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Abstract
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we construct a measure of the knowledge-weighted and production-weighted embodied
technology flows imported from the US. We then develop an instrumental variable
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1 Introduction

Innovation and R&D activity are concentrated in a relatively small number of advanced
economies. Recent work demonstrates the quantitative importance of international technology
diffusion for the gains from trade and aggregate growth (See, for example, Buera and Oberfield,
2020; Sampson, 2020; Cai et al., 2022). However, little direct empirical evidence exists on the
significance of specific channels through which ideas spread across borders. In this paper, we
examine the diffusion of technology across countries and sectors through technology embodied
in imports of goods from the US using evidence from global patents and citations data.

We focus on this channel for three reasons.1 First, new innovations often manifest them-
selves as new products or enhancements to existing products and many of these new or
enhanced products are then traded between countries. These product flows potentially con-
vey information about the innovations embodied within them to the users of the products.
Second, the foundational knowledge on which new innovations are based originates from
many distinct sectors and these sources vary across sectors and need not be related to sectors’
sources of production inputs. Since countries’ patterns of trade depend in part on patterns of
comparative advantage, their imports of technology embodied in trade flows affect innovation
in different sectors in those countries in different ways. Incorporating variation in sectors’
sources of knowledge and production inputs is necessary to assess the impacts of a given
amount of technology embodied in a set of trade flows on different sectors. Third, accounting
for technology embodied in traded inputs has important policy implications. The effects of
trade policies go beyond the well-studied impacts of tariffs on, for example, static intermediate
and final goods prices, since they can also affect the flow of information and technology across
countries and sectors. Because new innovations often build on existing knowledge, changes
in technology flows due to changes in trade policy can have effects on innovation activities
not accounted for by the policy-induced responses of innovation to import competition and
market access.2

The first contribution of our paper is to estimate the extent to which trade is a channel
of international technology diffusion. We do this by investigating the effects of embodied

1Other channels include technology licensing, foreign direct investment, knowledge transfers within
multinational firms, immigration, trade in services, and cross-border scientific or technical collaborations (see
Keller, 2004, 2010, 2021, for surveys of empirical evidence of different channels).

2Shu and Steinwender (2019) survey the empirical literature examining evidence of the effects of import
competition and market access on innovation. Existing work that, like us, focuses on effects that are present in
patent data includes Bloom et al. (2016), Bombardini et al. (2018), Autor et al. (2020) for import competition
and Coelli et al. (2020) and Aghion et al. (2021b) for market access.
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technology imports on innovation and diffusion outcomes. The channel underlies many
theoretical and quantitative models of international technology spillovers (e.g., Grossman
and Helpman, 1991; Alvarez et al., 2013; Buera and Oberfield, 2020). We start by developing
a conceptual framework to guide our empirical analysis. In the conceptual framework, firm
innovations depend on a combination of R&D investment, domestic knowledge spillovers,
and international spillovers from the technological frontier. International spillovers depend on
embodied technology imports—the import-weighted stock of frontier knowledge—and the
relevance of cross-sector knowledge to the innovating sector.

We use patent data as our primary measure of innovation in our analysis. Patents document
innovations that result in new products, new components of existing products, or new methods
of producing products. The second contribution of our paper is to construct a novel dataset
on country-sector level innovations and trade. We leverage the Google Patents database to
construct detailed patent outcomes for a wide range of countries. In particular, the database
allows us to construct measures of patenting based on the locations of innovators and measures
of cross-country citation flows. We also use imports from the Centre d’Études Prospectives et
d’Informations Internationales (CEPII) database of international trade flows and cross-sector
sales from the Bureau of Economic Analysis (BEA) in our analysis. Finally, we map data
into consistent sector definitions using a series of concordances.

The third contribution of our paper is to construct measures of embodied technology
imports. As a first step, we construct measures of the cross-sector relevance of knowledge. We
use cross-sector citations and sales data to construct knowledge and production input-output
(IO) tables as a measure of the relevance of cross-sector knowledge. Within a country, we
construct the knowledge IO table using the relative share of citations from each sectors’
patents to each other sectors’ patents. We similarly construct the production IO table using
the share of sales between sectors. Unlike with patents, data to construct the production
IO table is only available for the US, which we take as the frontier economy in our analysis.
Since knowledge and production IO linkages could, in principle, be similar for many sectors,
we demonstrate that the knowledge and production IO tables are distinct.3 In particular, we
document that knowledge and production IO linkages are not highly correlated on average,
that knowledge IO linkages are less concentrated than production IO linkages for the average
sector, and that the sectors that are key economy-wide sources of inputs differ between the
knowledge and production IO tables.

3Though not the focus of our paper, we are amongst the first to provide a descriptive comparison of the
knowledge and production IO tables of an economy. Concurrent work in Hötte (2021) constructs similar
knowledge and production IO tables and compares them.
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Along with US imports, we use the IO tables to develop measures of embodied technology
imports. We develop two measures based on the knowledge and production IO tables that we
refer to as the knowledge-weighted and production-weighted embodied technology imports.
Specifically, we aggregate US import-weighted knowledge stocks using Cobb-Douglas weights
from the knowledge and production IO tables. We also exclude the own-sector component in
the construction of embodied technology imports to avoid potential endogeneity concerns
arising from within country-sector demand shocks that may increase both innovation activity
and imports within the sector. The knowledge-weighted measure is directly related to our
mechanism of interest since it relies on knowledge flows across sectors. The production-
weighted measure is also included as potentially important transfers of technology can occur
through production interactions. A key outcome of our analysis is then to measure the relative
strength of spillovers from embodied technology weighted by knowledge and production
linkages.

Our main empirical specification involves regressing measures of innovation and diffusion
outcomes on knowledge-weighted and production-weighted embodied technology imports. The
main innovation outcomes are patents, forward citations, and forward citations per patents
while our main diffusion outcomes are US backward citations, US backward citations per
patent, and the US backward citation share.4 We also include controls for each country’s own
knowledge stock, using country-specific cross-sector knowledge IO linkages, and own-sector
imports. Additionally, our long panel of data, spanning from 1995 through 2015, allows us to
control for high-dimensional fixed effects. We include country-sector fixed effects to account
for persistent differences across sectors in different countries in patenting outcomes, and
country-year fixed effects and aggregate sector-year fixed effects to control for common trends
to countries and groups of sectors.

A potential concern with estimating the effects of the trade channel of technology diffusion
on domestic innovation is that domestic shocks that affect innovation outcomes may also
lead to changes in demand for US imports. For instance, if domestic R&D and embodied
technology in cross-sector imports are substitutes in the production of new innovations,
then shocks to the domestic R&D productivity will reduce demand for embodied technology
imports and ordinary least squares estimates of the effects of embodied technology imports
would suffer from a negative bias. On the other hand, if imported embodied technology and
R&D are complements in the production of new innovations, then there would be a positive

4Forward citations is measured over a five-year period to reduce truncation issues. US backward citations
is measured as the total citations of US patents by all patents applied for in a given country-sector-year.
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bias on the OLS estimates.5 To address this concern, we use an instrumental variable (IV)
strategy to isolate the effects of embodied technology imports on innovation and diffusion
outcomes. For each country, we construct a cluster of related countries that fall into the
same quintiles of total trade (exports plus imports) to GDP ratio and GDP per capita. We
then construct the instrument for each country as US exports to all countries outside of the
country’s cluster. The instrument isolates US supply shocks by excluding countries that are
likely to experience correlated demand shocks.6

Using our IV strategy, we find that a 1% increase in the knowledge-weighted embodied
technology imports increases citation-weighted patenting by around 0.059%. In comparison,
a 1% increase in the production-weighted embodied technology imports increases citation-
weighted patenting by 0.006%. To quantify the size of the of the estimated coefficients, we
find that a one standard deviation increase of the residualized of knowledge-weighted and
production-weighted embodied technology imports account for a 7.0% and 0.7% standard
deviation of the residualized citation-weighted patenting respectively. The considerably larger
estimate using the knowledge-weighted measures is consistent with our expectation that the
knowledge IO table more closely approximates the relevance of knowledge across sectors.

For diffusion outcomes, we find that a 1% increase in embodied technology imports
increases US backward citations by 0.081% for the knowledge-weighted measure and 0.011%
for the production-weighted measure. Together, embodied technology imports account for
just under 10% of the standard deviation of residualized US backward citations. Despite
the elasticity for US backward citation being larger than that for patenting, we do not find
consistent evidence that either measure of embodied technology imports increases the rate
of US backward citations (US backward citations per patent) or the share of US backward
citations (out of total backward citations in a country-sector-year). We expect that foreign
backward citations are a noisier measures than patenting outcomes and find that the rate of
US backward citations becomes positive and statistically significant in many of our robustness
exercises.7

5Data on R&D spending at the level of industry disaggregation used in our analysis is unavailable for
most countries in our sample.

6The commonly-used leave-one-out instrument can be viewed as a case of this strategy in which each
cluster includes only a single country.

7We expect backward citations, especially to foreign patents, to be a nosier measure than patenting
outcomes due to a number of factors. First, we expect that our estimate for US backward citations are likely
biased downwards due to US backward citations being measured on all previous patents, which is consistent
with our relative coefficient estimates. Second, patent laws or customs may not require domestic innovators
to cite foreign patents or domestic firms may try to use the domestic market to exclude foreign competitors.
Third, while we find that US embodied technology imports lead to new innovations, this does not necessitate
that imports affect the composition of knowledge being built on. For example, domestic innovators may learn
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Our estimated coefficients are robust to a variety of alternative specifications. We find
similar estimates for coefficients at different lags for regressors. We consider alternative
instruments constructed using a traditional leave-one-out approach and constructed using
all other countries within a cluster (as opposed to all countries outside of the cluster in
our baseline). We find economically more significant results when we restrict the sample
to the 40 countries with the most patenting activity. Finally, we find similar results using
alternative transformations of knowledge stocks, alternative constructions of the knowledge
stock, alternative innovation and diffusion outcomes, or other controls. In many of the
robustness exercises we also find that the estimate of the US backward citation rate becomes
statistically significant, consistent with our view that this variable is imprecisely measured.

Related Literature Our work contributes to the literature on the channels of international
technology diffusion (most recently surveyed by Keller, 2021), particularly those papers that
examine the trade channel. This includes work pioneered by Coe and Helpman (1995) and
the within-sector analysis of R&D diffusion across borders through both trade and non-trade
channels in Acharya and Keller (2009). Our focus on direct evidence for diffusion using
citations in new patents is closely related to MacGarvie (2006) and the concurrent and
complementary study in Aghion et al. (2021a), both of which use French firm-level data on
the extensive margins of trade participation to show that citations to firms’ patents increase
in foreign markets with which firms interact through trade. We add to this body of evidence
by showing with a sector-level analysis that embodied technology imports is a source of
technology diffusion through the trade of goods.

In doing so, our paper provides evidence for the international technology diffusion that
underlies recent growth models with trade, diffusion, and innovation (Buera and Oberfield,
2020; Sampson, 2020; Cai et al., 2022). Most closely related amongst these is Cai et al. (2022),
which allows for inter-sector technology diffusion (both within and across borders). Unlike
this work, we provide evidence on embodied technology imports as a specific channel through
which technology diffuses across countries.

The empirical approach we take to evaluate the effects of diffusion of technology across
countries is complementary to recent work that uses patents data to measure international
technology diffusion through inter-sectoral networks, including Fons-Rosen et al. (2019);
Berkes et al. (2022); Liu and Ma (2022). To the best of our knowledge, ours is the first
paper to include inter-sectoral knowledge IO measures based on these data to estimate the

about third-country innovations from US imports.
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trade channel of technology diffusion. Fons-Rosen et al. (2019) use patents-based sector-pair
measures of technological similarity adapted from Bloom et al. (2013), which are distinct
from our citations-based IO measures, to investigate the foreign direct investment channel
of technology diffusion. Berkes et al. (2022) show that there has been a large increase in
international knowledge spillovers since the 1990s as measured by cross-country patent
citations and that the innovations induced by this increase in diffusion lead to an increase in
the growth rates of sectoral output per worker and total factor productivity. Closely related
is the empirical exercise in Liu and Ma (2022) that documents that global spillovers from
past patenting activity that depend on the network of patent citations across countries and
sectors lead to increases in innovation.

Our paper is also related to the branch of the trade literature examining the effects of
changes in access to intermediate production inputs due to trade policy on many dimensions
of firm performance. This line of research includes work that shows that increased openness
to trade of production inputs leads to increases in productivity (Amiti and Konings, 2007;
Topalova and Khandelwal, 2011), product scope and new product introduction Goldberg
et al. (2010), and reductions in marginal costs (De Loecker et al., 2016).8 Though our analysis
is conducted at the sector level rather than the firm level, our results speak directly to the
mechanisms through which trade in inputs leads to improvements in performance and suggest
that technology diffusion and increases in the generation of new patented technology follow
from increases in technology embodied imports.

We also build on work that examines the inter-sectoral patterns of knowledge flows and
the implications of these flows in single country settings. Acemoglu et al. (2016) documents
the patterns of citations across technology classes in US patents and uses them to construct
innovation IO networks to show how inventions developed in one class spillover to other
classes and the degree of localization in the innovation network. Cai and Li (2019) also
develop a citations-based IO network and use it to describe patterns in how the direction of
firms’ innovations evolve along knowledge IO linkages and the aggregate growth implications
of these patterns. Our work contributes to this literature by showing how inter-sectoral
knowledge IO linkages are important mediators of the diffusion of technology across countries
through the trade of goods.

Outline The remainder of this paper proceeds as follows. Section 2 describes the data used
in our analysis. Section 3 presents the conceptual framework used to guide our empirical

8See also the other relevant works surveyed in Shu and Steinwender (2019).
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analysis. Section 4 describes the constructions of the knowledge and production IO tables.
Section 5 describes our empirical strategy and baseline specifications. Section 6 discusses the
estimation results and robustness checks. Section 7 concludes.

