
Hybrid Approaches to Scheduling and Clustering

by

LATIFE GENÇ-KAYA

Submitted to the Tepper School of Business

in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

at the

CARNEGIE MELLON UNIVERSITY

November 2008

Advisor: John N. Hooker

Abstract

This dissertation consists of four self-contained chapters. The first two chapters concentrate on the

circuit constraint. The circuit constraint requires that a sequence of n vertices in a directed graph

describe a hamiltonian cycle. The constraint is useful for the succinct formulation of sequencing

problems, such as the traveling salesman problem, which it formulates with only one constraint

and n variables. In the first chapter, ”The Circuit Polytope”, we analyze the circuit polytope as

an alternative to the traveling salesman polytope as a means of obtaining linear relaxations for

sequencing problems. We provide a nearly complete characterization of the circuit polytope by

showing how to generate, using a greedy algorithm, all facet-defining inequalities that contain at

most n− 4 terms. We suggest efficient separation heuristics. Finally, we show that proper choice of

the numerical values that index the vertices can allow the resulting relaxation to exploit structure in

the objective function.

In the second chapter, ”A Filter for the Circuit Constraint”, we present an incomplete filtering

algorithm for the circuit constraint that removes redundant values by eliminating nonhamiltonian

edges from the associated graph (i.e., edges that are part of no hamiltonian cycle). We identify

nonhamiltonian edges by analyzing a smaller graph with labeled edges that is defined on a separator

of the original graph. The complexity of the procedure is roughly the complexity of solving a max

flow problem on a graph whose size is related to the size of the separator. We tested the procedure

on a few thousand random instances of the circuit constraint having up to 15 variables. We found

that it identified all infeasible instances and eliminated about one-third of the redundant domain

elements in feasible instances.

i

ii Abstract

In the third chapter, ”Optimal Crane Scheduling”, there is a list of jobs to be assigned and

scheduled to two cranes that move on the same track and cannot bypass each other. We present a

two-phase algorithm developed for ABB Corporate Research. A local search algorithm assigns jobs

to cranes and sequences the jobs on each crane. Then, a specialized dynamic programming algo-

rithm obtains optimal crane space-time trajectories for that assignment and sequencing. Theoretical

results are proved to limit the number of crane trajectories that must be considered.

In the last chapter, ”The Minimum Product Cut Problem”, we consider minimum product cut

problem that is to find an edge cut on an undirected graph with two distinct nonnegative edge

weight functions where the product of cut values is minimum relative to two weight functions. We

give a pseudo-polynomial 4-approximation algorithm for the minimum product cut problem that

uses parametric search.

Abstract iii

to my parents Hacer & Abdulkerim

and my family Ahmet & Zeyneb

Acknowledgements

I would like to thank everyone who encouraged and supported me to complete my doctoral study.

First and foremost, I thank my advisor Professor John N. Hooker for his amazing guidance, encour-

agement and strong support. This thesis exists due to his supervision, patience, help and support for

all these years. I greatly appreciate the precious amount of time he spent on our discussions. Thank

you for being the best and nicest advisor ever.

I thank R. Ravi for being a member of my dissertation committee and advising my first summer

paper which resulted in the fourth chapter of this thesis. I also thank Michael Trick for being a

member of my dissertation committee and guiding my second summer paper. I am also thankful

to other member of my dissertation committee, Ignacio Grossmann, Tepper faculty members Egon

Balas, Gerard Cornuéjols, Javier Peña and Deputy Dean İlker Baybars. Thank you all for your

suggestions, comments and guidance in my research and for your help and support.

I thank all my friends for their invaluable friendship. I am especially grateful to Hakan Yıldız,

Vineet Goyal, Miroslav Karamanov, Tallys Yunes, Kent Andersen and Jochen Könemann for their

assistance whenever needed. I am also thankful to Lawrence Rapp for dealing with various admin-

istrative issues.

Finally, I am thankful to my loving family, my parents Hacer and Abdulkerim, my sisters

Nursefa, Zeynep and Züleyha, my little brothers Nurullah and Ahmed Cihad, the love of my life, my

husband Ahmet and the greatest gift of my life, my wonderful daughter Zeyneb for their endless,

unconditional love and support. I feel extremely fortunate to have such a wonderful family. Thank

you all. I could not have done it without you.

v

Table of Contents

1 The Circuit Polytope 1
1.1 The Circuit Constraint . 1

1.2 The Circuit Polytope . 2

1.3 Arbitrary Domains . 4

1.4 Overview of the Results . 5

1.5 Dimension of the Polytope . 6

1.6 Facets of the Polytope . 9

1.7 Facet Generation . 14

1.8 Generation of Undominated Circuits . 16

1.9 Permutation and Two-term Facets . 21

1.10 Separation Heuristics . 24

1.11 Exploiting Cost Structure . 26

1.12 Conclusions and Future Research . 28

2 A Filter for the Circuit Constraint 31
2.1 Motivation . 31

2.2 Basic Idea . 33

2.3 Previous Work . 35

2.4 Definitions . 36

2.5 Separator Graph . 37

2.6 Finding Separators . 39

2.7 A Cardinality Filter . 40

2.8 Additional Vertex Degree Filtering . 41

2.9 The Algorithm . 44

2.10 Computational Results . 45

2.11 Conclusions . 47

vii

viii TABLE OF CONTENTS

3 Crane Scheduling by Dynamic Programming 49
3.1 Introduction . 49
3.2 The Crane Scheduling Problem . 51
3.3 Precedence Constraints . 54
3.4 Simplifying the Optimal Control Problem . 54
3.5 Dynamic Programming Recursion . 60
3.6 Assignment and Sequencing by Local Search . 61
3.7 Reduction of the State Space . 64
3.8 Experimental Results . 66

4 The Minimum Product Cut Problem 75
4.1 Introduction . 75
4.2 Related Work . 76

4.2.1 (1 + ε)-Approximation Algorithm . 77
4.3 Preliminaries . 78
4.4 An Approximation Algorithm . 79

4.4.1 4-Approximation Algorithm . 79
4.4.2 A Simple Bound on Breakpoints . 81
4.4.3 Binary Search on λ . 83

4.5 Special Cases . 85
4.5.1 Outerplanar Graphs . 85

List of Figures

1.1 Greedy procedure for generating J-circuits that are undominated with respect to
J = J+ ∪ J−. 16

1.2 Separation heuristic for finding a set S of facet-defining inequalities with positive
coefficients violated by a given point x̂. 25

1.3 Separation heuristic for finding a set S of facet-defining inequalities with arbitrary
coefficients violated by a given point x̂. 25

2.1 Graph G on vertices {1, . . . , 6} contains the solid edges, and the separator graph
GS on S = {1, 2, 3} contains the solid (unlabeled) edges and dashed (labeled)
edges within the larger circle. The small circles surround connected components of
the separated graph. 37

2.2 Flow model for simultaneous gcc and out-degree filtering of nonhamiltonian edges.
Heavy lines show the only feasible flow. 44

2.3 Filtering algorithm for the circuit constraint. 45

3.1 Sample space-time trajectory for one task. The shaded vertical bars denote loading
and unloading. 55

3.2 Canonical trajectory for the left crane (a) when the destination is to the right of the
origin, and (b) when the destination is to the left of the origin. 55

3.3 Minimal trajectory for the left crane (leftmost solid line). 56
3.4 Optimal solution for 10 jobs in the 60-job problem. 68
3.5 Optimal solution for 20 jobs in the 60-job problem. 69
3.6 Optimal solution for 30 jobs in the 60-job problem. 69
3.7 Optimal solution for 40 jobs in the 60-job problem. 70
3.8 Optimal solution for 50 jobs in the 60-job problem. 70
3.9 Optimal solution for 60 jobs in the 60-job problem. 71
3.10 State space size for 10 jobs in the 60-job problem, using 25-minute time windows. . 71
3.11 State space size for 20 jobs in the 60-job problem, using 35-minute time windows. . 72

ix

x LIST OF FIGURES

3.12 State space size for 30 jobs in the 60-job problem, using 35-minute time windows. . 72
3.13 State space size for 40 jobs in the 60-job problem, using 40-minute time windows. . 73
3.14 State space size for 50 jobs in the 60-job problem, using 40-minute time windows. . 73
3.15 State space size for 60 jobs in the 60-job problem, using 55-minute time windows. . 74

4.1 Algorithm A for Minimizing Product of Two Nonnegative Linear Costs 77
4.2 4-Approximation Algorithm for Minimum Product Cut 81

List of Tables

1.1 Hyperplanes determined by undominated J-circuits for example (1.12). 16
1.2 (a) Cost data cij . (b) Values of h(xi, xj) when xi ≤ xj and h′(xi, xj) when xj ≤ xi. 28

2.1 Performance of the filtering algorithm for circuit on random graphs that were hamil-
tonian. The filter successfully identified all random graphs that were nonhamiltonian. 46

3.1 Possible state transitions for crane c using an interval-valued state variable for pro-
cessing time. 65

3.2 Computational results for the 60-job problem. 67
3.3 Effect of state space reduction on computation time for ten rounds. “Before” and

“after” refer to results before and after state space reduction, respectively. 74

xi

Chapter 1

The Circuit Polytope

1.1. The Circuit Constraint

The circuit constraint requires that a sequence of vertices in a directed graph define a hamiltonian

circuit.

Let G be a directed graph on vertices 1, . . . , n, and let variable xi denote the vertex that follows

vertex i in the sequence. The domain Di of each variable xi (i.e, the set of values xi can take) is the

set of integers j for which (i, j) is an edge of G. The constraint

circuit(x1, . . . , xn) (1.1)

requires that x = (x1, . . . , xn) describe a hamiltonian circuit of G. For brevity, we will say that an

x satisfying (1.1) is a circuit.

More precisely, x is a circuit if π1, . . . , πn is a permutation of 1, . . . , n, where π1 = 1 and

πi+1 = xπi for i = 1, . . . , n − 1. Thus π1, . . . , πn indicates the order in which the vertices are

visited. For example, if {1, 2, 3} is the domain of each variable xi, then (x1, x2, x3) = (3, 1, 2) is

a circuit because (π1, π2, π3) = (1, 3, 2) is a permutation. The circuit goes from 1 to 3 to 2, and

back to 1. However, (x1, x2, x3) = (1, 2, 3) is not a circuit, because (π1, π2, π3) = (1, 1, 1) is not a

1

2 Chapter 1. The Circuit Polytope

permutation.

If x is a circuit, the sequence x1, . . . , xn is itself a permutation, but a given permutation x need

not be a circuit. In fact, if the domain of each xi is {1, . . . , n}, then n! values of x are permutations

but only (n − 1)! of these are circuits. In the above example, there are six permutations but only

two circuits, namely (2, 3, 1) and (3, 1, 2).

The circuit constraint is useful for formulating combinatorial problems that involve permuta-

tions or sequencing. One of the best known such problems is the traveling salesman problem, which

may be very succinctly written

min
n∑
i=1

cixi

circuit(x1, . . . , xn), xi ∈ Di, i = 1, . . . n

(1.2)

where cij is the distance from city i to city j. The objective is to visit each city once, and return to

the starting city, in such a way as to minimize the total travel distance.

Domain filtering methods for the circuit constraint appear in [4, 32] and [11] that is Chapter 2

of this dissertation. These can be useful for eliminating infeasible values from the variable domains.

The object of this chapter is to study the circuit polytope, so as to obtain a relaxation for the circuit

constraint that can be combined with filtering to accelerate solution further. The circuit polytope is

an interesting object of study in its own right, one that to our knowledge has not been investigated.

1.2. The Circuit Polytope

The circuit polytope is the convex hull of the feasible solutions of (1.1) whenG is a complete graph;

that is, when each variable domain Di is {1, . . . , n}. To our knowledge, this polytope has not been

studied. Rather, the circuit constraint is generally formulated by replacing the variables xi with 0-1

variables yij , where yij = 1 if vertex j immediately follows vertex i in the hamiltonian circuit. The

Chapter 1. The Circuit Polytope 3

traveling salesman problem (1.2), for example, is typically written

min
∑
ij

cijyij

∑
j

xij =
∑
j

yji = 1, i = 1, . . . , n (a)

∑
i ∈ V

j 6∈ V

yij ≥ 1, all V ⊂ {1, . . . , n} with 2 ≤ |V | ≤ n− 2 (b)

yij ∈ {0, 1}, all i, j (c)

(1.3)

The polyhedral structure of problem (1.3) has been intensively analyzed, and surveys of this work

may be found in [2, 20, 26].

Rather than introduce 0-1 variables, we analyze the circuit polytope directly. In particular, we

provide an almost complete description of the polytope, in the sense that we show how to identify al-

most all facets of the polytope by identifying undominated circuits. A subset of these facet-defining

inequalities can be assembled to obtain a tight continuous relaxation of the circuit constraint.

This approach has four possible advantages. (a) The facet-defining inequalities are expressed

in terms of n variables, rather than n2 variables as in the conventional approach. (b) The inequal-

ities are quite different from the traditional traveling salesman cuts and may have complementary

strengths. (c) Because the variables can take arbitrary values (not just 1, . . . , n), these values can

be chosen to exploit structure in the objective function coefficients. (d) We can give a nearly com-

plete description of the circuit polytope, which does not appear to be possible for the 0-1 traveling

salesman polytope.

We have not demonstrated these advantages computationally. The goal of this chapter is to lay

the theoretical groundwork by describing the circuit polytope, which is an interesting object of study

in its own right.

4 Chapter 1. The Circuit Polytope

1.3. Arbitrary Domains

A peculiar characteristic of the circuit constraint is that the values of its variables are indices of other

variables. Because the vertex immediately after xi is xxi , the value of xi must index a variable. The

numbers 1, . . . , n are normally used as indices, but this is an arbitrary choice. One could just as

well use any other set of distinct numbers, which would give rise to a different circuit polytope.

Thus the circuit polytope cannot be fully understood unless it is characterized for general numerical

domains, and not just for 1, . . . , n. This also provides more modeling flexibility that can be used to

exploit problem structure (Section 1.11).

We therefore generalize the circuit constraint so that each domain Di is drawn from an arbitrary

set {v0, . . . , vn−1} of nonnegative real numbers. The constraint is written

circuit(xv0 , . . . , xvn−1) (1.4)

It is convenient to assume v0 < · · · < vn−1. Thus circuit(x0, x2.3, x3.1) is a well-formed circuit

constraint if the variable domains are subsets of {0, 2.3, 3.1}. The nonnegativity of the vis does not

sacrifice generality, since one can always translate the origin so that the feasible points lie in the

nonnegative orthant.

To avoid an additional layer of subscripts, we will consistently abuse notation by writing xvi as

xi. We therefore write the constraint (1.4) as

circuit(x0, . . . , xn−1) (1.5)

Thus x = (x0, . . . , xn−1) satisfies (1.5) if and only if π0, . . . , πn−1 is a permutation of 0, . . . , n−1,

where π0 = 0 and vπi = xπi−1 for i = 1, . . . n− 1.

We define the circuit polytope Cn(v) with respect to v = (v0, . . . , vn−1) to be the convex hull

of the feasible solutions of (1.5) for full domains; that is, each domain Di is {v0, . . . , vn−1}. All of

the facet-defining inequalities we identify below for full domains are valid inequalities for smaller

Chapter 1. The Circuit Polytope 5

domains, even if they may not define facets of the convex hull.

The circuit polytope has a different character than most polytopes studied in combinatorial

optimization. Normally the shape of the polytope does not depend on particular numerical values,

but only on the structure of the problem. Because the structure of the circuit polytope depends on

the domain values, the polytope is partly a discrete and partly a continuous object. This will be

reflected in combinatorial and numerical phases of the method for generating facets.

1.4. Overview of the Results

We first examine the dimensionality of the circuit polytope (Theorem 1). We then prove the basic

result (Theorems 4 and 5), which is the following. Consider any subset of at most n−4 variables, and

let a partial solution of the circuit constraint be one that assigns values to these variables only. Then

the facet-defining inequalities containing these variables are precisely the valid inequalities defined

by affinely independent sets of undominated partial solutions. Furthermore, these inequalities are

valid if and only if they are satisfied by all undominated partial solutions.

We can therefore identify all facet-defining inequalities with at most n− 4 terms if we generate

undominated partial solutions, which is a purely combinatorial problem that does not depend on the

particular domain values v0, . . . , vn−1. We solve this problem by describing a greedy algorithm that

generates all undominated partial solutions for any given subset of variables (Theorems 6 and 7).

We can now identify facet-defining inequalities by solving a continuous, numerical problem. We

compute the inequalities defined by affinely independent sets of these partial solutions and check

which ones are satisfied by the remaining partial solutions, given the particular numerical values of

the domain elements. The inequalities that pass this test are facet-defining.

We next contrast the circuit polytope with the permutation polytope, which contains the circuit

polytope, and whose facial structure is well known. We identify a large class of permutation facets

that are also circuit facets (Corollary 8). The circuit polytope is more complicated than the permu-

tation polytope, however, and unlike the permutation polytope, its structure depends on the domain

6 Chapter 1. The Circuit Polytope

values. We also explicitly identify all two-term facets of the circuit polytope (Corollary 9).

We then address the separation problem, which is the problem of identifying facet-defining

inequalities that are violated by a solution of the current relaxation of the problem. We describe two

separation heuristics, one of which seeks separating inequalities with all positive coefficients, and

one which seeks inequalities with arbitrary coefficients.

We conclude by showing how knowledge of the circuit polytope for arbitrary domains can allow

one to exploit cost structure in the objective function of the problem.

1.5. Dimension of the Polytope

We begin by establishing the dimension of the circuit polytope.

Theorem 1. The dimension of the circuit polytope Cn(v) is n− 2 for n = 2, 3 and n− 1 for n ≥ 4.

Proof. The polytope Cn(v) is a point (v1, v0) for n = 2 and the line segment from (v1, v2, v0)

to (v2, v0, v1) for n = 3. In either case the dimension is n− 2.

To prove the theorem for n ≥ 4, note first that all feasible points for (1.5) satisfy

n−1∑
i=0

xi =
n−1∑
i=0

vi (1.6)

(Recall that xi is shorthand for xvi .) Thus, Cn(v) has dimension at most n − 1. To show it has

dimension exactly n− 1, it suffices to exhibit n affinely independent points in Cn(v). Consider the

following n permutations of v0, . . . , vn−1, where the first n− 1 permutations consist of v0 followed

by cyclic permutations of v1, . . . , vn−1. The last permutation is obtained by swapping vn−2 and

Chapter 1. The Circuit Polytope 7

vn−1 in the first permutation:

v0, v1, v2, . . . , vn−3, vn−2, vn−1

v0, v2, v3, . . . , vn−2, vn−1, v1

v0, v3, v4, . . . , vn−1, v1, v2

...

v0, vn−2, vn−1, . . . , vn−5, vn−4, vn−3

v0, vn−1, v1, . . . , vn−4, vn−3, vn−2

v0, v1, v2, . . . , vn−3, vn−1, vn−2

(1.7)

The rows of the following matrix correspond to circuit representations of the above permutations.

Thus row i contains the values x0, . . . , xn−1 for the ith permutation in (1.7).

v1 v2 v3 · · · vn−2 vn−1 v0

v2 v0 v3 · · · vn−2 vn1 v1

v3 v2 v0 · · · vn−2 vn−1 v1

...
...

...
...

...
...

vn−2 v2 v3 · · · v0 vn−1 v1

vn−1 v2 v3 · · · vn−2 v0 v1

v1 v2 v3 · · · vn−1 v0 vn−2

(1.8)

Since each row of (1.8) is a point inCn(v), it suffices to show that the rows are affinely independent.

