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Abstract

We construct a model that captures New Monetarist ideas in order to
explain post-Great Recession observations on inflation, nominal interest
rates, and real interest rates. When finance constraints bind, the model
can deliver low real interest rates and positive rates of inflation at the
zero lower bound. Optimal monetary policy in the face of a financial
crisis shock implies a positive nominal interest rate. The model reveals
some novel perils of Taylor rules.

1 Introduction

In the United States, short-term nominal interest rates have been close to zero
since late 2008. Thus, the zero lower bound has been a reality for the Fed for
close to six years. In standard monetary models, a central bank policy rule that
keeps the nominal interest rate at zero forever is a Friedman rule (Friedman
1969). Typically, however, the Friedman rule is associated with deflation. For
example, in versions of the neoclassical growth model with no aggregate uncer-
tainty and a role for money, the Friedman rule will imply deflation at the rate of
time preference. But, at least since early 2010, the inflation rate in the U.S. has
varied roughly between 1% and 3% on a year-over-year basis, as shown Figure 1.
The flip side of those two observations —near-zero short-term nominal interest
rates and positive inflation — is that real interest rates have been persistently
low since the Great Recession. Figure 2 shows the difference between the fed
funds rate and the PCE inflation rate, which has been at post-1980 lows, and
usually negative, since the Great Recession. The five-year TIPS yield in Figure
3 tells a similar story.
What are we to make of these observations, and what are the implications

for monetary policy? A typical approach to explaining the persistence of low
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real interest rates in New Keynesian (NK) models (e.g. Werning 2011) is to in-
troduce a preference shock —an increase in the representative agent’s discount
factor —which lowers the “natural real rate of interest.”Then, it can be optimal
for a central banker correcting sticky price frictions to set the nominal interest
rate at the zero lower bound. The zero lower bound then represents a constraint
on policy, and NK models are thus used to argue that the real interest rate is
too high relative to what is optimal. The NK approach is then to find policy
remedies in central bank forward guidance (Werning 2011, Woodford 2012) or
increases in government spending (Eggertsson and Krugman 2012). But base-
line NK models have diffi culty in explaining recent inflation experience in the
United States. A cornerstone of NK models is a Phillips curve, which posits a
negative relationship between the inflation rate and the output gap —the differ-
ence between output if prices were flexible, and actual output. Given the size
of perceived output gaps after the Great Recession, inflation appears to have
been inexplicably high. Further, a Phillips curve is hard to detect post-Great
Recession, for example in the data depicted in Figure 4, where we plot the PCE
inflation rate against the difference between the unemployment rate and the
Congressional Budget Offi ce’s measure of the “natural unemployment rate.”A
Phillips curve would show up in the figure as a negative correlation.
Old Monetarism does not fare any better than NK theory in helping us

understand post-Great Recession experience in the U.S. The behavior of base
money is clearly absurdly out of line with price level behavior, as shown in
Figure 5. Further, monetary observations seem hard to reconcile with stable
money demand functions. For example, in the post-2009Q1 period, with the
short-term nominal interest rate essentially constant and near zero, Figure 6
shows that the velocity of M1 has fallen by almost one third.
To address these issues, we build on ideas from the New Monetarist litera-

ture, principally Williamson (2012, 2014a, 2014b). New Monetarism is surveyed
extensively in Williamson and Wright (2010a, 2010b). The basic idea is that
explicit modeling of financial structure and monetary arrangements is a fruitful
approach to understanding the role of monetary policy and the propagation of
financial disturbances, among other issues. In this paper we take a somewhat
different approach to New Monetarist ideas by building on cash-in-advance mod-
els.1 This might seem to be at odds with the general New Monetarist approach,
but we think not, for reasons discussed in the paper. We also think that what
we do here will make the ideas accessible to a wider audience.
The model we construct is highly tractable, and has the property that ex-

change is intermediated by an array of assets. In the model, economic agents
are arranged in large households — a device in the spirit of Lucas (1990) or
Shi (1997), for example. Households trade in asset markets and goods mar-
kets, and can make transactions using money, government bonds, and credit,
though money can be used in a wider array of transactions than can other as-
sets. The model is intended to capture how assets are intermediated and used

1Bonsal and Coleman (1996) is a related model that permits government bonds to be
used in transactions, though Bonsal and Coleman focus on asset pricing implications in an
endowment economy, and are not concerned with monetary policy.
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by the banking system for transactions purposes, though the large household
construct allows us to abstract from the details of banking arrangements, which
are considered explicitly in Williamson (2012, 2014a, 2014b).
If the asset constraints of households in the model do not bind, the model

behaves in a conventional way, i.e. much like Lucas and Stokey (1987), in terms
of how assets are priced, and the relationship between real and nominal interest
rates. As well, if asset constraints do not bind, even at the zero lower bound
on the nominal interest rate, then a Friedman rule for monetary policy is opti-
mal. However, if finance constraints bind, the behavior of the model is entirely
different. The binding asset market constraint imparts a liquidity premium to
government bonds, and bonds bear a low real return to reflect that. In general
equilibrium, the asset market constraint binds because government bonds are
in short supply. This occurs given the fiscal policy rule in place. We assume
that the fiscal authority acts to set the real value of the consolidated govern-
ment debt exogenously, and then the job of the central bank is to determine
the composition of that consolidated government debt, through open market
operations.
When the asset market constraint binds, lower nominal interest rates will

reduce output, and consumption, and will reduce welfare when the nominal
interest rate is close to zero. Thus, a binding asset market constraint implies
that the zero lower bound is not optimal. If we consider a financial shock
(which we can interpret as a financial crisis shock), this can make the asset
market constraint bind, or will tighten the asset market constraint if it binds
in the absence of the shock. A financial crisis shock will then lower the real
interest rate, but the optimal monetary policy response (given fiscal policy) is
not to go to the zero lower bound, in contrast to what occurs in NK models.
If the asset market constraint binds, at the zero lower bound the inflation

rate is higher the tighter is the asset market constraint. Thus, for a suffi ciently
tight asset market constraint, the inflation rate need not be negative at the zero
lower bound, and the inflation rate will fluctuate the household’s borrowing
constraint.
We examine the properties of Taylor rules in this environment. In the model,

the Taylor rule is certainly not optimal, so the idea is to understand how a
misguided policy maker armed with a Taylor rule might go wrong —or possibly
not so wrong — in pursuing a Taylor rule policy. We assume that the central
banker cares only about inflation, and consider rules that account for long-run
real interest rates in different ways. Also, the rules we consider allow us to
consider how the Taylor principle — a more-than-one-for-one response of the
nominal interest rate to an increase in the inflation rate —might matter.
Though our model is somewhat different from the examples considered by

Benhabib et al. (2001), we obtain results with a similar flavor in the case in
which the asset market constraint does not bind. In particular, there exist two
steady state equilibria, a liquidity trap (zero-lower-bound) equilibrium in which
the central bank forever undershoots its inflation target, and another with a
strictly positive nominal interest rate in which the inflation target is achieved.
Dynamics depend on how the central banker accounts for the long-run real
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interest rate in the Taylor rule. If the central banker accounts for endogeneity
in the real interest rate, then under the Taylor principle there exists a continuum
of equilibria (much as in Benhabib et al. 2001) that converge to the liquidity
trap equilibrium, and the other steady state is unstable in the usual sense.
When the Taylor principle does not hold, there exists a continuum of equilibria
that converge to the steady state in which the central bank achieves its inflation
target. So, things can go wrong with the Taylor rule when the finance constraint
does not bind, in ways that are by now well understood, thanks to Benhabib et
al. (2001).
When the asset market constraint binds, the Taylor rule can go wrong in

other ways, but it may not go wrong in the same ways as with a nonbinding
constraint. A lot depends on what the central banker understands about the
determinants of the real interest rate. It is possible that the liquidity trap steady
state does not exist. This occurs if the asset market constraint is suffi ciently
tight at the zero lower bound which produces a high enough inflation rate to
push the central banker off the zero lower bound. However, if the central banker
thinks — incorrectly — that the long-run real interest rate is equal to the rate
of time preference, then it is impossible for the central banker to hit his or her
inflation target if he or she adheres to the Taylor rule. A Taylor-rule central
banker who understands the determinants of the real interest rate correctly will
face the same problems as in Benhabib et al. In particular, under the Taylor
principle there exists a continuum of equilibria that converge in finite time to
the liquidity trap equilibrium in which the central banker undershoots his or her
inflation target. If the Taylor principle does not hold, then the intended steady
state is stable in the usual sense.
This basic model does not have short run liquidity effects of monetary policy.

