the inflation factor for
scenarioi andcf denotes the first stage costs. Note that the cost of all elements are
assumed to inflate by the same factorσi in scenarioi in our model. The goal is to
find a first stage solution (Xf ) and for each scenarioi, the second stage or recourse
solution (Xi

s) such thatXf ∪Xi
s satisfies scenarioi. The objective is to minimize

the total expected cost over all the scenarios of the second stage, i.e.,

cf (Xf ) +
l
∑

i=1

pic
i
s(X

i
s)

The expected value minimization is reasonable in a repeated decision-making
framework. However, it does not sufficiently guard against the worstcase over all
the possible scenarios in more risk averse or one-shot applications. Ourmain con-
tribution in this thesis is to consider combinatorial problems in new models of un-
certainty that overcome the shortcomings of the stochastic optimization model and
extract structural properties that can be generalized to a larger class of problems.
We also use the structural properties to design efficient heuristics to computation-
ally solve a large class of problems.

1.1 Demand-Robust Model

Motivated by the above mentioned shortcoming of expected value minimization,
we introduce a two stage model of demand-robustness. Robust optimization,where
the objective is to minimize over the worst case costs, has been studied in litera-
ture [5, 37, 43, 51]. However, we take a different approach in our model of uncer-
tainty. We do not address uncertainty in the form of inaccuracy in the data itself;
rather we address the uncertainty in demand or a subset of the constraintsthat the
problem is required to satisfy. We refer to this asdemand uncertainty. For example,
consider the deterministic set covering problem where we are given a ground set of
elementsU = {u1, . . . , un}, a family of setsS and a cost functioncf : S → R+

and the goal is to find a minimum cost subset of sets fromS that cover all the
elements. In the two stage demand-robust model, we address the problem where
the set of elements that require coverage is not known in advance. The uncertainty
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1.2. CHANCE CONSTRAINED MODEL

is specified as a list ofl second-stage scenarios where each scenario is a subset of
elements that require coverage if that scenario materializes. The goal is to find a
first stage solution (Xf ) and for each scenarioi, a recourse or second stage solution
(Xi

s) such thatXf ∪ Xi
s covers all the elements in scenarioi. The objective is to

minimize the worst case cost over all the scenarios, i.e.,

cf (Xf ) +
l

max
i=1

ci
s(X

i
s)

whereci
s denotes the second-stage costs in scenarioi. Recall that the cost of all

elements inflate by the same factorσi in scenarioi in our model. Our main contri-
butions in this demand-robust model are the following.

1. We prove a structural result about the first stage solution of a general cov-
ering problem namely that there is a first stage solution that is a minimal
feasible solution for some subset of scenarios and can be augmented in the
second stage to complete the solution with a loss of a factor 2 in the total
cost of the solution.

2. We obtain approximation algorithms for a variety of standard covering prob-
lems in this model including Steiner trees, minimum multi-cut, vertex cover
and uncapacitated facility location. While many of the results are adapta-
tions of algorithms recently developed for two-stage stochastic programming
problems by using the structural result, we also show new applications of old
metric rounding techniques for the multi-cut problem in the demand-robust
model.

The details of the model and the results are presented in Chapter 2. Improved
approximations for demand-robust shortest path and min-cut problems viaa guess
are prune algorithm are presented in Chapter 3. As a byproduct of these results,
we also obtain the first constant factor approximation for the two-stage stochastic
min-cut problem using a novel LP formulation and a charging argument using the
Gomory-Hu cut tree [29].

1.2 Chance Constrained Model

The robust optimization approach guards against the worst case future. However, a
tiny fraction of outlier scenarios can significantly increase the cost of oursolution
in a robust optimization approach. Avoiding such scenarios might result in asub-
stantial reduction in the solution cost while still maintaining a high reliability of the
solution. To overcome this problem, we introducechance-constraints(see [11, 6])
in the robust and stochastic models. The idea of chance constrained optimization is
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CHAPTER 1. INTRODUCTION

as follows: we are given some reliability parameter0 < ρ < 1, and are required to
output a feasible solution for only a subset of the scenarios whose total probability
is at leastρ. We can think of the remaining scenarios as being outlier scenarios that
we can choose to ignore. Henceforth, we refer to a subset of scenarios whose total
probability is at leastρ as aρ fraction of the scenarios.

We introduce the chance constrained optimization framework for combinato-
rial optimization problems, generalizing the framework of partial covering prob-
lems that have been widely studied in literature [10, 2, 24, 41, 25]. For example, in
a partial covering version of the set covering problem defined above,we are given
a targetk ≤ n and the goal is to find a minimum cost subset of sets fromS that
cover at leastk. This problem is a special case of a one-stage chance constrained
set covering problem where demand uncertainty is specified by a list ofn scenar-
ios each being a singleton element occurring with probability1

n and the required
reliability ρ = k

n . For eachi = 1, . . . , n, scenarioi contains only the elementui,
i.e., onlyui requires coverage if scenarioi materializes.

We consider two models of demand uncertainty in the chance-constrained frame-
work: Explicit scenario modelwhere the demand uncertainty is specified by a list
of explicit scenarios andImplicit scenario modelwhere demand-scenarios (possi-
bly an exponential number) are specified implicitly by a probability distribution
over demand-elements that require coverage. As an example consider thechance-
constrained set covering problem where each elemente occurs with some specified
probability pe independently of other elements. Thus, an exponential number of
demand scenarios and their associated probabilities are specified implicitly by this
probability distribution. On the other hand, in the explicit scenario model an ex-
plicit list of demand-scenarios (subsets of elements requiring coverage)is given as
an input. The goal is to find a minimum cost solution that covers at least a specified
ρ fraction of the scenarios.

While it is easy to obtain bi-criteria approximation algorithms for the chance-
constrained problems that violate the chance constraint by a small factor, we con-
sider the problem of satisfying the chance constraint strictly.

1. We show that in the explicit scenario model (with more than one element
in all the scenarios), both one-stage and two-stage problems are at leastas
hard to approximate as the densek-subgraph (DkS) problem. TheDense
k-Subgraph problem is conjectured to beΩ(nδ)-hard to approximate for
someδ > 0 [23].

2. For the special case when each scenario has a single element, while the one-
stage problem directly reduces to a weighted partial covering problem, we
show that many two-stage problems (including set cover, facility location
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1.3. CHANCE CONSTRAINED KNAPSACK PROBLEM

etc) reduce to a weighted partial covering problem via a guess-and-prune
method.

3. The two-stage shortest path problem does not reduce to a partial covering
version but can be reduced to the weightedk-MST problem where the weight
function is submodular. We give anO(log k)-approximation for this prob-
lem.

4. We also consider an implicit scenario model of uncertainty where scenarios
(possibly an exponential number) are specified implicitly by a probability
distribution. In particular, we consider a model where each demand element
occurs with a given probability independently of others referred from hereon
as theindependent-scenariosmodel. While it is not even clear if the two-
stage problem in the independent-scenarios model is in NP, we show that
the one-stage problem in this model can be reduced to a weighted partial
covering problem. We also extend these results for the one-stage problem
where the demand uncertainty is specified by a general probability distri-
bution such that thecumulative probabilityof any demand-scenario can be
computed efficiently and isstrictly-monotonewith respect to set inclusion.

5. Computational Study In [54], we give an efficient algorithm to solve
chance constrained covering problems where the demand is random. We for-
mulate the problem as an MIP using ideas from the reduction of the chance
constrained set covering problem in the independent distribution model to a
weighted version of the partial set covering problem. We then derive a family
of cutting planes that can be proved to be facets of the convex hull of feasi-
ble solutions for the MIP and furthermore, can be generated very efficiently.
The strengthened formulation is an extremely efficient procedure to solve
the chance constrained covering problems. We corroborate our study with
extensive computational results on a large testbed of instances. This work
appears in the doctoral dissertation of Saxena [53] and will not be included
as a part of this thesis.

The results of the chance constrained models are presented in Chapter 4.

1.3 Chance Constrained Knapsack Problem

The two models of uncertainty described in the above two sections consider prob-
lems where uncertainty is in the demand (or the right hand side of the constraint
matrix). In Chapter 5, we consider the chance-constrained knapsack problem
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CHAPTER 1. INTRODUCTION

where each item has a know deterministic profit but a random size distributedac-
cording to a known distribution independent of other items. In this problem, the
uncertainty appears in the constraint and we refer to such a model of uncertainty
asdata uncertainty. Given a reliability levelρ, the goal in the chance-constrained
knapsack problem is to select a set of items that maximize the profit subject to the
probabilistic constraint that the probability of total size of all the selected items
not exceeding the knapsack size is at leastρ. We give a polynomial time approx-
imation scheme (PTAS) for the problem i.e. givenε > 0, we can obtain a set of
items whose total profit is at least(1− ε) times the optimal profit and the chance-
constraint is satisfied strictly and the running time of the algorithm isÕ(n

1

ε ) where
n is the number of items in the input.

1.4 Locating Emergency Response Centers for Post-
Disaster Logistics

In Chapter 6, we present our work on locating emergency response centers for
efficient post-disaster logistics. We consider the problem of effectivelylocating
emergency response and distribution centers to provide services in a post-disaster
scenario such as an earthquake. In a post-disaster scenario, not only is the demand
uncertain but the underlying transportation network also is uncertain and depends
on the disaster scenario. Thus, this problem combines the aspects of both data and
demand uncertainty. To perform post-disaster relief operations effectively, plan-
ning in the pre-disaster phase is necessary. We study the problem of locating emer-
gency response and distribution centers such that for a large fraction of disaster sce-
narios, all the demand locations can be reached from some response center within
a specified time. In particular, we develop an efficient sampling based algorithm
which allows us to estimate thequality of a given set of emergency facilities by
estimating quantities such as the fraction of disaster scenarios for which the given
set of facilities can reach all the demand locations within a given time bound and
average fraction of demand satisfied by the given set of facilities over allscenar-
ios. For the purpose of our study, we consider the seismic risk problem in Istanbul,
Turkey and use the data from that problem for our computational experiments.
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2
Demand-Robust Model for Two-stage

Covering Problems

Robust optimization has roots in both Decision Theory [39, 42] as well as Math-
ematical Programming [15]. While min-max regret approaches were advanced in
the former field as conservative decision rules, robust optimization was discussed
along with stochastic programming [6] as an alternate way of tackling data uncer-
tainty.

More recent attempts at capturing the concept of robust solutions in optimiza-
tion problems include the work of Rosenblatt and Lee [51] in facility design prob-
lem, Mulvey et al. [43] in mathematical programming, and most recently, Kouvelis
and Yu [37] in combinatorial optimization; here robust means “good in all or most
versions”, a version being a plausible set of values for the data in the model. Even
more recent work along similar lines is advocated by Bertsimas et al. [5, 4]. A
recent annotated bibliography available online summarizes this line of work [46].

We consider a different approach in our model of uncertainty. We do not ad-
dress uncertainty in the form of inaccuracy in the data itself; rather we address the
uncertainty in a subset of the constraints that the problem is required to satisfy.
As a simple example, consider the two alternate formulations of the shortest path
problem from a root noder under the data-robust and the demand-robust formu-
lations. In the more traditional data-robust formulation, the other terminal node t
to which the shortest path fromr must be built is specified in advance. However,
the costs of the edges in the graph may change as stipulated either in a set of dis-
crete scenarios, or by intervals within which each edge cost lies. The data-robust
formulation models the problem of finding a pathP from r to t such that over all
possible settings of the data (edge-costs) among the scenarios, the maximum value
of the cost ofP is minimized by taking this path. In the demand-robust model we
consider, the costs of edges are specified in advance. Each scenarionow specifies
which terminaltk must be connected tor via the shortest path. Furthermore, in
the scenariok specified by terminaltk, all the edge costs are costlier by a spec-
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CHAPTER 2. DEMAND-ROBUST MODEL

ified factorσk. The problem is now modeled as one of choosing a few edges to
buy today at the current specified (non-inflated) cost and then, for each scenariok,
completing the current solution by adding more edges (at costs inflated byσk) to
form a path fromr to tk. The objective is to minimize the maximum value of the
first stage costs plus the second stage completion costs over all possible scenarios
k.
Relation to Stochastic Programming. The roots of our new model have strong
links to the class of two-stage stochastic programming problems with recourse,for
which some approximable versions were studied in recent work [30, 19, 33, 49, 57].
These two-stage models (e.g., from [30]) have a very similar structure: costs are
specified today and the demands occurring tomorrow (along with their respective
inflation factors) are specified by a probability distribution. The goal is to purchase
some anticipatory part of the solution in the first stage so that the expected cost
of the solution over all possible scenarios is minimized. While the expected value
minimization is reasonable in a repeated decision-making framework, one short-
coming of this approach is that it does not sufficiently guard against the worst case
over all the possible scenarios. Our demand-robust model for such problems is a
natural way to overcome this shortcoming by postulating a model that minimizes
this worst-case cost.

2.1 Model and Notation

We define an abstract covering problem in the demand-robust two-stagemodel
with finite number of scenarios. LetU be the universe ofclients(or demand re-
quirements), and letX be the set ofelementsthat we can purchase. Every scenario
is a subset of clients and is explicitly specified. LetS1, S2, . . . , Sm ⊂ U be all
the scenarios. For every scenarioSk, let sol(Sk) denote the sets in2X which are
feasible to coverSi: the covering formulation require thatA ⊆ B andA ∈ sol(Sk)
⇒ B ∈ sol(Sk). The cost of an elementx ∈ X in the first stage iscf (x). In the
kth scenario, it becomes costlier by a factorσk i.e. ck(x) = σkcf (x). In the second
stage, one of the scenarios is realized i.e. one of the subsetsSi materializes and the
corresponding requirements need to be satisfied. Now, a feasible solutionspecifies
the elementsXf to be bought in the first stage, and for eachk, a set of elements
Xk

s to be bought in the recourse stage if scenariok is realized, such thatXf ∪Xk
s

contains a feasible solution for client setSk. The cost of covering scenariok is
cf (Xf ) + ck

s(X
k
s ). In the demand-robust two-stage problem, the objective is to

minimize the maximum cost over all scenarios. Note that we pay for all the ele-
ments inXf even though some of them may not be required in the solution for any
one fixed scenario.
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2.1. MODEL AND NOTATION

Problem Deterministic Stochastic Demand-robust

Steiner Tree 1.55 [50] 3.55 [30], 30 [31] 30∗

Vertex Cover 2 (Primal-dual) 2 [49] 4∗

Facility Location 1.52 [40] 5 [49], 3.04 [57] 5∗

Min Cut 1 O(log m)∗ O(log m)∗

Min Multi-Cut O(log r) [26] O(log rm · log log rm)∗
O(log rm ·
log log rm)∗

Figure 2.1:Result Summary .∗ denotes results in [18]. In the table,m,n andr denote
the number of scenarios, number of nodes and maximum number of pairs per scenario
respectively.

As an example, the demand-robust “rooted” min-cut problem hasX = the edge
set of an undirected graph, a specified root and eachSk specified by a terminaltk.
sol(Sk) is the set of all edge sets that separatetk from r. As another example,
in the demand-robust “rooted” Steiner tree problem, we haveX = the edges of
an undirected graph, a specified rootr and each scenarioSk specified by a set of
terminals{tk1, tk2, . . .}. sol(Sk) is the set of all edge sets that connect all terminals
{tk1, tk2, . . .} to the rootr.

2.1.1 Results

We formulate demand-robust versions of commonly studied covering problems in
optimization including minimum cut, minimum multi-cut, shortest paths, Steiner
trees, vertex cover and uncapacitated facility location, and provide approximation
algorithms for these problems. Our results are summarized in Figure 2.1. While
many of our results draw from rounding approaches recently developed for stochas-
tic programming problems, we also show new applications of old metric rounding
techniques for cut problems in this demand-robust setting.

One of our main contributions is to frame the demand-robust problems and
show how this leads to interesting versions of well-studied problems in combina-
torial optimization. In Section 2.2, we show how a natural LP formulation of the
demand-robust version of the minimum-cut problem can be rounded within a loga-
rithmic factor using ideas for rounding multi-cut problems [26, 38]. In Section 2.3,
we also show how a demand-robust version of the multi-cut problem can also be
approximated using further ideas by taking care of a constant fraction ofthe de-
mands per scenario in each iteration of an iterative method (also used in [38]for the
feedback arc set problem). One of the unanticipated outcomes of these new algo-
rithms for the demand-robust versions of the cut problems is that we get thesame

9



CHAPTER 2. DEMAND-ROBUST MODEL

guarantees for the two-stage stochastic versions of these problems, thus giving first
poly-logarithmic approximations for them as well (See Section 2.3.2).

In Section 2.4, we prove a simple structural lemma about special classes of
first-stage solutions to robust covering problems: Informally, this states that there is
a first-stage solution that is a minimal feasible solution for the union of demands for
a subset of the scenarios in the specification of the problem whose total cost is no
more than twice that of the optimal. This result holds for a large class of covering
problems including vertex cover, minimum (multi)cut, Steiner trees and facility
location. However, in that section we mainly apply it to the robust Steiner tree
problem to formulate a more structured LP relaxation which is the starting point for
applying the methods in [31], finally giving us the constant-factor approximation
result for robust Steiner trees.

In Section 2.5, we point out how techniques previously developed for two-stage
stochastic problems that work by charging the first-stage and second-stage parts of
the solution independently to the corresponding lower bounds in the relaxation to
arrive at the final performance guarantee, can be used to derive analogous results
for the robust versions of such problems. This remark applies to all covering prob-
lems addressed by Shmoys and Swamy [57] such as vertex cover and the rounding
methods of Ravi and Sinha [49] for facility location.

2.2 Robust Min-cut Problem

Problem Definition We are given an undirected graphG = (V, E) with a root
r. Thekth scenario consists of a single terminaltk. Edge costscf (e) in the first
stage andσkcf (e) in the recourse stage if thekth scenario is realized. Hereσk is
the inflation factor for thekth scenario.

The objective is to find a set of edgesEf to be bought in the first stage and for
eachk, a setEk

s to be bought in the recourse stage if scenariok is realized, such
that removingEf ∪ Ek

s from the graphG disconnectsr from the terminaltk. The
objective is to minimize the maximum cost over all scenarios. The robust min-cut
problem is proved to be NP-hard in [35].

Integer Program Formulation We formulate an integer linear program for the
problem as follows.

min z
z ≥ ∑

e cf (e)(x0
e + σkx

k
e) ∀ k

(x0 + xk)(P ) ≥ 1 ∀ r-tk path P,∀ k
x0

e ∈ {0, 1} ∀ e

10



2.2. ROBUST MIN-CUT PROBLEM

Relaxing the integrality constraints tox0
e ≥ 0 gives us the linear programming

relaxation. While the LP formulation given here has an exponential number of con-
straints, it can be solved efficiently by the ellipsoid algorithm where the separation
oracle is just a shortest path computation.

2.2.1 Algorithm

We start by solving the LP relaxation. Letx̃0
e and x̃k

e denote the values of the
variables in the fractional optimal solution. LetLPopt denote the optimum value of
the LP relaxation. To round the fractional LP solution, we use the region growing
technique of Garg et al. [26]. We would like to stress that the notion ofvolume
used here is different from the LP volume used in [26]. Moreover, in our problem
the LP gives a different metric on the graph for each scenario.

We start by making a copy of the graphG for each scenario. We denote the
copies byG1, . . . , Gm. We also introduce a copyG0 for the first stage solution.
Edgee costscf (e) in the graphG0 andσkcf (e) in the graphGk. First we give
some notation to use in our algorithm description. Letdistk be the shortest path
metric defined by the following lengths on the edges:lk(e) = x̃0

e + x̃k
e , ∀ e ∈ E.

Let Bk(tk, ρ) denote a ball of radiusρ around the terminaltk in the metricdistk.
For any subsetS ⊂ V , let δ(S) = {(u, v) ∈ E|u ∈ S, v /∈ S}. We define the
volumeVk(tk, ρ) of the ball as

Vk(tk, ρ) :=
LPopt

m
+

∑

e∈Bk(tk,ρ)

cf (e)(x̃0
e + x̃k

e)

+
∑

e∈δ(Bk(tk,ρ))

cf (e)(ρ− distk(tk, e))

Heredistk(tk, e) denotes the metric distance betweentk and the closer end-
point of edgee. Note that the volumeVk(tk, ρ), for anyρ, is not same as the LP
volume. However, it is bounded above byLPopt, which facilitates Claim 2.2.1. We
split the volume among first and recourse stage contributions as being the part of
the volume contributed by first-stage and second-stage variables respectively.

