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Chapter 1

Introduction and preliminaries

1.1 Introduction

Many “real world” optimization problems have a discrete nature and can be formulated

as Mixed Integer Linear Programming (MILP) problems. Various solution techniques for

this class of problems have been proposed over the last 50 years. Still, obtaining exact

solutions to these problems is difficult. The inherent complexity of MILP problems is

partially explained by the fact that they are NP-hard. Nevertheless, the advances in the

algorithms over the last decade and the increased power of computers improved dramatically

our abilities to solve large problem instances. This dissertation proposes ideas for further

improvement of the state-of-the-art solution techniques.

There are two major methods for solving Mixed Integer Linear Programming problems:

cutting-plane algorithms and branch-and-bound algorithms. In a cutting-plane algorithm,

valid inequalities that cut off the current solution of the Linear Programming relaxation

are used to tighten the formulation until an integer feasible solution is found. This method

can be traced back to the work of Danzig, Fulkerson, and Johnson [29] who apply it to

successfully solve a 48-city traveling salesman problem. Gomory [34, 36, 35, 37] proposed

the well-known fractional cuts and mixed integer cuts, as well as a general solution procedure

for pure and mixed 0-1 programs. Branch and bound is a divide-and-conquer algorithm that

searches the feasible set of the Linear Programming relaxation of the MILP problem. It

implicitly enumerates the feasible solutions in a quest for a proof of optimality. This method

originates with the work of Land and Doig [41] for general MILP and of Balas [10] for pure

1



2 Chapter 1. Introduction and preliminaries

0-1 programs.

Branch and bound has been the solution method of choice in the 70s and 80s. It

has been implemented in all commercial software packages for MILP. During this period,

cutting-plane algorithms were considered of less practical value as independent solution

techniques. Their use was limited to tightening the formulation before the start of branch

and bound in what is now called cut and branch.

It was in the early 90s when a more efficient combination of the two solution methods

was proposed. Padberg and Rinaldi [55] were the first to propose generating cutting planes

at the nodes of the search tree — a method they called branch and cut. They applied this

algorithm to the traveling salesman problem generating combinatorial cuts and showed im-

pressive results. Balas et al. [14] demonstrated that applying mixed integer Gomory cuts in

a branch-and-cut framework provides a powerful algorithm for solving general MILP prob-

lems. Today, branch and cut is the state-of-the-art algorithm for this class of optimization

problems. It is implemented in all MILP solvers.

Branch and cut is a complex algorithm in which cut generation, LP reoptimization and

various search rules, such as node selection, branching variable selection, and child selection

procedures, interact. The efficiency of the algorithm, measured by the solution time and

even by the ability to solve a problem, is largely influenced by this interaction. The complex

nature of the algorithm makes theoretical studies of particular components of the algorithm

difficult to integrate into an overall understanding. Therefore, in our effort to evaluate our

modifications to the algorithm, we resort to the common scientific method for analysis when

dealing with a complex object: an empirical study.

One of the important decisions made in the branch-and-cut algorithm is the choice of

a branching object. Traditionally, in general purpose MIP solvers, branching objects are

variables — the “best” candidate is chosen among the integer variables with fractional

values in the current basic solution. A more general approach is to branch on general

split disjunctions. We propose an efficient implementation of this idea in Chapter 2. We

select promising branching disjunctions based on a heuristic measure of disjunction quality.

This measure exploits the relation between branching disjunctions and intersection cuts. In

this work, we focus on disjunctions defining the mixed integer Gomory cuts at an optimal

basis of the linear programming relaxation. The procedure is tested on instances from the
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literature. Experiments show that branching on general disjunctions is more efficient than

branching on variables for a majority of the instances.

Contemporary MILP solvers make extensive use of cuts in their branch-and-cut algo-

rithms. Some widely used classes of general cuts, such as mixed integer Gomory, mixed

integer rounding, and lift-and-project cuts, are essential for the efficient solution of large

MILP problems. Fortunately, increased power of computers allows generating a large num-

ber of these cuts in a short interval of time. Unfortunately, adding all of these cuts to the

formulation causes a range of negative effects. Aggressive cut generation increases the size

of the formulation significantly and slows down the solution of the LP relaxations. It can

cause numerical problems as well. Furthermore, it can deteriorate the facial structure of

the polyhedron. The consequence is that future rounds of cuts are less deep and less effi-

cient. In Chapter 3, we study the effect of cuts on the performance of branch and cut. We

propose criteria for cut selection and a cut selection algorithm that decreases the negative

effects. The novelty in our approach is that it evaluates the quality of the cuts as a group,

as opposed to evaluating only individual properties. We test the performance of the cut

selection routine empirically.

Research shows that the performance of branch and cut depends on the decisions with

respect to cut generation and on the choice of branching rules, among other decisions. The

effect of these choices on the size of the branching tree is significant but not very well

studied. As a result, it is believed that predicting the running time of the algorithm is

practically impossible. This is supported by real-life experience showing large variability

among instances. In Chapter 4, we try to challenge this belief by showing that the size of

the branching tree, therefore, the running time, can be roughly predicted in an early phase

of the solution process. We consider a specific set of decision rules, the ones implemented

in the out-of-the-box CPLEX 8.0, and construct a simple sampling procedure for predicting

the number of nodes in the tree. We tested the procedure in cut-and-branch and branch-

and-cut frameworks.



4 Chapter 1. Introduction and preliminaries

1.2 Branch and cut

In this section, we provide an outline of the branch-and-cut algorithm followed by a de-

scription of its key components. For a more detailed discussion on branch and cut, refer to

Nemhauser and Wolsey [52] and Wolsey [58]. Recent computational studies of branching

rules are Linderoth and Savelsbergh [43], and Achterberg et al. [3].

1.2.1 Outline of the algorithm

Consider the Mixed Integer Linear Program:

z∗ = min{cTx : Ax ≥ b, xj ∈ Z for j ∈ NI}, (1.1)

where c, x ∈ R
n, b ∈ R

m, A ∈ R
m×n, and NI ⊆ N := {1, 2, . . . , n}. Let XMILP = {x : Ax ≥

b, xj ∈ Z for j ∈ NI} denote the feasible set of (1.1). The linear relaxation of problem (1.1)

is obtained by removing the integrality constraints:

z(PLP) = min{cTx : x ∈ PLP}, (1.2)

where PLP = {x : Ax ≥ b}. Let z(PLP) = +∞ if PLP = ∅.

A generic branch-and-cut algorithm is shown in Figure 1.1. The algorithm starts with a

single subproblem to solve: the LP relaxation of the mixed integer linear program. During

the course of the algorithm, new subproblems are created by branching: The solution of a

subproblem may lead to the creation of two or more children subproblems. This process

can be represented by a tree where the nodes correspond to subproblems and the edges

represent the parent-child relation between subproblems. In this context, the terms node

and subproblem are considered synonymous.

Detailed explanation of the different steps is provided below.

1.2.2 Branching

Node selection rules

The order in which we search the branching tree is of great importance for the efficiency of

the branch-and-cut algorithm. This order is enforced by a rule for selecting the next node

to be processed. It is essentially a rule for comparing two nodes. The unsolved, pending
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Input: An MILP problem of the type (1.1).

Output: An optimal solution x∗ ∈ XMILP and its objective value z∗ = cTx∗,

or the conclusion that XMILP = ∅, denoted by z∗ = +∞.

Initialize: Queue of active subproblems Q := {PLP},

z∗ := +∞.

1. If Q = ∅, exit by returning the optimal solution x∗ with value z∗.

2. Select a problem P from the queue Q.

3. Solve the linear program z(P ) = min{cTx : x ∈ P} with optimal

solution x̄(P ).

4. Apply reduced cost fixing.

5. If cuts should be generated, goto Step 6, otherwise, goto Step 7.

6. Generate a round of cuts, Dx ≥ e, where D ∈ R
k×n, e ∈ R

k,

and k is the number of generated cuts.

Add them to the formulation: P := P ∩ {x : Dx ≥ e}.

Goto Step 3.

7. If z(P ) ≥ z∗, goto Step 2.

8. If x̄(P ) ∈ XMILP, update the incumbent: x∗ = x̄(P ) and z∗ := z(P ).

9. Branching: Split P into subproblems and add them to Q.

Goto Step 2.

Figure 1.1: Branch-and-cut algorithm

subproblems, also called active nodes, are kept in a pool. It is denoted by Q in Figure 1.1.

The node selection rule induces ordering of the active nodes and, as a result, the pool of

active nodes can be viewed as a priority queue where the first node is the most preferred.

Several rules have been explored in the literature and used in practice.

Depth-first search. This is the rule used by the algorithms by Balas [10], Dakin [28]

and Little et al. [44]. According to this rule, new nodes are added to the front of the queue

and the next node to be processed is the last added. An advantage of this strategy is its

memory efficiency: the number of active nodes in the queue is never larger than the depth

of the currently processed node. The main drawback is that the search may be conducted

first in parts of the tree where there are no good feasible solutions, thus increasing the total
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solution time.

Best bound. This is the rule used by the branch-and-bound algorithm of Land and

Doig [41]. For every active subproblem, the branch-and-bound algorithm keeps a lower

bound on the objective value. This lower bound is obtained from the objective value of the

parent node or from strong branching if such has been applied. The best-bound rule selects

the node with the smallest lower bound among all active nodes. This rule minimizes the

number of explored nodes before completing the search. It guarantees that no node that

could be pruned by the optimal objective value would be solved. As a drawback, memory

requirements for a search by best-bound may be prohibitive. In addition, one subproblem

to be optimized differs significantly from the previous subproblem solved (in contrast to

depth-first search), which leads to a longer solution time.

Best-dive. This rule combines the strengths of the above two. It dives along a path

until pruned, then selects the best-bound node and dives again. Diving in a depth-first

fashion is computationally efficient. In addition, it helps find new feasible solutions faster.

This leads to a faster improvement in the upper bound, hence a decrease the amount of

enumeration. Choosing a best-bound node as a starting point of the next dive suggests that

an area of the search tree with some potential for a good solution is explored. As a result,

best-dive is a balanced and efficient search algorithm.

In diving, as well as in depth-first search, one of the two newly created nodes is explored

next and the other one is sent to the queue. The most common rules for selecting the next

processed node are the following:

Lowest LP bound: The child with smaller LP bound is selected.

Integer infeasibility: Let I =
∑

j∈NI
min{x̄j(P ) − bx̄j(P )c, dx̄j(P )e − x̄j(P )} be the

sum of the infeasibility of all integer variables. The child that minimizes I is selected.

Branching objects

The outcome of the solution of a subproblem z(P ) is one of the following:

• P is proven infeasible, i.e. z(P ) = +∞;

• the optimal solution is integer: x̄(P ) ∈ XMILP;

• the optimal value is above the upper bound: z(P ) ≥ z∗, therefore, branching would

not bring an improvement in the best known solution;
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• the optimal value is below the upper bound: z(P ) < z∗, and x̄(P ) /∈ XMILP.

In the first three cases, the subproblem is abandoned and the algorithm proceeds to the next

subproblem in the queue Q. In the last case, the algorithm branches: creates several children

subproblems by splitting the set P into disjoint subsets. For general MILP problems, the

widely accepted way of branching divides the feasible set into two subsets by selecting an

integer variable xj with fractional value in the optimal solution of z(P ) and imposing new

bounds on xj: xj ≤ bx̄j(P )c in one of the subproblems and xj ≥ dx̄j(P )e in the other. We

call this branching on a variable dichotomy or just branching on a variable.

In Chapter 2, we consider more general branching objects: split disjunctions. A split

disjunction is a union of two disjoint halfspaces in R
n, such that the union contains all

points in Z
n. We show that our procedure for branching on split disjunctions performs

better than branching on variables when tested on a diverse set of test instances.

Variable selection rules

Various rules can be used to select the branching variable. All of them are instantiations of

the following generic algorithm (Figure 1.2).

Input: Current subproblem P with an optimal solution x̄(P ) /∈ XMIP.

Output: An index i ∈ NI of a fractional variable.

Initialize: Let C = {i ∈ NI : x̄i /∈ Z} be the set of candidate branching variables.

1. For all candidates i ∈ C, calculate a quality measure ψi ∈ R.

2. Return an index i ∈ C with ψi = maxj∈C{ψj}.

Figure 1.2: Variable selection

Most fractional variable. Consider variable xj and its value in the solution of the

current subproblem, x̄j(P ). The fractionality of the variable is defined as: min{x̄j(P ) −

bx̄j(P )c, dx̄j(P )e− x̄j(P )}. The most-fractional rule stipulates that the variable with maxi-

mum fractionality should be selected. Intuitively, the larger the fractionality, the larger the

minimum improvement in the lower bounds of the children nodes. However, a recent com-

putational study suggests that the fractionality has little correlation with the improvement
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in the lower bound. Achterberg et al. [3] present experimental results showing that the ef-

fect of using this rule is close to that of randomly choosing a branching variable. Although

this rule is still popular, more efficient variable selection rules, as measured by the solution

time and the size of the branching tree, are in use today. Those are based on estimates of

the deterioration in the objective value at the two children and include strong branching,

pseudocost branching, and combinations of the two.

Strong branching. Strong branching was introduced by Applegate, et al. [8, 9]

It works as follows. Let v and p be two positive integers. Given the solution of the LP

relaxation at a node, make a list of v integer variables that have fractional values, using

some variable selection rule, e.g. the v most fractional ones. (If there are fewer than v

fractional variables, select all of them.) For each of these fractional variables, create the

two children nodes and try to solve them performing at most p dual simplex pivots. Let

the objective values obtained be z1 and z2. (These are valid lower bounds of the objective

values of the two children.) Compute a quality measure ψ(z1, z2) for the branching variable.

Select the variable that maximizes the quality measure and branch on it.

The quality measures used for comparing candidate variables in strong branching and

pseudocost branching are functions of the estimated lower bounds on the two children: z1

and z2. A typical form of such a function is ψ(z1, z2) = λmin(z1, z2) + (1 − λ)max(z1, z2),

for 0 ≤ λ ≤ 1. Usually, larger weight is given to the first term. The values for λ proposed

in the literature vary between 0.66 and 1.

Setting parameter p to a very large number leads to a complete solution of the two

children for all considered branching variables. This provides the exact lower bounds for

the children. If, in addition, parameter v is large enough so that all fractional variables are

considered, we obtain the (locally) best variable to branch on, with respect to the chosen

quality measure. This branching rule is called full strong branching.

Pseudocost branching. Similarly to strong branching, pseudocost branching esti-

mates the deterioration in the objective value at the two children. Pseudocost branching is

less time consuming than strong branching but the price for this are rougher estimates. It

was introduced by Benichou et al. [19].

For each integer variable xi, pseudocost branching keeps a history of the result of pre-

vious branchings on xi. The history is used to estimate the pseudocost: the amount of

change in the objective caused by one unit of change in xi. Separate pseudocosts are kept
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for upward and downward change of xi. When xi is a candidate for branching, estimates of

the lower bounds of the children nodes, ẑ1 and ẑ2, are obtained from the pseudocosts and

the amount of infeasibility. Then, a quality measure similar to the one in strong branching

is applied in order to select the branching variable.

Hybrid strong/pseudocost branching. Variable selection rules that combine

pseudocosts and strong branching have been developed as well. Strong branching is used

to initialize the pseudocosts of a variable the first time it is considered for branching. In

addition, strong branching may be used periodically to update the pseudocosts.

A version of a hybrid procedure, called reliability branching was recently proposed by

Achterberg et al. [3]. It incorporates a measure of reliability of the pseudocosts.

1.2.3 Cutting

Cutting planes are inequalities valid for all feasible points but violated by the solution of

the current subproblem. Adding cuts strengthens the formulation and improves the lower

bound, which decreases the amount of enumeration. Cuts have a very important role for

the solution of difficult problems but their excessive use may cause slowdown and numerical

problems.

Cuts in branch-and-cut algorithms for general MILP problems are added in rounds: the

algorithm adds a batch of cuts, reoptimizes the LP, then repeats the procedure or turns

to branching. The most important decisions in this process concern the intensity of cut

generation: How many rounds of cuts to generate? How many cuts to add in a round?

At what nodes to generate cuts? A static strategy gives fixed answers that are applied

universally to all problem instances. An example of such a strategy is: “Generate at most

ten rounds of cuts at the root and one round at every 50th processed node. In every round,

generate at most 100 cuts.” A dynamic approach answers the above questions based on

information collected in the course of the algorithm. E.g., the decision to generate one

more round of cuts or switch to branching may depend on the progress made by previous

rounds of cuts. Because of the great diversity of MILP problems and the large variation

in the performance of branch and cut among problem instances, the dynamic approach is

preferable. Unfortunately, not much research is available in this direction. We address the

issue of cut selection in Chapter 3.
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Another important question for the computational efficiency of branch-and-cut solvers

is: When are cuts discarded from the formulation? Keeping all generated cuts throughout

the solution process can cause tremendous slowdown. One solution is to remove cuts as

soon as they become inactive (non-binding). An alternative strategy is to keep a cut until

some constant number of iterations of inactivity, where an iteration is one reoptimization

of the subproblem (after a round of cuts or in branching).



Chapter 2

Branching on general disjunctions

2.1 Introduction

Branch and cut is the most widely used algorithm for solving Mixed Integer Linear Pro-

grams. Its performance improved by several orders of magnitude in the last decade due to

advances in hardware but mostly due to modifications in the algorithm. In this paper, we

propose a modification in the branching routine.

One of the important decisions made in the branch-and-cut algorithm is the choice

of a branching object. Traditionally, in general purpose MILP solvers, branching objects

are variables — the “best” candidate is chosen among the integer variables that have a

fractional value in the current basic solution. If an integer-constrained variable, xj, has a

fractional value x̄j, we impose the constraint xj ≤ bx̄jc in one of the children and xj ≥ dx̄je

in the other. This can be viewed as adding the constraints πTx ≤ π0 and πTx ≥ π0 + 1,

respectively, where π = ej , the j-th unit vector, and π0 = bx̄jc. We propose to use a general

integer vector π and π0 = bπT x̄c for branching, where πi ∈ Z if xi is an integer variable and

0 otherwise. We call a disjunction simple when π = ej , for some j, and general otherwise.

General disjunctions are also known as split disjunctions [25].

There is an evident trade-off between the two approaches. General disjunctions can lead

to a smaller tree size. On the other hand, branching on variables produces LP subproblems

that are easier to reoptimize because bounds on the variables do not increase the size of the

basis. Branching on a general disjunction adds one row to the formulation of the children

subproblems. When this is repeated at every node, the number of constraints can grow

11
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notably leading to an increased solution time of each subproblem. In our experiments, we

observe that the decreased tree size usually more than offsets this increase.

One difficulty with the application of the idea for branching on general disjunctions

is the infinite number of general disjunctions that are violated by a given basic solution.

Optimizing over this set would give the best results but is practically impossible. A natural

objective would be to maximize the improvement in the lower bound as a result of branch-

ing (we assume here that MILP is a minimization problem). But there is no known way to

measure this value before solving the children nodes and, hence, no way to formulate this

problem. The intimate relation between split disjunctions and intersection cuts, introduced

by Balas [11], provides a proxy for the change in the lower bound. The depth of an inter-

section cut, or distance cut off, is a reasonable measure of the cut quality. One may use the

depth of the cut as a heuristic measure of the quality of the corresponding disjunction. But

even maximizing the depth over the set of all intersection cuts is a difficult MILP problem.

In this paper, we consider a specific class of general disjunctions — the ones defining

mixed integer Gomory cuts derived from the tableau [35]. The advantages of this class are

that it is finite and fast to generate. Furthermore, disjunctions corresponding to Gomory

cuts can be viewed as strengthened simple disjunctions. The algorithm we propose performs

a heuristic pre-selection of the most promising disjunctions based on the distance cut off

by the corresponding cut, followed by an exact evaluation of the quality of the pre-selected

disjunctions. This idea can be applied to other classes of intersection cuts as well, e.g. lift-

and-project[12], reduce-and-split [5], and mixed integer rounding cuts [47]. Our approach

is explained in detail in Section 2.4. A review of related earlier work is present in Section

2.2. A short introduction to intersection cuts is included in Section 2.3.

In Section 2.5, we describe the experiments we conducted and their results. These ex-

periments measure the gap closed after branching for a fixed number of levels by branch

and bound, and show that general disjunctions perform better than simple ones. An in-

teresting observation is that pruning of a child by infeasibility, which is a desirable effect,

happens more often when branching on general disjunctions than when branching on simple

disjunctions. In a final experiment, we study the performance of our algorithm in a cut-

and-branch framework. We also test an algorithm combining branching on variables and

general disjunctions.

