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Abstract

Exogenous demand assumptions provide accurate results at the retail level. As we go in the

supply chain, the orders of the buyers get more complicated. The orders are influenced by

both the decisions of the supplier and the costs of the buyer’s operations. Therefore, it is

critical for a supplier to understand the ordering behavior of a buyer in order to manage her

operations. We consider a two-stage supply chain where the buyer faces a stationary and

stochastic demand from his customers. The buyer places an order to maximize his profits.

We provide a theoretical and empirical framework to analyze the buyer behavior. We study

two practical problems: design of quantity discounts and handling reported forecasts. Our

goal is to improve the supplier’s operations through a better understanding of the buyer’s

ordering behavior.

In the first part, we study an all-unit quantity discount problem under stochastic de-

mand for a single-item in a single supplier, single buyer setting. First, we analyze the

buyer’s problem. For a single period, we derive the buyer’s optimal policy, which we call a

three-index policy. We investigate the structure of the optimal policy for the infinite hori-

zon problem and show that higher index policies with complex order structures may turn

out to be optimal. We characterize the conditions under which such order structures are

observed and identify two strategies, wait-and-see and buy-and-hold, that complicate the

optimal policy. With a numerical analysis, we show that for the infinite horizon problem the

performance of the best three-index policy is within 4.5% of the optimal, with an average

deviation of no more than 1%. Next, we look into the supplier’s problem. We suggest dis-
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ii Abstract

count schemes that the supplier may use to moderate the buyer’s ordering behavior under

different transportation costs. We investigate the effect of increasing transportation costs

on the discount schemes offered by the supplier. We also discuss potential limitations of

quantity discounts and provide pitfalls in designing quantity discounts.

In the second part, we provide a data mining analysis of forecasting patterns of multiple

buyers (auto manufacturers) from a large auto parts supplier. As part of collaborative

forecasting, forecasts of future orders are used as inputs for a series of decisions. We

define the complexities that are captured from our data set. We develop the daily flow

analysis to obtain accuracy ratios of forecasts as a performance measure for buyers. We

also demonstrate the application of some recent developments in clustering and pattern

recognition analysis which can have a significant impact on the performance analysis of

buyers. In our empirical analysis, we show that buyers are consistent with their forecast

behavior over time. Some buyers consistently over or underestimate their orders.

In the third part, we look at the factors behind the poor forecast performance of the

buyers. Unfortunately buyer forecasts cannot be used directly as we show in the second part.

They may be biased since the buyer may want to mislead the supplier into believing that

orders may be larger than expected to secure favorable terms or simply because the buyer

is a poor forecaster. There are several unusual elements in our problem: Analysts typically

observe the actual process which may be biased due to asymmetric loss function. Also units

are discrete not continuous. We believe the forecasting process can be modeled in a multi

stage process. The buyer first computes the distribution of demand at a future date which

we assume to follow an ARMA(1,1) model. The buyer then submits an integral forecast

(multiples of lot sizes), which minimizes his expected loss due to forecast errors. From data

we show that the buyer may bias his forecasts under an asymmetric loss functions. We

provide an estimator which can be used by the supplier to estimate the forecast generation

model of the buyer by looking at his forecasts.
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Chapter 1

Introduction

Understanding customer demand has always been a challenge in supply chain management.

There are different aspects of orders placed at each level in a supply chain. It is common and

perhaps sufficiently accurate to model end item level demand at the buyer as an exogenous

demand distribution. As we go “up” in the supply chain, the traditional models and ex-

ogenous demand assumptions are often grossly violated. Much of the operations literature

still makes exogenous demand assumptions at the supplier level. However, this turns out

to be an unrealistic assumption when we look at real order data from the suppliers.

During my doctoral studies at Carnegie Mellon University, I have participated in in-

dustry projects with two major suppliers: Bosch and Heinz. We analyze buyers’ ordering

behavior to improve the supplier’s supply chain operations. Figure 1 shows orders that are

placed by two different Wal-Mart stores at Heinz. As we can see from Figure 1, there is

heterogeneity in the customer orders between different buyers and the orders do not follow a

well-behaved demand distribution. Therefore, assuming exogenous demand at the supplier

can be quite misleading.

The orders of the buyer are influenced by several factors other than the end-item level

demand. The buyer can have different costs associated for each action and there might

be different pricing and penalty schemes offered by the supplier. In this case, a buyer is

1
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Figure 1.1: Orders of two different Wal-Mart stores from Heinz.

expected to have some level of decision process to maximize his profits. The management

of operations at the supplier level requires a better understanding of the decision process of

the buyer. Therefore, a realistic model should assume that the orders generated by a buyer

are a result of some rational decision process. In this thesis, we study improving supplier’s

operations through better understanding of her buyer’s orders. We do so by considering a

two-stage supply chain where the buyer faces a stationary and stochastic demand from his

customers at the end-item level. In our model, the buyer uses a decision support mechanism

to generate his orders. We also provide empirical support for this rationality assumption

from the real data at the supplier level.

In this thesis, we study improving supplier’s operations through better understanding

of her buyer’s orders. We concentrate on three important topics that are motivated from

the industry projects for the suppliers:

1. Design of quantity discounts

2. Understanding forecast behavior of buyers

3. Predicting orders from forecasts
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In Chapter 2, we first study effective design of quantity discounts from a supplier’s

perspective. In Chapter 3, we analyze the forecasts of buyers (auto manufacturers) in auto-

motive industry and show how buyers are consistently overestimating and underestimating

their orders. In Chapter 4, we study the reasons for the poor forecast performance of the

customers and test the hypothesis that the buyer generates his forecasts to minimize his

loss. In all three cases, we consider a two-stage supply chain where the buyer faces a sta-

tionary and stochastic demand from his customers at the end-item level. We do not make

any exogenous demand assumption for the orders at the supplier level. The buyer places

his orders to maximize his profit (or minimize loss). Therefore the orders are generated as

a result of some decision process by the buyer.

1.1 Design of Quantity Discounts

In Chapter 2, we study quantity discounts under demand uncertainty. Increasing profits in

the presence of discounting is one of the biggest challenges that suppliers face today. When

combined with buyers’ increasing purchasing power, the fierce competition forces the sup-

pliers to offer discounts. In addition to the competitive reasons, there are many tangible and

intangible operational benefits of larger order sizes that justify the lower prices of quantity

discounts that a supplier offers. The transportation costs are increasing due to increasing

oil prices and capacity shortages. High fixed-cost operations such as transportation gain

greatly from economies of scale. In order to decrease their own costs, the suppliers should

convince their customers to place full truckload orders. One way of doing this is passing

some of the savings to their customers in the form of quantity discounts.

A well planned and well executed quantity discount scheme can actually increase the

supply chain efficiency and benefit the suppliers in environments with (high) fixed costs.

However, designing effective discount schedules is difficult. It is important that a supplier

understands how a buyer responds to a quantity discount scheme that she offers. Only
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after that she can design efficient and profitable discount schemes. This observation, as well

as the difficulties encountered during the analysis of replenishment strategies at grocery

retailers, such as Shaw’s Supermarkets in Boston (Erhun and Tayur 2003), motivated us to

study the buyer’s problem. Subsequently, a project with Heinz reinforced our interest at

the design of quantity discounts from a supplier’s perspective. We jointly study the effect

of discounts on optimal buyer behavior under stochastic demand and the characteristics of

effective discount schemes from a supplier’s perspective.

We first study the buyer’s optimal policy under quantity discounts. In a single period

setting, the optimal policy of the buyer is a three-index policy with parameters (S0, S1, S01),

where S0 and S1 are order-up-to levels with and without the discount, respectively. S01 is

the inventory position where the buyer switches from the discounted price to the original

price. For the infinite horizon problem, a three-index policy is optimal in most of the

parameter settings. However, a general well-behaved policy no longer exists. In order to

take the advantage of the discount, the buyer may defer his orders, i.e., wait-and-see, or

forward buy, i.e., buy-and-hold. These strategies complicate the optimal policy and lead

to higher number of indices. We then look into the design of an efficient discount scheme

from the supplier’s perspective. Analytically, we can determine discount schemes where

the buyer’s optimal policy is better behaved. We discuss the possible limitations of such

schemes.

The majority of the studies in quantity discounts literature analyze quantity discounts

with deterministic demand. To the best of our knowledge, there are no results on a buyer’s

optimal behavior for an all-unit quantity discount problem under stochastic demand for

multiple periods. One of our objectives in this paper is to close this gap in the literature.

The main limitation of the existing models from a supplier’s perspective is that they do

not consider the impact of quantity discounts on the buyer’s behavior. By offering quantity

discounts, for example, in the form of trade promotions, companies are likely to create

artificial spikes in their demands, which in turn would result in increased logistics costs,
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the purchase of extra equipment, overtime, and adjustments in work force to deal with

the excess demand. To make the matters worse, these artificial high-demand periods with

increased costs will be followed by periods of cannibalized future demand which would

impact the future revenues and profits. Therefore, in order to study the long-run impact

of quantity discounts from the supplier’s perspective, we should first understand buyers’

responses to quantity discounts under multi-period stochastic settings and that is what we

do in the first part of Chapter 2. We then focus on effective design of discounts from a

supplier’s perspective under stochastic demand, an area which has been widely overlooked

in the literature.

1.2 Understanding Forecast Behavior of the Buyers

In Chapter 3 of my thesis, we concentrate on the forecast behavior of customers in supply

chain. With the increased availability of enterprise wide databases, companies can easily

share demand information with collaborative forecasting. We provide a data mining analysis

of customer forecast performances in automotive industry. Based on our observation from

our data analysis we investigate the reasons behind the noise added to the forecasts during

information transmission in Chapter 4.

Collaborative Planning, Forecasting, and Replenishment (CPFR) is an evolution and

refinement of these concepts among the players in the supply chain. CPFR is an initiative

intended to improve the relationship among all participants in the supply chain through

jointly managed planning and shared information. The quality and the intensity of the

information exchange demands a strong commitment to cooperation from the participating

organizations. The planning and forecasting components require intensive information ex-

change in all levels of relationships. Unsatisfactory relationships between the parties lead

to inefficient information flow in the supply chain.

Our interest in the problem started with an industry joint project with a major auto
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parts supplier. The supplier started collecting demand information from the customers

(auto manufacturers) under a collaborative forecasting initiative. Our goal is to improve

the supplier’s operations through a better understanding of its customers’ ordering behav-

ior. The supplier is using the forecasts of future orders as inputs for a series of decisions.

We provide a data mining analysis of customer forecasting patterns of these buyers. We

explore and analyze large quantities of data to discover meaningful patterns and rules for

the customers. We define the complexities that are captured from our data set, developing

the daily flow analysis to obtain accuracy ratios of forecasts as a performance measure for

customers. We also demonstrate the application of some recent developments in clustering

and pattern recognition analysis that can have a significant impact on the performance

analysis of customers.

Our goal is to define a framework for analyzing the forecast performance of the cus-

tomers and to provide empirical support for different forecast behaviors. In our analysis,

we explore and analyze large quantities of data to discover meaningful patterns and rules

for the ordering process of customers. In Chapter 3, we provide answers to the following

questions:

a. Are classical forecasting techniques applicable? If not, is it possible to clean the

forecasts in order to prepare the data for a deeper estimation analysis?

b. Is it possible to provide a quantitative representation of a customer’s forecast perfor-

mance?

c. Can we visualize the behavior of customers through time?

d. Can customers be assigned to groups? Do these groups represent significant common-

ality among different forecast behaviors?

e. How can we recognize different forecasting patterns? Is it possible to automate the

process of anomaly detection from the data?

f. Are customers consistent with their forecast behavior? What is the general tendency



Chapter 1. Introduction 7

in terms of over-forecasting or under-forecasting?

In our analysis we show that customers are consistent with their forecast behavior. Some

customers consistently provide poor forecast performance.

1.3 Predicting Orders from Forecasts

In Chapter 3, we show that some buyers are consistently overestimating or underestimating

their forecasts. In Chapter 4, we study the reasons behind the poor forecasts performance

of the buyers and provide a technique to predict the future orders of the buyers by looking

at their forecasts. The bias added to the forecasts by the buyer makes the use of forecasts

questionable for the supplier. We show that the supplier can still extract any available

information from the forecasts.

We assume that the forecasts are generated as a result of a multi-step decision process at

the buyer. Due to uncertainty in his own demand, the buyer cannot provide a true estimate

for his own order in advance. In order to model the end item demand at the buyer, we use

an ARMA(1,1) model. Depending on his available information, the buyer first computes

internal forecasts which can be modeled as some probability distribution. The buyer can

consider the trade-off between overestimation and underestimation. By using a newsboy

framework, the buyer can submit a forecast which minimizes his cost. Due to the issues

with lot sizes the final forecast can be converted to an integer value which is the number of

lots. In order handle the cases where the demand does follow an ARMA process, we assume

that there might be some additional noise in the final forecast.

Our main objective is to explain the cost and demand structure of the buyer by looking

at his forecasts. In this case, the buyer can remove the bias from the forecasts and do

product planning accordingly. If the supplier fails to generate unbiased forecasts from

the actual forecasts of a buyer, the credibility of the forecast information decreases. We

provide a sampling algorithm which can be used effectively to predict the cost and demand
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parameters of a buyer. The supplier can then use the results to generate unbiased forecast

for the buyer’s orders.

We also build a hierarchical model where we study several buyers and products at the

same time to understand the overall cost and demand structure of the buyers. This also

gives us chance to predict the real orders better by looking at the forecasts of other buyers.

The buyers of a product can inflate their orders at the same time due to some factors in

the market. Therefore, it might be practical to know the overall trend in the industry.



Chapter 2

Quantity Discounts under Demand

Uncertainty

The transportation costs are growing, on average, 6% annually due to increasing fuel prices

and capacity shortages (Banta 2004). The changing transportation cost structure increases

the pressure on supply chain managers to eliminate transportation inefficiencies. According

to a recent survey of over 60 corporate executives from a wide range of industrial companies,

98% of manufacturers said that the changing cost structures have already impacted their

business and 77% say their company executives are more focused on supply chain operations

because of it (Industry Directions 2005). Companies who manage their transportation

network effectively gain considerable competitive advantage in the market due to lower

overall costs. One way of achieving this goal is minimizing inefficient use of transportation

capacity by administering full truckload shipments: truckload operations are simpler to

manage and lower in costs compared to less-than-truckload shipments. This approach has

a possible setback: larger orders decrease the transportation costs in expense of inventory-

related costs. Especially when these two costs are incurred by different parties, such as

suppliers and buyers, there is a clear incentive misalignment. For the suppliers who carry

the burden of transportation costs, a common practice to align incentives is to provide their

9
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customers quantity discounts. This way the suppliers pass on some of their savings due to

better capacity utilization to their customers.

Although very common in practice, quantity discounts are hard to manage. Less than

10% of suppliers in a recent study feel that they are effectively managing their discount

and promotion schemes (Adesso 2005). From the supplier’s perspective, poorly managed

discount schedules not only fail to provide the expected returns but also create additional

problems like inflating the uncertainty in the system, a phenomenon known as the bullwhip

effect in the literature (Lee et al. 1997). If the supplier enforces quantity discounts without

considering the uncertainty in the system, these discounts are likely to create chaotic orders

and increase the cost of the supplier. From the buyer’s perspective a poorly managed

discount schedule increases the total costs of the system. However, the current state of the

academic literature on quantity discounts in stochastic environments does not equip the

suppliers and their buyers to handle these inefficiencies.

These observations, as well as the difficulties we encountered during the analysis of

replenishment strategies at grocery retailers, such as Shaws Supermarkets in Boston (Erhun

and Tayur 2003), motivated us to study the buyers problem. Subsequently, a project to

design quantity discounts at H.J. Heinz Company, a Pittsburgh-based leading global food

company, reinforced our interest in the design of quantity discount schemes from a suppliers

perspective.

Heinz, who manages its own transportation network, has been affected immensely by the

recent increases in transportation costs. The company observed more than a 20% increase in

its transportation costs during the last couple of years. Historically Heinz provides quantity

discounts to its customers: when a customer orders close to a full truck (more than 42,000

pounds), he receives a discount. However, the recent increases in transportation costs forces

the company to reconsider its current quantity discount practices. Heinz currently redesigns

its discount mechanism to increase the average load and decrease the transportation cost.

With this paper, we jointly study two practical problems: (1) the effects of discounts
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on optimal buyer behavior under stochastic demand and (2) the characteristics of effective

discount schemes from a suppliers perspective. We do so by considering a single-item, two-

stage quantity discount model where the buyer faces a stationary and stochastic demand

from his customers. We consider an all-unit quantity discount provided by the supplier to

the buyer with a single price break.

Our analysis leads to one final question: is providing a quantity discount an efficient

method for the supplier to eliminate small orders? It is without doubt that a careful analysis

of quantity discounts improves the operations of the supplier. However, it is also true that

there are cases under which quantity discounts fail completely to decrease the cost of the

supplier and are far from being efficient.

The rest of the paper is organized as follows. We introduce our model and notation in

§ 2.1. We discuss the literature on quantity discounts § 2.2. We then study the buyer’s

problem under quantity discounts and provide an optimal policy in § 2.3. In § 2.4 we

provide a numerical analysis to study the buyer’s optimal policy in depth. We discuss why

a three-index policy can be non-optimal for the infinite horizon problem (§ 2.4.1) and study

the performance of a three-index policy (§ 2.4.2) under an extensive numerical analysis.

We take a closer look at the buyer’s orders in § 2.5 and analyze design of discounts from a

supplier’s perspective in § 2.6. A summary of our results and future research are discussed

in § 2.7.

2.1 Model Definition

We consider a situation in which a buyer replenishes his inventory for a single item from a

supplier who has no capacity restrictions. We consider an all-unit quantity discount with

a single price break Q. If the quantity ordered for the item reaches Q, then a unit price of

c1 (discounted price) is paid for each item. Otherwise, the unit price is c0 (original price).

The quantity discount scheme satisfies c0 > c1 > 0 and Q > 0.
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The buyer’s demand comes from a stationary distribution and demands in different

periods are independent. We represent the cumulative distribution function of demand

with F (.), which is not affected by the quantity discount scheme. Lead time is assumed to

be zero. Inventory position, which determines the buyer’s order quantity, is reviewed and

decisions are made periodically. We present results for single period, multiple period, and

infinite horizon problems. The order of the events is as follows:

1. At the beginning of the first period n = 1, the supplier announces the discount scheme

(Q, c0, c1).

2. At each period 1 ≤ n < N : (i) The buyer checks his initial inventory level xn and

may place an order of qn in order to increase his inventory level up to yn = xn + qn.

(ii) The supplier delivers qn and charges the appropriate price to the buyer. The

buyer first satisfies the backorders from the previous period. (iii) The buyer observes

demand un. The buyer incurs the holding cost (h) for the excess inventory. If there

is unmet customer demand, the buyer incurs a penalty cost (p). The inventory level

for the next period is xn+1 = xn + qn − un.

3. At period N , we implicitly take into account a replenishment of the backordered

demand from an alternative source with a higher price. There exists a disposal cost

for the goods that cannot be sold at the end of the last period. We modify the

penalty and holding costs of the last period with the cost of replenishment from the

alternative source and disposal cost, respectively. We call these updated values the

terminal costs. In order to eliminate trivial cases, we assume that terminal penalty

cost is greater than the original price; i.e., the buyer has an incentive to eliminate all

his backorders at the beginning of the last period of the planning horizon.

2.1.1 Buyer’s Problem

The buyer minimizes his average operating cost, which includes procurement, inventory

holding, and penalty costs. As the supplier processes and ships the order, the buyer does
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not incur any fixed ordering costs. At each period, the buyer decides how much to order in

that particular period. While doing that, she has to balance inventory-related costs (i.e.,

inventory holding and and penalty costs) with the discount opportunity. For any period n,

if the buyer orders up to yn with a unit price of cj , j = 0, 1, her total cost Ljn(xn, yn) is

Ljn(xn, yn) = cj(yn − xn) + Hn(yn), (2.1)

where Hn(yn) is the sum of all costs in the remaining periods plus the holding and penalty

costs in the current period. Note that the buyer can order with the discounted price only

if qn = yn − xn ≥ Q. For n = 1, · · · , N − 1

Hn(yn) = p

∫ ∞

yn

(u− yn)dF (un) + h

∫ yn

0
(yn − un)dF (un) + E[L̄n+1(yn − un)], (2.2)

where E[L̄n+1(yn − un)] =
∫∞
0 L̄n+1(yn − un)dF (un) and N is the problem horizon. The

first two components of Hn(yn) are the expected inventory holding cost and penalty cost

for the period n. We represent L̄n+1(xn+1) as the optimal cost-to-go function for period

n + 1 on forward given state xn+1.

For n = 1, ..., N − 1, L̄n(xn) must satisfy the Bellman equation:

L̄n(xn) = min
dn∈{0,1},yn≥xn+dnQ

{(c0 + (c1 − c0)dn)(yn − xn)

+ p

∫ ∞

yn

(un − yn)dF (un) + h

∫ yn

0
(yn − un)dF (un)

+ E[L̄n(yn)− un]
}

.

In the last period N , we use the terminal costs p̄ and h̄:

L̄N (xN ) = min
dN∈{0,1},yN≥xN+dNQ

{(c0 + (c1 − c0)dN )(yN − xN )

+ p̄

∫ ∞

yN

(uN − yN )dF (uN ) + h̄

∫ yN

0
(yN − uN )dF (uN ).
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For any given xn, the only decision variable is yn. Let x = (x1, ..., xN ) and y =

(y1, ..., yN ). Given an initial inventory position x1, the buyer’s problem can be formulated

as follows:

min
y≥x

1
N

L̄1(x1). (2.3)

For the infinite horizon problem, we are using policy iteration for stochastic dynamic

programming recursion to derive the optimal policy (Bertsekas 1995).

2.1.2 Supplier’s Problem

The supplier pays for the fixed cost, which can be interpreted as the trucking and order

processing costs of each order placed by the buyer. We assume that the supplier has

unlimited capacity, and inventory holding and penalty costs are not a significant part of her

costs.

Each truck has a capacity C and any number of trucks can be sent in a given period.

Therefore, supplier ships d qn

C e trucks in period n, by incurring a cost of K per truck. The

total fixed cost of the supplier can then be calculated as K
∑N

n=1d
qn

C e. The supplier uses

quantity discounts in order to decrease the cost of transportation. In period n, the supplier

loses qn(c0 − c1) in terms of revenue if the buyer chooses to order with discount. Hence the

supplier’s profit is

B(Q, c0, c1) =
N∑

n=1

(
qnco −K

⌈qn

C

⌉
− qn(c0 − c1)I{qn≥Q}

)
. (2.4)

Therefore, the trade-off for the supplier is between the fixed cost and the discount that

is provided to the buyer. The decision for the supplier is to find the discount scheme

(Q,∆c = c0 − c1), which maximizes her average profit:

max
Q≥0,∆c≥0

1
N

B(Q, c0, c1). (2.5)
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2.2 Literature Review

There is vast literature related to the quantity discount problem. In Table 2.1, we provide

a short summary. We refer readers to Benton and Park (1996) and Munson and Rosenblatt

(1998) for extensive reviews, and to Dolan (1987) for a detailed survey of different vari-

ants of the problem from a marketing research standpoint. From a historical perspective,

the interest in quantity discount problem started with the research of Buchanen (1953)

and Garbor (1955), where the authors discuss the motivations for the quantity discounts.

