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Abstract

This paper considers the role of monetary policy in mitigating the effects of financial crises.
I suppose that the economy occasionally but infrequently experiences crises, where financial
variables directly affect the broader real economy. However the likelihood and structure of
the economy during crises are highly uncertain. I analyze the formulation of monetary policy
under such financial uncertainty, where policymakers recognize the possibility of financial crises,
which leads to uncertainty about the transmission of financial market conditions to the broader
economy. I show how this uncertainty changes desirable monetary policies. In the model,
monetary policy does not affect the likelihood or magnitude of crises, but may cushion their
impact. In general, policy is affected both during the crisis itself and in normal times, as
policymakers guard against the possibility of crises. In the estimated model we consider, this
effect is quite small. Optimal policy does change substantially during a crisis, but uncertainty
about crises has relatively little effect.
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1 Introduction

The recent financial crisis and subsequent recession have illustrated how developments in credit

and financial markets may be transmitted to the economy as a whole. However prior to the crisis,

the baseline models for monetary policy analysis had no direct way to model such developments.

The potential importance of financial factors was recognized in the literature, but financial factors

were not present in the most widely-used models for policy analysis. One interpretation of this

state of affairs is that in “normal times” financial frictions and financial market stability are not

of primary importance for monetary policy. In such times, policy focuses on the consequences of

interest rate setting for inflation and output, reacting primarily to shocks which directly affect these

variables. However the economy may occasionally enter “crisis” periods when financial frictions are

of prime importance and shocks initially affecting financial markets may in turn impact the broader

economy. The transitions between normal and crisis period are difficult to predict, and a crisis may

be well underway before its effects become apparent in the broader economy. In this paper I develop

methods to provide guidance in assessing and responding to such financial uncertainty.

In this paper, I focus on monetary policy design when occasional crisis episodes impact on the

transmission mechanism. Importantly, we do not consider financial stability policy, which may have

distinct objectives (financial stability, appropriately defined) and instruments (bank supervision

and regulation, liquidity provision to banks, and so on). In our setting, monetary policy always

has as its objective the stabilization of inflation around a target and economic activity around a

target of a sustainable level, and sets a nominal interest rate as its instrument. Crises impact the

ability of monetary policymakers to attain these objectives, as they introduce additional shocks and

factors which affect inflation and output. Importantly, we take crises here as exogenous, reflecting

financial market developments beyond the control of monetary policy. Thus we focus on how

monetary policy may mitigate the effects of such crises, and how uncertainty about financial crises

affects the appropriate monetary policy response.

This paper encapsulates a stylized reading of the developments in monetary policy analysis

over the past decade. By the mid-2000s there had been influential work showing that larger New

Keynesian models that were able to successfully confront the aggregate data. In particular, the

work of Christiano, Eichenbaum, and Evans [4] and Smets and Wouters [24] showed that such

theoretically-based models were able to fit aspects of the data comparable to VARs. Building on

earlier work such as [?], such models incorporated a host of real and nominal frictions, but did not
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discuss financial factors. In addition, there was a growing literature on monetary policy analysis

under uncertainty, some of which used these larger scale models.1 This literature considered the

implications for policy of model uncertainty, including uncertainty about the specifications and

parameterizations of the models, and the types of nominal rigidities. But again financial factors

were notably (in hindsight) absent. Of course, the seminal contributions of Bernanke and Gerlter

[2], Kiyotaki and Moore [18], and Bernanke, Getler, and Glichrist [3] were recognized. There was

also ongoing work on financial frictions in monetary policy, including work by Christiano, Motto,

and Rostagno [5] and Gertler, Gilchrist, and Natalucci [15] among others. But the “consensus”

policy models had not yet incorporated these frictions. The turmoil of the past several years has

naturally spurred interest in models of financial frictions and the interaction of real and financial

markets more broadly.