There is no doubt that branching on general disjunctions can reduce the amount of
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enumeration compared to branching on single variables, provided that we know the right

disjunctions to branch on. In this paper, we show that such disjunctions can be generated

and applied without much computational overhead.

2.2 Literature review

The idea of branching on general disjunctions is not novel. One approach proposed in the

literature is to find “thin” directions in the polyhedron of feasible solutions, transform the

space so that these directions correspond to unit vectors, and solve the problem in the

new space by regular branch and bound, branching on the new variables. Transformed

back to the original space, this corresponds to branching on general disjunctions. For

detailed descriptions, refer to the algorithms for solving integer programming problems in

fixed dimensions by Lenstra [39], Grötschel, Lovász, and Schrijver [38], and Lovász and

Scarf [46]. Finding thin directions is done by lattice basis reduction based on the work of

Lenstra, Lenstra, and Lovász [42]. This approach proved very efficient for some instances

where branch and bound fails due to huge enumeration trees. Aardal et al. [1] applied a

related algorithm, developed by Aardal, Hurkens, and Lenstra [2], to market split instances

of the type proposed by Cornuéjols and Dawande [26]. They managed to solve instances

much larger than those that could be solved by regular branch and bound. For a recent

paper in this direction, see Mehrotra and Li [50].

Other examples of branching on general disjunctions are SOS branching and local

branching. Given the presence of a Special Ordered Set (SOS) [15] constraint in the for-

mulation (also called Generalized upper bound), branching can be done by replacing the

original SOS constraint by a new SOS constraint, different in both children. This results

in a significant reduction of the number of nodes that need to be enumerated. In their

paper on local branching [32], Fischetti and Lodi propose a way to direct the search in the

branch-and-bound algorithm. They branch on a special type of constraint that defines a

neighborhood of the incumbent solution.

The methods cited above find a set of promising branching disjunctions before the

start of branching or apply very specific types of general disjunctions. Our approach is to

select general disjunctions at every node of the search tree based on a heuristic measure

of their quality. Similar ideas have not been studied extensively in the literature. To our
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knowledge, there is one related study. Owen and Mehrotra [54] propose branching on general

disjunctions generated by a neighborhood search heuristic. The neighborhood contains all

disjunctions with coefficients in {−1, 0, 1} on the integer variables with fractional values at

the current node. The quality of the disjunctions is evaluated by solving the children nodes

in the spirit of strong branching.

Owen and Mehrotra tested their approach on 12 instances from MIPLIB 3.0 [20] and

report a significant decrease in the total number of nodes in a majority of them compared

to strong branching as implemented in CPLEX. The proposed procedure is not computa-

tionally efficient because of the large number of subproblems solved before each branching.

Nevertheless, it emphasizes the important observation that branching on general disjunc-

tions can decrease the size of the branching tree significantly.

The main differences between our approach and that of Owen and Mehrotra are:

• we consider a different class of general disjunctions, the ones defining mixed integer

Gomory cuts, while Owen and Mehrotra propose {−1, 0, 1}-disjunctions.

• instead of an extensive heuristic search, we apply a two-phase disjunction selection

procedure based on the depth of the corresponding intersection cuts in the first phase

and on strong branching in the second. As a result,

• we propose a computationally efficient algorithm that competes with branching on

single variables not only in terms of tree size but in terms of solution time.

2.3 Split disjunctions and intersection cuts

We present a summary of the theoretical foundations of intersection cuts. For a detailed

discussion, refer to Balas [11] and Andersen, Cornuejols, and Li [5].

Consider the Mixed Integer Linear Program:

(MILP) min{cTx : Ax = b, x ≥ 0n, xj integer for j ∈ NI}, (2.1)

where c, x, 0n ∈ R
n, b ∈ R

m, A ∈ R
m×n, and NI ⊆ N := {1, 2, . . . , n}. Without loss of

generality, assume A is of full row rank. The Linear Programming relaxation, denoted by

(LP), is obtained from (MILP) by dropping the integrality constraint on xj for j ∈ NI .

Let PI and P denote the sets of feasible solutions to (MILP) and (LP), respectively. A
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πT x = π0πT x = π0 x̄ πT x = π0 + 1

Intersection cut

x̄ πT x = π0 + 1

r1r1 r2 r2

Figure 2.1: Deriving the intersection cut

basis for (LP) is an m-subset B of N such that the column submatrix of A induced by B is

an invertible submatrix of A. Let J := N \ B denote the index set of non-basic variables.

A further relaxation of the set P with respect to a basis B is obtained by removing the

non-negativity constraints on the basic variables. We denote it by P (B):

P (B) := {x ∈ R
n : Ax = b and xj ≥ 0 for j ∈ J}. (2.2)

This set is a translate of a polyhedral cone: P (B) = C + x̄, where C = {x ∈ R
n : Ax =

0 and xj ≥ 0 for j ∈ J} and x̄ solves {x ∈ R
n : Ax = b and xj = 0 for j ∈ J}, i.e. x̄ is the

basic solution corresponding to the basis B. The cone C can be expressed also in terms of

its extreme rays, rj for j ∈ J : P (B) = Cone({rj}j∈J) + x̄, where Cone({rj}) denotes the

polyhedral cone generated by vectors {rj}. The extreme rays of P (B) can be found from

the simplex tableau corresponding to the basis B.

Define a split disjunction D(π, π0) to be a disjunction of the form πTx ≤ π0 ∨ πTx ≥

π0 +1, where (π, π0) ∈ Z
n+1 and πj = 0 for i /∈ NI . Clearly, any feasible solution to (MILP)

has to satisfy every split disjunction. Any violated split disjunction can be used to define

a cutting plane that cuts off points of P violating the disjunction. The generation of this

intersection cut, as defined by Balas [11], is exemplified in Figure 2.1 and explained below.

Given a split disjunction D(π, π0), let FD(π,π0) := {x ∈ R
n : πTx ≤ π0 ∨ πTx ≥ π0 +1}

denote the set of points that satisfy the disjunction. Since PI ⊆ P (B) ∩ FD(π,π0), a valid

cut for P (B) ∩ FD(π,π0) is valid for PI . In particular, the intersection cut is a half-space

bounded by the hyperplane passing through the intersection points of D(π, π0) with the

extreme rays of P (B).
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In order to find the intersection points, for all j ∈ J we compute the scalars:

αj(π, π0) :=





− ε(π,π0)
πT rj if πT rj < 0,

1−ε(π,π0)
πT rj if πT rj > 0,

+∞ otherwise,

(2.3)

where ε(π, π0) := πT x̄−π0 is the amount by which x̄ violates the first term of the disjunction

D(π, π0). The number αj(π, π0) for j ∈ J is the smallest number α such that x̄+αrj satisfies

the disjunction. In other words, x̄ + αj(π, π0)r
j lies on one of the disjunctive hyperplanes

πTx = π0 and πTx = π0 + 1.

Now, the intersection cut associated with B and D(π, π0) is given by:

∑

j∈J

xj

αj(π, π0)
≥ 1. (2.4)

The Euclidean distance between x̄ and this hyperplane is:

d(B, π, π0) :=

√
1∑

j∈J
1

(αj(π,π0))2
(2.5)

This quantity, called distance cut off or depth, can be used as a measure of the quality of

the cut. To our knowledge, it was first used by Balas, Ceria, and Cornuéjols [13].

An important result of Balas [11] is that Gomory cuts derived from the simplex tableau

associated with B can be viewed as intersection cuts. Let āij be the entry of the simplex

tableau in row i and column j. The mixed integer Gomory cut derived from the row in

which xi is basic can be obtained as an intersection cut from the disjunction D(π̂ i, π̂i
0):

π̂i
j :=





bāijc if j ∈ NI ∩ J and āij − bāijc ≤ x̄i − bx̄ic,

dāije if j ∈ NI ∩ J and āij − bāijc > x̄i − bx̄ic,

1 if j = i,

0 otherwise,

π̂i
0 = b(π̂i)T x̄c

(2.6)

This disjunction can also be obtained by strengthening the simple disjunction D(π i =

ei, π
i
0 = bx̄ic) on the non-basic integer variables where the affected coefficients are modified

so that the distance cut off is maximized.
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2.4 Branching on general disjunctions

This work is inspired by the relation between branching disjunctions and intersection cuts

at the optimal basic solution of the current LP relaxation. A violated split disjunction

can be used for generating an intersection cut but it can be used for branching as well.

A good intersection cut cuts deeply into the polyhedron of feasible solutions of the LP

relaxation and improves the lower, Linear Programming bound. Our suggestion is that

a split disjunction defining a deep cut is good for branching too. The LP lower bound

is often an important determinant of the amount of enumeration needed to complete the

solution. (Because of this, improving the lower bound is the aim of common rules for

selecting branching variables implemented in current MILP solvers.) The improvement in

the lower bound caused by branching on a split disjunction is no less than the improvement

by the corresponding intersection cut. We show this below.

A routine for branching on general disjunctions requires a procedure for selecting the

disjunction to branch on, which, in turn, requires a criterion for comparing the quality

of disjunctions, i.e. a criterion for comparing some measure of improvement in the lower

bound.

Measure of quality of a disjunction

A common rule for choosing a branching variable (simple disjunction) is to maximize some

function of the two optimal objective values computed at the children nodes that would

result from branching on this variable. Specifically, let x̄1 and x̄2 be the optimal solutions

for the first and second child, respectively, and let z(x̄1) = cT x̄1 and z(x̄2) = cT x̄2 be the

corresponding objective values. Two typical functions are min(z(x̄1), z(x̄2)) or 1
2 [z(x̄1) +

z(x̄2)]. Experiments with other options have been reported in the literature. As an example,

Linderoth and Savelsbergh [43] show good results with the sum 1
3 [min(z(x̄1), z(x̄2))+z(x̄1)+

z(x̄2)], while Achterberg, Koch, and Martin [3] propose 1
6 [4min(z(x̄1), z(x̄2))+z(x̄1)+z(x̄2)].

The only exact way to compute these functions is to solve the linear programs at the children

nodes. A commonly used method, called strong branching, does this for the candidate

branching variables before choosing the “best” one. This is computationally expensive

when applied to all integer variables with fractional values at the current basis and is

impossible to apply when branching on general disjunctions because of the infinite number
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x̄

x̄1

πT x ≤ π0 πT x ≥ π0 + 1

r2

r1

x̄2

p1

P

βTx = β0

p2

Figure 2.2: The LP bound obtained by branching is different from the one obtained by

cutting.

of such disjunctions. A procedure for pre-selecting a small finite set of disjunctions is needed

before strong branching can be applied. Such a procedure requires a heuristic measure of

disjunction quality.

We consider the integrality gap closed, or equivalently min(z(x̄1), z(x̄2)), an “exact”

measure of the quality of a disjunction. Based on the relation between an intersection cut

and the underlying disjunction, we propose to use the depth (distance cut off) of the cut as

a proxy to this measure, since the distance cut off is correlated to the amount of integrality

gap closed by adding the cut. Next, we show that the gap closed by branching on a split

disjunction is always at least as large as the gap closed by the corresponding intersection

cut.

Let P (B) be defined as in (2.2) and consider a split disjunction D(π, π0). Let βTx ≤ β0

be the intersection cut defined by P (B) and D(π, π0). (An example is shown in Figure 2.2.)

The feasible sets of the children are F1 := P ∩{x ∈ R
n : πTx ≤ π0} and F2 := P ∩{x ∈ R

n :

πTx ≥ π0 + 1}. Let x̄1 := arg min{cTx : x ∈ F1} and x̄2 := arg min{cTx : x ∈ F2} be the

corresponding optimal basic solutions. Let p1 := arg min{cTx : x ∈ P (B) and πTx ≤ π0}

and p2 := arg min{cTx : x ∈ P (B) and πTx ≥ π0 + 1}. Then, z(pi) is a lower bound

for z(x̄i), for i = 1, 2, because P (B) ⊇ P . Therefore, the optimal solution of min{cTx :

x ∈ P (B) and βTx ≤ β0}, provides a lower bound for any measure of disjunction quality
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which is a convex combination of z(x̄1) and z(x̄2). Consequently, branching on a general

disjunction can provide a better lower bound than the corresponding intersection cut. In

this respect, we cannot substitute branching by adding the corresponding intersection cut.

In our procedure, we will use the distance cut off by the corresponding intersection cut

as a heuristic measure of the quality of a disjunction. Other measures can be used as well.

Future research in this direction should be fruitful.

Procedure for selecting the branching disjunction

We need a procedure for selecting promising split disjunctions for branching. As we dis-

cussed in the introduction, optimizing over the set of all split disjunctions is prohibitively

expensive. One idea would be to come up with a heuristic search routine. Instead, we

suggest to concentrate on a finite class of general disjunctions which we can enumerate —

the set of split disjunctions defining mixed integer Gomory cuts, which we call MIG dis-

junctions. The reasons for our choice are the following. First, this set is not only finite

but relatively small. Its cardinality at a given node of the branch-and-bound tree equals

the number of integer variables with fractional values in the current basic solution. Second,

these disjunctions are fast to obtain. They can be generated from the current tableau by a

closed form formula (2.6). Third, as we mention in Section 2.3, these disjunctions can be

viewed as strengthened simple disjunctions (with respect to the cut depth) which suggests

that they could perform better.

The branching procedure we propose is shown in Figure 2.3. We consider the set M of

all MIG disjunctions for a specific basic solution and select a subset S of it, containing the

most promising disjunctions according to the chosen criterion for comparison. (Here, the

distance cut off by the underlying intersection cut.) We limit the cardinality of S to k. In

our tests, we use a constant k throughout the branching tree (k = 10). The parameter k

can be used to manage the computational effort at different levels, e.g. a larger k can be

used close to the root where branching decisions are more important and a smaller k in the

deep levels. Finally, we apply strong branching to the disjunctions in S.

The computational complexity of this procedure at each node is dominated by Step 3

and it is roughly equivalent to applying strong branching to the k most fractional variables.
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At each node:

1. Generate the set M of all MIG disjunctions.

2. Select a subset S ⊆ M of disjunctions with largest distance cut

off, such that |S| ≤ k.

3. Apply strong branching to the disjunctions in S maximizing

gap closed and choose a disjunction D ∈ S. Branch on D.

Figure 2.3: Procedure for branching on MIG disjunctions

2.5 Experimental results

The test set for the experiments we report is the union of the Mixed Integer Linear Pro-

gramming libraries MIPLIB 2.0 [53], MIPLIB 3.0 [20], and MIPLIB 2003 [4]. We exclude

very easy instances that can be solved in less than 50 nodes by the algorithms we tested.

We also exclude some very difficult instances — those for which less than 50 nodes can be

processed in one hour. These two groups of instances are considered in the first experiment,

where the gap closed at the root is compared but they are excluded from the subsequent

experiments. We also exclude instances with zero integrality gap. The final number of in-

stances in the test set is 80. This is a heterogeneous set of benchmark instances of different

sizes and with different origins and applications. It serves as a good test-bed of our ideas.

All experiments are conducted on an IBM IntellistationZ Pro computer with an Intel

Xeon 3.2GHz CPU and 2GB RAM. The MILP solver used is COIN-OR BCP, where some

user methods are modified for the purpose of our experiment. The LP solver is COIN-OR

CLP. Mixed integer Gomory cuts were generated using the cut generator in the library

COIN-OR CGL.

In our experiments, we compare branching on single variables to branching on general

disjunctions. When an instance is solved to optimality, we compare the solution time and

the size of the branch-and-bound trees. When the solution of an instance is interrupted (due

to time limit or bound on the depth of exploration), we compare the amount of integrality

gap closed. We consider the absolute gap closed: the difference between the lower bound at

interruption and the lower bound at the root node, and the relative (percentage) gap closed:



2.5. Experimental results 21

the absolute gap closed relative to the gap at the root.

In the first experiment, we study the gap closed after branching at the root node.

In the second experiment, we study the gap closed and the number of active nodes left

after branching for five levels. We apply pure branch and bound in these experiments

in order to avoid the influence of adding different cutting planes. This ensures a clean

comparison between the two branching procedures. Finally, we test our idea in a cut-and-

branch framework and propose a combination of the two branching methods. We also study

the increase in solution time per node caused by branching on general disjunctions.

2.5.1 Gap closed at the root

We first compare the gap closed at the root by ordinary branching on single variables and

branching on MIG disjunctions. When branching on variables, we select the (up to) ten

most fractional variables — those integer variables that have fractional parts closest to 0.5.

Then, the variable to branch on is chosen by strong branching with objective to maximize

the minimum gap closed in the children, i.e. the variable with maximum min(z(x̄1), z(x̄2))

is selected. In this implementation, if branching on a variable creates an infeasible child,

this variable is preferred to all others. For short, we call this setup for branching on simple

disjunctions SIMDI.

When branching on general disjunctions, we select the (up to) ten MIG disjunctions

with best distance cut off. Again, the object to branch on is chosen by strong branching

following the same rules as before. This guarantees fair comparison for variables and general

disjunctions since the number of branching candidates in both cases is the same. We call

this setup for branching on general disjunctions GENDI.

The comparison of the absolute gap closed shows that GENDI performs better for 59

out of 108 instances, while SIMDI is better for 20 instances. For 90 instances the optimal

objective value is known and this allows to compute the percentage gap closed. The average

percentage gap closed by GENDI and SIMDI over this set of instances is 17.9% and 11.7%,

respectively. If we consider only those 65 instances for which the gap closed by both methods

differ, the average gap closed by GENDI and SIMDI is 16.8% and 8.1%, resp. Detailed

results are given in Table A.1.

A closer look at the cases when one method substantially dominates the other shows
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that for 11 instances GENDI closes a positive amount of gap while SIMDI cannot close any

gap. In contrast, there are only 3 instances for which GENDI is unsuccessful while SIMDI

manages to improve the lower bound. When we look at the instances for which both methods

managed to improve the lower bound, the gap closed by GENDI is an order of magnitude

larger than that of SIMDI for 12 instances, while SIMDI is an order of magnitude better for

2 instances. Some examples where GENDI is clearly more successful are: 10teams, blend2,

fiber, gt2, mod010, momentum1, 2, and 3, msc98-ip, p0282, nw04, and swath. Similarly,

SIMDI dominates in: arki001, bell3b, mzzv42z, and roll3000.

These results are a strong indication that GENDI performs better than SIMDI. Next,

we test whether these good results at the root proliferate throughout the tree by branching

for five levels and by branching for up to two hours. Branching for five levels helps observe

another good effect of branching on MIG disjunctions: a decrease in the number of active

nodes.

2.5.2 Branching for five levels

In the second experiment, we branch at the top five levels of the branch and bound tree

and compare the resulting gap closed. As before, GENDI performs better. This is mainly

due to the larger gap closed by branching on general disjunctions, which we observed at

the root as well. But now we observe an interesting secondary effect: branching on general

disjunctions tends to produce more infeasible children, which additionally decreases the

amount of enumeration. We record this phenomenon by counting the number of active

nodes at the fifth level.

Detailed results of the experiment are shown in Table A.2. Summary results are shown

in Table 2.1. Lines labeled “Average” contain the average value of the criterion. Lines

labeled “Count better” contain the number of instances for which one method dominates

the other according to the criterion.

In terms of gap closed, SIMDI dominates in 19 cases, GENDI in 48 cases out of 80.

The average gap closed by SIMDI and GENDI is 24.3% and 29.1%, resp, over the set of 75

instances for which the optimal objective value is known. These results support our earlier

observation that GENDI closes more gap.

It is interesting to observe that GENDI also produces a smaller number of active nodes
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Table 2.1: Comparison of SIMDI and GENDI after five levels of branching

SIMDI GENDI

Absolute gap closed

Count better 19 48

Percentage gap closed

(Instances with known optimal solution)

Average 24.3 29.1

Count better 18 46

Active nodes at level 5

Average 25.8 18.0

Count better 10 43

Gap closed and active nodes together

Count better 6 33

at the fifth level, on average. Out of the maximum possible 32 nodes, SIMDI generates

25.8 while GENDI generates 18. On this criterion, SIMDI performs better in 10 cases while

GENDI does this in 43 cases. This effect is important not by itself but in combination with

improvement in the gap. Combining both criteria, SIMDI results in a larger gap closed and

a smaller number of active nodes in only six cases, while GENDI achieves this in 33 cases.