2 Data

In this section, we provide an overview of the data used for the main analysis. We use data
on patent applications and citations, inter-sectoral purchases of inputs by US sectors, and
bilateral product-level trade flows from the US into other countries. These data come from a
variety of sources and are provided in a range of distinct classifications that compel us to use
concordance tables to translate all the data into a consistent classification system. We briefly
describe the data and concordances we use below and leave the remaining details of the data
collection and variable construction to Appendix B.

Patents and citations data. We draw on data collected by Google Patents from a wide
range of patent offices around the world. For each distinct patent family, which comprises the
set of patent applications for a given innovation filed at one or more patent offices, we identify
the earliest date a patent was applied for at any patent office and treat this as the filing date
for the patent family. Each application in a patent family contains the following information
that we use in our analysis: the technology categories to which the innovation is relevant,
which are represented by International Patent Classification (IPC) codes; the set of inventors
of the patent application and their countries of residence; and citations to other patents
listed in the patent application.9 Throughout our analysis, we focus on patent applications
rather than patent grants as grant dates are unavailable in the Google Patents database for
patents applied for at many national patent offices, whereas application dates are available.10

Furthermore, as we examine technology diffusion and its effects, patent application events
better reflect the timing of diffusion than do patent grant events.

We calculate the number of initial applications of patent families filed in each year between
1995 and 2015 in each country and technology subclass (a 4-character IPC code) and refer
to these as patent counts.11 Patents are assigned to countries using fractional counts by

9We focus our analysis on those patent families with non-missing data for each of these three sets of
information. Appendix B explains how we select information on these attributes from amongst the patent
applications in a family.

10For instance, there are no grant dates available for patents filed at the Israel Patent Office.
11For families with multiple IPC codes, we count these patents once for each technology subclass.
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computing the share of inventors of each patent from each country.12 For a subset of patent
families, applications are submitted to the three patent offices that throughout our sample
period are of global significance, including the European Patent Office (EPO), the Japan
Patent Office (JPO), and the United States Patent and Trademark Office (USPTO). We
count the number of such triadic patent applications.13

In addition to counts of patent families, we use information on citations between patents.
To measure the quality of patents filed in each year and each country and technology subclass,
we compute the number of citations received by these patents across citing patents applied
for each year from 1995 to 2021 in all countries and technology classes and define these as
the forward citations of the patents in each year. Backward citations data are used for two
purposes. First, as described in Section 4.1, we use backward citations to measure knowledge
linkages between sectors. Second, for patents filed each year and in each non-US country and
technology subclass, we calculate the number of backward citations to US patents, domestic
patents, and other foreign patents filed in any technology subclass in each year.

Inter-sectoral input purchases. To measure production input-output relationships, we
employ the Bureau of Economic Analysis (BEA) Supplementary Use Tables. These tables
are available at five year intervals and provide the value of purchases by input sector made
by US output sectors based on the most up-to-date US industrial classification in use at
the time. We use tables that span from 1992 to 2007. Sector classifications are based on US
Standard Industrial Classification (SIC) codes for the 1992 Use table, while in more recent
vintages they are based on the North American Industry Classification System (NAICS). We
describe how we convert the data based on the various SIC and NAICS classifications into a
consistent classification in Appendix B. The BEA Use tables not only cover a long period
of time, they are available at a high level of disaggregation compared to alternative sources
of inter-sectoral sales data. Moreover, using US data enables us to examine how sectors in
importing countries are affected by the technology embodied in imports of production inputs
from the US based on the patterns of how those inputs are used in the US.

12Using information on the countries of the inventors rather than the patent office of the initial application
of a patent family allows us to account for innovations developed in one country for which patent protection
is first sought in another country. The sample used in our baseline analysis includes data from 82 countries.

13We also include patents applied for at the JPO, the USPTO, and at the patent offices of France, Germany,
and the United Kingdom. These definitions of a triadic patent family are consistent with the methodology
described by Dernis (2003).
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Bilateral trade data. Import data from CEPII’s Base pour L’Analyse du Commerce
International (BACI) database provide the value of imports of different goods from the
US into each country. Our analysis uses annual data from 1995 to 2015. Import values are
denominated in current US dollars that we convert to constant 2010 US dollars using CPI
deflators taken from the OECD. Goods are classified using 1992 Harmonized System (HS)
codes at the 6-digit level of disaggregation.

Concordances between classifications. Because the raw data underlying our analysis are
categorized using different classification systems, we employ multiple concordances between
these classifications to provide a coherent framework for analysis. We choose the most
disaggregated sectors in the 2002 BEA data as our endpoint classification system. This
classification, in which sectors are defined similarly to those in the 2002 US 6-digit NAICS
classification, allows us to retain a high degree of disaggregation in our analysis while avoiding
the potential problems that would arise in a crosswalk of our inter-sectoral input purchase
data from the BEA sectors into the more numerous HS goods categories.14

We implement a concordance methodology that enables us to first construct measures
of technology embodied in goods at the same level of disaggregation as the imports data
and second to measure the flow of technology embodied in goods imported from different US
sectors. The data downloaded from the Google Patents database is classified into different
IPC version 8 4-character technology subclasses.

For the first stage, we convert the data on patent counts, forward citations, stocks of
technology (the measurement of which we describe in Section 5.1.3), and backward citations
between technology subclasses into categories of goods.15 To do this, we use the concordance
developed by Lybbert and Zolas (2014) between technology subclasses and 2002 6-digit HS
codes and then crosswalk this data to 1992 6-digit HS codes. This first concordance is based
on an algorithm that uses keywords extracted from the 1992 HS code descriptions that are
matched with the text of patent titles and abstracts to construct probabilistic links between
the IPC technology subclasses of the matched patents and the HS goods categories.16

14There are no publicly available sources of data on input-output relationships across goods categorized by
disaggregated HS codes. The analysis sample used in our baseline specifications includes 292 sectors.

15See Appendix B for the procedure we use to calculate citations between technology categories.
16Related papers that use the concordances introduced by Lybbert and Zolas (2014) and extended to

other classifications in Goldschlag et al. (2020) include Kukharskyy (2020) and Hötte (2021), amongst others.
Kukharskyy (2020) uses the concordances with citations data to construct cross-sector knowledge linkages,
but applies these linkages to investigating how the applicability of multinational parent firms’ knowledge
capital for a foreign affiliate affects the ownership stake (the degree of integration) of the parent firm in its
affiliate. Hötte (2021) also constructs cross-sector knowledge linkages and combines them with production
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In the second stage, a series of crosswalks between 1992 HS codes and our endpoint 2002
BEA classification that provide us with weights used to map goods into sectors is overlaid
on the technology stocks, backward citations, and trade data. The crosswalks used are the
following: first from 1992 6-digit HS codes to 1987 4-digit Standard Industrial Classification
(SIC) codes, second from 1987 4-digit SIC codes to 2002 6-digit NAICS codes, and third
from these NAICS codes into the 2002 BEA classification. In applying the first two of these
crosswalks, mappings from 1992 HS codes to 2002 NAICS codes use weights derived from
the earliest available breakdown of employment by 2002 6-digit NAICS sector from County
Business Patterns (CBP) data.17 Similar procedures that leverage CBP-based employment
weights are used to crosswalk the data underlying the different vintages of the BEA Use
tables into the 2002 BEA sector categories.

3 Conceptual Framework

Before turning to our empirical analysis, we describe a stylized conceptual framework to guide
our analysis. Time is discrete and indexed by t = {0, 1, 2, ...∞}. The economy is populated
by a unit mass of identical and perfectly competitive firms in each sector of each country.
Because firms are identical, we refer to them by their country-sector-year (i, h, t) to simplify
notation. To be consistent with our data structure and the empirical approach described
in Section 5, we define three levels of sectoral aggregation—denote n as a summary sector
(the highest aggregation), h as a sector (the focus of our analysis), and p as a sub-sector (or
product). We also define the sets Ph as the set of sub-sectors p in sector h and n(h) as the
summary sector n that contains sector h.

Firms in each country produce innovations by investing in R&D, denoted by Rh
i,t, to

earn future profits πh
i,t+1 per innovation in the following period.18 Expected profits in period

t+ 1 can be written as Et[πh
i,t+1] = π̄i,t × π̄

n(h)
t × π̄h

i × euh
i,t where uh

i,t is an independent and
identically distributed random variable that is known to firms in period t. We use a broader
sector aggregation for sector-time expected profits to be consistent with our empirical strategy.

linkages to explore how different network characteristics of the knowledge and production IO tables are
associated with the level and growth of US sector-level output and patenting.

17The details of this procedure and links to the sources of all concordances used in this paper are provided
in Appendix B.

18We simplify the environment by assuming that firms only earn profits in the next period, but the model
would be equivalent if firms earned a stream of profits where the expected value was proportional to expected
profits.
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A firm (i, h, t) that invests Rh
i,t into R&D produces innovations in the next period at rate

Xh
i,t+1 =

(
Rh

i,t

ψh
i,t

) 1
ζ

(Zh
i,tS

h
i,t)

1
ζ

−1,

where ψh
i,t governs the relative cost of R&D across country-sector-years, Zh

i,t is the domestic
stock of relevant knowledge for sector h, and Sh

i,t is a spillover from the frontier of knowledge
(described below). We assume that the R&D cost parameter is equal to ψh

i,t = ψi,t × ψ
n(h)
t ×

ψh
i × evh

i,t , where vh
i,t is an independent and identically distributed random variable that, like

uh
i,t, is known to firms in period t. While we refer to Xh

i,t+1 as the rate of innovations, this
variable could be relabeled and interpreted as the quality of a given rate of innovations or
the quality-adjusted rate of innovations. We explore all three interpretations in the empirical
analysis.

Domestic knowledge Zh
i,t depends on the stocks of knowledge in different sectors of the

domestic economy and the relevance of those stocks of knowledge as inputs into innovation
for the innovating sector h. Domestic knowledge is given by

Zh
i,t =

l∏
GZ(

∑
p∈Pl

Kp
i,t)αl,h

i,t

where GZ(·) is a monotonic function that dictates the strength of spillovers from domestic
knowledge in an input sector. We set this function equal to GZ(x) = ωZ(1 +x)ηZ .19 The other
variables are the knowledge stock Kp

i,t of country-sub-sector-year (i, p, t) and the relevance of
knowledge from country-sector-year (i, l, t) for producing innovations in sector h, denoted by
αl,h

i,t .
Spillovers from the frontier economy depend on the stocks of knowledge embodied in

traded goods coming from the frontier economy. The sectoral flow of knowledge coming into
sector h from other sectors l depends on a Cobb-Douglas aggregator given by

Sh
i,t =

∏
l

GS

(
EmbTechl

F,i,t

)γl,h
F,t ,

where GS(·) is a monotonic function that dictates the strength of spillovers from the embodied
frontier technology. We set this function equal to GS(x) = ωS(1 + x)ηS in the empirical
specification. The frontier spillovers into sector h depend on embodied technology flows

19This specification of GZ(x) is consistent with our treatment of zeros in the empirical analysis. We show
that our results are robust to alternative specifications in Appendix C.
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from all other sectors l. The value of γl,h
F,t captures the strength of knowledge spillovers from

sector l to sector h in period t. We allow the strength of knowledge spillovers to be time
dependent to account for changes in technologies over this period. We also assume that the
relevance of frontier knowledge in sector l for innovating in sector h is determined in the
frontier economy, whereas the relevance of domestic knowledge for innovating is specific to
the domestic economy. This could be thought of as reflecting how differences in the types of
goods produced differences in the relevance of knowledge spillovers from embodied technology.

The flow of embodied technology in sector h is given by

EmbTechh
i,t =

∑
p∈Ph

(
mp

F,i,t ×Kp
F,t

)
,

where Kp
F,t is the frontier stock of knowledge in sub-sector p and mp

F,i,t = Mp
F,i,t/Y

h(p)
i,t is the

imports from the frontier economy to the domestic economy Mp
F,i,t divided by the sub-sector

output Y h
i,t. Unlike with domestic knowledge, we scale frontier knowledge by the relative

abundance of frontier goods in the domestic economy, as measured by mp
F,i,t. That is, frontier

knowledge spillovers depend on the extent to which knowledge is embodied within goods
that are available in the domestic economy (mp

F,i,t) and the amount of that knowledge
(Kp

F,t). Intuitively, our measure of embodied technology can be thought of as capturing the
probability that a domestic innovator encounters, through chance, a frontier good and, given
the encounter, the probability that the innovator realizes a new innovation (as in, for example,
Bloom et al., 2013; Lucas Jr. and Moll, 2014; Perla and Tonetti, 2014; Buera and Oberfield,
2020). In this regard, more abundant (higher mp

F,i,t) or more knowledge intensive (higher
Kp

F,t) products both increase domestic innovation.
The problem of a firm is to maximize expected profits net of R&D expenditures by choosing

R&D expenditure. Equivalently, the firm’s problem can be written as choosing the innovation
rate

Xh
i,t+1 = arg max

X
Xπh

i,t+1 − ψh
i,tX

ζ(Zh
i,tS

h
i,t)1−ζ

where the second term is the R&D cost paid by the firm for a given innovation rate. Solving
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the problem implies that firms innovate at rate

Xh
i,t+1 = ζ̃

∏
j

G


 ∑

p∈Ph

(
mp

F,i,t ×Kp
F,i,t

)γh,l
t

× Zh
i,t ×

 π̄i,t

ψi,t

× π̄
n(h)
t

ψ
n(h)
t

× π̄h
i

ψh
i

× euh
i,t−vh

i,t

 1
ζ−1

,

(1)

where ζ̃ = ζ−1/(ζ−1).
Taking the log of (1) and grouping variables implies that the innovation rate is given by

lnXh
i,t+1 = lnSh

i,t + lnZh
i,t + fi,t + f

n(h)
t + fh

i + ϵh
i,t, (2)

where fi,t = (ln π̄i,t − lnψi,t)/(ζ−1), fn(h)
t = (ln π̄n(h)

t − lnψn(h)
t )/(ζ−1), fh

i = (ln π̄h
i − lnψh

i )/
(ζ − 1), and ϵh

i,t = (uh
i,t − vh

i,t)/(ζ − 1). The expression in (2) provides the foundation for our
empirical strategy. In the next two sections, we describe the construction of the variables
that correspond to the values of Sh

i,t and Zh
i,t.

