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Abstract

Most optimization problems in real life do not have accurate estimates of the pro
lem parameters at the optimization phase. Stochastic optimization models have
been studied widely in the literature to address this problem. The expected valu
optimization is reasonable in a repeated decision making framework. Haqvitever
does not sufficiently guard against the worst case future in more resls@appli-
cations. The broad purpose of this thesis is to study optimization approacties
uncertainty that overcome this shortcoming of a traditional stochastic optimization
model.

We consider new models of uncertainty namely, the “demand-robust” model
and the “chance constrained” model and introduce these in the framefvgen-
eral covering problems. We consider uncertainty in the right hand sitteeafon-
straints which is referred to as the demand uncertainty. In the two-stage ofodel
“demand-robustness”, we are interested in finding a solution such thatotst
case cost over all realizations of uncertainty is minimized. We prove a @ener
structural lemma about special types of first stage solutions and prowmexa
mation algorithms for covering problems such as Steiner tree, min-cut, minimum
multi-cut, vertex cover and facility location. The structural lemma essentially ex-
ploits the following idea: In a two-stage solution, if the first stage help is at ésas
costly as the second stage solution for some realization of the uncertaingiara
(referred to as a scenario), then a solution for that scenario camb&wcted com-
pletely in the first stage while only losing a factor two in the total cost. We further
extend this idea to develop a ‘guess-and-prune’ algorithm where vesgjithe
worst case second stage cost which allows us to ‘prune’ away a setoérios for
which a complete solution in the second stage has cost at most the worsbstaise
For specific covering problems such as minimum cut and shortest patthowe s
that an approximate first stage solution can be constructed for the remaggng
narios using ideas from the structural lemma as well as the combinatorigls&uc
of the problem.

The robust optimization approach guards against the worst case fiuti.tesnds
to be overly conservative if there are some outlier scenarios. To avertias, we
consider a chance constrained model where we are given a reliabilityplevel
the idea is to select a “p fraction” of the scenarios and find a robust selatio
the selected scenarios. The remaining (1-p) fraction of the scenaeaoasid-
ered as outliers and can be ignored. We consider both one-stage aisthtyeo
chance constrained covering problems with demand-uncertainty. Whiledsys e
to obtain bi-criteria approximations for the chance-constrained problerngitha
late the chance-constraint by a small factor, we consider the probleatisfiying
the chance-constraint strictly. We show that the covering problems in lmgth o
stage and two-stage chance-constrained models where uncertaintgifiedpes




an explicit list of scenarios (with more than one element in each scenaei@tar
least as hard to approximate as the dénisabgraph (RS) problem. We also con-
sider the special case when each scenario has a single demand eledngmb\an
that the chance-constrained models reduce to weighted partial coverisions
either directly or via a guess and prune method.

We also consider the model of uncertainty where scenarios (possibly-an e
ponential number) are specified implicitly by a probability distribution over the
demand-elements. While it is not even clear if the two-stage problem is in NP in
this implicit scenario model, we give approximations for the one-stage prablem
the probability distribution satisfies certain fairly general properties.

In both the above models, we consider uncertainty in the right hand side of th
constraints. We extend our work to consider uncertainty in the constrainitxma
referred to as data uncertainty and study a chance constrained &kggpshlem
where each item has a known deterministic profit but the size is random disd is
tributed according to a known normal distribution independent of the othasite
We obtain a polynomial time approximation scheme for this problem that selects
a set of items that satisfy the chance-constraint strictly and achieve piarab
profit.

In the last chapter, we consider the planning problem for post-disagistits
where we are required to open a set of emergency response certierthat the
affected areas or the demand locations post disaster such as an @eetlcqn
be reached from at least one of the emergency response location wighiera
time bound. This problem combines aspects of both demand and data urigertain
as both the demand and the underlying transport network depend on diséedis
scenario and only realize after the disaster. We develop an efficientisgrbased
algorithm to estimate several parameters for a given set of emergendiptsca
such as the fraction of disaster scenarios where all the demand candrectand
average fraction of demand covered across all disaster scenamogsé&/the data
for the case of Istanbul, Turkey to conduct the computational experiraadténd
that our algorithm is efficient and provides reasonably accurate estimates
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Introduction

In a classical optimization problem, all parameters such as costs and deanands
assumed to be known deterministically. However, this assumption does not hold
in most real-life applications where more often than not we only know estimates
of the problem parameters. At best, we can assume that a probability distnibu
over parameter values is known from historical data. In such applicattassical
deterministic optimization models are not useful as the optimal solutions found by
such models can be very sensitive to even slight changes in the problameiars.
In this thesis, we study approaches for optimization under uncertainty twoothef
point of view of approximation algorithms as well as designing efficientibgcs
to solve these problems exactly.

Stochastic optimization models have been widely studied in the operations re-
search literature to address the problem of uncertain problem paraftet&rs4].
In a two-stage stochastic optimization problem (one with two stages of decision
making), certain decisions are required to be taken before the uncerzéitegyi-
alizes. These are called tfiest stage decisionand the corresponding period is
called thefirst stage After the uncertainty materializes i.e. the uncertain problem
parameters become known, the first stage decisions can be augmented with mo
decisions to construct a feasible solution for the problem. These are tradiselc-
ond stage decisionar recourse decisionand the corresponding stage is referred
to as thesecond stager therecourse stageA particular realization of all the un-
certain parameters in the problem is referred to ssemario Typically, a decision
in the first stage is less costly than the same decision in the second stage but it
may be wasteful in hindsight due to the uncertainty in the problem. On the other
hand, a second stage decision while being costlier is made after the urtgedréain
been resolved completely. The goal is to find a set of first stage anddetage
decisions such that the total expected cost is minimized. In most cases,¢red cr
part is selecting the set of first stage decisions. Finding the optimal setagel
decisions after the uncertain parameters have been resolved is ustiaiyglatfor-
ward problem. Multi-stage models can be considered where uncertameiara




CHAPTER 1. INTRODUCTION

are revealed over multiple stages, for e.g., in a multi-period inventory manageme
problem, uncertain demand is revealed period by period.

Recently, two stage scenario based models of uncertainty have beerd studie
widely with regard to finding approximation algorithms for combinatorial prob-
lemsin [33, 49, 57, 30]. In these models, the uncertainty is specified agphcite
list of scenariosy = 1,...,[) with associated probabilitiep{, ..., p; such that
Zﬁzlpi = 1). Scenarioi realizes with probabilityp; in the second stage. The
second stage cost in scenario;j, = o; - ¢y, Whereo; is the inflation factor for
scenaria andcy denotes the first stage costs. Note that the cost of all elements are
assumed to inflate by the same facigin scenaria in our model. The goal is to
find a first stage solutionX ) and for each scenariothe second stage or recourse
solution (X?) such thatX'; U X! satisfies scenarib The objective is to minimize
the total expected cost over all the scenarios of the second stage, i.e.,

l
cr(Xp) + ) pick(XD)
=1

The expected value minimization is reasonable in a repeated decision-making
framework. However, it does not sufficiently guard against the wease over all
the possible scenarios in more risk averse or one-shot applicationsa@ucon-
tribution in this thesis is to consider combinatorial problems in new models of un-
certainty that overcome the shortcomings of the stochastic optimization model and
extract structural properties that can be generalized to a larger ¢lpssbhbems.
We also use the structural properties to design efficient heuristics to ¢atiom:
ally solve a large class of problems.

1.1 Demand-Robust Model

Motivated by the above mentioned shortcoming of expected value minimization,
we introduce a two stage model of demand-robustness. Robust optimixzetiens

the objective is to minimize over the worst case costs, has been studied in litera-
ture [5, 37, 43, 51]. However, we take a different approach in oudehof uncer-
tainty. We do not address uncertainty in the form of inaccuracy in the dalf itse
rather we address the uncertainty in demand or a subset of the condhratrite
problemis required to satisfy. We refer to thiskesnand uncertainty~or example,
consider the deterministic set covering problem where we are giveruadjset of
elementd/ = {uy,...,u,}, afamily of setsS and a cost function; : S — R*

and the goal is to find a minimum cost subset of sets fdnmat cover all the
elements. In the two stage demand-robust model, we address the probéem wh
the set of elements that require coverage is not known in advance.ntheainty

2
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is specified as a list dfsecond-stage scenarios where each scenario is a subset of
elements that require coverage if that scenario materializes. The goalrisl ta fi
first stage solutionX ;) and for each scenaripa recourse or second stage solution
(X?) such thatX; U X covers all the elements in scenafioThe objective is to
minimize the worst case cost over all the scenarios, i.e.,

l . .
cf(Xy) +maxc,(X;)

wherec’ denotes the second-stage costs in scenarRecall that the cost of all
elements inflate by the same factqrin scenaria in our model. Our main contri-
butions in this demand-robust model are the following.

1. We prove a structural result about the first stage solution of a gleo®y-
ering problem namely that there is a first stage solution that is a minimal
feasible solution for some subset of scenarios and can be augmented in the
second stage to complete the solution with a loss of a factor 2 in the total
cost of the solution.

2. We obtain approximation algorithms for a variety of standard coverinlgrpro
lems in this model including Steiner trees, minimum multi-cut, vertex cover
and uncapacitated facility location. While many of the results are adapta-
tions of algorithms recently developed for two-stage stochastic programming
problems by using the structural result, we also show new applications of old
metric rounding techniques for the multi-cut problem in the demand-robust
model.

The details of the model and the results are presented in Chapter 2. Improve
approximations for demand-robust shortest path and min-cut probleragjuess

are prune algorithm are presented in Chapter 3. As a byproduct & thsslts,

we also obtain the first constant factor approximation for the two-stagkasgttic
min-cut problem using a novel LP formulation and a charging argumeng tse
Gomory-Hu cut tree [29].

1.2 Chance Constrained Model

The robust optimization approach guards against the worst case. fhimnever, a
tiny fraction of outlier scenarios can significantly increase the cost ofolution

in a robust optimization approach. Avoiding such scenarios might resulsiia
stantial reduction in the solution cost while still maintaining a high reliability of the
solution. To overcome this problem, we introdwt&nce-constraintésee [11, 6])

in the robust and stochastic models. The idea of chance constrained opitimiga
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as follows: we are given some reliability parameier p < 1, and are required to
output a feasible solution for only a subset of the scenarios whose totalility

is at leasp. We can think of the remaining scenarios as being outlier scenarios that
we can choose to ignore. Henceforth, we refer to a subset of soemdrose total
probability is at leasp as ap fraction of the scenarias

We introduce the chance constrained optimization framework for combinato-
rial optimization problems, generalizing the framework of partial coverirappr
lems that have been widely studied in literature [10, 2, 24, 41, 25]. Fongbea in
a partial covering version of the set covering problem defined abvey@yre given
a targett < n and the goal is to find a minimum cost subset of sets f&that
cover at leask. This problem is a special case of a one-stage chance constrained
set covering problem where demand uncertainty is specified by a lissoénar-
ios each being a singleton element occurring with probab%litynd the required
reliability p = % For each = 1,...,n, scenaria contains only the element;,

i.e., onlyu; requires coverage if scenarionaterializes.

We consider two models of demand uncertainty in the chance-constrainest fra
work: Explicit scenario modelvhere the demand uncertainty is specified by a list
of explicit scenarios antinplicit scenario modelvhere demand-scenarios (possi-
bly an exponential number) are specified implicitly by a probability distribution
over demand-elements that require coverage. As an example considaatiwe-
constrained set covering problem where each elemeoturs with some specified
probability p. independently of other elements. Thus, an exponential number of
demand scenarios and their associated probabilities are specified implicitli by th
probability distribution. On the other hand, in the explicit scenario model an ex
plicit list of demand-scenarios (subsets of elements requiring coveisag®@gn as
an input. The goal is to find a minimum cost solution that covers at least disgec
p fraction of the scenarios.

While it is easy to obtain bi-criteria approximation algorithms for the chance-
constrained problems that violate the chance constraint by a small faetogmw
sider the problem of satisfying the chance constraint strictly.

1. We show that in the explicit scenario model (with more than one element
in all the scenarios), both one-stage and two-stage problems are adeast
hard to approximate as the dernissubgraph (2S) problem. TheDense
k-Subgraph problem is conjectured to b@(n%)-hard to approximate for
somej > 0 [23].

2. For the special case when each scenario has a single element, whitethe o
stage problem directly reduces to a weighted partial covering problem, we
show that many two-stage problems (including set cover, facility location
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etc) reduce to a weighted partial covering problem via a guess-am@-pru
method.

3. The two-stage shortest path problem does not reduce to a parteirgpv
version but can be reduced to the weighteld ST problem where the weight
function is submodular. We give an(log k)-approximation for this prob-
lem.

4. We also consider an implicit scenario model of uncertainty where sosnar
(possibly an exponential number) are specified implicitly by a probability
distribution. In particular, we consider a model where each demand element
occurs with a given probability independently of others referred freredin
as theindependent-scenarianodel. While it is not even clear if the two-
stage problem in the independent-scenarios model is in NP, we show that
the one-stage problem in this model can be reduced to a weighted partial
covering problem. We also extend these results for the one-stage problem
where the demand uncertainty is specified by a general probability distri-
bution such that theumulative probabilityof any demand-scenario can be
computed efficiently and istrictly-monotonewith respect to set inclusion.

5. Computational Study In [54], we give an efficient algorithm to solve
chance constrained covering problems where the demand is randomt-We fo
mulate the problem as an MIP using ideas from the reduction of the chance
constrained set covering problem in the independent distribution model to a
weighted version of the partial set covering problem. We then derivaifyfa
of cutting planes that can be proved to be facets of the convex hull sif fea
ble solutions for the MIP and furthermore, can be generated very efficie
The strengthened formulation is an extremely efficient procedure to solve
the chance constrained covering problems. We corroborate our sitlly w
extensive computational results on a large testbed of instances. This work
appears in the doctoral dissertation of Saxena [53] and will not be iedlud
as a part of this thesis.

The results of the chance constrained models are presented in Chapter 4.

1.3 Chance Constrained Knapsack Problem

The two models of uncertainty described in the above two sections consader p
lems where uncertainty is in the demand (or the right hand side of the cohstrain
matrix). In Chapter 5, we consider the chance-constrained knapsablem
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where each item has a know deterministic profit but a random size distriaaoted
cording to a known distribution independent of other items. In this problem, the
uncertainty appears in the constraint and we refer to such a model eftaimty
asdata uncertainty Given a reliability levelp, the goal in the chance-constrained
knapsack problem is to select a set of items that maximize the profit subjeet to th
probabilistic constraint that the probability of total size of all the selected items
not exceeding the knapsack size is at lgasiVe give a polynomial time approx-
imation scheme (PTAS) for the problem i.e. given- 0, we can obtain a set of
items whose total profit is at leait — ¢) times the optimal profit and the chance-
constraint is satisfied strictly and the running time of the algorith@n(i;s%) where

n is the number of items in the input.

1.4 Locating Emergency Response Centers for Post-
Disaster Logistics

In Chapter 6, we present our work on locating emergency respomgerseor
efficient post-disaster logistics. We consider the problem of effectilagting
emergency response and distribution centers to provide services in-digaster
scenario such as an earthquake. In a post-disaster scenariolynisttbe demand
uncertain but the underlying transportation network also is uncertain gmends
on the disaster scenario. Thus, this problem combines the aspects ofbmtnd
demand uncertainty. To perform post-disaster relief operations efgctplan-
ning in the pre-disaster phase is necessary. We study the problemtidpeaer-
gency response and distribution centers such that for a large fratiisaster sce-
narios, all the demand locations can be reached from some respotesevadmn

a specified time. In particular, we develop an efficient sampling basedtaigor
which allows us to estimate thguality of a given set of emergency facilities by
estimating quantities such as the fraction of disaster scenarios for whiclvéme g
set of facilities can reach all the demand locations within a given time bound and
average fraction of demand satisfied by the given set of facilities ovecatar-
ios. For the purpose of our study, we consider the seismic risk problestaindul,
Turkey and use the data from that problem for our computational expetsme




Demand-Robust Model for Two-stage
Covering Problems

Robust optimization has roots in both Decision Theory [39, 42] as well &b-Ma
ematical Programming [15]. While min-max regret approaches were agidanc
the former field as conservative decision rules, robust optimization wesgssisd
along with stochastic programming [6] as an alternate way of tackling data-unce
tainty.

More recent attempts at capturing the concept of robust solutions in optimiza
tion problems include the work of Rosenblatt and Lee [51] in facility desigib{pr
lem, Mulvey et al. [43] in mathematical programming, and most recently, Kouvelis
and Yu [37] in combinatorial optimization; here robust means “good in all atmo
versions”, a version being a plausible set of values for the data in thel nitadn
more recent work along similar lines is advocated by Bertsimas et al. [5, 4]. A
recent annotated bibliography available online summarizes this line of wétk [4

We consider a different approach in our model of uncertainty. We dado
dress uncertainty in the form of inaccuracy in the data itself; rather weeasithe
uncertainty in a subset of the constraints that the problem is required tfy.satis
As a simple example, consider the two alternate formulations of the shortest path
problem from a root node under the data-robust and the demand-robust formu-
lations. In the more traditional data-robust formulation, the other termina tiod
to which the shortest path frommust be built is specified in advance. However,
the costs of the edges in the graph may change as stipulated either in aiset of d
crete scenarios, or by intervals within which each edge cost lies. Thealatat
formulation models the problem of finding a pathfrom r to ¢ such that over all
possible settings of the data (edge-costs) among the scenarios, the maxatoam v
of the cost ofP is minimized by taking this path. In the demand-robust model we
consider, the costs of edges are specified in advance. Each scemarspecifies
which terminalt;, must be connected tovia the shortest path. Furthermore, in
the scenarid: specified by terminat, all the edge costs are costlier by a spec-
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ified factoro,. The problem is now modeled as one of choosing a few edges to
buy today at the current specified (hon-inflated) cost and thenafdr scenarié;,
completing the current solution by adding more edges (at costs inflategd)tig

form a path fromr to ¢;,. The objective is to minimize the maximum value of the
first stage costs plus the second stage completion costs over all possitdgics

k.

Relation to Stochastic Programming The roots of our new model have strong
links to the class of two-stage stochastic programming problems with recturse,
which some approximable versions were studied in recent work [303189357].
These two-stage models (e.g., from [30]) have a very similar structusts aoe
specified today and the demands occurring tomorrow (along with their tespec
inflation factors) are specified by a probability distribution. The goal is tolpase
some anticipatory part of the solution in the first stage so that the expecdied co
of the solution over all possible scenarios is minimized. While the expected value
minimization is reasonable in a repeated decision-making framework, one shor
coming of this approach is that it does not sufficiently guard against thet wase

over all the possible scenarios. Our demand-robust model for sotteprs is a
natural way to overcome this shortcoming by postulating a model that minimizes
this worst-case cost.

2.1 Model and Notation

We define an abstract covering problem in the demand-robust two-stadel

with finite number of scenarios. L&t be the universe oflients (or demand re-
guirements), and leX be the set oélementshat we can purchase. Every scenario
is a subset of clients and is explicitly specified. 1%t .S,,...,S,, C U be all

the scenarios. For every scenafip, let sol(S),) denote the sets i2* which are
feasible to covef;: the covering formulation require that C B andA € sol(Sy)

= B € sol(Sy). The cost of an element € X in the first stage is(x). In the

k' scenario, it becomes costlier by a fact@ri.e. cx(z) = ok (). Inthe second
stage, one of the scenarios is realized i.e. one of the subsetaterializes and the
corresponding requirements need to be satisfied. Now, a feasible sapéoifies

the elements{; to be bought in the first stage, and for edcha set of elements
X* to be bought in the recourse stage if scenaris realized, such thaX ; U X*
contains a feasible solution for client s€t. The cost of covering scenaripis
cr(Xy) + ck(XF). In the demand-robust two-stage problem, the objective is to
minimize the maximum cost over all scenarios. Note that we pay for all the ele-
ments inX ; even though some of them may not be required in the solution for any
one fixed scenario.

