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Abstract

This dissertation studies the effect of customer considerations in stochastic optimization prob-

lems in the service industry. The first part looks at problems in the service industry geared

towards providing efficient service, i.e., minimizing the total cost of providing service while

ensuring that certain service level targets are met. In particular, we study applications in the

call center industry, repair facilities, and spare parts industry. We develop mathematical pro-

gramming models for these problems to determine the optimal non-randomized policy, i.e., a

policy not involving any probabilistic mixing. The service level targets in these problems can

be naturally modeled as constraints, which can be incorporated into a mathematical program.

Despite this fact, to the best of our knowledge, this dissertation is the first study to use such

a formulation to find an optimal non-randomized policy. The second part of this dissertation

considers a revenue-management setting in the service industry but, different from the existing

literature, the seller has to negotiate the price with each buyer. This is a typical situation in

B2B applications such as telecommunications, cargo shipping, etc; in such settings the seller

negotiates a different sale price with different buyers. We also consider a model in which the

seller ensures that the average buyer is no worse-off by bargaining than under posted-pricing,

via a constraint. We characterize how the seller and the average buyer are effected. We obtain

several additional insights through numerical experiments.
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Chapter 1

Introduction

This dissertation studies the effect of customer considerations on stochastic optimization prob-

lems in the service industry in two parts. The first part looks at problems in the service

industry geared towards providing efficient service, i.e., minimizing the total cost of providing

service while ensuring that certain service level targets are met. We develop mathematical

programming models for these problems to determine the optimal non-randomized policy, i.e.,

a policy not involving any probabilistic mixing. The service level targets in these problems can

be naturally modeled as constraints, which can be incorporated into a mathematical program.

Despite this fact, this dissertation is the first study (to the best of our knowledge) to use such a

formulation to find an optimal non-randomized policy. We discuss the different techniques we

studied to solve these problems along with their potential strengths and weaknesses in chapter

2. In particular, we study applications in the call center industry, repair facilities, and spare

parts industry (chapters 3 and 4). The second part considers a revenue-management setting in

the service industry in which a seller has a finite amount of inventory to sell in a finite number

of time periods. Different from the existing posted-price literature, the seller has to negotiate

the price with each buyer. This problem has applications in business-to-business settings such

as telecommunications and cargo shipping; in settings such as these, the seller typically nego-

tiates a different sale price with different buyers. To do so we model the as solving solves a

dynamic program which incorporates the Nash (1950) bargaining solution within the program.

The optimal value functions of the seller from the bargaining model are shown to be always

greater than those from the posted-price model, but the average buyer may be worse-off. A

bargaining model which results in a Pareto improvement with respect to the seller’s and the

buyer’s value functions relative to the posted-price model is also considered. Several additional

insights are obtained through numerical experiments. Chapters 5 and 6 are dedicated to this

1



2 CHAPTER 1. INTRODUCTION

topic. Below, a brief introduction of each chapter of this dissertation is provided. A more

detailed introduction is also provided at the start of each chapter.

1.1 Chapter 2: Introduction to CMDPs

We introduce the basic theory of Markov chains, balance equations, limiting probability values

and Markov decision processes (MDPs). A constrained Markov decision process (CMDP) is a

MDP with probabilistic constraints. Each of the applications we study in the first part of this

thesis can be modeled as a constrained Markov decision process (under suitable assumptions

for the input parameters). However, until now the only exact solution method to obtain the

optimal non-randomized policy for such problems is enumeration, which can be prohibitively

expensive. We present four different mathematical programming formulations to obtain the

optimal non-randomized policy for such problems in chapter 2: (i) the MBEDC algorithm, (ii)

the BEDP algorithm, (iii) the BIDP algorithm, and (iv) the BIP algorithm. We then perform

experiments to determine the efficiency of the BEDP, the BIDP and the BIP formulations.

We conclude by discussing their relative strengths and weaknesses of each. Discussion of the

MBEDC algorithm is presented in the following chapter, since it is the most efficient algorithm.

If the reader is already familiar with CMDPs, this chapter can be skipped.

1.2 Chapter 3: The CDOS Problem

Call center managers are facing increasing pressure to reduce costs while maintaining acceptable

service quality. Consequently, they often face constrained stochastic optimization problems,

minimizing cost subject to service level constraints. Complicating this problem is the fact that

customer arrival rates to call centers are often time-varying. Thus, to satisfy their service goals

in a cost-effective manner, call centers may employ permanent operators who always provide

service, and temporary operators who provide service only when the call center is busy, i.e., when

the number of customers in system increases beyond a threshold level. This provides flexibility

to dynamically adjust the number of operators providing service in response to the time-varying

arrival rate. (Another way to cope with time varying arrival rate is to alter the staffing levels

without temporary operators by breaking the day into different blocks or periods. This must

be proactive, not reactive. In addition, with such fixed schedules temporary operators can still

be utilized for each block.)

We define the Constrained Dynamic Operator Staffing (CDOS) problem as follows: deter-
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mining the number of permanent and temporary operators, and the threshold value(s) that

minimize time-average hiring and opportunity costs subject to service level constraints. We

model the CDOS problem as a constrained Markov decision process (CMDP) and seek the

optimal non-randomized policy. The only exact method in the literature to obtain the optimal

non-randomized policy for a constrained MDP is enumeration, which is often computationally

prohibitive. We provide a novel exact and efficient solution method, the MBEDC algorithm,

yielding a Mixed Integer Program formulation; the computation times of this algorithm for

sample problems are lower than enumeration by up to a factor of 200, and by a factor of 10

on average. Using our algorithm, we quickly solve diverse instances of the CDOS problem,

generating managerial insights into the effects of temporary operators and different types of

service level constraints.

1.3 Chapter 4: Other Applications of CMDPs

We study two other applications of stochastic optimization problems with service level con-

straints from the literature. The first has applications in call centers, repair facilities, etc., and

studies the benefits of using a Beneficiary-Donor model in a multi-server system that consists of

two servers and two queues: One of the servers (the Donor) may be asked to work on the jobs of

the other server (the Beneficiary) but not vice versa. The objective is to minimize the weighted

sum of the mean response times at the two servers by determining when the donor server should

work on the beneficiary server’s jobs and on its own jobs. Multiple threshold-based policies

have been proposed and analyzed for this problem in the literature by different researchers,

with the number of thresholds ranging from one to infinity. However, there is no work that

answers the question of how many thresholds are actually required. Obviously, having more

thresholds results in a better objective but also adds to the implementation complexity. On

the other hand, if a reasonable objective value (within p% of the optimal) can be obtained by

using only one or two thresholds, such a policy may be more practical. We are the first to pro-

vide a framework for comparing any threshold based policy to the optimal policy with respect

to some given objective function. In particular, we compare a three-threshold policy - ADT

(Osogami et al., 2005) - with the optimal policy with respect to the weighted sum of the mean

response time metric. Ours is the first study to test the claim that the ADT policy performs

close-to-optimal with respect to this metric. The general optimal policy is the solution to a

Markov decision process and hence can be obtained by different techniques: policy iteration,

value iteration, and linear programming. The restrictions to the class of ADT policies results in



4 CHAPTER 1. INTRODUCTION

a constrained Markov decision process for which the optimal threshold values can be obtained

by using the MBEDC algorithm developed in this dissertation. The framework used to compare

these policies can be extended to compare any threshold-based policy with the optimal policy.

The second application is a multi-item, two location, spare parts problem with lateral trans-

shipments, with the objective of finding the optimal non-randomized policy so as to minimize

total inventory costs subject to waiting time constraints at each location. Such a problem is

relevant for suppliers of complex machines in equipment-intensive industries such as airlines

and manufacturing plants. A random failure of even a single part can cause the whole system

to fail. As downtime can be very costly, the supplier typically maintains spare parts inventory

at a warehouse near its clients’ locations. At the same time, maintaining an excessive number

of spare parts should also be avoided as most of these items are expensive. Hence, the suppliers

are confronted with the difficult task of maintaining high system availability, while at the same

time limiting the spare parts inventories.

If a demanded spare part is not available at the local warehouse, then the spare part is

either shipped from a second local warehouse resulting in a lateral transshipment, or from the

central warehouse resulting in an emergency shipment. While there exists a greedy heuristic to

solve this problem, there is no exact solution method other than enumeration. This problem

can be modeled as a constrained Markov decision process and we solve it exactly using the

MBEDC algorithm developed in this dissertation.

1.4 Chapter 5: Revenue Management with Nash Bar-

gaining

We consider the classical revenue-management setting of a firm selling a finite inventory of a

single product within a finite number of periods. In each period there is a positive probability

of a single buyer arrival. The buyer’s reservation value for one unit of product is uncertain,

but is drawn from a distribution known to the seller. Different from the existing literature, the

seller negotiates the price with each buyer, a typical situation in business-to-business settings.

We use the Nash bargaining solution to model the outcome of each negotiation and study the

seller’s optimal expected revenue.

We propose a model in which the seller dynamically optimizes its reservation value, establish

structural properties of this model, and show that the average expected revenue benefit from

adopting an optimal dynamic, rather than myopic, bargaining policy is 6-8%. A myopic policy
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refers to the seller maximizing its expected revenue for the current period without taking into

account the effect on future revenue. We also show that the optimal value functions of our model

are always higher than those obtained from the traditional posted-price model. We analyze this

result by decomposing the difference between these value functions into a quantity effect and a

price effect. Finally, we propose a hybrid model that provides a Pareto improvement over the

posted-price model for both parties. In this case, the seller is only slightly worse-off while the

buyers gain significantly in terms of expected surplus compared to the dynamic optimization

bargaining model.

1.5 Chapter 6: Additional Experiments for Chapter 5

We present additional experiments for our bargaining model (from chapter 5) in this chapter,

including a discussion of the concept of ex-post efficiency of our bargaining model. First, we

extend the numerical examples from sections 5.2.2 and 5.3.2 to the cases when the buyer’s

reservation value is drawn from exponential and triangular distributions, obtaining similar

results. While section 5.3.1 explains the improved performance of the optimal value functions of

the bargaining model over the posted-price model, we show in this chapter that the immediate

(or current) expected reward is also higher in the former model. We explain this result by

studying the two factors of the immediate expected reward: (i) change in the probability of a

sale agreement and (ii) change in the expected sale price conditional on a sale agreement. We

show numerically that both these factors are positive for the bargaining model with respect to

the posted-price model. Finally, we show that the bargaining model is not ex-post efficient.

A bargaining outcome is ex-post efficient if and only if after all the information is revealed,

the players’ payoff associated with the bargaining outcome are Pareto-efficient. We consider an

ex-post efficient bargaining model and show that it results in the highest benefit for the average

buyer but significantly reduces the seller’s expected revenue as compared to the bargaining

model.

1.6 Chapter 7: Conclusions

Finally, we present conclusions from each of the chapters and discuss plans for future work in

this chapter. We believe that some of these plans require only minor modifications of existing

techniques (outlined here and elsewhere), whereas others are more long-term goals.



6 CHAPTER 1. INTRODUCTION



Chapter 2

Introduction to Constrained Markov

Decision Processes

In this chapter, we discuss all formulations (solution techniques) that we studied to obtain the

optimal non-randomized policy for any constrained Markov decision process. We present and

discuss four formulations, two based on Disjunctive Programming (Balas, 1998), one based on

Integer Programming (Nemhauser and Wolsey, 1988), and our most efficient algorithm, the

MBEDC, based on Integer Programming. We defer the detailed discussion on the MBEDC al-

gorithm to Chapter 3 and only introduce it in this chapter. Before discussing our algorithms, we

introduce Markov Chains, Balance Equations, Markov Decision Processes, Constrained Markov

Decision Processes, and present relevant notation. If the reader is already familiar with the

concept of constrained Markov decision processes, this chapter can be skipped.

2.1 Markov Chains and Balance Equations

We provide a brief introduction to Markov chains in this section. For a more detailed discussion,

refer to Ross (1997), Chapter 4. Consider a stochastic process {Xn, n = 0, 1, 2, . . .} that has

finite or countable values. If Xn = i, then the process is said to be in state i at time n. Let Ω

be the state space of the process. Suppose that whenever the process is in state i, there is a

fixed probability, rij, that it will next be in state j (in the continuous-time version, rij is the

rate of transition from state i to state j), i.e.,

P{Xn+1 = j|Xn = i, Xn−1 = in−1, . . . , X1 = i1, X0 = i0} = rij

7
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for all states i0, i1, . . . , in−1, i, j and all n ≥ 0. Such a stochastic process is known as a Markov

chain. It is well-known that the limiting probability values that the process is in state i, given

by πi, for all states i can be obtained for an irreducible ergodic Markov chain (Ross, 1997) as

follows:

πi is the unique non-negative solution of

πi

∑
j∈Ω

rij =
∑
j∈Ω

πj rji, i ∈ Ω and
∑
i∈Ω

πi = 1.

This system of equations is commonly called the balance equations. Next, we develop a

proof to show that these balance equations can be written as inequalities for any irreducible

ergodic Markov chain without changing the unique solution for the limiting probability values.

This theorem is later used in the development of an algorithm (BIP) to obtain the exact non-

randomized optimal solution for constrained Markov decision processes.

Theorem 2.1.1. For any ergodic Markov chain with state space Ω, the following systems are

equivalent (where Ω1 is any subset of Ω):

(I)
{

π : πi ×
∑

j∈Ω(rij) =
∑

j∈Ω [πj × (rji)] ∀ i ∈ Ω.
}

(II)



π :

πi ×
∑

j∈Ω(rij) ≤ ∑
j∈Ω [πj × (rji)] ∀ i ∈ Ω1 ⊆ Ω;

πi ×
∑

j∈Ω(rij) =
∑

j∈Ω [πj × (rji)] ∀ i ∈ Ω\Ω1.





(III)



π :

πi ×
∑

j∈Ω(rij) ≥ ∑
j∈Ω [πj × (rji)] ∀ i ∈ Ω1 ⊆ Ω;

πi ×
∑

j∈Ω(rij) =
∑

j∈Ω [πj × (rji)] ∀ i ∈ Ω\Ω1.





In other words, the system of balance equations (I) can be represented by a system of Balance

Inequalities (II) or (III): any subset of the equalities in (I) can be replaced by inequalities in the

same sense.

Proof. We prove that the systems (II) and (I) are equivalent. The fact that any feasible solution

to system (I) is also feasible for system (II) is obvious. The proof of the reverse implication is

shown below. Any feasible solution of system (II), π∗, satisfies:

π∗i ×
∑
j∈Ω

(rij) ≤
∑
j∈Ω

[
π∗j × (rji)

] ∀ i ∈ Ω1 ⊆ Ω; (2.1)

π∗i ×
∑
j∈Ω

(rij) =
∑
j∈Ω

[
π∗j × (rji)

] ∀ i ∈ Ω\Ω1. (2.2)
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Summing the above constraints over all i ∈ Ω:

∑
i∈Ω

π∗i

[∑
j∈Ω

(rij)

]
≤

∑
i∈Ω

∑
j∈Ω

[
π∗j × (rji)

]
=

∑
j∈Ω

∑
i∈Ω

[
π∗j × (rji)

]
=

∑
j∈Ω

π∗j

[∑
i∈Ω

(rji)

]

=
∑
i∈Ω

π∗i

[∑
j∈Ω

(rij)

]
. (2.3)

Thus the LHS and the RHS of (2.3), obtained by summing the linear constraints in (2.1) and

(2.2), are equal. But since all inequalities in (2.1) are in the same sense, this implies that each

inequality has to hold at equality. Therefore any feasible solution of system (II) is also feasible

for system (I). Hence, system (II) is identical to system (I). The proof for systems (III) and (I)

is identical.

Notice that (I) is just the system of standard balance equations, whereas (II) and (III) are

similar to (I), except that some or all of the balance equations are replaced by less-than-or-

equal-to or greater-than-or-equal-to inequalities, respectively. These systems are valid for any

ergodic Markov chain with finite or infinite state space, in continuous- or discrete-time.

Before we introduce our formulations, we need one additional upper-bounding result:

Corollary 2.1.1. With respect to system (II), for all states i such that
∑

j∈Ω(rij) > 0,

πi −
P

j∈Ω[πj×(rji)]P
j∈Ω(rij)

≤ 1

is redundant for all i ∈ Ω.

Proof. The Balance Inequalities in (II) may be rewritten as:

πi −
P

j∈Ω[πj×(rji)]P
j∈Ω(rij)

≤ 0 (2.4)

Now the result is immediate.

An analogous result to Corollary 2.1.1 can be proved for system (III).

2.2 Markov Decision Processes

We provide a brief description of Markov decision processes (MDPs) (Porteus, 2002; Puterman,

1994). We consider a decision maker who is faced with the problem of making decisions that
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influence the behavior of a probabilistic system as it evolves through time. The goal is to

select a sequence of actions that causes the system to perform optimally with respect to some

predetermined metric. Since the system we model is ongoing, the state of the system in the

future depends on the decisions made in the present. Consequently, the decisions typically must

not be made myopically (disregarding the future), but must anticipate the opportunities and

costs associated with future system states. We now introduce finite-horizon Markov decision

processes. Eventually, we will be interested in infinite-horizon MDPs. These follow from taking

limits of the finite-horizon values, typically resulting in stationary behavior (probabilistically

independent of time). For more details on this process, refer to Puterman (1994).

Consider a N period MDP. At the beginning of each period, a process is observed to be in

some state s, which is a member of the state space S. At each such point in time, an action a

must be selected from the set of admissible actions As. After the action is chosen, the system

evolves probabilistically, in a Markovian manner, to another state, by the beginning of the next

period. This means that the next state depends only on the current state and action and not

on the history of how the system evolved to the current state. For a discrete-time MDP, the

probability of making a transition to state j from state s if action a is chosen is denoted by

γj|s,a. For a continuous-time MDP, γj|s,a gives the rate at which the system moves to state

j from state s if action a is chosen. Define Γs,a :=
∑

j∈S γj|s,a, i.e., it gives the total rate of

leaving state s when action a is chosen in that state for a continuous-time MDP, or is equal to

one for a discrete-time MDP. The immediate cost resulting from choosing action a in state s is

cs,a. A decision rule δ is a function defined on the state space that specifies an action for each

state. It encapsulates the decision to be made in a given period. A policy Π = (δ1, δ2, . . . , δN)

gives a decision rule for each period. A non-randomized policy does not allow any probabilistic

mixing of decision rules, while a randomized policy does. The objective is to minimize the

time-average cost over an infinite-horizon (as N →∞), i.e., a stationary problem in which the

costs, transition probabilities or rates, and state and action spaces do not change over time.

Define πs,a as the limiting probability value that the system is in state s and action a is chosen.

There exist three algorithms in the literature to solve MDPs: (i) policy iteration, (ii) value

iteration and (iii) linear programming. Refer to Puterman (1994) for an excellent comparison

of these algorithms. Each of these algorithms gives the optimal non-randomized policy for a

given metric to be optimized. We present the general Linear Programming (LP) formulation

below. The objective function gives the time-average cost given the selection of actions in each

state. The next three systems of equations give the limiting probability values corresponding

to a policy (refer the discussion on Markov chains and balance equations in section 2.1). We
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call the system of equations (2.5) the modified balance equations, since they are a modified

version of the balance equations presented earlier.

(LP) MIN
∑

s∈S

∑
a∈As

cs,a πs,a

Subject to

∑
a∈Aj

Γj,a πj,a −
∑
s∈S

∑
a∈As

γj|s,a πs,a = 0 for all j ∈ S (2.5)

∑
s∈S

∑
a∈As

πs,a = 1

πs,a ≥ 0 for all s ∈ S, a ∈ As

Note that randomized policies are feasible for (LP), but each of the corner points of the

(LP) polyhedron correspond to a non-randomized policy. Since the optimal solution obtained

by solving linear programs occurs at one of the corner points, it always corresponds to a non-

randomized policy.

So far, we have not used any probabilistic constraints, i.e., constraints on some function (we

will limit ourselves to linear functions in this dissertation) of the limiting probability values.

If probabilistic constraints are included, we call such problems constrained Markov decision

processes (CMDPs); we are not aware of any straight-forward implementation of policy iteration

or value iteration algorithms to solve CMDPs. The LP algorithm can model such constraints

but, typically, results in an optimal randomized policy (Puterman, 1994). The applications

that we study in the first part of this dissertation can be modeled as CMDPs, and our focus

is to obtain the optimal non-randomized policy for these problems. The only current solution

method for this goal is enumeration. We develop algorithms in the following sections of this

chapter and conduct computational experiments to determine their efficiency.

2.3 MBEDC Algorithm

Consider any constrained Markov decision process (CMDP) (Puterman, 1994) with state space

S and action space As in state s. If action a ∈ As is chosen in state s, the cost generated is

cs,a, and the system transitions to state j with probability/rate γj|s,a. Denote by Γs,a the total

rate/probability out of state s if action a is chosen, and define πs,a as the limiting probability

that the system is in state s and action a is selected. The objective is to obtain the optimal
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non-randomized policy that minimizes the total cost (or maximizes total revenue). A non-

randomized policy does not allow any probabilistic mixing of action choices in any state, for

example, it does not allow to choose action a1 with probability p and action a2 with probability

1− p in any state s. Exactly one action must be selected for each state and the selected action

must be used every time the system is in that state. Finally, suppose that the solution must

satisfy probabilistic constraints of the form, B π ≤ T , where B is the left hand side coefficient

matrix, T is the right hand side target vector, and π = [πs,a] is the vector of variables for the

limiting probability values of being in any particular state and choosing action a.

Above, we presented notation for a constrained MDP. We now present additional notation

for the MBEDC algorithm formulation. Let zs
a be a binary variable that takes the value one

if action a is chosen in state s, and zero otherwise. Define the set, Qj
k := {(s, a) : s ∈ S, a ∈

As,
∑

s,a πs,a = 0 ⇔ â(j) = k}, where â(j) is the non-randomized action selected in state j.

Intuitively, the elements of set Qj
k are state-action pairs (s, a) such that action a could not have

been selected in state s if action j has been selected in state j. Using this notation, the general

MBEDC formulation for obtaining the optimal non-randomized policy for a CMDP is:

MIN
∑

s∈S

∑
a∈As

cs,a πs,a

Subject to
∑

a∈Aj
Γj,a πj,a −

∑
s∈S

∑
a∈As

γj|s,a πs,a = 0 for all j ∈ S

∑
s∈S

∑
a∈As

πs,a = 1

πs,a ≥ 0 for all s ∈ S, a ∈ As

Bπ ≤ T

∑
a∈As

zs
a = 1 ∀ s ∈ S, zs

a ∈ {0, 1} ∀ s ∈ S, ∀ a ∈ As

∑
(s,a)∈Qj

k
πs,a ≤ 1− zj

k ∀ j ∈ S, ∀ k ∈ Aj

The objective function gives the time-average cost incurred. The next three systems of

equations yield the limiting probability values by solving a system of modified balance equations.

The next constraint is the probabilistic constraint we want to model. The second but last system

of constraints (binary variables corresponding to a specific state sum upto one for each state)

ensures that exactly one action is chosen in each state. The last system of constraints link the

binary variables (zs
a) to the corresponding limiting probability variables (elements of Qs

a). For

example, if zk
j is one, then all elements of the set Qk

j are forced to take the value zero, otherwise

the constraint is redundant.
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We defer further discussion of the MBEDC algorithm and the proof that it yields the optimal

non-randomized policy to chapter 3. The computational results for the MBEDC algorithm for

the CDOS problem, ADT problem and the multi-item spare parts problems are presented in

Sections 3.4.4, 4.1, and 4.2, respectively. The MBEDC algorithm is the first exact and efficient

algorithm to obtain the optimal non-randomized policy for any constrained Markov decision

process as shown in chapter 3. Also, its relative performance to enumeration is observed to

improve as the instance size increases.

2.4 A Different View of Constrained Markov Decision

Process

In section 2.2, we refer to the system of equations (2.5) as modified-balance-equations. These

reflect a condensed view of solving an MDP, i.e., the limiting probability variables can obtained

by solving a system of modified balance equations. A different view of solving a Markov decision

process is as follows: If values of all decision parameters are fixed, the resulting system is

governed by a Markov chain. Thus, finding the optimal non-randomized policy in a constrained

Markov decision process corresponds to finding the optimal combination of the parameter values

and hence, the optimal Markov chain whose resulting limiting probability values are feasible

for the constraint under question.

Note that decision parameters could be different from the actions to be chosen in each state.

A decision parameter may fix the actions in more than one state. For example, if we consider a

simple single-threshold based policy for a problem in which a replace action or a do-not-replace

action must be chosen at each state. Setting the single threshold parameter to 5, for example,

fixes the action in states 1 to 4 as do-not-replace and the action in states 5 onwards as replace.

This selection of the optimal Markov chain from a number of Markov chains can be viewed as

solving a disjunctive system of balance equations constraints. This is what we attempt next.

Consider any constrained Markov decision process (CMDP) with m possible parameter

combinations. Assume that the aggregate number of states over all possible parameter choices

is v1, and the v-vector of time-average proportion of time spent in these states is π. Let c be

the cost vector associated with these states. Any specific parameter combination l results in

a different Markov chain, and hence different system of balance inequalities. We will utilize

system (II) throughout; use of system (III) is analogous. Our discussions in the rest of this

1We aggregate as some states may not be accessible under all parameter settings.
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section continue to hold even if the balance inequalities are replaced by balance equations.

The system of Balance Inequalities given by (2.4) for parameter choice l are denoted by:

Al π ≤ 0̂.

In the above Al ∈ Rv×v ∀ l; π ∈ Rv; 0̂ ∈ Rv. In addition, following from Corollary 2.1,

Al π ≤ 1̂

is a system of redundant constraints (1̂ ∈ Rv). As it is necessary that the time-average

proportions of time of any Markov chain sum up to one, we add the constraint bl π = 1, where

bl ∈ R1×v is a 0-1 coefficient vector such that:

bl
j =





1 : if state j ∈ the Markov chain induced by parameter setting l,

0 : otherwise.