Porteus (1971) studies an incremental discount problem with a concave increasing cost

function. He shows that a generalized (s, S) policy is optimal in a finite horizon problem

under certain conditions, including one where the probability densities of demand in each

period are Polyá densities. Sethi (1984) and Jucker and Rosenblatt (1985) provide solutions

from the buyer’s perspective. With a model similar to ours, Jucker and Rosenblatt study

a single period problem with many discount breaks and develop an algorithm to calculate

the optimal order quantities. Sethi models disposal options as a nonlinear pricing scheme

under deterministic demand. He provides a method of obtaining optimal lot sizes for an

entire range of disposal costs. Monahan (1984), Lal and Staelin (1984), and Lee and Rosen-

blatt (1986) study the economic implications for the supplier and focus on deriving pricing

schemes that maximize the supplier’s profit.

Another stream of quantity discount research emphasizes channel coordination. Jeu-

land and Shugan (1983) show that profit sharing mechanisms with quantity discounts can

coordinate the supply chain. Weng (1995) and Chen, Federgruen, and Zheng (2001) show

that centralized channelwide profits can be achieved in a decentralized system by different

quantity discount schemes. Corbett and de Groote (2000) consider coordinating the supply

chain when the buyer has some private information.

Despite their widespread use in practice, research on discount schedules under uncer-

tainty is still in its infancy. The majority of the studies in the literature analyze quantity
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Table 2.1: A sample of literature that studies the quantity discount problem. Unless otherwise
stated, papers study all-unit discounts under a deterministic demand setting.

Early Buyer’s Supplier’s Channel Survey
Results Problem Problem Coordination Papers
Buchanen (1953), Porteus (1971)*, Monahan (1984), Jeuland and Munson and
Garbor (1955) Sethi (1984), Lal and Shugan (1983), Rosenblatt (1998),

Jucker and Staelin (1984), Weng (1995), Benton and
Rosenblatt Lee and Chen et al. (2001), Park (1996),
(1985)† Rosenblatt (1986) Corbett and Dolan (1987)

de Groote (2000)

* (†): Incremental (all-unit) discounts under stochastic demand

discounts with deterministic demand. One of the exceptions is Jucker and Rosenblatt

(1985). The authors study all-unit discounts under stochastic demand for a single period

model. In our analysis, we provide an optimal policy for a single break version of their

problem. Such a policy acts as a building block for the optimal policy of the rather compli-

cated multi-period problem. To the best of our knowledge, there are no results on a buyer’s

optimal behavior for an all-unit quantity discount problem under stochastic demand for

multiple periods. One of our objectives in this paper is to close this gap in the literature.

The main limitation of the existing models from a supplier’s perspective is that they do

not consider the impact of quantity discounts on the long-run profitability of the firm. By

offering quantity discounts, companies are likely to create artificial spikes in their demands,

which in turn would result in increased logistics costs, the purchase of extra equipment,

overtime, and adjustments in work force to deal with the excess demand. To make mat-

ters worse, these artificial high-demand periods with increased costs will be followed by

periods of cannibalized future demand which would impact the future revenues and profits.

Therefore, in order to study the long-run impact of quantity discounts from the supplier’s

perspective, we should first understand the buyer’s response to quantity discounts under

multi-period stochastic settings and that is what we do in the first part of our paper.
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We also focus on effective design of discount schemes from a supplier’s perspective under

stochastic demand, an area which has been widely overlooked in the literature. Cheung and

Lee (2002) model shipment coordination in order to have full truckload shipments. In their

analysis, when the total decrease in the inventory positions of the retailers reaches Q,

the supplier restores their inventory positions back to their base-stock levels by shipping Q

units in total. Cachon (1999) studies scheduled ordering policies as a way to decrease supply

chain demand variability in a model with one supplier and N retailers that face stochastic

demand. The retailers in his model order at fixed intervals and their order quantities are

equal to some multiple of a fixed batch size.

Another stream of research related to the supplier’s problem is minimum purchase com-

mitment contracts. We refer readers to Anupindi and Bassok (1998) for a summary of

results for quantity commitment contracts, and Tsay, Nahmias, and Agrawal (1998) for a

review of supply chain contracts. Anupindi and Akella (1993) consider a periodic review

finite horizon model in which the buyer commits to purchase of at least Q units in each

period. Additional units can be purchased for a higher price but may not be delivered

immediately. The authors show that the optimal policy is an S-type policy: that is, if

on-hand inventory plus Q is less that S, then the inventory is adjusted up to S. Moinzadeh

and Nahmias (2000) study a similar problem, but with a two-part tariff for adjustments

and over an infinite rather than a finite horizon. They discuss (but do not formally prove)

that a (s, S) type policy is optimal: if the inventory on hand before delivery is less than s,

then the inventory is adjusted up to S. Bassok and Anupindi (1997) study a total mini-

mum purchase commitment where the buyer commits to purchase at least KN units over a

planning horizon of N periods. In all three models, discounts increase with the committed

quantity.

In our analysis, unlike Cheung and Lee (2002) and Cachon (1999), we are not making any

simplified policy assumptions for the buyer’s ordering behavior. Different from the second

stream (Anupindi and Akella 1993, Moinzadeh and Nahmias 2000, Bassok and Anupindi
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1997) the buyer does not make any commitments on the quantities to be purchased; he

simply follows his optimal strategy. We show that the supplier can design quantity discount

schemes to maximize her profits. Therefore, both the supplier and the buyer benefit from the

discount without any initial commitment on the quantities to be purchased. The supplier

has an indirect control over the buyer’s order quantity by adjusting the discount scheme.

2.3 Structural Analysis of the Buyer’s Optimal Response

We first analyze the buyer’s optimal response to all-unit quantity discounts. We present

our solution methodology for the single period problem in § 2.3.1 and discuss the infinite

horizon problem in § 2.3.2.

2.3.1 Optimal Policy for the Single Period Problem

In this section, we define the single period problem and present the expected cost minimizing

solution1. The buyer chooses an order quantity before realizing demand. Since it is a single

period problem, there is no need to use subscript n:

Lj(x, y) = cj(y − x) + H(y) j = 0, 1. (2.6)

The penalty and holding cost function is

H(y) = p̄

∫ ∞

y
(u− y)dF (u) + h̄

∫ y

0
(y − u)dF (u), (2.7)

which is convex. Hence, there are unique S0 and S1 that minimize the functions L0(x, y)

and L1(x, y), respectively, such that S0 ≤ S1. In order to calculate S0 and S1, we take

the derivatives of L0(x, y) and L1(x, y) with respect to y and we achieve the newsvendor

1Our single period model is a special case of Jucker and Rosenblatt (1985)’s as we analyze a model with
only one discount break. However, Jucker and Rosenblatt do not try to come up with a policy and work on
an algorithm to calculate the optimal order quantities instead. Therefore, the policy that we introduce in
this section is original.
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solution:

Sj = F−1

(
p̄− cj

h̄ + p̄

)
j = 0, 1. (2.8)

Figure 2.1 displays the cost functions of different ordering strategies for a given param-

eter set2. As can be seen from the figure, the optimal policy is a function of the initial

inventory position. In this example, the buyer orders more than Q units when his initial

inventory position is less than −5. By ordering up to 5, he gets the discount and avoids

backorders in the selling period. The order-up-to levels are the same for all initial inventory

positions less than −5. We call this order-up-to level S1 = 5, which can also be derived

from Equation (2.8). In order to get the discount, the buyer should order at least Q = 10.

Therefore, S1 = 5 is a feasible order-up-to level when the initial inventory position is no

greater than S1 − Q = −5. When the initial inventory position is −4, the buyer faces a

trade-off between using the discount opportunity by ordering exactly Q units versus incur-

ring less holding cost by ordering without the discount. He prefers to get the discount by

ordering exactly Q = 10 units for initial inventory positions between −4 and −2. When the

initial inventory is −1, the marginal return from the discount can no longer compensate the

higher holding and disposal cost, and the buyer stops ordering with the discount. We call

the maximum inventory position where the buyer still orders with the discounted price c1,

S01. In this example, S01 = −2. For inventory positions greater than S01 and less than 4,

the buyer orders up to S0 = 4, which is the order-up-to level for price c0 in Equation (2.8).

When the initial inventory position is larger than S0 = 4, he prefers not to order. The

outer envelope of the feasible cost curves at a given initial inventory position determines

the optimal policy. Note that even for a single period problem, the optimal cost function is

not pseudoconvex in initial inventory position and not differentiable everywhere.

Next, we prove structural properties of the cost functions, L0(x, y) and L1(x, y), and

determine the optimal policy using a case-by-case analysis. Our main result is that the

2In our examples and numerical analysis, we use demand distributions with integral non-negative values;
however, we continue to represent the costs with continuous functions.
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Figure 2.1: The cost functions of different ordering strategies and cost of the optimal policy for
Poisson(5), c0 = 1.0, c1 = 0.7, p̄ = 2.0, h̄ = 0.3, and Q = 10 for various initial inventory positions.

We use (a)+ to denote max{0, a}.

optimal policy depends on the inventory position, the discount break Q, and the minimizers

of the functions L0(x, y) and L1(x, y).

Proposition 1 For x < S1 −Q, the optimal policy is to order up to S1.

Proof: The buyer can get the discount in two ways: he can either order up to S1 or he

can order Q. However, L1(x,Q) ≥ L1(x, S1), since S1 is the optimal order-up-to level for

L1(x, y) and x < S1 − Q. Therefore, for x < S1 − Q, it is optimal to get the quantity

discount by ordering an amount larger than Q. The proof analyzes two cases:

Case 1: x < min{S0, S1 − Q}: In this case, the functions L0(x, y) and L1(x, y) are

convex with minima at points y = S0 and y = S1, respectively. As c0 > c1, we have

L0(x, S0) > L1(x, S0). Since S1 is the optimal order-up-to level for L1(x, y), we have

L1(x, S0) > L1(x, S1). Therefore, L0(x, S0) > L1(x, S1).

Case 2: S0 ≤ x < S1 −Q: In this case, if the buyer does not get the discount, he does

not order and the total cost is L0(x, x). As L0(x, x) = L1(x, x) > L1(x, S1), the optimal

policy is to place an order with the quantity discount.

Next, we consider all possible sub-cases when x ≥ S1 −Q. In this range, ordering with
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the original price may turn out to be non-optimal and the problem may reduce to a single

price problem with a minimum order quantity Q.

Proposition 2 For x ≥ S1 −Q, there exists a critical level S01, such that:

i. When S1 −Q ≤ x ≤ S01, it is optimal to order exactly Q units.

ii. When x > S01, it is optimal to order without the quantity discount if necessary, i.e.,

the order quantity is (S0 − x)+.

Proof: We consider two cases based on the evaluation of the total cost function when the

initial inventory position is equal to S0. In the first case, when the buyer has S0 units to start

with he does not prefer to order Q units to get the discount; i.e., H(S0 +Q) > H(S0)−c1Q.

In the second case, he has a motivation to do so; i.e., H(S0 + Q) ≤ H(S0)− c1Q.

Case 1: H(S0 + Q) > H(S0) − c1Q: The cost function L1(x, y) is convex and for any

y ≥ S1 it is increasing. Hence, the buyer’s optimal policy is to order exactly Q units (but

no more) in case he would like to get the discount. The total cost is

L1(x, x + Q) = c1Q + H(x + Q). (2.9)

For x ≤ S0, it is optimal to order up to S0 if the buyer does not get the discount and the

total cost is

L0(x, S0) = c0(S0 − x) + H(S0). (2.10)

Ordering with the quantity discount is optimal if

L1(x, x + Q) ≤ L0(x, S0) ⇒ c1Q + H(x + Q) ≤ c0(S0 − x) + H(S0)

⇒ H(x + Q)− c0(S0 − x) ≤ H(S0)− c1Q (2.11)

The right-hand side of inequality (2.11) is constant. The left-hand side, on the other hand,

is convex with respect to x. For x = S1 − Q, the inequality is strict as L1(S1 − Q,S1) <
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L1(S1 − Q,S0) < L0(S1 − Q,S0). The first inequality follows from the fact that S1 is the

optimal order-up-to level for c1, therefore ordering up to S0 will be costlier. The second

inequality follows from the fact that c1 < c0. At point x = S0, H(S0 + Q) > H(S0)− c1Q

by assumption. Therefore, there exists a critical level S01 such that S1−Q < S01 ≤ S0 that

satisfies (2.11) as an equality.

For x > S0, the buyer will not order at all if he chooses not to use the discounted price.

Then the total cost is

L0(x, x) = H(x). (2.12)

Ordering with the quantity discount is optimal if

L1(x, x + Q) ≤ L0(x, x) ⇒ c1Q + H(x + Q) ≤ H(x)

⇒ c1Q ≤ H(x)−H(x + Q). (2.13)

At x = S0, c1Q > H(S0) − H(S0 + Q) by assumption. Since H(x) is convex and H(x) −

H(x + Q) is decreasing in x, for all x > S0 we have c1Q > H(x) − H(x + Q). Therefore,

there does not exist any x that satisfies inequality (2.13); i.e., the buyer does not order at

all when x > S0.

To summarize, when H(S0 + Q) > H(S0) − c1Q, we have shown the following: (a.)

There exists a critical level S01 such that S1−Q ≤ S01 ≤ S0. (b.) When S1−Q < x ≤ S01,

the buyer orders exactly Q units. When x > S01, the buyer orders (S0 − x)+ units.

Case 2: H(S0+Q) ≤ H(S0)−c1Q: For x ≥ S0, we use inequality (2.13). When x = S0,

the inequality is satisfied by the assumption of Case 2. However, as x goes to infinity, the

right-hand side of the inequality becomes negative, hence c1Q > H(x)−H(x+Q). Therefore,

there exists a critical level S01 such that S01 ∈ [S0,∞) that satisfies inequality (2.13) as an

equality.

For x < S0, from the analysis of Case 1 we know that inequality (2.11) is convex with

respect to x and strict for x = S1 − Q. Due to the assumption of Case 2, the inequality
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continues to hold at x = S0. Therefore, for x ∈ (S1 − Q,S0), the buyer orders exactly Q

units.

To summarize when H(S0+Q) ≤ H(S0)−c1Q, we have shown the following: (a.) There

exists a critical level S01 such that S0 ≤ S01. (b.) When S1 − Q < x ≤ S01, the buyer

orders exactly Q units. When x > S01, the buyer does not order at all.

Our first theorem combines the observations for different inventory positions and presents

the optimal ordering policy for the single period problem.

Theorem 1 (Three-index policy) The optimal order quantity (q∗(x)) for the single period

all-unit quantity discount problem with one price break is given by the following rule:

q∗(x) =

 max {S1 − x,Q} when x ≤ S01

max {S0 − x, 0} when x > S01

where Si = F−1
(

p̄−ci

h̄+p̄

)
. We call this policy a three-index policy with indices (S0, S1, S01).

Proof: Directly follows from Propositions 1 and 2.

We have shown that it is possible to have S01 larger than S0. When this is the case,

the buyer exercises only the discounted price. S0 is not utilized, and the optimal policy is

a two-index policy with indices (S1, S01). Ordering with the original price is non-optimal

for all initial inventory positions. This problem is equivalent to a minimum order quantity

problem where an order cannot be less than Q units and there is only one price available.

As can be observed from Figure 2.2, the order quantity is monotonic in initial inventory

position for single period problem. In regions A and B, the buyer orders at least Q units

and gets the discount. In region C, he orders up to S0 = 4. In region D, it is optimal not

to order.

The optimal policy depends on the problem parameters. It is straightforward from the

newsvendor formula that the order-up-to level Si depends only on p̄, h̄, and ci. However,

the critical level S01 depends on all parameters.
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Figure 2.2: For different initial inventory positions x, order quantity (q∗(x)) and inventory position
after an order is placed (y(x)) are displayed for the optimal policy with the parameter setting of

Figure 2.1 (Poisson(5), c0 = 1.0, c1 = 0.7, p̄ = 2.0, h̄ = 0.3, and Q = 10).

Proposition 3 The sensitivity results for S01 are as follows:

i. The derivative of S01 with respect to Q satisfies −1 < ∂S01
∂Q < 0.

ii. The derivative of S01 with respect to c1 while keeping c0 constant satisfies ∂S01
∂c1

< 0.

iii. The derivative of S01 with respect to c0 while keeping c1 constant satisfies ∂S01
∂c0

≥ 0.

Proof: Available in Appendix 5.1.1.

In the first part of the proposition, we conclude that increasing Q decreases S01, with a

rate less than the rate of increase in Q. So S1 staying constant, increasing Q increases

the range of the interval (S1 −Q,S01) where ordering Q is optimal but decreases the range

where the buyer uses the discounted price, (−∞, S01). When Q decreases, S01 increases and

the buyer prefers to order with the discounted price for a larger range of initial inventory

positions. Therefore, the quantity discount is more attractive for the buyer when Q is

smaller. In the second part of the proposition, we observe that increasing the discounted

price c1 (which means decreasing the discount rate) decreases S01. When the discount rate

decreases, the quantity discount becomes less attractive for the buyer. The savings through

the unit cost do not balance the additional inventory risk. Therefore, he ends up using the
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discount opportunity for a smaller range of initial inventory positions. From part three, we

observe the reverse effect for c0. As c0 increases (which means the discount rate increases),

S01 increases. When the original price is considerably more expensive compared to the

discounted price, the discount opportunity becomes more attractive and the buyer ends up

using the discounted price for a larger range of initial inventory positions.

2.3.2 Infinite Horizon Problem

In this section, we study the structural properties of the infinite horizon problem. Our

objective is to minimize the long-run average total cost. While a three-index policy continues

to be optimal in many parameter settings, we observe examples where this may no longer

be the case3.

Example 1 For Poisson(6), with c0 = 1.3, c1 = 0.7, p = 0.75, h = 0.55, and Q = 30, the

optimal policy for the infinite horizon problem is as follows:

initial inventory ≤ -19 : order up to 11 Region (I)

-18 ≤ initial inventory ≤ -7 : order Q = 30 Region (II)

-6 ≤ initial inventory ≤ -3 : order 0 Region (III)

-2 ≤ initial inventory ≤ 6 : order up to 6 Region (IV)

7 ≤ initial inventory : order 0 Region (V)

Definition 1 An ordering interval s is a minimal convex set of initial inventory positions

[xs
l , x

s
u] at which the order quantity is larger than zero.

When a three-index policy is optimal, there is only one ordering interval. Hence, we

drop superscript s: (xl, xu) = (−∞, S0) if S0 > S01 or (xl, xu] = (−∞, S01] otherwise. In

Example 1, there are two ordering intervals with (x1
l , x

1
u] = (−∞,−7] and [x2

l , x
2
u) = [−2, 6).

Therefore, three indices will not be sufficient to describe the optimal policy. Next we provide

the definition for a k-index policy.
3Similar examples can be created for a finite horizon problem, with as few as two periods. Interested

readers may refer to the on-line addendum, Section 5.1.3.
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Definition 2 A k-index policy is an ordering policy which cannot be specified using less

than k indices.

In Example 1, the optimal policy turns out to be a four-index policy: (S1
1 = 11, S1

01 =

−7, x2
l = −2, S2

0 = 6). Notice that, the order quantities are not monotonic in initial inven-

tory position. In region (III), it is optimal not to order, while in region (IV), the buyer

starts ordering again, but this time with the original price. However, within each ordering

interval, the order quantities are monotonic. Our next example shows that this does not

have to be the case in general.

Example 2 For Discrete Normal(30, σ = 3)4, with µ̂ = 30, σ̂ = 3.01, c0 = 1.0, c1 = 0.7,

p = 0.45, h = 0.15, and Q = 40, the optimal policy for the infinite horizon problem is as

follows:

initial inventory ≤ -10 : order up to 30

-9 ≤ initial inventory ≤ 5 : order Q = 40

6 ≤ initial inventory ≤ 17 : order up to 57

18 ≤ initial inventory ≤ 19 : order Q = 40

20 ≤ initial inventory ≤ 24 : order up to 24

25 ≤ initial inventory : order 0

In Example 2, order quantities are no longer monotonic within the ordering interval. This

leads to our next definition:

Definition 3 In an ordering interval s, a monotone ordering interval r is a minimal

convex set of initial inventory positions [ms:r
l ,ms:r

u ], in which the order quantities are larger

than zero and monotonic in initial inventory position.

4In order to have integral non-negative demand, we first discretize the demand function by approximat-
ing the probability of an integral demand pY (y), where y is an integer. We then truncate this distribu-
tion and consider only the positive observations. The probability function for demand pY (y) is equal to(

F (y+0.5)−F (y−0.5)
1−F (−0.5)

)
. Because of discretization and truncation, the observed µ̂ and σ̂ values differ from the

original values.
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An ordering interval can be divided into monotone ordering intervals. If all ordering

intervals are monotone for a policy, then superscript r is dropped. In Example 1, both

ordering intervals are also monotone ordering intervals. In Example 2 there is only one or-

dering interval with (x1
l , x

1
u) = (−∞, 24), which consists of two monotone ordering intervals

with (m1:1
l ,m1:1

u ] = (−∞, 5] and [m1:2
l ,m1:2

u ) = [6, 24). The optimal policy turns out to be

a five-index policy: (S1:1
1 = 30,m1:1

u = 5, S1:2
1 = 57, S1:2

01 = 19, S1:2
0 = 24).

The examples above show that a three-index policy is not necessarily optimal for the

infinite horizon problem. However, we can still prove basic results that show important

patterns.

Theorem 2 In any ordering interval s, there exists at most one initial inventory position

Ss
01, such that in an optimal policy,

• when xs
l ≤ x ≤ Ss

01, the buyer places an order with the discount.

• when Ss
01 < x ≤ xs

u, the buyer places an order with the original price.

Proof: Available in the on-line addendum, Section 5.1.2.

Theorem 2 shows that within an ordering interval, there exists a sequence from lower

to higher price5. Note that the theorem does not make any claims about the order quan-

tity. Within an ordering interval, the order quantities can be non-monotonic in the initial

inventory position, as seen in Example 2.

Next we discuss the conditions leading to non-optimality of a three-index policy.

2.4 Numerical Analysis of the Buyer’s Problem

As we have shown in Section 2.3.1, a three-index policy is optimal for the single period

problem. However, this result cannot be extended to an infinite horizon. In this section, we

consider different numerical settings to better understand the characteristics of the optimal

5We use this result in the dynamic programming solution in order to limit the search space.
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policy for the infinite horizon problem. We first explore the reasons which make a three-

index policy non-optimal. We then analyze the performance of the best three-index policy6.

2.4.1 Why Can a Three-Index Policy Be Non-Optimal?

There may be several reasons to deviate from a three-index policy at optimality. In this

section, we discuss two of them with numerical examples. When faced with a discount

opportunity in a multi-period setting, the buyer has to consider trade-offs between the

immediate and future penalty costs, holding costs, and the ability to take advantage of the

discount. He can do this in two ways. He can either hold on to an order (not order or

order few units) to receive discounts in a future period, i.e., wait-and-see strategy, or he

may now order more than he actually needs and keep it for future use, i.e., buy-and-hold

strategy. In both cases, the interactions between the periods change the dynamics of the

problem.