8



2.1. MODEL AND NOTATION

] Problem | Deterministic | Stochastic | Demand-robust
Steiner Tree 1.55 [50] 3.55 [30], 30 [31] 30°
Vertex Cover | 2 (Primal-dual) 2 [49] 4
Facility Location 1.52 [40] 5[49], 3.04 [57] 5*
Min Cut 1 O(logm)* O(logm)*
Min Multi-Cut O(logr) [26] | O(logrm-loglogrm)* lOogfc;ggr:;)*

Figure 2.1:Result Summary * denotes results in [18]. In the table;, » andr denote
the number of scenarios, number of nodes and maximum nurhipaiire per scenario
respectively.

As an example, the demand-robust “rooted” min-cut problen?hasthe edge
set of an undirected graph, a specified root and éacpecified by a termindl,.
sol(Sy) is the set of all edge sets that separgtédrom r. As another example,
in the demand-robust “rooted” Steiner tree problem, we héve- the edges of
an undirected graph, a specified recand each scenari;, specified by a set of
terminals{t¥ 5 .. .}. sol(Sy) is the set of all edge sets that connect all terminals
{th ¢k, ...} to the rootr.

2.1.1 Results

We formulate demand-robust versions of commonly studied covering pnshie
optimization including minimum cut, minimum multi-cut, shortest paths, Steiner
trees, vertex cover and uncapacitated facility location, and providexipmation
algorithms for these problems. Our results are summarized in Figure 2.1. While
many of our results draw from rounding approaches recently dewetfopstochas-

tic programming problems, we also show new applications of old metric rounding
techniques for cut problems in this demand-robust setting.

One of our main contributions is to frame the demand-robust problems and
show how this leads to interesting versions of well-studied problems in combina-
torial optimization. In Section 2.2, we show how a natural LP formulation of the
demand-robust version of the minimum-cut problem can be rounded withgaa lo
rithmic factor using ideas for rounding multi-cut problems [26, 38]. In Sectig,
we also show how a demand-robust version of the multi-cut problem carbals
approximated using further ideas by taking care of a constant fractitmeade-
mands per scenario in each iteration of an iterative method (also used fo&&
feedback arc set problem). One of the unanticipated outcomes of thessdgwe
rithms for the demand-robust versions of the cut problems is that we geathe
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guarantees for the two-stage stochastic versions of these problemsythgdicst
poly-logarithmic approximations for them as well (See Section 2.3.2).

In Section 2.4, we prove a simple structural lemma about special classes of
first-stage solutions to robust covering problems: Informally, this statetie is
a first-stage solution that is a minimal feasible solution for the union of demands f
a subset of the scenarios in the specification of the problem whose tetascm
more than twice that of the optimal. This result holds for a large class of ioover
problems including vertex cover, minimum (multi)cut, Steiner trees and facility
location. However, in that section we mainly apply it to the robust Steiner tree
problem to formulate a more structured LP relaxation which is the starting oint f
applying the methods in [31], finally giving us the constant-factor approxima
result for robust Steiner trees.

In Section 2.5, we point out how techniques previously developed fostage
stochastic problems that work by charging the first-stage and secorepsteg of
the solution independently to the corresponding lower bounds in the relatatio
arrive at the final performance guarantee, can be used to dedlegans results
for the robust versions of such problems. This remark applies to altiogverob-
lems addressed by Shmoys and Swamy [57] such as vertex cover aond tiokéng
methods of Ravi and Sinha [49] for facility location.

2.2 Robust Min-cut Problem

Problem Definition We are given an undirected gragh= (V, E) with a root
. The k! scenario consists of a single termingl Edge costg/(e) in the first
stage andry.cs(e) in the recourse stage if thé" scenario is realized. Herg, is
the inflation factor for thé*" scenario.

The objective is to find a set of edgés to be bought in the first stage and for
eachk, a setE¥ to be bought in the recourse stage if scenarie realized, such
that removingE/; U E¥ from the graphG disconnects from the terminat,. The
objective is to minimize the maximum cost over all scenarios. The robust min-cut
problem is proved to be NP-hard in [35].

Integer Program Formulation We formulate an integer linear program for the
problem as follows.

min z
2 > Y, ep(e)(al + opak) vk
(0 +2F)(P) > 1 Vr-t;, path BV k
¥ e {0,1} Ve

10
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Relaxing the integrality constraints 4§ > 0 gives us the linear programming
relaxation. While the LP formulation given here has an exponential nunfilbene
straints, it can be solved efficiently by the ellipsoid algorithm where the agpar
oracle is just a shortest path computation.

2.2.1 Algorithm

We start by solving the LP relaxation. L&f andi* denote the values of the
variables in the fractional optimal solution. LeP,; denote the optimum value of
the LP relaxation. To round the fractional LP solution, we use the regionigg
technique of Garg et al. [26]. We would like to stress that the notionobime
used here is different from the LP volume used in [26]. Moreover, inpooblem
the LP gives a different metric on the graph for each scenario.

We start by making a copy of the graghfor each scenario. We denote the
copies byGy, ..., G,,. We also introduce a cop$ for the first stage solution.
Edgee costscy(e) in the graphGy andoycy(e) in the graphGy,. First we give
some notation to use in our algorithm description. #&att; be the shortest path
metric defined by the following lengths on the edgkse) = 0 + &*, Ve € E.
Let By (tr, p) denote a ball of radiug around the terminal in the metricdisty,.
For any subset C V, letd(S) = {(u,v) € Elu € S,v ¢ S}. We define the
volumeVy (t, p) of the ball as

LP, -0 =~
Vit p) = —E 4 Y ep(e)(@ + )
e€ By (tk,p)

+ Z cr(e)(p — disty(tx, e))

e€6(Bk(tk.p))

Heredisty(t, e) denotes the metric distance betwegrand the closer end-
point of edgee. Note that the volumé (¢, p), for anyp, is not same as the LP
volume. However, it is bounded above by, which facilitates Claim 2.2.1. We
split the volume among first and recourse stage contributions as beingrthaf pa
the volume contributed by first-stage and second-stage variablestresiyec

LP -
Viltp) = =4 3T ep(e)i
€€ By (tk.p)

+ > cp(e)(min{p — disty(ty, ), 30})
e€d(By(tr,p))

11
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Algorithm Robust-Min-cut
1. LetGy, Gy, ..., Gy, be copies of3. Initialize E;, EL, ..., EF «— ¢.
2. Repeat the following:
(a) Find aterminat; thatis connected toin the graphGy, = (V, E'\
(Ey UEY)).
(b) Find a radiugp < 1/2 for which Vi (¢, p)/C(t, p) is minimum.

(©) If V2(tk, p) > Vi(ty, p), then setls; — E; U §(By(ty, p)) and
removeBy(tx, p) from all graphsGo, G1, ..., Gp,.
EIserl(tk,p) > %Vk(tk,p). SetEf — Ef U (5(Bk(tk,p)) and
removeBy(tx, p) from the graptGy.

Until all the terminals are separated from

Figure 2.2: Algorithm for Robust Min-Cut

and

o
m
o)
x
=
T

P)
+ ct(e)(max{0, p — disty(ty, e) — 2°})
e€d(By(tr,p))

Observe that/?(ty, p) + Vil (tr, p) = Vi(tx, p). We define the cost of the edges
crossing the boundary of the ball @tx, p) := 3 _ccs(p, (1,0 €/ (€)-

Claim 2.2.1 The analysis technique of Garg et. al [26] can be used to show that
there exists a radiug < 1/2 such that the following holds in the step 2b of the
algorithm in Figure 2.2.1.

C(tk, p) < 2logm - Vi(tg, p).

We will show that the total cost paid in any scenario is at rddsg m - LP .
We argue about the cost of the first stage solution and the cost in thesestage
respectively in the next two lemmas.

Lemma 2.2.2 Cost of the edgeB is at mostdlogm - (LPopt + >, cf(e)22).

Proof: Inthe algorithm, we include the edg&sBy, (tx, p)) in Ey when2V0(ty, p) >
Vi(tr, p). Therefore, the cost of the edges&fBy (¢x, p)) is bounded above by

12



2.2. ROBUST MIN-CUT PROBLEM

4logm - V2(tg, p). In other words, each unit of volume insid®; (¢, p) gets a
charge ofd log m. Since we remove the bal¥ (¢, p) from graphG,, each edge
in G is charged at most once. Therefore the total cost of edg&s is bounded
by

4logm V,?(t,w p)

41ogm(LPopt + >, cf(e)22).

cf(By) <
<

Lemma 2.2.3 Cost of the edgeB?” is at mostdlogm - Y, oxcy(e)zh.

Proof: Note that the only time we include edges i is whenV;! (¢, p) >
% Vi (tx, p). Buying edgee in G}, costsoy, times higher. Therefore the costs of the
edges inE* can be bounded as follows:

C(E§) < O'kC(tk,p) < 410gm : Ukvk;l(tkvp)
< dlogmy, oxcs(e)ik.
|

Theorem 2.2.4 The Algorithm Robust-Min-Cut produces@filog m)-approximate
solution to the robust min-cut problem.

Proof: Using Lemmas 2.2.2 and 2.2.3 the total cost of any scerkadan be
bounded as follows:

c(Ef) + c¢(E¥) < 4logm <LP0Pt +> cple) @+ ak:z’;)>

< 8logm - LPopt
Therefore the maximum cost over all scenario® {$og m) LP,, as well. [

2.2.2 Multi-terminal Scenarios

The algorithm for robust min-cut can be adapted to giv@éiag m )-approximation
for the case when each scenario contains a set of terminals rather ihglegey-
minal. Thekt" scenario consists of a set of termin&jsthat must be disconnected
from the rootr if scenariok materializes. In this case, we modify the input graph
G = (V, E) as follows. For each scenarto= 1, ..., m, we add a new vertex;
and add edge§(v, si)|v € S} and setcf(v, sp) = M for all v € Sy, whereM

is the sum of all edge costs ii. Now, modify scenarid:, S, = {si} which is a
single terminal and can be solved using the algorithm for robust min-catited
above. Since all the edges added to a new vertiges ., s,,, have a very high
cost, none of them is selected in a first stage or a second stage solutionddga
rithm. Therefore, for each scenapseparating; from r also leads to separating
{v|v € Sk} fromr.

13
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2.2.3 Robust Min-cut in Trees

In the special case when the input gra@his a tree, we give a polynomial time
exact algorithm for the robust min-cut problem. The algorithm uses thenfioltp
fact crucially: if a terminalt; is not separated from the roetby the first stage
solution, then we need to buy only one edge in Affe scenario in the recourse
stage.

Theorem 2.2.5 There is a polynomial-time exact algorithm for the robust min-cut
problem on a tree.

Proof: The algorithm for robust min-cut on trees is as follows. “GueasSdb be

the maximum second-stage cost of an edge to be cut in recourse stage fdsin
each terminal, we need to remove only a single edge to separate it from the roo
there arem choices for this maximum cost{ is the number of scenarios). All
terminalst,, that have first-stage min-cut cost less th%rare cut in the recourse
stage. The rest of the terminals are separated from the root by a minimtioutos

in the first stage.

One of the guesses @t is the correct one, for which we will find a solution
that pays at most’' in the recourse stage. Furthermore, the first stage min-cut cost
for every terminaty, that is cut in the first stage by this solution is greater tlo;%m
Thus, any optimal solution separatgsrom the root in the first stage. Hence, the
algorithm returns an optimal solution.

There arem choices for the maximum second-stage cost and for each guess,
the algorithm computes minimum cuts in a tree which can be done in time linear
in the number of vertices. Also, the algorithm computes one min-cut in a denera
graph of sizé|V|+1) to find the first-stage solution which can be don®iV |?).
Therefore, the running time 8(m?|V|) + O(|V|?) = O(|V|?) sincem < |V|.m

2.3 Robust Multi-cut

The robust multi-cut problem is a generalization of the robust min-cutl@nob
The problem is defined on a gragh= (V, E). Here thek'" scenario consists of
pairs of terminalg (s}, t¥), (s5,t%),...}. We want to find a set of edgds to buy
in the first stage an&” to buy in the recourse stage if scenakigs materialized
such thatE'; U E¥ separates each of the pa{&¥, t¥), (s5,t5),...}. An edgee
costsc(e) in the first stage aney.cy(k) in the scenarid: of the recourse stage.
The objective is to minimize the maximum cost over all scenarios.

We first describe af(log? rm) algorithm for robust multi-cut problem, where
r is the maximum number of pairs in any scenario. The algorithm is similar to the
one for robust min-cut.

14



2.3. ROBUST MULTI-CUT

We formulate an integer linear program for the robust multi-cut problem as
follows.

min z

z > S (cr(€)zl + oxcp(e)zh) vk
(% +2F)(P) > 1 V sk-tk paths PV k, i
xk e {0,1} Ve, k

Relaxing the integrality constraintsid > 0 gives us the LP relaxation. L&f
andz* denote the optimal fractional solution. The rounding procedure is similar
to the rounding procedure for robust min-cut. As before, we maintaigraphs
G1,Go,...,Gy,, one for each scenario. We also maintélp for the first stage
solution. However, we need to modify the ball growing procedure. Insbin-
cut problem, when a boundary of a b&l(t, p) is removed from the grap&,
there are no terminal pairs left inside the ball. This property no longer faidise
robust multi-cut problem. Therefore we recursively apply the algorittsid@aeach
component of the graph formed after removing the boundary. We giketalsof
the algorithm here. We find disjoint balB(s¥, p) and B(t¥, ') arounds! and
tk respectively. The radjp, o’ < 1/4 are chosen such that the cost of the edges
crossing the boundary of a ball is withi»(log rm) factor of the volume inside the
ball. If V*(sk, p) > 3V (sF,p) (resp. V*(tF, p') > SV (tF, p)), then we include
5(B(sk, p)) (resp.3(B(tF, p'))) in the edge seE), and remove the ball from the
graphGy,. Otherwise, we find the ball among(s¥, p) and B(t¥, p’) which has
smaller number of terminal pairs (from all scenarios) that have not lemarated.
SupposeB(sF, p) has smaller number of such pairs. Then we include the edges
§(B(sk, p)) in E; and remove the balB(sF, p) from all graphsGo, G1, . .., G-

We run the algorithm recursively inside each of the components formed.

This algorithm is similar to the divide-and-conquer algorithm for Feedback
Edge Set problem due to Leighton and Rao [38]. It divides the gapih various
components and recurses inside each component. In order to boungptogia
mation factor of the algorithm, we need to prove that the depth of the recursisn
is small and the algorithm pays only a small cost at each level of the recursio

Lemma 2.3.1 Depth of the recursion of the above algorithm is boundelbgyrm).

Proof: Each time our algorithm makes a recursive call, the number of terminal
pairs inside the ball is at most half as many as the total number of terminal pairs in
all scenarios. Since the total number of terminal pairs we started with is bdund
by rm, the recursion depth is at mdst, rm. [ |

Using an argument similar to that of Lemma 2.2.2 we can bound the cost of the
algorithm paid for edges 6y as follows.

15



CHAPTER 2. DEMAND-ROBUST MODEL

Lemma 2.3.2 In each level of recursion, each unit of volume in the gréfygets
a charge ofO(log rm).

Theorem 2.3.3 There is a polynomial-timé (log? rm)-approximation algorithm
for the robust multi-cut problem.

Proof: Note that each unit of volume in the gragh, is charged at most once
and receives a charge 6f(log rm). On the other hand, each unit of volume in
the graphGy gets a charge dbgrm for at mostO(log rm) levels of recursion.
Therefore the total cost paid by the algorithm for edgeSjris at mosiO (log? rm.-
OPT), where OPT is the optimum value of the LP relaxation. Hence, the total cost
paid in any scenario i€ (log® rm - OPT) 4+ O(logrm - OPT) = O(log® rm -
OPT). |

2.3.1 Improved approximation

We now show how to improve the approximation factoi@log rm log log rm)
using the ideas from [21, 22, 56]. We modify our divide-and-conglgarahm as
follows. For a terminak?, we find a ballB(s¥, p) such thaC(s¥, p) < V (sk, p) -
4log (Vo /V (¥, p)) loglog Vo, whereVy = > cf(e) (20 +2¥) is the total volume.
The analysis technique from [21] shows that such a radiessts.

To bound the total cost of the algorithm, we note that each unit of volume in
the recourse stage graph, gets a charge ab (log rm loglog rm) at most once.
On the other hand each unit of volume in gragh gets charged multiple times.
We bound the cost paid using the following recurrence relation:

cost(Vp) < cost(V(sf, p)) + cost(Vy \ V(sf, 0))
+4log (Vo/V (sf, p))loglog Vo - V (s}, p).

Solving this recurrence, we get that the cost paid for the edges in grgph
bounded byO(V} - log rm log log rm). Hence the total cost paid by the algorithm
is bounded by) (log rm loglog rm) - LPqpt.

2.3.2 Stochastic Min-Cut and Multi-Cut

The stochastic min-cut problem is defined as follows: We are given dgrag

(V, E') with a cost functiorc; on the edges and a root nodeWe are also given

a collectionM of m scenarios withp;, being the probability of occurrence of sce-
nariok € M. For each scenarib € M there exists a nodg, and we demand
thatr and¢;, must be separated if tHé” scenario appears in the recourse stage.
An edgee costsc(e) in the first stage andycy(e) if k' scenario appears in the
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recourse stage. The objective function to minimize the sum of the first-stege c
and the expected recourse stage cost. Stochastic multi-cut is similarly defined
be the stochastic counterpart of robust multi-cut problem.

We show that a simple modification to the approximation algorithms for robust
min-cut and multi-cut yields approximation algorithms for the stochastic version
of the problems with same performance guarantees.

The region growing argument is not directly applicable to the stochastic min-
cut problem for the following reason: the “volum@&” of a ball defined in the proof
of robust min-cut is different from the cost of tiig” solution in the ball while that
is not the case in the algorithm of Garg et al. [26] for the deterministic multi-out. |
the case of robust min-cut or multi-cut, the volume is bounded from abovediy c
of the L P solution. This enables us to claim that there exists a ra@:iigs% such
that the cost of the cuf'(¢x, p) is at mostO(log m) - V (¢, p). This argument is
not applicable to the stochastic min-cut as volume in a ball might not be bounded
by the cost of thd. P solution in the ball. Hence, we do some preprocessing before
applying the region growing argument. We show how to do the transformation f
stochastic min-cut.

For all scenarios ir6 := {i| oip; < #}, we introduce the constraint in
the L P that cut for these scenarios will be completely a recourse stage solution.
We claim that this transformation does not affect the optimum solution by a large
factor: in an optimum solution if we buy all the first stage edges helping sicsnar
in S during the recourse stage as well, the extra edges bought incur afaist o
mostzies oip;-OPT < %OPT < %. Hence, we can ignore these scenarios
while constructing our first stage solution.

Now, when we apply the region growing algorithm for scenarioM \ S the
total volume in the graph is at moBt= ", cf(e) (20 + z). The cost of theL. P
solution is at least

Seer(@)al +opal) > Tooqe)(al + )
> LY cple)al +at).

Hence,V < m?2-c¢(LP). Now, we can show using the techniques of Garg et al. [26]
that there exists a radiys< 3 such thatC (¢4, p) < 4logm - V (¢, p). Hence, by
running the same algorithm described above for the robust min-cut losiegtea
factor of2, we obtain the following theorem.

Theorem 2.3.4 There exists a polynomial time algorithm which returngog m)
approximate solution to the stochastic min-cut problem.

A similar transformation for the stochastic multi-cut problem will yield the
following theorem.

17
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Theorem 2.3.5 There exists a polynomial time algorithm which returns an
O(log rmloglog rm) approximate solution to the stochastic multi-cut problem.

2.4 Special first-stage solutions and Steiner trees

In this section, we prove that for any robust two-stage problem thereapjprox-
imate first stage solution with a special structure: it is a minimal feasible solution
for a subset of scenarios and can be extended to a complete solution @ctmel s
stage without much cost overhead. We use this structural result to olutanstant
factor approximation for the robust Steiner tree problem.

2.4.1 A Structural Lemma for the First Stage Solution

Lemma 2.4.1 Given any problenil in the robust two-stage model, there exists a
first stage solutiorX ; and a subse$ C {Si,..., Sy} of scenarios, such thaX ;

is a minimal feasible solution for scenarios$h Furthermore, it can be extended

to a solution for the remaining scenarios in the second stage and the cos of th
final solution is at mos2 - OPT.

