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Abstract

We present a model of liquidity management and financing decisions under moral hazard in

which a firm accumulates cash to forestall liquidity default. When the cash balance is high, a

tension arises between accumulating more cash to reduce the probability of default and provid-

ing incentives for the manager. When the cash balance is low, the firm hedges against liquidity

default by transferring cash flow risk to the manager via high powered incentives. Under mild

moral hazard, firms with more volatile cash flows tend to transfer less risk to the manager and

hold more cash. In contrast, under severe moral hazard, an increase in cash-flow volatility exac-

erbates agency cost, thereby reducing firm value, overall hedging and in particular precautionary

cash-holdings. Agency conflicts lead to endogenous, state-dependent refinancing costs related

to the severity of the moral hazard problem. Financially constrained firms pay low wages and

instead promise the manager large rewards in case of successful refinancing.
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1 Introduction

When a firm has limited access to capital markets, it must accumulate liquidity, for example, a

cash balance, to cover negative cash flow shocks. At the same time, such balances can exacerbate

agency conflicts as they serve as a larger pool of cash from which management can divert (as argued

in Jensen (1986)). We introduce a model in which a firm’s shareholders face a trade-off between

accumulating cash to prevent liquidity default and optimally providing incentives for the firm’s

risk-averse manager to return cash to shareholders accurately. These shareholders have limited

liability, cannot transfer cash into the firm after inception, and have only occasional refinancing

opportunities. As a consequence, they hedge against liquidity based default by optimally managing

internal cash balances.

In our model, the manager of the firm can inefficiently divert from the firm’s flow and stock

of cash and therefore requires incentives. The manager has constant absolute risk averse (CARA)

preferences, while the shareholders are risk neutral. Nevertheless, due to the potential for liquidity

default, the shareholders are effectively risk averse over the cash stock of the firm. As such, the

contracting problem between the shareholders and the manager features two forces that shape

the sensitivity of the manager’s pay to the performance of the firm. When the firm is far from

liquidity default, the manager is more risk-averse than the shareholders, and incentive provision

determines the manager’s optimal exposure to cash flow shocks. When the firm is close to default,

the shareholders are effectively more risk averse than the manager, and the optimal contract will

give the manager high-powered incentives, that is incentives above what is required to prevent cash

diversion. These high-powered incentives essentially hedge the risk of liquidity default.

Our assumption that investors cannot costlessly transfer cash into the firm introduces a novel

restriction on the promise-keeping constraint in the standard dynamic principal-agent model (for

example, DeMarzo and Sannikov (2006)). Specifically, only cash within the firm and incentive

compatible promises of raising cash given the opportunity can be used to fulfill the promised value

to the manager. Thus, the firm’s cash balance is a commitment device that serves as collateral for

the promise of future payments to the manager. In the extreme case where raising additional funds

is impossible, only promises that are sufficiently collateralized by cash fulfill the promise-keeping

constraint. As a consequence, our model suggests an interaction between moral hazard and optimal

cash-holdings. Reminiscent of Jensen (1986), more cash exacerbates agency conflicts. This effect,

in turn, requires stronger incentives, also using deferred compensation. However, in order to make

2



a credible commitment to the deferred compensation package, the firm must hold even more cash,

which again amplifies moral hazard.

Under the optimal contract, negative cash-flow shocks not only reduce the firm’s cash position

but also lower the present value of compensation the firm owes to the manager. While the manager

requires some minimum level of incentives to abstain from cash flow diversion, the firm may hedge

through labor contracts and transfer more than this minimum level of risk to the manager by

providing strong incentives. Such risk-sharing or hedging demand by the firm dominates the agency

problem for low cash balances. Risk-sharing is not costless; however, as increasing the variability

of the manager’s pay increases risk-premium the manager requires to bear such risk. When the

firm’s cash balance is large, the agency problem dominates hedging needs, and the optimal contract

delivers the minimum cash-flow sensitivity required to keep the manager from cash flow diversion.

Therefore, our first key finding is that the optimal contract provides weaker incentives when the

firm holds more cash and in particular incentives decrease after positive cash-flow realizations, put

differently, we find that firms with low cash-holdings provide more equity-like compensation.

In addition to hedging through labor contracts, the firm can hedge liquidity risks by delaying

dividend payouts and therefore accumulating more cash. Under the optimal contract, the optimal

payout policy calls for a dividend whenever the firm’s cash balance exceeds a threshold which we

call the dividend payout boundary. Our second key finding is that the optimal dividend payout

boundary decreases in the severity of the moral hazard problem. In particular, the manager’s ability

to divert from the firm’s cash balance means that some of her compensation must be deferred, which

leads to an endogenous carrying cost of cash via the risk premium that the manager applies to

deferred compensation. When the moral hazard problem is more severe, that is, when the manager

can divert cash with greater efficiency, the carrying cost of cash increases and the optimal dividend

payout boundary decreases.

Our third key finding is that under moderate moral hazard firms facing high cash-flow uncer-

tainty do not pass on this uncertainty to management via employment contracts, but instead hedge

liquidity risk by holding more cash.1 In contrast, firms with low cash-flow uncertainty hedge more

via labor contracts and provide stronger incentives to management. When moral hazard is suf-

ficiently severe, target cash-holdings are non-monotonic in cash-flow volatility. This result arises

because an increase in cash-flow volatility also increases the cost of incentive provision, thereby

decreasing firm value and reducing the overall hedging demand.

1This is generally consistent with the findings of Bates et al. (2009).
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Our model questions the widely held view that firms facing more severe agency conflicts should

provide stronger managerial incentives. In particular, our fourth key finding is that the relationship

between incentive pay and the level of moral hazard is state dependent. When the firm has a large

cash balance, the strength of incentives is increasing in the severity of the moral hazard problem.

This relationship reverses for firms with low cash holdings. Because more severe agency conflicts

decrease the value of the firm as a going concern, liquidation becomes (relatively) less costly,

decreasing a firm’s hedging demand decreases to liquidity default. Consequently, the firm transfers

less risk to the manager when its cash-balance is low, and the moral hazard problem is severe.

Refinancing in the presence of agency conflicts imposes an endogenous flotation cost to raising

funds in the absence of physical refinancing costs. In our model, the firm’s ability to refinance is

constrained by search frictions in capital markets, as in, for example, Hugonnier et al. (2014), which

lead to uncertain refinancing opportunities.2 Under the assumption that the firm can commit to a

refinancing policy ex-ante, we find that the implied refinancing costs are state-dependent, i.e., they

depend on the current cash level of the firm. Our fifth key finding is that the firm, depending on

its cash-holdings, either refinances to below the first best or refinances to the first best but raises

more money than necessary to pay the manager a lump-sum wage payment above what incentive

constraints would imply. In other words, the presence of agency always distorts the decision to

raise cash away from the first-best. The key to understanding the latter effect is that large promises

conditional on a state in which there is unlimited access to new cash lower the required wages in

states in which cash is tight without violating promise keeping, thereby lowering the likelihood of

liquidity default.

Furthermore, in contrast to Hugonnier et al. (2014), better refinancing opportunities do not re-

duce the firm’s hedging of liquidity risk. On the one hand, increasing the firm’s access to refinancing

leads it to accumulate and raise less cash. On the other hand, it leads to increased hedging of liq-

uidity risk through managerial incentive pay in low cash states. This later effect obtains because

better refinancing opportunities make it less costly to defer the payments to the manager until the

moment of refinancing, effectively lowering the cost of hedging liquidity risk through incentive pay.

Next, we find that when moral hazard is more severe, incentive compatibility demands high-

powered incentives on average. Under these circumstances, employment contracts then absorb a

large part of the liquidity risk, resulting in outside equity becoming less volatile on average. We also

2Since refinancing in practice involves cost, it occurs at infrequent times, as documented by Leary and Roberts
(2005).
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demonstrate that a firm’s stock return volatility need not be decreasing in the firm’s liquidity and

can follow a hump-shaped pattern since a financially constrained firm hedges cash-flow risk through

labor contracts to a greater extent, which in turn reduces stock return volatility. Depending on

how much risk the firm transfers to the manager, we get a different relationship between liquidity

and volatility of stock returns. These model predictions are novel and contrast with the findings of

related models of cash-management such as that of Décamps et al. (2011)), who find the relationship

between cash and equity return volatility to be unambiguously monotonic.

Finally, the technique we use to solve our model also represents a methodological contribution.

Dynamic agency problems usually introduce the manager’s promised future payments as a state

variable to track the agency problem. At the same time, liquidity management problems use the

firm’s stock of cash as a state variable to track the liquidity of the firm. Our problem thus would

appear to have two state variables. While dynamic stochastic optimization problems with more

than two state variables are usually hard to solve, we show how a small expansion of the allowed

wage space allows for the model to collapse to a one-dimensional optimization while maintaining

the liquidity-agency trade-off. The critical observation is that allowing the manager to receive small

negative wages, in conjunction with allowing the manager to have a savings contract that is not

identically zero along the equilibrium path, relaxes the shareholders’ problem. Shareholders prefer

to manage liquidity, in the absence of refinancing, using costly small negative wages over holding

cash-buffers in excess of the incentive constraints.3 Cash net promised risk-adjusted future wage

payments readily measure the firm’s financial soundness and its distance to liquidity default.

Related Literature

We draw on two main strands of literature. First, there is a large literature on dynamic agency

conflicts, such as DeMarzo and Sannikov (2006), DeMarzo et al. (2012), Biais et al. (2007, 2010),

Zhu (2012) or Williams (2011). Similar to He (2011), He et al. (2017), Marinovic and Varas

(2017) or Holmstrom and Milgrom (1987), we consider an agent with CARA-preferences. This

specification allows the problem to be analytically tractable. Relatedly, Ai and Li (2015), Ai et al.

(2013) and Bolton et al. (2017) study optimal executive compensation and investment under limited

commitment. Their papers do not feature agency conflicts.

Second, our model is linked to the literature on optimal cash-management within firms (some-

3Importantly, this dimensionality reduction goes beyond the absence of wealth effects, as studied by related
papers considering a CARA-manager endowed with a savings technology (compare e.g. He (2011), He et al. (2017)
or Gryglewicz et al. (2017)), which usually focus without loss of generality on zero-savings contracts.
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times referred to as optimal corporate cash management). Here, Bolton et al. (2011, 2013), Décamps

and Villeneuve (2007), Décamps et al. (2011); Decamps et al. (2016), Rochet and Villeneuve (2011),

Hugonnier et al. (2014), Gryglewicz (2011), Della Seta et al. (2017) and Hugonnier and Morellec

(2017) are the closest references, as they show how a firm, owned by risk-neutral shareholders, that

faces financing frictions optimally holds internal cash-balances, even if these balances (exogenously)

return less than the risk-free rate. In contrast, in our model internal cash-balances are not inferior

in returns to the risk-free rate, but rather are costly in terms of the agency problem.

Our paper is also related to the literature analyzing risk-sharing between firms and their workers,

such as the theoretical studies of Berk et al. (2010) or Hartman-Glaser et al. (2017) or the empirical

study of Guiso et al. (2005), who document that firms ensure their workers only partially against

cash-flow risk.

2 Model Setup

In this section, we specify a model a liquidity management in the presence of moral hazard. The

main agency problem in our model is that the manager of a firm can divert resources for her own

consumption as in DeMarzo and Sannikov (2006).

2.1 The Firm’s Operating Technology

Time is infinite, continuous, and indexed by t. A measure of risk-neutral shareholders own a firm

operated by a risk-averse manager. The common discount rate employed by all agents in the model

is given by r. The firm generates cash flow with mean µ and volatility σ

dXt = µdt+ σdZt,

where Zt is a standard Brownian Motion.

In this baseline specification of the model, the shareholders are unable to transfer cash into

the firm or raise additional funds from new investors. Thus all payouts, that is operating losses,

dividends dDivt, and wages to the manager dwt, must be paid from the firm’s internal cash balance,

which we denote by Mt. In section 5, we allow the shareholders limited access to capital markets

and derive optimal refinancing policies. Besides payouts, three other factors affect the accumulation

of cash. First, the cash within the firm accrues interest at the rate r. Second, the firm is subject
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to catastrophic loss of all cash that occurs according to a Poisson process Nt with intensity δ.4

Without loss of generality, we assume that the catastrophic shocks also destroys the firm’s assets

and therefore makes firm equity drop down to zero. And third, the manager can divert cash for

her own private benefit, where dbt denotes cash diversion. Thus, the dynamics of Mt are given by

dMt = (rMt + µ)dt+ σdZt − dDivt − dwt −MtdNt − dbt (1)

When the firm’s cash balance is exhausted, that is at τ = inf{t : Mt = 0}, the shareholders must

liquidate the firm and receive the liquidation value L where

L ≤ µ

r + δ
(2)

so that there are dead-weight losses to liquidation. We also assume that the liquidation value of

the firm is high enough, in a sense we make precise below, so that the shareholders would never

sell the firm to the manager. Recall we normalized the recovery value after the catastrophic shock

dN to zero.

Finally, we assume that the cash balance of the firm, dividends, wages, and catastrophic loss

are publicly observable. However, the shareholders can not observe cash diversion by the manager.

For convenience, we define the process X̂t by

dX̂t = dMt − rMtdt+ dDivt +MtdNt,

which represents cash flow shocks imputed from the dynamics of the cash balance of the firm

assuming no diversion.

2.2 The Manager’s Technology and Preferences

The manager can divert cash for her own use in one of two ways. First, she can divert cash flow

and in doing so, appropriate a fraction λ ≤ 1 per dollar diverted. Second, the manager can divert

a lumpy amount of cash out of the firm’s cash balance and, in particular, can abscond with an

amount up to the entire cash balance Mt. The managers’s benefit from diverting a lumpy amount

of cash is a fraction κ per dollar diverted. Throughout the paper, we denote the amount of cash

4One example of such a shock can be a large lawsuit – for example, Purdue Pharma (the maker of OxyCotin)
recently prepare to declare bankruptcy in response to a number of lawsuits related to the Opioid crisis.
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diverted by the manager up to time t by bt and the amount received by Bt, where Bt accounts

losses given diversion. Formally, we can write bt = bFt + bSt , where bFt is sample path continuous

increasing process and bSt is an increasing jump process, so that

dBt = λdbFt + κdbSt . (3)

The manager can also maintain hidden savings and debt, denoted by St. Savings S accrue

interest at rate r and are subject to changes induced by wage payments dwt, diverted cash dBt,

and consumption ct

dSt = rStdt+ dBt + dwt − ctdt (4)

Endowing the agent with the possibility to accumulate savings is needed to ensure consumption

smoothing beyond any liquidation event. We normalize the manager’s initial savings to be S0 = 0

The manager discounts at the market rate r and is risk-averse with constant absolute risk averse

(CARA) utility given by

u(ct) = −1

ρ
exp(−ρct),

per unit of time where ρ > 0 is the coefficient of absolute risk-aversion and ct is instantaneous

consumption. The manager cannot commit to continue operating the firm and possesses an outside

option to receive utility Ū .

2.3 The Contracting Problem.

At inception t = 0, the shareholders offer the manager a contract C = (ĉ, w, b̂). The contract

C specifies the manager’s recommended consumption ĉ, wage payments w and diversion b̂. In

addition to the wage contract, shareholders also control the dividend payout process Divt. Because

shareholders cannot inject cash into the firm, the dividend process must be increasing. However,

shareholders can choose to liquidate at any time by paying out the entire cash balance of the firm.

In other words, the shareholders cannot commit to conitnue to operate the firm. If shareholders

liquidate the firm, the remaining cash balance of the firm is split between the shareholders and the

manager according to Nash bargaining, where the shareholders have the Nash-bargaining weight θ.

We call C incentive compatible if ct = ĉt and b̂t = bt = 0, and feasible if the principal can commit

to it. Throughout the paper, we focus on incentive compatible and feasible contracts and denote

the set of these contracts by C. We also impose the following assumption on the wage process dw.
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Assumption 1. Cumulative wages must satisfy limε→0wt+ε − wt ≥ 0. That is, wages have to be

either continuous or exhibit upward jumps (lumpy payments to the manager), but cannot exhibit

downward jumps (lumpy cash infusions from the manager).

Note that this assumption does not preclude negative flow wages. We discuss the above and

alternative assumptions in more detail in Section 6.

We can now formally state the optimal contracting problem. The manager solves

U0 = max
c,b

E
[∫ ∞

0
e−rtu(ct)dt

]
(5)

such that dSt is given by equation 4 for some initial savings S0. The shareholders’s problem is to

choose and incentive compatible and feasible contract and a payout policy to maximize the total

present value of dividends

V0 = max
Div,C

E
[∫ ∞

0
e−rtdDivt + e−rτL

]
, (6)

such that U0 > Ū , C ∈ C, dDivt ≥ 0, and dMt is given by (1).

To ensure the problem is well-behaved, we impose that the agent’s savings S must satisfy the

transversality condition, sometimes referred to as the No-Ponzi condition:

lim
t→∞

e−rtSt ≥ 0 almost surely wrt. P (7)

and certain other regularity conditions, which are collectively gathered in Appendix A. If ever

Sτ < 0, the transversality condition requires negative consumption to make up the savings shortfall.

3 Model Solution

In this section, we solve the model and derive the optimal contract and payout policy. First,

we analyze the manager’s problem and characterize conditions for the contract to be incentive

compatible. In particular, following the solution technique of He (2011), we introduce the certainty

equivalent Wt of the manager’s continuation utility. Second, we focus on the principal’s problem and

show the restriction on the state- and strategy-space the principal faces. In particular, due to the

manager’s CARA preferences, the principal faces a 2-dimensional dynamic optimization problem

characterized by a partial differential equation (PDE). Third, we show that under Assumption 1,
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the model collapses to a 1-dimensional dynamic optimization problem characterized by an ordinary

differential equation (ODE).