The reason for the smaller number of active nodes is that GENDI often generates dis-

junctions that produce only one feasible child. For some instances, this happens at every

level of the branching tree, resulting in a single node at level five. Sometimes, this is com-

bined with an impressive improvement of the gap closed over SIMDI, e.g. manna81, p0033,

set1al, set1cl, seymour, and swath. See also lseu, roll3000, set1ch, and sp97ar.

The combination of a larger improvement in the gap and a smaller number of active

nodes is a very desirable effect and it deserves more attention. Branching on a disjunction

that generates only one feasible child is equivalent to adding a single cut to the formulation.

One may argue that this cut would be added by a branch-and-cut algorithm and only

the fact that we apply pure branch and bound leaves us such good opportunities. This
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x̄πT x ≤ π0 πT x ≥ π0 + 1

r2

r1

x̄2

p1 p2 βT x = β0

P

Figure 2.4: Disjunction with only one feasible child

could be true in some cases but in others the disjunction inequality is stronger than the

corresponding MIG cut. Figure 2.4 is an example. The cut generation procedure considers

the polyhedral cone pointed at x̄, relaxing some of the constraints defining P , and generates

the intersection cut βTx ≤ β0. But it cannot detect the fact that one of the feasible sets of

the children is empty. (Here, P ∩ {x ∈ R
n : πTx ≤ π0}.) When branching on D(π, π0), we

essentially add the cut πTx ≥ π0 + 1, which is stronger than βTx ≤ β0.

Consequently, branching on a general disjunction that generates only one child can be

viewed as strengthening the underlying intersection cut. Thus, branching on a general

disjunction cannot be substituted by adding the corresponding intersection cut even when

one of the disjunctive sets is empty. When both disjunctive sets are non-empty, branching

on a general disjunction can close more gap than the corresponding cut, as we showed in

Section 2.4.

We do not consider branching on general disjunctions a substitute of cutting planes.

Our procedure comes into play when branch and cut decides to start branching. And then,

a routine that tends to avoid branching (and duplicating the problem) when some part of

the gap can be closed by a cut could be very useful.
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2.5.3 Cut and branch

Now, we test the performance of our approach in a cut-and-branch framework. We generate

ten rounds of mixed integer Gomory cuts before proceeding to branching. Branching is done

as before: at each node, up to ten branching objects are selected for strong branching. We

make two minor modifications in the algorithm for branching on general disjunctions. The

first aims at avoiding unnecessary increase in the size of the subproblems and the second

aims at avoiding numerical problems. First, when the π vector of a disjunction is a singleton,

we branch on that variable instead of adding explicit constraints of the type xj ≤ bx̄jc or

xj ≥ bx̄jc + 1. Second, we do not consider dense disjunctions for branching. We define

dense disjunctions to be those whose vector π ∈ Z
n has support of cardinality greater than

max(10, 0.1n). If all generated disjunctions at a node are dense, we branch on variables

instead.

The limit on the solution time is two hours. Our goal is to solve the instances and

compare the tree size and the running time. For those not solved to optimality, the amount

of gap closed is compared. We also compute the increase in computing time caused by

branching on general disjunctions by computing the ratio of the average solution time per

node required by the two different branching schemes.

Branching on general disjunctions performs better than branching on variables for a

majority of the instances but not for all of them. This suggests that a combined approach

can build upon the advantages of both “pure” algorithms. We combine them in the following

way: at every node of the branching tree, we select five most fractional variables and five

disjunctions with maximum distance cut off. Then we apply strong branching to all these

branching objects. We call this algorithm COMBI and compare it to the other two. Detailed

results from this experiment are presented in Table A.3.

Out of 80 test instances, SIMDI solved 35 in the alloted time, GENDI solved 50, and

COMBI solved 50. GENDI solved all instances solved by SIMDI except one, stein45.

COMBI solved all instances solved by SIMDI and could not solve only one instance solved

by GENDI, bell4.

We ranked the methods according to the amount of gap closed for each instance (see

Table 2.2). SIMDI ranked first 46 times and GENDI 67 times. GENDI closed more gap than

SIMDI in 33 cases while SIMDI dominated in 8 cases. In addition, we compute the ratios of
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Table 2.2: Ranks according to gap closed.

Rank SIMDI GENDI COMBI

1 46 67 59

2 2 7 18

3 32 6 3

Table 2.3: Geometric mean of the ratios of three parameters over all 80 instances.

Ratio GENDI COMBI COMBI

SIMDI SIMDI GENDI

Absolute gap closed 1.15 1.14 0.99

Absolute gap closed by branching 1.26 1.23 0.97

Average solution time per node 1.24 1.29 1.04

the absolute gap closed by GENDI and SIMDI for all instances and look at the geometric

mean. (Values of infinity, corresponding to zero gap closed by SIMDI, are excluded.) Since

part of this gap is closed by the cuts added at the root, a better measure for comparing the

different branching methods is the ratio between the gap closed only by branching. These

ratios are shown in the second column of Table 2.3. GENDI closes 15% more gap than

SIMDI on average, and if we consider only the gap closed by branching, the improvement

is 26%. These results indicate that GENDI performs better than SIMDI on this test set.

The performance of the combined approach, COMBI, tends to be close to the better

of the other two methods. It equaled the best gap closed by SIMDI and GENDI for 53

(out of 80) instances and even improved it in six cases. It ranked last only three times

demonstrating more consistent behavior. Comparing the ratios of the gap closed (Table

2.3), we conclude that COMBI performs a few percent worse than GENDI on average but

still outperforms SIMDI significantly.

Table 2.3 shows the ratio of the average solution time per node of the three branching

procedures as well. We observe that GENDI requires 24% more time to solve a node than
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Table 2.4: Geometric mean of the ratios of solution time and tree size over 35 instances

solved by all methods

Ratio GENDI COMBI COMBI

SIMDI SIMDI GENDI

Solution time 0.72 0.50 0.70

Tree size 0.65 0.42 0.65

SIMDI (including the time for strong branching). The corresponding statistic for COMBI is

29%. Careful analysis shows that the increased solution time per node caused by branching

on general disjunctions is offset by the reduced amount of enumeration and the increased

amount of integrality gap closed.

To make a more detailed analysis, we split the test set into three sets: instances solved by

all methods, those not solved by any method, and the remaining. This analysis is presented

below. In summary, the two algorithms using branching on general disjunctions solved 43%

more instances within the two hour time limit compared to branching on variables. For

those instances solved by all algorithms, GENDI and COMBI are more efficient in terms of

solution time and tree size, on average. For the instances not solved by any method, GENDI

and COMBI closed more gap for the same time. These observations are a strong indication

that the proposed procedures for branching on general disjunctions perform better than

branching on variables.

Instances solved by all methods

Thirty five instances were solved by the three algorithms which allows to compare the size

of the branching trees and the total solution times. One instance, manna81, was solved

solely by cutting planes and is excluded from this analysis.

Table 2.4 contains the geometric mean of the ratios of solution time and tree size. It

shows that GENDI decreases the solution time by 28% compared to SIMDI. COMBI is more

efficient and solves these instances twice as fast as SIMDI. The decrease in the tree size is

even more significant. GENDI and COMBI explore 65% and 42% of the nodes explored
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by SIMDI, respectively. At the two extremes, GENDI and COMBI are at least five times

more efficient in solving dcmulti, flugpl, gesa3, gesa3 o, lseu, and p0033, while SIMDI

is about five times faster with air05 and qnet1 o. COMBI is faster than the other two

algorithms in most cases. As an extreme example, it solves nw04 in 48 seconds while SIMDI

and GENDI require 60 and 113 minutes, respectively.

In conclusion, we observe that branching on general disjunctions causes significant re-

duction in the total solution time compared to branching on variables. The combined

approach performs notably better than the other two algorithms on this test set.

Instances solved by some but not all methods

Fifteen instances were solved by some but not all algorithms. These are relatively diffi-

cult instances on which branching on general disjunctions performs significantly better and

in many cases orders of magnitude better. Thirteen of them were solved by GENDI and

COMBI but not solved by SIMDI within two hours. The geometric mean of the solution

times is 228 seconds by GENDI and 301 seconds by COMBI. Some cases of extreme reduc-

tion of the solution time are: bell5 solved in 9.9 s and 2055 processed nodes by GENDI;

fiber solved in 18 s and 203 nodes by GENDI, and in 11.3 s and 172 nodes by COMBI;

gt2 solved in 1.1 s and 120 nodes by GENDI, and in 0.5 s and 41 nodes by COMBI. All

these instances could not be solved in two hours and hundreds of thousands of nodes when

branching on variables. Another example is 10teams where SIMDI closed only 28.6% of

the gap in two hours, while GENDI solved the problem in 75 minutes and COMBI solved

it in four minutes. A significant difference in the gap closed is observed for rout, p0282,

and fiber, as well.

One instance, bell4, was solved only by GENDI. It was solved in 51.2 s and 3490 nodes

while the other methods could not solve it in two hours and more than 250,000 nodes.

SIMDI managed to close 96.6% of the gap and COMBI closed 99.6%. The last instance

from this group, stein45, was solved by SIMDI in 103 minutes and by COMBI in 80

minutes but not solved by GENDI.

These observations clearly reveal the properties of branching on general disjunctions to

close larger amounts of the integrality gap and to decrease the amount of enumeration.
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Table 2.5: Geometric mean of the ratios of gap closed over 23 instances not solved by any

method

Ratio GENDI COMBI COMBI

SIMDI SIMDI GENDI

Absolute gap closed 1.30 1.25 0.97

Absolute gap closed by branching 1.59 1.43 0.90

Instances not solved by any method

Twenty eight instances were not solved by any method within the time limit. We compare

the gap closed by the three algorithms in the two-hour interval of time. None of the

algorithms closed any gap by branching for three instances: liu, markshare1, and 2. For

two instances, opt1217 and p2756, SIMDI closed no gap while GENDI and COMBI closed

positive amounts of gap. These five instances are excluded from the summary statistics

presented in Table 2.5. For the remaining 23 instances, GENDI and COMBI closed 30%

and 25% more gap than SIMDI, respectively. If we consider only the gap closed in the

branching phase of cut and branch, the improvement in the gap is 59% and 43%, respectively.

These results show that branching on general disjunctions closes significantly more gap than

branching on variables for the same time interval, on average.

2.6 Conclusion

In this paper, we propose a procedure for branching on general disjunctions as part of a

branch-and-cut algorithm for solving Mixed Integer Linear Programming problems. The

procedure is independent of the instance characteristics and can be applied to any MILP.

We discuss the relation between branching disjunctions and intersection cuts and show

that branching on general disjunctions can close more gap than adding the corresponding

intersection cut, implying that branching cannot be substituted by cutting planes. We

propose to use the distance cut off by the intersection cut as a measure of quality of the

disjunction. This measure is used for pre-selection of the most promising disjunctions before
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strong branching.

We test these ideas in experiments with 80 test instances from the literature, comparing

branching on variables with branching on general disjunctions. We observe that on average

the effect of branching on general disjunctions is: (i) smaller tree size and solution time

for the instances solved to optimality, and (ii) larger amount of gap closed for the other

instances. The test results clearly indicate that the proposed procedure outperforms regular

branching on variables for most instances.

We also observe that, in addition to the larger amount of gap closed, branching on general

disjunctions results in only one feasible child more often than branching on variables does

(with the same branching rules applied). This is an interesting side effect that decreases the

tree size further. In our implementation, we select ten disjunctions for strong branching and

sometimes more than one produces an infeasible child. One could add all these disjunctive

inequalities, which are valid for PI , as cuts instead of adding just one through branching.

This will decrease the search space at the child node. We have not implemented this idea.

We obtain an efficient algorithm by considering only a specific class of disjunctions —

those defining mixed integer Gomory cuts — instead of searching the whole set of split

disjunctions. This approach can be extended to disjunctions defining other classes of split

cuts, such as lift-and-project, reduce-and-split, and mixed integer rounding cuts. More work

can be done on criteria for evaluating disjunctions as well.
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The effect of angle on the quality

of a family of cutting planes

3.1 Introduction

In a branch-and-cut algorithm, cutting planes are added with the aim of removing parts of

the relaxed set that contain no feasible solution. The idea of generating cuts within branch

and bound is one of the cornerstones of the recent major improvements in the Mixed Integer

Linear Programming (MILP) optimization software. It lead to a considerable decrease of

the solution time for hard instances.

The development of various combinatorial and general cutting planes, together with

the increased computational power, allow us to generate a large number of cuts. Adding

all of them to the formulation can be detrimental to the speed of the solution and to the

numerical stability. There are indications that the leading commercial software packages for

MILP apply cut selection. Unfortunately, their procedures are not revealed. In addition,

there has not been much research devoted to this topic.

Adding cuts affects the performance of the algorithms in various ways. Cuts strengthen

the formulation of the problem. This leads to an improvement of the bound used for

pruning and, therefore, to a decrease in the amount of enumeration. On the other hand,

increasing the size of the formulation slows down the solution of the LP relaxation. This

effect propagates to the children of the node where cuts are added, and to their children.

If the added cuts are dense (with a large fraction of non-zero coefficients), the slowdown

31
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in reoptimization is even larger. In addition, cuts may affect the numerical stability of the

coefficient matrix.

In this study, we concentrate on some geometric properties of cutting planes in an

attempt to evaluate their quality. The novelty in our approach is that we look at the

quality of a family of cuts as a group, and not only at the properties of the individual cuts.

Cuts are added in rounds and the effect of a round of cuts is not the sum of the effects that

individual cuts cause. Furthermore, some of the negative effects, like numerical instability,

are often caused by the interaction of cuts rather than their individual properties.

Most of the widely used classes of general cutting planes are intersection cuts. (E.g.,

mixed integer Gomory cuts [35], mixed integer rounding cuts [47], lift-and-project cuts [12],

and reduce-and-split cuts [5].) Adding many of these cuts simultaneously causes a significant

decrease in the angles between the active constraints — an effect we call flattening. As a

result, future rounds of cuts are not as efficient. Flattening may affect the branching phase

too.

We study the effects of adding cuts on the performance of branch and cut, and test the

efficiency of several cut selection algorithms. We propose a cuts selection procedure that

incorporates distance cut off and angles between cuts as measures of quality of a set of cuts.

We also propose a termination criterion for cut generation.

3.2 Motivation and algorithms

3.2.1 Reasons for cut selection

Cut selection aims at alleviating the negative effects of adding a large number of cuts while

preserving the cutting power of the set of selected cuts. In order to distinguish “good”

from “bad” cuts, various cut properties are considered. Usually, cuts are evaluated on an

individual basis. In this study, we emphasize the importance of evaluating cuts as a group.

Cuts are generated and added in rounds rather than one by one. Therefore, the collective

influence of a set of cuts on the algorithm is what we need to evaluate.

The importance of cut selection is well understood. There is evidence that contemporary

state-of-the-art commercial MILP solvers implement some kind of cuts selection procedures.

Nevertheless, to our knowledge, there is no published systematic research on cut selection
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algorithms.

The main drawbacks of adding a large number of cutting planes are potential numer-

ical problems and increased total solution time caused by a slowdown in the subproblems

reoptimization. The typical reasons for numerical instability are (i) the large difference in

the magnitude of cut coefficients, and (ii) the presence of two almost parallel cuts in the

pool of added cuts. The first issue is addressed by discarding the cut. To deal with the

second issue, a new cut is added to the pool of selected cuts only if its angle with those

already selected is above some threshold. In the literature, a common rule is “the cosine of

the angles should be no greater than 0.999.” [13, 31]

The efforts to minimize the slowdown caused by adding many cuts usually materialize

in discarding part of the generated cuts. Cut density is known to have a strong negative

impact on the speed of reoptimization. As a consequence, dense cuts are often discarded.

Further cut selection is done by applying some measure of cut quality. A commonly used

measure is the distance cut off. It equals the Euclidean distance between the current basic

solution and the cut hyperplane. It is also called depth or steepness by some authors. We

will use the terms distance cut off and depth interchangeably.

Better distance cut off does not guarantee a better new LP bound but, clearly, there is

a relation between the two. One reason why distance cut off is not a perfect measure of the

improvement in the lower bound is that the depth does not incorporate the direction of the

objective. Another criticism is that the distance cut off is computed in the full-dimensional

space while the polyhedron may not be full dimensional. A solution would be to compute

the depth in the affine subspace spanned by the polyhedron. Unfortunately, this subspace

is often unknown.

Cook, et al. [24] studied these two variations of distance cut off and other distance-

related measures empirically, applied to a set of traveling salesman problem instances. They

concluded that all measures based on distance perform similarly. We adopt distance cut off

(in the full-dimensional space) as a quality measure of an individual cut.

An important property characterizing a group of cuts is the size of angles between

them. As we noted, angle has been used in the literature but mainly for discarding parallel

or close-to-parallel cuts. The threshold for a minimum acceptable angle is typically set

to a very small angle. (The only exception, to our knowledge, is the work of Anreello, et

al. [6] on {0, 1
2}-cuts, where a threshold of cos = 0.1 is tested with this particular class of
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combinatorial cuts.) We suggest applying a more restrictive angle threshold to selecting

general cutting planes. The goal is to control the effect of cuts on the polyhedral structure

close to the optimal basis. We justify the importance of angles between cuts in the next

section.

3.2.2 The importance of angle between cuts

We argue that adding many cuts to the formulation is not good for the facial structure of

the polyhedron close to the optimal basis. One consequence is that the large number of cuts

produces a large number of (relatively) small facets. This could affect the computational

efficiency by increasing the number of pivots necessary to solve the subproblems when

branching.

Another effect is that the angles between the active constraints after adding a round of

cuts and reoptimizing become smaller. We call this flattening. We prove it below.

Consider the Mixed Integer Linear Program:

(MILP) min{cTx : Ax ≥ b, xj integer for j ∈ NI}, (3.1)

where c, x,∈ R
n, b ∈ R

m, A ∈ R
m×n, and NI ⊆ N := {1, 2, . . . , n}. Non-negativity

constraints on all variables are included in Ax ≥ b, therefore, A is of full column rank. The

Linear Programming relaxation, denoted by LP, is obtained from MILP by dropping the

integrality constraint on xj for j ∈ NI . Let PI and P denote the sets of feasible solutions

to MILP and LP, respectively. Let x̄ be an optimal solution of min{cTx : x ∈ P}.

Let C be the constraint set of LP indexed by C := {1, 2, . . . ,m}. Let ai ∈ R
n for i ∈ C

be the normal vectors of the constraints in C. Let C(x̄) ⊆ C be the set of constraints with

nonbasic slack at x̄ and let they be indexed by C(x̄) ⊆ C. A further relaxation of the set

P with respect to a basic solution x̄ is obtained by removing the constraints that are not

in C(x̄). We denote it by P (x̄):

P (x̄) := {x ∈ R
n : aT

i x ≥ bi, ∀i ∈ C(x̄)}. (3.2)

This set is a translate of a polyhedral cone: P (x̄) = K+ x̄, where K = {x ∈ R
n : aT

i x ≥

0, ∀i ∈ C(x̄)} and x̄ solves {x ∈ R
n : aT

i x = bi, ∀i ∈ C(x̄)}. Let the extreme rays of K,

rj for j ∈ C(x̄), be defined as rj := {x ∈ R
n : aT

i x = bi, ∀i ∈ C(x̄) \ {j} and aT
j x ≥ bj}.



3.2. Motivation and algorithms 35

Now, if Cone({rj}) denotes the convex polyhedral cone generated by vectors {rj}, P (x̄) =

Cone({rj}j∈C(x̄)) + x̄.

Consider the following procedure: we start with a basic solution x̄, generate intersection

cuts and add them to the constraint matrix, and reoptimize to obtain a new optimal solution

x̄′. (For a description of intersection cuts, refer to Section 2.3 and to Balas [11].) Let C ′(x̄′)

be the index set of active constraints at x̄′. We can state the following proposition.

Proposition 1. Cone({ai}i∈C′(x̄′)) ⊆ Cone({ai}i∈C(x̄)).

This proposition follows directly from the following lemma.

Lemma 1. Let γTx ≤ γ0 be an intersection cut valid for P (x̄) and cutting off the current

basic solution x̄. Then, γ ∈ Cone({ai}i∈C(x̄)).