Proof: Consider an optimal integral solution to the robust problem lebe the

first stage solution an&* be the recourse stage solution in scenaridlso, let
X}* be the part of first stage solution used in scenarie. it is a minimal subset

of X} such thaTX}* U X* is a feasible solution for scenario We construct an

alternate first stage solutiaki;, such that it is a union of feasible solutions for a
subset of scenarios( ; will contain elements from the optimal first stage solution
X7, and also from the optimal recourse stage solutiai}s, ..., X™*. Let A

denote the elements 6f; in X ;. We constructX ; as follows.

1. Initialize A — ¢ andB «— ¢.

2. For each scenario= 1, 2,...,m, repeat the following

(@) X/ =Xy \A
(b) If cp(X}) > cp(XP), thenAd — AUX{andB — BU X/,

3. X;— AUB.

Figure 2.3: Structural Lemma
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Our new first stage solutioﬂff = A U B. Note thatd C X;Z. Therefore,
cf(A) < cp(X7). Also, all elements irB are charged to disjoint parts df. Thus,
by constructione;(B) < cy(A) which impliescs(Xy) < 2-c;(X}). Clearly, X
is a feasible solution for a subset of scenarios and it is minimal due to optimality of
X;,Xsl*, ..., X™ and the minimality otX}* for eachi. Furthermore, we claim

that X ; can be extended to a feasible solution for all scenarios in the second stage
such that the cost of final solution is at m@stO PT'.

Consider some scenario which is not covered in the first stagk’fb)sayz
This implies that when scenariovas considered in the above sequeng(aXf ) <
cf(X). Thus, we can buy(fl in the recourse stage and charge it to the cost of
X*. Let the new recourse stage solution & = Xi* U (X} \ A). Hence,
ci(X)) < 2-¢(X™) asci(z) = oy - cr(x).
Thus, the final cost of the new solution is

max{es(Xg) + ci(Xi)} < max 2 (ef(X}) + ei(X1))
<2.0PT

|

The above structural result about the first-stage solution of a covprity
lem in the robust two-stage model also holds for the problem in the stochastic
two-stage model. Starting with an integral optimum solution to the stochastic ver-
sion of the problem (say(;,Xsl*, ..., X)), the special solution can be con-
structed as in the procedure described above. Let the constructdibrsdie
X, X1, ..., X™ From the proof of Lemma 2.4.1, we have thatX?) < 2
ci(X¥), i =0,1,...,m. Thus, the stochastic objective for the new solution is,

m m
cr(Xp) + Y pici(XE) = ep(Xp) + D pioicy(X)
i=1 i=L |
2(cr(X}) + Y pioics (X))
=1
Thus, the above lemma gives an alternate proof for a similar lemma in [31] that
proves that there is a connected first-stage solution for the stochastierSteim

problem which costs at most three times the optimal, with a better bound of two
rather than three.

2.4.2 Robust Steiner Tree

We use the structural lemma proved above to give a constant factoxapption
for the robust Steiner tree problem. The problem is defined on a grapiV, E)

19



CHAPTER 2. DEMAND-ROBUST MODEL

with a root vertexr and a cost functiom on the edges. In the second stage one
of the m scenarios materializes. Thé" scenario consists of a séj, C V of
terminals and an inflation facter,. An edgee costscy(e) in the first stage and
cr(e) = axcy(e) in thek' scenario of the second stage. A solution to the problem
is a set of edgeg’s to be bought in the first stage and a Betin the recourse stage
for each scenarié. The solution is feasible if£; U E¥ contains a Steiner tree
connectingS, U {r}. The cost paid in thé'" scenario is:;(E;) + o, - c;(EF).

The objective is to minimize the maximum cost over all scenarios.

The structural lemma (Lemma 2.4.1) shows that there is a first stage solution
which is feasible for some subset of the scenarios. For the robust Stesee
problem, it means there is a tree solution for the first stage that can be edtend
to a final solution within twice the cost of the optimum solution. Therefore, we
formulate the problem with the additional constraint that the first stage solution
should be a tree. This means that the path from any terminal to the roottsonsis
of a portion of only recourse edges, followed by a portion consistingntyf first-
stage edges. We consider a flow-based formulation on a directed ghegph ®ach
undirected edge is bi-directed. For any suliset V, letd, (S) = {e = (u,v) :
ue S,v¢g Standio_(S) =d4(V \ S). The IP formulation for the robust Steiner
tree problem is shown in (2.2)-(2.8).

min z

N
w

Vk, z > Zcf(e)-(xg—i—ak-xlé)
eclk

N
I

Vie Sk > () +r6t) = 1
eciy(t)

Vo {t,r}, Vte S, VEk,

ST by ety = D0 ) + k)
e€dy (v) e€s_ (v)
ool >
e€d_(v) e€dy(v)
Ve,Vt € S, Vk,
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k() < af
re(t),z¢ € {0,1}

This formulation is similar to one used by Gupta et al. in [31], where they

give a constant factor approximation for the stochastic Steiner tree profleen.

20 variables are indicators for the edges in the first stage, @hd;?, ..., z* are

the indicators for recourse stage edges. For a termiimadcenariadk, the variable
r%(t) indicates whether edgss used in the recourse portion#s path to the root,
andr?(t) indicates whether it is used in the first-stage portion of the path. These
flow variables are directed; far = (u,v), the variabler® (¢) denotes the flow

of commodityt along a recourse edge in the directiomo v. Note that the edge
installation variables?” refer to undirected edges.

Consider the LP relaxation of the above IP formulation obtained by dropping
the integrality constraints. Ley p be the cost of the optimum IP solutiohpe the
optimum LP solution and PT be the optimum solution of the original instance.
From Lemma 2.4.1, we know thaip < 20PT. The fractional LP solution can
be rounded using the same rounding scheme as that of Gupta et al. [id&)]. the
following lemma can be derived from [31].

Lemma 2.4.2 ([31]) Let z,z°,z!,..., %" be a fractional solution to the linear
relaxation of the IP in (2.2)-(2.8). It can be rounded to obtain an integmution
9,71, ...,T*, such thatr™® U T* connectsS; U {r}, Vi. Furthermorec;(7°) <
15-3 cpcrle) - ad andVi, ¢;(T") < 15- 3 . pcile) - k.

Theorem 2.4.3 The Robust Steiner Tree Problem can be approximated within a
factor of 30 in polynomial time.

Proof: Lemma 2.4.2 shows that the optimum fractional solution of the LP re-
laxation can be rounded to an integral solution such that cost of eanbrgrés
increased by at most a factor 0§. Thus,z;p < 15- 2 < 30 - OPT. Hence, we
obtain a 30-approximation for the Robust Steiner Tree problem. |

2.5 Other Robust Optimization Problems

In this section, we consider some other combinatorial problems in the two-stage
robust model and give approximation algorithms for them.
2.5.1 Covering Problems of Shmoys and Swamy [57]

Two-stage stochastic set covering problems were studied in a genttirad) s
Shmoys and Swamy in [57], where they showed hgwegproximation algorithm
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for the single stage problem give2a-approximation for the corresponding two
stage stochastic version. The key idea is to observe that every elemebeatl

least half-covered by the first- or second-stage sets that contain it. diggap

both first- and second-stage by a factor of two, and using the rounftjogthm

on both scaled solutions, one obtains a solution with the promised guarantee. A
major contribution of [57] is a polynomial-time approximation scheme to solve the
two-stage stochastic programs even though the underlying problem mgybe
complete.

A simple application of the above method to polynomial-sized robust problems
gives a simplep- approximation algorithm for covering problems allowing-a
approximate single stage rounding method.

Consider the demand-robust version of minimum vertex cover: nodes hav
different costs in the first stage and in each of the scenarios in thedstage,
while each scenario consists of a subgraph of the complete graph o fidne
goal is to choose some vertices in the first stage and for every sceaagiment
the chosen set at the second-stage costs to form a vertex cover dfjgip this
scenario. A simple corollary of the above observation along with the clagsica
approximation rounding result for regular vertex cover gives the faligusimple
result.

Theorem 2.5.1 The demand-robust vertex cover problem can be approximated
within a factor of 4.

2.5.2 Robust Facility Location

In this problem we are given a set of facilitiésand a set of client§y, .5, ...,.S,
for each scenario. A metric;; specifies the distances between every client and
every facility. Facilityi has a first-stage opening costf}, and a recourse cost of
f¥ in scenariok. Note that in this case we can handle general second stage costs
unlike the model stated earlier where the second stage costs change loy certa
inflation factorsoy, o9, ..., om,.

Our approximation algorithm proceeds along the lines of the LP-roundiing alg
rithm due to Ravi and Sinha [49]. The algorithm in [49] rounds a fractienhltion
such that the cost of each scenario in the integral solution is boundetrhgsits
cost in the fractional solution. Thus, the same techniques giva@proximation
for robust facility locationt

Theorem 2.5.2 The demand-robust facility location problem can be approximated
within a factor of5.

LAlthough Ravi and Sinha [49] have claimed an 8-approximation, a mavefid analysis of their
algorithm gives a 5-approximation.
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2.6 Conclusion and Open Problems

In this chapter, we introduce a new model called demand-robustnessvarabg
proximation algorithms for some combinatorial problems in this model. There
seems to be an interesting parallel between stochastic and robust settorgs. F
example, the rounding techniques for the stochastic Steiner tree probiebeca
adapted to the robust version of the same problem. Similarly, the rounding tech
nique used for robust min-cut and multi-cut can be adapted to stochasticutnin-
and multi-cut with a slight modification. It would be interesting to prove a génera
result showing that a-approximation for a stochastic optimization problem leads
to aO(p)-approximation for the robust version of the problem and vice-versa. T
results presented in this chapter appear in Dhamdhere et al. [18].

23






Guess and Prune Algorithms for
Demand-Robust Covering Problems

We introduced the two-stage demand-robust versions of common optimization
problems in Chapter 2, where uncertainty in demand is modeled as an explicit
list of demand scenarios. In this chapter, we present a new parayligss and
prune and give improved approximation algorithms for shortest path and min-
cut problems in the two-stage demand robust model. Specifically, we obtain a
2-approximation for the robust min-cut problem and.&-approximation for the
robust shortest path problem.

We crucially exploit and benefit from the structure of the demand-rqimost-
lem: in the second stage, every scenario can pay up to the maximum secgad sta
cost without worsening the solution co$tis is not true for the stochastic versions
where the objective is to minimize the expected cost over all scenarios. éya v
high level, the algorithms for the problems considered are as follows: Gless
maximum second stage cd@stin some optimal solution. Using this guess identify
scenarios which do not need any first stage “help” i.e. scenarioshizhvthe best
solution costs at most a constant tint@$n the second stage. Such scenarios can
be ignored while building the first stage solution. For the remaining scerares
subset of them, we build a low-cost first stage solution and prove thexdpyation
bounds by a charging argument.

We give a2-approximation for the demand-robust min-cut problem via a charg-
ing argument using Gomory Hu cut trees [29].(A+ /2)-approximation based
on a guess-and-prune strategy for the demand-robust min-cut pretppears in
Golovin et al. [28] but the algorithm uses a different charging argurtteaitex-
ploits the laminarity of minimum cuts separating a given root node from other
terminals. AnO(log n)-approximation is also known and is presented in Chapter 2
and appears in Dhamdhere et al. [18].

As a byproduct, we also obtain a first constant fadtapproximation for the
stochastic min-cut problem. The analysis uses a novel LP formulation amd als
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CHAPTER 3. GUESS AND PRUNE ALGORITHMS

Gomory Hu tree based charging argument similar to the robust version.

For the demand-robust shortest path problem, we give an algorithm with an
improved approximation factor @1 as compared to thE-approximation that is
presented in Chapter 2.

Both demand-robust shortest path and demand-robust min-cut prohtems
NP-hard. The shortest path problem can be proved to be NP-hardshypde
reduction from the Steiner tree problem: if the inflation factors arexallthen
the demand-robust shortest-path is exactly a Steiner tree problem onttbe se
terminals defined by the scenarios. While the demand-robust min-cut proble
shown to be NP-hard in [35].

We also consider “hitting set” versions of demand-robust min-cut andesito
path problems where each scenario is a set of terminals instead of a singjleater
and the requirement is to satisfy at least one terminal (separate fromahtoro
the min-cut problem and connect to the root for the shortest path problezagh
scenario. We obtain approximation algorithms for these “hitting set” variants by
relating them to two classical problems, namely Steiner multicut and group Steiner
tree.

3.1 Two-stage Demand-Robust Min-Cut

Consider the two-stage demand-robust min-cut problem as definedtinrS22.
Here, we present Z-approximation for this problem.

To motivate our approach, let us consider the robust min-cut problenees.
Suppose we know the maximum cost that some optimal solution pays in the second
stage (say’). Any terminalt; whose min-cut fromr costs more tha@ should
be cut away fromr in the first stage. Thus, if we know, we can |dent|fy exactly
which terminalsU should be cut in the first stage. The remaining terminals pay
at mostC' to buy a cut in the second stage. If there Argcenarios, then there are
only k + 1 choices forC' that matter, as there are omty+ 1 possible sets thdf
could be. Though we may not be able to gu€ssve can try all possible values of
U and find the best solution. This algorithm solves the problem exactly on trees

The algorithm for general graphs has a similar flavor. In a generphgfdor
any terminal the minimum-¢; cut costs more thaFF then we can only infer that
the first stage should “help” this terminal i.e. buy some edges fren;acut. In
the case of trees, every minimadt; cut is a single edge, so the first stage cuts
t; from the root. However, this is not true for general graphs. We cawepthat
a similar algorithm that completely cuts from the root gives a constant factor
approximation using a charging argument. As in the algorithm for trees,dueee
the needed non-determinism by guessing a set of terminals rathe? titseif. We

26



3.1. TWO-STAGE DEMAND-ROBUST MIN-CUT

refer to the first-stage cost of the minimunt; cut asmcut(t;).

Algorithm for Robust Min-Cut
T = {t1,ta,...,t;} are the terminals; < root .

1. For each terminal, compute the cost (with respectdpof a minimum
r-t; cut, denotedncut(t;).

2. LetC be the maximum second stage cost of some optimal solution.
GuesdJ := {t; : o; - mcut(t;) > 2C}.

3. First stage solution; < minimumr-U cut.

4. Second stage solution for scenatrio

E;

« any minimumr-t; cutinG \ Ey

Figure 3.1: A factoR-approximation for Robust Min-Cut

If we relabel the scenarios in decreasing ordes,0fmcut(¢;), then for every
choice of C, U = D orU = {t1,to,...,t;} for somej € {1,2,...,k}. Thus,
we need to try onlyt + 1 values forC. This algorithm runs irO(k*mn) time
on undirected graphs using the max flow algorithm of Goldberg and T&jgriq
find min cuts.

Let OPT denote an optimal solution and IEI; denote the set of first stage
edges inOPT. The second stage cost of our algorithm is at n&istwhich is
equal to twice second stage costG®T for the correct guess a@f'. We show that
the first stage solutio®’s, given by our algorithm has cosf(E;) < 2cf(E;;) by
constructing a cut that separatesrom all the terminals inJ and costs at most
2cy(E7). This proves that the output solution ig-@pproximation.

ForanyS C V, letiog(S) = {e = (u,v) € E(G)lu € S,v ¢ S} and let
E(S) = {e = (u,v) € E(G)|u,v € S}. Consider the grapty’ = (V, E'\ E%)
and letH = (V, F') be a Gomory-Hu tree fo&’ with respect to the edge costs
For any two vertices, v € V, letmcut(u, v) denote the cost of the, v-min-cutin
graphG’ with respect to edge costg. The Gomory-Hu treéf is a tree on vertices
V and a cost functiom;, : F' — Ry. LetP(u,v) denote the unique path from
tov in H. The treeHd has the following property: for any two verticasv € V,
meut(u,v) = mingep(y,y) chle). Furthermore, ife,, = argmin.cp(y,. cn(e),
then the two connected components obtained by remosjpgrom H form a
u, v-min-cut inG.
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CHAPTER 3. GUESS AND PRUNE ALGORITHMS

ConsiderH and root it atr. A vertexw is anancestorof v if w occurs on the
unique pattP (v, ) fromvtor. LetU,, = {t € U|#lv € U s.t.v is an ancestor of}.
Considert € Uy, and lete; = argmin.cpq,cn(e). Let S; be the component
containingt after removinge; from H. As an illustrative example, consider the
Gomory-Hu tree in Figure 3.2. In this examplE, = {t1,te,...,t7},Un =
{tl, ts, tﬁ} and7,, = {tl, t5}.

Figure 3.2: Gomory-Hu tree with roet U = {t1,t2,...,t7}, Uy = {t1,t5,t6}
andTm = {t17t5}.

For all terminalg € U, ¢, (e;) < C as the second stage cost@PT is at most
C. Sincet € U, ther-t min-cut cost inG has cost greater th&t' (with respect to
cy) which impliesc(d¢(S;)) > 2C.

Lemma3.1.1 Foranyt € U
1. Cf(ég(st)) = Cf(E;Z N 5@(5})) + Cf(5g(St) \E;)
2. c(0c(S) \E}t) = cp(er) < cf(0a(Se) N EJ’;).

Proof: 6¢(St) = (0c(St)NE})W(d¢(Se) \ E}), and thus:¢(6¢(St)) = cp(EFN
6G(St))+cr(0a(S)\E}). Also,cp(dG(Si)\E}) = cn(er) asH is the Gomory-Hu
tree of G’ ande; is the cheapest edge ®\(r, ).
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3.1. TWO-STAGE DEMAND-ROBUST MIN-CUT

Sincecy (6¢(S¢) \ E}) < C andey(d¢(St)) > 2C, we havers(0¢(S:) \ E}) <
Cf(E;Zﬂ(Sg(St)). |

For any terminat € Uy, recalle; = argmin.cp(; . cn(e) andsS; is the com-
ponent containing after removinge; from H. We construct a first stage solu-
tion (denotedE,) separating- from U as follows. LetT,, = {t € U,|fv €
Uy, st S, CS,}andlet

E.= |J dc(S)O\E(|] S

te€Tm teTm

Lemma 3.1.2 The set of edgeE, separate- from all terminals inU.

Proof: Consider any terminal € U. For the sake of contradiction, suppose there
exists a path betweenandr in G \ E.. Sincer ¢ (Uer,, St), and by definition
t € S; C (Uger,, St, there exists an edgec oG (Uier,, St). Clearly,

e € (Uter,,0c(St)) ande ¢ E(Uier,, St)

Thereforee € E.. which is a contradiction. [
Lemma 3.1.3 ¢y (Ec) < 2¢cf(E})

Proof: Consider any € £} and letS. = {t € T),le € 0¢(Si)}. SinceS;, N
Sy, = 0 for any distinctty, t2 € T,,, it is easy to observe thaf.| < 2,Ve € E;z
Let

Ejy ={ec Ef||S.| =1}

Ejy={e€ Ej| 1S =2}
Clearly, E , C E(Uter,, St). Therefore,
Ee C Uter,,66(St) \ Efo = (Uter,, 0c:(St) \E}) UET:
For anyt € T),,
cr(0a(S) \ Ef) < cp(da(St) N E}) = cp(0a(S) N Efy) + cr(66(Se) N Ef )
Therefore,

> cp(0a(S) \ Ef) < cp(Ejy) + 2c(Ef o)
teTm
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CHAPTER 3. GUESS AND PRUNE ALGORITHMS

cf(Ee) <3 cp(0a(Si)\ B}) +cp(Efy)
tETm

< 2e(Efy) +2¢5(Ej )

< 2¢p(E})

|

Therefore, we have the following theorem.

Theorem 3.1.4 There is a polynomial time algorithm which give8-approximation
for the robust min-cut problem.

3.2 Two-stage Stochastic Min-Cut Problem

In this section, we consider the stochastic version of the two-stage mimatlem
as defined in Section 2.3.2. Here, we preseftagproximation for this problem
improving fromO (log m)-approximation presented in Section 2.3.2.

In the robust version of the problem, we are able to exploit the fact thag if th
maximum second stage cost@PT is C' then all scenarios could spend updo
in the second stage without worsening the objective value. This progéatysa
us to identify the set of terminals that should be separated from the root in the
first stage. In the stochastic version however, this property doesoleht We use
a novel LP formulation to identify the set of terminals that should be separated
from the root in the first stage. We complete the argument to prove the eequir
approximation factor via a Gomory-Hu tree based charging argument similee to
previous section.