8 Chapter 1. The Circuit Polytope

Subtract [vn−1 v2 v3 · · · vn−2 vn−1 v1] from every row of (1.8) to obtain

v1 − vn−1 0 0 · · · 0 0 v0 − v1

v2 − vn−1 v0 − v2 0 · · · 0 0 0

v3 − vn−1 0 v0 − v3 · · · 0 0 0
...

...
...

...
...

...

vn−2 − vn−1 0 0 · · · v0 − vn−2 0 0

0 0 0 · · · 0 v0 − vn−1 0

v1 − vn−1 0 0 · · · vn−1 − vn−2 v0 − vn−1 vn−2 − v1

(1.9)

The rows of (1.8) are affinely independent if and only if the rows of (1.9) are. It now suffices to

show that (1.9) is nonsingular, and we do so through a series of row operations. The first step is to

subtract (vn−2 − v1)/(v0 − v1) times row 1, (vn−1 − vn−2)/(v0 − vn−2) times row n− 2, and row

n− 1 from row n to obtain

v1 − vn−1 0 0 · · · 0 0 v0 − v1

v2 − vn−1 v0 − v2 0 · · · 0 0 0

v3 − vn−1 0 v0 − v3 · · · 0 0 0
...

...
...

...
...

...

vn−2 − vn−1 0 0 · · · v0 − vn−2 0 0

0 0 0 · · · 0 v0 − vn−1 0

En 0 0 · · · 0 0 0

(1.10)

where

En = −vn−1 − vn−2

vn−2 − v0
(vn−1 − vn−2)− (vn−1 − v1)

Chapter 1. The Circuit Polytope 9

Interchange the first and last rows of (1.10) to obtain

En 0 0 · · · 0 0 0

v2 − vn−1 v0 − v2 0 · · · 0 0 0

v3 − vn−1 0 v0 − v3 · · · 0 0 0
...

...
...

...
...

...

vn−2 − vn−1 0 0 · · · v0 − vn−2 0 0

0 0 0 · · · 0 v0 − vn−1 0

v1 − vn−1 0 0 · · · 0 0 v0 − v1

(1.11)

Note that En < 0 since v0 < · · · < vn−1. Thus (1.11) is a lower triangular matrix with nonzero

diagonal elements and is therefore nonsingular. �

As an example, consider

circuit(x0, . . . , x6) (1.12)

where each xi has domain {v0, . . . , v6} = {2, 5, 6, 7, 9, 10, 12}. The corresponding polytope

C7(2, 5, 6, 7, 9, 10, 12) has dimension 6 and satisfies

x0 + · · ·+ x6 = 51 (1.13)

which describes its affine hull.

1.6. Facets of the Polytope

We now describe facets of the circuit polytope Cn(v). The following lemma is key.

Lemma 2. Suppose that the inequality

∑
j∈J

ajxj ≥ α (1.14)

10 Chapter 1. The Circuit Polytope

is valid for circuit(x0, . . . , xn−1) and is satisfied as an equation by at least one circuit x. If |J | ≤

n− 4 and
n−1∑
j=0

djxj = δ (1.15)

is satisfied by all circuits x that satisfy (1.14) as an equation, then dj = 0 for all j 6∈ J .

Proof. It suffices to prove that dj0 = dj1 = dj3 = dj4 = 0 for any subset of four indices

j0, . . . , j3 6∈ J . Note first that we can use (1.6) to eliminate any variable (say, xj0) from (1.15)

and obtain an equation of the form (1.15) in which dj0 = 0. We therefore assume without loss of

generality that dj0 = 0.

Now let x0 be any circuit that satisfies (1.14) as an equation, and let the permutation described

by x0 be

v0, . . . , vj0−1, vj0 , vj0+1, . . . , vj1−1, vj1 , vj1+1, . . . , vj2−1, vj2 , vj2+1, . . . , vj3−1, vj3

Consider the circuits x1, . . . , x5 that describe the following permutations, respectively:

v0, . . . , vj0−1, vj0 , vj2+1, . . . , vj3−1, vj3 , vj0+1, . . . , vj1−1, vj1 , vj1+1, . . . , vj2−1, vj2

v0, . . . , vj0−1, vj0 , vj1+1, . . . , vj2−1, vj2 , vj2+1, . . . , vj3−1, vj3 , vj0+1, . . . , vj1−1, vj1

v0, . . . , vj0−1, vj0 , vj1+1, . . . , vj2−1, vj2 , vj0+1, . . . , vj1−1, vj1 , vj2+1, . . . , vj3−1, vj3

v0, . . . , vj0−1, vj0 , vj0+1, . . . , vj1−1, vj1 , vj2+1, . . . , vj3−1, vj3 , vj1+1, . . . , vj2−1, vj2

v0, . . . , vj0−1, vj0 , vj2+1, . . . , vj3−1, vj3 , vj1+1, . . . , vj2−1, vj2 , vj0+1, . . . , vj1−1, vj1

We obtain x1, . . . , x5 from x0 by viewing the permutation represented by the latter as a concatena-

tion of four subsequences, each ending in one of the values vji . We fix the first subsequence and

obtain x1 and x2 by cyclically permuting the remaining three subsequences. We obtain x3, x4 and

x5 by interchanging a pair of subsequences.

Chapter 1. The Circuit Polytope 11

Note that variables xj0 , . . . , xj3 have the values shown below in each circuit xi:

xj0 xj1 xj2 xj3

vj0+1 vj1+1 vj2+1 v0 (x0)

vj2+1 vj1+1 v0 vj0+1 (x1)

vj1+1 v0 vj2+1 vj0+1 (x2)

vj1+1 vj2+1 vj0+1 v0 (x3)

vj0+1 vj2+1 v0 vj1+1 (x4)

vj2+1 v0 vj0+1 vj1+1 (x5)

and all other variables xj have value x0
j in each circuit xi. Thus all six circuits x0, . . . , x5 satisfy

(1.14) as an equation, so that dxi = δ for i = 0, . . . , 5. This implies

1
2

(dx0 + dx1 + dx5)− (dx2 + dx3 + dx4)

(dx0 + dx2 + dx5)− (dx1 + dx3 + dx4)

(dx0 + dx3 + dx5)− (dx1 + dx2 + dx4)

(dx0 + dx2 + dx4)− (dx1 + dx3 + dx5)

(dx0 + dx4 + dx5)− (dx1 + dx2 + dx3)

(dx0 + dx1 + dx3)− (dx2 + dx4 + dx5)

=

0

0

0

0

0

0

Substituting the values of x0, . . . , x5, we obtain

vj2+1 − vj1+1 vj1+1 − vj2+1 0 0

0 v0 − vj2+1 vj2+1 − v0 0

0 0 vj0+1 − v0 v0 − vj0+1

vj0+1 − vj2+1 0 vj2+1 − vj0+1 0

vj0+1 − vj1+1 0 0 vj1+1 − vj0+1

0 vj1+1 − v0 0 v0 − vj1+1

dj0

dj1

dj2

dj3

=

0

0

0

0

0

0

12 Chapter 1. The Circuit Polytope

from which we can conclude that dj0 = dj1 = dj2 = dj3 . But since dj0 = 0, this proves the lemma.

�

It will be convenient denote by x(J) the tuple (xj0 , . . . , xjm) when J = {j0, . . . , jm}. We

say that x(J) is a J-circuit if it creates no cycles and is therefore a partial solution of the circuit

constraint. That is, x(J) is a J-circuit if π0, . . . , πm are all distinct, where π0 = j0 and vπi = xπi−1

for i = 1, . . . ,m. We will need the following lemma.

Lemma 3. If x̄(J) is a J-circuit, then there is a circuit x such that x(J) = x̄(J).

Proof. Let J = {j0, . . . , jm}, and let {vi0 , . . . , vir} be the subset of domain values v0, . . . , vn−1

that occur in neither {vj0 , . . . , vjm} nor {x̄j0 , . . . , x̄jm}. Consider the directed graph Gx̄(J) that

contains a vertex vi for each i ∈ {0, . . . , n− 1}, a directed edge (vjk , x̄jk) for k = 0, . . . ,m, and

a directed edge (vik , vik+1
) for each k = 0, . . . , r − 1. The maximal subchains of Gx̄(J) have the

form

vk1 → · · · → vk′1 → x̄k′1

vk2 → · · · → vk′2 → x̄k′2
...

vkp → · · · → vk′p → x̄k′p

vi0 → · · · → vir

where possibly kt = k′t for some values of t. Because maximal subchains are disjoint, we can form

a hamiltonian circuit in Gx̄(J) by linking the last element of each subchain to the first element of

the next, and linking vir to vk1 . Let vs0 , . . . , vsn−1 be the resulting circuit. Then if x is given by

xi = vs(i+1) mod n
for j = 0, . . . , n− 1, then x is a circuit and x(J) = x̄(J). �

The idea of domination is central to characterizing facets of Cn(v). Let J = J+ ∪ J− (with

J+ ∩ J− = ∅) be a subset of variable indices. For i ∈ J we say that xi � yi if i ∈ J+ and xi ≤ yi,

or i ∈ J− and xi ≥ yi. Also xi ≺ yi if xi � yi and xi 6= yi. We say that x′(J) dominates x(J)

with respect to J = J+ ∪ J− when x′j � xj for all j ∈ J . A J-circuit x(J) is undominated if no

other J-circuit dominates it.

Chapter 1. The Circuit Polytope 13

The following theorem provides the basis for generating facets of Cn(v) by generating undom-

inated J-circuits.

Theorem 4. Let S be the set of J-circuits that are undominated with respect to J = J+∪J−, where

1 ≤ |J | ≤ n−4. Consider any subset of |J | affinely independent J-circuits in S. If these J-circuits

satisfy ∑
j∈J

ajxj = α, where aj > 0 for j ∈ J+ and aj < 0 for j ∈ J− (1.16)

and the remaining J-circuits in S satisfy (1.14), then (1.14) defines a facet of Cn(v).

Proof. Let S = {x0(J), . . . , xm(J)}, and suppose S′ ⊂ S is a set of |J | affinely independent

circuits. We first show that (1.14) is valid; that is, satisfied by any circuit x. Because S contains

all undominated J-circuits, x(J) is dominated by some xi(J) ∈ S with respect to J = J+ ∪ J−,

which means that aj(xj − xij) ≥ 0 for all j ∈ J . Thus we have

∑
j∈J

ajxj ≥
∑
j∈J

ajx
i
j ≥ α

because xi(J) satisfies (1.14), and so x satisfies (1.14).

Now let (1.15) be any equation satisfied by all circuits x that satisfy (1.14) as an equation.

Because |J | ≥ 1 and S is therefore nonempty, at least one J-circuit xi(J) ∈ S satisfies (1.14) as

an equation. Lemma 3 now implies that at least one circuit xi satisfies (1.14) as an equation. Thus

since |J | ≤ n− 4, we have from Lemma 2 that dj = 0 for all j /∈ J , so that

∑
j∈J

djxj = δ (1.17)

Because the J-circuits in S′ are affinely independent and satisfy (1.16) and (1.17), these two equa-

tions are the same up to a scalar multiple. Therefore, any equation satisfied by all circuits that

satisfy (1.14) as an equation has the form (1.17). This means that (1.14) defines a facet of the circuit

polytope. �

14 Chapter 1. The Circuit Polytope

We show now that the previous theorem completely characterizes facet-defining inequalities

having no more than n− 4 terms.

Theorem 5. Consider any inequality (1.14) that is facet-defining for a circuit polytope Cn(v), and

let J+ = {j | aj > 0} and J− = {j | aj < 0}. Then there are affinely independent J-circuits

x0(J), . . . , x|J |−1(J) that are undominated with respect to J = J+ ∪ J− and satisfy (1.16).

Proof. Any facet-defining inequality (1.14) is satisfied as an equation by n−1 affinely indepen-

dent circuits x̄0, . . . , x̄n−1. Then {x̄0(J), . . . , x̄n−1(J)} has some subset {x̄j0(J), . . . , x̄j|J|−1(J)}

of |J | affinely independent J-circuits. These are undominated with respect to J = J+∪J−, because

otherwise, some J-circuit x̂(J) strictly dominates some x̄ji(J) with respect to J = J+ ∪ J−. Also

by Lemma 3, x̂(J) is part of some circuit x̂. This means

∑
j∈J

aj x̂j <
∑
j∈J

aj x̄
ji
j = α

and x̂ violates (1.14). This implies that (1.14) is not valid and therefore is not facet-defining as

assumed. �

1.7. Facet Generation

The results of the previous section indicate how to generate all facet-defining inequalities for Cn(v)

having at most n− 4 terms. To generate all such facet-defining inequalities (1.14) in which aj > 0

for j ∈ J+ and aj < 0 for j ∈ J−, first generate the set S of all J-circuits that are undominated

with respect to J = J+ ∪ J−. Then consider all affinely independent subsets of |J | J-circuits in S.

Each subset uniquely defines an equation (1.16) up to scalar multiple. If the remaining J-circuits in

S satisfy (1.14), then list (1.14) as a facet-defining inequality.

Note that we do not identify a facet by generating n− 1 affinely independent circuits that define

the facet, as this would be a difficult task in general. Rather, we generate |J | affinely independent

J-circuits that define the coefficients of an inequality containing |J | terms. This inequality defines

Chapter 1. The Circuit Polytope 15

a facet if it is valid, which we can easily check. In the next section we will show how to generate

the undominated partial solutions efficiently with a greedy procedure.

As an example, we identify all facet-defining inequalities of the form

a0x0 + a2x2 + a3x3 ≥ α, with a0, a2, a3 > 0 (1.18)

for example (1.12). Four J-circuits x̄i(J) are undominated with respect to J = J+ = {0, 2, 3}.

They are independent of the particular domain values v0, . . . , v6 and can therefore be written

x̄1(J) = (v1, v0, v2)

x̄2(J) = (v1, v3, v0)

x̄3(J) = (v2, v1, v0)

x̄4(J) = (v3, v0, v1)

(1.19)

(We will show how to obtain these J-circuits using a greedy algorithm in the next section.) There

are four subsets of three J-circuits (|J | = 3), shown in Table 1.1, and each uniquely defines a

hyperplane and a corresponding inequality. The first inequality, defined by x̄1(J), x̄2(J), and x̄3(J),

is satisfied by the remaining J-circuit x̄4(J), and similarly for the third inequality. The second and

fourth inequalities, however, are violated by the remaining J-circuit and are not valid. This means

there are exactly two facets defined by inequalities of the form (1.18), namely those defined by

8x0 + 4x2 + 5x3 ≥ 78

3x0 + 7x2 + 6x3 ≥ 65

Now we find all facet-defining inequalities of the form (1.18) but with a0, a2 > 0 and a3 < 0,

so that J+ = {0, 2} and J− = {3}. In this case, there is only one undominated circuit, x(J) =

(v1, v0, v6). Because we do not have three undominated circuits to define a hyperplane, there are no

facet-defining inequalities of this form.

16 Chapter 1. The Circuit Polytope

Table 1.1: Hyperplanes determined by undominated J-circuits for example (1.12).

Defining Uniquely defined hyperplane Is a(J)x(J) ≥ α
J-circuits a(J)x(J) = α valid?

x̄1(J), x̄2(J), x̄3(J) 8x0 + 4x2 + 5x3 = 78 Yes, violated by x̄4(J)
x̄1(J), x̄2(J), x̄4(J) 5x0 + 8x2 + 10x3 = 101 No, violated by x̄3(J)
x̄1(J), x̄3(J), x̄4(J) 3x0 + 7x2 + 6x3 = 65 Yes, satisfied by x̄2(J)
x̄2(J), x̄3(J), x̄4(J) 6x0 + 3x2 + x3 = 53 No, violated by x̄1(J)

For each ordering j0, . . . , jm of the elements of J :
Let J̄ = {0, . . . , n− 1} and J ′ = ∅.
For i = 0, . . . ,m:

Add ji to J ′.
If ji ∈ J+ then let x̄ji be the minimum value vk in {vi | i ∈ J̄}

such that x̄(J ′) is a J ′-circuit.
Else let x̄ji be the maximum value vk in {vi | i ∈ J̄}

such that x̄(J ′) is a J ′-circuit.
Remove k from J̄ .

Add x̄(J) to the list of undominated J-circuits.

Figure 1.1: Greedy procedure for generating J-circuits that are undominated with respect to J =
J+ ∪ J−.

1.8. Generation of Undominated Circuits

A simple greedy procedure can be used to generate all J-circuits x̄(J) that are undominated with

respect to J = J+∪J−. It is applied for each ordering j0, . . . , jm of the elements of J . First, let x̄j0

be the smallest domain value vi if j0 ∈ J+, or the largest if jo ∈ J−. Then let x̄j1 be the smallest

(or largest) remaining domain value that does not create a cycle. Continue until all x̄j for j ∈ J are

defined. The precise algorithm appears in Fig. 1.1.

Theorem 6. The greedy procedure of Fig. 1.1 generates J-circuits that are undominated with re-

spect to J = J+ ∪ J−.

Proof. Let x̄(J) be a J-circuit generated by the procedure for a given ordering j0, . . . , jm. To

see that x̄(J) is undominated with respect to J = J+ ∪ J−, assume otherwise. Then there exists a

J-circuit ȳ(J) such that x̄(J) � ȳ(J) and x̄jt � ȳjt for some t ∈ {0, . . . ,m}. Let t be the smallest

Chapter 1. The Circuit Polytope 17

such index, so that x̄jk = ȳjk for k = 0, . . . , t − 1. This contradicts the greedy construction of x̄,

because ȳjt is available when x̄jt is assigned to xjt . �

For example, the undominated circuits (1.19) for circuit constraint (1.12) can be generated by

considering the six orderings of J = J+ = {0, 2, 3}, listed on the left below. The resulting undom-

inated J-circuits appear on the right.

0, 2, 3 (v1, v0, v2) = x̄1(J)

0, 3, 2 (v1, v3, v0) = x̄2(J)

2, 0, 3 (v1, v0, v2) = x̄1(J)

2, 3, 0 (v3, v0, v1) = x̄4(J)

3, 0, 2 (v1, v3, v0) = x̄2(J)

3, 2, 0 (v2, v1, v0) = x̄3(J)

When J+ = {0, 2} and J− = {3}, all six orderings result in the same J-circuit (v1, v0, v6).

The greedy procedure not only generates undominated J-circuits, but generates all of them.

Theorem 7. Any undominated circuit with respect to J = J+ ∪ J− can be generated in a greedy

fashion for some ordering of the indices in J .

Proof. Let x̄ be a circuit that is undominated with respect to J = J+ ∪ J−, where |J | = m,

J+ = {i0, . . . , ip} and J− = {j0, . . . , jq}. Suppose the variables are indexed so that x̄i` < x̄i`′

when ` < `′ and i`, i`′ ∈ J+, and x̄j` > x̄j`′ when ` < `′ and j`, j`′ ∈ J−.

Let ȳ be a J-circuit that is generated in greedy fashion with respect to an ordering k0, . . . , km

determined in the following way. Let r and s index the elements of J+ and J−, respectively, with

r = 0 and s = 0 initially. Also let V = {v0, . . . , vn−1} initially. At each step of the procedure, we

assign the greedy value to xj for the next j ∈ J+ unless we can avoid deviating from x̄ by assigning

the greedy value to xj for the next j ∈ J−, or unless we have already assigned values to xj for all

j ∈ J+. That is, for ` = 0, . . . ,m, do the following. Let vmin be the smallest value in V such

18 Chapter 1. The Circuit Polytope

that setting xir = vmin does not create a cycle. Let vmax be the largest value in V such that setting

xjs = vmax does not create a cycle. If r ≤ p, and if x̄ir = vmin or x̄js < vmax or s > q, then

let k` = ir, let ȳir = vmin, set r = r + 1, and remove vmin from V . Otherwise, let k` = js, let

ȳjs = vmax, set s = s+ 1, and remove vmax from V . Then (ȳ0, . . . , ȳm) is the greedy solution with

respect to the ordering k0, . . . , km.