Proof. Vectors ai for i ∈ C(x̄) form a basis in R
n, therefore γ can be uniquely expressed as

∑
i∈C(x̄) λiai, for λi ∈ R, ∀i ∈ C(x̄). (Note that the basis {ai}i∈C(x̄) is non-degenerate by

definition.) Then, γ ∈ Cone({ai}i∈C(x̄)) is equivalent to λi ≥ 0, ∀i. Assume the converse,

i.e. λj < 0 for some j ∈ C(x̄). By the definition of the extreme rays of P (x̄), aT
i r

j = 0 for

i 6= j and aT
j r

j > 0. Therefore, γT rj = λja
T
j r

j < 0. But this cannot hold for an intersection

cut, where, by definition, γT ri ≥ 0 for all i.

For two vectors α, β ∈ R
n, let ^(α, β) denote the angle between them. Proposition

1 implies that max{^(ai, aj) : i, j ∈ C ′(x̄′)} ≤ max{^(ai, aj) : i, j ∈ C(x̄)}, In words,

after adding cuts, the maximum angle between the normal vectors of the active constraints

cannot increase. This is shown in Figure 3.1 as well, where the thick lines are the active

original constraints, the thin lines are the cuts, and the direction of minimization is up.

After several rounds of cuts, the surface of the polyhedron around the optimal solu-

tion becomes much “flatter” than in the beginning. If the maximum angle between the

active constraints becomes very small, future rounds of cuts will cut very small parts of the

polyhedron and yield only minimal improvement of the integrality gap, and cutting plane

generation will eventually be abandoned. We propose to avoid this by adding such a subset

of the generated cuts that keeps the angle between active constraints above some threshold.

As a result, this will yield a solution x̄′′ worse than x̄′ (see Figure 3.1) but can allow us

generate more rounds of efficient cuts. The overall result could be better than adding all
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x̄

x̄′

x̄′′

Figure 3.1: A basic solution and cuts

cuts. We show this empirically. Detailed results of the experiments are presented in Section

3.3.

3.2.3 Cut selection algorithms

Various cut selection algorithms are used in the empirical tests in order to show the im-

portance of cut selection and the role of angle between cuts. We present a description of

the algorithms in Figure 3.2. We give each algorithm a short name that will be used in the

reports of the computational experiments.

In the described algorithms, the selected cuts are accumulated in a cut pool called P.

Each algorithm takes as input a round of violated cuts and a numeric parameter that specify

the degree of selectiveness of the algorithm.

A trivial procedure for cut selection is one that approves all cuts. We use it for compar-

ison and call it “Add-all.”

We define two algorithms that consider only the distance cut off as a criterion for

selection. The first one, called “Depth-fix,” uses a fixed threshold for the depth, δ. All

cuts with depth no less than δ are accepted; the rest are discarded. A drawback of this

procedure is that we cannot hope to find a constant δ that would work well for all problem

instances because of the large variance of the average depth of generated cuts among problem

instances. Furthermore, the estimation of an appropriate threshold for a particular instance
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Algorithm “Add-all”

Input: Set S of valid cuts.

1. Pool P := S.

Algorithm “Depth-fix”

Input: Set S of valid cuts. Depth threshold, δ.

1. Let t := |S|. Label the cuts in S by s1, s2, . . . , st.

2. For i := 1 to t

If dco(si) ≥ δ, P := P ∪ {si}.

Algorithm “Depth-dyn”

Input: Set S of valid cuts. Fraction of the cuts to be kept, k.

1. Let t := |S|. Label the cuts in S by s1, s2, . . . , st,

s.t. dco(s1) ≥ dco(s2) ≥ · · · ≥ dco(st).

2. P := {s1, ..., sm}, where m = kt rounded to the nearest integer.

Algorithm “DA-fix”

Input: Set S of valid cuts. Angle threshold, ϕ.

1. Let t := |S|. Label the cuts in S by s1, s2, . . . , st,

s.t. dco(s1) ≥ dco(s2) ≥ · · · ≥ dco(st).

2. P := {s1}.

3. For i := 2 to t

If cos(^(si, p)) ≤ ϕ for all p ∈ P,

P := P ∪ {si}.

Algorithm “DA-dyn”

Input: Set S of valid cuts. Fraction of cuts to be kept, k.

1. Let t := |S|. Label the cuts in S by s1, s2, . . . , st,

s.t. dco(s1) ≥ dco(s2) ≥ · · · ≥ dco(st).

2. Find ϕ, such that the number of selected cuts by Algorithm “DA-fix”

would be kt rounded to the nearest integer. Use binary search.

3. P := {s1}.

4. For i := 2 to t

If cos(^(si, p)) ≤ ϕ for all p ∈ P,

P := P ∪ {si}.

Figure 3.2: Algorithms for cut selection
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is a non-trivial task. Even further, a given fixed threshold may not work equally well for

all rounds of cuts at the root and throughout the branching tree. The reason is that cuts

generated in the first two-three rounds at the root usually have much greater average depth

compared to cuts generated later. As a solution, we suggest a more dynamic way of setting

the value of δ. For each round of cuts, δ equals the value that keeps a particular fraction k

of the cuts. We call this procedure “Depth-dyn.”

A variation of a cut selection heuristic that incorporates both distance cut off and angle

is called “DA-fix.” In this procedure, cuts with larger distance cut off are preferred but they

are added to the pool only if they pass the angle test, i.e. if the cosines of angles between

the candidate and the cuts already in the pool are below some threshold, ϕ. This algorithm

directly controls the minimum angle between two cuts in the pool. As with depth, a fixed

value of the angle threshold may not work equally well for all rounds of cuts and for all

problem instances. We develop a dynamic version of this procedure, where the threshold is

set specifically for every round of cuts at a value that would keep a fixed fraction k of the

generated cuts. We call this algorithm “DA-dyn.”

During the course of this study, we tested cut selection algorithms that relied solely on

the angle between cuts. Those showed inferior results. We conclude that the distance cut

off is an important property of cuts and it should be considered.

3.2.4 When to stop generating cuts

Above, we discussed the selection of a set of cuts out of a large pool of generated cuts.

Another important question is whether we should generate a next round of cuts or proceed

to branching. The answer to this question is usually given by analyzing the improvements

in the integrality gap caused by the previous rounds of cuts. We argue that another measure

is more relevant.

A major goal of adding cutting planes is to improve the lower, cut-off bound. Therefore,

the change in the lower bound is a natural measure of the efficiency of a round of cuts.

That change is usually larger for the first rounds and diminishes as we proceed with cut

generation. When the change becomes “small,” this is interpreted as an indication that

further cut generation will be fruitless.

This measure is widely accepted and we believe this is the measure used by the strategies
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Parameters: r: round of cuts to be used as a benchmark

p: fraction (of the average distance cut off by cuts in round r)

l: lag, number of previous rounds to consider.

Rule: If (i > r)

If ( dco(i) < p dco(r)

and dco(i− 1) < p dco(r)

. . .

and dco(i− l) < p dco(r) )

Terminate cut generation and proceed to branching.

Figure 3.3: Termination criterion for cut generation

for actively managing cut generation in some current MILP solvers. (A passive strategy

would prescribe a fixed number of rounds as long as cuts can be generated. E.g., ten rounds

at the root node and one round at specific other nodes.) But practice shows that the

improvement in the lower bound does not always tell all the truth. There are cases when

the improvement stalls for several rounds in a row, suggesting that cuts have probably

exhausted their potency, and then, suddenly, there is a large improvement. For example,

in a specific experiment with instance 10teams, there was no improvement in the gap in

the first three rounds but then rounds four and five closed 100% of the gap. Cases like this

occur when the optimal face of the LP relaxation is not a vertex and many cuts are needed

until all of the points of that face are cut off.

We suggest to use an alternative measure of the progress made by a round of cuts: the

average distance cut off by the cuts. (Clearly, other functions of the cuts’ depth can be used

as well.) The presence of deep cuts suggests that significant parts of the feasible set are cut

off and cuts are not out of steam yet. On the contrary, when all cuts in a round are shallow

(which could be due to flattening), chances are that future rounds will not be productive.

Usually, rounds of cuts with small average distance cut off cause small improvement in

the lower bound. The converse is not true. In the aforementioned example (10teams), the

average distance cut off in the first three rounds clearly showed that cuts were doing work.

A termination criterion for cut generation may look like the one in Figure 3.3. The
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rule is applied after a round of cuts has been generated and before proceeding to a next

round. Let dco(i) denote the average distance cut off by the cuts in round i. A particular

implementation could be “If the average depth of the current round is less than p = 30%

of the average depth of the first round (r = 1), stop cut generation.”

As we pointed out, first-round cuts are usually significantly deeper than cuts generated

later. Therefore, the average depth of the first round may not be a good benchmark. To

overcome this, round r > 1 can be chosen as a benchmark.

In addition, computational experience shows that the sequence of average depth per

round is not strictly decreasing as a function of the round number. A round of shallow cuts

may be followed by a round of deep ones. One may want to observe several consecutive

rounds of week cuts before pronouncing future cut generation useless. Parameter l captures

this. If the average depth of the current round and the depths of the previous l rounds

are all smaller than the benchmark p dco(r), cut generation is halted. Based on practical

experience, we suggest r = 3, p = 0.5, and l = 1 or 2.

3.3 Experimental observations

In our computational experiments, we study the effects of adding cuts and those of cut

selection on the efficiency of the solution algorithm.

The solution algorithms used are branch-and-cut and branch-and-bound (used for com-

parison). In branch-and-cut, up to 30 rounds of cuts are applied at the root node and

three rounds of cuts are applied at the nodes at level l, such that l ≡ 0(mod 4) and

0 < l ≤ 40. One round of cuts consists of all generated mixed integer Gomory cuts,

mixed integer rounding cuts, and reduce-and-split cuts. After each round, the modified

subproblem is reoptimized and inactive cuts are deleted. In the branching phase, we

apply full strong branching on the ten most fractional variables, with quality measure

ψ(z1, z2) = λmin(z1, z2) + (1 − λ)max(z1, z2) and λ = 5/6. The node selection rule is

best-dive with lowest-LP-bound child selection in diving. (Refer to Section 1.2 for detailed

description of the rules.)

As a measure of algorithm efficiency, we often use the progress in the lower bound or,

equivalently, the gap closed. The integrality gap of a MILP problem is the difference between

the optimal objective value and the objective value of the LP relaxation, z∗ − z(PLP). Let
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the lower bound at a particular moment be zmin. The gap closed by the algorithm is

zmin − z(PLP). A related measure is the relative gap closed: zmin−z(PLP)
z∗−z(PLP) , the gap closed as a

fraction of the initial integrality gap. It is also known as percentage gap closed. We use gap

closed in our analysis, because the optimal objective value of some instances is not known.

Relative gap closed is used in some figures.

The test set consists of 30 problem instances: 28 from MIPLIB 2003 [4] and 2 from

MIPLIB 3.0 [20]. We discarded all instances that can be solved in less than 200 nodes,

as well as instances that require long time to solve a single subproblem and, as a re-

sult, less than 200 nodes are processed in the allotted one-hour limit. The selected in-

stances are: a1c1s1, aflow30a, aflow40b, air04, air05, bell4, bell5, danoint, fiber,

gesa2 o, mas74, mas76, misc07, mkc, mod011, modglob, nsrand-ipx, p0201, pk1, qiu, rgn,

roll3000, rout, set1ch, stein45, swath, timtab1, timtab2, tr12-30, and vpm2. We

denote the set of test instances by I.

The experiments were conducted on a Sysbuilder Intel computer with Intel Xeon 3.20GHz

processors (32-bit). The software packages used are BCP [57, 48], an MILP solver, and

CGL, a cut generation library – both part of the COIN-OR [33] open-source project. The

LP solver is ILOG CPLEX 9.0 [27].

In most of the experiments, we concentrate our attention at the root node. In current

state-of-the-art MILP solvers, aggressive cut generation in many rounds is done only at the

root. There are good reasons for this. Root cuts are globally valid. In addition, improving

the lower bound at the root affects pruning throughout the search tree. As a result, cutting

decisions taken at the root node are of much greater importance than those taken at the

other nodes.

We start by observing flattening and its effect on cut depth and on the improvement of

the lower bound. (Section 3.3.1.) In Section 3.3.2, in a series of experiments, we compare

adding all cuts versus adding only 10% of the cuts. We study the effect of this very restrictive

cut selection on the gap closed and on the quality of future rounds of cuts. We compare

the solution time in the cutting phase, as well. In Section 3.3.3, we conduct another series

of experiments with a range of cut selection algorithms. We analyze the effect of adding

cuts on the branching time and on the number of fractional variables. In Section 3.3.4, we

continue our study on the effect of cut selection. Finally, in Section 3.3.5, we empirically
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test the importance of angle as a cut selection criterion when solving the test instances to

completion.

Based on the experimental results, we reach the following conclusions.

• Adding cuts leads to:

– larger number of pivots to reoptimize children;

– larger number of fractional variables.

• Benefits from cuts selection:

– closes similar amount of gap, on average;

– leads to faster reoptimization after a round of cuts are added;

– leads to faster reoptimization in strong branching, when only a small number of

cuts are selected;

– helps maintain better average depth in future rounds of cuts.

• Maintaining good angle between cuts is beneficial for the efficiency of the branch-and-

cut algorithm.

3.3.1 Effect of flattening on cuts

One of the main motivations for applying cut selection is the negative effect of flattening

on the improvement of the lower bound. For practically all instances, the first two rounds

make the largest improvement in the bound, and the improvement sharply decreases in later

rounds. We show this in an experiment where 30 rounds of cuts are generated at the root

and all cuts are added.

Our observations are best summarized by Figure 3.4.A. It shows the dynamics of relative

gap closed over the 30 rounds of cuts for two instances: air05 (solid line) and rout (dashed

line). The first five rounds provide a significant improvement in the gap. The next five

rounds still add some improvement but at a decreasing rate. The lower bound practically

freezes after round ten. In general, we observe that cuts lose most of their power by the

seventh round, approximately, in case all generated cuts are added. In later experiments,

we show that cut selection can increase the number of rounds that make a significant

improvement in the LP bound.
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Figure 3.4: Change of (A) relative gap closed and (B) average distance cut off per round.

Instances: air05 (solid line) and rout (dashed line).

Decreased improvement in the lower bound is usually associated with a decrease in

the depth of generated cuts. We compute the average distance cut off by the cuts in

each round, and observe that it decreases in later rounds, coinciding with the decrease of

efficiency of cuts. This can be seen in Figure 3.4.B. The average depth drops significantly

by the fourth round and stays low after that. Clearly, the decrease of the average depth

in these two examples is not due to closing most of the integrality gap and approaching a

feasible solution. Gap closed stalls at levels less than 10% (see Figure 3.4.A) because cuts

lose their efficiency. We conclude that the change in the average depth of a round of cuts

can be used as an indicator of the decreased quality of cuts.

We hypothesize that flattening is a reason for cuts exhausting their power while closing

only a small fraction of the gap. Flattening can be detected by observing the number of cuts

from different rounds that would be selected by a procedure using a fixed angle threshold, in

the spirit of algorithm DA-fix(ϕ). (Refer to Figure 3.2.3 for a description of the algorithm.)

In the first round, a large fraction of the cuts pass the angle test of the algorithm. This

fraction drops rapidly in the following rounds. This is an indication that the angles between

the cuts become smaller. Table 3.1 contains experimental data showing this. Algorithms

DA-fix(ϕ) for ϕ ∈ {0.866, 0.966, 0.996, 0.999}, corresponding to angles of approximately 30,

15, 5, and 2.5 degrees, are run with instance air05. For each of the algorithms and for
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Table 3.1: Number of generated and selected cuts by algorithm DA-fix(ϕ) for ϕ ∈

{0.866, 0.966, 0.996, 0.999}. Instance: air04.

ϕ = 0.999 ϕ = 0.996 ϕ = 0.966 ϕ = 0.866

Round Selected Generated Selected Generated Selected Generated Selected Generated

cuts cuts cuts cuts cuts cuts cuts cuts

1 139 217 139 217 139 217 129 217

2 160 232 156 232 25 232 3 232

3 124 207 36 207 1 207 3 225

4 58 228 9 228 4 229 3 225

5 25 233 2 230 2 238 1 233

6 4 228 10 224 1 229 1 205

7 3 231 40 228 2 223 1 230

8 1 228 10 222 1 225 1 231

9 20 222 9 216 1 233 1 219

10 11 224 1 234 1 227 1 235

11 11 231 2 230 1 239 1 224

12 19 207 1 229 1 235 1 234

13 2 231 1 232 1 234 1 228

14 7 228 1 235 3 223 1 231

15 2 226 3 232 1 232 1 229

16 1 214 1 227 1 213 1 235

17 2 227 1 235 1 239 1 238

18 4 234 1 233 1 230 1 231

19 1 228 1 234 1 234 1 231

20 1 231 1 236 1 232 1 232

21 1 215 1 240 1 233 1 241

22 1 215 1 228 1 226 1 233

23 1 225 1 239 1 228 1 237

24 1 239 1 239 1 238 1 234

25 1 232 1 239 1 229 1 237

26 1 234 1 223 1 231 1 235

27 1 237 1 237 1 234 1 236

28 1 239 1 232 1 238 1 241

29 1 234 1 223 1 231 1 241

30 1 228 1 220 1 240 1 240



3.3. Experimental observations 45

each of the 30 rounds of cuts, the number of generated and the number of selected cuts are

reported. Consider the least restrictive cut selection, DA-fix(0.999), shown in the second

and third columns in the table. We observe that the number of generated cuts stays in the

narrow interval [207, 239] in the different rounds, while the number of selected cuts decreases

from roughly two thirds of the cuts in round one, to just one cut in the late rounds. (In

the latter case, the algorithm selects the deepest cut and then discovers that all other cuts

are within unsatisfactorily small angle with the selected cut.) As we increase the angle

threshold, the drop in the number of selected cuts is faster. We notice that the cuts in the

first round are so distinct from each other that even with a 30-degree threshold, 129 out of

217 are approved. (cf. the last pair of columns.) But in the second round, only three cuts

pass the 30-degree angle test. These observations clearly indicate the presence of flattening.

3.3.2 Effects of cut selection

Effect of cut selection on gap closed

We conduct the following experiment. We execute three versions of cut selection: Add-

all, Depth-dyn(0.1), and DA-dyn(0.1), and compare the gap closed after 30 rounds of cuts

generated at the root. We show that the gap closed by the cut selection algorithms, where

only 10% of the cuts are used, is roughly the same as that closed by Add-all. This proves

empirically that discarding a large fraction of the generated cuts does not hurt the amount

of gap closed, provided that a sufficient number of rounds are generated.

We compute the ratio of gap closed by Depth-dyn(0.1) and Add-all for each test instance.

The mean of the ratios is 0.971, showing that keeping only the 10% deepest cuts closes on

average 97% of the gap that would be closed if all cuts were kept. It is expected that

discarding cuts would affect the amount of gap closed — we show that this effect is limited.

Based on the experimental results, we claim that Depth-dyn(0.1) closes at least 90% of the

gap closed by Add-all. We perform a one-sided statistical test of the hypothesis that the

ratio of gap closed is not greater than 0.9. The null hypothesis is rejected with more than

95% confidence (p-value = 0.029).

We repeat the above analysis for DA-dyn(0.1), where 10% of the generated cuts are

selected based on depth and angle. We find out that this algorithm performs even better.

The mean of the ratios of gap closed by DA-dyn(0.1) and Add-all is 0.995. The amount of
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Figure 3.5: Dynamics of relative gap closed by Add-all, Depth-dyn(0.1), and DA-dyn(0.1).

Instances: modglob (left) and vpm2 (right).

gap closed by the two algorithms is practically the same. Based on statistical hypothesis

tests, we claim that:

(i) DA-dyn(0.1) closes more than 95% of the gap closed by Add-all, with 95% certainty

(p-value = 0.049), and

(ii) DA-dyn(0.1) closes more than 90% of the gap closed by Add-all, with 99.9% certainty

(p-value = 6.6e-4).

We conclude that applying even very restrictive cuts selection (and discarding 90% of the

cuts) does not affect the amount of gap closed significantly.

Clearly, if we generated only three or five rounds of cuts, Add-all would outperform

the other algorithms. The cut selection algorithms improve the lower bound at a slower

rate but they maintain good rate of improvement for many rounds. As a result, after 30

rounds, all tested algorithms perform similarly. This is evident from Figure 3.5, where the

dynamics of the gap closed by the three algorithms are shown for instances modglob and

vpm2. The solid line shows the progress of Add-all, the dash-dot line shows the progress of

Depth-dyn(0.1), and the dashed line shows the progress of DA-dyn(0.1). We can see that,

given a sufficient number of rounds, the cut selection algorithms close roughly the same gap

as Add-all. They can even close more gap, as with instance modglob.
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Figure 3.6: Dynamics of relative gap closed by Add-all, Depth-dyn(0.1), and DA-dyn(0.1).