3.1 Incentive Compatibility and Promise Keeping

As is standard in the dynamic agency literature, let us define for any incentive compatible contract

C the agent’s continuation value at time t

Ut := Et
[∫ ∞

t
e−r(s−t)u(cs)ds

]
(8)

and denote the agent’s savings by St. By the martingale representation theorem, there exists

progressively measurable processes αt and βt such that dynamics of U follow

dUt = rUtdt− u(ct)dt+ βt(−ρrUt)(dX̂t − µdt)− αt(−ρrUt)(dNt − δdt). (9)

The process αt captures the manager’s exposure to disaster risk dNt and the process βt captures

the her exposure to cash-flow shocks.

While the manager’s continuation utility captures her incentives, it is convenient to change

variables as follows. First, note that in order to ensure that the agent does not deviate from the

recommended consumption path, the optimal contract has to respect the agent’s Euler equation,

in that marginal utility has to follow a martingale. Next, as shown in the appendix, the manager’s

first order condition with respect to consumption given the access to a savings account implies

that u′(ct) = −ρrUt > 0. This in turn implies that Ut is a martingale. Further, let us define the

certainty equivalent Wt as the amount of wealth needed that would result in utility Ut if the agent

only consumed interest rWt, that is,

W (U) :=
− ln(−ρrU)

ρr
. (10)

Here, Wt is the agent’s continuation value in monetary terms while Ut is the agent’s continuation

value in utility terms.
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By Ito’s Lemma, we obtain

dWt =
ρr

2
(βtσ)2︸ ︷︷ ︸

BM Risk-Premium

dt+ βt(dXt − µdt)

+ δ

(
αt −

ln(1 + ρrαt)

ρr

)
︸ ︷︷ ︸

Poisson Risk-Premium>0

dt− ln(1 + ρrαt)

ρr
(dNt − δdt). (11)

Because her compensation package is exposed to cash-flow shocks dXt and productivity shocks

dNt, the agent demands a risk premium, so that Wt has a positive drift. In other words, as Ut is a

martingale, Wt = W (Ut) has a positive drift due to the convexity of W (U) and Jensen’s inequality.

Essentially, (9) or equivalently (11) constitutes the so-called promise-keeping constraint. That is,

shareholders promise the agent’s continuation value W (resp. U) evolves according to (11) (resp.

(9)).

We can now characterize the incentive compatibility conditions that guarantee zero cash flow

diversion. First, consider the manager’s incentive to divert cash flow, that is, set dbFt > 0. In this

case, the manager gains λu′(ct) in utility and loses βt(−ρrUt) in continuation utility. Recall that

−ρrUt = u′(ct), so that it is optimal for the manager to choose dbFt = 0 if and only if

βt ≥ λ. (12)

Likewise, the manager does not find it optimal to boost cash-flow – i.e., to set dbFt < 0 – as long

as βt ≤ 1.

Now consider the manager’s incentive to divert a lumpy amount of cash from the firm. In that

case, that is, if dbSt > 0, the shareholders can immediately observe the managers action and can

reduce her future compensation accordingly. Let Yt = Wt − St. We can interpret Yt as the present

value of the manager’s deferred compensation adjusted for risk. If the manager diverts a lump of

cash flow, she gains at most κMt in cash and loses at most Yt in the present value of future wages.5

5It is straightforward to show Yt = Et
[∫∞
t
e−r(s−t)

(
dws − ζsds

)]
where ζt := ρr

2
(βtσ)2 + δ

(
αt − ln(1+ρrαt)

ρr

)
is

the agent’s required risk premium.

11



As such, setting dbFt = 0 is incentive compatible if and only if6

ϕt :=
Yt
Mt
≥ κ. (13)

While deferring compensation is necessary to provide the manager with incentives to refrain

from diverting a lump of cash from the firm, doing so imposes a cost. This is because during any

time interval [t, t+ dt] the firm can lose its entire cash balance, that is if dNt = 1. In this case, the

firm is liquidated and, due to the shareholders’ limited liability, the manager looses the previously

promised amount Yt. By definition, at time of termination τ , the manager’s certainty equivalent

Wτ must equal her savings Sτ , i.e., Yτ+ = 0. Hence, upon the arrival of a shock dNt = 1, it follows

that the manager’s continuation value jumps down immediately by Yt, that is: dWt/dNt = −Yt.

Matching coefficients in equation (11), this pins down the manager’s exposure to disaster risk in

terms of Yt

αt = A(Yt) :=
exp(ρrYt)− 1

ρr
≥ 0. (14)

Hence, deferring compensation exposes the manager to Poisson shocks, for which she requires a

risk-premium to be paid by the firm. Consequently, increasing Yt is costly for shareholders as

A(·) is increasing and convex in its argument. Higher cash-holdings Mt require greater deferred

compensation Yt and therefore a higher risk-compensation δA(Yt) and flow wage for the manager,

we obtain an endogenous carry-cost for internal cash-holdings.

We summarize our findings so far in the following proposition.

Proposition 1. If C solves (6), then

i) The agent’s continuation value U , defined in (8) solves the SDE (9) for some F-progressive

processes (α, β) and W solves the SDE (11).

ii) Given a process Y the process α satisfies (14).

iii) The process β satisfies βt ∈ [λ, 1] for all t ≥ 0 and the process α is given through (14).

6In case the agent were able to enjoy an additional outside option O in monetary terms after leaving the firm, e.g.,
through finding a job at another firm or through extracting some of the liquidation value of the assets, the constraint
(13) would change to Yt− ≥ κMt− +O. Throughout our analysis, we consider without loss O = 0 and we normalize
the agent’s outside option to zero.
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3.2 The Optimal Contract

3.2.1 Reduction of the State Space

The shareholders’ problem depends on three state variables. The managers’s continuation value

Ut, or equivalently, Wt, the agent’s savings St, and the firm’s cash-holdings Mt. Thus, the value

of the firm at time t, or equivalently the shareholders’ continuation value, is given by a function

V̂ (Mt,Wt, St). Due to the manager’s CARA preferences and the absence of wealth effects, the

values of Wt and St are irrelevant for the shareholders problem, and only the difference Yt = Wt−St

matters. Thus, we are left with the two state variables (Mt, Yt), and the shareholders value can be

written in the form V̂ (Mt,Wt, St) = V (Mt, Yt).

Next, we argue that in the absence of refinancing opportunities, promised payments to the

manager must be fully collateralized. Put differently, any uncollateralized promise Yt > Mt is an

empty promise. To see this note that, sufficiently negative cash-flow shocks can wipe out the firm’s

cash-balance within a short amount of time (t, t + dt), thereby leading to Yt+dt > Mt+dt = 0.

Under these circumstances, shareholders either renege on the promise Yt+dt and default or ask

the manager to fully absorb cash-flow risk through β = 1, in order avoid liquidation. In the first

case, promise keeping is violated.7 In the second case, the manager must cover consumption needs

ct = rWt and operating losses, until the firm is liquid again and financial distress is resolved.

Because the manager’s consumption rWt strictly exceeds the interest earned on savings, rSt, and

financial distress may prevail for an arbitrarily long time-span, she accumulates excessive debt (with

positive probability), which results in a violation of the no-Ponzi condition. We conclude that the

only way for promise-keeping and No-Ponzi condition to hold is to liquidate as soon as Yt = Mt.

Thus, the principal’s optimization is subject to the following state constraint

(Y,M) ∈ B = {(Y,M) : 0 ≤ κM ≤ Y ≤M} . (15)

Next, we consider the dynamics of (Y,M) that can obtain if we relax Assumption 1 to allow

for negative and positive wages in any amount. While these variables are subject to exogenous

shocks, the shareholders can at any time reduce (increase) Y by withdrawing (depositing) an equal

amount from the firm’s cash account M and paying a positive (negative) wage to the manager.

These dynamics are depicted in Panel A of Figure 1. Consider starting at the point O. A positive

7That is, the evolution of W is inconsistent with (11). This is because default at time t+dt leads to an immediate
jump of payments Yt+dt > 0, the manager expects to receive, down to zero. Equivalently, Wt+dt jumps down in
absence of a Poisson shock, contradicting (11).
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Figure 1: Schematic Representation of the state- and strategy space

cash flow shock moves the state vector to the point A. At this point, the shareholder’s can move

to any point within B along a 45-degree line through A by adjusting Y and M one-for-one, for

example by paying the manager a lump sum to move to point A′. A negative cash flow shock

moves the state vector to the point B. Staying at point B results into a violation of the incentive

constraint Y ≥ κM and is therefore not an option. Thus, at point B, shareholders must either pay

dividends, in order to reduce cash and to move from B to B′′, or increase the manager’s deferred

compensation and thus move along a 45 degree line to the point B′. Because it is always possible

to change M and Y one-for-one, the value function must satisfy:

V (Y,M) = V (Y + w,M + w) (16)

for all (Y,M) ∈ B and w ≥ −Y−κM
1−κ .

Consider the change of variables

ϕ =
Y

M
(17)

C = M − Y. (18)

We can interpret C as the net cash position of the firm in that it is equal to the firms cash balance

less the amount the firm would need to pay to retire the maintain promise keeping. Importantly, net

cash C keeps track of the firm’s actual level of liquidity, in that the firm defaults if and only C = 0,

which turns out to happen if and only if M = 0. Panel B of Figure 1 depicts the dynamics of (ϕ,C)
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that correspond to the dynamics for (Y,M) in Panel A. Note that moving along a 45-degree line

in (Y,M)-space is equivalent to moving along a verticle line in (ϕ,C) space. That is, a one-for-one

change in both (Y,M) changes the ratio of Y to M , but does not change the net liquidity C.

We now argue that the firm’s net cash position is a sufficient statistic for the state of the firm,

and thereby reduce the problem to a single state variable. Let v̂(ϕ,C) = V (Y,M). Using equation

(16), we then have

v̂(ϕ,C) = V

(
ϕC

1− ϕ
,

C

1− ϕ

)
= V

(
ϕ′C

1− ϕ′
,

C

1− ϕ′

)
= v̂(ϕ′, C). (19)

For all κ ≤ ϕ,ϕ′ ≤ 1. As a result, there exists v(C) such that v(C) = V (Y,M) for all (Y,M) ∈ B.

Thus, we recast the principal’s problem as a maximization over the controls β and ϕ with the

one-dimensional state C. Utilizing (11), (4), dBt = 0, ct = rWt, and Y = ϕ
1−ϕC, for any IC and

implementable contract we have

dCt = rCt−dt−
ρr

2
(βtσ)2dt− δA

(
ϕt−

1− ϕt−
Ct−

)
dt+ µdt+ (1− βt)σdZt − dDivt − Ct−dNt. (20)

Since cash-flow shocks affect both cash-holdings and the present value of the manager’s compensa-

tion, the firm’s actual liquidity is less sensitive to cash-flow shocks than cash Mt, in that

0 <
dCt
dXt

= 1− βt < 1 =
dMt

dXt
.

Note that so far dw has not been explicitly specified – it will be defined as the residual that

implements the optimal choice of ϕ.

We note that the arguments above assume a relaxed version of Assumption 1. Specifically, we

assumed above that is was possible to implement lumpy negative wages for the manager. We show

below that that at the optimum, the relaxed problem respects Assumption 1.

3.2.2 The Optimal Contract and Liquidity Policy

We can now derive a Hamilton-Jacobi-Bellman (HJB) equation for the value of the firm and use

it to solve for the optimal contract and liquidity policy. We conjecture that dividend payouts only

occur at an upper boundary C. On the conjectured continuation region C ∈ (0, C), an application
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of the Ito’s formula and the dynamic programming principle gives the following HJB equation

(r + δ)v(C) = max
β≥λ,ϕ≥κ

{
v′(C)

(
rC − ρr

2
(βσ)2 − δA

(
ϕC

1− ϕ

)
+ µ

)
+
σ2(1− β)2

2
v′′(C)

}
. (21)

First, we maximize with respect to ϕ. Since v′(C) > 0 and ∂
∂ϕA

(
ϕC
1−ϕ

)
> 0, it is costly to give

the manager excess deferred compensation and it is optimal to set

ϕ(C) = κ, (22)

that is, the optimal level of deferred compensation is minimum level that implements no-stealing

from the cash balance of the firm. As a result, with ϕ continuous, the solution to the relaxed

problem satisfies Assumpion 1.

Second, we maximize with respect to β. The first-order conditions and the IC constraint imply

that

β(C) = max{λ, β∗(C)} with β∗(C) :=
−v′′(C)

ρrv′(C)− v′′(C)
< 1. (23)

Raising incentives β transfers risk to the agent and reduces the volatility of C, thereby lowering the

likelihood of liquidation. Consequently, it can be optimal to provide more incentives β than required

by incentive compatibility when C is low, as discussed in more detail in the next subsection.

Note that the solutions to ϕ and β imply that the firm never experiences agency-based default,

i.e., default triggered by C = 0 with M = Y > 0.

The standard boundary conditions of value-matching at default C = 0 and smooth-pasting at

the dividend payout boundary C = C are given by8

v(0) = L and v′(C) = 1. (24)

Recall that shareholders are not able to fully commit to their promises, and may decide to

trigger liquidation if it is beneficial to them. Liquidating yields a cash payout of θM = 1
1−κC in

addition to the liquidation value L to the principal. Thus, for any feasible contract, we must have9

v(C) ≥ 1

1− κ
C + L. (25)

8Observe that a positive unit cash-flow shock to M at C = C leads to an increase in C of (1−β), and unit payouts
of (1− β) as dividends and β as wages. Re-norming, a unit shock to C then leads to a unit dividend payout.

9Strictly speaking, we must have v(C) ≥ 1
1−κC + L for all C ∈ [0, C], but from v′(C) ≥ 1 ≥ 0 ≥ v′′(C) it is

sufficient to check this condition at C = C.
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If constraint (25) is slack, the payout boundary satisfies the optimality or super-contact condition

v′′(C) = 0 (26)

In other words, if payouts are optimally made at C = C with (25) slack, then the shareholders’

effective risk-aversion vanishes at C.

Thus, whenever (25) holds with equality and v′′(C) < 0, the shareholders’ limited commitment

combined with moral hazard κ constrain the firm in optimally managing liquidity risks. Note that

constraint (25) is always slack if θ
1−κ < 1, which is the case when a liquidation would not violate

promise keeping, as (1− θ)M < Y ⇐⇒ 1 < θ
1−κ .10 For θ

1−κ > 1, we simply check condition (25)

at the candidate payout boundary C
∗

defined by (26).

Proposition 2. Let C solve (6). Then, the following holds true:

i) The shareholders’ value function V (·) satisfies V (·) = v(C), where the function v(·) is twice

continuously differentiable, i.e., v ∈ C2.

ii) The principal’s payoff is given by a function v, that solves the HJB-equation (21) subject to

v(0)− L = v′(C)− 1 = 0 and either v′′(C) = 0 or v(C) = θC/(1− κ) + L.

iii) The value function v is strictly concave [0, C) with v′′′(C) > 0.

4 Analysis

In this section we analyze the optimal contract and liquidation policies. Unless specified otherwise,

we assume that parameters are such that the payout boundary is optimally determined by the

super-contact condition, i.e., v′′(C) = 0.11

4.1 Performance Pay and Hedging Through Labour Contracts

In this section, we analyze the pay-performance sensitivity β. For clarity of exposition, let us for

the time being assume that λ = θ = 0, so that β = β∗. The assumption λ = 0 is equivalent to the

absence of the agency problem in terms of stealing out of cash-flow, but does not preclude stealing

from cash-stock, i.e., κ > 0.

10This is because v(C̄) − L = v(C̄) − v(0) > C̄, as v′(C) ≥ 1 with the inequality being strict for some C. Hence,
the super contact condition holds if θC̄ ≥ C̄θ

1−κ .
11As mentioned in the preceding footnote, a sufficient condition for this is θ < 1− κ.
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Figure 2: Benchmark value function: The parameters are µ = 0.25, r = 0.1, δ = 0.25, λ = κ =
0.4, σ = 0.75, θ = 0 and ρ = 7.

Absent liquidity concerns, it is optimal for the principal not to expose the risk-averse manager

to any cash-flow shocks, i.e., to set β∗ = λ = 0. However, in the presence of liquidity concerns,

shareholders become increasingly risk-averse as cash-reserves dwindle and would optimally like to

hedge liquidity risk through labour contracts by setting incentive pay β∗ > 0.

Incentive pay transfers risk to the agent, in that the volatility of the liquidity reserves, dC/dX =

σ(1− β), decreases in β for β < 1. Consider the benefit of increasing β:

∂v(C)

∂β
∝ −v′(C)ρrβσ2︸ ︷︷ ︸

Risk-Compensation;<0

+ (1− β)σ2(−v′′(C))︸ ︷︷ ︸
Reduction in Cash-Flow volatility;>0

.

Increasing β makes C less volatile and reduces the likelihood that the firm runs out of cash but

also requires a risk-compensation to the agent, as her wage has become more volatile. When the

firm has low cash holdings, a reduction in volatility is particularly beneficial, since −v′′(C) is large.

On the other hand, the marginal value of cash of the firm v′(C) is pronounced under distress, so

that the drift of promised wages required as risk-compensation is also very costly.

Intuitively, the optimal β∗ implements a risk-sharing solution that balances the agent’s con-

stant absolute risk-aversion ρ against the shareholders’ state-dependent absolute risk-aversion

−v′′(C)/v′(C). The firm hedges more strongly through labour contracts for low net-cash posi-

tions, i.e., β∗(C) > 0 for C > 0, whereas it absorbs all risk at the payout boundary, β∗(C) = 0.

