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Abstract

Banks’ optimal liquidity requirements have to solve a delicate balance. Tighter
requirements reduce the chances of liquidity shortages. Looser requirements foster the
allocation of funds towards productive investments. With multiple banks characterizing
optimal requirements is however more challenging. Banks form lending partnerships in
the overnight interbank lending market to meet their liquidity needs. We show that
the interbank network may suddenly collapse once reserve requirements are pushed
above a critical level, with a discontinuous increase in systemic risk as cross-insurance

possibilities for banks collapse.
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1 Introduction

Banks provide a key intermediation function in the economy. They extend loans to agents
with productive investment opportunities using funds from depositors without access to those
opportunities. As banks’ investments may fail, depositors only provide funds if they are ex-
ante compensated for those potential losses, forcing bankers to internalize failure and to
invest efficiently, both in terms of scale and risk exposure. The scenario changes though,
in the presence of governments with ex-post incentives to cover the losses of depositors
with distortionary taxation proceedings. These bailouts provide an implicit insurance for
depositors that allow banks to obtain funds at a subsidy, then investing excessively, either at
a larger scale or taking more risks, relative to the efficient allocation. As highlighted by Nosal
and Ordonez (2016), when the government lacks commitment not to bail out depositors in

distress, banks tend to invest inefficiently.

To discourage inefficient investments that increase the likelihood and the size of failures and
the need for distortionary bailouts, the government regulates banking activity. One of these
regulations involve liquidity requirements that impose a direct upper bound on the amount
of loans that can be extended by a bank per U.S. dollar kept physically in possession of
the bank. Too tight liquidity requirements reduce excessive investments and risk-taking and
then the needs for bailouts, but may end up choking the banks’ role to channel funds to
productive investment opportunities. When these two forces change smoothly in the level of
liquidity requirements for an individual bank, it is possible to obtain the optimal regulation
that delicately balances banks’ incentives to take on excessive risk and banks’ efficiency on

extending loans.

This logic is sound when considering a single bank, but we argue fails when considering
multiple banks that interact with each other. Banks do not operate in isolation and react
to liquidity requirements by making loans to each other, in the overnight interbank lending
market, at relatively low rates to cover liquidity shortages. After extending loans for a lucra-
tive investment opportunity, a bank may fall short of the liquidity needed to fulfill potential
refinancing needs to continue, and even expand, its investments to fruition and refer to other
banks for short-term loans in order to satisfy these needs. This implies that the level of lig-
uidity requirements may have a first order impact on the vibrancy and interconnectedness of
the interbank market. How does the interbank network react to changes in liquidity require-
ments? How should the liquidity requirements be determined in a setting with interacting
banks? How does the endogenous formation of interbank networks affect the welfare effects

of liquidity requirements?

In this paper we explore these questions and show that the topology and the level of intercon-



nectedness of the interbank network reacts discontinuously to liquidity requirements, adding
an additional layer of complexity to the delicate balance that optimal banking regulations
should strive to achieve. The reaction of an interbank network features a “phase transition":
beyond a tipping point of liquidity requirements, the network becomes disproportionately
less interconnected, with systemic risk increasing discontinuously in response to this abrupt

change in the network architecture.

The benefit of having an interbank counterparty is to have additional "insurance" in case
of a refinancing shock that requires extra funds to continue operating, and sometimes even
expanding, some of bank’s investments. Even though a fraction of the bank’s counterparties
is expected to become insolvent, a complementary fraction can provide extra liquidity to
the bank if suffering a refinancing shock that requires extra liquidity. On the one hand,
the marginal benefit of having an extra counterparty decreases as liquidity requirements
tight, as the loan sizes decline and banks obtain less benefits from insuring continuation of
those projects. On the other hand, the marginal cost of an extra counterparty is assumed

independent on the level of liquidity requirement or the investment scale.

As liquidity requirements tighten, we do not only show that the desired level of counterparties
decreases, but also that, after a critical regulation point, a bank would discontinuously prefer
to reduce its counterparties, with interbank lending network jumping from very dense to very
sparse, with the aggregate level of interbank activity collapsing. In other words, as liquidity
requirements become tighter, not only the level of investment declines but also systemic risk,
measured by the fraction of banks that choose to close operations, increases (discontinuously
after a certain threshold), inducing a discontinuous increase in distortionary bailouts: a

discontinuous reduction in both output and welfare.

This result suggests important policy implications. We show that the highest welfare that
takes into account endogenous network formation, and then takes into account the network
reaction to banking regulations, is achieved exactly at the tipping point after which networks
discontinuously collapse. Just setting liquidity requirement at the tipping point that sustains
networks and cross-insurance assumes the absence of exogenous shocks to fundamentals.
When fundamentals are subject to shocks, setting liquidity requirements a the tipping point
can induce crises after small changes in fundamentals. This suggests that the optimal distance
between the regulatory liquidity requirements and the tipping point should balance the loss
in welfare from being farther away from the tipping point and the gains from reducing the

probability of the system moving beyond the tipping point, a crisis.

Based on these insights we compare the liquidity requirements that a network-conscious

regulator, who understands the reaction of interbank insurance possibilities to changes in



regulation, would impose with those of a network-blind regulator, who does not understand
that networks change with regulation. We show that the potential welfare losses from ignoring

network reactions can be sizable.

Literature Review: The recent financial crisis has been a catalyst for the interests both
on liquidity regulations and on interbanking networks. Even though there has been a recent
rich literature on these two topics, our paper is one of the few, if not the first, to combine
these two policy-relevant topics and analyze the effects of liquidity requirements on interbank

network formation.