Instances: bell4 (left) and mkc (right).

Two cases where cut selection outperforms Add-all significantly are shown in Figure

3.6. With instance bell4, cut selection algorithms perform very well even in the first

rounds. Algorithm DA-dyn(0.1), in particular, closes as much gap as Add-all in the first

three rounds. But while Add-all slows pace in round four, DA-dyn(0.1) continues good

improvement. As a result, DA-dyn(0.1) closes 95% of the gap in nine rounds while Add-all

needs fourteen rounds to reach its final state of 80% gap closed.

We observe a completely different scenario with instance mkc. Discarding 90% of the

cuts leads to inability of the cut selection algorithms to close any gap in the first three to

five rounds. In five rounds, Add-all closes about 32% of the gap. But it loses power soon

after that and stalls at level 40%, while DA-dyn(0.1) makes a steady progress to close 60%

of gap in 30 rounds without showing signs of slowing down. These examples show that cut

selection can increase the efficiency of branch-and-cut by avoiding flattening.

Effect of cut selection on solution time in the cutting phase

In the previous experiment, we observed that adding just 10% of the cuts generated in 30

rounds of cuts closes roughly the same amount of gap as 30 rounds of Add-all. We also

observed that in Add-all, most of the progress is done in the first 6-7 rounds. A reasonable

question to ask is: If 7 rounds of cuts (with Add-all) can provide the same lower bound,
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isn’t it a waste of time to generate 30 rounds and apply cut selection? The answer is:

No. We observe that the solution time is much smaller when cut selection is applied. This

compensates for the larger number of rounds necessary to obtain the same amount of gap

closed.

We measure the average solution time per round, for each instance, denoted by tr.

(The solution time includes time for cut generation and reoptimization, and time for cuts

selection, if applied.) We form the ratio of time per round of the two algorithms Depth-

dyn(0.1) and Add-all: tr(Depth-dyn(0.1)) / tr(Add-all). The average of this ratio over all

instances is 0.281. (In addition, there is a sufficient evidence to claim that it is smaller

than 0.33, with 95% confidence.) Similarly, the average of tr(DA-dyn(0.1)) / tr(Add-all) is

0.349. (It is smaller than 0.4 with 95% confidence.)

We conclude that the two cut selection algorithms are significantly faster than Add-all

— roughly three to four times. This allows them to generate three to four times more

rounds of cuts than Add-all, for the same time.

Effect of cut selection on future rounds of cuts

An important observation is that cut selection helps maintain a better average depth of the

future rounds of cuts.

In the same experimental setting as above, we run Add-all, Depth-dyn(0.1), and DA-

dyn(0.1) algorithms, generating 30 rounds of cuts at the root. In each round, Add-all

adds all of the generated cuts, while the other two algorithms select only 10% of the cuts.

For each algorithm, we compute the average of the distance cut off by all cuts generated

in the 30 rounds. (Note that the average is taken over all generated cut, and not over

the added cuts.) We denote the average by dcoavg. The mean of the ratio dcoavg(Depth-

dyn(0.1)) / dcoavg(Add-all), is 1.81. Similarly, the mean of the ratio dcoavg(DA-dyn(0.1))

/ dcoavg(Add-all), is 1.35. (Both ratios are statistically significantly larger than one, with

confidence 99.9% and p-values 2.1e-7 and 1.9e-4, resp.)

In other words, cuts generated by Depth-dyn(0.1) are 81% deeper than those generated

by Add-all, on average. Cuts generated by DA-dyn(0.1) are 35% deeper than those gener-

ated by Add-all, on average. This is due to selecting only a small fraction of the generated

cuts to be added to the formulation, which results in less flattening.
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It is important to note that cuts generated by Depth-dyn(0.1) are 36% deeper than

those generated by DA-dyn(0.1), on average. In the same time, DA-dyn(0.1) makes much

better progress in the early rounds. In the first three rounds, DA-dyn(0.1) closes 50% more

gap than Depth-dyn(0.1), on average. In the first ten rounds, DA-dyn(0.1) closes 25% more

gap than Depth-dyn(0.1). (Note that both algorithms add roughly the same number of

cuts.) The fact that DA-dyn(0.1) is more efficient despite the smaller average depth of

the cuts indicates that depth is not the only cut quality one should be concerned about.

Incorporating angle as a cut selection criterion improves the performance of branch-and-cut.

3.3.3 Effects of adding cuts

In this section, we study the effect of adding cuts on the reoptimization time of the children

nodes. Not surprisingly, increasing the LP size by adding rows affects the solution time

and the number of simplex pivots in reoptimization. What we find surprising is that the

number of fractional variables increases as a result of adding cuts.

Effect of cuts on the time to reoptimize children nodes

We make two types of comparisons. First, we run various versions of branch-and-cut where

different cut selection is applied, including Add-all. The base case for comparison is pure

branch-and-bound. This experiment shows that regardless of the intensity of cut generation,

adding cuts leads to a significant increase in the number of pivots necessary to reoptimize

the children nodes.

The set of algorithms used in this experiment is A = {Add-all, Depth-dyn(0.2),

Depth-dyn(0.5), Depth-dyn(0.8), DA-fix(0), DA-fix(0.5), DA-fix(0.866), DA-fix(0.966), DA-

fix(0.996)}. The cosine bounds of algorithm DA-fix (0, 0.5, 0.866, 0.966, and 0.996) corre-

spond to angles of 90, 60, 30, 15, and 5 degrees, resp. In addition, we run pure branch-and-

bound for comparison.

As an estimate of the number of pivots to solve a child node, we use the average number

of pivots over all possible children. For each tested algorithm a ∈ A and each test instance

i ∈ I, we proceed as follows. After completing the cut generation phase at the root, we

perform full strong branching on all fractional variables. Let J ⊆ NI be the set of fractional

variables in the solution of the current subproblem. We solve the 2|J | nodes created by
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Table 3.2: Ratio of Number of pivots in children reoptimization. P-values of the hypothesis

test: “Ratio is not greater than 1.”

Algorithm Mean ratio p-value

DA-fix(0) 2.42 6.51e-07

DA-fix(0.5) 4.22 7.07e-05

DA-fix(0.866) 4.78 4.79e-05

DA-fix(0.966) 4.96 2.49e-05

DA-fix(0.996) 5.09 3.47e-06

Add-all 4.55 1.39e-06

Depth-dyn(0.8) 5.58 1.70e-05

Depth-dyn(0.5) 4.75 4.34e-05

Depth-dyn(0.2) 3.47 3.96e-05

branching on any of the variables in J . We record the number of performed simplex pivots

and compute the average over all 2|J | solved subproblems. We denote the average by

pi(a). This average is an estimate of the number of pivots necessary to solve a child node.

Similarly, for every instance i ∈ I, we compute the average number of simplex pivots needed

to reoptimize a child of the root node in pure branch and bound. We denote it by pi(BnB).

For each tested algorithm a ∈ A, we compute the mean of the ratio of pi(a) and pi(BnB):

|I|−1
∑

i∈I

pi(a)

pi(BnB)
.

The results are shown in the second column of Table 3.2. E.g., on average, algorithm DA-

fix(0) needs 2.42 times more simplex pivots to reoptimize the children of the root node

compared to pure branch and bound.

We observe that the mean ratios are much larger than 1: they are between 2.4 and 5.6,

and usually around 5. We test the statistical hypotheses that the mean ratios are smaller

than 1 (one-sided t-test). The null hypotheses are rejected at a very low significance level.

(The maximum p-value is of order 1e-5. The p-values of the hypothesis tests are shown in

the third column of the table.) This is a very strong indication that adding cuts increases

the reoptimization time. Adding even a small number of cuts causes a large increase in the
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Table 3.3: Summary statistics

Fraction Average Average Average

of cuts gap closed pivots pivots in

Algorithm selected by cuts after cuts branching

DA-fix(0) 0.03 41.5% 79.7 85.6

DA-fix(0.5) 0.08 42.1% 111.6 105.0

DA-fix(0.866) 0.15 44.9% 135.7 110.3

DA-fix(0.966) 0.22 43.3% 129.7 116.0

DA-fix(0.996) 0.33 44.0% 139.3 123.9

Add-all 1.00 43.0% 176.0 122.1

Depth-dyn(0.8) 0.80 42.5% 167.7 128.7

Depth-dyn(0.5) 0.50 42.6% 128.6 115.2

Depth-dyn(0.2) 0.20 43.6% 123.1 102.9

Branch-and-bound N/A N/A N/A 48.7

number of pivots. For example, DA-fix(0) adds only 3% of the generated cuts, on average,

and this causes an increase of 2.42 times. Algorithm DA-fix(0.5) adds 8% of the cuts and

this leads to 4.22 times more pivots.

The fraction of cuts selected by a particular algorithm, averaged over all instances, is

shown in the second column of Table 3.3. The last column of the table shows the average

number of pivots performed in strong branching, per subproblem. In addition, the table

shows the average number of pivots in reoptimization after each round of cuts and the

average relative gap closed by cuts. These data are analyzed in the following section.

In a second experiment, we study whether cut selection alleviates the negative effect on

reoptimization speed. The test cases are the various cut selection routines, A\{Add-all}.

The base case for comparison is Add-all. The second column of Table 3.4 contains the

values of

|I|−1
∑

i∈I

pi(a)

pi(Add-all)
,

for a ∈ A\{Add-all}. E.g., algorithm DA-fix(0) requires only 62% of the simplex pivots
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Table 3.4: Ratio of Number of pivots in children reoptimization. P-values of the hypothesis

test: “Ratio is not less than 1.”

Algorithm Mean ratio p-value

DA-fix(0) 0.62 6.7e-10

DA-fix(0.5) 0.94 0.23

DA-fix(0.866) 1.04 0.66

DA-fix(0.966) 1.15 0.80

DA-fix(0.996) 1.13 0.93

Depth-dyn(0.8) 1.23 0.99

Depth-dyn(0.5) 1.03 0.69

Depth-dyn(0.2) 0.79 9.3e-04

that Add-all needs to reoptimize the children of the root node.

We observe that the ratios are smaller than one only for the most restrictive cut selection

rules. The ratios are statistically significantly smaller than one for DA-fix(0) and Depth-

dyn(0.2), with 99.9% confidence. We conclude that a considerable decrease in the number

of added cuts is necessary in order to get a 20%–40% decrease in the number of pivots.

Effect of cut selection on the number of fractional variables

We compare the number of fractional variables in the optimal basis of the LP relaxation

and that number after adding 30 rounds of cuts. We compute the ratio of the latter and

the former for each instance i ∈ I and each algorithm a ∈ A. The mean ratios are shown in

Table 3.5. We observe that adding cuts leads to an increase of roughly 40% in the number of

fractional variables. The ratios we report are statistically significantly greater than one, with

confidence greater than 99%. We conclude that adding cuts causes a significant increase in

the number of fractional variables, regardless of the number of added cuts.

We can see that the mean ratios reported above are very close. A formal test shows

that the difference between the cut selection algorithms and Add-all is not statistically

significant. The increase in the number of fractional variables cannot be minimized by cut

selection.
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Table 3.5: Mean ratio of the number of fractional variables, after vs. before cuts. P-values

of the hypothesis test: “Mean ratio is not greater than 1.”

Algorithm Mean ratio p-value

DA-fix(0) 1.33 0.0014

DA-fix(0.5) 1.41 0.0016

DA-fix(0.866) 1.40 0.0008

DA-fix(0.966) 1.42 0.0005

DA-fix(0.996) 1.39 0.0011

Add-all 1.36 0.0027

Depth-dyn(0.8) 1.40 0.0016

Depth-dyn(0.5) 1.43 0.0011

Depth-dyn(0.2) 1.39 0.0019

3.3.4 More on the effects of cut selection

Effect of cut selection on the time to reoptimize after each round of cuts

When adding cuts, time is consumed for cut generation as well as for reoptimization after

each round of cuts. Significant savings in the latter can be achieved through cut selection.

For each tested algorithm a ∈ A and each test instance i ∈ I, we generate 30 rounds of

cuts at the root. Let the number of pivots performed in the reoptimization after round r be

qr
i (a). Let qi(a) =

∑30
r=1 q

r
i (a)/30 be the average over the 30 rounds. We compare the cut

selection algorithms in A versus Add-all. For each algorithm a ∈ A\{Add-all}, we compute

the mean of the ratio of qi(a) and qi(Add-all):

|I|−1
∑

i∈I

pi(a)

pi(Add-all)
.

The results are shown in the second column of Table 3.6.

For all tested methods for cut selection, statistical hypothesis tests show that the number

of pivots is reduced significantly compared to the base case where all generated cuts are

added. We can claim this with more than 95% certainty, except for Depth-dyn(0.8), where

the certainty is 90%). We observe that the fewer the cuts added, the fewer the pivots needed
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Table 3.6: Mean ratio of the number of pivots in reoptimization after rounds of cuts. P-

values of the hypothesis test: “Mean ratio is not less than 1.”

Algorithm Mean ratio p-value

DA-fix(0) 0.495 1.85e-13

DA-fix(0.5) 0.686 3.54e-08

DA-fix(0.866) 0.824 0.0011

DA-fix(0.966) 0.862 0.0253

DA-fix(0.996) 0.913 0.0315

Depth-dyn(0.8) 0.968 0.0923

Depth-dyn(0.5) 0.846 0.0006

Depth-dyn(0.2) 0.696 3.01e-06

to reoptimize, on average. The decrease can be as much as 50% (DA-fix(0)).

Effect of cut selection on gap closed

The above experiments show that we can gain speed by applying cut selection. But there is a

trade-off: discarding cuts may decrease the cutting power of the round of cuts and may lead

to a smaller improvement in the lower bound. In Section 3.3.2, we showed that algorithms

Depth-dyn(0.1) and DA-dyn(0.1) close roughly the same amount of gap as Add-all. Here,

we confirm this observation for the larger set of algorithms A\{Add-all}.

For each algorithm a ∈ A and for each instance i ∈ I, let gi(a) be the gap closed after

30 rounds of cuts. We are interested in the ratio of gap closed by a ∈ A\{Add-all} and gap

closed by Add-all. The second column of Table 3.7 contains the averages of these ratios:

|I|−1
∑

i∈I

gi(a)

gi(Add-all)
,

for a ∈ A\{Add-all}. Although most of them are larger than one, the difference from one

is not statistically significant. We cannot claim that cut selection methods perform better

than adding all cuts but there is a sufficient evidence that for most of them, the gap closed

is at least 95% of the gap closed by Add-all. We can claim this for DA-fix(0.866), DA-

fix(0.966), DA-fix(0.996), Depth-dyn(0.8), and Depth-dyn(0.5), with 95% confidence. In
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Table 3.7: Mean ratio of gap closed with cut selection vs. Add-all. P-values of hypothesis

tests “Mean ratio ≤ 0.95” and “Mean ratio ≤ 0.9.”

Algorithm Mean ratio p-value p-value

Ratio≤ 0.95 Ratio≤ 0.9

DA-fix(0) 0.971 0.247 1.35e-02

DA-fix(0.5) 1.007 0.087 7.13e-03

DA-fix(0.866) 1.042 0.016 8.13e-04

DA-fix(0.966) 1.003 0.001 2.44e-07

DA-fix(0.996) 1.010 0.033 7.99e-04

Depth-dyn(0.8) 1.009 0.001 7.52e-07

Depth-dyn(0.5) 0.986 0.037 5.46e-05

Depth-dyn(0.2) 1.010 0.092 9.20e-03

addition, all tested cut selection methods close at least 90% of the gap closed by Add-all,

with 99% confidence. (The p-values are shown in the third and fourth columns of Table

3.7.) We conclude that there is a significant empirical evidence that selecting a small subset

of the generated cuts does not hurt the improvement in the lower bound significantly.

3.3.5 Effect of angle

In a practical cut selection algorithm, depth and angle thresholds should be established dy-

namically, since no fixed threshold can be expected to perform well on all problem instances

and at all nodes of the search tree. We proposed two cut selection algorithms that do this:

Depth-dyn(k) and DA-dyn(k), which keep a specified fraction of the generated cuts. (Refer

to Section 3.2.3.) In this section, we test the effect of incorporating the angle between cuts

in a cut selection routine by comparing the performance of these algorithms for fixed k. In

addition, we test our proposed rule for cut generation termination with parameters r = 3,

p = 0.5, and l = 2. (Section 3.2.4.)

We run branch-and-cut with a time limit of one hour. Strong branching on the ten most

fractional variables is applied at each node. We apply the following cut selection rules:
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Depth-dyn(0.5), DA-dyn(0.5), and DA-dyn(0.5) with the termination rule embedded. (We

call the last algorithm “DA-dyn(0.5)+.”) Our goal is to compare algorithms that select

comparable number of cuts. In addition, we run Depth-dyn(0.25), DA-dyn(0.25), and DA-

dyn(0.25)+, and compare their results separately.

The ratio of gap closed in one hour by DA-dyn(0.5) and Depth-dyn(0.5) is 1.14. Simi-

larly, the ratio of gap closed by DA-dyn(0.25) and Depth-dyn(0.25) is 1.03. Both of them are

significantly greater than 1, with confidence 95%. (P-values 0.021 and 0.050, resp.) These

ratios are averages over all test instances, part of which are solved in the alloted time. The

ratio for the solved instances is one, which may lower the actual ratio of efficiency of the two

algorithms. If we compute the ratios for the interrupted instances only, we obtain 1.21 and

1.06, for k = 0.5 and 0.25, resp. Both are significantly larger than one, with confidence 95%.

(P-values 0.024 and 0.036, resp.) These results show that incorporating the angle between

cuts in the cut selection procedure leads to an improvement in the gap closed for the same

amount of time. Adding the termination rule to DA-dyn(k) does not bring a significant

improvement. The gap closed by DA-dyn(k)+ is very close to that of DA-dyn(k), for the

tested k.

In the same experiment, we compare the time spent in strong branching per node. We

find out that Depth-dyn(k) and DA-dyn(k) do not differ significantly according to this

criterion. On the other hand, adding the termination rule in DA-dyn(k)+ brings on an im-

provement of 21% to 29% in the branching time over the former two algorithms. According

to statistical t-tests, the improvement is statistically significant with 99.9% confidence.

Adding cut generation termination criterion to the algorithm speeds up the solution. It

can clearly reduce the time for the cutting phase by reducing the number of rounds. But it

also reduces the reoptimization time in branching, as we just showed. One reason may be

the smaller size of the subproblems. On the other hand, terminating cut generation when

future rounds do not look promising helps prevent flattening. The result of this experiment

may be an evidence of a negative effect of flattening on branching.

3.4 Conclusion

We studied empirically the effect of adding cuts to branch-and-cut algorithms. We observed

that adding even a small number of cuts leads to:
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(i) significant increase in the reoptimization time;

(ii) significant increase in the number of fractional variables in the optimal basis.

We introduced the notion of flattening and studied its effect on the quality of cuts. We

justified the importance of angle between cuts and developed a cut selection algorithm that

evaluates the quality of a family of cuts as a group. The benefits of this algorithm are:

(i) decreased reoptimization time;

(ii) improved numerical stability;

(iii) improved polyhedral properties that increase the chance of generating good cuts in

future rounds.

We observed that the gap closed does not decrease significantly even when most of the cuts

are discarded.

These results show the important role of proper selection of cuts for the efficiency of

branch and cut.

We studied the large impact that cut selection has on cut generation. But the shape

in which we leave the formulation after cuts (in particular, the angles between the active

constraints) is likely to have an effect on branching, as well. The interaction of cuts and

branching is a very interesting and practically unexplored area. Better understanding of

this interaction, as well as developing good measures of cut quality will guide us towards

the answer of the question of great practical importance: Shall we generate another round

of cuts or proceed to branching, at a particular node of the search tree. We hope to see

significant future development in this direction.
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Chapter 4

Early estimates of the size of

branch-and-bound trees

4.1 Introduction

The effectiveness of the branch-and-bound procedure for solving Mixed Integer Linear Pro-

gramming (MILP) problems has made it a method of choice in commercial software for

several decades. Its applicability to large instances has increased in the last ten years with

the increased computational power of computers as well as substantial improvements in

algorithms. Although current software packages are able to solve many large instances by

branch and bound and its modifications, there are also many other instances where they

fail due to the excessive size of the enumeration tree.