Such effects are present in NK models, and also in a class of segmented markets
models studied by Lucas (1990), Fuerst (1992), Alvarez and Atkeson (1997),
Alvarez, Lucas and Weber (2001), Alvarez, Atkeson, and Kehoe (2002), and
Williamson (2006, 2008). A short run liquidity effect occurs when a reduction
in the short-term nominal interest rate by the central bank leads to an increase
in the inflation rate, and possibly to a reduction in the real interest rate and an
increase in real economic activity.
Particularly since the Taylor rule presumes the existence of short run liq-

uidity effects, it seems useful to adapt our model to include them, and that is
what we do in the second part of the paper. The resulting model resembles
most closely Alvarez, Lucas, and Weber (2001), but with a more elaborate as-
set market structure. There are two groups of households in the model, trader
households, and non-trader households. Trader households make purchases of
goods using credit and government bonds, and they trade on financial markets,
while non-traders live in a cash-only world. For convenience we drop produc-
tion, and consider an economy in which households have fixed endowments each
period.
As in the basic model, asset market constraints may or may not bind in equi-

librium, but this applies only to trader households; non-traders are constrained
in a simple cash-in-advance fashion. We first look at what happens when the
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asset market constraint does not bind. Supposing that the central banker exper-
iments in a random fashion, he or she could see a negative correlation between
the nominal interest rate and inflation, and a positive correlation between the
real interest rate and the nominal interest rate, because of the short-run liq-
uidity effect. However, as the Fisher relation holds in this model in the long
run, the central banker can increase the inflation rate permanently only if the
nominal interest rate increases. Indeed, if the nominal interest rate increases
once-and-for-all-time in an anticipated fashion, then there is an equilibrium in
which the inflation rate increases monotonically to its higher level. In response
to the same experiment, the real interest rate jumps up when the nominal in-
terest rate increases, then falls monotonically, with no effect on the real rate in
the steady state.
Things work very differently if the asset market constraint binds. In that

case, an increase in the nominal interest rate always leads to an increase in the
inflation rate —in the short run or long run —in spite of market segmentation
which is working in favor of a short-run liquidity effect. In this case, Taylor
rules can go dramatically wrong.
The remainder of the paper proceeds as follows. In the second section the

baseline model is set up, and equilibria are constructed and their properties
studied in Section 3. Section 4 involves a study of the model’s behavior un-
der Taylor rules for monetary policy. Then, in Section 5, a related segmented
markets model is studied.

2 Model

There is a continuum of households with unit mass, each of which consists of a
continuum of consumers with unit mass, and a worker/seller. Each household
maximizes

E0

∞∑
t=0

βt
[∫ 1

0

u(ct(i))di− γnt
]
, (1)

where ct(i) denotes the consumption of the ith consumer in the household, and
i ∈ [0, 1], with consumer names uniformly distributed over the unit interval.
In (1), 0 < β < 1, γ > 0, and nt is the labor supply of the worker in the
household. The household possesses a technology that permits one unit of the
perishable consumption good to be produced with each unit of labor supplied
by the worker in the household. The household cannot consume its own output,
but can consume the output of any other household.
The household enters each period with a portfolio of assets, and then trades

on a competitive asset market. The worker/seller then supplies labor and pro-
duces output. Then, the worker/seller takes the produced output of the house-
hold, nt, and chooses one of two distinct competitive markets on which to sell
it. In market 1, only money is accepted in exchange for goods, as there is no
technology available for verifying the existence of other assets that the buyer
of goods may hold in his or her portfolio, and no technology for collecting on
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debts. In market 2, government bonds are accepted in exchange, and buyers of
goods can also use a limited amount of within-period credit.
Before goods markets open, consumers in the household are randomly allo-

cated (by nature), with θ consumers allocated to market 1 and 1− θ consumers
to market 2. The household knows in advance which market each consumer will
be trading in, and therefore knows what assets to allocate to each consumer.
We can then write the preferences of the household as

E0

∞∑
t=0

βt
[
θu(c1t ) + (1− θ)u(c2t )− γnt

]
, (2)

where cjt denotes the consumption of consumers in the household who trade in
market j. Note that consumption takes place when the consumer trades on the
goods market, i.e. consumers in the household cannot share consumption goods.
The household begins each period with mt units of money carried over from

the previous period, along with bat maturing government bonds acquired in the
asset market of the previous period, and bgt maturing government bonds acquired
in the goods market of the previous period. Here, mt, b

a
t , and b

g
t are measured

in units of t − 1 consumption good 1. The household also receives a money
transfer τ t from the government in the asset market, defined in units of current
consumption good 1. The household then takes beginning-of-period wealth, and
trades on the asset market to obtain the money and bonds that it will distribute
to consumers in the household to make purchases. The asset market constraint
for the household is

θc1t + qtb
2
t + qtb

a
t+1 +m2

t ≤
pt−1
pt

(mt + bat + bgt ) + τ t, (3)

where qt denotes the price of government bonds in terms of money, b2t and m
2
t

are government bonds and money, respectively, that are given to consumers in
the household who purchase goods in competitive market 2, and bat+1 denotes
bonds that will be held over by the household until period t + 1. The price pt
denotes the price of good 1 in terms of money. In the analysis that follows, some
nonnegativity constraints will be implicit, but it will prove critical to explicitly
account for the nonnegativity constraint on bonds held over from the current
asset market until period t+ 1, i.e.

bat+1 ≥ 0. (4)

Constraint (4) implies limited commitment, in that the household cannot com-
mit to pay off debt in future periods.
The household can borrow on behalf of consumers who purchase goods in

market 2, and these consumers can also make purchases with money and bonds.
The household’s within-period debt is constrained, in that it can pay back at
most κt at the end of the period, where κt is exogenous. As well, credit transac-
tions are not feasible in market 1. Total purchases by consumers who purchase
in market 2 are then constrained by

(1− θ)c2t = b2t +m2
t + κt. (5)
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Note that bonds are not discounted when accepted in exchange, since either one
bond or one unit of money is a claim to one unit of money at the beginning of
period t+ 1, from the point of view of the seller in the goods market. However,
bonds can trade at a discount on the asset market, i.e. we can have qt < 1. We
also assume in (5) that the household always borrows up to its credit limit, and
we will later derive a condition that assures this in equilibrium. Note that a
claim to one unit of consumption goods at the end of the period trades for one
unit of consumption goods in market 2.
The agent’s budget constraint is

θc1t +qt(1−θ)c2t +mt+1+bgt+1+qtb
a
t+1 =

pt−1
pt

(mt + bat + bgt )+τ t+nt+qtκt−κt
(6)

In equation (6), mt+1 denotes money held over until period t+1, and the quan-
tity bgt+1 denotes bonds received in payment for goods sold by the household,
or in settlement of within-period credit. Note that the price of good 2 in terms
of good 1 is qt, which is implicit from (3) and (5). As for equation (5), note in
(6) that we have assumed that the household borrows up to its credit limit for
consumers who purchase in market 2.
The government’s budget constraints are

m̄0 + q0b̄0 = τ0 (7)

m̄t −
pt−1
pt

m̄t−1 + qtb̄t −
pt−1
pt

b̄t−1 = τ t, t = 1, 2, 3, ..., (8)

where m̄t and b̄t are, respectively, the quantities of money and and bonds out-
standing (net of government bonds held by the central bank). Note that we have
assumed that there are no government liabilities (money or bonds) outstanding
at the beginning of period 0.