In hindsight, it is clear that the much of the previous literature on monetary policy analysis

missed a big source of uncertainty: uncertainty about financial sector impacts on the broader

economy. Under one reading, this was simply an omission, and monetary policymakers should have

been more focused on financial factors throughout. In this paper we suggest another interpretation,

namely that there may be significant variation over time in the importance of financial shocks for

monetary policy. In normal times, defaults and bank failures are rare, sufficient liquidity is provided

for businesses, and monetary policy focuses responding to shocks to inflation and output. However

in crisis periods, defaults and bank failures increase, liquidity may be scarce, and shocks to the

financial sector may impact the transmission of monetary policy. I assume that the economy

switches stochastically between the “normal times” and “crisis” regimes, and consider the design

of monetary policy in an environment where policymakers and private sector agents recognize the

possibility of such switches.

As a model of “normal times” I use a small empirical New Keynesian model. In particular, I

use a version of the model of Lindé [21], which adds some additional exogenous persistence in the

form of lagged dynamics to the standard New Keynesian model. For the model of crises, I use a

version of the model of Curdia and Woodford [7], which is a tractable extension of the standard New

Keynesian model to incorporate financial frictions. As in the standard model, the key equilibrium

conditions of the model include a log-linearized consumption Euler equation (governing aggregate

demand) and a New Keynesian Phillips curve (reflecting price setting with nominal rigidities).
1A very brief and highly selective list of references includes work by Onatski and Stock [23], Giannoni [17], Levin,

Wieland, and Williams [20], and Levin, Onatski, Williams, and Williams [19].
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However the allocative distortions associated with imperfect financial intermediation gives rise to

a spread between borrowing and lending interest rates, and a gap in the marginal utility between

borrowers and lenders. These factors only matter for inflation and output determination in a crisis,

and an exogenous Markov chain governs the switches of the economy between normal and crisis

periods. Importantly, I focus on a simple specification of the model where the key interest rate

spread is exogenous. I first suppose that crises are observable, so the main source of uncertainty is

over the future state of the economy. I then consider the case where agents must infer the current

state of the economy from their observations, so uncertainty and learning about the current state

becomes additional considerations. Thus even in normal times, the optimal policy differs from the

prescriptions of a model without such crises. The optimal policy under uncertainty reflects the

possibility that the economy may transit into a crisis in the future, as well as the uncertainty about

whether the economy may already have switched into such a state. Thus the results imply variation

over time in the policy response to shocks to real and financial factors, with learning about the

state of the economy potentially playing a role in moderating fluctuations.

The policy analysis in this paper relies on the methods developed in Svensson and Williams

[25] and [26]. There we have developed methods to study optimal policy in Markov jump-linear-

quadratic (MJLQ) models with forward-looking variables: models with conditionally linear dynam-

ics and conditionally quadratic preferences, where the matrices in both preferences and dynamics

are random.2 In particular, each model has multiple “modes,” a finite collection of different pos-

sible values for the matrices, whose evolution is governed by a finite-state Markov chain. In our

previous work, we have discussed how these modes could be structured to capture many different

types of uncertainty relevant for policymakers. Here I put those suggestions into practice, by an-

alyzing uncertainty about financial factors and the transmission of financial shocks to the rest of

the economy.

In a first paper, Svensson and Williams [25], we studied optimal policy design in MJLQ models

when policymakers can or cannot observe the current mode, but we abstracted from any learning

and inference about the current mode. Although in many cases the optimal policy under no learn-

ing (NL) is not a normatively desirable policy, it serves as a useful benchmark for our later policy

analysis. In a second paper, Svensson and Williams [26], we focused on learning and inference in

the more relevant situation, particularly for the model-uncertainty applications which interest us,
2Related approaches are developed by Blake and Zampolli [1], Tesfaselassie, Schaling, and Eijffinger [28], Ellison

and Valla [13], Cogley, Colacito, and Sargent [10], Ellison [12].
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in which the modes are not directly observable. Thus, decision makers must filter their observations

to make inferences about the current mode. As in most Bayesian learning problems, the optimal

policy thus typically includes an experimentation component reflecting the endogeneity of informa-

tion. This class of problems has a long history in economics, and it is well-known that solutions are

difficult to obtain. We developed algorithms to solve numerically for the optimal policy. Due to the

curse of dimensionality, the Bayesian optimal policy (BOP) is only feasible in relatively small mod-

els. Confronted with these difficulties, we also considered adaptive optimal policy (AOP).3 In this

case, the policymaker in each period does update the probability distribution of the current mode

in a Bayesian way, but the optimal policy is computed each period under the assumption that the

policymaker will not learn in the future from observations. In our setting, the AOP is significantly

easier to compute, and in many cases provides a good approximation to the BOP. Moreover, the

AOP analysis is of some interest in its own right, as it is closely related to specifications of adaptive

learning which have been widely studied in macroeconomics (see Evans and Honkapohja [14] for

an overview). Further, the AOP specification rules out the experimentation which some may view

as objectionable in a policy context.4 In this paper, I apply our methodology to study optimal

monetary-policy design under what I call “financial uncertainty.”