The conceptual framework highlights the relationship between imported embodied technol-
ogy and innovation outcomes. In the framework, the assumptions on the nature of expected
profits and investment costs are relatively flexible and capture many macroeconomic dif-
ferences across countries and sectors that may otherwise be of concern in estimating the
relationship. This would include, for example, country-specific business cycles, sector-specific
trends, such as digitalization, and time-invariant differences in the comparative advantage
of countries across different sectors. However, difficulties may arise if there are persistent
country-sector-specific shocks that drive both an increase in imports and innovation. To deal
with these issues, we separate the own-sector and cross-sector effects, since we expect these
issues to be most severe within sectors, and we develop an IV strategy. These remedies are
discussed in detail in Section 5.

4 Cross-Sector Knowledge Linkages

We use the conceptual framework as a roadmap for the empirical analysis. In this section, we
start by developing measures of the cross-sector relevance of knowledge αl,h

i,t and γl,h
F,t using

citation and production relationships between sectors. The linkages, together with import
data (Mp

j,i,t) and the stocks of knowledge (Kp
i,t) constructed using patent data, comprise

the main variables in the conceptual framework. We also use this section to highlight key
differences between the knowledge and production IO tables to shed light on our empirical
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identification.

4.1 Production and Knowledge Input-Output Tables

Our analysis estimates the effects of traded embodied technology on patenting outcomes. We
focus on two natural candidates to describe the relevance of knowledge in each sector for
generating innovations in other sectors. The first is knowledge input-output linkages, which
describe the relative flow of patent citations across sectors. This measure is clearly linked
with our focus on innovation outcomes since patent citations represent a direct report of
the flow of knowledge. The second is production input-output linkages, which describe the
relative flow of intermediate inputs across sectors. While less directly linked to innovation
outcomes, the use of intermediate inputs captures a channel through which knowledge can be
shared and diffused around the economy. We construct the measures of relevance using the
knowledge and production IO tables that characterize the strength of cross-sector linkages.

Denote the country-sector-year (j, l, s) patents cited by country-sector-year (i, h, t) patents
as Citesl,h

j,i,s,t. This variable captures the reported flow of knowledge from (j, l, s) to (i, h, t).20

The set of sectors is denoted by H and the set of countries by I.
Knowledge IO linkages, which measure the relevance of knowledge produced in each input

(cited) sector for each output (citing) sector, are constructed using the backward citations
made by patents. More specifically, let αl,h

i,t denote the knowledge IO linkage between sectors l
and h in country i. We allow for this relationship to change over time and base the relationship
in year t on patents filed between years t− τ̄ and t for some chosen lag τ̄ . The knowledge IO
linkage is given by

αl,h
i,t =

∑
j∈I

∑τ̄
τ=0

∑t−τ
s=0 Cites

l,h
j,i,s,t−τ∑

k∈H
∑

j∈I
∑τ̄

τ=0
∑t−τ

s=0 Cites
k,h
j,i,s,t−τ

. (3)

In our analysis, we set the maximum lag used in the construction of the knowledge IO
linkages to a ten-year window (τ̄ = 9) to allow for slow moving technological transitions.21

The knowledge IO linkages capture the country-sector (i, h) citations made by patents filed
over a ten-year window to all prior sector l patents from all countries as a share of total
citations made by country-sector (i, h) patents filed over the ten-year window.

20Similarly to the allocation of patents to countries, we weight each citation by the product of the cited
and citing patents’ fractional country weights based on their respective inventor country compositions. In
this notation, each year refers to the filing year of the relevant patents.

21For example, Berkes et al. (2022) find relatively gradual structural transformation in key patenting sectors
over a 100 year period. Similarly, Baslandze (2018) and Ayerst (2022) find that ICT diffusion affected patent
citations over this period, highlighting the need for dynamic knowledge IO linkages.
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Similarly, we measure production IO linkages as the importance of inputs produced in
each input sector for each output sector. Because the availability of highly disaggregated
data on cross-sector sales is comparatively limited, we focus on within-country transactions
in the US. We define βl,h

i,t as the analog to αl,h
i,t for the production IO table. The production

IO linkage is given by

βl,h
i,t =

Salesl,h
j,i,t∑

k∈H Salesk,h
i,t

, (4)

where Salesl,h
i,t is the total value of sector l goods sold to sector h in country i and year t.

Production IO linkages measure, for year t, the share of sales from sector l to sector h in
the total sales from all sectors to sector h. In our analysis, the linkages are based on US
data from the BEA Use tables as described in Section 2. Since the BEA Use tables are only
available at five year intervals, we use the production IO linkages constructed from the data
in each table for multiple years. For consistency with the measurement of production IO
linkages, we also use only knowledge IO linkages from the same years for which there is a
BEA Use table. In addition, to allow sectoral variation in exposure to technology inputs to
be determined in advance of exposure in a given year, we use IO linkages that are lagged
relative to the years in which exposure is measured. This lag in exposure variation is applied
to both knowledge and production IO linkages.22

4.2 Description of Knowledge and Production IO Tables

The construction of the knowledge and production IO tables relies on different data. However,
there is little point in examining the effects of embodied technology in knowledge and
production inputs separately if the two IO tables are identical. We now turn to illustrating
some stylized observations regarding the two IO tables demonstrate that they are different
potential sources of knowledge.

Both knowledge and production IO linkages take on values between zero and one. Values
closer to one indicate stronger relationships whereas values further from one and closer to
zero indicate weaker relationships. In Figure 1, we depict the knowledge and production IO
tables for the US economy in 2002, with values of αl,h

US,2002 represented in the left panel and
βl,h

US,2002 in the right panel. In each table, rows correspond to input sector l and columns
correspond to output sector h. The color of each cell depends on the size of the IO linkage

22To be more precise, we use αl,h
i,1992 and βl,h

i,1992 for exposure measured between 1995 and 2000, αl,h
i,1997 and

βl,h
i,1997 when we examine exposure between 2001 and 2005, αl,h

i,2002 and βl,h
i,2002 for years between 2006 and

2010, and αl,h
i,2007 and βl,h

i,2007 between 2011 and 2015.
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Figure 1: Input-Output Tables

Notes: Figure displays the knowledge and production IO tables where each point represents an IO linkage. The row position
of each output sector and column position of each input sector are held constant across both IO tables to facilitate visual
comparisons across tables. Sectors are sorted based on their economy-wide importance as suppliers of production inputs by
summing up the production IO linkages of each input sector over off-diagonal output sectors. The plots include the 291 2002
BEA sectors in agriculture, forestry, fishing and hunting, manufacturing, and mining with a non-zero sum of knowledge IO
linkages across input sectors. Knowledge (production) IO linkages are defined in Equation (3) (Equation (4)). Knowledge IO
linkages are based on backward citations of patents assigned to the US filed between 1993–2002 while production IO linkages
are based on the 2002 BEA Use table. Both plots only display IO linkages that account for at least 1% of the inputs used by
an output sector while all other IO linkages are visually suppressed.

between the input and output sectors. We plot only those IO linkages for which the input
sector accounts for at least 1% of the inputs used by the output sector. We also sort sectors
in the IO tables based on their relative importance as a source of production inputs across
output sectors to visually highlight the differences in the IO tables.

An immediate insight one can draw from Figure 1 is that there are clear differences in the
patterns of knowledge and production IO linkages for many sectors. We formalize this visual
intuition through three observations that highlight the differences between the knowledge
and production IO tables.23

Observation 1: The sources of knowledge and production inputs are not highly correlated
for the average sector.

23One can also clearly see that own-sector IO linkages along the diagonal are, in general, large relative
to off-diagonal IO linkages in both the knowledge and production IO tables. We discuss the importance
of own-sector versus cross-sector (off-diagonal) linkages both for the presentation of these observations in
Appendix A and for our empirical results in Section 6.
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Observation 2: The sources of production inputs are more highly concentrated than the
sources of knowledge inputs for the average sector.

Observation 3: The key input-supplying sectors are distinct in the knowledge and produc-
tion IO tables.

We relegate the construction and further discussion of these observations to Appendix A as
a comparison of the IO tables is tangential to our main objectives. That said, a key implication
of the observations is that the knowledge and production IO structures of the economy capture
different relationships between sectors and, consequently, may capture different potential
knowledge spillovers. Given this, in our baseline analysis we explore the diffusion of knowledge
through embodied technology weighted in two ways: using knowledge-IO linkages and using
production-IO linkages.

5 Empirical Specification

In this section, we describe the main empirical specification of our analysis and the construction
of key variables. Following Equation (2), our main regressions involve regressing innovation
outcomes on measures of embodied technology imports. We start by specifying our main
outcomes of interest. We then use the knowledge and production IO tables constructed in the
previous section to develop the main explanatory variables. Finally, we outline the empirical
analog of Equation (2) and an instrumental variable (IV) approach that we use to identify
the effects of spillovers from embodied technology imports.

5.1 Variable Construction

We now describe the main outcome and input variables in our analysis. Throughout the
analysis, we focus on the effects of imports from the US as we consider the US to be at
the technology frontier. We make this assumption for two main reasons. First, the US is
both the most innovative country and the largest originator of cross-country citations over
this time period (see Berkes et al., 2022, for evidence). In this regard, the US best captures
what we think of as the frontier economy. Second, setting the frontier economy to the US
allows us to be consistent with data measurement. After adjusting for time and sectoral
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variation, US patents have a consistent interpretation in our regressions.24 Further, the US
has consistent data available to construct both the production and knowledge IO tables
described in Section 4, which are necessary for our analysis.25

5.1.1 Sample

The unit of observation in the analysis is a country-sector-year. We limit our final panel of
data to the years 1995 to 2015. We restrict ourselves to this time span because in earlier
years there is a lack of trade data for many countries and including later years would cause
truncation issues for patents and forward citations, which are the main data used for our
innovation outcome variables.

We also limit the set of countries in our final sample based on the following criteria. First,
we drop countries if they have no triadic patents in any sector in any of the 21 years of
the panel. Second, we drop those that had a population of less than one million in 1995 to
avoid inclusion of countries where patenting outcomes may be too noisy. Third, we drop
those countries that have exports to GDP or imports to GDP ratios in 2015 above the 98th
percentile or below the 2nd percentile of those statistics amongst the remaining set of countries.
Fourth, we drop countries that have imports to GDP or exports to GDP ratios in 2015 that
are larger than one. These previous two conditions restrict our sample to countries that trade
for reasons unrelated to production or consumption, such as countries that primarily act as
intermediaries. Finally, we keep only those countries that are above the 25th percentile of
total triadic patents across all years amongst the remaining countries, which corresponds to
a cutoff of just under ten triadic patents over the sample. This restriction excludes countries
where innovations are either infrequent or of a relatively low quality from a global perspective.
We restrict based on triadic patents because it is a measure of quality that is unrelated to
citations, which may be influenced by country-specific factors. Additionally, while the 25th
percentile is a restrictive cutoff, many countries report zero or near zero triadic patents.
Including these countries would tend to bias our estimates downwards, since it would increase
instances of zero or near-zero patenting in a country-sector-year, and would generate noise
in our outcomes. Consistent with this expectation, we find substantially larger coefficient

24For example, patenting in other countries depends on the country’s institutional structure. Consequently,
we would be unable to aggregate our embodied knowledge variable across countries since the patent variables
represent different stocks of knowledge.

25The strength of the shock depends on the relevance of the US-sector knowledge for innovation in
downstream sectors in country i. We use the US production and citation IO structures to measure relevance.
Measuring consistent production linkages for other countries at the level of sectoral aggregation available for
the US is hard due to data limitations.
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estimates when we restrict our sample to the top 40 countries in terms of overall patenting
(see Appendix Table C.4).

5.1.2 Outcome Variables

We divide our outcome variables into innovation outcomes and diffusion outcomes. For both
groups, our baseline results include three sets of outcome variables.

Innovation Outcomes. The conceptual framework highlights the relationship between
frontier knowledge spillovers and innovation outcomes. There, the focus is on the rate of
innovation as the main outcome variable, which we measure in the data using both the rate
of patenting (P atents) and the citation-weighted rate of patenting (F wdCites). We also
look at the average quality of patents—measured by the number of forward citations per
patent (F wdRate)—to examine both the intensive and extensive margin effects of frontier
knowledge spillovers on innovation outcomes. We discuss the construction of each variable
below.

1. Patent Counts (P atents). Our first variable, Patentsh
i,t, is the count of patent

applications in country-sector-year (i, h, t). We take this measure from the Google
Patents database following the allocation rules described in Section 2.

2. Forward Citations (F wdCites). For patents filed by country-sector-year (i, h, t),
the number of forward citations received from patents applied for in the five years
following the filing year of the cited patents can be computed as

FwdCitesh
i,t =

∑
j∈I

∑t+5
s=t

∑
l∈H

Citesh,l
i,j,t,s. (5)

We focus on forward citations received in the first five years of a patents life to mitigate
truncation issues that would arise in later periods of the sample if citations received
in any year were used instead.26 We interpret forward citation-weighted patenting as
a measure of quality-adjusted patenting. We do not take a stance on whether the
expected coefficient for quality-adjusted patenting should be larger or smaller than that
of the raw patent count. The coefficient may be larger for quality-adjusted patenting if

26To simplify the construction of our data, we focus on the five year period measured using the calendar
year in which a patent is applied for. For example, a patent filed in June 2000 will include forward citations
up to December 31, 2005. We do not expect this choice to affect our results since our unit of measurement is
a year.
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higher-quality innovators receive larger spillovers and push low-quality innovators are
out of the market. Conversely, the coefficient may be smaller if domestic producers use
frivolous patent filings to protect their market share or to extract rents from foreign
entrants.