3 Equilibrium

Let λ1t , λ
2
t , and µt denote, respectively, the mulitipliers associated with con-

straints (3), (5), and (6). The consumer chooses c1t , c
2
t , nt, b

2
t , m

2
t , b

a
t+1, mt+1,

and bgt+1, in the current period. Then, from the household’s optimization prob-
lem, we get

u′(c1t )− λ1t − µt = 0, (9)

u′(c2t )− λ2t − qtµt = 0, (10)

−γ + µt = 0, (11)

−qtλ1t + λ2t = 0, (12)

−λ1t + λ2t ≤ 0, (13)

−qt(λ1t + µt) + βEt

[
pt
pt+1

(
λ1t+1 + µt+1

)]
≤ 0, (14)
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−µt + βEt

[
pt
pt+1

(
λ1t+1 + µt+1

)]
= 0. (15)

First, from (12) and (13), note that if qt < 1, then consumers will not
purchase good 2 with money, as it is cheaper to pay with bonds if bonds trade
at a discount on the asset market. Reducing (9)-(15) to something we can work
with, we get

−γ + βEt

[
pt
pt+1

u′(c1t+1)

]
= 0, (16)

u′(c2t )− qtu′(c1t ) = 0, (17)

u′(c2t )− γ ≥ 0, (18)

and from (16) and (17) we can derive

qt =
u′(c2t )

γ
βEt

[
pt
pt+1

u′(c1t+1)

u′(c1t )

]
(19)

1 =
u′(c1t )

γ
βEt

[
pt
pt+1

u′(c1t+1)

u′(c1t )

]
(20)

Equations (19) and (20) price bonds and money, respectively. In each equation,
the left-hand side is the price of the asset, and the right-hand side is a liquidity
premium multiplied by the “fundamental,”which would be the value of the asset
if it were not useful in exchange. Note that the liquidity premium for bonds
is the ineffi ciency wedge for good 2, while the liquidity premium for money is
the ineffi ciency wedge for good 1. Under any circumstances, at the zero lower
bound on the nominal interest rate (qt = 1), the liquidity premia on bonds and
money must be equal.
We can also determine the real interest rate, as follows. Suppose a real bond

that sells at price sat , in units of consumption good 1, in the asset market, and
pays off one unit of consumption good 1 in the asset market of period t+1. Also
suppose that this asset is accepted in exchange, just as nominal bonds are. Its
price at the end of the period —the price a firm is willing to take for the real
bond in exchange for consumption good 2 —is given by sgt . Then,

−sat λ1t + λ2t s
g
t = 0 (21)

−sgtµt + βEt
(
λ1t+1 + µt+1

)
= 0. (22)

Therefore, from (9), (11), (12), (17), (21), and (22), we get

sat =
u′(c2t )

γ
βEt

[
u′(c1t+1)

u′(c1t )

]
. (23)

Note, in equation (23), as in (19), that we can write the price of the real bond
as a liquidity premium, multiplied by the fundamental.
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We will specify fiscal policy as setting the real value of the consolidated
government debt each period, Vt, i.e.

Vt = m̄t + qtb̄t, (24)

where Vt is exogenous. Then, from (8),

τ0 = V0,

τ t = Vt −
pt−1
pt

Vt−1 − b̄t−1
(
pt−1
pt
− qt−1

)
, (25)

so the period 0 transfer to the private sector is exogenous, but the transfer in
each succeeding period is endogenous, and in general will depend on monetary
policy, which affects prices. Thus, fiscal policy responds passively to monetary
policy so as to achieve a particular time path for the total value of the consoli-
dated government debt. Monetary policy consists of setting a target qt for the
price of government bonds, and this target is then supported by open market
operations. The relationship between fiscal and monetary policy here is the
same as in Williamson (2014a, 2014b). As it turns out, the real value of the
consolidated government debt will play a critical role in our model, and for the
key results, so it proves convenient (and realistic, we think) to specify the fiscal
policy rule as setting the real value of the consolidated government debt ex-
ogenously. Then, monetary policy is about determining the composition of the
consolidated government debt so as to achieve a particular price for government
debt in financial markets. But, a key element in how monetary policy affects
inflation, for example, will be determined by the nature of the fiscal policy rule.
From (3), (5), (6), (16)-(18), (24) and market clearing, an equilibrium is

then a stochastic process
{
c1t , c

2
t , πt+1

}∞
t=0

solving

−γ + βEt

[
u′(c1t+1)

πt+1

]
= 0, (26)

u′(c2t )− qtu′(c1t ) = 0, (27)

u′(c2t )− γ = 0 and Vt + qtκt ≥ θc1t + (1− θ)qtc2t , (28)

or
u′(c2t )− γ ≥ 0 and Vt + qtκt = θc1t + (1− θ)qtc2t , (29)

given a stochastic process {Vt, qt, φt}∞t=0, with qt ≤ 1. Here πt = pt
pt−1

is the
gross inflation rate. Note that the price level in period 0 is irrelevant, but it is
determined by the fiscal authority in period 0, i.e. the fiscal authority follows a
policy rule that sets exogenously the path for the consolidated government debt,
in real terms, and the period 0 price level is then determined by the quantity of
nominal debt issued by the fiscal authority in period 0.
In (28) and (29) note that, if u′(c2t )−γ = 0, then the value government debt

plus the credit limit is more than suffi cient to finance purchases in market 2, so
this is the case in which constraint (4) does not bind. But, if u′(c2t ) − γ > 0,
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i.e. if exchange in market 2 is ineffi cient, then the value of consumption of both
goods consumed is constrained by the real quantity of consolidated government
debt plus the credit limit, and the nonnegativity constraint (4) binds.
Given the quasilinear utility function, arriving at an equilibrium solution is

easy, in that we can solve period-by-period. First, (27)-(29) solve for c1t and c
2
t

given qt, Vt, and φt. Then, we can solve for the inflation rate from (26), i.e.,

πt =
βu′(c1t )

γ
. (30)

Let unconstrained equilibrium and constrained equilibrium, denote the cases
where (28) and (29) apply, respectively, i.e. in which the nonnegativity con-
straint (4) binds, and does not bind, respectively.

3.1 Unconstrained Equilibrium

An unconstrained equilibrium has standard properties that we would find in
typical cash-in-advance cash good/credit good models, e.g. Lucas and Stokey
(1987). In an unconstrained equilibrium, exchange in market 2 is effi cient, as
u′(c2t )−γ = 0. For convenience, let c∗ denote the effi cient consumption quantity,
which solves

u′(c∗) = γ. (31)

Thus, from (19) and (20), there is no liquidity premium associated with bonds,
but there is a standard liquidity premium associated with money. From (30)
and (26), c1t solves

u′(c1t ) =
γ

qt
, (32)

i.e. the ineffi ciency in market 1, and the liquidity premium on money (from
equation (20)) are associated with a positive nominal interest rate (qt < 1).
From (30) and (32), we can solve for the gross inflation rate:

πt =
β

qt
. (33)

Equation (33) is the Fisher relation — the nominal interest rate increases ap-
proximately one-for-one with an increase in the inflation rate. Further, from
(23), we get

sat = qtβEt

[
1

qt+1

]
. (34)

This equilibrium is unconstrained, as the consolidated government debt Vt
and the credit limit κt are irrelevant for the solution. Note that, from (28),

Vt + qtκt ≥ θc1t + (1− θ)qtc2t (35)

must be satisfied for the unconstrained equilibrium to exist.
We can illustrate the unconstrained equilibrium in Figure 7. With a positive

nominal interest rate, i.e. q1 < 1, the equilibrium is at point A, where the
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locus defined by (27), dropping time subscripts, intersects c2 = c∗. An effi cient
allocation is B, which will be the equilibrium allocation when q = 1. At point
B, c1 = c2 = c∗, which is the conventional Friedman rule allocation.