We claim that x̄j` = ȳj` for ` = 0, . . . ,m, which suffices to prove the theorem. Supposing to

the contrary, let ¯̀be the smallest index for which x̄k¯̀ 6= ȳk¯̀. Clearly x̄k¯̀ ≺ ȳk¯̀ is inconsistent with

the greedy choice, because x̄k¯̀ is available when ȳk¯̀ is assigned to xk¯̀. Thus we have x̄k¯̀ � ȳk¯̀

By hypothesis, x̄ is undominated with respect to J = J+ ∪ J−. We therefore have x̄k`
≺ ȳk`

for some ` ∈ {¯̀+ 1, . . . ,m}. Let ˆ̀be the smallest such index. Then there are two cases: (1) k¯̀ and

kˆ̀ are both in J+ or both in J−, or (2) they are in different sets.

Case 1: k¯̀ and kˆ̀ are both in J+ or both in J−. We will suppose that both are in J+. The

argument is symmetric if both are in J−.

Let t be the index such that it = k¯̀, and u the index such that iu = kˆ̀. Then x̄jt > ȳjt because

x̄jt � ȳjt and jt ∈ J+. Let t′ be the largest index in {t, . . . , u− 1} such that x̄it′ > ȳit′ . We know

that t′ exists because x̄it > ȳit . Thus we have two sequences of values related as follows:

x̄i0 < · · · < x̄it−1 < x̄it < · · · < x̄it′−1
< x̄it′ < · · · < x̄iu−1 < x̄iu

= = > ≥ > ≥ <

ȳi0 · · · ȳit−1 ȳit · · · ȳit′−1
ȳit′ · · · ȳiu−1 ȳiu

Let u′ be the largest index for which xju′ has been assigned a value at the time ȳiu is assigned to

xiu . We have the two sequences of values

x̄j0 > · · · > x̄ju′−1
> x̄ju′

ȳj0 · · · ȳju′−1
ȳju′

We first show that value x̄iu has not yet been assigned in the greedy algorithm when ȳiu is

Chapter 1. The Circuit Polytope 19

assigned to xiu . That is, we show that x̄iu 6∈ {ȳi0 , . . . , ȳiu−1} and x̄iu 6∈ {ȳj0 , . . . , ȳju′}. To see that

x̄iu 6∈ {ȳi0 , . . . , ȳiu−1}, suppose to the contrary that x̄iu = ȳiw for some w ∈ {0, . . . , u− 1}. This

is impossible, because x̄iu > x̄iw ≥ ȳiw . Also x̄iu 6∈ {ȳj0 , . . . , ȳju′}, because assigning value x̄iu

to xjw for some w ∈ {0, . . . , u′} contradicts the greedy construction of ȳ, due to the fact that value

ȳiu was available at that time and is a superior choice.

We next show that value x̄it′ has not yet been assigned in the greedy algorithm when ȳiu is

assigned to xiu . That is, we show that x̄it′ 6∈ {ȳi0 , . . . , ȳiu−1} and x̄it′ 6∈ {ȳj0 , . . . , ȳju′}. To begin

with, we have that x̄it′ 6∈ {ȳi0 , . . . , ȳit′−1
}, by virtue of the same reasoning just applied to x̄iu . Also

x̄it′ 6= ȳit′ , since by hypothesis x̄it′ > ȳit′ . To show that x̄it′ 6∈ {ȳit′+1
, . . . , ȳiu−1}, suppose to the

contrary that x̄it′ = ȳiw for some w ∈ {t′ + 1, . . . , u − 1}. Then since x̄it′ < x̄iw , we must have

x̄iw > ȳiw . But this contradicts the definition of t′ (< w) as the largest index in {0, . . . , u− 1} such

that x̄it′ > ȳit′ . Thus x̄it′ 6= ȳiw . Finally, x̄it′ 6∈ {ȳj0 , . . . , ȳju′} because assigning value x̄it′ to

xjw for some w ∈ {0, . . . , u′} contradicts the greedy construction of ȳ, due to the fact that ȳiu was

available at the time and ȳiu > x̄iu > x̄it′ .

Since x̄iu < ȳiu and value x̄iu has not yet been assigned, setting xiu = x̄iu must create a cycle

in ȳ, because otherwise xiu = x̄iu would have been the greedy choice. Also, setting xiu = x̄it′

was not the greedy choice because ȳiu > x̄iu > x̄it′ . Thus setting xiu = x̄it′ must likewise create

a cycle in ȳ, because x̄it′ has not yet been assigned. Now define Gȳ(J) as before and consider the

maximal subchain in Gȳ(J) that contains ȳiu . Let the segment of the subchain up to ȳiu be

viw → · · · → viu → ȳiu

Because setting xiu = x̄iu creates a cycle in ȳ, we must have x̄iu = viw . Similarly, because setting

xiu = x̄it′ creates a cycle in ȳ, we must have x̄it′ = viw . This implies x̄iu = x̄it′ , which is

impossible because x̄iu > x̄it′ .

Case 2: k¯̀ ∈ J+ and kˆ̀ ∈ J−, or k¯̀ ∈ J− and kˆ̀ ∈ J+. We can rule out the latter subcase

immediately, because k¯̀ can be in J− only if r > p when ȳk¯̀ is assigned to xk¯̀. This means kˆ̀ must

20 Chapter 1. The Circuit Polytope

be in J− as well, since xkˆ̀
is assigned after xk¯̀, and the situation reverts to Case 1. We therefore

suppose k¯̀ ∈ J+ and kˆ̀ ∈ J−.

Let t be the index such that it = k¯̀, and u the index such that ju = kˆ̀. Again x̄it > ȳit because

x̄it � ȳit and jt ∈ J+. Thus, at the time value ȳit was assigned to xit , we had x̄js < vmax for the

current value of s. So we have two sequences of values related as follows:

x̄j0 > · · · > x̄js−1 > x̄js > · · · x̄ju−1 > x̄ju

= = ≤ ≤ >

ȳj0 · · · ȳjs−1 ȳjs · · · ȳju−1 ȳju

(1.20)

where vmax > x̄js . Let t′ be the largest index for which xit′ has been assigned a value at the time

ȳju is assigned to xju . We have two sequences of values related as follows:

x̄i0 < · · · < x̄it−1 < x̄it < · · · < x̄it′

= = >

ȳi0 · · · ȳit−1 ȳit · · · ȳit′

We first show that a cycle must be created if value x̄ju rather than ȳju is assigned to xju . Because

ȳju < x̄ju , it suffices to show that value x̄ju has not yet been assigned in the greedy algorithm when

ȳju is assigned to xju . That is, we show that x̄ju 6∈ {ȳj0 , . . . , ȳju−1} and x̄ju 6∈ {ȳi0 , . . . , ȳit′}.

If x̄ju = ȳjw for some w ∈ {0, . . . , u − 1}, then x̄ju < x̄jw ≤ ȳjw , which is impossible. Thus

x̄ju 6∈ {ȳj0 , . . . , ȳju−1}. Also x̄ju 6∈ {ȳi0 , . . . , ȳit′}, because assigning value x̄ju to xiw for some

w ∈ {0, . . . , t′} contradicts the greedy construction of ȳ, due to the fact that value ȳju was available

at that time and is a superior choice.

We next show that a cycle must be created if value vmax rather than ȳju is assigned to xju .

Note that vmax 6∈ {ȳi0 , . . . , ȳit′}, because assigning value vmax to xiw for some w ∈ {0, . . . , t′}

contradicts the greedy construction of ȳ, due to the fact that value ȳju was available at that time

and is a superior choice because vmax > x̄js > x̄ju . Now suppose, contrary to the claim, that

assigning vmax to xju does not create a cycle. Then since vmax > ȳju , the value vmax must have

Chapter 1. The Circuit Polytope 21

already been assigned in the greedy algorithm at the time ȳju is assigned to xju . This implies

vmax ∈ {ȳjs , . . . , ȳju−1}. But in this case we must have ȳjs = vmax, because assigning vmax to

xjs does not create a cycle and, by definition, is the most attractive choice at the time. Thus (1.20)

becomes

x̄j0 > · · · > x̄js−1 > x̄js > · · · > x̄js′−1
> x̄js′ > · · · > x̄ju−1 > x̄ju

= = < ≤ < ≥ >

ȳj0 · · · ȳjs−1 ȳjs · · · ȳjs′−1
ȳjs′ · · · ȳju−1 ȳju

where ȳjs = vmax and where s′ is the largest index in {s, . . . , u− 1} such that ȳjs′ < x̄js′ . Now we

can argue as in Case 1 that assigning x̄ju to xju creates a cycle, and assigning x̄js′ to xju creates a

cycle, which implies x̄js′ = x̄ju , a contradiction because x̄js′ > x̄ju . We conclude that assigning

vmax to xju creates a cycle.

Having shown that assigning x̄ju to xju creates a cycle, and assigning vmax to xju creates a

cycle, we derive as in Case 1 that vmax = x̄ju , a contradiction because vmax ≥ x̄js > x̄ju . The

theorem follows. �.

1.9. Permutation and Two-term Facets

In this section we examine two special classes of facets of Cn(v), permutation facets and two-term

facets.

The permutation polytope Pn(v) for a given domain {v0, . . . , vn−1} is the convex hull of all

points whose coordinates are permutations of v0, . . . , vn−1. The circuit polytopeCn(v) is contained

in Pn(v) because every circuit (x0, . . . , xn−1) is a permutation of v0, . . . , vn−1. This means that

every facet-defining inequality for Pn(v) is valid for circuit but not necessarily facet defining. This

raises the question as to which permutation facets are also circuit facets. We will identify a large

family of permutation facets that can be immediately recognized as circuit facets.

The permutation polytope Pn(v) has dimension n − 1. The facets of Pn(v) are identified in

22 Chapter 1. The Circuit Polytope

[17, 36], and they are defined by ∑
j∈J

xj ≥
|J |−1∑
j=0

vj (1.21)

for all J ⊂ {0, . . . , n − 1} with 1 ≤ |J | ≤ n − 1. (Recall that v0 < · · · < vn−1.) This result is

generalized in [18] to domains with more than n elements.

For example, the permutation polytope P3(v) with v = (2, 4, 5) is defined by

x0 + x1 + x2 = 11

xi ≥ 2, for i = 0, 1, 2

xi + xj ≥ 6, for distinct i, j ∈ {0, 1, 2}

We can see at this point that a facet-defining inequality for Pn(v) need not be facet-defining for

Cn(v). The inequality x0 + x1 ≥ 6 is facet-defining for P3(v) but not for C3(v), which is the line

segment from (4, 5, 2) to (5, 2, 4).

Theorems 4, 6, and 7 allow us to identify a family of permutation facets that are also circuit

facets.

Corollary 8. The inequality (1.21) defines a facet of Cn(v) if 1 ≤ |J | ≤ n− 4 and j ≥ |J | for all

j ∈ J .

Proof. Let J = {j0, . . . , jm}. Due to Theorem 6 and the fact that j ≥ m for all j ∈ J , the

following are undominated J-circuits with respect to J = J+:

all x̄(J) for which x̄j0 , . . . , x̄jm is a permutation of v0, . . . , vm (1.22)

Theorem 7 tells us that (1.22) is the complete set of J-circuits that are undominated with respect to

Chapter 1. The Circuit Polytope 23

J = J+. Consider the following J-circuits from (1.22):

x̄0(J) = (v0, v1, v2, v3, . . . , vn−2, vn−1)

x̄1(J) = (v1, v0, v2, v3, . . . , vn−2, vn−1)

x̄2(J) = (v0, v2, v1, v3, . . . , vn−2, vn−1)
...

x̄m(J) = (v0, v1, v2, v3, . . . , vn−1, vn−2)

(1.23)

where x̄i(J) is obtained for i > 0 by swapping vi−1 and vi in x̄0(J). These circuits are affinely

independent, as can be seen by subtracting x̄0(J) from each. By construction, all the J-circuits

(1.23) satisfy (1.21) as an equation. Thus the affinely independent J-circuits (1.22) satisfy (1.21)

as an equation, and all the remaining J-circuits in (1.23) satisfy (1.21). So by Theorem 4, (1.21) is

facet-defining. �

We can check on a case-by-case basis whether permutation facets other than those mentioned

in Corollary 8 are circuit facets. For example, if J = J+ = {2, 3, 4}, then application of the greedy

procedure in Fig. 1.1 yields the undominated J-circuits

x̄0 = (v0, v1, v2) x̄3 = (v3, v0, v1)

x̄1 = (v0, v2, v1) x̄4 = (v1, v2, v0)

x̄2 = (v1, v0, v2) x̄5 = (v3, v1, v0)

Some subsets of three J-circuits, such as {x̄0, x̄1, x̄2}, satisfy (1.21) as an equation. Because the

remaining J-circuits clearly satisfy (1.21), the permutation facet (1.21) is also a circuit facet.

Another special class of facet-defining inequalities are those containing two terms. Because a

set of two undominated J-circuits (where |J | = 2) defines exactly one facet, the two-term facets

can be exhaustively listed in closed form.

24 Chapter 1. The Circuit Polytope

Corollary 9. If n ≥ 6, the two-term facets of Cn(v) are precisely those defined by

xi + xj ≥ v0 + v1, for distinct i, j ∈ {2, . . . , n− 1}

(v2 − v0)x0 + (v2 − v1)x1 ≥ v2
2 − v0v1

(v1 − v0)x1 + (v2 − v0)xi ≥ v1v2 − v2
0, for i ∈ {2, . . . , n− 1}

xi + xj ≤ vn−2 + vn−1, for distinct i, j ∈ {0, . . . , n− 3}

(vn−2 − vn−3)xn−2 + (vn−1 − vn−3)xn−1 ≤ vn−1vn−2 − v2
n−3

(vn−1 − vn−3)xi + (vn−1 − vn−2)xn−2 ≤ v2
n−1 − vn−2vn−3,

for i ∈ {0, . . . , n− 3}

The proof is straightforward.

1.10. Separation Heuristics

The greedy procedure described above for generating undominated J-circuits suggests some simple

separation heuristics. Suppose we have a solution x̂ of the current relaxation of the problem, and

that x̂ violates the circuit constraint. The separation problem is to find one or more facet-defining

inequalities that separate x̂ from the circuit polytope in the sense that x̂ violates the inequalities.

Separating inequalities can then be added to the relaxation to tighten it.

Suppose first that we seek separating inequalities with all positive coefficients, so that J = J+.

Given a point x̂ to be separated, let j0, . . . , jn−1 be an ordering of variable indices for which x̂j0 ≤

· · · ≤ x̂jn−1 . We consider the sequence of subsets J0, J1, . . . , Jn−1 where J i = {j0, . . . , ji}.

Beginning with J0, we try to generate facet-defining inequalities corresponding to each J i, until

we find a separating inequality. For each J i we use the greedy procedure of Fig. 1.1 to generate all

undominated J i-circuits with respect to J i = J i+ and use these J i-circuits to generate facet-defining

inequalities as described earlier. Any of the resulting inequalities violated by x̂ are separating.

If none are separating, we move to J i+1 and repeat. The precise algorithm appears in Fig. 1.2.

A similar algorithm is shown in [18] to be a complete separation procedure for the permutation

Chapter 1. The Circuit Polytope 25

Let S = ∅.
Order j0, . . . , jn so that x̂j0 ≤ · · · ≤ x̂jn−1 .
For k = 0, . . . , kmax while S = ∅:

Let Jk = {j0, . . . , jk}.
Let x̄0(Jk), . . . , x̄m(Jk) be the undominated Jk-circuits generated

by the greedy procedure of Fig. 1.1 with J = J+ = Jk.
For each {t0, . . . , tk} ⊂ {0, . . . ,m}:

Let
∑k

i=0 ajixji = α be an equation satisfied by x̄t0(Jk), . . . , x̄tk(Jk).
If
∑k

i=1 aji x̂ji < α then add
∑k

i=1 ajixji ≥ α to S.

Figure 1.2: Separation heuristic for finding a set S of facet-defining inequalities with positive coef-
ficients violated by a given point x̂.

Let S = J+ = J− = ∅.
Order j0, . . . , jn so that

min{x̂j0 − v0, vn−1 − x̂j0} ≤ · · · ≤ min{x̂j0 − v0, vn−1 − x̂j0}.
For j = 0, . . . , kmax:

If x̂j0 − v0 ≤ vn−1 − x̂j0 then add j to J+.
Else add j to J−.

For k = 0, . . . , kmax while S = ∅:
Let Jk = {j0, . . . , jk}, Jk+ = Jk ∩ J+, Jk− = Jk ∩ J−.
Let x̄0(Jk), . . . , x̄m(Jk) be the undominated Jk-circuits generated

by the greedy procedure of Fig. 1.1 with J+ = Jk+, J− = Jk−.
For each {t0, . . . , tk} ⊂ {0, . . . ,m}:

Let
∑k

i=0 ajixji = α be an equation satisfied by x̄t0(Jk), . . . , x̄tk(Jk).
If
∑k

i=1 aji x̂ji < α then add
∑k

i=1 ajixji ≥ α to S.

Figure 1.3: Separation heuristic for finding a set S of facet-defining inequalities with arbitrary
coefficients violated by a given point x̂.

polytope.

In practice, the algorithm would not continue all the way to Jn−1 when no separating inequal-

ities are found, because it is impractical to generate all undominated Jk-circuits when k is large.

Rather, the algorithm would stop at some predetermined maximum k = kmax.

As an illustration, suppose that (x̂0, . . . , x̂6) = (6, 2, 5.5, 7, 5.7, 8, 9) in example (1.12). This is

not a feasible solution, if only because it does not consist of values from the domain {2, 5, 6, 7, 9, 10, 12}.

Here (j0, . . . , j6) = (1, 2, 4, 0, 3, 5, 6). For J0 = {1} we have the single facet-defining inequal-

ity x1 ≥ 2, but it does not separate x̂. For J1 = {1, 2} we have the facet-defining inequality

26 Chapter 1. The Circuit Polytope

3x1 + 4x2 ≥ 26, which again does not separate x̂. But for J2 = {1, 2, 4} we have three facet-

defining inequalities

8x1 + 5x2 + 10x4 ≥ 101

12x1 + 11x2 + 15x4 ≥ 169

6x1 + 3x2 + 8x4 ≥ 73

Because the first and third are violated by x̂, they are separating cuts.

The above heuristic can be modified slightly to generate separating inequalities with arbitrary

signs. Rather than order the variables by nondecreasing size of x̂j , we can order them by nonde-

creasing size of min{x̂j − v0, vn−1− x̂j}. Then we put j ∈ J+ if x̂j − v0 ≤ vn−1− x̂j and j ∈ J−

otherwise. The heuristic appears in Fig. 1.3.

1.11. Exploiting Cost Structure

One motivation for studying the circuit polytope for arbitrary domains is that it may allow us to

exploit structure in a cost function that appears in the problem. A careful choice of the domain

values can result in a tighter relaxation.

Suppose, for example, that the problem contains the cost function
∑

i cixi that appears in the

traveling salesman problem (1.2). Associate each index i with a value vi, and suppose that the

costs cij have the property that, when the values vi are properly chosen, g(vi, vj) = cij is close

to the value of an affine function h(vi, vj) for i < j, and it is close to the value of an affine func-

tion h′(vi, vj) when j < i. The vis can be set to any nonnegative value, and the variables can be

reordered if desired, to obtain a good affine fit. Then one can use computational geometry tech-

niques to compute the convex hull of S = {(z, xi, xj) | z = g(xi, xj), xi, xj ∈ {v0, . . . , vn−1}}.