V 0
k (tk, ρ) =

LPopt

m
+

∑

e∈Bk(tk,ρ)

cf (e)x̃0
e

+
∑

e∈δ(Bk(tk,ρ))

cf (e)(min{ρ− distk(tk, e), x̃
0
e})

11



CHAPTER 2. DEMAND-ROBUST MODEL

Algorithm Robust-Min-cut

1. LetG0, G1, . . . , Gm be copies ofG. Initialize Ef , E1
s , . . . , Ek

s ← φ.

2. Repeat the following:

(a) Find a terminaltk that is connected tor in the graphGk = (V, E \
(Ef ∪ Ek

s )).

(b) Find a radiusρ < 1/2 for whichVk(tk, ρ)/C(tk, ρ) is minimum.

(c) If V 0
k (tk, ρ) ≥ 1

2Vk(tk, ρ), then setEf ← Ef ∪ δ(Bk(tk, ρ)) and
removeBk(tk, ρ) from all graphsG0, G1, . . . , Gm.
ElseV 1

k (tk, ρ) > 1
2Vk(tk, ρ). SetEk

s ← Ek
s ∪ δ(Bk(tk, ρ)) and

removeBk(tk, ρ) from the graphGk.

Until all the terminals are separated fromr.

Figure 2.2: Algorithm for Robust Min-Cut

and

V 1
k (tk, ρ) =

∑

e∈Bk(tk,ρ)

cf (e)x̃k
e

+
∑

e∈δ(Bk(tk,ρ))

cf (e)(max{0, ρ− distk(tk, e)− x̃0
e})

Observe thatV 0
k (tk, ρ) + V 1

k (tk, ρ) = Vk(tk, ρ). We define the cost of the edges
crossing the boundary of the ball asC(tk, ρ) :=

∑

e∈δ(Bk(tk,ρ)) cf (e).

Claim 2.2.1 The analysis technique of Garg et. al [26] can be used to show that
there exists a radiusρ < 1/2 such that the following holds in the step 2b of the
algorithm in Figure 2.2.1.

C(tk, ρ) ≤ 2 log m · Vk(tk, ρ).
�

�

�

�2.1

We will show that the total cost paid in any scenario is at most4 log m ·LPopt.
We argue about the cost of the first stage solution and the cost in the recourse stage
respectively in the next two lemmas.

Lemma 2.2.2 Cost of the edgesEf is at most4 log m · (LPopt +
∑

e cf (e)x̃0
e).

Proof: In the algorithm, we include the edgesδ(Bk(tk, ρ)) in Ef when2V 0
k (tk, ρ) ≥

Vk(tk, ρ). Therefore, the cost of the edges ofδ(Bk(tk, ρ)) is bounded above by

12



2.2. ROBUST MIN-CUT PROBLEM

4 log m · V 0
k (tk, ρ). In other words, each unit of volume insideBk(tk, ρ) gets a

charge of4 log m. Since we remove the ballBk(tk, ρ) from graphG0, each edge
in G0 is charged at most once. Therefore the total cost of edges inEf is bounded
by

cf (Ef ) ≤ 4 log m
∑

k V 0
k (tk, ρ)

≤ 4 log m(LPopt +
∑

e cf (e)x̃0
e).

Lemma 2.2.3 Cost of the edgesEk
s is at most4 log m ·∑e σkcf (e)x̃k

e .

Proof: Note that the only time we include edges inEk is whenV 1
k (tk, ρ) >

1
2 Vk(tk, ρ). Buying edgee in Gk costsσk times higher. Therefore the costs of the
edges inEk

s can be bounded as follows:

c(Ek
s ) ≤ σkC(tk, ρ) ≤ 4 log m · σkV

1
k (tk, ρ)

≤ 4 log m
∑

e σkcf (e)x̃k
e .

Theorem 2.2.4 The Algorithm Robust-Min-Cut produces anO(log m)-approximate
solution to the robust min-cut problem.

Proof: Using Lemmas 2.2.2 and 2.2.3 the total cost of any scenariok can be
bounded as follows:

c(Ef ) + c(Ek
s ) ≤ 4 log m

(

LPopt +
∑

e

cf (e)(x̃0
e + σkx̃

k
e)

)

≤ 8 log m · LPopt

Therefore the maximum cost over all scenarios isO(log m) LPopt as well.

2.2.2 Multi-terminal Scenarios

The algorithm for robust min-cut can be adapted to give anO(log m)-approximation
for the case when each scenario contains a set of terminals rather than a single ter-
minal. Thekth scenario consists of a set of terminalsSk that must be disconnected
from the rootr if scenariok materializes. In this case, we modify the input graph
G = (V, E) as follows. For each scenariok = 1, . . . , m, we add a new vertexsk

and add edges{(v, sk)|v ∈ Sk} and setcf (v, sk) = M for all v ∈ Sk, whereM
is the sum of all edge costs inE. Now, modify scenariok, Sk = {sk} which is a
single terminal and can be solved using the algorithm for robust min-cut described
above. Since all the edges added to a new verticess1, . . . , sm have a very high
cost, none of them is selected in a first stage or a second stage solution by our algo-
rithm. Therefore, for each scenariok, separatingsk from r also leads to separating
{v|v ∈ Sk} from r.

13



CHAPTER 2. DEMAND-ROBUST MODEL

2.2.3 Robust Min-cut in Trees

In the special case when the input graphG is a tree, we give a polynomial time
exact algorithm for the robust min-cut problem. The algorithm uses the following
fact crucially: if a terminaltk is not separated from the rootr by the first stage
solution, then we need to buy only one edge in thekth scenario in the recourse
stage.

Theorem 2.2.5 There is a polynomial-time exact algorithm for the robust min-cut
problem on a tree.

Proof: The algorithm for robust min-cut on trees is as follows. “Guess”C to be
the maximum second-stage cost of an edge to be cut in recourse stage. Since for
each terminal, we need to remove only a single edge to separate it from the root,
there arem choices for this maximum cost (m is the number of scenarios). All
terminalstk, that have first-stage min-cut cost less thanC

σk
are cut in the recourse

stage. The rest of the terminals are separated from the root by a minimum cost cut
in the first stage.

One of the guesses ofC is the correct one, for which we will find a solution
that pays at mostC in the recourse stage. Furthermore, the first stage min-cut cost
for every terminaltk that is cut in the first stage by this solution is greater thanC

σk
.

Thus, any optimal solution separatestk from the root in the first stage. Hence, the
algorithm returns an optimal solution.

There arem choices for the maximum second-stage cost and for each guess,
the algorithm computesm minimum cuts in a tree which can be done in time linear
in the number of vertices. Also, the algorithm computes one min-cut in a general
graph of size(|V |+1) to find the first-stage solution which can be done inO(|V |3).
Therefore, the running time isO(m2|V |) + O(|V |3) = O(|V |3) sincem ≤ |V |.

2.3 Robust Multi-cut

The robust multi-cut problem is a generalization of the robust min-cut problem.
The problem is defined on a graphG = (V, E). Here thekth scenario consists of
pairs of terminals{(sk

1, t
k
1), (s

k
2, t

k
2), . . .}. We want to find a set of edgesEf to buy

in the first stage andEk
s to buy in the recourse stage if scenariok is materialized

such thatEf ∪ Ek
s separates each of the pairs{(sk

1, t
k
1), (s

k
2, t

k
2), . . .}. An edgee

costscf (e) in the first stage andσkcf (k) in the scenariok of the recourse stage.
The objective is to minimize the maximum cost over all scenarios.

We first describe anO(log2 rm) algorithm for robust multi-cut problem, where
r is the maximum number of pairs in any scenario. The algorithm is similar to the
one for robust min-cut.

14



2.3. ROBUST MULTI-CUT

We formulate an integer linear program for the robust multi-cut problem as
follows.

min z
z ≥ ∑

e(cf (e)x0
e + σkcf (e)xk

e) ∀ k
(x0 + xk)(P ) ≥ 1 ∀ sk

i -tki paths P,∀ k, i
xk

e ∈ {0, 1} ∀ e, k

Relaxing the integrality constraints toxk
e ≥ 0 gives us the LP relaxation. Letx̃0

e

andx̃k
e denote the optimal fractional solution. The rounding procedure is similar

to the rounding procedure for robust min-cut. As before, we maintainm graphs
G1, G2, . . . , Gm, one for each scenario. We also maintainG0 for the first stage
solution. However, we need to modify the ball growing procedure. In robust min-
cut problem, when a boundary of a ballB(tk, ρ) is removed from the graphG0,
there are no terminal pairs left inside the ball. This property no longer holdsfor the
robust multi-cut problem. Therefore we recursively apply the algorithm inside each
component of the graph formed after removing the boundary. We give a sketch of
the algorithm here. We find disjoint ballsB(sk

i , ρ) andB(tki , ρ
′) aroundsk

i and
tki respectively. The radiiρ, ρ′ ≤ 1/4 are chosen such that the cost of the edges
crossing the boundary of a ball is withinO(log rm) factor of the volume inside the
ball. If V k(sk

i , ρ) ≥ 1
2V (sk

i , ρ) (resp.V k(tki , ρ
′) ≥ 1

2V (tki , ρ
′)), then we include

δ(B(sk
i , ρ)) (resp. δ(B(tkk, ρ

′))) in the edge setEk and remove the ball from the
graphGk. Otherwise, we find the ball amongB(sk

i , ρ) andB(tki , ρ
′) which has

smaller number of terminal pairs (from all scenarios) that have not been separated.
SupposeB(sk

i , ρ) has smaller number of such pairs. Then we include the edges
δ(B(sk

i , ρ)) in Ef and remove the ballB(sk
i , ρ) from all graphsG0, G1, . . . , Gm.

We run the algorithm recursively inside each of the components formed.
This algorithm is similar to the divide-and-conquer algorithm for Feedback

Edge Set problem due to Leighton and Rao [38]. It divides the graphG0 in various
components and recurses inside each component. In order to bound the approxi-
mation factor of the algorithm, we need to prove that the depth of the recursiontree
is small and the algorithm pays only a small cost at each level of the recursion.

Lemma 2.3.1 Depth of the recursion of the above algorithm is bounded bylog (rm).

Proof: Each time our algorithm makes a recursive call, the number of terminal
pairs inside the ball is at most half as many as the total number of terminal pairs in
all scenarios. Since the total number of terminal pairs we started with is bounded
by rm, the recursion depth is at mostlog2 rm.

Using an argument similar to that of Lemma 2.2.2 we can bound the cost of the
algorithm paid for edges inG0 as follows.
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Lemma 2.3.2 In each level of recursion, each unit of volume in the graphG0 gets
a charge ofO(log rm).

Theorem 2.3.3 There is a polynomial-timeO(log2 rm)-approximation algorithm
for the robust multi-cut problem.

Proof: Note that each unit of volume in the graphGk is charged at most once
and receives a charge ofO(log rm). On the other hand, each unit of volume in
the graphG0 gets a charge oflog rm for at mostO(log rm) levels of recursion.
Therefore the total cost paid by the algorithm for edges inG0 is at mostO(log2 rm·
OPT ), where OPT is the optimum value of the LP relaxation. Hence, the total cost
paid in any scenario isO(log2 rm · OPT ) + O(log rm · OPT ) = O(log2 rm ·
OPT ).

2.3.1 Improved approximation

We now show how to improve the approximation factor toO(log rm log log rm)
using the ideas from [21, 22, 56]. We modify our divide-and-conquer algorithm as
follows. For a terminalsk

i , we find a ballB(sk
i , ρ) such thatC(sk

i , ρ) ≤ V (sk
i , ρ) ·

4 log (V0/V (sk
i , ρ)) log log V0, whereV0 =

∑

e cf (e)(x0
e +xk

e) is the total volume.
The analysis technique from [21] shows that such a radiusρ exists.

To bound the total cost of the algorithm, we note that each unit of volume in
the recourse stage graphGk gets a charge ofO(log rm log log rm) at most once.
On the other hand each unit of volume in graphG0 gets charged multiple times.
We bound the cost paid using the following recurrence relation:

cost(V0) ≤ cost(V (sk
i , ρ)) + cost(V0 \ V (sk

i , ρ))

+4 log (V0/V (sk
i , ρ)) log log V0 · V (sk

i , ρ).

Solving this recurrence, we get that the cost paid for the edges in graphG0 is
bounded byO(V0 · log rm log log rm). Hence the total cost paid by the algorithm
is bounded byO(log rm log log rm) · LPopt.

2.3.2 Stochastic Min-Cut and Multi-Cut

The stochastic min-cut problem is defined as follows: We are given a graph G =
(V, E) with a cost functioncf on the edges and a root noder. We are also given
a collectionM of m scenarios withpk being the probability of occurrence of sce-
nario k ∈ M . For each scenariok ∈ M there exists a nodetk and we demand
that r andtk must be separated if thekth scenario appears in the recourse stage.
An edgee costscf (e) in the first stage andσkcf (e) if kth scenario appears in the
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2.3. ROBUST MULTI-CUT

recourse stage. The objective function to minimize the sum of the first-stage cost
and the expected recourse stage cost. Stochastic multi-cut is similarly definedto
be the stochastic counterpart of robust multi-cut problem.

We show that a simple modification to the approximation algorithms for robust
min-cut and multi-cut yields approximation algorithms for the stochastic version
of the problems with same performance guarantees.

The region growing argument is not directly applicable to the stochastic min-
cut problem for the following reason: the “volume”V of a ball defined in the proof
of robust min-cut is different from the cost of theLP solution in the ball while that
is not the case in the algorithm of Garg et al. [26] for the deterministic multi-cut. In
the case of robust min-cut or multi-cut, the volume is bounded from above by cost
of theLP solution. This enables us to claim that there exists a radiusρ ≤ 1

2 such
that the cost of the cutC(tk, ρ) is at mostO(log m) · V (tk, ρ). This argument is
not applicable to the stochastic min-cut as volume in a ball might not be bounded
by the cost of theLP solution in the ball. Hence, we do some preprocessing before
applying the region growing argument. We show how to do the transformation for
stochastic min-cut.

For all scenarios inS := {i | σipi ≤ 1
m2 }, we introduce the constraint in

the LP that cut for these scenarios will be completely a recourse stage solution.
We claim that this transformation does not affect the optimum solution by a large
factor: in an optimum solution if we buy all the first stage edges helping scenarios
in S during the recourse stage as well, the extra edges bought incur a cost of at
most

∑

i∈S σipi ·OPT ≤ |S|
m2 OPT ≤ OPT

m . Hence, we can ignore these scenarios
while constructing our first stage solution.

Now, when we apply the region growing algorithm for scenarioi ∈M \ S the
total volume in the graph is at mostV =

∑

e cf (e)(x0
e + xi

e). The cost of theLP
solution is at least

∑

e cf (e)(x0
e + σipix

i
e) ≥

∑

e cf (e)(x0
e + 1

m2 xi
e)

≥ 1
m2

∑

e cf (e)(x0
e + xi

e).

Hence,V ≤ m2 ·c(LP ). Now, we can show using the techniques of Garg et al. [26]
that there exists a radiusρ ≤ 1

2 such thatC(tk, ρ) ≤ 4 log m · V (tk, ρ). Hence, by
running the same algorithm described above for the robust min-cut losing an extra
factor of2, we obtain the following theorem.

Theorem 2.3.4 There exists a polynomial time algorithm which returns anO(log m)
approximate solution to the stochastic min-cut problem.

A similar transformation for the stochastic multi-cut problem will yield the
following theorem.
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Theorem 2.3.5 There exists a polynomial time algorithm which returns an
O(log rm log log rm) approximate solution to the stochastic multi-cut problem.

2.4 Special first-stage solutions and Steiner trees

In this section, we prove that for any robust two-stage problem there is an approx-
imate first stage solution with a special structure: it is a minimal feasible solution
for a subset of scenarios and can be extended to a complete solution in the second
stage without much cost overhead. We use this structural result to obtain aconstant
factor approximation for the robust Steiner tree problem.

2.4.1 A Structural Lemma for the First Stage Solution

Lemma 2.4.1 Given any problemΠ in the robust two-stage model, there exists a
first stage solutionX̃f and a subsetS ⊆ {S1, . . . , Sm} of scenarios, such that̃Xf

is a minimal feasible solution for scenarios inS. Furthermore, it can be extended
to a solution for the remaining scenarios in the second stage and the cost of the
final solution is at most2 ·OPT .

Proof: Consider an optimal integral solution to the robust problem : letX∗
f be the

first stage solution andXi∗
s be the recourse stage solution in scenarioi. Also, let

Xi∗
f be the part of first stage solution used in scenarioi i.e. it is a minimal subset

of X∗
f such thatXi∗

f ∪ Xi∗
s is a feasible solution for scenarioi. We construct an

alternate first stage solutioñXf , such that it is a union of feasible solutions for a
subset of scenarios.̃Xf will contain elements from the optimal first stage solution
X∗

f , and also from the optimal recourse stage solutionsX1∗
s , . . . , Xm∗

s . Let A

denote the elements ofX∗
f in X̃f . We constructX̃f as follows.

1. InitializeA← φ andB ← φ.

2. For each scenarioi = 1, 2, . . . , m, repeat the following

(a) X
′i
f = Xi∗

f \A.

(b) If cf (X
′i
f ) ≥ cf (Xi∗

s ), thenA← A ∪X
′i
f andB ← B ∪Xi∗

s .

3. X̃f ← A ∪B.

Figure 2.3: Structural Lemma

18



2.4. SPECIAL FIRST-STAGE SOLUTIONS AND STEINER TREES

Our new first stage solutioñXf = A ∪ B. Note thatA ⊆ X∗
f . Therefore,

cf (A) ≤ cf (X∗
f ). Also, all elements inB are charged to disjoint parts ofA. Thus,

by constructioncf (B) ≤ cf (A) which impliescf (X̃f ) ≤ 2 · cf (X∗
f ). Clearly,X̃f

is a feasible solution for a subset of scenarios and it is minimal due to optimality of
X∗

f , X1∗
s , . . . , Xm∗

s and the minimality ofXi∗
f for eachi. Furthermore, we claim

thatX̃f can be extended to a feasible solution for all scenarios in the second stage
such that the cost of final solution is at most2 ·OPT .

Consider some scenario which is not covered in the first stage byX̃f , sayi.
This implies that when scenarioi was considered in the above sequence,cf (X

′i
f ) <

cf (Xi∗
s ). Thus, we can buyX

′i
f in the recourse stage and charge it to the cost of

Xi∗
s . Let the new recourse stage solution bẽXi

s = Xi∗
s ∪ (X

′i
f \ A). Hence,

ci(X̃
i
s) ≤ 2 · ci(X

i∗
s ) asci(x) = σi · cf (x).

Thus, the final cost of the new solution is

max
i
{cf (X̃f ) + ci(X̃i

s)} ≤ max
i

2 · (cf (X∗
f ) + ci(X

i∗
s ))

≤ 2 ·OPT

The above structural result about the first-stage solution of a coveringprob-
lem in the robust two-stage model also holds for the problem in the stochastic
two-stage model. Starting with an integral optimum solution to the stochastic ver-
sion of the problem (sayX∗

f , X1∗
s , . . . , Xm∗

s ), the special solution can be con-
structed as in the procedure described above. Let the constructed solution be
Xf , X1

s , . . . , Xm
s . From the proof of Lemma 2.4.1, we have thatci(X

i
s) ≤ 2 ·

ci(X
i∗
s ), i = 0, 1, . . . , m. Thus, the stochastic objective for the new solution is,

cf (Xf ) +

m
∑

i=1

pici(X
i
s) = cf (Xf ) +

m
∑

i=1

piσicf (Xi
s)

≤ 2(cf (X∗
f ) +

m
∑

i=1

piσicf (Xi∗
s ))

Thus, the above lemma gives an alternate proof for a similar lemma in [31] that
proves that there is a connected first-stage solution for the stochastic Steiner tree
problem which costs at most three times the optimal, with a better bound of two
rather than three.