3.2 Constrained Equilibrium

The constrained equilibrium is the interesting case, in which, from (3), (4) with
equality, (5), (24), and market clearing, c1t and c

2
t solve

Vt + qtκt = θc1t + (1− θ)qtc2t (36)

and (27). In the constrained equilibrium, comparative statics, dropping t sub-
scripts for convenience, gives

dc1
dq

=
φyu′′(c2)− u′(c2)(1− θ)

[
c2u
′′(c2)

u′(c2)
+ 1
]

θu′′(c2) + q2(1− θ)u′′(c1)
(37)

dc2
dq

=
θu′(c1) + qu′′(c1) [κ− (1− θ)c2]

θu′′(c2) + q2(1− θ)u′′(c1)
(38)

We will assume that
κ < (1− θ)c2, (39)

i.e. that the quantity of credit supported by capital income is not suffi cient to
purchase all the goods supplied in market 2. Then, (23) and (38) imply that
dc2
dq < 0. The sign of dc1dq is in general ambiguous, but, if − c2u

′′(c2)
u′(c2)

< 1, then
dc1
dq > 0. Thus, provided there is not too much curvature in the utility function,
a lower nominal interest rate (higher q) reduces consumption in market 2 and
increases consumption in market 1. Essentially, this is due to the open market
purchase that is required to support a lower nominal interest rate. The open
market purchase of government bonds reduces bonds available for transactions
in market 2, but increases money available for transactions in market 1.
We can illustrate the constrained equilibrium in Figure 7. Here, V0 is the

locus defined by (36) in the case in which q = 1, while V1 is the same locus when
q = q1 < 1. Then, a reduction in q from 1 to q1 shifts the equilibrium from D
to E. Consumption in market 2, c2, must increase, while c1 may rise or fall.

As well, it is useful to look at the effect of an increase in the nominal interest
rate on real GDP, which we can express as

yt = θc1t + (1− θ)c2t . (40)

Then, from (37) and (38),

dy

dq
=

[κ− (1− θ)c2] [θu′′(c2) + (1− θ)qu′′(c1)] + u′(c1)θ(1− θ)(1− q)
θu′′(c2) + q2(1− θ)u′′(c1)

.

Therefore, under assumption (39), dy
dq < 0, so output goes down when the

nominal interest rate goes down. We could also do a welfare calculation to find
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the optimal monetary policy in this economy under a constrained equilibrium,
taking fiscal policy as given. We can do a period-by-period maximization of
period utility for the representative household, writing our welfare measure as

W = θu(c1) + (1− θ)u(c2)− γ [θc1 + (1− θ)c2 − y]

Then, differentiating, we get

∂W

∂q
= θ [u′(c1)− γ]

dc1
dq

+ (1− θ) [u′(c2)− γ]
dc2
dq

(41)

So, at the zero lower bound (q = 1), where c1 = c2 = V + κ,

∂W

∂q
= [u′(V + κ)− γ]

dy

dq
< 0.

Therefore, given (39), q < 1 is optimal, so optimal monetary policy is away from
the zero lower bound if the equilibrium is constrained. In general, from (41),
(37), and (38), we can write

∂W

∂q
=

[θu′′(c2) + q(1− θ)u′′(c1)] [u′(c1)− γ] [κ− (1− θ)c2]− γθ(1− θ)u′(c1)(1− q)
θu′′(c2) + q2(1− θ)u′′(c1)

.

Therefore, we can say, in general, that welfare increases as the nominal interest
rate increases, so long as the nominal interest rate is close to zero, i.e. q is close
to 1.
Thus, since c2 is strictly decreasing in q, from (38), therefore a constrained

equilibrium exists if and only if the equilibrium is constrained at the zero lower
bound. In a constrained equilibrium at the zero lower bound, c1 = c2 = V + κ.
Therefore, from (29), a constrained equilibrium exists for some q if and only if

u′(V + κ)

γ
> 1, (42)

i.e. if and only if V +κ is suffi ciently small. Furthermore, if (42) holds, then if q
is suffi ciently small, the equilibrium will be unconstrained. To be more precise, if
(42) holds, then the equilibrium is constrained for q ∈ (q̂, 1], and unconstrained
for q ≤ q̂, where (q̂, ĉ1) solve

u′(ĉ1) =
γ

q̂
, (43)

V + q̂κ = θĉ1 + (1− θ)q̂c∗. (44)

How does monetary policy affect the real interest rate in a constrained equi-
librium? One way to think about this is to consider an equilibrium that is
constrained, with Vt = V and κt = κ for all t, so that c1t = c1 and c2t = c2 for
all t. Then, from (23),

sat =
u′(c2)β

γ
. (45)
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Therefore, from (45), the real interest rate depends on the ineffi ciency wedge
(the ratio u′(c2)/γ) in market 2, i.e. on the liquidity premium on real bonds.
Thus, from (38), a decrease in the nominal interest rate by the central bank also
reduces the real interest rate, as this reduces the supply of bonds, tightens the
finance constraint, and increases the liquidity premium on government debt.

3.3 Government Debt and Credit Constraints

What happens if κt changes? For example, we might think of a decrease in κt as
capturing some of what occurred during the financial crisis. In an unconstrained
equilibrium, a change in κt has no effects at the margin, as the credit limit and
government debt are large enough to support effi cient exchange in market 2.
Therefore, given monetary policy, there is no change in consumption or output.
However, from (43) and (44), a decrease in κ acts to reduce q̂, so there is an

increase in the critical value for the nominal interest rate, below which the equi-
librium will be constrained. Therefore, a discrete decrease in κ could result in
a constrained equilibrium in a case in which the equilibrium was unconstrained
before the change in κ. Further, given q, the constrained equilibrium will have
lower consumption in both markets and lower real output if κ decreases. In Fig-
ure 8, the equilibrium is initially at A, at the intersection between the upward-
sloping locus defined by (27), and the downward-sloping locus defined by (36).
Then, holding monetary policy constant, so q is constant, the locus defined by
(36) shifts from V0 to V1, so c1, c2, and total real GDP fall.
More formally, from (27) and (36),

dc1
dκ

=
qu′′(c2)

θu′′(c2) + q2(1− θ)u′′(c1)
> 0, (46)

dc2
dκ

=
q2u′′(c2)

θu′′(c2) + q2(1− θ)u′′(c1)
> 0. (47)

Therefore, a reduction in φ reduces consumption in both markets, and lowers
real output. As well, from (27) and (36), we get

dc1
dV

=
1

q

dc1
dκ

, (48)

dc2
dV

=
1

q

dc2
dκ

. (49)

Therefore, a decrease in the real quantity of consolidated government debt has
the same qualitative effect as a reduction credit limit. Put another way, a
reduction in the credit limit can be mitigated or eliminated if the fiscal authority
acts to increase the quantity of government debt. However, one of our goals in
this paper is to examine the effects of monetary policy in the face of suboptimal
behavior of the fiscal authority which, in this case, will not act to relax asset
market constraints when that is appropriate.
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We can also examine how changes in κ and V affect the real interest rate.
If, as above, we look at cases where κt = κ and Vt = V for all t, then from (45),
(47), and (49), a decrease in κ or V will lower the real interest rate, because
this increases the ineffi ciency wedge in market 2, and therefore increases the
liquidity premium on government bonds.
As well, note from (30) that a decrease in κ or V will increase the inflation

rate, given q. Because the asset market constraint tightens, increasing the liq-
uidity premium on government bonds and lowering the real interest rate, the
inflation rate must rise since the nominal interest rate is being held constant in
these experiments.
These results — that a reduction in credit limits will reduce consumption

and output, reduce the real interest rate, and lead to an increase in the inflation
rate (given the nominal interest rate) —are consistent with observations on the
U.S. economy following the financial crisis. Post-2008, the real interest rate on
government debt was low, and it may seem surprising, given the zero-lower-
bound policy of the Fed, that the inflation rate was still positive. However, this
is consistent with what our model predicts.
To see more clearly where these results are coming from, we consider in

the next subsection what happens at the zero lower bound in a constrained
equilibrium.