Wait-and-See Strategy

In order to better understand the wait-and-see strategy, recall Example 1. In region (III),

the buyer does not order, while in region (IV), he starts ordering again, but this time with

the original price. This can be explained as follows: In region (III), the buyer cannot afford

to order with the discounted price any longer due to high inventory carrying costs. Ordering

with the original price is not in his best interest either. In case he orders, he would lose

the discount opportunity due to two reasons. First, the discount opportunity for the items

being ordered in this period would be lost. Second, the inventory position would increase

and ordering with the discount would become difficult in the upcoming period. For that

reason, the buyer chooses to wait until the next period in order to utilize the advantages of

the quantity discount. In region (IV), however, the initial inventory position is high enough
6One can argue that all-unit quantity discounts have irrational characteristics: the buyer may be better

off buying and disposing few units at the beginning of the period without incurring holding cost on these
items. We expand our model to a setting with disposal in the on-line addendum, Section 5.1.6. Including
disposal does not eliminate any of the cases that we discuss in this section.
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to prevent ordering with the discounted price in the next period. Therefore, the buyer

starts ordering again in order to prevent paying penalties for stock-outs. Note that region

(III) divides the strategy space into two ordering intervals. In the first ordering interval,

the objective is to decrease the procurement costs and in the second one it is to decrease

the penalty costs. Example 3 provides additional insights about region (IV), i.e., why the

buyer starts ordering again:

Example 3 Ordering intervals and optimal order-up-to levels for Poisson(6) with 1.2 ≤

c0 ≤ 1.457, c1 = 0.7, p = 0.75, h = 0.55, and Q = 30. (Bold values define the optimal

policy.)

Ordering Interval 1 Ordering Interval 2 Optimal

c0 S1
0 S1

1 S1
01 x1

l x1
u S2

0 S2
1 S2

01 x2
l x2

u Policy

1.2 6 10 -8 −∞ 6 - - - - - Three-index

1.25 - 11 -7 −∞ -7 6 - - -4 6

1.3 - 11 -7 −∞ -7 6 - - -2 6 Four-index

1.35 - 11 -7 −∞ -7 5 - - -1 5

1.4 - 11 -7 −∞ -7 4 - - 1 4

1.45 - 11 -7 −∞ -7 - - - - - Two-index

As c0 increases, the buyer’s behavior changes. Initially, when c0 = 1.2, the discount

is not high enough to tempt the buyer to wait for additional periods: he orders with the

discounted price whenever he can. As the discount increases, the buyer starts to use the

wait-and-see strategy; we begin to observe the second ordering interval. For moderate

discounts, i.e., 1.25 ≤ c0 ≤ 1.4, the buyer still uses the original price from time to time
7In our proofs and examples we manipulate the original price due to a technicality. The analysis can also

be performed by manipulating the discounted price and our results will remain valid. However, manipulating
the original price avoids bounds on the discount ratio. Note that this is also a common practice in industry.
Some suppliers fix the discounted price assuming a full truckload and provide an extra upcharge to the buyer
for less than truckload orders based on the shipment size.
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in order to prevent paying penalties for stock-outs. As c0 increases further, the trade-offs

change completely and the quantity discount dominates the penalty cost. It is at this point

where the second order interval disappears and the buyer orders with the discounted price

c1 all the time.

Buy-and-Hold Strategy

In order to better understand the buy-and-hold strategy, recall Example 2. In order to use

the discount opportunity, the buyer may order several weeks of inventory in advance. We

observe two order-up-to levels for the discounted price and three-index policy is no longer

optimal. When the initial inventory level is less than −10, the buyer orders up to S1:1
1 = 30.

With a mean demand of 30, this can be considered as ordering weekly supply with the

discounted price. When the initial inventory level is between −10 and 5, the buyer orders

exactly Q = 40 units to get the discount. As the initial inventory level increases further, it

is no longer optimal for the buyer to order Q units to get the discount. In this case, the

buyer orders up to S1:2
1 = 57; i.e., the buyer procures around two weeks’ worth of inventory.

One of the major factors in his decision is demand uncertainty. When uncertainty is high,

the future looks blurry. When uncertainty is low, he can make refined long-term decisions

considering the delicate interactions between the periods. Therefore, we can anticipate that

the optimal policy has higher number of indices when demand uncertainty is low.

In order to further discuss the impact of demand variability, Example 4 uses discrete

normal distribution with different standard deviation values keeping the mean demand

the same. When σ ≤ 5 (buy-and-hold region), we observe two monotone ordering intervals.

When the buyer buys and holds, he wants to have some visibility into the future. Therefore,

when demand is close to deterministic, the buyer can look further in the horizon and order

inventory for (around) two periods. As we further increase the standard deviation (σ ≥ 5.5),

the buyer no longer observes multiple order-up-to levels for the discounted price. The

uncertainty in the system makes ordering arrangements for a longer period of time less



Chapter 2. Quantity Discounts under Demand Uncertainty 31

attractive and the buyer orders weekly supply.

Example 4 Monotone ordering intervals and optimal order-up-to levels for Discrete Nor-

mal(30, σ), with c0 = 1.0, c1 = 0.7, p = 0.45, h = 0.15, and Q = 40. (Bold values define

the optimal policy.)

Ordering Interval (O.I.) 1

Observed Monotone O.I. I Monotone O.I. II Optimal

σ µ̂ σ̂ S1:1
0 S1:1

1 S1:1
01 m1:1

l m1:1
u S1:2

0 S1:2
1 S1:2

01 m1:2
l m1:2

u Policy

0.5 30 0.57 - 30 - −∞ 2 - 60 19 3 19 Four-index

1 30 1.04 - 30 - −∞ 3 21 59 19 4 21
...

...
...

...
...

...
...

...
...

...
...

...
...

3 30 3.01 - 30 - −∞ 5 24 57 19 6 24 Five-index
...

...
...

...
...

...
...

...
...

...
...

...
...

5 30 5.01 - 30 - −∞ 9 23 55 18 10 23

5.5 30 5.51 23 31 18 −∞ 23 - - - - -
...

...
...

...
...

...
...

...
...

...
...

...
... Three-index

11 30.09 10.87 21 35 19 −∞ 21 - - - - -

11.5 30.13 11.32 - 35 20 −∞ 20 - - - - -
...

...
...

...
...

...
...

...
...

...
...

...
... Two-index

In Example 4, within the buy-and-hold region, the buyer orders only with the discounted

price for σ ≤ 0.5. The buyer has nearly perfect visibility into the future and can avoid

paying penalty cost without using the original price. However, for 1 ≤ σ ≤ 5, the buyer

ends up having backorders and needs to adjust his inventory by placing small orders with

the original price. Outside the buy-and-hold region, the buyer follows a three-index policy

for 5.5 ≤ σ ≤ 11. As we further increase the standard deviation (σ ≥ 11.5), the demand

distribution has larger spread and the buyer does not have an incentive to wait additional
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periods in order to use the discounted price. Therefore, the buyer always orders with the

discounted price and two-index policy becomes optimal.

2.4.2 How Bad Can a Three-index Policy Perform?

In this section, we study the effect of the basic parameters (Q and c0) on the buyer’s

ordering policy. We choose to work on these two parameters as the supplier has more

control over these when defining a quantity discount scheme. The non-optimal region may

have different shapes and we provide two examples that we have encountered frequently

during our analysis.

Figure 2.3(a) displays the structure of the optimal policy for a set of Q and c0 values.

For all values of Q less than 18, a two- or three-index policy turns out to be optimal for

all c0 values. When Q is low but higher than 18, a two- or three-index policy is optimal

for most of the c0 values. However, as Q increases, we observe a larger range of c0 values

where this may not be the case: ordering Q can be considered as procuring for a number of

periods and it is only advantageous under a high discount rate. As Q increases, interactions

between periods become more important as the decision of receiving the quantity discount

has to take the trade-off of holding inventory for longer periods versus procuring cheaper

into account. For a fixed c0, when Q is larger than a threshold the benefit of getting

the discount is dominated by the cost of holding inventory. In that case, the buyer uses

the discount only when it is necessary; i.e., when his inventory position is very low due

to unexpectedly high demands. Observe that the non-optimal region forms a triangle-like

connected set.

We repeat the same analysis for a different set of parameter values and display the

results in Figure 2.3(b). The shaded region represents the values of parameters where a

three-index policy is not optimal. In this example, we observe a line above which S0 is not

observed in the optimal policy, i.e., the buyer does not exercise the original price. Therefore,

when a three-index policy is optimal, S0 is not necessary for policy definition and the actual
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(a) Poisson(6), c1 = 0.7, p = 0.75, and h = 0.55.

(b) Poisson(20), c1 = 0.7, p = 0.45, and h = 0.15.

Figure 2.3: Structure of the optimal policy for a range of Q and c0 values.

policy is a two-index policy with parameters (S1, S01). As the original price no longer has

any effect above the line, the policy stays the same and the non-optimal region extends

to infinity as we increase c0 further. Therefore, different from Figure 2.3(a), the region

where a three-index policy is not optimal cannot be bounded above with a c0 and goes

to infinity. This observation, which is quite counterintuitive at first, shows that even the

minimum order quantity problem may not have a well-defined optimal policy. Hence, a two-

index policy is not necessarily optimal as the anomalies due to buy-and-hold continue to

occur. There are cases where the buyer orders up to different base-stock levels for different
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inventory positions. The first row of Example 4 highlights this phenomenon.

In these two examples, a three-index policy turns out to be optimal in a wide range of

parameter values. This observation leads us to carry out a more detailed numerical analysis

on the performance of a three-index policy. In a numerical analysis, we study 4800 different

problem settings with different problem parameters. Table 2.2 summarizes these settings

as well as the results of the analysis. For all three distributions, the percentage of the cases

where a three-index policy is optimal is steady around 87− 91% averaging 88.83%. For the

best three-index policy, the maximum deviation from the cost of the optimal policy is 4.3%

with a median of 0.025%. As demand variability increases, a three-index policy generally

performs much better.

Table 2.2: Performance of the best three-index* policies out of all combinations of c0 ∈ {1, 1.3, 1.6},
c1 = 0.7, p ∈ {0.15, 0.3, 0.45, 0.6, 0.75}, h ∈ {0.15, 0.3, 0.45, 0.6, 0.75}, and Q ∈ {10, 40, 70, 100}.

Discrete Normal† Poisson Discrete Uniform†
Three-index* optimal: 88.7% Three-index* optimal: 87.5% Three-index* optimal: 90.7%
Std. Deviation Deviation Std. Deviation
Dev. Average Max Mean Average Max Dev. Average Max
0.5 0.07% 0.25% 10 0.71% 4.31% 2.9 0.44% 1.98%
2.0 0.64% 2.30% 15 0.14% 0.87% 5.8 0.17% 1.25%
4.5 0.31% 1.38% 20 0.18% 0.84% 8.7 0.06% 0.77%
8.0 0.08% 0.86% 25 0.22% 1.12% 11.5 0.06% 0.97%
12.5 0.05% 0.63% 30 0.22% 1.02% 14.4 0.00% 0.06%
18.0 0.00% 0.00%

Median: 0.038% Median: 0.040% Median: 0.012%
*: Two- or three- index policy †: Demand mean is equal to 30

So far, we gained insights into how a buyer responds to a quantity discount scheme.

We have seen that even though a three-index policy is no longer optimal for the infinite

horizon problem, it performs exceptionally well under a wide range of problem parameters.

Therefore, a three-index policy is an excellent heuristic solution for this rather complicated

problem: it is easy to administer and implement, and it captures a high percentage of the
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profits generated by the optimal policy. Next, we use these results to study the supplier’s

problem and design efficient quantity discount schemes from her perspective.

2.5 A Closer Look at the Buyer’s Orders

In the previous sections, we discussed the impact of demand variability and the discount

scheme on the buyer’s ordering policy. Next, we consider the effect of these factors on

the orders that the supplier faces. In their 1997 paper Lee, Padmanabhan, and Whang

identify quantity discounts as one of the causes of bullwhip effect: the buyer’s order batching

increases the variability of the orders that the supplier sees. In this section, we question

whether decreasing bullwhip effect is always the best alternative for the supply chain in our

problem setting8.

There are different components of variability within a supplier-buyer relationship: de-

mand variance (DV), actual order variance (AV), and order quantity variance (OV). We

define AV as the variance of orders placed by the buyer including orders of size 0 and OV as

the variance of orders placed by the buyer not including orders of size 0. As buyers batch

the orders, AV increases which is known as bullwhip effect. The impact on OV, however,

is not that clear.

We know that as the demand variance increases above a threshold the buyer follows

policies with fewer indices. What we will do next is to investigate the impact of the policies

with fewer indices on AV and OV. Figure 4.4 plots the effect of DV on average order size ρ,

AV, and OV. As expected, as DV decreases (i.e., “a” increases), the buyer follows policies

with more indices. Furthermore, the supplier’s mean order size ρ and actual order size

variability AV are much higher than demand mean and variance. By giving discounts,

the supplier increases ρ, and decreases the probability of receiving an order in a period.
8There are studies with a similar goal in the literature. For example, Chen and Samroengraja (2003)

consider a problem where a single product is sold through multiple retailers. In their model, the retailers
replenish their inventory from a supplier with finite production capacity. The authors compare two different
policies (staggered and (R, T ) policies) and show that a replenishment strategy that dampens actual variance
does not necessarily reduce the supply chain costs.
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Therefore, there are many periods where the buyer does not place an order which inflates

AV. Interestingly, AV is quite insensitive to changes in the demand variance. Notice that

OV is always less than AV and is not monotone as a function of DV.

(a) The effect of DV on order size. (b) The effect of DV on AV and OV.

Figure 2.4: Demand is Discrete Uniform (a, 40 − a), c0 = 1.0, c1 = 0.7, p = 0.4, h = 0.15, and
Q = 50. Bounds are provided for 95% confidence level based on 10, 000 experiments for each a.

In order to further observe the effect of DV on OV, we change the demand variance

by keeping its mean constant over time and display the results in Figure 2.5. We observe

that the order sizes show a very complex behavior. Small shifts in demand variance cause

large shifts in the order variance as the buyer’s optimal policy changes abruptly. Similar to

Figure 4.4, for larger DV values, the buyer follows a two-index policy and OV is less than

DV. However, when DV gets smaller the buyer starts to follow higher index policies where

OV dramatically increases and is no longer robust to changes in DV. Therefore, OV and DV

move in opposite directions. When DV is small the buyer can see the future. Therefore, the

buyer becomes more strategic and follows buy-and-hold and wait-and-see strategies with

high indices. This phenomenon, which has not been previously studied, is significantly

different from the bullwhip effect.

In these examples, the quantity discount seems to make the problem even more com-

plicated by increasing the variability in the system if the buyer does not follow a policy
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Figure 2.5: The effect of the demand variance on the order variance. Demand is Discrete Uniform
with mean of 20, c0 = 1.0, c1 = 0.7, p = 0.4, h = 0.15, and Q = 50. We change the demand variance
slightly while keeping the mean demand the same. Notice that OV changes dramatically and in the

opposite direction.

with small number of indices. The supplier may actually increase the load on her system

by providing an inefficient discount scheme. If the supplier wants to eliminate small or-

ders, a discount scheme with a low OV and high Q can achieve this objective. However,

the discount provided can surpass the savings from the discounts. Next, we take a closer

look at the supplier’s problem and discuss how a supplier can design quantity discounts to

maximize her profit.

2.6 Design of Quantity Discounts

As we discuss in the Section 2.1.2, the supplier pays a fixed cost of K for each truckload

shipment. In order to avoid paying high transportation cost, the supplier provides quantity

discounts to the buyer to increase his order size. Hence the supplier’s profit is

B(Q, c0, c1) =
N∑

n=1

(
qnco −K

⌈qn

C

⌉
− qn(c0 − c1)I{qn≥Q}

)
. (2.14)

where Q ≤ C and 0 < c1 ≤ c0.

The optimal solution for this equation is to set c1 = ∞. However, in practice one of c0
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or c1 is determined by the market conditions and we do not observe infinite prices. There

are two ways to model the problem:

1. When the supplier provides quantity discounts to the buyer to eliminate less than

truckload orders, the supplier fixes c1 and charges c0− c1 as an upcharge to cover the

extra cost of transportation. In this case c0 is the decision variable for the supplier.

2. If the transportation costs are not the main driver for the supplier, the market con-

ditions can determine c0. The supplier provides c0 − c1 as a discount to increase the

buyer’s order size. In this case, c1 is the decision variable for the supplier.

Both cases above create a quantity discount scheme with 0 < c1 ≤ c0 and generate a

similar behavior from a buyer. The only difference is in the interpretation of the problem

from the suppliers perspective. Our results are valid for both cases. In the rest of the

chapter we consider the first case in our discussions as it is more common in practice.

Since there is always uncertainty in the demand and buyers respond to quantity discounts

by changing their ordering policies, design of quantity is a challenging problem for the

supplier. For example, Heinz considers decreasing Q = 42, 000 lbs. to motivate the buyers

with mean demand around 30, 000 lbs. to increase their order sizes. However, decreasing

Q has the risk of providing too much discount which is not covered by the additional

savings from the transportation. Therefore, a quantitative approach is necessary for decision

support to avoid any unexpected consequences of quantity discounts; hence, we jointly study

the supplier’s and buyer’s problem.

The supplier determines the quantity scheme that would maximize her profits: the

revenues are due to the sales of the product and the upcharge that the supplier charges

to the buyer and the costs are due to transportation. The analysis of the buyer’s problem

helps us to understand the response of a buyer to any discount scheme and makes it possible

to compute the profit due to a discount schedule. We search over the values of Q and c0 to

find the discount scheme with the maximum profit. As this problem builds on the dynamic

programming formulation of § 2.3.2, it is quite difficult to study the supplier’s problem



Chapter 2. Quantity Discounts under Demand Uncertainty 39

analytically. Hence, we depend on numerical analysis (§ 2.6.1) except for some special cases

that we study in § 2.6.2.

2.6.1 Numerical Analysis of the Supplier’s Problem

The increasing transportation costs means higher fixed costs for the suppliers. Fixed costs

become a critical factor that affects the decision of the supplier. We study the effect of

increasing fixed costs on a quantity discount provided by the supplier in Figure 2.6. For

any c0 value, we provide the optimal profit by finding the best Q for that value of c0. The

values used are in thousand lb units. We use a truck capacity of C = 45 and c1 = 1 for each

thousand lbs. which are also common in practice. When K is low (K = 0.5), the supplier’s

optimal discount scheme is (Q = 44, c0 = 1.01). At his optimality, the buyer uses three-

index policy. As K increases, the supplier’s optimal discount scheme (Q = 42, c0 = 1.05) is

such that at his optimality the buyer uses a two-index policy. Hence, if it is not economically

feasible for the supplier to design discounts with two-index policy (which would decrease

the OV as we have seen in § 2.5), the supplier can still use discounts to increase ρ by

setting a Q > 0 and decrease the number of orders placed by the buyer. By adjusting

the discount rate and Q, the supplier can design profitable discount schemes with higher

number of indices at the buyer’s optimality. When K is low, the system is mostly driven by

the inventory related costs of the buyer. Supplier can still tolerate some less than truckload

orders with three index policy and provide small discounts to increase the average size of

the orders. When K is larger, the system is driven by high fixed cost and the supplier has

a higher upcharge to eliminate less than truckload orders.

In this example, for all K values, the supplier is better off by providing some form

of quantity discount to the buyer. It is noteworthy that all the discount schemes in this

example are found by maximizing the profit functions of the supplier under some different

conditions. If the supplier chooses a discount scheme without any quantitative support, the

quantity discounts can be far worse off than not providing quantity discount. When there
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(a) Total profit

(b) Optimal Q values

Figure 2.6: The supplier’s optimal discount scheme for C = 45 and different K values. Demand is
Discrete Normal(30, 5), c1 = 1.0, p = 0.05, and h = 0.30.

is no discount available, the buyer orders every week and we have ρ = µ. When the supplier

sets a Q > 0 for the discounted price, the buyer does not place an order in some of the

periods. This increases ρ and we have ρ > µ. This also means that order frequency decreases

and the supplier incurs lower fixed ordering cost. Even for low K values, incurring lower

fixed costs is important for the supplier. Furthermore, the optimal Q is less than the truck

capacity, which is 45. Even though the supplier may not use some of the truck capacity to



Chapter 2. Quantity Discounts under Demand Uncertainty 41

its fullest extend, the difference between the truck capacity and Q creates cushion against

the changes in buyer’s order size and eliminates the possibility of shipping an additional

truck due to large order sizes. A low Q also has a positive side effect by increasing the

attractiveness of any quantity discount scheme.

(a) K = 0.5 (b) K = 3

(c) K = 5

Figure 2.7: The supplier’s optimal discount scheme for different p and h values. Demand is Discrete
Normal(30, 5) and c1 = 1.0.

Figure 2.7 studies the change in the supplier’s optimal discount scheme as the inventory

related costs change. When inventory related costs are high and fixed costs are low the

system is driven by the inventory costs of the buyer. The buyer places orders which are
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independent of the quantity discounts due to high inventory related costs. Therefore, the

supplier can collect upcharges from the buyer for the orders less than Q. As the supplier

increases the upcharge, the buyer does not change his behavior and pays higher upcharge.

Therefore, the profit of the supplier increases linearly with the upcharge. However, as

the upcharge gets higher than some critical value, the buyer starts to change his ordering

behavior. He orders less with the original price to avoid paying high upcharges. Therefore,

the supplier increases her profits by collecting more upcharges when the inventory related

costs of the buyer is high. When inventory related costs are low compared to the upcharge,

the buyer orders with the discounted price. As we increase the fixed costs, we can see that

inventory related costs become less important and the supplier provides discount schemes

with two-index policies.

Figure 2.8 studies the change in the supplier’s optimal discount scheme as the demand

variance changes. As can be seen from Figure 2.8(a), there is no clear relationship between

the supplier’s profit and the demand variance. The supplier can manage the system better

for moderate values of variance; this helps her control the buyer’s order more tightly and

avoid the problems due to buy-and-hold (when σ is low; Example 4) or extremely erratic

demand behavior (when σ is high) that would force her to make inefficient shipments.

2.6.2 Minimum Order Quantity Problem

As we discuss in the previous section, increasing fixed costs are forcing the suppliers to

totally eliminate less than truckload order. As industries move from low fixed cost to high

fixed costs, the suppliers tend to provide quantity discounts with two-index policies. In this

case the problem reduces to a minimum order quantity where the buyer always orders at

least Q units. However, minimum order quantity cannot by itself guarantee a nice ordering

behavior from the buyer. Consider a case where c0 is very large. In this case, the buyer

always orders with the discounted price. From Figure 2.3(b) we know that the buyer can

follow a buy-and-hold strategy and even though he never exercises the original price, the
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(a) K = 0.5 (b) K = 3

(c) K = 5

Figure 2.8: The supplier’s optimal discount scheme for different σ values. Demand is Discrete
Normal(30, σ), c1 = 1.0, p = 0.05, and p = 0.3.

optimal policy is not necessarily a two-index policy. However, when the supplier sets Q

large enough, she can eliminate this possibility:

Theorem 3 When c0 is very large, there exists a finite Q∗ such that:

i. For Q > Q∗ the buyer follows a two-index policy with indices (S1, S01). The optimal
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order quantity q∗(x):

q∗(x) =

 max{S1 −Q,Q} when x ≤ S01

0 when x > S01

ii. As Q increases, S01 converges to Ŝ01 = µ − Q
(

h
h+p

)
and the buyer’s average cost

converges to C(Q) = Qhp
2(h+p) .

Proof: The proof is available in an on-line addendum, Section 5.1.4.

The supplier can choose any Q > Q∗ in order to make the buyer follow a two-index

policy. When the buyer does not use a buy-and-hold strategy for any Q, Q∗ is simply equal

to 0: no matter how low the value of Q∗ is, the buyer will always follow a two-index policy

(Figure 3(a)). However, the buyer should also look for the optimal level of discount in order

to eliminate the small orders.

Theorem 4 In a quantity discount problem, for fixed and finite values of Q, p, h, and c1,

there exists a discount z∗[= 1− (c1/c0)] < 100% such that,

a. for every discount ratio z ≥ z∗, the buyer does not exercise price c0 for any initial

inventory position;

b. for every discount ratio z < z∗, the buyer exercises both prices c0 and c1.