Overall, I find that in the estimated model the optimal monetary policy does change substan-

tially during a crisis, but uncertainty about crises has relatively little effect. In crises, it is optimal

for to cut interest rates substantially in response to increases in the interest rate spread. However

the size of this response is nearly the same in our MJLQ model as in the corresponding constant

coefficient model. In addition, the possibility that the economy may enter a crisis means that even

in normal times policy should respond to interest rate spreads. But again, this effect is fairly negli-

gible. These results seem to rely on the exogeneity of the interest rate spreads, as well as the rarity

of crises. In regards to the first point, policy cannot affect spreads in our model, so responding to

interest rate spreads in normal times has no effect on the severity of crises. If policy could affect

spreads, then there may be more of a motive for policy to react before a crisis would appear, as

stabilizing interest spreads may make crises less severe. On the second point, note that by re-

sponding to spreads in normal times policymakers are effectively trading off current performance

for future performance. The greater the chance of transiting into a crisis, the larger the weight

that the uncertain future would receive in this tradeoff. As the normal times mode is very highly
3 What we call optimal policy under no learning, adaptive optimal policy, and Bayesian optimal policy has in the

literature also been referred to as myopia, passive learning, and active learning, respectively.
4 In addition, AOP is useful for technical reasons as it gives us a good starting point for our more intensive

numerical calculations in the BOP case.
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persistent in our estimates, there is little reason to sacrifice much current performance.

The paper is organized as follows: Section 2 presents the MJLQ framework and summarizes our

earlier work. Section 3 then develops and estimates our benchmark model of financial uncertainty,

while Section 4 analyzes optimal policy in the context of this model under different informational

assumptions. Section 5 presents some conclusions and suggestions for further work.

2 MJLQ Analysis of Optimal Policy

This section summarizes our earlier work, Svensson and Williams [25] and [26]. Here we outline

the approach that we use to structure and analyze uncertainty in this paper.

2.1 An MJLQ model

We consider an MJLQ model of an economy with forward-looking variables. The economy has

a private sector and a policymaker. We let Xt denote an nX -vector of predetermined variables

in period t, xt an nx-vector of forward-looking variables, and it an ni-vector of (policymaker)

instruments (control variables).5 We let model uncertainty be represented by nj possible modes

and let jt ∈ Nj ≡ {1, 2, ..., nj} denote the mode in period t. The model of the economy can then

be written

Xt+1 = A11jt+1Xt + A12jt+1xt + B1jt+1it + C1jt+1εt+1, (2.1)

EtHjt+1xt+1 = A21jtXt + A22jtxt + B2jtit + C2jtεt, (2.2)

where εt is a multivariate normally distributed random i.i.d. nε-vector of shocks with mean zero

and contemporaneous covariance matrix Inε . The matrices A11j , A12j , ..., C2j have the appropriate

dimensions and depend on the mode j. As a structural model here is simply a collection of matrices,

each mode can represent a different model of the economy. Thus, uncertainty about the prevailing

mode is model uncertainty.6

Note that the matrices on the right side of (2.1) depend on the mode jt+1 in period t + 1,

whereas the matrices on the right side of (2.2) depend on the mode jt in period t. Equation (2.1)

then determines the predetermined variables in period t+1 as a function of the mode and shocks in

period t + 1 and the predetermined variables, forward-looking variables, and instruments in period
5 The first component of Xt may be unity, in order to allow for mode-dependent intercepts in the model equations.
6 See also Svensson and Williams [25], where we show how many different types of uncertainty can be mapped

into our MJLQ framework.

5



t. Equation (2.2) determines the forward-looking variables in period t as a function of the mode and

shocks in period t, the expectations in period t of next period’s mode and forward-looking variables,

and the predetermined variables and instruments in period t. The matrix A22j is non-singular for

each j ∈ Nj .