2.4.2 Robust Steiner Tree

We use the structural lemma proved above to give a constant factor approximation
for the robust Steiner tree problem. The problem is defined on a graphG = (V, E)
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CHAPTER 2. DEMAND-ROBUST MODEL

with a root vertexr and a cost functionc on the edges. In the second stage one
of the m scenarios materializes. Thekth scenario consists of a setSk ⊆ V of
terminals and an inflation factorσk. An edgee costscf (e) in the first stage and
ck(e) = σkcf (e) in thekth scenario of the second stage. A solution to the problem
is a set of edgesEf to be bought in the first stage and a setEk

s in the recourse stage
for each scenariok. The solution is feasible ifEf ∪ Ek

s contains a Steiner tree
connectingSk ∪ {r}. The cost paid in thekth scenario iscf (Ef ) + σk · cf (Ek

s ).
The objective is to minimize the maximum cost over all scenarios.

The structural lemma (Lemma 2.4.1) shows that there is a first stage solution
which is feasible for some subset of the scenarios. For the robust Steiner tree
problem, it means there is a tree solution for the first stage that can be extended
to a final solution within twice the cost of the optimum solution. Therefore, we
formulate the problem with the additional constraint that the first stage solution
should be a tree. This means that the path from any terminal to the root consists
of a portion of only recourse edges, followed by a portion consisting of only first-
stage edges. We consider a flow-based formulation on a directed graph where each
undirected edge is bi-directed. For any subsetS ⊂ V , let δ+(S) = {e = (u, v) :
u ∈ S, v /∈ S} andδ−(S) = δ+(V \ S). The IP formulation for the robust Steiner
tree problem is shown in (2.2)-(2.8).

min z
�

�

�

�2.2

∀ k, z ≥
∑

e∈E

cf (e) · (x0
e + σk · xk

e)
�

�

�

�2.3

∀ t ∈ Sk,∀ k,
∑

e∈δ+(t)

(r0
e(t) + rk

0(t)) ≥ 1
�

�

�

�2.4

∀ v /∈ {t, r}, ∀ t ∈ Sk,∀ k,
∑

e∈δ+(v)

r0
e(t) + rk

e (t) =
∑

e∈δ−(v)

r0
e(t) + rk

e (t)
�

�

�

�2.5

∑

e∈δ−(v)

r0
e(t) ≤

∑

e∈δ+(v)

r0
e(t)

�

�

�

�2.6

∀ e,∀ t ∈ Sk,∀ k,
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rk
e (t) ≤ xk

e

�

�

�

�2.7

rk
e (t), xk

e ∈ {0, 1}
�

�

�

�2.8

This formulation is similar to one used by Gupta et al. in [31], where they
give a constant factor approximation for the stochastic Steiner tree problem.The
x0 variables are indicators for the edges in the first stage, and,x1, x2, . . . , xk are
the indicators for recourse stage edges. For a terminalt in scenariok, the variable
rk
e (t) indicates whether edgee is used in the recourse portion oft’s path to the root,

andr0
e(t) indicates whether it is used in the first-stage portion of the path. These

flow variables are directed; fore = (u, v), the variablerk
uv(t) denotes the flow

of commodityt along a recourse edge in the directionu to v. Note that the edge
installation variablesxk

e refer to undirected edges.
Consider the LP relaxation of the above IP formulation obtained by dropping

the integrality constraints. LetzIP be the cost of the optimum IP solution,z̃ be the
optimum LP solution andOPT be the optimum solution of the original instance.
From Lemma 2.4.1, we know thatzIP ≤ 2OPT . The fractional LP solution can
be rounded using the same rounding scheme as that of Gupta et al. [31]. Thus, the
following lemma can be derived from [31].

Lemma 2.4.2 ([31]) Let z̃, x̃0, x̃1, . . . , x̃k be a fractional solution to the linear
relaxation of the IP in (2.2)-(2.8). It can be rounded to obtain an integralsolution
T 0, T 1, . . . , T k, such thatT 0 ∪ T i connectsSi ∪ {r}, ∀ i. Furthermore,cf (T 0) ≤
15 ·∑e∈E cf (e) · x0

e and∀i, ci(T
i) ≤ 15 ·∑e∈E ci(e) · xi

e.

Theorem 2.4.3 The Robust Steiner Tree Problem can be approximated within a
factor of30 in polynomial time.

Proof: Lemma 2.4.2 shows that the optimum fractional solution of the LP re-
laxation can be rounded to an integral solution such that cost of each scenario is
increased by at most a factor of15. Thus,zIP ≤ 15 · z̃ ≤ 30 · OPT . Hence, we
obtain a 30-approximation for the Robust Steiner Tree problem.

2.5 Other Robust Optimization Problems

In this section, we consider some other combinatorial problems in the two-stage
robust model and give approximation algorithms for them.

2.5.1 Covering Problems of Shmoys and Swamy [57]

Two-stage stochastic set covering problems were studied in a general setting by
Shmoys and Swamy in [57], where they showed how aρ-approximation algorithm
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CHAPTER 2. DEMAND-ROBUST MODEL

for the single stage problem gives a2ρ-approximation for the corresponding two
stage stochastic version. The key idea is to observe that every element willbe at
least half-covered by the first- or second-stage sets that contain it. By scaling up
both first- and second-stage by a factor of two, and using the rounding algorithm
on both scaled solutions, one obtains a solution with the promised guarantee. A
major contribution of [57] is a polynomial-time approximation scheme to solve the
two-stage stochastic programs even though the underlying problem may be#P -
complete.

A simple application of the above method to polynomial-sized robust problems
gives a simple2ρ- approximation algorithm for covering problems allowing aρ-
approximate single stage rounding method.

Consider the demand-robust version of minimum vertex cover: nodes have
different costs in the first stage and in each of the scenarios in the second stage,
while each scenario consists of a subgraph of the complete graph on the nodes. The
goal is to choose some vertices in the first stage and for every scenario,augment
the chosen set at the second-stage costs to form a vertex cover of the edges in this
scenario. A simple corollary of the above observation along with the classical 2-
approximation rounding result for regular vertex cover gives the following simple
result.

Theorem 2.5.1 The demand-robust vertex cover problem can be approximated
within a factor of 4.

2.5.2 Robust Facility Location

In this problem we are given a set of facilitiesF and a set of clientsS1, S2, . . . , Sm

for each scenario. A metriccij specifies the distances between every client and
every facility. Facilityi has a first-stage opening cost off0

i , and a recourse cost of
fk

i in scenariok. Note that in this case we can handle general second stage costs
unlike the model stated earlier where the second stage costs change by certain
inflation factorsσ1, σ2, . . . , σm.

Our approximation algorithm proceeds along the lines of the LP-rounding algo-
rithm due to Ravi and Sinha [49]. The algorithm in [49] rounds a fractionalsolution
such that the cost of each scenario in the integral solution is bounded by 5times its
cost in the fractional solution. Thus, the same techniques give a5-approximation
for robust facility location.1

Theorem 2.5.2 The demand-robust facility location problem can be approximated
within a factor of5.

1Although Ravi and Sinha [49] have claimed an 8-approximation, a more careful analysis of their
algorithm gives a 5-approximation.
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2.6. CONCLUSION AND OPEN PROBLEMS

2.6 Conclusion and Open Problems

In this chapter, we introduce a new model called demand-robustness and give ap-
proximation algorithms for some combinatorial problems in this model. There
seems to be an interesting parallel between stochastic and robust settings. For
example, the rounding techniques for the stochastic Steiner tree problem can be
adapted to the robust version of the same problem. Similarly, the rounding tech-
nique used for robust min-cut and multi-cut can be adapted to stochastic min-cut
and multi-cut with a slight modification. It would be interesting to prove a general
result showing that aρ-approximation for a stochastic optimization problem leads
to aO(ρ)-approximation for the robust version of the problem and vice-versa. The
results presented in this chapter appear in Dhamdhere et al. [18].

23





3
Guess and Prune Algorithms for

Demand-Robust Covering Problems

We introduced the two-stage demand-robust versions of common optimization
problems in Chapter 2, where uncertainty in demand is modeled as an explicit
list of demand scenarios. In this chapter, we present a new paradigmguess and
prune and give improved approximation algorithms for shortest path and min-
cut problems in the two-stage demand robust model. Specifically, we obtain a
2-approximation for the robust min-cut problem and a7.1-approximation for the
robust shortest path problem.

We crucially exploit and benefit from the structure of the demand-robustprob-
lem: in the second stage, every scenario can pay up to the maximum second stage
cost without worsening the solution cost. This is not true for the stochastic versions
where the objective is to minimize the expected cost over all scenarios. At a very
high level, the algorithms for the problems considered are as follows: Guessthe
maximum second stage costC in some optimal solution. Using this guess identify
scenarios which do not need any first stage “help” i.e. scenarios for which the best
solution costs at most a constant timesC in the second stage. Such scenarios can
be ignored while building the first stage solution. For the remaining scenariosor a
subset of them, we build a low-cost first stage solution and prove the approximation
bounds by a charging argument.

We give a2-approximation for the demand-robust min-cut problem via a charg-
ing argument using Gomory Hu cut trees [29]. A(1 +

√
2)-approximation based

on a guess-and-prune strategy for the demand-robust min-cut problem appears in
Golovin et al. [28] but the algorithm uses a different charging argumentthat ex-
ploits the laminarity of minimum cuts separating a given root node from other
terminals. AnO(log n)-approximation is also known and is presented in Chapter 2
and appears in Dhamdhere et al. [18].

As a byproduct, we also obtain a first constant factor4-approximation for the
stochastic min-cut problem. The analysis uses a novel LP formulation and also a
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CHAPTER 3. GUESS AND PRUNE ALGORITHMS

Gomory Hu tree based charging argument similar to the robust version.
For the demand-robust shortest path problem, we give an algorithm with an

improved approximation factor of7.1 as compared to the16-approximation that is
presented in Chapter 2.

Both demand-robust shortest path and demand-robust min-cut problemsare
NP-hard. The shortest path problem can be proved to be NP-hard by asimple
reduction from the Steiner tree problem: if the inflation factors are all∞, then
the demand-robust shortest-path is exactly a Steiner tree problem on the set of
terminals defined by the scenarios. While the demand-robust min-cut problem is
shown to be NP-hard in [35].

We also consider “hitting set” versions of demand-robust min-cut and shortest
path problems where each scenario is a set of terminals instead of a single terminal
and the requirement is to satisfy at least one terminal (separate from the root for
the min-cut problem and connect to the root for the shortest path problem)in each
scenario. We obtain approximation algorithms for these “hitting set” variants by
relating them to two classical problems, namely Steiner multicut and group Steiner
tree.

3.1 Two-stage Demand-Robust Min-Cut

Consider the two-stage demand-robust min-cut problem as defined in Section 2.2.
Here, we present a2-approximation for this problem.

To motivate our approach, let us consider the robust min-cut problem ontrees.
Suppose we know the maximum cost that some optimal solution pays in the second
stage (sayC). Any terminalti whose min-cut fromr costs more thanCσi

should
be cut away fromr in the first stage. Thus, if we knowC, we can identify exactly
which terminalsU should be cut in the first stage. The remaining terminals pay
at mostC to buy a cut in the second stage. If there arek scenarios, then there are
only k + 1 choices forC that matter, as there are onlyk + 1 possible sets thatU
could be. Though we may not be able to guessC, we can try all possible values of
U and find the best solution. This algorithm solves the problem exactly on trees.

The algorithm for general graphs has a similar flavor. In a general graph if for
any terminal the minimumr-ti cut costs more thanCσi

, then we can only infer that
the first stage should “help” this terminal i.e. buy some edges from ar-ti cut. In
the case of trees, every minimalr-ti cut is a single edge, so the first stage cuts
ti from the root. However, this is not true for general graphs. We can prove that
a similar algorithm that completely cutsti from the root gives a constant factor
approximation using a charging argument. As in the algorithm for trees, we reduce
the needed non-determinism by guessing a set of terminals rather thanC itself. We
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3.1. TWO-STAGE DEMAND-ROBUST MIN-CUT

refer to the first-stage cost of the minimumr-ti cut asmcut(ti).

Algorithm for Robust Min-Cut
T = {t1, t2, . . . , tk} are the terminals,r ← root .

1. For each terminalti, compute the cost (with respect toc) of a minimum
r-ti cut, denotedmcut(ti).

2. LetC be the maximum second stage cost of some optimal solution.
GuessU := {ti : σi ·mcut(ti) > 2C}.

3. First stage solution:Ef ←minimumr-U cut.

4. Second stage solution for scenarioi:

Ei
s ← any minimumr-ti cut inG \ Ef

Figure 3.1: A factor2-approximation for Robust Min-Cut

If we relabel the scenarios in decreasing order ofσi ·mcut(ti), then for every
choice ofC, U = ∅ or U = {t1, t2, . . . , tj} for somej ∈ {1, 2, . . . , k}. Thus,
we need to try onlyk + 1 values forC. This algorithm runs inÕ(k2mn) time
on undirected graphs using the max flow algorithm of Goldberg and Tarjan [27] to
find min cuts.

Let OPT denote an optimal solution and letE∗
f denote the set of first stage

edges inOPT. The second stage cost of our algorithm is at most2C which is
equal to twice second stage cost ofOPT for the correct guess ofC. We show that
the first stage solutionEf , given by our algorithm has costcf (Ef ) ≤ 2cf (E∗

f ) by
constructing a cut that separatesr from all the terminals inU and costs at most
2cf (E∗

f ). This proves that the output solution is a2-approximation.
For anyS ⊂ V , let δG(S) = {e = (u, v) ∈ E(G)|u ∈ S, v /∈ S} and let

E(S) = {e = (u, v) ∈ E(G)|u, v ∈ S}. Consider the graphG′ = (V, E \ E∗
f )

and letH = (V, F ) be a Gomory-Hu tree forG′ with respect to the edge costscf .
For any two verticesu, v ∈ V , letmcut(u, v) denote the cost of theu, v-min-cut in
graphG′ with respect to edge costscf . The Gomory-Hu treeH is a tree on vertices
V and a cost functionch : F → R+. LetP(u, v) denote the unique path fromu
to v in H. The treeH has the following property: for any two verticesu, v ∈ V ,
mcut(u, v) = mine∈P(u,v) ch(e). Furthermore, ifeuv = argmine∈P(u,v) ch(e),
then the two connected components obtained by removingeuv from H form a
u, v-min-cut inG.
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ConsiderH and root it atr. A vertexu is anancestorof v if u occurs on the
unique pathP(v, r) fromv tor. LetUm = {t ∈ U |@v ∈ U s.t.v is an ancestor oft}.
Considert ∈ Um and letet = argmine∈P(t,r) ch(e). Let St be the component
containingt after removinget from H. As an illustrative example, consider the
Gomory-Hu tree in Figure 3.2. In this example,U = {t1, t2, . . . , t7}, Um =
{t1, t5, t6} andTm = {t1, t5}.

r

t1

t2

t4

t5

t6

t7

St1

St6

St5

Figure 3.2: Gomory-Hu tree with rootr, U = {t1, t2, . . . , t7}, Um = {t1, t5, t6}
andTm = {t1, t5}.

For all terminalst ∈ U , ch(et) ≤ C as the second stage cost ofOPT is at most
C. Sincet ∈ U , ther-t min-cut cost inG has cost greater than2C (with respect to
cf ) which impliescf (δG(St)) ≥ 2C.

Lemma 3.1.1 For anyt ∈ U

1. cf (δG(St)) = cf (E∗
f ∩ δG(St)) + cf (δG(St) \ E∗

f ).

2. cf (δG(St) \ E∗
f ) = ch(et) ≤ cf (δG(St) ∩ E∗

f ).

Proof: δG(St) = (δG(St)∩E∗
f )] (δG(St)\E∗

f ), and thuscf (δG(St)) = cf (E∗
f ∩

δG(St))+cf (δG(St)\E∗
f ). Also,cf (δG(St)\E∗

f ) = ch(et) asH is the Gomory-Hu
tree ofG′ andet is the cheapest edge inP(r, t).
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Sincecf (δG(St)\E∗
f ) ≤ C andcf (δG(St)) ≥ 2C, we havecf (δG(St)\E∗

f ) ≤
cf (E∗

f ∩ δG(St)).
For any terminalt ∈ Um, recallet = argmine∈P(t,r) ch(e) andSt is the com-

ponent containingt after removinget from H. We construct a first stage solu-
tion (denotedEc) separatingr from U as follows. LetTm = {t ∈ Um|@v ∈
Um s.t.St ⊂ Sv} and let

Ec =
⋃

t∈Tm

δG(St) \ E(
⋃

t∈Tm

St).

Lemma 3.1.2 The set of edgesEc separater from all terminals inU .

Proof: Consider any terminalt ∈ U . For the sake of contradiction, suppose there
exists a path betweent andr in G \ Ec. Sincer /∈ (∪t∈TmSt), and by definition
t ∈ St ⊆ (∪t∈TmSt, there exists an edgee ∈ δG(∪t∈TmSt). Clearly,

e ∈ (∪t∈TmδG(St)) ande /∈ E(∪t∈TmSt)

Therefore,e ∈ Ec which is a contradiction.

Lemma 3.1.3 cf (Ec) ≤ 2cf (E∗
f )

Proof: Consider anye ∈ E∗
f and letSe = {t ∈ Tm|e ∈ δG(St)}. SinceSt1 ∩

St2 = ∅ for any distinctt1, t2 ∈ Tm, it is easy to observe that|Se| ≤ 2,∀e ∈ E∗
f .

Let
E∗

f,1 = {e ∈ E∗
f | |Se| = 1}

E∗
f,2 = {e ∈ E∗

f | |Se| = 2}

Clearly,E∗
f,2 ⊆ E(∪t∈TmSt). Therefore,

Ec ⊆ ∪t∈TmδG(St) \ E∗
f,2 =

(

∪t∈TmδG(St) \ E∗
f

)

∪ E∗
f,1.

For anyt ∈ Tm,

cf (δG(St) \ E∗
f ) ≤ cf (δG(St) ∩ E∗

f ) = cf (δG(St) ∩ E∗
f,1) + cf (δG(St) ∩ E∗

f,2)

Therefore,

∑

t∈Tm

cf (δG(St) \ E∗
f ) ≤ cf (E∗

f,1) + 2cf (E∗
f,2)

29



CHAPTER 3. GUESS AND PRUNE ALGORITHMS

cf (Ec) ≤
∑

t∈Tm

cf (δG(St) \ E∗
f ) + cf (E∗

f,1)
�

�

�

�3.1

≤ 2cf (E∗
f,1) + 2cf (E∗

f,2)
�

�

�

�3.2

≤ 2cf (E∗
f )

�

�

�

�3.3

Therefore, we have the following theorem.

Theorem 3.1.4 There is a polynomial time algorithm which gives a2-approximation
for the robust min-cut problem.

3.2 Two-stage Stochastic Min-Cut Problem

In this section, we consider the stochastic version of the two-stage min-cut problem
as defined in Section 2.3.2. Here, we present a4-approximation for this problem
improving fromO(log m)-approximation presented in Section 2.3.2.

In the robust version of the problem, we are able to exploit the fact that if the
maximum second stage cost ofOPT is C then all scenarios could spend up toC
in the second stage without worsening the objective value. This property allows
us to identify the set of terminals that should be separated from the root in the
first stage. In the stochastic version however, this property does not hold. We use
a novel LP formulation to identify the set of terminals that should be separated
from the root in the first stage. We complete the argument to prove the required
approximation factor via a Gomory-Hu tree based charging argument similar tothe
previous section.

Let yi be a binary variable denoting whether terminalti is separated fromr
in the first stage or not. Letxe be a binary variable denoting whether edgee is
selected in the first stage solution or not. LetP(u, v) denote the set of paths from
u to v in graphG. Also, letmcut(ti) denote the cost of the minimumr, ti-cut in
G with respect to the cost functioncf . Consider the following integer program (
IP1).

min
∑

e∈E

cf (e) · xe +
k
∑

i=1

σipi ·mcut(ti) · (1− yi)
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∑

e∈P

xe ≥ yi ∀P ∈ P(r, ti),∀i = 1, . . . , k
�

�

�

�3.4

xe ∈ {0, 1} ∀e ∈ E
�

�

�

�3.5

yi ∈ {0, 1} ∀i = 1, . . . , k
�

�

�

�3.6

Let z∗ be the objective value of an optimal solution to the above program and
letOPT be an optimal solution to the stochastic min-cut problem, letE∗

f be the first
stage solution ofOPT andEi

s be the second stage solution for scenarioi. Then we
can prove the following lemma.

