
Abstract

The main focus in econometrics is to provide an explanation of various observed out-
comes. Structural econometricians obtain reliable estimates of parameters that describe
an economic system to provide an understanding of the underlying processes that deter-
mine equilibrium outcomes. The estimation process is based on conditions implied by
economic theory.

On the other hand, the main focus in machine learning is to provide accurate predic-
tions of the variables of interest. While these techniques are extremely powerful for
forecasting, it can be very hard to interpret the underlying structure implied by them.

As machine learning techniques become more popular and computers become capable
of storing and processing large quantities of data, there have been some recent efforts
to incorporate such techniques into structural econometric models. My research aims to
extend this literature.

Chapter 1: Regularization Paths in Generalized Method of Moments

In the GMM framework, the objective function to be minimized is a weighted sum of
squares of m moment conditions implied by economic theory. The derivative of the
objective function with respect to the vector of parameters (θ) provides a system of k
equations in k unknowns that is used to obtain parameter estimates. However if this ma-
trix is nearly singular at the true parameter values, then the system of equations becomes
highly unstable. This is analogous to the problem of multicollinearity in linear regression.
In the linear regression framework the problem is addressed by regularization. However,
due to the highly non-linear nature of the GMM objective function, techniques like ridge
and spectral cut-off regularization are not readily generalizable to the GMM framework.

In the first chapter (co-authored with Fallaw Sowell), we re-interpret regularization as
a set of possible solutions that lie along a path between the unconstrained minimum of
the objective function and a pre-defined prior. Using this interpretation, we propose
algorithms for finding the ‘regularized’ parameter estimates. We use the notion of cross-
validation in GMM. We also show via simulations that our method performs very well
when the system of equations is unstable. We discuss how to extend the techniques in
higher dimensions and as an empirical application we employ this method on the Con-
sumption based Capital Asset Pricing Model.

Chapter 2: Propensity Score Model Selection using Machine Learning Classi-
fiers

The basic issue in estimating the effect of a particular treatment using observational data
is that the data suffers from selection bias. In other words those who receive treatment
(the treatment group) are inherently different from those who don’t (the control group).
Heckman (in his seminal 1978 paper) shows that a naive estimate of the regression pa-
rameter on a treatment dummy suffers from an omitted variable bias. The problem arises
because we only observe outcomes under a single state (either treatment or control)– thus
we have to control for factors which simultaneously affect both outcome and selection into
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the treatment group. Rubin and Rosenbaum (1983) pioneered the work on causal infer-
ence in the statistics literature. They suggest a two-step estimation procedure. In the
first step the probability that an individual belongs to the treatment group is estimated
(Propensity Score of the individual). The second step involves using the Propensity Score
for pre-processing the data before estimating the Average Treatment Effect (ATE).

The use of Inverse Propensity Score Weighting (IPW) is now ubiquitous in the Causal In-
ference literature, however the estimation of propensity scores remains an open question.
While many authors use logistic regression because of its interpretability, others argue in
favor of non-parametric methods. We propose the use of machine learning classifiers (like
Naive Bayes, Regression Trees and Support Vector Machines) for obtaining propensity
scores. We show via theoretical arguments and simulation studies why its useful to con-
sider a variety of propensity score models in the first step. We compare propensity scores
estimates obtained from Linear Probit model as well as from semi-parametric classifiers
like Naive Bayes, Random Forests and Support Vector Machines. In particular we find
that propensity score estimates with Minimum Covariate Imbalance perform very well in
terms of Mean Squared Error of ATE estimates across all simulations.

Chapter 3: Evaluating India’s Safe Motherhood Scheme using Inverse Propen-
sity Score Weighting

Conditional Cash Transfers (CCT) programs are becoming an increasingly popular pol-
icy tool in developing countries to incentivize certain behavior such as school enrollment,
vaccination and health check ups amongst a targetted section of the population. The
beneficiaries of CCTs are typically from poorer communities and the final aim of such
programs is to help such communities get out of poverty. India’s Safe Motherhood scheme
or Janani Suraksha Yojana (JSY), launched in 2005, incentivizes eligible women to give
birth in health care facilities. With more than 9 million beneficiaries, it is the world’s
largest CCT program in terms of the number of beneficiaries.

We use estimation techniques developed in Chapter 2 (IPW using Minimum Covariate
Imbalance criteria) to evaluate the effectiveness of the scheme. In particular we estimate
the ATE of receiving financial assistance via JSY on two health outcomes – number of
stillbirths and infant mortality. We also estimate ATE on three behavioural outcomes –
whether the mother had 3 or more ante-natal checkups, whether any post-natal check up
was conducted within 2 weeks of delivery and the frequency of child check-ups within 10
days of delivery. We are not aware of any other paper that uses Propensity Score methods
to evaluate JSY at the national level. Our results indicate that in certain geographical
regions propensity scores obtained via machine learning techniques were picked leading to
results that are qualitatively different from those obtained by the standard linear probit.
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