3.4 Liquidity Trap

It is useful to examine specifically the properties of the model when the nom-
inal interest rate is set to zero by the central bank, or qt = 1,so that we have
a liquidity trap equilibrium. From (27), this implies that c1t = c2t , so con-
sumption is equalized across markets. If (42) does not hold, so that the real
value of the consolidated government debt plus the credit limit is suffi ciently
large, then the liquidity trap equilibrium is unconstrained, so from (28), we
have u′(c1t ) = u′(c2t ) = γ and, from (30), πt = β. Therefore, if assets used in
exchange are suffi ciently plentiful, then a liquidity trap equilibrium has conven-
tional properties. Exchange in markets 1 and 2 is effi cient, and there is deflation
at the rate of time preference.
However, a constrained liquidity trap equilibrium has very different proper-

ties. If (42) holds, then from (36),

c1t = c2t = yt = Vt + κt (50)

so consumption and output are determined by the value of the consolidated
government debt plus the credit limit. This shows, in the most obvious way,
the non-Ricardian nature of the constrained equilibrium. In a liquidity trap,
increases in the quantity of government debt (in real terms) are not neutral,
and will increase output and consumption one-for-one. As well, from (30), the
inflation rate in a liquidity trap, if the equilibrium is constrained, is given by

πt =
βu′(Vt + κt)

γ
, (51)
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so the inflation rate increases with the ineffi ciency wedge in goods markets,
which determines the liquidity premium on all assets —money and bonds. Basi-
cally, a lower quantity of government debt plus the credit limit implies a larger
ineffi ciency wedge in goods markets, a larger liquidity premium on assets used in
exchange, and a larger inflation rate. There need not be deflation in a liquidity
trap.
To understand exactly what is going on, it helps to consider what the fiscal

authority is doing in the constrained equilibrium at the zero lower bound. From
(25),

τ t = Vt

(
1− 1

πt

)
, (52)

so given the fiscal authority’s rule, which sets Vt exogenously, at the zero lower
bound, the real transfer rebated to the private sector is determined by the real
value of the government debt, and the inflation rate. Basically, in (52), Vt is the
tax base, and 1− 1

πt
is the tax rate, and effectively the real transfer is seigniorage

on the consolidated government debt. So, if we substitute using (51) in (52),
we get

τ t = Vt

(
1− γ

βu′(Vt + κt)

)
, (53)

and this tells us the real transfer required to support the fiscal authority’s policy
given monetary policy at the zero lower bound, in a constrained equilibrium.
So, assuming that −cu

′′(c)
u′(c) = α, a constant, and γ

β (V + κ)α < 1, then the
transfer τ t, as a function of Vt, can be depicted as in Figure 9. Thus, in this
case, if the inflation rate is close to zero (so that τ t is close to zero) and positive,
then a reduction in Vt will lead to an increase in τ t, i.e. an increase in the
government deficit. In a stationary equilibrium with Vt = V for all t, and qt = 1
for all t, then, a permanent decrease in V implies that the inflation rate must
increase permanently. To accomplish this, the nominal quantity of consolidated
government liabilities must be increasing at a higher rate. Thus, suppose the
fiscal authority wants to accomplish a permanent reduction in the real quantity
of consolidated government debt outstanding. Then, given monetary policy
at the zero lower bound, the nominal value of the consolidated government
debt must be increasing at a higher rate. With assumptions that give the
configuration in Figure 9, if the inflation rate is currently suffi ciently close to
zero, then the deficit must rise in real terms to support this.

4 Taylor Rule

Thus far, we have established the operating characteristics of this model econ-
omy, and have characterized optimal monetary policy, given a fiscal policy rule
which is in general suboptimal. In this section, we want to understand what will
happen in this economy if a central banker adopts a standard type of policy rule
—a Taylor rule. We know at the outset that the Taylor rule will be suboptimal

15



here, in general, but we wish to understand what types of pitfalls would meet a
Taylor rule central banker in this context.
For simplicity we assume that the central banker cares only about inflation,

and the Taylor rule takes the form

1

qt
= max[παt (π∗)

1−α
xt, 1] (54)

Here, 1
qt
is the gross nominal interest rate, π∗ is the central bank’s target gross

inflation rate, and xt is the adjustment the central bank makes for the real rate
of return on government debt. In general, α > 0, and if α > 1 the rule falls the
“Taylor principle,”whereby deviations of the inflation rate from its target are
met with an aggressive response by the central bank.

4.1 Unconstrained Equilibrium

First, suppose that (42) does not hold, so that the equilibrium is unconstrained,
for all qt ≤ 1. Also suppose, in standard fashion, that xt = 1

β , i.e. the long-run
“natural”real interest rate is the rate of time preference, so from (30)-(??) and
(54), we can solve for equilibrium qt from

1 = max

[(
qtπ
∗

β

)1−α
, qt

]
. (55)

Note in particular that there are no dynamics associated with this Taylor rule,
which is in part due to our assumption of quasilinear preferences. Assume
π∗ ≥ β, so that the target inflation rate is larger than minus the rate of time
preference. Then, if the Taylor rule follows the Taylor principle, so α > 1,
there are two equilibrium solutions to (55), as depicted in Figure 10. The two
solutions are qt = β

π∗ , which implies that π = π∗ and the central bank achieves
its target rate of inflation, and qt = 1, which is the liquidity trap solution for
which π = β < π∗. In the liquidity trap equilibrium the central banker sees a
low inflation rate, and responds aggressively by setting the nominal interest rate
as low as possible, which ultimately has the effect of producing a low inflation
rate. This is a well-known property of monetary models (see Benhabib et al.
2001) —under the Taylor principle there are multiple steady states, including
the liquidity-trap steady state. In this particular model, in an unconstrained
equilibrium, the Taylor rule does not impart any dynamics to the economy (in
contrast to Benhabib et al. 2001), but we will show in what follows how dynamic
equilibria arise with other forms of the monetary policy rule.
If, however, α < 1, then, as in Figure 11, there is a unique equilibrium with

q = β
π∗ , and the central banker always achieves his or her inflation target. Thus,

in this particular model, in an unconstrained equilibrium the Taylor principle
is not a good idea, as the central banker will not achieve his or her inflation
target. Note that, if π∗ = β, then this maximizes welfare in the unconstrained
equilibrium, and the equilibrium is unique —this is just the Friedman rule solu-
tion.
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In the Taylor rule the term xt makes an adjustment for the real interest rate,
to account for the fact that the Fisher relation must hold in the long run. With
an appropriately chosen xt term, there is at least the possibility that the Taylor
rule will lead to convergence to the central bank’s inflation target in the long
run. But, what if the central bank accounted explicitly for endogeneity in the
real interest rate? In particular, suppose that the central bank chooses

xt =
1

sat
, (56)

where sat is the price of a real bond, as determined in (23). In this case, the
central bank recognizes that the real interest rate is endogenous, and sets the
nominal interest rate in line with fluctuations in the real interest rate. Sup-
pose, for convenience, that we consider only deterministic dynamic equilibria.
Substituting in (54) using (23), (28), (30), (33) and (56), we get

πt+1 = max
{
παt (π∗)

1−α
, β
}
, (57)

which is a nonlinear first-order difference equation in the gross inflation rate πt,
which we can use to solve for an equilibrium. An unconstrained dynamic equi-
librium satisfying this version of the Taylor rule is a sequence {c1t , qt, c2t , πt}∞t=0
satisfying (30), (33), (57), and c2t = c∗ for all t.

First, suppose that α > 1. Then there are two steady states, just as for
the Taylor rule with xt = β−1, and these are the same steady states as for
the simpler Taylor rule —one where the central bank meets its inflation target,
and the liquidity trap equilibrium. In the high-inflation steady state, the gross
inflation rate is π = π∗, so the central bank achieves its inflation target, c1t solves

u′(c1t ) =
π∗γ

β
, (58)

and qt = β
π∗ . In the liquidity trap steady state, π = β, so the central bank falls

short of its inflation target, c1t = c∗, and qt = 1.
In contrast to the case with xt = β−1 though, there are nonstationary equi-

libria. With α > 1, there exists a continuum of nonstationary equilibria that
converge to the liquidity trap steady state in finite time. In each of these equi-
libria, β < π0 < π∗, and

πt+1 = max
{
παt (π∗)

1−α
, β
}
,

for t = 1, 2, ..., with

qt =
β

πt
. (59)

In Figure 12, B is the high-inflation steady state, A is the liquidity trap steady
state, and we have depicted one of the nonstationary equilibria, for which the
initial gross inflation rate is π0, and there is convergence to the liquidity trap
steady state in period 4.
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Second, if α < 1, then there is a unique steady state with π = π∗, c1t solving
(58), and qt = β

π∗ . As well, there exists a continuum of nonstationary equilibria
that converge in the limit to the steady state equilibrium. For each of these
equilibria, β ≤ π0 <∞,

πt+1 = παt (π∗)
1−α

for t = 1, 2, ..., c1t solves (58), and qt is given by (59). In Figure 13, we show the
case α < 1, where A is the steady state, and we show one of the nonstationary
equilibria, for which the initial gross inflation rate is π0, and there is convergence
in the limit to the steady state.
So, the “Taylor principle”(the case α > 1) does not have anything in partic-

ular to recommend it in this standard unconstrained case. The Taylor principle
yields a liquidity trap steady state in which the central banker falls short of his
or her inflation target, and this steady state is stable, in the sense that there ex-
ists a continuum of nonstationary equilibria that converge to the liquidity trap
steady state in finite time. However, if the Taylor principle does not hold, with
α < 1, there is a unique steady state equilibrium in which the central banker
achieves his or her inflation target, and this steady state is stable.