Consider all facets of the convex hull that are described by inequalities of the form

z ≥ β0k + β1kxi + β2kxj , k ∈ K (1.24)

Chapter 1. The Circuit Polytope 27

Then all of the points of S are close to the facets described by (1.24).

Now let Ax ≥ b be a system of valid inequalities for the circuit polytope Cn(v), where v is

the vector of values just chosen. We can write a linear relaxation of the traveling salesman problem

(1.2) that exploits the cost structure:

min
∑
ij

zij

zij ≥ β0k + β1kxi + β2kxj , for all i, j and all k ∈ K

Ax ≥ b

(1.25)

For example, suppose the cost data cij are as in Table 1.2. If we let (v1, v2, v3) = (0, 1.5, 3.5),

the values g(vi, vj) = cij are close to the values of the affine function h(vi, vj) = 4(vi − vj) for

i < j and close to h′(vi, vj) = 4(vj−vi) for j < i. The convex hull of S has two facets of the form

(1.24), namely

z ≥ 26
7 xi −

26
7 xj

z ≥ −26
7 xi + 26

7 xj

So if Ax ≥ b is a set of valid inequalities for Cn(v), the relaxation (1.26) therefore becomes

min
2∑
i=0

2∑
j=0

zij

zij ≥ 26
7 xi −

26
7 xj for all i, j ∈ {0, 1, 2}

zij ≥ −26
7 xi + 26

7 xj for all i, j ∈ {0, 1, 2}

Ax ≥ b

(1.26)

If cij is a distance, it may be possible to exploit the structure of the distance metric, particularly

if it is rectilinear. Further details, along with an application to the quadratic assignment problem,

may be found in [18].

28 Chapter 1. The Circuit Polytope

Table 1.2: (a) Cost data cij . (b) Values of h(xi, xj) when xi ≤ xj and h′(xi, xj) when xj ≤ xi.
j

(a) 0 1 2

0 0 6 13
i 1 6 0 9

2 13 9 0

xj

(b) 0 1.5 3.5

0 0 6 14
xi 1.5 6 0 8

3.5 14 8 0

1.12. Conclusions and Future Research

We provided a nearly complete characterization of the circuit polytope that identifies all facet-

defining inequalities with at most n − 4 terms. In particular, we showed that the facet-defining

inequalities with a specified sign pattern are precisely those valid inequalities that are defined by

subsets of J-circuits that are undominated with respect to that sign pattern. Inequalities of this sort

are valid when they are satisfied by all undominated J-circuits.

This allows us to identify all facet-defining inequalities with a two-phase procedure. A combina-

torial phase generates all undominated J-circuits with respect to a desired sign pattern J = J+∪J−,

using a greedy algorithm. A numerical phase then computes equations that are satisfied by affinely

independent subsets of the undominated J-circuits and checks them for validity. The first phase is

independent of the domain values v0, . . . , vn−1, but the second is not. This two-phase procedure

can be viewed as isolating the discrete and continuous aspects of the circuit polytope.

We also identified a family of permutation facets that are circuit facets and explicitly described

all two-term circuit facets. We presented two separation heuristics based on the greedy procedure,

and we showed how the circuit constraint with arbitrary variable domains can exploit cost structure

in the objective function.

These results presented here lay the theoretical groundwork for the solution of sequencing prob-

lems with the help of linear relaxations comprised of circuit inequalities. Computational testing is

the next step, together with investigation of how the separation heuristics can be tuned or altered to

achieve best results. The cost matrices of typical problems can be examined to determine the extent

to which cost can be approximated as an affine function or a rectilinear metric, to allow an effective

Chapter 1. The Circuit Polytope 29

choice of domain values.

An interesting research question is whether circuit inequalities can be profitably converted to

0-1 inequalities and combined with known traveling salesman inequalities. For a given domain

{v0, . . . , vn−1}, the conversion could be based on the identity xi =
∑

j vjyij , where yij is the 0-1

variable that appears in the traveling salesman model (1.3).

Our primary goal, however, has been to explore the structure of the circuit polytope in the

original space, as an alternative to the conventional 0-1 representation.

Chapter 2

A Filter for the Circuit Constraint

2.1. Motivation

The circuit constraint and the all-different (alldiff) constraint are closely related. Both can require

that a set of variables describe a permutation, and both are used in models of sequencing, scheduling,

and assignment problems. Yet while filtering for alldiff is well understood, much less is known about

filtering for circuit. This is partly because achieving hyperarc consistency for alldiff is relatively

straightforward and can be done in polynomial time, while it is an NP-hard problem for circuit.

We address the problem of filtering the circuit constraint for two reasons: (a) circuit is better

suited to some modeling situations than alldiff; (b) a circuit formulation of a problem can often be

added to an alldiff formulation, allowing a circuit filter to contribute to domain reduction.

The circuit constraint can be written

circuit(x1, . . . , xn) (2.1)

where the domain of each xi is Di ⊂ {1, . . . , n}. The constraint requires that y1, . . . , yn be a cyclic

31

32 Chapter 2. A Filter for the Circuit Constraint

permutation of 1, . . . , n, where

yi+1 = xyi , i = 1, . . . , n− 1

y1 = xyn

(2.2)

Thus xi is the item immediately following i in the permutation. The permutation is cyclic in the

sense that no item is regarded as first. The filtering problem is to identify and remove values from

Di that xi takes in no feasible solution of (2.1).

The all-different constraint

alldiff(y1, . . . , yn) (2.3)

requires that y1, . . . , yn take distinct values. The domain of yi may be any finite set. If each domain

is a subset of {1, . . . , n}, the constraint requires that y1, . . . , yn be a permutation of 1, . . . , n, and yi

is the ith item in the permutation. Clearly a feasible solution (x1, . . . , xn) of the circuit constraint

(2.1) must satisfy alldiff(x1, . . . , xn), but this is not sufficient to satisfy (2.1).

The circuit constraint is often interpreted as requiring that x1, . . . , xn define a hamiltonian cycle

on a directed graphG. The vertices ofG are 1, . . . , n, and the edges are all pairs (i, j) with j ∈ Di .

Then (x1, . . . , xn) satisfies (2.1) if and only if (y1, . . . , yn, y1) describes a hamiltonian cycle, where

y1, . . . , yn are defined by (2.2). Variable xi can take the value j in a feasible solution of (2.1) when

(i, j) is part of a hamiltonian cycle in G.

Thus filtering for the circuit constraint reduces to identifying and eliminating nonhamiltonian

edges from G (i.e., edges that belong to no hamiltonian cycle). Since checking whether a graph is

hamiltonian (i.e., contains a hamiltonian cycle) is NP-hard, the same is true of checking whether an

edge is hamiltonian.

The circuit constraint is suited for problems in which one wishes to encode which task follows

another, while the all-different constraint allows one to encode the position of a given task in the

sequence. A typical application of the circuit constraint is to find a cyclic permutation of tasks that

minimizes setup cost or time. Thus if sij is the setup cost of task j when it immediately follows task

Chapter 2. A Filter for the Circuit Constraint 33

i, one can minimize total setup cost by minimizing
∑

i sixi subject to (2.1). A frequent application

of the alldiff constraint finds an assignment of tasks to workers that minimizes cost. If cij is the cost

of assigning task j to worker i, then one can minimize total cost by minimizing
∑

i cixi subject to

(2.3).

The setup cost problem can be reformulated using alldiff rather than circuit, but this in general

requires two sets of variables in order to capture the domains. The circuit constraint (2.1) can be re-

placed by the alldiff constraint (2.3), and the objective function
∑

i sixi can be rewritten
∑

i syi,yi+1 ,

where yn+1 is identified with y1. But to restrict domains of the variables xi, one must retain these

variables and add the channeling constraints (2.2) to the model. Also much of the information

encoded in the domains of the xis is lost when one filters only the yi domains.

The circuit constraint is therefore useful when one wishes to restrict which tasks may follow

a given task. Even if both sets of variables are used in order to write the model with alldiff, it is

advantageous to include the circuit constraint as well and apply a filtering algorithm to it.

The circuit constraint can also be added to models that already contain an alldiff constraint for

which the variable domains are subsets of {1, . . . , n}. Again the channeling constraints (2.2) are

used. Application of filtering algorithms to the circuit as well as the alldiff may improve propagation

and help solve the problem, particularly if information from the application allows one to restrict

the domains of the xis directly.

2.2. Basic Idea

We propose a filter that identifies some of the nonhamiltonian edges of a directed graph G by

analyzing a smaller combinatorial object that partially captures the structure of G.

We first identify a separator of G, which is a subset S of vertices whose removal splits G into

two or more connected components. We then define a “separator graph” on S that consists of the

subgraph induced by S plus some additional “labeled” edges. The key result is that an unlabeled

edge is hamiltonian inG only if it is a “permissible”, which means that it belongs to a “permissible”

34 Chapter 2. A Filter for the Circuit Constraint

hamiltonian cycle in the separator graph. This allows one to identify nonhamiltonian edges in G by

identifying nonpermissible edges in the separator graph.

The advantage of this approach is that it permits one to identify nonhamiltonian edges of a

large graph by examining the hamiltonicity properties of a smaller, labeled graph. This assumes, of

course, that reasonably small separators exist, which in turn presupposes that the original graph is

not too dense. However, filtering is likely to be of little use when the graph is dense, since nearly all

edges tend to be hamiltonian.

Since it can be expensive to identify nonpermissible edges even in a relatively small separator

graph, we propose a secondary filter to detect some of them. We construct a flow graph in which

certain edges have a maximum flow of zero only if a corresponding edge of the separator graph is

nonpermissible. We check whether these edges have a maximum flow of zero by solving a single

maximum flow problem on the flow graph and computing the strongly connected components of

the corresponding residual graph. The complexity of this procedure is dominated by the complexity

of solving the max flow problem, for which very fast algorithms are available.

The flow graph actually implements two kinds of secondary filtering. One is based on the fact

that a permissible hamiltonian cycle must satisfy a certain generalized cardinality constraint. The

other is based on the fact that the out(in)-degree of every vertex of a hamiltonian cycle is one. The

flow graph encodes both filters by extending the well-known flow graph model for the cardinality

constraint. A similar flow graph is constructed to combine the cardinality constraint with in-degree

constraints.

In practice several separators can be identified, and the filtering algorithm applied for each. We

use a simple breadth-first-search heuristic to find separators rapidly. The complexity of the overall

algorithm is the complexity of solving a max flow problem for each separator identified. Each max

flow problem is solved on a flow graph havingO(k2) nodes andO(k3) edges, where k is the number

of vertices in the separator.

Chapter 2. A Filter for the Circuit Constraint 35

2.3. Previous Work

One approach to filtering the circuit constraint is to make use of sufficient conditions for nonhamil-

tonicity of a directed graph G. If a vertex is inserted into an edge (i, j) of G to obtain a modified

graph Gij , (i, j) is hamiltonian if and only if Gij is hamiltonian. Thus if some sufficient condition

for the nonhamiltonicity of Gij is satisfied, j can be removed from Di.

Although the graph theoretic literature contains a number of sufficient conditions for hamil-

tonicity, much less is known about sufficient conditions for nonhamiltonicity (see [8] for a survey).

Two obvious conditions are that a graph G is nonhamiltonian if (a) it has two or more strongly

connected components, or (b) there is no way to match each vertex with a different successor, that

is, alldiff(x1, . . . , xn) is infeasible. These conditions are easily checked but are quite strong.

Chvátal [6] analyzed three further conditions: an undirected graph G is nonhamiltonian if (c)

some separator S separates G into more than |S| connected components, or (d) there is no set

of disjoint cycles (subtours) that collectively cover all the vertices of G, or (e) some subset of 3

vertices are contained in no cycle. One can verify that (c) is satisfied by exhibiting a separator S.

Chvátal showed that one can verify that (d) is satisfied by exhibiting a certain kind of partition of

the vertices, and that (e) is satisfied by exhibiting subgraphs having a certain structure. However,

condition (c) is quite strong and is in fact a very restrictive special case of the condition we present

below. Exhibiting certificates that establish condition (d) or (e) requires analysis of the entire graph

and is likely to be too computationally expensive for purposes of filtering.

Chvátal also points out in [8] that a graph is nonhamiltonian if there is no feasible solution of the

corresponding subtour elimination and comb inequalities. He shows that this condition generalizes

(c), (d) and (e) above. The feasibility of these inequalities can be checked by linear programming,

but this is impractical for filtering, since there are exponentially many inequalities.

Shufelt and Berliner directly address the problem of filtering the circuit constraint in [32]. They

describe a set of patterns to identify hamiltonian and nonhamiltonian edges in an undirected graph.

These patterns can be adapted for directed graphs and used to eliminate nonhamiltonian edges when

36 Chapter 2. A Filter for the Circuit Constraint

some part of the hamiltonian cycle has been constructed; the method is not intended for the general

case in which arbitrary variable domains are given. The filter is essentially based on the strong

conditions (a) and (b) mentioned above. Moreover, the analysis relies on the special structure of the

problem for which it was developed, namely the construction of a knight’s tour on a chessboard.

Caseau and Laburthe present a set of techniques in [4] to solve small(up to 30 nodes) TSP’s

with constraint propagation. They show that small TSP’s can be efficiently solved with their pro-

posed branch and bound strategies combined with a propagation scheme for the nocycle constraint.

However, they also show that, these methods are not competitive to solve problems of larger sizes.

2.4. Definitions

LetG = (V,E) be a directed graph. A pair of vertices i, j ∈ V are neighbors if (i, j) ∈ E or (j, i) ∈

E. A directed path P between i1, im ∈ V is a sequence of edges (i1, i2), (i2, i3), . . . , (im−1, im) ∈

E. P is a simple path if i1, . . . , im−1 are distinct. The endpoints i1, im are connected by P .

G is connected if any two vertices of G are connected by some directed path. For convenience

we will say that an edge (i, j) connects two vertex sets V1, V2 if i ∈ V1 and j ∈ V2. An edge

connects V1 with subgraph (V2, A2) if it connects V1 with V2.

A nonempty vertex set V ′ ⊂ V induces a connected component of G if V ′ induces a connected

subgraph, and no edge of G connects V ′ with V \ V ′. A set S ⊂ V separates a connected graph

G into connected components C1, . . . , Cp if V \ S induces a subgraph ḠS of G with connected

components C1, . . . , Cp. We say S is a (vertex) separator of G if it separates G into at least two

connected components.1

A directed cycle of G is a directed path of which every vertex is an endpoint. A vertex set

V ′ ⊂ V induces a strongly connected component if every pair of vertices in V ′ belong to a directed

cycle of G, but no vertex of V ′ belongs to the same directed cycle as a vertex in V \ V ′. A

hamiltonian cycle ofG is a simple cycle whose vertices are precisely those in V . An edge (i, j) ofG

1If S separates G into at least three components, S is a shredder.

Chapter 2. A Filter for the Circuit Constraint 37

4

1 2

6

3

5

..

..
........
.........
........
..

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.......................
...................

... ...
.......
.........
.........
.

..
.......

...................

...
.

...................

..
.........
........
........
...

...
...

...
...

...
...

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.....................
...................

A

A

B

B

C

C
C

GS

..
............

...........
.......

........
.......
......
......
.....
.....
.....
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......

.......
........

.........
............

...............
...

..
........
......
.....
.....
......
......
......
......
.......

...........
...

..
........
......
.....
.....
......
......
......
......
.......

...........
...

........
......
.....
.....
......
......
......
......
.......

...........
...

................

..
................

................
................

................
................

.........
.......
...........
.....

..........
......

..........
......

..........
......

..........
......

..........
......

................

................

Figure 2.1: Graph G on vertices {1, . . . , 6} contains the solid edges, and the separator graph GS
on S = {1, 2, 3} contains the solid (unlabeled) edges and dashed (labeled) edges within the larger
circle. The small circles surround connected components of the separated graph.

is hamiltonian if (i, j) belongs to a hamiltonian cycle. (see [35] for more graph theory definitions.)

2.5. Separator Graph

The separator graphGS for a separator S ofG = (V,E) consists of a directed graph with vertex set

S and edge setES , along with a set LS of labels corresponding to the connected components of ḠS .

ES contains (a) an unlabeled edge (i, j) for each (i, j) ∈ E, as well as (b) a labeled edge (i, j)C

whenever C ∈ LS and (i, c1), (c2, j) ∈ E for some pair of vertices c1, c2 in connected component

C (possibly c1 = c2).

Consider for example the graph G of Fig. 2.1. Vertex set S = {1, 2, 3} separates G into three

connected components that may be labeled A,B and C, each of which contains only one vertex.

Thus LS = {A,B,C}, and the separator graphGS contains the three edges that connect its vertices

in G plus four labeled edges. For example, there is an edge (1, 2) labeled A, which can be denoted

(1, 2)A, because there is a directed path from some vertex in component A through (1, 2) and back

to a vertex of component A.

38 Chapter 2. A Filter for the Circuit Constraint

A hamiltonian cycle of GS is permissible if it contains at least one edge bearing each label in

LS . An edge of GS is permissible if it is part of some permissible hamiltonian cycle of GS . Thus

the edges (1, 2)A, (2, 3)B and (3, 1)C form a permissible hamiltonian cycle in Fig. 2.1, and they are

the only permissible edges.

Theorem 10. If S is a separator of directed graph G, then G is hamiltonian only if GS contains a

permissible hamiltonian cycle. Furthermore, an edge of G connecting vertices in S is hamiltonian

only if it is a permissible edge of GS .

Proof. Consider an arbitrary hamiltonian cycleH ofG. We can construct a permissible hamilto-

nian cycle HS for GS as follows. Consider the sequence of vertices in H and remove those that are

not in S; let i1, . . . , im, i1 be the remaining sequence of vertices. HS can be constructed on these

vertices as follows. For any pair ik, ik+1 (where im+1 is identified with i1), if they are adjacent in

H then (ik, ik+1) is an unlabeled edge of GS and connects ik and ik+1 in HS . If ik, ik+1 are not

adjacent in H then all vertices in H between ik and ik+1 lie in the same connected component C

of the subgraph of G induced by V \ S. This means (ik, ik+1) is an edge of GS with label C, and

(ik, ik+1)C connects ik and ik+1 in HS . Since H passes through all connected components, every

label must occur on some edge of HS , and HS is permissible.

We now show that if (i, j) with i, j ∈ S is an edge of a hamiltonian cycle H of G, then (i, j)

is an edge of a permissible hamiltonian cycle of GS . But in this case (i, j) is an unlabeled edge of

GS , and by the above construction (i, j) is part of HS . �

Corollary 11. If |LS | > |S| for some separator S, then G is nonhamiltonian.

Proof. The separator graph GS has |S| vertices and therefore cannot have a hamiltonian cycle

with more than |S| edges. �

Since the labels in LS correspond to connected components of ḠS , |LS | > |S| if and only if S

separates G into more than |S| connected components. The above corollary therefore restates (for

Chapter 2. A Filter for the Circuit Constraint 39

directed graphs) Chvátal’s condition, mentioned earlier, that an undirected graph G is nonhamilto-

nian if some separator S separates G into more than |S| connected components.

Chvátal defines an undirected graph G to be 1-tough when no S separates G into more than

|S| components [7]. Since the same concept can be defined for directed graphs, Corollary 11 says

that a graph is hamiltonian only if it is 1-tough. The existence of a permissible hamiltonian cycle

in every separator graph can therefore be viewed as a generalization of 1-toughness that leads to a

much weaker sufficient condition for nonhamiltonicity.

Corollary 12. If |LS | = |S| for some separator S, then no edge connecting vertices of S is hamil-

tonian.