That is, compensation becomes more equity like when the firm undergoes financial distress and has

little cash. In practice, firms with little cash often are start-ups and young firms, where it is indeed

well documented that their employees are often rewarded with stock.
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When λ > 0, the firm’s risk-sharing is constrained by β ≥ λ. Thus, risk-sharing is constrained

for high levels of C in that due to IC constraint the principal can never fully insure the agent, even

at the payout boundary as β∗(C) = λ.

Wages are defined as the residual that keeps ϕ = κ. Imposing 0 = dϕ = d(Y/M) and ϕ = κ,

we have wages dw = µwdt+ σwdZ with

µw =
1

1− κ

[
ρr

2
{β (C)σ}2 + δA

(
κ

1− κ
C

)
− κµ

]
(27)

σw =
β (C)− κ

1− κ
σ (28)

Thus, the model predicts an increased propensity of managers to pledge private assets in response

to negative cash-flow shocks dZ < 0 for low liquidity firms, something that is common in both

start-ups and firms in financial distress. In the special case of λ = κ, we have σw = β(C)−κ
1−κ σ ≥ 0.

Therefore, negative wages in response to cash-flow shocks occur exactly when the risk-sharing

considerations outweigh the agency issues. Further, we see that for small enough µ and/or large

enough ρ, r, σ, λ, we have always positive dt-level flow wages µw > 0.12

We summarize our findings in the following corollary.

Corollary 1. Let C solve (6). Then, the following holds true:

i) There exists C ′ ∈ [0, C), so that the pay-performance sensitivity β∗ (weakly) decreases in on

[C ′, C]. In particular, ∂β∗(C)
∂C < 0 on [C ′, C]. If σ is sufficiently low, then C ′ = 0

ii) There exists a unique value Ĉ ∈ [0, C], such that β(C) > λ for C < Ĉ. If λ is sufficiently

small, it follows that Ĉ > 0.

iii) The loading of wages on the cash-flow shocks is given by β(C)−κ
1−κ σ and thus negative wages are

more prevalent for low-cash firms.

12To measure how much an agent will have to contribute, set Y0 = κM0 and consider a rapid sequence of negative
CF shocks that bankrupt the firm. Thus, we can ignore dt-level variables (interest, consumption, etc.), and have

Sτ − S0 = −
∫ C0

0

dw (C) ≈ −
∫ C0

0

β (C)− κ
1− κ σdC = σ

[
κ

1− κC0 −
λ

1− κ

(
C0 − Ĉ

)
− 1

1− κ

∫ Ĉ

0

β∗ (C) dC

]
(29)

where Ĉ is point at which β ≥ λ becomes binding, i.e. β∗
(
Ĉ
)

= λ. Using β∗(C) ≤ 1, we have the bound

Sτ − S0 ≥ σ
[
κ−λ
1−κC0 + λ−1

1−κ Ĉ
]
. For λ = κ, this yields the bound Sτ − S0 ≥ −σĈ. More drawn-out sequences of

shocks with gyrations can lead to a lower bound as the agent’s consumption is higher in high C than in low C states.
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dβ/ dC/

dκ − − (κ sufficiently large)
dσ − + (λ sufficiently low), − otherwise
dµ +
dρ − (low ρ), 0 (otherwise) − (low ρ), + (high ρ)
dλ − (low λ), + (otherwise) − (low & high dλ)
dδ − − (κ sufficiently large)
dθ − (high θ, κ), 0 (otherwise) − (high θ, κ), 0 (otherwise)

Table 1: Comparative statics. The comparative statics for β assume C ≈ 0.

4.2 Risk-sharing vs retained earnings as liquidity management tools

In our setting, the firm has two distinct but connected tools to manage liquidity risks:

• The firm can hedge liquidity risk through labour contracts and provide particularly high-

powered incentives β during financial distress when C is close to zero.

• The firm can increase retained earnings accumulation, as proxied by the dividend boundary

C. All else equal, a higher payout boundary C implies higher average net-cash holdings.

Let us first establish the following analytic results regarding comparative statics:

Corollary 2 (Hedging through high powered incentives). For a firm under distress, i.e., C ' 0,

β(C), the analytic comparative statics are summarized in the first row of Table 1.

Corollary 3 (Hedging through cash reserves). For the target cash-holdings C̄, the analytic com-

parative statics are summarized in the second row of Table 1.

Next, we will show numerically that these two liquidity management tools are substitutes by

analyzing the following experiments: consider constraining the principal to a sub-optimal strategy in

one of the two liquidity management tools – (i) an exogenously too high β(C), or (ii) an exogenously

too low C. From our previous discussions, a situation in which the IC constraint (23) is binding

is essentially experiment (i) and can thus be proxied for by comparative statics with respect to λ,

whereas a situation in which the commitment constraint (25) is binding is essentially experiment

(ii) and can thus be proxied for by comparative statics with respect to θ. In our discussion below,

”avg β” refers to the equal-weighted integral
∫ C

0 β(C)dC/C.
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Figure 3: Comparative statics with respect to λ = κ (Column 1), with respect to θ (Column
2), with respect to σ (Column 3), top row C, bottom row σ-scaled avg β. The solid black lines
depict the object described on the y-axis, the dashed red line depicts the IC constraint (23), the
thin vertical dashed red line depicts the parameter value in our benchmark.
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Changing λ = κ. Let us consider varying the degree of agency friction as measured by the

stealing efficiency λ = κ. Column 1 of Figure 3 shows the behaviour of C and avg β (solid black

lines) when varying λ = κ. The avg β increases mechanically as we are raising the floor on β(C)

(dashed red line) via the IC constraint. In response to this increased risk-sharing through labor

contracts, the need for retained earnings decreases and C optimally shrinks. Moreover, more severe

moral hazard reduces firm value and thereby also overall hedging demand. Not shown here is that

numerically there is almost no movement in β(0).

Changing θ. Let us consider varying the degree of commitment by the manager as measured

by the bargaining weight θ. As long as (25) is slack changes in θ have no impact on any of the

principal’s choices. However, once θ is high enough and (25) starts binding the firm has to use

an inefficiently low payout boundary C. Column 2 in Figure 3 illustrates. Constraint (25) starts

binding at θ ≈ .85, and any further increase in θ reduces the payout-boundary C. To counteract

this deterioration in liquidity management via retained earnings, the principal increases hedging

through labor contracts by increasing the pay-performance sensitivity of wages, as indicated by an

increase in avg β.

Changing σ. Let us discuss changing the dynamics of the cash-flow generating process. Here, the

effects are more complex in that some non-monotonicity appears. First, consider an increase in σ. A

higher σ in a pure risk-sharing model, that is with λ = 0, will lead to a higher payout boundary C as

default has now become more likely, holding everything else constant. Non-monotonicity can only

arise when the commitment constraint (25) starts binding and then follows closely the explanations

in the discussion regarding θ. Column 1 in Figure 9 shows the situation in which λ > 0. We see that

C is non-monotone even in the absence of (25) binding. The intuition is as follows: higher σ raises

the risk of liquidation and requires more intense risk-management, so that C and avg β increase.

However, due to agency conflicts, the agent must be provided costly incentives β ≥ λ, even if this is

not optimal from a pure risk-management perspective. Consequently, severe agency conflicts drain

the firm value and reduce the overall hedging demand. The latter effect dominates, when σ and λ

are sufficiently large and the agent requires a high risk-premium in response to performance-pay.

Changing ρ, δ and µ. The comparative statics of ρ, δ and µ are relegated to appendix E. Since

δ essentially captures carry-cost of cash, C not surprisingly decreases in δ. Moreover, when the

agent is more risk-averse, incentive-pay and therefore hedging through labour contracts becomes
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more costly, so that the firm hedges more through retained earnings instead, in that C increases in

ρ. On the other hand, moral hazard has more bite for larger ρ, which in turn implies that overall

firm value decreases in ρ. As a result, liquidation gets less inefficient, which calls for less hedging

of liquidity risks. This leads to non-monotonic comparative statics of C wrt. ρ.

4.3 Cash-holdings and Agency Conflicts

Reminiscent of Jensen (1986), free cash induces moral hazard on the firm level, since it gives the

manager more leeway to misuse resources for her own benefit. As a consequence, carry cost of cash

related to the severity of moral hazard arise, so that cash-holding determine the extent of moral

hazard. This suggests – all else equal – that firms, more prone to agency conflicts (i.e., firms with

higher λ = κ), hold less cash.

In light of our model, this line of arguments is incomplete. In fact, more severe agency conflicts κ

call for stronger incentives, also by means of deferred compensation Y . In order to credibly promise

a deferred compensation package, additional cash is needed as commitment device. However,

additional cash again exacerbates moral hazard, thereby requiring even stronger incentives and

even more cash for commitment purposes.13 Consequently, the relationship between optimal cash-

holding M = C/(1 − κ) and the agency parameter κ is ambiguous, in that M increases in λ = κ

for low values of λ = κ and decreases for larger values (compare figure 4). Additional cash-

holdings owing to more severe moral hazard are only held for incentive purposes and not in order

to accumulate more liquid resources. Put differently, the additional cash-holdings are entirely

committed to the agent, in that the target level of actual liquidity C unambiguously decreases in

λ = κ.

5 The Model with Refinancing

In this section, we introduce the possibility of refinancing. Similar to Hugonnier et al. (2014),

we assume that there are search frictions in capital markets, in that finding new outside investors

requires some time and search effort. In particular, conditional on seeking refinancing, the firm finds

investors willing to contribute funds with probability πdt during a short-period of time [t, t + dt],

13This dynamic feedback between cash and moral hazard can be seen in:

M =
C

1− κ = C(1 + κ+ κ2 + κ3...).
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Figure 4: Target cash holdings M are non-monotonic in λ = κ (left panel). In contrast, target
net cash holdings C decrease (right panel). The Parameters are µ = 0.25, r = 0.1, δ = 0.05,
θ = 0, ρ = 7, L = 0.

so that a financing opportunity arrives according to some jump process dΠ with intensity π ≥ 0.

Upon finding investors, we assume without loss of generality that there are no further cost to

refinancing – the firm can issue equity at a fair price to raise cash and therefore appropriates all

generated surplus.14 In particular, when the firm raises an amount ∆ of cash from outside investors,

these outside investors obtain equity worth exactly ∆. For simplicity, looking for investors is costless

and not subject to moral hazard, and for technical reasons we suppose that dΠt = 0 with probability

one at all times t, where the firm chooses ∆t = 0.15

Since refinancing raises the amount of cash the manager can steal from, the optimal contract

must align her incentives during the refinancing event. This alignment of incentives could in

principle be reached via three mechanisms: (1) rewarding the manager with a (lumpy) increase

in future promised payments Γ (sometimes referred to as ”payment for luck”), (2) rewarding the

manager with a (lumpy) wage payment, and (3) requiring the agent to contribute a prescribed

amount of funds. Recall that Assumption 1 restricts cumulative wages to limε→0wt+ε − wt ≥ 0,

which leads to two outcomes: it rules out (3) and make ϕ a state-variable in the refinancing event

as it cannot be adjusted freely anymore.16 For the following discussion, let us briefly ignore (2),

the lumpy wage payments.

14If outside investors and existing shareholder were to split the surplus according to the Nash-Bargaining protocol
with respective weights η, 1− η, then the problem were isomorphic to one where the arrival rate is altered from π to
ηπ, so that the choice η = 1 is indeed wlog.

15This means that either shareholders look for new investors or the manager does so, in which case her search
activity is observable and contractible to shareholders. Furthermore, it is straightforward to incorporate monetary
search cost but as endogenous cost due to agency arise, this modification is unlikely to alter our findings.

16Without this Assumption 1 there would be a complete separation between ϕ, the variable controlling cash-holding
in the firm, and (∆,Γ), the amount of cash raised and the payment for luck required. This difference does not matter
as for most of our analysis ϕ ≥ κ holds with equality.
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Let us now consider a firm at time t cash-holdings Mt and Ct = Mt−Yt. Assume for the moment

that the firm is not refinancing all the way to the payout boundary so that dDiv = dw = 0. When

a refinancing opportunity arises over [t, t+dt], i.e., dΠt = 1, the agent can potentially abscond with

the total cash-balance just after outside investors put in amount ∆t. From doing so, she receives

κMt+dt = κ(Mt + ∆t) but loses her deferred compensation Yt+dt = Yt + Γt, so that stealing is not

optimal if

κ(Mt + ∆t) ≤ Yt + Γt = Yt+dt (30)

or equivalently

Γt ≥
κ∆(1− ϕt)− (ϕt − κ)Ct

1− ϕt
. (31)

Hence, in order to align incentives during a financing round, the principal must either give the agent

a high reward Γt or must have chosen higher deferred compensation Yt > κMt beforehand, resulting

in ϕt > κ, both of which are costly. Since the incentive constraint (30) tightens when more funds

∆t are raised, the firm might decide to raise less funds due to agency conflicts. At the optimum,

inequalities (30) and (31) hold as equalities, which essentially means that the principal – ceteris

paribus – designs the contract to minimize carry cost of cash and flotation cost of refinancing.

Because the manager is paid for luck Γ ≥ 0 upon refinancing, she requires a lower flow wage and

Wt features a lower required drift by π(1−e−ρrΓt )
ρr > 0. Essentially, Γ > 0 shifts part of the manager’s

compensation from distress states towards states, in which the firm is flush with liquidity. While

this is beneficial from a risk-management point of view, it comes at the cost of exposing the agent

to jump risk dΠ.

The dynamics of C then follow

dC = µCdt+ (1− β)dZ + (∆− Γ)dΠ− dDiv (32)

with

µC := rC + µ− ρr

2
(βσ)2 − δA

(
ϕC

1− ϕ

)
+
π(1− e−ρrΓ)

ρr
. (33)

We again consider the relaxed problem (allowing ϕ to be freely chosen on [κ, 1] outside a

refinancing event) via the following HJB equation:

(r + δ)v(C) = max
β≥λ,ϕ,Γ,∆

{
v′(C)µC + π

[
v(C + ∆− Γ)− v(C)−∆

]
+
v′′(C)(1− β)2

2

}
(34)
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subject to

ϕ ≥ max

{
κ,
κ(C + ∆)− Γt
C + κ∆− Γ

}
.

Define

C∗(C) := C + ∆(C)− Γ(C), (35)

A firm’s refinancing policy is then given by two of C∗(C),∆(C),Γ(C). Next, we have to consider

two scenarios: (1) shareholders can ex-ante commit to a refinancing policy or (2) shareholders

cannot commit ex-ante, but instead maximize their refinancing policy conditional on a refinancing

opportunity arising. We will discuss these scenarios in turn. Importantly, in the discussions we

maintain the counter-factual assumption that the same C applies in all considered scenarios for ease

of comparison. Of course, once fully solved, different payout thresholds apply in different scenarios.

Lastly, it is during the refinancing event that our restriction on the wage process, Assumption

1, possibly has bite: A slack ϕ > κ helps the firm raise more ∆ for the same amount of pay-for-luck

Γ by relaxing constraint (31), as the firm cannot freely adjust ϕ during the refinancing event. For

expositional clarity, however, we assume parameters that result in ϕ = κ for all C ∈ [0, C] in our

discussion below.

5.1 No ex-ante commitment and constant proportional flotation costs

Suppose shareholders cannot ex-ante commit to any refinancing policy. This means that upon

finding outside investors, i.e., dΠt = 1, the firm raises the ex-post optimal amount ∆ rather than

the ex-ante one. More specifically, inspecting the HJB, it is as if the shareholders ignore the impact

that the optimal Γ has on the drift of C, i.e., they ignore ∂µCt
∂Γ , and maximize the static problem

max
∆≥0,Γ

{
v(C + ∆− Γ)− v(C)−∆

}
s.t. (31).

Inspecting the FOC, we see that this results in an implied constant proportional flotation cost

v′(C + ∆− Γ︸ ︷︷ ︸
=:C∗LC

) = 1 +
κ

1− κ︸ ︷︷ ︸
Flotation Cost

. (36)

Further, the firm refinances to the same target cash-level C∗LC < C regardless of current C, and

there is no lumpy wage payment. Consider κ = 0. The FOC implies v′(C∗FB) = 1, which in turn

implies C∗FB = C > C∗LC . Absent agency conflicts, the firm refinances to the payout boundary.
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5.2 Ex-ante commitment and state-dependent flotation costs

In the ex-ante commitment case, the principal optimally takes into account that any choice of

(∆,Γ) via Γ affects increases the drift µCt. Let Ĉ∗(C) solve the resulting FOC:

v′(Ĉ∗(C)) = 1 +
κ

1− κ

[
1− v′(C)e−ρr

κ
1−κ [Ĉ∗(C)−C]

]
︸ ︷︷ ︸

State-Dependent Flotation Cost

. (37)

The shareholders essentially commit to act as if they are facing an endogenously lower state-

dependent flotation cost than in the static optimization problem above. Note that (marginal)

flotation cost ceteris paribus decrease in Ĉ∗(C). If Ĉ∗(C) is strictly lower than C, then it is the

optimal refinancing level, i.e., C∗(C) = Ĉ∗(C). In this case, flotation cost are strictly positive but

less than in the ex-ante commitment case, and the marginal value of cash after refinancing equals

marginal cost of raising funds.