Lemma 3.2.1 z∗ ≤ 2 · (cf (E∗
f ) +

∑k
i=1 σipi · cf (Ei

s))

Proof: We construct a feasible solution toIP1 from OPT and prove that the cost
is at most2 · OPT using an argument similar to the proof of Lemma 3.1.3. Let
Ei

f ⊂ E∗
f be the minimal set of edges such thatEi

f ∪Ei
s separatesr from ti. Also,

let
T1 = {ti ∈ U |cf (Ei

f ) ≤ cf (Ei
s)} andT2 = U \ T1

Consider the following assignment for the variables inIP1.

yi =

{

1 if ti ∈ T2
0 otherwise

k
∑

i=1

σipi ·mcut(ti) · (1− yi) =
∑

i:ti∈T1

σipi ·mcut(ti)
�

�

�

�3.7

≤
∑

i:ti∈T1

σipi · (cf (Ei
f ) + cf (Ei

s))
�

�

�

�3.8

≤ 2
∑

i:ti∈T1

σipi · cf (Ei
s))

�

�

�

�3.9

Now we construct a cutEc that separates all terminals inR from the root and
show that it has cost at most2cf (E∗

f ). Consider a Gomory-Hu treeH = (V, F )
on the graphG′ = (V, E \ E∗

f ) with edge costsch : F → R+. For u, v ∈ V ,
let P(u, v) denote the unique path betweenu andv in H. For any terminalt ∈
R, let et = argmine∈P(t,r) ch(e) andSt denote the component containingt after
removinget from H. Let us define

Tm = {t ∈ T2| @t′ ∈ T2 s.t.St ⊂ St′}

31



CHAPTER 3. GUESS AND PRUNE ALGORITHMS

Now we construct the cut as follows.

Ec = (
⋃

t∈Tm

δG(St)) \ E(
⋃

t∈Tm

St)

Clearly, Ec separates all terminals inT2 from r. We prove thatcf (Ec) ≤
2cf (E∗

f ) by a similar argument as in the proof of Lemma 3.1.3. Consider any
e ∈ E∗

f and letSe = {t ∈ Tm|e ∈ δG(St)}. SinceSt1 ∩ St2 = ∅ for any distinct
t1, t2 ∈ Tm, it is easy to observe that|Se| ≤ 2,∀e ∈ E∗

f . Let

E∗
f,1 = {e ∈ E∗

f | |Se| = 1}

E∗
f,2 = {e ∈ E∗

f | |Se| = 2}
Clearly,E∗

f,2 ⊆ E(∪t∈TmSt). Therefore,

Ec ⊆ ∪t∈TmδG(St) \ E∗
f,2 =

(

∪t∈TmδG(St) \ E∗
f

)

∪ E∗
f,1.

For anyt ∈ Tm,

cf (δG(St) \ E∗
f ) ≤ cf (δG(St) ∩ E∗

f ) = cf (δG(St) ∩ E∗
f,1) + cf (δG(St) ∩ E∗

f,2)

The first inequality follows from the choice ofTm since for any terminalt ∈
Tm, cf (δG(St)) = cf (Ei

f ) + cf (Ei
s) andcf (Ei

s) ≤ cf (Ei
f ).

Therefore,
∑

t∈Tm

cf (δG(St) \ E∗
f ) ≤ cf (E∗

f,1) + 2cf (E∗
f,2)

cf (Ec) ≤
∑

t∈Tm

cf (δG(St) \ E∗
f ) + cf (E∗

f,1)
�

�

�

�3.10

≤ 2cf (E∗
f,1) + 2cf (E∗

f,2)
�

�

�

�3.11

≤ 2cf (E∗
f )

�

�

�

�3.12

Now, settingxe = 1,∀e ∈ Ec and0 otherwise, we obtain a feasible solution
to IP1. Furthermore,

∑

e∈E cf (e)xe = cf (Ec) ≤ 2cf (E∗
f ) which impliesz∗ ≤

2(cf (E∗
f ) +

∑k
i=1 cf (Ei

s)).
Consider the LP relaxation (LP1) of IP1 where integrality conditions onxe

andyi are relaxed for alle ∈ E andi = 1, . . . , k. Let z̃ be the optimal objective
value ofLP1 and let(x̃, ỹ) be an optimal solution. We can prove the following
lemma.
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Lemma 3.2.2 We can obtain an integral feasible solution(x̂, ŷ) to LP1 in polyno-
mial time such that

∑

e∈E

cf (e)x̂e +
k
∑

i=1

σipi ·mcut(ti) · (1− ŷi) ≤ 2z̃ ≤ 2z∗

Proof: Let T1 = {ti ∈ U |ỹi ≤ 1
2} andT2 = U \ T1. Let Em be a minimum cost

cut that separates all terminals inT2 from r. Consider the following solution. For
all i = 1, . . . , k,

ŷi =

{

1 if ỹi ≥ 1
2

0 o/w

For alle ∈ E,

x̂e =

{

1 if e ∈ Em

0 o/w

Consider the fractional solution2x̃. This is a fractional cut that separates
all terminals inT2 from r. Since we can round a fractional cut to an integral
cut of the same (or lower) cost, the minimum cost cutEm has costcf (Em) ≤
2
∑

e∈E cf (e)x̃e.
Also,

k
∑

i=1

σipi ·mcut(ti) · (1− ŷi) =
∑

i:ỹi<1/2

σipi ·mcut(ti)
�

�

�

�3.13

≤ 2
∑

i:ỹi<1/2

σipi ·mcut(ti) · (1− ỹi)
�

�

�

�3.14

≤ 2
k
∑

i=1

σipi ·mcut(ti) · (1− ỹi)
�

�

�

�3.15

Thus,(x̂, ŷ) is a2-approximate integral feasible solution toLP1.
The cut corresponding to integral solutionx̂ is our first stage solution, sayE′

f .
The second stage solution for scenarioi (sayE′i

s) is the minimum cut that separates
ti from r in the graphG \ Ef . Thus,

cf (E′
f ) +

k
∑

i=1

σipicf (E′i
s) ≤

∑

e∈E

cf (e)x̂e +
∑

i:ŷi=0

σipi mcut(ti)
�

�

�

�3.16

≤ 2z∗ ≤ 4(cf (E∗
f ) +

k
∑

i=1

cf (Ei
s))

�

�

�

�3.17

Therefore, we obtain the following theorem.
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Theorem 3.2.3 There is a polynomial time algorithm which gives a4-approximation
for the stochastic min-cut problem.

3.3 Demand-Robust Shortest Path Problem

We consider the two-stage demand-robust shortest path problem which isa special
case of the two-stage Steiner tree problem considered in Section 2.4. The problem
is defined on a undirected graphG = (V, E) with a root vertexr and costc on the
edges. Theith scenarioSi is a singleton set{ti} rather than a set of terminals as in
the Steiner tree problem. An edgee costsc(e) in the first stage andci(e) = σi ·c(e)
in theith scenario of the second stage. A solution to the problem is a set of edges
E0 to be bought in the first stage and a setEi in the recourse stage for each scenario
i. The solution is feasible ifE0 ∪ Ei contains a path betweenr andti. The cost
paid in theith scenario isc(E0) + σi · c(Ei). The objective is to minimize the
maximum cost over all scenarios.

The following structural result for the demand-robust shortest path problem
can be obtained from the structural lemma in Sectionr 2.4.

Lemma 3.3.1 [18] Given a demand-robust shortest path problem instance on an
undirected graph, there exists a solution that costs at most twice the optimumsuch
that the first stage solution is a tree containing the root.

The above lemma implies that we can restrict our search in the space of solu-
tions where first stage is a tree containing the root and lose only a factor oftwo.
This property is exploited crucially in our algorithm.

3.3.1 Algorithm

Lemma 3.3.1 implies that there is a first stage solution which is a tree containing the
rootr and it can be extended to a final solution within twice the cost of an optimum
solution. We call such a solution as aconnected solution. Fix an optimal connected
solution, sayE∗

0 , E∗
1 , . . . , E∗

k . Let C be the maximum second stage cost paid by
this solution over all scenarios, i.e.C = maxk

i=1{σi · c(E∗
i )}. Therefore, for any

scenarioi, either there is path fromti to rootr in E∗
0 , or there is a vertex within a

distanceC
σi

of ti which is connected tor in E∗
0 , where distance is with respect to

the cost functionc, denoteddistc(·, ·). We use this fact to obtain a constant factor
approximation for our problem.

The algorithm is as follows: LetC be the maximum second stage cost paid
by the connected optimal solution (fixed above) in any scenario. We need totry
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3.3. DEMAND-ROBUST SHORTEST PATH PROBLEM

Algorithm for Robust Shortest Path
Let C be the maximum second stage cost of some fixed connected optimal
solution.
T = {t1, t2, . . . , tk} are the terminals,r ← root,α← 1.775, V ′ ← φ.

1. V ′ := {ti|distc(ti, r) > 2α·C
σi
}

2. B := {Bi = B(ti,
α·C
σi

)| ti ∈ V ′}, whereB(v, d) is a ball of radius
d aroundv with respect to costc. Choose a maximal setBI of non-
intersecting balls fromB in order of non-decreasing radii.

3. GuessR0 := {ti|Bi ∈ BI}.

4. First stage solution:E0 ← The Steiner tree on terminalsR0∪{r} output
by the best approximation algorithm available.

5. Second stage solution for scenarioi: Ei ← Shortest path fromti to the
closest node in the treeE0

Figure 3.3: Robust Shortest Path Algorithm

only k · n possible values ofC 1, so we can assume that we have correctly guessed
C. For each scenarioti, consider a shortest path (sayPi) to r with respect to cost
c. If c(Pi) ≤ 2α·C

σi
, then we can handle scenarioi in the second stage with cost

only a factor2α more than the optimum. Thus,ti can be ignored in building the
first stage solution. Hereα > 1 is a constant to be specified later. LetV ′ =
{ti | distc(r, ti) > 2α·C

σi
}.

For eachti ∈ V ′, let Bi be a ball of radiusα·Cσi
aroundti. Here, we include

internal points of the edges in the ball. We collectively refer to vertices in V and
internal points on edges aspoints, VP . Thus,Bi = {v ∈ VP | distc(ti, v) ≤ α·C

σi
}.

The algorithm identifies a set of terminalsR0 ⊆ V ′ to connect to the root in
the first stage such that the remaining terminals inV ′ are close to some terminal in
R0 and thus, can be connected to the root in the second stage paying a low-cost.

Proposition 3.3.2 There exist a set of terminalsR0 ⊆ V ′ such that:

1. For everyti, tj ∈ R0, we haveBi ∩Bj = φ; and

1For each scenarioi, the second stage solution is a shortest path fromti to one of the n vertices
(possiblyti), so there are at mostk · n choices of C.
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r

t1

t2

t3

t4

q1

p(q1)

q2

p(q2)

q3

p(q3)

Figure 3.4: Illustration of first-stage tree computation described in Lemma 3.3.3.
The balls with solid lines denoteB(ti,

C
σi

), while the balls with dotted lines denote

B(ti,
α·C
σi

).

2. For everyti ∈ V ′ \R0, there is a representativerep(ti) = tj ∈ R0 such that
Bi ∩Bj 6= φ and α·C

σj
≤ α·C

σi
.

Proof: Consider terminals inV ′ in non-decreasing order of the radiiα·C
σt

of the
corresponding ballsBt. If terminal ti is being examined andBi ∩ Bj = φ, ∀tj ∈
R0, then includeti in R0. If not, then there existstj ∈ R0 such thatBi ∩Bj 6= φ;
definerep(ti) = tj . Note thatα·Cσj

≤ α·C
σi

as the terminals are considered in order
of non-decreasing radii of the corresponding balls.

The First Stage Tree.

The first stage tree is a Steiner tree on the terminal setR0∪{r}. However, in order
to bound the cost of first stage tree we build the tree in a slightly modified way. For
an illustration, refer to Figure 3.4.

LetG′ be a new graph obtained when the ballsB(ti,
C
σi

) corresponding to every
terminalti ∈ R0 are contracted to singleton vertices. We then build a Steiner tree
E01 in G′ with the terminal set as the shrunk nodes corresponding to terminals in
R0 and the root vertexr. In Figure 3.4,E01 is the union of solid edges and the
thick edges. Now, for every shrunk node corresponding toB(ti,

C
σi

), we connect

each tree edge incident toB(ti,
C
σi

) to terminalti using a shortest path; these edges
are shown as dotted lines in Figure 3.4 and are denoted byE02. Our first stage
solution is the Steiner treeE0 = E01 ∪ E02.

Lemma 3.3.3 The cost ofE0 is at most1.55α
α−1 timesc(E∗

0), the first stage cost of
the optimal connected solution.
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Proof: We know that the optimal first stage tree,E∗
0 connects some vertex in the

ball B(ti,
C
σi

) to the rootr for everyti ∈ R0, for otherwise the maximum second
stage cost ofOPT would be more thanC. Thus,E∗

0 induces a Steiner tree on the
shrunk nodes inG′. We build a Steiner tree on the shrunk nodes as terminals using
the algorithm due to Robins and Zelikovsky [50]. Thus,

c(E01) ≤ 1.55 c(E∗
0)

�

�

�

�3.18

Now, consider edges inE02. Consider a pathq ∈ E02 connecting some edge
incident toB(ti,

C
σi

) to ti. Sinceq is the shortest path between its end points, we

havec(q) ≤ C
σi

. Now, consider a path from terminalti alongq until it reaches

B(ti,
α·C
σi

) and label the portion betweenB(ti,
C
σi

) andB(ti,
α·C
σi

) as p(q). By

construction, we havec(p(q)) ≥ (α−1)·C
σi

, soc(q) ≤ 1
α−1 · c(p(q)).

For any two pathsq1, q2 ∈ E02, the pathsp(q1) andp(q2) are edge-disjoint.
Clearly, if q1 andq2 are incident to distinct terminals ofR0, thenp(q1) andp(q2)
are contained in disjoint balls and thus are edge-disjoint. Ifq1 andq2 are incident
to the same terminal, then it is impossible thatp(q1) ∩ p(q2) 6= φ asE01 is a tree
on the shrunk graph. Hence, we have

∑

e∈E02

c(e) =
∑

q∈E02

c(q) ≤
∑

q∈E02

1

α− 1
· c(p(q)) ≤

∑

e∈E01

1

α− 1
· c(e)

�

�

�

�3.19

where the last inequality is due to edge-disjointness ofp(q1) andp(q2) for any
two pathsq1, q2 ∈ E02. Thus,c(E0) = c(E01)+c(E02) ≤ c(E01)+

1
α−1 ·c(E01) ≤

1.55α
α−1 · c(E∗

0), where the last inequality follows from (3.18).

Second Stage.

The second stage solution for each scenario is quite straightforward. For any ter-
minal ti, Ei is the shortest path fromti to the closest node inE0.

Lemma 3.3.4 The maximum second stage cost for any scenario is at most2α ·C.

Proof: We need to consider the following cases:

1. ti ∈ R0: Since the first stage treeE0 connectsti to r, Ei = φ. Thus,
c(Ei) = 0.

2. ti ∈ V ′ \ R0: By Proposition 3.3.2, there exists a representative terminal
tj ∈ R0 such thatBi ∩ Bj 6= φ andσj ≥ σi. Therefore,distc(ti, tj) ≤
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α·C
σi

+ α·C
σj
≤ 2α·C

σi
. We know thattj is connected tor in E0. Thus, the

closest node toti in the first stage tree is at a distance at most2α·C
σi

. Hence,
σi · c(Ei) ≤ 2α · C.

3. ti /∈ V ′: Then the shortest path fromti to r with respect to costc is at most
2α·C

σi
. Hence, the closest node toti in the first stage tree is at a distance at

most 2α·C
σi

andσi · c(Ei) ≤ 2α · C.

Theorem 3.3.5 There is a polynomial time algorithm which gives a 7.1 approxi-
mation for the robust shortest path problem.

Proof: From Lemma 3.3.3, we get thatc(E0) ≤ 1.55α
α−1 c(E∗

0). From Lemma 3.3.4,
we get that the second stage cost is at most2α · C. Chooseα = 3.55

2 = 1.775.
Thus, we getc(E0) ≤ (3.55) · c(E∗

0) andmaxk
i=1{σi · c(Ei)} ≤ (3.55) · C. From

Lemma 3.3.1 we know thatc(E∗
0) + C ≤ 2 · OPT, whereOPT is the cost of

optimal solution to the robust shortest path instance. Together the previousthree
inequalities implyc(E0) + maxk

i=1{σi · c(Ei)} ≤ (7.1) · OPT

3.4 Extensions to Hitting Versions

In this problem, we introduce generalizations of demand-robust min-cut and short-
est path problems that are closely related to Steiner multicut and group Steinertree,
respectively. In a Steiner multicut instance, we are given a graphG = (V, E) and
k sets of verticesX1, X2, . . . , Xk and our goal is to find the cheapest set of edges
S whose removalseparateseachXi, i.e. noXi lies entirely within one connected
component of(V, E \ S). If

⋂k
i=1 Xi 6= ∅, we call the instancerestricted. In a

group Steiner tree instance, we are given a graphG = (V, E), a rootr, andk sets
of verticesX1, X2, . . . , Xk and our goal is to find a minimum cost set of edgesS
that connects at least one vertex in eachXi, i = 1, . . . , k to the rootr. We show
how approximation algorithms for these problems can be combined with our tech-
niques to yield approximation algorithms for “hitting versions” of demand-robust
min-cut and shortest path problems.

In the hitting version of robust min-cut (resp. shortest path), each scenarioi is
specified by an inflation factorσi and a set of nodesTi ⊂ V (rather than a single
node). A feasible solution is a collection of edge sets{E0, E1, . . . , Ek} such that
for each scenarioi, E0 ∪ Ei contains an root-t cut (resp. path) for somet ∈ Ti.
The goal is to minimizec(E0) + maxi{σi · c(Ei)}.
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3.4.1 Robust Hitting Cuts

Robust hitting cut isΩ(log k)-hard, wherek is the number of scenarios, even when
the graph is a star. In fact, if we restrict ourselves to inputs in which the graph is
a star, the root is the center of the star, andσ = ∞ for all scenarios, then robust
hitting cut on these instances is exactly the hitting set problem. In contrast, we
can obtain anO(log k) approximation for robust hitting cut on trees, andO(log n ·
log k) in general using results of Nagarajan and Ravi [44] in conjunction with the
following theorem.

Theorem 3.4.1 If for some class of graphs there is aρ-approximation for Steiner
multicut on restricted instances, then for that class of graphs there is a(ρ + 2)-
approximation for robust hitting cut. Conversely, if there is aρ-approximation for
robust hitting cut then there is aρ-approximation for Steiner multicut on restricted
instances.

Algorithm: Let α = 1
2(ρ + 1 +

√

ρ2 + 6ρ + 1) and letC be the cost that some
optimal solution pays in the second stage. For each terminalt in some group,
compute the cost of a minimum root-t cut, denotedmcut(t). Let T ′ := {Ti :
∀t ∈ Ti, σi ·mcut(t) > α · C}. Note that there are onlyk + 1 possibilities, as in
the robust min-cut algorithm. For each terminal setTi ∈ T ′, separate at least one
terminal inTi from the root in the first stage using anρ-approximation algorithm
for Steiner Multicut [36, 44].
Proof of Theorem 3.4.1: We first show that aρ-approximation for robust hitting
cut implies aρ-approximation for Steiner multicut on restricted instances. Given
a restricted instance of Steiner multicut(G, X1, X2, . . . , Xk) build a robust hitting
cut instance as follows: use the same graph and costs, set the rootr to be any
element of

⋂

i Xi, and create scenariosTi = Xi \ r with σi =∞ for eachi. Note
that solutions to this instance correspond exactly to Steiner multicuts of the same
cost. Thus robust hitting cut generalizes Steiner multicut on restricted instances.