Proof. An edge e that connects vertices in S is unlabeled in GS . If e is hamiltonian, some

hamiltonian cycle in GS that contains e must have at least |S| labeled edges. But since the cycle

must have exactly |S| edges, all the edges must be labeled and none can be identical to e. �

2.6. Finding Separators

We use a straightforward breadth-first-search heuristic to find separators of G. We arrange the

vertices of G in levels as follows. Arbitrarily select a vertex i of G as a seed and let level 0 contain

i alone. Let level 1 contain all neighbors of i in G. Let level k (for k ≥ 2) contain all vertices j of

G such that (a) j is a neighbor of some vertex on level k − 1, and (b) j does not occur in levels 0

through k − 1. If m ≥ 2, the vertices on any given level k (0 < k < m) form a separator of G.

Thus the heuristic yields m− 1 separators.

The heuristic can be run several times as desired, each time beginning with a different vertex on

level 0.

40 Chapter 2. A Filter for the Circuit Constraint

2.7. A Cardinality Filter

The next step of the algorithm is to identify nonpermissible edges of GS for each separator S. This

can in principle be done by an exact algorithm that discovers all such edges. We present here,

however, a relaxation of the permissibility condition that can be filtered quickly.

The relaxation is based partly on the global cardinality constraint, which is written

gcc(X,V, `, u) (2.4)

where X is a finite set of variables, V = (v1, . . . , vn), and `, u are n-tuples of nonnegative integers.

The domain of each xj ∈ X is a subset of {v1, . . . , vn}. The constraint requires that at least `i and

at most ui variables in X take the value vi, for each i = 1, . . . , n. Hyperarc consistency can be

achieved for gcc in O(|X|2|V |) time using a well-known max flow model [30].

Let X contain a variable xij (with i < j) for each unordered pair i, j of neighboring vertices

of GS . (Vertices are neighbors when they are connected by a labeled or unlabeled edge.) A given

permissible hamiltonian cycle HS of GS assigns values to the variables as follows: xij = U if

unlabeled edge (i, j) or (j, i) is part of HS ; xij = C if labeled edge (i, j)C or (j, i)C is part of

HS ; and xij = D (for dummy) otherwise. Then since each of the labels C1, . . . , Cp in GS must be

assigned to some edge, a permissible hamiltonian cycle satisfies

gcc(X, (C1, . . . , Cp, U,D),), (1, . . . , 1, 0, |X| − |S|), (∞, . . . ,∞, |X| − |S|)) (2.5)

Since values other than D are assigned to exactly |S| edges, the remaining |X| − |S| variables must

receive the value D.

An unlabeled edge (i, j) ofGS is permissible only if xij = U in some feasible solution of (2.5),

and similarly for (j, i). Thus

Theorem 13. An edge (i, j) of G is hamiltonian, and (j, i) is hamiltonian, only if xij = U in some

feasible solution of (2.5).

Chapter 2. A Filter for the Circuit Constraint 41

If a gcc filter removes U from the domain of xij , then neither (i, j) nor (j, i) is hamiltonian. In

the example of Fig. 2.1, (2.5) is

gcc(X, (A,B,C,U,D), (1, 1, 1, 0, 0), (∞,∞,∞,∞, 0))

Since X = {x12, x13, x23} contains only three variables, no xij can take the value U , which means

that none of the unlabeled edges (1, 2), (2, 1), (1, 3) is permissible. Thus none of these edges is

hamiltonian in the original graph.

2.8. Additional Vertex Degree Filtering

Vertex degree filtering is based on the fact that the in-degree and out-degree of every vertex in a

hamiltonian cycle is one. We can perform out-degree and gcc filtering simultaneously (or in-degree

and gcc filtering simultaneously) by modifying the gcc constraint (2.5) and enlarging the capacitated

flow graph that models the constraint.

Rather than introducing a variable xij for every unordered pair of vertices in GS , introduce a

variable yij for each ordered pair of vertices i, j. The domain of yij contains label C for each edge

(i, j)C in GS and the element U if unlabeled edge (i, j) is in GS . (Due to the construction of the

flow network, there will be no need for a dummy elementD.) A permissible hamiltonian cycle must

satisfy the constraint

gcc(Y, (C1, . . . , Cp, U), (1, . . . , 1, 0), (∞, . . . ,∞)) (2.6)

where Y is the set of variables yij . Constraint (2.6) can be combined with out-degree filtering by

constructing a capacitated flow graph.

We first recall some basic properties of flow graphs. A capacitated flow graph G is a directed

graph with a capacity range [`ij , uij] for each edge (i, j). A flow f on G assigns a flow volume on

every edge so that the total flow entering each vertex equals the total flow leaving the vertex. The

42 Chapter 2. A Filter for the Circuit Constraint

flow f is feasible if `ij ≤ fij ≤ uij for each edge (i, j). The residual graph R(f) for a given

feasible f is the graph on the same vertices as G that contains an edge (i, j) with capacity range

[0, uij − fij] whenever fij < uij and an edge (j, i) with capacity [0, fij − `ij] whenever fij > `ij .

An augmenting path from j to i is a path in R(f) that does not include edge (i, j). The following is

a standard result of flow theory.

Theorem 14. A given feasible flow f on graph G maximizes the flow on edge (i, j) if and only if

there is no augmenting path from j to i.

Since (i, j) is an edge of R(f), there is an augmenting path from j to i if and only if (i, j) is

contained in a directed cycle of R(f). Such a cycle exists if and only if i and j belong to the same

strongly connected component of R(f). Thus one can check which edges have a maximum flow of

zero by computing the strongly connected components of R(f).

We now construct a capacitated flow graph GoutS with the following vertices

source s and sink t

U and C1, . . . , Cp

a vertex for each yij ∈ Y

a vertex for every vertex of GS

Chapter 2. A Filter for the Circuit Constraint 43

and the following directed edges

(s, Ci) with capacity range [1,∞) for i = 1, . . . , p

(s, U) with capacity range [0,∞)

(C, yij) with capacity range [0, 1] for every edge (i, j)C ∈ ES

(U, yij) with capacity range [0, 1] for every unlabeled edge (i, j) ∈ ES

(yij , i) with capacity range [0, 1] for every ordered pair (i, j) such that

(i, j) or (i, j)C belongs to ES

(i, t) with capapcity range [0, 1] for every vertex i of GS

return edge (t, s) with capacity range [|S|, |S|]

The gcc and out-degree constraints are simultaneously satisfiable if and only if GoutS has a feasible

flow. The same is true of the graph GinS constructed in an analogous way to enforce in-degree

constraints. Thus

Theorem 15. An edge (i, j) of G is nonhamiltonian if there is a separator S of G for which the

maximum flow on arc (U, yij) of either GoutS or GinS is zero.

This can be checked by first computing a feasible flow f on GoutS and on GinS . The maximum

flow on (U, yij) is zero if (a) f places zero flow on (U, yij), and (b) a flow of zero on this arc satisfies

the optimality condition of Theorem 14.

For example, the network GoutS for the graph G and separator S of Fig. 2.1 is shown in Fig. 2.2.

Since the flow of zero on edges (U, y12), (U, y13) and (U, y21) is maximum in each case, the three

edges (1, 2), (1, 3), and (2, 1) are nonhamiltonian.

It is unclear how to combine gcc with both out-degree and in-degree filtering in the same flow

model.

44 Chapter 2. A Filter for the Circuit Constraint

y12

y13

y21

y23

y31

U

A

B

C

1

2

3

t s............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

............
............

...................................
...........................

[0,∞)

...........................
...........................

...........................
...........................

...........................
...........................

..........

...........................
...........................

...........................
...........................

...........................
...........................

..

...........................
...........................

...........................
...........................

...........................
...........................

..........
[1,∞)

..

..
...........

...........................

..

[1,∞) ..

..
.........
........

...............
............

..

[1,∞)

..........................
..........................

..........................
..........................

..........................
..........................

..
[0, 1]

..
............

...........................

...
.........
........

..............
.............

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

.

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

............................

...........................

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

.

...

..
............

...........................

...

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

..................................
...........................

...

..
............

...........................

...

..

...
...........
...

...........................

..

[0, 1]

..
..

..
...

...

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
...........

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
...

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
...........

..................
..................

..................
..................

..................
..................

..................
..................

..................
................

..................
..................

..................
..................

..................
..................

..................
..................

..................
..

..................
..................

..................
..................

..................
..................

..................
..................

..................
................

..

...
..........
......

...................
........

..

[0, 1]

...

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

......

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.................................
...........................

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

...
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...

...
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
....

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..............................

...........................

[3, 3]

Figure 2.2: Flow model for simultaneous gcc and out-degree filtering of nonhamiltonian edges.
Heavy lines show the only feasible flow.

2.9. The Algorithm

The filtering algorithm is summed up in Fig. 2.3. If the given graph is G = (V,E), the complexity

of finding separators is O(|E|) for each seed vertex.

A feasible flow exists for GoutS (or GinS) if and only if the maximum flow on (t, s) is |S|. There

are numerous max flow algorithms with various complexities [1, 12, 28], the best ones having

complexity close to O(mn), where n is the number of vertices and m the number of edges. For

example, the algorithm of [12] has complexity O(mn log(n2/m)).

Once a feasible flow is found forGoutS and forGinS , one can check which edges have a maximum

flow of zero by computing the strongly connected components of GoutS and GinS . Since the classical

algorithm for finding strongly connected components has complexity O(m) [33], the filtering com-

plexity for a given S is dominated by the complexity O(mn) of the max flow algorithm, where n is

the maximum of the number of vertices in GoutS and GinS , and m is the maximum of the number of

edges in GoutS and GinS .

We can assume that |LS | ≤ |S|, since otherwise G is immediately recognized as nonhamilto-

Chapter 2. A Filter for the Circuit Constraint 45

Let G be the directed graph associated with circuit(x1, . . . , xn).
Let Di be the current domain of xi for i = 1, . . . , n.
Let s be a limit on the size of separators considered.
For one or more vertices i of G:

Use the breadth-first-search heuristic to create a collection S of separators,
with i as the seed.

For each S ∈ S with |S| ≤ s:
For G′S = GoutS , GinS :

If G′S has a feasible flow f then:
For each edge (U, yij) of G′S on which f places zero flow:

If (U, yij) satisfies the condition of Theorem 14 then delete j from Di.
Else stop; circuit(x1, . . . , xn) is infeasible.

Figure 2.3: Filtering algorithm for the circuit constraint.

nian. Thus

n = O(|S|+ |Y |+ |LS |) ≤ O(|Y |) ≤ O(|S|2)

m = O(|Y ||LS |) ≤ O(|Y ||S|) ≤ O(|S|3)

So the filtering complexity for each separator S is approximately O(|S|5). In practice |S| can be

bounded by considering only small separators. Also the best implementations of max flow algo-

rithms are extremely fast. The PRF algorithm of [5], for instance, reportedly solves problems on

250,000 vertices in under two minutes. Other implementations are described in [19].

2.10. Computational Results

We implemented the algorithm of Fig. 2.3 in order to investigate what fraction of nonhamiltonian

edges it detects. We randomly generated directed graphs in which each possible directed edge occurs

with probability p, using various values of p. We discarded all disconnected graphs. We identified

all nonhamiltonian edges using an exhaustive search algorithm, for purposes of comparison with the

filter. Due to the intensive computation required to perform exhaustive search for a large number of

instances, we carried out the tests on relatively small graphs (up to 15 vertices).

We generated multiple separators using the breadth-first-search heuristic described above. Each

vertex was used as a seed, and the vertices on each intermediate level were used as a separator.

46 Chapter 2. A Filter for the Circuit Constraint

Table 2.1: Performance of the filtering algorithm for circuit on random graphs that were hamilto-
nian. The filter successfully identified all random graphs that were nonhamiltonian.

No. No. Avg. no. Avg. Nonham. Avg. no. Avg. %
vertices instances edges density edges detected detected

6 885 17.9 0.43 5.0 2.3 37
7 584 20.1 0.36 7.2 3.5 45
8 440 24.0 0.33 8.8 4.1 43
9 573 28.8 0.32 8.9 3.6 39

10 376 31.5 0.29 11.1 4.1 37
11 167 32.7 0.25 13.6 4.5 34
12 129 36.2 0.23 14.5 4.8 32
13 135 40.6 0.22 15.5 4.7 34
14 88 43.0 0.20 18.4 5.1 28
15 156 48.4 0.20 17.0 5.9 34

Since the original graphs never have more than 15 vertices, the separators were all small, and there

was no need to limit the size of separators used.

We found that the filter detected all nonhamiltonian graphs. The results for hamiltonian graphs

appear in Table 2.1. The density of each graph is computed asm/(n(n−1)), wherem is the number

of edges. The average number of edges and average density are shown. The average number of

nonhamiltonian edges is indicated, as is the average number of nonhamiltonian edges detected, and

the average fraction of nonhamiltonian edges detected.

The filter detects about one-third of nonhamiltonian edges, somewhat more for smaller graphs.

Although one might expect a higher fraction to be detected in sparser graphs, the data do not confirm

this at least for the range of densities used here. The densities vary from about 60 to 150% of the

average for the smaller graphs and 75 to 130% of the average for the larger graphs, and scatterplots

reveal no relationship between the density and effectiveness of the filter.

In view of the filter’s effectiveness at detecting nonhamiltonian graphs, one could in principle

test each edge (i, j) for hamiltonicity by testing the modified graph Gij for hamiltonicity, as de-

scribed earlier. We did not pursue this idea, due to the computational cost of applying the filter to

each Gij .

Chapter 2. A Filter for the Circuit Constraint 47

2.11. Conclusions

We presented a filter for the circuit constraint that identifies some of the nonhamiltonian edges in the

associated graph. It does so by analyzing a combinatorial object (a separator graph) that is generally

much smaller than the original graph but captures much of its structure. “Nonpermissible” edges in

the separator graph are nonhamiltonian in the original graph, and the corresponding values can be

filtered from variable domains.

Nonpermissible edges are identified by a secondary filter that solves a max flow problem on an

associated flow graph and identifies edges on which the max flow is zero. The complexity of the

filtering algorithm is essentially that of solving a max flow problem on the flow graph corresponding

to each separator used.

We tested the effectiveness of this filter on a few thousand random graphs with up to 15 vertices,

corresponding to instances of the circuit constraint with up to 15 variables. Although the filter is

incomplete, it identified all nonhamiltonian graphs, which means that it recognized all infeasible in-

stances of circuit. On hamiltonian graphs, it identified about one-third of the nonhamiltonian edges,

which means that it eliminated about one-third of the redundant values in the variable domains.

These results are preliminary but suggest that a filter based on a fast max flow algorithm can

accomplish a significant amount of domain reduction for the circuit constraint, although it falls far

short of achieving hyperarc consistency.

Several research issues remain. One is how circuit filtering interacts with alldiff filtering, and

how much can be accomplished by using both filters simultaneously. Another issue is how much

one can restrict the size of separators of large graphs while still retaining an effective filter. It is

unclear how effectiveness would be measured in this context, since it is computationally impractical

to identify all nonhamiltonian edges for comparison purposes. A third issue, of course, is whether

the circuit filter described here can be useful across a variety of practical applications.

Chapter 3

Crane Scheduling by Dynamic

Programming

3.1. Introduction

Manufacturing facilities frequently rely on track-mounted cranes to move in-process materials or

equipment from one location to another. A typical arrangement, and the type studied here, allows

two or more hoists to move along a single horizontal track attached to the ceiling. Each hoist may

be mounted on a crossbar that permits lateral movement as the crossbar itself moves longitudinally

along the track. A cable suspended from the crossbar raises and lowers a lifting hook or other

device.

When a production schedule for the plant is drawn up, cranes must be available to move materi-

als from one processing unit to another at the desired times. The cranes may also transport cleaning

or maintenance equipment. Since the cranes operate on a single track, they must be carefully sched-

uled so as not to interfere with each other. One crane may be required to yield (move out of the

way) to permit another crane to pick up or deliver its load.

The crane scheduling problem may appear straightforward at first, but it is highly combinatorial

in nature. The combinatorics are threefold: each task must be assigned to a crane, the tasks assigned

49

50 Chapter 3. Crane Scheduling by Dynamic Programming

to each crane must be sequenced, and the space-time trajectory of each crane must be calculated to

carry out the tasks in the right sequence and at the right times. In fact, it is not unusual for managers

to put together a production schedule that seems to allow ample time for crane movements, only to

find that the crane operators cannot keep up with the schedule. As the cranes lag further and further

behind, the production schedule must be adjusted in an ad hoc manner to allow them to catch up.

In this chapter we address this problem by developing an algorithm for the crane scheduling

problem. It assumes that a production schedule is given in the form of time windows within which

each pickup and delivery must occur. It further assumes that there are only two cranes, leaving the

multi-crane problem to future research. The algorithm attempts to schedule each task as soon after

its earliest start time as possible.

Due to the difficulty of the problem, the algorithm for assigning and sequencing is not exact.

The task assignment and sequencing are determined by a local search method. However, once

the assignment and sequencing are fixed, a strictly optimal space-time trajectory is sought with a

specialized dynamic programming algorithm that exploits the structure of the problem.

We use an exact algorithm to compute the optimal trajectory because it is important to know how

much delay in the production schedule is really necessary to accommodate the cranes. A trajectory

obtained heuristically typically incurs significant delays that reduce the productivity of expensive

equipment. In such cases it is useful to learn whether a better solution could be found with an exact

algorithm, or simply does not exist.

Although the assignment and sequencing algorithm is inexact, a local search heuristic is likely

to be more effective for this portion of the problem. The sequencing of tasks in a satisfactory

solution is likely to follow the sequencing of the production schedule fairly closely, since otherwise

the delays could be substantial. There are also many constraints on sequencing that tend to reduce

the search space. Similarly, assignments of tasks to cranes are somewhat limited in number by the

fact that only a fairly balanced allocation is likely to yield a good solution. The optimal interleaving

of tasks in a space-time trajectory, however, is difficult to find heuristically because one must plot

a trajectory to a high degree of resolution to determine its feasibility. We therefore use an exact

Chapter 3. Crane Scheduling by Dynamic Programming 51

algorithm for this portion of the problem.

3.2. The Crane Scheduling Problem

In practice, a crane scheduling problem typically consists of a number of jobs, each of which re-

quires that the crane make several stops. The crane performs some kind of processing at each stop,

during which the crane must be stationary. Processing may include picking up a ladle, loading

in-process material, unloading material, cleaning a production unit, or some other operation. It is

convenient to refer to each processing stop as a task, which means that a job may consist of several

tasks.

The location and processing time for each task are given, as are time windows for the job as

a whole. The release time of a job becomes the release time of the first task of that job, and the

deadline for a job becomes the deadline of the last task of the job. Constraints are imposed to

require that the tasks corresponding to a given job be performed consecutively by the same crane in

the proper order. There may be additional precedence and assignment constraints as well.

The problem data are therefore:

Rj = release time of task j

Dj = deadline of task j

Lj = stop location for task j

Pj = processing time for task j

Constraints on crane assigments and task sequencing

If task j is part of a job that consists of tasks i, i+ 1, . . . , k (for k > i), then the task release time is

the earliest possible start time for that task, given the job release time:

Rj = Ri +
j−1∑
`=i

(
P` +

|L`+1 − L`|
v

)

52 Chapter 3. Crane Scheduling by Dynamic Programming

where v is the maximum possible distance traveled by a crane during one time period. Similarly the

task deadline is the latest possible finish time, given the job deadline:

Dj = Dk −
k∑

`=j+1

(
|L` − L`−1|

v
+ P`

)

Section 3.3 discusses the assignment and sequencing constraints in detail. We suppose for generality

that there are cranes 1, . . . ,m, where crane 1 is the leftmost crane and crane m the rightmost crane,

although we solve the problem only for m = 2. Tmax is the length of the time horizon. Also

L̄0, L̄1 = leftmost and rightmost crane locations

∆ = minimum crane separation

Thus the rightmost position of the left crane is L̄1 −∆, and analogously for the right crane.