If however, Ĉ∗(C) > C, we have negative flotation cost, which occurs exactly when

ln(v′(C))× (1− κ)

ρrκ
+ C ≥ C, (38)

This is more likely to for low C firms, as then v′(C) is high. Consider refinancing all the way

to Ĉ∗(C) > C. This would trigger immediate dividend and wage payouts to reset to C. The

key observation now is that such dividend payouts would be a wash17 but the required jump in

managerial compensation, Γ + dwrefi, is not. Consequently, define

C∗(C) := min{Ĉ∗(C), C}. (39)

The jump in managerial compensation in a refinancing event, Γ + dwrefi, is then given by

Γ =
κ

1− κ
[C∗(C)− C] ≥ 0 as well as dwrefi = 1{Ĉ∗(C)>C}

[
ln(v′(C))

ρr
− κ

1− κ
(C − C)

]
≥ 0, (40)

there is no dividend payments, and the firm raises an amount of cash of

∆(C) = C∗(C)− C + Γ + dwrefi =


1

1−κ [Ĉ∗(C)− C] Ĉ∗(C) ≤ C

κ
1−κ [Ĉ∗(C)− C] + 1

1−κ [C − C] Ĉ∗(C) > C

. (41)

17Any dollar raised to be used for an immediate dividend payment is paid for by shareholders themselves. Thus, a
small exogenous refinancing cost would eliminate any part of refinancing used for such immediate dividend payouts.
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Figure 5: Optimal Refinancing under full ex-ante commitment w.r.t. the refinancing strategy.
Parameters are µ = 0.25, r = 0.1, κ = λ ∈ {0.4, 0.5}, θ = 0, L = 0, σ = 0.8, δ = 0.25, π = 0.2 and
ρ = 7.. The upper three panels use λ = κ = 0.4, the lower three panels λ = κ = 0.5.

We note that pay-for-luck is excessive, as it is more — by κ
1−κ [Ĉ∗(C)− C] — than the amount of

cash needed to reset to C while simultaneously preserving incentive compatibility.

Figure 5 demonstrates that the refinancing threshold C∗(C) can be non-monotonic in C. While

the target refinancing level follows a U-shaped pattern, the amount raised within a financing round,

∆(C), unambiguously decreases in C.

Corollary 4. Under full ex-ante commitment to a refinancing strategy:

i) The amount raised ∆ and Γ decrease in C

ii) The target level C∗(C) increases in a neighbourhood of C

iii) The target level C∗(C) decreases in a neighbourhood of zero, provided κ or ρ is sufficiently

small.

Setting κ = 0 implies the first-best C∗FB = C. In the ex-ante commitment scenario, v′(C) > 0

and holding the payout boundary constant, the principal commits to more aggressive refinancing
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than implied by the static problem, i.e., C∗FB ≥ C∗(C) ≥ C∗LC . Committing to over-refinancing

and even excessive pay-per-luck, the firm increases the drift of C and thus relaxes the liquidity

problem at the cost of larger than statically optimal payments to agent in the event of refinancing.

However, as the marginal utility of cash to the shareholders is higher pre- than post-refinancing

due to v′′(C) ≤ 0, this is a beneficial trade-off.

5.3 Capital Market Access and Hedging

How does the possibility to raise funds in capital markets impact the firm’s risk-management? Intu-

itively, one could argue that better refinancing opportunities render altogether less hedging needed,

as demonstrated in e.g. Hugonnier et al. (2014). However, our model yields a different prediction.

Under less frictional capital markets, finding outside investors becomes easier and liquidation less

likely, so that there is less need to hold large liquidity reserves, in that C decreases in π. In ad-

dition, the access to outside funds boosts the firm’s going concern value and liquidation becomes

more inefficient. Thus, conditional in being in a low C state, shareholders have more incentives to

avert termination when π is high, in which case it becomes optimal to hedge more intensely via

labour contracts. Furthermore, surviving the next instant [t, t+dt] entails the additional benefit of

possibly having a refinancing opportunity, which happens with probability πdt, further increasing

the hedging demand. Inspecting the first-order conditions for both the ex-ante commitment and

no commitment case, we see that π only indirectly affects the choice of C∗(C) via v(·), but does

not directly enter either (36) or (37).

Therefore, firms with better access to capital markets tend to hedge less through internal cash

but more through labor contracts. This holds true regardless of the commitment structure. When

shareholders cannot commit to a refinancing policy, they also raise less cash during a single financing

round, when financing opportunities arrive more frequently, i.e., C∗ decreases in π. We summarize

these findings in the following corollary.

Corollary 5. For a firm under distress, i.e., C ' 0, β(C) increases in π. Target cash-holdings C̄

decrease in π. In the limited commitment case, the refinancing target C∗ decreases in π.
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6 Further Results and Robustness

6.1 Stock Return Volatility and Agency Conflicts

In this section, we discuss how firm agency conflicts impact the firm’s stock returns:

dRt =
dDivt + dv(Ct−)

v(Ct−)
= r + δ +

dDivt
v(Ct−)

+ ΣtdZt. (42)

Of particular interest is the stock-return volatility Σt = Σ(Ct) where

Σ(C) = σ(1− β(C))× v′(C)

v(C)
. (43)

Recall our assumption that the firm is 100% equity financed and that we do not take a stance

on the implementation of the manager’s contract. In case the contract is implemented via stock,

vesting stock or stock options, dRt is best interpreted as the return on outside equity, owned by

shareholders, rather than inside equity, owned by management.

First, contrary to the existing literature on dynamic cash-management (compare e.g. Décamps

et al. (2011)) the firm’s stock return volatility does not necessarily decrease in the firm’s level of

financial slack.18 In fact, we find that firms with relatively low levels of cash can have less volatile

stock returns than otherwise comparable firms with high cash-levels. The reason is that in our model

firms hedge liquidity risk intensely through labor contracts under financial distress. Under these

circumstances, the agent’s compensation package is highly contingent on cash-flow realizations and

firm performance, so that a substantial amount of risk is absorbed through labor contracts. This

in turn lowers the stock return volatility Σt of outside equity owned by shareholders. Especially

when cash-flow uncertainty σ is low, the agent’s compensation scheme is exposed to a considerable

amount of cash-flow risk, so that stock-return volatility may follow a hump-shaped pattern in C.

As a consequence of intense hedging through labour contracts, stock-return volatility is then even

lowest under financial distress.

Second, we find that the nature of agency conflicts determines its impact on the firm’s stock

return volatility. Severe moral hazard λ over cash-flows requires the manager to be sufficiently

exposed to cash-flow realizations dX by means of high-powered incentives β, thereby leading to a

low stock-return volatility. In contrast, severe moral hazard κ over cash-holdings or high δ imply

18In dynamic liquidity management models without labor contracts, stock return volatility is given by v′(C)
v(C)

σ where
C is the firm’s cash stock. Since the value function is regardless of labor contracts strictly increasing and concave,
stock return volatility always decreases in financial slack.
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Figure 6: Stock Return Volatility is non-monotonic in C and increases in λ. The left panel
depicts the case of low volatility, σ = 0.8, and the right panel the case of high volatility, σ = 0.9.
The Parameters are µ = 0.25, r = 0.1, δ = κ = 0.25, θ = 0, L = 0.25, λLow = 0.5 < 0.75 = λHigh
and ρ = 7.

large carry cost of cash. This leads to little hedging of liquidity risks and thereby a high stock-return

volatility.

Corollary 6. Stock return volatility Σ(C) decreases in a neighbourhood of C, and also decreases

for low levels of C when L is sufficiently low. Further, we have the following comparative statics:

i) More severe moral hazard λ reduces the stock return volatility:

– For any C, Σ(C) decreases in moral hazard, provided λ is sufficiently large. That is, for

all C ≥ 0 there exists λ̄ ∈ (0, 1), such that ∂Σ(C)
∂λ < 0 for λ ≥ λ̄.

– For ρ or λ sufficiently small, Σ(C) decreases in λ for C close to C.

ii) More severe moral hazard κ increases the stock return volatility. For C close to C, Σ(C)

increases in κ.

6.2 Restrictions on the manager’s savings and wages

Let us now discuss two natural restrictions one would consider imposing on the control problem:

• Consider restricting the agent savings to be non-negative, i.e., S ≥ 0. This, destroys the first

reduction in the state space, as S now has to be separably tracked. In other words, the problem

with (S,W,M) = (0,W0,M0) is now different from the problem (S,W,M) = (Z,W0 +Z,M0)

for any Z > 0. Consequently, the principal now faces a true 3-D optimization in the (S,W,M)

with an additional state-constraint.
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• Consider restricting wages to be non-negative, i.e., dw ≥ 0, to keep the first dimensionality

reduction intact. This requires dividend payments after any shocks push (M,Y ) below the

Y = κM ray. This can be seen in Panel A in Figure 1 as moving from point B to point

B′′ – after a negative shift pushes O below the Y = κM ray to B, only dividend payments

are effective in returning (Y,M) to within the wedge B. Such a dividend payout magnifies

cash outflows, amplifying the specter of liquidity-based default. The firm will therefore want

to consider building up a cash-buffer to stay away from the Y = κM ray. Consequently,

the optimization is taking place on the full 2-D space (M,Y ) with a non-standard, as non-

perpendicular, reflection at Y = κM .

Thus, either of these restrictions leads to a relatively intractable problem requiring a numerical

solution. We will next show how Assumption 1 makes the problem tractable while maintaining the

key economic mechanism between liquidity and agency that we are after.

7 Conclusion

We present a model of liquidity management and financing decisions under moral hazard in which a

firm accumulates cash to forestall liquidity default. When the cash balance is high, a tension arises

between accumulating more cash to reduce the probability of default and providing incentives for

the manager. When the cash balance is low, the firm hedges against liquidity default by transferring

cash flow risk to the manager via high powered incentives. This risk transfer occurs even though the

manager is risk averse and the firm’s owners are risk neutral because default is costly. Firms with

more volatile cash flows transfer less risk to the manager and hold more cash. Agency conflicts lead

to endogenous flotation costs related to the severity of the moral hazard problem, even in a market

with no physical cost of raising financing. These flotation costs are state-dependent, lead to raising

more than a static optimization would imply, and sometimes even lead to large cash-payouts to the

agent in case of successful refinancing. Finally, because the manager’s incentive-pay absorbs part

of the liquidity risk, the firm’s stock return volatility can be non-monotonic in the level of cash and

decreases in the severity of moral hazard.
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Appendix

A Preliminaries

A.1 Regularity Conditions

Uncertainty is modelled via a complete probability space (Ω,F ,P) with filtration F = {Ft : t ≥ 0},
generated by X and N . For any process Y, adapted to F, we also consider the left limit:

Yt− := lim
s↑t
Ys.

The process {Yt−} is F predictable. Intuitively, Yt− represents the value of the process Y, just
before the random event dNt ∈ {0, 1} realizes. We further write:

Ex[·] := E[·|Fx] ∀ t ≥ 0 ∧ x ∈ {t, t−},

where Ex[·] =: E[·] for x ∈ {0, 0−}.
Throughout the paper and for all problems, we impose finite utility for any consumption process

c

E
[∫ ∞

0
e−rt|u(ct)|dt

]
<∞

and square integrability conditions of dividend payouts Div and payments w:

E
[∫ ∞

0
e−rtdDivt

]2

<∞ and E
[∫ ∞

0
e−rtdwt

]2

<∞. (A.1)

Finite utility implies that

lim
t→∞

e−rtUt(·) ≡ lim
t→∞

e−rtE
[∫ ∞

t
e−r(s−t)u(cs)ds

]
= 0, (A.2)

where Ut(·) represents the agent’s continuation value under any, admissible strategy, suppressed
for convenience. Condition (A.2) is also known as the transversality condition for the co-state,
when solving the contracting problem by means of Pontryagin’s maximum principle (compare e.g.
Williams (2015)).

Next, note that

Ŝt =

∫ t

0
er(t−s)dws −

∫ t

0
er(t−s)ĉsds+ Ŝ0e

rt

for the consumption process ĉ specified by contract C, while c is the agent’s actual consumption.
Savings Ŝ corresponds to consumption ĉ and savings S to consumption c.

We impose the no-Ponzi condition for all feasible consumption processes c, ĉ:

P( lim
t→∞

e−rtSt ≥ 0) = P( lim
t→∞

e−rtŜt ≥ 0) = 1.

Further, c, ĉ must satisfy the transversality condition:

lim
t→∞

e−rtEu′(ct)St = 0 = lim
t→∞

e−rtEu′(ct)St = 0

Due to finite utility it follows that marginal utility – which is proportional to flow utility – must
also be finite P-almost surely, so that one can disregard u′(ct) in the transversality condition, which
leads to

lim
t→∞

e−rtESt = lim
t→∞

e−rtEŜt = 0.
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Combined with the no-Ponzi condition, it follows after invoking Fatou’s Lemma in fact that

P( lim
t→∞

e−rtSt = 0) = P( lim
t→∞

e−rtŜt = 0) = 1,

which we refer to as the transversality condition, even though it emerges as a combination of
transversality and No-Ponzi condition. By the triangle inequality:

lim
t→∞

e−rt|St − Ŝt| = 0 P− a.s. =⇒ lim
t→∞

e−rt|ĉt − ct| = 0 P− a.s.

For technical reasons, we postulate that the processes β, α are almost surely bounded, so that
|βt|, |αt| < M almost surely, i.e. P

(
|ψt| < M

)
= 1 for ψ ∈ {α, β}, for any t. The equivalence of

the measures P,Pb (to be discussed in the next paragraph) ensures that the sensitivities are almost
surely bounded under each probability measure used throughout the paper. We assume M ∈ R+

to be sufficiently large, so that this imposed constraint actually never binds in optimum:

Assumption 2. The processes α, β from (9) are almost surely bounded by some sufficiently large
constant M and are furthermore of bounded variation.

In fact, the expression ln(1 + γrαt) already implies the natural lower bound α ≥ −1/(γr).
Last, Let us further impose the following parameter assumption.

Assumption 3. The shareholders’ liquidation value L exceeds the agent’s private valuation of full
firm ownership. That is:

L ≥ µ− ρrσ2/2

r + δ
=: L̂. (A.3)

If assumption 3 were to fail, shareholders would prefer to sell the firm to the agent instead
of liquidating. Under these circumstances, vτ = L̂ for τ = inf{t ≥ 0 : Mt− = 0} and the whole

analysis would go through with (effective) liquidation value L̂ instead of L. Put differently:

vτ = max

{
L,
µ− ρrσ2/2

r + δ

}
,

so that the firm undergoes de-facto liquidation, regardless of assumption 3.

A.2 Change of Measure

To start with, fix a probability measure P, such that dXt = µdt + σdZt with a F-progressive
standard Brownian Motion Z under the measure P. Take a progressive process b, that is absolutely
continuous and one can write dbt = b0tdt for some process b0. Define the process χ via χt = dbt

σdt for
all t ≥ 0, almost surely. Further, let

Γt = Γt(b) = exp
(∫ t

0
χudZu −

1

2

∫ t

0
χ2
udu

)
.

Assuming that the so-called Novikov condition is satisfied, i.e.,

E
[
exp

(
1

2

∫ τ

0
χ2
tdt

)]
<∞,

it follows that Γ follows a martingale. Given our restriction of bounded sensitivities, the Novikov-
Condition is evidently met. Due to E[Γ0] = 1, it is evident that Γ is a progressive density process
and defines a probability measure Pb via the Radon-Nikodym derivative(

dPb

dP

)∣∣∣∣
Ft

= Γt = Γt(b).
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Under the probability measure Pb, the process Zb with

Zbt = Zt −
∫ t

0
χudu =

Xt − µt−
∫ t

0 b
0
udu

σ

follows a standard Brownian Motion up to the stopping time τ . All measures {P,Pb : b} are
equivalent for suitable absolutely continuous processes b, that satisfy the above stated conditions,
such that the measures share the same null sets.

Girsanov’s theorem is only applicable if b is absolutely continuous P-almost surely, in which
case Zb follows a Brownian Motion under Pb.

B The Agent’s Problem: Proof of Proposition 1

We split up the proof in two parts. First, we establish the representation of U by means of a
stochastic differential equation, given a contract C. From there, we proceed to show the claim
regarding incentive compatibility.

B.1 Martingale Representation: Proof of Proposition 1 i)

Proof. Let in the following C = (ĉ, w, b̂) represent the manager’s contract with C ∈ C. We denote
the manager’s continuation value by

Ut = Ut(C) = Et
[∫ ∞

t
e−r(s−t)u(ĉs))ds

]
,

where ĉ is prescribed consumption, which might differ from actual consumption c. Define

At ≡ Et
[∫ ∞

0
e−rtu(ĉs)ds

]
=

∫ t

0
e−rsu(ĉs)ds+ e−rtUt(C) (B.1)

By construction, {At : 0 ≤ t ≤ ∞} is a square integrable martingale, progressive with respect to F
under P. By the martingale representation theorem, there exist now F-predictable processes α, β, Γ̂
such that

ertdAt = (−ρrUt−)βt
(
dXt − µdt

)
− (−ρrUt−)αt

(
dNt − δdt

)
+ (−ρrUt−)Γt(dΠt − πdt)1{Ct−<C∗}.

and therefore

dUt = rUt−dt− u(ĉt)dt+ (−ρrUt−)βt
(
dXt − µdt

)
− (−ρrUt−)αt

(
dNt − δdt

)
+ (−ρrUt−)Γ(dΠt − πdt)1{Ct−<C∗}.

B.2 Incentive Compatibility: Proof of Proposition 1 ii) and iii)

We consider for brevity the case π = 0. It is straightforward to adapt the proof for π > 0.

Proof. We prove first the following auxiliary Lemma
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Lemma 1. Fix a F-predictable process ĉ and let S ∈ R. Consider the problem

Ut = max
{cs}s≥t

Et
[∫ ∞

t
e−r(s−t)u(cs)ds

]
subject to d∆s = r∆sds+ dĉsds− csds,∆t = 0 and lim

s→∞
e−r(s−t)|∆t −∆s| = 0 a.s.

Next consider the problem

U ′t = max
{c̃s}s≥t

Et
[∫ ∞

t
e−r(s−t)u(c̃s)ds

]
subject to d∆s = r∆sds+ dĉsds− c̃sds,∆t = S and lim

s→∞
e−r(s−t)|∆t −∆s| = 0 a.s.