We now show the approximate converse, that aρ-approximation for Steiner
multicut on restricted instances implies a(ρ + 2)-approximation for robust hitting
cut. LetOPT be an optimal solution, and letE∗

0 be the edge set it buys in stage one,
and letC1 andC2 be the amount it pays in the first and second stage, respectively.
Note we can handle everyTi /∈ T ′ while paying at mostα · C2.

We prove that the first stage edgesE0 ⊂ E[G] given by our algorithm satisfy all
scenarios inT ′, and have costc(E0) ≤ ρ(1+ 2

α−1)C1. Thus, the total solution cost
is at mostρ(1+ 2

α−1)C1+α·C2. Compared to the optimal cost,C1+C2, we obtain

a max{α, ρ(1 + 2
α−1)}-approximation. Settingα = 1

2(ρ + 1 +
√

ρ2 + 6ρ + 1)
then yields the claimed(ρ + 2) approximation ratio.
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A cut is called aT ′-cut if it separates at least one terminal in eachT ∈ T ′ from
the root. There exists aT ′-cut of cost at most(1 + 2

α−1)C1, by the same argument
as in the proof of Theorem 3.1.4. SupposeOPT cuts awayt∗i when scenarioTi

occurs. ThenOPT is also an optimal solution to the robust min-cut instance on
the same graph with terminals{t∗i | i = 1, 2, . . . , k} ask scenarios. Since, for
all t ∈ T such thatT ∈ T ′, we haveσt · mcut(t) > α · C, we can construct
a root-{t∗i | i = 1, 2, . . . , k} cut of cost at most(1 + 2

α−1)C1. Thus, the cost of
an optimalT ′-cut is at most(1 + 2

α−1)C1. Now apply theρ-approximation for
Steiner multicut on restricted instances. To build the Steiner multicut instance, we
use the same graph and edge costs, and create a groupsXi = Ti ∪ {root} for each
Ti ∈ T ′. Clearly, the instance is restricted. Note that every solution to this instance
is aT ′-cut of the same cost, and vice-versa. Thus aρ-approximation for for Steiner
multicut on restricted instances yields aT ′-cut of cost at most2(1 + 2

α−1)C1.

Corollary 3.4.2 There is a polynomial timeO(log n · log k)-approximation algo-
rithm for robust hitting cut on instances withk scenarios andn nodes, and an
O(log k)-approximation algorithm for robust hitting cut on trees.

3.4.2 Robust Hitting Paths

Theorem 3.4.3 If there is aρ-approximation for group Steiner tree then there is a
2ρ-approximation for robust hitting path. If there is aρ-approximation for robust
hitting path, then there is aρ-approximation for group Steiner tree.

Proof: Note that robust hitting path generalizes group Steiner tree (given a GST
instance with graphG, rootr and groupsX1, X2, . . . , Xk, use the same graph and
root, make each group a scenario, and setσi = ∞ for all scenariosi). Thus a
ρ-approximation for robust hitting path immediately yields aρ-approximation for
group Steiner tree.

Now suppose we have anρ-approximation for group Steiner tree. Lemma 3.3.1
guarantees that there exists a solution{E0, E1, . . . , Ek} of cost at most2OPT

whose first stage edges,E0, are a tree containing rootr.
The algorithm is as follows. GuessC := maxi{σic(Ei)}. Note that for

each scenarioi the treeE0 must touch one of the balls in{B(t, C/σi)|t ∈ Ti},
whereB(v, x) := {u|distc(v, u) ≤ x}. Thus we can construct groupsXi :=
⋃

t∈Ti
B(t, C/σi) for each scenarioi and use theρ-approximation for group Steiner

tree on these groups to obtain a set of edgesE′
0 to buy in the first stage.

Note thatc(E′
0) ≤ ρc(E0) and any scenarioi has a terminalt ∈ Ti that is

within distanceC/σi of some vertex incident on an edge of treeE′
0. We conclude

that the total cost is at mostρc(E0) + C ≤ 2ρ · OPT.
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4
Demand-Robust Covering Problems with

Chance Constraints

Optimization models incorporating data and demand uncertainty have long been
studied in the literature due to their vast applicability in real world scenarios.
Stochastic optimization approaches optimize the expected costs over all scenarios
while the robust optimization approaches optimize over the worst case scenario.
However, both approaches are plagued by the presence of unlikely outlier scenar-
ios which distort the optimization goals and the resulting solution.

A natural idea to overcome this problem is to prune away the outlier scenar-
ios and solve the problem on remaining scenarios. This approach, referred to as
chance-constrainedoptimization (see [11, 6]), has been studied in literature. A
chance-constrained model incorporates probabilistic constraints in the traditional
stochastic or robust optimization model. Thus, the problem of finding a minimum
cost solution which is feasible forρ fraction of the scenarios for a given reliability
ρ > 0, can be modeled using chance constraints. This model is best introduced
through an example: consider a one-stage shortest path problem on an undirected
graphG = (V, E) where we are required to construct a path between rootr and an
uncertain destination. Each vertexv ∈ V occurs with probability1

n as the destina-
tion and we are required to choose a minimum cost set of edgesEs such that with
probabilityρ (whereρ is given) there is a path betweenr and the destination. Note
that the problem in this example reduces to finding a minimum cost rootedk-MST
in G wherek

n ≤ ρ < k+1
n .

In a chance-constrained optimization approach, the parameterρ captures the
risk aversion of the optimizer. Whenρ = 1, we return to the classical robust
model, while atρ = 0, the empty solution is feasible. We extend the chance
constrained framework to robust covering problems with demand-uncertainty (such
as considered in Dhamdhere et al. [18]) in both one-stage and two-stagemodels
where the demand-uncertainty is either given as an explicit list of scenarios or
specified implicitly. (Our methods also apply directly to the stochastic versions
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defined e.g., in [49] but we leave the details out).

4.0.3 Previous Work

Chance constrained programming was introduced in Charnes and Cooper[11].
Even with a long history, chance constraint models do not find wide applicabil-
ity because of the inherent difficulty in solving these problems optimally; namely,
the feasible region for a chance constrained problem depends on the underlying
uncertainty and is generally non-convex. A detailed discussion of chance con-
strained programs, and more generally, stochastic programs can be found in [6].
Robust optimization and chance constrained optimization are very closely related
(see [9, 13, 20]). Nemirovski and Shapiro [45] show how robust optimization
framework provides an approximation of chance constrained programmingwhile
Chen et al. [13] propose robust optimization as a technique to obtain feasible solu-
tions for chance constrained programs in [52].

For simple probability distributions, such as a uniform distribution (where each
scenario occurs with the same probability), the chance-constrained problem re-
duces to a more familiar partial covering problem, where we are required to cover
somek out of l scenarios with a minimum cost solution. Recall that the shortest
path problem described above reduces to finding a minimum cost tree containing
the rootr that spans at leastk vertices. This problem is a partial covering version
of the spanning tree problem that has been studied extensively [7, 8, 14, 1] and for
which a2-approximation is known [25]. In general, in a partial set covering prob-
lem we are given a set familyF , set of elementsU and a targetk ≤ |U | and the goal
is to select a minimum cost collection of sets fromF that cover at leastk elements.
Partial covering versions of several combinatorial problems have beenconsidered
such as vertex cover [2, 24, 41], facility location,k-center [10]. However, to the
best of our knowledge, there has not been any prior work in designingapproxi-
mation algorithms for combinatorial problems in the general chance-constrained
framework.

4.0.4 Our Contributions

We consider chance constraints in both one-stage as well as two-stage robust cov-
ering problems with demand-uncertainty where uncertainty is specified eitheras
an explicit list of demand-scenarios or implicitly as a probability distribution over
the demand elements that require coverage. While it is easy to obtain bi-criteria
approximation algorithms for the chance-constrained problems that violate the
chance constraint by a small factor, we consider the problem of satisfyingthe
chance constraint strictly.
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1. We show that in the explicit scenario model (with more than one element
in all the scenarios), both one-stage and two-stage problems are at leastas
hard to approximate as the densek-subgraph (DkS) problem. TheDense
k-Subgraph problem is conjectured to beΩ(nδ)-hard to approximate for
someδ > 0 [23].

2. For the special case when each scenario has a single element, while the one-
stage problem directly reduces to a weighted partial covering problem, we
show that many two-stage problems (including set cover, facility location
etc) reduce to a weighted partial covering problem via a guess-and-prune
method.

3. The two-stage shortest path problem does not reduce to a partial covering
version but can be reduced to the weightedk-MST problem where the weight
function is submodular. We give anO(log k)-approximation for this prob-
lem.

Explicit Scenarios
1-elt > 1 elts

One stage Reduces to partial covering DkS-hard

Two stage
Set Cover, Vertex Cover,
Facility Location

Reduce to partial
covering DkS-hard

Shortest Path O(log k)

Table 4.1: Main results for the explicit scenario uncertainty model

4. We also consider the model of uncertainty where scenarios (possibly an ex-
ponential number) are specified implicitly by a probability distribution. In
particular, we consider a model where each demand occurs with a given
probability independently of others referred from hereon as theindependent-
scenariosmodel. While it is not even clear if the two-stage problem in the
independent-scenarios model is in NP, we show that the one-stage problem
in this model can be reduced to a weighted partial covering problem. We
also extend these results for the one-stage problem where the demand uncer-
tainty is specified by a general probability distribution such that thecumula-
tive probabilityof any demand-scenario can be computed efficiently and is
strictly-monotonewith respect to set inclusion.

Outline. The rest of the chapter is organized as follows. In Section 4.1, we present
the hardness of approximation of problems with more than one element per explicit
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scenario. In Section 4.3, we consider the explicit scenario model with only one el-
ement per scenario and present the reduction of the chance-constrained versions of
many robust covering problems to weighted partial covering problems. Finally, in
Section 4.4, we consider implicit models of uncertainty and show that the one-stage
problems in the independent-scenario model reduce to weighted partial covering
problems and also discuss extensions to the general distribution model.

4.1 Hardness of Approximation

We show that the one-stage chance constrained set cover problem in theexplicit
scenario model is at least as hard to approximate asDense k-Subgraph even
when every scenario has only two elements.
Problem Definition A one stage chance constrained set covering problem in the
explicit scenario model (Explicit 1-CCSCP) is as follows: we are given a universe
of elementsU , a family of subsetsS, a cost functionc on the subsets inS, a list of
l scenarios where scenarioi is specified by a subsetSi ⊂ U and its probabilitypi,
and a reliability factor0 < ρ < 1. The problem is to find a minimum cost partial
set cover for elements in a subset of scenarios (sayI) such that

∑

i∈I pi ≥ ρ.
We prove the following theorem.

Theorem 4.1.1 Explicit 1-CCSCP is at least as hard to approximate asDense
k-Subgraph even when each scenario has only two elements.

Proof: In aDense k-Subgraph instanceI, we are given a graphG = (V, E) and
a numberk, and the objective is to find a minimum size subset of verticesV ′ ⊆ V
that induces at leastk edges, i.e|E[V ′] ≥ k|.

The reduction is as follows: we construct an instanceI ′ of Explicit 1-CCSCP.
The element setU = {vi|vi ∈ V }. For each vertexvi ∈ V , we have a set
Si = {vi} in the set familyF . For each edgee = (vi, vj) ∈ E, we have a scenario
containing two elements{vi, vj}. Now, in the instanceI ′ of Explicit 1-CCSCP
we are required to find a minimum cardinality subsetS of sets fromF such that
the sets inS satisfy at leastk scenarios. Note that a scenario,{vi, vj} is satisfied
by S if both vi andvj are contained in some sets inS.

Suppose there is a solutionS for instanceI ′. ConsiderV ′ = {vi|Si ∈ S}.
Consider any scenario{vi, vj} that is satisfied byS. Note that(vi, vj) ∈ E(G) and
vi, vj ∈ V ′. Thus,(vi, vj) is an induced edge inV ′ which implies|E[V ′]| ≥ k.
Thus,OPT (I) ≤ OPT (I ′).

Conversely, consider a solutionV ′ of I that induces at leastk edges. Consider
S = {Si|vi ∈ V ′}. It is easy to note that for each edge(vi, vj) ∈ E[V ′], the
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corresponding scenario is satisfied by the solutionS. Thus,OPT (I ′) ≤ OPT (I).

The two-stage covering problems in the explicit scenario model can also be
shown to be at least as hard to approximate asDense k-Subgraph.
Two-stage Chance Constrained Set Covering Problem (Explicit 2-CCSCP) We
are given a set of elementsU , a family of subsetsS, cost for each set inS, a
reliability level ρ and a list ofl future scenarios. Each scenarioi is specified by a
subsetSi ⊂ U , an inflation factorσi and probabilitypi. In second stage in scenario
i, each setS ∈ S becomes costlier by a factorσi. The goal is to select aρ fraction
of the scenariosI and a first stage solutionSf ⊂ S. Also, for each scenarioi ∈ I,
find a recourse solutionSi

r ⊂ S such thatSf ∪Si
r is a feasible set cover forSi. The

goal is to minimize

c(Sf ) + max
i∈I

σi · c(Si
r)

If σi = ∞ for all i = 1, . . . , l, the two-stage problem reduces to a one-stage
problem and the hardness of approximation follows from Theorem 4.1.1. There-
fore, we have the following theorem.

Theorem 4.1.2 Explicit 2-CCSCP is at least as hard to approximate asDense
k-Subgraph even when each scenario has only two elements.

4.2 Bicriteria Results

We show that if the chance-constraint can be violated by a constant factor, we can
obtain anO(α)-approximation when anα-approximation is known for the robust
problem without the chance-constraints. For the sake of exposition, we consider
theExplicit 1-CCSCP problem but essentially the same argument extends to the
two-stage problems.

Let there bel scenariosS1, . . . , Sl with probabilitiesp1, . . . , pl respectively.
The problem is to satisfy a subset of scenarios whose probabilities sum to the reli-
ability factorρ.

To formulate this as an integer program (IP1), let zi be a binary variable that
denotes whether scenarioi is covered or not.

min
∑

S∈S cSxS
∑

S:e∈S xS ≥ zi ∀e ∈ Si ∀i = 1, . . . , l
∑l

i=1 pizi ≥ ρ
xS ∈ {0, 1} ∀S ∈ S
zi ∈ {0, 1} ∀i = 1, . . . , l
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If the deterministic set covering problem has anα-approximation, then we can
give anα

ε -approximation for any constantε > 0 to the chance constrained problem
that violates the chance-constraint and covers only aρ′ = ρ−ε

1−ε fraction of the
scenarios.

Theorem 4.2.1 Suppose there is anα-approximation to the deterministic set cov-
ering problem. Then for theExplicit 1-CCSCP with reliability ρ, there is an
α
ε -approximation for any constantε > 0 that coversρ′ = ρ−ε

1−ε scenarios.

Proof: Assume wlog that each scenario has probabilityp = 1
l ; otherwise we

can consider multiple copies of the same scenario. Now, consider the optimal
solution (say(x̃, z̃)) of the LP relaxation ofIP1. We know

∑l
i=1

1
l z̃i ≥ ρ Let

H = {i|z̃i ≥ ε} andh = |H|. Therefore,

h + (l − h) · ε ≥ lρ

⇒ h ≥ l(ρ− ε)

1− ε

Consider the solution,̂x = 1
ε x̃. Clearlyx̂ is a fractional solution that is feasible

for all scenarios inH and can be rounded using the deterministicα approxima-
tion to an integer solution. Furthermore, the total probability of scenarios isH is
ρ−ε
1−ε . Therefore, we obtain anαε -approximate solution toExplicit 1-CCSCP that

violates the chance constraint and coversρ′ = ρ−ε
1−ε scenarios.

4.3 Explicit Scenario Models

Note that even one stage versions of covering problems with more than one el-
ement per scenario are hard. For instance, we have the following corollary of
Theorem4.1.1.

Corollary 4.3.1 The one-stage (and hence, two-stage) chance-constrained ver-
sions of the following covering problems in the explicit scenario model are at least
as hard to approximate asDense k-Subgraph even when each scenario has only
two elements.

1. Vertex Cover (scenario is described by a subset of edges)

2. Facility Location (scenario is described by a subset of demand points)

3. K-median (scenario is described by a subset of demand points)

4. K-center (scenario is described by a subset of demand points)
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5. Steiner Tree (scenario is described by a subset of vertices)

Hence in this section, we consider the case when each scenario has exactly one
element.
One-stage versions.The one stage versions of the above problems with exactly
one element per scenario are directly reducible to the respective partial cover-
ing variants. These variants have been well approximated in the literature (2-
approximation for partial vertex cover [41], 3-approximation for partialfacility
location, partialk-center [10], constant-factor for partialk-median [12], and 2-
approximation for partial shortest paths that reduce tok-MST [25]), hence we fo-
cus on the two-stage version henceforth.

We first give a logarithmic approximation for the two-stage chance-constrained
robust version for the general set covering problem. Then, we showhow the two
stage versions of the above problems (in particular, Vertex Cover, FacilityLocation
and Steiner tree) with one element per scenario can be approximated.

4.3.1 Two-stage Chance-Constrained Set Cover

Theorem 4.3.2 Consider theExplicit 2-CCSCP where you are given a family
m subsetsS1, . . . , Sm with cost functionc, and l scenarios such that scenario
i contains elementei, has inflation factorσi and occurs with probabilitypi and
required reliability of the solution isρ. This problem can be reduced to a weighted
partial covering solution and thus, admits anO(log(ρl))-approximation.

Proof: Fix an optimum solution and suppose the worst case second stage cost is
B in this optimum solution. There are onlyl choices forB; one corresponding to
the second-stage minimum cost solution for each of thel scenarios. Letci denote
the cost of the minimum-cost set that containsei, T = {i ∈ [l]|σi · ci ≤ B}.
We can cover all scenarios inT in the second-stage with cost at mostB. Let
τ =

∑

i∈T pi. We need to cover a subset of scenarios from[l] \ T whose total
probability is at leastρ − τ in the first stage. Therefore, for a particular choice of
B the problem reduces to a weighted partial set covering problem which admitsan
O(log k)-approximation if you require to coverk elements.

The reduction in the above theorem applies to the two-stage covering problems
that satisfy the following property:If a scenarioi that is covered in an optimal
solution can not be independently covered in the second-stage within the worst
case second-stage cost, then it must be completely covered in the first stage.
Two-stage Chance-Constrained Vertex Cover.This problem when each scenario
consists of a single edge satisfies the above property. Thus, it can be reduced to
a weighted partial vertex cover problem, which implies a 2-approximation using
the results of [41]. Corresponding versions of the facility location problem and the
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shortest path problem do not satisfy this property and thus, do not directly reduce
to a partial covering problem.

4.3.2 Two-Stage Chance-Constrained Facility Location2-CCFLP

Problem Definition Given a metric(V, d), a set of potential facilitiesF and a set
of l scenarios where scenarioi is specified by a demand pointvi ∈ V and inflation
factor σi and occurs with probabilitypi and required reliability isρ. Opening a
facility j ∈ F in the first stage costscj while opening it in the second stage in
scenarioi costsσi · cj . The goal is to select aρ fraction of the scenarios (sayI)
and open a set of facilitiesF1 to open in the first stage and for each of the selected
scenarioi, connect to one of the open facilities inF1 or open a new facility and
connect to it in the second stage if that scenario materializes. Letxj be a binary
variable denoting whetherj ∈ F is opened in the first stage or not and letfi(x)
denote the minimum second-stage cost in scenarioi given the first stage solution
is x. The objective is to minimize

∑

j∈F
cjxj + max

i∈I
fi(x)

We reduce the above problem to a weighted partial covering problem and thus,
give a3-approximation for2-CCFLP.

For the sake of simplicity, we assume that all scenarios occur with the same
probabilityp = 1

l ; essentially the same algorithm and analysis extend to the general
problem.

Theorem 4.3.3 There is a3-approximation for the2-CCFLP with l scenarios
where each scenario has only one element and the required reliability isρ = k

l .