Let y; be a binary variable denoting whether terminals separated from
in the first stage or not. Let. be a binary variable denoting whether edgis
selected in the first stage solution or not. IR, v) denote the set of paths from
uto v in graphG. Also, letmcut(t;) denote the cost of the minimum¢;-cut in
G with respect to the cost functiaty. Consider the following integer program (
IP1).

k
minz crle) - xe + Zaipi -meut(t;) - (1 — y;)

eceE i=1
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> wezy; VPeP(rt)Vi=1,... .k

eeP

x. € {0,1} Vec E
yi € {0,1} Vi=1,....k

Let z* be the objective value of an optimal solution to the above program and
let OPT be an optimal solution to the stochastic min-cut problemE;Ebe the first
stage solution 0OPT and £ be the second stage solution for scenaribhen we
can prove the following lemma.

Lemma3.2.1z* <2. (cf(E]’t) + Zle oip; - Cf(Eﬁ))

Proof: We construct a feasible solution i®1 from OPT and prove that the cost
is at most2 - OPT using an argument similar to the proof of Lemma 3.1.3. Let
E} C Ej be the minimal set of edges such tii#tU E; separates from ;. Also,

let

T ={ti € Ulcg(E}) < cp(E)}andT, =U\ Ty

Consider the following assignment for the variabletAf.

L 1 ift; el
Yi=\ 0 otherwise

k
Zaipi -meut(t;) - (1 —y;) = Z oip; - meut(t;)
i=1 it €Ty
< > owpie (ep(BY) + cs(EL)
it €71
< 2 ) o o(EY)
it €7

Now we construct a cuk,. that separates all terminals & from the root and
show that it has cost at most(E7}). Consider a Gomory-Hu tred = (V. F')
on the graph’ = (V, E'\ E7%) with edge costsy, : F' — Ry. Foru,v € V,
let P(u,v) denote the unique path betweerandv in H. For any terminal €
R, lete; = argmin.cp, ) cn(e) andS; denote the component containingfter
removinge; from H. Let us define

Tn={te Tl € Thst.S, C Sy}
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Now we construct the cut as follows.

Ee=(J da(SN\EC S0

teTm te€Tm,

Clearly, £, separates all terminals ifi, from . We prove thaics(E,.) <
2cs(E7}) by a similar argument as in the proof of Lemma 3.1.3. Consider any
e € E} and letS, = {t € Ty, |e € 6¢(S)}. SincesSy, NSy, = 0 for any distinct
t1,te € T),, itis easy to observe that. | < 2, Ve € E;ﬁ Let

B ={e€ E}||Se| =1}
Eio={e€ E}||Se| =2}
CIearIy,E;;2 C E(Uter,, St). Therefore,
Ee C Uter, 06(St) \ Ef o = (Uter, 0 (S) \ E}) UET,.
For anyt € T,,,
cr(0a(St) \ Ef) < cf(6a(Se) N E}) = cp(66(Se) N Ef ) + cp(0a(S) N Ef )
The first inequality follows from the choice &, since for any terminat €

T c(06:(S)) = cp(E}) + ¢y (EL) andey (EY) < cp(E}).
Therefore,

> e (6a(Si) \ Ef) < cp(Ej) +2¢4(E )

t€lm
cr(Be) <D e(06(S)\ Bf) +cp(Ejy)
t€Tm
< 2¢p(E}q) + 2¢p(E} ) 3.11
< 2¢p(E}) 3.12

Now, settingz, = 1,Ve € E. and0 otherwise, we obtain a feasible solution
to IP1. Furthermore)_ . cr(e)ze = cf(Ec) < 2¢p(E}) which impliesz* <
2(cr(B7) + Liy e (B2)).

Consider the LP relaxatiorLP1) of IP1 where integrality conditions o,
andy; are relaxed for alk € E and: = 1,...,k. Let Z be the optimal objective
value ofLP1 and let(z, ) be an optimal solution. We can prove the following
lemma.
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Lemma 3.2.2 We can obtain an integral feasible soluti¢f, ) to LP1 in polyno-
mial time such that
k
Z crle)te + ZUiPi -meut(t;) - (1 — ;) <22 < 22"
ecF i=1
Proof: LetTy = {t; € Uly; < %} and7, = U \ T;. Let E,,, be a minimum cost
cut that separates all terminalsiip from ». Consider the following solution. For

alli=1,... k,
1 >
yl_{o olw
Foralle € F,
. |1 ifeekEy,
Ie_{o o/w

Consider the fractional solutiopz. This is a fractional cut that separates
all terminals inT> from r. Since we can round a fractional cut to an integral
cut of the same (or lower) cost, the minimum cost &4t has costc¢(E,,) <

2 ZeEE Cf(e)je
Also,
Z oipi - meut(t;) - (1 —g;) = Z oipi - meut(t;) 3.13
:g;<1/2

<2 Z opi - meut(t;) - (1 — ;) 3.14

1:9;<1/2

k

< 2201])1 meut(t;) - (1 — ;) 3.15

i=1
Thus,(z,y) is a2-approximate integral feasible solutionlt®1. [ |

The cut corresponding to integral solutidris our first stage solution, sy ;.
The second stage solution for scendrisayE’?) is the minimum cut that separates
t; fromr in the graphG' \ Ey. Thus,

k

cp(Ep) + > oipicg (B < cp(e)ic+ Y oipimeut(t;) (3.16)

i=1 ecll 3:9;=0
k .
< 227 <A(cp(Bp) + > op(BD) (317
=1

Therefore, we obtain the following theorem.
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Theorem 3.2.3 There is a polynomial time algorithm which giveg-approximation
for the stochastic min-cut problem.

3.3 Demand-Robust Shortest Path Problem

We consider the two-stage demand-robust shortest path problem whispésial
case of the two-stage Steiner tree problem considered in Section 2.4rckherp
is defined on a undirected gragh= (V, E') with a root vertex- and cost on the
edges. The!” scenariaS; is a singleton seft; } rather than a set of terminals as in
the Steiner tree problem. An edgeostsc(e) in the first stage and (e) = o;-c(e)
in the i*" scenario of the second stage. A solution to the problem is a set of edges
Ey to be bought in the first stage and a Bgin the recourse stage for each scenario
1. The solution is feasible iffy U E; contains a path betweenandt;. The cost
paid in thei!" scenario isc(Ey) + o; - ¢(FE;). The objective is to minimize the
maximum cost over all scenarios.

The following structural result for the demand-robust shortest pathl@m
can be obtained from the structural lemma in Sectionr 2.4.

Lemma 3.3.1 [18] Given a demand-robust shortest path problem instance on an
undirected graph, there exists a solution that costs at most twice the optuntim
that the first stage solution is a tree containing the root.

The above lemma implies that we can restrict our search in the space of solu-
tions where first stage is a tree containing the root and lose only a facteoof
This property is exploited crucially in our algorithm.

3.3.1 Algorithm

Lemma 3.3.1 implies that there is a first stage solution which is a tree containing the
rootr and it can be extended to a final solution within twice the cost of an optimum
solution. We call such a solution agannected solutiarFix an optimal connected
solution, sayEg, ET, ..., E}. Let C be the maximum second stage cost paid by
this solution over all scenarios, i.€! = max?_,{c; - ¢(E})}. Therefore, for any
scenaria;, either there is path frory to rootr in Ej, or there is a vertex within a
distance% of ¢; which is connected to in Ej, where distance is with respect to
the cost functiorr, denotedist.(-, -). We use this fact to obtain a constant factor
approximation for our problem.

The algorithm is as follows: Lef’ be the maximum second stage cost paid
by the connected optimal solution (fixed above) in any scenario. We netegl to
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Algorithm for Robust Shortest Path
Let C' be the maximum second stage cost of some fixed connected optimal
solution.

T = {t1,t9,...,t;} are the terminals; < root,a « 1.775, V' — ¢.

LV o= {ti] diste(t, ) > 22€3

2. B:= {Bi = B(t;, %%)| t; € V'}, whereB(v,d) is a ball of radius
d aroundv with respect to cost. Choose a maximal séd; of non-
intersecting balls frons in order of non-decreasing radii.

3. Guessk® := {t;|B; € Br}.

4. First stage solutionk, < The Steiner tree on terminal’ U{r} output
by the best approximation algorithm available.

5. Second stage solution for scenarid>; « Shortest path from; to the
closest node in the treg,

Figure 3.3: Robust Shortest Path Algorithm

only k - n possible values of' 1, so we can assume that we have correctly guessed
C'. For each scenariy, consider a shortest path (s&)) to r with respect to cost

c. Ife(P) < QO‘a—C then we can handle scenarian the second stage with cost
only a factor2a more than the optimum. Thus, can be ignored in building the
first stage solution. Here > 1 is a constant to be specified later. Uét =

{t: | diste(r,t;) > 22<},

For eacht; € V/, let B; be a ball of radiug‘;—_c aroundt;. Here, we include
internal points of the edges in the ball. We coliectively refer to vertices ind/ an
internal points on edges asints Vp. Thus,B; = {v € Vp | dist.(t;,v) < Oir—c}

The algorithm identifies a set of termina® C V'’ to connect to the root in
the first stage such that the remaining terminalg’irare close to some terminal in
R and thus, can be connected to the root in the second stage paying asbw-co

Proposition 3.3.2 There exist a set of terminalR’ C V' such that:

1. Foreveryt;, t; € R, we haveB; N B; = ¢; and

For each scenarif) the second stage solution is a shortest path frota one of the n vertices
(possiblyt;), so there are at most- n choices of C.
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Figure 3.4: lllustration of first-stage tree computation described in Lemma 3.3.3.
The balls with solid lines denotB(¢;, UQ) while the balls with dotted lines denote

B(t;, 9.

g,

2. Foreveryt; € V'\ R?, there is a representativep(t;) = t; € R such that
BiNBj # ¢andx< < «C,
J 7

Proof: Consider terminals i’ in non-decreasing order of the raéf;itQ of the
corresponding ball$;. If terminal¢; is being examined ang; N B; = ¢, Vt; €
RY, then include; in R°. If not, then there exists; € R such thatB; N B; # ¢;
definerep(t;) = t;. Note that% < 0;—0 as the terminals are considered in order
of non-decreasing radii of the corresponding balls. [ |

The First Stage Tree.

The first stage tree is a Steiner tree on the terminak8et {r}. However, in order
to bound the cost of first stage tree we build the tree in a slightly modified way. Fo
an illustration, refer to Figure 3.4.

Let G’ be a new graph obtained when the b#llg;, U%) corresponding to every
terminalt; € R are contracted to singleton vertices. We then build a Steiner tree
Ep; in G’ with the terminal set as the shrunk nodes corresponding to terminals in
R and the root vertex. In Figure 3.4,E, is the union of solid edges and the
thick edges. Now, for every shrunk node corresponding o, UQ) we connect

each tree edge incident £8X¢;, %) to terminalt; using a shortest path; these edges
are shown as dotted lines in Figure 3.4 and are denoteBiyby Our first stage

solution is the Steiner treBy = Ey; U Ego.

Lemma 3.3.3 The cost ofF is at most% timesc(E;), the first stage cost of
the optimal connected solution.
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Proof: We know that the optimal first stage trefg; connects some vertex in the
ball B(t;, %) to the rootr for everyt; € RY, for otherwise the maximum second
stage cost 0OPT would be more thad'. Thus,Ej induces a Steiner tree on the
shrunk nodes ii&z’. We build a Steiner tree on the shrunk nodes as terminals using
the algorithm due to Robins and Zelikovsky [50]. Thus,

c(Eo) < 1.55 ¢(EY) 3.18

Now, consider edges iRy,. Consider a patly € Ey, connecting some edge
incident toB(t;, %) to ¢;. Sinceq is the shortest path between its end points, we

havec(q) < GQ Now, consider a path from terminal along ¢ until it reaches
B(t;, <€) and label the portion betweeli(t;, £) and B(t;, ) asp(q). By

29 2
(a—1)-

construction, we have(p(q)) > € 'soc(q) < L1 - e(p(q)).

For any two pathgy, ¢ € Eog,lthe pathe(q;) andp(q2) are edge-disjoint.
Clearly, if ¢, andgo are incident to distinct terminals dt°, thenp(q;) andp(qz)
are contained in disjoint balls and thus are edge-disjoing; Hndgs are incident
to the same terminal, then it is impossible théd;) N p(q2) # ¢ asEp; is a tree
on the shrunk graph. Hence, we have

Y= Yel < Y trepla) < Y el

e€FEp2 q€Eo2 g€ Eo2 ecEp1

3.19

where the last inequality is due to edge-disjointness(@f) andp(q2) for any
two pathsyi, g2 € Epa. Thus,c(Ey) = ¢(Eo1)+c(Eo2) < C(Em)-i-ﬁ'C(Em) <
L35a . ¢(Ey), where the last inequality follows from (3.18). ]

Second Stage.

The second stage solution for each scenario is quite straightforwardnider-
minalt;, E; is the shortest path from to the closest node iRj.

Lemma 3.3.4 The maximum second stage cost for any scenario is at2nost’.

Proof: We need to consider the following cases:

1. t; € RY: Since the first stage treB, connectst; to r, E; = ¢. Thus,
C(EZ) = 0.

2. t; € V''\ R By Proposition 3.3.2, there exists a representative terminal
tj € RY such thatB; N B; # ¢ ando; > o;. Thereforedist.(t;,t;) <
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‘;—C + % < 2?7—0 We know thatt; is connected to in Ey. Thus, the

closest node to; in the first stage tree is at a distance at rr?éj;@;@ Hence,
ag; - C(EZ) S 2c0 - C.

3. t; ¢ V': Then the shortest path frotnto » with respect to cost is at most
QO‘O_—C Hence, the closest node tpin the first stage tree is at a distance at

most22< ando; - ¢(E;) < 2a - C.

Theorem 3.3.5 There is a polynomial time algorithm which gives a 7.1 approxi-
mation for the robust shortest path problem.

Proof: From Lemma 3.3.3, we get thatE) < 1222 ¢(Ey). From Lemma 3.3.4,
we get that the second stage cost is at most C. Choosen = % = 1.775.
Thus, we get(Ep) < (3.55) - ¢(Eg) andmaxt_, {o; - ¢(F;)} < (3.55) - C. From
Lemma 3.3.1 we know that(Ej) + C' < 2 - OPT, whereOPT is the cost of
optimal solution to the robust shortest path instance. Together the prehiees

inequalities implyc(Ey) + max?_ {o; - e(E;)} < (7.1) - OPT |

3.4 Extensions to Hitting Versions

In this problem, we introduce generalizations of demand-robust min-cutfzort-

est path problems that are closely related to Steiner multicut and group Steaer
respectively. In a Steiner multicut instance, we are given a géaph(V, E) and

k sets of vertices{(y, X5, ..., X and our goal is to find the cheapest set of edges
S whose removaseparate®achX;, i.e. noX; lies entirely within one connected
component of V, £\ 5). If ﬂle X; # (), we call the instanceestricted In a
group Steiner tree instance, we are given a gi@ph (V, E), a rootr, andk sets

of verticesX1, X, ..., X) and our goal is to find a minimum cost set of edges
that connects at least one vertex in edch: = 1, ...,k to the rootr. We show
how approximation algorithms for these problems can be combined with our tech-
niques to yield approximation algorithms for “hitting versions” of demand-sbbu
min-cut and shortest path problems.

In the hitting version of robust min-cut (resp. shortest path), eaatesice is
specified by an inflation factar; and a set of nodes; C V' (rather than a single
node). A feasible solution is a collection of edge s, F1, . .., Ex} such that
for each scenarig, Fy U E; contains an root-cut (resp. path) for somee T;.

The goal is to minimize(Ey) + max;{o; - ¢(E;)}.
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3.4.1 Robust Hitting Cuts

Robust hitting cut i$2(log k)-hard, wheret is the number of scenarios, even when
the graph is a star. In fact, if we restrict ourselves to inputs in which thehgsa

a star, the root is the center of the star, ane- oo for all scenarios, then robust
hitting cut on these instances is exactly the hitting set problem. In contrast, we
can obtain ar® (log k) approximation for robust hitting cut on trees, anflog n -

log k) in general using results of Nagarajan and Ravi [44] in conjunction with the
following theorem.

Theorem 3.4.1If for some class of graphs there ispaapproximation for Steiner
multicut on restricted instances, then for that class of graphs there(js-a2)-
approximation for robust hitting cut. Conversely, if there ig-approximation for
robust hitting cut then there is gapproximation for Steiner multicut on restricted
instances.

Algorithm:  Leta = Z(p+ 1+ 1/p? + 6p + 1) and letC be the cost that some
optimal solution pays in the second stage. For each termimalsome group,
compute the cost of a minimum rooteut, denotedncut(t). Let 7’ := {T; :
Vt € T;, o; - mecut(t) > « - C'}. Note that there are only + 1 possibilities, as in
the robust min-cut algorithm. For each terminal 8e 7, separate at least one
terminal inT; from the root in the first stage using ampproximation algorithm
for Steiner Multicut [36, 44].
Proof of Theorem 3.4.1: We first show that a@-approximation for robust hitting
cut implies ap-approximation for Steiner multicut on restricted instances. Given
a restricted instance of Steiner multi¢at, X, X, ..., Xy) build a robust hitting
cut instance as follows: use the same graph and costs, set the todte any
element of ), X;, and create scenarid$ = X; \ r with o; = oo for eachi. Note
that solutions to this instance correspond exactly to Steiner multicuts of the same
cost. Thus robust hitting cut generalizes Steiner multicut on restricted aestan

We now show the approximate converse, thatapproximation for Steiner
multicut on restricted instances impliega+ 2)-approximation for robust hitting
cut. LetOPT be an optimal solution, and |&f; be the edge set it buys in stage one,
and letC; andC, be the amount it pays in the first and second stage, respectively.
Note we can handle eveffy ¢ 7’ while paying at most - Cs.

We prove that the first stage edgés C E[G] given by our algorithm satisfy all
scenarios ir7”, and have cost(Ey) < p(1+4 =%;)C;. Thus, the total solution cost
is at mosf(1+ %)C’l +a-Cs. Compared to the optimal cost; +Cs, we obtain
amax{a, p(1 + -2;)}-approximation. Setting = 1(p + 1+ /p? +6p + 1)
then yields the claime(p + 2) approximation ratio.
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A cutis called &7’-cutif it separates at least one terminal in edtk 7' from
the root. There exists’-cut of cost at mostl + —2;)C4, by the same argument
as in the proof of Theorem 3.1.4. Suppd3BT cuts awayt’ when scenarid;
occurs. TherOPT is also an optimal solution to the robust min-cut instance on
the same graph with terminals; | i« = 1,2,...,k} ask scenarios. Since, for
all t € T such thatl’ € 7', we haveo; - mcut(t) > « - C, we can construct
aroot{t; | i = 1,2,...,k} cut of cost at most1 + —2-)C;. Thus, the cost of
an optimal7”-cut is at most(1 + %)Cl. Now apply thep-approximation for
Steiner multicut on restricted instances. To build the Steiner multicut instance, we
use the same graph and edge costs, and create a gkoupd; U {root} for each
T; € T'. Clearly, the instance is restricted. Note that every solution to this instance
is a7 ’-cut of the same cost, and vice-versa. Thusapproximation for for Steiner
multicut on restricted instances yieldg4-cut of cost at mos2(1 + -2-)C;. =

Corollary 3.4.2 There is a polynomial timé&(logn - log k)-approximation algo-
rithm for robust hitting cut on instances with scenarios andh nodes, and an
O(log k)-approximation algorithm for robust hitting cut on trees.

3.4.2 Robust Hitting Paths

Theorem 3.4.3If there is ap-approximation for group Steiner tree then there is a
2p-approximation for robust hitting path. If there is@approximation for robust
hitting path, then there is p-approximation for group Steiner tree.

Proof: Note that robust hitting path generalizes group Steiner tree (given a GST
instance with grapld, rootr and groupsXy, X, ..., X, use the same graph and
root, make each group a scenario, andset oo for all scenarios). Thus a
p-approximation for robust hitting path immediately yieldg-approximation for
group Steiner tree.