The mode jt follows a Markov process with the transition matrix P ≡ [Pjk].7 The shocks εt

are mean zero and i.i.d. with probability density ϕ, and without loss of generality we assume that

εt is independent of jt.8 We also assume that C1jεt and C2kεt are independent for all j, k ∈ Nj .

These shocks, along with the modes, are the driving forces in the model. They are not directly

observed. For technical reasons, it is convenient but not necessary that they are independent. We

let pt = (p1t, ..., pnjt)′ denote the true probability distribution of jt in period t. We let pt+τ |t denote

the policymaker’s and private sector’s estimate in the beginning of period t of the probability

distribution in period t + τ . The prediction equation for the probability distribution is

pt+1|t = P ′pt|t. (2.3)

We let the operator Et[·] in the expression EtHjt+1xt+1 on the left side of (2.2) denote expec-

tations in period t conditional on policymaker and private-sector information in the beginning of

period t, including Xt, it, and pt|t, but excluding jt and εt. Thus, the maintained assumption is

symmetric information between the policymaker and the (aggregate) private sector. Since forward-

looking variables will be allowed to depend on jt, parts of the private sector, but not the aggregate

private sector, may be able to observe jt and parts of εt. Note that although we focus on the

determination of the optimal policy instrument it, our results also show how private sector choices

as embodied in xt are affected by uncertainty and learning. The precise informational assumptions

and the determination of pt|t will be specified below.

We let the policymaker’s intertemporal loss function in period t be

Et

∞∑

τ=0

δτL(Xt+τ , xt+τ , it+τ , jt+τ ) (2.4)

where δ is a discount factor satisfying 0 < δ < 1, and the period loss, L(Xt, xt, it, jt), satisfies

L(Xt, xt, it, jt) ≡



Xt

xt

it



′

Wjt




Xt

xt

it


 , (2.5)

7 Obvious special cases are P = Inj , when the modes are completely persistent, and Pj. = p̄′ (j ∈ Nj), when the
modes are serially i.i.d. with probability distribution p̄.

8 Because mode-dependent intercepts (as well as mode-dependent standard deviations) are allowed in the model,
we can still incorporate additive mode-dependent shocks.
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where the matrix Wj (j ∈ Nj) is positive semidefinite. We assume that the policymaker optimizes

under commitment in a timeless perspective. As explained below, we will then add the term

Ξt−1
1
δ
EtHjtxt (2.6)

to the intertemporal loss function in period t. As we shall see below, the nx-vector Ξt−1 is the

vector of Lagrange multipliers for equation (2.2) from the optimization problem in period t − 1.

For the special case when there are no forward-looking variables (nx = 0), the model consists of

(2.1) only, without the term A12jt+1xt; the period loss function depends on Xt, it, and jt only; and

there is no role for the Lagrange multipliers Ξt−1 or the term (2.6).

2.2 Approximate MJLQ models

While in this paper we start with an MJLQ model, it is natural to ask where such a model comes

from, as usual formulations of economic models are not of this type. However the same type of

approximation methods that are widely used to convert nonlinear models into their linear counter-

parts can also convert nonlinear models into MJLQ models. We analyze this issue in Svensson and

Williams [25], and present an illustration as well. Here we briefly discuss the main ideas. Rather

than analyzing local deviations from a single steady state as in conventional linearizations, for an

MJLQ approximation we analyze the local deviations from (potentially) separate, mode-dependent

steady states. Standard linearizations are justified as asymptotically valid for small shocks, as an

increasing time is spent in the vicinity of the steady state. Our MJLQ approximations are asymp-

totically valid for small shocks and persistent modes, as an increasing time is spent in the vicinity of

each mode-dependent steady state. Thus, for highly persistent Markov chains, our MJLQ provide

accurate approximations of nonlinear models with Markov switching.

2.3 Types of optimal policies

We will distinguish four cases of optimal policies: (1) Optimal policy when the modes are observable

(OBS), (2) Optimal policy when there is no learning (NL), (3) Adaptive optimal policy (AOP), and

(4) Bayesian optimal policy (BOP). Here we briefly discuss the different cases, deferring to Svensson

and Williams [25] and [26] for details. In all cases we consider equilibrium under commitment from

a timeless perspective, although our methods extend directly to other approaches.