The problem variables are:

xct = position of crane c at time t

yct = task being processed by crane c at time t (0 if none)

τj = time at which task j starts processing

kj = crane assigned to task j

Chapter 3. Crane Scheduling by Dynamic Programming 53

The problem with n tasks and m cranes may now be stated

min f(x, y, u, k)

L̄0 ≤ xct ≤ L̄1

xct − v ≤ xc,t+1 ≤ xct + v

yct > 0⇒ xct = Lyct

 all c, t

(a)

(b)

(c)

xct ≤ xc+1,t −∆, c = 1, . . . ,m− 1, all t (d)

Rj ≤ τj ≤ Dj − Pj , all j

ykjt = j, t = τj , . . . , τj + Pj − 1

 all j
(e)

(f)

yct ∈ {0, . . . , n}, all c, t

kj ∈ {1, . . . ,m}, all j

(3.1)

Constraint (a) requires that the cranes stay on the track, and (b) that their speed be within the

maximum. Constraint (c) implies that a crane must be at the right location when it is processing a

task. Constraint (d) makes sure the cranes do not interfere with each other. Constraint (e) enforces

the time windows, and (f) ensures that processing continues the required amount of time once it

starts.

The objective function f(k, x, y, a) may be defined in various ways. We define it to be a

weighted sum of processing delay over the tasks, with an individual weight αj for each task. The

processing delay is defined as a convex combination of (a) the time lapse between the release time

and the start of processing and (b) the time lapse between the earliest finish time and the finish of

processing. The earliest finish time of task j is Rj + Pj . Thus

f(x, y, u, k) = β
∑
j

αj(τj −Rj) + (1− β)
∑
j

αj(dj −Rj − Pj) (3.2)

where 0 ≤ β ≤ 1, and where dj is the finish time and is defined by the additional constraints

dyct ≥ t, all c, t

54 Chapter 3. Crane Scheduling by Dynamic Programming

A local search heuristic will be used to assign jobs to cranes and to determine their sequence.

Once this is done, the problem that remains is an optimal control problem, which will be solved by

dynamic programming.

3.3. Precedence Constraints

In practice, precedence constraints are imposed on groups of jobs as well as individual jobs. We

therefore assume that the jobs are partitioned into groups Ji. A precedence relation Ji < Jk means

that (a) all the jobs in Ji must be assigned to the same crane, and similarly for all the jobs in Jk,

and (b) if the jobs in Ji are assigned to the same crane as the jobs in Jk, then all the jobs in group

Ji must precede all the jobs in Jk. That is, every task associated with a job in Ji must finish before

any task associated with a job in Jk starts. No particular order is imposed on jobs within a group

Ji, and the jobs in Ji need not be consecutive. Even when Ji < Jk, the jobs in Ji need not be

processed immediately before the jobs in Jk. That is, some task associated with a job in neither Ji

nor Jk may be processed after all tasks in Ji are processed and before any task in Jk is processed.

When Ji and Jk are singletons, the relation becomes a conventional precedence constraint between

two individual jobs.

3.4. Simplifying the Optimal Control Problem

Optimal control of the cranes is much easier to calculate when it is recognized that only certain

trajectories need be considered, namely those we call minimal trajectories. We will show that when

there are two cranes, then some pair of minimal trajectories is optimal—provided the objective

function depends only on when processing occurs.

Let a processing schedule for a given crane consist of the times at which processing starts

for each task j. Thus the objective (3.2) is a function of the processing schedule. We define the

canonical trajectory for the left crane, with respect to a given processing schedule, to be one that

observes the processing schedule and that, between loading and unloading, follows the leftmost

Chapter 3. Crane Scheduling by Dynamic Programming 55

time

distance

Pickup
point

Delivery
point

Loading

Unloading

Figure 3.1: Sample space-time trajectory for one task. The shaded vertical bars denote loading and
unloading.

Wait as
long as
possible

Move as
soon as
possible

(a) (b)

Figure 3.2: Canonical trajectory for the left crane (a) when the destination is to the right of the
origin, and (b) when the destination is to the left of the origin.

trajectory that never moves in the direction away from its destination. For example, the trajectory

in Figure 3.1 is not canonical, but the trajectories of Figure 3.2 are canonical with respect to the

processing schedule shown by the thick vertical bars.

More precisely, if the destination is to the right of the origin, then the left crane follows the

canonical trajectory if it leaves a loading (unloading) position as late as possible so as to arrive at

the destination just as unloading (loading) starts (Fig. 3.2a). If the destination is to the left of the

origin, the crane leaves the origin as early as possible (Fig. 3.2b). Thus at any time the crane is

either stationary or moving at maximum speed. The canonical trajectory for the right crane follows

56 Chapter 3. Crane Scheduling by Dynamic Programming

Depart from
canonical
trajectory

At each moment, follow
canonical trajectory or right

crane’s trajectory, whichever is
further to the left

Left crane Right crane

Figure 3.3: Minimal trajectory for the left crane (leftmost solid line).

the rightmost trajectory: it leaves the origin as late as possible if moving to the left, and as early as

possible if moving to the right.

A trajectory for the left crane is minimal with respect to the right crane if at each moment it is the

rightmost of (a) the canonical trajectory for the left crane and (b) the trajectory that runs parallel to

and just to the left of the right crane’s trajectory (Fig. 3.3). More precisely, trajectory x′1 is minimal

for the left crane, with respect to trajectory x2 for the right crane, if the canonical trajectory x̄1 for

the left crane satisfies x′1(t) = min{x̄1(t), x2(t)−∆} at each time t. A trajectory for the right crane

is minimal with respect to the left crane if it is the leftmost of the canonical trajectory for the right

crane and the left crane’s trajectory. That is, x′2(t) is minimal if x′2(t) = max{x̄2(t), x1(t) + ∆},

where x̄2(t) is the canonical trajectory.

Theorem 16. Suppose the objective function of (3.1) depends only on the processing schedule. If

(3.1) has an optimal solution, then some optimal pair of trajectories are minimal with respect to

each other.

Proof. The idea of the proof is to replace the left crane’s optimal trajectory with a minimal

trajectory with respect to the right crane’s optimal trajectory. Then assign the right crane a minimal

trajectory with respect to the left crane’s new trajectory, and finally assign the left crane a minimal

trajectory with respect to the right crane’s new trajectory. At this point it is shown that the trajec-

tories are minimal with respect to each other. Since these replacements never change the objective

Chapter 3. Crane Scheduling by Dynamic Programming 57

function value, the minimal trajectories are optimal, and the theorem follows.

Thus let x∗ = (x∗1, x∗2) be a pair of optimal trajectories for a two-crane problem. Let x̄1, x̄2

be canonical trajectories for the left and right cranes with respect to the processing schedules in the

optimal trajectories.

Consider the minimal trajectory x′1 for the left crane with respect to x∗2, which is given by

x′1(t) = min{x̄1(t), x∗2(t) −∆}. We claim that (x′1, x
∗
2) is optimal. First note that it has the same

objective function value as x∗, since x′1 has the same processing schedule as x∗1. Furthermore, it is

feasible because the cranes do not interfere with each other, and the speed of the left crane is never

greater than v. The cranes do not interfere with each other because x′1(t) ≤ x∗2(t)−∆ for all t, due

to x′1(t) ≤ x∗1(t) and x∗1(t) ≤ x∗2(t)−∆. To show that the speed of the left crane is never more than

v it suffices to show that the average speed in the left-to-right direction between any pair of time

points t1, t2 is never more than v, and similarly for the average speed in the right-to-left direction.

The former is

x′1(t2)− x′1(t1)
t2 − t1

=
min{x̄1(t2), x∗2(t2)−∆} −min{x̄1(t1), x∗1(t1)−∆}

t2 − t1

≤ max
{
x̄1(t2)− x̄1(t1)

t2 − t1
,
x∗2(t2)− x∗2(t1)

t2 − t1

}
≤ v

where the first inequality is due to the fact that

min{a, b} −min{c, d} ≤ max{a− c, b− d}

for any a, b, c, d, and the second inequality due to the fact that x̄1 and x∗2 are feasible trajectories.

The speed in the right-to-left direction is similarly bounded.

Now consider the minimal trajectory x′2 for the right crane with respect to x′1, given by x′2(t) =

max{x̄2(t), x′1(t) + ∆}. It can be shown as above that (x′1, x
′
2) is optimal.

Finally, let x′′1 be the minimal trajectory for the left crane with respect to x′2, given by x′′1(t) =

min{x̄1(t), x′2(t)−∆}. Again (x′′1, x
′
2) is optimal. Since x′′1 is minimal with respect to x′2, to prove

the theorem it suffices to show that x′2 is minimal with respect to x′′1; that is, max{x̄2(t), x′′1(t) +

58 Chapter 3. Crane Scheduling by Dynamic Programming

∆} = x′2(t) for all t. To show this we consider four cases for each time t.

Case 1: x̄1(t) + ∆ ≤ x̄2(t). We first show that

(x′′1(t), x′2(t)) = (x̄1(t), x̄2(t)) (3.3)

by considering the subcases (a) x∗2(t) ≤ x̄1(t) and (b) x̄1(t) < x∗2(t). In subcase (a),

x′1(t) = min{x̄1(t), x∗2(t)−∆} = x∗2(t)−∆

which implies

x′2(t) = max{x̄2(t), x′1(t) + ∆} = max{x̄2(t), x∗2(t)} = x̄2(t)

and

x′′1(t) = min{x̄1, x
′
2(t)−∆} = min{x̄1, x̄2(t)−∆} = x̄1(t)

In subcase (b), x′1(t) = x̄1(t), which implies x′2(t) = max{x̄2(t), x̄1(t) + ∆} = x̄2(t) and again

x′′1(t) = x̄1. Now from (3.3) we have

max{x̄2(t), x′′1(t) + ∆} = max{x̄2(t), x̄1(t) + ∆} = x̄2(t) = x′2(t)

as claimed. The remaining cases suppose x̄2(t) < x̄1(t) + ∆ and consider the subcases in which

x∗2(t) is less than or equal to x̄2(t), between x̄2(t) and x̄1(t) + ∆, and greater than x̄1(t) + ∆.

Case 2: x∗2(t) ≤ x̄2(t) < x̄1(t) + ∆. It can be checked that (x′′1(t), x′2(t)) = (x̄2(t)−∆, x̄2(t))

and max{x̄2(t), x′′1(t) + ∆} = max{x̄2(t), x̄2(t)} = x̄2(t) = x′2(t), as claimed.

Case 3: x̄2(t) < x∗2(t) ≤ x̄1(t)+∆. Here (x′′1(t), x′2(t)) = (x∗2(t)−∆, x∗2(t)) and max{x̄2(t), x′′1(t)+

∆} = max{x̄2(t), x∗2(t)} = x∗2(t) = x′2(t).

Case 4: x̄2(t) < x̄1(t)+∆ < x∗1(t). Here (x′′1(t), x′2(t)) = (x̄1(t), x̄1(t)+∆) and max{x̄2(t), x′′1(t)+

Chapter 3. Crane Scheduling by Dynamic Programming 59

∆} = max{x̄2(t), x̄1(t) + ∆} = x̄1(t) + ∆ = x′2(t). This completes the proof. �

The properties of minimal trajectories allow us to consider a very restricted subset of trajectories

when computing the optimum.

Corollary 17. If the two-crane problem has an optimal solution, then there is an optimal solution

with the following characteristics:

(a) While not processing a task, the left (right) crane is never to the right (left) of both the previous

and the next stop.

(b) While not processing a task, the left (right) crane is moving in a direction toward its next

processing location if it is to the right (left) of the previous or next stop.

(c) A crane never moves in the direction away from its next processing location unless it is adjacent

to the other crane at all times during such motion.

(d) While not processing a task, the left (right) crane can be stationary only if it is (i) at the previous

or the next processing location, whichever is further to the left (right), or (ii) adjacent to the

other crane.

Proof.

(a) If crane 1 (the left crane) is to the right of both its previous and next stop at some time t, then

x1(t) > x̄1(t). This is impossible in a minimal trajectory, in which x1(t) = min{x̄1(t), x2(t)−∆}.

The argument is similar for crane 2.

(b) Suppose crane 1 is to the right of its previous stop. Due to (a), it is not to the right of its next

stop, which must therefore be to the right of the previous stop. We cannot have x1(t) > x̄1(t) as

in (a), and we cannot have x1(t) < x̄1(t), since this means the crane cannot reach its next stop in

time. So crane 1 is on its canonical trajectory, which means that it is moving toward its next stop.

The argument is similar if crane is to the right of the next stop.

(c) From (a) and (b), at a given time t crane 1 can be moving in the direction opposite its next

stop only if it is at or to the left of both the previous and next stops. This means that it will be to the

60 Chapter 3. Crane Scheduling by Dynamic Programming

left of both at time t+ 1, so that x1(t+ 1) < x̄1(t+ 1). But since

x1(t+ 1) = min{x̄1(t+ 1), x2(t+ 1)−∆}

this means x1(t+ 1) = x2(t+ 1)−∆, and crane 1 is adjacent to the other crane. Since crane 1 is

moving left between t and t+ 1, it must be adjacent to the other crane at time t as well.

(d) From (a) and (b), a stationary crane 1 must be at or to the left both the previous and the next

stop. If it is at one of them, then (i) applies. If it is to the left of both, then x1(t) < x̄1(t), which

again implies that x1(t) = x2(t)−∆, and (ii) holds. �

3.5. Dynamic Programming Recursion

The optimal control problem for the cranes is not simply a matter of computing an optimal space-

time trajectory. It is complicated by four factors: (a) each crane must make certain pickups and

deliveries in a certain order; (b) each pickup and delivery must occur at a certain location; (c) each

crane must remain in each pickup and delivery location a certain amount of time; and (d) the cranes

must not interfere with each other.

This calls for three state variables for each crane. Two state variables are xct and yct as defined

in model (3.1). The third state variable is

uct =

 amount of time crane c will have been processing at time t+ 1

(0 if the crane is neither processing nor starts processing at time t)

In principle the recursion is straightforward, although a practical implementation requires care-

ful management of state transitions and data structures. Let xt = (x1t, x2t), and similarly for yt and

ut. Also let zt = (xt, yt, ut). It is convenient to use a forward recursion:

gt+1(zt+1) = min
zt∈S−1(zt+1)

{h(t, yt, ut) + gt(zt)} (3.4)

Chapter 3. Crane Scheduling by Dynamic Programming 61

where gt(zt) is the cost of an optimal trajectory between the initial state and state zt at time t,

h(t, yt, ut) is the cost incurred at time t, and S−1(zt+1) is the set of states at time t from which the

system can move to state zt+1 at time t + 1. Given the cost function (3.2), the cost h(t, yt, ut) is∑
c hc(t, yt, ut), where

hc(t, yt, ut) =

βαyct(t−Ryct) if uct = 1

(1− β)αyct(t+ 1− EFTyct) if uct = Pyct

0 otherwise

The boundary condition is

g0(z0) = 0

when z0 is the initial state. The optimal cost is gTmax(zTmax), where zTmax is the desired terminal

state.

For each state zt+1 the recursion (3.4) computes the minimum gt+1(zt+1) and the state zt =

s−1
t+1(zt+1) that achieves the minimum. Thus s−1

t+1(zt+1) points to the state that would precede zt+1

in the optimal trajectory if zt+1 were in the optimal trajectory. The cost table gt+1(·) is stored in

memory until gt+2(·) is computed, and then released. Thus only two consecutive cost tables need

be stored in memory at any one time. The table s−1
t+1(·) of pointers is stored offline. Then if zT is

the final state, we can retrace the optimal solution in reverse order by reading the tables s−1
t+1(·) into

memory one at a time and setting zt = s−1
t+1(zt+1) for t = N − 1, N − 2, . . . , 0.

3.6. Assignment and Sequencing by Local Search

The assignment of jobs to cranes and the sequencing of jobs on each crane is determined by a

simple local search heuristic. An initial pattern (i.e., an initial assignment and sequencing) is created

using either a balanced or a greedy heuristic. Then a local search consisting of several rounds is

conducted in order to find feasible crane trajectories. In each round, a certain number of patterns

in a neighborhood of the current pattern are examined until a feasible one is found. The number of

62 Chapter 3. Crane Scheduling by Dynamic Programming

patterns (size of neighborhood) to explore is determined by a parameter which can be used to adjust

the behavior of the algorithm for various datasets (i.e. when perhaps an initial feasible pattern

is hard to find). Feasibility (in terms of trajectory conflicts) is checked by sending the pattern to

the dynamic programming algorithm. Since this is an expensive operation, the local search move

generator makes sure to never send patterns to the dynamic programming module if they violate

assignment or precedence constraints. After a few rounds, the best solution found by the dynamic

programming module is selected.

One of the following heuristics is used to obtain an initial pattern:

1. Balanced allocation. Assign jobs to cranes in the order of their release times. Assign jobs

with stop points closer to the left side of the track to the left crane, and others to the right

crane, subject to precedence and crane assignment constraints. Maintain a realistic load bal-

ancing between the two cranes by requiring that the ratio of the number of jobs assigned to

the two cranes is less than a given user specified parameter. Through experimentation, we de-

termined that (for the available dataset) it was most effective to require the crane with fewer

jobs to have at least one-fourth as many jobs as the other crane.

2. Greedy allocation. Assign jobs to cranes in the order of their release times. Each job is

assigned to the nearest crane, subject to precedence and assignment constraints, assuming

that each crane is located at the last stop point of the job most recently assigned to it. Initially

the two cranes are assumed to be at their docking positions.

In each round, a (restricted) neighborhood of the current pattern is explored to find a feasible

pattern. The neighborhood contains patterns that

1. satisfy precedence and assignment constraints,

2. pass a bounding test, and

Chapter 3. Crane Scheduling by Dynamic Programming 63

3. can be reached by one of the following operators:

SWAP1(c, j, k) swap the positions of jobs j and k on crane c

SWAP2(c, j, k) move job j from crane c to k’s position on the other crane

and k from the other crane to j’s position on crane c.

MOVE(c, j, k) move job j from crane c to a position immediately after k

on the other crane.

The jobs assigned to each crane are stored in doubly linked lists, so that the operators can be

applied in constant time.

The bounding test is performed on a given pattern by computing a lower bound vmin on the

objective function value that results from an optimal solution having that pattern. The pattern is

excluded if vmin is greater than or equal to the value of the best solution found in previous rounds.

The bound vmin is computed by supposing that each crane can process the jobs assigned to it by

moving directly from one stop to another without delay and without yielding to the other crane. The

start time τj of each task is assumed to be the start time that results from this assumption, and the

cost is computed accordingly.

To generate neighboring patterns, operators are selected randomly at first, and later biased to-

wards more ”successful” operators. Success is measured by the frequency with which the operator

led to a feasible solution in previous rounds. Each pattern that passes tests 1 and 2 is sent to the

dynamic programming algorithm, until a feasible solution is found or a maximum number of neigh-

bors (20 was enough in our tests) is reached. The dynamic programming algorithm computes an

optimal solution (pair of crane trajectories) having the specified pattern, or else determines that there

is no feasible solution with that pattern.

In each round, the neighborhood is centered around the first feasible solution found in the pre-

vious round. In the first round, the neighborhood is centered around the initial solution generated as

described above, and this initial solution is the first one sent to the dynamic programming algorithm.

64 Chapter 3. Crane Scheduling by Dynamic Programming

3.7. Reduction of the State Space

We can substantially reduce the size of the state space if we observe that in practical problems,

the cranes spend much more time processing than moving. The typical processing time for a state

ranges from two to five minutes (sometimes much longer), while the typical transit time to the next

location is well under a minute. Furthermore, the state variables representing location and task

assignment (xct and yct) cannot change while the crane is processing.