Now suppose we have arapproximation for group Steiner tree. Lemma 3.3.1
guarantees that there exists a solut{dty, F1, ..., Ex} of cost at mosROPT
whose first stage edgeky, are a tree containing roet

The algorithm is as follows. GuesS := max;{o;c(E;)}. Note that for
each scenario the treeE; must touch one of the balls inB(t,C/o;)|t € T;},
where B(v, z) := {u|dist.(v,u) < x}. Thus we can construct group§;, :=
User, B(t, C/o;) for each scenaripand use the-approximation for group Steiner
tree on these groups to obtain a set of edfg$o buy in the first stage.

Note thatc(E{)) < pc(Ep) and any scenario has a terminat € 7; that is
within distanceC'/o; of some vertex incident on an edge of tigg We conclude
that the total cost is at mogt:(Ey) + C' < 2p - OPT. ]
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Demand-Robust Covering Problems with
Chance Constraints

Optimization models incorporating data and demand uncertainty have long been
studied in the literature due to their vast applicability in real world scenarios.
Stochastic optimization approaches optimize the expected costs over alligsena
while the robust optimization approaches optimize over the worst caserigcena
However, both approaches are plagued by the presence of unlikiisr scenar-

ios which distort the optimization goals and the resulting solution.

A natural idea to overcome this problem is to prune away the outlier scenar-
ios and solve the problem on remaining scenarios. This approachredteras
chance-constrainedptimization (see [11, 6]), has been studied in literature. A
chance-constrained model incorporates probabilistic constraints in thigamal
stochastic or robust optimization model. Thus, the problem of finding a minimum
cost solution which is feasible farfraction of the scenarios for a given reliability
p > 0, can be modeled using chance constraints. This model is best introduced
through an example: consider a one-stage shortest path problem odisgcted
graphG = (V, E) where we are required to construct a path betweentaat an
uncertain destination. Each vertexc V' occurs with probability}—l as the destina-
tion and we are required to choose a minimum cost set of eflgesich that with
probability p (wherep is given) there is a path betweetand the destination. Note
that the problem in this example reduces to finding a minimum cost réet¢8T
in G where® < p < &£,

In a chance-constrained optimization approach, the parametaptures the
risk aversion of the optimizer. Whem = 1, we return to the classical robust
model, while atp = 0, the empty solution is feasible. We extend the chance
constrained framework to robust covering problems with demand-uirtgr¢such
as considered in Dhamdhere et al. [18]) in both one-stage and twoistzgdgls
where the demand-uncertainty is either given as an explicit list of scenario
specified implicitly. (Our methods also apply directly to the stochastic versions
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defined e.g., in [49] but we leave the details out).

4.0.3 Previous Work

Chance constrained programming was introduced in Charnes and Jddper
Even with a long history, chance constraint models do not find wide applicab
ity because of the inherent difficulty in solving these problems optimally; namely,
the feasible region for a chance constrained problem depends on didyimg
uncertainty and is generally non-convex. A detailed discussion of eheo-
strained programs, and more generally, stochastic programs can lzkifo[6].
Robust optimization and chance constrained optimization are very closeigdela
(see [9, 13, 20]). Nemirovski and Shapiro [45] show how robusingpation
framework provides an approximation of chance constrained programatiiig
Chen et al. [13] propose robust optimization as a technigue to obtain =asib-
tions for chance constrained programs in [52].

For simple probability distributions, such as a uniform distribution (wherh eac
scenario occurs with the same probability), the chance-constraineteprob-
duces to a more familiar partial covering problem, where we are requiren/&s ¢
somek out of [ scenarios with a minimum cost solution. Recall that the shortest
path problem described above reduces to finding a minimum cost tree cogtainin
the rootr that spans at leagtvertices. This problem is a partial covering version
of the spanning tree problem that has been studied extensively [7, 8], 44d for
which a2-approximation is known [25]. In general, in a partial set covering prob
lem we are given a set famil¥, set of element&” and a target < |U| and the goal
is to select a minimum cost collection of sets frdnthat cover at least elements.
Partial covering versions of several combinatorial problems have dmesidered
such as vertex cover [2, 24, 41], facility locatidrrcenter [10]. However, to the
best of our knowledge, there has not been any prior work in desigappgoxi-
mation algorithms for combinatorial problems in the general chance-coredrain
framework.

4.0.4 Our Contributions

We consider chance constraints in both one-stage as well as two-shagé cov-

ering problems with demand-uncertainty where uncertainty is specified eiher
an explicit list of demand-scenarios or implicitly as a probability distribution over
the demand elements that require coverage. While it is easy to obtain bi-criteria
approximation algorithms for the chance-constrained problems that violate the
chance constraint by a small factor, we consider the problem of satisfiging
chance constraint strictly.
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1. We show that in the explicit scenario model (with more than one element
in all the scenarios), both one-stage and two-stage problems are adeast
hard to approximate as the derfssubgraph (BS) problem. ThéDense
k-Subgraph problem is conjectured to b@(n%)-hard to approximate for
somed > 0 [23].

2. For the special case when each scenario has a single element, whitethe o
stage problem directly reduces to a weighted partial covering problem, we
show that many two-stage problems (including set cover, facility location
etc) reduce to a weighted partial covering problem via a guess-amg-pru
method.

3. The two-stage shortest path problem does not reduce to a part@irgv
version but can be reduced to the weighted ST problem where the weight
function is submodular. We give an(log k)-approximation for this prob-

lem.
Explicit Scenarios
1-elt > 1elts
One stage Reduces to partial covering DkS-hard
Set Cover, Vertex Cover, Reduce to partia
Two stage | Facility Location covering DkS-hard
Shortest Path O(logk)

Table 4.1: Main results for the explicit scenario uncertainty model

4. We also consider the model of uncertainty where scenarios (possilely-a
ponential number) are specified implicitly by a probability distribution. In
particular, we consider a model where each demand occurs with a given
probability independently of others referred from hereon agtthependent-
scenarioamodel. While it is not even clear if the two-stage problem in the
independent-scenarios model is in NP, we show that the one-stagemroble
in this model can be reduced to a weighted partial covering problem. We
also extend these results for the one-stage problem where the demand unc
tainty is specified by a general probability distribution such thattiraula-
tive probabilityof any demand-scenario can be computed efficiently and is
strictly-monotonevith respect to set inclusion.

Outline. The rest of the chapter is organized as follows. In Section 4.1, wergrese
the hardness of approximation of problems with more than one element pieitexp
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scenario. In Section 4.3, we consider the explicit scenario model with ordyeb
ement per scenario and present the reduction of the chance-coedivansions of
many robust covering problems to weighted partial covering problemsllyima
Section 4.4, we consider implicit models of uncertainty and show that thetage-s
problems in the independent-scenario model reduce to weighted parteirapv
problems and also discuss extensions to the general distribution model.

4.1 Hardness of Approximation

We show that the one-stage chance constrained set cover problemexpiit
scenario model is at least as hard to approximat®esse k-Subgraph even
when every scenario has only two elements.
Problem Definition A one stage chance constrained set covering problem in the
explicit scenario modeExplicit 1-CCSCP) is as follows: we are given a universe
of elementd/, a family of subsets, a cost functiort: on the subsets if, a list of
[ scenarios where scenarits specified by a subsét C U and its probabilityp;,
and a reliability factof < p < 1. The problem is to find a minimum cost partial
set cover for elements in a subset of scenariosI3aych thad ;- p; > p.

We prove the following theorem.

Theorem 4.1.1 Explicit 1-CCSCP is at least as hard to approximate &ense
k-Subgraph even when each scenario has only two elements.

Proof: InaDense k-Subgraph instanceZ, we are given a grap = (V, E)) and
a numbert, and the objective is to find a minimum size subset of vertices V'
that induces at leagtedges, i.6E[V'] > k.

The reduction is as follows: we construct an instaficef Explicit 1-CCSCP.
The element setV/ = {v;|v; € V}. For each vertex; € V, we have a set
S; = {v;} in the set familyF. For each edge = (v;,v;) € E, we have a scenario
containing two elementgv;, v;}. Now, in the instanc€’ of Explicit 1-CCSCP
we are required to find a minimum cardinality subSedf sets fromF such that
the sets inS satisfy at leask scenarios. Note that a scenar{e;, v;} is satisfied
by S if both v; andv; are contained in some setssh

Suppose there is a solutigh for instancel’. ConsiderV’ = {v;|S; € S}.
Consider any scenaria;, v; } that is satisfied bys. Note that(v;, v;) € E(G) and
v;,v; € V'. Thus,(v;, v;) is an induced edge i’ which implies|E[V']| > k.
Thus,OPT(I) < OPT(I').

Conversely, consider a solutidff of I that induces at leagtedges. Consider
S = {Silv; € V'}. ltis easy to note that for each edge,v;) € E[V’], the
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corresponding scenario is satisfied by the soluoThus,OPT(I") < OPT(I).
|

The two-stage covering problems in the explicit scenario model can also be
shown to be at least as hard to approximatBesse k-Subgraph.
Two-stage Chance Constrained Set Covering Problentplicit 2-CCSCP) We
are given a set of element$, a family of subsetsS, cost for each set i, a
reliability level p and a list of/ future scenarios. Each scenaiiis specified by a
subsetS; C U, an inflation factor; and probabilityp;. In second stage in scenario
i, each seb € S becomes costlier by a factet. The goal is to select afraction
of the scenariog and a first stage solutiafiy C S. Also, for each scenarioe 7,
find a recourse solutiofi; C S such thatS; US; is a feasible set cover fdf;. The
goal is to minimize

S - oSt
o(87) + maxo; - (S})
If o, = ccforalli =1,...,[, the two-stage problem reduces to a one-stage

problem and the hardness of approximation follows from Theorem 4.hére¥
fore, we have the following theorem.

Theorem 4.1.2 Explicit 2-CCSCP is at least as hard to approximate &ense
k-Subgraph even when each scenario has only two elements.

4.2 Bicriteria Results

We show that if the chance-constraint can be violated by a constant, faetaan
obtain anO(«)-approximation when an-approximation is known for the robust
problem without the chance-constraints. For the sake of expositionpnsder

the Explicit 1-CCSCP problem but essentially the same argument extends to the
two-stage problems.

Let there bd scenariosSy, . .., S; with probabilitiesp, . .., p; respectively.
The problem is to satisfy a subset of scenarios whose probabilities sum rtelith
ability factor p.

To formulate this as an integer prograiRl), let z; be a binary variable that
denotes whether scenaligs covered or not.

min ) g.sCsTs

Y oSecsTs = 2z Yee SiVi=1,...,1
Zi:lpizi > p

zs € {0,1} VSes

o€ {01} Vi=1,...,1
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If the deterministic set covering problem haswiapproximation, then we can
give an<-approximation for any constaat> 0 to the chance constrained problem
that violates the chance-constraint and covers only a £— fraction of the
scenarios.

Theorem 4.2.1 Suppose there is am-approximation to the deterministic set cov-
ering problem. Then for th&xplicit 1-CCSCP with reliability p, there is an
2-approximation for any constat> 0 that coversy’ = £= scenarios.

Proof: Assume wlog that each scenario has probabjity- %; otherwise we

can consider multiple copies of the same scenario. Now, consider the optimal
solution (say(z, z)) of the LP relaxation ofP1. We knowzﬁz1 %zi > p Let

H = {i|z; > €} andh = |H|. Therefore,

h+({—h)-e>lp

S l(p—¢)
1—¢
Consider the solutiori; = %j Clearlyz is a fractional solution that is feasible
for all scenarios inH and can be rounded using the deterministiapproxima-
tion to an integer solution. Furthermore, the total probability of scenariésis

£=<. Therefore, we obtain afi-approximate solution t&xplicit 1-CCSCP that

violates the chance constraint and covérs- — scenarios. |

4.3 Explicit Scenario Models

Note that even one stage versions of covering problems with more than-one e
ement per scenario are hard. For instance, we have the following cgrolla
Theorem4.1.1.

Corollary 4.3.1 The one-stage (and hence, two-stage) chance-constrained ver-
sions of the following covering problems in the explicit scenario modeleHe=aat

as hard to approximate d3ense k-Subgraph even when each scenario has only
two elements.

1. Vertex Cover (scenario is described by a subset of edges)

2. Facility Location (scenario is described by a subset of demand points)
3. K-median (scenario is described by a subset of demand points)
4

. K-center (scenario is described by a subset of demand points)
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5. Steiner Tree (scenario is described by a subset of vertices)

Hence in this section, we consider the case when each scenario htlg erac
element.

One-stage versions.The one stage versions of the above problems with exactly
one element per scenario are directly reducible to the respective parval-c
ing variants. These variants have been well approximated in the literature (2
approximation for partial vertex cover [41], 3-approximation for parfiaility
location, partialk-center [10], constant-factor for partigdkmedian [12], and 2-
approximation for partial shortest paths that reduck-MST [25]), hence we fo-

cus on the two-stage version henceforth.

We first give a logarithmic approximation for the two-stage chance-constta
robust version for the general set covering problem. Then, we slogwthe two
stage versions of the above problems (in particular, Vertex Cover, Fdailigtion
and Steiner tree) with one element per scenario can be approximated.

4.3.1 Two-stage Chance-Constrained Set Cover

Theorem 4.3.2 Consider theExplicit 2-CCSCP where you are given a family
m subsetsS, ..., S, with cost functionc, and ! scenarios such that scenario
i contains element;, has inflation factors; and occurs with probability; and
required reliability of the solution i®. This problem can be reduced to a weighted
partial covering solution and thus, admits &r(log(pl))-approximation.

Proof: Fix an optimum solution and suppose the worst case second stage cost is
B in this optimum solution. There are onlychoices forB; one corresponding to

the second-stage minimum cost solution for each of tbeenarios. Let; denote

the cost of the minimum-cost set that contains?” = {i € [l]|o; - ¢; < B}.

We can cover all scenarios ifi in the second-stage with cost at mdst Let

T = Y .erPi- We need to cover a subset of scenarios fi@m 7" whose total
probability is at leasp — 7 in the first stage. Therefore, for a particular choice of

B the problem reduces to a weighted partial set covering problem which aamits
O(log k)-approximation if you require to covérelements. [

The reduction in the above theorem applies to the two-stage covering m®ble
that satisfy the following propertytf a scenarioi that is covered in an optimal
solution can not be independently covered in the second-stage within tiseé wo
case second-stage cost, then it must be completely covered in th&afjest s
Two-stage Chance-Constrained Vertex CoveiThis problem when each scenario
consists of a single edge satisfies the above property. Thus, it canlieedeto
a weighted partial vertex cover problem, which implies a 2-approximation using
the results of [41]. Corresponding versions of the facility location protded the
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shortest path problem do not satisfy this property and thus, do notlgireduce
to a partial covering problem.

4.3.2 Two-Stage Chance-Constrained Facility Locatio@-CCFLP

Problem Definition Given a metriqV, d), a set of potential facilitie and a set
of [ scenarios where scenatics specified by a demand point € V and inflation
factor o; and occurs with probability; and required reliability i. Opening a
facility 7 € F in the first stage costs; while opening it in the second stage in
scenarioi costso; - c;. The goal is to select afraction of the scenarios (s&)
and open a set of facilities; to open in the first stage and for each of the selected
scenarioi, connect to one of the open facilities i} or open a new facility and
connect to it in the second stage if that scenario materializesz Lké a binary
variable denoting whether € F is opened in the first stage or not and fetr)
denote the minimum second-stage cost in scenagiven the first stage solution
is z. The objective is to minimize

Z ¢+ max fi(x)

JEF

We reduce the above problem to a weighted partial covering problem asd th
give a3-approximation foR2-CCFLP.

For the sake of simplicity, we assume that all scenarios occur with the same
probabilityp = %; essentially the same algorithm and analysis extend to the general
problem.

Theorem 4.3.3 There is a3-approximation for the2-CCFLP with [ scenarios
where each scenario has only one element and the required reliabibtybi§.

Proof: Fix an optimum solution and suppose the first stage facility opening cost
is C] and the worst case second stage costjisn this optimum solution. There
are only2[ - |F| choices forC;. Let f;(x) denote the minimum-cost solution for
scenarioi when the first stage solutionis LetT = {i € [l]|o; - fi(0) < C5}.
Note that computing/;(0) is easy: consider the minimum cost of opening (in the
second stage) and connectinngo the open facility. We can cover all scenarios in
T in the second-stage with cost at mast Therefore, the first stage problem is to
open a set of facilities such that for at ledst= k — |T'| scenarios fronil] \ 7',
there is an open facility within a distanee- C5 from the demand-point for some
approximation factorr > 0. Note that there is a set of facilities of casf such
that for at least’ scenarios ifjl] \ 7', the demand-point is within a distan€g of
some open facility.
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The first stage problem thus reduces to a version of the partiahter problem
considered in Charikar et al. [10] who give3aapproximation for the problem.
Therefore, we can find a set of facilities of cost at mo$tsuch that at least’
demand-scenarios are within a distaiB¢g of some open facility which gives a
3-approximation foR-CCFLP. ]

4.3.3 Two-Stage Chance-Constrained Shortest PatB{CCSPP)

Problem Definition Given a graplG = (V, E') with edge costs, a root vertex:, a
reliability level p and a list ofl scenarios. Each scena¥its specified by a terminal
t;, an inflation factorr; and a probabilityp;. The goal is to select a fraction of
the scenarios, buy some eddgés in the first stage and for each selected scenario
i, augment the first stage solution in the recourse stage with ddgésought at
an inflated cost) such thdt,; U E! contains a path from to #;. The objective
minimizes the worst case cost over all scenarios.

For the sake of simplicity, we consider the case of uniform probabilities and
a uniform inflation factor across all scenarios. Thus, the reliability leviehns-
lates to covering: = Ip out of [ terminals. However, it is not difficult to extend
this algorithm and the analysis to general problem with different probabititiels
inflation factors for different scenarios.

Using the structural theorem in Dhamdhere et al. [18], we obtain the folgpwin
lemma,

Lemma 4.3.4 For the uniform robus-CCSPP that requires to covek out of/
terminals, there exists a first stage solutibin and a set/ of k scenarios such that
E; is atree containing and can be augmented B} to obtain a feasible solution
for scenarios i/ andc(E)+max;es oc(EL) < 20PT, whereOPTis the optimal
solution for robus2-CCSPP.

Fix an optimal solution to the robugtCCSPP such that the first stage solution
is connected te, sayO = (O, 0}, ...,OL) (some of the recourse edge sets may
be empty). From Lemma 4.3.4, we know th@O () + max; oc(0O;.) < 20PT.

Let oC be the maximum second stage cost for any scenaiia iMe can assume
thatoC is known (as there are onlyi choices ofC’). Thus, the tre@) is within a
distanceC' from at least of thel terminals(say;, . . ., t}).

Algorithm Consider ballB; of radius2C around terminak;. We select a

maximal independent s&ton ballsBy, . .., B; as follows:

1. InitializeZ «— ¢, T « {t1,..., 4}

2. while (7 # ¢), do
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Edges of Oy
== Edges added to T
Terminal in 7*

Terminal in Z

Figure 4.1: Constructing-MST of costO(OPT) from O under our weight func-
tion

(a) Consider the terminal, € 7 such that the number of terminals in
T within a distance of at mostC' from t; is maximum (resolve ties
arbitrarily).

(b) Let N(t;)=set of terminals irZ” that are within distancéC from ¢;
(including itself) and letw(t;) = | N (;)].

(c) Addt; to Z and remove all terminals that are within distadc¢e of ¢;
from 7.

Now, construct a minimum cost spanning trég, containingr that spans ter-
minals of weight at least. Note that only terminals in the independent Bdtave
a non-zero weight.

Lemma 4.3.5 ¢(Ts) = O(log k)c(Oy)

Proof: Suppos€ has terminalg, ..., t, (listed in the order they were added to
7). Note thatw(t;) > w(tz) > ... > w(t,). Let B(¢) denote the ball of radius
2C around terminat; and7™ = {t],...,t;}. Recall that] is a terminal within
distance of at most’ from Oy; therefore,B(t}) intersects withO;. For the sake
of argument, whenever an edgez Oy crosses the balB(t}) for anyt; € T+,
we introduce a new vertex at the point of intersection and edgsubdivided into
two. Itis easy to note that: . p,-)o, c(e) > C foranyt? € 7.