4.2 Constrained Equilibrium

Next, suppose that (42) holds, so that the equilibrium will be constrained for
suffi ciently large q. Therefore, if (42) holds and Rt = β−1, then there is a static
equilibrium solution and (54) becomes

1

q
= max

{[
u′(c1)

γ

]α(
π∗

β

)1−α
, 1

}
, (60)

and then an equilibrium consists of (c1, c2, q) solving (60),

u′(c2)− qu′(c1) = 0, (61)

and
V + qκ = θc1 + (1− θ)qc2. (62)

Then, from (50), a liquidity trap equilibrium, with q = 1 has c1 = c2 = V + κ.
Therefore, from (60), this is an equilibrium if and only if

u′(V + κ)

γ
≤
(
π∗

β

)1− 1
α

. (63)

But, if α > 1, then (63) will not hold for V + κ suffi ciently small, i.e. if
government debt plus the credit limit is suffi ciently small in a liquidity trap,
which in turns makes the inflation rate high in a liquidity trap. If α < 1, then
since π∗ ≥ β, (63) and (42) cannot both hold, so the liquidity trap is not an
equilibrium. Therefore, the inflation rate must be suffi ciently low at the zero
lower bound in order for the liquidity trap to be an equilibrium, and the Taylor
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principle must hold, i.e. α > 1. Indeed, if the liquidity trap equilibrium exists,
the inflation rate at the zero lower bound equilibrium is smaller than the target
inflation rate, from (63).
If an equilibrium away from the zero lower bound exists, it is straightforward

to show that, in general, π 6= π∗ in this equilibrium, i.e. the central bank
does not achieve its inflation target, which is also true in the liquidity trap
equilibrium, if it exists. There also are potentially multiple solutions to (60)-
(62) with q < 1, though constructing simple examples seems diffi cult. The key
problem here is that the policy maker does not correctly understand what is
determining the real interest rate, and constructs the Taylor rule under the
incorrect assumption that the long run real rate is equal to the rate of time
preference.
Next, suppose that (42) holds, and the central bank follows a Taylor rule

that accounts for the endogeneity in the real interest rate. Then, from (23),
(27), and (30),

xt =
1

qtπt+1
. (64)

Then, from (55), (64), (27), and (36), we can express the Taylor rule as

πt+1 = max

{
παt (π∗)

1−α
,
βu′(V + κ)

γ

}
, (65)

supposing for convenience that Vt = V and κt = κ for all t. Then, an equilibrium
consists of a sequence {c1t , c2t , qt, πt}∞t=0 solving (65), (27), (30) and (36). Solving
for an equilibrium involves first finding a solution to the difference equation (65),
then solving for {c1t , c2t , qt}∞t=0 from (27), (30) and (36).
First, if

π∗ <
βu′(V + κ)

γ
,

then an equilibrium does not exist. In this case, the inflation target is less than
the inflation rate in the liquidity trap equilibrium, so no steady state equilibrium
exists, and there are no nonstationary equilibria. However, if

π∗ ≥ βu′(V + κ)

γ
, (66)

then there exist two steady state constrained equilibria. In the high-inflation
equilibrium, πt =

βu′(c1t )
γ = π∗, so the central bank achieves its inflation target.

In the liquidity trap steady state, πt = βu′(V+κ)
γ ≤ π∗, from (66), so the central

bank in general falls short of its inflation target.
In terms of nonstationary equilibria, we get similar results to the uncon-

strained case with an endogenous real interest rate incorporated into the Taylor
rule. In particular, if α > 1 (the Taylor principle holds), then there exist a con-

tinuum of equilibria with π0 ∈
(
βu′(V+κ)

γ , π∗
)
that all converge in finite time to

the liquidity trap equilibrium. However, if α < 1, then there exists a continuum
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of equilibria with π0 ∈
[
βu′(V+κ)

γ ,∞
)
that all converge to the high-inflation

equilibrium.
We illustrate these results in Figures 14 and 15. Figure 14 shows the case

α > 1, where A is the high-inflation steady state, and B is the liquidity trap
steady state. The figure shows one of the nonstationary equilibria, with the
initial condition π0, converging to the liquidity trap steady state in period 2.
Figure 15, shows the case α < 1, where A is the unique steady state in which
πt = π∗ for all t.We also show one of the nonstationary equilibria, which follows
the path {π0, π1, π2, ...}, and converges in the limit to the steady state.
Thus, our results are again similar to the unconstrained case. The Taylor

principle tends to yield poor dynamic properties, in that there are many equi-
libria that converge to the liquidity trap equilibrium in which the central bank
fails to achieve its inflation target.

5 Market Segmentation and Liquidity Effects

The structure of the Taylor rule seems in general to be aimed at correcting some
short run distortion, while achieving an inflation target in the long run. Further,
implicit in the rule is the idea that the short run distortion is corrected by setting
the nominal interest rate lower the larger is the distortion. The idea seems to
be that there is a short run liquidity effect. That is, the first-round effects of
a decrease in the nominal interest rate are a decrease in the real interest rate,
and possibly increases in the inflation rate and in real economic activity. New
Keynesian (NK) models (e.g. Woodford 2003) certainly have these properties —
in a typical NK model, a reduction in the nominal interest rate lowers the real
interest rate and increases output and the inflation rate.
However, there are other types of models that generate short-run liquidity

effects, in particular the class of segmented markets models, including Lucas
(1990), Fuerst (1992), Alvarez and Atkeson (1997), Alvarez, Lucas and Weber
(2001), Alvarez, Atkeson, and Kehoe (2002), and Williamson (2006, 2008). In
such models, monetary policy is non-neutral in the short run because of a distrib-
ution effect of monetary policy. Only some economic agents are on the receiving
end of central bank intervention in financial markets, and this can result in a de-
crease in the real interest rate, an increase in inflation, and possibly an increase
in aggregate output, as the result of monetary policy easing. For our purposes,
segmented markets frameworks are useful, as it is fairly straightforward to adapt
the model we have worked with thus far to incorporate seqmented-markets liq-
uidity effects. The resulting model most closely resembles Alvarez, Lucas and
Weber (2001).
For convenience, we take production out of the model. Instead of produc-

ing output for sale, each household receives an endowment y each period of
perishable consumption goods, and each household has preferences

E0

∞∑
t=0

βtu(cjt ),
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where cjt denotes the consumption of type j, where j = T denotes a trader and
j = N denotes a non-trader. In the population, there is a mass σ of traders,
and a mass 1 − σ of non-traders, where 0 < σ < 1. Traders participate in
asset markets, and in the goods market they always carry out exchange with
households that accept government bonds, money, and some credit, in exchange.
Each trader household can pledge φty of its end-of-period income to support
intra-period credit to purchase goods from other households. Traders also each
receive a lump-sum transfer each period of τtσ in the asset market. Non-traders
cannot trade on asset markets, and in goods markets they trade with other
households that take only money in exchange. Non-traders do not pay taxes.
A trader then faces the constraints

qtc
T
t + qtb

a
t+1 ≤

pt−1
pt

(
mT
t + bgt + bat

)
+
τ t
σ

+ qtφty, (67)

and

qtc
T
t +mT

t+1+bgt+1+qtb
a
t+1 =

pt−1
pt

(
mT
t + bgt + bat

)
+
τ t
σ

+qtφty+(1−φt)y. (68)