Note that bl π = 1 can be equivalently written as: bl π ≥ 1; π e = 1, where e is defined as an

e-vector of ones. Thus, the time average proportions of time for the Markov chain induced by

the parameter choice l can be obtained by solving:

Al π ≤ 0̂, bl π ≥ 1, π e = 1, π ≥ 0. (2.6)

Using the above notation and remembering that the solution must satisfy probabilistic

constraints of the form, B′ π ≤ T (B′ should be obtained from B since we are aggregating

states, by introducing zeros in the elements of the matrix B′ that correspond to states not

originally represented in B), the CMDP problem can be represented as follows:

(Q) Minimize c π

Subject To

{(
A1

−b1

)
π ≤

(
0̂

−1

)}
∨

{(
A2

−b2

)
π ≤

(
0̂

−1

)}
∨ . . . ∨

{(
Am

−bm

)
π ≤

(
0̂

−1

)}
; (2.7)

B′ π ≤ T ;

π e = 1;
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π ≥ 0.

Thus, the system of equations (2.7) implies that exactly one of the m possible Markov chains

corresponding to the m possible parameter combinations should be selected. The limiting

probability values of the selected Markov chain must satisfy the probabilistic constraint and

must minimize the time-average cost compared to all feasible Markov chains.

2.5 Other Formulations

Balance Equations Disjunctive Programming (BEDP) Formulation.

Using Disjunctive Programming (Balas, 1998), we can obtain an LP formulation for (Q) with

balance inequalities being replaced by balance equations. The resulting formulation is shown in

(F1) with the first four systems of constraints resulting from the application of the disjunctive

programming technique. However, because of the probabilistic constraint, Bπ ≤ T , ξ1
i can be

fractional and hence this provides the optimal randomized policy. We add binary constraints as

shown in the last but second system of constraints in (F1) to ensure that randomized policies

are infeasible. We call this the BEDP formulation; it results in the optimal non-randomized

policy.

(F1) Minimize
∑m

h=1 c ξh

Subject To

A1 ξ1 = 0̂, A2 ξ2 = 0̂, . . . , Am ξm = 0̂;

−b1 ξ1 = −ξ1
0 , −b2 ξ2 = −ξ2

0 , . . . , −bm ξm = −ξm
0 ;

B ξ1 ≤ ξ1
0T, B ξ2 ≤ ξ2

0T, . . . , B ξm ≤ ξm
0 T ;

ξ1 e = ξ1
0 , ξ2 e = ξ2

0 , . . . , ξm e = ξm
0 ,

∑m
i=1 ξi

0 = 1, ξi
0 ∈ {0, 1} ∀i,

(ξi, ξi
0) ≥ 0 i = 1, . . . , m.

If ξj
0 = 1, then the system of balance equations that corresponds to Markov chain j is activated

and the limiting probability values of that Markov chain are obtained. However, if ξj
0 = 0 then

all limiting probability values corresponding to Markov chain j are forced to take the value

zero. Thus, the optimal non-randomized policy is obtained, since exactly one of all the ξi
0 can

be one and the rest must be zero.
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Balance Inequalities Disjunctive Programming (BIDP) Formulation.

This formulation is similar to the previous one, except we use Balance Inequalities instead

of Balance Equations. It also results in the optimal non-randomized solution. The explanation

is same as in the previous case.

(F2) Minimize
∑m

h=1 c ξh

Subject To

A1 ξ1 ≤ 0̂, A2 ξ2 ≤ 0̂, . . . , Am ξm ≤ 0̂;

−b1 ξ1 ≤ −ξ1
0 , −b2 ξ2 ≤ −ξ2

0 , . . . , −bm ξm ≤ −ξm
0 ;

B ξ1 ≤ ξ1
0T, B ξ2 ≤ ξ2

0T, . . . , B ξm ≤ ξm
0 T ;

ξ1 e = ξ1
0 , ξ2 e = ξ2

0 , . . . , ξm e = ξm
0 ,

∑m
i=1 ξi

0 = 1, ξi
0 ∈ {0, 1} ∀i,

(ξi, ξi
0) ≥ 0 i = 1, . . . , m.

Balance Inequalities Integer Programming (BIP) Formulation.

Next, we show how to obtain an MIP formulation for disjunctions of Balance Inequality

systems as in (Q) using Integer Programming (Nemhauser and Wolsey, 1988). For every Markov

chain l (or more precisely, every Markov chain corresponding to a particular choice of parameter

settings l), we introduce a binary variable yl such that:

yl =





1 : if Markov chain l is selected,

0 : otherwise.

Below, is the BIP formulation which also yields the optimal non-randomized policy for any

CMDP. Note that we need the balance inequalities result for this formulation, otherwise the first

system of constraints in (F3) will be infeasible if balance equations are used. The explanation of

formulation (F3) is as follows: The objective gives the time-average cost incurred. The second

type of constraint in (F3) requires all the binary variables to sum to one, results in the selection

of one binary variable with value one, and the others are forced to be zero. If yk = 1, then the

balance equations of Markov chain k are activated (refer the first row of constraints in (F3)),

and the balance equations corresponding to all other Markov chains i 6= k become redundant

(refer the first row of constraints in (F3) and Corollary 2.1.1). Thus, exactly one Markov chain

is selected and hence the BIP algorithm gives the optimal non-randomized policy.
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(F3) Minimize c π

Subject To

{(
A1

−b1

)
π ≤

(
1̂− ey1

−y1

)}
,

{(
A2

−b2

)
π ≤

(
1̂− ey2

−y2

)}
, . . .

{(
Am

−bm

)
π ≤

(
1̂− eym

−ym

)}
;

∑m
l=1 yl = 1;

Bπ ≤ T, π e = 1, π ≥ 0, y ∈ {0, 1}m.

Results of computation time of the BEDP and BIP formulations are shown in Tables 2.1

and 2.2 for two MDP problems: the dynamic service capacity problem, which is closely related

to the CDOS problem (chapter 3) without any service constraints, and for the classical (s, S)

inventory problem. We observed that the performance of the BIDP algorithm is dominated

by the performance of the BEDP algorithm (the BIDP algorithm is a weaker version of the

BEDP algorithm) and hence we only discuss the BEDP and the BIP algorithms. Again, we

defer the detailed discussion of the MBEDC algorithm to the next chapter. We also observe

that neither of these three formulations are efficient for these two problems, i.e., they are slower

than enumeration. (We do not discuss these test problems in detail as they are not problems

studied in the dissertation.)

We use CPLEX 6.6 Mixed Integer Program (MIP) solver on a Sun Ultra 60 Model 2360

machine with a 360MHz UltraSPARC-II processor to conduct our computational experiments.

The BIP algorithm visits each and every node of the branch and bound tree and thus enu-

merates over all Markov chains, but it also solves additional LP subproblems generated by the

branch and bound algorithm. Thus, it is not efficient compared to pure enumeration. The

BEDP algorithm is not efficient because of the block structure of its constraints. Each block

corresponds to a particular Markov chain and since there are no constraints that link the dif-

ferent blocks, it is typically faster to solve the individual blocks, i.e., enumerate. However,

the spare parts application that we study in chapter 4 has a constraint that links the differ-

ent blocks, and it may be interesting to test the performance of the BEDP algorithm for this

problem. The close-to-optimal performance of the greedy heuristic for this problem, and the

non-degeneracy (we discuss degeneracy in chapter 4) of the BEDP formulation suggest that the

BEDP algorithm may yield better than expected results for computation time.



18 CHAPTER 2. INTRODUCTION TO CMDPS

Algorithm Number of parameter (n) choices
5 10 20 40 60 80 101

BEDP (avg) 2.07 3.17 3.20 8.99 21.67 32.62 36.71
BIP (avg) 3.00 3.95 7.23 18.36 49.79 120.65 177.97
Enumeration (avg) 0.05 0.1 0.2 0.4 0.6 0.8 1.01
BEDP (max) 3.47 4.17 4.90 23.97 33.17 70.24 67.01
BIP (max) 4.34 5.68 21.83 50.39 89.61 249.59 278.09

Table 2.1: Computation time results (in seconds) for DSC problem.

Algorithm Number of parameter choices (s, S)
(3,3) (5,5) (10,10) (15,15) (20,20) (25,25)

BEDP (avg) 0.10 0.34 2.03 5.36 9.52 22.95
BIP (avg) 0.29 3.64 26.71 111.37 264.32 782.65

Enumeration (avg) 0.09 0.25 1 2.25 4 6.25
BEDP (max) 0.11 0.37 2.77 7.02 12.13 28.48
BIP (max) 0.39 4.46 27.55 128.2 299.87 831.31

Table 2.2: Computation time results (in seconds) for (s, S) problem.

2.6 Short Summary

Until now the only exact solution method to obtain the optimal non-randomized policy for

a constrained Markov decision process has been enumeration. We present four different for-

mulations based on Integer Programming and Disjunctive Programming to find an exact and

efficient algorithm for this problem. While three of these formulations were not efficient in our

experiments, we show in the next chapter that the MBEDC algorithm is indeed efficient. We

also show that the balance equations of a Markov chain that yield the limiting probability val-

ues can also be written as balance inequalities without changing the unique limiting probability

values of the Markov chain.

In the next chapter, we look at the constrained dynamic operator staffing problem, which

we define as the problem of determining the optimal number of permanent and temporary

operators in a call center, and the threshold values of when to use the temporary operators, so

as to minimize the time-average hiring and opportunity costs subject to certain service level

constraints. This problem is of interest because call center managers are facing increasing

pressure to reduce costs while at the same time ensuring an acceptable level of service quality.

We model this problem as a constrained Markov decision process and solve it using the MBEDC

algorithm developed in this chapter.



Chapter 3

The Constrained Dynamic Operator

Staffing Problem

For many organizations in the service industry, call center quality is a critical component of

customer loyalty and hence revenue generation. Call centers offer a product or service through

telephone lines (or the Internet) to customers, who in turn have expectations regarding the

quality of the service they will receive. These expectations can be classified into two categories:

time spent waiting for an operator to provide service, and the human-interaction with the

operator. To improve the human-interaction element of service, call centers provide training to

their staff or operators. To reduce customer waiting time, call centers can hire more (or better)

operators. But, while the need to meet service level goals is critical, call centers also face

increasing pressure to reduce costs. Thus, call center managers are concerned with increasing

the efficiency of call centers (Gans et al., 2003) - improving service quality while controlling

costs. One way to achieve staffing efficiency is to correctly schedule operators: Over-staffing

leads to unnecessary costs, while under-staffing will result in dissatisfied customers and possibly

a loss of business/revenue (Brigandi et al., 1994).

Focus. We develop a mathematical model to determine an optimal non-randomized oper-

ator staffing schedule; a schedule, not involving probabilistic mixing, that minimizes total cost

for a call center with service level goals. These goals can be naturally modeled as constraints

that any feasible operator staffing level must satisfy, which can be incorporated into a mathe-

matical program. Despite this fact, this work is the first to use such a formulation to find an

optimal non-randomized schedule. Typical examples of call center service level constraints are:

(i) The probability of no delay is above P , (ii) the average waiting time is less than T time

units, (iii) the average number of customers in queue is less than Q, etc. Opportunity costs

19
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associated with these service level goals can also be incorporated into the objective function.

Complicating the operator staffing problem is the fact that the rate of customer arrival

to the call center may be time-varying; it may be risky to develop a call center model that

does not take this into account (Gans et al., 2003). Specifically, if the number of operators

(determined using the forecast of the average arrival rate) is fixed for each period, the following

two scenarios may occur: (i) The arrival rate may be lower than expected, resulting in operators

being idle and hence, unnecessary costs, or (ii) the arrival rate may be higher than expected,

resulting in long waiting times and hence, inability to meet the call center service level goals.

To counter these two scenarios, and in fact even under stationary arrival rates, call centers may

benefit from flexible staffing - the ability to dynamically adjust staffing levels with traffic. Such

flexibility may be attained by utilizing temporary operators as a complement to the permanent

operators who are always available to provide service. The temporary operators may be either

supervisors/managers or other operators who are on call (Whitt 1999, Jongbloed and Koole

2001); these temporary operators provide service at the call center manager’s discretion. Note

that another way to cope with time varying arrival rate is to alter the staffing levels, without

using temporary operators, by breaking the day into different blocks or periods. This must be

proactive, not reactive. In addition, even with such fixed schedules temporary operators could

still be utilized for each block.

Since our operator staffing problem includes service level constraints and dynamic arrival

and service rates, we call this problem the Constrained Dynamic Operator Staffing (CDOS)

problem. The CDOS problem involves determining the number of permanent operators to hire,

the number of temporary operators to hire, and the number of temporary operators to use

at every state of the call center queuing model, in order to minimize the time-average hiring

and opportunity cost subject to the service level constraints. For simplicity, we restrict our

attention to threshold policies for utilizing the temporary operators. (These may, in general,

be sub-optimal.) Threshold policies specify two critical values: (i) If the number of jobs in

system reaches the higher critical value, the call center manager asks the temporary operators

to provide service. (ii) When the number of jobs in system falls to the lower threshold value

and all temporary operators are idle, the temporary operators stop providing service. This

restriction to threshold policies is similar to, and shares common motivation with, the restriction

to base-stock policies in complex inventory environments. Examples are models for spare parts

networks (Wong et al., 2006), perishable items (Deniz et al., 2005, and the references therein),

and supply chains featuring multiple supply modes (Veeraraghavan and Scheller-Wolf, 2006).

Under suitable assumptions on the arrival process and service time distributions, the CDOS
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problem can be modeled as a Markov Decision Process (MDP) with probabilistic constraints

(Puterman, 1994). For MDPs without constraints, there exist several efficient solution algo-

rithms (Puterman, 1994; Bertsekas, 1995; Porteus, 2002), namely policy iteration, value itera-

tion and linear programming. However, if there are probabilistic constraints, we are not aware

of any straightforward implementation of policy iteration or value iteration. The existing linear

programming method can model such constraints, but typically results in an optimal randomized

policy (Puterman, 1994). A randomized threshold policy for the CDOS problem corresponds

to using a chance mechanism between two or more threshold values, for example 40% of the

time the manager should ask the temporary operators to provide service if the number of jobs

in system reaches ten, and 60% of the time he should wait until the number of jobs in system

reaches fifteen. As mentioned above, we focus on finding the optimal non-randomized threshold

policy for the CDOS problem; non-randomized policies are in general more prevalent and easier

to implement than randomized policies. The only exact solution method in the literature for

obtaining the optimal non-randomized policy for constrained MDPs is enumeration, which is

computationally prohibitive for problems of any significant size.

Research questions and contributions. We answer the following research questions for

the CDOS problem in this chapter.

• How can one model the CDOS problem?

Section 3.1 describes the Constrained Dynamic Operator Staffing (CDOS) problem. It explains

the hiring and opportunity costs used in the model. We discuss the threshold policies for the

CDOS problem and show how to model the CDOS problem as a constrained Markov decision

process.

• Is there an exact and efficient algorithm to obtain the optimal non-randomized threshold

policy values for the CDOS problem?

Section 3.2 presents the existing Linear Program (LP) method that results in an optimal ran-

domized threshold policy solution for the CDOS problem. We develop the Modified Balance

Equations Disjunctive Constraints (MBEDC) algorithm to obtain an optimal non-randomized

solution for the CDOS problem in Section 3.3. This yields a Mixed Integer Program (MIP)

formulation (Nemhauser and Wolsey, 1988) which can be solved quickly by a commercial solver.

We bridge, for the first time, the two areas of integer programming (Nemhauser and Wolsey,

1988) and constrained Markov decision process (Puterman, 1994; Altman, 1999) by developing

an exact and efficient algorithm to obtain optimal non-randomized policies. Computational
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results featuring computational speed are discussed in Section 3.4. We observe that the compu-

tation times of the MBEDC algorithm are lower than enumeration by up to a factor of 200 and

by a factor of 10 on average, and that the MBEDC algorithm’s relative performance improves

with increasing instance size.

• How much are the economic savings from hiring temporary operators? How does the

maximum number of temporary operators available effect the total cost? What is the

economic cost of satisfying service level constraints?

Computational results highlighting economic insights for managers are discussed in Section 3.4

for the service level constraints corresponding to the probability that an arriving customer

does not have to wait for service, and limits on the average number in queue. We observe

when a corresponding opportunity cost associated with the constraint is included in the model,

the actual service level constraint is redundant up to a certain target level. Nevertheless, our

experiments show that the average decrease in cost from employing temporary operators is 20%-

40% for the former service level constraints and 30%-45% for the latter service level constraint.

We also show that either with or without temporary operators, the economic cost of satisfying

service level constraints can be considerable. Finally, we show that staffing flexibility not only

reduces costs but also eliminates staffing inefficiencies in the presence of service level constraints,

i.e., with only permanent operators the service level constraint may be over-satisfied, while with

temporary and permanent operators, the service level constraint is satisfied exactly.

• Can this algorithm be extended to obtain the optimal non-randomized policy for any

constrained MDP?

The MBEDC algorithm can be applied to any constrained MDP; this is discussed in detail in

Section 3.3. We discuss extensions of the CDOS model in Section 3.5, provide two additional

specific applications in chapter 4, and present conclusions and directions for future work in

Section 7.2.

Related Literature. In this paper we consider a call center operator staffing problem with

service level constraints. In addition, we account for time-varying customer arrival rates and

allow the number of operators to be increased dynamically in response to system congestion and

the customer arrival rate. The inclusion of these three factors simultaneously in an operator

staffing problem is novel. Such an objective and similar constraints are proposed in Jongbloed

and Koole (2001) also, but they consider the problem of providing stochastic guarantees for

constraint satisfaction by considering percentile levels of an arrival-rate random variable. An-

other difference is that they call upon the temporary operators when the realized non-varying
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arrival-rate in a period is higher than expected, while in our model the arrival rate, and hence

the optimal number of operators, may change stochastically within a scheduling period.

There is a vast literature dealing with the problem of long-term operator staffing to meet

time-varying demand. In general refer for example to Hall (1991), Jennings et al. (1996), Gans

et al. (2003), and the references therein. However, these papers do not consider service level

constraints.

3.1 CDOS Problem Description

We model a call center with both permanent and temporary operators (supervisors or stand-by

operators). We assume the permanent operators are always available to provide service, but the

call center manager decides when to use the temporary operators. We define the system state

as the number of jobs in system, and initially we assume that the maximum number of jobs in

the system, N, is finite resulting in a finite state space. (We address models with infinite state

space in Section 3.5.) In each state, the optimal number of temporary operators to be used

may be different; however, such policies are more complicated to implement and analyze than

simple threshold policies. Therefore we restrict our focus to threshold policies for temporary

operators.

In a threshold policy, the call center manager asks all of the temporary operators to provide

service when the number of jobs in system increases to a threshold value. The temporary

operators continue to provide service until the number of jobs in system reaches a second

(typically lower) threshold value, and all temporary operators are idle. When this happens, we

assume the temporary operators stop providing service en masse and return to stand-by mode.

We also assume that if a temporary operator is providing service to a customer, the customer

will not be transferred to a permanent operator if one becomes idle. We make this assumption

for practical considerations, as a customer may be dissatisfied if the operator is changed during

service. Finally, we assume that when a customer arrives and both a permanent operator and

a temporary operator are idle, the customer is assigned to the permanent operator. We can

model and solve the cases when any of the above assumptions are relaxed.

We seek to minimize the time-average hiring and opportunity cost subject to service level

constraints. The following subsections provide details of the cost structure and of the service

level constraints that we consider.
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3.1.1 Costs and Decision Parameters

Let the number of permanent operators hired be x and the number of temporary operators hired

be y. The time-average cost of hiring each permanent (temporary) operator is c1 (c2), with

c2 < c1; it is cheaper to hire temporary operators on stand-by than to have full-time permanent

operators. (The c2 ≥ c1 case results in y = 0.) Initially, only the permanent operators provide

service and the call center behaves as a x-server central queue system. Let the two threshold

values for changing the number of operators be denoted by n and m (n > m). Thus when the

number of jobs in system reaches n, all y temporary operators are asked to provide service and

the call center behaves as a (x + y)-server central queue system (permanent and temporary

operators may have different service rates as explained in Section 3.1.2). Once all y temporary

operators are idle and the number of jobs in system is at or below m, the temporary operators

return to stand-by mode. In this paper we assume m to be fixed at x for simplicity, but in

general m can also be a decision variable. In addition to the fixed cost of hiring one temporary

operator, c2, there may be a variable cost, c3, per serving temporary operator incurred only for

the proportion of time that temporary operator is providing service. In the case of a supervisor

acting as a temporary operator, c3 can be considered as a penalty cost since the supervisor

delays her original work in order to provide service. Note that once the temporary operators

start providing service, the number of jobs in system can be less than x but one or more

temporary operators may still be providing service, as calls are not transferred during service.

Thus, we need to keep track of the number of temporary operators actually providing service,

and not just available, at each state of the system because of the marginal cost c3.

In addition to the operator hiring costs, there may also be opportunity costs related to the

service level goals. We define d as the one-time cost incurred if a customer experiences positive

delay, and w as the opportunity cost per unit time incurred for each customer waiting in queue.

We include these costs in our model as traditionally service level goals in call center optimization

problems have been modeled as opportunity costs rather than service level constraints (example:

Andrews and Parsons, 1993). Modeling service level goals as constraints, while more accurate

(d and w are usually estimates), makes the problem more difficult to solve. We discuss solution

issues in Section 3.2.

3.1.2 Arrival Process and Service Time Models

We use a two-state Markov Modulated Poisson Process (MMPP) to represent the time-varying

customer arrival process. For details on 2-state MMPP arrival process, refer to Nain and Núñez-
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Queija (2001). When the state of the system is i, the customer arrival process transitions

between a Poisson process with “low” arrival rate λ1 and a Poisson process with “high” arrival

rate λ2 (λ1 < λ2) with exponential transition rates α(i) and β(i) respectively, as shown in

Figure 3.1. Thus, the transition rates between the two arrival rates can be state-dependent.

 

Low 

arrival rate 

 λ1 

High 

arrival rate 

 λ 2 

   α (i) 

     β (i) 

Figure 3.1: 2-State MMPP arrival process.

This model implies that the threshold value n (Section 3.1.1) is actually a vector of two

components, i.e., there are two threshold values n1 and n2 corresponding to the low arrival-rate

process and the high arrival-rate process, respectively. Thus, if the system is operating under

the low (high) arrival-rate process, the call center manager will ask the temporary operators to

provide service when the number of jobs in system reaches the threshold value n1 (n2). This

raises an important question - how will a call center manager determine if the system is in

the low/high arrival-rate process? One approach is to look at the customer arrival pattern

over a time interval of certain length to determine the current arrival rate. There are other

approaches as well, but we do not elaborate on these in this paper, and simply assume that

the call center manager knows the instantaneous rate. We assume customer service times are

exponentially distributed with rate µ1 when a permanent operator is providing service, and rate

µ2 when a temporary operator is providing service; these rates may or may not be equal. We

discuss extensions of these models to k-state MMPP arrival processes as well as more general

BMAP arrival processes (Lucantoni, 1993), and/or phase-type service distributions (Osogami

and Harchol-Balter, 2003) in Section 3.5.

Since we seek to minimize time-average cost we need a necessary condition for system

stability in the general infinite state case, in order for the time-average cost to be finite. The

instantaneous load of a system at time t, ρ(t), is defined as the ratio of the customer arrival

rate at time t, λ(t), to the service rate at time t, µ(t). Within our dynamic setting, λ(t)

and µ(t) are random variables. We assume that it is possible to choose adequate numbers

of permanent and temporary operators (x̂ and ŷ, respectively), and hence adequate service

capacity (µ̂ = x̂ µ1 + ŷ µ2), to ensure that the system is stable over an infinite horizon, i.e.,

µ̂ > λ2. We do allow for transient overload; ρ(t) > 1 is permitted for some but not all t.
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3.1.3 CDOS Problem as a Markov Decision Process with Constraints

An important result of our model assumptions is that once we fix (i) the number of permanent

operators, x, (ii) number of temporary operators y, and (iii) the threshold values n1 and n2,

the call center system can be represented by a single Markov chain. Therefore, for fixed values

of x and y the CDOS problem without any service level constraints (only minimizing the time-

average hiring and opportunity cost) can be represented as a Markov Decision Process (MDP)

under an average reward criterion (Puterman, 1994) with n1 and n2 as the decision parameters.

We discuss the action choices for such an MDP in this section, and defer the discussion on

rewards (or costs in the case of the CDOS problem) and transition rates to Section 3.2. But

first, we provide an example in Figure 3.2.

This example corresponds to a call center with x = 2, y = 2, n1 = 4, n2 = 4, µ1 = µ2 = µ,

α(i) = α, and β(i) = β for all i. The state ua (ub) implies that the number of jobs in system

is u, the arrival process is Poisson with rate λ1 (λ2), and only the permanent operators are

providing service. The state uc (ud) implies that the number of jobs in system is u(≥ x + y),

the arrival process is Poisson with rate λ1 (λ2), and all x permanent operators and y temporary

operators are providing service. Finally, state u1, u2a (u1, u2b) implies that the number of jobs

in system is u1 + u2(< x + y), the arrival process is Poisson with rate λ1 (λ2), and u1(≤ x)

permanent operators and u2(≤ y) temporary operators are providing service.
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Figure 3.2: CDOS problem - Markov chain representation when x = 2, y = 2, n1 = n2 = 4, µ1 =
µ2 = µ, α(i) = α, β(i) = β, N = 6.