These facts suggests that the processing time state variable uct should be replaced by an inter-

val Uct = [uloct, u
hi
ct] = {uloct, uloct + 1, . . . , uhict} of consecutive processing times. A single “state”

(xt, yt, Uct) = (xt, yt, (U1t, U2t)) now represents a set of states, namely the Cartesian product

{(xt, yt, (i, j)) | i ∈ U1t, j ∈ U2t}

The possible state transitions for either crane c are shown in Table 3.1. The transitions in the

table are feasible only if they satisfy other constraints in the problem, including those based on time

windows, the physical length of the track, and interactions with the other crane. The transitions can

be explained, line by line, as follows:

1. Because the processing time interval is the singleton [0, 0], the crane can be in motion and

can in particular move to either adjacent location. When it arrives at the next location, the

currently assigned task can start processing if the crane is in the correct position, in which

case the state interval is Uct = [0, 1] to represent two possible states: one in which the task

does not start processing at time t + 1, and one in which it does (the interval is [1, 1] if the

deadline forces the task to start processing at t+ 1). If the crane is in the wrong location for

the task, the state remains [0, 0].

2. None of the states in the interval [0, u2] allow processing to finish at time t+ 1. So all of the

processing time states advance by one—except possibly the zero state, in which processing

has not yet started and can be delayed yet again if the deadline permits it.

Chapter 3. Crane Scheduling by Dynamic Programming 65

Table 3.1: Possible state transitions for crane c using an interval-valued state variable for processing
time.

State at time t State at time t+ 1

1. (xct, yct, [0, 0]) (x′, yct, [0, 0])1 or (x′, yct, [0, 1])1,2 or (x′, yct, [1, 1])1,2,3

2. (xct, yct, [0, u2])4 (xct, yct, [0, u2 + 1]) or (xct, yct, [1, u2 + 1])2,4

3. (xct, yct, [0, Pyct]) (xct, yct, [0, Pyct]) or (xct, yct, [1, Pyct])3 or
(xct, y′, [0, 0])5 or (xct, y′, [0, 1])2,5 or (xct, y′, [1, 1])2,3,5

4. (xct, yct, [u1, u2])4,6 (xct, yct, [u1 + 1, u2 + 1])

5. (xct, yct, [u1, Pyct])6 (xct, yct, [u1 + 1, Pyct]) or
(xct, y′, [0, 0])5 or (xct, y′, [0, 1])2,5 or (xct, y′, [1, 1])2,3,5

1The next location x′ is xct − 1, xct, or xct + 1.
2This transition is possible only if task yct processes at location x′.
3This transition is possible only if task yct can start no later than time t+ 1.
4Here 0 < u2 < Pyct .
5Task y′ is the task that follows task yct on crane c.
6Here u1 > 0.

3. The last state in the interval [0, Pyct] allows processing to finish at time t+ 1. This state splits

off from the interval and assumes one of the processing state intervals in line 1. The other

states evolve as in line 2.

4. Because the task is underway in all states, all processing times advance by one.

5. This is similar to line 3 except that there is no zero state.

There is no need to store a pointer s−1
t+1(xt, yt, (i, j)) for every state (xt, yt, (i, j)) in (xt, yt, Ut).

This is because when uct ≥ 2, the state of crane c preceding (xct, yct, uct) must be (xct, yct, uct−1).

Thus we store s−1
t+1(xt, yt, (i, j)) only when i ≤ 1 or j ≤ 1.

However, we must store the cost ht+1(xt, yt, (i, j)) for every (i, j), because it is potentially

different for every (i, j). Fortunately, it is not necessary to update this entire table at each time

66 Chapter 3. Crane Scheduling by Dynamic Programming

period, because most of the costs evolve in a predictable fashion. If i, j ≥ 2, then

ht+1(xy, yt, (i, j)) = ht(xt, yt, (i− 1, j − 1))

So for each pair of tasks (y, y′) we maintain a two-dimensional circular queue Qyy′(·, ·) in which

the cost

ht+1((Ly, Ly′), (y, y′), (i, j)) (3.5)

for i, j ≥ 2 is stored at location

Qyy′((t+ i− 2) mod M, (t+ j − 2) mod M)

where M is the size of the array Qyy′(·, ·) (i.e., the longest possible processing time minus 1). In

each period we insert the cost (3.5) into Q only for pairs (i, j) in which i = 2 or j = 2; the costs for

other pairs with i, j ≥ 2 were computed in previous periods. Thus only one row and one column of

the Q array are altered in each time period, which substantially reduces computation time. When

i ≤ 1 or j ≤ 1, the cost (3.5) is stored as a table entry ht+1(xt, yt, (i, j)) that is updated at every

time period, as with pointers.

The array Qyy′(·, ·) is created when the state ((Ly, Ly′), (y, y′), (i, j)) is first encountered with

i, j ≥ 2. The array is kept in memory over multiple periods until it is no longer updated, at which

time it is deleted.

3.8. Experimental Results

Computational tests were performed on a problem that reflect a realistic scheduling problem. It

contains 60 jobs, each with a nominal time window of 40 minutes. These time windows were

adjusted at run time for the experiments described here. The computation times reported are on a

desktop PC running Windows XP with a Pentium D processor 820 (2.8 GHz).

We found that the balanced allocation heuristic is more effective than the greedy allocation

Chapter 3. Crane Scheduling by Dynamic Programming 67

Table 3.2: Computational results for the 60-job problem.

Jobs Time Computation
window time for
(mins) one DP (sec)

10 40 6.8
20 40 7.6
30 40 15.8
40 40 16.7
50 40 18.8
60 95 48.1

heuristic, although results could be different with other problem sets. The greedy allocation resulted

in assignments that were difficult to correct. Often, 50-60 applications of the local operator were

necessary to find a feasible solution. We attempted several variations on both these heuristics, but

the code complexity of those variations was significant, and there did not seem to be a noticeable

improvement in solution quality.

We found that the dynamic programming (DP) algorithm is fast enough to solve the 60-job in

reasonable time, although not quickly. The total computation time depends on how many rounds of

the assignment and sequencing heuristic are used, and thus on how many times the DP is solved.

Table 3.2 shows computation times for one DP solution on the first 10 jobs of the problem, the first

20 jobs, and so forth up to all 60 jobs. We found a feasible solution for all of these problems, except

the last, using ten rounds of the heuristic algorithm. To obtain a solution of the full 60-job problem

we enlarged all time windows to 95 minutes by postponing the deadlines.

Normally, one DP is solved in each round of the heuristic algorithm, although more may be

solved if there is difficulty in finding a feasible solution. The DP solution requires significantly

more time in the last round, because the optimal trajectory is retraced only in the last round, and

this requires substantial swapping of data in and out of memory. Table 3.2 includes the computation

time for recovering the optimal trajectory. Thus most runs of the DP algorithm (all but the last)

require less time than indicated in the table.

The optimal solutions appear in Figs. 3.4–3.9. The horizontal axis represents distance along

68 Chapter 3. Crane Scheduling by Dynamic Programming

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10

’output/solution-time-LEFT.out’
’output/solution-time-RIGHT.out’

Figure 3.4: Optimal solution for 10 jobs in the 60-job problem.

the track in 10.85-meter increments, so that the entire track is 108.5 meters long. The vertical axis

represents time in 6-second increments. Thus the schedule for the 60-job problem spans about 2300

time increments, or 230 minutes. The space-time trajectory of the left crane appears as a solid line,

and as a dashed line for the right crane. Note that the cranes are at rest most of the time. The

trajectories are minimal trajectories as defined above, which ensures a certain consistency in the

way the two cranes interact.

Figures 3.10–3.15 track the evolution of state space size over time. The horizontal axis corre-

sponds to time states of the DP algorithm, which are separated by 6 seconds. The vertical axis is the

number of states created in each time period. The state space size remains quite reasonable, never

exceeding 2000 states, even though the theoretical maximum is astronomical.

Computation time is sensitive to the width of the time windows. Typically, only a few time

windows must be wide to allow a feasible solution, but it is difficult to predict which are the critical

windows. It is therefore necessary to be able to solve problems in which all of the time windows

are wide, perhaps on the order of 90 minutes as in the 60-job instance. It was to accommodate wide

time windows that we developed the state space reduction techniques of Section 3.7.

Table 3.3 reveals the critical importance of these techniques. Without them, we were unable to

Chapter 3. Crane Scheduling by Dynamic Programming 69

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10

’output/solution-time-LEFT.out’
’output/solution-time-RIGHT.out’

Figure 3.5: Optimal solution for 20 jobs in the 60-job problem.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 2 4 6 8 10

’output/solution-time-LEFT.out’
’output/solution-time-RIGHT.out’

Figure 3.6: Optimal solution for 30 jobs in the 60-job problem.

70 Chapter 3. Crane Scheduling by Dynamic Programming

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 2 4 6 8 10

’output/solution-time-LEFT.out’
’output/solution-time-RIGHT.out’

Figure 3.7: Optimal solution for 40 jobs in the 60-job problem.

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10

’output/solution-time-LEFT.out’
’output/solution-time-RIGHT.out’

Figure 3.8: Optimal solution for 50 jobs in the 60-job problem.

Chapter 3. Crane Scheduling by Dynamic Programming 71

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10

’output/solution-time-LEFT.out’
’output/solution-time-RIGHT.out’

Figure 3.9: Optimal solution for 60 jobs in the 60-job problem.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300 350 400 450

’output/statecount.out’

Figure 3.10: State space size for 10 jobs in the 60-job problem, using 25-minute time windows.

72 Chapter 3. Crane Scheduling by Dynamic Programming

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 200 400 600 800 1000 1200

’output/statecount.out’

Figure 3.11: State space size for 20 jobs in the 60-job problem, using 35-minute time windows.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 200 400 600 800 1000 1200 1400 1600

’output/statecount.out’

Figure 3.12: State space size for 30 jobs in the 60-job problem, using 35-minute time windows.

Chapter 3. Crane Scheduling by Dynamic Programming 73

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200 1400 1600 1800

’output/statecount.out’

Figure 3.13: State space size for 40 jobs in the 60-job problem, using 40-minute time windows.

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000 2500

’output/statecount.out’

Figure 3.14: State space size for 50 jobs in the 60-job problem, using 40-minute time windows.

74 Chapter 3. Crane Scheduling by Dynamic Programming

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 500 1000 1500 2000 2500

’output/statecount.out’

Figure 3.15: State space size for 60 jobs in the 60-job problem, using 55-minute time windows.

Table 3.3: Effect of state space reduction on computation time for ten rounds. “Before” and “after”
refer to results before and after state space reduction, respectively.

Jobs Time Avg # states Peak # states Time for 10
window (optimal DP) (optimal DP) rounds
(mins) (secs)∗

Before After Before After Before After
10 25 3224 139 9477 465 158 20
20 35 3200 144 22,204 927 826 86
30 35 3204 216 22,204 940 1438 150
∗ Multiple DPs solved in some rounds.

solve the 60-job instance with more than 30 jobs. The 30-job instance has a feasible solution with

35-minute time windows, but larger instances require wider time windows to achieve feasibility,

and this causes the state space to explode. However, as shown in Table 3.3, the state space reduction

techniques reduce the number of states by a factor of about 20, and the computation time by a factor

of 10. It is this state space reduction that makes the full 60-job problem tractable.

Chapter 4

The Minimum Product Cut Problem

4.1. Introduction

In this chapter we consider the minimum product cut problem on an undirected graph. Given two

nonnegative linear cost functions on edges, the minimum product cut problem is to find an edge cut

on the graph at which the product of cut values relative to weight functions is minimized.

Let G = (V,E) be a connected undirected graph with two nonnegative linear edge weight

functions c1 : E → R+ and c2 : E → R+. The minimum cut problem relative to ci is to find

a bipartition (cut) of the nodes minimizing the weight of the edges going between the parts. The

problem can be efficiently solved by any max-flow algorithm and the max-flow min-cut theorem [1].

The problem of finding minimum ratio cut, where the ratio of the cut values c1(δ(S))
c2(δ(S))

1 is minimized,

can be solved in polynomial time by applying Megiddo’s method [25]. We consider an extension of

the minimum cut problem where the goal is to find a bipartition (S, S̄) of the node set V minimizing

the product of the sum of the weights of the edges crossing the bipartition.

minS⊂V [c1(δ(S))c2(δ(S))] (4.1)

1δ(S) denotes the edges that cross the cut S and ci(δ(S)) is the sum of the weights of the edges -relative to ci weight
function- that cross the cut S

75

76 Chapter 4. The Minimum Product Cut Problem

Example. When both weight functions are identical and constant, the product value of a cut is

the square of the number of edges crossing the cut times the square of the constant weight. If all

weights are unit then minimum product cut value is simply the square of the cardinality of the cut.

In such cases, a minimum cut is still optimal for the minimum product cut problem.

An application of this problem arises in clustering problems. When c1 and c2 are two distinct

nonnegative similarity weights, the minimum product cut is a good measure of separation relative

to c1 and c2 at the same time.

4.2. Related Work

Minimum product cut problem is also a special case of the problem of minimizing the product of

two linear cost functions over a polytope as described by Goyal in [14]. General problem Π is

formulated as

min (cT1 x) · (cT2 x)

x ∈ P
(4.2)

where c1, c2 ∈ Rn, P = {x ∈ Rn|Ax ≥ b} and A ∈ Rm×n, b ∈ Rm.

This is itself a special case of general quadratic programming (QP) problem where the objective

function is f(x) = (aTx+ xTCx) with a ∈ Rn, C ∈ Rn×n. If f(x) is nonconvex then the problem

is in general NP-Hard. Nonconvex QP is extensively studied in the literature and it has a wide range

of applications from portfolio analysis to VLSI design, optimal power flow and economic dispatch

[13].

The objective function in 4.2 is in general nonconvex and the problem is NP-Hard [24], but the

complexity of the special cases of 0-1 problems such as minimum product cut is still open. An

FPTAS for 4.2 is given in [21]. Goyal [14] describes a different and faster (1+ ε)-approximation al-

gorithm briefly explained in Section 4.2. Independent from this work, we present a 4-approximation

algorithm for the minimum product cut problem in Section 4.4.

Chapter 4. The Minimum Product Cut Problem 77

4.2.1 (1 + ε)-Approximation Algorithm

It is already known due to Kern and Woeginger [21] that the objective function (cT1 x) · (cT2 x) attains

its minimum at an extreme point of polytope P . Therefore, Goyal [14] considers the following

parametric problem Π(B) for a given parameter B > 0

min (cT1 x)

cT2 x ≤ B

x ∈ P

(4.3)

and shows that a basic optimal solution to this problem can be written as a convex combination

of at most two extreme points of polytope P . Moreover, at one of these extreme points of P ,

objective function value of the main problem 4.2 is at most parameter B times the optimal objective

value of 4.3.

He presents the following parametric (1 + ε)-approximation algorithm for minimizing the prod-

uct of two nonnegative linear functions that finds an extreme point ofP that is a (1+ε)-approximation

for the problem formulated as 4.2.

Given c1, c2 ∈ Rn+, polytope P and ε > 0.

Initialize M ← maxx∈P cT
2 x

minx∈P cT
2 x

, NM = dlog1+εMe and cs ←∞.

1. For j = 1, . . . , NM ,

(a) Let B = (1 + ε)j and let x̃(B) be a basic optimal solution for Π(B).

(b) Find x̂(B) ∈ extr(P) such that

(cT1 x̂(B)) · (cT2 x̂(B)) ≤ (cT1 x̃(B)) ·B.

(c) If cs > (cT1 x̂(B)) · (cT2 x̂(B)), then

xs ← x̂(B)
cs ← (cT1 x̂(B)) · (cT2 x̂(B))

2. Return the solution xs.

Figure 4.1: Algorithm A for Minimizing Product of Two Nonnegative Linear Costs

AlgorithmA returns an approximate solution that is an extreme point of the polytope. Therefore

78 Chapter 4. The Minimum Product Cut Problem

it can be applied to 0-1 problems when either the convex hull of feasible integer solutions or the

convex hull of the dominant 2 of feasible integer solutions is known. His algorithm has applications

to problems such as Minimum Product Spanning Tree, Minimum Product Matching, Minimum

Product Submodular Flows, Minimum Product s,t-Min-Cut, Minimum Product s,t-Path. Although

polyhedral description of minimum s,t-cuts, s, t ∈ V , is not available, convex hull of dominant of

0-1 incidence vectors of minimum s,t-cuts is known [10].

4.3. Preliminaries

A c-approximation algorithm for a minimization problem runs in polynomial time and for all in-

stances of the problem it produces a solution value at most c times the optimal. The ratio c is the per-

formance ratio of the algorithm, that is the maximum ratio by which the result of a c-approximation

algorithm may depart from the optimal solution. (For more details see [16] and [34])

A bond is a minimal nonempty edge cut in a connected graph. Observe that if G is a con-

nected graph, then an edge cut E′ ⊂ E is a bond if and only if G − E′ has exactly two connected

components.

Lemma 18. Let G(V,E) be an undirected connected graph with nonnegative linear edge weight

functions c1 and c2. Then the optimal solution to the minimum product cut problem is a bond.

Proof. A bond is a minimal nonempty edge cut in a graph. Therefore any edge cut in a graph

contains a bond. Since weight functions are nonnegative, cut values relative to c1 and c2 are at least

as much as the cut values of any bond contained in that cut. Therefore in any cut, product of the cut

values relative to c1 and c2 is at least the product value of any bond in the cut. Thus, the minimum

is reached at a bond. �

Define function P (λ), λ ∈ R+ as P (λ̄) = minS⊂V [(c1 + λ̄c2)(δ(S))]. i.e., P (λ) is the

minimum c1 + λ̄c2-cut value. P (λ), λ ≥ 0, is well-defined and is a piece-wise linear concave

function of λ. We will use the term ”λ−mincut” to denote minimum cλ = c1 + λc2-cut. Points at
2Dominant of K is defined as Dom(K) = {x : x ≥ y for some y ∈ K}.

Chapter 4. The Minimum Product Cut Problem 79

which the slope of P (λ) changes are called breakpoints. If λ1 < λ2 are two consecutive breakpoints

of P (λ) andC∗ is a minimum λ∗-cut where λ1 < λ∗ < λ2, thenC∗ is optimal over the entire closed

interval [λ1, λ2] and nowhere else. At each breakpoint, the minimum cut changes but it stays the

same until the next breakpoint. However, the minimum cut value increases as the parameter λ

increases.

We define Next(λ) such that for a fixed value λ∗ of λ, Next(λ∗) is the first breakpoint of P (λ)

that is strictly larger than λ∗, if there is any. If there is no such breakpoint, then Next(λ∗) =∞.

Let M be a minimum cut algorithm and consider it as a binary decision tree T . Without loss

of generality assume that each branch point in T is a comparison. One branch is for ” ≥ ” and the

other is for ” < ” relation. Given a value of λ, λ̄, the evaluation of P (λ̄) defines a pathQ through T .

Gusfield’s algorithm [15], developed from Megiddo’s method [25], takes a value of λ and an optimal

solution at that λ value, i.e., a λ̄-min cut as input, and outputs the smallest breakpoint greater than

λ̄ and an optimal solution (minimum cut) at that breakpoint. In other words, given λ̄, it computes

Next(λ̄). It simulates algorithm M symbolically and forces M to follow path Q even though λ̄ is

not known until the end of the computation. Its running time is at most twice the running time of

algorithm M , that is running time of min cut algorithm in our case. (For more detail see [15]).