3. Forward Citation Rate (F wdRate). For patents filed by country-sector-year (i, h, t),
the rate of forward citations received per patent application is

FwdRateh
i,t =

FwdCitesh
i,t

Patentsh
i,t

. (6)

The forward citation rate is a measure of the average quality of patent applications. In
this regard, the forward citation rate is a measure of the intensive margin response to
a shock to frontier knowledge spillovers. As the denominator of this measure will be
zero for (i, h, t) observations with no patent applications, we must take a stance on the
treatment of zeros. We exclude such observations from the estimation sample.

Diffusion Outcomes. Patents and citations data are also used to examine direct evidence
on the extent to which trade of embodied technology is a source of technology diffusion and
leads to higher flows of knowledge from the US. Specifically, we use the backward citation
information underlying the knowledge IO table as a measure of cross-country knowledge flows.
We construct three outcome variables that measure the overall flow of backward citations
to US patents, the per-patent rate of backward citations to US patents, and the share of
backward citations to US patents in the total backward citations to foreign patents. The
measures are defined below.

1. US Backward Citations (USBackCites). The number of backward citations made
by patents in country-sector-year (i, h, t) to US patents filed in any year up to and
including year t in sectors other than sector h is

USBackCitesh
i,t =

∑t

s=0

∑
l ̸=h

Citesl,h
US,i,s,t. (7)

We exclude the own-sector backward citations from the outcome variable to be consistent
with the focus on cross-sector imports of embodied technology described below.27 That

27We look at the entire history of backward citations since backward citations do not suffer from the same
truncation bias in later periods as with forward citations. However, we expect that the estimated coefficient
will be biased downwards to the extent that more recently developed knowledge is embodied in traded goods.
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is, since our main shock is to cross-sector knowledge, we do not want to measure
own-sector knowledge flows.

2. US Backward Citations Rate (USBackRate). For patents filed by country-sector-
year (i, h, t), the average number of cross-sector backward citations to US patents per
patent application is

USBackRateh
i,t =

USBackCitesh
i,t

Patentsh
i,t

.

Similarly to the forward citation rate, we think of the backward citation rate as a
measure of the intensive margin of technology diffusion. Whereas the first diffusion
outcome measures the total amount of cross-sector knowledge that flows from the US
to sector h in country i, the second measures the intensity with which the typical sector
h patent uses that cross-sector imported embodied knowledge.

3. Backward Citation Share (USBackShare). Our final outcome variable is the
share of cross-sector foreign backward citations that are made to US patents by patents
filed in (i, h, t). Specifically, we construct the US backward citation share as

USBackShareh
i,t =

USBackCitesh
i,t∑

j ̸=i

∑t
s=0

∑
l ̸=h Cites

l,h
i,j,s,t

.

Relative to the other two outcomes, the backward citation share informs us on whether
knowledge inputs are substituted towards US knowledge in response to larger embodied
technology flows from the US. It is also possible that sectors in importing countries
cite more non-US foreign patents in response to that flow as they learn from those
patents as well as the US patents underlying our measurement of embodied technology.
This would lead to estimates of the effects of imports of embodied technology on this
variable to be small relative to the estimates of effects on the first diffusion outcome.

Summary Statistics. In our baseline specification described below, we measure outcome
variables using the average of the variables in the three-year window between year t and t+ 2.
Table 1 presents summary statistics of the main outcome variables used in our baseline analysis.
The counts of observations for FwdRate, USBackRate, and USBackShare are smaller
than for the other outcomes because, for FwdRate and USBackRate, the denominators
of these rates (Patents) are zero for some country-sector-year observations and because,
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for USBackShare, some observations have no cross-sector citations to foreign patents. The
summary statistics show that the distribution of Patents and FwdCites are highly skewed
with the median country-sector-year having values close to zero. The distribution of outcomes
based on backward citations are similarly skewed.

Table 1: Summary Statistics for Outcome Variables

N Median Mean SD

Patentsh
i,t 478,880 0.066 0.742 1.345

FwdCitesh
i,t 478,880 0.140 1.159 1.832

FwdRateh
i,t 361,290 1.430 1.434 0.746

USBackCitesh
i,t 478,880 0.295 1.478 2.089

USBackRateh
i,t 361,290 2.128 2.065 0.990

USBackShareh
i,t 356,457 0.498 0.486 0.197

Notes: All outcome variables are averaged over the three-year win-
dow t to t + 2. All statistics are calculated on the log of one plus
the variable except for the statistics for USBackShare.

5.1.3 Embodied Technology Imports and Other Controls

Our main variable of interest is the frontier knowledge spillovers (Sh
i,t in the conceptual

framework). We also describe the construction of knowledge stocks (Kp
i,t), an important input

in the knowledge spillovers, and the domestic stock of knowledge (Zh
i,t), which is used as a

control in our main specification.

Knowledge Stocks (Kp
i,t). Before turning to our main variables of interest, we discuss

the construction of knowledge stocks Kp
i,t since this is used as an input variable. We measure

the technological content of a sector’s goods using patent data. We follow Hall et al. (2001)
in using citation-weights to adjust for the relative quality of patents in the construction of
knowledge stocks. Specifically, we use forward citations in the first five years after a patents
application as our preferred measure of patent quality since this avoids issues with citation
truncation in later periods of the data and requires minimal structure in constructing a
comparable measure of quality.28 We construct the knowledge stock as

Kp
i,t = (1 − δ)Kp

i,t + FwdCitesp
i,t

28Additionally, Hall et al. (2001) note differences in the propensity to cite across sectors and that patenting
behavior has changed over time. In our baseline results we include industry and time fixed effects to address
these issues.
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where FwdCitesp
i,t is the five-year forwards citations in country-sub-sector-year (i, p, t); and

δ is the depreciation rate of knowledge, which we set to 5%, consistent with commonly used
values. For each country and sector, we initialize the stock of knowledge Kp

i,t in 1940 with
value Kp

i,1940 = FwdCitesp
i,t/δ. The initial value has relatively little influence the knowledge

stocks over the period of our analysis since it occurs over 50 years prior to the start of this
period.

Domestic Technology Stock (OwnT ech). The countries own stock of knowledge (Zh
i,t)

also enters into the expression for innovation in Equation (2) because it captures domestic
spillovers.29 We construct the measure of the domestic knowledge stock as

OwnTechh
i,t =

∏
l

(
1 +

∑
p∈Pl

wl(p)Kp
i,t

)αl,h
i,t

, (8)

where wl(p) is the concordance link discussed in Section 2. Higher values of OwnTech
capture that the country-sector-year (i, h, t) is more capable with the technology because
of its previous stock of innovations. We use the domestic knowledge IO linkages αl,h

i,t in the
construction because this is the best measure of the relevance of sector l knowledge in country
i for innovations in sector h.30

Embodied Technology (EmbT ech). Our main variable of interest reflects the amount
of useful technology embodied in imported goods. We do not impose structure on whether
knowledge flows between sectors are better captured by the knowledge or production IO
links. In this regard, we set the links γ in the conceptual framework to be a combination
of knowledge α and production β IO linkages. An important takeaway from our results is
the relative importance of knowledge and production linkages for innovation and diffusion
outcomes.

Following the conceptual framework, we measure the frontier knowledge spillover in two
steps. First, we construct the imported embodied technology flow as the product of the US
knowledge stock K l

US,t and US imports M l
US,i,t. Second, we weight the imported embodied

technology flow by the upstream knowledge and production IO tables. Our measure of
29This variable can also be thought of as capturing past frontier knowledge spillovers to the extent that

these become embodied within the domestic knowledge stock through innovations.
30We do not have consistent measures of production IO linkages for most country-years, which prevents us

from constructing a similar measure with βl,h
i,t .
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knowledge-weighted embodied technology imports is given by

EmbTechKh
i,t =

∏
l ̸=h

(
1 + (

∑
p∈Pl

wl(p)Kp
US,tM

p
US,i,t)

)αl,h
US,t

, (9)

and production-weighted embodied technology imports is given by

EmbTechP h
i,t =

∏
l ̸=h

(
1 + (

∑
p∈Pl

wl(p)Kp
US,tM

p
US,i,t)

)βl,h
US,t

. (10)

The amount of embodied technology depends on the flow of knowledge into country i from the
United States in every sector l. This flow is increasing in the volume of imports and the stock
of knowledge in sector l. Countries that spend more on sector l goods from the United States
have a higher flow of knowledge into them from that sector. For example, a larger volume of
imports could reflect more varieties of a sector’s goods being imported. Our measure reflects
the idea that as a country imports more, ideas upon which domestic innovators can build
become more readily available and in higher number. The effect of a flow of knowledge from
a given sector l is weighted by the tendency of that sector’s knowledge to be used in sector h.
Table 2 provides a summary of the two measures of embodied technology imports.

Table 2: Summary Statistics for Embodied Technology Imports

.
N Median Mean SD

ln(EmbTechKh
i,t) 478,880 16.057 15.718 3.243

ln(EmbTechP h
i,t) 478,880 13.129 12.604 4.088

We construct the measures of embodied technology from the value of US imports, rather
than trade scaled by output used in the conceptual framework, due to data limitations with
output data being unavailable at the level of aggregation we examine. A potential issue
with this construction is that higher imports could simply reflect that the destination is
economically larger or more populous.31 We include granular fixed effects as a best attempt
to deal with this issue. An alternative would be to use US import shares, i.e., US imports to
country i over all imports to country i. This construction leads to misleading conclusions
because trends in trade—e.g., all countries tend to trade more over this period—lead to
declining US import shares for most countries.

31It is also worth noting that this is not an issue with the US knowledge stock Kl
US,t since it is country

specific and captures the relative abundance of knowledge embodied within imports, meaning the level is
important for the interpretation of our results.
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We omit the own-sector component in the embodied technology spillover terms as within
sector imports and innovation outcomes can potentially be related to each other for multiple
reasons. One, within sector demand shocks can lead to countries importing more foreign
products to satisfy demand, while at the same time invest more in innovation effort in the
sector due to increased returns. A second concern is that own sector imports can also affect
innovation outcomes in a country through import competition effects, wherein firms may
invest more in innovation in order to escape foreign competition. Finally, productivity shocks
with a country-sector can also lead to both imports and innovation within the sector to move
together. We discuss this endogeneity concern further in Section 5.3.

Identifying and estimating the separate effects of knowledge linkages and production
linkages requires that there is sufficient variation across observations in our sample in these
two measures. To assess this, we regress the logs of both EmbTechK and EmbTechP on the
set of fixed effects included in our baseline specifications discussed in Section 5.2. In Figure 2,
we plot the fitted residuals from these regressions on top of which we overlay a line of best fit
from a regression of one set of residuals on the other. This figure demonstrates that for much
of the support of either of the residualized input measures, there is considerable variation in
the other residualized measure. The R-squared of the overlayed regression is 0.0039, while
the correlation of the two residualized input measures is 0.062. The substantial amount of
variation in our embodied knowledge and production input measures gives us confidence that
our results provide a comparison of the importance of imported knowledge and production
inputs from a frontier economy on our patenting outcomes.

Own-Sector Embodied Technology (EmbT echDiag) The Input-Output structures
explored in Section 4 show that own-sector inputs tend to be important in both the knowledge
and production IO tables. Given that imports of own-sector embodied technology inputs are
a likely source of technology diffusion, we also include them as a control in our empirical
specification. Specifically, we construct own-sector (the diagonal of the IO table) embodied
technology as

EmbTechDiagh
i,t = 1 +

∑
p∈Ph

wh(p)Kp
US,tM

p
US,i,t. (11)

We do not scale the knowledge inputs by the IO weights αl,l
US,t or βl,l

US,t since, as mentioned
above, we expect that this variable captures factors not directly related to the effects of
technology diffusion, such as import competition. Bloom et al. (2016) find that increased trade
with China between 2000 and 2005 led to an increase in patenting activity in European firms
that were more exposed to that competition (which was also the case for increased exposure
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Figure 2: Residualized Embodied Technology in Imports

Notes: Figure plots residuals of log(EmbT echP ) and log(EmbT echK) and the line

of best fit from the regression of the latter measure on the former. Residuals are

computed by regressing each measure on the set of fixed effects included in the

baseline specifications discussed in Section Section 5.2.

to trade from other low-wage countries).32 In contrast, they find that changes in import
penetration of high-wage countries like the US had no effect on patenting. Nevertheless, we
include this variable to mitigate concerns that the estimated effects of imported embodied
knowledge pick up these import competition effects.

5.2 Estimation Equation

We now present the empirical counterpart of Equation (2) in terms of our constructed variables
that we estimate:

ln(Outcomeh
i,t) = θ1 lnEmbTechKh

i,t−τ + θ2 lnEmbTechP h
i,t−τ + θ3 lnOwnTechh

i,t−τ

+ θ4 lnEmbTechDiagh
i,t−τ + V h

i,tβ + fi,t + f
n(h)
t + fh

i + ϵh
i,t,

(12)

where the outcomes were discussed previously; EmbTechKh
i,h,t−τ is the US knowledge flows

32Autor et al. (2020) find instead that import competition due to increased trade with China decreased
patenting activity in publicly listed US firms and technology classes more exposed to that competition. We
do not estimate effects of import competition from low-wage countries such as China in this paper.
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to country-sector (i, h) in period t− τ using the knowledge IO linkages; EmbTechP h
i,t−τ is

the US knowledge flows to the country-sector (i, h) in period t− τ using the production IO
linkages; OwnTechh

i,t−τ captures the stock of domestic knowledge in sector h for country i in
year t− τ ; V h

i,t is a vector of controls that includes own-sector imports from the world and
exports to the world in the baseline results; and fi,t, fn(h)

t and fh
i are country-year, (summary)

sector-year, and country-sector fixed effects. In the baseline regressions we average outcomes
over a three-year window from t to t + 2 to reduce noise and to allow for a more gradual
diffusion of knowledge. We also transform the outcome variable as ln(1 +Outcomeh

i,t) to keep
observations that have zero innovation/diffusion outcomes. We show that our results are
robust to other data transformations in Appendix C. We also present the results for the
model where outcomes are for period t only and the input variables are measured at lags
τ ∈ {1, 2, ..., 5}.