Proof: Available in an on-line addendum, Section 5.1.5.

In Theorem 3 we show that by adjusting Q the supplier can guarantee that the buyer

follows a two-index policy for larger values of c0. Actually, the supplier can control the

buyer’s ordering behavior even more tightly. Let α be the percentage of the orders which

are strictly greater than Q when the buyer follows a two-index policy. In Figure 2.9, for

different levels of Q, α values are displayed. For these Q values which are greater than

Q∗ = 55, the buyer does not buy-and-hold and the optimal policy is a two-index policy

(Theorem 3). As Q increases, α decreases dramatically. For even a moderate value of Q
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such as Q = 60 (3 weeks’ demand), the probability of an order greater than Q is less than

one in a thousand. The optimal policy when Q = 60 is a two-index policy with indices

(S1 = 36, S01 = 4). For all practical purposes, the inventory level almost never falls below

S1 −Q = −24 and the buyer almost always orders exactly Q. In this case, the critical level

where the buyer stops ordering S01 is very close to Ŝ01 = 5 and the critical level becomes

independent of demand variability.

Figure 2.9: Values of α for Q > Q∗ = 55. Demand is Poisson(20), p = 0.45, and h = 0.15.

As is the case without α, we can find discount ratios that would make a buyer follow

a two-index policy and place orders of size greater than Q only α percent of the time

(an (α) two-index policy). Figure 2.10 displays (Q, z∗(Q)) when α = 0.001. Note that

the optimal discount to be provided is not always monotonic in Q. It is possible for the

supplier to decrease the discount and increase Q at the same time, which seems to be

counterintuitive at first. Remember the two policies that we discussed in Section 2.4.1.

When Q values decrease, the buyer does not need to follow a wait-and-see strategy as even

when he procures with the original price in a given period, the chances that he will get the

discount in the upcoming period will be high. Therefore, the buyer will start to follow higher

index policies by utilizing the original price. On the other hand, when the discount rate is

high, a buy-and-hold strategy becomes even more attractive. This time the buyer does not

use the original price, but he starts to use higher index policies with the discounted price
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in order to utilize the discount opportunity. In between, we may see dynamics that balance

these two extremes and lead to a two-index policy even when the discount opportunity is

inferior.

Figure 2.10: Minimum discount percentages z∗(Q) that guarantees an (α) two-index policy. De-
mand is Uniform (a, 40− a), p = 0.45, h = 0.15, and α < 0.001.

Another interesting effect that we observe in Figure 2.10 is the impact of demand vari-

ance. The higher the demand variance the less discount the supplier needs to provide. In less

variable systems the buyer is more likely to buy-and-hold (Example 4). Therefore, in these

systems, in order to regulate the buyer’s ordering behavior, the supplier should provide

more attractive quantity discounts; i.e., given a Q, she should give bigger discounts.

Hence, when the setup cost is very high, the operational objectives of the supplier may

be in parallel with observing a small OV from the buyer with a high ρ. This way, the

supplier would guarantee (with high probability) full or near full truckloads. For the our

objective function, order variance is more crucial for the supplier compared to the actual

variance.
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2.7 Conclusion and Future Research

There are many potential advantages of quantity discounts in a supply chain. However,

unless enough care is given to the design of a discount scheme much of the potential benefits

could be lost. In this paper we present a model that captures the buyer behavior under

stochastic demand when the supplier provides quantity discounts. Based on the optimal

response of the buyer that we have analyzed in detail, we suggest strategies for the supplier

in designing discount schemes.

Our paper shows that many times operational difficulties in a quantity discount

setting are self-created. Policies with a high number of indices can be optimal in the

presence of quantity discounts in a stochastic environment largely due to the supplier’s

choice of parameters. This may lead to orders that can be very difficult to manage for

the supplier. By choosing discount schemes carefully, however, the supplier can moderate

the orders effectively. Contrary to the well-studied bullwhip effect problem, in this setting

the erraticity of the orders may increase while the basic demand variability

decreases. While a three-index policy is optimal for the buyer in many cases and near

optimal in all cases, it can still create high order variance, especially when it is not carefully

designed. We define a cost function for the suppliers and show that higher fixed costs are

forcing suppliers to eliminate less than truckload orders. A well designed two-index policy,

if profitably enforceable, is to the supplier’s greatest advantage.

Additional issues such as time windows and volume discounts should also be analyzed. In

our model, the supplier stabilizes the orders of the buyer by designing an effective quantity

discount scheme. However, this has the effect of increasing the time between orders which

reduces the order variance of the supplier. Cachon (1999) discusses that suppliers should

not take actions that can increase the buyer’s cost substantially in order to dampen their

order variabilities. In our analysis, the supplier does not put any restriction on the buyer

about the timing of the orders. The buyer voluntarily orders with the discounted price and
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is better off with respect to the system without a discount. The supplier can adjust the

discount rate and Q in order to control the order size and variance of the buyer. There

is an increase in the holding and penalty costs of the buyer, which is compensated by the

discount rate. Therefore, the supplier shares the benefits of reducing order variability with

the buyer.

In addition to increasing the time between orders, the efficient quantity discount scheme

that we propose shifts the variability of the system from order sizes to order timing. A pos-

sible extension of our analysis would be to study how to best moderate the variation in

number of periods between orders as well. Another extension that we work on includes

multiple buyers with significant heterogeneity. In this case, the supplier may provide dif-

ferent price breaks such that each buyer picks exactly one of the breaks at his optimality.

Since each buyer only exercises one price break, the supplier happens to price discriminate

her customers based on their end customer demand distribution. Finally, we would like to

emphasize that there are many ways to model the quantity discount problem. Our model

captures the most common practices in industry.



Chapter 3

A Data Mining Approach to

Forecast Behavior of

Manufacturers in Automotive

Industry

3.1 Introduction

The rapid expansion of computer resources creates the potential to bring business intelli-

gence into decision support systems of supply chains. With the increased availability of

enterprise wide databases, the amount of data collected is growing at a tremendous rate.

One objective of supply chain management is the reduction or elimination of all activities

that do not add value and concentrating on factors that maximize value and productivity.

Collaborative Planning, Forecasting, and Replenishment (CPFR) is an evolution and re-

finement of these concepts among the players in the supply chain. CPFR is an initiative

intended to improve the relationship among all participants in the supply chain through

49
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jointly managed planning and shared information. The quality and the intensity of the

information exchange demands a strong commitment of cooperation from the participating

organizations. The planning and forecasting components require intensive information ex-

change in all levels of relationships. Unsatisfactory relationships between the parties lead

to inefficient information flow in the supply chain.

We consider a customer order prediction model in which forecasts of orders at some

future date are used as input to a series of inventory planning decisions. We are analyzing the

orders that are received by a supplier who produces parts for auto manufacturers. Multiple

customers (auto manufacturers) requesting multiple parts, place preliminary orders which

are estimates for actual orders starting from six months before the due date. Customers

can update their orders as the due date approaches. The supplier guarantees very high

service levels as stipulated in the contract with the customers. Since capacity is limited

and there is lead time for production, the supplier may fail to fulfill orders. Therefore,

production planning and capacity decisions have to be made carefully in order to achieve

high service levels. As the production quantities are being committed so far in advance, it

is very difficult to predict final quantities of each part desired. Our goal is to improve the

supplier’s operations through a better understanding of her customers’ ordering behavior.

We provide a methodology that can be used in order to analyze the forecast behavior

of manufacturers. In the first step of the analysis, manufacturers’ forecast data are trans-

formed into a format that can be used as input for further analysis. Orders are replaced

by daily flows in order to predict the daily requirements of the manufacturers and over-

come any complexities due to ordering problems such as order-splitting, order-combining

and changes in due date. In the second step of the analysis, we use data mining techniques

such as clustering and projection methods in order to visualize forecast behavior of the

manufacturers.

In our analysis, we introduce different order complexities that have not been discussed

in literature. Analytical models that assume similar ordering behaviors can be used to
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obtain policies that improve the supplier’s operations. Another important point is the lack

of empirical research in the area of supply chain management. Our results provide strong

empirical support for models that assume different forecast behaviors. In our analysis, we

show that customers are consistent with their forecast behavior over time. It is possible

to design different incentive mechanisms that improve a customer’s performance. One in-

teresting result is under-estimation being a more common behavior than over-estimation.

There are models in literature that explain inflation of order sizes under different assump-

tions (Cachon and Lariviere 1999a, 1999b). However, the reasons behind under-estimation

is not well studied in literature. From the automotive industry dynamics reputation is the

most likely cause for customers to under-estimate their orders. Therefore, the models that

consider longterm relationships should take reputation into account.

3.2 Environment Analysis

3.2.1 Automotive Suppliers

As auto manufacturers concentrate more with the customer side, production and engineer-

ing move more to suppliers. Auto suppliers develop and build 65% of the average vehicle

today; according to a recent study this number is expected to be 77% over the next decade

as suppliers provide more engineering and production of the components. Suppliers are the

main part of the value creation in the auto industry. In 2002, top 100 global automotive

suppliers delivered $366.4 billion in parts to auto plants around the world, up from $333.8

billion in 2001. Companies such as Bosch, Continental, Delphi, Lear, Siemens VDO Auto-

motive, ThyssenKrupp, and Visteon are expected to increase their value creation 70% by

2015. Although globalization is a well established trend among the industry’s biggest play-

ers, many of the largest suppliers still remain heavily rooted in their home markets. High

customization of products and geographically dispersed operations require an efficient sup-

ply chain management for auto parts. Decreasing margins in industry and high technology



52
Chapter 3. A Data Mining Approach to Forecast Behavior of Manufacturers in

Automotive Industry

requirements result in very demanding auto manufacturers. For example, supplying Honda

requires patience. In some cases, the auto manufacturer would talk with a potential supplier

as long as two years before deciding to offer a contract. Larry Jutte, head of purchasing for

Honda of America Manufacturing, Inc. comments about their search for suppliers in the

North American market: “We began by trying to identify suppliers in North America that

matched our core values. Some thought Honda’s value system was more challenging, they

thought it was unreasonable. There is no question that we were demanding about quality,

cost and delivery, we wanted to know a heckuva lot more about a supplier than most other

auto companies at that time.” Therefore, a strong tie and collaboration is a key to lengthy

and profitable relationships in the automotive industry.

3.2.2 Order Forecasts

Order forecasts are an essential part of collaboration when the capacity is limited and there

is lead time for production. Forecast is the basis for the integration of a manufacturer to the

production process. In CPFR, even sharing point of sales data is not enough for effective

and efficient production planning. Sharing demand information alone will not guarantee

uncertainty reduction in the system. One barrier is the time horizon. Since there is lead

time and orders are placed in fixed epochs due to fixed costs, manufacturers should provide

early forecasts.

There are two components of variation in the system. First one is the noise which comes

from the uncertainty of the nature. The current demand becomes a better predictor for

the forecasted demand with the proximity to actual delivery. A forecast for tomorrow will

be more accurate than one for next month. The latter is the manufacturer’s bias in terms

of over-estimating or under-estimating the order size. Manufacturers can improve their

forecasting performance and can reduce the noise. However, as long as it is not incentive

compatible to submit true forecasts, manufacturers will transform their forecast and truthful

transmission of forecast is not possible. In our analysis, we provide empirical support for
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different forecast behaviors for the manufacturers.

3.2.3 Database Information

In our analysis, we are analyzing the forecasts and orders that are placed by multiple cus-

tomers (auto manufacturers) to a supplier. The supplier is one of the biggest engine systems

suppliers in the automotive industry. We provide an analysis for his “hot” selling and high

investment ($5.3 billion) new engine system. Multiple customers requesting multiple engine

parts place preliminary orders that are estimates for actual orders starting from six months

before the due date. Customers can update their orders as the due date approaches.

Our database consists of the orders placed by 497 customers for 35,551 different parts in

years 2000 and 2001. The total number of orders is more than a million. Each part belongs

to one of 214 product families. Parts in product families have similar functions and prices.

An average price for a product family is also available in the data.

The attributes for different databases are as follows:

1. Order database: customer, part, order date, due date, quantity, warehouse, factory

information

2. Part database: product family

3. Product family database: average price for family

Pareto Result: Customers in our analysis are not identical in total dollar value of

their orders. A widespread empirical result about income dispersion, known as Pareto

result, implies that 20% of the customers will account for about 80% of the total demand.

Ordering the customers in descending revenue in Figure 3.1, 11% (55 customers) of the

customers represents 80% of the revenue.

Some of the customers represent 3− 5% of total revenue. Each of the top 31 customers’

share in total revenue is higher than 1%. Therefore, by analyzing those 31 customers

(just 0.6% of customers), we can explain 65% of the total revenue. For the next steps
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Figure 3.1: 11% of the customers accounts for 80% of the revenue

of our analysis, we separately analyze the major customers and provide statistically more

significant results.

3.2.4 Objective

As part of CPFR, the supplier asks customers (auto manufacturers) to submit forecasts in

order to start production in advance. However, a customer’s forecast accuracy can be very

low and forecasts can be very misleading. Our goal is to define a framework for analyzing

the forecast performance of the customers and to provide empirical support for different

forecast behaviors. In our analysis, we explore and analyze large quantities of data to

discover meaningful patterns and rules for the ordering process of customers. We try to

explore the following questions:

a. Are classical forecasting techniques applicable? If not, is it possible to clean the

forecasts in order to prepare the data for a deeper estimation analysis?

b. Is it possible to provide a quantitative representation of a customer’s forecast perfor-

mance?

c. Can we visualize the behavior of customers through time?
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d. Can customers be assigned to groups? Do these groups represent significant common-

ality among different forecast behaviors?

e. How can we recognize different forecasting patterns? Is it possible to automate the

process of anomaly detection from the data?

f. Are customers consistent with their forecast behavior? What is the general tendency

in terms of over-forecasting or under-forecasting?

3.3 Literature Review

The management science literature has paid a great deal of attention to forecasting, so we

only provide a description of major classes of models related to our analysis.

Most of the literature is based on providing mathematical models for evolution of fore-

casts. Graves et al. (1986a, 1986b, 1998) and Heath and Jackson (1994) develop the

Martingale Model of Forecast Evolution (MMFE) to model how demand forecasts of cus-

tomers evolve in time. In MMFE, a forecaster generates a demand forecast for a single item

in different periods. The forecast update errors, the difference between any two periods’

forecast for a future date, are assumed to follow the Martingale Property: forecast update

errors are independent, identically distributed, multivariate normal random variables with

mean 0. Gullu (1996) , Graves et al. (1998), and Toktay and Wein (2001) use MMFE to

model the evolution of the forecasts. Another approach is using Bayesian updates to incor-

porate new information as it becomes available . Scarf (1959) , Azoury (1985) and Lariviere

and Porteus (1999) provide insights into the order evolution problem from Bayesian per-

spective. Chen et al. (2000) , Aviv (2001) and Aviv (2002) have suggested several other

stylized theoretical models to study inventory planning when there are forecasts available

for future demand. From the analysis of the customer forecast data, we capture complexities

with order updates such as order-splitting, order-combining and shifts in due dates. The

demand forecasts do not follow a regular pattern and the data without any transformation
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does not fit in the classical forecasting models.

The empirical research about forecast behavior of customers is quite limited in literature.

Terwiesch et al. (2003) considers the problem from a buyer’s perspective. A buyer is placing

orders from a set of equipment suppliers. The forecast performance of the buyer is measured

according to the forecast volatility (continually updating the orders) and forecast inflations.

They demonstrate that inflating forecasts and providing volatile orders damage the buyer’s

reputation and thereby lead to a lower level of service in the future. In our analysis, we

looked at the problem from the supplier’s perspective and provide analysis for understanding

the forecast behavior of the customers.

3.4 Understanding Customer Forecasts

t

1-Aug 6-Aug

36 27216 216

12-Aug

218

20-Aug

t

1-Aug 6-Aug

216 216

12-Aug

218

20-Aug

Example 5 A customer forecast at order date 1-Aug.

At each order date t, customer i updates all his previous forecasts and can place some

new forecasts for part j. Since we repeat the same analysis for all customers and parts, we

drop the indices i and j for the rest of the analysis. Therefore, at order date t, the customer

places forecasts for different due dates St = (s1,t, s2,t, ...) where sr,t is the rth due date of the

order date t. Time between order dates and time between due dates should not necessarily

follow a regular pattern. Each customer can provide a forecast update at any date. At t, the

customer provides a set of forecasts Ft = (fs1,t , fs2,t , fs2,t , ...) for all days in St. The forecast

vector Ft is the most recent forecast information at time t and fs1,t denotes (s1,t − t) days

advance forecast. The most recent order date provides the valid forecast information for

estimation. If there are no more updates for a due date, the forecast is treated as the final
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order. In Example (5), for t=1-Aug, the due date vector is St=(6-Aug, 12-Aug, 20-Aug)

and the forecast vector for these particular due dates is Ft = (216, 216, 218).

3.4.1 Order Definition

In our analysis, customers can modify both their due dates and forecast quantities at order

dates. Changes in due dates make it difficult to track the update of an order at different or-

der dates. From the data set, we provide major complexities that make classical forecasting

tools inapplicable.

Example 6 12-Aug and 20-Aug orders in 1-Aug order splits into 12-Aug, 16-Aug, 20-Aug

and 24-Aug orders in 8-Aug order.

1-Aug 8-Aug

Due date Forecast Due date Quantity

6-Aug 216

12-Aug 216 12-Aug 107

16-Aug 109

20-Aug 218 20-Aug 112

24-Aug 106

Order-splitting

Some customers substitute their forecasts for a given due date with smaller batches as the

due date gets closer. Customers tend to place large preliminary aggregate forecasts and then

split them into smaller orders. We observe that a customer can place monthly forecasts six

months in advance and change it into bi-weekly forecasts three months in advance and

finally end up with weekly forecasts in the last month before the shipment. In Example

6, forecasts for due date 12-Aug and 20-Aug are replaced by 12-Aug, 16-Aug, 20-Aug and
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24-Aug forecasts in 8-Aug order. When a forecast gets split, we lose track of this particular

order. We have to make extra assumptions in order to obtain the actual order quantity for

the order that gets split.

Order-Combining

Some customers combine their orders as the due date gets closer. The initial order no

longer exists after combining. Therefore, there is no actual order quantity for that forecast.

The accuracy of the order before combining is hard to derive without making any extra

assumption about a customer’s combining policy. In Table 7, forecasts for 12-Aug, 16-

Aug, 20-Aug and 24-Aug orders from 1-Aug order are replaced by forecasts for 12-Aug and

20-Aug orders at 8-Aug.

Example 7 12-Aug, 16-Aug, 20-Aug and 24-Aug orders in 1-Aug order are combined into

12-Aug and 20-Aug orders in 8-Aug order.

1-Aug 8-Aug

Due date Forecast Due date Quantity

6-Aug 110

8-Aug 124

12-Aug 124 12-Aug 256

16-Aug 132

20-Aug 112 20-Aug 252

24-Aug 140

Example 8 8-Aug, 12-Aug, 16-Aug, 20-Aug and 24-Aug orders in 1-Aug are shifted by two

days to 10-Aug, 14-Aug, 18-Aug, 22-Aug and 26-Aug in 8-Aug order..
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1-Aug 8-Aug

Due date Forecast Due date Quantity

6-Aug 110

8-Aug 124 10-Aug 120

12-Aug 124 14-Aug 128

16-Aug 132 18-Aug 134

20-Aug 112 22-Aug 120

24-Aug 140 26-Aug 134

Shifts in Due Dates

Customers can modify due dates of orders while updating their forecasts. We observe that

it is difficult to keep track of an order when there is a change in its due date. Initial forecast

starts six months before the shipment. Therefore, shifts in due dates are inevitable in a

manufacturing environment with lots of uncertainty in production and demand sides. In

Example (8), forecasts for 8-Aug, 12-Aug, 16-Aug, 20-Aug and 24-Aug orders are replaced

by forecasts for 10-Aug, 14-Aug, 18-Aug, 22-Aug, and 26-Aug orders. In Example (8), there

is a two day shift in due dates and the customer is also adjusting his forecast quantity.

A New Order Evolution Model

In the MMFE framework, the order vector is updated at each order date. In our data

set, the customer does not have to provide an order update at each order date t. The time

between order dates with updates does not necessarily follow a pattern. In MMFE, the

customer is assumed to provide forecasts at each order date for each period in the planning

horizon. Customers can only update the quantities and cannot change the due date of an

order in MMFE. However, in our analysis the customers first choose the due dates St at

order date t and then provide the forecast vector Ft for these days in St. The customer does

not provide forecasts for all days in the planning horizon. He submits forecasts only for the

due dates in St. The number of days between the due dates in St does not necessarily stay
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constant. In our analysis, we also observe that customers can shift due dates. Moreover,

order-splitting creates new due dates and order-combining reduces the number of due dates.

Order-combining, order-splitting and shifts in due dates can happen simultaneously, which

makes it difficult to track orders.

When an order gets split, combined or shifted, having order numbers does not solve the

problem of finding an accuracy level for this order. In order to handle these complexities,

we look at the periods in which the customer consumes these quantities. We assume that

customers consider their daily production requirements while placing orders. A systematic

approach is disaggregating the order quantities and work at daily flow level.

3.4.2 Daily Flow Analysis

At each order day customers aggregate daily requirements and place orders for some due

dates which are discrete points in the planning horizon. In our daily flow analysis, we try

to predict the daily requirements of a customer based on the forecasts. There are different

ways of estimating daily flows from orders. The greedy solution is assigning any order to

the following days before the next due date. So at order date, we divide the orders fsk,t
∈ Ft

by sk+1,t − sk,t and assign it evenly to the days between sk+1,t and sk,t. We assume that

fsk,t
is consumed during those days. Other smoothing techniques can be considered with

extra assumptions. In our analysis, we assign daily flows after a due date unless the order

is the latest due date of an order forecast vector Ft. Otherwise, we cannot find the days

when the quantities ordered at the last days of an order date get consumed. Example (9)

demonstrates the assignment of daily flows for order date 1-Aug.

Handling order-splitting, order-combining and shifts in due dates is important for per-

formance analysis of the customer. However, our operational objective is to understand how

customers change their order quantities, including the orders which do not have any com-

plexities. We provide a procedure to find a quantitative representation for each customer’s

forecast performance:
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Example 9 At order date t=1-Aug, 216 is ordered for 6-Aug and it will get consumed

between 6-Aug and 12-Aug (6 days), so the daily flow between 6-Aug and 11-Aug is 216/6 =

36. Between 12-Aug and 19-Aug, the daily flow is 216/8 = 27 following the same argument.

t

1-Aug 6-Aug

36 27216 216

12-Aug

218

20-Aug

t

1-Aug 6-Aug

216 216

12-Aug

218

20-Aug

Order date Due date Forecast Number of days Daily flows

1-Aug 6-Aug 216 6 36

12-Aug 216 8 27

20-Aug 218

1. Finding the Accuracy Ratio of Forecasts

By running the daily flow analysis on the forecast update at order date t, we can

obtain the daily forecasts (f̂m
t ) for each day m in the planning horizon at order date

t. By repeating the same daily flow analysis on the firm orders, we can generate the

actual daily flows dm for any day m. By having the actual daily flows and the daily

forecasts, we can determine the accuracy ratio of an r-day advance order. Different

time windows can be considered for accuracy calculations. In our analysis, we consider

30-day advance orders since most customers provide forecasts at least 30 days before

the due date. The same analysis can be repeated for other r values. One major

complexity in finding the accuracy level of a 30-day advance order is defining a 30-

day advance order. It is not often the case that there exists a particular order which

is placed exactly 30 days from the order date. One solution is comparing forecast

daily flows and actual daily flows for the 30-day in advance. However, this is very

sensitive to small shifts in due dates. A more robust solution is considering the total
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orders in a time window. From the data, we observe that customers provide orders

on a weekly basis as due date gets closer. Therefore, we combine daily flows between

30 and 36 days (a week of orders) as a single order and compare it with the sum of

actual daily flows for these 7 days. So the accuracy ratio φt
r of r-day advance order

at order date t is

φt
r =

∑r+6
n=r f̂n

t∑r+6
n=r dn

. (3.1)

2. Taking the Log of the Accuracy Ratios

It has been discussed in literature that using log transforms for ratio-scaled data,

has more accurate results. (Armstrong (2000)) and Hausman (1969) transformed

the order evolution problem into a finite horizon sequential decision problem using a

quasi-Markovian or Markovian model. They provide empirical support (not entirely)

for ratios of successive forecasts being independent and having a Lognormal density

function conditional on the change in the forecast. Therefore, we take the log of

the accuracy ratios in our analysis in order to give the same weight to under- and

over-estimation of the orders.