On liquidity requirements, most of the literature has focused on the optimal level of a single
bank’s liquidity requirement to prevent bank runs, such as Cooper and Ross (1998), Ennis
and Keister (2006), Calomiris et al. (2014) and Santos and Suarez (2015). Diamond and
Kashyap (2016) highlight a novel, informational, role of liquidity regulations. Liquidity
requirements can induce banks to disclose their superior information about the likelihood of
facing a run if they are set such that banks hold liquidity that goes unused, as this is the
extra liquidity needed to deter runs. Interestingly, in their case the lender of last resort and
liquidity requirements complement each other in eliciting information, while in our paper

liquidity requirements are introduced because the lender of last resort is inevitable.

In spite of these efforts, Allen (2014) surveys the recent literature on liquidity regulation,
concluding that “much more research is required in this area. With capital regulation there
is a huge literature but little agreement on the optimal level of requirements. With liquidity
regulation, we do not even know what to argue about." The confusion on the role of liquidity
requirements to face liquidity shortages comes in large part from the lack of consensus of
what a liquidity shortage is. While the referred previous literature focuses on using liquidity
regulation to curb the effects of liquidity shocks on banks’ short-term liabilities, as in Diamond
and Dybvig (1983), our paper focuses on using of liquidity regulations to curb the effects of

liquidity shocks on banks’ assets refinancing needs, as in Holmstrém and Tirole (1998).

A more recent literature focus on the effects of liquidity regulations when banking intercon-
nections are acknowledged. Farhi et al. (2009), for example, study the “externality" effects
of regulation and the role of liquidity requirements to prevent free riding that occurs when
the liquidity of one bank reduces the likelihood of a run in another bank. Aldasoro et al.
(2015) construct a model of bank linkages and discuss the effects of banking regulations given
the existence of banking interconnections. They show that liquidity requirements decreases
systemic risks at the cost of lower efficiency. They study changes in regulation on risk and
efficiency conditional on a network and not their effects on reshaping the network. This is

an important difference, as we show that there exists a critical point beyond which liquidity



requirements both increase systemic risks and reduce efficiency, with the single benefit of
reducing distortionary bailouts. To the best of our knowledge ours is the first paper to tackle
the question of optimal regulation not only when there are externalities and interbank lend-
ing, but also when banks strategically react to regulation by changing the way they connect

and insure each other.

On liquidity regulation, there is also a recent debate, sparked mostly by new regulatory
proposals by the Basel Committee on Banking Supervision and by the Dodd Frank Act,
about liquidity requirements that are alternative to standard reserve requirements, such
as the liquidity coverage ratio (LCR) and the net stable funding ratio (NSFR). The LCR
extends the interpretation of “liquid assets" beyond reserves, including assets with higher
interest rates. The costs, complexity and discretion vulnerability of LCR relative to the
potentially small benefits relative to the use of reserve requirements have been discussed
by Goodfriend (2016). The NSFR defines the portion of capital and reliable liabilities that
financial intermediaries have to maintain over a specified time horizon relative to the amount
of required stable funding in that time period. Even though our setting is constructed to
capture reserve requirements, it could accommodate these two alternatives by including more

assets classes (LCR) or a more involved timing of funding needs (NSFR).

There is also a recent literature on endogenous networks, such as Erol and Vohra (2016), but
not a systematic study to understand the endogenous reaction of financial networks to changes
in banking regulations, and their effects on systemic risk and welfare. Allen and Gale (2000)
discuss bankruptcy contagion in an exogenous network (modeled as a ring) and, consistent
to our results, show a negative relation between the degree of connectivity and systemic risk.
Battiston et al. (2012) show that the relation between connectivity and systemic risk can
be hump shaped as low connectivity implies less risk-sharing and high connectivity implies
more exposure to default of partners. These are considerations our setting capture as well to
identify the characteristics of endogenous networks. In a setting with heterogenous banks,
Farboodi (2015) provides a model of banking networks that allow funds to flow from savers to
investment opportunities, possibly over several links, and discusses the distribution of surplus
depending on the network topology. None of these papers, however, have studied the change

in networks induced by regulation and then optimal regulation taking networks into account.

Finally, while Ordonez (2016) study the unforeseen effects of banking regulations on financial
innovations that allow banks to channel activities outside the scope of regulators (the so-called
“shadow banking"), in this paper we focus on the unforeseen effects of banking regulations
on networks, through the creation and destruction of banking interlinkages, affecting both

systemic risk and welfare. Understanding the unforeseen effects of banking regulations are



important considerations to factor in the discussion about optimal regulations.

We structure the paper as follows. In the next section we present a simple model with lig-
uidity requirements and the possibility of creating relations with other banks to face possible
refinancing needs. In Section 3 we study the effects of liquidity requirements on the anatomy
of these banking linkages. In Section 4 we discuss the effect of liquidity requirements on
systemic risk and we characterize optimal regulation of a network-conscious regulator that
factors in network effects. In Section 5 we compare the welfare losses of network-blind reg-
ulators who does not consider the effects of regulations on networks. In the conclusions we

highlight final remarks and considerations.

2 Model

2.1 Environment

We consider a single-period economy composed by & banks, k risk-neutral households and a
government. We denote by N' = {ny,...,n;} the set of banks. Each bank n; has access to
a unique project (of maximum possible size, L;) to finance, and is associated with a unique
household n!. We assume that the household n? deposits D; in bank n; at the beginning of

the period and wishes to withdraw and consume at the end of the period.

The timing of actions and events within the period can be split in five stages. The first
stage is the requlation stage. The government sets a liquidity requirement ¢ € [0, 1], which
imposes the fraction of the loan extended by each bank that the bank must keep as reserves
in cash (or other highly liquid assets). This liquidity requirement is isomorphic to a leverage

constraint.