4.4. An Approximation Algorithm

4.4.1 4-Approximation Algorithm

In this section we will describe a 4-approximation algorithm for the minimum product cut problem.

The algorithm uses parametric search over the parameter λ to find λ̄ such that product value of the

cut is minimized at λ̄-min cut. The idea is similar to the one described in [29].

The algorithm searches over all λ-min cuts, λ ≥ 0, to find a cut that has minimum product cut

value i.e., it solves the problem

minλ≥0[c1(δ(Sλ))c2(δ(Sλ))]

80 Chapter 4. The Minimum Product Cut Problem

where cλ = c1 + λc2, and Sλ is a minimum cλ-cut.

Theorem 19. There exists a value of λ, λ∗, such that Sλ∗ is a 4-approximation for the minimum

product cut problem.

Proof. Let S∗ be an optimal solution to the minimum product cut problem and λ∗ = α c1(δ(S∗))
c2(δ(S∗)) ,

α > 0.

Consider minimum Sλ∗ cut. Since λ and c2 are nonnegative and Sλ∗ is a minimum λ∗-cut, we

can write

c1(δ(Sλ∗)) ≤ c1(δ(Sλ∗)) + λ∗c2(δ(Sλ∗))

≤ c1(δ(S∗)) + λ∗c2(δ(S∗))

= (1 + α)c1(δ(S∗))

where the second inequality follows from the optimality of Sλ∗ .

We can also write

c2(δ(Sλ∗)) ≤
1
λ∗

(c1(δ(Sλ∗)) + λ∗c2(δ(Sλ∗)))

≤ 1
λ∗

(1 + α)c1(δ(S∗))

=
(

1 + α

α

)
c2(δ(S∗))

since c1 and λ are nonnegative.

Then

c1(δ(Sλ∗))c2(δ(Sλ∗)) ≤
(1 + α)2

α
c1(δ(S∗)c2(δ(S∗)).

However, for α > 0, (1+α)2

α attains its minimum at α = 1. Therefore, for α = 1 we get

c1(δ(Sλ∗))c2(δ(Sλ∗)) ≤ 4c1(δ(S∗)c2(δ(S∗)). �

Chapter 4. The Minimum Product Cut Problem 81

This result suggests that if all breakpoints of P (λ) and parametric minimum cuts at those break-

points are considered, a cut at which product cut value is at most four times of the optimal one can

be found. If the number of breakpoints of P (λ) is super-polynomial than we may not find the exact

optimal solution by this parametric algorithm. Carstensen [3] showed by an example that parametric

minimum cut problem can have exponential number of breakpoints. The graph in Carstensen’s ex-

ample includes directed edges and negative edge weights. However, we conjecture that the number

of breakpoints can also be super-polynomial when the graph is undirected and the weight functions

are nonnegative.

Given G = (V,E), c1, c2 ∈ Rn
+, Minimum Cut Algorithm M .

Initialize λ← 0. Use M to find λ-min cut.
Set S ← λ−min cut and Prod← c1(δ(S))c2(δ(S)).

1. While λ <∞:

(a) Use Gusfield’s [15] algorithm to find Next(λ).

(b) λ← Next(λ).

(c) If c1(δ(SNext(λ)))c2(δ(SNext(λ))) < Prod then

S ← SNext(λ)

Prod ← c1(δ(SNext(λ)))c2(δ(SNext(λ)))

2. Return solution S and Prod.

Figure 4.2: 4-Approximation Algorithm for Minimum Product Cut

4.4.2 A Simple Bound on Breakpoints

Theorem 20. The number of breakpoints of P (λ) is o(min{the number of distinct c1-cut values, the

number of distinct c2-cut values}).

Proof. We know that P (λ) is a piecewise linear concave function. If λ1 < λ2 are two adjacent

breakpoints then c1 value of λ1-min cut is less than c1 value of λ2-min cut and c2 value of λ1-

min cut is greater than c2 value of λ2-min cut. Therefore at each breakpoint both c1 and c2 values

change. Thus, P (λ) can have at most o(min{the number of distinct c1-cut values, the number of

distinct c2-cut values}) breakpoints. �

82 Chapter 4. The Minimum Product Cut Problem

Corollary 21. If at least one of the weight functions is uniform (all weights are either 0 or some

constant c) then the number of breakpoints is polynomial and algorithm has a faster (polynomial)

running time.

Proof. Without loss of generality, assume that c1 is uniform, then c1 assigns either 0 or some

constant c to each edge. If the graph has n nodes, then there are at most (n2−n)
2 edges. Hence, there

are at most that many distinct cut values relative to c1 weight function. Among the parametric cuts

having the same c1-cut value, only one with the smallest c2-cut value can contribute to a breakpoint.

Hence we have at most (n2−n)
2 breakpoints in such cases. �

We do parametric search for non-negative values of λ. At λ = 0, minimum cλ-cut is a minimum

c1-cut, therefore we have a value to start with for the parameter λ and a solution to parametric min-

cut problem at that λ value. Gusfield’s algorithm is applied with input λ = 0 and S =minimum

c1-cut to find the next breakpoint and a parametric minimum-cut at that point. Product values of

these two cuts are compared and the best one is chosen. Successive iteration of Gusfield’s algorithm

over all breakpoints provides product values of all optimum parametric cuts.

Many polynomial minimum-cut algorithms are known [1]. Therefore, once a breakpoint and

an optimal parametric cut with respect to that point are known, by Gusfield’s algorithm, finding the

next breakpoint and an optimal parametric cut at that breakpoint takes polynomial time. Therefore,

if the number of breakpoints is polynomial then overall running time of the algorithm is strongly

polynomial.

Corollary 22. LetG is defined on n nodes and c1 and c2 are integer functions. If c1 < C1 and c2 <

C2 for some integersC1 andC2, then the number of breakpoints is at mostmin
{

(n2−n)
2 C1,

(n2−n)
2 C2

}
.

Proof. There are at most (n2−n)
2 C1 distinct c1-cut values and at most (n2−n)

2 C2 distinct c2-

cut values since the graph has at most (n2−n)
2 edges. Then, the claim follows from Theorem 20.

However, in such cases, the running time of the algorithm is pseudo-polynomial. �

Chapter 4. The Minimum Product Cut Problem 83

4.4.3 Binary Search on λ

An alternate implementation of this algorithm uses binary search on λ. We know that the product

value of λ∗-min cut is at most 4 times the optimum. Therefore we perform binary search for scaled

values for the numerator and denominator of λ.

All ci-cuts range from a lower bound Li to an upper bound Ui for i = 1, 2. A lower bound for a

ci-cut, Li, is the minimum ci-cut value tat can be found easily by applying any min-cut algorithm.

An upper bound for ci cut, Ui, is the sum of all edge weights in the graph relative to ci weight

function. Since product value of λ∗ = c1(δ(S∗))
c2(δ(S∗)) -minimum cut provides a 4-approximation for the

minimum product cut problem, we try each λ having numerator

L1, L1(1 + ε), L1(1 + ε)2, . . . , L1(1 + ε)log(U1/L1)

and denominator

L2, L2(1 + ε), L2(1 + ε)2, . . . , L2(1 + ε)log(U2/L2)

for some ε > 0, where the log is taken to the base (1 + ε).

The number of parameters that must be searched is

O(log1+ε(U1/L1) log1+ε(U2/L2)).

Theorem 23. There exists a 2
[

1
(1+ε) + (1 + ε)

]2
-approximation algorithm for the minimum prod-

uct cut problem, for any ε > 0.

The running time is O((log(1+ε)(U1/L1) log(1+ε)(U2/L2)T (min− cut)) where Ui and Li are

upper and lower bounds for the value of any ci-cut (for i = 1, 2) and T (min− cut) is the running

time of any min-cut algorithm.

Proof. Let S∗ be a minimum product cut and λ∗ = c1(δ(S∗))
c2(δ(S∗)) . In a parametric search, some

numerator smaller than or equal to (1 + ε)c1(δ(S∗)) and some denominator greater than or equal to

c2(δ(S∗))
(1+ε) are considered for λ. Since both numerators and denominators are increased by a factor of

84 Chapter 4. The Minimum Product Cut Problem

(1 + ε), at least one parameter value is λ̃ such that

λ∗ ≤ λ̃ ≤ (1 + ε)2λ∗.

Now, since minimum parametric cut value gets larger as λ increases, we can write

c1(δ(Sλ̃)) ≤ c1(δ(Sλ̃)) + λ̃c2(δ(Sλ̃))

≤ c1(δ(S(1+ε)2λ∗)) + (1 + ε)2λ∗c2(δ(S(1+ε)2λ∗))

≤ c1(δ(S∗)) + (1 + ε)2λ∗c2(δ(S∗))

≤ (1 + (1 + ε)2)c1(δ(S∗)).

The third inequality follows since S(1+ε)2λ∗ is a minimum cλ-cut at λ = (1 + ε)2 λ∗.

Since Sλ∗ is a λ∗-min cut and Sλ̃ is a λ̃-min cut, we can write

c1(δ(Sλ∗)) + λ∗c2(δ(Sλ∗)) ≤ c1(δ(Sλ̃)) + λ∗c2(δ(Sλ̃))

and

c1(δ(Sλ̃)) + λ̃c2(δ(Sλ̃)) ≤ c1(δ(Sλ∗)) + λ̃c2(δ(Sλ∗)).

Therefore, the two lines c1(δ(Sλ∗)) + λc2(δ(Sλ∗)) and c1(δ(Sλ̃)) + λc2(δ(Sλ̃)) intersects at

some λ such that λ∗ ≤ λ ≤ λ̃. Then, since λ∗ ≤ λ̃ ≤ (1 + ε)2λ∗, and

c1(δ(Sλ̃)) + λ̃c2(δ(Sλ̃)) ≤ c1(δ(Sλ∗)) + λ̃c2(δ(Sλ∗))

we can write

c1(δ(Sλ̃)) + (1 + ε)2λ∗c2(δ(Sλ̃)) ≤ c1(δ(Sλ∗)) + (1 + ε)2λ∗c2(δ(Sλ∗)).

Chapter 4. The Minimum Product Cut Problem 85

Therefore,

c2(δ(Sλ̃)) ≤
c1(δ(Sλ̃)) + (1 + ε)2λ∗c2(δ(Sλ̃))

(1 + ε)2λ∗

≤ c1(δ(Sλ∗)) + (1 + ε)2λ∗c2(δ(Sλ∗))
(1 + ε)2λ∗

≤ 2c1(δ(S∗)) + (1 + ε)2λ∗2c2(δ(S∗))
(1 + ε)2λ∗

= 2
(

1 + (1 + ε)2

(1 + ε)2

)
c2(δ(S∗).

where the third inequality follows from the proof of Theorem 19.

Thus we get,

c1(δ(Sλ̃))c2(δ(Sλ̃)) ≤ 2
[
(1 + ε) +

1
1 + ε

]2

c1(δ(S∗))c2(δ(S∗)). �

4.5. Special Cases

4.5.1 Outerplanar Graphs

An outerplanar graph is a planar graph that has an embedding on the plane with all vertices ap-

pearing on the outerface. The number of bonds in outerplanar graphs is polynomially bounded.

Moreover, all of these bonds can be efficiently found in polynomial time, hence the exact solution.

Lemma 24. The number of bonds in an n-node outerplanar graph is
(
n
2

)
.

Proof. Any bond in an outerplanar graph is a partition of the outer cycle into two pieces that we

get when it is cut by a line. Suppose that this is not true. Then there exists a bond that has at least 4

pieces of the outer cycle such that neighbor pieces belong to different sides of the bond. Take any

two pieces belonging to the same side of the bond. Since both sides are connected components in a

bond, these two pieces have to be connected by a chord. This is also true for the other pair of pieces.

However, then these two chords cross. This contradicts to the assumption that G is planar. Hence,

86 Chapter 4. The Minimum Product Cut Problem

any bond in an outerplanar graph looks like two pieces of a cycle cut by a line. �

A cycle can be cut by a line by choosing two points on the cycle and drawing a line separating

them. Therefore, there are at most
(
n
2

)
= n2−n

2 bonds in an outerplanar graph. By Lemma 18 and

Lemma 24, the optimal solution to the minimum product cut problem can be found by finding all

bonds and minimum product cut among these bonds in polynomial time. The number of the edges

in an outerplanar graph is O(n). All bonds and hence, the minimum product cut can be found in

O(n3) time in an outerplanar graph given its embedding.

87

Bibliography

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Linear Programming and Network Flows, 3rd

ed. Prentice-Hall, Upper Saddle River, NJ, 1993.

[2] E. Balas and M. Fischetti. Polyhedral theory for the asymmetric traveling salesman problem.

In G. Gutin and A. P. Punnen, editors, The Traveling Salesman Problem and its Variations,

pages 117–168. Kluwer, Dordrecht, 2002.

[3] P. Carstensen. Complexity of some parametric integer and network programming problems.

Mathematical Programming, 26:64–75, 1983.

[4] Y. Caseau and F. Laburthe. Solving small TSPs with constraints. In L. Naish, editor, Proceed-

ings, Fourteenth International Conference on Logic Programming (ICLP 1997), volume 2833,

pages 316–330. The MIT Press, 1997.

[5] B. Cherkassky and A. Goldberg. On implementing push-relabel method for the maximum

flow problem. Technical report, Department of Computer Science, Stanford University, 1994.

[6] V. Chvátal. Edmonds polytopes and weakly hamiltonian graphs. Mathematical Programming,

5:29–40, 1973.

[7] V. Chvátal. Tough graphs and hamiltonian circuits. Discrete Mathematics, 5:215–228, 1973.

[8] V. Chvátal. Hamiltonian cycles. In E. L. Lawler, J. K. Lenstra, A. H. G. Rinooy Kan, and

D. B. Shmoys, editors, The Traveling Salesman Problem: A Guided Tour of Combinatorial

Optimization, pages 403–430. Wiley, New York, 1985.

89

90 BIBLIOGRAPHY

[9] C. F. Daganzo. The crane scheduling problem. Transportation Research, 23B(3):159–175,

1989.

[10] N. Garg and V. V. Vazirani. A polyhedron with all s-t cuts as vertices, and adjacency of cuts.

Mathematical Programming, 70(1):17–25, 1995.

[11] L. Genc-Kaya and J. N. Hooker. A filter for the circuit constraint. In F. Benhamou, editor,

Principles and Practice of Constraint Programming (CP 2006), volume 4204 of Lecture Notes

in Computer Science, pages 706–710. Springer, 2006.

[12] A. Goldberg and R. Tarjan. A new approach to the maximum flow problem. Journal of the

ACM, 35:921–940, 1988.

[13] N.I.M. Gould and P. L. Toint. A quadratic programming bibliography. Numerical Analysis

Group Internal Report, 1, 2000.

[14] V. Goyal, L. Genc-Kaya, and R. Ravi. An FPTAS for minimizing the product of two non-

negative linear costs. WP 2008-E16.

[15] D. Gusfield. Parametric combinatorial computing and a problem of program module distribu-

tion. J. Assoc. Comput. Mach., 30(3):551–563, 1983.

[16] D. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS Publishing Company,

Boston, MA, 1997.

[17] J. N. Hooker. Logic-Based Methods for Optimization: Combining Optimization and Con-

straint Satisfaction. Wiley, New York, 2000.

[18] J. N. Hooker. Integrated Methods for Optimization. Springer, 2007.

[19] D. Johnson and C. McGeoch, editors. Network Flows and Matching: First DIMACS Imple-

mentation Challenge, Providence, RI, 1993. American Mathematics Society.

[20] M. Jünger, G. Reinelt, and G. Rinaldi. The traveling salesman problem. In M. O. Ball,

T. L. Magnanti, C. L. Monma, and G. L. Nemhauser, editors, Network Models, Handbooks in

Operations Research and Management Science, pages 225–330. Elsevier, Amsterdam, 1995.

BIBLIOGRAPHY 91

[21] W. Kern and G. Woeginger. Quadratic programming and combinatorial minimum weight

product problems. Mathematical Programming, 110(3):641–649, 2007.

[22] A. Lim, B. Rodrigues, Fei Xiao, and Yi Zhu. Crane scheduling using tabu search. In Interna-

tional Conference on Tools with Artificial Intelligence, (ICTAI’02), pages 146–153, 2002.

[23] A. Lim, B. Rodrigues, and Zhou Xu. Solving the crane scheduling problem using intelligent

search schemes. In Principles and Practice of Constraint Programming (CP 2004), volume

3258 of Lecture Notes in Computer Science, pages 747–751. Springer, 2004.

[24] T. Matsui. NP-hardness of linear multiplicative programming and related problems. Journal

of Global Optimization, 9(2):113–119, 1996.

[25] N. Megiddo. Combinatorial optimization with rational objective functions. Math. Oper. Res.,

4:414–424, 1979.

[26] D. Naddef. Polyhedral theory and branch-and-cut algorithms for the symmetric TSP. In

G. Gutin and A. P. Punnen, editors, The Traveling Salesman Problem and its Variations, pages

29–116. Kluwer, Dordrecht, 2002.

[27] R. I. Peterkofsky and C. F. Daganzo. A branch and bound solution method for the crane

scheduling problem. Transportation Research, 24B(3):159–172, 1990.

[28] V. Ramachandran. The complexity of minimum cut and maximum flow problems in an acyclic

network. Networks, 17:387–392, 1987.

[29] R. Ravi, M. V. Marathe, R. Sundaram, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt. Bicriteria

network design problems. Journal of Algorithms, 28(1):142–171, 1998.

[30] J.-C. Régin. Generalized arc consistency for global cardinality constraint. In Proceedings, 13th

National Conference on Artificial Intelligence (AAAI 1996), Part 1, pages 209–215. AAAI,

1996.

92 BIBLIOGRAPHY

[31] R. Rodosek and M. Wallace. A generic model and hybrid algorithm for hoist scheduling

problems. In Proc. 4th Int. Conf. on Principles and Practice of Constraint Programming

(CP98), pages 385–399. Springer, 1998.

[32] J. Shufelt and H. Berliner. Generating hamiltonian circuits without backtracking from errors.

Theoretical Computer Science, 132:347–375, 1994.

[33] R. E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on Computing,

1:146–160, 1972.

[34] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

[35] D. B. West. Introduction to Graph Theory. Prentice Hall, Upper Saddle River, NJ.

[36] H. P. Williams and H. Yan. Representations of the all different predicate of constraint satis-

faction in integer programming. INFORMS Journal on Computing, 13:96–103, 2001.

[37] Y. Zhu and A. Lim. Crane scheduling with spatial constraints. Naval Research Logistics,

51:386–406, 2004.

	The Circuit Polytope
	The Circuit Constraint
	The Circuit Polytope
	Arbitrary Domains
	Overview of the Results
	Dimension of the Polytope
	Facets of the Polytope
	Facet Generation
	Generation of Undominated Circuits
	Permutation and Two-term Facets
	Separation Heuristics
	Exploiting Cost Structure
	Conclusions and Future Research

	A Filter for the Circuit Constraint
	Motivation
	Basic Idea
	Previous Work
	Definitions
	Separator Graph
	Finding Separators
	A Cardinality Filter
	Additional Vertex Degree Filtering
	The Algorithm
	Computational Results
	Conclusions

	Crane Scheduling by Dynamic Programming
	Introduction
	The Crane Scheduling Problem
	Precedence Constraints
	Simplifying the Optimal Control Problem
	Dynamic Programming Recursion
	Assignment and Sequencing by Local Search
	Reduction of the State Space
	Experimental Results

	The Minimum Product Cut Problem
	Introduction
	Related Work
	(1+)-Approximation Algorithm

	Preliminaries
	An Approximation Algorithm
	4-Approximation Algorithm
	A Simple Bound on Breakpoints
	Binary Search on

	Special Cases
	Outerplanar Graphs