Proof: Fix an optimum solution and suppose the first stage facility opening cost
is C∗

1 and the worst case second stage cost isC∗
2 in this optimum solution. There

are only2l · |F| choices forC∗
2 . Let fi(x) denote the minimum-cost solution for

scenarioi when the first stage solution isx. Let T = {i ∈ [l]|σi · fi(0) ≤ C∗
2}.

Note that computingfi(0) is easy: consider the minimum cost of opening (in the
second stage) and connectingvi to the open facility. We can cover all scenarios in
T in the second-stage with cost at mostC∗

2 . Therefore, the first stage problem is to
open a set of facilities such that for at leastk′ = k − |T | scenarios from[l] \ T ,
there is an open facility within a distanceα · C∗

2 from the demand-point for some
approximation factorα > 0. Note that there is a set of facilities of costC∗

1 such
that for at leastk′ scenarios in[l] \ T , the demand-point is within a distanceC∗

2 of
some open facility.
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The first stage problem thus reduces to a version of the partialk-center problem
considered in Charikar et al. [10] who give a3-approximation for the problem.
Therefore, we can find a set of facilities of cost at mostC∗

1 such that at leastk′

demand-scenarios are within a distance3C∗
2 of some open facility which gives a

3-approximation for2-CCFLP.

4.3.3 Two-Stage Chance-Constrained Shortest Path (2-CCSPP)

Problem Definition Given a graphG = (V, E) with edge costsc, a root vertexr, a
reliability levelρ and a list ofl scenarios. Each scenarioi is specified by a terminal
ti, an inflation factorσi and a probabilitypi. The goal is to select aρ fraction of
the scenarios, buy some edgesEf in the first stage and for each selected scenario
i, augment the first stage solution in the recourse stage with edgesEi

s (bought at
an inflated cost) such thatEf ∪ Ei

s contains a path fromr to ti. The objective
minimizes the worst case cost over all scenarios.

For the sake of simplicity, we consider the case of uniform probabilities and
a uniform inflation factor across all scenarios. Thus, the reliability levelρ trans-
lates to coveringk = lρ out of l terminals. However, it is not difficult to extend
this algorithm and the analysis to general problem with different probabilitiesand
inflation factors for different scenarios.

Using the structural theorem in Dhamdhere et al. [18], we obtain the following
lemma,

Lemma 4.3.4 For the uniform robust2-CCSPP that requires to coverk out of l
terminals, there exists a first stage solutionEf and a setI of k scenarios such that
Ef is a tree containingr and can be augmented byEi

r to obtain a feasible solution
for scenarios inI andc(Ef )+maxi∈I σc(Ei

r) ≤ 2OPT, whereOPTis the optimal
solution for robust2-CCSPP.

Fix an optimal solution to the robust2-CCSPP such that the first stage solution
is connected tor, sayO = (Of , O1

r , . . . , O
l
r) (some of the recourse edge sets may

be empty). From Lemma 4.3.4, we know thatc(Of ) + maxi σc(Oi
r) ≤ 2OPT.

Let σC be the maximum second stage cost for any scenario inO. We can assume
thatσC is known (as there are onlynl choices ofC). Thus, the treeOf is within a
distanceC from at leastk of thel terminals(sayt∗1, . . . , t

∗
k).

Algorithm Consider ballBi of radius2C around terminalti. We select a
maximal independent setI on ballsB1, . . . , Bl as follows:

1. InitializeI ← φ, T ← {t1, . . . , tl}.

2. while (T 6= φ), do
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tj
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∗
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∗
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N(t∗i )
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Edges added to T

Terminal in T
∗

Terminal in I

Figure 4.1: Constructingk-MST of costO(OPT) from Of under our weight func-
tion

(a) Consider the terminalti ∈ T such that the number of terminals in
T within a distance of at most4C from ti is maximum (resolve ties
arbitrarily).

(b) Let N(ti)=set of terminals inT that are within distance4C from ti
(including itself) and letw(ti) = |N(ti)|.

(c) Add ti to I and remove all terminals that are within distance4C of ti
from T .

Now, construct a minimum cost spanning tree,TA containingr that spans ter-
minals of weight at leastk. Note that only terminals in the independent setI have
a non-zero weight.

Lemma 4.3.5 c(TA) = O(log k)c(Of )

Proof: SupposeI has terminalst1, . . . , tq (listed in the order they were added to
I). Note thatw(t1) ≥ w(t2) ≥ . . . ≥ w(tq). Let B(t∗i ) denote the ball of radius
2C around terminalt∗i andT ∗ = {t∗1, . . . , t∗k}. Recall thatt∗i is a terminal within
distance of at mostC from Of ; therefore,B(t∗i ) intersects withOf . For the sake
of argument, whenever an edgee ∈ Of crosses the ballB(t∗i ) for any t∗i ∈ T ∗,
we introduce a new vertex at the point of intersection and edgee is subdivided into
two. It is easy to note that

∑

e∈B(t∗i )∩Of
c(e) ≥ C for anyt∗i ∈ T ∗.

We will now construct a treeT from Of that containsr and spans terminals in
I of weight at leastk. Initialize T ← Of .
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Consider the terminalt∗i ∈ T ∗ such that the ballB(t∗i ) intersects the ball
B̂j , j = 1, . . . , q of highest weight. LetN(t∗i ) denote the terminals inT ∗ that
intersect withB(t∗i ) (including itself) and letn(t∗i ) = |N(t∗i )|. We claim that
n(t∗i ) ≤ w(tj). At the time tj was added toI, t∗i was also a candidate. Fur-
thermore, all the terminals inN(t∗i ) were also candidates; otherwise one of them
would intersect withB̂j , j = 1, . . . , q of higher weight contradicting our choice
of t∗i . Since,tj was chosen inI, w(tj) ≥ n(t∗i ). Thus, the treeT can be ex-
tended to reachtj by charging to the cost of edges inOf ∩ B(t∗i ) since, we know
∑

e∈B(t∗i )∩Of
c(e) ≥ C.

In doing so, we have updated the weight ofT under our weight function by
w(tj) ≥ n(t∗i ). We updateT ∗ ← T ∗ \(N(t∗i )∪N(tj)) and continue. Note that by
updating the set terminalsT ∗ by removingt∗i and all other terminals inN(t∗i ) we
ensure that we do not charge to the same cost ofOPT(Of ) in some other iteration.

Note that we might have removedw(tj) + n(t∗i ) terminals fromT ∗ and added
only w(tj) ≥ 1/2(w(tj + n(t∗i )) weight inT . Thus, we would obtain a treeT that
has costO(c(Of )) and spans terminals of weight at leastk/2.

We repeat this procedure on the remaining terminals ofOPTthat are not cov-
ered inT . This implies that afterlog k rounds, we will obtain a treeT spanning
terminals of cumulative weight at leastk andc(T ) = O(log k)c(Of ).

Thus, there exists a treeT containingr that spans a subset of terminals inI =
{t1, . . . , tq} whose cumulative weight is at leastk andc(T ) = O(log k)c(Of ).

Theorem 4.3.6 There is anO(log k)-approximation to robust2-CCSPP.

Proof: Let TA be the first stage tree returned by the algorithm. It is easy to note
that there are at leastk terminals fromt1, . . . , tl that are within a distance of4C
from TA. Lemma 4.3.5 implies thatc(TA) = O(log k)c(Of ). Thus, the cost of the
solution returned by our algorithm is(O(log k)c(Of ) + 4σC) = O(log k)OPT.

We would like to remark here that finding an approximate first stage tree that
reaches within a distanceC to k of then terminals isΩ(log n)-hard by a simple
reduction from a set cover problem. In the above algorithm, we find anO(log n)-
approximation to the first stage tree. However, we do not obey the distancebound
of C strictly and find a tree that is within a distance of4C from at leastk terminals.
Obtaining a constant approximation for robust-2-CCSPP is an interesting open
problem.

4.4 Implicit Scenario Models

In this section, we consider chance-constrained covering problem with implicit
scenarios. we restrict our discussion to only one stage problems since it isnot even
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clear whether the two-stage versions are in NP (the set of scenarios satisfying the
chance constraint may not be described succinctly).

For the one stage problems, we consider anindependent scenariosmodel where
each element occurs with a given probability independent of others and extend to
a class of general distributions.

4.4.1 Independent Scenarios Model: Reduction to Partial Weighted
Covering Problem

Consider the one-stage set covering problem where we are given a set familyF and
a universe of elementsU . The demand-uncertainty is specified by an independent
scenarios model where each elemente occurs independently with probabilitype

(we refer it asIndependent 1-CCSCP). The probabilityp(E) of any subsetE is
Πe∈Epe. Also,

∑

E′⊂E

p(E′) = Πe/∈E(1− pe)

Theorem 4.4.1 Independent 1-CCSCP can be reduced to a weighted partial set
covering problem.

Proof: Let ze be a0 − 1 variable that denotes whethere is covered or not. Also,
let xS denote whether setS ∈ F is picked in the solution or not. Then, the proba-
bilistic constraint can be written as,

Πze=0(1− pe) ≥ ρ

Taking logarithms on both sides, we get

∑

ze=0 log(1− pe) ≥ log ρ

⇒∑

e∈U (1− ze) log(1− pe) ≥ log ρ
⇒∑

e∈U −ze log(1− pe) ≥ log ρ
Πe∈U (1−pe)

For each elemente ∈ U , letwe = − log(1−pe). Also, letW = log ρ
Πe∈U (1−pe)

.
Note thatwe > 0, for all e ∈ U . Now, the chance constrained set covering problem
can be reduced to a weighted partial set covering problem where weightof element
e is we and the goal is to select a minimum-cost family of subsets fromF that
cover elements of weight at leastW .

For the general set-covering problem, the greedy algorithm gives anO(log W )-
approximation whereW is the required weight target computed in the proof above.

We also present an LP-based iterative rounding algorithm for this problem that
gives anf -approximation wheref is the maximum number of sets that an element
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occurs in. We can formulate the weighted partial covering problem as the following
IP.

min
∑

S∈F cSxS
∑

S:e∈S xS ≥ ze ∀e ∈ U
∑

e∈U weze ≥ W
xS ∈ {0, 1} ∀S ∈ S
ze ∈ {0, 1} ∀e ∈ U

Let OPTdenote the cost of an optimal solution. We remove all sets that cost
more thanOPTfrom the instance (we can try different values ofOPT). In each
iteration, the iterative rounding method either selects a setS that covers some ele-
mente in the solution or selects an elemente for which the corresponding covering
constraint can be removed. The algorithm is as follows:

1. InitializeR← φ, m← |F|, n← |U | andi← 0.

2. In iterationi, let (x̃i, z̃i) be a basic optimal solution ofLPi (LP-relaxation
of problem on ground setU and set familyF and weight requirementW )

(a) If there existse ∈ U , such that̃zi
e = 0, then updateU ← U \ {e} and

go to step 3.

(b) If there existse ∈ U , such that̃zi
e = 1, then there must be a setS ∈ F

containinge such that̃xi
S ≥ 1

f . Add the setS to the solutionR. Update
F ← F \ {S}, W ← W −∑e∈S∩U we andU ← U \ S and go to
step 3.

(c) If none of the above two conditions hold, then at most one setS ∈ F
has0 < x̃i

S < 1. x̃i is integral for all other sets. AddS to the solution
and for all other setsS′, addS′ to the solution iffx̃i

S′ = 1. Go to step 4

3. i← i + 1. LPi is the LP-relaxation of the modified problem(U,F , W ).

4. Output sets inR.

To prove that the above algorithm is well defined, we need to show that in each
iteration at least one of the conditions in steps 2a, 2b and 2c holds.

Lemma 4.4.2 Let (x̃i, z̃i) be a basic optimal solution ofLPi in some iterationi.
Then, eitheri) there exists an elemente such that̃ze = 0 or z̃e = 1, or ii) at most
one setS has0 < x̃S < 1.
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Proof: The rank of the constraint matrix ofLPi is at mostn + 1, wheren
is the number of elements inU in iteration i. Also, the number of variables in
the relaxationLPi is m + n, wherem is the number of sets inS in iteration i.
Therefore, number of basic variables in the solution(x̃i, z̃i) is at mostn + 1. If
there is noe ∈ U such that̃zi

e = 0 or 1, then allz̃i
e, e ∈ U are basic. Therefore,

at most one variablexi
S corresponding to setsS ∈ S is basic which implies that at

most one set has0 < x̃i
S < 1.

Now, we can prove that the iterative rounding algorithm is anf -approximation
to theIndependent 1-CCSCP, wheref is the maximum number of sets that any
element belongs to.

Theorem 4.4.3 The iterative rounding algorithm is anf -approximation forInde-
pendent 1-CCSCP.

Proof: In any iterationi of the algorithm, we add a setS to our set cover solution:

1. In step 2b, if we find an elemente ∈ U such that̃zi
e = 1. Then,

∑

S∈S,e∈S x̃i
S ≥

1. Since each element occurs in at mostf sets, at least one setS containing
e must havẽxi

S ≥ 1
f . The cost ofS in LPi is cS · x̃i

S and we pay at most a
factorf times that cost.

2. In step 2c, we add at most one fractional set in our solution. Since, all
sets have cost at mostOPT, we obtain a solution to the residual problem of
iterationi that costs at most2OPT.

Sincef ≥ 2 (wlog), the iterative rounding algorithm gives anf -approximation.
The following corollary is immediate for the one-stage vertex cover problem

and the spanning tree problem in the independent scenarios model by reducing the
problems to the corresponding weighted partial covering versions.
Independent-Chance-Constrained Vertex Cover (Independent 1-CCVCP).

We are given a graphG = (V, E) with costs on vertices and a reliability level
ρ.. Each edgee occurs with probabilitype, independently of others. The objective
is to find a minimum cost vertex coverC such that it coversρ fraction of the
scenarios (a scenario corresponds to a realization of the edges).
Independent-Chance-Constrained Shortest Path (Independent 1-CCSPP).

We are given a graphG = (V, E) with costs on edges, a root vertexr and
a reliability levelρ. Each vertexv occurs with probabilitypv, independently of
others. The objective is to find a minimum cost treeT containing the rootr such
that forρ fraction of the scenarios there is a path inT from the root to each vertex
in the scenario.

Corollary 4.4.4 We obtain the following approximation guarantees forIndepen-
dent 1-CCVCP andIndependent 1-CCSPP.
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1. There is a2-approximation forIndependent 1-CCVCP.

2. There is a5-approximation forIndependent 1-CCSPP.

For the vertex cover problem,f = 2; therefore, we obtain a2-approximation
for Independent 1-CCVCP as a direct corollary to Theorem 4.4.3. From Theo-
rem 4.4.1 we know that theIndependent 1-CCSPP reduces to a weightedk-MST
problem. Chudak et al. [14] give Lagrangian relaxation based5-approximation for
the unweightedk-MST problem that can be adapted to obtain a5-approximation
for the weighted version. This gives the result forIndependent 1-CCSPP.

4.4.2 General Distribution Model

We consider an implicit model where scenarios come from a general distribution
such that thecumulative probabilityof every demand-scenario can be computed
efficiently and satisfiesstrict-monotonicitywith respect to set inclusion. We show
that a greedy algorithm gives a logarithmic approximation for the one-stage set
cover problem in this model.

In the one-stage set cover problem in this model, we are given a set family
F , a universe of elementsU and a reliability levelρ. The demand-uncertainty is
specified by a probability distributionP : 2U → [0, 1] (possibly a black-box) such
that any subsetE ⊂ U occurs with probabilityP (E). We further assume thatP
satisfies the following properties.

1. (Efficiency) Cumulative probabilityF (E) =
∑

E′⊂E P (E′) can be com-
puted efficiently for any subsetE ⊂ U .

2. (Strict-Monotonicity ) For anyE1, E2 ⊂ U , E1 ( E2 ⇒ F (E1) < F (E2).

We obtain a logarithmic approximation for the set cover problem in this model
using a greedy algorithm described below. LetOPT denote the cost of an optimal
solution. We prune away all setsS ∈ F such thatcS > OPT. Clearly, the
modified instance is feasible. Also, letSmax = argmax{P (S)|S ∈ F}. SinceP
is monotone,pmax = P (Smax) > 0. The algorithm is as follows:

1. Initialize i← 1, E1 ← Smax andC ← {Smax}.

2. While (F (Ei) < ρ)

(a) Find a setS ∈ F \ C that minimizes cS

F (Ei∪S)−F (Ei)
.

(b) UpdateEi+1 ← Ei ∪ S andC ← C ∪ S.

(c) Updatei← i + 1.
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By a standard averaging argument, we obtain the following theorem.

Theorem 4.4.5 The greedy algorithm gives anO(log ρ
pmax

)-approximation for the
one-stage set cover problem where uncertainty is given by a probability distribu-
tion (possibly a black-box) such that the cumulative probabilityF of any demand-
scenario can be computed efficiently.

Proof: In the greedy stepi, we can find a setSi such that
cSi

F (Ei∪S)−F (Ei)
≤

OPT

ρ−F (Ei)
. Therefore,

cSi
≤ OPT

F (Ei ∪ Si)− F (Ei)

ρ− F (Ei)

≤ OPT

∫ F (Ei∪Si)

x=F (Ei)

1

ρ− F (Ei)
dx

≤ OPT

∫ F (Ei∪Si)

x=F (Ei)

1

ρ− x
dx

Let the number of steps in the greedy algorithm bek. We know that due to the
pruning step,cSk

≤ OPT whereSk is set added in thekth step. The total cost of
the sets added in the first(k − 1) steps can be bounded as:

k−1
∑

i=1

cSi
≤

k−1
∑

i=1

OPT

∫ F (Ei∪Si)

x=F (Ei)

1

ρ− x
dx

≤ OPT

∫ ρ

x=pmax

1

x
dx

≤ OPT log

(

ρ

pmax

)

This proves the required approximation.
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5
Chance Constrained Knapsack Problem

We consider the following chance constrained knapsack problem: givenn items, a
knapsack sizeB and a reliability level0 ≤ ρ ≤ 1. Item i has a deterministic profit
pi and sizeSi which is random from a known distribution and independent of the
sizes of other items. The goal is to select a subsetS of items that maximizes our
profit such thatPr(

∑

i∈S Si ≤ B) ≥ ρ.

This problem is related to the stochastic knapsack problem considered in Dean
et al. [16] where the authors consider the problem of finding an optimal policy (or
ordering) to select the items that maximizes the profit while satisfying the knap-
sack constraint. The key difference with our model is the following. In the model
in [16], the size of an item is instantiated when selected and the algorithm stops
whenever we select an item that fills up the knapsack. On the other hand, we
consider the problem of selecting a subset of elements that have a low probability
of exceeding the knapsack size. The latter model is more appropriate in applica-
tions like project selection wherein we are required to decide today which projects
should we invest in. The total investment in a project is known only during the
course of the project. Thus, the problem is to decide on a subset of projects which
have a low probability of exceeding our budget.

Normally distributed SizesWe consider the case when each itemj has a normally
distributed size with meanaj and standard deviationσj independent of the other
items. Letxj denote whether itemj has been selected or not. Then the stochastic
knapsack problem can be formulated as follows:

max
n
∑

j=1

pj · xj

P(
∑

j

Sjxj ≤ B) ≥ ρ
�

�

�

�5.1

xj ∈ {0, 1}, ∀j = 1, . . . , n
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5.1 Second Order Conic and Parametric LP Formu-
lations

When item sizes are normally distributed, we are able to rewrite the probabilistic
constraint as a second-order cone constraint.