We will now construct a tregé’ from O that containg and spans terminals in
7 of weight at least. Initialize T < Oy.
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Consider the terminalf € 7* such that the balB(t}) intersects the ball
Bj,j = 1,...,q of highest weight. LetV(¢}) denote the terminals if * that
intersect withB(t) (including itself) and leta(tf) = |N(tf)|. We claim that
n(ty) < w(t;). Atthe timet; was added td, ¢; was also a candidate. Fur-
thermore, all the terminals iV (¢}) were also candidates; otherwise one of them
would intersect withéj,j = 1,...,q of higher weight contradicting our choice
of tf. Since,t; was chosen it¥, w(t;) > n(t;). Thus, the tred’ can be ex-
tended to reach; by charging to the cost of edgesdr, N B(t}) since, we know
> cen(no, cle) = C.

In doing so, we have updated the weightfunder our weight function by
w(t;) > n(ty). We updatel ™™ «— 7\ (N (t7)UN(t;)) and continue. Note that by
updating the set terminals* by removingt’ and all other terminals itV (¢7) we
ensure that we do not charge to the same co€tRI (O ) in some other iteration.

Note that we might have removed(t;) + n(t}) terminals fromZ* and added
onlyw(t;) > 1/2(w(t; +n(t})) weightinT'. Thus, we would obtain a tre€ that
has cosD(c(Oy)) and spans terminals of weight at le&gR.

We repeat this procedure on the remaining terminal®®Tthat are not cov-
ered inT. This implies that aftefog & rounds, we will obtain a tre@& spanning
terminals of cumulative weight at leasandc(7) = O(log k)c(Oy).

Thus, there exists a trée containingr that spans a subset of terminal<Zin=
{t1,...,t,} whose cumulative weight is at ledsandc(T") = O(logk)c(Oy). =

Theorem 4.3.6 There is anO(log k)-approximation to robus2-CCSPP.

Proof: LetT4 be the first stage tree returned by the algorithm. It is easy to note
that there are at leastterminals fromtq, . .., ¢; that are within a distance aiC'
fromT4. Lemma 4.3.5 implies tha{7s) = O(log k)c(Oy). Thus, the cost of the
solution returned by our algorithm {®(log k)c(Oy) + 40C') = O(log k)OPT. m

We would like to remark here that finding an approximate first stage tree that
reaches within a distandg to % of the n terminals isQ(log n)-hard by a simple
reduction from a set cover problem. In the above algorithm, we fin@ @og n)-
approximation to the first stage tree. However, we do not obey the distaoce
of C strictly and find a tree that is within a distanceldf from at least: terminals.
Obtaining a constant approximation for roo@s€CSPP is an interesting open
problem.

4.4 Implicit Scenario Models

In this section, we consider chance-constrained covering problem withcimp
scenarios. we restrict our discussion to only one stage problems sinocetitagen
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clear whether the two-stage versions are in NP (the set of scenaridgisgttbe
chance constraint may not be described succinctly).

For the one stage problems, we consideingiependent scenariasodel where
each element occurs with a given probability independent of othersxaeddeto
a class of general distributions.

4.4.1 Independent Scenarios Model: Reduction to Partial Weihted
Covering Problem

Consider the one-stage set covering problem where we are givefaandg F and
a universe of elemenfs. The demand-uncertainty is specified by an independent
scenarios model where each elememccurs independently with probabilipy.
(we refer it adndependent 1-CCSCP). The probabilityp( E) of any subseF is
Mecgpe. Also,

> p(E) =Tgp(l —pe)

E'CE

Theorem 4.4.1 Independent 1-CCSCP can be reduced to a weighted partial set
covering problem.

Proof: Letz. be a0 — 1 variable that denotes whethers covered or not. Also,
let x5 denote whether sé&t € F is picked in the solution or not. Then, the proba-
bilistic constraint can be written as,

I.,—o(1 —pe) > p

Taking logarithms on both sides, we get

> —0log(l —pe) > logp
= ZGEU(]‘ - Ze) 10g(1 *pe) > 1ng
= D ey —Zelog(l —pe) = log m
Foreach elemente U, letw, = —log(1—pc). Also, letW = log —f—-.

Note thatw, > 0, for alle € U. Now, the chance constrained set covering problem
can be reduced to a weighted partial set covering problem where vedigleiment
e is w, and the goal is to select a minimum-cost family of subsets ffbrhat
cover elements of weight at leddt. [ |
For the general set-covering problem, the greedy algorithm givex kg 11)-
approximation wher&l’ is the required weight target computed in the proof above.
We also present an LP-based iterative rounding algorithm for this prothiat
gives anf-approximation wher¢ is the maximum number of sets that an element
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occurs in. We can formulate the weighted partial covering problem asltbeiiog
IP.

min ) g rCsxg

ZS:@ES TS 2 Ze Vee U
ZeEU weze = W
TS € {O, 1} vSesS
% € {0,1} YeeU

Let OPTdenote the cost of an optimal solution. We remove all sets that cost
more thanOPTfrom the instance (we can try different values@PT). In each
iteration, the iterative rounding method either selects &'tbtat covers some ele-
mente in the solution or selects an elemerfor which the corresponding covering
constraint can be removed. The algorithm is as follows:

1. Initialize R «— ¢, m «— |F|, n « |U| andi < 0.

2. In iterationi, let (Z*, 2*) be a basic optimal solution dfPi (LP-relaxation
of problem on ground séf and set familyF and weight requirement’)

(@) If there exists: € U, such that! = 0, then updaté/ < U \ {e} and
go to step 3.

(b) If there exists € U, such thaﬁg = 1, then there must be a stc F
containinge such that%g > % Add the sefS to the solutioriR. Update
F = F\{S}L W W =% convweandU « U \ S and go to
step 3.

(c) If none of the above two conditions hold, then at most one&SsetF
has0 < &% < 1. Z" is integral for all other sets. Adfl to the solution
and for all other set§’, addS’ to the solution iffz%, = 1. Go to step 4

3. i — i+ 1. LPiis the LP-relaxation of the modified problefd, 7, W).

4. Output sets irR.

To prove that the above algorithm is well defined, we need to show thatim ea
iteration at least one of the conditions in steps 2a, 2b and 2c holds.

Lemma 4.4.2 Let (7, 2*) be a basic optimal solution df Pi in some iteration.
Then, either) there exists an elemeatsuch thatz, = 0 or Z. = 1, or ii) at most
one setS has0 < Tg < 1.
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Proof: The rank of the constraint matrix df Pi is at mostn + 1, wheren
is the number of elements il in iterationi. Also, the number of variables in
the relaxationZ Pi is m + n, wherem is the number of sets i§ in iterationi.
Therefore, number of basic variables in the solutih %) is at mostn + 1. If
there is nce € U such that?’ = 0 or 1, then allz,, e € U are basic. Therefore,
at most one variablefg corresponding to sets € S is basic which implies that at
most one set has < &’y < 1. n
Now, we can prove that the iterative rounding algorithm igfeapproximation
to thelndependent 1-CCSCP, wheref is the maximum number of sets that any
element belongs to.

Theorem 4.4.3 The iterative rounding algorithm is aftapproximation fodlnde-
pendent 1-CCSCP.

Proof: In any iteratior of the algorithm, we add a sétto our set cover solution:

1. Since each element occurs in at mfsets, at least one s€tcontaining
e must havery > . The cost ofS in LPiis cs - &g and we pay at most a
factor f times that cost.

1. Instep 2b, if we find an elemente U suchthat} = 1. Then,Y s .cg T >

2. In step 2c, we add at most one fractional set in our solution. Since, all
sets have cost at moSPT, we obtain a solution to the residual problem of
iteration: that costs at moSOPT.

Sincef > 2 (wlog), the iterative rounding algorithm gives @grapproximation.m

The following corollary is immediate for the one-stage vertex cover problem
and the spanning tree problem in the independent scenarios modeldoyngthe
problems to the corresponding weighted partial covering versions.
Independent-Chance-Constrained Vertex Coverlodependent 1-CCVCP).

We are given a grap&d = (V, E') with costs on vertices and a reliability level
p.. Each edge occurs with probability., independently of others. The objective
is to find a minimum cost vertex covér such that it covers fraction of the
scenarios (a scenario corresponds to a realization of the edges).
Independent-Chance-Constrained Shortest Pathiidependent 1-CCSPP).

We are given a graply = (V, E) with costs on edges, a root vertexand
a reliability level p. Each vertexv occurs with probabilityp,,, independently of
others. The objective is to find a minimum cost tfleeontaining the root such
that for p fraction of the scenarios there is a patl/idrom the root to each vertex
in the scenario.

Corollary 4.4.4 We obtain the following approximation guarantees lfwdepen-
dent 1-CCVCP andIndependent 1-CCSPP.
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1. There is @-approximation foindependent 1-CCVCP.
2. There is &-approximation foindependent 1-CCSPP.

For the vertex cover problenf, = 2; therefore, we obtain a-approximation
for Independent 1-CCVCP as a direct corollary to Theorem 4.4.3. From Theo-
rem 4.4.1 we know that thedependent 1-CCSPP reduces to a weightddMST
problem. Chudak et al. [14] give Lagrangian relaxation basedproximation for
the unweighted:-MST problem that can be adapted to obtaif-approximation
for the weighted version. This gives the result isependent 1-CCSPP.

4.4.2 General Distribution Model

We consider an implicit model where scenarios come from a general digiribu
such that thecumulative probabilityof every demand-scenario can be computed
efficiently and satisfiestrict-monotonicitywith respect to set inclusion. We show
that a greedy algorithm gives a logarithmic approximation for the one-stige s
cover problem in this model.

In the one-stage set cover problem in this model, we are given a set family
F, a universe of elementd and a reliability levelp. The demand-uncertainty is
specified by a probability distributioR : 2V — [0, 1] (possibly a black-box) such
that any subsef’ C U occurs with probabilityP(E). We further assume that
satisfies the following properties.

1. (Efficiency) Cumulative probability?(E) = " - P(E’) can be com-
puted efficiently for any subsét C U.

2. (Strict-Monotonicity ) For anyEy, E; C U, By C Ey = F(Ey) < F(E3).

We obtain a logarithmic approximation for the set cover problem in this model
using a greedy algorithm described below. D&T denote the cost of an optimal
solution. We prune away all sets € F such thatcg > OPT. Clearly, the
modified instance is feasible. Also, 16},,, = argmaxXP(S)|S € F}. SinceP
is monotonep,,a. = P(Smaz) > 0. The algorithm is as follows:

1. Initializei «— 1, Ey < Spae andC «— {Spaz }-
2. While (F(E;) < p)

(@) Find aseft5 € F\ C that minimize F(Eiug)s_F(Ei).
(b) UpdateF;,, «— FE;USandC «— CU S.
(c) Updatei < i + 1.
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By a standard averaging argument, we obtain the following theorem.

Theorem 4.4.5 The greedy algorithm gives an( ) approximation for the
one-stage set cover problem where uncertainty |s glven by a probakiginybdi-
tion (possibly a black-box) such that the cumulative probabfitgf any demand-
scenario can be computed efficiently.

Proof: In the greedy step, we can find a sef; such thatm <
OPT
—F () Therefore,

p— F(E)

F(E;US;) 1
< OPT/ ——dx
o=F(E) P — F(E;)

F(EUS:)
< OPT/ dx
z=F(E;) P—Z

Let the number of steps in the greedy algorithmkb&Ve know that due to the
pruning stepes, < OPT whereS, is set added in thé'" step. The total cost of
the sets added in the firgt — 1) steps can be bounded as:

k—1 F(E;US;) 1
Ses < ZOPT / da
i=1 =F(E;) P T
p 1
< OPT/ —dx
T=Pmaz €
< OPTIog( P )
pmax
This proves the required approximation. [ |

56



Chance Constrained Knapsack Problem

We consider the following chance constrained knapsack problem: giitems, a
knapsack sizé3 and a reliability leveD < p < 1. Item+ has a deterministic profit

p; and sizeS; which is random from a known distribution and independent of the
sizes of other items. The goal is to select a sulSset items that maximizes our
profit such thatPr(} ;.5 Si < B) > p.

This problem is related to the stochastic knapsack problem consideredin De
et al. [16] where the authors consider the problem of finding an optimalyp@r
ordering) to select the items that maximizes the profit while satisfying the knap-
sack constraint. The key difference with our model is the following. In thdeho
in [16], the size of an item is instantiated when selected and the algorithm stops
whenever we select an item that fills up the knapsack. On the other hand, w
consider the problem of selecting a subset of elements that have a loabpiiyb
of exceeding the knapsack size. The latter model is more appropriatelicaapp
tions like project selection wherein we are required to decide today whigagts
should we invest in. The total investment in a project is known only during the
course of the project. Thus, the problem is to decide on a subset of{zrajhich
have a low probability of exceeding our budget.

Normally distributed SizesWe consider the case when each itelras a normally
distributed size with mean; and standard deviatiom; independent of the other
items. Letx; denote whether itemi has been selected or not. Then the stochastic
knapsack problem can be formulated as follows:

maXij . SC]'
j=1
P(Y_Sjzj<B) > p
J

z; € {0,1},Vi=1,...,n
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5.1 Second Order Conic and Parametric LP Formu-
lations

When item sizes are normally distributed, we are able to rewrite the probabilistic
constraint as a second-order cone constraint.

2555w — a5wj) _ B — 35055
2.2 2.2
25\ 225955 2. 055

Pr()_ Sjz; < B) = Pr( )

S (Sizi—aiz) . .
Note that the random variabkei~*%=%%) is a standard normal variable with

J i%5%;
mean0 and standard deviatioh Let us denote this by. Also, let¢ denote the
cumulative distribution function of the standard normal variate. Therefbe

probabilistic constraint can be rewritten as

B—-> .ajx;
Pr(Zgin 2> p
V25955
B—->ax;
= —=L 2 >47(p)

2.2
\/ 2. 055

where,¢~1(p) is positive ifp > 0.5. Thus, the chance-constraint can be sim-

plified as,
¢~ (p) [D o%at+ Y aj; <B
J J

The reformulation of the chance constrained knapsack problem with Hgrma
distributed item sizes is as follows:

n
j=1

o 1(p) ZO'?(E?"‘ZCijj < B
\ j
z; € {0,1},Vi=1,...,n

The relaxation (where integrality ary, j = 1,...,nisrelaxed td) < z; <1)
is a second order cone program and can be solved in polynomial time vdpwhee

58



5.1. SECOND ORDER CONIC AND PARAMETRIC LP FORMULATIONS

integrality gap of the conic relaxation §¥(,/n). Consider the following instance:
pj =0 =1l,a; = ﬁw =1,...,n,B = 3,p = 0.95. Any integral solution
can have at most two items; therefore, the integral profit is at mo$Vhereas,
consider the fractional solution; = ﬁ Then,

Therefore, the fractional solution is feasible which shows that the iriggra
gap of the conic formulation i€(y/n).
Parametric LP Reformulation. We reformulate the second order conic constraint
(5.3) as a parametric LP and obtain a fully polynomial time approximation scheme
for the chance constrained knapsack problem.

Suppose we know that the sum of mean sizes of the items selected in an optimal
solution isp*. Then, the conic constraint (5.3) can be expressed as,

Yoajz; < ot
j
— 2 *

67\ O o) < (B-ph)?

J
Sincex? = x; for z; € {0, 1}, we can simplify constraint (5.5) as

@ ') ojr) < (B—u)?

j

Therefore, we can formulate the chance constrained knapsack iprakléhe
following 2-dimensional knapsack problem wherés the parameter correspond-
ing to the total mean size of the selected items.

n
aAX DT j
J=1

n
Yo arp < p
j=1

o7 )Y o2z < (B-p)
j=1

m
~
JO

—_
—

Lj
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5.2 A (1+ ¢)-approximation Algorithm

We present a full polynomial time approximation scheme for the chanceraorexd
knapsack problem using the paramefidimensional knapsack reformulation de-
scribed above. We consider powers(dft ¢) i.e. (1 +¢)/,j =0,... Jlog( 1o B
for some constant > 0 as different choices of the paramejer Therefore, the
number of different choices gf is O(@) which is polynomial in the input size.

We also guess the value of optimal préi® T by considering powers @fl +¢).
Let P = 77 pj; we considerO(2%) different choices oOPT. At most:
items can have profit greater tha®PT. Therefore, for each guess 6T =
(14 €)7 we consider all subsets of size at mésif the items that have size more
thanecOPT to include in the solution. For each gue3of OPT and each choice
of subset of items of size more tha@PT, we solve a subprobleii(S;, Sz, O).
I1(S1, S2,0). We are given sets of items;, Sy C [n] such that each item if;
has profit at most - O and each item irb5 has profit at least - O. Furthermore,
all items in.S, are included in our final solution. Our goal is to choose a subset
of items fromS; that together with items ¥, maximize the total profit while
satisfying the chance-constraint 5.1.

In order to solve the subproblef(S;, S, O), we formulate a further sub-
problemII(Sy, Sa, O, ) where the total mean size of all items selected fri&m
is at mostu. Therefore, we can formulatd(S;, S2, O, 1) as the following2-
dimensional knapsack problem.

max Z Djx; + Z Dj

JESL JES2
Z ajry < H
JES1
_ 2 _ 2
o7 ) (D o) < B-p-d m)?-o"'®) Y. (5.9
JES1 JES2 JES2
T; € {0, 1}

The algorithmA for the chance-constrained knapsack problem and the algo-
rithm A(II) for the subproblenI(.S;, Sz, O) are described in Figures 5.2 and 5.2
respectively.

In the following lemma, we show that we can find a good integral solution to
the problemiI(Sy, Se, O, u).

Lemma 5.2.1 Consider the problenil (.S, S2, O, 1) such thatp; < e - O for all
j € Sy. If P*is the optimal profit fodI(S1, S2, O, 1), then there is a polynomial
time algorithm to find a feasible set of items whose profit is at |e8st— 2¢ - O).
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Algorithm A for Chance-constrained Knapsack Problem
Givenn items where iteny has profitp; and a normally distributed size with
meana; and standard deviation;, knapsack sizé3, reliability level p and a
constant > 0. Letp,, = mincp, pj, P = Zje[n] Dj-

Initialize Ny = [log; pm|, No = [log, P|, x4 =0,P4 < 0.
1. Fort = Ny,..., No,
(@) LetO = (1 + €)' and letS. = {j € [n]|p; > €- O}.

(b) Foreach se$ C S. such thats| < 1,

i. SolveII([n]\ S, S,0) and letzs denote the integral solution
returned byA(IT).

i. If Py <plzg,then

Py — plag

2. Return the solutiom 4.

Figure 5.1: Algorithm for Chance Constrained Knapsack Problem

Proof: Consider the-dimensional knapsack formulation Bf(S;, S2, O, 1) and
consider the basic optimal solutigrof the LP relaxation. Since there are only two
constraints other than the bound constraints, at Ig&st — 2) bound constraints
must be tight forz. Therefore, at leagtS;| — 2) variables out of S| variables
are integral in the basic optimal solution. Lgt j» € S such thatz; ,z;, are
fractional. We know thap; < e- O for all ;7 € S;. Consider the following
solution,

o= i‘J jeSluj#jth
J 0 otherwise

Clearly, the solutiort: is feasible since we only rounded down. Also,

iji'j > iji'j —2e- 0.

JEST JEST

Therefore, we obtain anintegral solutiosuchthad ¢, pj;+>_cs, Pj >

P*—2¢e- 0. _l

In the following lemma we show that for an appropriately chosen value of
andyu and subsets’, So C [n], the problendI(S, Sa, O, u) has optimal profit at
least9PT.
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Algorithm A(II) for I1(S1, S2, O)

Let pimin = minj€S1 Hj-
Initialize N; = |logy . ftmin], Nu = [logy . Bl,zs =0, Ps < 0.