The situation where n1 > n2 (example: 5 and 4, respectively) is more delicate. Refer to

Figure 3.3 for a Markov chain with the same parameters as Figure 3.2, except n1 = 5 and n2
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= 4. In this case, when n1 > n2, we call the states where the arrival process is “low” and the

number of jobs in system is greater than or equal to n2 but less than n1 as “between-off” states.

If the system is in a “between-off” state (example: 4a in Figure 3.3), temporary operators

are not called. We model them remaining on stand-by even if the arrival process transitions

from the low arrival-rate process to the high arrival-rate process, at which time the number

of jobs is at or above n2. We call the resulting states as “between-on” states (example: 4b

in Figure 3.3). Thus, we assume for simplicity that in the “between-on” states, the manager

will call in the temporary operators only after there is an arrival. (We can model and solve

the case where if the system enters a “between-on” state, the manager immediately calls in the

temporary operators. This results in a MDP that is significantly more complicated.) We model

the situation where n2 > n1 similarly.
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Figure 3.3: CDOS problem - Markov chain representation when x = 2, y = 2, n1 = 5, n2 =
4, µ1 = µ2 = µ, α(i) = α, β(i) = β, N = 6.

The action state space for the MDP can be best explained by referring to Figure 3.2. At

each state ua (ub), there are two action choices: (i) Ask the temporary operators to help if there

is an arrival (a1), or (ii) continue without their help (a2). There is only one pre-determined

action choice (all operators are available) for each of the remaining states (uc, ud, u1, u2a, and

u1, u2b). If we select action a1 in state ûa (v̂b) and there is an arrival (û = v̂ = 3 in Figure 3.2),

the Markov chain transitions to state [û+1]c ([v̂ + 1]d). Alternatively, if action a2 is selected

in state ûa (v̂b) and there is an arrival (û = v̂ = {0, 1, 2} in Figure 3.2), the Markov chain

transitions to state [û+1]a ([v̂ + 1]b).

For fixed values of x and y, the MDP can be solved to obtain optimal threshold values of n1
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and n2 that minimize time-average cost. For the case without service level constraints, there

exist three efficient solution techniques in the literature, and Puterman (1994) is an excellent

reference for their description and comparison: (i) Policy iteration, (ii) value iteration, and (iii)

linear programming. Note that we need to fix the values of x and y as we do not allow there

to be different values for these parameters at different states of the system, which may happen

if we allow these to be action choices also. Solving the resulting MDPs for all choices of x and

y, and then selecting values of x, y, n1 and n2 that minimize the time-average cost will yield

the optimal threshold policy.

However, the CDOS problem has service level constraints which complicate things signifi-

cantly; for example: (i) The probability of no delay is above P , (ii) the average waiting time

is less than T time units, (iii) the average number of customers in queue is less than Q, etc.

Constraints (ii) and (iii) are related by Little’s law and hence we only consider constraints (i)

and (iii). The CDOS problem is thus an MDP problem with probabilistic constraints for fixed

values of x and y. There is no straightforward implementation of policy iteration or value itera-

tion for such problems (Puterman, 1994), but linear programming may be applied to problems

of this form. We discuss the linear programming algorithm in the next section.

3.2 Linear Programming Method and Randomized Poli-

cies

Let Sx,y be the state space of the MDP for the CDOS problem for fixed x and y, and Ax,y
s be

the set of action choices in state s ∈ Sx,y. Also, we define Sx,y
1 (Sx,y

2 ) ⊂ Sx,y as follows: States

corresponding to the low (high) arrival-rate process such that all operators in that state are

busy constitute the set Sx,y
1 (Sx,y

2 ). Let Lx,y and Hx,y be the set of states in which there is at

least one idle operator (temporary operators do not count unless they are available for service)

corresponding to the low arrival rate process and the high arrival rate process, respectively. We

define πs,k to be the limiting probability that the MDP is in state s and the call center manager

chooses action k; cs,k captures any costs associated with choosing action k in state s. Also, we

define nq(s) as the number of customers in queue in state s, which is equal to the difference

between the number of jobs in system and the number of operators that are busy in state s,

and y(s) is defined as the number of temporary operators providing service (actually busy and

not just available) in state s. Finally, Γs,k is the total transition rate out of state s if action k

is selected, and γj|s,k is the rate of transition to state j if action k is selected in state s. The
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general Linear Program (LP) formulation for the CDOS problem without constraints is shown

below. For a discussion of this LP, refer to Puterman (1994), page 391. The solution of this

LP yields the optimal action choices in each state that minimizes the time-average cost.

(LP) MIN
∑

s∈Sx,y

∑

k∈Ax,y
s

cs,k πs,k

Subject to

∑

k∈Ax,y
j

Γj,k πj,k −
∑

s∈Sx,y

∑

k∈Ax,y
s

γj|s,k πs,k = 0 for all j ∈ Sx,y

∑
s∈Sx,y

∑

k∈Ax,y
s

πs,k = 1

πs,k ≥ 0 for all (s, k) such that s ∈ Sx,y, k ∈ Ax,y
s

Below in (LP), we provide the LP formulation for the CDOS problem with the delay

constraint, the constraint for average number of customers in queue, and the time-average cost

function explicitly written as a function of the cost structure defined in Section 3.1.1.

First, we discuss the objective function. The first term corresponds to the time-average

opportunity cost of delay that is incurred only when a customer arrives and finds all operators

busy. The second term is the time-average opportunity cost incurred for having customers wait

in queue. The third (fourth) term is the cost of hiring permanent (temporary) operators and

finally, the fifth term is the marginal time-average cost incurred when the temporary operators

are providing service. We call the system of constraints (3.1) Modified-Balance-Equations,

which in conjunction with (3.2) and (3.5) yield the limiting probability values. Constraints

(3.3) and (3.4) correspond to the service level constraints for delay and average number of

customers in queue, respectively. Note that constraint (3.3) is an ensemble average, rather

than a time average. It is derived by conditioning on the arrival process as follows:

P[arrival sees no delay] = P[arrival is in low] P[arrival sees no delay|low]

+ P[arrival is in high] P[arrival sees no delay|high]
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=
λ1

α
λ1

α
+ λ2

β




∑
s∈Lx,y

∑
k∈Ax,y

s
πs,k

1
α

1
α

+ 1
β


 +

λ2

β

λ1

α
+ λ2

β




∑
s∈Hx,y

∑
k∈Ax,y

s
πs,k

1
β

1
α

+ 1
β




=
(α + β)λ1

βλ1 + αλ2

∑
s∈Lx,y

∑

k∈Ax,y
s

πs,k +
(α + β)λ2

βλ1 + αλ2

∑
s∈Hx,y

∑

k∈Ax,y
s

πs,k.

Constraints (3.5) ensure that the limiting probability variables cannot have negative values.

(LP) MIN d


λ1

∑

s∈Sx,y
1

∑

k∈Ax,y
s

πs,k + λ2

∑

s∈Sx,y
2

∑

k∈Ax,y
s

πs,k


 + w

∑
s∈Sx,y

∑

k∈Ax,y
s

nq(s) πs,k +

c1 x + c2 y + c3

∑
s∈Sx,y

∑

k∈Ax,y
s

y(s) πs,k

Subject to

∑

k∈Ax,y
j

Γj,k πj,k −
∑

s∈Sx,y

∑

k∈Ax,y
s

γj|s,k πs,k = 0 for all j ∈ Sx,y (3.1)

∑
s∈Sx,y

∑

k∈Ax,y
s

πs,k = 1 (3.2)

(α + β)λ1

βλ1 + αλ2

∑
s∈Lx,y

∑

k∈Ax,y
s

πs,k +
(α + β)λ2

βλ1 + αλ2

∑
s∈Hx,y

∑

k∈Ax,y
s

πs,k ≥ P (3.3)

∑
s∈Sx,y

∑

k∈Ax,y
s

nq(s) πs,k ≤ Q (3.4)

πs,k ≥ 0 for all (s, k) such that s ∈ Sx,y, k ∈ Ax,y
s (3.5)

If there are no service goals, i.e., constraints (3.3) and (3.4) are not included in the model,

(LP) becomes a form of (LP), which, even though the linear program does not enforce non-

randomized policies, yields the optimal non-randomized stationary distribution and cost. This

is because without (3.3) and (3.4) the vertices of the resulting LP polyhedron have a one-to-

one correspondence with non-randomized policies. Since one optimal solution to an LP always

corresponds to one of the vertices of the polyhedron, an optimal non-randomized policy can

be found. Moreover, the optimal values of n1 and n2 can then be inferred from the limiting
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probability values (refer to Puterman, 1994, page 393).

It is important to note that one of the drawbacks of this linear programming formulation

(LP or LP) is that the solution does not directly provide the optimal action in each state.

These have to be deduced from the limiting probability variables that are strictly positive; the

limiting probability variables have a one-to-one correspondence with state-action pairs, and in

the optimal non-randomized solution only one of the limiting probability variables correspond-

ing to a particular state will be strictly positive. One can then solve the resulting MDPs for

each combination of x and y values to obtain the globally optimal solution.

If service goals need to be considered, i.e., constraints (3.3) and/or (3.4) are included (such

constraints are referred to as probabilistic constraints in the literature), (LP) typically yields a

randomized optimal policy (refer Puterman, 1994, page 406). This means that in some states it

may be optimal to use a chance mechanism to determine the course of action. An example of a

randomized policy in the CDOS problem is: If the call center system is in the low arrival-rate

process, 40% of the time the manager should ask the temporary operators to provide service if

the number of jobs in system reaches ten, and 60% of the time he should wait until the number

of jobs in system reaches fifteen. This randomization occurs because some of the vertices of

the polyhedron defined by (LP) correspond to randomized policies, in particular those vertices

where at least one of the constraints (3.3) or (3.4) is binding. It is important to note that in

this case deducing the action selection in each state is more difficult, as more than one limiting

probability variable corresponding to a state will be positive: Additional steps are required to

obtain the actual randomization probabilities/parameter(s) (solving a system of equations), and

it is known that, in general, it is very difficult to find the optimal randomization parameter(s).

For example, in Shwartz and Makowski (1990) the optimal randomization parameter is obtained

as a unique root of an explicit function in (0, 1), and in Nain and Ross (1986) it is obtained

by using an online algorithm. For more results on constrained Markov decision processes see

Altman (1999). Also, while such randomized policies may be practical in certain environments,

they are, in general, harder to implement in practice than non-randomized policies.

Currently, the only known method for obtaining an exact non-randomized solution for MDPs

with constraints is enumeration, which is often computationally prohibitive. For example, in a

CDOS problem with 20 choices each for x, y, n1 and n2, enumeration will need to solve (obtain

limiting probability values and the objective value) 204 (=160000) Markov chains. In contrast

to this, we provide a novel, exact and efficient approach to solve problem instances in the next

section.
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3.3 Modified Balance Equations Disjunctive Constraints

Algorithm

We propose the Modified Balance Equations Disjunctive Constraints (MBEDC) algorithm to

obtain the optimal non-randomized policy for the CDOS problem. First, fix x and y to obtain

an MDP with constraints with decision parameters n1 and n2. Let I1 be the set of choices for

n1 and I2 be the set of choices for n2. Define zn1
i and zn2

l as binary variables as follows: (Note

that the superscripts n1 and n2, respectively, indicate the two decision parameters and are not

variable indices of these binary variables. The subscripts i and l, respectively, are variable

indices.)

zn1
i =





1 : n1 = i

0 : n1 6= i
for all i ∈ I1, zn2

l =





1 : n2 = l

0 : n2 6= l
for all l ∈ I2.

Also, define Qn1
i = {(s, k) : s ∈ Sx,y, k ∈ Ax,y

s ,
∑

(s,k) πs,k = 0 ⇔ n1 = i} for all i ∈ I1.

Similarly, Qn2
l = {(s, k) : s ∈ Sx,y, k ∈ Ax,y

s ,
∑

(s,k) πs,k = 0 ⇔ n2 = l} for all l ∈ I2. (Note

that the superscripts n1 and n2, respectively, again indicate the two decision parameters and

are not variable indices of these sets. The subscripts i and l, respectively, are variable indices.)

Intuitively, Qn1
i (Qn2

l ) is the set of state-action pairs such that if any element of Qn1
i (Qn2

l ) has

strictly positive limiting probability mass then it implies that n1 (n2) is not equal to i (l) and

vice versa. For example, recalling from Section 3.1.3 that a1 is the action that the manager will

ask all the temporary operators to start providing service if there is an arrival and a2 is the

action that she will not, Qn2
10 = {(0b, a1), (1b, a1), (2b, a1), . . ., (8b, a1), (9b, a2), (10b, a2), . . .,

([nmax
2 −1]b, a2)}, where nmax

2 is the maximum allowable value of n2. State-action pairs (0b, a1),

(1b, a1), (2b, a1), . . ., (8b, a1) are in Qn2
10 , because if action a1 is selected in any of these states

then it contradicts n2=10. Also, n2=10 implies selection of action a1 in state 9b and hence,

(9b, a2) is in Qn2
10 . Finally, (10b, a2), . . ., ([nmax

2 − 1]b, a2) are in Qn2
10 , because of our assumption

that temporary operators will be asked to start service in these “between-on” states if there is

an arrival (refer Section 3.1.3). Note that every Qn2
l , l ∈ I2, contains either (jb, a1) or (jb, a2)

for all j ∈ I2. Similarly, every Qn1
i , i ∈ I1, contains either (ja, a1) or (ja, a2) for all j ∈ I1.

We now present the Mixed Integer Programming formulation (IP) that gives the optimal

non-randomized policy.
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(IP) MIN d


λ1

∑

s∈Sx,y
1

∑

k∈Ax,y
s

πs,k + λ2

∑

s∈Sx,y
2

∑

k∈Ax,y
s

πs,k


 + w

∑
s∈Sx,y

∑

k∈Ax,y
s

nq(s) πs,k +

c1 x + c2 y + c3

∑
s∈Sx,y

∑

k∈Ax,y
s

y(s) πs,k

Subject to

∑

k∈Ax,y
j

Γj,k πj,k −
∑

s∈Sx,y

∑

k∈Ax,y
s

γj|s,k πs,k = 0 for all j ∈ Sx,y (3.6)

∑
s∈Sx,y

∑

k∈Ax,y
s

πs,k = 1 (3.7)

(α + β)λ1

βλ1 + αλ2

∑
s∈Lx,y

∑

k∈Ax,y
s

πs,k +
(α + β)λ2

βλ1 + αλ2

∑
s∈Hx,y

∑

k∈Ax,y
s

πs,k ≥ P (3.8)

∑
s∈Sx,y

∑

k∈Ax,y
s

nq(s) πs,k ≤ Q (3.9)

πs,k ≥ 0 for all (s, k) such that s ∈ Sx,y, k ∈ Ax,y
s (3.10)

∑
i∈I1

zn1
i = 1, zn1

i ∈ {0, 1} for all i ∈ I1 (3.11)

∑

l∈I2

zn2
l = 1, zn2

l ∈ {0, 1} for all l ∈ I2 (3.12)

∑

(s,k)∈Q
n1
i

πs,k ≤ 1− zn1
i for all i ∈ I1,

∑

(s,k)∈Q
n2
l

πs,k ≤ 1− zn2
l for all l ∈ I2 (3.13)

The objective function and the constraints (3.6), (3.7), (3.8), (3.9), and (3.10) are the same

as in the (LP) formulation in Section 3.2. Constraints (3.11) and (3.12) ensure that the optimal

solution will select exactly one value each for n1 and n2 and hence, randomized policies are

infeasible. Finally, constraints (3.13) link the binary variables to the appropriate continuous

limiting probability variables. If zn1
i (zn2

l ) equals one, then all limiting probability variables

corresponding to the state-action pairs in set Qn1
i (Qn2

l ) are forced to take the value zero. If
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zn1
i (zn1

l ) is zero, the constraint becomes redundant. These linking constraints are also known as

big-M constraints in Integer Programming (Nemhauser and Wolsey, 1988); for this case, M =

1. Next, we show that MBEDC yields the optimal threshold policy out of all non-randomized

threshold policies for the CDOS problem. The proof can be extended to any constrained MDP

problem.

Theorem 3.3.1. The MBEDC algorithm yields the optimal non-randomized threshold policy

for the CDOS problem.

Proof. Any non-randomized threshold (we omit the word threshold from now on) policy for the

CDOS problem results in a single choice for n1 and n2 each; thus, in each state of the MDP,

exactly one action is selected. The resulting system is then governed by the corresponding

Markov chain. The limiting probability values of the Markov chain corresponding to any such

non-randomized policy that satisfies the service level constraints (3.8)-(3.9) yield a feasible

solution for (IP). Thus, any non-randomized solution to the CDOS problem also lies within

the solution space of (IP).

We now show that the solution space of (IP) contains only non-randomized policies. It is

known (Puterman, 1994) that any feasible solution to (3.6)-(3.10) corresponds to some possibly

randomized policy, i.e., one or more actions may be selected with fixed probability in some

states of the MDP. We need to show that the limiting probability values obtained from any

strictly randomized policy are infeasible for (IP). Assume there exists a state s such that

πs,a1 > 0 and πs,a2 > 0. Without loss of generality, assume s corresponds to a low arrival rate

state. Since every Qn1
i , i ∈ I1, contains either (ja, a1) or (ja, a2) for all j ∈ I1, πs,a1 > 0 and

πs,a2 > 0 implies that n1 6= i for all i ∈ I1. Thus, (3.13) forces zn1
i = 0 for all i ∈ I1, violating

(3.11). Thus, any feasible solution to (IP) must correspond to a non-randomized policy. This

also implies that the indices of the binary variables that have value one in the optimal solution

to IP yield the optimal threshold values; z
nj

i = 1 ⇔ n∗j = i. Finally, the objective function

of (IP) gives the time-average cost incurred for any feasible non-randomized policy. Thus, for

given x and y, (IP) yields the optimal non-randomized policy.

Below we summarize a few key facts about the MBEDC algorithm:

• System (3.13) is a system of disjunctive constraints, which gives rise to the name Modified

Balance Equations Disjunctive Constraints (MBEDC) algorithm.

• The solution of the LP relaxation of (IP) is obviously the optimal randomized policy.

Thus, this algorithm can yield both the optimal randomized and optimal non-randomized

policies.
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• The resulting MIP formulations for each combination of x and y can be solved quickly

using any commercial solver and the optimal values of x, y, n1, and n2 can thus be

obtained.

• The optimal values of n1 and n2 can be deduced directly from the binary variables and

do not need to be inferred from the limiting probability variables; the indices of the two

binary variables (one for each threshold parameter) that have value one in the optimal

solution immediately yield the optimal threshold values.

• The MBEDC algorithm can be applied to any constrained MDP. Obviously, the choice of

binary variables is problem dependent; for a given problem, introduce one binary variable

(zk
i ) for each possible choice (indexed by i) of each decision parameter (indexed by k).

The binary variables corresponding to each parameter should sum to 1 (as in (3.11) and

(3.12)), i.e.,
∑

i zk
i = 1 ∀ k. This ensures that each decision parameter takes exactly

one value from all possible choices. Finally, sets Qk
i must be defined and their respective

elements should be appropriately chosen. The MIP should include the linking constraints

(as in (3.13)), i.e.
∑

s∈Qk
i

πs ≤ 1− zk
i ∀ i, ∀ k.

• In chapter 4, we apply the MBEDC algorithm to two other problems. The first involves

obtaining the optimal threshold values for a threshold-based resource allocation policy

for a multiserver queuing system. In particular, we analyze the adaptive dual threshold

(ADT) policy proposed in Osogami et al. (2005) and compare its performance to the

general state dependent optimal policy. The second problem is a multi-item, two location

spare parts problem with lateral transshipments, with the objective of finding the optimal

non-randomized policy so as to minimize total inventory costs subject to waiting time

constraints at each location, see Wong et al. (2006).

We examine the performance of (IP) for the CDOS problem in the next section.

3.4 Computational Results

In this section we provide computational results for (i) the economic analysis of the CDOS

problem, which is now possible due to the MBEDC algorithm and (ii) the computational speed

of the MBEDC algorithm. We use CPLEX 6.6 Mixed Integer Program (MIP) solver on a

Sun Ultra 60 Model 2360 machine with a 360MHz UltraSPARC-II processor to conduct our

computational experiments. In particular, we choose the primal method to solve the (Linear

Program) sub-problems. All other settings of the MIP solver are selected at their default value.
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Refer to Table 3.1 in Section 3.4.4 for details on the different choices of the parameters for the

experiments in this section. Throughout we focus on the probability of no delay and number in

queue service level constraints, individually. Typically, when combined one is redundant. The

target probability that a customer must be served immediately (P ) is varied from 0.1 to 0.3 in

steps of 0.05. The target expected number of customers in queue (Q) is chosen from the set:

{1, 2, 4, 8, 16, 32}. Similar experiments can be carried out to obtain insights specific to other

service level constraints. While we limit ourselves to a maximum of twenty permanent and five

temporary operators in these experiments, we can solve for higher values of these parameters.

3.4.1 Economic Savings of Hiring Temporary Operators

We conduct experiments to determine the economic savings of using temporary operators by

solving the CDOS problem with and without temporary operators, and comparing the respec-

tive optimal objective values. For each ratio of c1 to (c2+c3), the average percentage decrease in

costs from using temporary operators for the probability of no delay constraint and the number

in queue constraint are shown in Figure 3.4a and Figure 3.4b, respectively.
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Figure 3.4: Economic savings of employing temporary operators with service level constraints.

First, look at Figure 3.4a for the results for the no delay constraint. Over all instances

in our experiments, the decrease in costs from hiring temporary operators ranged from 0% to

80%. Keeping the ratio of c1 to (c2 + c3) fixed, the average percentage decrease in cost from

using temporary operators changes by a maximum of 2%-3% as P is varied from 0.1 to 0.3. One

explanation for this consistency is that keeping all other parameters fixed as P is increased from

0.1 to 0.3, the number of permanent operators required if no temporary operators are allowed

increases by at most one. When temporary operators are allowed, some of the permanent

operators are replaced by the temporary operators resulting in lower costs while satisfying the
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service level constraint at the same time.

Next, look at Figure 3.4b for the results for the number in queue constraint. Over all

instances in our experiments, the actual percentage decrease in costs from hiring temporary

operators ranged from 0% to 83% for this constraint. The average percentage decrease in

cost from using temporary operators for this constraint appears to change by a maximum of

only 7-8% when the right hand side of the constraint is varied from 32 to 1. Compared to the

probability of no delay constraint, the average percentage decrease in cost from using temporary

operators is higher for this constraint. One possible explanation is as follows. For this constraint

without temporary operators, as the right hand side increases (the constraints becomes less

strict), the optimal number of permanent operators required to satisfy the constraint decreases

by one, until the constraint is not binding as a result of the corresponding opportunity cost.

We discuss this issue in section 3.4.3 of this chapter. If temporary operators are allowed,

(maximum of five) permanent operators are replaced by temporary operators. In addition,

adding one (permanent or temporary) operator results in a relatively higher decrease in the

expected number in queue compared to the decrease in probability of no delay (for example:

expected number in queue may decrease from 8 to 6, a decrease of 2, while the probability of

no delay may decrease from 0.3 to 0.25, a decrease of 0.05) because the temporary operator is

utilized in the tail of the queue in such cases. Thus, for the same values of d and w, there is a

higher decrease in the opportunity cost of number in queue compared to the opportunity cost

of no delay. These two factors result in high percentage savings from hiring plus opportunity

costs for the number in queue constraint as compared to the probability of no delay constraint.

We also find, as expected, that when the cost of using temporary operators compared to

the cost of using permanent operators becomes cheaper (the ratio of c1 to c2 + c3 increases) for

a fixed value of P or Q, the percentage decrease in costs for both cases increases. But as the

operator cost ratio is increased beyond a certain critical level, there is no further increase in

the percentage decrease in costs. This is because we limit the maximum number of temporary

operators that can be used; once the optimal number of temporary operators to be used reaches

this maximum limit the costs no longer decrease. This indicates a need for increasing the

maximum number of temporary operators available to the system.

Note that it is now also possible to obtain the expected value of perfect information (EVPI)

of the real time arrival rate. While the two optimal threshold values (n1 and n2) are obtained

from the optimal solution, how can the call center manager determine what the true customer

arrival rate is in real time: Is it λ1 or λ2? We calculated the percentage increase in cost from

forcing the call center manager to use n1 = n2 compared to the base case. This gives us the
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EVPI of the real-time arrival rate. In all our experiments, the maximum EVPI value is less

than 0.4%. This is a very surprising result. It says that the call center manager should invest

no (or negligible) resources in trying to determine the real-time arrival rate. The main concern

should be to determine the correct staffing levels of the permanent and temporary operators

and possibly just a single threshold value for the number in queue at which the temporary

operators are asked to provide service. This is true because the high arrival rate threshold

dominates. If in both low and high arrival rates, the call center manager is forced to use the

same threshold n, then typically n will be very close or equal to n2, and the system will then

either not reach the threshold often during the low arrival process, or if it does, it will not

spend much time in the states where the temporary operators provide service. Thus, forcing n1

and n2 to be equal results in only a small increase in the total cost, as the temporary operators

are most important in the high arrival states. We see similar results in a related application

that we study in chapter 4, i.e., adding more thresholds to such call center models does not

significantly effect the optimal cost.

We now move to studying some specific experimental instances to gain further, more detailed

insights.

3.4.2 Effect of Maximum Number of Temporary Operators Avail-

able

Given the effect of our limit on the number of temporary operators in Section 3.4.1, we now

study the effect of the maximum number of temporary operators available on the reduction in

cost for different values of P and Q, respectively.

Consider the probability-of-no-delay constraint. We fix c1 = 1, w=0, Nt=50, α(i) = β(i)=5,

µ1 = µ2=2 in Figure 3.5. For the plots corresponding to (a), (b) and (c) ((d), (e) and (f)), we

choose λ1=6 (18) and λ2=9 (27). We vary the opportunity cost of delay (d) between 0.01, 1,

and 10. (Results for d = 0 and d = 0.1 are similar to those for d = 0.01). When d=0.01, the

hiring costs dominate the opportunity costs, and if d=10 then the reverse is true.