The second stage is the network formation stage. Banks form links by mutual consent, that
serve as credit lines to insure each other against future refinancing shocks that may put the
maturity of the project at risk. A formed link between banks n; and n; is denoted l;; = 1,
and the resulting set of links is denoted £ C [N]>. (N, £) is the realized interbank network.
Denote N; = {j : l;; € L} the set of counterparties of n; and d; = || its degree (the number

of counterparties). Forming each link involves a utility cost k; to each counterparty.

The third stage is the investment stage. Each bank n; extends in checks a loan of L; to finance
the project, keeping its deposits D; as reserves. The liquidity requirement restricts the size
of the loan (and then the size of the project) L;, as D; > ¢L;, where L; < L;. The returns
from the projects materialize at the end of the period, and banks’ checks (that amount to

total bank’s liabilities of L;) are also due at the end of the period.
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The fourth stage is the continuation stage. The projects managed by all banks are publicly
revealed to be 0; € {B,G}, where B represents a bad project that never matures and G a
good project that can succeed if appropriate actions are taken by the bank in the next stage.
The types of projects, 6; are independent across projects, G with probability «; and B with
probability 1 — «;.

After the projects’ types are publicly observed, each bank n; chooses an action a;. Banks
managing good projects can choose to continue (C') operating the project, or not (NV), then
a; € {C,N}. Continuing operation has a management cost (an effort cost) of k. per unit
of investment and «; to maintain the counterparty, making up a total of x.L; + k;d;. Banks
with bad projects always choose N; this is a; = IV, as the bank would only pay the previous
continuation costs, without recovering any payoffs form the project. Let g; and f; respectively

denote the number of counterparties of n; that chose to continue and not continue: ¢g; = [{n; €

Ni:a; =C} and f; = [{n; € N; : a; = N}|.

A bank n; that chooses N liquidates its project early and recovers Ry L; where 1 > R; > 0.
This implies that the total assets of a non-continuing bank at the end of the period are
D; + Ry L; while total liabilities are D; + L;, as the bank owes D; to the “original depositors"
(households) and L; to “business depositors" (check holders).! We assume that the govern-
ment faces a large (maybe political) disutility from depositors not obtaining their funds back
at the end of the period. This simple assumption guarantees that the government would
always bail out the defaulted depositors, for a total of (1 — Ry)L,;. Banks n; that choose not

to continue then receive 0.

A bank n; that chooses C, and continue business, move to the fifth and last, refinancing
stage. At that stage at most one of the projects of the continuing banks receives a refinancing
shock, which is characterized by new funds that are needed in cash for the project to mature
(a liquidity shock). The probability that a bank n;, and only n;, needs extra funds is 7;.
With probability 7y = 1 — ). 7; no project receives a refinancing shock. Conditional on the
continuing bank n; receiving a refinancing shock, the amount of funds needed are p;, drawn
from a distribution with c.d.f. F;. Investors can obtain these extra funds only from their

associated counterparty banks in the network.

The banks not facing a refinancing shock and that have invested at scale L; obtain a return
RsL;, where Ry > 1. As for the bank facing the refinancing need, if the bank obtains enough

funds to refinance the liquidity need p;, then the project’s return scales by m > 1 and pays

IThe project uses n;’s checks in its investments, for example to buy raw materials or to pay workers. The
recipients of these checks, for a total of L;, eventually deposit them in the bank n;, so we denote them as
“business depositors."



an extra p;, so that the return to n; is mRyL; + p;. If the bank does not obtain enough funds

to refinance the liquidity need, the project fails and returns 0.

Finally, we assume that after the refinancing shock is observed, each household n! receives
extra funds (say wages) for W;, which are deposited at bank n; if n; has continued and is still
in business. Then, without interbank activity, a bank n; facing a refinancing shock relies on
its own available funds W; + D; to ride the shock. This implies that in such case the bank
would be able refinance the project to completion if and only if p; < W, + D,.

Banks, however, may engage on interbank lending through credit lines (links) formed in
advance at the network formation stage. We assume that funds do not travel further than one
link as the main friction in the interbank market, that is a bank does not intermediate between
two banks but rather intermediate between one household and one bank. Notice that due to
the extra p; return on top of RyL;, there is no risk in lending these funds to the bank facing a
refinancing need, conditional on knowing that n; will be able to borrow p; — D; — W; in total
from its counterparties. A conterparty n;, if it has decided to continue, has W; excess liquidity

to lend to n;.2 Therefore, n; can provide the p; if and only if p; < D; + W, + Zj:nj NG oy —C W;.

The next timeline summarizes the sequence of events and actions and the main notation.

Network
Regulation ) Lending Continuation Refinancing
. Formation . . .
b (N, L) L; 0; € {G, B}, Pi
a; € {C7 D}

3 Network Formation and Contagion

Now we can solve the equilibrium, particularly focusing on the reaction of network formation
to banking regulations. We work backwards and first solve the investment, continuation and
refinancing stages. Then, based on these solutions, we characterize the equilibrium network

(from the network formation stage) as a function of regulation ¢.

2Motivated by the use of reserve requirements, banks are only allowed to lend above required reserves in
the interbank market. Hence W; can be used on the interbank market. Notice that if D; > ¢L;, n; has
excess liquidity out if its initial deposits D; as well. In principal these could also be lended in the interbank
market. We assume that n; does not make loans in the interbank market out of its excess liquidity other
than W;. This can be thought of as the limit of the credit line. This assumption allows us to simplify the
optimal choice of L; by the bank n;, which is otherwise intractable to pin down due to network externalities.