In all regressions, we allow for the possibility that the residuals are correlated across years
within a country-sector pair (due to serial correlation) and across countries in each year
within a sector (since much of the variation in our variables of interest is at the sector-year
level). To do so, we estimate multi-way clustered standard errors at the country-sector and
sector-year levels (Cameron et al., 2011).

We expect similar outcomes for the innovation and diffusion outcomes, with a few exceptions.
The coefficient estimates of θ1 and θ2 should be positive since our hypothesis is that spillovers
from embodied technology imports should improve innovation outcomes. We also expect that
the estimates for θ1 will in general be larger than for θ2 since the knowledge weights reflect a
more direct measure of the relevance of embodied technology imports for patenting. Similarly,
the estimate of θ3 should be positive for the rate of innovating (Patents and FwdCites) but
may be ambiguous for the quality of patents if higher knowledge stocks correspond to higher
rates of low-quality innovations. For diffusion outcomes, the estimate of θ3 should be positive
for overall US citations and near zero for the other outcomes. Finally, the coefficient estimate
of θ4 is also ambiguous since the variable captures both embodied technology imports but
also higher competition from US firms, which would tend to discourage domestic innovation.

5.3 Endogeneity Concerns

The fixed effects in Equation (12) control for time-invariant characteristics of country-sector
pairs, factors that vary at the country level over time, and sector-year shocks that are common
to sectors within a summary sector. Despite the inclusion of these fixed effects, there remain
potential endogeneity concerns with our regressors of interest.
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One possibility is that variation across country-sector-years in the amount of useful
technology embodied in a country’s imports in prior years could reflect demand shocks for
those inputs that also directly affect patenting outcomes. For example, shocks to expected
profits, captured by uh

i,t in the conceptual framework, would both increase R&D investment
but also the imports of intermediate inputs used in the production of goods in (i, h, t).33

If these shocks were serially correlated, there would be a spurious positive correlation
between innovation output and imports of embodied technology in past years arising from
the profitability shocks. Since there is no data available on R&D expenditures at the level of
sectoral disaggregation used in our analysis, we cannot control for these innovation inputs
which may cause an omitted variable bias to affect our estimates.

To address this concern, we use an instrumental variable strategy that focuses on variation
in US imports that is a function of supply shocks to US exports. Specifically, we instrument
each regressor that includes US imports with an instrument that constructs the variable
using US exports to all countries outside of a country-specific cluster (discussed below). For
our main outcomes, we construct the instrumental variables as

IV EmbTechKh
i,t =

∏
l ̸=h

(1 + (K l
US,t

∑
j ̸∈Gi

M l
US,i,t))αl,h

US,t , (13)

and

IV EmbTechP h
i,t =

∏
l ̸=h

(1 + (K l
US,t

∑
j ̸∈Gi

M l
US,i,t))βl,h

US,t . (14)

where Gi is a cluster of countries with similar characteristics to country i. For each country i,
we construct the cluster Gi as the countries that fall into both the same quintile of GDP-per-
capita and total trade (imports plus exports) to GDP ratio as country i. For the cluster Gi, we
first construct two groupings of countries based on quintiles of GDP-per-capita and quintiles
of total trade (imports plus exports) divided by GDP. We include the first variable to capture
similarities in technological development across countries and the second variable to capture
similarities in trade structures across countries. Our instrumental variable strategy isolates
trade to the domestic country that stems from supply shocks to the US. Intuitively, the
leave-one-out instrument excludes the domestic economy to avoid counting changes in trade
that result from demand shocks. We extend this logic by not only excluding the domestic
economy but also countries that share similar characteristics and, consequently, may have

33We do not explicitly model demand for production inputs from different sectors and instead implicitly
subsume them into the expected profit function.
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correlated demand shocks.

6 Results

In this section, we discuss the results from estimating knowledge-weighted and production-
weighted embodied technology imports measured on the innovation and diffusion outcomes.
We begin by discussing estimates using the baseline specifications described in Equation (12).
We show that our main conclusions hold at different lags. We also use the empirical model to
provide a quantification of the magnitude of the results. We close this section by discussing
the robustness of the results to other considerations and concerns.

6.1 Baseline Results

Table 3 presents the main innovation results for both the OLS and IV estimates, which we
interpret as Xh

i,t in the context of the conceptual framework. As previously mentioned, all
regressions include country-sector, summary sector-year, and country-year fixed effects as
described in the model and standard errors are clustered at the country-sector and sector-year
levels.

The OLS results in columns (1) to (3) suggest that knowledge-weighted embodied technol-
ogy imports EmbTechK has a positive impact on the innovation rate as measured by Patents
and FwdCites. Despite a larger point estimate for FwdCites and a positive point estimate
for FwdRate, the OLS results do not point to a statistically significant increase in FwdRate.
Qualitatively, production-weighted embodied technology EmbTechP has a similar affect on
the innovation rate as EmbTechK. That said, the elasticity is substantially lower, less than
a quarter for Patents, suggesting that technology spillovers are primarily through knowledge
linkages. We show later that the broad quantitative comparison holds after accounting for
the relative variation in EmbTechK and EmbTechP .

The IV estimates in column (4) to (6) are larger and, for the case of FwdRates also
statistically significant compared with the OLS results. For Patents and FwdCites the IV
coefficient estimate is around twice as large as the OLS estimate for the knowledge-weighted
embodied technology imports. The coefficient estimates is also larger for production-weighted
embodied technology imports. The coefficient estimates remain larger for the knowledge-
weighted embodied technology imports consistent with our expectations that patent citations
more accurately reflect the relevant knowledge for innovating. That said, the estimates for the
production-weighted embodied technology imports are positive and statistically significant
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Table 3: Innovation Outcomes

OLS IV

(1) (2) (3) (4) (5) (6)
Patents FwdCites FwdRate Patents FwdCites FwdRate

ln(EmbTechK) 0.018*** 0.027*** 0.007 0.041*** 0.059*** 0.024***
(0.003) (0.004) (0.005) (0.008) (0.011) (0.009)

ln(EmbTechP ) 0.004*** 0.004*** 0.000 0.006*** 0.006*** -0.000
(0.001) (0.001) (0.001) (0.001) (0.002) (0.001)

ln(EmbTechDiag) 0.000 -0.000 0.002 0.061*** 0.078*** 0.009
(0.000) (0.001) (0.001) (0.010) (0.014) (0.011)

ln(OwnTech) 0.011*** 0.031*** -0.011*** 0.011*** 0.030*** -0.011***
(0.001) (0.002) (0.002) (0.001) (0.002) (0.002)

Observations 478,880 478,880 361,290 478,880 478,880 361,290
F-Stat1 4467 4467 10890
F-Stat2 15029 15029 20754
F-Stat3 396 396 483

Notes: All dependent variables are first averaged over the three-year window t to t+2, and transformed as follows: ln(1+Outcome),

where Outcome is the variable specified on column titles. Other controls include Lags of log total exports to world and log

total imports to world. The following fixed effects are included in each column: Country*Sector, Country*Year, and Summary-

Sector*Year. All standard errors are clustered twoways: Country*Sector and Sector*Year

indicating that the production process captures some element of the relevance of knowledge
linkages.

The remaining coefficient estimates are in line with expectations. The coefficients for
OwnTech are positive for the patenting rate and negative for the quality of patents. This
suggests that, at the margin, a higher stock of knowledge corresponds to more low-quality
innovators, perhaps due to selection effects. The coefficient for EmbTechDiag is positive
in the IV estimates suggesting that additional spillovers from same sector imports. We do
not focus on the spillovers through this channel for the aforementioned difficulties with
interpretation. That said, the positive and relatively large coefficient estimate as well as
the overall important of own-sector linkages (Section 4) imply that the first two coefficient
estimates should be taken as a lower bound of spillovers from embodied technology imports.

Table 4 presents the main diffusion results for both the OLS and IV estimates. Since the
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signs in the IV estimates are the same as the OLS and the bias is in the same direction as in
Table 3, we discuss the two sets of results together. The coefficient estimates for USBackCites
are positive for both the knowledge-weighted and production-weighted embodied technology
imports. To some extent, this follows from the previous result since more frequent patenting
implies more backward citations to the US, all else equal.

Table 4: Diffusion Outcomes

OLS IV

(1) (2) (3) (4) (5) (6)
USBackCites USBackRate USBackShare USBackCites USBackRate USBackShare

ln EmbTechK 0.034*** 0.006 0.000 0.081*** 0.013 -0.000
(0.006) (0.006) (0.001) (0.016) (0.010) (0.002)

ln EmbTechP 0.007*** 0.002** 0.001* 0.011*** 0.001 0.000
(0.002) (0.001) (0.000) (0.003) (0.001) (0.000)

ln EmbTechDiag 0.000 0.003** 0.001** 0.127*** 0.037*** 0.008***
(0.001) (0.001) (0.000) (0.021) (0.013) (0.003)

ln OwnTech 0.045*** -0.014*** -0.000 0.044*** -0.014*** -0.000
(0.003) (0.003) (0.001) (0.003) (0.003) (0.001)

Observations 478,880 361,290 356,457 478,880 361,290 356,457
F-Stat1 4467 10890 11432
F-Stat2 15029 20754 21440
F-Stat3 396 483 472

Notes: All dependent variables are first averaged over the three-year window t to t+2, and transformed as follows: ln(1+Outcome),

where Outcome is the variable specified on column titles except for USBackShare. Other controls include Lags of log total

exports to world and log total imports to world. The following fixed effects are included in each column: Country*Sector,

Country*Year, and Summary-Sector*Year. All standard errors are clustered twoways: Country*Sector and Sector*Year

For USBackRate and USBackShare the IV estimates for the coefficients are statistically
insignificant. The results suggest that while knowledge-weighted and production-weighted em-
bodied technology imports improve innovation outcomes, knowledge may diffuse through chan-
nels that do not result in citations. That said, the estimates of EmbTechK for USBackRate
are more mixed than when looking beyond Table 4. In many of the robustness tables in
Appendix C the coefficient estimate becomes statistically significant at standard levels. This
is consistent with the relative point estimate for USBackCites, which is almost twice as
large as the point estimate for Patents in Table 3. However, there is less evidence in favor of
the estimates for USBackRate and the production-weighted embodied technology imports.
We expect that for both USBackRate and USBackShare the estimated coefficient is biased
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downwards since our measure of backward citations is noisier than for Patents and FwdCites,
with USBackShare being the nosiest measure. Specifically, our measure includes citations
on any previous US patent, many of which may include innovations that were already well-
understood in the domestic economy. Additionally, many countries may not require domestic
patents to cite foreign patents making backward citations a noisy measure of diffusion.34

Another possibility is that innovators learn more broadly from embodied technology imports
than from US patents. For example, an innovator may learn about the French innovation
that is built on by the US product and cite that patent instead. In this regard, we think of
both USBackRate and USBackShare as being relatively strict measures of diffusion.

6.2 Lags

The results in Table 3 and Table 4 average the outcome variables over a three-year window, in
part, to control for the gradual diffusion of technology. Diffusion is a gradual process that may
take several years before knowledge spillovers from embodied technology imports are realized
in patentable innovations. For this reason, we estimate Equation (12) with the outcome
variable measured at period t (rather than a three-year window) and the regessors taken at
lags τ ∈ {1, 2, ..., 5}. Figure 3 summarizes the coefficient estimates for the two measures of
embodied technology imports. In all regressions the set of controls are the same as in the
baseline regressions. We only present the results for FwdCites and USBackCites in the
main text for brevity and provide the remaining figures in Appendix C.

The results at different lags are similar in magnitude to the baseline results, with higher
lags being stronger for EmbTechK and relatively stable for EmbTechP . There is a similar
pattern for coefficient estimates related to the other innovation and diffusion outcomes, where
the statistical significance of the estimated coefficients are similar to the baseline results.
We view this as supportive evidence for averaging the outcome variables in the baseline
results over a three-year window since the results point to diffusion being relatively gradual.
Consistent with this view, we find larger, albeit quantitatively similar, point estimates if
instead the outcome is averaged over a five-year window (Appendix C).

34Our choice to allocate patents based on the location of the innovator would add noise to both measures.
For example, a citation to a patent with 50% US innovators and 50% French innovators would not increase
USBackShare even if local innovators learned about the patent through interactions with the US innovators
US employer.

32



Figure 3: Main Outcomes Estimated at Different Lags

(a) FwdCites (b) USBackCites

Notes: Coefficient estimates for F wdCites and USBackCites for five models, Equation (12), in which the lag is set to

τ ∈ {1, 2, ..., 5}. Outcome variables are calculated as there value in period t.

6.3 Quantitative Significance

To further understand the quantitative magnitude of the results, we examine the relative
magnitude of the variation in the outcomes and the implied variation of outcomes attributable
to the model variables. The results are summarized in Table 5. We focus on the residualized
standard deviation (RSD) of the explanatory variables which is calculated as the standard
deviation of the variable after removing the effect of all other regressors as well as fixed effects
used in the baseline specification. The variation in the outcome variables is captured by the
RSD of the outcome variable in question after removing the effect of the fixed effects. We do
this to remove both variable trends as well as cross-country and cross-sector variation in the
variables. These differences are important for both the outcomes (e.g., increases in patenting
over time) and embodied technology imports (e.g., increase in trade over time). However,
these trends are not important for understanding the economic significance of the coefficient
estimates.35 Using the residualized variables, we calculate the RSD implied by the model
estimates and scaled by the total RSD of the outcome variable.