First, refer to Figures 3.5a, 3.5b, and 3.5c corresponding to λ1=6 and λ2=9. When the

hiring costs dominate the opportunity costs (d=0.01), adding up to four temporary operators

decreases costs as each temporary operator is able to replace a permanent operator while

satisfying the constraint. Adding the fifth temporary operator is useful only when P = 0.3,

because only up to five permanent operators are required for all lower values of P , and hence

the fifth temporary operator cannot replace a permanent operator for these values of P . As
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(a) Effect of maximum number of temporary 

operators (λ =6, λ =9, d=0.01, c /(c +c )=2)
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(e) Effect of maximum number of temporary 

operators (λ =18, λ =27, d=1, c /(c +c )=2)
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Figure 3.5: Effect of maximum number of temporary operators on cost reduction (c2=0.1,
c3=0.4).

opportunity cost increases (d=1), more permanent operators are required in general, and the

ability of the temporary operators to replace the permanent operators is diminished because of

opportunity cost considerations. For this case (d=1), one to three temporary operators are able

to replace only one permanent operator, but even using three temporary operators compared

to one does not reduce the opportunity cost enough to outweigh their hiring costs. However, if

four or five temporary operators are available they replace more permanent operators and hence

result in a greater reduction in cost. Finally, as the opportunity cost dominates (d = 10), a high

number of permanent operators are hired to reduce the opportunity cost and the temporary

operators are unable to replace any permanent operator without significantly increasing the

opportunity cost. Thus, at most one temporary operator is useful and aids only in reducing the

opportunity cost. Hence, as the opportunity cost increases the percentage reduction in costs

from using temporary operators decreases but is not negligible.

Similar observations hold for the case when λ1=18 and λ2=27 (Figures 3.5d, 3.5e, and 3.5f),

except that the percentage reduction in costs from using temporary operators first decreases

and then increases as the opportunity cost is increased. (The percentage decrease in cost is
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2.46% in Figure 3.5f vs. 1.46% in Figure 3.5e for y ≤ 1.) The reason is that we have limited

the maximum number of permanent operators to twenty and for the busier call center more

permanent operators are needed. Since more permanent operators are not available temporary

operators are used to reduce the opportunity cost. Thus, temporary operators can help reduce

costs if opportunity costs are high and not enough permanent operators are available. From

these observations for the “less busy” and “more busy” call centers we see that assessing the

magnitude of the opportunity cost is crucial.

Next, consider the number in queue constraint. We fix c1 = 1, d=0, Nt=50, α(i) = β(i)=5,

µ1 = µ2=2 in Figure 3.6. For the plots (a), (b) and (c) ((d), (e) and (f)), we choose λ1=6

(18) and λ2=9 (27). We vary the opportunity cost of number in queue (w) between 0.01, 1,

and 10. (Results for w = 0 and w = 0.1 are similar to those for w = 0.01). When w=0.01,

the hiring costs dominate the opportunity costs, and if w=10 then the reverse is true. Figure

3.6 considers the case when the ratio of c1 to c2 + c3 is 2. Each temporary operator provides

additional benefit in this case by replacing a permanent operator, except when the opportunity

cost w dominates (=10). In that situation it is beneficial to employ up to three temporary

operators. The additional cost of adding a fourth temporary operator is not compensated by

the corresponding drop in opportunity cost nor can it replace a permanent operator while still

satisfying the constraint. We observe that the results for the two constraints are similar. As

mentioned before, adding one (permanent or temporary) operator results in a relatively higher

decrease in the expected number in queue compared to the decrease in probability of no delay

(for example: expected number in queue may decrease from 16 to 14, a decrease of 2, while

the probability of no delay may decrease from 0.65 to 0.6, a decrease of 0.05). Thus, for the

same values of d and w, there is a higher decrease in the opportunity cost of number in queue

compared to the opportunity cost of no delay. This explains the higher, and more sustained,

percentage decrease values for the number in queue constraint.

3.4.3 Economic Cost of Satisfying Service Level Constraints

The economic cost of satisfying any service level goal (constraint) can be obtained by comparing

the optimal objective values of the CDOS problem with and without that particular constraint,

respectively. We study the percentage increase in costs as a result of increasing the right hand

side value of our service level constraints from their base value. The percentage increase in cost

for the probability of no delay constraint when c1=1, c2=0.1, c3=0.4, Nt=50, α(i) = β(i)=5,

µ1 = µ2=2 are shown in Figure 3.7 and Figure 3.8 for the cases when no temporary operators
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Figure 3.6: Effect of maximum number of temporary operators on cost reduction (p2=0.1,
p3=0.4)

are allowed and when temporary operators up to five are allowed, respectively, for different

values of d (0, 0.01, 0.1, 1, and 10).

Figure 3.7 and Figure 3.8 show that for a given value of d, the delay constraint is redundant

up to a certain value of P , P̂ (d), which is increasing in d, and hence there is no increase in costs

up to this value (for example, in the left plot of Figure 3.7, P̂ (d) = 0.1 for d ≤ 0.1 and P̂ (d) ≥
0.3 for d ≥ 1). As expected the percentage cost of satisfying the delay constraint is increasing in

P , keeping all other parameters fixed. One feature of note from Figure 3.7 are the “plateaus” in

the increase in cost. Refer to the points marked A, B and C, which correspond to using four, five

and five permanent operators, respectively when d=0. An increase in P from 0.1 to 0.15 caused

the optimal solution to increase the number of permanent operators by one. Ideally, if we have

five permanent operators, we would prefer to be at point C, where the highest possible service

level target for probability of no delay is satisfied with five permanent operators. At point B,

keeping five permanent operators on staff over-satisfies the constraint, and wastes money. Now

looking at Figure 3.8, we see that the “plateaus” are greatly reduced, and the cost increases
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Figure 3.8: Economic cost of satisfying the delay constraint with up to five temporary operators.
µ1 = µ2 = 2, α(i) = 0.5, β(i) = 0.5, Nt = 50, w = 0, c1 = 1, c2 = 0.1, c3 = 0.4.

more gradually. The same increase in P from 0.1 to 0.15 for d=0 results in one permanent

operator and four temporary operators, or a savings of 49.5% compared to the case without

temporary operators. In fact, for this case the number of permanent operators increased to five

(plus temporary operators) only at P = 0.7. This means that staffing inefficiencies at points

like B can be avoided by using temporary operators. This highlights a key benefit of flexible

staffing in the presence of service level constraints.

Looking at both Figure 3.7 and Figure 3.8, we see the delay constraint may have significant

impact on the costs of the system (maximum percentage increase in costs are 25% and 9%,

respectively). We obtain similar trends for different settings of the input parameter values.

The main takeaways from Figure 3.7 and Figure 3.8 are thus that hiring temporary operators
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may have two advantages: (i) the obvious advantage is that it may be cheaper (if c2 < c1) and

hence reduces costs while maintaining efficiency, and (ii) more subtly, provides “finer control”

to achieve staffing efficiency while satisfying service constraints.

The “plateau” effect is even more pronounced in the number in queue constraint case as

shown in Figures 3.9 and 3.10. Similar comments as above for the probability of no delay case

hold here as well. Finally, similar results to the case when c1/(c2 + c3)=2 are obtained for all

studies when this ratio is changed to 20 and 200.
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3.4.4 Computation Speed

While the (IP) formulation in Section 3.3 yields the optimal non-randomized policy, in the

worst case scenario the solution algorithm may visit every node of the solution tree, and the

solution time may, in theory, be worse than enumeration. Hence, we carry out experiments for

the CDOS problem comparing the computation time of the MBEDC algorithm against enu-

meration, as enumeration is the current fastest exact solution method for the CDOS problem.

(We also investigated other LP and MIP formulations, see chapter 2.) We vary the values of

the different input parameters to the CDOS problem as detailed in Table 3.1.

Parameter Description Number of Values
Possible Values

λ1 Low arrival-rate 3 6, 12, 18
λ2 High arrival-rate 3 9, 18, 27
µ1 Permanent operator service rate 3 0.5, 1, 2
µ2 Temporary operator service rate 3 0.5, 1, 2
c1 Time-average permanent 4 0.01, 0.1, 1, 10

operator cost
c2 Time-average temporary operator 4 0.001, 0.01, 0.1, 1

stand-by cost
c3 Cost of temporary operator 4 0.004, 0.04, 0.4, 2

providing service
d Cost of delay per customer 4 0.01, 0.1, 1, 10
w Cost per customer waiting 2 0, 0.01
P Right hand side of no delay constraint 8 0.05, 0.1, 0.2, 0.3,

0.4, 0.5, 0.7, 0.9
N Maximum number of jobs 3 50, 100, 150

in system
x Number of 40 4, 5, 6, . . . , 43

permanent operators
y Number of 40 1, 2, 3, . . . , 40

temporary operators
n1 Lower arrival-rate 100 4, 5, 6, . . . , 103

process threshold
n2 Higher arrival-rate 100 4, 5, 6, . . . , 103

process threshold
α Rate of transition from low to high 3 0.05, 0.5, 5
β Rate of transition from high to low 3 0.05, 0.5, 5

Table 3.1: Parameter settings for the CDOS problem.

Figure 3.11 gives the ratio of the time taken by enumeration to the time taken by MBEDC

algorithm; obviously for the MBEDC algorithm to be efficient, this ratio must be greater than 1.
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In all our experiments this ratio is always greater than 1, with minimum value 1.125, maximum

value 200, and an average value of 10.5. We also observe from Figure 3.11 that the ratio is

greatest for large problem sizes (as choices of n1 and n2 increase and also as N increases).

This is an important result. As an example, for 40 choices each for x, y, n1 and n2 (2560000

combinations) with N = 150, the MBEDC algorithm required 46 minutes on average to solve

the problem, while we estimate that enumeration would require 28 hours, resulting in a ratio

of 36.5. (We did not perform 2560000 enumerations. We performed 1000 sample enumerations

to obtain the average time taken per enumeration and then scaled. The variance in the 1000

samples was negligible.)

While the MBEDC solution time for the CDOS problem is not in seconds, this algorithm can

still be used in practice. This is because the CDOS problem is an off-line problem, i.e., the call

center manager does not solve this problem in real-time. If a heuristic approach with shorter

computation times is preferred, the MBEDC algorithm can still be applied to benchmark the

heuristic against optimal solutions. Finally, we note that the MBEDC algorithm using the LP

relaxation of (IP) is faster than enumeration for the CDOS problem without constraints, but

slower than the existing LP formulation shown in section 3.2. This is not surprising because

the LP relaxation of (IP) has additional redundant constraints (3.13).

3.5 Extensions of the CDOS Model

In this section we consider various extensions of our model for the CDOS problem.

For the arrival process, our model extends to a general l-state MMPP process (l > 2). It

also extends to the more general BMAP arrival processes. Under these assumptions, the CDOS

problems can still be represented as a MDP with constraints and hence, can still be solved using

the MBEDC algorithm; but under these models the corresponding Markov chains become more

complex and hence the problem size will increase. However, based on our experiments, the

MBEDC algorithm’s relative (to enumeration) performance appears to improve as problem size

increases. Hence, we believe that the MBEDC algorithm will still be comparably efficient. The

model also extends to phase-type service distributions where a similar argument holds.

The model also easily extends to an infinite state space (infinite queue length) as long as it

is infinite in only one dimension. This is because the resulting Markov chain repeats after some

finite state, so it can be analyzed using the matrix analytic technique (Neuts, 1981). Intuitively,

the infinite state space Markov chain can be transformed into a equivalent finite state space

Markov chain. Computational results for the infinite state space problem are identical to the
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Figure 3.11: Computation time comparison.

results in Figure 3.11.

In practice, customers may not wait very long before abandoning their call, especially if the

call is not free. Thus, the call center manager may be interested in modeling this phenomenon

and/or introducing either a service level target or an opportunity cost, or both, on the pro-

portion of customers abandoning their call. One way to model customer abandonment is to

include exponential transition rates corresponding to customers giving up their call for each

state; these rates may be increasing in the number of jobs in system. For a finite state system,

this still yields a constrained MDP solvable by the MBEDC algorithm. For an infinite state

system, an assumption that these rates have a maximum upper bound is required to ensure

that the matrix analytic technique can be easily applied. Given this assumption, or a finite

state system, it is easy to include an opportunity cost or a service level target, or both, on the
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proportion of customers abandoning their call.

Finally, one extreme scenario that may occur with threshold policies is that the number of

customers varies quickly over time, and thus the thresholds are crossed repeatedly over a short

time interval resulting in starting and stopping the temporary operators several times. This

issue can be addressed in the model in two ways: (i) Assign a fixed cost that is incurred every

time the temporary operators start providing service, or (ii) choose the lower threshold values

m1 = m2 = 0 (instead of x), i.e., once the temporary operators start providing service they

continue to be available until there are no jobs in the system.

3.6 Short Summary

The CDOS problem is a very relevant problem not only in call centers but in many service in-

dustries such as flexible Internet servers (Akamai Technologies, www.akamai.com), restaurants,

banks, grocery stores, etc. We model the CDOS problem as a constrained Markov decision

process (MDP) and seek the optimal non-randomized policy. We provide a novel exact and

efficient solution method, the MBEDC algorithm, yielding a Mixed Integer Program formula-

tion; the computation times of this algorithm for sample problems are lower than enumeration

by up to a factor of 200, and by a factor of 10 on average. Using our algorithm, we quickly

solve diverse instances of the CDOS problem, generating managerial insights into the effects

of temporary operators and service level constraints. A more detailed summary is provided in

section 7.2.

In the next chapter, we look at two other applications of constrained Markov decision process

from the literature. We obtain the non-randomized optimal policy for these applications using

the MBEDC algorithm.
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Chapter 4

Other Applications of Constrained
Markov Decision Process

In this chapter, we apply the MBEDC algorithm to two other problems from the literature.

The first problem involves developing a framework for comparing threshold based allocation

policies with different numbers of thresholds to the general optimal policy for a multiserver

queuing system. While multiple threshold based policies have been proposed and analyzed in

the literature, there is no unifying framework that answers the question: How many thresholds

are actually required in the real world to obtain near optimal (with respect to some given

metric) performance? Any threshold based allocation policy for a multiserver queuing system

corresponds to a constrained Markov decision process, thus we employ the MBEDC algorithm

to obtain the optimal threshold values. We also obtain the optimal state dependent policy from

the solution of an unconstrained Markov decision process. In particular, we analyze the three-

threshold adaptive dual threshold (ADT) policy proposed in Osogami et al. (2005) and compare

its performance to the general state dependent optimal policy with respect to the weighted (over

all customers) mean response time. The framework in section 4.1 extends to the comparison

of performances of any two threshold based policies or the comparison of performances of one

threshold based policy and the general optimal policy for a multiserver queuing system.

The second problem is a multi-item two location spare parts problem with lateral trans-

shipments and waiting time constraints. The objective is to find the optimal non-randomized

policy so as to minimize total inventory costs subject to the waiting time constraints at each

location. Wong et al. (2006) study different heuristics to solve this problem and compare the

gap between the heuristic solutions and a lower bound obtained by lagrangian relaxation. We

solve this problem by using the MBEDC algorithm in section 4.2, providing a tool for comparing

heuristic solutions to the optimal solutions, rather than a lower bound.

49
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4.1 Framework for Comparing Threshold Based Policies

in Multiserver Systems

For many organizations in the service industry, the problem of allocation of multiple servers

(resource) to different queues (customer types) so as to optimize some service metric is of

critical interest. Such multiserver systems with multiple queues are commonly used in call

centers, repair facilities, etc. Many authors (Osogami et al., 2005; Squillante et al., 2001;

Williams, 2000; Meyn, 2001; Ahn et al., 2004) have proposed and analyzed (multiple) threshold

based policies for allocating the servers to queues, with the number of thresholds ranging from

one to infinity. However, to the best of our knowledge, there is no work in the literature that

answers the question: How many thresholds are actually required in practice for allocation of

multiple servers to multiple queues to obtain near optimal (with respect to some given metric)

performance?

Focus. Given a multiserver system with multiple queues, we develop a general framework

for comparing any threshold based allocation policy to the optimal allocation policy with re-

spect to the weighted (over all customers) mean response time metric. As an example of our

technique, we compare a three-threshold policy, the ADT policy (Osogami et al., 2005), with

the (state-dependent) optimal policy with respect to the weighted mean response time metric.

Complicating this problem is the fact that we are interested only in non-randomized allocation

policies (non-randomized policies have been defined in chapter 3) because of practical consider-

ations: Randomized policies are typically difficult to implement in practice and obtaining the

randomization probabilities itself is known to be difficult (Shwartz and Makowski, 1990; Nain

and Ross, 1986).

Research questions and contributions. We answer the following research questions for

this problem:

• Is there a general framework for the comparison of any threshold based allocation policy

to the optimal allocation policy with respect to any service metric?

We develop a framework for the comparison of the three-threshold ADT policy to the optimal

policy with respect to weighted mean response time metric and show how to extend our approach

to more general comparisons. Section 4.1.1 describes the ADT and optimal policies in our

problem setting. The mathematical programming formulations for these two policies (Linear

Program and Mixed Integer Program, respectively) are provided in section 4.1.2. Note that the

optimal policy can be obtained from the solution to a Markov decision process for which three

solution techniques exist: Policy iteration, value iteration, and linear programming. However,
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the ADT policy, and in fact any finite-number-of-thresholds policy, results in a constrained

Markov decision process. There is no existing solution technique to obtain the optimal non-

randomized solution to a constrained Markov decision process. However, we can now use the

MBEDC algorithm developed in this thesis to solve such problems. While we consider the ADT

policy in this thesis, the MBEDC algorithm can be applied to obtain the optimal threshold

policy for any number of finite thresholds, resulting in a general framework for comparing

threshold policies.

Section 4.1.3 presents computational results for the comparison of the ADT policy with the

optimal policy with respect to the weighted mean response time for different values of the load

(ratio of arrival rate to service rate) at the servers. We show that the percentage decrease

in the weighted mean response time resulting from increasing the number of thresholds from

three (optimal ADT policy) to infinity (optimal state-dependent policy) is only 0-3% in our

experiments. Thus, for the weighted mean response time service metric, having one to three

thresholds provides good (within 3% of the optimal) performance in terms of the objective

function, and these may be easier to implement compared to a state-dependent policy. This is

another strong argument in the favor of threshold-based policies.

Related Literature. In Osogami et al. (2005), the authors compare the optimal (three-

threshold) ADT policy to the optimal (one-threshold) T1 policy with respect to the weighted

mean response time metric. To the best of our knowledge, there is no work that compares

optimal threshold based policies to the optimal (state-dependent) policy with respect to a

service metric.

4.1.1 Description of ADT and Optimal Policies

First, we describe our problem setting of a multiserver queuing system such as those commonly

used in modeling call centers, repair facilities, etc. This setting is similar to the one studied in

Osogami et al. (2005). Specifically, we study a multiserver model that consists of two servers

and two queues (Beneficiary-Donor) model, as shown in Figure 4.1. The jobs arrive at queue

1 and queue 2 according to Poisson processes with arrival rates λ1 and λ2, respectively. Jobs

have exponentially distributed service times requirements which are server dependent. Server 1

(beneficiary server) processes jobs in queue 1 (type 1 jobs) with rate µ1, while server 2 (donor

server) can process type 1 jobs with rate µ12, and can process jobs in queue 2 (type 2 jobs) with

rate µ2. Note that if µ12 < µ1, then the problem is easy and the optimal allocation policy in

that case is the cµ rule (Cox and Smith, 1971). However, if µ12 > µ1 (server 2 is a faster server

overall) then the cµ rule may be unstable (Squillante et al., 2001), i.e., queue lengths may grow
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unboundedly. Define ρ1 = λ1/µ1, ρ2 = λ2/µ2, and ρ̂1 = λ1/(µ1 + µ12(1 − ρ2)) as the loads of

queue 1 without any help from server 2, of queue 2, and of queue 1 when server 2 helps server

1, respectively. Given these input parameters, the goal is to determine when the donor server

should work on its own jobs and when it should work on the beneficiary server jobs so as to

minimize the overall weighted mean response time c1p1E[R1]+c2p2E[R2], where ci is the weight

of type i jobs, pi = λi/(λ1 + λ2) is the fraction of type i jobs, and E[Ri] is the mean response

time of type i jobs, for i = 1, 2. The focus is on non-randomized threshold-based policies. Refer

to Osogami et al. (2005) for stability conditions of the system, and for a literature review on

the topic of Beneficiary-Donor models.

 

 λ1  λ2 

 µ12 

 µ1  µ2 

 ρ2 =   λ2   

           µ2  
 ρ1 =         λ1   

       µ1+µ12(1-ρ2)  

/\

Figure 4.1: Beneficiary-Donor model.

One threshold based policy suggested for this problem in the literature is the T1 policy

(Squillante et al., 2001; Williams, 2000). The T1 policy places a threshold, t1, on queue 1, so

that server 2 processes type 1 jobs only when there are at least t1 jobs of type 1, or if queue

2 is empty. It is also known (Meyn, 2001; Ahn et al., 2004) that the T1 policy is not optimal

in general. Meyn (2001) obtains, via a numerical approach, the optimal allocation policy when

both queues have finite buffers. Although not proven, the optimal threshold policy appears to

be a “flexible” T1 policy that allows a continuum of T1 thresholds, one for each possible length

of queue 2. The optimal state-dependent policy can be obtained from the solution of a Markov

decision process; the formulation is provided in Section 4.1.2.

In Osogami et al. (2005), the authors propose a class of multi-threshold allocation policies:

Adaptive Dual Threshold (ADT) policies. Specifically, the ADT policy behaves like the T1

policy with parameter t
(1)
1 if the length of queue 2 is less than t2, and otherwise like the T1
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policy with parameter t
(2)
1 , where t

(2)
1 > t

(1)
1 as shown in Figure 4.2. Note that the ADT policy

is equivalent to the T1 policy if t2 = ∞. The authors compare the optimal ADT policy to the

optimal T1 policy, and find that the mean response time obtained from the optimal T1 policy

is, at worst, close to the mean response time obtained from the optimal ADT policy. This

is a surprising result, since the ADT policy generalizes the T1 policy, and since the general

optimal policy appears to have infinitely many thresholds. The authors conjecture that adding

more thresholds (approaching the general optimal policy) will not improve mean response time

appreciably compared to the ADT policy.

We test the above conjecture in this section by finding the optimal general allocation policy,

and the optimal ADT policy, both by solving Markov decision processes in which we define the

state of the system as the number of jobs in queue 1 and the number of jobs in queue 2. In each

state, there are two action choices: (i) Ask server 2 to process type 1 jobs, (ii) ask server 2 to

process type 2 jobs. In the general allocation policy case there are no probabilistic constraints,

so solving an LP yields the optimal policy, which exhibits a structure similar to that found by

(Meyn, 2001). On the other hand, the optimal ADT policy is obtained by solving a constrained

MDP. This is because the requirements that the parameters, t
(1)
1 , t2, and t

(2)
1 , be fixed for all

states of the system are constraints on the limiting probability values of the MDP. Thus, we

implement the MBEDC algorithm to obtain the optimal ADT policy. Next, we provide the

formulations for finding the optimal state-dependent policy and the optimal ADT policy.

 

0 
0  1  t2  N2 

N1 

t1
(1)

 

t1
(2)

 

Work on queue 2 

Work on queue 1 

Figure 4.2: Queue on which server 2 works as a function of number of jobs in queue 1 (N1) and
number of jobs in queue 2 (N2) under the ADT policy.

4.1.2 Formulations for the Optimal and ADT Policies

Denote by state s = (i, j) ∈ S, that the number of jobs in system of types 1 and 2 are i and

j, respectively. (Number of jobs in system is the total of the number of jobs in queue plus
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the number of jobs being served.) Let Nk denote the maximum number of jobs in system for

server k, k = 1, 2; thus, we assume a finite queue. In the case of infinite length queues, an

approximation scheme called dimensionality reduction proposed in Harchol-Balter et al. (2003)

can be used, or truncation can be applied to get the mean response time and the queue length

distribution. The matrix analytic method developed by (Neuts, 1981) can most easily be applied

to problems with Markov chains that are infinite in one dimension; hence, it cannot easily be

applied to this problem as is. In this section, we model the problem of finding the optimal state-

dependent policy as a Markov decision process, and present the linear programming formulation

for obtaining the optimal policy. We model the problem of finding the optimal ADT policy as

a constrained Markov decision process. We use the MBEDC algorithm developed in this thesis

to obtain a mixed integer programming formulation which yields the optimal non-randomized

ADT policy. The only other method to obtain the exact, non-randomized, optimal ADT policy

is enumeration. Before we present the formulations, some additional notation is introduced

below.

We define πs,a to be the limiting probability that the MDP is in state s and the call center

manager chooses action a. Define As, the set of possible action choices in state s as

As =





0 : Donor server works on Donor server’s jobs

1 : Donor server works on Beneficiary server’s jobs

2 : Donor server works on Donor server’s jobs

3 : Donor server works on Beneficiary server’s jobs

While action indices 0 and 2, and 1 and 3, result in the same action, respectively, we need to

define all four indices because of the ADT policy. This will be explained in detail later when

we discuss the formulation for the ADT policy. Action choices 0, 1, 2 and 3 correspond to

the cases that no thresholds have yet been crossed, threshold t
(1)
1 has been crossed but not t2,

threshold t2 has been crossed but not t
(2)
1 , and threshold t

(2)
1 has been crossed. It appears to not

be possible to use the MBEDC algorithm (developed in this thesis to solve CMDPs) with only

two action choices (0 and 1) to obtain the optimal ADT policy as this results in an infeasible

integer programming formulation. On the contrary, to obtain the general optimal policy, we

only need an unconstrained Markov decision process, and hence, two action choices (0 and 1)

suffice.