The branch-and-bound algorithm is a divide-and-conquer approach that dynamically

constructs a search tree, each node of which represents a subproblem. Upper and lower

bounds can be obtained from feasible solutions and from solving the linear programming

relaxation of these subproblems. These bounds are used to prune the tree. In addition to

the bounds, the search strategies determine the size and shape of the search tree.

The application of the branch-and-bound algorithm can be limited by both the com-

puting time and the storage space required (even when storing nodes on a hard disk). The

solution process may take hours or days and there is very little a priori indication of how

difficult a model will be to solve. Unfortunately, there is no known method to extract this

information from the problem formulation. Practice shows that even small modifications

59
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in a model can increase or decrease the solution time by an order of magnitude. On the

other hand, many present-day applications require a solution of MIP problems within min-

utes. Some specialized commercial software products for solving MIP problems apply only

heuristics because speed is more important than obtaining an optimal solution. Therefore,

from a practical point of view, even a rough estimate of the computing time required by

branch and bound would be useful. It can help decide whether to continue with branch and

bound or switch to heuristics.

Memory requirements are also critical. To store the tree may require enormous space

and it is possible for the branch-and-bound algorithm to terminate prematurely after many

hours of work without providing a satisfactory solution due to a lack of memory. For

example, some instances from MIPLIB, a standard library of test problems, require many

gigabytes for node storage.

The CPU time required for a branch-and-bound solution depends roughly linearly on

the number of nodes in the branch-and-bound tree (for simplicity, we will call it the tree).

In the present paper, we attempt to devise a method for estimating the total size of the

tree at an early stage of the solution process. We define the following requirements for the

method:

• It should function as part of a general-purpose MILP solver. It should provide pre-

dictions without controlling or directing the solution process.

• It should be able to output a prediction with satisfactory precision after a short period

of time (e.g., five seconds for medium-size problems). It should be able to update the

prediction as time elapses.

• The additional computations for these predictions should consume a negligible amount

of time compared to the branch-and-bound algorithm. They should not slow down

the solution process. They should rely as much as possible on the data obtained from

the MILP solver.

“Satisfactory precision” can be defined in different ways. We propose to measure the

precision by the error factor—the factor by which the prediction under- or overestimates

the actual tree size. We consider that a prediction within an error factor of five provided

after five seconds of solution time is satisfactory. Such a prediction will allow us to conclude
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whether the solution will take minutes, hours, or days. For example, an estimated solution

time of one hour would be interpreted as saying that the instance can be solved between

12 minutes and five hours. If we had set a time limit of ten hours and the actual solution

time of an instance exceeded ten hours, the one-hour prediction would not be considered

satisfactory, whereas a four-hour prediction would be.

We introduce a notion related to the shape and size of a tree called the γ-sequence. The

nodes at distance i from the root node are said to occupy level i. Let the width of a level be

the number of nodes at that level. We define γi as the ratio between the width of level i+1

and that of level i. The γ-sequence of a tree is the sequence of γi for all levels i with positive

width. Given the γ-sequence of a tree, we can reproduce the number of nodes at each level.

Our main goal is to obtain a satisfactory approximation to the γ-sequence. After running

the branch-and-bound algorithm for a short period of time, we obtain a subtree of the whole

branch-and-bound tree. One approach is to use the γ-sequence of the partial tree as a basis

for the estimation. Our tests showed that this does not lead to good results. Instead, we

will use the partial tree to estimate three key parameters of the complete tree: the depth,

the last full level, and the waist level. We will use these parameters for modeling the γ-

sequence. We describe and analyze our approach and present our computational results in

Section 4.3.

Knuth [40] proposed a procedure for estimating the size of branch-and-bound trees based

on sampling by random paths. Discussion of this method and its application is included in

Section 4.2.

The test-bed for the experiments described in this paper includes 28 instances from

MIPLIB 3.0 [20]. The solution of most of them requires building a branch-and-bound tree

of more than 1000 nodes. We also included some of the “smaller” instances. The choice is

aimed at obtaining diversity while concentrating on the nontrivial instances. We also tested

our prediction algorithm on additional instances from the literature. The computations

were made on a Sun Ultra 60 (360MHz UltraSPARC-II processor) with ILOG CPLEX 8.0

[27]. Because our goal in this paper focuses on the branch-and-bound algorithm, we did

not apply heuristics and cuts at nodes other than the root node, except at the very end of

Section 4.3 where we briefly report on our experience with branch and cut.
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4.2 Earlier work

Knuth [40] was the first to discuss how to estimate the size of a general backtrack tree.

The method that he proposed is a random exploration of the tree based on a Monte Carlo

approach. The algorithm repeatedly traverses random paths from the root node to the

leaves, without backtracking. At each node, one of its successors is chosen at random

according to a uniform probability. The estimate of the number of nodes in the tree is

the average over several runs of 1 + d1 + d1d2 + · · · +
∏k

i=1 di, where di is the number of

successors to the chosen node at level i and k is the depth reached. Furthermore, Knuth

generalized the above simple, unbiased method to allow the selection of random paths under

non-uniform probabilities. He proves that the expected value of both estimates, unbiased

and biased, is the size of the search tree, and he provides upper bounds on the variance of

the estimates.

Knuth’s algorithm has been improved in various ways by Purdom [56] and Chen [22].

The modified algorithm by Purdom attempts to reduce the variance of the estimate by

allowing more than one branch out of a node to be further investigated. Chen adopted

a stratified-sampling approach, based on a “heuristic function” (stratifier) supplied by the

algorithm designer. Chen proved that, by exploiting the tree structure reflected by the

stratifier, the heuristic sampling method reduces the variance relative to Knuth’s algorithm.

Although he did not present many test results, Knuth provided a good insight into

the potential problems that may arise when applying his procedure. He emphasized the

large variance of the estimator, as well as the tendency to get underestimations when the

deep levels are visited with very low probability. Another important remark was that “the

estimation procedure does not apply directly to branch-and-bound algorithms,” unless the

optimal objective value is given a priori as a bound. Thus, the procedure can be used to

estimate the amount of work to prove any given bound for optimality.

Nevertheless, Knuth’s method has been employed for estimating the size of a branch-

and-bound tree. Lobjois and Lemaitre [45] proposed a method to select, for each instance of

the maximal-constraint-satisfaction problem, the most appropriate branch-and-bound algo-

rithm from among several candidates. They compared the running times of the algorithms

predicted by Knuth’s procedure and concluded that, despite the great variability of the

estimates, it selects the best algorithm in most cases. One conclusion was that Knuth’s
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estimator can be used for comparison purposes even when it outputs imprecise predictions.

Brüngger et al. [21] set up such an estimator in their solver to predict the running time

when tackling large-scale quadratic assignment problems (QAP) by parallel computation.

Anstreicher et al. [7] also used Knuth’s procedure for estimating the solution time of a

specialized branch-and-bound algorithm for QAP. They reported excellent results of the

basic, unbiased method for instances of size less than 24 but pointed out that the quality

of the estimation rapidly deteriorates as the size of the problems increased. To fix this,

they applied “importance sampling,” identical to the biased sampling proposed by Knuth.

They suggested the use of non-uniform probabilities that depend on the inherited relative

gap at a node. In addition, they proposed a way of reducing the variance of the estimates

at deeper levels in the tree and avoiding wasteful duplication of computations at low levels.

Rather than start the random dives at the root node, they first ran the branch-and-bound

algorithm in breadth-first mode to obtain all nodes at a predetermined level, and then

initialized Knuth’s algorithm from a node at that level. The modified procedure output

very good estimations for QAP problems of size up to 30.

We performed tests with our set of MIPLIB instances but could not observe the good

estimation properties of Knuth’s procedure reported in the aforementioned papers. We

applied unbiased random sampling with 1000 iterations. Even when the optimal objective

value was provided as a cutoff bound, the error factor of the prediction was greater than five

in 11 of the 23 instances solved to optimality (cf. Table B.1 in Appendix B). Five instances

were not solved within ten hours of computing time and 1GB of storage space. For these

instances, a correct prediction should exceed the number of nodes at interruption. Knuth’s

method provided such a prediction in three cases and produced significant underestimations

in the other two cases. The large number of errors can be attributed to the large variance

of the estimator and to the insufficient number of iterations (1000 while Anstreicher et al.

proposed 10,000). However, even with this relatively small number of samples, the estima-

tion time was significant. It was greater than one minute for all problems but one, and it

was greater than five minutes in ten out of 28 cases. For many of the instances, this is an

unreasonably long period of time devoted solely to time estimation without contributing

to the solution. Moreover, in 11 cases, the number of nodes visited during the estimation

procedure exceeded the size of the branch-and-bound tree, i.e., the estimation procedure

took longer to execute than the solution algorithm itself. Even with this abundant infor-
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mation, the prediction error factor was greater than five in five of these 11 cases. When

we applied 10,000 samples in order to obtain a more precise estimate, the estimation time

became longer than the solution time for 20 out of 28 instances. This made the price for

the increased precision too high.

Furthermore, starting with information about the optimal objective value is not realistic.

The above experiment, repeated with no cutoff bound, lead to huge overestimations (by

factors of 102 to 1031) for almost all problems while the estimation time was even longer

than that reported in Table B.1.

We can see three main reasons for the observed inaccuracy. First, the lack of a good

cutoff bound results in a very small amount of pruning in the second experiment. Second,

due to the exponential growth of the estimate with node depth, the error tends to be small

when the tree is shallow, as those studied by Anstreicher et al., but when the tree is deep,

e.g., more than 100 levels, even one or two sample paths that go to the deepest levels can

cause a huge overestimation. Third, it is possible that Knuth’s procedure works much better

in some classes of problems and with some types of branch-and-bound algorithms than with

others. (The algorithm employed by Anstreicher et al. is specialized for QAP.)

Our conclusion is that in most cases Knuth’s method is not practical for early prediction

of the solution time of general MILP problems. We would like to have a much faster routine

with acceptable precision that does not assume prior knowledge of the optimal objective

value.

Our exploration in this paper is distinct from Knuth’s work in the following four re-

spects. First, it does not rely on an initial bound, although having such a bound would

be advantageous. Second, our procedure employs a standard branch-and-bound algorithm,

which does backtracking and updates the bound. Third, our method is based on estimating

parameters of the enumeration tree and extrapolating its γ-sequence from these parame-

ters, rather than estimating the γ-sequence directly by the number of descendants. Finally,

our estimation procedure analyzes the partial tree produced by the branch-and-bound al-

gorithm and then continues the search. Therefore, the work done in the estimation phase

is essentially the beginning of the solution process. While the random sampling can find a

good solution by chance, the time spent by this sampling procedure is usually lost for the

solution of the problem.

Some other means of estimating the termination time of a branch-and-bound algorithm
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have been considered as well. One idea is to estimate upper and lower bounds on the

objective value as a function of time and then apply simple regression. A ballpark estimate

of running time can be obtained by extrapolating those curves and predicting when the

gap will be zero. One could also consider the number of active nodes in the queue as a

function of time and, again, extrapolate the curve. Both approaches require a significant

amount of solution time in order to capture the trend. The gap closes in large steps at the

beginning and in much smaller ones later on. The behavior of the set of active nodes is

very problem-specific. Our experience shows that the gap closed in the first 5–10 seconds

and the dynamics of the set of active nodes in the same period hardly provide sufficient

information to make a sensible prediction. However, combining all these methods could

lead to a more precise estimator. Further investigation in this direction should be fruitful.

4.3 Our method

4.3.1 General Description

In what follows, we assume that the maximum number of descendants of a node is two.

By redefining the last full level, our estimation procedure can accommodate a branching

scheme with any number of descendants.

Definition 1. In a branch-and-bound tree T , let wT (i) be the width of level i, i.e., the

number of nodes at that level. Let dT = max{i : wT (i) > 0} be the depth of the tree. Level

lT = min{i : wT (i+1)
wT (i) < 2, 0 ≤ i ≤ dT } is called the last full level of the tree (assuming that

each node has at most two successors). Up to this level, the tree is a complete binary tree. Let

the waist of the tree be the level with maximum width, bT = arg max{wT (i) : 0 ≤ i ≤ dT }.

When this level is not unique, define bT =
⌈

b1+b2
2

⌉
, where b1 = min{i : wT (i) = t},

b2 = max{i : wT (i) = t}, and t = max{wT (i) : 0 ≤ i ≤ dT }, i.e., bT is the center of the

smallest interval containing all the levels with maximum width. Let n(T ) =
∑dT

i=0wT (i) be

the number of nodes in T . The sequence {wT (i) : 0 ≤ i ≤ dT } is called the profile of tree T .

A framework for estimating the size of a branching tree T is given in Figure 4.1. The

branch-and-bound algorithm is paused at a given point in time. The resulting tree of

visited nodes, t, also called the partial tree, is used to estimate the parameters of the

complete branch-and-bound tree. In Step 3 we find the last full level, the waist, and the
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Input: An MILP problem

Initialization: Set counters for the width of the levels, w(i) = 0,

for i = 0, . . . , D̃, and D̃ large enough.

Step 0. Run the branch-and-bound algorithm.

Step 1. At each node of the branching tree, increment the

corresponding counter by 1.

Step 2. Stop when a pre-specified event occurs (e.g., a time or

node bound is reached), and let t be the resulting subtree of

T. Set wt(i) = w(i), ∀i.

Step 3. Find lt, bt, and dt.

Step 4. Construct a measurement tree M.

Step 5. If the problem is not solved, output n(M) (an estimate

of n(T )), continue the branch-and-bound algorithm, and go to

Step 1. Otherwise, terminate.

Figure 4.1: Framework of the Algorithm

depth of the partial tree, which serve as estimates of the parameters of the complete tree.

The measurement tree constructed in Step 4 is not a real tree but a profile of a tree that

is designed to replicate, as much as possible, the profile of the estimated tree. It is built

according to a model to be discussed in the next section. The number of nodes in the

measurement tree is used as an estimate of the total number of nodes in the branch-and-

bound tree.

We apply this procedure repeatedly in order to output periodic estimations until the

branch-and bound algorithm terminates. We formally divide the solution process into two

phases. Phase I ends with the output of the first prediction. In Phase II, we output periodic

predictions. As a termination criterion for Phase I, we require that both of the following

conditions be satisfied: the solution time is at least five seconds and the number of nodes

in the partial tree is at least 20 times the depth of the partial tree (n(t) ≥ 20dt). The

second condition is important because a reasonable level width is necessary in order to

obtain a sensible approximation of the parameters of the complete tree. The factor of 20 is

established empirically and can be changed to reflect tradeoffs between speed and accuracy

of the first prediction.
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In the above procedure, branch and cut can be used instead of branch and bound. It is

important to note that cuts added after branching has started can change the structure of

the branching tree and affect the validity of the predictions.

4.3.2 The Linear Model for Estimating the γ-Sequence

In this section, we describe a model for the measurement tree needed in Step 4 of the above

procedure. We propose to model the profile of the complete tree using three parameters

only, namely lt, bt, and dt.

A characteristic that uniquely defines a tree profile is its γ-sequence—the ratios that

describe the change of width from one level to the next.

Definition 2. Consider a branch-and-bound tree T and let dT be its depth. The sequence

γ0, γ1, . . . , γdT
is called the γ-sequence of this branch-and-bound tree, where γi = wT (i+1)

wT (i) ,

for 0 ≤ i ≤ dT .

Given the γ-sequence of a tree T , the width of a particular level i is wi =
∏i−1

j=0 γj. The

size of the tree is n(T ) = 1+
∑dT

i=1

∏i−1
j=0 γj . A tree model is essentially a model for building

the γ-sequence.

We analyzed the profiles of branch-and-bound trees obtained using the CPLEX default

solution settings [27]. The solution algorithm was cut and branch, where cuts are applied

only at the root node. Our tests show that, for almost all of the problems in MIPLIB,

the profile of the tree looks like a bell-shaped curve. The same observation is made by

Knuth [40] for backtrack algorithms in general. The γ-sequence is generally decreasing for

i greater than the last full level and the value of γi is approximately 1 at the waist and 0

at the deepest level. This observation justifies the use of a linear model for the change of

γ, defined by the formula:

γi =





2, for 0 ≤ i ≤ lT − 1,

2 − i−lT +1
bT −lT +1 , for lT ≤ i ≤ bT − 1,

1 − i−bT +1
dT −bT +1 , for bT ≤ i ≤ dT .

This simple model outputs satisfactory estimations in the majority of the cases. Figure

4.2 shows a typical tree profile (the solid line) and the measurement tree obtained by the
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Figure 4.2: Profiles of the Actual Tree and Linear-Model Measurement Tree. Instances:

stein45 and noswot.

linear tree model (the dashed line). The proximity of the two lines is common for most

problems with a bell-shaped tree profile.

The estimation properties of the linear model are tested in experiments with the set of

28 problems from MIPLIB. In this part, we assume that the exact values of lT , bT , and dT

for the complete trees are available and we study the accuracy of the tree model.

Table B.2 compares the size of the measurement tree obtained by the linear model with

the actual number of nodes in T . The last column shows the ratio between the two.

The solution of the problems marked with an asterisk has been interrupted after ten

hours and, therefore, the figure in the second column is the size of the branching tree at

interruption. We analyze this group of problems separately. A desirable output of the tree

model for these instances is an estimation greater than the number of nodes processed before

interruption. This is observed in four out of five cases. In the fifth case, the ratio between

the predicted number of nodes and the number of nodes after ten hours of computation is

0.4. In this paper, we consider this satisfactory (i.e., within a factor of five) although we do

not know the true ratio between the predicted and the actual number of nodes.

Twenty-three problems were solved to completion. For 15 problems, the error is within

a factor of five. For 11 of them the error is within a factor of two. Our conclusion is that the

linear model provides a satisfactory estimation of the actual tree profile for most instances

and, therefore, can be used to estimate the number of nodes in the tree.
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4.3.3 Computational Experience (MIPLIB Instances)

We performed computational experiments with the procedure described above and our

test-bed of 28 MIPLIB problems. We ran the branch-and-cut algorithm of CPLEX 8.0

with its default branching and node-selection rules [27] but with the restriction that cuts

and heuristics were applied only at the root node. The results are presented in Table B.3.

The solution process was interrupted when solution time exceeded ten hours or when the

branching-tree size exceeded 1GB. These instances are marked with an asterisk. We applied

the linear tree model for the construction of the measurement tree based on the parameters

lt, bt, and dt of the partial tree obtained at the end of Phase I. The predicted tree size is

reported in the second column of Table B.3. The third column contains the actual tree size

and the ratio between the prediction and the true value is shown in the fourth column. The

fifth column contains the time to obtain the prediction.

We compute a time estimate for solving the instance. This time estimate θ equals the size

of the measurement tree times the average solution time of a node in the partial tree, based

on the assumption that the average running time at a node is relatively constant during

the solution. Instead of the point estimate θ, we output a range [α, β] for the solution time,

shown in column six. The width of this range corresponds to an estimation error of five.

Specifically, α = max{Phase I time, 0.2θ}, β = 5θ (or +∞ when 5θ > 10 hours), and we

round seconds and minutes to the nearest multiple of five, and hours (or minutes smaller

than five) to the nearest integer. The true solution time or the time until interruption

is given in the last column. Incorrect predictions are marked by a dagger. For instances

solved to completion, a dagger marks the cases for which our prediction interval does not

contain the actual solution time. For the instances that are not solved to completion, a

dagger marks the cases where we predicted that the instance could be solved in less than

ten hours. Note that, when an instance was interrupted because of space limitation, it could

happen that our time prediction is within a factor of five of the actual unknown solution

time but we still consider these to be incorrect predictions. For example, if the predicted

solution time is between 15 minutes and six hours and the solution process is interrupted

after two hours because of space limitation, we consider the prediction incorrect.

Five instances, lseu, mod008, modglob, rgn, and stein27, were solved during Phase I.

They are not present in the table. Eighteen of the remaining instances were solved to
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optimality. For ten of them the prediction is correct. For two instances, bell3a and

gesa2 o, the error is small. There are four cases, mas74, misc07, noswot, and rout, with

a considerable error. The solution of five instances was interrupted after exceeding the

time or space limit, and this was predicted correctly. Overall, the results are satisfactory

considering the great diversity of the instances.

4.3.4 Computational Experience (Additional Instances)

Our procedure for estimating the number of nodes in a branch-and-bound tree was designed

based on observations from a diverse sample of 28 instances from the MIPLIB. In order to

validate the procedure, we applied it to an independent test set. We used MILP benchmarks

from the literature representing several different problem types. The results are reported

in Tables B.4, B.5, and B.6.