3.1 Investment, Continuation and Refinancing Stages
3.1.1 Payoffs

Payoffs at the end of the refinancing stage: A bank n; that does not continue in the continua-
tion stage had paid x;d; in terms of utility to form the network, has expost income D; + R;L;
and owes D; 4+ L;. Then after paying all available assets to depositors, it obtains 0 return

and depositors receive a bailout for (1 — Ry)L;. Then the bank’s expost payoffs are —r;d;.

If the bank n; continues and does not receive a refinancing shock, it pays back its depositors
and has (RoL; + D; + W;) — (L; + D; + W;) = (Ry — 1)L; return. The bank that continues
had also incurred in utility costs to form the network, &;d;, to maintain the network, x;d; and
to managing the project, x.L;. Then the continuing bank’s expost payoffs are (Ry — 1)L; —
(Kjd; + keLi) — Kid;.

If the bank n; continues and receives a refinancing shock, then payoffs depend on whether it
can find funds to refinance or not. If the bank can refinance the shock p;, it has mRyL; — L;
expost payoff since it receives p; extra return on top of the mRyL;. Notice that interbank
lending does not enter a bank’s payoffs since lending to a troubled bank only happens if
certain of repayment. If the bank cannot refinance the shock p;, it cannot fully repay its

depositors and has expost payoffs —(kjd; + k.L;) — K;d;.

FExpected payoffs at the end of the continuation stage: Let M; denote expected the net return

of a bank n; on its unit loan aside of the management costs of having counterparties:

j:nj EJ\/},,a]-:C

Accordingly, the bank n; that continues has expected payoff (at the end of continuation stage)

If n; does not continue, its payoff is —k;d;.

Investment stage: At the continuation stage, bank n; will best respond, so that payoffs are
—kid; + max{0, M;L; — kjd;}. M; is independent of L; since the continuation decision of
n;’s counterparties depend only on the amount that n; can lend to them in the interbank
market, which is W;, independent of L;. Hence the expected payoff of n; is weakly increasing
in L;. All banks prefer to extend as much loans as possible in the investment stage, that is
L; = min{2: L;}.



3.1.2 Assumptions

For simplicity in the exposition in what follows we focus on a symmetric scenario in which
all banks are identical. Later we will discuss the implications of heterogeneity for network

formation.

Assumption 1. L, =L, D; =D, W, =W, a; =«a, n;, =n, F; = F for all n;.

Henceforth we denote L(¢) = min{Z L}. Recall that the total number of counterparties
of n; that continue is g;, which are the banks that lend their excess liquidity to bank n;
when in need of refinancing. Morever define T'(d;|¢) as the “probability threshold" of n; for

continuing.

/

n(mRy — 1)L(¢)’

T, — Ke — (1 - U)(Rz - 1) (3)

T(di|¢) =To + n(mRs—1)

Under Assumption 1 we can simplify the expression of net return per unit loan in (1) and

rewrite the expected payoff in (2) as
I(C, g5, di|p) = —rid; + (mRy — 1)nL(¢) [F(D + W+ giW) - T(dilﬁbﬂ’ (4)

II(N, gi, di|p) = —rud; (5)
in case of continuation or not-continuation respectively.

If T(d;|¢) > 1, n; plays N regardless, as F'(-) < 1. Similarly, if T'(d;|¢) < 0 n; plays C
regardless, as F(-) > 0. For T(d;|¢) € (0,1), if g; > (F~YT(d;|¢)) — D — W)/W the
bank n;’s best response is to continue, as in such case F(-) > T(d;|¢).> The expression
S(d;|¢) = [(F~Y(T(d;]¢)) — D — W) /W] — 1 is a measure of the fragility of the bank n; with
degree d;. n; plays N if g; < S(d;|¢). The higher is S, the more successful counterparties a
bank requires to refinance projects and continue then to maturity. Conditional on the the
total number of counterparties and those successful counterparties that continue, a bank n;
is more likely to continue as S(d;|¢) declines, which occurs when the bank has more funds on
its own (higher D and W), or when the threshold for refinancing increases and the bank has
less incentives to continue (higher 7'(d;|¢)). In this last case, the bank has less incentives to
continue when the net present value of the project is relatively small (low Ry), when the cost
of continuation is relatively large (high x. or x)) or when the probability that the project

needs refinancing is relatively large (high 7).

3Here we follow the convention that F~1(t) = oo for t > 1 and —oo for t < 0.
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F(D+W +dW) F(D+ W + g;W)

0 2

gi

For expositional simplicity we assume that F' is uniform on [0, P], which implies that F'(D +
W+ gW) = max{0, min{l, 222V Moreover, we assume that the largest possible
refinancing need P cannot be met at any level of connectivity. The latter makes sure that

every additional counterparty that continues always strictly improves the expected payoff.

Assumption 2. FF ~U[0,P], P> D+ W + kW.

Before moving to solving for the equilibrium network, we specify the solution concepts.

3.2 Solution concepts

In the continuation stage, banks with bad shocks are forced into playing N. Banks with
good shocks play a binary game among each other. This game is supermodular. The solu-
tion concept is the cooperating equilibrium: it is the Nash equilibrium in which the largest
set of agents, with respect to set inclusion, play C' among all Nash equilibria. Due to super-
modularity, this equilibrium notion is well-defined. Supermodularity, by Tarski’s Theorem,
implies that the set of Nash equilibria is a complete lattice, and the cooperating equilibrium

is the highest element of the lattice.