Define Γs,a is the total transition rate out of state s if action a is selected, and γj|s,a as

the rate of transition to state j if action a is selected in state s. For example, consider the

state in which the number of jobs in system are 3 and 2 for types 1 and 2, respectively, i.e.,
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s = (3, 2). Suppose that the lower threshold for system 1 is crossed (t
(1)
1 ≤ 3) but the threshold

for system 2 has not been reached (t2 ≥ 3), i.e., a(3,2) = 1. Then the total rate out of this state

is Γ(3,2),1 = λ1 + λ2 + µ1 + µ12. Next consider the state in which the number of jobs in system

is 2 for both servers, i.e., s = (2, 2). Suppose that the threshold for server 2 is crossed (t2 ≤ 2)

but the higher threshold for server 1 has not been reached (t
(2)
1 ≥ 3), i.e., a(2,2) = 2. The rate

of transition from this state to state (2,1) is γ(2,1)|(2,2),2 = µ2. The LP formulation to obtain the

general optimal threshold policy is given below. It yields the optimal non-randomized solution

since there are no probabilistic constraints.

Formulation for the optimal general threshold policy

Note that for the general threshold policy, As consists of only two action choices for all

states s: 0 and 1. Choice 0 corresponds to the donor server working on its own jobs and

choice 1 corresponds to the donor server working on the beneficiary server’s jobs. Let wk be

the objective weight associated with the mean response time of class k. Since we do not put

any restrictions (constraints) on the limiting probability values other than the modified balance

equations, the decision maker is free to choose either of the actions in any state.

MIN w1

(
N1∑
i=1

N2∑
j=0

∑
a∈As

πs,a i

)
+ w2

(
N2∑
j=1

N1∑
i=0

∑
a∈As

πs,a j

)

Subject to ∑
a∈Aj

Γj,a πj,a −
∑
s∈S

∑
a∈As

γj|s,a πs,a = 0 for all j ∈ S

∑
s∈S

∑
a∈As

πs,a = 1

πs,a ≥ 0 for all (s, a) such that s ∈ S, a ∈ As

To obtain the optimal ADT threshold policy using the MBEDC algorithm, we introduce

more notation. Let bi, dj, and oi denote binary variables for all i = 1, . . . , N1 and for all j =

1, . . . , N2 that take the value one when t
(1)
1 = i, t2 = j, and t

(2)
1 = i, respectively, and zero

otherwise. We allow the decision maker to choose between including and not including any one

of these thresholds by letting bN1+1, dN2+1 and oN1+1 be binary variables that take value one

if these thresholds are not required and zero otherwise. (We choose b, d, and o to represent

beneficiary’s first threshold, donor’s threshold, and finally the overall system threshold also

known as the beneficiary’s second threshold.) The formulation for the optimal ADT policy is

presented below.

Formulation for the optimal ADT policy
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MIN w1

(
N1∑
i=1

N2∑
j=0

∑
a∈As

πs,a i

)
+ w2

(
N2∑
j=1

N1∑
i=0

∑
a∈As

πs,a j

)

Subject to ∑
a∈Aj

Γj,a πj,a −
∑
s∈S

∑
a∈As

γj|s,a πs,a = 0 for all j ∈ S

∑
s∈S

∑
a∈As

πs,a = 1

πs,a ≥ 0 for all (s, a) such that s ∈ S, a ∈ As

N1+1∑
i=2

bi = 1, bi ∈ {0, 1} ∀ i = 2, . . . , N1 + 1

i−1∑

l=2

N2∑
j=1

π(l,j),1 +

N1∑

l=i

N2∑
j=1

π(l,j),0 ≤ 1− bi, i = 2, . . . , N1 + 1

N2+1∑
j=1

di = 1, di ∈ {0, 1} ∀ j = 1, . . . , N2 + 1

N1∑
i=2

j−1∑

k=1

π(i,k),2 +

N1∑
i=2

N2∑

k=j

(
π(i,k),0 + π(i,k),1

) ≤ 1− dj, j = 1, . . . , N2 + 1

N1+1∑
i=2

oi = 1, oi ∈ {0, 1} ∀ i = 2, . . . , N1 + 1

i−1∑

l=2

N2∑
j=1

π(l,j),3 +

N1∑

l=i

N2∑
j=1

(
π(l,j),0 + π(l,j),1 + π(l,j),2

) ≤ 1− oi, i = 2, . . . , N1 + 1

We explain the objective first. The first and the second terms of the objective give the

weighted mean response time of job types 1 and 2, respectively (using Little’s Law). Hence,

the objective gives the total weighted mean response time. The first three constraints are the

same as those in the LP formulation above, and yield the limiting probability values. The

remaining constraints ensure that for each decision parameter (b, d and o corresponding to t
(1)
1 ,

t2 and t
(2)
1 , respectively) exactly one value is assigned, and the linking constraints ensure that

the limiting probability values relate to the corresponding binary variables. These constraints

are constructed using the sets Qk
i defined for this problem. Refer to section 3.3 for a discussion

of these sets; Qk
i contains the state-action pairs that cannot be selected if action k is selected

in state i, and vice versa. For example for b6, the set Q
(b)
6 is given by,
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Q
(b)
6 =





π(2,1)1, π(2,2)1, . . . , π(2,N2)1

π(3,1)1, π(3,2)1, . . . , π(3,N2)1

π(4,1)1, π(4,2)1, . . . , π(4,N2)1

π(5,1)1, π(5,2)1, . . . , π(5,N2)1

π(6,1)0, π(6,2)0, . . . , π(6,N2)0

π(7,1)0, π(7,2)0, . . . , π(7,N2)0

...

π(N1,1)0, π(N1,2)0, . . . , π(N1,N2)0





The process for developing the mixed integer programming formulation for any finite number

of thresholds policy is similar to that for the ADT policy. The key is to define constraints that

ensure that for each decision parameter (corresponding to each threshold), the corresponding

binary variables sum to one, i.e., the decision parameter has exactly one value. In addition,

constraints that link the limiting probability variables to the corresponding binary variables

must be included. These constraints are developed by appropriate defining the sets Qk
i as

discussed in section 3.3.

4.1.3 Numerical Experiments

We present below in Figure 4.3 a reproduction of Figure 10 from Osogami et al. (2005) in which

the authors show that the ADT policy does not significantly improve over the T1 policy with

respect to the weighted mean response time even though the ADT policy generalizes the T1

policy. However, they do not find the globally optimal threshold values for the ADT policy.

Since the search space of the threshold values for the ADT policy is large, they find locally

optimal threshold values, which are found to be optimal within a search space of ±5 for each

threshold using simulation. They conjecture that adding more thresholds (approaching the

optimal flexible T1 policy) will not improve mean response time appreciably.

We test this conjecture using the same data as in Figure 10 of Osogami et al. (2005). The

results of our experiments are shown in Figure 4.4. We find the same ADT solutions as Osogami

et al. (2005); their method finds globally optimal ADT parameters. Our experiments also show

that their conjecture is indeed true for these examples; the maximum improvement is 2.35%.

The computation time in seconds for the experiments in Figure 4.4 are shown in Table 4.1. We

assume a maximum queue length of 50 for both queues. With these values for the maximum

queue length, we see a truncation effect for queue 2 in Figure 4.4 and Table 4.1 when ρ2 = 0.8.
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Figure 4.3: The percentage change in the mean response time of the (locally) optimized ADT
policy over the optimized T1 policy at each given load, as a function of ρ2. A negative percentage
indicates the improvement of ADT over T1. Here, c1 = c2 = 1, c1µ1 = c1µ12 = 1, and ρ1 =
1.15 are fixed.

As a result of truncation, the probability mass in the tail of system 2 is relatively high, and the

expected number in system and hence the mean response time is underestimated as the number

in system cannot be more than 50, which would not be the case in system 2 if it had an infinite

buffer. However, increasing the maximum queue length of both queues greatly increases the

solution time of the problem. Hence, for ρ2 = 0.8, we choose the maximum queue lengths of

15 and 150 for queues 1 and 2, respectively. These values are selected after running some trial

experiments to determine suitable maximum queue length values with the tradeoff between

reducing the truncation effect and not increasing the complexity of the problem greatly. We

indicate this difference in input parameters for ρ2 = 0.8, by putting an asterix (∗) next to 0.8 in

Figure 4.4 and Table 4.1. One can also truncate only the queue for server 1 while considering an

infinite buffer for server 2. Neuts’ matrix analytic method can now be used since the resulting

Markov chain is infinite in only one dimension.

We observe that the percentage decrease in the weighted response time from changing to

an optimal flexible T1 policy from the ADT policy is very small at low values of ρ2, the load

at queue 2. This percentage benefit increases with ρ2, the benefit of adding more thresholds is

the highest for high values of ρ2. We see a similar distinction for the computation times of the

optimal ADT policy. The optimal flexible T1 policy is obtained fairly quickly since it involves

solving a Linear Program. The computation times of the optimal ADT policy are fairly low

for small values of ρ2 and increases with ρ2. (At ρ2 = 0.8, the maximum queue lengths of the

two servers are different compared to all other values of ρ2 as mentioned earlier. Hence, its
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Figure 4.4: The percentage change in the mean response time of the optimized threshold policy
over the optimized ADT policy at each given load, as a function of ρ2. Here, c1 = c2 = 1, c1µ1

= c1µ12 = 1, and ρ1 = 1.15 are fixed.

computation time is not representative.)

ρ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8*
Figure 4.4(a)

General 19.09 12.01 21.36 7.61 14.6 22.4 27.8 2.39
ADT 15.06 11.21 9.7 30.66 80300 94241 124330 897.68

Figure 4.4(b)
General 3.26 6.3 19.45 19.65 22.01 20.48 26.22 2.45
ADT 15.91 12.78 10.95 10.88 157 56671 122330 12237.21

Table 4.1: Computation time in seconds.

This problem demonstrates another application of the MBEDC algorithm. Without the

MBEDC algorithm, it would not have been possible to obtain the optimal non-randomized

ADT threshold policy more efficiently than enumeration. Next, we discuss the multi-item

spare parts problem with applications in inventory management.

4.2 The Multi-Item Spare Parts Problem

The second problem we study from the literature is the multi-item two echelon spare parts

system with lateral transshipments and waiting time constraints (Wong et al., 2006). The

system under consideration is shown in Figure 4.5 and consists of a central warehouse and two

local warehouses; there is a target for the aggregate (over all items) mean waiting time per local

warehouse. Such a setting is commonly used by many manufacturers of “high-tech” products

(airplanes, complex machinery, medical equipment, mainframes, etc.) to support their after-

sales services, as downtime of machines at their customers can be very costly. The problem faced

by the manufacturer is to determine the optimal base-stock levels of spare parts (one base-stock
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level for each item) at the two local warehouses so that target aggregate mean waiting times

are met against minimal inventory holding costs (since many parts are very expensive). A base-

stock policy is a decision rule that decides a base-stock level S such that if inventory position

(inventory on hand plus on order) at any time is at or above S no order is placed, and if the

inventory at any time is strictly below S then an order is placed to bring the inventory position

to S. If an item is demanded at one local warehouse which does not have it on hand, the item

can be shipped from the other local warehouse provided it has the item on stock. This is called

lateral transshipment (also referred to as inventory pooling) and represents an effective strategy

to reduce downtime at the customer and at the same time control total system inventory costs

for the manufacturer. The central warehouse is assumed to be an ample server and emergency

shipments from this warehouse are also allowed in the case that both local warehouses do not

have the demanded item on hand.

 

Central Warehouse Local Warehouse Customers 

Lateral Transshipment 

Emergency Shipment 

Figure 4.5: Supply chain of the spare-parts system.

Refer to Wong et al. (2006) for more details and a literature review for this problem. We

use the same assumptions as made in that paper and discuss them below. The items are

indexed by i = 1, 2, . . . , I and the local warehouses are indexed by j = 1, 2. (i) Failures occur

according to Poisson processes with constant rates. For expensive technical systems, failure rates

of parts are low in general and thus downtimes do not occur very often. It is quite common in

the literature on spare parts inventory models (see for example Sherbrooke, 2004) to assume

constant failure rates according to Poisson processes for each spare part. The demand rate of

components of item i at warehouse j is given by mij. Further, Mj =
∑I

i=1 mij denotes the total

demand rate at warehouse j. (ii) All parts are repairable and there is no condemnation, i.e.,

there is no procurement of new items to replace those items that can no longer be repaired.

(iii) Lateral transshipments are faster and cheaper than emergency supplies. Typically, the two
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local warehouses are closer to the clients location than the central warehouse. Therefore, a

lateral transshipment is always preferred above an emergency shipment. (iv) The repair lead

times are exponential with rate µi for item i. This assumption facilitates the analysis using a

Markov decision process. (v) Complete pooling is applied. Thus, the two local warehouses have

to agree to a lateral transshipment if they have the item on stock. In case the two warehouses

do not want to share their last parts, one may introduce threshold parameters such that the

warehouse agrees to a lateral transshipment only if its own stock level for that item is above that

threshold. (vi) Inventory holding costs dominate shipping costs. This assumption is justified in

practice since the parts we consider are very expensive. Thus, the focus is on minimizing total

inventory costs.

Let Si
j be the base-stock level of item i at warehouse j. If a demand for item i at warehouse

j is met from stock the downtime is assumed to be zero without loss of generality. If a lateral

transshipment from the other warehouse is required (this happens when the original location

does not have the demanded item on stock), the mean downtime is assumed to be t1. If the

second warehouse also does not have item on stock, then an emergency shipment is made from

the central warehouse, and the mean downtime is t2 (> t1). At warehouse j, there is a target

level, Wj, for the maximum value of the weighted average waiting time (downtime) over all

items. Let the holding cost for item i be ci. We ignore shipping costs as these are small

compared to the cost of the items which can be very expensive; our model easily extends to the

case when these costs are included. The objective is to find a base-stock policy (S1, S2), where

S1 and S2 are vectors of base-stock levels of all items at local warehouses 1 and 2, respectively,

under which the total inventory costs are minimized subject to the waiting time constraints.

The state of the art technique to obtain the optimal non-randomized policy is a greedy heuristic

developed by Wong et al. (2006). They compare the performance of this heuristic with a lower

bound obtained from lagrangian relaxation, but not the optimal policy. The performance of this

heuristic is good and it results in an average gap of 1-5% on their sample problems. However,

there has been no study in the literature to obtain the exact optimal non-randomized solution

for this problem.

The Markov chain associated with the choice of policy (Si
1, S

i
2) = (2,1) for item i is shown

in Figure 4.6. Define πi as the steady-state probability vector, and πi
k,l as the steady-state

probability of being in state (k, l), 0 ≤ k ≤ Si
1, 0 ≤ l ≤ Si

2 for item i, where k and l are the

number of units of item i on hand at local warehouses 1 and 2, respectively. Thus, the weighted

average waiting time constraint at warehouse j is modeled as
∑I

i=1 mij(αijt1 + θit2) ≤ MjWj,

j = 1, 2, where αi1 =
∑Si

2
l=1 π0,l, αi2 =

∑Si
1

k=1 πk,0 and θi = πi
0,0. In words, αij represents the
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probability that a lateral transshipment is required for item i at location j, and θi represents

the probability that an emergency shipment is required for item i (it does not depend on the

location). Thus the left hand side of the above constraint gives the expected downtime for an

item i weighted by the proportion of demand at location j corresponding to item i (mij/Mj).

Finally, summing over all items gives the total weighted expected downtime at location j which

must be less than or equal to the target level Wj. This problem is then a combination of

Markov decision processes (one for each item) with probabilistic constraints linking the MDPs

as they are weighted over all the Markov decision processes. We utilize the MBEDC algorithm

to obtain the exact optimal solution. Since the greedy heuristic (Wong et al., 2006) is very

fast and has a good performance, our aim in finding the optimal solution is to provide a tool

to enable the precise quantification of the performance of any heuristic method compared to

the optimal solution. This problem is more complicated than the CDOS problem studied in

Chapter 3 since it involves a weighted service level constraint over different items and not a

single-item problem with a service level constraint (the multi-item version would correspond to

a weighted service level constraint over multiple call centers).

 

2, 1 2, 0 
 

1, 1 
 

1, 0 
 

0, 1 
 

0, 0 
 

mi2 

mi2 

mi1 + mi2 

mi1 + mi2 

mi1 + mi2 

mi1 

mi1 

µi 

µi 

µi 

µi 

µi 

2 µi 2 µi 

Figure 4.6: Markov chain for item i with (Si1, Si2) = (2, 1).

While the MBEDC algorithm is efficient compared to enumeration, it still cannot avoid

the curse of dimensionality; indeed for this problem, the curse of dimensionality becomes an

issue. The number of enumerations for I items with |S| choices for the base-stock levels at each

location is |S|2I which becomes large very quickly. Nevertheless, the MBEDC algorithm is still

the only exact efficient solution method for this problem, and can solve problems of moderate

size that heretofore were intractable.

Next, we show the formulation obtained from applying the MBEDC algorithm to this prob-
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lem. For item i, let wu
ij be a binary variable that indicates whether the base-stock level for item

i at location j is u or not for i = 1, . . ., I, j = 1, 2, and u = 0, . . ., Smaxi
j, where Smaxi

j is a

known upper bound on the optimal base-stock level of item i at location j. Let the holding cost

of item i be ci. Denote by πi
(k,l)(u,v) the limiting probability that the system is in state (k, l) = s,

and that the base-stock policy at the two locations is given by (u, v) for item i. Let s ≤ (u, v)

imply that k ≤ u and l ≤ v. Finally, Γi
s,(u,v) is the total transition rate out of state s if action

(u, v) is selected, and γi
j|s,(u,v) is the rate of transition to state j if action (u, v) is selected in

state s for item i. First, we explain the objective. The objective gives the total holding cost

over all items. We include inventory in the pipeline to calculate the total holding cost and

hence the objective can be expressed completely in terms of the binary variables without using

the continuous limiting probability variables. We can model the case when this assumption is

relaxed.

Formulation for the spare-parts problem.

MIN
I∑

i=1

2∑
j=1

Smaxi
j∑

u=0

ci u wu
ij

Subject to

Smaxi
1∑

u=0

Smaxi
2∑

v=0

Γi
j,(u,v) πi

j,(u,v) −
Smaxi

1∑
u=0

Smaxi
2∑

v=0

∑

s≤(u,v)

γi
j|s,(u,v) πi

s,(u,v) = 0 ∀ j, ∀ i

Smaxi
1∑

u=0

Smaxi
2∑

v=0

∑

s≤(u,v)

πi
s,(u,v) = 1 ∀ i

πi
(k,l),(u,v) ≥ 0 u ∈ {0, . . . , Smaxi

1}, v ∈ {0, . . . , Smaxi
2}, k ∈ {0, . . . , u}, l ∈ {0, . . . , v}, ∀ i

Smaxi
1∑

u=0

wu
i1 = 1, wu

i1 ∈ {0, 1} ∀ i

Smaxi
2∑

v=0

wv
i2 = 1, wv

i2 ∈ {0, 1} ∀ i

I∑
i=i

mij

Mj


t1


∑

(u,v)

v∑

l=0

πi
(0,l),(u,v)


 + t2


∑

(u,v)

πi
(0,0),(u,v)





 ≤ W1

I∑
i=i

mij

Mj


t1


∑

(u,v)

u∑

k=0

πi
(k,0),(u,v)


 + t2


∑

(u,v)

πi
(0,0),(u,v)





 ≤ W2
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u−1∑

u′=0

Smaxi
2∑

v=0

u′∑

k=0

v∑

l=0

πi
(k,l)(u′,v) +

Smaxi
1∑

u′=u+1

Smaxi
2∑

v=0

u′∑

k=0

v∑

l=0

πi
(k,l)(u′,v) ≤ 1− wu

i1 ∀ i, ∀ u

Smaxi
1∑

u=0

v−1∑

v′=0

u∑

k=0

v′∑

l=0

πi
(k,l)(u,v′) +

Smaxi
1∑

u=0

Smaxi
2∑

v′=v+1

u∑

k=0

v′∑

l=0

πi
(k,l)(u,v′) ≤ 1− wv

i2 ∀ i, ∀ v

The first three system of constraints are the modified balance equations that give the lim-

iting probability values. The next two systems of constraints require that all binary variables

corresponding to the choices for the base-stock level for item i at location j sum to one, for all

i and j. These constraints ensure that exactly one value is chosen as the base-stock policy for

item i at location j. The next two constraints are the waiting time target level constraints at

locations 1 and 2, respectively. The last two systems of constraints link the continuous limiting

probability variables to the corresponding binary variables ensuring that any feasible integer

solution gives a non-randomized policy.

Computational results. Below, we show the results of applying the MBEDC algorithm for

ten instances of each choice of number of items. We can easily solve this problem exactly for

up to seven items as shown in Table 4.2. However, the average time required for ten items is

196418 seconds or 54.5 hours, which is very high. In some cases, the solver ran out of memory

since the tree size in CPLEX became too large. We do not include these instances in Table 4.2.

We tried other MDP setups (specifically state s = (i, j) and choice of actions indicating: (i)

base-stock level not reached at either location, (ii) base-stock level reached at location 1 but not

at 2, (iii) base-stock level reached at location 2 but not at 1, and (iv) base-stock level reached

at both locations) for this problem as well but they were slower than the MDP presented here.

Number of items Minimum time (s) Average time (s) Maximum time (s)
2 0.62 0.83 1.05
5 15.11 33.92 52.21
7 109.7 146.56 216.92
10 50.15 196418 426923

Table 4.2: Computation time in seconds for problems with up to 10 items solved to completion.

In Table 4.3, we present the percentage gap closed by the MBEDC algorithm in a maxi-

mum of six hours of computation for up to 15 items. We notice that the MBEDC algorithm

finds “good” feasible integer solutions very quickly but spends a lot of time searching through

the fractional solutions corresponding to the relaxed sub-problems. The reason is that the
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MBEDC algorithm introduces a lot of degeneracy in the structure of the Integer Programming

formulation, i.e., multiple solutions with the same objective value are possible for the relaxed

sub-problems (refer to the linking constraints) when not all the binary variables are forced to

be integers. CPLEX is forced to explore multiple nodes whose resulting children (branches)

have the same objective value as the parents (the node from which they were obtained). Hence,

the improvements in the “best node” in CPLEX are very slow, and the time required by the

MBEDC algorithm to find the optimal solution becomes large quickly as the number of items

increases. The progression of CPLEX for our experiments is shown in Figure 4.7. Since CPLEX

does not indicate the progression in terms of time, we show it in terms of number of nodes vis-

ited. As seen from Figure 4.7, the remaining percentage gap decreases very quickly in the

beginning as CPLEX finds “good” integer feasible solutions quickly, but then improvement in

the best node value and hence the closing of the remaining percentage gap is very slow. Better

integer feasible solutions than the current best integer feasible solution are also obtained dur-

ing this slow progression but their improvement on the current best integer feasible solution is

observed to be small.

Number of items Minimum (%) Average (%) Maximum (%)
2 0 0 0
5 0 0 0
7 0 0 0
10 11.71 6.06 0.03
15 19.8 16.18 0.092

Table 4.3: Remaining gap after 6 hours of computation.
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Figure 4.7: Progression of solver.
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4.3 Short Summary

In the first application, we study the beneficiary-donor system of two servers and two queues.

There has been a recent emphasis on studying threshold based policies for multiserver systems

and many threshold policies have been proposed in the literature. We are the first to provide a

general framework to compare the performance of the different threshold policies with respect to

some given service metric. The optimal (state dependent) policy is obtained from the solution

to a Markov decision process. The optimal threshold policy is obtained from the solution to

a constrained Markov decision process using the MBEDC algorithm developed in this thesis.

We show that for the weighted mean response time metric, using policies with one to three

thresholds results in a close-to-optimal performance for the beneficiary-donor system of two

servers and two queues. Our numerical techniques extend to the general comparison of any two

threshold based policies.

In the second application, we study the multi item, two location, spare parts inventory

management problem with waiting time constraints and lateral transshipments. We solve this

problem exactly using the MBEDC algorithm for up to seven items easily. We can solve up to

ten items but the time required is large and for three out of fifteen instances CPLEX ran out of

memory because the tree file size becomes too large. For future work, it may be interesting to

see if a different formulation can be developed for the particular structure of this problem, for

example Formulation (F1) in chapter 2. Though this formulation was inefficient for the CDOS

problem, its efficiency for the spare parts problem should be studied since this formulation does

not introduce degeneracy into the mathematical program. In addition, it would be interesting

to obtain the actual savings obtained from (i) lateral transshipments by comparing it to a

similar model without lateral transshipments and (ii) from using a weighted target waiting

time constraint over all items rather than a target waiting time constraint for each item which

is stronger. The problem without lateral transshipments as well as the problem with target

waiting times for each item are easier to solve for the MBEDC algorithm. The latter problem

can, in fact, be separated into I single item problems, i.e., single-item constrained Markov

decision process which can be solved quickly using the MBEDC algorithm.

In the next chapter, we study a revenue-management problem in the service industry, in

which the seller has to negotiate the sale price with each buyer rather than posting the sale

price. In addition, we study the case when the seller has to ensure that the average buyer is no

worse-off from price bargaining compared to price-posting via a constraint.