Pr(
∑

j

Sjxj ≤ B) = Pr(

∑

j(Sjxj − ajxj)
∑

j

√

∑

j σ2
j x

2
j

≤
B −∑j ajxj
√

∑

j σ2
j x

2
j

)

Note that the random variable
∑

j(Sjxj−ajxj)
∑

j

√

∑

j σ2
j x2

j

is a standard normal variable with

mean0 and standard deviation1. Let us denote this byZ. Also, letφ denote the
cumulative distribution function of the standard normal variate. Therefore, the
probabilistic constraint can be rewritten as

Pr(Z ≤
B −∑j ajxj
√

∑

j σ2
j x

2
j

) ≥ ρ

⇒
B −∑j ajxj
√

∑

j σ2
j x

2
j

≥ φ−1(ρ)

where,φ−1(ρ) is positive ifρ > 0.5. Thus, the chance-constraint can be sim-
plified as,

φ−1(ρ)

√

∑

j

σ2
j x

2
j +

∑

j

ajxj ≤ B

The reformulation of the chance constrained knapsack problem with normally
distributed item sizes is as follows:

max

n
∑

j=1

pj · xj

�

�

�

�5.2

φ−1(ρ)

√

∑

j

σ2
j x

2
j +

∑

j

ajxj ≤ B
�

�

�

�5.3

xj ∈ {0, 1}, ∀j = 1, . . . , n
�

�

�

�5.4

The relaxation (where integrality onxj , j = 1, . . . , n is relaxed to0 ≤ xj ≤ 1)
is a second order cone program and can be solved in polynomial time. However, the
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integrality gap of the conic relaxation isΩ(
√

n). Consider the following instance:
pj = σj = 1, aj = 1√

n
∀j = 1, . . . , n, B = 3, ρ = 0.95. Any integral solution

can have at most two items; therefore, the integral profit is at most2. Whereas,
consider the fractional solutionxj = 1√

n
. Then,

n
∑

j=1

ajxj + φ−1(ρ)

√

√

√

√

n
∑

j=1

σ2
j x

2
j = 1 + φ−1(ρ) < 3

Therefore, the fractional solution is feasible which shows that the integrality
gap of the conic formulation isΩ(

√
n).

Parametric LP Reformulation . We reformulate the second order conic constraint
(5.3) as a parametric LP and obtain a fully polynomial time approximation scheme
for the chance constrained knapsack problem.

Suppose we know that the sum of mean sizes of the items selected in an optimal
solution isµ∗. Then, the conic constraint (5.3) can be expressed as,

∑

j

ajxj ≤ µ∗

φ−1(p)
2
(
∑

j

σ2
j x

2
j ) ≤ (B − µ∗)2

�

�

�

�5.5

Sincex2
j = xj for xj ∈ {0, 1}, we can simplify constraint (5.5) as

(φ−1(p))2(
∑

j

σ2
j xj) ≤ (B − µ∗)2

Therefore, we can formulate the chance constrained knapsack problem as the
following 2-dimensional knapsack problem whereµ is the parameter correspond-
ing to the total mean size of the selected items.

n
max
j=1

pjxj

n
∑

j=1

ajxj ≤ µ
�

�

�

�5.6

φ−1(p)
2
(

n
∑

j=1

σ2
j xj) ≤ (B − µ)2

�

�

�

�5.7

xj ∈ {0, 1}
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CHAPTER 5. CHANCE CONSTRAINED KNAPSACK PROBLEM

5.2 A (1 + ε)-approximation Algorithm

We present a full polynomial time approximation scheme for the chance-constrained
knapsack problem using the parametric2-dimensional knapsack reformulation de-
scribed above. We consider powers of(1 + ε) i.e. (1 + ε)j , j = 0, . . . , log(1+ε) B
for some constantε > 0 as different choices of the parameterµ. Therefore, the
number of different choices ofµ is O( log B

ε ) which is polynomial in the input size.
We also guess the value of optimal profitOPT by considering powers of(1+ε).

Let P =
∑n

j=1 pj ; we considerO( log P
ε ) different choices ofOPT. At most 1

ε
items can have profit greater thanεOPT. Therefore, for each guess ofOPT =
(1 + ε)j we consider all subsets of size at most1

ε of the items that have size more
thanεOPT to include in the solution. For each guessO of OPT and each choice
of subset of items of size more thanεOPT, we solve a subproblemΠ(S1, S2, O).
Π(S1, S2, O). We are given sets of itemsS1, S2 ⊂ [n] such that each item inS1

has profit at mostε · O and each item inS2 has profit at leastε · O. Furthermore,
all items inS2 are included in our final solution. Our goal is to choose a subset
of items fromS1 that together with items inS2 maximize the total profit while
satisfying the chance-constraint 5.1.

In order to solve the subproblemΠ(S1, S2, O), we formulate a further sub-
problemΠ(S1, S2, O, µ) where the total mean size of all items selected fromS1

is at mostµ. Therefore, we can formulateΠ(S1, S2, O, µ) as the following2-
dimensional knapsack problem.

max
∑

j∈S1

pjxj +
∑

j∈S2

pj

∑

j∈S1

ajxj ≤ µ
�

�

�

�5.8

φ−1(p)
2
(
∑

j∈S1

σ2
j xj) ≤ (B − µ−

∑

j∈S2

µj)
2 − φ−1(p)

2 ∑

j∈S2

σ2
j )

�

�

�

�5.9

xj ∈ {0, 1}
The algorithmA for the chance-constrained knapsack problem and the algo-

rithmA(Π) for the subproblemΠ(S1, S2, O) are described in Figures 5.2 and 5.2
respectively.

In the following lemma, we show that we can find a good integral solution to
the problemΠ(S1, S2, O, µ).

Lemma 5.2.1 Consider the problemΠ(S1, S2, O, µ) such thatpj ≤ ε · O for all
j ∈ S1. If P ∗ is the optimal profit forΠ(S1, S2, O, µ), then there is a polynomial
time algorithm to find a feasible set of items whose profit is at least(P ∗ − 2ε ·O).
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Algorithm A for Chance-constrained Knapsack Problem
Givenn items where itemj has profitpj and a normally distributed size with
meanaj and standard deviationσj , knapsack sizeB, reliability levelρ and a
constantε > 0. Let pm = minj∈[n] pj , P =

∑

j∈[n] pj .

Initialize N1 = blog1+ε pmc, N2 = dlog1+ε P e, xA = 0, PA ← 0.

1. Fort = N1, . . . , N2,

(a) LetO = (1 + ε)t and letSε = {j ∈ [n]|pj ≥ ε ·O}.
(b) For each setS ⊂ Sε such that|S| < 1

ε ,

i. SolveΠ([n]\Sε, S, O) and letxS denote the integral solution
returned byA(Π).

ii. If PA < pT xS , then

xA ← xS

PA ← pT xS

2. Return the solutionxA.

Figure 5.1: Algorithm for Chance Constrained Knapsack Problem

Proof: Consider the2-dimensional knapsack formulation ofΠ(S1, S2, O, µ) and
consider the basic optimal solutioñx of the LP relaxation. Since there are only two
constraints other than the bound constraints, at least(|S1| − 2) bound constraints
must be tight for̃x. Therefore, at least(|S1| − 2) variables out of|S1| variables
are integral in the basic optimal solution. Letj1, j2 ∈ S such thatx̃j1 , x̃j2 are
fractional. We know thatpj ≤ ε · O for all j ∈ S1. Consider the following
solution,

x̂j =

{

x̃j j ∈ S1, j 6= j1, j2

0 otherwise

Clearly, the solution̂x is feasible since we only rounded down. Also,
∑

j∈S1

pj x̂j ≥
∑

j∈S1

pj x̃j − 2ε ·O.

Therefore, we obtain an integral solutionx̂ such that
∑

j∈S1
pj x̂j+

∑

j∈S2
pj ≥

P ∗ − 2ε ·O.
In the following lemma we show that for an appropriately chosen value ofO

andµ and subsetsS1, S2 ⊂ [n], the problemΠ(S1, S2, O, µ) has optimal profit at
leastOPT

1−ε .
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CHAPTER 5. CHANCE CONSTRAINED KNAPSACK PROBLEM

Algorithm A(Π) for Π(S1, S2, O)

Let µmin = minj∈S1
µj .

Initialize Nl = blog1+ε µminc, Nh = dlog1+ε Be, xs = 0, Ps ← 0.

1. Fort = Nl, . . . , Nh,

(a) Let µ = (1 + ε)t and let x̃(µ) be a basic optimal solution for
Π(S1, S2, O, µ).

(b) Using Lemma 5.2.1 find an integral solutionx̂(µ) such that

n
∑

j=1

pj · x̂(µ)j ≥
n
∑

j=1

pj · x̃(µ)j − 2ε ·O

(c) If Ps <
∑

j∈S1
pj x̂(µ)j +

∑

j∈S2
pj , then

xs ← x̂(µ)
Ps ←

∑

j∈S1
pj x̂(µ)j +

∑

j∈S2
pj

2. Return the solutionxs.

Figure 5.2: Algorithm forΠ(S1, S2, O)

Lemma 5.2.2 Let S∗ be the set of items selected by an optimal solution and let
OPT =

∑

i∈S∗ pi. Considerl such that(1 + ε)l−1 ≤ OPT < (1 + ε)l. Let
O = (1+ ε)l and letSε = {i ∈ [n]|pi ≥ ε ·O}, S1 = [n] \Sε, S2 = Sε ∩S∗. Then
the optimal profit for the problemΠ(S1, S2, O) is at leastOPT

1+ε .

Proof: Letµ∗ =
∑

j∈S∗ µj , ν1 =
∑

j∈S1∩S∗ µj , ν2 =
∑

j∈S2
µj and letk be such

that(1+ ε)k−1 ≤ ν1 < (1+ ε)k. Letβ = (1+ ε)k−1 and we consider the problem
Π(S1, S2, O, β). Consider the following fractional solutioñx for Π(S1, S2, O, β):

x̃j =

{

1
1+ε j ∈ S1 ∩ S∗

0 otherwise

We show that̃x is a feasible fractional solution for the2-dimensional knapsack
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formulation ofΠ(S1, S2, O, (1 + ε)k−1). Consider inequalities (5.8),

∑

i∈S1

µj x̃j =
∑

j∈S1∩S∗

µj ·
1

ε

�

�

�

�5.10

=
ν1

1 + ε

�

�

�

�5.11

≤ β
�

�

�

�5.12

Therefore,x̃ satisfies inequality (5.8). Letθ = φ−1(p). Consider inequality
(5.9),

θ2 · (
∑

j∈S1

σ2
j x̃j) = θ2 · (

∑

j∈S1∩S∗

σ2
j

1

1 + ε
)

�

�

�

�5.13

≤

(

(B − µ∗)2 − θ2 ·∑j∈S2
σ2

j

)

1 + ε

�

�

�

�5.14

=

(

(B − ν1 − ν2)
2 − θ2 · (∑j∈S2

σ2
j )
)

1 + ε

�

�

�

�5.15

≤

(

(B − β − ν2)
2 − θ2 · (∑j∈S2

σ2
j )
)

1 + ε

�

�

�

�5.16

< (B − β − ν2)
2 − θ2 · (

∑

j∈S2

σ2
j )

�

�

�

�5.17

Here inequality (5.14) follows asS∗ = (S1 ∩ S∗) ∪ S2 is an optimal solution and
thus, satisfies

φ−1(p)
2 · (

∑

j∈S∗

σ2
j ) ≤ (B − µ∗)2

and inequality (5.16) follows asβ ≤ ν1. This implies that̃x satisfies inequality
(5.9) as well and thus, is a feasible solution forΠ(S1, S2, O, β). The profit achieved
by the fractional solutioñx is

∑

j∈S1

pj x̃j +
∑

j∈S2

pj =
∑

j∈S1∩S∗

pj

1 + ε
+
∑

j∈S2

pj

�

�

�

�5.18

>

∑

j∈S1∩S∗ pj +
∑

j∈S2
pj

1 + ε

�

�

�

�5.19

=
OPT

1 + ε

�

�

�

�5.20

where the last equality follows becauseS∗ = (S1 ∩ S∗) ∪ S2. Therefore, the
optimal value for the problemΠ(S1, S2, O) is at leastOPT

1+ε .
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We now show that for anyε > 0, the algorithmA gives a(1−3ε)-approximation

for the chance-constrained knapsack problem in running timeÕ(n
1
ε

ε2
).

Theorem 5.2.3 Givenε > 0, there is a polynomial time algorithm that gives a(1−
3ε)-approximation for the chance constrained knapsack problem. Furthermore, the
running time ofA is

O

(

log (B/µm) · log (P/pm) · n 1

ε

ε2

)

,

whereP =
∑

j∈[n] pj , pm = minj∈[n] pj , µm = minj∈[n] µj .

Proof: Let OPT denote an optimal solution and letS∗ be the set of items selected
in OPT. Considerl such that(1 + ε)l−1 ≤ OPT < (1 + ε)l and letO = (1 + ε)l.
Let Sε = {i ∈ [n]|pi ≥ ε · O}, S1 = [n] \ Sε andS2 = S ∩ S∗. Note that the
algorithmA considers the guessO for the optimal value. Also, since|S2| < 1

ε the
subproblemΠ(S1, S2, O) is considered as one of the subproblems in the algorithm
A. Let µ1 =

∑

j∈S1∩S∗ µj . Considerk such that(1 + ε)k−1 ≤ µ1 < (1 + ε)k

and letβ = (1 + ε)k−1. Clearly, the subproblemΠ(S1, S2, O, β) is considered in
the algorithmA(Π) while solvingΠ(S1, S2, O). From Lemma 5.2.2, we know that
the optimal profit for the subproblemΠ(S1, S2, O, β) is at leastOPT

1+ε . Furthermore,

using Lemma 5.2.1 we can find a set of itemsŜ for the problemΠ(S1, S2, O, β)
such that,

∑

j∈Ŝ

pj ≥ OPT

1 + ε
− 2ε ·O

�

�

�

�5.21

≥ (
1

1 + ε
− 2ε) · OPT

�

�

�

�5.22

≥ (1− 3ε) · OPT
�

�

�

�5.23

Therefore, the algorithmA finds an integral solution that has profit at least
(1− 3ε) · OPT.

Running time of A. Note that we considerO(
log
(

P
pm

)

ε ) different choices of the
optimal profit valueO, whereP =

∑n
j=1 pj , pm = minn

j=1 pj . Also, we consider

O(n
1

ε ) choices of the set of itemsS for the subproblemΠ for each choice of

O. Furthermore, in the subroutineA(Π), we solveO(
log
(

B
µm

)

ε ) different sub-
problems for solving one problemΠ(S1, S2, O) for given subsetsS1, S2 ⊂ [n] and
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a choice for optimal profitO. Therefore, the total running time ofA is

O

(

log (B/µm) · log (P/pm) · n 1

ε

ε2

)

.
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6
Locating Emergency Facilities for

Post-Disaster Logistics

In this chapter, we consider a facility location problem that aims to locate emer-
gency response and distribution centers (ERDC) for effective post-disaster oper-
ations such as supply of relief commodities to the affected areas in the event of
a disaster such as an earthquake. Post disaster operations are facedwith many
challenges such as an uncertain demand and resources available due to the highly
uncertain nature of the manifesting disaster and its impact. Even the infrastructure
such as the transport network and the communication network available for post-
disaster logistics is uncertain as some of it could have been significantly damaged
or disrupted in the disaster. While the parameters are highly uncertain, the relief
operations typically need to be carried out within a very short time period after the
disaster. Therefore, in wake of these uncertainties it is essential to plan ahead for
effective post disaster logistics. While in previous chapters in this thesis, we have
considered models where either there is uncertainty in demand (see Chapters 2 and
3) or there is uncertainty in the data (see Chapter 5), the problem of locatingERDC
combines aspects of both demand and data uncertainty.

6.1 Problem Description

We study the problem of locating Emergency Response and Distribution Centers
(ERDC) in and around a region with seismic risk such that in the event of an earth-
quake, relief commodities such as water, medical aid and food can be distributed to
the affected areas within a short time. Since the transport and communication net-
works can be disrupted in the event of an earthquake, the given set ofERDC may
or may not be able to reach the affected areas within the required time depending
on the impact of the disaster. Similarly, the demand for relief commodities in the
affected areas is known only after the disaster. We refer to the post-disaster net-
work and demand realizations as adisaster scenario. To consider opening a set of
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CHAPTER 6. EMERGENCY FACILITY LOCATION

Emergency Response and Distribution Centers (ERDC) such that all the demand is
covered in all the disaster scenarios might be lead to a very expensive and conser-
vative solution. Therefore, a better solution is to consider opening ERDC such that
more than99% or some other threshold of the disaster scenarios are covered by the
ERDC. Such a solution ignores the very unlikely worst case scenarios but signifi-
cantly reduces the cost of the solution to make it practical to implement. Therefore,
the problem of optimally locating ERDC with a constraint that 99% of the disaster
scenarios are covered is a chance-constrained optimization problem. Thechance-
constrained optimization problem is extremely hard to solve both computationally
as well as theoretically even for a small number of scenarios as discussedin Chap-
ter 4. When the number of scenarios are exponential in the size of the input(as is
the case with the number of different transport network realizations in ourprob-
lem), it is not even clear to check efficiently whether a given solution satisfies the
chance-constraint or not. In this chapter, we focus on excatly this problem and give
an efficient sampling based algorithm to approximately answer this question.

In this study we focus on the case of Istanbul, Turkey where seismic risk is
a major concern. The Municipality of Istanbul is interested in opening ERDC
around the city of Istanbul which will be used as coordination centers fordistri-
bution of relief commodities to the affected areas in the event of an earthquake.
As we discussed earlier, the infrastructure available for relief operations depends
on the impact of the disaster. Therefore, ideally we would like to open ERDC in
locations of low seismic risk while still being close to the high seismic risk regions
to distribute relief commodities to the affected areas in a short time. The Munici-
pality has identified a set of40 potential locations for opening ERDC that satisfy
the above two conditions among other logistics constraints.

In a post-disaster scenario, the time for the relief to reach the affected areas is
probably the most critical factor. The post-disaster time frame is typically divided
into the first4, 8, 12, 16, 24 hours and so on as the services required and the chances
of saving lives are different in each interval. For example, the medical first-aid and
search-and-rescue teams are most critical in the first4 or 8 hours while food supply
is not that critical in the first8 hours. Therefore, the problem of coordinating dis-
tribution of relief commodities in a post-disaster scenario is a multi-period, multi-
commodity problem. For the sake of simplification, we consider a single period,
single commodity distribution problem where there is a constraint of reaching all
the affected areas within a given time from at least one of the open ERDC.

Since the transport network is vulnerable to the earthquake, some of the trans-
port links may be disrupted due to the impact of the disaster. Therefore, thetrans-
port network in a post-disaster scenario is uncertain and is known only after the
occurrence of the disaster. We would like to open ERDC such that in a largefrac-
tion of disaster scenarios (i.e. transport network and demand realizations), all the
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affected areas can be reached from some ERDC within a given time bound.Note
that there are exponentially many different transport network realizations possi-
ble in a post-disaster scenario. Since the chance-constrained problem of optimally
locating a set of ERDC such that a large fraction of post-disaster scenarios are
covered is difficult to solve both computationally as well as theoretically in lieu of
the discussion in Chapter 4, we consider the problem of estimating the fractionof
disaster scenarios that are covered by a given set of ERDC. As the municipality is
interested in opening only a few ERDC, it is not difficult to enumerate all possible
choices of ERDC to open from the set of40 potential locations. In particular, we
consider the following two estimation problems.

Reliability(F ). Given a set of open ERDC or facilitiesF , estimate the fraction of
disaster scenarios (i.e. transport network and demand realizations) in which there
is an open facility inF within a given distance bound of each demand location (or
the affected area).

Max-Coverage(F ). Given a set of open ERDC or facilitiesF , estimate the average
fraction of demand satisfied byF over different disaster scenarios. A demand
location in a disaster scenario is satisfied byF if there is a facility inF which is
within a given distance bound of the demand location.

We also consider capacitated versions of the above problems referred toas
Cap-Reliability(F ) andCap-Max-Coverage(F ) where each open facilityf has a
given capacity which is the total demand that can be satisfied by resourcesat f .
Since we consider only the single-commodity case, the capacity at a facilityf can
be thought of as the inventory level of the commodity atf . Similarly, the demand
at a location in an area affected by the disaster is measured in terms of the quantity
of the commodity required at that location in the post-disaster scenario.