3. Assigning Orders to Bins

In order to represent the behavior of a customer, we create a histogram for each

customer by looking at 30-day advance orders. We assign orders to bins (different

intervals in the histogram) by looking at the log value of the forecast’s accuracy ratio.

We consider 15 different bins with equal widths. There are three groups of bins: one

true-estimator (accuracy ratio ranged from 80% to 125%), seven under-estimators

(having ranges scaled being multiples of log 0.8) and seven over-estimators (having

ranges scaled being multiples of log 0.8).
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Figure 3.2: The dashed curve corresponds to a customer who falls into the true-estimator bin 85%
of the time. The solid curve exhibits the behavior of a customer who over-estimates the size of
his orders most of the time. The dotted curve represents the ordering pattern of a customer who

under-estimates the size of his actual orders.

For each customer, we start to fill in the bins as the daily flows are calculated. Based

on the log value of the accuracy ratio the appropriate customer bin is increased

accordingly. The customers can replenish different parts with different quantities.

Therefore it is reasonable to have an amount of increase which is equal to the dollar

value of an order. After completing assignment of orders to bins for a customer, we

normalize the histogram and find the relative frequency of each bin. So the value

of each bin corresponds to the ratio of total dollar value of 30-day advance orders

that fall into this accuracy level. We can use this 15-dimensional vector to mimic the

distribution of a particular customer and input it as a performance measure in data

mining. In Figure (3.2), resulting order distributions for 3 different customers are

shown.

As a result of our analysis, we have a customer order distribution pq
i for customer i and

quarter q. We consider quarters of 2000 and 2001 in our analysis. Each pq
i is a vector of size
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15. The first 7 components of pq
i (indexed from -7 to -1) corresponds to under-estimation

values. In Figure (3.2), 0 on x axis which is the 8th component of the vector pq
i represents

the probability of true-estimation and the last 7 components of pq
i (indexed from 1 to 7)

shows the over-estimation probabilities.

3.5 Characterizing Customer’s Forecast

An important issue for a supplier with multiple customers is to provide performance bench-

marks. Customer forecast data contain lots of variables which make it difficult to make

comparisons among the customers. In Section 3.4, we provide the methodology to derive a

quantitative representation of a customer’s forecast performance. In this section, we provide

a distance metric in order to compare customer order distributions of customers. We then

provide supervised and unsupervised clustering techniques that form performance groupings

among customers.

Clustering heuristics assign each observation or object to a group. We can cluster

the customers by looking at their order distributions. If a customer clusters with over-

estimators or under-estimators, then he must be treated with care on the grounds that

there is a problem with his order process. If he clusters with true-estimators that concern

disappears. We can observe the evolution of a customer’s forecast behavior by looking at

his cluster for various quarters. We can call the cluster, which includes the customer with

100% forecast accuracy as the ideal cluster, and explore the other clusters based on their

distance from the ideal cluster.

In data mining, the main goal is to produce simplified descriptions and summaries of

large data sets. As long as there are only two or three dimensions it is easy to visualize

two- or three-dimensional graphs. However, as the dimensionality of the data gets larger,

it gets difficult to plot a vector of relationships between different factors. Projecting high-

dimensional data sets as points on a low display (usually two-dimensional) is a one way of
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visualizing the data. In our analysis, we project the clusters on a two dimensional space.

A simple clustering is dividing customers into three groups: over-estimators, true-

estimators and under-estimators. However, there are advanced clustering techniques which

provide better insight. We apply two clustering techniques (K-Medoid Analysis and Self-

Organizing Maps) in our analysis. For projection two two-dimensional display, we consider

Sammon’s Mapping which finds a mapping where the distances between the image points of

the data items remain similar to distances in the original metric. Sammon(1969) describes

a nonlinear mapping algorithm which has been found to be highly effective in the analysis of

multivariate data. The special feature in Sammon’s Mapping is that errors are normalized

by distances in original space. In our analysis, we consider data for different quarters of

2000 and 2001 for each customer. By looking at the trajectories of the customers on the

mapping, customers can be informed about their performance in order to improve their

ordering process and offer incentives.

3.5.1 Comparing Customer Performances

Customers can be represented in terms of proximity between their performance vector. In

order to compare customer order distributions, we define a distance measure that provides

a good approximation of the proximity between customers.

The distance measure should be compatible with the problem characteristics. The vector

of customer distribution(pq
i ) has some distinct properties. Each component corresponds to

a discrete probability and the sum of the mass probabilities adds up to one. The order of

the vector is important and should be considered in the selection of the distance measure.

The following distance measure is used in the rest of our analysis.

Definition 4 Having the customer probability vector pi, a distance d(i, j) between cus-

tomers i and j can be defined as follows,
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d(i, j) =
k=7∑

k=−7

‖
t=k∑

t=−7

pq
i (t)−

t=k∑
t=−7

pq
j(t) ‖ (3.2)

where pq
i (t) denotes the tth component of vector pq

i and ‖ . ‖ stands for euclidean metric.

Our distance measure provides the distance between the cumulative probabilities. Since

each distribution is an ordered vector, the distance measure should depend on the order of

the vector. Our distance measure is robust to small errors in the calculation of the mass

probabilities and puts more weight on the cumulative probability of any point. Also, the

distance is not skewed to over-estimation or under-estimation. The distance between two

order vectors stays the same if we transpose the order vectors. We use our distance measure

to form customer clusters which have similar forecast behavior.

3.5.2 Customer Clustering Analysis

The goal of clustering analysis is to partition the observations into groups so that pair-

wise dissimilarities between those assigned the same cluster tend to be smaller than those

assigned in different clusters. Each observation is assigned to one and only one cluster. The

objective of our clustering analysis is to describe forecast behaviors. Each cluster represents

customers who have similar forecast behavior. By looking at the movement of customers

between the clusters for different quarters we can track the ordering pattern of a particular

customer over time. If a customer shows up in the same cluster for all quarters, it means the

customer is consistent with his ordering behavior. Our clustering analysis also automates

the process of setting performance benchmarks. Clustering also provides a dynamic measure

of the ideal behavior for customers.

K-Medoid Analysis

We introduce K-Medoid clustering technique which is a modified version of the well known

K-Means clustering technique. The only difference is having actual customers as the cluster
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Figure 3.3: Average customer distributions for each cluster for K-Medoid Analysis.

centers. In our updated version of the heuristic we try to find cluster centers which minimize

the maximum distance from any points in the cluster. Cluster centers are actual customers.

The clustering technique is based on the assignment of each customer to the closest cluster

center. The main issue in this clustering analysis is to map the customers according to a

cluster center. By taking the sum of distances, customers can be well spread between the

clusters. However, we try to look at the case when a customer has an irregular behavior

and is assigned to a cluster whose center has similar types of behavior. In order to get a

better spread among the clusters, we suggest Kohonen Networks in the next section.

In K-Medoid Analysis, we try to automate the process of recognizing irregular customer

behavior. If a customer tends to have a forecast behavior which is different from the

other customers, he may become a cluster center and pull other customers with similar

behavior to his cluster. We do the clustering analysis for seven quarters of data for 2000

and 2001. Customers are assigned to eight different clusters. Each cluster represents a

different customer behavior. In order to understand the properties of customers for each

cluster, we plot the average customer distribution function for each cluster in Figure (3.5.2).
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Cluster 6 represents the customers whose forecasts are true estimates of the actual orders

about 80 percent of the time. Ideal customers also fall into cluster 6. Clusters 7 and 8 can

be considered as over-estimators and Cluster 3 and 4 can be considered as under-estimators

with different levels. Clusters 1, 2 and 5 show more irregular patterns that are mixes of

over-, true or under-estimation.
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-0.8 -0.3 0.2 0.7 1.2 Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7
Cluster 8

Over-estimators

True-estimators

Under-estimators

Figure 3.4: K-Medoid Analysis for years 2000 and 2001. Each point represents a customer.

In Figure (3.5.2), the Sammon’s Mapping of the K-Medoid clustering is shown. Cluster

6 (red points), which we call the ideal cluster, includes the customers who are close to

the ideal customer. As we get far from the ideal cluster, we can observe different clusters.

Different regions on the mapping define different behaviors. The lower right part of the

graph represents customers which are over-estimators (Clusters 7 and 8). Left of the y-axis

represents the customers who are under-estimators. (Clusters 3 and 4). The other clusters

(which have different behavioral patterns with different magnitudes) occupy different regions

on the mapping.

In Figure (3.5.2), we observe the mapping for clusters for the top 11% of the customers

who represent 80% of the total revenue. Most of the major customers fall into cluster 6
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Figure 3.5: K-Medoid Analysis for years 2000 and 2001 for top 11% of the customers. Each point
represents a customer.

which contains the ideal customer. We can still observe the other clusters with different

behaviors. Therefore, our cluster analysis provides strong clusters.

Self-Organizing Maps (Kohonen Networks)

The Self-Organizing Maps (SOM) is an effective tool for the visualization of high-dimensional

data. It converts the relationship of object in high-dimensional space into simple geometric

relationship of their image points in a lower dimensional grid. SOM compresses information

to display and produces some kind of abstraction. Kohonen (2001) described SOM as a

nonlinear, ordered, smooth mapping of high-dimensional input data that manifolds onto the

elements of a regular, low-dimensional array. SOMs are also named as Kohonen Networks.

We consider a SOM with one-dimensional eight clusters. Since SOMs are topological

maps, distance between the Kohonen clusters represents the level of dissimilarity. The

cluster numbers in K-Medoid Analysis do not provide any information about similarities

of clusters. Compared to K-Medoid Analysis, Kohonen Network provides a better spread

among the clusters. Figure (3.5.2) provides the average customer distributions for different
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clusters. Cluster 1 contains the customers who truly estimate their orders more than 90%

of the time. When we compare ideal cluster of Kohonen Analysis (Cluster 1) with the

ideal cluster of K-Medoid Analysis (Cluster 6), we observe that Kohonen Analysis has a

small number of customers in ideal cluster with higher average true-estimation ratio than

K-Medoid Analysis. Compared to K-Medoid Analysis, customer-quarter results between

the clusters have more spread and it is harder to recognize irregular forecast behaviors

compared to K-Medoid Analysis. To capture irregular patterns, K-Medoid Analysis seems

to provide a better result. This is due to the fact that K-Medoid Analysis tries to minimize

the maximum distance from cluster center. Therefore, any irregular customer-quarter result

has to be close to a cluster center or become a cluster center himself in the output.
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Figure 3.6: Average customer distributions for each cluster for Kohonen Network Analysis.

The Sammon’s Mapping of Kohonen Analysis is a mountain like shape. As we get

far from the ideal customer, we observe points which have similar distances from the ideal

customer forming circular clusters. It is hard to recognize who are over-estimators or under-

estimators. The advantage of Kohonen Analysis is having better spread and not giving too

much weight to single observations. K-Medoid Analysis is better for recognizing outlier

behaviors. When we analyze the major customers, we still observe all of the clusters.

(Figure 3.5.2)
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Figure 3.7: Kohonen Network Analysis for years 2000 and 2001. Each point represents a customer.
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Figure 3.8: Kohonen Network Analysis for top 11% of the customers who represent 80% of the
total revenue. Each point represents a customer quarter result.

Customers are Consistent:

In our analysis the clustering analysis provides significant clusters. In K-Medoid Analysis

36% stays in the same cluster for all quarters and 90% stays in the same cluster for at least
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half of the quarters. In Kohonen Analysis 15% stays in the same cluster for all quarters

and 56% stays in the same cluster at least half of the quarters. Since some of the clusters in

K-Medoid Analysis have large number of customers, these clusters occupy a larger volume

of space. Therefore, the probability of staying in the same cluster is higher compared to

Kohonen Analysis, where we have small clusters with equal size.

Reputation is Important:

In clustering analysis, we provide customer groups which provides irregular behaviors.

When we take the averages of all customer distributions, we obtain a smoother behavior

in Figure 3.5.2. Overall true-estimation (indexed 0) seems to be the most common behav-

ior (67%). Under-estimation (indexed from -1 to -7) is a more common behavior (21%)

compared to over-estimation (indexed from 1 to 7). The main reason for customers to

under-estimate is to keep a good reputation with the supplier. In our problem environ-

ment, capacity is not a main concern for the supplier. The parts are highly customized and

excess production is very costly for the supplier. Therefore, the cost of under-estimation

is less compared to the cost of over-estimation for the supplier. In a long-term CPFR im-

plementation this leads to the manufacturers provide forecasts which are going to be used

with high confidence. In this way, excess production is minimized and the manufacturer

builds a reputation with the supplier for accurate forecasts.

3.6 Managerial Use

Our customer forecast behavior analysis consists of many steps as discussed in the previous

sections. Our procedure can be generalized as follows:

1. Orders are transformed into daily flows.

2. Accuracy ratios for daily forecasts are obtained by using the daily flows.

3. A quantitative representation of each customer’s forecast is computed by customer

bin analysis.
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Figure 3.9: The average distribution for all customers

4. Customer order distributions are used as inputs to clustering.

5. The clusters are projected on a two-dimensional graph by using Sammon’s Mapping

in order to visualize the clusters.

Our customer forecast behavior analysis has several useful applications for the practi-

tioners.

Automation for Detecting Irregular Customer Behavior: When the data set is

too large, it is hard to recognize irregularities in a particular customer’s forecast. Signalling

mechanisms can be equipped to give quick responses. For example, a group of customers can

start to give aggressive orders, which directly affect the capacity decisions of the supplier.

An automated signaling mechanism can be designed with the help of K-Medoid Analysis. K-

Medoid Analysis is based on assigning each customer to the closest cluster center. Therefore,

when a customer behaves differently from the other customers, he either initiates a new

cluster or joins the cluster of other customers with similar behaviors. Therefore, this gives

a signal to the supplier to take necessary actions.
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Creating Performance Benchmarks: The forecasting performance of a customer is

dependent upon many outside factors such as trends in the industry, competition, exchange

rates, etc. It is hard to quantify the effect of each factor on a customer’s forecast per-

formance. Therefore, the supplier needs to design flexible performance benchmarks which

quickly and dynamically adapt to changes without any supervision. Our clustering analysis

discussed in Section 3.5.2 forms customer groups with similar forecast performances. The

cluster with high forecast accuracy represents the ideal customer behavior. As discussed

in Section 3.5.2, Kohonen Network is a clustering technique which provides a good spread

of customers to the clusters. By performing Kohonen Analysis for every quarter, the sup-

plier can dynamically update the properties of an ideal customer and report this to the

customers as performance benchmarks. Kohonen clusters are topological maps and the

distance between the Kohonen clusters represent the level of dissimilarity. In Figure (3.5.2)

from cluster 1 to cluster 8, the percentage of customers who provide true forecasts decrease.

Therefore, as the cluster number increases, the magnitude of the deviation from the ideal

behavior increases.

Group Monitoring Options: A customer’s forecast behavior can be affected by other

customers’ actions. Therefore, understanding behavior of related customers is important in

decision-making. Customer groups can be formed for close monitoring. For example, in the

introduction of a new item to the market, customers are in the initial phases of learning

the market conditions. A separate analysis can be performed on this group of customers

who are ordering the item. For the items with limited supplier capacity we can observe

aggressive ordering from the customers in order to get more of the supplier’s capacity.

Quarterly Reports: Quarterly reports can be generated by the supplier based upon

the forecast performance of the customers. Customers can be informed about their perfor-

mance and make improvements in their forecasting process. Our mapping analysis can be

used at that point in order to provide the position of the customer with respect to the other

customers. Reward/penalty schemes can be developed based on the performance reports
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of the customer. The trajectory of a customer for different quarters can be interpreted

with respect to different points on the mapping (such as the position of ideal customer, his

previous quarter position or other customers’ or competitors’ performances).

Customer-Level Analysis: Our analysis can be repeated for different parts of the

same supplier. By doing that, the supplier can understand if the customer is consistent

with his behavior for all the parts he is ordering. Parts can be an effective factor on the

performance of a customer. A customer can be an over-estimator for one part. However,

the same customer can turn out to be a true-estimator for other parts.

3.7 Conclusion and Future Research

In our analysis we describe complexities such as order-splitting, order-combining and shifts

in due dates. We disaggregate the orders into daily flow analysis to overcome complexities

and to compute the accuracy ratios of the forecasts. Another solution for handling the

complexities is aggregating the orders. In our recent analysis with year 2002 and 2003

data, we search for the minimum aggregation level that eliminates the complexities with

the orders. The major disadvantage of the aggregation approach is the loss if information.

However, aggregation transforms the data into a format that is compatible with standard

statistical parametric techniques.

We employ customer bin analysis to obtain customer order distributions. This vector

has been used in our analysis as a quantitative representation of a customer’s performance.

Using the vectors obtained from customer bin analysis, we categorize customer order dis-

tributions into data clusters and use projection techniques for visualization. We derive a

distance metric compatible with our problem environment in order to compute the similar-

ities among the customers.

In our analysis, we show that customers are consistent with their forecast behavior.

Some customers consistently provide bad forecast performance. The supplier should take
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the necessary actions to improve the forecasts of these customers. However, there are

several supply chain features that complicate handling customer forecasts. Forecast effort

is a hidden action of the customer. It may be costly for the customer to spend time

and effort to provide accurate forecasts. Decreasing forecast effort increases the forecast

variability. Since the forecast action is not verifiable, it is also not contractable. The

supplier can overcome problems with the forecast variability by rewarding customers based

upon observable outcomes (their position in clustering and mapping).

When a customer has a conflict of interest with the supplier, he can provide biased fore-

casts by inflating or deflating his order size. Over-estimation causes excess production for

the supplier and under-estimation leads to lost sales. When the sum of customer orders ex-

ceeds the suppliers’ capacity, capacity rationing mechanisms lead customers to over-estimate

the orders. However, we observe that under-estimation is a more common behavior in our

analysis. Therefore, capacity is not the main concern of the customers while placing orders.

Reputation concerns become more critical and cause customers to under-estimate. Since

the relationships are long term in the automotive industry, customers (auto manufacturers)

tend to keep good relationships with the supplier. The analysis of dynamic models with

reputation effect can provide insights into eliminating the bias in customers’ forecasts.



Chapter 4

Using Customers’ Reported

Forecasts to Predict Future Sales

In the last two decades, business environments have been undergoing rapid changes due to

expansion of computer resources. Companies can now share huge amounts of information

across their supply chains. Empowered with this information companies have a large spec-

trum of choices to create complex products and processes. Due to increasing complexity,

we observe more collaborative effort between the different parties in the supply chain. To

achieve higher returns, suppliers and customers invest in technologies that provide real-time

access to demand, inventory, price, sourcing, and production data. Sharing information is

key to increasing the profits under demand uncertainty. A critical factor that determines

the quality of information transmission is its reliability. Inaccurate information can lead

to severe costs for parties in the supply chain. Most of the existing methods are not ap-

propriate because of the potential bias in the forecasts. However, the suppliers still collect

forecasts from the customers and do not only use their own forecasts. The biased forecasts

still contain information which might be useful for the supplier. It is critical for the supplier

to detect the bias and predict the future order of a customer.

We provide an empirical study about forecast sharing in the supply chains. We analyze

77
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the forecasts of final orders that are received by an automotive supplier who produces

multiple parts for auto manufacturers. Forecast information helps the supplier to predict

the final orders to do production planning in advance. As part of the collaborative effort,

customers provide forecast updates to the supplier at different order dates.

Example 10 Forecasts updates for 1-Aug, 8-Aug and 15-Aug

1-Aug 8-Aug 15-Aug

Due Date Quantity Due Date Quantity Due Date Quantity

8-Aug 800

15-Aug 800 15-Aug 160

22-Aug 960 22-Aug 480 22-Aug 320

29-Aug 960 29-Aug 640 29-Aug 640

5-Sep 960 5-Sep 800 5-Sep 800

12-Sep 960 12-Sep 800

19-Sep 960

Example 10 represents a typical forecast for a customer. The customer provides different

updates in August 1st, August 8th and August 15th. For example in forecast date August

1st, the customer provides forecasts for the next five weeks with quantities 800, 800, 800, 960

and 960. In each forecast date, the customer updates the forecasts from the previous forecast

date and can place new orders. Therefore, the forecasts can be considered as a flow of orders

which evolve over time. As can be noticed from the forecast values due to production and

transportation constraints, the customer provides forecasts which are multiples of some lot

sizes. Therefore, we can divide all the forecasts by a common divisor (160) to obtain the

number of batches in each order. In this analysis, we propose a framework for modeling the

forecast generation process at the customer.

Forecasts provide information about the future orders of the customer. However, the
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forecast information can be quite noisy and can be misleading for the supplier. It is crit-

ical for the supplier to process the forecasts to estimate future orders. In Chapter 3, we

study a similar data set in a non-parametric framework and provide empirical support for

downstream players consistently over- or under-estimating their forecasts through time. It

is important for a supplier to recognize a significant pattern in the forecasts by looking

at order history of a customer. Our objective here is to provide a framework to extract

information from the forecast data and adjust the forecasts to provide a better estimate

of future orders. For example, if a customer constantly overestimates his orders, then the

supplier can detect this behavior and can remove the bias from the forecast.

Why do customers provide poor forecast performance?

There are a couple factors that can lead to forecast errors.

1. Uncertainty in the usage: There is always uncertainty in the customer’s system

due to demand variance, lead times, machine failures, etc. Therefore, the error in the

forecast can be a result of these factors. As the due date approaches, the customer

has more information about the demand and uncertainty decreases.

2. Bias in the forecast: The customer can have different costs for overestimation

and underestimation. When the customer overestimates, the supplier can penalize

the customer or the customer can lose the goodwill of the supplier. In the case of

underestimation, the customer cannot satisfy the demand, which can lead to delays

in production and potentially lost sales. The customer must consider the trade off

between overestimation and underestimation and submit a forecast which minimizes

the expected cost. The unit overestimation cost is not necessarily equal to underes-

timation cost, therefore the customer may add a bias to his forecast to minimize his

cost.

Therefore a realistic model should consider the uncertainty in production and bias in

the forecast.
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4.0.1 Literature Review

Forecasting has been addressed in many different problem settings. There is huge body of

literature in forecasting new observations. In our analysis, the suppliers collect self-reported

forecasts which might be biased from the customers. We use a bayesian approach to estimate

the model parameters in our analysis. Geweke and Whiteman (2006) provide an extensive

review of literature in bayesian forecasting models. Another stream of research which deals

with self-reported forecasts is consensus forecasting models. Batchelor and Dua (1995) )

show that combinations of different forecasts even from a small number of sources is helpful

in predicting future values. In our case, we have regular updates from the customers which

are combined to predict the customer demand. Therefore, the final prediction incorporates

different updates of the customer.