Chapter 5

Revenue Management with Nash
Bargaining

Born in the airline industry, revenue-management has developed into a mature decision tech-

nology to support a seller’s tactical capacity-allocation and pricing decisions. Its most successful

applications have been in business-to-consumer settings, such as the airline, travel, and hospi-

tality industries, and, more recently, retailing (Bitran and Caldentey 2003, Boyd and Bilegan

2003, Elmaghraby and Keskinocak 2003). In addition, novel applications are being designed

and developed in a variety of industries (Talluri and van Ryzin 2004, Chapter 10). Geoffrion

and Krishnan (2001, p. 16) note that revenue-management technology, supported by e-mail

and the web, “allow[s] companies to change prices [. . . ] globally and instantly as commit-

ment deadlines approach.” Additionally, they state that it “enable[s] rapid customer responses

to price changes and subsequent real-time or near-real-time negotiations”. Secomandi (2006)

highlights the potential usefulness of revenue-management to support negotiations in business-

to-business (B2B) settings, where companies establish a variety of contracts with negotiated

terms and conditions, including price, to manage the exchange of goods and services. However,

the price-based revenue-management literature has only studied the posted-price case (Bitran

and Mondschein 1997, Zhao and Zheng 2000, Talluri and van Ryzin 2004, Chapter 5), which

does not fully capture the negotiated nature of business transactions. Therefore, there is a gap

in this literature: While its models are recognized as potentially useful to support commercial

negotiations, to the best of our knowledge, there is no published work that explicitly models

the bargaining nature of business transactions in a revenue-management setting.

Focus. Differently from the existing revenue-management literature, the focus of this chap-

ter is on incorporating price-bargaining features in revenue-management modeling. (We use the

terms bargaining and negotiation interchangeably.) We study the classical price-based revenue-

management setting of a seller that sells a finite stock of a single product within a finite number

67
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of time periods. In each period there is a positive, possibly time dependent, probability of a

single buyer arrival. The inventory level and the number of time periods to go define the state.

The seller bargains the sale price with each arriving buyer. Each buyer has a reservation value

corresponding to the maximum price it is willing to pay for one unit of product. This value

may depend on the alternative offers available to the buyer from the seller’s competitors. For

the seller, each buyer’s reservation value is a random variable with known distribution. The

seller has a state-dependent reservation value corresponding to the minimum price it is willing

to accept for one unit of product. Since the buyers cannot observe the seller’s state, they do

not know the seller’s reservation value.

Research questions. Our goal in this paper is to answer the following research questions

(RQs).

(RQ1:) How can one model price negotiations in a stochastic and dynamic revenue-management

setting?

(RQ2:) By how much does the seller’s expected revenue improve from adopting a dynamic and

stochastic, as opposed to a myopic and stochastic, bargaining model in this setting?

(RQ3:) Does the seller benefit from bargaining prices rather than posting them as in the

traditional revenue-management case?

(RQ4:) Can both the seller and the buyers be better-off by bargaining price rather than trans-

acting via posted-prices?

Contributions. We contribute to the science of operations in the area of revenue-management.

In §5.1, we present the Nash (1950) bargaining solution, which is a static and deterministic

model, in the context of a buyer-seller price negotiation. In §5.2, we embed this model of

bargaining in a dynamic program that maximizes the seller’s expected revenue from selling the

given inventory of a product during the planning horizon. This model dynamically optimizes

the seller’s reservation value. We prove that in any stage the seller’s optimal value function is

increasing and concave in inventory. We numerically estimate the value of dynamically bargain-

ing prices is about 6-8% higher than negotiating them in a myopic fashion. When the buyer’s

reservation value is normally distributed, we also show that the changes in the seller’s optimal

value functions and optimal reservation values are small for a small change in the variance of

the buyer’s reservation value, but cannot be neglected for a large change in the variance of the

buyer’s reservation value.

In §5.3, we compare our bargaining model against the traditional posted-price model. We

prove that in any state, the seller’s optimal value function is always greater in the bargaining

model than in the posted-price model. We also numerically estimate the magnitude and the
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behavior of this improvement. We find that the improvement is substantial (14-30% on average).

We analyze this increase in expected revenue by isolating the roles played by two cumulative

effects: (i) quantity effect and (ii) price effect. The first effect reflects the change in the

probability of selling one unit of the product and is always positive in our experiments. The

second effect reflects the change in the expected net price, i.e., the transacted price minus the

opportunity cost. This effect may be positive or negative but is almost always positive. We

also observe that the relative improvement of the bargaining model over the posted-price model

increases with higher variability of the buyer’s willingness-to-pay, when this random variable is

normally distributed. We also find that this improvement is rather insensitive to the probability

of customer arrival.

Though the main result of §5.3 implies that the seller is better-off by bargaining rather than

posting prices, the buyers can be worse-off. In §5.4, we present a modification of the dynamic

bargaining model discussed in §5.2 that ensures that both the seller and the buyers are no

worse-off by bargaining prices rather than transacting through price-posting. We numerically

show that by using this model the seller is able to capture most of the benefit of the dynamic

bargaining model presented in §5.2 even without making the buyers worse-off compared to the

posted-price model.

Relevance. While we contribute to the science of operations, our models and results have

potential for practical relevance: They provide foundations for prescriptive/normative modeling

in revenue-management with bargaining. The significant improvement of the seller’s value

functions over the posted-price model provides theoretical support to the existing practices of

commercial negotiations. However, businesses that adopt myopic strategies are not making

optimal decisions. By adopting a dynamic strategy, expected revenue can be increased by

an average of 6-8%. This points to the importance of incorporating dynamic optimization

approaches into negotiation support systems, such as the one discussed by Rangaswamy and

Shell (1997).

Related literature. There is a vast literature dealing with bargaining. Muthoo (1999)

provides an introduction to this theory and its applications. In particular, he describes two

fundamental bargaining models: the Nash (1950) bargaining solution (NBS) and the Rubinstein

(1982) alternating offer model. We choose to embed the former model in a dynamic and

stochastic price-based revenue-management setting because of its versatility and simplicity (see

Muthoo 1999, ch. 2). We also note that Corfman and Gupta (1993) review several applications

of the Nash bargaining model in the context of group choices. We are not the first to embed the

Nash bargaining model within a stochastic setting where decisions are made dynamically. For
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example, Lippman and McCardle (2004) embed the Nash bargaining model within a decision

tree to evaluate the decisions made by a heir-claimant. However, to the best of our knowledge,

we are not aware of any other published paper that incorporates a bargaining model in a

stochastic and dynamic price-based revenue-management model. Terwiesch, Savin and Hann

(2005) do develop a formal model of haggling between a name-your-own-price retailer and a set

of individual buyers, and compare the profits from their model to those of a posted-price model.

However, our setting is different because buyers do not name their own prices, the seller faces

a supply constraint, and uses a different reservation value to negotiate with each buyer over

time. In addition, differently from these authors, we propose a model that allows the seller to

capture the majority of the benefit of bargaining without making its customers worse-off with

respect to the posted-price case.

5.1 Nash Bargaining Solution to Price Negotiation

Consider a buyer and a seller negotiating the sale price of a single unit of product in a single

period, deterministic setting (see Figure 5.1). The buyer has a resale price r for one unit

of the product and a best alternative offer from the seller’s competitors, w ≤ r. Thus, the

buyer’s reservation value is w, which is the maximum price it is willing to pay for one unit

of the product. Similarly, the seller has some reservation value u, which is its minimum price

acceptable for selling one unit of the product. If the buyer’s reservation value w is less than the

seller’s reservation value u, then there is no sale. Otherwise, an agreement for the sale price p

is reached such that u ≤ p ≤ w, and the buyer purchases one unit of product from the seller at

this price.

 

 
     Seller 

 

    Buyer 
p: negotiated price 

u: reservation value  
    for the seller 

w: reservation value  
    for the buyer 

r: resale value 

Figure 5.1: Description of the price negotiation setting.

We now show the result of applying the Nash (1950) bargaining solution formula to deter-

mine the negotiated sale price p. To do so, we assume that the seller’s and its buyers’ respective

utilities from a sale agreement at price p are equal to the monetary values of their payoffs rel-

ative to their reservation values, i.e., US(p, u) = p − u and UB(p, w) = w − p. The values u
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and w are known to both parties. The size of the pie that is to be split between the seller and

the buyer is w− u. The minimum share of the pie that is acceptable to both the seller and the

buyer is zero and, hence, their so-called disagreement values, dS and dB, respectively, are zero.

The Nash bargaining solution pNBS(u,w) is then defined as follows:

pNBS(u,w) := arg max {p: p≥0, UB(p,w)≥dB , US(p,u)≥dS}
[
UB(p, w)− dB

] [
US(p, u)− dS

]

= arg max {p: u≤p≤w} (w − p) (p− u)

=





(w + u)/2 if w ≥ u

not defined otherwise.
(5.1)

The assumption that both parties know each others’ reservation values before entering into

negotiation, i.e., ex-ante, is not true in our setting. These values become known once the two

parties enter the negotiation, i.e., ex-post. From the seller’s point of view, ex-ante, the buyer’s

reservation value is modeled as a random variable W with known distribution. We assume that

W (t) = W for all t, for simplicity. The seller’s reservation value is state dependent. Since the

buyer cannot observe the seller’s state, it does not know the seller’s reservation value ex-ante.

We assume that the buyers do not behave strategically in choosing their reservation value.

Given this model, the question to be answered is: How should the seller choose its reservation

value in a stochastic and dynamic setting? We propose a model in the next section to determine

the seller’s optimal reservation value in any state (x, t).

5.2 Bargaining Model

We consider the dynamic problem of a seller that has to sell a finite stock X of a single product

within a finite number of time periods T . We assume that the seller cannot reorder more units

during this time horizon. The state is defined by the inventory level, x, and number of time

periods to go, t (t = T at the start and t = 0 at the end). In each period t, there is a positive

probability of a single buyer arrival which may be time-dependent, q(t). We assume q(t) = q

for simplicity but all our results hold if this assumption is relaxed. The buyer’s reservation

value is modeled as a random variable W with pdf f(w) and cdf F (w). Consider state (x, t),

i.e., current inventory level is x and the number of time periods to go is t. Denote the seller’s

reservation value in state (x, t) by ut(x). (We drop x and t from some state dependent quantities

in this paper for ease of writing, e.g., u, u∗, p, p∗, pN(·). Some of these quantities are defined
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later when they are first introduced.) If there is no arrival in period t, which happens with

probability 1− q, the seller has no revenue in this period and the state changes to (x, t− 1). If

there is an arrival in period t, which happens with probability q, then there are two cases: (i)

If the buyer’s reservation value w is lower than the seller’s reservation value u, there is no sale.

The seller has no revenue in that period and the state changes to (x, t− 1). (ii) Otherwise, the

buyer and the seller agree to a sale price pN(u, w) given by the Nash bargaining solution with

parameters w and u: pN(u,w) := (w+u)/2. The seller has a revenue of pN(u,w) in that period

and the state changes to (x− 1, t− 1). An inherent assumption here is that the time required

for the bargaining process between the seller and any buyer is less than the length of a time

period. We denote the function V N
t (x) as the maximum expected revenue of the seller starting

with x units of inventory at the beginning of period t. Model 1 below computes this function.

Also, we define the function 4V N
t (x) := V N

t−1(x) − V N
t−1(x − 1) as the seller’s corresponding

opportunity cost in state (x, t), x = 1, . . . , X, t = 1, . . . , T . Our bargaining model follows:

Model 1.

V N
t (x) = (1− q)V N

t−1(x) + q maxu≥0

[
V N

t−1(x) F (u) +

∫ ∞

u

(
pN(u, w) + V N

t−1(x− 1)
)
f(w) dw

]

= V N
t−1(x)+q maxu≥0

[∫ ∞

u

(
pN(u, w)−4V N

t (x)
)
f(w) dw

]
, x = 1, . . . , X, t = 1, . . . , T, (5.2)

and boundary conditions V N
t (0) = 0, t = 1, . . . , T, and V N

0 (x) = 0, x = 0, 1, . . . , X.

Let u∗t (x) denote the solution to the maximization problem in (5.2), i.e., the optimal reser-

vation value in state (x, t). Proposition 5.2.1 presents structural properties of the optimal value

functions and optimal reservation values for Model 1. The proof is provided in Appendix A.1.

Increasing/decreasing and concave are in the weak sense throughout.

Proposition 5.2.1. (Properties of the bargaining model)

(i) V N
t (x) is increasing in t for any x.

(ii) V N
t (x) is concave in x for any t.

(iii) V N
t (x) is increasing in x for any t.

(iv) If F (·) is differentiable, the seller’s optimal reservation value satisfies u∗t (x) ≥ 4V N
t (x) in

any state (x, t).

(v) u∗t (x) is (a) decreasing in x for any t, and (b) increasing in t for any x.

These properties are consistent with those of the traditional posted-price model, which is

discussed in §5.3. We now quantify the value added by using a dynamic, rather than myopic,

optimization approach.
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5.2.1 Benefit from Dynamic Approach over Myopic Approach

A seller that ignores the effect of making a sale now on future sales will focus on maximizing

the immediate expected revenue in the current period. We continue to assume that the seller

negotiates the price with each buyer and the negotiated price is given by the Nash bargaining

solution. The seller myopically optimizes its reservation value (uM) in any state (x, t) as follows:

uM = arg maxu≥0

∫ ∞

u

pN(u,w) f(w) dw (5.3)

From (5.3), the seller’s (myopic) optimal reservation value uM is the same in any state

(x, t) and is equal to the value of u∗ when t = 1, which is the same for all x in Model 1. In

conjunction with Proposition 5.2.1-(v), this implies that uM ≤ u∗ in any state (x, t). Thus,

firms that are myopic will systematically have a lower reservation value and under-bargain

compared to firms that consider dynamic strategies. We numerically calculate the percentage

increase of the optimal value functions of Model 1 over the value functions obtained by using

uM as the seller’s reservation value, denoted by V M
t (x), and computed as follows:

V M
t (x) = V M

t−1(x) + q

∫ ∞

uM

pN(uM , w) f(w) dw, x = 1, . . . , X, t = 1, . . . , T, (5.4)

and boundary conditions V M
t (0) = 0, t = 1, . . . , T, and V M

0 (x) = 0, x = 0, 1, . . . , X.

In the numerical examples of this chapter, we use two distributions of the buyer’s reserva-

tion value - Uniform and Normal. These random variables are chosen as they provide a rich

representation of the buyer’s reservation value. Figure 5.2 displays the percentage improvement

of V N
t (x) over V M

t (x) in the uniform distribution case with W ∼ U [0, 1], q = 0.9, X = 10, and

T = 10. Similar results can be obtained when W is normally distributed. The percentage

improvement of the dynamic strategy over the myopic strategy is very high when the ratio of

the inventory level to the number of time periods to go is less than 0.6. This is because for

these values, the number of time periods remaining is higher than the inventory remaining and

the dynamic strategy realizes that it can use a higher reservation price for the seller in the

current period since it can still sell the item in the future if it is not sold in the current period.

The myopic strategy does not take future considerations into account and so it gives the same

seller’s reservation value in all states. The average percentage improvement over all states (x, t)

is 6-8% for the two distributions. This is similar to values reported in the revenue-management

literature for other transactional mechanisms (Talluri and van Ryzin 2004, p. 10).
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Figure 5.2: Benefit in expected revenue resulting from adopting a dynamic rather than myopic
approach; W uniformly distributed.

5.2.2 Effect of Change in Variance of Buyer’s Reservation Value

Next, we study the effect of changing the variance of the buyer’s reservation value on the

optimal value functions of Model 1 when W is normally distributed. The uniform case can be

similarly analyzed. Figure 5.3a shows that the percentage change in the optimal value functions

are small for a small change in the variance of the distribution of the buyer’s reservation value,

i.e., the standard deviation changes from 0.1 to 0.2. However, as the change in the variance

becomes larger (Figures 5.3b and 5.3c), i.e., the standard deviation changes from 0.1 to 1 and

from 0.1 to 2, respectively, the percentage change in the optimal value functions cannot be

neglected. Similar results are obtained for any probability of customer arrival because it affects

both cases of the comparisons in a similar fashion. An observation from Figure 5.3 is that when

the number of time periods to go is large compared to the inventory level, it is beneficial to have

higher variance in the buyer’s reservation value, and lower variance otherwise. This is because

the seller benefits from choosing a higher reservation value in the case when the variance is

higher and the number of time periods to go is large, since if the item is not sold in the current

period, it can be sold at a future time period without any loss. Lower variance is preferred in

the second case because it helps to increase the probability of a sale, which is the focus in the

second case.
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Figure 5.3: Effect of change in variance of buyer’s reservation value on optimal value functions
in Model 1; W normally distributed.

5.3 Bargaining Model vs. Posted-Price Model

This section compares the optimal value functions obtained from the bargaining model (Model 1)

to those obtained from the traditional posted-price model (Model 2 below), first analytically for

a general distribution of the buyer’s reservation value, and then numerically when the buyer’s

reservation value is uniformly and normally distributed. Posted-price models are well studied

in the revenue-management literature (Bitran and Mondschein 1997, Zhao and Zheng 2000,

Talluri and van Ryzin 2004, Chapter 5). Below, we show the benchmark posted-price model

for our problem setting. We assume that the buyer’s reservation value does not depend on the

transactional mechanism, i.e., the distribution of W is the same in Models 1 and 2.

Model 2.

V P
t (x) = (1− q)V P

t−1(x) + q maxp≥0

[
V P

t−1(x) F (p) +

∫ ∞

p

(
p + V P

t−1(x− 1)
)
f(w) dw

]
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= V P
t−1(x) + q maxp≥0

[∫ ∞

p

(
p−4V P

t (x)
)
f(w) dw

]
, x = 1, . . . , X, t = 1, . . . , T, (5.5)

where 4V P
t (x) := V P

t−1(x)− V P
t−1(x− 1), x = 1, . . . , X, t = 1, . . . , T,

and boundary conditions V P
t (0) = 0, t = 1, . . . , T , V P

0 (x) = 0, x = 0, 1, . . . , X.

Denote by p∗t (x) (= p∗) the optimal posted-price obtained as the solution to the maximiza-

tion problem in (5.5). Our main result proves that the seller’s maximum expected revenue from

Model 1 is always greater than that obtained from Model 2 in any state. This result is true

for any distribution of the buyer’s reservation value and implies that the seller should prefer

to bargain rather than to adopt a posted-price model in this problem setting. It provides a

theoretical justification for the current practices of bargaining in B2B settings (Geoffrion and

Krishnan 2001, Secomandi 2006).

Theorem 5.3.1. (Bargaining model vs. posted-price model)

The seller’s maximum expected revenue from Model 1 is always no less than that obtained from

Model 2 in any state, i.e., V N
t (x) ≥ V P

t (x) in any state (x, t).

Proof. (By induction.) For any x ∈ {0, . . . , X}, it holds that V N
0 (x) = V P

0 (x) = 0, so that the

property holds for t = 0. Assume that the property holds in period t−1, i.e., V N
t−1(x) ≥ V P

t−1(x)

for all x. For any x, it also holds that

V N
t (x) = (1− q)V N

t−1(x) + q maxu≥0

[
V N

t−1(x) F (u) +
∫∞

u

(
w+u

2
+ V N

t−1(x− 1)
)
f(w) dw

]

≥ (1−q)V N
t−1(x)+q

[
V N

t−1(x) F (p∗) +
∫∞

p∗
(

w+p∗
2

+ V N
t−1(x− 1)

)
f(w)dw

]
(Since p∗ is feasible)

≥ (1−q)V P
t−1(x)+q

[
V P

t−1(x) F (p∗) +
∫∞

p∗
(

w+p∗
2

+ V P
t−1(x− 1)

)
f(w) dw

]
(Induction hypoth-

esis)

≥ (1− q)V P
t−1(x) + q

[
V P

t−1(x) F (p∗) +
∫∞

p∗
(
p∗ + V P

t−1(x− 1)
)
f(w) dw

]
(Since p∗ ≤ w)

= V P
t (x).

Thus, by the principle of mathematical induction, V N
t (x) ≥ V P

t (x) for all t ∈ {0, . . . , T} and

x ∈ {0, . . . , X}.
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Note: W ~ U(0,1), x, t = 1
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Figure 5.4: Net prices for Example 1; W ∼ U(0, 1), t = x = 1, and subscript t and argument x
suppressed from the relevant notation.

5.3.1 Quantity and Price Effects

We now analyze the basic result established in Theorem 5.3.1. Note that in our experiments,

we find u∗ is always less than p∗ in all states (x, t). Hence, we discuss this case only. All the

arguments extend to the case when u∗ ≥ p∗ (which never occurs in our experiments). Define

the difference between the optimal bargaining and posted-price value functions as Dt(x) :=

V N
t (x) − V P

t (x), for all t and x. We study this quantity by using the notion of net prices.

Given a realization w of random variable W in state (x, t), define the bargaining and posted

net prices, respectively, as the transacted prices minus their respective opportunity costs, if a

transaction occurs, and zero otherwise:

πN
t (x,w) :=





pN(u∗t (x), w)−4V N
t (x) if w ≥ u∗t (x)

0 otherwise

πP
t (x,w) :=





p∗t (x,w)−4V P
t (x) if w ≥ p∗t (x)

0 otherwise.

By Proposition 5.2.1 (iv) and the well-known result that p∗t (x) ≥ 4V P
t (x) (Bitran and Caldentey,

2003), the net prices are nonnegative.

Example 1 (Net prices with W ∼ U(0, 1) and t = x = 1). Figure 5.4 displays the net prices

prices as functions of w when W ∼ U(0, 1) and t = x = 1. In this case, both the bargained

and posted-price opportunity costs are zero. It is easy to verify that p∗ = 1/2 and u∗ = 1/3, so
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that πN(w) = [(w + 1/3)/2]1(w ≥ 1/3) and πP (w) = (1/2)1(w ≥ 1/2), with 1(·) equal to 1 if

its argument is true and zero otherwise, and subscript t and argument x suppressed from the

notation for simplicity.

In the bargaining case, the net price is zero if w ∈ [0, u∗t (x)), with linear payoff pN(u∗t (x), w)−
4V N

t (x) otherwise, which increases at a slope of 1/2. In contrast, in the posted price case,

the net price is zero if w ∈ [0, p∗t (x)), constant otherwise. Thus, in this case the net price

for “high” willingness-to-pay realizations is equal to that corresponding to realizations that

“barely” exceed p∗t (x) = 1
2
. In order to compare the two net prices, define w as the point

when πN
t (x,w) = πP

t (x, w), i.e., w := 2[p∗t (x) − u∗t (x)/2 + 4V N
t (x) − 4V P

t (x)]. If w < p∗t ,

then the bargained net price always exceeds the posted net price when a transaction occurs

under bargaining, i.e., w ∈ [u∗t (x),∞]. On the other hand since u∗t (x) ≤ p∗t (x), if w ≥ p∗t

then the bargained net price exceeds the posted net price when w is “low” or “high,” i.e.,

w ∈ [u∗t (x), p∗t (x)) ∪ (w,∞], and it is below this net price when w takes on “intermediate

values,” i.e., w ∈ [p∗t (x), w].

We now “measure” the net prices and their differences. Denote by πN
t (x) and πP

t (x), respec-

tively, the expected values of net prices πN
t (x,w) and πN

t (x,w) with respect to the probability

distribution F (w) of the buyer’s willingness to pay:

πN
t (x) =

∫ ∞

u∗t (x)

πN
t (x,w)f(w)dw

πP
t (x) =

∫ ∞

p∗t (x)

πP
t (x,w)f(w)dw.

The seller’s immediate benefit from using a bargained, rather than posted, price in state (x, t)

is the difference between these two values: πN
t (x) − πP

t (x). We decompose this difference into

a quantity and a price effect as follows:

πN
t (x)− πP

t (x) =

∫ ∞

u∗t (x)

πN
t (x,w)f(w)dw −

∫ ∞

p∗t (x)

πP
t (x,w)f(w)dw

=

∫ p∗t (x)

u∗t (x)

πN
t (x,w)f(w)dw

︸ ︷︷ ︸
Quantity effect

+

∫ ∞

p∗t (x)

[πN
t (x,w)− πP

t (x,w)]f(w)dw

︸ ︷︷ ︸
Price effect

.

We denote QEt(x) and PEt(x), respectively, the quantity and price effects in state (x, t). The

interpretation of these effects is as follows. In state (x, t), given a realization w in the interval

[0, u∗t (x)) no sale occurs under any of the two transactional mechanisms. If w ∈ [u∗t (x), p∗t (x)), a
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Figure 5.5: Quantity and price effects for Example 1; subscript t and argument x suppressed
from the relevant notation.

sale occurs only when bargaining price, in which case the seller’s net gain is πN
t (u∗(x), w). The

quantity effect measures this payoff by weighing it by the probability density function f(w). We

always observe that u∗t (x) ≤ p∗t (x) and hence this effect is always observed to be nonnegative

but we are unable to prove this conjecture. Instead, if w ∈ [p∗t (x),∞], a sale occurs under both

bargaining and posted price. In this case, the immediate benefit from bargaining is the net

price difference πN
t (u∗t (x), w)−πP

t (x,w), whose sign is undetermined. The price effect amounts

to measuring this difference according to the probability distribution F (w) over the interval

[p∗t (x),∞]. Hence, this effect can be positive, zero, or negative.

Example 2 (Quantity and price effects for Example 1). Continuing Example 1, Figure 5.5

illustrates the quantity and price effects. It is easy to verify that πN = 1/3 and πP = 1/4,

so that their difference is D = 1/12. This value decomposes into the sum of the quantity

and price effects. The quantity effect is equal to area A, QE = A = 9/144, the price effect

to the differences of areas C and B, PE = C − B = 4/144 − 1/144 = 3/144, and their sum

is 12/144 = 1/12, which is of course equal to D. This shows that in this case the quantity

effect explains 75% of the immediate benefit of bargaining over posted price, the price effect

the remaining 25%.

We now employ these effects to decompose quantity Dt(x) in a recursive manner as follows:

D0(x) := 0, x = 1, . . . , X

Dt(x) = V N
t (x)− V P

t (x)
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= Dt−1(x) + q
[
πN

t (x)− πP
t (x)

]

= Dt−1(x) + q [QEt(x) + PEt(x)] , t = 1, . . . , T, x = 1, . . . , X.