1. Fort =Ny, ..., Ny,

—

(@) Letu = (1 + €)' and letZ(u) be a basic optimal solution fg
H<S17 527 Omu’)
(b) Using Lemma 5.2.1 find an integral solutify) such that

> piip); =Y pi#(p);—2¢- 0
j=1 j=1

(c) If P, < Zjesl pi(p); + ZjGSQ pj, then

x5 —  E(p)
Py— 3 ics Pit()j + 2 jes, P

2. Return the solution,.

Figure 5.2: Algorithm folI(.S;, Sa, O)

Lemma 5.2.2 Let S* be the set of items selected by an optimal solution and let
OPT = ", ¢« pi- Considerl such that(1 + €)'~} < OPT < (1 +¢).. Let
O = (1+¢)landletS, = {i € [n]|p; > €-O},S1 = [n]\ S¢, S2 = SN S*. Then

the optimal profit for the problerfi(S;, S, O) is at least9%T.

Proof: Letp™ =73 g i1 = D jcg,nss K V2 = X jes, Ky @nd letk be such
that(1 4 ¢)*~1 < < (1+¢€)*. LetB = (1 +¢)*~! and we consider the problem
I1(Sy, S2, O, B). Consider the following fractional solutiohfor I1(.S, Se, O, 5):

1 «
J 0 otherwise

We show that is a feasible fractional solution for tiedimensional knapsack
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formulation ofTI(Sy, So, O, (1 + €)¥~1). Consider inequalities (5.8),

~ 1
Z HiLj = Z Hi- g
i€S1 JES1INS*
V1

1+e
< g 5.12

o o
[EY [N
- o

Therefore,z satisfies inequality (5.8). L&t = ¢~!(p). Consider inequality
(5.9),

1
2 25V _ g2 2
6 (E 0;%5) = 07 g 0j1+€) 5.13

JEST JES1INS*

<(B — W) =07 Yjes, "J2>

< 5.14
1+4+¢€
((B =11 =) =02 (yes,09))
- 1+4+e€
((B —B—12)? =6 (Zjcs, U?))
= 1+e¢
< (B=B-wm)?-0-(>_ o)) 5.17

JES2
Here inequality (5.14) follows aS* = (S1 N S*) U Sy is an optimal solution and
thus, satisfies
(o) < (B-p)
jes*
and inequality (5.16) follows a8 < v4. This implies that: satisfies inequality

(5.9) as well and thus, is a feasible solutionifiiiS; , S2, O, 3). The profit achieved
by the fractional solutior is

SonEit Y op = Y o> 5.18

2

¢ (p)

JEST JESs JESINS* JES2
S > iesing=Pi T 2 jes, Pi 519
1+e€ :
= OPT 5.20
1+e€
where the last equality follows becauSé = (S; N S*) U Sy. Therefore, the
optimal value for the probleffi(S;, S», O) is at least3-T. m
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We now show that for any > 0, the algorithmA gives a(1—3¢)-approximation

=

™

for the chance-constrained knapsack problem in running @(t-).

Theorem 5.2.3 Givene > 0, there is a polynomial time algorithm that give$la-
3e)-approximation for the chance constrained knapsack problem. Furtbes, the
running time ofA is

€2

o (10g (B/11m) -1og (P/pm) - ni> |

whereP =31 Dj; Pm = Mije(n) Pj, tn = Milje [y ;.

Proof: LetOPT denote an optimal solution and I8t be the set of items selected
in OPT. Consider such thaf1 + ¢)'~! < OPT < (1 +¢)! and letO = (1 + ¢).

Let S = {i € [n]|pi > €-0},S1 = [n] \ Se andSy = S N S*. Note that the
algorithm.4 considers the guess for the optimal value. Also, sincgs| < % the
subprobleniI(Sy, S2, O) is considered as one of the subproblems in the algorithm
A. Letp! = 37, g g 11j. Considerk such that(l + €)' < p' < (14 €)*

and let3 = (1 4 ¢)¥~1. Clearly, the subproblefi(S;, Sz, O, 3) is considered in
the algorithmA(II) while solvingII(S;, S2, O). From Lemma 5.2.2, we know that
the optimal profit for the subproblefh(S;, Sz, O, ) is at Ieast?%. Furthermore,

using Lemma 5.2.1 we can find a set of ites$or the problemlI(S, Se2, O, 3)
such that,

OPT
> — . .
Zp] > {20 5.21
jes
1
> — 2¢) - OPT 5.22
- <1+6 2

> (1-3¢)-OPT

Therefore, the algorithrd finds an integral solution that has profit at least
(1 —3¢)-OPT.

log(i

Running time of .A. Note that we conside@(%’”)) different choices of the

optimal profit valueD, whereP = Z;;lpj,pm = minj_, p;. Also, we consider

O(n%) choices of the set of itemS for the subproblenil for each choice of
B

1
O. Furthermore, in the subroutind(IT), we soIveO(M) different sub-

€

problems for solving one problef(S;, S2, O) for given subsets, So C [n] and

64



5.2. A (1+ ¢)-APPROXIMATION ALGORITHM

a choice for optimal profi©. Therefore, the total running time gf is

o <1og (B m) 108 (P/pm). ni> |
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Locating Emergency Facilities for
Post-Disaster Logistics

In this chapter, we consider a facility location problem that aims to locate emer-
gency response and distribution centers (ERDC) for effective psasir oper-
ations such as supply of relief commaodities to the affected areas in the dvent o
a disaster such as an earthquake. Post disaster operations arevittcathny
challenges such as an uncertain demand and resources available duaighti
uncertain nature of the manifesting disaster and its impact. Even the inftaséruc
such as the transport network and the communication network availablegor p
disaster logistics is uncertain as some of it could have been significantly ddmag
or disrupted in the disaster. While the parameters are highly uncertain lidfe re
operations typically need to be carried out within a very short time periodtage
disaster. Therefore, in wake of these uncertainties it is essential to lpdal &or
effective post disaster logistics. While in previous chapters in this thesifiawe
considered models where either there is uncertainty in demand (see Gapier

3) or there is uncertainty in the data (see Chapter 5), the problem of lo&RDg
combines aspects of both demand and data uncertainty.

6.1 Problem Description

We study the problem of locating Emergency Response and Distributionr€ente
(ERDC) in and around a region with seismic risk such that in the event airdin-e
quake, relief commodities such as water, medical aid and food can be distirtiou

the affected areas within a short time. Since the transport and communication n
works can be disrupted in the event of an earthquake, the given ERDEC may

or may not be able to reach the affected areas within the required time diegpend
on the impact of the disaster. Similarly, the demand for relief commodities in the
affected areas is known only after the disaster. We refer to the posteliseet-
work and demand realizations asligaster scenarioTo consider opening a set of
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CHAPTER 6. EMERGENCY FACILITY LOCATION

Emergency Response and Distribution Centers (ERDC) such that allrireendds
covered in all the disaster scenarios might be lead to a very expensivwager-
vative solution. Therefore, a better solution is to consider opening ERDEthat
more thar®9% or some other threshold of the disaster scenarios are covered by the
ERDC. Such a solution ignores the very unlikely worst case scenartasdmifi-
cantly reduces the cost of the solution to make it practical to implement. Therefo
the problem of optimally locating ERDC with a constraint that 99% of the disaster
scenarios are covered is a chance-constrained optimization problenchdhee-
constrained optimization problem is extremely hard to solve both computationally
as well as theoretically even for a small number of scenarios as disausSkdp-

ter 4. When the number of scenarios are exponential in the size of the(awpist

the case with the number of different transport network realizations irpb-

lem), it is not even clear to check efficiently whether a given solution satigfie
chance-constraint or not. In this chapter, we focus on excatly thisgamoénd give

an efficient sampling based algorithm to approximately answer this question.

In this study we focus on the case of Istanbul, Turkey where seismic risk is
a major concern. The Municipality of Istanbul is interested in opening ERDC
around the city of Istanbul which will be used as coordination centersgifri-
bution of relief commodities to the affected areas in the event of an eartbguak
As we discussed earlier, the infrastructure available for relief opesatiepends
on the impact of the disaster. Therefore, ideally we would like to open ERDC in
locations of low seismic risk while still being close to the high seismic risk regions
to distribute relief commaodities to the affected areas in a short time. The Munici-
pality has identified a set a0 potential locations for opening ERDC that satisfy
the above two conditions among other logistics constraints.

In a post-disaster scenario, the time for the relief to reach the affectasd iare
probably the most critical factor. The post-disaster time frame is typically elivid
into the first4, 8, 12, 16, 24 hours and so on as the services required and the chances
of saving lives are different in each interval. For example, the medisaidid and
search-and-rescue teams are most critical in thelfws8 hours while food supply
is not that critical in the firs hours. Therefore, the problem of coordinating dis-
tribution of relief commodities in a post-disaster scenario is a multi-period, multi-
commodity problem. For the sake of simplification, we consider a single period,
single commodity distribution problem where there is a constraint of reacliing a
the affected areas within a given time from at least one of the open ERDC.

Since the transport network is vulnerable to the earthquake, some ofrilse tra
port links may be disrupted due to the impact of the disaster. Thereforgatie
port network in a post-disaster scenario is uncertain and is known oty the
occurrence of the disaster. We would like to open ERDC such that in affage
tion of disaster scenarios (i.e. transport network and demand reali2atidirthe
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affected areas can be reached from some ERDC within a given time bhbiobel.
that there are exponentially many different transport network realizpossi-

ble in a post-disaster scenario. Since the chance-constrained prdtigtmoally
locating a set of ERDC such that a large fraction of post-disaster soerae
covered is difficult to solve both computationally as well as theoretically in lieu of
the discussion in Chapter 4, we consider the problem of estimating the fration
disaster scenarios that are covered by a given set of ERDC. As theipality is
interested in opening only a few ERDC, it is not difficult to enumerate allipless
choices of ERDC to open from the set4sf potential locations. In particular, we
consider the following two estimation problems.

Reliability(F'). Given a set of open ERDC or facilitids, estimate the fraction of
disaster scenarios (i.e. transport network and demand realizations)adh thiere

is an open facility in/” within a given distance bound of each demand location (or
the affected area).

Max-Coverage(F'). Given a set of open ERDC or facilitids, estimate the average
fraction of demand satisfied by over different disaster scenarios. A demand
location in a disaster scenario is satisfiedyf there is a facility inF' which is
within a given distance bound of the demand location.

We also consider capacitated versions of the above problems refereed to
Cap-Reliability(F') and Cap-Max-Coverage(F') where each open facility has a
given capacity which is the total demand that can be satisfied by resatr¢es
Since we consider only the single-commodity case, the capacity at a fgcddn
be thought of as the inventory level of the commaodity aSimilarly, the demand
at a location in an area affected by the disaster is measured in terms of titgyqua
of the commodity required at that location in the post-disaster scenario.

We propose an efficient sampling based estimation algorithm for the versions
of the problem above where disaster scenarios are sampled from abpisiic
link-failure model given an earthquake has occurred. Each samptddiepr is
modeled as a length bounded flow problem. We conduct our computatiqreat ex
iments using the data for the case of Istanbul. We would like to note here that the
focus of this study is not to accurately model the transport link-failurbgndities
in the event of an earthquake but show how sampling can be used tatetg@s-
timate several quantities such as reliability and coverage for a set of agiéitiefs.
However, we make our best possible effort to use a reasonablehjiiistiamodel
for scenario generation in the computational experiments in this study. Furthe
more, neither the computational complexity nor the accuracy of the resufts fro
our sampling algorithm are dependent on the probabilistic model.
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6.2 Related Work

One of the earliest studies conducted on location of emergency facilitiesis du
to Toregas et al. [59]. The facility location problem is modeled as a setiogver
problem where the affected areas are represented as demand nddibe go-
tential facilities are referred as supply nodes and the objective is to minimize the
maximum time/distance of a demand node to its closest supply node. Haghani and
Oh [32] consider a multi-commodity, multi-modal network flow model with time
windows for disaster response where they assume that both the sugdplgmand

for all the commodities is known in advance. The authors propose heutistics
solve the problem where violations in time windows are allowed and include a
penalty in the objective.

Ozdamar et al. [61] analyze the problem of dispatching the commodities to dis-
tribution centers as a part of emergency logistics planning for the Marregia.

They focus on the problem of planning a detailed distribution scheduledubje
to vehicle capacity constraints and conduct a computational study for sieeota
Marmara earthquake in 1999. Yi and Ozdamar [60] consider a dynamituany
logistics coordination model for post-disaster logistics which incorporatearth
certainty in demand and supply. Dekle et al. [17] consider the problencafiiy
emergency response facilities in Florida that will be used by Federal Emerg
Management Agency (FEMA) for post-disaster logistics. The readexfésred

to [34] for a review of facility location models for emergency response reiew
considers three broad models for the facility location problem: covering Isiode
k-median and:-center.

While some of the models discussed above incorporate uncertainty in demand
and supply in a post-disaster scenario, they do not consider unceddimtiee
transport network which is very likely to be affected by the disaster. Thst mo
relevant work that simultaneously considers uncertainty in demand, sapglghe
underlying transport network is due to Barbarosoglu and Arda [3le dithors
model the uncertainty in demand, supply and transport network usingoh eet
plicit disaster-scenarios and propose a two-stage stochastic prograswhitign
approach. Since the number of all possible disaster scenarios is vgey Bar-
barosoglu and Arda [3] do not consider a complete list of scenarioghars] it
is not clear how to measure the quality of the solution over the complete set of
disaster scenarios. Our work on the other hand gives an efficientingrbased
algorithm to estimate the quality of the solution over the complete set of disaster
scenarios.

Outline. The rest of the chapter is organized as follows. In Section 6.3 we
give the mathematical formulation for the two probleRwiability(F') and Max-
Coverage(F') that have been introduced earlier. We describe the sampling algo-
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rithm in Section 6.4 and finally present the computational experiment antisresu
in Section 6.5.

6.3 Facility Location Models for ERDC

In this section, we build a mathematical model for the problem of locating ERDC
subject to various logistics constraints. LEtdenote the set of potential locations
for opening ERDC and let : 7 — R, denote the ERDC opening costs. 2t
denote the set of all possible affected areas or demand locations @he-l1év, A)

be the directed graph that represents the transport network and thie ¢éregach

arc is given by the functioh: A — R,. Letc : 7 — R, denote the capacities
installed at ERDC inF. As discussed earlier, the Municipality of Istanbul has
selected a set of0 potential locations for opening ERDC. Therefore, for the case
of Istanbul |F| = 40. Similarly, the demand locations correspond to different
districts in and around Istanbul.

The actual transport network available after the disaster as well asriende
at each location depends on the impact of the disaster.ztet {0,1}4 be a
0-1 vector that denotes the post-disaster network realization in scefiavizere
zg(e) = 1if e € A survives in scenari§ and0 otherwise. Also, letis(j) denote
the demand at locatione D in scenariaS.

We now describe a chance-constrained model for the problem of optimally
locating a set of ERDC such that fopdraction of disaster-scenarios, each demand
location is within a distanc®& from some open facility. Leg; be a binary variable
that denotes whether a facility is opened &t F or not. We model the problem as
a multi-commodity flow problem where each demand pgis¢énds a flow equal to
ds(j) in scenarioS to some open facility within a distand. Let f(e) denote the
flow from demand poinj on edgee in scenaricS. For each scenari§, let zg be a
binary variable denoting whether all the demand points are covered iargzéh

or not. Letd™ () = {(7, /)| (3, j) € A} andé™(j) = {(4,7)|(4,7) € A}.
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Constraint (6.1) requires that each demand ppsends out a flow ofs(j) in
scenarioS if S is covered by the open set of facilities. Constraint (6.2) enforces
flow conservation while (6.3) enforces that there is a flow onearcscenarioS
only if e survives in scenari®. Constraint (6.4) requires that a potential facility
is a sink for any flow only if it is open and satisfies a total demand which is not
more than its capacity. Constraint (6.5) bounds the length of the flow paths an
Constraint (6.6) ensures that we cover at lgafsaction of the disaster-scenarios.

However, there is a problem with the above formulation. The number of dis-
aster scenarios are exponential and therefore, the size of the formulatimber
of variables and constraints) is too large to be able to solve practically. Fhe |
formulation for the problem of locating ERDC such that the expected fradtion
demand covered over all scenarios is maximized faces a similar problerp@f ex
nential number of variables and constraints. In fact, given a set of fzudities
F itis not even clear how to check whether it is coveysfeaction of the disaster
scenarios or how to compute the expected fraction of demand covergdolgr
all scenarios. We focus on these estimation problems given a set of agiktnes
and give an efficient sampling based additivepproximation for these.
Reliability(F'). Given a set of open facilitieg’, the problem is to determine the
fraction of scenario$ (where each scenario is a post-disaster demand and network
realization) such that each demand can be satisfied by some open facility avithin
distanceB.
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Max-Coverage(F'). Given a set of open facilitieg, the problem is to determine
the expected fraction of demand over all scenasidisat can be satisfied by the set
of facilities F'.

To compute the estimates in the above two problems, we solve the scenario
problems for a number of sampled scenarios. Let us consider the iscegr@ions
of these problems.

Scenario versionReliability(F, S) Given a set of open facilities' and a disaster
scenarioS which defines the post-disaster transport network and demand realiza-
tion, the problem is to determine whether all the demand can be satisfied by some
open facility in " within a distances.

The uncapacitated version BEliability( F', .S') where the facilities do not have
any capacity constraints can be solved by a shortest path computatioredcm
demand point to the closest open facility. The scenéris feasible if all the de-
mand points are within a distanéefrom some open facility iri". The capacitated
version where each facility € F' has a capacity:; for the demand it can serve,
can be formulated as a length bounded flow feasibility problem which isidescr
below.

> S = Y fhle) =ds() Vi
e€d~ (j) e€8 (5)
D R - X File) =0 Vet
e€d—(v) ecdt (v)
fie) <uwsle) VeeA
SN Fley - Y file) <m VieF 6.10
JED ecs+ (i) eed— (i)
STlfile) <B Vi 6.11
ecA

Scenario VersionMax-Coverage(F, S). Given a set of open facilitied” and a
disaster scenari®, the problem is to determine maximum fraction of demand
that can be satisfied by the set of faciliti€s This can be formulated as max-flow
problem subject to length bound and capacity constraints. The formulatioreis
below.
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6.4 Sampling Algorithm

In this section, we describe a generic sampling based estimation algorithrathat ¢
be used to solve the estimation problem of capacitated and uncapacitaiedvers
of Reliability(F') andMax-Coverage(F’) for a given set of facilitied”. Let II(F)
denote the estimation problem for the set of faciliti€sAlso, letlls(F') denote the
corresponding problem for a sample scenariwhere the scenari§ is a particular
demand and transport network realization after the disaster. For insthhte-
Reliability thenIlgs(F") denote the problem of determining whether scené&rie
covered by the set of facilitie8' or not. LetXs(F") denote the optimal value of
I15(F') and letV be an upper bound on the variance of the optimal valdégfF')
across different scenarios. Let us first consider a basic samplingthlg which
is described in Figure 6.4.

We show in the following theorem that the sampling algoritdnoutputs an
estimate fodI(F") which is an additive-approximation with high probability.

Theorem 6.4.1 Suppose the estimate for each sample in algorithyo compute
thell(F) is bounded irfa, b]. Letp* denote the true estimate fbl( F') and leto?
be the variance. For any constantsj > 0, if the number of samples

o2

N =—
5e2’

then the estimateX returned byA, satisfies
P(|X —p*| >¢) <9
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Sampling Algorithm A for TI(F')
Given a set of facilitied”, e > 0 andd > 0, the problem is to estimaié(F').

Initialize N « 35, X « 0

1. Forj=1,...,N,

(a) Generate sample scenafip and let.X; be the optimal value of
g, (F).

(b) X — X + 2L,

2. ReturnX as estimate foll(F).

Figure 6.1: Sampling Algorithry

Proof: Let X; denote the estimate of thi& sample. We know thaE[X;] = p*
andVar(X;) = o2. If the sampling algorithm considerg samples and,

1

X
N

(X1 +...+Xn),

thenE[X] = p* andVar(X) = %2 as the samples are independent. Using the
Chebyshev’s inequality, we have

2

. o
P(\X—P|Z€)SW

Therefore, ifN = % thenP(| X — p*| > €) < 0. n

For the problemsReliability and Max-Coverage, the variance of the estimate
across all samples is bounded by Therefore, to achieve an additive error of at
moste with probability at least1 — §), the required number of samplés= 5%

6.4.1 Improved Sampling Algorithm

We now present an improved sampling algorithm that requires a significamdljes
number of samples to achieve an additiveapproximation in the estimate with
probability at least1 — §) for somee, d > 0. The algorithm is described in Fig-
ure 6.4.1. This algorithm is adapted from the sampling algorithm of Shmoys and
Swamy [58] for approximately solving large two-stage stochastic linearanag;

We prove the sampling bounds in the following theorem.
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Improved Sampling Algorithm A; for TI(F)
Given a set of facilitied”, e > 0 andd > 0, the problem is to estimailé(F’).

itiali 3V 1
Initialize N — 25, ¢ = 41n (5).
1. Fori=1,...,t,
(@) InitializeY; < 0.