Inequality (67) is the trader’s finance constraint, and (68) is the budget con-
straint. The trader enters period t with mT

t money balances, b
g
t bonds acquired

in the goods market of the previous period, and bat bonds acquired in the asset
market of the previous period, as defined for the previous version of the model.
In the asset market of period t, the trader acquires bat+1 bonds to be held until
period t+1, and also acquires bonds and money to make purchases in the goods
market. Note that money will be acquired only if qt = 1. One unit of either
money or bonds is accepted on the same terms in the goods market, as they both
pay off one unit of money in period t + 1. Thus, effectively the price of goods
for the trader is qt. If the trader purchases goods with credit, then a claim to
one unit of goods at the end of the period trades for one unit of goods, which is
why the quantity borrowed, φty, is multiplied by qt in the constraints. As well,
the trader can borrow at most φty. We have assumed implicitly in (68) that
the trader always borrows up to the borrowing limit, and we will show where
this assumption matters in the analysis below. The trader household sells its
endowment y on the goods market for money, bonds, and credit (it does not
matter which means of payment the household accepts) and decides how much
money and bonds, mT

t+1 and b
g
t+1, respectively, to carry forward into the next

period.
Similarly, a non-trader’s constraints are

cNt ≤
pt−1
pt

(
mN
t + bNt

)
, (69)

and
cNt +mN

t+1 + bNt+1 =
pt−1
pt

(
mN
t + bNt

)
+ y. (70)

Note that non-trader households purchase consumption goods with money, they
do not trade on the asset market, and they do not pay taxes.
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We will make a different assumption about fiscal policy here. In particular,
assume that {τ0, τ1, τ2, ...} is exogenous. As it turns out, our former assumption
about fiscal policy (real quantity of consolidated debt exogenous) is not a feasible
policy rule in this economy. Also suppose that the finance constraints (67) and
(69) hold with equality. Then, (69) and (70) imply

cNt =
y

πt
, (71)

and recall that πt is the gross inflation rate. As well, market clearing in the
goods market gives

σcTt + (1− σ)cNt = y, (72)

so from (71) and (72), we can solve for the consumption of trader households
as a function of the gross inflation rate.

cTt =
y
[
1− (1−σ)

πt

]
σ

(73)

Thus, no matter what policy regime is in place, from (71) and (73) inflation will
lead to a distribution effect, with higher inflation leading to higher consumption
of trader households and lower consumption of non-trader households. This
effect is typical of segmented markets models. The interesting part of the model
is how we connect constraints in asset markets to monetary policy, fiscal policy,
and inflation.
As in the version of our model with production, there will be two cases to be

concerned with, one in which the traders hold some bonds over from the asset
market in period t until period t + 1, and another in which all bonds are used
in transactions by traders during the period. When some bonds are held over
until the succeeding period, optimization by traders implies

u′(cTt ) = βEt

[
u′(cTt+1)

πt+1qt+1

]
. (74)

Note the difference in (74) from typical bond pricing relationships in representa-
tive agent models and, for example, in Alvarez, Lucas, and Weber (2001). In the
latter model, qtu′(cTt ) appears on the left-hand side, while the quantity inside

the expectation operator on the right-hand side is
u′(cTt+1)

πt+1
. The difference here is

that the trader households are paying for consumption goods with government
bonds. Giving up the consumption equivalent of one bond in the present implies
that the trader foregoes u′(cTt ), not qtu′(cTt ). And then, the payoff in the future
will be the marginal utility of the quantity of goods this will purchase, which is
u′(cTt+1)

πt+1qt+1
, not

u′(cTt+1)

πt+1
.

Then, if we substitute for cTt in (74) using (73), we get
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u′

y
[
1− (1−σ)

πt

]
σ

 = βEt


u′

(
y
[
1− (1−σ)

πt+1

]
σ

)
πt+1qt+1

 , (75)

and (75) then solves for inflation given a policy rule for the price of bonds, qt.
As well, we can price a real bond, just as in the previous version of the model,
obtaining

st
qt
u′

y
[
1− (1−σ)

πt

]
σ

 = βEt


u′

(
y
[
1− (1−σ)

πt+1

]
σ

)
qt+1

 , (76)

where st is the price of a claim to one unit of consumption in period t + 1. To
guarantee that there is always a suffi ciently high quantity of government bonds
to finance consumption by traders in this equilibrium, from the government
budget constraint (8) and (73),

τ t ≥ y
[
qt(1− σφt)−

qt(1− σ)

πt
−
σ(1− φt−1)

πt

]
(77)

5.1 Example: Random Policy Shocks

Suppose that qt is i.i.d., so the central bank engages in random monetary policy,
drawing qt from a time-invariant distribution each period. Suppose also that
the distribution for qt is chosen so that (77) holds in all states of the world, and
that τ t = τ for all t. Then, in an equilibrium in which πt is state-dependent,
the right-hand side of (75) is a constant, and so consumption of traders, cTt , is
a constant, and πt = π, a constant for all t. Then, from (75) the gross inflation
rate solves

π = βEt

[
1

qt+1

]
(78)

Equation (78) is essentially a Fisher relation, but on its head. That is, the
inflation rate is determined by the anticipated future nominal interest rate,
rather than the nominal interest rate being determined by the anticipated future
inflation rate.
Further, in this equilibrium, from (76),

st = βqtEt

[
1

qt+1

]
.

Thus, in this regime, the central bank sees anticipated inflation as being “an-
chored.”Indeed, it seems the inflation rate is sticky —it is a constant —and so
the real interest rate fluctuates one-for-one with the nominal interest rate.
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Next, instead of announcing the realization of the random nominal interest
rate at the beginning of the period, suppose that the central bank announces
the policy rate one period in advance. We will continue to assume that the
central bank draws the nominal interest rate it will target from a time-invariant
distribution. In this case, from (75),

qt+1u
′

y
[
1− (1−σ)

πt

]
σ

 = βEt


u′

(
y
[
1− (1−σ)

πt+1

]
σ

)
πt+1

 . (79)

In an equilibrium in which πt is state-dependent, the right-hand side of (79) is
a constant. This implies that, the higher is qt+1 the larger is πt, and the larger
is consumption in period t of traders relative to non-traders. This resembles
a typical segmented-markets liquidity effect, of the type studied by Alvarez,
Lucas, and Weber (2001), for example. The difference here is that the liquidity
effect is a response to anticipated monetary policy, not a response to a money
surprise. As well, the real interest rate depends only on the current nominal
interest rate, i.e. from (75) and (76), we can write

st = qtψ,

where ψ is a constant. Therefore, the real interest rate roughly moves one-for-
one with the current nominal interest rate.
Suppose then, that the central banker experiments at random, hoping to

learn how the economy responds to monetary policy. What we have shown
is that the central banker will see (depending on how the random policy ex-
periments are announced) either no response of the inflation rate and low real
interest rates in response to low nominal interest rates, or increases in inflation
and reductions in the real interest rate (with a lag) in response to low nominal
interest rates.