The table shows that, together, EmbTechK and EmbTechP explain 9% of the residual-
ized variation in Patents and slightly less for FwdCites and USBackCites. Additionally,
EmbTechK explains around 2% of the variation in FwdRate. Consistent with the earlier sum-

35For example, the inability of the empirical model to explain a secular trend in patenting over time is not
informative to understanding the importance of embodied technology imports.
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Table 5: Quantitative Significance

Coefficient RSD Relative Implied RSD (%)

Outcome RSD EmbTechK EmbTechP EmbTechK EmbTechP EmbTechK EmbTechP

Patents 0.187 0.041 0.006 0.368 1.201 8.1 1.1
FwdCites 0.317 0.059 0.006 0.368 1.201 6.8 0.7
FwdRate 0.481 0.024 0 0.368 1.201 1.8 0
USBackCites 0.425 0.081 0.011 0.368 1.201 7.0 0.9
USBackRate 0.606 0.012 0.002 0.368 1.201 0.7 0.1
USBackShare 0.142 -0.001 0 0.368 1.201 -0.2 0.1

Notes: RSD refers to residualized standard deviation and is calculated as the standard deviation of the variable after controlling

for the fixed effects used in the baseline specification, Equation (12), for the embodied technology import measures and the other

regressors for the outcome variables. Coefficient estimates are from Table 3 and Table 4. Relative Implied RSD is calculated as

the estimated coefficient multiplied by RSD of the EmbT echK and EmbT echP divided by the RSD of the outcome variable.

mary statistics, the table also shows that there is more residualized variation in EmbTechP ,
which increases its relative quantitative importance, but this gap is not large enough to offset
the differences in coefficient estimates found in Table 3 and Table 4. The net impact of a one
RSD shock to the production-weighted embodied technology imports is around one seventh
the magnitude of the knowledge-weighted embodied technology imports, consistent with our
earlier takeaway that the technology spillovers are mostly through knowledge linkages.

6.4 Robustness Checks

We conclude this section with a discussion of the robustness of the main results to alternative
specifications. Overall, we find similar coefficient estimates. The tables are provided in
Appendix C.

Alternative Instruments Our baseline instrument isolates US supply shocks by examining
US exports to all countries outside of a country’s cluster. We construct the cluster as the
set of countries that fall in the same quintiles of GDP-per-capita and total trade (exports
plus imports) to GDP. We also construct alternative instruments using both the traditional
leave-one-out instrument, which can be viewed as a cluster with a single country, and an
instrument using all other countries within the country’s cluster. In both cases, the results hold
with similar significance as our baseline results. In the latter case, the coefficient estimates
for USBackRate is also positive and statistically signficant.
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Country Sample We also consider an alternative specification where we restrict the sample
of countries to the top 40 countries based on the total number of patents. We find larger
point estimates for the main outcomes, which we take as being suggestive that patenting
does not fully capture innovative activity in many lower patenting countries. Additionally, in
many of these countries, patenting as an institution may be prohibitively expensive, provide
insufficient protection, or simply be underdeveloped.

Alternative Knowledge Transformations In our baseline specification, we take one
plus embodied technology to avoid excluding zero-valued observations. We find similar results
using both the log variable (excluding zeros) and the asinh transformation of embodied
technology. In the former case we also find that the coefficient estimate for USBackCites is
positive and statistically significant.

Alternative Knowledge Stocks In the baseline variables, we construct knowledge stocks
Kh

i,t using the forward citations rates. Forward citations allow for a control on the relative
quality of patents in the measure of knowledge stocks. We show that the results are robust to
constructing knowledge stocks with raw patent counts.

Other Results and Controls We find similar results when we focus on alternative
outcomes, such as including the own-sector outcomes in our diffusion measures and limiting
our outcomes to triadic patents. In both cases we also find that USBackRate is positive and
statistically significant. We also find similar results for Patents, FwdCites and USBackCites
when we restrict country-sector-year observations with positive patents.

7 Conclusion

Innovation activities are highly concentrated in a small number of countries, but new tech-
nology eventually diffuses to other countries. One potentially important channel through
which technology diffuses across borders is international trade of goods, since importers can
learn about the technology embodied in those goods. This paper assesses the extent to which
knowledge and production inputs in traded goods contribute to the diffusion of technology
and to the amount and quality of innovations developed in importing country-sector pairs.

To do this, knowledge and production IO tables are constructed using data on inter-sectoral
patent citations and sales. These measures of the relevance of goods from different input
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sectors as inputs into the creation of new innovations and the production of goods in different
output sectors are combined with a measure of the stock of technology embodied within
sectors’ goods and data on sector-level trade flows between countries to construct measures
of knowledge-weighted and production-weighted technology embodied in imports. We show
that increases in both measures of embodied technology lead to higher rates of innovation in
an importing country-sector pair.

Our results point to important directions for future research, including towards developing
a better understanding of the mechanisms underlying the trade channel of technology diffusion.
For example, since knowledge linkages are a more important source of diffusion than production
linkages and the sources of knowledge linkages are distinct from the sources of production
linkages, diffusion through trade of goods may not primarily occur within the firm-to-firm
relationships that underpin our sector-level import data and instead there may be spillovers
to other firms in importing countries. Future work using firm-level data can investigate the
presence of these spillovers through knowledge IO linkages. The estimated elasticities in this
paper could also be used to discipline a quantitative model of cross-country and cross-sector
technology diffusion through trade. This would allow for an evaluation of the aggregate
growth and welfare implications of accounting for this channel of diffusion and adding it to
the potential effects of trade policy on innovation.
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Appendix A Comparison of IO Tables

In this appendix, we provide a descriptive comparison of the knowledge and production IO
tables of the US economy and highlight three observations that emerge from the exercise.
Throughout this analysis, we focus on the knowledge IO table constructed using the 1993–2002
window of US patent applications and the production IO table constructed using the 2002
BEA Use table as in Section 4.1.36

Appendix A.1 Correlations of IO Linkages

Our empirical analysis, which compares the effects of imports of technology embodied in
knowledge and production inputs on patenting outcomes, depends to a large extent on there
being distinct variation in the sources of those inputs for the average sector in order to draw
the inferences that we do. That this is the case may seem immediate from visual inspection
of Figure 1, but here we formalize this underpinning of our analysis. At a high level, the
correlation of αl,h

US,2002 and βl,h
US,2002 across all 84,681 sector-pair IO linkages (for the 291

sectors) is 0.211, while for the off-diagonal IO linkages it is 0.169.
While this is reassuring, we are primarily concerned with the potential that knowledge and

production input sources are highly correlated on average within output sectors. To address
this, we compute the linear (Pearson) and rank (Kendall adjusted for ties) correlations of
αl,h

US,2002 and βl,h
US,2002 across all input sectors l for each output sector h. The former of these

measures evaluates the covariance between knowledge and production inputs and hence their
cardinal relationship while the latter evaluates the similarity of the rankings of knowledge
and production input sources and hence their ordinal relationship. In Appendix Figure A.1,
we plot the distributions of these correlations. One can see that while there are some sectors
for which knowledge and production input sources are highly correlated, this is not the case
for the vast majority of sectors.

More formally, we display summary statistics of these distributions in Appendix Table A.1.
We also include statistics for the distributions of correlation coefficients computed using
only off-diagonal IO linkages to show that differences in the intensity of use of own-sector
knowledge and production inputs is not driving these low average correlations. We now state
our first observation regarding the comparison of the knowledge and production IO tables.

36Although we make use of dynamic knowledge IO tables as inputs into our regression analysis, the purpose
of this appendix is not to describe the evolution of IO tables over time but instead to demonstrate that the
sources of knowledge and production inputs are distinct for the average sector.
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Appendix Figure A.1: Distributions of Correlation Coefficients of IO Linkages
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Notes: Figure plots the distributions of correlation coefficients of IO Linkages. Coefficients are computed as the correlation of
knowledge and production IO linkages across all input sectors for each output sector. The left panel displays the distribution
of the Pearson’s linear correlation coefficients while the right panel displays the distribution of the Kendall’s rank correlation
coefficients (adjusted for ties). IO linkages are defined in Section 4.1.

Appendix Table A.1: Summary Statistics of IO Linkage Correlation Coefficients

Min Max Median Mean Std. Dev.

All Inputs
Pearson -0.022 0.861 0.171 0.236 0.212
Kendall 0.030 0.334 0.202 0.199 0.055

Off-Diagonal Inputs
Pearson -0.027 0.861 0.133 0.186 0.195
Kendall 0.021 0.329 0.195 0.193 0.056

Notes: Table reports summary statistics of the distributions of correlation coefficients of IO linkages for the 291 output
sectors plotted in Figure 1. Pearson is the linear correlation between knowledge and production IO linkages. Kendall is the
rank correlation (adjusted for ties) of the knowledge and production IO linkages. Coefficients for off-diagonal sectors omit the
own-sector IO linkage in the calculation. Std. Dev. is the standard deviation. IO linkages are defined in Section 4.1.

Observation 1: The sources of knowledge and production inputs are not highly correlated
for the average sector.

Appendix A.2 Concentration and Sparsity of IO Linkages

Next, we investigate another major difference between the knowledge and production IO tables:
knowledge inputs tend to be drawn from a wider range of sectors and are less concentrated
across input sectors than are production inputs.
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Appendix Figure A.2: Distributions of Concentration and Sparsity of IO Linkages

Notes: Figure plots the distributions of the concentration and conditional indegree measures of knowledge and production IO
linkages across output sectors. The left panel displays the distributions of concentration measured by the HHI. The right
panel displays the distributions of conditional indegrees for the condition c = 1%. The HHI and conditional indegrees are
defined in text. IO linkages are defined in Section 4.1.

To demonstrate this, we compute two measures of the concentration or sparsity of input
sources for each output sector using the knowledge and production IO linkages. First, we
calculate the Herfindahl-Hirschman Index (HHI) of knowledge and production IO linkages
for each output sector. For output sector h, these indices are defined as HHI-Kh

US,2002 =∑
l∈H(αl,h

US,2002)2 for knowledge IO linkages and HHI-Ph
US,2002 = ∑

l∈H(βl,h
US,2002)2 for production

IO linkages. Second, we construct conditional indegrees (CID) for both IO tables that measure
the number of input sectors that have an IO linkage with an output sector that is larger
than some threshold level c.37 For output sector h, the conditional indegree for knowledge
IO linkages is CID-Kh

US,2002(c) = ∑
i∈H 1(αl,h

US,2002 ≥ c) and for production IO linkages is
CID-Ph

US,2002(c) = ∑
i∈H 1(βl,h

US,2002 ≥ c), where 1(·) is the indicator function.
In Appendix Figure A.2, we depict the distributions of the HHI and CID measures for both

knowledge and production IO linkages. These graphs show that the mass of the distribution
of the concentration of knowledge IO linkages lies to the left of that of the distribution of

37As a matter of terminology, we align the meaning of indegree with that of an input sector. However, other
authors such as Cai and Li (2019) refer to what we call indegrees as outdegrees in the context of knowledge IO
linkages because citations, the data that underlie these measures, flow from an output sector (or technology
subclass) to an input sector (technology subclass).
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Appendix Table A.2: Summary Statistics of IO Linkage Concentration Measures

Min Max Median Mean Std. Dev.

All Inputs
HHI-Kh

US,2002 0.014 0.303 0.039 0.051 0.038
HHI-Ph

US,2002 0.035 0.823 0.141 0.186 0.142
CID-Kh

US,2002(1%) 9 34 22 21.550 4.591
CID-Ph

US,2002(1%) 3 30 15 14.509 5.474

Off-Diagonal Inputs
HHI-Kh

US,2002 0.013 0.297 0.035 0.043 0.030
HHI-Ph

US,2002 0.037 0.888 0.142 0.197 0.168
CID-Kh

US,2002(1%) 11 34 24 23.533 4.770
CID-Ph

US,2002(1%) 3 30 15 15.447 5.597

Notes: Table reports summary statistics of the distributions of the Herfindahl-Hirschman Index (HHI) and conditional
indegree (CID) of IO linkages for the 291 output sectors plotted in Figure 1 and for both knowledge and production inputs.
For measures computed using off-diagonal sectors, own-sector IO linkages are omitted from the denominators of the IO
linkages defined in Section 4.1. The HHI and CID measures are defined in text. The CID measures count IO linkages that are
at least 1%. Std. Dev. is the standard deviation.

the concentration of production IO linkages while the reverse is true for the distributions of
conditional indegree measures.

Appendix Table A.2 lists summary statistics of these distributions as well as the distri-
butions of the HHI and CID statistics computed using only off-diagonal input sectors. For
this latter group of distributions, we modify the definitions of the knowledge and production
IO linkages such that, for output sector h, the denominators of Equation (3) and Equa-
tion (4) only sum over input sectors l ̸= h.38 Knowledge IO linkages are less concentrated
than production IO linkages, in part because for the average output sector there are fewer
significant knowledge input sectors than production input sectors (where significant means
larger than 1% here). We interpret this contrast between the two IO tables as implying that
the production IO table is more sparsely connected than the knowledge IO table. This figure
and table lead us to our second observation on the differences between the knowledge and
production IO tables.

Observation 2: The sources of production inputs are more highly concentrated than the
sources of knowledge inputs for the average sector.

Appendix A.3 Key Input Sectors

The last major distinction between the knowledge and production IO tables that we explore
is the difference between the input sectors that are important suppliers of inputs throughout

38This ensures that the shares used to compute the HHI sum to one.
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the economy across the two tables. To do this, we consider alternative measures of the
economy-wide importance of input sectors and show using each of these measures that the
ranking of input sector importance varies across the knowledge and production IO tables.