(b) Forj =1,..., N,

i. Generate sample scenafig and letX;; be the optimal value
of ]'_‘[Sij (F)

i, Yi— Y+ 8

2. Y «— mediar{Yy, Ys, ..., Y}).

3. ReturnY'.

Figure 6.2: Improved Sampling Algorithpd;

Theorem 6.4.2 Let p* be the true estimate di(F) and let the variance be?.
Also, let the estimate of each sample be bounddd,ibj. If N = 36%2 andt =
41n () for some constants ¢ > 0, then the estimat¥ returned by the sampling
algorithm A, satisfies,

B(Y - " > ¢) < 6.

Proof: We know thatY; = +(Xi1 + ...+ X;n) foralli = 1,...,t. SinceX;;
are i.i.d. foralli € [t],j € [N], E[Y;] = p* andVar(Y;) = "—NQ Therefore, using
Chebyshev’s inequality we have,

2

P(JY; = p*[ 2 €) < N

Fori =1,...,t, consider another random variatife such that

S [ 1 Y-z
"1 0 otherwise

andZ = Y!_, Z;. Therefore,
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If Y ¢ [p* — €, p* + €], then at least/2 variablesZ; should be set to one. Since
the variablesZ; are independent bernoulli trials, we can use the Chernoff bounds

and obtain,
t

IP)(Z Z 5) S e
ThereforeP(Y € [p* —€,p* +¢]) > 1 6. |
From Theorem 6.4.2, we obtain that the total number of samples required to

obtain an additive-approximation with probability at least — ¢) for somee, § >
0is,
1202 1
N -t = 62 . ln <5> .

The dependence of number of samples aimproved frorr% in the sampling
algorithm.4g to 41n (3) in sampling algorithmd,;.

=9.

e+

6.5 Computational Experiments and Results

In this section, we describe the setup for our computational study for #eeafa
Istanbul and present our results. The North Anatolian fault line rusisteavest in

the Marmara sea south of Istanbul and poses a serious risk of a madjuyLede

in the region. In August 1999, an earthquake of magnitiideon the Richter
scale (classified as M5) occurred in the region and caused significmeatsito life
and property. Studies [48] indicate that there is a high probability of oecoe

of an earthquake of magnitudeor more in the nexB80 years. Therefore, the
Municipality of Istanbul is interested in opening ERDC in and around the city of
Istanbul to improve its preparedness for post-disaster relief operations

6.5.1 Data Collection

The Municipality of Istanbul in collaboration with several universities fueg a
detailed report [47] that analyses the problem of seismic risk and its impabeo
population and the transport network in the event of an earthquakeMiihieipal-

ity has identified a set of0 potential locations for opening ERDC. These facilities
are close to one of two major highways that run east-west through Idtalrtius,

the facilities do not run the risk of being disconnected from the rest o&tien in
case several transport links are disrupted due to the earthquakee Bi§ushows
the major highway system near Istanbul with a number of bridges and ¥&aduc
classified as risky and less risky in [47]. The report also providesatatmopula-
tion in each of thes4 districts which is used in our model to estimate demand in
the event of an earthquake. We assume that each district is reprebgrteathgle
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location in our model. Figure 6.4 shows the representative locations foealish
tricts. We consider a road network between these representative |acatiwre
major highways are accurately represented but the smaller links arexapapte.
Figure 6.5 represents the network we use in our model. The fault line wiith r
east to west in the south of Istanbul is also approximated by linear pietestsbe
distances from the rupture on the fault line can be computed easily. Didtante
the point of rupture on the fault time is one of the factors that determines #ie pe
ground acceleration (PGA) when an earthquake occurs and theztdynines the
impact at that location.

Figure 6.3: Highway Network of Istanbul

6.5.2 Probabilistic Model for Transport Network Scenarios

An earthquake occurs when there is a rupture at some point along théirfau
when the techtonic plates collide and there is a sudden release of endrgy. T
impact of earthquake at any location is determined by the amount of shaking
that occurs at that location and is measuredobgik ground acceleratigRGA).
Panousis [55] models the PGA due to an earthquake of magnituatea distance

r from the rupture as,

e0.8m

wherePGA is acceleration irm/sg, r is distance in km between the location
and the site of the rupture andis a constant. We assume that the probability

PGA = o -
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Figure 6.4: District Locations

of failure of an edge is directly proportional to the highP&A level along the
link. We also classify each link as being risky and less risky based on thbemu
of risky bridges and viaducts on the link. Lgt denote the probability of failure
of edgee by an earthquake of magnitude when the minimum distance between
edgee and the point of rupture is.. Then,

if e isris
bo — { On G ky 6.18

08m .
0 - " +4o otheriwse

We assume that a rupture occurs at a random location on the fault linedmetwe
the east and west boundaries of the city and the magnitude is uniformly disttibu
betweert.5 and7.5. This assumption is reasonable as it closely models the most
likely scenario concluded in the report by the Municipality of Istanbul [47]r-
thermore, since we assume that the rupture can occur only within the eastern
western boundaries of the city our estimates would err only on the side aj bein
conservative. Therefore, the transport network scenario is geteas follows.

6.5.3 Probabilistic Model for Demand Scenarios

We simplify the problem by assuming that each district is represented by single
location in our network. Furthermore, we assume that the demand at a loisation
directly proportional to the population in the corresponding district andrashe
proportional to the distance of the location from the rupture. Therefbtage
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Figure 6.5: Network Model of Istanbul

population of districtj is V; and the distance from the rupturerisin a scenario
S of earthquake magnitude, then the demands(5) at locationj in scenariaS
is given by,
eBam
r5(7)
whereay and3,; are constants. Therefore, the demand at each location can be
computed when the rupture location and the earthquake magnitude is given.

ds(j) = agNj -

6.5.4 Computational Results

We use the above scenario generation models (transport network arahde

in the sampling algorithmA4, described in Section 6.4 to compute estimates of
Reliability( F') andMax-Coverage(F') for all possible subsets' C F where|F| =

3 for both capacitated as well as uncapacitated versions. The res&tdiatdility

and Max-Coverage for a few choices off’ for the length bound3 = 30km are
given in Table 6.5.4.

If the set of facilities are on the same side of the Bosphorus (the watenehan
that runs north-south across Istanbul), thenRkgability is very low and the esti-
mate ofMax-Coverage is significantly higher. If the emergency response facilities
are on one side (say west) of the Bosphorus (for instance Wwhen {1, 2, 3}),
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Generating a Post-disaster Transport Network ScenarioEs

Initialize Eg < ¢.

1. Generate a rupture locatiémniformly at random between the east and
west boundary of Istanbul and generate an earthquake magnitude
formly at random betweef.5 and7.5.

2. For all edgeg in the network

(a) Computep, as described in Equation 6.18.
(b) Generate a numberuniformly at random betweehand1.
(c) If z > pe, Es <+ Eg U {e}; otherwisee fails in the scenarid.

3. returnks.

Figure 6.6: Generating a Network scenario

then they are not able to satisfy the demand on the east side if the road links be
tween the two sides are disrupted. Therefore, all the scenarios wieenatthlinks
between the two sides are disrupted are not countaRkiiability. On the other
hand, these facilities are still able to satisfy almost all the demand on their side of
Bosphorus in most of the scenarios which leads to a significantly higher éstna
Max-Coverage. This fact is strikingly visible in the results for the set of facilities

F = {10,14, 15} which are all on the west of Bosphorus. In this c&sdiabil-
ity=0.35 andMax-Coverage=0.75. In contrast, if the facilities are split across the
two sides then the estimates for b&#liability andMax-Coverage are comparable

and high.

We would like to note here that the accuracy or the computational efficiency
of the sampling algorithm does not depend on the scenario generation rbdel.
focus of this study is to develop an efficient tool to estimate the quality of & set o
open facilities by computing quantities suchRadiability andMax-Coverage. Any
probabilistic model for scenario generation can be used in the samplingtiatgor
and the accuracy or the computational efficiency of the sampling algoritbmoer
affected other than the time required to sample scenarios from the new model.

6.6 Concluding Remarks

In this chapter, we presented an efficient sampling based algorithm to estimate
parameters for which an IP-based formulations have an exponentialenuwhb
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FacilitiesF' | Reliability(F") | Max-Coverage(F’)
{1,2,3} 0.35 0.64
{2,3,4} 0.39 0.65

{33,36,37} 0.32 0.68

{17,18,31} 0.85 0.91

{10, 21,30} 0.90 0.93
{3,4,34} 0.65 0.73

{10,14,15} 0.35 0.75

Table 6.1:Reliability andMax-Coverage Results

constraints and variables. Furthermore, we are able to provably obtaithditive
e-approximation for the estimates with a high probability for any giwen0. The

goal of this study was to develop a tool that can help in locating emergency re
sponse and distribution centers for effective post-disaster logisti¢kddviunici-
pality of Istanbul. The computational experiments conducted in our study bun
some interesting insights about the geographic location of these ERDC aad ha
been discussed in the computational results section. We would like to mention
that in our computational experiments, we modeled the road network of tdtanb
as the only transport network available. However, since Marmara sea twtith

of Istanbul provides an inexpensive medium of transport using feitigvould be
useful to consider it in the transport network; especially since this toah8pk
would not be disrupted by the earthquake.

82



[1]

[2]

3]

[4]

5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

Bibliography

S. Arora and G. Karakostas. A 2+ epsilon approximation algorithniHer
k-MST problem.Mathematical Programmingl07(3):491-504, 2006.

R. Bar-Yehuda. Using Homogeneous Weights for Approximating thigePa
Cover ProblemJournal of Algorithms39(2):137-144, 2001.

G. Barbarosoglu and Y. Arda. A two-stage stochastic programmiengér
work for transportation planning in disaster responkmurnal of the Opera-
tional Research Societ$5(1):43-53, 2004.

D. Bertsimas and M. Sim. Robust discrete optimization and network flows.
Mathematical Programming Series 83:49-71, 2003.

D. Bertsimas and M. Sim. The price of robustne€@peration Researgh
52(2):35-53, 2004.

J. Birge and F. Louveawtntroduction to Stochastic Programmin§pringer,
Berlin, 1997.

A. Blum, P. Chalasani, and S. Vempala. A constant-factor approximédtion
the k-MST problem in the planeProceedings of the twenty-seventh annual
ACM symposium on Theory of computipgges 294-302, 1995.

A. Blum, R. Ravi, and S. Vempala. A constant-factor approximation algo-
rithm for the k MST problem (extended abstrad®yoceedings of the twenty-
eighth annual ACM symposium on Theory of compuytimages 442-448,
1996.

G. Calafiore and MC Campi. Uncertain convex programs: randomiaed s
lutions and confidence levelsMathematical Programmingl02(1):25-46,
2005.

M. Charikar, S. Khuller, D.M. Mount, and G. Narasimhan. Algorithros f
facility location problems with outliersProceedings of the twelfth annual
ACM-SIAM symposium on Discrete algorithrpages 642—651, 2001.

A. Charnes and WW Cooper. Deterministic Equivalents for Optimizird) an
Satisficing under Chance Constraint@perations Researghl1(1):18-39,
1963.

K. Chen. A constant factor approximation algorithm for k-medianteliisg
with outliers. Proceedings of the nineteenth annual ACM-SIAM symposium
on Discrete algorithmgpages 826-835, 2008.

83



BIBLIOGRAPHY

[13] X. Chen, M. Sim, and P. Sun. A Robust Optimization Perspective afais
tic Programming Optimization Online2005.

[14] Faban A. Chudak, Tim Roughgarden, and David P. Williamson. Approxi-
mate k-msts and k-steiner trees via the primal-dual method and lagrangean
relaxation. InProceedings of the 8th International IPCO Conference on In-
teger Programming and Combinatorial Optimizatjgrages 60—70, London,

UK, 2001. Springer-Verlag.

[15] G. B. Dantzig. Linear programming under uncertainijanagement Sgi.
1:197-206, 1955.

[16] Brian C. Dean, Michel X. Goemans, and Jan Vondrak. Approxingatire
stochastic knapsack problem: The benefit of adaptivibcs 00:208-217,
2004.

[17] J. Dekle, M.S. Lavieri, E. Martin, H. Emir-Farinas, and R.L. Fran¢iazzy
Modeling for Coordinating Logistics in Emergenciefterfaces 35:133—
139, 2005.

[18] K. Dhamdhere, V. Goyal, R. Ravi, and M. Singh. How to pay, comatwh
may: Approximation algorithms for demand-robust covering problems. In
FOCS pages 367-378, 2005.

[19] K. Dhamdhere, R. Ravi, and M. Singh. On two-stage stochastic minimum
spanning trees. IlPCO, pages 321-334, 2005.

[20] E. Erddjan and G. lyengar. Ambiguous chance constrained problems and
robust optimizationMathematical Programmingl07(1):37—-61, 2006.

[21] G.Even, J. Naor, S. Rao, and B. Schieber. Divide-and-gengpproximation
algorithms via spreading metrics. FOCS pages 62—-71, 1995.

[22] G. Even, J. Naor, B. Schieber, and M. Sudan. Approximating minifasd-
back sets and multicuts in directed graphalgorithmicg 20(2):151-174,
1998.

[23] U. Feige, D. Peleg, and G. Kortsarz. The Dense k-Subgrapbiém. Algo-
rithmica, 29(3):410-421, 2001.

[24] R. Gandhi, S. Khuller, and A. Srinivasan. Approximation algorithorgfar-
tial covering problemsJournal of Algorithms53(1):55-84, 2004.

84



BIBLIOGRAPHY

[25] N. Garg. Saving an epsilon: a 2-approximation for the k-MST probie
graphs.Proceedings of the thirty-seventh annual ACM symposium on Theory
of computingpages 396-402, 2005.

[26] N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flovin-
(multi)cut theorems and their applicatior &AM J. Comput.25(2):235-251,
1996.

[27] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow
problem.J. ACM 35(4):921-940, 1988.

[28] D. Golovin, V. Goyal, and R. Ravi. Pay today for a rainy day: Imema
approximations for demand-robust min-cut and shortest path problems. In
STACSpages 206-217, 2006.

[29] Gomory, R. E. and Hu, T. C. Multi-terminal network flowdournal of the
Society for Industrial and Applied Mathemati®4):551-570, dec 1961.

[30] A. Gupta, M. R, R. Ravi, and A. Sinha. Boosted sampling: approximation
algorithms for stochastic optimization. 8TOG pages 417-426, 2004.

[31] A. Gupta, R. Ravi, and A. Sinha. An edge in time saves nine: LP riognd
approximation algorithms for stochastic network design. FOCS pages
218-227, 2004.

[32] A. Haghani and S.C. Oh. Formulation and solution of a multi-commodity,
multi-modal network flow model for disaster relief operatiofi$ansporta-
tion Research Part A30(3):231-250, 1996.

[33] N. Immorlica, D. Karger, M. Minkoff, and V. Mirrokni. On the costsic
benefits of procrastination: Approximation algorithms for stochastic combi-
natorial optimization problems. IBODA pages 684—693, 2004.

[34] H. Jia, F. Ordfiez, and M. Dessouky. A modeling framework for facility
location of medical services for large-scale emergencis Transactions
39(1):41-55, 2007.

[35] R. Khandekar, G. Kortsarz, V Mirrokni, and M.R. SalavatipouwoTStage
Network Design with Exponential Scenario®roceedings of the sixteenth
annual European Symposium on Algorithr2808.

[36] Philip N. Klein, Serge A. Plotkin, Satish Rao, and Eva Tardos. Apipnation
algorithms for steiner and directed multicutks.Algorithms 22(2):241-269,
1997.

85



BIBLIOGRAPHY

[37] P. Kouvelis and G. Yu.Robust Discrete Optimisation and Its Applications
Kluwer Academic Publishers, Netherlands, 1997.

[38] F. T. Leighton and S. Rao. An approximate max-flow min-cut theorem f
uniform multicommodity flow problems with applications to approximation
algorithms. InFOCS pages 422—-431, 1988.

[39] R. D. Luce and H. RaiffaGames and DecisiorWiley, New York, 1957.

[40] M. Mahdian, Y. Ye, and J. Zhang. A 1.52 approximation algorithmther
uncapacitated facility location problem. APPROX pages 229-242, 2002.

[41] J. Mestre. A Primal-Dual Approximation Algorithm for Partial Vertexveo:
making educated guessetecture Notes in Computer Scien624:182,
2005.

[42] J. W. Milnor. Games against nature. In R. M. Thrall, C. H. Coombd,R. L.
Davis, editorsDecision Processe$Viley, New York, 1954.

[43] J. M. Mulvey, R. J. Vanderbei, and S. J. Zenios. Robust optimigatidarge-
scale systemdperations Resear¢d3:264-281, 1995.

[44] V. Nagarajan and R. Ravi. Approximation algorithms for requiremeanba
graphs. IPAPPROX + RANDOMpages 209—-220, 2005.

[45] A. Nemirovski and A. Shapiro. Convex Approximations of Chanan-C
strained ProgramsSIAM Journal on Optimizatigril7:969, 2006.

[46] Y.  Nikulin. Robustness in  combinatorial  optimization
and scheduling theory: An annotated bibliography, 2004.
http://wwv. optinm zation-online.org/DB_FILE/ 2004/ 11/ 995. pdf .

[47] Municipality of Istanbul. The study on a disaster prevention or mitigatean b
sic plan in Istanbul including microzonation in the republic of Turkégch-
nical Reporf 2002.

[48] T. Parsons, S. Toda, R.S. Stein, A. Barka, and J.H. Dieterictighttemed
Odds of Large Earthquakes Near Istanbul: An Interaction-BasdubBiidy
Calculation.Science288(5466):661, 2000.

[49] R. Ravi and A. Sinha. Hedging uncertainty: Approximation algorithors f
stochastic optimization problems. IRCO, pages 101-115, 2004.

[50] G. Robins and A. Zelikovsky. Improved steiner tree approximationaplys.
In SODA pages 770-779, 2000.

86



BIBLIOGRAPHY

[51] M. J. Rosenblatt and H. L. Lee. A robustness approach to facitiigssyn.
International Journal of Production Resear@b:479-486, 1987.

[52] A.Ruszczynskiand A. Shapiro. Stochastic programming motieladbooks
in Operations Research and Management Scieh@e—64.

[53] A. Saxenalnteger Programming, a TechnologyhD thesis, Carnegie Mellon
University, Forthcoming.

[54] A. Saxena, V. Goyal, and M. Lejeune. MIP Reformulations for theaBilis-
tic Covering ProblemOptimization Online2007.

[55] M. S. Selcuk, A. S. Yicemen. Reliability of Life-line Networks with Multiple
Sources under Seismic Hazaidatural Hazards21(1):1-18, 2000.

[56] P. D. Seymour. Packing directed circuits fractionallyfCombinatorica
15:281-288, 1995.

[57] D. Shmoys and C. Swamy. Stochastic optimization is (almost) as easy as
deterministic optimization. IFOCS pages 228-237, 2004.

[58] D.B. Shmoys and C. Swamy. An approximation scheme for stochastic linea
programming and its application to stochastic integer prograioarnal of
the ACM (JACM)53(6):978-1012, 2006.

[59] C. Toregas, R. Swain, C. ReVelle, and L. Bergman. The locaticenudr-
gency service facilitiesOperations Resear¢cii9(6):1363-1373, 1971.

[60] W. Yiand L. zdamar. Fuzzy Modeling for Coordinating Logistics in Eme
gencieslInternational Scientific Journal of Methods and Models of Complex-
ity: Special Issue on Societal Problems in Turkél), 2004.

[61] L. zdamar, E. Ekinci, and B. Kkyazici. Emergency Logistics Plannimg
Natural DisastersAnnals of Operations Research: Models and Algorithms
for Planning and Scheduling Problent29:217-245, 2004.

87