Given x = 1, . . . , X, it holds that D1(x) = q [QE1(x) + PE1(x)]. This implies the following

result.

Proposition 5.3.1. (Value-function difference decomposition)

Dt(x) = q

t∑
τ=1

[QEτ (x) + PEτ (x)] , t = 1, . . . , T, x = 1, . . . , X.

Thus, the value-function difference Dt(x) in state (x, t), with x = 1, . . . , X and t = 1, . . . , T ,

can be interpreted as the sum of the quantity and price effects in the remaining time periods,

τ = t, . . . , 1, at the same inventory level, x, weighed by the probability that a customer arrives,

q (this is one way of decomposing the value-function difference). We call these quantities

the cumulative quantity and price effects in this state. This decomposition of the optimal

value-function difference Dt(x) allows us to study how bargaining outperforms the posted-price

mechanism in all states (x, t) in terms of relative contributions of the cumulative quantity and

price effects. We numerically quantify these effects in §5.3.2.

5.3.2 Numerical Examples

We numerically compute the percentage improvement of the seller’s optimal value functions

obtained from Model 1 over those from Model 2 for two different distributions of the buyer’s

reservation value - uniform and normal. Sensitivities to the variance of buyer’s reservation value

and to the probability of buyer arrival are studied. We also quantify the cumulative quantity

and price effects for these distributions.

Comparison of value functions. The percentage improvement of the optimal value functions

of Model 1 over Model 2 when W ∼ U [0, 1] and W ∼ N(5, 1) are plotted in Figures 5.6 and

5.7, respectively. In these plots, the horizontal axis corresponds to the inventory level and the

vertical axis corresponds to the percentage improvement value. Two scenarios are considered:

(i) High probability of buyer arrival (q = 0.9) and (ii) low probability of buyer arrival (q = 0.3).

(We analyze the sensitivities of the comparisons, on average, to the probability of buyer arrival

later in this subsection. Since the changes in these comparisons are small for small changes in

q, considering these two scenarios is sufficient to gain insight.)

Some observations that are common to both distributions follow. (i) Since the seller can
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Figure 5.6: Uniform distribution - Percentage improvement of optimal value functions of Model
1 over Model 2.
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Figure 5.7: Normal distribution - Percentage improvement of optimal value functions of Model
1 over Model 2.

sell at most one unit in one period, the percentage improvement is constant when the ratio

of inventory level to the number of remaining periods is one or above. (ii) The percentage

improvement decreases in the number of remaining periods for a constant inventory level because

both u∗ and p∗ approach wmax as this happens. (iii) The percentage improvement increases

in inventory level for a constant number of remaining periods until the ratio of inventory to

number of periods remaining reaches one. (iv) The percentage improvement increases as the

probability of customer arrival decreases. One possible explanation is that the seller realizes

a higher probability of making a sale in the bargaining model compared to the posted-price

model, and as the probability of customer arrival decreases, the cumulative quantity effect

becomes the major contributor to the value function difference. These observations imply that

the seller’s preference for bargaining over posted-price is greater if the inventory is high or with

few periods remaining since the percentage improvement is the highest in such situations.

Sensitivity to buyer’s reservation value variability. For the normal distribution case, we

study the sensitivity of these percentage improvements with respect to the standard deviation of
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the buyer’s reservation value while keeping the mean constant at 5. We consider three different

values, 2, 1, and 0.1 for the standard deviation of the buyer’s reservation value, corresponding to

coefficients of variation (CV) equal to 0.4, 0.2, and 0.02, respectively. Figure 5.8 (q = 0.9) shows

that as the variability of the buyer’s reservation value increases, the percentage improvement

of the seller’s optimal value functions of Model 1 over those of Model 2 increases. It can be

numerically verified that this continues to hold for any probability of customer arrival. Thus,

the more uncertain the seller is regarding the buyer’s reservation value, the more it should prefer

to bargain than to adopt a posted-price policy. The reason is that in any period, the seller can

obtain a higher price from buyers with high reservation values in bargaining as compared to

posting-prices without decreasing the probability of sale agreement.
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(a) q = 0.9, W ~ N(5, 0.1)
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Figure 5.8: Effect of variance of buyer’s reservation value on percentage improvement of optimal
value functions of Model 1 over Model 2: q = 0.9, (a) CV = 0.02 (b) CV = 0.2 (c) CV = 0.4.
Thus, variance of the buyer’s reservation value distribution increases from left to right.

Sensitivity to probability of customer arrival. We now study the effect of probability

of buyer arrival (q) on the average percentage improvement of the optimal value functions of

Model 1 over those of Model 2. The average percentage improvement values taken over all

states (x, t) as a function of q are shown in Figure 5.9. For both the uniform and normal

distributions, we find that the average percentage improvement values decrease as q increases,

but the decrease is small for small changes in q because the probability of customer arrival, q,

has similar effects on both cases.

Quantification of cumulative quantity and price effects. Figures 5.10 and 5.11 show the

cumulative quantity and price effects for the uniform and normal distributions, respectively,

with q = 0.9, and X = T = 10. Similarly, Tables 5.1 and 5.2 give the percentage contribution of

the cumulative quantity effect to the difference between the optimal value functions of the two

models, for the two distributions, respectively. The percentage contribution of the cumulative

price effect can be easily obtained from these values.
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Figure 5.9: Average percentage improvement of optimal value functions of Model 1 over Model
2 as a function of q.

(a) W ~ U[0,1], q = 0.9
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(b) W ~ U[0,1], q = 0.9

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9

Inventory (x)

C
u

m
u

la
ti
v
e

 p
ri
c
e

 e
ff

e
c
t

t=1

t=3

t=5

t=7

t=9

Figure 5.10: Cumulative quantity and price effects, W ∼ U [0, 1], q = 0.9, X = T = 10.

Inven- Time to go (t)
tory(x) 1 2 3 4 5 6 7 8 9 10
1 75 86 96 106 116 126 136 146 156 165
2 75 75 79 86 93 100 107 114 121 128
3 75 75 75 78 81 86 91 96 102 108
4 75 75 75 75 76 79 82 86 90 94
5 75 75 75 75 75 76 77 80 82 85
6 75 75 75 75 75 75 75 76 78 80
7 75 75 75 75 75 75 75 75 76 77
8 75 75 75 75 75 75 75 75 75 76
9 75 75 75 75 75 75 75 75 75 75
10 75 75 75 75 75 75 75 75 75 75

Table 5.1: Percentage contribution of the cumulative quantity effect to total improvement,
W ∼ U [0, 1], q = 0.9, X = T = 10.
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(b) W ~ N(5,1), q = 0.9
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Figure 5.11: Cumulative quantity and price effects, W ∼ N(5, 1), q = 0.9, X = T = 10.

Inven- Time to go (t)
tory(x) 1 2 3 4 5 6 7 8 9 10
1 38 49 55 60 65 68 71 74 76 78
2 38 38 47 55 63 67 71 74 76 78
3 38 38 38 44 49 53 57 61 64 66
4 38 38 38 38 41 48 53 58 61 64
5 38 38 38 38 38 42 47 51 54 58
6 38 38 38 38 38 38 40 44 49 53
7 38 38 38 38 38 38 38 40 42 47
8 38 38 38 38 38 38 38 38 39 42
9 38 38 38 38 38 38 38 38 38 40
10 38 38 38 38 38 38 38 38 38 38

Table 5.2: Percentage contribution of the cumulative quantity effect to total improvement,
W ∼ N(5, 1), q = 0.9, X = T = 10.

We observe that for the uniform distribution case, the cumulative quantity effect is the

major contributor to the percentage improvement of the optimal value functions in all states.

In fact, the cumulative price effect may even be negative (entries above 100% in Table 5.1 in

some states). The results are different for the normal distribution. The major contributor is the

cumulative price effect when the ratio of inventory to number of remaining periods is greater

than or equal to one, i.e., the unconstrained inventory case. When this ratio is between zero and

one, i.e., the constrained inventory case, the quantity effect is typically the major contributor.

We explain these observations by studying the unconstrained (x ≥ t) and constrained (x < t)

inventory cases.

Case 1 (Unconstrained inventory with x ≥ t). In this case, the opportunity costs in both the

bargaining and posted-price models are zero , i.e., 4V N
t (x) = 4V P

t (x) = 0. For the uniform
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distribution example (W ∼ U [0, 1]), it is easy to show that u∗t (x) = 1
3
, p∗t (x) = 1

2
, V N

t (x) = qt
3
,

V P
t (x) = qt

4
, and Dt(x) = V N

t (x)−V P
t (x) = qt

12
. Also, QEt(x) = 1

16
and PEt(x) = 1

48
. Thus, the

cumulative quantity effect (
∑t

τ=1 QEt(x)) is thrice the cumulative price effect (
∑t

τ=1 PEt(x))

and hence contributes 75% of the increase in the optimal value functions of the bargaining

model over the posted-price model. For the normal distribution example (W ∼ N(5, 1)), we

numerically obtain u∗t (x) = 3.50, p∗t (x) = 3.90, V N
t (x) = 3.63t, V P

t (x) = 3.03t, and Dt(x) =

V N
t (x)− V P

t (x) = 0.60t. Also, QEt(x) = 0.25 and PEt(x) = 0.41. Thus, the cumulative price

effect is almost twice the cumulative quantity effect and contributes 62.38% of the increase in

the optimal value functions of the bargaining model over the posted-price model. Note that

the cumulative price effect is the major contributor to the value function difference for the

normal distribution examples, while the cumulative quantity effect is the major contributor in

the uniform distribution example. One explanation is that the probability mass in the tail of

the distribution relative to p∗ is greater in the normal distribution example (=0.864) compared

to the uniform distribution example, (=0.5) and hence the cumulative price effect has a more

dominant role in the former case.

Case 2 (Constrained inventory with x < t). The opportunity costs in both models are non-zero

in such states, and hence it is difficult to obtain a closed form formula for the cumulative effects

and the value functions difference that explains the relative strengths of the two effects, even

for the case when x = 1 and t = 2. However, we observe that as the opportunity cost increases

(as t increases or as x decreases), the relative contribution of the cumulative quantity effect

to the difference in the value functions of the two models increases for both the uniform and

normal distributions. This says that when the inventory is constrained the portion of the value

function difference that can be attributed to the revenue generated by selling under bargaining

and not selling under posted price (since we know u∗ ≤ p∗) outweighs that attributable to the

revenue generated by selling in both cases, albeit at two different prices. This is counterintuitive

because with constrained inventory one would expect price to be a more important factor than

quantity. One explanation is that as opportunity cost increases, both u∗ and p∗ increase such

that the probability mass in the tail of the distribution (relative to p∗) decreases more rapidly

than the probability mass between u∗ and p∗.

5.4 Pareto Improvement on Posted-Price Model

As shown in §5.3, Model 1 outperforms Model 2 with respect to the seller’s optimal value

function. While the seller may have multiple buyers, we represent them by an aggregate buyer
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and compute an aggregate buyers’ value function, Bt(x) (as defined in (5.7) and (5.9) later

in this section). It can be shown numerically that in any state (x, t), Bt(x) is smaller when

the seller uses Model 1, rather than Model 2, for both distributions of the buyer’s reservation

value discussed in §5.3. This may raise some concerns regarding the fairness of Model 1 to both

parties. The question is whether a model exists that yields a Pareto improvement over the

posted-price model, for any distribution of the buyer’s reservation value. Figure 5.12 describes

this situation. Select any state (x, t). The buyers’ and the seller’s value functions in this state

for the posted-price model are given by BP
t (x) and V P

t (x), respectively. We take this to be the

origin of a two dimensional-space whose horizontal and vertical axes, respectively, represent

the buyers’ and seller’s value functions in this state for any model. Any model that results

in moving to the bottom-left/right quadrants is less preferable than the posted-price model.

Hence, these regions are uninteresting and are crossed out. From our experiments, we know

that Model 1 typically results in a movement to the top-left quadrant, i.e., the seller does better

compared to the posted-price model but the buyer is worse-off. However, we cannot exclude

improvements to the top-right quadrant for this model. Below, we consider a hybrid bargaining

- posted-price model (Model 3) that results in an at least weak movement to the top-right

quadrant for any distribution of the buyer’s reservation value when such movements exist, else

it remains at the origin. The main idea is that the seller chooses its disagreement value such

that the desired improvements occur. In numerical experiments such a movement always exists.

 

M1 
M3 

M1? 

M2 (Origin is (B
P

t (x), V
P

t (x))) 

 

Bt(x) 

Vt(x) 

Figure 5.12: Pareto improvement with respect to posted-price model in state (x, t).

Suppose the optimal value function values for the posted-price model as well as the corre-

sponding optimal posted-prices are known for all states, i.e., V P
t (x), BP

t (x), p∗t (x) are known

for all states. For this model, define the seller’s and buyer’s continuation value functions, SP
t (x)

and RP
t (x), respectively, for x = 1, . . ., X and t = 1, . . ., T , as follows:

SP
t (x) := V P

t−1(x) F (p∗) +

∫ ∞

p∗

(
p∗ + V P

t−1(x− 1)
)
f(w) dw, (5.6)
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RP
t (x) := BP

t−1(x) F (p∗) +

∫ ∞

p∗

(
w − p∗ + BP

t−1(x− 1)
)
f(w) dw, (5.7)

with boundary conditions V P
t (0) := BP

t (0) := 0, t = 1, . . . , T, and V P
0 (x) := BP

0 (x) := 0,

x = 0, 1, . . . , X.

Incidentally note that with this notation, for x = 1, . . . , X, and t = 1, . . . , T , it follows that

V P
t (x) = (1− q)V P

t−1(x) + qSP
t (x), (5.8)

BP
t (x) = (1− q)BP

t−1(x) + qRP
t (x). (5.9)

Denote V H
t (x) and BH

t (x) the seller’s optimal value function and the corresponding buyers’

value function, respectively, in state (x, t), when the seller negotiates the price with the buyers

by choosing its disagreement value ut(x) in state (x, t) based on a Pareto-improvement model.

This model as follows:

Model 3.

V H
t (x) = (1− q)V H

t−1(x) + q maxu∈Ct(x) SH
t (x, u), x = 1, . . . , X, t = 1, . . . , T, (5.10)

BH
t (x) = (1− q)BH

t−1(x) + q RH
t (x, û), x = 1, . . . , X, t = 1, . . . , T. (5.11)

SH
t (x, u) = V H

t−1(x) F (u) +

∫ ∞

u

(
w + u

2
+ V H

t−1(x− 1)

)
f(w) dw,

x = 1, . . . , X,

t = 1, . . . , T,
(5.12)

RH
t (x, u) = BH

t−1(x) F (u) +

∫ ∞

u

(
w − w + u

2
+ BH

t−1(x− 1)

)
f(w) dw,

x = 1, . . . , X,

t = 1, . . . , T,
(5.13)

where, Ct(x) =
{
u ≥ 0 : SH

t (x, u) ≥ SP
t (x), RH

t (x, u) ≥ RP
t (x)

}
, x = 1, . . . , X, t = 1, . . . , T,

(5.14)
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ût(x) := argmaxu∈Ct(x) SH
t (x, u), x = 1, . . . , X, t = 1, . . . , T, (5.15)

and boundary conditions V H
t (0) = BH

t (0) = 0, t = 1, . . . , T, and V H
0 (x) = BH

0 (x) = 0,

x = 0, 1, . . . , X.

From (5.14), Ct(x) is the set of feasible values of u such that the resulting buyer and seller

continuation value functions are at least what they would have been if the seller adopted a

posted-price strategy. From (5.10)-(5.11), it is obvious that both the seller and buyer are no

worse-off compared to the posted-price model. This is true as long as Ct(x) is non-empty for

all states, which we conjecture to be true but are unable to prove. However, this conjecture is

always true in our numerical experiments.

To handle the case in which Ct(x) could be empty, we let the seller adopt a posted-price

strategy in those states for which Ct(x) is empty, i.e., the seller has a hybrid strategy of either

bargaining or using posted-price in every state. This can be seen as a combination of Models

1 and 2. The seller always negotiates by choosing its optimal disagreement value, ût(x), and

there is always a (weak) Pareto-improvement over the posted-price model. Figure 5.13 provides

results for the case when the buyer’s reservation value is uniformly distributed. Results for the

normal distribution are similar.
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Maximum = 2.20

Minimum = 0.37

Note:

Figure 5.13: Uniform distribution - Percentage improvement of optimal value functions of Model
3 over Model 2.

Since the seller maximizes its expected revenue subject to a constraint on the buyers’ ex-

pected value not being worse off with respect to Model 2, the solution results in the same

values of the buyers’ value functions as in the posted-price model. Thus, Model 3 provides a

vertical movement from the origin in Figure 5.12. As seen from Figure 5.13, the seller’s value
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functions are significantly higher in the hybrid model compared to the posted-price model, but

negligibly lower than those of Model 1 (see note in this Figure). This is because in all states

(x, t) the buyers’ value in Model 1 is not too far away from the buyers’ value in Model 2. The

reason is that while the buyers with “high” reservation values have lower utility in Model 1

compared to Model 2, the reverse is true for buyers with reservations values between u∗t (x) and

2p∗t (x)−u∗t (x). Thus, the loss of expected revenue to the seller in adopting Model 3 as opposed

to Model 1 is small compared to the possible advantages of keeping its buyers as satisfied with

respect to their value functions as in the posted-price model.

5.5 Short Summary

To the best of our knowledge, our bargaining model is the first to consider price negotiation

in a revenue-management setting, i.e., a finite amount of inventory must be sold in a finite

number of time periods given that the seller faces uncertainty regarding the probability of a

buyer arrival in a period as well as the reservation value of each buyer. We propose a model in

which the seller dynamically optimizes its reservation value, establish structural properties of

this model, and prove that the seller has higher expected optimal value functions in any state

compared to the case when it adopts a price-posting policy. We also provide an explanation for

this increase by studying the cumulative price and quantity effects. Finally, we study a model

which results in a Pareto improvement in terms of the seller’s optimal value functions and the

average buyer value functions over the posted-price setting.

In the next chapter, we present additional numerical experiments for our bargaining model

presented in this chapter. We also discuss the concept of ex-post efficiency of a bargaining

model and show that our bargaining model is not ex-post efficient. We numerically show that

if the seller adopts an ex-post efficient bargaining model, the decrease in its expected revenue

can be substantial compared to our bargaining model.
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Chapter 6

Additional Experiments for Chapter 5

In this chapter, we present additional numerical experiments conducted for the bargaining

model presented in §5.2. In addition to the uniform and normal distributions for the buyer’s

reservation value W , we consider the exponential distribution (W ∼ exp(λ)), and the triangular

distribution (W ∼ Triang(0, 0.5, 1)). These four distributions are chosen as they provide a rich

representation of the buyer’s reservation value for the continuous case. §6.1 shows the benefit

from adopting a dynamic as opposed to a myopic approach for the triangular distribution.

It also presents the percentage improvement of the optimal value functions of Model 1 over

those of Model 2 for the exponential and triangular distributions. These results are similar

to those obtained in §5.2.1 and §5.3.2, respectively. We study in §6.2, two relevant factors for

the expected immediate reward in any state: (i) The change in the probability of reaching a

sale agreement in any state, and (ii) the percentage improvement of the expected Nash price

conditional on sale agreement with respect to the posted-price in any state. We observe that

both these factors are positive for the bargaining model over the posted-price model. Thus,

the expected immediate reward in any state is also greater in the former model. Finally,

an important concept in the bargaining literature is called ex-post efficiency. A bargaining

outcome is ex-post efficient if and only if after all the information is revealed, the players’

payoff associated with the bargaining outcome are Pareto-efficient. This is different from the

concept of Pareto improvement considered §5.4 since we are not necessarily trying to improve

both the seller’s and the average buyer’s value function but rather considering every single

negotiation and making sure each and every one of them is Pareto efficient. In §6.3, we show

that the bargaining models considered in chapter 5 are not ex-post efficient, and that the only

ex-post efficient model under the Nash bargaining solution assumption is the one in which

the seller uses its opportunity cost as its reservation value. We show that this approach can

91
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result in significant decrease in the optimal value functions compared to the bargaining model

of chapter 5. However, even in this case the optimal value functions are greater than those of

the posted-price model for some distributions of the buyer’s reservation value, and smaller for

other distributions.

6.1 Numerical Examples for Exponential and Triangular

Distributions

Benefit from dynamic approach over myopic approach.

We numerically calculate the percentage increase of the optimal value functions of Model 1

over the value functions computed using (5.3)-(5.4), assuming W ∼ Triang(0, 0.5, 1). Figure

6.1 displays this percentage improvement with q = 0.9, X = 10, and T = 10.

Dynamic vs. myopic strategy: Triangular case
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Figure 6.1: Benefit in expected revenue resulting from adopting a dynamic rather than myopic
approach; W triangularly distributed.

Once again, we observe that the percentage improvement of the dynamic strategy over the

myopic strategy is very high when the ratio of the inventory level to the number of time periods

to go is less than 0.6. The average percentage improvement over all states (x, t) is 7.55%.

Bargaining model vs. posted-price model.

We numerically compute the percentage improvement of the seller’s optimal value functions

obtained from Model 1 over those from Model 2 for two different distributions of the buyer’s
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reservation value - exponential and triangular. These values are plotted in Figures 6.2 and

6.3, respectively. In these plots, the horizontal axis corresponds to the inventory level and the

vertical axis corresponds to the percentage improvement value. Two scenarios are considered:

(i) High probability of buyer arrival (q = 0.9) and (ii) low probability of buyer arrival (q =

0.3). The observations are similar to those in §5.3.2 and are not repeated here. One observation

unique to the exponential distribution is that the results are independent of the parameter λ.

This result can be easily obtained analytically.
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Figure 6.2: Exponential distribution - Percentage improvement of optimal value functions of
Model 1 over Model 2.
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Figure 6.3: Triangular distribution - Percentage improvement of optimal value functions of
Model 1 over Model 2.

Sensitivity to probability of customer arrival.

We now study the effect of probability of buyer arrival (q) on the average percentage im-

provement of the optimal value functions of Model 1 over those of Model 2 for the exponential

and triangular distributions. The average percentage improvement values taken over all states

(x, t) as a function of q are shown in Figure 6.4. For both the distributions, we find that the

average percentage improvement values decrease as q increases, but the decrease is small for
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small changes in q.
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Figure 6.4: Average percentage improvement of optimal value functions of Model 1 over Model
2 as a function of q.

6.2 Factors Effecting Expected Immediate Revenue

Two reasons why the seller’s expected immediate revenues in Model 1 are greater than those

of Model 2 are: (i) The probability of sale agreement, given by F̄ (a) =
∫∞

a
f(x) dx, is higher in

the former model, and (ii) the expected Nash price conditional on there being a sale in Model 1

is higher than the optimal posted-price obtained from Model 2, where the conditional expected

Nash price in state (x, t) is pNC
t (x) =

[∫∞
u∗

(
w+u∗

2

)
f(w) dw

]
/F̄ (u∗).

Conjecture 6.2.1.

(a) The probability of sale agreement in any state (x, t) is no smaller under Model 1 compared

to Model 2. This is equivalent to u∗t (x) ≤ p∗t (x).

(b) The expected Nash price conditional on sale agreement, pNC
t (x), is higher than the optimal

posted-price, p∗t (x), in any state (x, t).

Even though we cannot prove this conjecture, we test it numerically. Below, we evaluate

both of these factors for the (previously mentioned) four distributions of the buyer’s reservation

value.

Probability of agreement. Table 6.1 provides results for the average absolute increase in the

value of the probability of sale agreement in Model 1 over Model 2 for these distributions. The

average increase is significant for all number of time periods.
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R.V. Stat. t = 1 2 3 4 5 6 7 8 9 10
min 0.17 0.08 0.05 0.03 0.02 0.02 0.02 0.01 0.01 0.01

U [0, 1] avg 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.11 0.10 0.09
max 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
min 0.24 0.09 0.05 0.03 0.02 0.02 0.01 0.01 0.01 0.01

exp(1) avg 0.24 0.22 0.21 0.20 0.19 0.17 0.16 0.15 0.14 0.13
max 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24
min 0.07 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N(5, 1) avg 0.07 0.07 0.06 0.06 0.05 0.05 0.04 0.04 0.03 0.03
max 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
min 0.13 0.06 0.04 0.02 0.01 0.02 0.01 0.00 0.01 0.00

T (0, 0.5, 1) avg 0.13 0.12 0.12 0.11 0.10 0.09 0.08 0.07 0.07 0.06
max 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Table 6.1: Absolute increase in the probability of sale agreement in Model 1 over Model 2 with
q = 0.9.

Expected Nash price conditional on selling. Figure 6.5 provides results for the percentage

improvement of the expected Nash price conditional on selling with respect to optimal posted-

price in different states. There are many interesting observations from these experiments:

• The expected Nash price conditional on sale agreement (pNC) is always greater than or

equal to the optimal posted-price (p∗). Also, the average improvement taken over all

states (x, t) is significant for all distributions.

• The percentage improvement of pNC over p∗ is higher when u∗ is close to p∗ (almost no

difference in the probability of agreement) compared to when u∗ << p∗ (much higher

probability of agreement in Model 1). Thus, the two factors complement each other.

• For the uniform and exponential distributions, the percentage improvement is the highest

when the inventory level is in the intermediate range (3 to 5), and lowest when the

inventory level is high (7 to 10) for all times t. When the ratio of inventory level to time

periods to go is greater than 0.8, the percentage improvement is small (or u∗ << p∗).

Also, with only one time period to go the expected Nash price conditional on selling and

the optimal posted-price are the same and hence, the percentage improvement in this case

is 0. The results are independent of λ for the exponential distribution.