In our analysis, we model the demand function as a time-series process. The customer

submits his final forecast after considering the cost of overestimation and underestimation.

Time-series assumption has been also used by some other researchers to provide theoretical

results about forecasting. Graves (1999) assumes a non-stationary demand with ARIMA

process and shows that inventory decisions behave much differently compared to a stationary

process. Aviv (2003) proposes a unified time-series framework for forecasting and inventory

control. He assumes that different parties observe different subsets of information and

adopts their forecasting and demand process accordingly. Aviv (2001, 2002) also study

models with time-series demand. Our results provide an empirical support for forecasting

models which assume strategic behavior of parties with private information in a time-series

framework. Chen et al. (2000a, 2000b) assumes that the downstream player uses moving

average forecasts to place orders to a supplier. They measure the amplification in the

variance of the orders which is known as bullwhip effect.

There are other mathematical models in literature for the evolution of demand. Graves

et al. (1986a, 1986b, 1998) and Heath and Jackson (1994) develop the Martingale Model

of Forecast Evolution (MMFE) to model the evolution of forecasts. In MMFE, a forecaster



Chapter 4. Using Customers’ Reported Forecasts to Predict Future Sales 81

creates forecasts for the planning horizon and updates them in regular intervals. The error

of the forecast updates are assumed to follow the Martingale Property: independent, iden-

tically distributed, multivariate normal random variables with mean 0. MMFE approach

has been studied by a number of researchers under different problem settings. (see, e.g.,

Gullu (1996) , Graves et al. (1998), and Toktay and Wein (2001) ). Another approach is

considering that some demand parameters are unknown in advance and using Bayesian up-

dates to incorporate new information as it becomes available (Scarf (1959) , Azoury (1985)

and Lariviere and Porteus (1999) )

Our analysis has several aspects that have not been addressed in the literature using

self reported forecasts. First, we assume a loss function for the forecast errors and explain

the dynamics behind the loss function by using a time-series demand. Our analysis is the

first to put the ARIMA form into a newsvendor framework with a cost of overestimation

and underestimation. Second, we assume forecast values which are discrete values since

they are multiples of lot sizes. Third, we provide a statistical procedure to estimate the

model parameters for this complicated problem. A limitation is that we will not consider a

symmetric game where customer adjusts to the suppliers and vice versa.

The empirical research about forecasting is very limited in the supply chain literature.

Terwiesch et al. (2003) considers the problem from a buyer’s perspective. He demonstrates

that poor forecast performance, in terms of forecast inflation and volatility, damages the

buyer’s reputation and leads to a lower service. In our analysis, we looked at the problem

from the supplier’s perspective and provide analysis to understand the forecast behavior of

the customers.

4.1 Problem Environment

In our analysis, we model the orders that are placed to an automotive parts supplier by auto

customers. Customers place some preliminary orders (forecasts) starting from six months
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before the order date and adjust the forecasts before the due date. The parts are engine

systems and generate multi-billion dollar revenue for the supplier. The customer has a

better ability to predict the demand due to its proximity to the final demand. The supplier

can only observe the forecasts submitted by the customer. In Figure 4.1, we can see that

the manufacturers provide different updates at 1-Aug, 8-Aug and 15-Aug for the next 5

weeks.

Figure 4.1: The forecast updates at different order dates 1-Aug, 8-Aug and 15-Aug.

4.1.1 Demand Model

In our analysis, we observe that the forecasts and forecast errors are autocorrelated through

time. A forecast error leads to excess inventory or backordering and carries to the next

period. Another important factor is the autocorrelation between the demand values of

consecutive periods. For example, high demand periods can be followed with low demand.

Therefore, the demand model should be fairly adaptive in order to incorporate the available

information in each period. ARMA model provides a flexible model to describe different

demand processes. (Box and Jenkins 1970) Let Xt as the demand of the customer at time



Chapter 4. Using Customers’ Reported Forecasts to Predict Future Sales 83

t. We model Xt as

Xt − µ = φ(Xt−1 − µ) + εt − θεt−1 (4.1)

Xt = (1− φ)µ + φXt−1 + εt − θεt−1 (4.2)

which is ARMA(1, 1) with E(Xt) = µ. Having both autoregressive and moving average

components, the ARMA(1, 1) model can capture the significant behaviors in the data. Our

framework can be extended over higher number of lags. We assume that the error εt is

normally distributed with E(εt) = 0 and V ar(εt) = σ2.

4.1.2 Forecast Generation Model

We assume that forecasts are generated in a three stage process:

i. At time t, the customer considers the next K periods based on his available infor-

mation set Ωt. He computes the distribution F (Xt+1, ..., Xt+K |Ωt) for the next K

periods.

ii. The customer derives his optimal forecasts X̄t = (X̄t(1), ..., X̄t(K)) using an asym-

metric loss function which represents the strategic behavior of the customer.

iii. At time t, the customer submits a forecast vector to the supplier, X̂t = (X̂t(1), ..., X̂t(K))

where X̂t(k) = X̄t(k) + γt(k) for k = 1, ...,K. Errors γt(k) might perturb the process

to generate non-ARIMA forecasts.

Figure 4.2: Manufacture first observes demand and submit a forecast to the supplier

The customer observes demand which takes continuous values. However, from Example

1, we observe that the customer places integral forecasts which are multiples of lot sizes.
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Therefore, we assume that the forecasts can only take integer values. Next we explain each

step of the forecast generation model in detail.

Derivation of F (Xt+1, ..., Xt+K |Ωt) at time t

By using ARMA(1, 1), we also model the uncertainty in demand for future periods. At

time t, the customer can derive the k-step ahead demand Xt+k as

Xt+1 = (1− φ)µ + φXt + εt+1 − θεt (4.3)

for k = 1 and

Xt+k = (1− φk)µ + φk−1 (φXt − θεt) +
k−1∑
n=1

εt+nφk−n−1(φ− θ) + εt+k (4.4)

for k = 2, ...,K. Since the unobserved values εt+1, ..., εt+k are Normal(0, σ2), we can also

show that Xt+k is normally distributed with

E(Xt+k|Ωt) = (1− φk)µ + φk−1λt k = 1, ...,K

V ar(Xt+k|Ωt) = σ2υ2
k k = 1, ...,K

where λt = (φXt − θεt), υ1 = 1 and υk =
√

(1 + (φ− θ)2
(

1+φ2(k−1)

1−φ2

)
).

Loss function

The customer may have private information which is not available to the supplier. The

customer provides forecasts to minimizes his own cost. We model this strategic behavior as

an asymmetric loss function with different values for costs of overestimation and underes-

timation. Therefore, the customer does not necessarily submit the expected demand as his

forecast and can add a bias to his forecast. We provide an empirical framework to test the

significance of this hypothesis by looking at the forecast data.
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The customer can evaluate the cost of overestimation and underestimation to adjust his

final forecast. A common assumption in supply chain management literature is having a

linear cost function with co for each unit of overestimation and cu for each unit of under-

estimation (Cachon 2004). These costs can be considered as the imputed cost of forecast

errors. Cost of overestimation can include the penalty cost and goodwill of the supplier.

The cost of underestimation can be composed of the expected backordering cost or lost

sales. By following the same approach, we can write the loss function as

U(Xt(k), Xt+k) =

 co|Xt(k)−Xt+k| if Xt(k) ≥ Xt+k

cu|Xt+k −Xt(k)| otherwise

where co, cu > 0.

The customer can derive the expected loss (or risk) for any forecast Xt(k) as follows

E(U(Xt(k), Xt+k)|Ωt) = co

∫ Xt(k)

−∞
(Xt(k)−Xt+k) dF (Xt+k)+cu

∫ Xt=∞

Xt(k)
(Xt+k −Xt(k)) dF (Xt+k)

Submission of the Forecast

Therefore, at period t, the customer solves a minimization problem to minimize his expected

loss function E(U(Xt(k), Xt+k)) and finds an optimal forecast

X̄t(k) = argmin E(U(Xt(k), Xt+k)). (4.5)

If we assume continuous valued forecasts, we can take the first derivative of the expected

loss with respect to Xt(k) to find the optimal continuous valued forecast ζt(k),

∂E(U(Xt(k), Xt+k)|Ωt)
∂Xt(k)

= co

∫ Xt(k)

−∞
Xt+kdF (Xt+k)− cu

∫ Xt=∞

Xt(k)
Xt+kdF (Xt+k)

= coF (Xt(k)|Ωt)− cu (1− F (Xt(k)|Ωt))

= F (Xt(k)|Ωt)(co + cu)− cu
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Since ∂2E(U(Xt(k),Xt+k)|Ωt)
∂Xt(k)2

= f(Xt(k)|Ωt) > 0, from the first order conditions ζt(k)

satisfies,

F (ζt(k)|Ωt)(co + cu)− cu = 0

F (ζt(k)|Ωt) =
cu

co + cu

Therefore, ζt(k) for the customer is

ζt(k) = F−1

(
cu

co + cu
|Ωt

)
. (4.6)

Figure 4.3: The optimal k-step ahead forecasts at time t for µ = 12, σ = 8, φ = 0.7, θ = 0.1,
Xt = 6, εt = 3. The solid line represents an unbiased forecast with cu = co = 1.

When the loss function is symmetric (cu = co), the customer finds the median F−1 (0.5|Ωt)

as the optimal forecast. If the distribution is symmetric, then median is equal to mean and

the customer submits E(Xt+k|Ωt) as the optimal forecast. As can be seen in Figure 4.3

the customer adds a bias to his forecast when the the loss function is asymmetric. When

cu > co, the customer tends to overestimate his orders and adds a positive bias to his

forecast. When cu < co, it is less costly to underestimate for the customer. In this case

the customer has a negative bias in his forecast. Therefore, asymmetric loss functions can
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explain the dynamics behind the bias in the forecasts.

When we assume the the ARMA(1,1) model, the k-period ahead optimal continuous

valued forecast can be derived as :

ζt(k) = (1− φk)µ + φk−1λt + τσυk k = 1, ...,K

where τ be the z-value of cu
co+cu

for standard normal distribution.

In our analysis, we assume that forecasts can only take integer values. Since E(U(Xt(k), Xt(k)))

is convex, the optimal integer valued forecast X̄t(k) is

X̄t(k) =

 bζt(k)c if E(U(bζt(k)c, Xt(k))) < E(U(dζt(k)e, Xt(k)))

dζt(k)e otherwise

where b·c is the floor function and d·e is the ceiling function.

We assume that there might be some errors γt(k) added to the optimal integer valued

forecasts to generate non-ARIMA forecasts. The final forecast is

X̂t(k) = X̄t(k) + γt(k)

where γt(k)’s are random integral errors. We assume that the forecasts in the errors are

γt(k) generated by a mixture of two discrete normal distributions

γt(k) ∼

 N(0, ω1) with probability p

N(0, ω2) with probability 1-p

where p is the mixing probability.

The matrix form of the problem is available in Appendix 5.2.2.
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4.2 Supplier’s Problem

At t = T , the supplier observes the forecast matrix X̂ which consists of the forecast vectors{
X̂1, ..., X̂T

}
that are submitted at t = 1, .., T . By following the forecast generation model,

at time t the customer submits a forecast based on the demand parameters (µ, φ, θ and σ),

cost parameters (cu and co) and recent information (Xt and εt). For the sake of simplicity we

will denote the parameters as Λ = (µ, φ, θ, σ, cu, co, X0, ε0). When Λ and previous demand

values X is available, it is straightforward to determine the forecast. However supplier

cannot observe Λ and X. The supplier can only make inference about the demand and cost

information of the customer by only looking at the forecast. Therefore, supplier’s problem

can be formulated as finding the distribution P (Λ|X̂). The problem has the following

complexities:

1. The final demand of the customer is assumed to be continuous. However, the customer

provides integer forecasts which are multiples of production lot sizes.

2. The customer does not necessarily have a symmetric loss function. The customer’s

submits biased forecasts when cu 6= co.

3. The supplier does not observe demand X = (X1, ..., XT ), nor the demand and cost

parameters(Λ).

4. The forecasts can come from non-ARIMA process due to errors γt(k). The supplier

does not know Υ = (p, ω1, ω2) for γt(k).

The supplier seems to have very limited information once we consider the complexity of

the analysis. However, we provide a Bayesian model which can be used to make inference

about the model parameters. Forecast vectors provide substantial amount information

about the forecast generation model of a customer. At time t, the supplier observes forecasts

for each of the following K periods. Therefore, the supplier has access to TK data points

for T periods.

By using a Bayesian framework we first define priors for the model parameters:
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ

φ

θ

log(σ)

log(cu)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∼ N(Λ̂, V )

ε0 ∼ N(0, σ) X0 ∼ N(µ, σ
√

1+θ2−2θφ
1−φ2 ) p ∼ Beta(a, b) log(ωi) ∼ N(0, vi) for i=1,2

Since the ratio of cu
cu+co

is important, we assume that co = 1.

Although we define priors for the parameters, we cannot still derive the distribution of

P (Λ|X̂). Therefore, we use gibbs sampling in order to make draws from Λ by defining X

as a latent parameter. We iteratively sample

1. Λ|X, X̄

2. X, X̄|Λ, X̂,Υ

3. Υ|X̄, X̂.

By using Bayes Formula, we can write the first step where we draw Λ|X, X̄ as

P (Λ|X, X̄) =
P (Λ, X, X̄)
P (X, X̄)

=
P (X, X̄|Λ)P (Λ)

P (X, X̄)
(4.7)

Since P (X, X̄) is constant we have

P (Λ|X, X̄) ∝ L(Λ; X, X̄) · P (Λ) (4.8)

where L(Λ; X, X̂) is the likelihood of Λ for any given values of X and X̂. L(Λ; X, X̂) is zero

if X and λ does not generate X̄ as the optimal forecast. Therefore, the likelihood can be

written as
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L(Λ; X, X̄) =

 L(Λ; X) if Λ and X generates X̄

0 otherwise

where

L(Λ; X) =
(

1
2Πσ2

)
exp

{
− 1

2σ2

T∑
t=1

ε2t

}
(4.9)

4.3 Estimation

The supplier wants to derive the distribution of parameters given the forecast matrix,

P (Λ|X̂). Our sampler is a modified slice sampler with rejection. The general slice sam-

pling algorithm (Neal 2003) is constructed using the principle that one can sample from a

distribution by sampling uniformly from the region under the plot of its density function.

4.3.1 Mechanism of the Slice Sampler

Assume that we want to sample from a distribution for a variable x ∈ Rn, which has

density function f(x). We can introduce an auxiliary variable real variable, y and define

joint distribution function p(x, y) of x and y which is uniformly distributed over the region

S = {(x, y) : 0 < y ≤ f(x)}. S is the area under f(x). Let Z =
∫

f(x), then we have

p(x, y) =

 1/Z, if 0 < y < f(x)

0, otherwise

The marginal density for x is

p(x) =
∫ f(x)

0
1/Zdy = f(x)/Z (4.10)

We can sample jointly for (x, y) and keep x values to replicate f(x).
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4.3.2 Our Sampler for Estimation

We first find an initial set of Λ, X, X̄ and υ which can generate the forecast matrix X̂. We

then iteratively sample

1. Λ|X, X̄

2. X, X̄|Λ, X̂,Υ

3. Υ|X̄, X̂.

Our sampler works as follows:

Iteration 0 (Initialization):

1. Draw µ(0),φ(0), θ(0), σ(0), c
(0)
u , ε

(0)
0 and X

(0)
0 from the prior distributions.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ(0)

φ(0)

θ(0)

log(σ(0))

log(c(0)
u )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∼ N(Λ̂, V )

ε
(0)
0 ∼ N(0, σ) X

(0)
0 ∼ N(µ, σ

√
1+θ2−2θφ

1−φ2 )

where −1 ≤ φ(0) ≤ 1 and −1 ≤ θ(0) ≤ 1.

2. Draw ε(0) =
{

ε
(0)
1 , ..., ε

(0)
T

}
from N(0, Iσ2). Compute X(0) and optimal X̄(0).

X
(0)
t = (1− φ(0))µ(0) + φ(0)X

(0)
t−1 + ε

(0)
t − θε

(0)
t−1

and

X̄t(k)(0) = argmin E(U(Xt(k), Xt+k)). (4.11)

for t = 1, ..., T and k = 1, ...,K.

3. Draw p(0), ω
(0)
1 and ω

(0)
2 from the priors
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p(0) ∼ Beta(a, b) log(ω(0)
1 ) ∼ N(0, v1) log(ω(0)

2 ) ∼ N(0, v2)

Repeat the following for a specified number (I) of iterations. (for i=1,...,I)

Iteration i:

1. In this step, we generate Λi|X(i−1), X̄(i−1). So we draw

• µ(i)|φ(i−1), θ(i−1), c
(i−1)
u , σ(i−1), ε

(i−1)
0 , X

(i−1)
0 , X(i−1), X̄(i−1)

• φ(i)|µ(i), θ(i−1), c
(i−1)
u , σ(i−1), ε

(i−1)
0 , X

(i−1)
0 , X(i−1), X̄(i−1)

• θ(i)|µ(i), φ(i), c
(i−1)
u , σ(i−1), ε

(i−1)
0 , X

(i−1)
0 , X(i−1), X̄(i−1)

• c
(i)
u |µ(i), φ(i), θ(i), σ(i−1), ε

(i−1)
0 , X

(i−1)
0 , X(i−1), X̄(i−1)

• σ(i)|µ(i), φ(i), θ(i), c
(i)
u ε

(i−1)
0 , X

(i−1)
0 , X(i−1), X̄(i−1)

• ε
(i)
0 |µ(i), φ(i), θ(i), c

(i)
u , σ(i)X

(i−1)
0 , X(i−1), X̄(i−1)

• X
(i)
0 |µ(i), φ(i), θ(i), c

(i)
u , σ(i), ε

(i)
0 , X(i−1), X̄(i−1)

by using a sequential slice sampler. Here, we show how we draw θ(i). The same

analysis is repeated for all the above parameters in the given order.

(a) Since we always guarantee to have feasibility of X̄ in each step, we can compute

the likelihood

L
(i−1)
θ = L(Λ; X(i−1), X̄(i−1))

= L(Λ; X(i−1))

= P (X(i−1)
1 , ..., X

(i−1)
T |µ(i), φ(i), θ(i−1), c(i−1)

u ε
(i−1)
0 , X

(i−1)
0 )

This is our vertical slice.

(b) Draw a random variable uθ from Uniform(0, L
(i−1)
θ ). This is our horizontal slice.

(c) While true,

i. Draw θ(i) from the prior distribution θ(i)|µ(i), φ(i), c
(i−1)
u , σ(i−1). We have



Chapter 4. Using Customers’ Reported Forecasts to Predict Future Sales 93

Λ′ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ(i)

φ(i)

θ(i)

log(σ(i−1))

log(c(i−1)
u )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∼ N(Λ̂, V )

From proposition 4, we have the conditional truncated distribution

θ(i)|µ(i), φ(i), c(i−1)
u , σ(i−1) ∼ N(Λ̂3+V3,−3V

−1
−3,−3(Λ

′
−3−Λ̂−3), Λ̂3,3−Λ̂3,−3Λ̂−1

−3,−3Λ̂−3,3)

for −1 ≤ θ(i) ≤ 1.

ii. Check the feasibility of the draw 1. If the solution is not feasible go to Step

(i) and make another draw for θ(i). Otherwise, find the likelihood L
(i)
θ =

P (X(i−1)
1 , ..., X

(i−1)
T |µ(i), φ(i), θ(i−1), c

(i−1)
u , ε

(i−1)
0 , X

(i−1)
0 ). If L

(i)
θ > uθ, then

keep θ(i) and repeat the same analysis for the next parameter(c(i)
u in this

case).

2. In this step, we generate the X(i), X̄(i)|Λ(i),Υ(i), X̂. This can be done in two ways:

(a) We can draw Xt|Λ(i), X
(i)
−t by using a sequential slice sampler for t = 1, ..., T

where

X
(i)
−t =

{
X

(i)
1 , ..., X

(i)
t−1, X

(i−1)
t+1 , ..., X

(i−1)
T

}
i. We compute the likelihood L

(i−1)
X = P (γ(i−1); υ(i−1)) where

γt(k)(i−1) = X̂t(k)(i−1) − X̄t(k)(i−1)

1For K=1, the parameters are always feasible. For K > 1 we need the feasibility which means that X(i−1)

and Λ(i) generates the optimal forecast X̄
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for t = 1, ..., T and k = 1, ...,K.

This is our vertical slice.

ii. Draw a random variable uX from Uniform(0, L
(i)
X ). This is our horizontal

slice.

iii. While true,

A. We can show that Xt|Λ(i), X
(i)
−t follows a truncated normal distribution.

Draw Xt from the truncated normal distribution.

B. Compute the likelihood L
(i)
X = P (γ(i); υ(i−1)). If L

(i)
X > uX , then keep

X
(i)
t otherwise make another draw for Xt.

(b) This can also be done by drawing ε ∼ N(0, σ2I) by using a slice sampler. In

this case we draw ε together and compute the likelihood.

3. In this step, we generate Υ(i)|X̄(i), X̂. We first compute γ(i) as follows

γt(k)(i−1) = X̂t(k)(i−1) − X̄t(k)(i−1)

for t = 1, ..., T and k = 1, ...,K.

So we draw

• p(i)|ω(i−1)
1 , ω

(i−1)
2 , γ(i)

• ω
(i)
1 |p(i), ω

(i−1)
2 , γ(i)

• ω
(i)
2 |p(i), ω

(i)
1 , γ(i)

by using a sequential slice sampler. Here, we show how we draw p(i). The same

analysis is repeated for all the above parameters in the given order.

(a) We can compute the likelihood

L(i−1)
p = P (γ(i)|Υ(i−1))

This is our vertical slice.
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(b) Draw a random variable up from Uniform(0, L
(i−1)
p ). This is our horizontal slice.

(c) While true,

i. Draw p(i) from the prior Beta(a, b).

ii. Find the likelihood L
(i)
p = P (γ(i)|p(i), ω

(i−1)
1 , ω

(i−1)
2 ). If L

(i−1)
p > up, then

keep p(i) and repeat the same analysis for the next parameter(ω(i)
1 in this

case). Otherwise make another draw from the prior for p(i).

We also use shrinkage algorithm (Neal 2003) to improve the draws for the slice sampler.

By doing that we decrease the number of rejected draws to find a feasible set of parameters.

4.3.3 Example

We use the customer forecasts in Example 10 to show the results of estimation. In Example

10, we only have forecasts for three weeks. By adding the forecasts for the following 17

weeks, we have the forecast vector X̂ in Figure 4.4a. X̂ provides K = 5 weeks forecasts in

T = 20 weeks. We assume the following priors for estimation:

µ ∼ N(10, 5) φ ∼ N(0, 0.5) θ ∼ N(0, 0.5)

σ ∼ IG(2.5, 10) log(cu) ∼ N(0, 1)

ε ∼ N(0, σ) X0 ∼ N(µ, σ
√

1+θ2−2θφ
1−φ2 )

We run our sampler for 40, 000 iterations to estimate the posterior distributions of each

parameters. We discard the first 3, 000 observations as the warmup period. The results

are available in Figure 4.4. Some of the inferences that we can make from the posterior

distributions are as follows:

• We can see that the autoregressive parameter (φ) has a 95% confidence interval of

(0.59, 0.64). Therefore, there is a significant effect of the previous demand observation

on current demand. However, for θ, the posterior centers around 0. We cannot reject

the hypothesis that θ = 0. This means that error terms are not autocorrelated.