An alternative definition of the cooperating equilibrium can be given via a rationalizable

contagion argument, which has a natural interpretation in financial contagion setup. Banks
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who receive bad shocks are forced into not continuing. After some banks become insolvent in
this way, some solvent banks who are tightly connected to insolvent banks will become illiquid,
and find N iteratively strictly dominant, and so on. The iterated dominance argument
resembles the financial contagion black-boxed into a single period. Along the iteration,
at the point that remaining banks can rationalize C', the contagion stops. The resulting
profile is the rationalizable strategy profile in which anyone who can rationalize C' do play

C. Supermodularity ensures that this profile is also a Nash equilibrium.

In the network formation stage, banks evaluate each network with the expectation (over the
shocks 6’s) of their payoffs in the cooperating equilibrium in the subsequent periods. Agents
form a strongly stable network which is defined as follows. Consider a candidate interbank
network (N, £) and a subset N’ of agents. A feasible deviation by N from £ is one in which
i) N’ can add any missing links or cut any existing links that stays within A, and ii) N’
can cut any of the links between N’ and N/N’. A profitable deviation by N’ from L is
a feasible deviation in which the resulting network yields strictly higher expected payoff to
every member of A’. An interbank network (AN, £) is strongly stable if there are no subsets
of N with a profitable deviation from £.4

3.3 Network Formation Stage

Payoff functions II(C) in (4) and II(N) in (5) are special cases of Erol (2016) which proves

the existence and almost uniqueness of strongly stable networks in a more general setup.

Define the functions V' and d* as follows.
V(d|g) :=E4[(1 —a) x II(N, g,d|¢) + a x maz{IL(C, g,d|¢),IL(N, g,d|¢)}]
= —rd + BL(¢)Ez[maz{0, F(D + W + gW) — T(d;|¢)}]

where f = a(mRy —1)n and g ~ G[-,d, o] for G defined as the c.d.f. of binomial distribution
with d trials and « success probability. V' can be thought of as a hypothetical payoff function
for a single bank with degree d supposing that its counterparties default if and only if they

received bad shocks. In other words, V' is the payoff function absent contagion.

d*(¢) == argmawgez-V (d|9).

4This network formation solution concept can be microfounded by a proposal game. Each bank pays
¢ > 0 to make a proposal to another bank. Mutual proposals turn into links, and cost ¢ is refunded to
both. One-sided proposals do not turn into links, and c is lost. After being formed, links represent secondary
market trades that serve to provide liquidity to banks. The strong Nash equilibria of this game corresponds
to strongly stable networks. See Erol and Vohra (2016) for more details.
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Since F(-) < 1, d* is generically well-defined. d*(¢) is the hypothetical optimal degree for a
single bank if there was no contagion. The following network formation result uses the main
theorem of Erol (2016):

Proposition 1 (Network Formation). Let k(¢) € [0,d*(¢)] be given by k = k(¢)(mod d*(¢)+
1). If T(d*(¢)|¢) > F(D +2W), there exists a unique strongly stable network which consists
of (k—k(¢))/(d*(¢)+1) disjoint cliques of order d*(¢)+1 and some more disjoint cliques of
smaller order.® If T(d*(¢)|¢) < F(D + 2W), the network described above is strongly stable.
In any other strongly stable network, all but at most d*(¢) banks have degree d*(¢).

In the cooperating equilibrium, if less than S(d*(¢p)|p) banks in a clique get good shocks, all
d*(¢) + 1 banks in the clique play N. If more than or equal to S(d*(¢)|¢) banks in a clique
get good shocks, banks with bad shocks play N and banks with good shocks play C'.
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Figure 1: Cliques

The proof of Proposition 1 is in the Appendix. Figure 1 illustrates the structure of the
network formed. Notice that this structure eliminates second order counterparty risk: the
risk that a bank may incur losses due to some of its counterparties that choose to not continue
because of their own counterparties that do not continue. By forming cliques of an optimal

size, banks reach a satiation point in terms of desired number of counterparties while they

®See Erol (2016) for the exact order(s) of the remaining smaller clique(s). It needs heavy notation to
describe the remainder of the network.
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do not face any risk of contagion further and beyond what is inevitable, i.e. the risk that

their immediate counterparties get bad shocks.

If T(d*(¢)|¢) < F(D + W) there is no contagion (meaning that there is naturally no second
order counterparty risk) as the available funds from the bank facing the shock is enough
to cover the refinancing need, then the bank continues even if none of its counterparties
continue. If F(D + W) < T(d*(¢)|¢) < F(D + 2W) there is minimal contagion, as it is
enough that one counterparty continues for the bank in need of refinancing continues, then
the bank continues unless none of its counterparties continue. The more interesting case is
T(d*(¢)|¢) > F(D + 2W), as the bank with refinancing needs continues if and only if more
than a counterparty continues. Proposition 1 shows that in this last and more relevant case
the strongly stable network is unique. In what follows, we ignore integer problems between

d*(¢) + 1 and k and focus on networks that consist of disjoint cliques of order d*(¢) + 1.5

From Proposition 1 we can compute the distribution of the number of banks that play N.

Corollary 1 (Systemic Risk). For a given ¢, the expected fraction of banks that play N is
1 —a+aG[S(d*(9)]¢),d"(¢) + 1,al,
and the probability that all banks play N is

GIS(d*(9)]9), d"(6) + 1, T

This corollary shows two measures that capture systemic risk. As the fragility of a bank,
S(d*(¢)|¢), increases weakly with ¢, a tighter regulation provides more liquidity buffers to
face refinancing needs, reducing in principle systemic risk. This is only the case, however, if
we neglect the effect on the network structure via d*(¢). Critically, if tighter regulations also
decreases the equilibrium number of counterparties in the network, d*(¢), then the level of

systemic risk in the economy may increase.

In what follows we characterize how the equilibrium degree of the network d*(¢) depends on
regulation ¢. The optimal number of counterparties for the bank will be given by the degree

that maximizes its value function.