Then, ct + rS = c̃t and U ′t = e−ρrSUt.

Proof. Suppose that there exists a process c′ 6= c̃, which satisfies the transversality condition, such
that

U ′t(c
′) > U ′t(c̃) = e−θrSUt.

Define the process c′′ via c′′t = c′t − rS. Then c′′ satisfies the transversality condition and

Et
[∫ ∞

t
e−r(s−t)u(c′′s)ds

]
= eρrSU ′t({c′}) > Ut,

a contradiction.

Next, we provide necessary and sufficient conditions for C to be incentive-compatible, in that
Ŝt = St and b̂t = bt = 0 for all t ≥ 0 holds almost surely.

For this sake write, dbt = (b0t −b2t )dt+db1t , where b0 and b2 are absolutely continuous and almost

surely positive, i.e, write dbt = b̂tdt + db1t , where b0t = max{0, b̂t} and b2t = −min{0, b̂t}. Here, b0

corresponds to cash-flow diverted, while b2 is the amount by which cash-flow is boosted by means
of the agent’s savings account. Define ∆t ≡ St − Ŝt the deviation state with ∆0 = 0 and note that

d∆t = r∆tdt+ ĉtdt− ctdt+ λb0tdt+ κdb1t − b2tdt,

where ĉ is the prescribed consumption and is such that St = Ŝt, i.e. ∆t = 0 for all t. Note that
dZbt ≡ (dXt − µdt + b0tdt)

/
σ is the increment of a standard Brownian Motion under the measure

Pb. We rewrite for t < τ :

dUt = rUt−dt− u(ĉMt )dt+ (−ρrUt−)βt
(
dZbt + b0tdt

)
− (−ρrUt−)αt

(
dNt − δdt

)
.

Let Û the agent’s actual continuation value, so that

Ût(c) = Ût ≡ Ebt
[∫ ∞

t
e−r(s−t)u(cs)ds

]
,

where the expectation Ebt is taken under the measure Pb, induced by the choice of b.

Define the agent’s certainty equivalent Wt = − ln(−ρrUt)
ρr and Yt ≡Wt − St.

First, let us consider the agent deviates at time t− through specifying Mt− ≥ db1t > 0, so
that dbt 6∈ o(dt). The principal can detect this deviation and accordingly punish the agent through
reducing her certainty equivalent by the same amount. The agent can either leave the firm and avoid
the punishment or take the punishment and stay, in which case the deviation does not yield any
profit for her. In case she leaves the firm, her savings equal St = St− + κdb1t , yielding continuation
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value by Lemma 1: ∫ ∞
t

e−r(s−t)u(cs)ds =
u[r(St− + κdb1t )]

r
,

as the agent perfectly smoothes consumption after contract termination and consumes at each time
flow interest of savings. The continuation value is maximized for db1t = Mt− . The deviation is not
profitable, if and only if

u[(r(St− + κdb1t )]

r
≤ Ut− ⇐⇒ Yt− ≥ κMt− .

Hence, a necessary condition for the contract C to be incentive compatible is that Yt− ≥ κMt− with
probability one for all times t ≥ 0.

Second, let us turn to strategies where db1t = 0 for all t ≥ 0. Let t > 0 and suppose the manager
follows the recommended policy from time t onwards, in that b0s = 0 and cs = ĉs + r∆t for all s ≥ t
by Lemma 1. The payoff from following this strategy is represented by the auxiliary gain process

GMt ≡ GMt (c, b) =

∫ t

0
e−rsu(cs)ds+ e−ρr∆te−rtUt

and by means of Lemma 1, it suffices to consider deviations of this type, which yield weakly higher
payoff than deviations of any other type. In addition, Ûs = e−ρr∆tUs for s ≥ t.

Next, note that the transversality condition and finite utility imply that e−ρr∆Ut < ∞ for all
t ≥ 0, so that limt→∞ Ebe−ρr∆te−rtUt = 0 for any possible strategy of the manager. which implies
that the manager’s actual payoff equals

Û0− = max
c,b0

Eb
∫ ∞

0
e−rsu(cs)ds = max

c,b0
EbGM∞ = max

c,b0
Eb lim

t→∞
GMt .

By Itô’s Lemma:

eρr∆tertdGMt

=

(
u(ct)e

ρr∆t − u(ĉt)− ρrUt−(r∆t + ĉt − ct + λb0t − b2t )− (−ρrUt−)βtb
0
t

)
dt

+ (−ρrUt−)βtdZ
b
t − (−θrUt−)αt(dNt − δdt)

≡ µMtG(·)dt+ (−ρrUt−)βtdZ
b
t − (−ρrUt−)αt(dNt − δdt)

Observe that, because α, β are bounded and finite utility is imposed, we have

Eb
(∫ t

0
e−rsβs(−ρrUs−)dZbs

)
= Eb

(∫ t

0
e−rsαs(−ρrUs−)(dNs − δds)

)
= 0,

for any absolutely continuous b. It is then evident that by choosing b0t = 0, ct = ĉt, the manager
can ensure that ∆t = µMtG(·) = 0 for all t ≥ 0, in which case {GM (ĉ, 0)} follows a martingale under
P with last element GM∞(·), such that E|GM∞(ĉ, 0)| <∞ due to the regularity conditions we impose.
Hence, by optional sampling

Û0− = max
c,b0

EbGM∞(c, b0) ≥ EGM∞(ĉ, 0) = lim
t→∞

EGMt (ĉ, 0) = U0− .

Next, observe that the highest value that µMtG(·) can obtain given ∆t is given by the maximization
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over ct and b0t , where the solution satisfies the following FOC:

u′(ct)e
rρ∆t = −ρrUt− ,

which implies

u(ct + r∆t) = rUt− ,

and b0t = b2t = 0 if and only if:

λ∆ρru(ct)e
ρr∆t − λρrUt− + (ρrUt−)βt ≤ 0 and ∆ρru(ct)e

ρr∆t + ρrUt− + (ρrUt−)βt ≤ 0.

If C is such that rUt−e
−ρr∆t = u(ĉt) and 1 ≥ βt ≥ λ hold for all t ≥ 0, it follows ct = ĉt and

b0t = b1t = 0 for all t ≥ 0, in which case ∆t = µMtG(·) = 0. Indeed, because the deviation gains are
concave in the state ∆, the first order conditions are sufficient.

Hence, any other strategy tuple (c, b0) makes the process GM (c, b0) a supermartingale under
the measure Pb, i.e.

U0− = GM0 (ĉ, 0) ≥ EbGMt (c, b0)

Because our regularity conditions ensure that GM (c, b0) is bounded from below, we can thus take
limits on both sides and apply optional sampling to obtain

U0− ≥ lim
t→∞

EbGMt (c, b0) = Eb lim
t→∞

GMt (c, b0) = EbGM∞(c, b0)

and in particular
U0− ≥ max

c,b0
EbGM∞(c, b0) = Û0− .

While we focused on strategies (c, 0, b0) and (ĉ, b1, 0) separately, it follows immediately – as
there is no persistent deviation state and db1t > 0⇒ t = τ – that

U0− ≥ max
c,b0

EbGM∞(c, 0, b0) and U0− ≥ max
b1

EbGM∞(ĉ, b1, 0) =⇒ U0− ≥ max
c,b1,b0

EbGM∞(c, b1, b0).

This is because the maximal utility the agent can obtain at time t equals e−ρr∆tUt− under any
consumption c, while the deviation utility is given by

e−ρr∆t
u[(r(St− + κdb1t )]

r
,

which is smaller than e−ρr∆tUt− if and only Yt− ≥ κMt− .

Therefore, U0− = Û0− and (ct, bt) = (ĉt, 0) for all t ≥ 0 is the optimal strategy for the agent if
and only if 1 ≥ βt ≥ λ, rUt− = u(ĉt), Yt− ≥ κMt− are satisfied for all t ≥ 0 with probability one. In
this case, the contract C is incentive compatible.

C The Principal’s Problem: Proof of Proposition 2

C.1 Reduction of the State Space: Proof of Proposition 6 i)

C.1.1 Part I

Per se, the state space is three dimensional and we have to keep track of three state M,W,S.
Standard dynamic programming arguments yield the general HJB-equation:

(r + δ) V̂ (W,M,S) dt = max
β≥λ,dw∈I,dDiv≥0

dDiv + E[dV̂ (M,W,S)] (C.1)
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which must hold in the interior of the state space M∗, to be specified. To save on notation we
write the HJB-equation in differential form. The term dV̂ (M,W,S) can be expanded by Ito’s
Lemma. Here, wages are subject to an arbitrary constraint I. Given shareholders’ risk-neutrality,
it is natural to conjecture that payouts dDiv follow a bang-bang policy and reflect states into
the interior of the state space M∗. The optimality of such a policy will be verified ex-post after
reducing the state space. Thus, in the interior of M∗ the following HJB-equation holds:

(r + δ) V̂ (W,M,S) = max
β≥λ,dw∈I

E[dV̂ (M,W,S)]

dt
. (C.2)

It is beyond the scope of the paper to provide a formal existence and uniqueness proof for a solution
to (C.2). Therefore, we assume throughout the remainder:

Assumption 4 (Existence & Uniqueness). The PDE (C.2) admits a unique solution V̂ ∈ C2.

Due to the absence of wealth effects, one can show that the value function takes the form
V (M,Y ) = V (M,W − S) = V̂ (M,W,S). This relationship is established in the below Lemma:

Lemma 2. Let V̂ (M,W,S) ∈ C2 the principal’s value function, solving (C.2). Then V̂ (M,W,S) =
V (M,W −S) = V (M,Y ) for some function V ∈ C2. Thus, the payoff relevant state spaceM⊂ R2

is two-dimensional. Formally, there exists a surjective mapping R :M∗ 7→ M with the property:

V̂ (x) = V (R(x)) ∀ x ∈M∗ (C.3)

Proof. The proof proceeds by a guess and verify approach. Let us merely conjecture V̂ (M,W,S) =
V (M,Y ) and show that such a function solves (C.2). By postulated uniqueness, this completes the
proof.

In the following, a subscript denotes the partial derivative wrt. to the respective variable and
we omit the argument of the function V̂ (·) to avoid clutter. Note that

V̂W = −V̂S = VY . (C.4)

As this is an identity in the interior of the state space M, we can differentiate, so as to obtain:

V̂WS = −V̂SS = −VY Y (C.5)

V̂WW = −V̂WS = VY Y . (C.6)

To get a better overview, let us review the SDEs that determine the law of motion of (M,W,S)
under an incentive compatible and in the interior of the state space, i.e., db = dB = dDiv = 0:

dM = (rM + µ)dt+ σdZ − dw
dS = rSdt+ dw − cdt, c = rW

dW =
ρr

2
(βσ)2dt+ βσdZ + δαdt

dY = dW − dS =
ρr

2
(βσ)2dt+ βσdZ + δαdt− dw − rY dt.

We omit the jump terms, as the HJB-equation (C.2) already accounts for the post-liquidation value.
Rewriting:

dS = rY dt+ dw

and expanding in (C.2), evaluated under the optimal controls, the term EdV̂ by virtue of Ito’s
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Lemma yields:

(r + δ)V̂ = V̂W

[ρr
2

(βσ)2 + δα
]

+ V̂S

[
rY +

Edw
dt

]
+ V̂M

[
rM + µ− Edw

dt

]
+

1

2
×
{
V̂WW (βσ)2 + V̂SS

< dw, dw >

dt
+ V̂MM

[
σ2 − σ < dw, dZ >

dt

]}
+ V̂MS

− < dw, dw > +σ < dZ, dw >

dt
+ V̂MWβσ

2 + V̂WS
< dw, dZ > βσ

dt
,

where < ·, · > denotes the quadratic variation of two processes (e.g., < dZ, dZ >= dt).
Note that controls dw and β depend on the value function and its derivatives by the HJB-

equation (C.2). By the hypothesis V̂ (M,W,S) = V (M,Y ), it follows that dw and β therefore only

depend on (M,Y ). After substituting higher order derivatives of V̂ by higher order derivatives of
V by means of (C.4) and (C.5), one observes that the right-hand-side of the HJB-equation does
not depend on (W,S) but on Y only. Thus, also the left-hand-side also is only a function of (M,Y )
only, thereby confirming the guess that V solves (C.2), which concludes the proof.

In the following, we show that the state space is in fact a one-dimensional manifold, i.e., is
one-dimensional.

C.1.2 Part II

We go on now to demonstrate that the state space M within an optimal contract must be one-
dimensional, as long as we do not impose constraints on wages, beyond the feasibility constraint
dw ≤M . Thus, in the following we impose:

Assumption 5. Wages w must satisfy dwt ≤Mt−.

Let us for simplicity assume that π = 0. We start with the following auxiliary Lemma, which
analyzes the value function V (M,Y ).

Lemma 3. Let V (M,Y ) = V the principal’s value function and define τ̂ = inf{t ≥ 0 : Mt− < Yt−}
and assume there are no constraints on wage payments beyond feasability dw ≤ M . Then, under
the optimal contract C the space of statesM⊂ R2, which are reached with positive probability before
time τ̂ , must be one-dimensional, i.e., a one dimensional manifold. In particular, there exists a
mapping ϕ so that Y = ϕ(M)M for M > 0.

Proof. Assume to the contrary the state spaceM is two-dimensional. In order to maintain incentive
compatibility, it must be that Y ≥ κM ≥ 0 for all (M,Y ) ∈M. Owing to M ≥ Y , it is possible to
freely move from state (M,Y ) to state (M − ε, Y − ε) by means of wage payouts dw = −ε, as long
as:

Y − ε ≥ (M − ε)κ ≥ 0.

For any interior point (M,Y ) ∈M with M > Y > κM , the firm’s value function is given by:

(r + δ)V = max
dw≤M,β

{[
VM

(
µ+ rM − Edw

dt

)
+
VMM

2

[
σ2 +

< dw, dw > −σ < dw, dZ >

dt

]
+ VY

(
rY +

ρr

2
(βσ)2dt+ δA(Y )− Edw

dt

)
+
VY Y

2

[
< dw, dw > −βσ < dw, dZ >

dt
+ (βσ)2

]
+ VMY

< dw, dw >

dt

}
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Since M > Y ≥ κM > 0, the IC-constraint does not bind, it must be that

VM + VY = 0. (C.7)

Otherwise, the principal would optimally move from state (M,Y ) to state (M − ε, Y − ε) through
setting some non-infinitesimal adjustment dw = −ε for some ε. The adjustment dw is feasible, as
long as the constraint Y ≥ κM does not bind and M ≥ Y .

The relation VM + VY = 0 must hold for any interior point over the whole state space, when
the state space M is a two-dimensional subspace of R2. Differentiating on this space the identity
VM + VY = 0 yields:

VMM + VMY = VY Y + VMY =⇒ VMM = VY Y = −VMY . (C.8)

This already implies that all terms in the HJB-equation with < dw, dw > and Edw cancel out.
Clearly, if V (M,Y ) = v(M − Y ) the identities (C.7) and (C.8) hold. In fact, (C.7) and (C.8)

require V (M,Y ) = v(M − Y ) for some function v ∈ C2.
Therefore with C ≡M − Y straightforward calculations yield:

(r + δ)v(C) = max
β

{
v′(C)

(
rC − ρr

2
(βσ)2dt− δA (Y ) + µ

)
+
σ2(1− β)2

2
v′′(C)

}
.

As dividend payouts dDiv > 0 are always possible but not necessarily optimal, the marginal value
of cash must satisfy VM = v′ ≥ 1. However, for δ > 0 and due to A′ > 0 it follows that

V (M − ε, Y − ε)− V (M,Y ) = v′(C)δ(A(Y )−A(Y − ε)) > 0

for any ε > 0 with M − ε > 0, which contradicts VM +VY = 0. Hence, within the optimal contract
(M,Y ) cannot be an interior point of M and in particular M cannot have interior points, so that
this set must be one-dimensional. This also implies that Y is a function of M .

The previous Lemma shows that the state space is one-dimensional as long as Y ≤ M and
therefore can be parameterized by

M = {(M,ϕ(M)M) : M ≥ 0}

for some function ϕ, determined by the optimal contract. The Lemma may fail to hold, if Y > M .
We show in the following Lemma that Yt− ≤ Mt− or equivalently ϕ(Mt−) ≤ 1 must hold for all
t ≥ 0.

Lemma 4. Let C a contract and Div a dividend process. Further, define tF = inf{t ≥ 0 : Mt− <
Yt−}. The contract is feasible, only if P(tF =∞) = 1 and in particular P(τ < tF ) = 1. Hence, the
event {Yt > Mt} must have zero probability.

Proof. Fix the dividend process Div. Take a contract C ∈ C and assume to the contrary that there
exists a time tF < τ with P(tF <∞) > 0 and Yt−F

> Mt−F
.

If the principal terminates the firm at time tF , i.e., τ = tF , and sets optimally dwt = 0 for
t ≥ tF , the manager receives due to Nash-Bargaining amount (1−θ)Mt−F

< Yt−F
and promise keeping

is violated as Yτ > 0, evidently contradicting C ∈ C.
If the principal does not terminate, set τF = inf{t ≥ tF : Mt = Yt} and note that a contract

C ∈ C must satisfy P(τF ≤ τ) = 1, i.e., promise-keeping and in particular Yτ = Mτ = 0. We
consider now different cases.

i) First, let us assume thatMt−F
= 0 < Yt−F

and the principal would not like to specify dwt−F
= −ε,

in order to continue at state (ε, Yt−F
+ ε) for some non-infinitesimal ε > 0 with ε 6∈ op(dt).