We propose an efficient sampling based estimation algorithm for the versions
of the problem above where disaster scenarios are sampled from a probabilistic
link-failure model given an earthquake has occurred. Each sampled problem is
modeled as a length bounded flow problem. We conduct our computational exper-
iments using the data for the case of Istanbul. We would like to note here that the
focus of this study is not to accurately model the transport link-failure probabilities
in the event of an earthquake but show how sampling can be used to accurately es-
timate several quantities such as reliability and coverage for a set of open facilities.
However, we make our best possible effort to use a reasonable probabilistic model
for scenario generation in the computational experiments in this study. Further-
more, neither the computational complexity nor the accuracy of the results from
our sampling algorithm are dependent on the probabilistic model.
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6.2 Related Work

One of the earliest studies conducted on location of emergency facilities is due
to Toregas et al. [59]. The facility location problem is modeled as a set covering
problem where the affected areas are represented as demand nodes and the po-
tential facilities are referred as supply nodes and the objective is to minimize the
maximum time/distance of a demand node to its closest supply node. Haghani and
Oh [32] consider a multi-commodity, multi-modal network flow model with time
windows for disaster response where they assume that both the supply and demand
for all the commodities is known in advance. The authors propose heuristicsto
solve the problem where violations in time windows are allowed and include a
penalty in the objective.

Ozdamar et al. [61] analyze the problem of dispatching the commodities to dis-
tribution centers as a part of emergency logistics planning for the Marmara region.
They focus on the problem of planning a detailed distribution schedule subject
to vehicle capacity constraints and conduct a computational study for the case of
Marmara earthquake in 1999. Yi and Ozdamar [60] consider a dynamic and fuzzy
logistics coordination model for post-disaster logistics which incorporates the un-
certainty in demand and supply. Dekle et al. [17] consider the problem of locating
emergency response facilities in Florida that will be used by Federal Emergency
Management Agency (FEMA) for post-disaster logistics. The reader is referred
to [34] for a review of facility location models for emergency response. The review
considers three broad models for the facility location problem: covering models,
k-median andk-center.

While some of the models discussed above incorporate uncertainty in demand
and supply in a post-disaster scenario, they do not consider uncertainties in the
transport network which is very likely to be affected by the disaster. The most
relevant work that simultaneously considers uncertainty in demand, supplyand the
underlying transport network is due to Barbarosoglu and Arda [3]. The authors
model the uncertainty in demand, supply and transport network using a setof ex-
plicit disaster-scenarios and propose a two-stage stochastic programmingsolution
approach. Since the number of all possible disaster scenarios is very large, Bar-
barosoglu and Arda [3] do not consider a complete list of scenarios andthus, it
is not clear how to measure the quality of the solution over the complete set of
disaster scenarios. Our work on the other hand gives an efficient sampling based
algorithm to estimate the quality of the solution over the complete set of disaster
scenarios.
Outline. The rest of the chapter is organized as follows. In Section 6.3 we
give the mathematical formulation for the two problemsReliability(F ) andMax-
Coverage(F ) that have been introduced earlier. We describe the sampling algo-
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rithm in Section 6.4 and finally present the computational experiment and results
in Section 6.5.

6.3 Facility Location Models for ERDC

In this section, we build a mathematical model for the problem of locating ERDC
subject to various logistics constraints. LetF denote the set of potential locations
for opening ERDC and letπ : F → R+ denote the ERDC opening costs. LetD
denote the set of all possible affected areas or demand locations and letG = (V, A)
be the directed graph that represents the transport network and the length of each
arc is given by the functionl : A → R+. Let c : F → R+ denote the capacities
installed at ERDC inF . As discussed earlier, the Municipality of Istanbul has
selected a set of40 potential locations for opening ERDC. Therefore, for the case
of Istanbul |F| = 40. Similarly, the demand locations correspond to different
districts in and around Istanbul.

The actual transport network available after the disaster as well as the demand
at each location depends on the impact of the disaster. LetxS ∈ {0, 1}A be a
0-1 vector that denotes the post-disaster network realization in scenarioS where
xS(e) = 1 if e ∈ A survives in scenarioS and0 otherwise. Also, letdS(j) denote
the demand at locationj ∈ D in scenarioS.

We now describe a chance-constrained model for the problem of optimally
locating a set of ERDC such that for aρ fraction of disaster-scenarios, each demand
location is within a distanceB from some open facility. Letyi be a binary variable
that denotes whether a facility is opened ati ∈ F or not. We model the problem as
a multi-commodity flow problem where each demand pointj sends a flow equal to
dS(j) in scenarioS to some open facility within a distanceB. Letf j

S(e) denote the
flow from demand pointj on edgee in scenarioS. For each scenarioS, let zS be a
binary variable denoting whether all the demand points are covered in scenario S
or not. Letδ+(j) = {(i, j)|(i, j) ∈ A} andδ−(j) = {(j, i)|(j, i) ∈ A}.
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min
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i∈F
πiyi
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�
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∑

S

pSzS ≥ ρ
�

�

�

�6.6

zS ∈ {0, 1} ∀S
yi ∈ {0, 1} ∀i ∈ F

Constraint (6.1) requires that each demand pointj sends out a flow ofdS(j) in
scenarioS if S is covered by the open set of facilities. Constraint (6.2) enforces
flow conservation while (6.3) enforces that there is a flow on arce in scenarioS
only if e survives in scenarioS. Constraint (6.4) requires that a potential facility
is a sink for any flow only if it is open and satisfies a total demand which is not
more than its capacity. Constraint (6.5) bounds the length of the flow paths and
Constraint (6.6) ensures that we cover at leastρ fraction of the disaster-scenarios.

However, there is a problem with the above formulation. The number of dis-
aster scenarios are exponential and therefore, the size of the formulation (number
of variables and constraints) is too large to be able to solve practically. The IP
formulation for the problem of locating ERDC such that the expected fractionof
demand covered over all scenarios is maximized faces a similar problem of expo-
nential number of variables and constraints. In fact, given a set of open facilities
F it is not even clear how to check whether it is covers aρ fraction of the disaster
scenarios or how to compute the expected fraction of demand covered byF over
all scenarios. We focus on these estimation problems given a set of open facilities
and give an efficient sampling based additiveε approximation for these.
Reliability(F ). Given a set of open facilitiesF , the problem is to determine the
fraction of scenariosS (where each scenario is a post-disaster demand and network
realization) such that each demand can be satisfied by some open facility withina
distanceB.
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Max-Coverage(F ). Given a set of open facilitiesF , the problem is to determine
the expected fraction of demand over all scenariosS that can be satisfied by the set
of facilitiesF .

To compute the estimates in the above two problems, we solve the scenario
problems for a number of sampled scenarios. Let us consider the scenario versions
of these problems.

Scenario versionReliability(F, S) Given a set of open facilitiesF and a disaster
scenarioS which defines the post-disaster transport network and demand realiza-
tion, the problem is to determine whether all the demand can be satisfied by some
open facility inF within a distanceB.

The uncapacitated version ofReliability(F, S) where the facilities do not have
any capacity constraints can be solved by a shortest path computation fromeach
demand point to the closest open facility. The scenarioS is feasible if all the de-
mand points are within a distanceB from some open facility inF . The capacitated
version where each facilityi ∈ F has a capacityµi for the demand it can serve,
can be formulated as a length bounded flow feasibility problem which is described
below.

∑

e∈δ−(j)

f j
S(e)−

∑

e∈δ+(j)

f j
S(e) ≥ dS(j) ∀j
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�

�

�
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Scenario VersionMax-Coverage(F, S). Given a set of open facilitiesF and a
disaster scenarioS, the problem is to determine maximum fraction of demand
that can be satisfied by the set of facilitiesF . This can be formulated as max-flow
problem subject to length bound and capacity constraints. The formulation isgiven
below.
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max
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6.4 Sampling Algorithm

In this section, we describe a generic sampling based estimation algorithm that can
be used to solve the estimation problem of capacitated and uncapacitated versions
of Reliability(F ) andMax-Coverage(F ) for a given set of facilitiesF . Let Π(F )
denote the estimation problem for the set of facilitiesF . Also, letΠS(F ) denote the
corresponding problem for a sample scenarioS where the scenarioS is a particular
demand and transport network realization after the disaster. For instance, if Π =
Reliability thenΠS(F ) denote the problem of determining whether scenarioS is
covered by the set of facilitiesF or not. LetXS(F ) denote the optimal value of
ΠS(F ) and letV be an upper bound on the variance of the optimal value ofΠS(F )
across different scenarios. Let us first consider a basic sampling algorithm which
is described in Figure 6.4.

We show in the following theorem that the sampling algorithmA outputs an
estimate forΠ(F ) which is an additiveε-approximation with high probability.

Theorem 6.4.1 Suppose the estimate for each sample in algorithmA0 to compute
theΠ(F ) is bounded in[a, b]. Letρ∗ denote the true estimate forΠ(F ) and letσ2

be the variance. For any constantsε, δ > 0, if the number of samples

N =
σ2

δε2
,

then the estimate,X returned byA0 satisfies

P(|X − ρ∗| > ε) ≤ δ
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Sampling Algorithm A0 for Π(F )
Given a set of facilitiesF , ε > 0 andδ > 0, the problem is to estimateΠ(F ).

Initialize N ← V
δε2

, X ← 0

1. Forj = 1, . . . , N ,

(a) Generate sample scenarioSj and letXj be the optimal value of
ΠSj

(F ).

(b) X ← X +
Xj

N .

2. ReturnX as estimate forΠ(F ).

Figure 6.1: Sampling AlgorithmA0

Proof: Let Xi denote the estimate of theith sample. We know thatE[Xi] = ρ∗

andVar(Xi) = σ2. If the sampling algorithm considersN samples and,

X =
1

N
(X1 + . . . + XN ),

thenE[X] = ρ∗ andVar(X) = σ2

N as the samples are independent. Using the
Chebyshev’s inequality, we have

P(|X − ρ∗| ≥ ε) ≤ σ2

Nε2

Therefore, ifN = σ2

δε2
thenP(|X − ρ∗| ≥ ε) ≤ δ.

For the problemsReliability andMax-Coverage, the variance of the estimate
across all samples is bounded by1. Therefore, to achieve an additive error of at
mostε with probability at least(1− δ), the required number of samplesN = 1

δε2
.

6.4.1 Improved Sampling Algorithm

We now present an improved sampling algorithm that requires a significantly smaller
number of samples to achieve an additiveε-approximation in the estimate with
probability at least(1 − δ) for someε, δ > 0. The algorithm is described in Fig-
ure 6.4.1. This algorithm is adapted from the sampling algorithm of Shmoys and
Swamy [58] for approximately solving large two-stage stochastic linear programs.

We prove the sampling bounds in the following theorem.
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Improved Sampling Algorithm A1 for Π(F )
Given a set of facilitiesF , ε > 0 andδ > 0, the problem is to estimateΠ(F ).

Initialize N ← 3V
ε2

, t = 4 ln
(

1
δ

)

.

1. Fori = 1, . . . , t,

(a) InitializeYi ← 0.

(b) Forj = 1, . . . , N ,

i. Generate sample scenarioSij and letXij be the optimal value
of ΠSij

(F ).

ii. Yi ← Yi +
Xij

N .

2. Y ← median(Y1, Y2, . . . , Yt).

3. ReturnY .

Figure 6.2: Improved Sampling AlgorithmA1

Theorem 6.4.2 Let ρ∗ be the true estimate ofΠ(F ) and let the variance beσ2.
Also, let the estimate of each sample be bounded in[a, b]. If N = 3σ2

ε2
and t =

4 ln
(

1
δ

)

for some constantsε, δ > 0, then the estimateY returned by the sampling
algorithmA1 satisfies,

P(|Y − ρ∗| ≥ ε) ≤ δ.

Proof: We know thatYi = 1
N (Xi1 + . . . + XiN ) for all i = 1, . . . , t. SinceXij

are i.i.d. for alli ∈ [t], j ∈ [N ], E[Yi] = ρ∗ andVar(Yi) = σ2

N . Therefore, using
Chebyshev’s inequality we have,

P(|Yi − ρ∗| ≥ ε) ≤ σ2

Nε2
.

For i = 1, . . . , t, consider another random variableZi such that

Zi =

{

1 if |Yi − ρ∗| ≥ ε
0 otherwise

andZ =
∑t

i=1 Zi. Therefore,

E[Z] = t · P(Zi = 1) ≤ tσ2

Nε2
=

t

3
.
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If Y /∈ [ρ∗ − ε, ρ∗ + ε], then at leastt/2 variablesZi should be set to one. Since
the variablesZi are independent bernoulli trials, we can use the Chernoff bounds
and obtain,

P(Z ≥ t

2
) ≤ e−

t
4 = δ.

Therefore,P(Y ∈ [ρ∗ − ε, ρ∗ + ε]) ≥ 1− δ.
From Theorem 6.4.2, we obtain that the total number of samples required to

obtain an additiveε-approximation with probability at least(1− δ) for someε, δ >
0 is,

N · t =
12σ2

ε2
· ln
(

1

δ

)

.

The dependence of number of samples onδ is improved from1
δ in the sampling

algorithmA0 to 4 ln
(

1
δ

)

in sampling algorithmA1.

6.5 Computational Experiments and Results

In this section, we describe the setup for our computational study for the case of
Istanbul and present our results. The North Anatolian fault line runs east to west in
the Marmara sea south of Istanbul and poses a serious risk of a major earthquake
in the region. In August 1999, an earthquake of magnitude7.4 on the Richter
scale (classified as M5) occurred in the region and caused significant losses to life
and property. Studies [48] indicate that there is a high probability of occurrence
of an earthquake of magnitude7 or more in the next30 years. Therefore, the
Municipality of Istanbul is interested in opening ERDC in and around the city of
Istanbul to improve its preparedness for post-disaster relief operations.

6.5.1 Data Collection

The Municipality of Istanbul in collaboration with several universities provides a
detailed report [47] that analyses the problem of seismic risk and its impact on the
population and the transport network in the event of an earthquake. TheMunicipal-
ity has identified a set of40 potential locations for opening ERDC. These facilities
are close to one of two major highways that run east-west through Istanbul. Thus,
the facilities do not run the risk of being disconnected from the rest of the region in
case several transport links are disrupted due to the earthquake. Figure 6.3 shows
the major highway system near Istanbul with a number of bridges and viaducts
classified as risky and less risky in [47]. The report also provides dataon popula-
tion in each of the84 districts which is used in our model to estimate demand in
the event of an earthquake. We assume that each district is representedby a single

77



CHAPTER 6. EMERGENCY FACILITY LOCATION

location in our model. Figure 6.4 shows the representative locations for all the dis-
tricts. We consider a road network between these representative locations where
major highways are accurately represented but the smaller links are approximate.
Figure 6.5 represents the network we use in our model. The fault line which runs
east to west in the south of Istanbul is also approximated by linear pieces sothat the
distances from the rupture on the fault line can be computed easily. Distancefrom
the point of rupture on the fault time is one of the factors that determines the peak
ground acceleration (PGA) when an earthquake occurs and thereby determines the
impact at that location.

Figure 6.3: Highway Network of Istanbul

6.5.2 Probabilistic Model for Transport Network Scenarios

An earthquake occurs when there is a rupture at some point along the fault line
when the techtonic plates collide and there is a sudden release of energy. The
impact of earthquake at any location is determined by the amount of shaking
that occurs at that location and is measured bypeak ground acceleration(PGA).
Panousis [55] models the PGA due to an earthquake of magnitudem at a distance
r from the rupture as,

PGA = α · e0.8m

(r + 40)−2

wherePGA is acceleration inm/s2, r is distance in km between the location
and the site of the rupture andα is a constant. We assume that the probability
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Figure 6.4: District Locations

of failure of an edge is directly proportional to the highestPGA level along the
link. We also classify each link as being risky and less risky based on the number
of risky bridges and viaducts on the link. Letpe denote the probability of failure
of edgee by an earthquake of magnitudem when the minimum distance between
edgee and the point of rupture isre. Then,

pe =

{

βh · e0.8m

(re+40)−2 if e is risky

βl · e0.8m

(re+40)−2 otheriwse

�

�

�

�6.18

We assume that a rupture occurs at a random location on the fault line between
the east and west boundaries of the city and the magnitude is uniformly distributed
between6.5 and7.5. This assumption is reasonable as it closely models the most
likely scenario concluded in the report by the Municipality of Istanbul [47]. Fur-
thermore, since we assume that the rupture can occur only within the easternand
western boundaries of the city our estimates would err only on the side of being
conservative. Therefore, the transport network scenario is generated as follows.

6.5.3 Probabilistic Model for Demand Scenarios

We simplify the problem by assuming that each district is represented by single
location in our network. Furthermore, we assume that the demand at a locationis
directly proportional to the population in the corresponding district and inversely
proportional to the distance of the location from the rupture. Therefore,if the
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Figure 6.5: Network Model of Istanbul

population of districtj is Nj and the distance from the rupture isrj in a scenario
S of earthquake magnitudem, then the demanddS(j) at locationj in scenarioS
is given by,

dS(j) = αdNj ·
eβdm

rS(j)

whereαd andβd are constants. Therefore, the demand at each location can be
computed when the rupture location and the earthquake magnitude is given.

6.5.4 Computational Results

We use the above scenario generation models (transport network and demand)
in the sampling algorithmA1 described in Section 6.4 to compute estimates of
Reliability(F ) andMax-Coverage(F ) for all possible subsetsF ⊂ F where|F | =
3 for both capacitated as well as uncapacitated versions. The results ofReliability
andMax-Coverage for a few choices ofF for the length boundB = 30km are
given in Table 6.5.4.

If the set of facilities are on the same side of the Bosphorus (the water channel
that runs north-south across Istanbul), then theReliability is very low and the esti-
mate ofMax-Coverage is significantly higher. If the emergency response facilities
are on one side (say west) of the Bosphorus (for instance whenF = {1, 2, 3}),
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Generating a Post-disaster Transport Network Scenario,ES

Initialize ES ← φ.

1. Generate a rupture locationl uniformly at random between the east and
west boundary of Istanbul and generate an earthquake magnitudem uni-
formly at random between6.5 and7.5.

2. For all edgese in the network

(a) Computepe as described in Equation 6.18.

(b) Generate a numberx uniformly at random between0 and1.

(c) If x > pe, ES ← ES ∪ {e}; otherwisee fails in the scenarioS.

3. returnES .

Figure 6.6: Generating a Network scenario

then they are not able to satisfy the demand on the east side if the road links be-
tween the two sides are disrupted. Therefore, all the scenarios where the road links
between the two sides are disrupted are not counted inReliability. On the other
hand, these facilities are still able to satisfy almost all the demand on their side of
Bosphorus in most of the scenarios which leads to a significantly higher estimate of
Max-Coverage. This fact is strikingly visible in the results for the set of facilities
F = {10, 14, 15} which are all on the west of Bosphorus. In this caseReliabil-
ity=0.35 andMax-Coverage=0.75. In contrast, if the facilities are split across the
two sides then the estimates for bothReliability andMax-Coverage are comparable
and high.

We would like to note here that the accuracy or the computational efficiency
of the sampling algorithm does not depend on the scenario generation model.The
focus of this study is to develop an efficient tool to estimate the quality of a set of
open facilities by computing quantities such asReliability andMax-Coverage. Any
probabilistic model for scenario generation can be used in the sampling algorithm
and the accuracy or the computational efficiency of the sampling algorithm are not
affected other than the time required to sample scenarios from the new model.

6.6 Concluding Remarks

In this chapter, we presented an efficient sampling based algorithm to estimate
parameters for which an IP-based formulations have an exponential number of
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FacilitiesF Reliability(F ) Max-Coverage(F )

{1, 2, 3} 0.35 0.64
{2, 3, 4} 0.39 0.65
{33, 36, 37} 0.32 0.68
{17, 18, 31} 0.85 0.91
{10, 21, 30} 0.90 0.93
{3, 4, 34} 0.65 0.73
{10, 14, 15} 0.35 0.75

Table 6.1:Reliability andMax-Coverage Results

constraints and variables. Furthermore, we are able to provably obtain anadditive
ε-approximation for the estimates with a high probability for any givenε > 0. The
goal of this study was to develop a tool that can help in locating emergency re-
sponse and distribution centers for effective post-disaster logistics forthe Munici-
pality of Istanbul. The computational experiments conducted in our study bring out
some interesting insights about the geographic location of these ERDC and have
been discussed in the computational results section. We would like to mention
that in our computational experiments, we modeled the road network of Istanbul
as the only transport network available. However, since Marmara sea to the south
of Istanbul provides an inexpensive medium of transport using ferries, it would be
useful to consider it in the transport network; especially since this transport link
would not be disrupted by the earthquake.
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