5.2 Example: Linearization

Next, assume that u(c) = c1−δ−1
1−δ , where δ > 0 is the coeffi cient of relative risk

aversion. Then (75) becomes, after taking logs and using a first-order Taylor
series approximation,

δ(1− σ)

σ
it = ρ+ Etit+1 − EtRt+1 +

δ(1− σ)

σ
Etit+1, (80)

where it is the inflation rate and Rt is the nominal interest rate. Then, if
we consider deterministic cases with an exogenous path for the nominal interest
rate {R0, R1, R2, ...}, the inflation rate {i0,i1, i2...} is a solution to the difference
equation

it+1 =
(Rt+1 − ρ)σ

δ(1− σ) + σ
+

δ(1− σ)it
δ(1− σ) + σ

. (81)
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For example, if Rt = R for all t, then there are many deterministic equilibria,
all of which converge monotonically to the steady state with

it = i = R− ρ,

where the Fisher relation holds.
Suppose a monetary policy represented by the nominal interest rate path

Rt = R1 for t = 1, 2, 3, ..., T − 1, and Rt = R2 for t = T, T + 1, T + 2, ..., with
R2 > R1. An equilibrium (not the only one) given this policy, is it = R1 − ρ
for t = 0, 1, 2, ..., T − 1, and then it increases monotonically to R2 − ρ. Thus,
the increase in the nominal interest rate, produces an increase in inflation, but
it takes time for the adjustment to occur. In particular, from (81) the speed of
adjustment is faster the larger is σ (i.e. the greater is the degree of asset market
participation) and the smaller is δ (the higher is the intertemporal elasticity of
substitution).
Further, a linear approximation to (76) is

δ(1− σ)

σ
it + rt −Rt = ρ− EtRt+1 +

δ(1− σ)

σ
Etit+1, (82)

where rt denotes the real interest rate. In our deterministic examples, once we
solve for the path for the inflation rate from (81), equation (82) allows us to
solve for the real interest rate, i.e.

rt = ρ+
δ(1− σ) (it+1 − it)

σ
+Rt −Rt+1 (83)

So, consider the experiment above, in which the nominal interest rate is con-
stant, and then increases once-and-for-all to a higher level. The effect on the
real interest rate from (83), and given the equilibrium solution under consider-
ation, is an increase in period T equal to the increase in the nominal interest
rate, with the real rate then falling over time as the inflation rate converges to
its higher steady state level. We show the equilibrium path under the central
bank’s policy, of the inflation rate and the real interest rate, in Figure 16.
The story here is that, if a central banker simply learns from random exper-

iments with the policy rate, this will not tell him or her how to increase the rate
of inflation permanently. The experiments tell the policy maker that a decrease
in the nominal interest rate makes the inflation rate go up and causes the real
interest rate to go down. But what it actually takes to raise the inflation rate
is a sustained increase in the nominal interest rate, which will lead to a gradual
increase in the inflation rate, with the real interest rate first increasing and then
falling over time, with no net effect on the real rate in the long run.

5.2.1 Taylor rule

Now, suppose that the central banker follows a linear Taylor rule

Rt = min[αit + (1− α)i∗ + ρ, 0], (84)
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where i∗ is the central banker’s inflation target. If we then substitute for Rt in
(81) using (84), we obtain

it+1 =
(1− α)σi∗

δ(1− σ) + σ
+

[
δ(1− σ) + ασ

δ(1− σ) + σ

]
it, if it ≥

−ρ+ (α− 1)i∗

α
, (85)

it+1 =
−σρ

δ(1− σ) + σ
+

[
δ(1− σ)

δ(1− σ) + σ

]
it, if it ≤

−ρ+ (α− 1)i∗

α
.

First, consider the Taylor-principle case, i.e. α > 1. Then, as depicted in Figure
17, there are two steady states, the liquidity trap steady state at A, where
i = −ρ, R = 0, and r = ρ, and the high-inflation steady state at B, with i = i∗,
R = ρ+ i∗, and r = ρ. There also exist a continuum of nonstationary equilibria,
indexed by i0 ∈ (−ρ, π∗), that converge to the liquidity trap equilibrium in the
limit.
Next, suppose that α < 1. Then, there exists a unique steady state with

i = i∗, R = ρ + i∗, and r = ρ, and a continuum of nonstationary equilibria
that converge to the steady state in the limit, with these equilibria indexed by
i0 ≥ −ρ. This case is depicted in Figure 18.

5.3 Bonds in Short Supply

We need to consider the case in which traders carry no bonds from one period
to the next, i.e. bat+1 = 0, so that all government bonds are used in exchange
and (77) is a binding constraint. Then, we can solve for an equilibrium in a
static fashion, as (71), (73), and (77) solve for cNt , c

T
t , and πt, given qt and τ t.

From (77) we obtain a closed-form solution for the gross inflation rate:

πt =
y
[
qt(1− σ) + σ(1− φt−1)

]
yqt(1− σφt)− τ t

. (86)

Therefore, from (86), an increase in qt (a decrease in the nominal interest rate)
results in a decrease in the inflation rate. This contrasts with the short-run
liquidity effect that we obtained in the case in which (77) does not bind, whereby
a decrease in the nominal interest rate can be associated with an increase in the
inflation rate.
Note that a larger deficit (larger τ t) implies a higher inflation rate. As well,

tighter credit in the current period (lower φt) implies a lower inflation rate, but
tighter credit in the previous period (lower φt−1) implies a higher inflation rate.

5.3.1 Taylor Rule

Suppose xt = β−1, so that the central banker assumes (incorrectly) that the
long-run real interest rate is the rate of time preference. Then, substitute using
(86) in (54) to obtain

1 = max

(
G(qt)

(π∗)
1−α

β
, qt

)
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where

G(qt) = qt

{
y
[
qt(1− σ) + σ(1− φt−1)

]
yqt(1− σφt)− τ t

}α
.

Then, we can show that, if α is suffi ciently large, then G′(qt) < 0. Further,

G(1) =

{
y
(
1− σφt−1

)
y(1− σφt)− τ t

}α
so, if φt−1 = φt, then G(1) > 1. This then implies, as shown in Figure 19,
that an equilibrium does not exist for this particular Taylor rule, given some
mild restrictions. Therefore, a standard Taylor rule is particularly ill-behaved
in these circumstances.

6 Conclusion

In the model we have constructed, all consolidated government debt plays a role
in exchange, though money is acceptable in exchange under a wider range of
circumstances than are government bonds. Then, if asset market constraints do
not bind, the economy has standard operating characteristics, which are famil-
iar from the cash-in-advance literature. The economy is Ricardian, a Friedman
rule is optimal, and a reduction in the nominal interest rate increases aggregate
output. If asset market constraints bind, then the economy is non-Ricardian.
Under the assumption that fiscal policy is suboptimal, it is optimal for the cen-
tral bank to set the nominal interest rate above zero, and lowering the nominal
interest rate can reduce consumption and aggregate output.
We examine the properties of the model under Taylor rules, which are gen-

erally suboptimal in this environment. The Taylor rule is associated with the
most problems in the case in which asset market constraints bind. If the central
banker fails to account for the fact that these binding constraints make the real
interest rate low, then the Taylor rule will not yield steady states in which the
central banker achieves his or her inflation target. In the case in which the cen-
tral banker corrects for endogeneity in the long-run real interest rate, the Taylor
rule encounters familiar perils —there are many equilibria which converge to the
zero lower bound on the nominal interest rate if the Taylor principle holds.
We also modify the model to include short-run liquidity effects. In this ver-

sion of the model, a central banker who experiments with short-run monetary
policy may get the idea that reductions in the nominal interest rate are asso-
ciated with increases in the inflation rate. But what will actually increase the
inflation rate permanently is a permanent increase in the nominal interest rate.
Given such a policy, the inflation rate increases gradually over time to a higher
steady state level. Taylor rules encounter diffi culties here as well, including
non-existence of equilibrium if asset market constraints bind, or a multiplicity
of equilibria converging to the zero lower bound. In instances in which there is
convergence to a deflationary steady state, the nominal interest rate can reach
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zero while the inflation rate is still positive on a path to a deflationary steady
state.
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Figure 7: Equilibrium Allocations
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Figure 8: A Decrease in V or κ, Constrained Equilibrium
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Figure 9: Government Deficit as a Function of Vt
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Figure 10: Taylor Rule Equilibrium, Unconstrained, α >1
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Figure 11: Taylor Rule Equilibrium, Unconstrained, α < 1
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Figure 12: Taylor Rule Equilibrium, Unconstrained, α > 1,
Endogenous Real Interest Rate
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Figure 13: Taylor Rule Equilibrium, Constrained, α < 1, 
Endogenous Real Interest Rate
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Figure 14: Taylor Rule Equilibrium, Constrained, α > 1,
Endogenous Real Interest Rate
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Figure 15: Taylor Rule Equilibrium, Constrained, α < 1,
Endogenous Real Interest Rate
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Figure 16: Effects of a Nominal Interest Rate Increase in
Period T
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Figure 17: Taylor Rule Dynamics
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Figure 18: Taylor Rule Dynamics, α<1
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Figure 19: Taylor Rule With Binding Asset Market 
Constraint
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