Proposition 2. Define resillience R(d|¢) :=d — S(d|¢) — 1. V(d|¢) is given by:

6The results formally follows by assuming that ¢ is selected from a finite subset X of [0,1], and k is
divisible by [[cx(d*(¢) + 1). Intuitively, though, the remainder cliques represent a small fraction of the
economy and they are isolated from the rest of the network, hence they do have negligible impact on the
comparative statics.
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V(d|¢) = A L(¢) G[R(d|$),d, 1 — a]+
dx | —r —ax; G[R(d|¢),d, 1 — o] + B L(¢) G[R(d|¢),d—1,1 — a}},

where

A=a(mRy —1)(F(D+W)—Ty) = a|(l—n)(Rs — 1) — k. +

n(mRy — 1)(D + W)]
P ;

a’n(mRy — )W
B .

B =

This characterization of the value function as a function of the network degree, which ac-
cording to Proposition 1 is based on cliques, allows to obtain which is the individual optimal
number of counterparties that a bank would choose to borrow in the interbank lending market

in case it faces a refinancing need.

Notice that F'(D + W) —Tj governs the behavior of a bank with degree 0. The coefficient of

d nicely decomposes the costs and benefits of having additional counterparties.

This expression is suggestive of discontinous dynamics already. For a second, ignore the
dependence of the probabilities G on ¢ and d. As ¢ increases the coefficient of d in brackets
decreases since L(¢) decreases. At the point that the coefficient becomes negative, the net
value of a link changes from positive to negative, and the network suddenly turns from a
dense network into a sparse network. This is first source of phase transition. Of course, the
probabilities in G can also play a role. Recall that T'(d|¢) increases in both ¢ and d due to
the management costs of links. Accordingly, S(d|¢) also increases in d and ¢. Depending
on parameter values, this can lead to R(d|¢) being decreasing in d and ¢. As ¢ goes up
resillience R goes down. This incentivizes banks to reduce d to keep resillience R high. At
one point, if ¢ becomes too large, it might become impossible to keep R sufficiently high and
the bank can give up trying to maintain a sufficiently large resilience. This is the second

source of phase transition. The effect of ¢ on V is portrayed in Figure 2.

Expected Payoff of Banks, V(d|¢) for $=0.1 Expected Payoff of Banks, V(d|¢) for ¢=0.2 Expected Payoff of Banks, V(d|¢) for ¢=0.3
V(dio.1) V(dj0.2) V(d10.3)

Figure 2: V(d|¢) as ¢ increases
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As a consequence of the transition in qualitative features of V, the optimal degree d* also
features a transition as in Figure 3. For loose requirements, links are sufficiently beneficial
and banks would like to form a dense network to achieve a sufficient chance of riding the
refinancing shock. Beyond the transition region, links are too costly to achieve a sufficient
likelihood of riding the shock. In other words, too tight requirements suffocate the banks by
killing the interbank network.

Note that in this example, a bank with degree 0 does not continue meaning that banks own
resources are not large enough to reduce the refinancing risk sufficiently. Banks with no
counterparties never wait until maturity. Therefore, once the network is characterized by no
links (a collapse in interbank markets), no bank continues. Banks with bad projects never
continues anyways, while banks with good projects choose to liquidate their projects as the
likelihood of a refinancing shock is large enough and the chances to refinance in such case

are low enough that it does not compensate to pay continuations costs.

In Section 7?7, we discuss and illustrate the results for the case in which banks’ own re-
sources are sufficient for them to continue funding their projects in case of not having any

counterparty.

Optimal degree per bank S(¢): Threshold for g for a bank with degree d"(¢) to play C Expected fraction of banks that play N

— 02 04 05 08 ¢

Figure 3: Optimal degree d*(¢), induced fragility S, and resulting systemic risk

4 Optimality of a Network-Conscious Regulator

4.1 Notion of Welfare

The analysis so far has been positive and focused on understanding how the policy affects
the network structure and the resulting systemic risk. Here we define the notion of welfare
that allows us to obtain the optimal liquidity requirement in this environment, and to assess
the losses from a naive regulation that disregard the effects of liquidity requirements on

endogenous network formation and systemic risks.

We have assumed that banks have all the bargaining power and capture all the profits in case

of continuation. We have also assumed that in case of not continuation, banks face limited
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liability and the government is forced to resort to distortionary bailouts to cover the banks’
promises to depositors. Welfare is the sum of the bank’s profits and social distortionary losses

from bailouts.

Deposits are returned to households and consumed by them. The total amount k(D + W)
is constant so we don’t count it for welfare. Then welfare has two components. One is the
banking component: This is the part of welfare that is internalized by banks. It consists of
banks’ profits since all surplus of production is captured by banks. The other is the bailout
component: This is the part of welfare that is not interbalized by banks. It consists of direct

and indirect costs of providing the lost deposits back to the business depositors.

Banking component: The profits of all bad banks and for all good banks that do not continue
are 0 and the expected profits for all good banks that continue are (R — 1)L. Let g* denote
the total number of good banks that choose to continue: ¢* = |{n; : a; = C,0; = G}|. The
expected total bank profits in the system is then (¢* — Z)(Ry — 1)L, where Z = 1 is an
indicator function that takes the value 1 if a bank has a refinancing need that cannot be
covered (and the project is then lost), and 0 otherwise. Including the total utility costs of
forming the network (kr;d*), the utility costs of managing the network for all good banks
continuing (¢*k;d*) and the utility costs of managing the continuing projects (¢*x.L). Hence

the banking component is

(¢ —I)(Ry — 1)L — kryd* — g* (kL + K,d")

Bailout component: Let f* denote the total number of good banks that choose not to continue:
f*=NHni:a; = N,0; = G}|. That means k — f* — g* banks receive bad shocks, so that
government covers (k — f* — ¢*)L due to bad shocks. f*(1— R;y)L total amount is covered by
government due to good banks that decide not to conitnue. Moreover, ZL is covered due to
the refinancing shock. The lost deposits are covered by the government which is the direct
effect of bailouts which is not internalized by banks. Suppose that bailouts have a welfare
cost on top of the direct resources provided, a total of kzx for x total amount of resources

used for bailouts (k4 > 1). The bailout component is then

—rka[(k— f* =g )L+ f*(1 — R\)L+ZL].