In particular, we consider three network centrality measures that characterize input sec-
tor importance. First, we compute the conditional outdegree (COD) of each input sector
analogously to the CID measures discussed in Appendix A.2. For input sector l, these
outdegrees are COD-Kl

US,2002(c) = ∑
h∈H 1(αl,h

US,2002 ≥ c) for knowledge IO linkages and
COD-Pl

US,2002(c) = ∑
h∈H 1(βl,h

US,2002 ≥ c) for production IO linkages. Second, we use the (un-
conditional) weighted outdegree (WOD) of input sectors with WOD-Kl

US,2002 = ∑
h∈H α

l,h
US,2002

for knowledge IO linkages and WOD-Pl
US,2002 = ∑

h∈H β
l,h
US,2002 for production IO linkages.

Finally, we calculate the authority weight centrality (AWC) developed by Kleinberg (1999)
that represents the contribution of each input sector to the entire knowledge or production IO
table and is determined simultaneously with the hub weight centrality (HWC) that represents
the absorption of inputs of each output sector from the knowledge or production IO table.39

In our context, these measures are defined by

AWC-Kl
US,2002 = λK

∑
h∈H

αl,h
US,2002HWC-Kh

US,2002,

HWC-Kl
US,2002 = µK

∑
h∈H

αh,l
US,2002AWC-Kh

US,2002,

AWC-Pl
US,2002 = λP

∑
h∈H

βl,h
US,2002HWC-Ph

US,2002,

HWC-Pl
US,2002 = µP

∑
h∈H

βh,l
US,2002AWC-Ph

US,2002,

where λK (λP ) and µK (µP ) are the Euclidean norms of the vectors of {AWC-Kl
US,2002}l∈H

({AWC-Pl
US,2002}l∈H) and {HWC-Kl

US,2002}l∈H ({HWC-Pl
US,2002}l∈H), respectively.

To illustrate that the key input sectors are different across the IO tables, we reproduce
versions of Figure 1 in which we reorder sectors according to the ranking of sectors by these
three centrality measures. In Appendix Figure A.3, we order sectors in each panel by the
rank of sectors of the corresponding centrality measure in the knowledge IO table. sectors
follow the same order in the plot of both the knowledge and production IO tables.

It is clear from Appendix Figure A.3 that the importance of a sector as a supplier of inputs
in the knowledge IO table is not highly related to the importance of the sector as a supplier

39Cai and Li (2019) document that the authority weight centralities of sectors and patent technology classes
are important determinants of sector-level and firm-level innovation activity.
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Appendix Figure A.3: Key Input Sectors in the Knowledge IO Table

Notes: Figure plots the knowledge and production IO tables with sectors ordered by the rank of the centrality measures
constructed using knowledge IO linkages. Within each panel, the row position of each output sector and column position of
each input sector is held constant across both IO tables. Panel A ranks sectors by the conditional outdegrees for the condition
c = 1%. Panel B ranks sectors by the weighted outdegree. Panel C ranks sectors by the authority weight centrality. Each
centrality measure is defind in text. IO linkages are defined in Section 4.1. Knowledge IO linkages are based on backward
citations of US patents filed between 1993–2002 while production IO linkages are based on the 2002 BEA Use table. All plots
only display IO linkages that account for at least 1% of the inputs used by an output sector.
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of inputs in the production IO table.40 We close this section by stating our third observation
from comparing the US knowledge and production IO tables.

Observation 3: The key input-supplying sectors are distinct in the knowledge and produc-
tion IO tables.

Appendix B Data Appendix

Google Patents Data. Our knowledge IO linkages, stocks of technology, and diffusion
and innovation outcomes are constructed using data from the Google Patents Public Data
available from IFI CLAIMS Patent Services and Google (2022). This paper uses the November
2021 version of the database, which includes patents applied for at 105 different national and
regional patent offices between 1782 and 2021 with patent inventors located in 242 different
countries and regions.41 Each patent used in our analysis is linked to the patents it cites
(from any year since 1782) and the patents that cite it (through 2021).

We draw data from Google Patents at the patent family level, where a patent family is the
collection of all applications for a given innovation. A patent application to a patent office
potentially comprises multiple patent documents submitted to that office or that are produced
in the examination and granting process. Some of these documents include original and
revised primary documents and some represent supplementary documents such as non-patent
literature and search reports.42

We begin by determining the focal set of patent families that are the object of our
analysis. These families have non-missing data for IPC version 8 codes, filing dates, and
inventor countries listed in their primary series documents as defined in point 11 of WIPO
(2016) (i.e., those with letter groups 1-3).43 We refer to these primary series documents as
primary publications and to all other documents as supplementary publications. All of our
analysis examines effects on the focal set of patent families for which data are collected solely
from primary publications. For patent families that are linked to this focal set of patent
families through forward and backward citations, we prioritize recording data from primary

40When sectors are instead ordered by the rankings of the centrality measures constructed using production
IO linkages, the reverse implication is visually apparent. These graphs are available on request.

41The large number of locations is accounted for by the inclusion of sub-national regions, such as Hong
Kong, which we keep as separate regions whenever trade data is also available for the sub-national region.

42The Google Patents database contains a total of 136.1 million different patent documents.
4392% of patent publications are primary series documents, and 98% of patent families have at least one

primary series document filed.
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publications but make use of information in supplementary publications if the relevant
information (e.g., the IPC codes) is missing from all available primary publications of the
linked families.

Out of a total of 74.8 million patent families in the Google Patents database, 67.9 million
of them have at least one 4-character IPC code, which is a minimum requirement in order for
them to be included in the data underlying the knowledge IO tables we construct. 71.8 million
patent families have filing dates, while only 20.9 million have inventor country information.44

In total, 18.9 million patent families have all three sets of information. The focal set of patent
families is the subset of 18.0 million patent families which derive all of this information from
primary publications.

As there are potentially multiple sets of filing dates, inventor countries, and IPC codes
coming from the different publications within a patent family, we aggregate all of this
information up to the patent-family level using the following rules. The filing date is the
earliest of the filing dates found in the family’s primary publications. The list of inventor
countries are those in the longest vector of inventor countries found in the family’s primary
publications.45 The set of IPC codes for a patent family corresponds to the superset of all
distinct 4-character IPC codes contained in the family’s primary publications. For patent
families that are linked to focal patent families, data for any of these fields that are missing
from primary publications are then taken from supplementary publications to fill in data
gaps.46 We record whether or not a patent family is triadic using information on the patent
offices to which the patent family’s applications are submitted. In the rest of this section and
throughout the paper, patent refers to the data associated with a patent family as measured
according to this procedure.

Our knowledge IO table is constructed from the backward citations of focal patent families.
To identify these citations, for each focal patent we record the list of distinct linked cited
patents that appear in any of the primary publications of the citing focal patent.47 In total,

44The number of patent families with assignee country information is only slightly higher at 23.1 million
patent families covered. We do not use assignee country information to allocate patent families to countries as
described below since the location of a patent assignee may not correspond to the location where innovation
activity takes place, particularly for assignees that are multinational businesses.

45Note that the list of inventor countries may, by design, contain multiple instances of the same country, as
different inventors can reside in the same country.

46By construction, this does not occur for our focal set of patent families.
47To compute the innovation outcome variables based on counts of forward citations received by focal

patents from the linked patents that cite them, we additionally record the list of distinct cited (focal) patents
that appear in the supplementary publications of the citing patents whenever a citing patent family has
no citations in its primary publications. We do this to maximize the coverage of forward citations of focal
patents in our data.
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there are 10.8 million focal patent families with at least one such backward citation. Almost
all of these have at least one backward citation in a primary publication that cites a patent
that has a 4-character IPC code and are therefore included in the set of patents whose data
underlie the technology subclass-to-technology subclass knowledge IO table.48

Using this data, we allocate focal patents to countries and technology categories to construct
variables at the level of aggregation used in our analysis. We assign shares of each patent
to countries in proportion to the share of inventors from each country listed in the patent
application documents.

To produce a pre-concordance dataset at the country-technology subclass-filing year level
for our innovation outcome variables, we treat each distinct technology subclass listed on a
focal patent family as a separate patent. We add up the (fractional) count of each outcome for
focal patents listing each technology class in each filing year and each country after applying
the inventor-country weights to those patents. In particular, for a given country-technology
subclass-year grouping of patents, we count the amounts of the following variables: total
patents, total forward citations and five-year forward citations received by those patents, and
total and five-year foreign forward citations (i.e., those citations received by the grouping of
patents from patents in other countries, where we use inventor-country weights for both cited
and citing patents).

For technology subclass-to-technology subclass backward citations, which are the data
underlying our measurement of knowledge IO linkages, we additionally treat each distinct
technology subclass listed on a linked cited patent as a separate patent. We calculate the
number of backward citations of a given country-output technology subclass-filing year
grouping to each input technology subclass of the patents cited by the grouping using
inventor-country shares as weights and treating both input and output patents with multiple
technology subclasses as multiple patents.49 We use the counts contained in the cells of
the resulting technology subclass-to-technology subclass input-output matrix to measure
backward citations for our diffusion outcome variables.

Concordance Details and Sources. We use many concordances between data classifica-
tion systems in this paper. Below, we describe the processes used to apply the concordances
in more detail and provide the locations at which the concordance files can be accessed.

48Only 17k focal patents cite patents that do not have IPC code data.
49These counts are also computed for backward citations to each input technology subclass for cited US,

domestic, and foreign patents by citing country-technology subclass-year patents (using inventor-country
weights for both cited and citing patents).
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We first crosswalk the Google Patents data on technology stocks, defined in Section 5.1.3,
patent counts, and forward and backward citations, all of which are measured at the 4-
character IPC version 8 level, to the 2002 BEA sector categories in two stages. The first
stage uses the concordance weights between IPC technology subclasses and 2002 6-digit HS
codes developed by Lybbert and Zolas (2014) and then takes these data from 2002 6-digit
HS codes into 1992 6-digit HS codes.50 This second concordance uses equal weights for each
1992 6-digit HS code into which a given 2002 6-digit HS code maps.51

The second stage, which is also applied to the BACI trade data that are categorized by
1992 6-digit HS codes, applies three distinct concordances to convert the data to the endpoint
2002 BEA classification. The first concordance identifies the 1987 4-digit SIC codes associated
with each 1992 6-digit HS code using an unweighted mapping between the two classification
systems.52 The second concordance converts 1987 4-digit SIC codes into 2002 6-digit NAICS
codes, again using an unweighted mapping between the classifications.53 Combining these two
concordances provides the set of 2002 6-digit NAICS codes associated with each 1992 6-digit
HS code. We construct concordance weights to map the latter into the former using the share
of employment of each NAICS code into which an HS code maps in the total employment
of the NAICS codes associated with each HS code. Data on employment by 2002 NAICS
code are taken from the 2003 County Business Patterns (CBP) dataset, which is the earliest
available disaggregated source of employment data by NAICS code using the 2002 version of
the NAICS codes.54 The third concordance applies the mapping of 2002 6-digit NAICS codes
into the endpoint 2002 BEA sector codes.55 The composite weights between 1992 6-digit
HS codes and our endpoint classification implied by combining the three concordances of
this second stage are precisely the weights mapping sub-sectors into sectors referred to in

50There is no concordance between IPC technology subclasses and 1992 6-digit HS codes available.
The first set of concordance weights can be accessed at https://sites.google.com/site/nikolaszolas/
PatentCrosswalk.

51These equal concordance weights are constructed from the unweighted crosswalk available from the
World Bank’s World Integrated Trade Solution (WITS) database accessible after creating an account at
https://wits.worldbank.org/product_concordance.html (using the WITS classification labeling, this is
the H2 to H0 concordance file).

52This is taken from WITS at https://wits.worldbank.org/product_concordance.html (the H0 to
SIC concordance file).

53This file is available from the US Census Bureau at https://www.census.gov/naics/?68967.
54Using employment weights improves upon the alternative of using equal weights that arises due to the

lack of weights in the files used in the first and second concordances of this stage. These data come from the
US Census Bureau and are available at https://www.census.gov/programs-surveys/cbp/data/datasets.
html.

55The concordance file can be found in Appendix A of the BEA 2002 Standard Make and Use Tables
available at https://www.bea.gov/industry/benchmark-input-output-data.
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Section 5.1.3.
For the backward citations data used to measure knowledge IO linkages, we apply these

two crosswalk stages to both the cited and citing technology subclasses.
To measure production IO linkages in different years consistently in terms of our endpoint

2002 BEA classification, we apply concordances that are similar in nature to the second stage
of the crosswalk of technology categories just described. We convert the inter-sectoral sales
data in the 1992, 1997, and 2007 BEA Use tables.

For 1992, sector categories are based on the 1987 BEA classification system. We map
categories from this system into the 1987 4-digit SIC sectors using a concordance provided
by the BEA.56 We then use the concordance between 1987 4-digit SIC sectors and 2002
6-digit NAICS sectors mentioned earlier to identify the 2002 NAICS sectors associated with
each 1987 BEA sector. Using the same procedure as the second stage above, we compute as
concordance weights the share of employment of each 2002 NAICS code into which a 1987
BEA sector maps in the total employment of those mapped-into 2002 NAICS codes with the
2003 CBP employment data. We combine these weights with the mapping of 2002 6-digit
NAICS codes into the 2002 BEA classification to conduct the crosswalk.

In the 1997 table, the 1997 BEA classification of sectors is based on 1997 6-digit NAICS
sectors. We use the BEA concordance between these classifications and the concordance
between the 1997 6-digit NAICS sectors and 2002 6-digit NAICS sectors to identify the
2002 NAICS sectors associated with each 1997 BEA sector.57 We proceed as before and
construct weights for mapping 1997 BEA sectors into 2002 NAICS sectors using the 2003
CBP employment data and combine these weights with the mapping of 2002 6-digit NAICS
codes into the 2002 BEA classification to conduct the crosswalk.