• For the normal and triangular distributions, the percentage improvement with one time

period to go is non-zero. This is different from the uniform and exponential distributions

in which this value is zero. In fact for these cases, the improvement is significant for all

states (x, t) and is lowest when the ratio of inventory level to time periods to go is less

than 0.3. The reason for this difference between the distributions is not clear.
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(b) q = 0.9, W ~ N(5,1)
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Figure 6.5: Percentage improvement of the expected Nash price conditional on selling from
Model 1 compared to the optimal posted-price from Model 2.

6.3 Cost of Ex-post Efficiency

According to Muthoo (1999), a bargaining outcome is ex-post efficient if and only if after all

of the information is revealed, the players’ payoff associated with the bargaining outcome are

Pareto-efficient. The concept of ex-post efficiency is also known as full-information efficiency.

Please refer to chapter 5 for Model 1 (optimization-based bargaining model). In Model 1, if

the buyer has a reservation value between the seller’s opportunity cost and the seller’s optimal

reservation value then there is no sale which is not a Pareto-efficient result. Thus, this model

is not ex-post efficient. An ex-post efficient model should result in a sale whenever the buyer’s

reservation value is higher than the seller’s opportunity cost and no sale otherwise. Given that

the bargaining outcome is modeled using a Nash bargaining solution, the only ex-post efficient

model is one in which the seller uses its opportunity cost as its reservation value. We present

this ex-post efficient bargaining model that uses the seller’s opportunity cost as its reservation

value as a second benchmark. Define V O
t (x) as the seller’s optimal value function in state (x, t)

for this model.
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Model 4.

V O
t (x) = (1− q)V O

t−1(x) + q

[
V O

t−1(x) F (4V O
t (x)) +

∫ ∞

4V O
t (x)

(
pO

t (w, x) + V O
t−1(x− 1)

)
f(w)dw

]

= V O
t−1(x) +

q

2

[∫ ∞

4V O
t (x)

(
w −4V O

t (x)
)
f(w)dw

]
x = 1, . . . , X, t = 1, . . . , T, (6.1)

where, 4V O
t (x) = V O

t−1(x)− V O
t−1(x− 1) x = 1, . . . , X, t = 1, . . . , T, and

pO
t (W,x) =

(
W + V O

t−1(x)− V O
t−1(x− 1)

)

2
=

(W +4V O
t (x))

2

x = 1, . . . , X,

t = 1, . . . , T,

and boundary conditions V O
t (0) = 0 t = 1, . . . , T , V O

0 (x) = 0 x = 1, . . . , X.

Model 1 is not ex-post efficient, while Model 4 is. Below, we compare these two models (as

well as the posted-price model, Model 2) to determine the cost of achieving ex-post efficiency for

four distributions of the buyer’s reservation value - uniform, exponential, normal, and triangular.

Again, the results of the comparisons of this section are rather insensitive to change in the

probability of customer arrival (q) and hence, we consider only two cases: (i) q = 0.9 and (ii)

q = 0.3.

First, consider the uniform case - W ∼ U [0, 1]. It is easy to show analytically that the

seller’s optimal value functions are the same for Model 4 and Model 2. Thus, Figure 5.6 also

compares Model 1 to Model 4.

Second, consider the exponential case - W ∼ exp(1). Figure 6.6 compares Model 1 to

Model 4. Looking at Figures 6.2 and 6.6, we see that the ex-post efficient model outperforms

the posted-price model in terms of the seller’s optimal value functions in all states.

Finally, Figures 6.7 and 6.8 show that the cost of achieving ex-post efficiency is considerable

when the buyer’s reservation value is distributed normally or triangularly, respectively. In these

two cases, Model 4 also results in lower optimal value functions in all states compared to Model

2, as observed from Figures 5.7, 6.3, 6.7 and 6.8.

Thus, utilizing an ex-post efficient model as opposed to the bargaining model proposed

in chapter 5 can result in significant loss of expected revenue for the seller. At the same

time, it results in the best aggregate value (refer §5.4) for the buyers, as the opportunity cost

is a lower bound on the seller’s choice of its reservation value. Finally, the ex-post efficient

model outperforms the posted-price model in terms of the seller’s optimal value function, in the
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Figure 6.6: Exponential distribution - Percentage improvement of optimal value functions of
the optimization-based bargaining model over those of ex-post efficient bargaining model.
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Figure 6.7: Normal distribution - Percentage improvement of optimal value functions of
optimization-based bargaining model over those of ex-post efficient bargaining model.
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Figure 6.8: Triangular distribution - Percentage improvement of optimal value functions of
Model 1 over Model 4.

uniform and exponential distribution cases but not in the normal and triangular distribution

cases of the buyer’s reservation value. Thus, it results in a Pareto improvement over Model 2

in the former two cases.
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6.4 Short Summary

We present additional numerical experiments for our bargaining model presented in chapter

5. We numerically show that the seller’s expected immediate revenue is also always greater

in the bargaining model as compared to the posted-price model. We also discuss the concept

of ex-post efficiency of a bargaining model and show that our bargaining model is not ex-post

efficient. We numerically show that if the seller adopts an ex-post efficient bargaining model,

the decrease in its expected revenue can be substantial compared to our bargaining model.

In the next chapter, we provide conclusions and directions for future work for all the chapters

in this dissertation.
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Chapter 7

Conclusion

7.1 Chapter 2 - Summary and Future Work

We show that the system of balance equations to obtain the limiting probability values of any

ergodic irreducible Markov chain are equivalent to a system of balance inequalities. This result

may be used to develop mathematical programming formulations for a constrained Markov

decision process. The MBEDC algorithm is one exact and efficient solution technique to ob-

tain the optimal non-randomized policy for any constrained Markov decision process. The

CPLEX USER manual (chapter 3) recommends certain settings for its MIP solver to improve

the performance for problems such as solved by the MBEDC algorithm. We tried all these

recommendations and found that the following two improved the performance of the MBEDC

algorithm considerably: (i) Setting the backtrack parameter for the MIP solver to its maximum

value of 1, and (ii) recognizing that the constraints requiring the binary variables to sum to one

are SOS constraints of type 1. With these settings, the MBEDC algorithm finds “good” integer

feasible solutions quickly, but spends the major portion of the computation time in improving

the best node value, i.e., the current best lower bound. This is because the MBEDC algo-

rithm introduces some degeneracy into the formulation, i.e., multiple solutions with the same

objective value are possible for the relaxed sub-problems when not all the binary variables are

forced to be integers. CPLEX is forced to explore multiple nodes whose resulting children

have the same objective value as the parents (the node from which they were obtained) in the

branch and bound tree. Hence, the improvements in the best node in CPLEX are very slow.

However, the MBEDC algorithm is the only efficient technique currently to obtain the optimal

non-randomized policy for constrained MDPs. If any future study is undertaken to improve

the performance of the MBEDC algorithm or to find an algorithm with better performance,

101
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this dissertation provides details of studies already performed with this goal in mind. Hence,

any future efforts can start where this dissertation stops. For example, formulations (F1), (F2),

and (F3) are studied for this reason, however, they are not efficient for the CDOS problem. In

the future, we plan to study the computational time required for Formulation (F1), the BEDP

algorithm, to solve the multi-item spare parts problem introduced in chapter 4. The BEDP

algorithm does not introduce degeneracy into the formulation because of the mostly block struc-

ture of its constraint co-efficient matrix, but its performance needs to be tested. Finally, the

flowchart in Figure 7.1 details how to employ the MBEDC algorithm for any constrained MDP

problem with p parameters. In particular for the CDOS problem, p = 4 (x, y, n1, n2), and m

= 2 (x, y), and PI, VI and LP refer to policy iteration, value iteration and linear programming,

respectively.

CMDP problem with p parameters

Choose # of parameters to fix. m <= p

m=0
m=1 m=2 m=3

m=p

Enumeration

Constraints?

NO YES

For each combination of the m 

parameters, solve the resulting 

MDP using PI, VI, LP. 

Enumerate over all combinations 

of the m parameters.

Randomized 

solution?YES

NO

For each combination of the m parameters, solve the 

resulting CMDP using the MBEDC algorithm. 

Enumerate over all combinations of the m parameters.

Figure 7.1: MBEDC strategy. PI = policy iteration, VI = value iteration, LP = linear pro-
gramming.

7.2 Chapters 3 and 4 - Summary and Future Work

The CDOS problem is a very relevant problem not only in call centers but in many other

service industries such as flexible Internet servers (Akamai Technologies, www.akamai.com),

restaurants, banks, grocery stores, etc. The key feature all of these businesses share is that

service level goals are important and hence must be included in their operational model. Tra-

ditionally, these goals have been included as opportunity costs, but such costs are difficult to
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estimate, whereas modeling the goals as constraints is straightforward.

We are the first to utilize Integer Programming techniques to solve the CDOS problem with

explicit service level constraints for the optimal non-randomized policy. As such we provide a

bridge between Integer Programming and constrained MDPs, demonstrating how the former

can be used to efficiently solve the latter. Our MBEDC algorithm is an efficient, exact solution

method for the CDOS problem and its relative performance improves over enumeration as

the problem size increases. In general, the MBEDC algorithm can be used in two ways: (i)

Direct implementation to find optimal solutions in real time for real world problems, or (ii) to

benchmark heuristics (instead of lower/upper bounds) for real world problems.

In the CDOS problem, we find that the opportunity costs have a tremendous effect on

the optimal number of temporary operators (cf. Section 3.4.2), and hence it is crucial they

are accurately estimated. In our experiments we find that it is optimal to use at least one

temporary operator for all ranges of the service level targets. Moreover, the value of flexibility

provided by temporary operators in the case of very stringent or very relaxed service constraints

changed within a range of 2-8%. If hiring costs dominate, each temporary operator is effective

at reducing cost. On the other hand, if the opportunity cost dominate, then only one or possibly

two temporary operators are effective at reducing costs. Moreover, we find that the call center

manager should invest no (or negligible) resources compared to the hiring and opportunity costs

in trying to determine the real time arrival rate. The main concern should be to determine

the correct staffing levels of the permanent and temporary operators and possibly just a single

threshold value for the number in queue at which the temporary operators are asked to provide

service.

Satisfying a service level constraint (beyond some minimal threshold level) imposes costs on

a service provider. Temporary operators can be an important tool in reducing these costs, as

they provide finer staffing control for the call center manager. While we focus on the probability

of no delay constraint and the number in queue constraint, the economic cost of satisfying any

service level goal (constraint) can be obtained similarly, by comparing the optimal objective

values of the CDOS problem with and without that particular constraint, respectively.

In the future we also plan to study: (i) CDOS problem with multiple customer classes,

and (ii) CDOS problem where the manager only needs to satisfy l of the L service level goals

using Disjunctive Programming techniques (Balas, 1998). In the infinite buffer CDOS problem

with multiple customer classes, applying the matrix analytic method is more difficult as the

resulting Markov chains will be infinite in multiple dimensions. However, an approximation

scheme called dimensionality reduction has been proposed for such problems in Harchol-Balter
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et al. (2003).

In chapter 4 we study two applications of constrained MDPs in the literature. For the ADT

threshold policy problem we show that percentage decrease in the mean response time is small

from adopting the optimized general threshold policy as opposed to the optimized ADT policy.

For the spare parts problem, we provide the first exact solution method. However, we can solve

only up to seven items easily. Ours is the first study that obtains the optimal non-randomized

policy for both of these problems by using the MBEDC algorithm.

7.3 Chapters 5 and 6 - Summary and Future Work

In chapter 5, we propose a framework to incorporate price-bargaining into revenue-management

problems. Our results provide a theoretical support to the existing practice of bargaining in

B2B settings. First, we show that there is significant benefit in expected revenue if the seller

adopts a dynamic rather than a myopic price-bargaining approach. Second, we establish that

the seller is always (weakly) better off by bargaining, rather than posting prices, and is often

significantly better off. Third, we indicate how the seller can improve its expected revenue by

price-bargaining compared to posted-price without decreasing the buyers’ expected value. The

framework proposed in this thesis and the results obtained motivate the following extensions.

• Multiple-issue bargaining. The seller and the buyer negotiate multiple issues such as

price, quantity, delivery time, multiple-product prices and quantities, etc., in a revenue-

management setting. In particular, if the seller negotiates both the price and quantity

with the buyer, then the seller must determine its optimal reservation value as a function of

quantity. The bargaining outcome can still be modeled using a Nash bargaining solution,

with the utility functions of the two parties suitably modified to incorporate both price

and quantity considerations.

• Strategic customers. We have assumed that the buyers are myopic, i.e., the buyer’s

reservation value does not depend on the transactional mechanism (bargaining or posted-

pricing). An important challenge is to model the behavior of buyers who behave strate-

gically, for example as in Talluri and van Ryzin (2004a) for the posted-price case. In this

case, the buyers may optimize their reservation values, which may become different from

their true reservation values.

• Competition. The only way to consider competition on the seller’s side in the current

model is to predict its effect on the buyer’s reservation-value random variable. A more

sophisticated model that considers competition should be developed as in Netessine and
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Shumsky (2001) for the posted-price case. A relevant question in the presence of com-

peting sellers is to determine the equilibrium behavior of each seller. For example, if two

sellers are competing, will they both decide to adopt a bargaining policy, or will they

both adopt a posted-price policy, or will one adopt a posted-price policy and the other a

bargaining policy?

In chapter 6, we reinforce the results from chapter 5 by conducting additional numerical

experiments using two different distributions for the buyer’s reservation value - exponential and

triangular. We also show that the expected immediate reward for the seller is always greater

in the bargaining model as compared to the posted-price model for all four distributions of the

buyer’s reservation value. We explain this improvement by studying the two factors, (i) change

in probability of sale, and (ii) change in the expected sale price conditional on a sale, and show

that the contributions of both of these factors are positive. Finally, if the seller adopts an

ex-post efficient bargaining policy, then its expected revenue decreases significantly compared

to the bargaining model. However, the seller may still have higher expected revenue than the

posted-price case in the uniform and exponential distribution cases for the buyer’s reservation

value.
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Appendix A

Appendix for Chapters 5 and 6

A.1 Proof of Properties of Model 1

Proof. We prove the properties of Model 1 listed in §5.2.

(i) For any state (x, t) (from (5.2)),

V N
t (x) = V N

t−1(x) + q maxu≥0

[∫ ∞

u

(
w + u

2
−4V N

t (x)

)
f(w) dw

]
≥ V N

t−1(x)

(ii) The proof is identical to the proof developed in Zhao and Zheng (2000), and we only need

to replace prices in the proof (p) by reservation values (u).

(iii) Proof is by mathematical induction. V N
0 (x) is trivially increasing in x. Assume V N

t−1(x) is

increasing in x. Also from (ii), V N
t (x) is concave in x for all t ∈ {1, . . . , T}. Hence, 4V N

t (x) ≤
4V N

t (x− 1) in any state (x, t). From (5.2),

V N
t (x)− V N

t (x− 1) = V N
t−1(x) + q maxu≥0

∫ ∞

u

(
w + u

2
−4V N

t (x)

)
f(w) dw

− V N
t−1(x− 1)− q maxv≥0

∫ ∞

v

(
w + v

2
−4V N

t (x− 1)

)

≥ 0 + qht(x) (V N
t−1(x) ≥ V N

t−1(x− 1) from induction hypothesis)

To complete the proof note that,

ht(x) = maxu≥0

∫ ∞

u

(
w + u

2
−4V N

t (x)

)
f(w)dw −maxv≥0

∫ ∞

v

(
w + v

2
−4V N

t (x− 1)

)
f(w) dw
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≥ maxu≥0

∫ ∞

u

(
w + u

2
−4V N

t (x)

)
f(w)dw −maxv≥0

∫ ∞

v

(
w + v

2
−4V N

t (x)

)
f(w) dw = 0

(iv) For any given state (x, t), u∗ must satisfy the following first order condition (assuming differ-

entiability of F (u)): ∂
∂u

[
V N

t−1(x) F (u) +
∫∞

u

(
w+u

2
+ V N

t−1(x− 1)
)
f(w) dw

]
= 0. By Leibnitz’s

rule, this implies that u∗ = 4V N
t (x) + 1

2
F̄ (u∗)
f(u∗) provided that f(u∗) 6= 0 (here F̄ (·) := 1− F (·)).

Note that F̄ (u∗)
f(u∗) is the inverse of the hazard rate of the buyer’s reservation value random variable

at u∗. If f(u∗) = 0, optimality of u∗ implies that F̄ (u∗) = 0, i.e., u∗ ≥ wmax ≥ 4V N
t (x), where

wmax := inf{w : F̄ (w) = 0}. Hence, u∗t (x) ≥ 4V N
t (x) in any state (x, t).

(v) We will use the following theorem from Topkis (1978):

Theorem A.1.1. If (a) g is supermodular (submodular) on the set of feasible states and actions,

C, (b) A(·) is ascending on the set of feasible states, and (c) A∗(s) is nonempty for every state

s, then (d) A∗(·) is ascending (descending) on the set of feasible states.

(a) Let gt(u, x) =
∫∞

u

(
w+u

2
−4V N

t (x)
)
f(w) dw. Then, u∗t (x) = arg maxu≥0 gt(u, x). We drop

the subscript t from gt(·) and 4V N
t (x) and denote the state by x. Lemma A.1.1 (a), below,

gives that g(u, x) is submodular on the set of feasible u and x. Let A(x) denote the set of

admissible values for u ({u : u ≥ 0}) when the inventory is x. A(·), called the set function

(Topkis, 1978), is same for all x and, hence, is trivially ascending (Topkis, 1978) in x. Let A∗(x)

denote the set of optimal actions for state x. It can be easily shown that all the conditions of

Theorem A.1.1 are met, and hence u∗t (x) is decreasing in x for any t ∈ {1, . . . , T}.
(b) Let hx(u, t) =

∫∞
u

(
w+u

2
−4V N

t (x)
)
f(w) dw. Then, u∗t (x) = arg maxu≥0 hx(u, t). We drop

the subscript x from ht(·) and 4V N
t and denote the state by t. Lemma A.1.1 (b), below, gives

that h(u, t) is supermodular on the set of feasible u and t. Let A(t) denote the set of admissible

values for u ({u : u ≥ 0}) when the time to go is t. A(·), called the set function, is same for

all t and, hence, is trivially ascending in t (Topkis, 1978). Let A∗(t) denote the set of optimal

actions for state t. It can be easily shown that all the conditions of Theorem A.1.1 are met and

hence, u∗t (x) is increasing in t for any x ∈ {1, . . . , X}.
Lemma A.1.1. (a) g(u, x) is submodular, i.e., for any u, u′, x, x′ (in the domain of g) such that

ū = u∨u′, x̄ = x∨x′, u = u∧u′, and x = x∧x′, we have g(u, x)+ g(u′, x′) ≥ g(u, x)+ g(ū, x̄).

(b) h(u, t) is supermodular, i.e., for any u, u′, t, t′ (in the domain of h) such that ū = u ∨ u′,

t̄ = t ∨ t′, u = u ∧ u′, and t = t ∧ t′, we have h(u, t) + h(u′, t′) ≤ h(u, t) + h(ū, t̄).

Pf : (a) Assume without loss of generality that u ≤ u′. Then
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I = g(u, x) + g(u′, x′)− g(u, x)− g(ū, x̄) = g(u, x) + g(u′, x′)− g(u, x)− g(u′, x̄)

= −4V N(x)F̄ (u)−4V N(x′)F̄ (u′) +4V N(x)F̄ (u) +4V N(x̄)F̄ (u′)

= F̄ (u)
[4V N(x)−4V N(x)

]− F̄ (u′)
[4V N(x′)−4V N(x̄)

]

If x ≤ x′, then I = 0. If x > x′ then, I = [F̄ (u) − F̄ (u′)]
[4V N(x′)−4V N(x)

] ≥ 0. (Since

u ≤ u′ and x′ < x.) Thus, g(u, x) is submodular.

(b) Assume without loss of generality that u ≤ u′. Then

I = h(u, t) + h(u′, t′)− h(u, t)− h(ū, t̄) = h(u, t) + h(u′, t′)− h(u, t)− h(u′, t̄)

= −4V N
t F̄ (u)−4V N

t′ F̄ (u′) +4V N
t F̄ (u) +4V N

t̄ F̄ (u′)

= F̄ (u)
[4V N

t −4V N
t

]− F̄ (u′)
[4V N

t′ −4V N
t̄

]

If t ≤ t′, then I = 0. If t > t′ then, I = [F̄ (u)− F̄ (u′)]
[4V N

t′ −4V N
t

] ≤ 0. (Since u ≤ u′ and

using Proposition A.1.2, below.) Hence, h(u, t) is supermodular.

Lemma A.1.2. For Model 1, 4V N
t+1(x) ≥ 4V N

t (x) in any state (x, t).

Pf : Note that

4V N
t+1(x) = V N

t (x)− V N
t (x− 1) = 4V N

t (x) + q I

where,

I = maxv≥0

[∫ ∞

v

(
w + v

2
−4V N

t (x)

)
f(w)dw

]
−maxu≥0

[∫ ∞

u

(
w + u

2
−4V N

t (x− 1)

)
f(w)dw

]

≥ maxv≥0

[∫ ∞

v

(
w + v

2
−4V N

t (x)

)
f(w)dw

]
−maxu≥0

[∫ ∞

u

(
w + u

2
−4V N

t (x)

)
f(w)dw

]

= 0. (The first inequality is true since 4V N
t (x− 1) ≥ 4V N

t (x) from the concavity of V N
t (x).)

Thus, 4V N
t+1(x) ≥ 4V N

t (x) for any state (x, t).
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A.2 Structural Properties of Optimal Value Functions of

Model 4

The structural properties of the seller’s optimal value functions from Model 4 are provided

below.

Proposition A.2.1. (Properties of the seller’s optimal value functions from Model 4:)

(i) V O
t (x) is increasing in t for any x (t = T at start and t = 0 at the end of the horizon).

(ii) V O
t (x) is concave in x for any t.

(iii) V O
t (x) is increasing in x for any t.

Proof. (i) For any state (x, t), we obtain from (6.1),

V O
t (x) = V O

t−1(x) +
q

2

[∫ ∞

4V O
t (x)

(
w −4V O

t (x)
)
f(w)dw

]
≥ V O

t−1(x)

(ii) We use mathematical induction for the proof. The optimal value function equation (??)

from Model 4 can also be written as:

V O
t (x) = (1− q)V O

t−1(x) + q EW

[
max

[
pN(w, x, t) + V O

t−1(x− 1), V O
t−1(x)

]] x = 1, . . . , X

t = 1, . . . , T
(A.1)

Let g(w, x) = max
[
pN(w, x, t) + V O

t−1(x− 1), V O
t−1(x)

]
. Then from (A.1) we have:

V O
t (x) = (1− q)V O

t−1(x) + q EW [g(w, x)] x = 1, . . . , X t = 1, . . . , T (A.2)

V O
0 (x) is trivially concave in x. Assume V O

t−1(x) is concave in x (t ≤ T ). From Lemma A.2.1,

g(w, x) is concave in x for any w, and hence EW [g(w, x)] is also concave in x. Then from (A.2),

V O
t (x) is concave in x. Thus by mathematical induction, V O

t (x) is concave in x for any t.

Lemma A.2.1. g(w, x) is concave in x for any w.

Pf :

g(w, x) = max
[
pN(w, x, t) + V O

t−1(x− 1), V O
t−1(x)

]

= max

[
w

2
+

V O
t−1(x)

2
+

V O
t−1(x− 1)

2
, V O

t−1(x)

]
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Let x̂ = max{x : 4V O
t (x) ≥ w}. Since 4V O

t (x) is decreasing in x, 4V O
t (x) ≥ w for all x ≤ x̂

and 4V O
t (x) < w for all x > x̂.

Case 1: x < x̂

⇒ g(w, x) = V O
t−1(x)

This is concave and increasing in x. Thus g(w,x) is concave and increasing in x in the interval

0 ≤ x < x̂.

Case 2: x > x̂

⇒ g(w, x) = w
2

+
V O

t−1(x)

2
+

V O
t−1(x−1)

2

This is concave and increasing in x. Thus g(w,x) is concave and increasing in x in the interval

x > x̂.

Thus, we need to show that g(w, x) is concave at x = x̂ to prove that g(w, x) is concave in

x. Let I = (g(w, x̂ + 1)− g(w, x̂)) - (g(w, x̂)− g(w, x̂− 1))

=
(

w
2

+
V O

t−1(bx+1)

2
+

V O
t−1(bx)

2
− V O

t−1(x̂)
)
− (

V O
t−1(x̂)− V O

t−1(x̂− 1)
)

Note that w = V (̂(x))− V (x̂− 1). Thus,

I =
V O

t−1(x̂)

2
− V O

t−1(x̂− 1)

2
+

V O
t−1(x̂ + 1)

2
+

V O
t−1(x̂)

2
− 2V O

t−1(x̂) + V O
t−1(x̂− 1)

=
V O

t−1(x̂ + 1)

2
+

V O
t−1(x̂− 1)

2
− V O

t−1(x̂)

But V O
t−1(x) is concave in x. Thus, I ≤ 0 and g(w, x) is concave in x at x = x̂. Hence,

g(w, x) is concave in x.

(iii) From Model 4, the optimal value function equation is

V O
t (x) = V O

t−1(x) +
q

2

[∫ ∞

4V O
t (x)

(
w −4V O

t (x)
)
f(w)dw

]
x = 1, . . . , X t = 1, . . . , T

We show that the right hand side of the above equation is increasing in x by using mathematical

induction. V O
0 (x) is trivially increasing in x. Assume that V O

t−1(x) is increasing in x (t ≤ T ).

Also 4V O
t (x) is a decreasing function of x since V O

t−1(x) is a concave function of x (from part

(ii) above). Thus, the right hand side of the above equation is increasing in x.
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