Both components are influenced by policy ¢ via three main channels. First is the loan channel,
as the loan depends on ¢ by L(¢) = min{Z L}. In words, the project scale per bank has
direct effect on banks’ profits and on the potential amount to be covered by bailouts. Second

is the contagion channel, captured by the number of good banks who choose not to continue,
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f*, and for the good bank that continues and suffers a renegotiation need that cannot be
covered in the network, Z. In words, the number of banks that liquidate good projects before
maturity due to contagion of liquidation decisions affects the aggregate level of loans that
end up maturing. That in turn affects the aggregate production, consumption, and the level

of recovered deposits. Third channel consists of costs incurred by banks.

The number of banks with good shocks is f*+ ¢*, which is ak in expectation at the regulation
stage. Define f** = E[f*] and Z* = E[Z] where expectations are taken at the regulation stage.

Then expected welfare can be decomposed into components and channels as follows:

Welfare Banking component Bailout component
(Net) Loan channel ak(Ry — 1)L —kq(l —a)kL
Contagion channel | —f*(Ry — 1)L —Z*(mRy — 1)L | —rg[f*™*(1 — Ry)L+I*|L
Management costs | —krkd* — (ak — f**)(k.L + K]d*) —

4.2 Optimal regulation and phase transition

Once we compute welfare for different levels of liquidity requirements ¢, we can choose ¢*
that maximizes welfare. Figure 4 shows two examples of total welfare. The first panel shows
the case in which it is free to create a network x; = 0, but costly to manage the network
upon continuation, x; > 0. The second panel shows the case in which it is costly to create
a network x; > 0, but free to manage the network upon continuation, x; = 0. In both cases
the optimal liquidity requirement ¢* falls into a region in which the network is transitioning
from dense to sparse, as in Figure 3. In this case, optimal regulation involves systemic risk.
The existence of a network allows more banks to continue, even when some banks will suffer
refinancing shocks and may not continue. When liquidity requirements are large, they may
suffocate banks enough such that they not only decline their loans but also choose not to

continue.

This result suggests that, if the government has some uncertainty about fundamentals, it
might be too risky to try to set the exact optimal policy at the kink since a slight overshooting

can result in large unintended welfare cost and a collapse of interbank lending.

It is also important to understand the moving pieces for this result. In Figure 5, we dissect
welfare into its components and channels. Banks’ profits are increasing as ¢ increases because
the loans are decreasing. Since loans decrease, the amount to covered by bailouts also decrease
up until the transition point at which the number failing banks increase dramatically due to

contagion.
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Ex-ante welfare
1 1

1 1 1
0.2 0.4 0.6 0.8 1. ¢
Figure 4: Welfare in ¢
Banking and bailout components Loan, contagion, and management channels
| e Banking —©— Loan i
I m m _Bilout —a— —Contagion
| = =x = -Management
N
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~
\ , \\§
\\ J ——— —

0.2 0.4 0.6 0.8 1. 0.1 0.3

Figure 5: Components and channels of welfare in ¢

Remark on what happens if isolated banks are liquid enough to continue: If
F(D + W) < PTy, isolated banks are destined to play N, which may seem to amplify the
bailout costs. Here we illustrate in Figure 6 that even when F(D + W) > PTj it is possible
that welfare features sharp falls around a transition point. However, the optimal is not at

the transition point, rather at ¢ = 0, which is still arguably close to the transition point.

Figure 6 shows banks payoffs sharply hit the lower bound which generates steep the fall and

the recovery. Figure 7 shows that there is no spike in bailout costs.
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Figure 6: Optimal degree and induced welfare when isolated banks are sufficiently liquid

Ex-ante payoff of a bank Expected amount for bailouts

_

Figure 7: Optimal degree and induced welfare when isolated banks are sufficiently liquid
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5 Mistakes of a Network-Blind Regulator

For any arbitrary network in cliques with degrees d and an arbitrary level of liquidity re-
quirement ¢, let W (d, ¢) denote the resulting welfare. Suppose that the economy is at a
status quo level of liquidity requirements ¢, which is not necessarily optimal at this point.
Banks in the market have also been structured into a strongly stable network in which all
banks have degree dy = d*(¢p). The status quo welfare is W (d*(¢o), ¢o). Now the govern-
ment wishes to adjust ¢ to an optimal level. If network reactions are taken into account,
government maximizes W (d*(¢), ¢) over ¢. The model predicts the changes as described in
previous comparative statics: ¢q is adjusted to ¢** = argmaz,{W(d*(¢),¢)} and all banks
have degree d** = d*(¢*).

If, however, government does not acknowledge the reaction of the interbank network to the
changes in policy and takes the network with degrees dy as given and fixed, what would
be the unintended consequences of a so called optimal policy? In particlar, government
takes the network in clique structure with degrees d, as given, and choose an optimal policy
¢*(do) = argmaxs{W(dy, $)} which maximizes welfare for this fixed network with dy. But
then, the network reacts to this policy change and the degrees become d*(¢*(dp)). The
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realized welfare is W (d*(¢*(dp)), 9*(dy)). The wedge

W(do, do) = W(d"(¢"(do)), ¢" (o))

is the immediate cost of the network-blind policy. On the other, the opportunity cost is
W(d™, ¢™) = W(d*(¢"(do)), ¢"(do))-

Figure 8 illustrates the main point. Following up on the previously given example and plots,
a network-blind regulator who starts at a high status quo ¢, takes the empty network d* =0
as given. Then he imagines that welfare in reaction to regulation follows the black solid line.
A network-blind regulator who starts at a low status quo ¢, on the other hand takes the
complete network d* = k — 1 as given. He imagines that welfare in reaction to regulation
follows the brown dashed line. A network-conscious regulator follows the blue thick dotted

line.