The other case will be – among others – analyzed in part ii) of the proof. Note that tF < τ ,
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which requires βtF = 1, as a termination policy τ > tF implies the agent must cover potential
operating losses. Next, define τ0 = inf{t ≥ tF : Mt > 0}. For all t < τ0 ∧ τ , it must be βt = 1
and as the agent covers operating losses:

dYt
dXt

=
dWt

dXt
− dSt
dXt

= 0,

so that Yt has zero volatility for t < τ0 ∧ τ . Furthermore, under contract C, the agent
consumes rWt while earning interest rSt < rWt, so that the agent must borrow amount
−r(St −Wt) = −rYt > and therefore EdSt < 0, while EdWt > 0 owing to the risk-premia
earned. Hence, EdYt ≥ rYtdt > 0. Since Yt grows at least at rate r, also the growth rate of
the agent’s borrowings is bounded from below by r, so that savings St shrink at least at rate r

for tF ≤ t ≤ τ0. In particular, St = StF −
∫ t
tF
er(t−s)rYsds. However, with positive probability

there is a sample path of shocks {Z}t≥tF , in which case τ0 =∞. Then, either τ0 > τ promise
keeping is violated with Yτ > 0 or

lim
t→∞

e−rtSt ≤ lim
t→∞

e−rt
(
−
∫ t

tF

er(t−s)rYsds

)
= lim

t→∞

(
−
∫ t

tF

e−rsrYsds

)
< 0

with positive probability, so that the no-Ponzi condition (7) is violated. Hence, C 6∈ C, a
contradiction.

ii) Let us now consider Mt−F
> 0. Define now t0 = inf{t ≥ tF : Yt− > Mt− = 0}. Since CtF < 0

and vol(dCt) = σ(1 − βt), there must exist a random time τ1 < t0 a.s. and P(τ1 < τ) > 0
such that βτ1 > 1, in order to ensure that P(t0 > τ) = 1. However, when βτ1 > 1 the agent
would like to boost cash-flow and incentive compatibility is violated. Since τ1 is reached with
positive probability (before time τ), it follows that C 6∈ C.

Hence, continuing from time tF , it must be that t0 is reached with positive probability. By
step i), we get either a violation of the no-Ponzi condition, in which case C 6∈ C, or the
principal asks the agent to put in money into the firm through setting dwt0 = −ε0 < 0, in
which case the game continues at state (ε0, Yt0 + ε0). The principal has then cash-reserves
compensate the agent for her lack of interest earned rYt− , so that we may consider that the
principal does so. Moreover, we may now without loss of generality assume, that at each
time the firm runs out of cash, the principal asks the manager to put in some strictly positive
amount of cash.

However, then there exists a sequence of random times (tn)n≥1 and discrete amount (εn)n≥0,
defined via

tn = inf{t ≥ tn−1 : 0 = Mt− < Yt−} and εn = −dwtn > 0.

All tn are reached with positive probability before time τF ≤ τ , so that PtF (tn < τF ) > 0 for
all n ≥ 0. With positive probability for any chosen sequence (εn)n≥0, we get

Ot ≡
∫ τ∧t

t0

er(t−s)
∑
ti≤s

εtids 6∈ o(ert)

or equivalently Ot 6∈ op(e
rt), in that the manager puts cash into the firm on a rate higher

than r with positive probability. As a consequence

lim
t→∞

e−rtSt ≤ lim
t→∞

e−rt(−Ot) < 0

with positive probability and the no-Ponzi condition is violated.
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C.1.3 Part III

By the previous Lemma, {Yt > Mt} must be a zero probability event. Hence, the firm must be
terminated at time τ = inf{t ≥ 0 : Mt− = Yt−} = inf{t ≥ 0 : Ct− = 0} or the principal eliminates
volatility through setting vol(dCτ ) = 0 ⇔ βτ = 1, in order to prohibit that a state with Ct < 0 is
reached with positive probability.

We show now in the following Lemma that the principal never would like to refinance by the
agent when it runs out of cash, in that it does not ask the agent to put in any non-infinitesimal
amount −dwτ0 at any time τ0 with Mτ−0

= 0 and in fact the equivalence Mt− = 0⇔ Ct− = 0.

Lemma 5. Let C the optimal contract. Then, at any time tF = inf{t ≥ 0 : Ct− = 0} it follows
that dwt is infinitesimal, that is, dwt ∈ op(dt), and the principal does not raise any strictly positive
amount of debt from the agent. Moreover, Mt− = 0⇔ Ct− = 0.

Proof. We prove now that once C = M − Y = 0 with M = Y = 0, the principal cannot profitably
switch to a state (M,M) with M > 0. Let us assume the principal sets τ > tF with MtF = YtF = 0
and in particular dwtF = ∆w 6∈ op(dt) and let payoff under this strategy be v(∆w,∆w) with dividend
payouts Div.

Let τF > tF a stopping time, as follows. The principal can improve upon setting dwtF =
−∆w + ε > 0 and setting dwτF = −ε < 0, where τF = inf{t ≥ tF : Mt− = ∆w − δ} for some
arbitrary δ > 0. Then, P(τF > tF ) = 1 and P(τF − tF > δ′) > 0 for some arbitrary δ′ > 0. Setting

payouts under the new strategy for tF ≤ t ≤ τF according to dD̂ivt = δ(A(Yt)−A(Yt−ε))dt+dDivt.
All other features of the previous strategy will be mimicked. Then, the payoff under the modified
strategy equals

v(∆w,∆w) + EtF

(∫ τ∧τF

tF

δ(A(Yt)−A(Yt − ε))dt
)
> v(∆w,∆w).

As this holds for any ε < ∆w, it follows that the best the principal can do is to just raise the
amount needed, that is set βt = 1 and dwt ∈ op(dt) for tF ≤ t ≤ τ0 with τ0 = inf{t ≥ 0 : Ct− > 0},
in case τ > tF is indeed optimal.

The second claim of the Lemma is immediate by the previous arguments. This is because being
at state (M,M), the principal prefers to set payouts dw = M and switch to state (0, 0). Because
Y > M is not feasible, this implies the equivalence Mt− = 0⇔ Ct− = 0 for all t ≥ 0.

As a consequence, we obtain M = 0 ⇔ C = 0, so that C indeed summarizes the whole
contract relevant history and serves as the only relevant state-variable. Hence, firm value – i.e., the
principal’s payoff – can be written as a function v = v(C) of the state C only. The state space by
means of C is contained in R+, i.e., C exceeds zero.

Either the firm defaults if and only if it runs out of cash and therefore τ = inf{t ≥ 0 : Ct− =
Mt− = 0}. Or there is an absorbing state, so that βt = 1 whenever Ct− = c ≥ 0 for some constant
c. As we verify, in the next section, there will not be an absorbing state, in that βt < 1 for all t ≥ 0
with probability one, as long as:

L ≥ µ− 0.5ρrσ2

r + δ
,

where the RHS is the agent’s valuation for the firm.

C.1.4 Part IV

To conclude the proof, let us argue that the state space reduction also goes through under the more
strict assumption 1. However, this is obvious as wages are determined by the identity:

0 = dϕ(C), (C.9)
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where the optimal control is obtained from instantaneous maximization, thereby being continu-
ous. Thus, wages w are also optimally continuous, which means that assumption 1 is met. More
specifically, wages follow:

dw = µwdt+ σwdZ + JdΠ,

where J ≥ 0, so that assumption 1 is satisfied. The coefficients are given in appendix D.1.2.

C.2 Verification: Proof of Proposition 6 ii)

Proof. A formal existence proof of the solution is beyond the scope of the paper and therefore
omitted. Therefore, we assume v(·) is twice continuously differentiable and solves uniquely (34).

We verify that v(Ct−) indeed represents shareholders’ profit in optimum.
Let C ∈ C the optimal contract and Div the optimal payout policy, solving the principal’s

problem and consider any other contract Ĉ ∈ C and any other payout policy D̂iv.
For convenience, let the contract contain the optimal refinancing sum ∆. We denote the n’th

refinancing time by τn. Ex-post optimality owing to the shareholders’ limited commitment pins
down at time τn for each n ≥ 1:

max
∆,Γ

(
v(C + ∆− Γ)− v(C)−∆

)
s.t. (31),

given the solution v. If there is fully commitment, then the first-order optimality condition ∂v(C)
∂∆ = 0

is satisfied.
We show now that the value function v(·) solving (21) represents the principal’s optimal profit,

in that the contracts C, the payout policy Div and the refinancing quantity ∆ outlined in the
Proposition are indeed optimal.

Let us for brevity write:

dCt = µCtdt+ σtCdZt + (∆t − Γt)dΠt − dDivt

with

µCt ≡ rCt− + µ− ρr

2
(βtσ)2 − δA

(
ϕtCt−

1− ϕt

)
+ π

1− e−ρrΓt
ρr

and σtC = (1− βt)σ,

where we suppress the dependence of drift and volatility on controls and model parameters. In-
troduce the linear functional L, operating on functions dependent on C ≥ 0 with Lf(C) =

f ′(C)µC +
σ2
Cf
′′(C)
2 . Define for t < τ the auxiliary gain process upon following an arbitrary strategy

(Ĉ, D̂iv) up to time t and then switching to (C, Div)

GPt = GPt (Ĉ, D̂iv) =

∫ t

0
e−rsdD̂ivs + e−rtv(Ct−).

By Itô’s Lemma:

ertdGPt =

{
− (r + δ + π)v(Ct−) + Lv(Ct−) + π

[
v(Ct− + ∆t − Γt)−∆t

] }
dt

+
(
1− v′(Ct−)

)
dD̂iv + σtCv

′(Ct−)dZt − v(Ct−)(dNt − δdt)
≡ µGt (Ĉ, D̂iv)dt+

(
1− v′(Ct−)

)
dD̂iv + σtCv

′(Ct−)dZt − v(Ct−(dNt − δdt).

By the HJB equation (34), the drift term in curly brackets is zero under the optimal controls
under contract C and optimal dividend payout Div, while each other strategy/contract will make

this term (weakly) negative, i.e µGt (Ĉ, D̂iv) ≤ 0. Because the process D̂iv is almost surely increasing
and the fact that v′(Ct−) ≥ 1, the term

(
1−v′(Ct−)) is (weakly) negative under any dividend payout
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policy D̂iv and zero under the payout policy Div.
Next, our regularity conditions ensure that α, β are bounded and so is σC . Further, v′ and v

must be bounded over (0,∞). Evidently, v < µ/r. If now v′ were not bounded, then v could not
be bounded either. Hence, there exists ∞ > K > 0 with v, v′ < K. Hence:

E
(∫ t

0
e−rsσtCv

′(Ct−)dZs

)
= E

(∫ t

0
e−rsv(Ct−)(dNs − δds)

)
= 0

for all t < τ . Therefore, GP (Ĉ, D̂iv) follows a supermartingale, while GP (C, Div) follows a martin-

gale under the measure P and so do the stopped processes {GP (Ĉ, D̂iv)t∧τ} and {GP (C, Div)t∧τ}.
Hence, the payoff under strategy (Ĉ, D̂iv) satisfies

v̂(C0−) ≡ GP0−(Ĉ, D̂iv) ≥ EGPt∧τI (Ĉ, D̂iv)

Then it follows for any t:

v̂(C0−) = E
(∫ τ

0
e−rsdD̂ivs + e−rτL

)
= EGPτ (Ĉ, D̂iv) + e−rτL

= E
(
GPt∧τI (Ĉ, D̂iv) + 1t≤τ

[ ∫ τ

t
e−rsdD̂ivs + e−rτL− e−rtv(Ct−)

])
= EGPt∧τ (Ĉ, D̂iv) + e−rtEt1t≤τ

(∫ τ

t
e−r(s−t)dD̂ivs + e−r(τ−t)L− v(Ct−)

)
≤ v(C0−) + e−rt

(
vFB − L

)
,

where we used the supermartingale property and the fact that

Et
(∫ τ

t
e−r(s−t)dD̂ivs + e−r(τ−t)L

)
≤ vFB ≡ µ

r

and v(Ct−) ≥ L.

From the above arguments, we readily obtain v̂(C0−) ≤ v(C0−) for any contract Ĉ and any

payout policy D̂iv. On the other hand, under (C, Div) the principal’s payoff v̂(C0−) achieves
v(C0−), as the above weak inequality holds in equality when t→∞. This concludes the proof.

C.3 Concavity of value function: Proof of Proposition 2 iii)

Proof. Wlog, we prove the claim only under limited commitment w.r.t. a refinancing strategy. The
proof for full commitment works analogously. Note that in optimum C+∆−Γ = C∗ for a constant
C∗. Differentiating the above identity yields

0 = 1 +
∂∆

∂C
− ∂Γ

∂C
= 1 +

∂∆

∂C
− ∂Γ

∂∆

∂∆

∂C
=⇒ ∂∆

∂C
= − 1

1− κ
,

because by (31) – which is tight in optimum – it follows that ∂Γ
∂∆ = κ. By the envelope theorem:

v′′′(C) =
2

(1− β)2σ2

×
{[
δ + π +

δϕ1{ϕ=κ}

(1− ϕ)
A′
(

ϕC

1− ϕ

)
+
πκe−ρrΓ

1− κ
1{ϕ=κ}1{∆>0}

]
v′(C)− v′′(C)µC −

π

1− κ
1{∆>0}

}
Let us evaluate v′′′(·) at the boundary, in which case ∆ = 0 due to κ > 0 and therefore ϕ = κ.

First, assume that v′′(C̄) = 0 and the super-contact condition holds. Due to A′ ≥ 1, v′′(C̄) =
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v′(C̄)− 1 = 0 and β = λ, it is immediate that v′′′(C̄) > 0. Hence, by continuity, there exists ε > 0,
so that v′′ < 0 on an interval (C̄ − ε, C̄). Second, assume v′′(C̄) 6= 0. If v′′(C̄) > 0, there exists a
point C ′ < C̄ with v′(C ′) < 1, a contradiction to C̄ being the payout boundary. Hence, also in this
case v′′ < 0 on an interval (C̄ − ε, C̄).

Let us assume that v is not strictly concave on [0, C̄) and define C ′ ≡ sup{C ∈ [0, C̄] : v′′(C) >
0}. By assumption, the set over which we take the supremum is non-empty, so that C ′ < ∞. As
v′′ < 0 in a left-neighbourhood of C̄, we also have that C ′ < C̄. Due to continuity, v′′(C ′) = 0. As
∆ > 0 implies v′(C) ≥ 1/(1 − κ), it follows that v′′′(C ′) > 0, so that there exists C ′′ > C ′ with
v′′(C ′′) > 0, a contradiction to the definition of C ′. Hence, v′′ < 0 on [0, C̄). In addition, strict
concavity of v implies v′′′ > 0 on [0, C̄], thereby concluding the proof.

D Additional Analytic Results

D.1 Proof of Corollary 1

D.1.1 Claims i) and ii)

Proof. Differentiating the expression for β̂ w.r.t. C yields

∂Cβ
∗(C) =

∂β∗(C)

∂C
∝ −v′(C)v′′′(C) + v′′(C)v′′(C),

so that there exists C ′ := inf{C ≥ 0 : ∂Cβ
∗(C) < 0} < C̄ with ∂Cβ

∗(C) < 0 on [C ′, C̄) and β∗

strictly decreases in an open left neighbourhood of C̄. Further, it is immediate to verify that

∂C

(
−v′′(C)

v′(C)

)
∝ (β∗)′(C).

As σ → 0, clearly C̄ → 0. By the super-contact condition, v′′(C) = o(C̄), while v′(C)v′′′(C) 6= o(C̄).
Hence, C ′ ↑ 0 as σ → 0, which proves that for σ sufficiently low β∗ decreases on [0, C̄).

Let Ĉ = inf{C ∈ [0, C̄ : β∗(C) ≥ λ}. It is obvious that Ĉ ≤ C̄. Since β∗(C) > 0 for all C < C̄

and C̄ → C̄ ′ > 0 as λ → 0, it follows that Ĉ → 0. Thus, for λ sufficiently small, it must be that
Ĉ < C̄ and there exists exactly one value solving the equation β(C) = λ, which completes the
proof.

D.1.2 Claim iii)

Proof. Let us postulate that wages w follow a continuous Ito process, when there is no refinancing:

dwt = µwtdt+ σwtdZt + Jt−dΠt.

The manager receives strictly positive payouts only in case of refinancing dΠt = 1, so that by virtue
of section 5:

Jt− =
ϕt

1− ϕt

(
Ĉ∗ − C

)
.

In the following we may ignore the jump term and wlog assume π = EdΠt
dt = 0.

It remains to determine the drift µwt and volatility σwt under the assumption ϕt = κ ∀ t ≥ 0
with probability one. By definition: Yt = ϕtCt

1−ϕt . Using (11):

dWt =
ρr

2
(βtσ)2dt+ βt(dXt − µdt)

+ δ

(
αt −

ln(1 + ρrαt)

ρr

)
dt− ln(1 + ρrαt)

ρr
(dNt − δdt).
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and (4):
dSt = rSt−dt+ dBt + dwt − ctdt with ct = rWt,

it is straightforward calculate:

dYt = rYt−dt− Yt−dN +
ρr

2
(βtσ)2dt+ δA(Yt−)dt+ βtσdZt − dwt.

On the other hand, because ϕ = κ is constant:

dYt =
ϕtdCt
1− ϕt

.

Taking (20):

dCt = rCt−dt−
ρr

2
(βtσ)2dt− δA

(
ϕt−

1− ϕt−
Ct−

)
dt+ µdt+ (1− βt)σdZt − dDivt − Ct−dNt,

we obtain after rearranging and collecting terms:

dwt =
1

1− ϕt
×
[
ρr

2
(βtσ)2 + δA

(
ϕt−

1− ϕt−
Ct−

)
− ϕtµ

]
︸ ︷︷ ︸

=µwt

dt+
βt − ϕt
1− ϕ

σ︸ ︷︷ ︸
=σwt

dZt.