However, there is strong autocorrelation between the consecutive demand values.
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(a) X̂ (b) 95% C.I.= (4.61, 6.17)

(c) 95% C.I.= (0.59, 0.64) (d) 95% C.I.= (−0.19, 0.29)

(e) 95% C.I.= (2.03, 6.31) (f) 95% C.I.= (1.07, 1.96)

Figure 4.4: The forecast vector X̂ and the posterior distributions for µ, φ, θ, σ and cu
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• When we test the hypothesis that cu > co = 1, we cannot reject it with α = 95%.

This means that there is significant evidence from the data that the customer adds a

positive bias to his forecasts.

• When we look at σ, we can see that there is high uncertainty at the customer. The

high variance is an important factor that causes errors in the forecasts. However, σ

by itself does not explain the forecast errors. As we discuss above, the customer adds

a bias to forecasts due to his asymmetric loss function.

The supplier can estimate the expected unbiased forecast by looking at the data. For

example at t = 1, the expected unbiased forecasts for the next five periods is available in

Figure 4.5. Therefore, by looking at a history of 20 periods with 5-step ahead forecasts,

the supplier can have significant information about the forecast generation model of the

customer and can remove the bias from the forecast.

Figure 4.5: The actual and corrected forecast after the analysis at t = 1.

4.4 Hierarchical Model

In a hierarchical model, we study the diversity of the cost and demand parameters of the

customers. Heterogeneity in cost and demand parameters give rise to different ordering
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behaviors from the customers. Depending on the diversity of the customers, hierarchical

models provide better inferences about the forecast behavior of the customers. When the

diversity is high, modeling the individual customer differences as well as the aggregate

effects help the suppliers to better understand the forecast performance of the customers.

In our analysis we have forecasts from multiple customers for multiple parts. Therefore,

it is possible to make an inferences on the aggregate level as well as individual level. For

example, we can analyze the forecasts of a customer for multiple parts and look at the

forecast performance on an aggregate level. We can also perform an aggregate analysis for

each part to understand the forecast performance of the manufacturers.

In our analysis we represent each customer with m and each part with n. We first define

the first-stage priors as

Λ′
mn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µmn

φmn

θmn

log(σ)mn

log(cu)mn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∼ N(Λ̂, V )

The second stage priors are

V ∼ Inverted Wishart(ν0, S0)

Λ̂ ∼ N(0,Λ0)

In order to have a full rank ν0 > 5 which is the number of parameters. Assume that we

run an analysis over M different customers for a part. So we can drop n from the subscript

in this case, we have

P (V ) ∝ |V |−
ν0−6

2 etr

(
−1

2
S0V

−1

)
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The posterior from the data is

P (V |{Λ′
1, ...,Λ

′
M}) ∝ |V |−

M+ν0−6
2 etr

(
−1

2
(S0 + S+)V −1

)
= Inverted Wishart(ν0 + M,S0 + S)

where S =
∑M

m=1(Λ
′
m − Λ̄′)(Λ′

m − Λ̄′)T .

The posterior for Λ̂ from the data is

P (Λ̂|V, {Λ′
1, ...,Λ

′
M}) ∝ exp

(
1
2
(Λ̂− Λ̂M )T V −1

M (Λ̂− Λ̂M )
)

= N(Λ̂|Λ̂M , VM )

where

VM = Λ−1
0 + MV −1

Λ̂M = V −1
M MV −1Λ̄′

In order to predict the parameters, in iteration i we sequentially draw

1. For customers m = 1, ...,M , we draw Λ
′(i)
m |Λ′(i−1) by using the sampler in section

4.3.2.

2. We draw V (i)|{Λ
′(i)
1 , ...,Λ

′(i)
M } from the posterior distribution N(Λ̂|Λ̂(i)

M , V
(i)
M ).

3. We draw Λ̂(i)|V (i), {Λ
′(i)
1 , ...,Λ

′(i)
M } from the posterior distribution Inverted Wishart(ν0+

M,S0 + S(i)).

4.4.1 Example

In Figure 4.6, we provide the estimates for the mean level Λ̂ of the model parameters. We

analyze a product with 16 customers. During our analysis, we observe that for most of the

customers, our model represents a good fit and we do not observe too many errors in the
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(a) The second stage priors (b) Expected value for µi

(c) Expected value for φi (d) Expected value for θi

(e) Expected value for log(cu)i (f) Expected value for log(σ)i

Figure 4.6: The mean vector Λ̂ for the hierarchical model with 16 customers and a single part
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forecasts. For 6 customers, we observe that the forecasts are generated from a different

process. Therefore, the estimates for the model parameters were not significant for those

customers.

From 4.6, we have the following observations:

1. We can see that φ and θ tends to be greater than zero. This means that the autocor-

relations between the forecasts and the errors of the consecutive periods tend to be

positive.

2. The log value of cost of underestimation is very close to normal distribution with a

mean value slightly less than zero. This means that underestimation is also a common

behavior among the customers. This also shows that log transformation is necessary

while analyzing the cost of overestimation and underestimation. At the individual

level, we get more significant results for the customers where we cannot reject the

hypothesis for customers over- or underestimating their orders.

3. The standard deviation of the demand tends to be small for some of the customers.

For those customers, we can argue that the forecast errors are mostly due to the cost

structure of the customer rather than the uncertainty in usage.

4.5 Conclusion and Future Research

We have used a time-series framework to model the evolution of forecast vectors. In our

data, we observe that customers consistently overestimate or underestimate their orders.

The goal of our analysis was to develop a framework to test the significance of strategic

behavior. By using asymmetric loss functions, we explain the dynamics behind the bias in

customer’s forecasts. We present an estimation procedure which has high predictive power

to understand the cost and demand structure of a customer from his forecasts.

Our hierarchical model can be extended in order to include individual parameters for

each customer and part. We can also include exogenous parameters in order to test their
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effect on the forecast performance of the customers. The hierarchical models for multiple

customers and parents are ideal for gibbs sampling methods where we sequentially draw

individual parameters by conditioning on the other parameters. We mainly use the posterior

distributions or slice sampling to draw the parameters. Other MCMC methods can also be

considered for the analysis. The main advantage of the slice sampler is we do not need to

tune the parameters and provide a proposal density.

We show that the customers add bias to their forecast due to their cost and demand

structure. Therefore, it is critical for a supplier to create unbiased forecasts from the

reported forecasts. Our analysis helps us understand which factors influence the forecast

behavior of a manufacturer. A high σ for a customer shows that there is high uncertainty

in the usage. A high cu signals high cost of stockouts for the customer. We can also make

inferences on the aggregate level. If we detect a common poor forecast performance across

customers, there might be problems with shipping of the product which creates artificial

spikes in the forecasts. Hierarchical model helps us understand how much of the errors can

be explained from the individual and aggregate demand and cost structure.

The customer demand can follow non-ARMA processes. In this case we observe high ω1

or ω2 values, which show that the forecasts from the model do not fit the reported forecasts

very well. Therefore, some other demand models can be considered for the non-ARMA

customers. Our analysis can be extended to models with more components to capture

these complexities. Possible such extensions are adding seasonality, production plans and

nonlinear loss functions.
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5.1 Appendix for Chapter 2

5.1.1 Sensitivity Analysis for the Single Period Problem

Part i: As stated in Proposition 2, there exists a S01 for a single period problem. When

we increase Q to Q +4Q (4Q > 0), the value of S01 may also change.

Case 1: S01 ≤ S0

When S01 ≤ S0, at point x = S01,

L1(x, x + Q) = L0(x, S0) ⇒ c1Q + H(x + Q) = c0(S0 − x) + H(S0). (5.1)

As ordering Q +4Q is dominated by ordering Q at x = S01, we have

L1(x, x + Q +4Q) > L1(x, x + Q). (5.2)

Using Equations (5.1) and (5.2), at x = S01, we get the following result:

L1(S01, S01 + Q +4Q) > L0(S01, S0). (5.3)

At point x = S01 −4Q, we have

L0(S01 −4Q,S0) = c0(S0 − S01 +4Q) + H(S0) = c04Q + L0(S01, S0), (5.4)

L1(S01 −4Q,S01 + Q) = c1(Q +4Q) + H(S01 + Q) = c14Q + L1(S01, S01 + Q).(5.5)

From Equation (5.1), we have L0(S01, S0) = L1(S01, S01 + Q). Since c14Q < c04Q, we

have

c14Q + L1(S01, S01 + Q) < c04Q + L0(S01, S0)

L1(S01 −4Q,S01 + Q) < L0(S01 −4Q,S0). (5.6)
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Therefore, from inequalities (5.3) and (5.6), we have the following results:

L1(S01, S01 + Q +4Q) > L0(S01, S0),

L1(S01 −4Q,S01 + Q) < L0(S01 −4Q,S0).

From the above inequalities, L1(x, x+Q+4Q) < L0(x, S0) at x = S01−4Q and L1(x, x+

Q + 4Q) > L0(x, S0) at x = S01. Since L1(x, x + Q + 4Q) and L0(x, S0) are continuous

functions, there should be another point x = S01 + 4S01 in S01 − 4Q < x < S01 where

L1(x, x + Q +4Q) = L0(x, S0). This point is the unique S∗01 for the new Q∗ = Q +4Q.

Therefore, we have S01 − 4Q < x = S01 + 4S01 < S01 which can be written as −1 <

4S01

4Q < 0.

Case 2: S01 > S0

When S01 > S0, we consider only the case with S0 < S01 < S1, since ordering Q cannot

be optimal for x ≥ S1 for any Q values. At point x = S01, we have L1(x, x + Q +4Q) >

L1(x, x + Q). Since L1(S01, S01 + Q) = L0(S01, S01), we get:

L1(x, x + Q +4Q) > L0(x, x). (5.7)

The cost of not ordering at x = S01 − 4Q is L0(S01 − 4Q,S01 − 4Q) = H(S01 − 4Q).

Since x < S1, we have ∂H(x)
∂x < −c1. So, we have

H(S01)−H(S01 −4Q) < −c14Q

H(S01) + c14Q < H(S01 −4Q)

c1Q + H(S01 + Q) + c14Q < H(S01 −4Q)

L1(S01 −4Q,S01 + Q) < L0(S01 −4Q,S01 −4Q). (5.8)

The third inequality follows as L1(S01, S01 + Q) = L0(S01, S01); i.e., c1Q + H(S01 + Q) =

H(S01). Therefore, at x = S01 − 4Q, we have L1(x, x + Q + 4Q) < L0(x, x). We
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also have L1(x, x + Q + 4Q) > L0(x, x) at x = S01 from Equation (5.7). Therefore,

there should be another point x = S01 + 4S01 which satisfies S01 − 4Q < x < S01 and

L1(x, x + Q +4Q) = L0(x, x). This point is the unique S∗01 for the new Q∗ = Q +4Q. So

we have −1 < 4S01

4Q < 0.

Part ii: When S01 ≤ S0, at point x = S01, L1(x, x + Q) = L0(x, S0). When we in-

crease the discounted price c1 to c∗1 = c1 + 4c1 (4c1 > 0), let the new critical level be

S∗01 = S01 +4S01 and L1∗(x, y) be the cost of ordering with price c∗1. At point x = S01, we

have L1∗(x, x + Q) > L1(x, x + Q) = L0(x, S0). Therefore, with the new price c∗1, ordering

with the discount is no longer optimal at point x = S01. Since the order quantities are

monotonic in initial inventory position (Proposition 2), there should be another S∗01 < S01.

Therefore, ∂S01
∂c1

< 0. The case S01 > S0 follows from the above discussion by changing

L0(x, S0) with L0(x, x).

Part iii: When S01 ≥ S0, we do not observe S0. Therefore, changing c0 does not have

any effect on S01 and ∂S01
∂c0

= 0. Next, we consider the case S0 > S01. When we increase

the original price c0 to c∗0 = c0 +4c0 (4c0 > 0), the values of S0 and S01 may also change.

Let the new values of S01 and S0 be S∗01 = S01 + 4S01 and S∗0 = S0 + 4S0, respectively.

Let L0∗(x, y) be the cost of ordering with price c∗0. Since ordering the same quantities with

c0 is less costly, we have L0(x, S0) ≤ L0(x, S∗0) < L0∗(x, S∗0). At point x = S01, we have

L1(x, x + Q) = L0(x, S0) < L0∗(x, S∗0). Therefore, ordering with the discount is a better

alternative at x = S01. Since the order quantities are monotonic in initial inventory position

(Proposition 2), there should be another S∗01 which satisfies S∗01 > S01, i.e., 4S01 > 0.

Therefore, ∂S01
∂c0

> 0.
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5.1.2 Analysis of Order Quantities in an Ordering Interval

For any x in an ordering interval s, the buyer has two options. He can either order q ≥ Q

and get the discount or order up to a level without getting the discount. There may be

many optimal order-up-to levels in a given interval, but there will be at most one Ss
01. We

prove this by contradiction.

We show that there does not exist any inventory position xc in an ordering interval such

that, in the optimal policy, the buyer orders with the discount when x > xc and orders with

the original price when x ≤ xc. The proof involves three steps:

1. The buyer’s order-up-to levels with and without the discount do not change with

infinitesimal increases in the inventory position if the original order-up-to level is still

feasible.

2. If the buyer orders without the discount when the inventory position is x, he will not

order q > Q with the discount when the inventory position is x + ∆, where ∆ > 0.

3. If the buyer orders without the discount when the inventory position is x, he will not

order q = Q with the discount when the inventory position is x + ∆, where ∆ > 0.

For base-stock levels to exist1, Hn(x) function should be continuous, which is the case

in our problem for n = 1, ..., N . For price ci, let the order-up-to level for x be S1
i . When

the optimal order quantity q∗(x) > 1{ci=c1}Q, where 1{ci=c1} is the indicator function2, at

x + ∆ for infinitesimal ∆ > 0 the buyer should order q∗(x) − ∆ to order up to S1
i . If the

1We prove our theorem for finite horizon with any number of periods. Since the optimal policy for infinite
horizon is derived by using policy iteration, the same result holds for infinite horizon.

2This condition guarantees that for an infinitesimal ∆, the optimal order-up-to level for x is still feasible
(but not necessarily optimal) for x + ∆.
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order-up-to level for x + ∆ is S2
i , s.t. S2

i 6= S1
i , then

Li(x + ∆, S1
i ) > Li(x + ∆, S2

i )

ci(S1
i − x−∆) + Hn(S1

i ) > ci(S2
i − x−∆) + Hn(S2

i )

ci(S1
i − x) + Hn(S1

i ) > ci(S2
i − x) + Hn(S2

i )

Li(x,S
1
i ) > Li(x, S2

i ). (5.9)

So, ordering up to S2
i is optimal for x, which is a contradiction. Therefore, if q∗(x) >

1{ci=c1}Q, the order-up-to level does not change with an infinitesimal increase in the inven-

tory level.

Next we prove Steps 2 and 3 by considering two different cases. In these steps, we

assume that for the original price, x and x + ∆ are in the same ordering interval; i.e., x is

strictly less than the order-up-to level of the original price at that point.

Case 1: Ordering more than Q to get the discount

In this first case, when the inventory position is x, in the optimal policy, the buyer

orders up to S1
0 without the discount and when the inventory position is x + ∆, he orders

up to S1
1 and gets the discount. That being optimal, we have the following inequalities:

order without the discount order with the discount

at point x =⇒ c0(S1
0 − x) + Hn(S1

0) ≤ c1(S1
1 − x) + Hn(S1

1)

at point x + ∆ =⇒ c0(S1
0 − x−∆) + Hn(S1

0) ≥ c1(S1
1 − x−∆) + Hn(S1

1).

Notice that S1
1 is still a feasible order-up-to level for x, however, it may not be the best order-

up-to level. If we multiply the second inequality by (-1), we get the following inequalities:

c0(S1
0 − x) + Hn(S1

0) ≤ c1(S1
1 − x) + Hn(S1

1)

−c0(S1
0 − x−∆)−Hn(S1

0) ≤ −c1(S1
1 − x−∆)−Hn(S1

1).
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When we sum up these two inequalities, we get c0 ≤ c1, which contradicts with our cost

assumptions. Therefore, if the buyer is not using the discount for an inventory position, he

would never order a quantity greater than Q as the inventory position increases.

Case 2: Ordering Q to get the discount

In this second case, in the optimal policy, when the inventory position is x, the buyer

orders up to S1
0 without the discount and when the inventory position is x + ∆, he orders

Q and gets the discount. That being optimal, we have the following inequalities:

order without the discount order with the discount

at point x =⇒ c0(S1
0 − x) + Hn(S1

0) ≤ c1Q + Hn(x + Q)

at point x + ∆ =⇒ c0(S1
0 − x−∆) + Hn(S1

0) ≥ c1Q + Hn(x + ∆ + Q)

Multiply the second inequality by (-1),

c0(S1
0 − x) + Hn(S1

0) ≤ c1Q + Hn(x + Q) (5.10)

−c0(S1
0 − x−∆)−Hn(Sn′

0 ) ≤ −c1Q−Hn(x + ∆ + Q) (5.11)

and sum up these two inequalities:

c0 ≤
Hn(x + Q)−Hn(x + ∆ + Q)

∆
. (5.12)

As c1 < c0,

c1 <
Hn(x + Q)−Hn(x + ∆ + Q)

∆

c1∆ < Hn(x + Q)−Hn(x + ∆ + Q)

c1∆ + Hn(x + ∆ + Q) < Hn(x + Q).
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Adding c1Q to both sides, we get

c1(Q + ∆) + Hn(x + ∆ + Q) ≤ c1Q + Hn(x + Q). (5.13)

Therefore, at x ordering up to a level x + ∆ + Q is better than ordering Q and we can get

a tighter bound on inequality (5.10):

c0(S1
0 − x) + Hn(S1

0) ≤ c1(Q + ∆) + Hn(x + ∆ + Q).

We can use this inequality with inequality (5.11) to reach at the following result:

at point x =⇒ c0(S1
0 − x) + Hn(S1

0) ≤ c1(Q + ∆) + Hn(x + ∆ + Q)

at point x + ∆ =⇒ −c0(S1
0 − x−∆)−Hn(S1

0) ≤ −c1Q−Hn(x + ∆ + Q)

When we sum up these two inequalities, we get c0 ≤ c1, which contradicts with our cost

assumptions. Therefore, if the buyer is not using the discount for an inventory position,

he would never order a quantity equal to Q as the inventory position increases. The buyer

would never switch from not using the discount to using the discount in an ordering interval.

Therefore, there is at most one critical level Ss
01 in an ordering interval s.

5.1.3 N-Period Problem

In this section, we study the structural properties of the finite horizon planning problem.

The buyer’s objective is to minimize his long-run average total cost. In this problem, the

terminal costs should be taken into account. As we have already discussed, the terminal

penalty cost p̄ is larger than the original price; i.e., p̄ > c0. To incorporate the salvage cost,

we update holding cost parameter h of the last period without losing the convexity of the

last period’s cost function. We assume that the terminal holding cost h̄, i.e., salvage cost, is

more than −h, which gives a positive updated holding cost. In our computational analysis,
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p and h are taken to be constant3.

Figure 5.1 displays the first-period optimal policy for a two-period problem. Note that,

in the first period, a three-index policy is not optimal and order quantities are not monotonic

in the initial inventory position. The buyer changes his procurement strategy based on his

initial inventory position. If the buyer is in a backorder situation at the beginning of

the first period (region A), then he prefers to procure only for the first period using the

quantity discount. When he is in region B, the buyer inflates his orders in order to get

the discount by ordering exactly Q. If the buyer has very little inventory at the beginning

of first period (region C), he procures for both periods in order to take advantage of the

discount opportunity. Region C destroys the monotonicity of the policy. This behavior is

similar to buy-and-hold strategy that is introduced in Section 2.4.1. As his inventory level

increases further, the buyer either procures without quantity discount or he does not order

at all (region D). To summarize, for the finite horizon problem the optimal policy can be

quite complicated.

Figure 5.1: For Discrete Uniform[16, 20], with c0 = 1, c1 = 0.7, p = 0.4, h = 0.15, p̄ = 2, h̄ = 0.3,
and Q = 20, the first-period optimal policy for the two-period problem.

3For N -period problem, we can relax the stationarity assumption as well as constant p and h values. The
same analysis would extend to identical distributions, and nonidentical p and h values.
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5.1.4 Effect of Increasing Q on Minimum Order Quantity Problem

Let P1(x) be the optimal policy, P2(x) be the best two-index policy, and P3(x) be the best

one-index policy, where the buyer orders exactly Q units each time his initial inventory

position falls below a critical level Ŝ01. We use these three policies to prove Theorem 3 in

four steps: (1) In the optimal policy P1(x), for x > Ŝ01, the buyer does not place an order.

(2) The buyer’s consecutive orders become less dependent on each other as Q increases. (3)

The order quantities of P2(x) converges to P3(x) as Q goes to infinity. (4) Two-index policy

P2(x) becomes optimal when Q is large enough. Therefore, P3(x) is optimal in the limit.

Step 1: For policy P3(x), the critical level Ŝ01 is the inventory position where the buyer

is indifferent between ordering Q and waiting till the next period to order Q. The expected

inventory position after the next period is the same for both actions. The only difference is

in the expected penalty and holding costs for the current period which have the functional

form H(x) of a single period.

• H(x + Q)−H(x) is increasing in x.

• Since H(x) is a convex function, there is a unique critical level x = Ŝ01 where H(x +

Q) = H(x). As Q goes to ∞, x = Ŝ01 goes to −∞4.

• From Proposition 3, we know that ∂Ŝ01
∂Q > −1, i.e., Ŝ01 + Q is increasing with Q. For

a large enough Q, Pr(u > Ŝ01 + Q) ≈ 0 where u is the demand for the next period.

Therefore, H(Ŝ01 + Q) ≈ (Q + Ŝ01 − µ)h.

Using the two observations above for large Q values, we get the following:

H(Ŝ01 + Q)−H(Ŝ01) = 0 ⇒ (Q + Ŝ01 − µ)h ≈ (−Ŝ01 + µ)p ⇒ Ŝ01 ≈ µ−Q

(
h

h + p

)
,

which is an equality in the limit as Pr(u > Ŝ01 + Q) goes to zero. Therefore, the critical

level Ŝ01 for P3(x) is Ŝ01 = µ−Q
(

h
h+p

)
.

4From the sensitivity analysis in Proposition 3, Ŝ01 satisfies ∂Ŝ01
∂Q

< 0. We assume a very large c0 value,

such that the buyer does not order with the original price. As −p ≤ dH(x)
dx

≤ h, increasing Q decreases Ŝ01

down to −∞ in the limit.
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One can show that in the optimal policy P1(x), for any ordering interval, S01 ≤ Ŝ01 and

S01 → Ŝ01 as Q → ∞. Assume that this is not the case. Then for Ŝ01 ≤ x ≤ S01, in the

optimal policy, there exists a region where the buyer orders Q. Compare two solutions: or-

dering Q now and ordering nothing in this period, but Q in the next period. The latter is a

feasible solution, but may not necessarily be optimal for the buyer. Using a similar analysis

to the one above, we can show that the former action is dominated by the latter. Hence,

in the optimal policy the buyer postpones his order, which is a contradiction. Therefore,

S01 ≤ Ŝ01.

Step 2: From step 1 we know that in the optimal policy P1(x) the buyer can order only

when x ≤ Ŝ01. We also show that Ŝ01 is a decreasing linear function of Q when Q is very

large. When the buyer orders in P1(x), he always orders up to an inventory position larger

than S̃1, which is the minimum of the order-up-to levels. We can bound S̃1 from below by

the infinite horizon solution for Q = 05. Therefore, as Q increases, the region where the

buyer does not place an order (includes x: Ŝ01 < x ≤ SQ=0
1 < S̃1) and the time till the next

order get very large (in the limit the time till the next order goes to ∞), and the orders

become independent from each other for P1(x).