The first group of instances are multidimensional knapsack problems from Beasley

[18] and Chu and Beasley [23]. Due to a significant amount of pruning, the branch-

and-bound trees tend to be slim and deep. Our procedure deals relatively well with the

lower-dimensional instances (mknapcb1, mknapcb4, mknapcb7) but not as well with higher-

dimensional problems. Overall, 13 out of 27 instances are solved to completion. Correct

predictions are obtained for seven of them, for two instances the error in prediction is small,

and in four cases the error is significant. The solution of 14 instances was interrupted,

in most cases because of the space limit. For 11 of them, this interruption was predicted

correctly.

The second group consists of set covering instances from Beasley [17, 18]. For these

instances, the estimation requires typically more than one minute, in some cases more than

ten minutes. The reason is the long solution time at a node (on average, 40 times longer

than for the group of multidimensional knapsack problems). The estimation procedure

performs well for these instances. There is only one incorrect prediction out of 18.

The third group of instances are bin-packing problems from Falkenauer [30] and Beasley

[18]. The solution of all these instances takes more than ten hours and our method provides

correct estimations in all cases. Due to the long solution time of a single subproblem, the

Phase I time is much longer than five seconds, reaching more than two hours in two cases.

This may seem too long for a prediction but this is the time to make only about 20–30
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dives in the tree. If Knuth’s estimation method were applied with 1000 or 10,000 dives, the

prediction procedure would hardly be practical.

The fourth type of instances we tested are capacitated facility-location problems from

Beasley [16, 18]. A huge solution tree is typical, which leads to exceeding the space limit

after less than three hours in all of the cases. (The space limit applied to this group of

instances was 3GB.) Interruption was predicted correctly for all these instances.

Finally, we tested seven other MILP benchmark instances from Argonne National Lab-

oratory and Mittelmann [49, 51]. The prediction is correct for four of them.

In this section, 76 additional instances were tested. Twenty-seven of them were solved to

completion. For these 27 instances, the number of correct predictions was 19. In two cases,

the prediction is close to the actual solution time and in six cases the error of prediction

is significant. The solution of 49 instances was interrupted due to the time or space limit.

For them, there are only five cases of incorrect prediction.

Overall, we tested 99 MILP instances. The predicted time range was correct for 78

instances. (In this summary, we exclude the five MIPLIB problems that were solved during

Phase I.) In particular, there were 54 instances that required excessive time (more than ten

hours) or space (more than 1GB) and this was predicted correctly in 49 cases. For the 45

instances that could be solved within the ten hour and 1GB limits, this fact was predicted

correctly for 39 of them. In other words, given the time and space limitations that we set

for these experiments, the estimation procedure estimated correctly whether an instance

could be solved in 88 out of 99 cases. We conclude that, although not precise, this method

often provides a reasonable early estimate of the computing time of a branch-and-bound

algorithm.

4.3.5 Analysis and Refinements

In this section we identify several sources of imprecision in our estimation procedure and

we discuss possible remedies. We also discuss our experience with branch and cut.

The Linear Model

The results reported in Section 4.3.2 show that for most problems, the linear model has

satisfactory precision. However, it does not perform well when the tree is deep and slim.
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The problem stems from the fact that the linear model uses only three parameters, the last

full level, the waist, and the depth. The model does not incorporate an estimate of the

maximum width of the tree, which we might call the waistline, i.e., the width at the waist.

If a slim tree and a fat tree have identical last full level, waist, and depth, the model will

output the same estimation. The linear model assumes that γ decreases linearly from two

to one, which reproduces satisfactorily the profiles of most of the branching trees we tested.

But if the actual decrease is faster in the beginning, as is the case with deep and slim trees

like those of bell5, misc07, and mod008, the waistline will be much less in the real tree

than in the measurement tree. This causes significant overestimations by the linear model.

One approach to better model the behavior of γ observed in the slim trees is to use a

nonlinear model of the γ-sequence. For example, one could use a convex combination of the

linear model γ and its cubic perturbation

γ̃i = λ(γ̄i − 1)3 + (1 − λ)(γ̄i − 1) + 1, for 0 ≤ i ≤ dT

where λ ∈ [0, 1] and γ̄i is the γ-sequence obtained by the linear model. This model has the

linear model as a special case, when λ = 0. Increasing λ, it can be tuned to output good

estimations to γ-sequences of slim trees, but it does not provide good results for the most

common tree profiles when λ is far from 0. The linear model performs better for general

MILP problems but if we deal with a special class of problems, it might be worth analyzing

the tree profile and tuning the model.

To illustrate the above, we performed tests with the 30 multidimensional knapsack

problem instances of the group mknapcb1 (100 variables, 5 constraints) from Beasley [18]

and Chu and Beasley [23]. As we observed in Section 4.3.3, the branch-and-bound trees of

this type of problems are usually slim and the linear model overestimates their size. We

tried the cubic model with λ = 0.5. For this choice of λ, in 28 of the 30 cases, the prediction

by the cubic model is closer to the actual number of nodes than that of the linear model.

The mean error factor of the estimations by the linear model is 1.84, while that of the cubic

model estimation is 1.28. (A value of one means exact estimation.)

The cubic model is only one example of improvement. Different models based on differ-

ent sets of parameters could also prove useful.
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Estimating the Waist

Another concern is the quality of the estimation of the tree parameters. Tests of the

sensitivity of the linear model to changes in the parameters show that the waist is the most

important one. Even small changes in it cause large variations in the number of nodes in

the measurement tree, while the variations caused by changes in the depth and the last

full level are less significant. On the other hand, our experiments show that dt and lt of a

small (with respect to the complete tree T ) partial tree t are better estimates of dT and lT ,

respectively, than bt is an estimate of bT .

State-of-the-art branch-and-bound algorithms employ node-selection rules that are a

combination of depth-first search and best-bound search. For example, the default branch-

and-bound algorithm of CPLEX 8.0 dives along a path until a node gets pruned and then

continues from a best-bound node. As a consequence, shortly after the start of the algo-

rithm, the top levels are well studied and the depth is estimated with good precision. The

sampling error present in the partial tree affects mainly the determination of the waist.

The variability of bt is shown in Figure 4.3. The left figure depicts the tree profiles

after 320, 640, 1280, 2560, 5120, and 10715 seconds of solution time of the problem called

rout. It can be seen that the waist gradually increases with time up to its final value of

33. This is shown also in the figure on the right, where the thin horizontal line is the waist

of the complete tree, bT , and the thick solid line represents the waist of the partial trees

as a function of solution time. As time elapses, the waist approaches that of the complete

tree. Greater fluctuations are typical at the beginning of the solution procedure. Tests show

that usually bt < bT for a small partial tree t, and sometimes the difference is significant.

Therefore, often bt is not a good estimate of bT .

In some cases, the error in waist estimation can be reduced by considering the levels

with large width and taking the estimate of the waist to be the midpoint of these levels.

We call this the average waist and define it as follows:

Definition 3. The average waist of a tree T is the level b̄T =
⌈

b1+b2
2

⌉
, where b1 = min{i :

wT (i) ≥ 0.5t}, b2 = max{i : wT (i) ≥ 0.5t}, and t = max{wT (i) : 0 ≤ i ≤ dT }, i.e., b̄T is the

center of the smallest interval containing the levels with width at least 50% of the maximum

width.

It is not uncommon that b̄T 6= bT for the complete tree T , but our tests indicate that
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Figure 4.3: Evolution of the Profile, the Waist, and the Average Waist. Plotted Profiles

After 320, 640, 1280, 2560, 5120, and 10715 Seconds of Solution Time. Problem: rout.

both values are close. Early on in the solution process, the average waist is often a better

estimate of the waist of the complete tree. Additionally, compared to bt, the average waist

b̄t shows less variation during the solution process. Therefore, the average waist can be used

to improve the prediction when there is a large variation in the waist. The average waist of

the partial tree of problem rout is plotted with a dashed line in the right graph of Figure

4.3.

Repeating the experiments on the same 99 test instances by using the average waist

instead of the waist, the number of correct predictions increased from 78 to 85. This is a

reduction of the incorrect predictions by one third. Further research in this direction would

be worthwhile.

Effect of the Bound from the Best Feasible Solution Found

If a good upper bound (for a minimization problem) is not found early in the solution

process, the method can produce very poor and erratic estimates. Even after a good upper

bound is found, the method could still produce poor estimates if it is biased by early “deep

dives.” Depending on the diving strategy, the first few dives into the tree can be very deep

compared to what they would have been with a good a priori upper bound. This biases the

estimate of the depth. One simple idea to avoid this problem is to eliminate (post factum)

any node whose lower bound exceeds the current upper bound, even though such nodes are

technically part of the search tree. This method will produce the same estimate that would
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have been produced had the bound been known a priori and should reduce the bias.

Experiments with Branch and Cut

We repeated the experiment from Section 4.3.3 with the default settings of the CPLEX

branch-and-cut algorithm. The results are reported in Table B.7.

Six instances, lseu, mod008, modglob, pp08a, rgn, and stein27, were solved during

Phase I. They are not present in the table. Eighteen of the remaining instances were solved

to optimality. For eleven of them the prediction is correct. There are six cases, arki001,

blend2, mas74, misc07, pk1, and pp08aCUTS, with considerable error. The solution of four

instances was interrupted after exceeding the time or space limit, and this was predicted

correctly for three of them.

Compared with Table B.3, there is a deterioration in the prediction in some cases but

there are some improvements too (like with problem rout). Overall, the quality of the

estimate is not significantly different.

4.4 Conclusion

We have shown empirically that the branch-and-bound solution time of an MILP solver can

be roughly estimated in the early stages of the solution process. We proposed a procedure

for this estimation based on parameters of a small subtree. Our experiments showed that,

in a relatively short time, we can obtain sufficient information to predict the total running

time with an error within a factor of five. This procedure can easily be built into an MILP

solver. It is fast and does not interfere with the branch-and-bound algorithm.

It might be worth exploring γ-sequence models that are contingent on particular types

of integer-programming problems. One might also be able to obtain relevant information

on the whole tree profile using other parameters of the tree. Our attempts to use the

amount of pruning in the subtree were fruitless but more research in this direction would

be interesting.
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Conclusion

In this thesis, we presented ideas for modifications in the branch-and-cut algorithm, and

tested their performance empirically.

We proposed a practical algorithm for branching on general split disjunctions. It incor-

porates a heuristic measure of disjunction quality, based on the relation between branching

disjunctions and intersection cuts. In our algorithm, we considered the class of disjunctions

defining the mixed integer Gomory cuts at an optimal basis of the LP relaxation. One of

the reasons for our choice was the aim at efficiency and speed. An important extension of

our work would be the development of efficient algorithms for other classes of disjunctions.

Theoretically, branching on split disjunctions is more powerful than branching on single

variables. Efficient implementation of branching on general disjunctions is the key factor

for its success.

Computational experiments showed that our procedure for branching on split disjunc-

tions is more efficient than branching on variables. In addition, a procedure combining the

strengths of both methods showed much promise. However, all of our tests used strong

branching for branching-object selection. Efficient branching rules, such as pseudocost

branching and its variations, are widely used but cannot be implemented for general split

disjunctions. Developing an algorithm combining pseudocost branching on variables and

strong branching on split disjunctions would be an important advance toward practical

application of our procedure.

We developed an algorithm for selecting a set of good cuts out of a large pool of generated

cuts. In this study, we made several important observations. We witnessed the effect of

77
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flattening: adding all of the generated cuts causes the angles between the active constraints

after reoptimization to decrease, which leads to poorer quality cuts in the future rounds.

We showed that this effect can be avoided by clever cut selection. Other consequences of

cut selection are decreased reoptimization time and prevented numerical problems. This is

achieved without sacrificing the amount of gap closed. A key feature of our cut selection

procedure as that it evaluates the quality of cuts as a group. The quality measure that we

use is the angle between cuts. It would be beneficial to find other criteria for evaluating

groups of cuts.

We saw indications that branching may be affected by flattening as well. In addition,

improving the amount of gap closed by cuts does not always lead to faster solution of the

problem. More research is needed for better understanding the interaction between cuts and

branching. As a future step, a challenging research direction would be to develop a decision

rule for branching versus cutting. Whether to add one more round of cuts or proceed to

branching is a very important practical question that awaits its answer.

The running time of branch-and-bound algorithms on a particular instance is difficult

to predict. We showed that a rough estimate can, nevertheless, be obtained early in the

solution process. Our estimation procedure is based on modeling the profile of the complete

branching tree. The model relies on the observation that the profile exhibits a bell-like

shape. An improvement in the prediction quality of the procedure is contingent on better

understanding the reasons for this bell-like shape and the parameters that influence it. In

modeling the tree profile, we use three parameters but they can not capture the shape

completely. We envision the evolution of our idea to a sampling procedure which applies

a directed search during the initial, prediction phase. The search would aim at collecting

the information needed for a good prediction. This search should be used to collect other

information useful for branch and cut as well, e.g. to initialize pseudocosts.
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Experimental results on Chapter 2:

Branching on general disjunctions
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Table A.1: Comparison of the gap closed at the root node by branching

on a single variable and on a MIG disjunction.

Simple disjunction MIG disjunction

Instance Absolute Relative gap Absolute Relative gap

gap closed closed [%] gap closed closed [%]

10teams 0 0 4 57.14

a1c1s1 42.45 - 9.87 -

aflow30a 6.09 3.49 11.22 6.42

aflow40b 6.77 4.17 4.49 2.76

air01 53 100 53 100

air02 170 100 170 100

air03 1295.75 100 1295.75 100

air04 43.67 7.26 53.73 8.93

air05 72.54 14.61 31.11 6.27

air06 21.97 67.32 25.78 78.99

arki001 42.2 - 0 -

atlanta-ip 0 - 0.18 -

bell3a 3174.32 20.03 1857.8 11.72

bell3b 316638.07 82.89 13855.95 3.63

bell4 360675.73 64.79 122948.47 22.08

bell5 298008.96 83.25 298008.96 83.25

blend2 0.01 0.84 0.13 19.72

bm23 0.91 6.8 0.29 2.13

cap6000 69.83 44.38 85.59 54.4

dano3mip 0.09 - 0.02 -

danoint 0.03 1 0.03 1.01

dcmulti 921.07 21.9 647.89 15.4

ds 0.12 - 0.13 -

egout 5.77 1.38 16 3.82

fast0507 0.06 3.03 0.05 2.43

fiber 2648.8 1.06 40055.4 16.03

fixnet3 84.62 0.75 365.02 3.24

fixnet4 29.43 0.63 95.5 2.04

fixnet6 22.44 0.81 23.79 0.85

flugpl 689.44 2.01 1874.28 5.46

gen 9.23 5.03 65.21 35.57

continued on next page
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Table A.1: continued

Simple disjunction MIG disjunction

Instance Absolute Relative gap Absolute Relative gap

gap closed closed [%] gap closed closed [%]

gesa2 3636.77 1.2 8160.05 2.69

gesa2 o 3636.77 1.2 8160.05 2.69

gesa3 5348.27 3.4 10051.01 6.39

gesa3 o 5348.27 3.4 10051.01 6.39

glass4 0 - 0 -

gt2 359.47 4.66 4816.57 62.51

harp2 4413.48 0.97 21196.43 4.67

khb05250 1670000 15.15 670982 6.09

l152lav 5.83 8.89 9.79 14.91

liu 214 - 214 -

lp4l 9.11 37.16 20.44 83.41

lseu 12 4.21 98.06 34.37

manna81 0.5 0.38 0.5 0.38

markshare1 0 0 0 0

markshare2 0 0 0 0

mas74 40.84 3.1 75.5 5.73

mas76 20.59 1.85 62.27 5.6

misc01 0 0 13.24 2.61

misc02 0 0 25 3.68

misc03 0 0 92.5 6.38

misc04 5.65 54.92 5.65 54.92

misc05 1.2 2.24 14.4 26.87

misc06 2.08 22.73 2.08 22.73

misc07 0 0 0 0

mkc 0 0 0 0

mod008 0.24 1.48 0.02 0.14

mod010 3.59 22.53 13.52 84.92

mod011 415328.41 5.49 709329.48 9.38

mod013 1.36 5.45 6.13 24.59

modglob 8969.42 2.9 8969.42 2.9

momentum1 10.41 - 3199.99 -

momentum2 0.16 - 690.39 -

continued on next page
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Table A.1: continued

Simple disjunction MIG disjunction

Instance Absolute Relative gap Absolute Relative gap

gap closed closed [%] gap closed closed [%]

momentum3 0.26 - 4.9 -

msc98-ip 0 - 27360 -

mzzv11 0 0 8.49 0.69

mzzv42z 48.88 4.51 0 0

net12 3.65 1.85 1.87 0.95

nsrand-ipx 0 0 110 4.74

nw04 22 3.99 259.33 47.04

opt1217 0 0 0.27 6.78

p0033 29.93 5.27 205.76 36.2

p0040 10.49 4.55 160.91 69.83

p0201 0 0 310 41.89

p0282 181.18 0.22 32843.91 40.28

p0291 1031.33 29.31 1031.33 29.31

p0548 12.68 0.15 12.68 0.15

p2756 0 0 0 0

pipex 0.07 0.48 4.08 28.1

pk1 0 0 0 0

pp08a 142.14 3.09 80 1.74

pp08aCUTS 68.03 3.64 81.44 4.36

protfold 0.36 - 0.64 -

qiu 0 0 0 0

qnet1 42.99 2.45 213.47 12.16

qnet1 o 474.01 12.05 474.01 12.05

rd-rplusc-21 0 - 0 -

rgn 0 0 0.8 2.4

roll3000 0.94 - 0 -

rout 2.34 2.44 2.34 2.44

sample2 15 11.72 15 11.72

sentoy 7.44 11.06 10.79 16.04

set1al 15.64 0.33 37.93 0.8

set1ch 95.87 0.43 722.86 3.21

set1cl 15.64 0.33 37.93 0.79

continued on next page
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Table A.1: continued

Simple disjunction MIG disjunction

Instance Absolute Relative gap Absolute Relative gap

gap closed closed [%] gap closed closed [%]

seymour 0.36 1.86 0.49 2.57

sp97ar 54195.09 - 249175.81 -

stein9 0 0 0 0

stein15 0 0 0 0

stein27 0 0 0 0

stein45 0 0 0 0

swath 0.13 - 4.12 -

t1717 146.93 - 86.64 -

timtab1 24290 3.3 24290 3.3

timtab2 23443 - 5462 -

tr12-30 367.03 0.32 300 0.26

vpm1 0.25 5.39 0.66 14.48

vpm2 0.06 1.68 0.1 2.7



84 Appendix A. Experimental results on Chapter 2

Table A.2: Comparison of the gap closed and the number of active nodes

after five levels of branching.