Consequences of Network Blind Policy

Network-Blind, Sparse

== Network-Blind, Dense

B = Network-Conscious

Figure 8: Network-conscious welfare, and network-blind welfare for given networks

Starting from a low ¢q, below the transition point 0.2 in the plot, the network is dense, and
network-blind welfare would be maximized at around ¢ = 0.5. But that falls beyond the
transition region for ¢, and the network reacts by becoming sparse. The realized welfare
much lower than both the intended level and the starting status-quo level. Starting from a
high ¢q, above 0.2, network is sparse and the network-blind welfare is maximized at ¢ = 1.
In this case the welfare is improved since ¢ starts and stays beyond the transition region
so that the network does not react to a blind policy. The opportunity cost is still positive
though since the optimal for a network-conscious policy is the transition point 0.2. These

welfare consequences of network-blind policy for any status quo ¢ are plotted in Figure 9.
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Figure 9: Welfare consequences of network-blind regulation for any status quo level ¢,

6 Conclusions

The discussion about the optimal level of liquidity requirements, and more generally about
optimal banking regulations, has generated a fruitful recent debate among academics and
policymakers alike, particularly in light of many creative proposals by Basel III and the
Dodd-Frank Act. Given the prominent role that a dense interbank network and complex
counterparty relationships have played during the recent crisis, it is surprising the scarce
discussion about how the proposed regulations would affect the density and topology of

interbank lending relations and the banking network more generally.

We show that tightening liquidity requirements above a critical threshold induces a sudden
collapse in interbank relationships, discontinuously decreasing insurance across banks to face
liquidity and refinancing shocks. This is an endogenous network reaction that should be taken
into account by regulators when proposing further tightening of liquidity requirements. In
other words, a network-blind tightening in regulation may induce a discontinuous increase
in systemic risk as banks know they cannot ride refinancing shocks successfully, choosing to

liquidity assets excessively.

The main goal of this paper is to highlight the potentially large unforeseen effects of liquid-
ity requirements on network formation and systemic risks. Even though we have focused
on liquidity requirements, as banks form networks to face liquidity needs to refinance and
continue operations, similar results can be obtained when considering capital requirements
and other forms of leverage constraints, as long as those restriction reduce investments to a
level that discourages the formation of networks and gain from the cross-insurance against

liquidity shocks that it provides.
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A Appendix

Proof of Proposition 1. Here we show how the payoff functions II can be modified appro-
priately satisfy the assumptions in Erol (2016). We then sketch the main idea of the proof

here.

We first need to establish the equivalence in contagion stage. In Erol (2016) bad banks are

also allowed to contine. Define I1*(ay, f;, d;, 6;) as

M(as, d; — fi, d;) 0; =G
H*(ai7 fl?dl792) = H(N, dz — f“dl) 01 = B,(Ii =N

For this altered function II*, even if bad banks were allowed to play C', they never would
since it is strictly dominated to play C' if §; = B. Hence the cooperating equilibrium of the
game with payoff function II* where bad banks are also allowed to play C' correspond to the
cooperating equilibrium of the game with payoft function II where bad banks are forced to

play N.

Now we check whether assumotions in Erol (2016) are satisfied by IT*.

e Counterparty failures hurt: II*(C, f;, d;, G) imust be strictfly decreasing in f;. Notice
that P > D+ W + kW and D + W > 0 makes sure that F(D + W + ¢g;W) stays in
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the interior of the support of F. Hence I1(C, g;, d;) is strictly increasing in g;, making
I1*(C, fi, d;, G) strictly decreasing in f;.

e Playing N must give a payoff independent of f;. This is clearly satisfied since II(N, g;, d;) =

—rKd; is independent of g;.

e It must be a strictily dominant strategy to play N if §; = B. This is guaranteed by the

construction.
This means we can apply the theorem. The proof goes as follows in steps.

e A bank n; with degree d; cannot have strictly higher payoff than V' (d;).

e A clique with d;+1 banks give each of its member V' (d;) payoff. The reason is as follows.
If less than S(d;|¢) other banks in the clique get bad shocks, a good bank n; plays N
and does not get hurt by the other good banks that play N due to the banks that get
bad shocks. if more than S(d;|¢) banks get good shocks, no other good banks in the
clique are forced into playing N so that n; incurs losses only due to bad counterparties,
not more. Therefore, in a clique, a bank n; incurs losses only due to bad shocks of its

counterparties, which means it precisely achieves V' (d;) by the definition of V.

e If banks form cliques at an optimal size maximizing the individual banks’ payoff in
the clique, that means they achieve the highest possible payoff they can achieve in any

network. Hence such a network is strongly stable.

e In any other network structure, some deviations can always be constructured to strictly
improve the deviating colation’s payoff. The main idea is roughly as follows. If a bank
has degree other than its degree at the strongly stable network described above, it
cannot achieve this maximal payoff. If all banks have this "ideal degree" but are not
formed in cliques, that means there are two banks each of which have counterparties
that are not counterparties of the other bank. Then one of them can cut its link with
its own secondary counterparty and connect to its counterparty’s counterparty. This

way they both reduce the risk incurring a loss due to second order counterparties.
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