The data for the 2007 table are available only in terms of the 2012 BEA classification
of sectors, which are themselves based on the 2012 6-digit NAICS sectors. In this case, we
use three separate concordances to identify the 2002 NAICS sectors associated with each
2012 BEA sector. First, we use the crosswalk between the 2012 BEA classification and
the 2012 NAICS sectors provided by the BEA.58 The second and third concordances map
2012 NAICS sectors into 2007 NAICS sectors and 2007 NAICS sectors into 2002 NAICS

56This can be found at https://www.bea.gov/industry/benchmark-input-output-data using the 1987
Use table appendices.

57The first of these concordances is available at https://www.bea.gov/industry/
benchmark-input-output-data using the appendices of the 1997 Use table (after redefinitions)
while the second concordance is available at https://www.census.gov/naics/?68967.

58This is available in the appendix of the 2007 Use table found at https://www.bea.gov/industry/
input-output-accounts-data.
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sectors, respectively.59 Employment-based concordance weights for mapping between 2012
BEA sectors and 2002 NAICS sectors are constructed using the 2003 CBP employment data.
We combine these weights with the mapping of 2002 NAICS sectors into the 2002 BEA
sectors to complete the crosswalk.

59Both concordance files are available at https://www.census.gov/naics/?68967.
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Appendix C Additional Figures and Tables
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Appendix Table C.1: Five-Year Average for Outcomes

5-year Forward Averages of Outcomes
(1) (2) (3) (4) (5) (6)
IV IV IV IV IV IV

Patents FwdCites FwdRate USBackCites USBackRate USBackShare

lnEmbTechK 0.041*** 0.062*** 0.029*** 0.084*** 0.018* 0.001
(0.008) (0.011) (0.010) (0.017) (0.011) (0.003)

lnEmbTechP 0.006*** 0.007*** -0.000 0.011*** 0.002 0.000
(0.001) (0.002) (0.001) (0.003) (0.002) (0.000)

Observations 478,880 478,880 377,096 478,880 377,096 372,451
F-Stat1 4467.582 4467.582 8225.481 4467.582 8225.481 8672.958
F-Stat2 15029.801 15029.801 19520.15 15029.801 19520.15 20247.786
F-Stat3 396.829 396.829 469.325 396.829 469.325 464.055

Notes: All dependent variables are first averaged over the three-year window t to t+2, and transformed as follows: ln(1+Outcome),

where Outcome is the variable specified on column titles. Other controls include Lags of ln EmbT echDiag, ln OwnT echK, log

total exports to world and log total imports to world. The following fixed effects are included in each column: Country*Sector,

Country*Year, and Summary-Sector*Year. All standard errors are clustered twoways: Country*Sector and Sector*Year

Appendix Table C.2: Leave-One-Out Instrument

IV: Leave-One-Out from Total US Exports to World
(1) (2) (3) (4) (5) (6)
IV IV IV IV IV IV

Patents FwdCites FwdRate USBackCites USBackRate USBackShare

lnEmbTechK 0.041*** 0.059*** 0.024*** 0.080*** 0.013 -0.000
(0.008) (0.011) (0.009) (0.016) (0.010) (0.002)

lnEmbTechP 0.006*** 0.006*** -0.000 0.011*** 0.001 0.000
(0.001) (0.002) (0.001) (0.003) (0.001) (0.000)

Observations 478,880 478,880 361,290 478,880 361,290 356,457
F-Stat1 4477.005 4477.005 10924.322 4477.005 10924.322 11472.592
F-Stat2 15031.43 15031.43 20786.991 15031.43 20786.991 21475.515
F-Stat3 395.742 395.742 482.88 395.742 482.88 471.943

Notes: All dependent variables are first averaged over the three-year window t to t+2, and transformed as follows: ln(1+Outcome),

where Outcome is the variable specified on column titles. Other controls include Lags of ln EmbT echDiag, ln OwnT echK, log

total exports to world and log total imports to world. The following fixed effects are included in each column: Country*Sector,

Country*Year, and Summary-Sector*Year. All standard errors are clustered twoways: Country*Sector and Sector*Year
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Appendix Table C.3: Leave-One-Out Within Cluster Instrument

IV: Leave-One-Out from Total US Exports to Country Cluster
(1) (2) (3) (4) (5) (6)
IV IV IV IV IV IV

Patents FwdCites FwdRate USBackCites USBackRate USBackShare

lnEmbTechK 0.029*** 0.044*** 0.023*** 0.062*** 0.024** 0.002
(0.006) (0.008) (0.009) (0.013) (0.011) (0.002)

lnEmbTechP 0.005*** 0.006*** -0.000 0.010*** 0.002 0.000
(0.001) (0.002) (0.001) (0.002) (0.002) (0.000)

Observations 478,880 478,880 361,290 478,880 361,290 356,457
F-Stat1 1195.037 1195.037 1106.028 1195.037 1106.028 1110.95
F-Stat2 1217.131 1217.131 2050.855 1217.131 2050.855 2254.552
F-Stat3 100.917 100.917 77.69 100.917 77.69 78.400

Notes: All dependent variables are first averaged over the three-year window t to t+2, and transformed as follows: ln(1+Outcome),

where Outcome is the variable specified on column titles. Other controls include Lags of ln EmbT echDiag, ln OwnT echK, log

total exports to world and log total imports to world. The following fixed effects are included in each column: Country*Sector,

Country*Year, and Summary-Sector*Year. All standard errors are clustered twoways: Country*Sector and Sector*Year

Appendix Table C.4: Top 40 Countries by Total Patents

Top 40 Patenting Countries
(1) (2) (3) (4) (5) (6)
IV IV IV IV IV IV

Patents FwdCites FwdRate USBackCites USBackRate USBackShare

lnEmbTechK 0.061*** 0.082*** 0.031*** 0.097*** 0.012 -0.001
(0.012) (0.015) (0.009) (0.020) (0.010) (0.002)

lnEmbTechP 0.007*** 0.006** -0.002* 0.011*** -0.000 -0.000
(0.002) (0.002) (0.001) (0.003) (0.001) (0.000)

Observations 233,600 233,600 223,624 233,600 223,624 222,510
F-Stat1 5753.031 5753.031 14376.865 5753.031 14376.865 15861.01
F-Stat2 22155.752 22155.752 27403.875 22155.752 27403.875 28348.766
F-Stat3 366.13 366.13 418.4 366.13 418.4 415.653

Notes: All dependent variables are first averaged over the three-year window t to t+2, and transformed as follows: ln(1+Outcome),

where Outcome is the variable specified on column titles. Other controls include Lags of ln EmbT echDiag, ln OwnT echK, log

total exports to world and log total imports to world. The following fixed effects are included in each column: Country*Sector,

Country*Year, and Summary-Sector*Year. All standard errors are clustered twoways: Country*Sector and Sector*Year
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Appendix Table C.5: log(Y ) Transformation

Data Transformation: log(Y)
(1) (2) (3) (4) (5) (6)
IV IV IV IV IV IV

Patents FwdCites FwdRate USBackCites USBackRate USBackShare

lnEmbTechK 0.073*** 0.099*** 0.034*** 0.103*** 0.029** -0.000
(0.018) (0.021) (0.013) (0.022) (0.013) (0.002)

lnEmbTechP -0.002 -0.004 -0.001 -0.001 0.000 0.000
(0.002) (0.003) (0.002) (0.003) (0.002) (0.000)

Observations 361,290 342,782 342,782 344,145 344,145 356,457
F-Stat1 10890.478 11853.41 11853.41 11759.435 11759.435 11432.904
F-Stat2 20754.325 23813.57 23813.57 23653.542 23653.542 21440.735
F-Stat3 483.847 469.661 469.661 465.975 465.975 472.995

Notes: All dependent variables are first averaged over the three-year window t to t+2, and transformed as follows: ln(1+Outcome),

where Outcome is the variable specified on column titles. Other controls include Lags of ln EmbT echDiag, ln OwnT echK, log

total exports to world and log total imports to world. The following fixed effects are included in each column: Country*Sector,

Country*Year, and Summary-Sector*Year. All standard errors are clustered twoways: Country*Sector and Sector*Year

Appendix Table C.6: asinh(Y ) Transformation

Data Transformation: asinh(Y)
(1) (2) (3) (4) (5) (6)
IV IV IV IV IV IV

Patents FwdCites FwdRate USBackCites USBackRate USBackShare

lnEmbTechK 0.048*** 0.067*** 0.030*** 0.088*** 0.015 -0.000
(0.009) (0.012) (0.011) (0.017) (0.012) (0.002)

lnEmbTechP 0.007*** 0.007*** -0.000 0.011*** 0.001 0.000
(0.001) (0.002) (0.001) (0.003) (0.002) (0.000)

Observations 478,880 478,880 361,290 478,880 361,290 356,457
F-Stat1 4467.582 4467.582 10890.478 4467.582 10890.478 11432.904
F-Stat2 15029.801 15029.801 20754.325 15029.801 20754.325 21440.735
F-Stat3 396.829 396.829 483.847 396.829 483.847 472.995

Notes: All dependent variables are first averaged over the three-year window t to t+2, and transformed as follows: ln(1+Outcome),

where Outcome is the variable specified on column titles. Other controls include Lags of ln EmbT echDiag, ln OwnT echK, log

total exports to world and log total imports to world. The following fixed effects are included in each column: Country*Sector,

Country*Year, and Summary-Sector*Year. All standard errors are clustered twoways: Country*Sector and Sector*Year
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Appendix Table C.7: Other Diffusion Outcomes

Other Diffusion Outcomes
(1) (2) (3) (4) (5) (6) (7)

Inc. Domestic Inc. Diagonal Inc. Diagonal Inc. Diagonal Triadic Triadic Triadic
Patents FwdCites FwdRate USBackCites USBackRate USBackShare

lnEmbTechK 0.001 0.071*** 0.018** -0.002 0.041*** 0.016* 0.001
(0.002) (0.013) (0.008) (0.002) (0.008) (0.010) (0.002)

lnEmbTechP 0.000 0.009*** 0.000 0.000 0.006*** -0.000 0.000
(0.000) (0.002) (0.001) (0.000) (0.001) (0.001) (0.000)

Observations 356,779 478,880 361,290 359,483 478,880 259,847 259,662
F-Stat1 11299.02 4467.582 10890.478 10864.852 4467.582 13555.713 13622.151
F-Stat2 21595.063 15029.801 20754.325 20935.564 15029.801 34681.241 34783.334
F-Stat3 473.867 396.829 483.847 477.964 396.829 398.009 396.711

Notes: All dependent variables are first averaged over the three-year window t to t+2, and transformed as follows: ln(1+Outcome),

where Outcome is the variable specified on column titles. Other controls include Lags of ln EmbT echDiag, ln OwnT echK, log

total exports to world and log total imports to world. The following fixed effects are included in each column: Country*Sector,

Country*Year, and Summary-Sector*Year. All standard errors are clustered twoways: Country*Sector and Sector*Year

Appendix Table C.8: Knowledge Stocks Construct Using Patent Count

Knowledge Stock Constructed Using Patent Counts
(1) (2) (3) (4) (5) (6)
IV IV IV IV IV IV

Patents FwdCites FwdRate USBackCites USBackRate USBackShare

lnEmbTechK 0.050*** 0.069*** 0.022** 0.097*** 0.011 -0.001
(0.010) (0.013) (0.010) (0.019) (0.011) (0.003)

lnEmbTechP 0.007*** 0.007*** -0.001 0.013*** 0.001 0.000
(0.001) (0.002) (0.001) (0.003) (0.002) (0.000)

Observations 478,880 478,880 361,290 478,880 361,290 356,457
F-Stat1 3576.401 3576.401 7894.512 3576.401 7894.512 8131.503
F-Stat2 11513.898 11513.898 16366.745 11513.898 16366.745 16735.513
F-Stat3 382.703 382.703 536.722 382.703 536.722 528.105

Notes: All dependent variables are first averaged over the three-year window t to t+2, and transformed as follows: ln(1+Outcome),

where Outcome is the variable specified on column titles. Other controls include Lags of ln EmbT echDiag, ln OwnT echK, log

total exports to world and log total imports to world. The following fixed effects are included in each column: Country*Sector,

Country*Year, and Summary-Sector*Year. All standard errors are clustered twoways: Country*Sector and Sector*Year
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Appendix Table C.9: Non-Zero Patent Sample

Non-Zero Patents Sample
(1) (2) (3) (4) (5) (6)
IV IV IV IV IV IV

Patents FwdCites FwdRate USBackCites USBackRate USBackShare

lnEmbTechK 0.158*** 0.198*** 0.024*** 0.281*** 0.013 -0.000
(0.013) (0.016) (0.009) (0.022) (0.010) (0.002)

lnEmbTechP 0.007*** 0.006*** -0.000 0.011*** 0.001 0.000
(0.001) (0.002) (0.001) (0.003) (0.001) (0.000)

Observations 361,290 361,290 361,290 361,290 361,290 356,457
F-Stat1 10890.478 10890.478 10890.478 10890.478 10890.478 11432.904
F-Stat2 20754.325 20754.325 20754.325 20754.325 20754.325 21440.735
F-Stat3 483.847 483.847 483.847 483.847 483.847 472.995

Notes: All dependent variables are first averaged over the three-year window t to t+2, and transformed as follows: ln(1+Outcome),

where Outcome is the variable specified on column titles. Other controls include Lags of ln EmbT echDiag, ln OwnT echK, log

total exports to world and log total imports to world. The following fixed effects are included in each column: Country*Sector,

Country*Year, and Summary-Sector*Year. All standard errors are clustered twoways: Country*Sector and Sector*Year
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