Simple disjunctions MIG disjunctions

Instance Nodes at Absolute Relative gap Nodes at Absolute Relative gap

level 5 gap closed closed [%] level 5 gap closed closed [%]

10teams 32 0.0 0.0 10 4.0 57.1

a1c1s1 32 336.3 - 32 57.3 -

aflow30a 28 26.1 15.0 4 32.8 18.7

aflow40b 19 12.3 7.6 16 32.8 20.2

air04 23 212.4 35.3 31 230.1 38.3

air05 32 246.9 49.7 32 192.9 38.9

arki001 32 148.6 - 32 0.0 -

bell3a 14 9645.2 60.8 8 9128.8 57.6

bell3b 2 338929.2 88.7 8 258394.2 67.6

bell4 5 494769.1 88.9 17 416779.6 74.9

bell5 4 299455.8 83.6 1 307175.6 85.8

blend2 16 0.2 28.2 27 0.2 36.5

bm23 32 3.5 25.7 16 6.2 46.5

cap6000 32 106.8 67.9 32 106.8 67.9

danoint 32 0.0 1.7 32 0.0 1.7

dcmulti 31 2048.0 48.7 15 821.9 19.5

egout 1 29.3 7.0 1 61.0 14.6

fast0507 12 0.3 17.3 6 0.2 11.5

fiber 32 6974.0 2.8 31 72697.2 29.1

fixnet3 32 370.5 3.3 32 1545.9 13.7

fixnet4 32 145.0 3.1 32 415.0 8.9

fixnet6 32 60.5 2.2 32 95.5 3.4

flugpl 14 5097.6 14.9 11 6615.9 19.3

gen 6 33.0 18.0 1 117.4 64.0

gesa2 32 14251.6 4.7 21 39091.6 12.9

gesa2 o 32 12133.5 4.0 19 39091.6 12.9

gesa3 32 32480.0 20.6 13 43313.2 27.5

gesa3 o 32 32480.0 20.6 13 43313.2 27.5

glass4 12 0.0 - 10 0.0 -

gt2 32 6182.9 80.2 12 4940.9 64.1

harp2 32 24867.7 5.5 2 32823.5 7.2

continued on next page
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Table A.2: continued

Simple disjunctions MIG disjunctions

Instance Nodes at Absolute Relative gap Nodes at Absolute Relative gap

level 5 gap closed closed [%] level 5 gap closed closed [%]

khb05250 32 5183898.0 47.0 32 5097557.0 46.3

l152lav 28 30.7 46.7 28 30.7 46.7

liu 32 214.0 - 32 214.0 -

lseu 28 25.0 8.7 5 160.9 56.4

manna81 32 1.0 0.8 1 2.5 1.9

markshare1 32 0.0 0.0 32 0.0 0.0

markshare2 32 0.0 0.0 32 0.0 0.0

mas74 32 147.2 11.2 32 159.4 12.1

mas76 32 99.6 9.0 32 111.9 10.1

misc01 7 36.5 7.2 6 40.0 7.9

misc03 8 1450.0 100.0 16 67.5 4.7

misc05 20 17.4 32.5 26 16.5 30.8

misc07 24 15.3 1.1 18 11.3 0.8

mkc 28 1.7 3.5 1 0.0 0.0

mod008 25 16.1 100.0 25 16.1 100.0

mod011 32 1230186.8 16.3 32 2746460.5 36.3

mod013 32 6.9 27.5 16 13.6 54.4

modglob 32 25488.7 8.2 32 32258.2 10.4

net12 28 9.4 4.8 15 15.0 7.6

nsrand-ipx 32 0.0 0.0 28 415.0 17.9

nw04 8 138.0 25.0 8 138.0 25.0

opt1217 32 0.0 0.0 32 1.0 25.4

p0033 12 179.4 31.6 1 388.9 68.4

p0201 30 120.0 16.2 31 480.0 64.9

p0282 26 934.3 1.1 27 77433.0 95.0

p0548 1 64.3 0.8 1 123.8 1.5

p2756 7 0.0 0.0 1 1.0 0.2

pipex 32 1.5 10.1 23 5.6 38.5

pk1 32 0.0 0.0 32 0.0 0.0

pp08a 32 673.9 14.6 32 380.0 8.3

pp08aCUTS 32 240.9 12.9 32 374.7 20.0

qiu 31 272.7 34.1 29 290.7 36.4

continued on next page
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Table A.2: continued

Simple disjunctions MIG disjunctions

Instance Nodes at Absolute Relative gap Nodes at Absolute Relative gap

level 5 gap closed closed [%] level 5 gap closed closed [%]

qnet1 32 665.7 37.9 28 683.8 38.9

qnet1 o 24 1905.4 48.4 24 1884.7 47.9

rd-rplusc-21 1 0.0 - 1 0.0 -

rgn 24 33.4 100.0 32 8.8 26.3

roll3000 20 3.4 - 3 226.4 -

rout 32 14.9 15.6 23 20.7 21.7

sample2 26 86.7 67.7 32 63.0 49.2

sentoy 32 27.0 40.2 32 25.2 37.4

set1al 32 76.0 1.6 1 173.5 3.7

set1ch 32 502.1 2.2 2 2740.4 12.2

set1cl 32 76.0 1.6 1 173.5 3.6

seymour 32 1.0 5.2 1 1.9 10.2

sp97ar 32 424694.5 - 2 827703.8 -

stein15 29 2.0 100.0 2 2.0 100.0

stein27 32 0.0 0.0 6 0.0 0.0

stein45 32 0.0 0.0 5 0.0 0.0

swath 24 1.4 - 1 13.7 -

timtab1 24 70664.0 9.6 13 65088.0 8.8

timtab2 21 52373.0 - 11 62952.0 -

tr12-30 32 1833.2 1.6 32 1063.7 0.9

vpm1 32 0.5 10.5 5 1.9 40.9

vpm2 32 0.5 12.7 6 0.5 13.7
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Table B.1: Tree-Size Estimation by Knuth’s Method with Sample Size 1000

Predicted Actual Estimation

Problem number number Ratio Time Nodes

of nodes of nodes [seconds] visited

air05 754 1221 0.61 31200 5690

arki001 * 262 1124575 2.3E-4 2838 4695

bell3a 14110 18512 0.76 121 13736

bell4 1.3E+06 13654 95 78 9261

bell5 1362 301146 0.004 61 4451

blend2 365 5750 0.063 201 6683

gesa2 o 6011 1136 5.2 809 11187

harp2 * 22775 786616 0.028 925 9563

lseu 4738 1614 2.9 41 9578

markshare1 * 1.2E+10 52464676 228 94 30855

markshare2 * 5.0E+12 45059758 1.1E+5 129 38200

mas74 8.7E+06 10159496 0.85 182 20251

mas76 1.0E+06 637057 1.6 144 16655

misc07 21697 111784 0.19 1289 10580

mod008 1373 2161 0.63 92 13377

mod011 25945 21788 1.2 12180 9683

modglob 2.0E+06 304 6480 209 11804

noswot 4.1E+07 5614491 7.3 112 13266

pk1 163508 337940 0.48 155 14529

pp08a 9.5E+09 933 1.0E+7 204 28249

pp08aCUTS 4.6E+06 1687 2744 360 19624

qiu 40163 9358 4.3 6081 11556

rgn 1261 3025 0.42 73 9665

rout 34871 1797969 0.019 1643 11024

seymour * 4.4E+15 54713 8.0E+10 128520 42574

stein27 8429 3706 2.3 200 12573

stein45 167466 68093 2.5 889 15508

vpm2 337552 25255 13 216 14180

* Solution procedure interrupted. Column “Actual number of nodes”

contains the number of nodes at time of interruption.
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Table B.2: Linear Model Estimation

Actual number Linear model Ratio

Problem of nodes estimation

air05 1221 3017 2.47

arki001 * 1124575 1910566720 1698.92

bell3a 18512 3217 0.17

bell4 13654 20639 1.51

bell5 301146 47977699 159.32

blend2 5750 13401 2.33

gesa2 o 1136 6325 5.57

harp2 * 786616 261277428 332.15

lseu 1614 3023 1.87

markshare1 * 52464676 20885162 0.40

markshare2 * 45059758 925206188 20.53

mas74 10159496 6257366 0.62

mas76 637057 703329 1.10

misc07 111784 6657013 59.55

mod008 2161 39000 18.05

mod011 21788 41535 1.91

modglob 304 472 1.55

noswot 5614491 3336543 0.59

pk1 337940 1532758 4.54

pp08a 933 1171 1.26

pp08aCUTS 1687 3472 2.06

qiu 9358 60458 6.46

rgn 3025 19660 6.50

rout 1797969 27316720 15.19

seymour * 54713 72319299 1321.79

stein27 3706 3996 1.08

stein45 68093 63255 0.93

vpm2 25255 31299 1.24

* Instance not solved to completion.
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Table B.3: Predictions by Our Estimation Procedure

Predicted Actual Actual

Problem number number Ratio Phase I Predicted solution

of nodes of nodes time [s] time range time

air05 2043 1221 1.7 291 5 m – 40 m 5 m

arki001 * 26808093 1124575 23 61 > 10 h > 10 h

bell3a 3217 18512 0.17 5 5 s – 15 s 20.7 s †

bell4 13980 13654 1 5 5 s – 1 m 12.2 s

bell5 987629 301146 3.2 5 2 m – 1 h 4.2 m

blend2 59796 5750 10 7 40 s – 15 m 15.5 s †

gesa2 o 6325 1136 5.6 8 10 s – 5 m 8.4 s †

harp2 * 3644539 786616 4.6 45 > 1 h > 1.2 h

markshare1 * 13480899 52464676 0.26 5 > 30 m > 10 h

markshare2 * 925206188 45059758 21 5 > 10 h > 10 h

mas74 118255 10159496 0.01 5 30 s – 15 m 3.9 h †

mas76 69963 637057 0.11 5 15 s – 10 m 10.0 m

misc07 1437454696 111784 13000 14 > 10 h 10.7 m †

mod011 9576 21788 0.44 429 15 m – 6 h 2.0 h

noswot 74866 5614491 0.01 5 25 s – 10 m 2.2 h †

pk1 31044 337940 0.09 5 10 s – 5 m 9.4 m †

pp08a 786 933 0.84 5 5 s – 25 s 5.6 s

pp08aCUTS 2355 1687 1.4 5 5 s – 1 m 9.1 s

qiu 2085 9358 0.22 65 1 m – 20 m 9.5 m

rout 8758 1797969 0.01 21 20 s – 10 m 2.9 h †

seymour * 182659036 54713 3300 2171 > 10 h > 10 h

stein45 43822 68093 0.64 5 30 s – 10 m 2.2 m

vpm2 9176 25255 0.36 5 5 s – 1 m 40.6 s

* Instance not solved to completion.

† Incorrect time prediction.



95

Table B.4: More Test Results

Phase I Predicted Solution

Instance time [s] time range time

Multidimensional Knapsack Problems

mknapcb1-1 5 5 s – 2 m 1.3 m

mknapcb1-11 5 5 s – 20 s 7.7 s

mknapcb1-21 5 5 s – 50 s 5.3 s

mknapcb2-1 5 > 1 h 8.2 m †

mknapcb2-11 5 > 10 h 20.1 m †

mknapcb2-21 5 > 10 h 15.3 m †

mknapcb3-1 * 15 > 10 h > 2.6 h

mknapcb3-11 * 15 > 10 h > 2 h

mknapcb3-21 16 > 10 h 6.4 m †

mknapcb4-1 5 15 s – 10 m 13.4 m †

mknapcb4-11 5 35 s – 15 m 5.9 m

mknapcb4-21 5 5 s – 50 s 17.9 s

mknapcb5-1 * 7 15 m – 6 h > 2.5 h †

mknapcb5-11 * 7 > 2 h > 2.3 h

mknapcb5-21 * 7 10 m – 4 h > 2.6 h †

mknapcb6-1 * 22 > 10 h > 2.8 h

mknapcb6-11 * 25 25 m – 10 h > 2.9 h †

mknapcb6-21 * 23 > 10 h > 2.1 h

mknapcb7-1 5 5 m – 1 h 23.2 m

mknapcb7-11 5 10 m – 3 h 3.3 h †

mknapcb7-21 5 5 m – 1 h 7.9 m

mknapcb8-1 * 18 > 10 h > 10 h

mknapcb8-11 * 14 > 1 h > 10 h

mknapcb8-21 * 15 > 4 h > 8.8 h

mknapcb9-1 * 74 > 10 h > 5.6 h

mknapcb9-11 * 63 > 10 h > 4.8 h

mknapcb9-21 * 50 > 8 h > 4.3 h

* Instance not solved to completion.

† Incorrect time prediction.
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Table B.5: More Test Results

Phase I Predicted Solution

Instance time [s] time range time

Set-Covering Problems

scpnre1 581 10 m – 3 h 58.3 m

scpnre2 654 > 30 m 7.6 h

scpnre3 707 15 m – 7 h 1.1 h

scpnre4 188 5 m – 1 h 37.1 m

scpnre5 87 2 m – 40 m 21.7 m

scpnrf1 1311 20 m – 7 h 29.7 m

scpnrf2 860 15 m – 3 h 19.9 m

scpnrf3 625 10 m – 3 h 13.6 m

scpnrf4 635 15 m – 6 h 1.4 h

scpnrf5 407 15 m – 7 h 2.1 h

scpnrg1 * 1625 > 1 h > 10 h

scpnrg2 * 558 15 m – 5 h > 10 h †

scpnrg3 * 846 > 4 h > 10 h

scpnrg4 * 1166 > 10 h > 10 h

scpnrh1 * 3429 > 10 h > 10 h

scpclr10 * 106 > 10 h > 10 h

scpclr11 * 2203 > 10 h > 10 h

scpclr12 * 12501 > 10 h > 10 h

MILP Benchmarks

bc * 1315 > 10 h > 10 h

binkar10 1 * 21 5 m – 3 h > 6.4 h †

eilD76 469 > 10 h 30.1 m †

mas284 10 10 s – 5 m 1.2 m

mkc1 159 > 10 h 4.3 h †

prod1 5 1 m – 25 m 11.2 m

ran14x18 1 * 24 > 10 h > 10 h

* Instance not solved to completion.

† Incorrect time prediction.



97

Table B.6: More Test Results

Phase I Predicted Solution

Instance time [s] time range time

Bin-Packing Problems

t60 00 * 174 > 10 h > 10 h

t60 05 * 93 > 10 h > 10 h

t60 10 * 238 > 10 h > 10 h

t60 15 * 432 > 10 h > 10 h

t120 00 * 1487 > 10 h > 10 h

t120 05 * 7329 > 10 h > 10 h

t120 10 * 8125 > 10 h > 10 h

t120 15 * 1681 > 10 h > 10 h

u120 00 * 663 > 10 h > 10 h

u120 05 * 1010 > 10 h > 10 h

u120 10 * 1229 > 10 h > 10 h

u120 15 * 951 > 10 h > 10 h

Capacitated Facility-Location Problems

capa1 * 242 > 10 h > 2.8 h

capa2 * 241 > 10 h > 2.8 h

capa3 * 238 > 10 h > 2.8 h

capa4 * 237 > 10 h > 2.8 h

capb1 * 209 > 10 h > 2.5 h

capb2 * 209 > 10 h > 2.5 h

capb3 * 209 > 10 h > 2.5 h

capb4 * 209 > 10 h > 2.5 h

capc1 * 200 > 10 h > 2.5 h

capc2 * 201 > 10 h > 2.5 h

capc3 * 222 > 10 h > 2.6 h

capc4 * 219 > 10 h > 2.6 h

* Instance not solved to completion.

† Incorrect time prediction.
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Table B.7: Predictions by Our Estimation Procedure for a Branch-and-Cut Algorithm

Predicted Actual Actual

Problem number number Ratio Phase I Predicted solution

of nodes of nodes time [s] time range time

air05 1576 720 2.2 169 1 m – 35 m 2.8 m

arki001 396870541 347635 1100 74 > 10 h 3.2 h †

bell3a 4818 19001 0.25 5 5 s – 35 s 29.6 s

bell4 11403 19599 0.58 5 5 s – 1 m 20.6 s

bell5 302597 582887 0.52 5 1 m – 25 m 9.6 m

blend2 1434224 3973 360 8 20 m – 7 h 13 s †

gesa2 o 1511 670 2.3 5 5 s – 1 m 6 s

harp2 * 168082 320884 0.52 41 5 m – 3 h > 54 m †

markshare1 * 54252828 54563771 1 5 > 2 h > 10 h

markshare2 * 789981661 41189904 19 5 > 10 h > 8.4 h

mas74 56129 6518567 0.01 5 20 s – 10 m 3.1 h †

mas76 35890 559528 0.06 5 10 s – 4 m 10.5 m †

misc07 1.07e+11 79952 1.3e+6 17 > 10 h 9.5 m †

mod011 4190 9635 0.43 985 15 m – 6 h 2.1 h

noswot 83316 8308673 0.01 5 30 s – 10 m 4.8 h †

pk1 9251 540710 0.02 5 5 s – 2 m 18.1 m †

pp08aCUTS 1715 1910 0.9 6 5 s – 1 m 14 s

qiu 3355 10098 0.33 118 2 m – 45 m 14.5 m

rout 93362 99119 0.94 34 5 m – 2 h 42.8 m

seymour * 119836809 57420 2087 2504 > 10 h > 10 h

stein45 26468 60717 0.44 5 20 s – 5 m 2 m

vpm2 2418 4328 0.56 5 5 s – 30 s 10 s

* Instance not solved to completion.

† Incorrect time prediction.
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[26] G. Cornuéjols and M. Dawande. A class of hard small 0-1 programs. In R. E. Bixby,

E. A. Boyd, and R. Z. Rios-Mercado, editors, Integer Programming and Combinatorial

Optimization, 6th International IPCO Conference, Lecture notes in Computer Science

1412, pages 284–293. Springer-Verlag, Berlin, 1998.

[27] ILOG CPLEX. Reference manual. URL: ftp://www.ilog.com/products/cplex, 2003.

[28] R. J. Dakin. A tree search algorithm for mixed programming problems. Computer

Journal, 1965.

[29] G. Danzig, D. Fulkerson, and S. Johnson. Solution of a large scale travelling salesman

problem. Operations Research, 2:393–410, 1954.

[30] E. Falkenauer. A hybrid grouping genetic algorithm for bin packing. Technical report,

CRIF Industrial Management and Automation, CP 106 - P4, 50 av. F.D.Roosevelt,

B-1050 Brussels, Belgium, 1994.

[31] M. C. Ferris, G. Pataki, and S. Schmieta. Solving the seymour problem. Optima, (66):1

– 7, 2001.

[32] M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98:23–47,

2003.



102 Bibliography

[33] Computational Infrastructure for Operations Research (COIN-OR).

URL: http://www.coin-or.org/index.html, 2006.

[34] R. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin

of the American Mathematical Society, 64:275–278, 1958.

[35] R. Gomory. An algorithm for the mixed integer problem. Technical Report RM-2597,

The Rand Corporation, 1960.

[36] R. Gomory. Combinatorial Analysis, R. E. Bellman and M. Hall, Jr., eds., chapter Solv-

ing linear programming problems in integers, pages 211–216. American Mathematical

Society, 1960.

[37] R. Gomory. Recent Advances in Mathematical Programming, R. Graves and P. Wolfs,

eds., chapter An algorithm for integer solutions to linear programs, pages 269–302.

McGraw-Hill, 1963.

[38] M. Grötschel, L. Lovász, and A. Schrijver. Progress in Combinatorial Optimizarion,

chapter Geometric methods in combinatorial optimization, pages 167–183. Academic

Press, Toronto, 1984.

[39] Jr. H. W. Lenstra. Integer programming with a fixed number of variables. Mathematics

of Operations Research, 8:538–548, 1983.

[40] D. E. Knuth. Estimating the efficiency of backtracking programs. Mathematics of

Computing, 29:121–136, 1975.

[41] A. H. Land and A. G. Doig. An automatic method for solving discrete programming

problems. Econometrica, 1960.

[42] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational

coefficients. Mathematische Annalen, 261:515–534, 1982.

[43] J. Linderoth and M. Savelsbergh. A computational study of search strategies for mixed

integer programming. Report LEC-97-12, Georgia Institute of Technology, 1997.

[44] J. D. C. Little, K. G. Murthy, D. W. Sweeney, and C. Karel. An algorithm for the

traveling salesman problem. Operations Research, 21:972–989, 1963.



Bibliography 103

[45] L. Lobjois and M. Lemaitre. Branch-and-bound algorithm selection by performance

prediction. Technical report, American Association for Artificial Intelligence, 1998.

[46] L. Lovász and H. E. Scarf. The generalized basis reduction algorithm. Mathematics of

Operations Research, 17:751–764, 1992.

[47] H. Marchand and L.A. Wolsey. Aggregation and mixed integer rounding to solve MIPs.

Operations Research, 49:363–371, 2001.

[48] F. Margot. BAC: A BCP based branch-and-cut example.

URL: http://www.coin-or.org/Papers/bac.ps, 2003.

[49] Argonne National Laboratory Mathematics and Computer Science Division. NEOS

guide test problems: Mip benchmarks. URL: ftp://ftp.mcs.anl.gov/neos/mip-bench,

2003.

[50] S. Mehrotra and Z. Li. On generalized branching methods for mixed integer program-

ming. Technical report, Northwestern University, Evanston, Illinois 60208, 2004.

[51] H. Mittelmann. Benchmarks for optimization software.

URL: ftp://plato.la.asu.edu/pub/milp, 2003.

[52] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John

Wiley and Sons, New York, 1988.

[53] Website of Zuse Institute Berlin. Miplib 2.0.

URL: http://miplib.zib.de/miplib3/miplib prev.html, 2003.

[54] J. Owen and S. Mehrotra. Experimental results on using general disjunctions in branch-

and-bound for general-integer linear program. Computational Optimization and Appli-

cations, 20:159–170, 2001.

[55] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-

scale symmetric travelling salesman problems. SIAM Review, 33:60–100, 1991.

[56] P. W. Purdom. Tree size by partial backtracking. SIAM Journal on Computing, 7:481–

491, 1978.



104 Bibliography

[57] T. K. Ralphs and L. Ladányi. COIN/BCP user’s manual.
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