Step 3: In this step, we will prove that as Q goes to infinity, the region where the buyer

orders more than Q disappears; i.e., P3(x) = P2(x)6. Let Ŝ1 be the order-up-to level which

is not exercised by policy P3(x). In step 1, we show that the buyer does not order at all

when x > Ŝ01. When x ≤ Ŝ1 −Q, the buyer orders more than Q in the optimal policy, but

not in P3(x). Therefore, P3(x) is not optimal for finite Q. However, as Q goes to infinity,

Ŝ1 −Q goes to −∞. In the limit, the region x < Ŝ1 −Q where the buyer orders more than

5The order-up-to levels are higher for Q > 0 compared to Q = 0. To see why, assume the opposite. Let
SQ=0

1 be the order-up-to level for Q = 0 and SQ>0
1 be the order-up-to level for Q > 0. For SQ>0

1 −Q ≤ x ≤
SQ=0

1 −Q ordering up to SQ=0
1 is feasible for Q > 0 and it is a better alternative. Therefore, SQ>0

1 cannot
be the optimal order-up-to level.

6All the following expressions are satisfied as an equality only when Q is large enough.
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Q disappears and P3(x) is optimal.

Assume that the buyer follows P3(x). The buyer orders up to Ŝ01 + Q = µ + Q
(

p
h+p

)
at x = Ŝ01. For any initial inventory x ≤ Ŝ01, the inventory position after the buyer places

an order is x + Q. The maximum value of the average inventory that the buyer holds

is when x = Ŝ01 and is equal to Q
(

p
2(h+p)

)
as the expected inventory position after the

first period of the cycle is Q
(

p
h+p

)
. Therefore, we can represent the average inventory

when the buyer places any order at x as a function of this maximum value; it can be

written as wQ
(

p
2(h+p)

)
where 0 < w ≤ 1. The average number of items backlogged is

independent of the previous order size as discussed in step 2 and equal to Q
(

h
2(h+p)

)
(
as Ŝ01 = µ−Q

(
h

(h+p)

)
, the maximum backlog quantity is Q

(
h

2(h+p)

))
.

When the buyer orders Q at initial inventory position x, this starts a new order cycle.

We call the expected number of periods in this order cycle with on-hand inventory and

backlog t+(x+Q) and t−(x+Q), respectively. The expected number of periods in an order

cycle is t(x + Q) = t+(x + Q) + t−(x + Q). For Q large enough, t+(x+Q)
t−(x+Q)

=
wQ p

µ(h+p)

Q h
µ(h+p)

= wp
h ,

where µ is the mean demand. Therefore, the expected penalty cost in an order cycle is the

multiplication of the average number of periods with backorders t−(x + Q), penalty cost p,

and the average backorder Q
(

h
2(h+p)

)
. Similarly, the expected holding cost in an order cycle

is the multiplication of the average number of periods with inventory t+(x + Q), holding

cost h, and the average on-hand inventory wQ
(

p
2(h+p)

)
. Therefore, an approximation for

the expected average cost per period in an order cycle that starts with an initial inventory

position x is as follows:

C(w) =
p · t−(x + Q) ·Q

(
h

2(h+p)

)
+ h · t+(x + Q) · wQ

(
p

2(h+p)

)
t−(x + Q) + t+(x + Q)

= Q
ph

2(h + p)
t−(x + Q) + wt+(x + Q)
t−(x + Q) + t+(x + Q)

= Q
ph

2(h + p)

t−(x + Q)
(
1 + pw2

h

)
t−(x + Q)(1 + pw

h )
= Q

hp

2(h + p)

(
h + pw2

h + pw

)
.
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The average cost7 C(w) has a minimum at w∗ = −h
p +

√(
h
p

)2
+ h

p < 1 which satisfies

0 < w∗ < 1.

For w > w∗, the average cost decreases as w decreases. Therefore, the buyer prefers to

order the minimum quantity possible, which is Q. When w ≤ w∗, the average cost decreases

as w increases. Therefore, the buyer prefers to order more than Q. Therefore, when w = w∗,

which corresponds to x = w∗Q
(

p
h+p

)
− Q + µ = Ŝ1 − Q, the buyer would do better than

P3(x). Hence, the interval where the buyer orders exactly Q units is
(
Ŝ1 −Q, Ŝ01

)
and the

length of this interval is

Ŝ01 − (Ŝ1 −Q) = Ŝ01 − w∗Q
p

(h + p)
+ Q− µ

= µ−Q
h

(h + p)
− w∗Q

p

(h + p)
+ Q− µ = Q

h

(h + p)
(1− w∗) = Q · ϕ(h, p)

where ϕ(h, p) is a positive function of p and h. The length of the interval, Ŝ01− (Ŝ1−Q), is

a linear increasing function of Q. Hence, Q can be made arbitrarily large in order to make

the probability of placing an order larger than Q, Pr(u > S01−(S1−Q)) = α, close to zero;

i.e., as Q increases, the probability of getting to an inventory position where P3(x) is not

optimal goes to zero. Therefore, as Q goes to infinity, α becomes zero and P2(x) converges

to P3(x).

Step 4: Assume that at period k : 0 < k < ∞ two-index policy P2(x) is optimal. If we

can show that P2(x) stays optimal for period k + 1, then we prove that two-index policy

is the optimal policy of the infinite horizon problem by using policy iteration (Bertsekas

1995). From step 1, we know that S01 ≤ Ŝ01. From step 3, we know that as Q goes to

infinity, P2(x), S1, and S01 converge to P3(x), Ŝ1, and Ŝ01 respectively. Using the result

of step 2, the decision in period k + 1 is independent from the next order placed and only

7The buyer orders up to Ŝ01 + Q = µ + Q
(

p
h+p

)
at x = Ŝ01. As Q goes to infinity, Q

(
p

h+p

)
gets really

large and w converges to 1. Therefore, the average cost becomes C(1) = Qph
2(h+p)

in the limit.
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depends on the current order to be placed. Therefore, the same policy in k can be shown

to be optimal for k + 1. A two-index policy is irreducible which is a necessary condition for

having a stationary policy. Hence, P2(x) is optimal for the infinite horizon problem for Q

large enough.

5.1.5 Effect of Increasing Discount Rate on Quantity Discount Problem

In our analysis, we fix the price c1. We adjust c0 in order to provide a discount ratio. A

policy P () defines the optimal order quantities for each initial inventory position. The buyer

exercises all the prices stated in the policy for at least one initial inventory position. For

example, P (c1, c0) is the optimal policy which exercises both prices c0 and c1 and P (c1)

is the optimal policy which only exercises price c1. The cost of the policy P (c1, c0) is

L(P (c1, c0)). Notice that, even though p, h, and Q do not appear in the notation, these

parameters affect the optimal policy.

We first show that there exits a price c0 = c1
0, where P (c1, c0) cannot be an optimal

policy; i.e., P (c1) is the optimal policy for c0 = c1
0. The policy P (c1) has a finite cost

L(P (c1)). For all inventory positions where ordering with c0 is optimal, we increase the cost

c0 large enough to prevent the buyer from ordering with price c0 for that initial inventory

position. Since P (c1) is a feasible solution, the buyer switches to that policy for all initial

inventory positions for this large enough c0 = c1
0 value. Therefore, there always exists

c0 = c1
0, where P (c1, c

1
0) cannot be an optimal policy.

Next, we show the existence of c∗0 which defines z∗. Assume that, starting from c0 = c1,

we increase c0 value. P (c0) is the optimal policy at c0 = c1. As we increase c0, the buyer

can exercise both prices c0 and c1 with policy P (c0, c1). Once, c0 hits c∗0, the buyer exercises

only price c1 with optimal policy P (c1). So, we have

L(P (c1)) ≤ L(P (c1, c
∗
0)). (5.14)
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Now we prove that there does not exist any price c0 = c′0 > c∗0, with P (c1, c
′
0) as the

optimal policy. Assume that P (c1, c
′
0) is optimal. So,

L(P (c1, c
′
0)) ≤ L(P (c1)). (5.15)

P (c1, c
′
0) is a feasible policy for price c0 = c∗0. The cost of using policy P (c1, c

′
0) when

c0 = c∗0 is Lc∗0
(P (c1, c

′
0)). Since the buyer pays a lower price each time he orders with the

original price, we have

Lc∗0
(P (c1, c

′
0)) < L(P (c1, c

′
0)). (5.16)

Since P (c1) is optimal policy for c0 = c∗0, we also have

L(P (c1)) ≤ Lc∗0
(P (c1, c

′
0)). (5.17)

Combining inequalities (5.15), (5.16), and (5.17), we have

L(P (c1)) < L(P (c1)), (5.18)

which is a contradiction. Therefore, for c0 > c∗0, P (c1) is the optimal policy.

At the beginning of the proof, we have shown that there always exist c1
0 where P (c1)

is optimal. Since c∗0 ≤ c1
0, there always exist a c∗0. Therefore, for a given c1 value, we can

always attain a discount ratio z∗ stated in the theorem.

5.1.6 Stochastic Quantity Discounts with the Disposal Option

In this section, we study quantity discounts with inventory disposal at the beginning of each

period. The buyer may dispose his inventory for a unit cost of sd, sd ≥ 0, after he places

an order and before he satisfies the demand and incurs the inventory holding cost. We keep

all the other modelling assumptions the same as our original model.
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Single Period Problem with Inventory Disposal

We first define the single period problem and present the expected cost minimizing solution.

The buyer chooses an order quantity and a disposal quantity before realizing demand. Let

the starting inventory position be x. If the buyer orders up to y1 with a unit price of cj ,

j = 0, 1, and disposes inventory down to y2 with a unit cost of s, the total cost Lj(x, y1, y2)

is

Lj(x, y1, y2) = cj(y1 − x) + sd(y1 − y2) + H(y2), (5.19)

such that y1 ≥ x and y1 ≥ y2. Furthermore, if the buyer orders with the discounted price,

his order quantity should be greater than Q, i.e., y1 ≥ x + Q. H(y2) is the penalty and

holding cost function,

H(y2) = p̄

∫ ∞

y2

(u− y2)dF (u) + h̄

∫ y2

0
(y2 − u)dF (u), (5.20)

and it is convex in y2. Therefore, Lj(x, y1, y2) is convex in y2. The theorem below presents

the optimal ordering policy for the single period problem with inventory disposal.

Theorem 5 The optimal order and disposal quantities (q∗(x), d∗(x)) for the single period

all-unit quantity discount problem with one price break and inventory disposal is given by

the following rule:

(q∗(x), d∗(x)) =


(max {S1 − x,Q} ,max {x + Q−D, 0}) when x ≤ Sd

01

(max {S0 − x, 0} , 0) when Sd
01 < x ≤ D

(0, x−D) when D < x

where Si = F−1
(

p̄−ci

h̄+p̄

)
. We call this policy a four-index policy with indices

(
S0, S1, S

d
01, D

)
.
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Proof Sketch: Since Lj(x, y1, y2) is convex in y2, there is a unique D which we can find

by taking the derivative of Lj(x, y1, y2) with respect to y2:

D = F−1

(
p̄ + sd

h̄ + p̄

)
. (5.21)

The buyer disposes inventory down to D when y1 > D. Then, there are two cases to

analyze: (1) y1 > D and the buyer disposes inventory and (2) y1 ≤ D and the buyer does

not dispose inventory. In the former case the cost function is Lj(x, y1, D) and in the latter

case the cost function is Lj(x, y1, y1).

As Lj(x, y1, y1) is a convex function of y1, we can find the unique S0 and S1 that minimize

the functions L0(x, y1, 0) and L1(x, y1, 0), respectively,

Sj = F−1

(
p̄− cj

h̄ + p̄

)
j = 0, 1. (5.22)

We have S0 ≤ S1 ≤ D. Therefore, the buyer’s order up to levels satisfy the feasibility

condition of this case, i.e., y1 ≤ D. Hence, when the buyer orders up to S0 or S1, he does

not dispose inventory. He disposes inventory only if his initial inventory position is too high

and he does not order at all, i.e., x > D, and may dispose inventory when he orders exactly

Q units.

For disposal to be an option in the latter case, S01 + Q > D, where S01 is the critical

level of a three-index policy for the problem without disposal. When S01 + Q > D, the

buyer’s cost function can be written as

L1(x, x + Q, x + Q−D) = c1Q + sd(x + Q−D) + H(D), (5.23)

which is linear in x. We can show that there exists a Sd
01 ≥ S01 where the buyer stops

ordering Q units and then disposing down to D. If S01 + Q ≤ D, Sd
01 = S01. �
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We display the structure of the optimal policy for the single period problem with an

example.

Example 11 For Poisson(6), with sd = 0, c0 = 1.0, c1 = 0.5, p̄ = 1.5, p = 0.35, h̄ = 0.4,

and Q = 20, the optimal policy for the single problem is as follows8:

initial inventory ≤ -14 : order up to 6, dispose 0

-13 ≤ initial inventory ≤ -12 : order Q = 20, dispose 0

-11 ≤ initial inventory ≤ -4 : order Q = 20, dispose down to 8

-3 ≤ initial inventory ≤ 4 : order up to 4, dispose 0

5 ≤ initial inventory ≤ 8 : order 0, dispose 0

9 ≤ initial inventory : order 0, dispose down to 8

For this problem, the indices are
(
S0 = 4, S1 = 6, Sd

01 = −4, D = 8
)
. For the case with-

out the disposal option, the optimal three-index policy is (S0 = 4, S1 = 6, S01 = −6). Fig-

ure 5.2 displays the costs of different alternatives with and without the disposal option.

Before we conclude this section, we make two observations: (1) Even for a single period

problem we need an additional index to define the optimal policy with disposal. (2) The

buyer does not necessarily order and dispose at the beginning of a single period problem.

Infinite Horizon Problem with Inventory Disposal

In the infinite horizon, the impact of “irrational characteristics” of quantity discounts di-

minishes as the buyers may use the item in the future, i.e., the disposal cost of the item

increases and the buyer utilizes the disposal option even less. Let us revisit Example 11

and look at the optimal policy for the infinite horizon problem:

Example 12 [Example 1 revisited] For Poisson(6), with sd = 0, c0 = 1.0, c1 = 0.5,

p = 0.35, h = 0.4, and Q = 20, the optimal policy for the infinite horizon problem is as

follows:
8We assume that the cost of replenishment of the backordered demand from an alternative source is 1.15

and the penalty cost of customer’s waiting for one period is p = 0.35. Therefore, p̄ = 1.15 + 0.35 = 1.5.
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(a) With Disposal

(b) Without Disposal

Figure 5.2: The cost functions of different ordering strategies and cost of the optimal policy for
Poisson(6), sd = 0, c0 = 1.0, c1 = 0.5, p̄ = 1.5, h̄ = 0.4, and Q = 20, for various initial inventory

positions.

initial inventory ≤ -13 : order up to 7, dispose 0

-12 ≤ initial inventory ≤ -7 : order Q = 20, dispose 0

-7 ≤ initial inventory ≤ 14 : order 0, dispose 0

15 ≤ initial inventory : order 0, dispose down to 14
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The buyer disposes inventory only if his inventory position is greater than 15, which

is possible only if the buyer starts with that much inventory. His order sizes are not big

enough to carry his inventory position to a level greater than 14. Therefore, even though

in the single period model the buyer is disposing items, for the same parameter set, in the

infinite horizon, disposal is no longer an economic option. Among others, there are two

factors that lead to this behavior:

• The buyer does not dispose an item if that item will be used in the next c1
h periods.

Therefore, if the inventory holding cost is low compared to the unit cost, the buyer

will prefer to keep an item in the inventory rather than disposing it.

• On average it will take the buyer Q
µ periods to deplete the inventory that he procures

with the discount, where µ is the mean demand. Hence, as long as Q is not too big

compared to µ, the buyer will have less incentive to buy with discount and dispose

afterwards.

Next, we provide examples where the order quantity is not monotone in initial inventory

position even when the disposal option is available. That is, the disposal option does not

eliminate wait-and-see and buy-and-hold strategies of the buyer.

Example 13 For Poisson(6), with sd = 0, c0 = 0.9, c1 = 0.7, p = 0.25, h = 0.15, and

Q = 30, the optimal policy for the infinite horizon problem is as follows:

initial inventory ≤ -18 : order up to 12, dispose 0

-17 ≤ initial inventory ≤ -6 : order Q = 30, dispose 0

-5 ≤ initial inventory ≤ -1 : order 0, dispose 0

0 ≤ initial inventory ≤ 5 : order up to 5, dispose 0

6 ≤ initial inventory : order 0, dispose down to 41

In Example 13, the optimal policy turns out to be a five-index policy: (S1
1 = 12, S1

01 =

−6, x2
l = 0, S2

0 = 5, D = 41). In this example, the buyer follows a wait-and-see strategy

and there is only one disposal region. The buyer disposes some of his inventory when the
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inventory position is greater than 41. Note that this is only possible if the buyer has that

much inventory to start with; i.e., the buyer does not dispose of inventory in order to be

able to order with the discounted price. In this example, the buyer will hold on to an item

for at least c1
h ≈ 4.6 periods. As demand mean µ is 6 and Q = 40, on average it will take

him Q
µ ≈ 6.6 periods to deplete the inventory that he procures with the discount. Therefore,

instead of disposing item, the buyer prefers to backorder some of the demand in order to

take advantage of the discounted price.

Example 14 For Discrete Normal(30, σ = 4) with sd = 0, c0 = 1.0, c1 = 0.7, p = 0.45,

h = 0.15, and Q = 40, the optimal policy for the infinite horizon problem is as follows:

initial inventory ≤ -10 : order up to 30, dispose 0

-9 ≤ initial inventory ≤ 5 : order Q = 40, dispose 0

6 ≤ initial inventory ≤ 17 : order up to 57, dispose 0

18 ≤ initial inventory ≤ 19 : order Q = 40, dispose 0

20 ≤ initial inventory ≤ 24 : order up to 24, dispose 0

25 ≤ initial inventory ≤ 169 : order 0, dispose down to 157

170 ≤ initial inventory ≤ 178 : order 0, dispose 0

179 ≤ initial inventory : order 0, dispose down to 179

In Example 14 the optimal policy turns out to be an eight-index policy: (S1:1
1 =

30,m1:1
u = 5, S1:2

1 = 57, S1:2
01 = 19, S1:2

0 = 24, D1 = 157, d1
u = 169, D2 = 179). In this

example, the buyer follows a buy-and-hold strategy and there are two disposal regions.

Again disposal is an option only if the buyer starts with a high initial inventory.

Examples 13 and 14 show that the disposal option does not eliminate the regions that

cause order quantities to lose monotonicity in the original problem, and we continue to

observe the same effects in the revised model as we do in the original model. In these

examples, the disposal option complicates the policy definition by increasing the number of

indices. However, the buyer uses disposal only if he starts with a high inventory position.

Therefore, even if he disposes items, he writes-off inventory only once at the beginning of
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the planning horizon. The inventory never falls into the disposal region again after the

first period since we assume stationary demand. Disposal is a more practical option when

demand is nonstationary due to some seasonality. In this case, the initial inventory position

may fall into the disposal region when mean demand shifts down.

Next, we provide an example where the buyer disposes inventory many times. However,

disposal option still does not provide monotonicity of the order quantities and even compli-

cates the policy further by adding an additional index. In this example, Q
µ is greater than 7

which is not very practical and makes holding inventory very costly after placing an order

of Q. We can create the same effect by providing a very high h.

Example 15 For Poisson(6) with sd = 0, c0 = 1.0, c1 = 0.5, p = 0.25, h = 0.4, and

Q = 45, the optimal policy for the infinite horizon problem is as follows:

initial inventory ≤ -34 : order up to 11, dispose 0

-33 ≤ initial inventory ≤ -26 : order Q = 45, dispose 0

-25 ≤ initial inventory ≤ -20 : order Q = 45, dispose down to 19

-19 ≤ initial inventory ≤ -3 : order 0, dispose 0

-2 ≤ initial inventory ≤ 5 : order up to 5, dispose 0

6 ≤ initial inventory ≤ 19 : order 0, dispose 0

20 ≤ initial inventory : order 0, dispose down to 19

The optimal policy turns out to be a five-index policy: (S1
1 = 11, S1

01 = −20, x2
l =

−2, S2
0 = 5, D = 19). In this example, there are two ordering regions and two disposal

regions. In the first disposal region, the buyer orders Q and dispose some of the inventory.

In the second disposal region, the buyer disposes only if he starts the planning horizon with

a high initial inventory. Notice that, the buyer continues to use the wait-and-see strategy

even when disposal option is available.

Note that for the parameter sets where the buyer follows a buy-and-hold strategy, it is

quite difficult to generate an example where the buyer procures with the discount and then

disposes items. The inventory holding cost should be quite low in order to tempt the buyer
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to engage in buy-and-hold strategy in the first place. However, in that situation, the buyer

does not have an incentive to dispose. Therefore, the buy-and-hold strategy is not affected

much by the disposal option (Example 14). We continue to observe parameter sets where

the buyer prefers to hold inventory in order to take advantage of the discounted price even

when disposal is an option.
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5.2 Appendix for Chapter 4

5.2.1 The conditional distribution of X1

Proposition 4 Let X be distributed as N(µ,Σ) and

X =

∣∣∣∣∣∣∣
X1

X2

∣∣∣∣∣∣∣ Σ =

∣∣∣∣∣∣∣
Σ11 Σ12

Σ21 Σ22

∣∣∣∣∣∣∣ µ =

∣∣∣∣∣∣∣
µ1

µ2

∣∣∣∣∣∣∣
Then the conditional distribution of X1, given X2 is N(µ1 + Σ12Σ−1

22 (X2 − µ2),Σ11 −

Σ12Σ−1
22 Σ21).

Proof: Available in Johnson and Wichern (1992).

5.2.2 Matrix Form of the problem

Before we start looking at the supplier’s problem, we introduce some concepts about mul-

tivariate normal distributions which helps to derive some useful results. We have X and X̂

as follows

X =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X1

X2

...

XT−1

XT

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
X̂ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X̂1

X̂2

...

X̂T−1

X̂T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X̂1(1) X̂1(2) · · · X̂1(K − 1) X̂1(K)

X̂2(1) X̂2(2) · · · X̂2(K − 1) X̂2(K)
...

...
. . .

...
...

X̂T−1(1) X̂T−1(2) · · · X̂T−1(K − 1) X̂T−1(K)

X̂T (1) X̂T (2) · · · X̂T (K − 1) X̂T (K)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
If we put the problem in matrix notation, we have the following model

(1− φB)X = (1− θB)ε + A1

X = (1− φB)−1(1− θB)ε + (1− φB)−1A1
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(1− φB) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0 0 0

−φ 1 0 · · · 0 0 0

0 −φ 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 0 0

0 0 0 · · · −φ 1 0

0 0 0 · · · 0 −φ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1− θB) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0 0 0

−θ 1 0 · · · 0 0 0

0 −θ 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 0 0

0 0 0 · · · −θ 1 0

0 0 0 · · · 0 −θ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

(1− φ)µ + φX0 − θε0

(1− φ)µ
...

(1− φ)µ

∣∣∣∣∣∣∣∣∣∣∣∣∣
(1− φB)−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0 0 0

φ 1 0 · · · 0 0 0

φ2 φ 1 · · · 0 0 0
...

...
...

. . .
...

...
...

φT−3 φT−4 φT−5 · · · 1 0 0

φT−2 φT−3 φT−4 · · · φ 1 0

φT−1 φT−2 φT−3 · · · φ2 φ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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