Wages dwt are almost surely positive at all times t if and only if:

σwt = 0 ∀ t ≥ 0⇐⇒ βt = ϕt ∀t ≥ 0

µwt ≥ 0 ∀ t ≥ 0⇐= ρr(λσ)2 ≥ κµ,

because A,A′, A′′ ≥ 0. These conditions can be satisfied without enlarging the state space, only if
κ = λ. In this case, wages are almost surely positive, provided ρ or σ is sufficiently large.

D.2 Proof of Corollaries 2 and 3

Here, η is an arbitrary model parameter and define ∂η(·) ≡ ∂(·)
∂η . Throughout, let us consider

the limit case θ → 0, so that shareholders cannot profitably deviate by paying out the entire
cash-balance and the payout threshold satisfies the satisfies the smooth-pasting condition.

We start with an auxiliary lemma:

Lemma 6. For τ = inf{t ≥ 0 : Mt = 0} the following holds:

∂v(C)

∂η
∝ E

[∫ τ

0
e−(r+δ)t

(
v′(Ct)

(
∂ηrCt − ∂η

ρr

2
(βtσ)2dt− ∂ηδA

(
ϕtCt

1− ϕt

)
+ ∂ηµ

)

+ ∂η
σ2(1− βt)2

2
v′′(Ct) + ∂ηδL

)
dt+ ∂ηe

−(r+δ)τL

∣∣∣∣∣C0 = C

]

Proof. Let η a model parameter and β, ϕ the optimal controls in optimum. Let C ∈ [0, C̄] and take
the derivative

dv(C)

dη
= ∂ηv(C) + ∂C̄v(C)× ∂ηC̄ = ∂ηv(C),

where ∂C̄v(C) = 0 by means of the envelope theorem, provided the super-contact condition v′′(C̄) =
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0 holds. Accordingly, differentiating (21) w.r.t. η yields:

∂η(r + δ)v(C) =− (r + δ)vη(C) + v′(Ct)

[
∂η(µ+ rC)− ∂η

ρr

2
(βσ)2 − ∂ηδA

(
ϕtCt

1− ϕt

)]
+ v′η(C)

[
rC + µ− ρr

2
(βσ)2 −−∂ηδA

(
ϕtCt

1− ϕt

)]
+
σ2(1− β)2

2
v′′η(C) + ∂η

σ2(1− β)2

2
v′′(C)

where ∂βv(C) = ∂ϕv(C) = 0 by the envelope theorem. The boundary conditions are v′η(C̄) =

v′′η(C̄) = 0 and vη(0) = ∂ηL. Provided our smoothness conditions, we can interchange the order of
differentiation, such that:

v′η(C) ≡ ∂

∂η

∂v(C)

∂C
=

∂

∂C

∂v(C)

∂η
and v′′η(C) ≡ ∂

∂η

∂2v(C)

∂C2
=

∂2

∂C2

∂v(C)

∂η
.

Invoking the Feynman-Kac formula and integrating yields the desired expression.

Next, note that
βη ∝ −v′(C)v′′η(C) + v′′(C)v′η(C), (D.1)

so that sign(βη(C)) = sign(RAη(C)) for RA(C) = −v′′(C)/v′(C). Provided the super-contact
condition v′′(C̄) = 0 holds, we evaluate the HJB-equation at the boundary C = C̄:

(r + δ)v(C̄) =

(
rC̄ − ρr

2
(λσ)2 − δA

(
ϕC̄

1− ϕ

)
+ µ

)
(D.2)

In the following, we derive our comparative statics for various model parameters. In each of the
following subsections, we prove all claims regarding one particular parameters, so that one of the
following subsections then proves one part of corollary 3 and 2 simultaneously. When deriving
comparative statics for β with C close to zero, we implicitly assume β(C) ≥ λ does not bind for
low values of C, unless otherwise mentioned.

D.2.1 Volatility: σ

Proof. To start with, invoke the implicit function theorem to differentiate (D.2), which yields

(r + δ)vσ(C̄) + (δ + r)C̄σ + ρrσλ2 = rC̄σ −
δκC̄σ
1− κ

A′
(

κC̄

1− κ

)
,

which can be rewritten as:

Cσ ∝ −(r + δ)vσ(C)− ρrσλ2 − δκC̄σ
1− κ

A′
(

κC̄

1− κ

)
.

Next,

vσ(C) = ∂σv(C) = E

[∫ ∞
0

e−(r+δ)t
(
− ρrβ2

t σv
′(Ct) + σ(1− βt)2v′′(Ct)

)
dt

∣∣∣∣∣C0 = C

]

As the integrand is almost everywhere negative, it follows that vσ(C) < 0 and therefore C̄σ > 0,
provided the smooth pasting condition holds and λ or ρ are sufficiently small.

Because zero is an absorbing state it must further be that v′σ(C) < 0 in a neighbourhood of
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zero. Next, let us evaluate the HJB-equation at some value C, in order to obtain:

RA(C) =
−v′′(C)

v′(C)
=

2

(1− β(C))2σ2
×
(
−(r + δ)v(C)

v′(C)
+

(
µ− ρrβ(C)2σ2

2
+ o(C)

))
︸ ︷︷ ︸

≡E>0

. (D.3)

By the envelope theorem, we obtain:

RAσ(C) =− 4

(1− β(C))2σ3
E − 2ρrβ(C)2

(1− β(C))2σ
v′(C)

+
2

(1− β(C))2σ2
× (r + δ)

−v′(C)vσ(C) + v(C)v′σC()

(v′(C)2

The first two terms are unambiguously negative. To sign the third term, note that vσ(C) =
vσ(0) +v′σ(C)C+o(C2) = o(C), as v(0) = L is an identity. The third term is then also negative for
C sufficiently small, as v′σ(C) < 0 in a neighbourhood of zero. As a consequence, it must be that
RAσ(C) < 0 in a neighbourhood of zero and therefore βσ(C) < 0, which completes the proof.

D.2.2 Moral Hazard: κ

Proof. Note that the incentive constraint ϕ ≥ κ binds everywhere, provided π = 0. Let us differ-
entiate (D.2), to obtain

−(r + δ)vκ(C̄) = δ

(
κC̄κ
1− κ

+
C̄

(1− κ)2

)
A′
(

κC̄

1− κ

)
+ δC̄κ, (D.4)

so that

C̄κ ∝ −(r + δ)vκ(C̄)−A′
(

κC̄

1− κ

)
C̄

(1− κ)2
.

Moreover:

vκ(C) = ∂κv(C) = −E

[∫ ∞
0

e−(r+δ)t
(
A′(Dt)v

′(Ct)
Ctδ

(1− κ)2

)
dt

∣∣∣∣∣C0 = C

]
(D.5)

and therefore vκ(C) < 0. Next, note that the integrand of (D.5) possesses derivative w.r.t. C:

−A′
(

κC

1− κ

)
v′′(C)

C

(1− κ)2
− C2κ

(1− κ)3
ρreρrκC/(1−κ)v′(C)− A′(D)v′(C)

(1− κ)2

∝ −v′′(C)C − C2κρrv′(C)

1− κ
− v′(C) = −v′(C) + o(C)

For C ' 0, the third term dominates and the integrand of (D.5) decreases in C. For C > 0,
and κ sufficiently large, the second term dominates. Thus, there exists κ̄ ∈ [0, 1), such that the
integrand of (D.5) decreases in κ for κ ≥ κ̄ for all C ≥ 0. This readily implies that −(r+δ)vκ(C̄) <

A′
(
κC̄
1−κ

)
C̄

(1−κ)2 and it follows that C̄κ < 0 for κ ≥ κ̄.

Next, let us rewrite the HJB-equation:

RA(C) =
−v′′(C)

v′(C)
=

2

(1− β(C))2σ2
×
(
−(r + δ)v(C)

v′(C)
+

(
µ− ρrβ(C)2σ2

2
+ o(C)

))
︸ ︷︷ ︸

≡E>0

.
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The envelope theorem yields then after some simplifications:

sign(RAκ(C)) = sign
(

(−v′(C)vκ(C) + v(C)v′κ(C) + o(C)
)

= sign
(
− v′(C)(vκ(0) + v′κ(C)C + o(C2)) + v(C)v′κ(C) + o(C)

)
For C in a neighbourhood of zero, it is then immediate that sign(RAκ(C)) = sign(v(C)v′κ(C)).
Since vκ(C) < 0 and v(0) = L is an identity independent of κ, it must also be that v′κ(C) < 0,
which implies RAσ(C) for C ' 0. Hence, βκ(C) < 0 in a neighbourhood of zero, i.e., for C ' 0,
which concludes the proof.

D.2.3 Cash-Flow Rate: µ

Proof. Observe that

vµ(C) = ∂µv(C) ∝ E

[∫ ∞
0

e−(r+δ)tv′(Ct)dt

∣∣∣∣∣C0 = C

]
> 0

and upon differentiating (D.2) it follows that

C̄µ ∝ −(r + δ)vµ(C̄)− 1.

Differentiating

RA(C) =
−v′′(C)

v′(C)
=

2

(1− β(C))2σ2
×
(
−(r + δ)v(C)

v′(C)
+

(
µ− ρrβ(C)2σ2

2
+ o(C)

))
︸ ︷︷ ︸

≡E>0

w.r.t. µ yields after simplifications:

sign(RAµ(C)) = sign
(
1 + v(C)v′µ(C) + o(C)

)
.

Since vµ(C) > 0, it is clear that v′µ(C) > 0 close to zero and therefore RA(C) and β(C) must
increase in a neighbourhood of zero, i.e., for C ' 0, which concludes the proof.

D.2.4 Risk-aversion: ρ

Proof. Note that

vρ(C) = ∂ρv(C) ∝ E

[∫ ∞
0

e−(r+δ)tv′(Ct)
[
−r/2(βtσ)2 − δAρ(Dt)

]
dt

∣∣∣∣∣C0 = C

]
,

where Aρ(·) = ∂ρA(·) > 0. Clearly, vρ(C) < 0. Differentiating (D.2) yields that

C̄ρ ∝ −(r + δ)vρ(C̄)− r(λσ)2

2
− δAρ(D̄) = −(r + δ)vρ(C̄)− r(λσ)2

2
− δ

For λ and δ sufficiently small, it follows that C̄ρ > 0. Further, for ρ sufficiently large, the term
Aρ explodes for any argument and owing to D̄ ≥ Dt with the inequality being strict on a set with
positive measure, it must be that C̄ρ < 0 for ρ ≥ ρ̄ for some value ρ̄ > 0 Moreover, in the limit
case ρ→ 0, it is clear that all risk is shared with the agent, in that C̄ → 0 for ρ→ 0. Hence, there
exists ρ > 0 with C̄ρ < 0 for ρ < ρ.
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Taking C with β(C) > λ, differentiating (D.3) and doing some algebra, we get that

sign(βρ(C)) = sign(RAρ(C)) = sign
(
−r(β(C)σ)2/2 + v(C)v′ρ(C) + o(C)

)
.

For C sufficiently close to zero, it follows that v′ρ(C) < 0, so that β(C) must decrease in ρ in a
neighbourhood of zero, i.e., for C ' 0. Since β(C) = λ for all C for high values of ρ, it follows that
β(C) is constant in ρ for large values of ρ or λ and decreases otherwise.

D.2.5 Moral Hazard: λ

Proof. Observe that

vλ(C) = ∂λv(C) = E

[∫ ∞
0

e−(r+δ)t
[
−rρλσ2v′(Ct)− (1− λ)σ2v′′(Ct)

]
1βt=λdt

∣∣∣∣∣C0 = C

]
,

Whenever
−rρλv′(C)− (1− λ)v′′(C) > 0,

it is clear that β(C) > λ, so that vλ(C) ≤ 0. Next, because β decreases it must be that also vλ(C)
decreases, so that v′λ(C) < 0. Implicitly differentiate (D.2) to obtain

C̄λ ∝ −(r + δ)vλ(C̄)− ρrλσ2

For λ = 0, it follows that βt ≥ λ for all t with equality if and only if C̄ = Ct, so that vλ(C) = 0.
Furthermore, for any ε > 0 there exists λ ∈ o(ε) such that β(C) = λ exactly for all C ∈ (C̄ − ε, C̄].
On the interval (C̄ − ε, C̄], we have that v′(C) = 1 + o(ε) and v′′(C) = o(ε). Thus,

vλ(C) = E

[∫ ∞
0

e−(r+δ)t
[
−rρλσ2

]
1{βt=λ}dt

∣∣∣∣∣C0 = C

]
+ o(ε),

so that there exists ε > 0, such that C̄λ < 0, which also means owing λ ∈ o(ε), that C̄ decreases in
λ for λ sufficiently small. Taking the extreme case λ = 1, we immediately see that C̄ = 0, so that
C̄ must decrease in λ when λ is sufficiently large.

Next, we show the claim regarding β. First, assume that β ≥ λ does not bind in a neighbourhood
of zero, which is the case for ρ or λ sufficiently low. Differentiating (D.3) and doing some algebra,
we get that

sign(βλ(C)) = sign(RAλ(C)) = sign
(
v(C)v′λ(C) + o(C)

)
.

For C sufficiently close to zero, it follows that v′λ(C) < 0, so that β(C) must decrease in ρ in
a neighbourhood of zero, i.e., for C ' 0, which concludes the proof. Second, assume that β =
λ everywhere, which is the case for ρ or λ sufficiently large. Under these circumstances, β(C)
mechanically increases in λ.

D.2.6 Disaster Risk: δ

Proof. Differentiating boundary yields

C̄δ ∝ −(r + δ)vδ(C̄)− v(C̄)−A(D̄).

Next, observe that

vδ(C) = ∂δv(C) ∝ −E

[∫ ∞
0

e−(r+δ)t
(

(v(Ct)− L) + v′(Ct)(Dt)
)
dt

∣∣∣∣∣C0 = C

]
− e−(r+δ)τL,
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so that vδ(C) < 0, which readily implies v′δ(C) < 0 for C close to zero. Let us wlog assume L = 0.
It is clear that

(r + δ)E

[∫ ∞
0

e−(r+δ)tv(Ct)dt

∣∣∣∣∣C0 = C

]
< v(C̄),

as C = 0 is an absorbing state, that is reached at an P almost surely finite time, and v is mono-
tonically increasing. Next, let us consider the derivative of A(D)v′(C) with respect to C:

κ

1− κ
v′(C)eρrD + v′′(C)A(D).

For κ sufficiently large, the first term must dominate owing to v′ ≥ 1. Under this condition:

A(D̄)

r + δ
≥ E

[∫ ∞
0

e−(r+δ)tv′(Ct)A(Dt)dt

]
for D̄ =

κC̄

1− κ
.

From there, it follows that for κ sufficiently large the payout boundary must decrease in δ, i.e.,
C̄δ < 0. Furthermore, we know that for sufficiently large κ, the absolute value of the integrand
increases and since the integrand is negative, this means that v′δ(C) < 0.

To prove the claim regarding β we differentiate (D.3) and simplify, to get:

sign(RAδ(C)) = sign
(

(r + δ)v(C)v′δ(C)− v(C)v′(C) + o(C)
)
.

For C ' 0, it follows that sign(RAδ(C)) < 0, so that β(C) decreases in δ for C ' 0, provided a
loose IC-condition β(C) > λ.

D.2.7 Commitment θ

Proof. It is evident that ∂C
∂θ = 0 as well as ∂v(C)

∂θ = 0, whenever v(C) > θC
1−κ + L. The latter

inequality is always satisfied if θ < 1 − κ. Let us therefore consider the case θ ≥ 1 − κ and

v(C) = θC
1−κ + L. Differentiating this identity wrt. θ yields:

v′(C)
∂C

∂θ
+ vθ(C) =

C

1− κ
+

θ

1− κ
∂C

∂θ
.

Since θ affects firm value only through the boundary conditions: vθ(C) = 0. Owing to v′(C) = 1:

∂C

∂θ
=

C

1− κ
×
(

1− θ

1− κ

)−1

≤ 0

with the inequality being strict if θ > 1− κ. We take the risk-aversion:

RA(C) =
−v′′(C)

v′(C)
=

2

(1− β(C))2σ2
×
(
−(r + δ)v(C)

v′(C)
+

(
µ− ρrβ(C)2σ2

2
+ o(C)

))
︸ ︷︷ ︸

≡E>0

.

Close to zero v(C) ' L. Moreover, it must be that dv(C)
dθ ) < 0 for C in a neighbourhood of zero,

while dv(0)
dθ = 0 as the identity v(0) = L holds. Therefore: dv′(C)

dθ < 0 in neighbourhood of zero, so
that RA(C) and therefore also β(0) decrease in θ for C ' 0.
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D.3 Stock-Return Volatility

The formula for the stock-returns follows upon invoking Ito’s Lemma:

dRt =
dDivt + dv(Ct−)

v(Ct−)

=
dDivt + Lv(Ct−) + v′(Ct−)σCtdZt +

[
v(C∗)−∆− v(Ct−)

]
dΠt1{Ct−<C∗}

v(Ct−)

= r + δ + 1{Ct−<C∗}

(
π − π(v(C∗)−∆t)

v(Ct−)

)
+
dDivt
v(Ct−)

+
v′(Ct−)

v(Ct−)
× σ(1− βt)︸ ︷︷ ︸

≡Σt=Σ(Ct− )

dZt +

[
v(C∗)−∆− v(Ct−)

]
dΠt

v(Ct−)
1{Ct−<C∗},

where we used the HJB-equation under the optimal controls:

(r + δ)v(Ct−) = dDivt + Lv(Ct−) + π
[
v(C∗)−∆− v(Ct−)

]
1{Ct−<C∗}.

D.3.1 Proof of Corollary 6

i) Proof. To start with, for all C with β(C) we rewrite:

Σ(C) = (1− β)σ
v′(C)

v(C)
= σρr × (v′(C))2

v(C)
(
ρrv′(C)− v′′(C)

) ,
so that

Σ′(C) ∝ 2v(C)
(
ρrv′(C)− v′′(C)

)
v′(C)v′′(C)

− (v′(C))2 ×
[
v′(C)

(
ρrv′(C)− v′′(C)

)
+ v(C)

(
ρrv′′(C)− v′′′(C)

)]
= −(v′(C))3 ×

(
ρrv′(C)− v′′(C)

)
+ o
(
v(C)

)
It follows then that Σ′(C) < 0 in a neighbourhood of zero, provided the scrap value L ≥ 0 is
sufficiently low.

Next, note that in a neighbourhood of C̄, we have that β(C) = λ, provided λ > 0, in which
case it is clear that

Σ(C) = (1− λ)σ
v′(C)

v(C)

decreases in this neighbourhood of C̄.

ii-1) Proof. Note that in the limit λ→ 1, the firm value converges to,

µ− ρr/2σ2

r + δ
+M0− ,

where all cash (the firm is born with) is paid out immediately as dividends to shareholders
and continuation value from time 0 onwards is deterministic, as the agent absorbs all cash-
flow risk. Hence, for λ→ 1, it follows that Σ(C)→ 0 for any C, so that by continuity, there
exists λ̄ ∈ (0, 1), so that Σ(C) decreases in λ for λ > λ̄, thereby concluding the proof.
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ii-2) Proof. Fix λ ∈ (0, 1). For all ε > 0 we can pick ρ > 0 small enough such that β(C) = λ
exactly for all C ∈ (C̄ − ε, C̄]. On the interval (C̄ − ε, C̄], we have that v′(C) = 1 + o(ε) and
v′′(C) = o(ε). As a consequence:

vλ(C) = E

[∫ ∞
0

e−(r+δ)t
[
−rρλσ2

]
1βt=λdt

∣∣∣∣∣C0 = C

]
+ o(ε) <

−rρλσ2

r + δ
+ o(ε).

On the interval (C̄ − ε, C̄]:

Σ(C) =
1 + o(ε)

v(C)
× (1− λ)σ

=⇒ Σλ(C) ∝ o(ε)− v(C)− vλ(C)(1− λ) > o(ε) +
−rρλσ2(1− λ)

r + δ
− v(C).

Note that we can pick ρ or λ arbitrarily small, so as to achieve Σλ(C) < 0, which concludes
the proof.

iii) Proof. For λ > 0, there exists ε > 0, so that on (C̄ − ε, C̄]:

Σ(C) = (1− λ)σ
v′(C)

v(C)
+ o(ε) = (1− λ)σ

1 + o(ε)

v(C)
+ o(ε),

so that
∂Σ(C)

∂κ
∝ o(ε)− vκ(C)(1 + o(ε)) > 0

for ε > 0 sufficiently small, thereby concluding the proof.

D.4 Proof of Corollary 5

We split the proof in three parts. The first part proves the claims regarding C. The second part
proves the claims regarding β(0) and the third part the claim regarding C∗. We will not introduce
additional notation, so that C∗ is a constant under limited commitment w.r.t. refinancing strategy
and a function of C under full commitment w.r.t. the refinancing strategy/

D.4.1 Part 1

Proof. First, obtain

vπ(C) = ∂πv(C) = E

[∫ ∞
0

e−(r+δ)t
(
v′(Ct−)

1− e−ρrΓt
ρr

+
[
v(Ct− + ∆t − Γt)− v(Ct−)−∆t

]︸ ︷︷ ︸
>0

)
dt

∣∣∣∣∣C0− = C

]
,

from where it is obvious that vπ(C) > 0 for any C > 0. Continuity and the identity v(0) = L imply
then that v′π(C) for C in a neighbourhood of zero. Let us differentiate the HJB-equation at the
boundary w.r.t. π (i.e., (D.3)), which yields:

0 = (r + δ)vπ(C̄) + δC̄π +
δκC̄π
1− κ

A′
(

κC̄

1− κ

)
=⇒ C̄π ∝ −vπ(C̄) < 0.

Note that the argument did not make use of any assumed commitment structure, so that the claim
holds true regardless of the commitment structure.

56



D.4.2 Part 2

Proof. Second, denoting the fixed value C∗ = Ct− + ∆t − Γt, let us rewrite the HJB-equation:

RA(C) =
−v′′(C)

v′(C)
=

2

(1− β(C))2σ2
×
(
−(r + δ)v(C)

v′(C)
+ µC + π[v(C∗)− v(C)−∆

])
︸ ︷︷ ︸

≡E>0

.

One can show that
∂

∂π

−(r + δ)v(C)

v′(C)
∝ v(C)v′π(C) + o(C),

which is strictly positive for C in a neighbourhood of zero.
Let us assume now limited commitment w.r.t. to the refinancing strategy. Then:

∂

∂π

(
µC + π[v(C∗)− v(C)−∆

])
=

1− e−ρrΓt
ρr

+
[
v(C∗)− v(C)−∆

]
+ π

[
v′(C∗)

∂C∗

∂π
− vπ(C)− ∂∆

∂π

]
Utilizing v′(C∗) = 1

1−κ , ∂∆
∂C∗ = 1

1−κ and ∂∆
∂π = ∂∆

∂C∗ ×
∂C∗

∂π , the above expression simplifies to:

1− e−ρrΓt
ρr

+
[
v(C∗)− v(C)−∆

]
− πvπ(C)︸ ︷︷ ︸

=o(C)

.

Thus, for C sufficiently close to zero, the above expression is positive, which implies that RA(C)
decreases in π for C ' 0. Provided a loose IC-condition β ≥ λ in a neighbourhood of zero, also
β(C) increases in π for C close to zero.

Last, we assume full commitment to a refinancing strategy is possible. Then, the envelope
theorem applies, so that:

∂

∂π

(
µC + π[v(C∗)− v(C)−∆

])
=

1− e−ρrΓt
ρr

+
[
v(C∗)− v(C)−∆

]
> 0,

so that RA(C) increases in π close to zeros and so does β(C). This concludes the proof of the
second part.

D.4.3 Part 3

Proof. Third, we show the claim regarding C∗. First, note that for C > C∗, we can write

vπ(C) = Ee−(r+δ)τ∗vπ(C∗) < vπ(C∗)

for τ∗ = inf{t ≥ 0 : Ct− = C∗}. Hence, v′π(C) < 0 for C ∈ [C∗, C̄], since there is no refinancing in
this region and vπ(C) > 0. By continuity, it even follows that v′π(C) < 0 for C ∈ [C∗ − ε, C̄] for
some ε > 0. We differentiate the identity v′(C∗) = 1

1−κ , which yields:

v′π(C∗) + v′′(C∗)
∂C∗

∂π
= 0 =⇒ ∂C∗

∂π
=

v′π(C∗)

−v′′(C∗)
< 0,

thereby concluding the proof.
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D.5 Proof of Corollary 4

Proof. To prove part i), assume to the contrary there exist C1 < C2 with ∆(C1) ≤ ∆(C2). This
clearly implies C∗(C2) > C∗(C1), so that v′(C∗(C2)) < v′(C∗(C1)) by concavity. Likewise: v′(C2) <
v′(C1). Wlog, we may assume C > C∗(C2), as otherwise the claim is trivial. However, it is easy to
verify that (38) cannot hold for both C1 and C2, contradicting the optimality of the hypothesized
strategy.

Part ii) follows immediately from the fact that C∗(C) ≥ C by definition. Thus, either C∗(C) =
C ∀ C ∈ [C − ε, C] for appropriate ε > 0, in which case the claim is trivially true, or there exist
ε > 0, C < C with C∗(C) < C ∀ C ∈ [C − ε, C], in which case the claim follows by continuity and
limC→C C

∗(C) = C.

For Part iii), we can wlog focus on the case where C∗(C) < C throughout. We implicitly
differentiate (37), in order to obtain:

v′′(C∗)
∂C∗

∂C
=
κe−ρr

κ
1−κ [C∗−C]

1− κ

[
−v′′(c) +

ρrκ

1− κ
v′(C)

(
∂C∗

∂C
− C

)]
,

which can be solved for:

∂C∗

∂C
∝ v′′(C) +

ρrκ

1− κ
C = v′′(C) + o(ρκ),

so that C∗ decreases for small C, provided ρ or κ are sufficiently low.

E Further comparative statics

In Figures 7, 8, and 9 we present the full numerical comparative statics of the baseline model
without refinancing.

Changing ρ. Next, varying the agent’s CARA coefficient ρ makes hedging via labor contracts
more expensive as agents require higher risk-premia for variability in their certainty equivalent
wages Yt. In response, as Column 3 in Figure 9 shows, the firm reduces its usage of pay-performance
sensitivity, reducing avg β, and instead increases its average cash-holdings, raising C. On the other
hand, moral hazard has more bite for larger ρ, which in turn implies that overall firm value decreases
in ρ. As a result, liquidation gets less inefficient, which calls for less hedging of liquidity risks. This
leads to the non-monotonic behavior of C in ρ. Again, numerically there is only a very mild
reduction in β(0).

Changing µ, κ and δ As Column 2 in Figure 9 show, the comparative statics w.r.t. µ exhibit
non-monotonicity of C. As pointed out in Décamps et al. (2011), this already occurred in a model
absent IC considerations, i.e., λ = 0. Intuitively, for low µ, the project is not worth a lot as a going
concern, and thus it is better to drain cash quickly in terms of dividends. As µ starts increasing, the
project value increases, making shareholders more willing to accumulate cash and delay dividend
payments. This is the first effect. A second effect is highlighted for very high µ: Here, the optimal
payout boundary C declines. Intuitively, negative cash-flow shocks can be more easily overcome by
the drift, and the need to hold expensive cash balances shrinks. Another way to express this second
effect is that all else equal, a higher µ leads to more of the probability mass to be close to C, and
thus average cash-holdings to increase. Lowering average cash-holdings thus requires decreasing C.
The (scaled) β(0) and avg β both inherit the non-monotonicity of C.

Last, δ and κ essentially determine endogenously arising carry cost of cash. Not surprisingly,
we find that increases in either κ and λ make cash-holdings more costly, thereby reducing C. As a
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Figure 7: Comparative statics w.r.t. λ (Column 1), w.r.t. λ = κ (Column 2), w.r.t. θ (Column
3), top row C, middle row β(0), bottom row (σ-scaled) avg β. The solid black lines depict the
object described on the y-axis, the dashed red line depicts the IC constraint (23), the thin vertical
dashed red line depicts the parameter value in our benchmark.
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Figure 8: Comparative statics w.r.t. κ (Column 1), w.r.t. δ (Column 2), top row C, middle row
β(0), bottom row avg β. The solid black lines depict the object described on the y-axis, the dashed
red line depicts the IC constraint (23), the thin vertical dashed red line depicts the parameter value
in our benchmark.
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Figure 9: Comparative statics w.r.t. σ (Column 1), w.r.t. µ (Column 2), w.r.t. ρ (Column 3),
top row C, middle row β(0), bottom row (σ-scaled) avg β. The solid black lines depict the object
described on the y-axis, the dashed red line depicts the IC constraint (23), the thin vertical dashed
red line depicts the parameter value in our benchmark.
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result, firm value decreases, which makes liquidation less inefficient and therefore also curbs hedging
through labour markets.

F Details on the numerical solution

F.1 Determining the payout boundary

Wlog, we consider here the case π = 0, to describe the procedure. We utilize a shooting method to
solve for the value function. We shoot from C towards C = 0, iterating on the condition v(0) = L.

First, define

B (C) :=
θ

1− κ
C + L

D (C) := rC + µ− δA
(

κC

1− κ

)
Next, write the ODE with optimized ϕ = κ as

(r + δ) v (C) = v′ (C)

[
D (C)− ρrσ

2

2
β (C)2

]
+
σ2

2
(1− β (C))2 v′′ (C)

Suppose for the moment that β∗ (C) = −v′′(C)
ρrv′(C)−v′′(C) > λ. Then, after plugging in for β∗ (C) and

cancelling out terms, we have the non-linear ODE

(r + δ) v (C) = v′ (C)D (C) + ρr
σ2

2

v′ (C) v′′ (C)

ρrv′ (C)− v′′ (C)

= v′ (C)− ρrσ
2

2
v′ (C)β∗ (C)

whereas when β∗ (C) < λ, we have the linear ODE

(r + δ) v (C) = v′ (C)

[
D (C)− ρrσ

2

2
λ2

]
+
σ2

2
(1− λ)2 v′′ (C)

Next, let us consider the boundary conditions. Note that we have v (0) = L and v′
(
C
)

= 1 in
any scenario. We have to consider two scenarios:

1. Suppose first that v
(
C
∗
)
> B

(
C
∗
)

, where C
∗

is defined by v′′
(
C
∗
)

= 0. Then, at C = C
∗

we have

(r + δ) v
(
C
)

= 1×
[
D (C)− ρrσ

2

2
λ2

]
+
σ2

2
(1− β (C))2 × 0

which implies that

v
(
C
)

=
D (C)− ρr σ2

2 λ
2

r + δ

and we initialize the shooting algorithm at C with v
v′

v′′

(C) =

 D(C)−ρr σ
2

2
λ2

r+δ
1
0


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2. Suppose next that v
(
C
∗
)

=
D(C

∗
)−ρr σ

2

2
λ2

r+δ < B
(
C
∗
)

, which implies that the payout bound-

ary cannot be chosen via the super-contact condition. Then, we need to initialize the shooting
algorithm at C with  v

v′

v′′

(C) =

 B
(
C
)

1
v′′
(
C
)


where v′′
(
C
)

is given by the continuous function

v′′
(
C
)

=


(r+δ)B(C)−D(C)+ρr σ

2

2
λ2

σ2

2
(1−λ)2

, C ≥ Cλ
ρr[(r+δ)B(C)−D(C)]

ρr σ
2

2
+(r+δ)B(C)−D(C)

, C < Cλ

and where the constant Cλ solves

−v′′
(
Cλ
)

ρr − v′′
(
Cλ
) = λ ⇐⇒ − λρr

1− λ
= v′′(Cλ) =

(r + δ)B
(
Cλ
)
−D

(
Cλ
)

+ ρr σ
2

2 λ
2

σ2

2 (1− λ)2

The derivation is straightforward. Note that v
(
C
)

= B
(
C
)

as well as v′(C) = 1 by assump-
tion. There are two cases w.r.t. β∗ (C):

(a) When β∗
(
C
)

=
−v′′(C)
ρr−v′′(C)

< λ ⇐⇒ v′′ (C) > − λρr
1−λ , we have

(r + δ)B
(
C
)

=

[
D
(
C
)
− ρrσ

2

2
λ2

]
+
σ2

2
(1− λ)2 v′′

(
C
)
.

(b) Next, for β∗
(
C
)

=
−v′′(C)
ρr−v′′(C)

> λ ⇐⇒ v′′ (C) < − λρr
1−λ , we have

(r + δ)B
(
C
)

= D
(
C
)

+ ρr
σ2

2

v′′
(
C
)

ρr − v′′
(
C
) .

As v′′′(C) > 0, the partition on C ≷ Cλ results.

F.2 Determining the optimal refinancing policy

To start with, note the model solution is fully characterized by an equilibrium domain, which is
fully described by the payout boundary C, the value function v, the controls β, ϕ on this domain
as well as the refinancing policy (C∗,Γ∗). We solve for the optimal refinancing policy iteratively.
That is to say, we perform the following steps:

1. Solve the model without refinancing, i.e., for π = 0, which yields the solution triple (v0, β0, C
0
).

Set i 7→ 1. Set the default refinancing policy C∗0 ≡ 0 and Γ∗0 ≡ 0 and ϕ0 = κ.

2. Solve the HJB-equation, taking the optimal refinancing policy Γ∗i and C∗i and ϕi as given.

This yields the solution (v, C, β).

3. Given (v, C, β), calculate the optimal refinancing policy and control ϕ (C∗,Γ∗, ϕ∗).

4. Set i 7→ i+ 1 and (vi, βi, C
i
, C∗i ,Γ

∗
i ) 7→ (v, β, C,C∗,Γ∗)
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5. If
||vi − vi−1||[0,∞)

∞ < ε

for some tolerance ε > 0, the solution is obtained. Otherwise go back to step 2. Here, || · ||[a,b]∞
is the supremum norm on the interval [a, b].

G Steady-state KFE

To evaluate the average β of a firm w.r.t. to a density implied by the process C, we want to derive
the steady-state density induced by resetting all liquidating firms to C = C. Let us write the
dynamics of C on the equilibrium path as

dCt = µC(Ct)dt+ σC(Ct)dZt,

and define sC(C) := (σC(C))2. Then, the stationary density f(·) on (0, C) solves

0 =
1

2
∂CC [sC(C)f(C)]− ∂C [µC(C)f(C)]− δf(C)

The boundary conditions are given by
f(0) = 0 (G.1)

as well as

0 =
1

2
∂C [sC(C)f(C)]C=C − µC(C)f(C) + δ − 1

2
sC(0)f ′(0) (G.2)

Here, the first two terms are the traditional reflection boundary conditions, the third term is the
inflow from the (state-independent) Poisson defaults at rate δ, and the fourth term is the inflow
from the liquidity defaults at C = 0.

Recall that along the equilibrium path (assuming ϕ = κ) on (0, C) we have

dCt =

[
rCt− −

ρr

2
(β(Ct−)σ)2 − δA

(
κ

1− κ
Ct−

)
+ µ

]
dt+ [1− β(Ct−)]σdZt − Ct−dNt. (G.3)
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