In all cases we use the recursive saddlepoint method of Marcet and Marimon [22] to extend the

methods for MJLQ models developed in the control theory literature to allow for forward looking

7



endogenous variables. As mentioned above, this requires supplementing the state vector Xt with the

vector Ξt−1 of lagged Lagrange multipliers for equation (2.2). The current values of the Lagrange

multipliers, which we denote γt becomes an additional control vector, and thus the state vector is

supplemented with the additional equation:

Ξt = γt.

Additionally, the period loss function is supplemented with the Lagrangian terms in the multiplier

γt and the constraint (2.2). On this expanded state space, system (2.1)-(2.2) can be solved as a

MJLQ model, where the objective is minimized with respect to it but maximized with respect to

(xt, γt).

The most direct optimal policy case is when the policymaker and the private sector directly

observe the modes (OBS). This is typically the case studied in the econometric literature on regime

switching, where agents implicitly observe the current regime although the econometrician does not.

Similar approaches have also been used in the literature on “policy switching”. Under OBS, the

optimal policy conditions on the current mode, taking into account that the mode may switch in the

future. Svensson and Williams [25] show that optimal policies in this case consist of mode-dependent

linear policy rules, which can be computed efficiently even in large models. The conditionally linear-

quadratic structure that the MJLQ approach provides great simplicity in this setting.

The other three cases all suppose that the modes are not observable by the policymakers (and

the public). The cases differ in their assumptions about how policymakers use observations to make

inferences about the mode, and how they use that information to form policy. By NL, we refer to

a situation when the policymaker and the aggregate private sector have a probability distribution

pt|t over the modes in period t and updates the probability distribution in future periods using the

transition matrix only, so the updating equation is

pt+1|t+1 = P ′pt|t. (2.7)

That is, the policymaker and the private sector do not use observations of the variables in the

economy to update the probability distribution. The policymaker then determines optimal policy

in period t conditional on pt|t and (2.7). This is a variant of a case examined in Svensson and

Williams [25]. Since the beliefs evolve exogenously, the tractability of the MJLQ structure is again

preserved, and computations are quite simple.

By AOP, we refer to a situation when the policymaker in period t determines optimal policy

as in the NL case, but then uses observations of the realization of the variables in the economy to
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update its probability distribution according to Bayes Theorem. In this case, the instruments will

generally have an effect on the updating of future probability distributions, and through this channel

separately affect the intertemporal loss. However, the policymaker does not exploit that channel in

determining optimal policy. That is, the policymaker does not do any conscious experimentation.

The AOP case is simple to implement recursively, as we have already discussed how to solve for the

optimal decisions, and the Markov structure allows for simple updating of probabilities. However,

the ex-ante evaluation of expected loss is more complex, as it must account for the nonlinearity of

the belief updating.

By BOP, we refer to a situation when the policymaker acknowledges that the current instruments

will affect future inference and updating of the probability distribution, and calculates optimal

policy taking this separate channel into account. Therefore, BOP includes optimal experimentation,

where for instance the policymaker may pursue policy that increases losses in the short run but

improves the inference of the probability distribution and therefore lowers losses in the longer run.

Although policymakers sometimes express skepticism about policy experimentation, it is a natural

byproduct of optimal policy. In practical terms, the fact that the updating equation for beliefs is

nonlinear means that more complex and detailed numerical methods are necessary in this case to

find the optimal policy and the value function. Practically speaking, computational considerations

mean that BOP is only feasible in relatively small models.

As we discuss in Svensson and Williams [26], Bayesian updating makes beliefs respond to

information, and thus increases their volatility. Thus the curvature of the value function will

influence whether learning is beneficial or not. In some cases the losses incurred by increased

variability of beliefs may offset the expected precision gains. This may be particularly true in

forward-looking models where policymakers and the private sector share the same beliefs. Learning

by the private sector may induce more volatility, thus making it more difficult for policymakers to

stabilize the economy. We show below how these issues manifest themselves in the applications.

What makes models with forward-looking variables different? One difference is that with

backward-looking models, the BOP is always weakly better than the AOP, as acknowledging the

endogeneity of information in the BOP case need not mean that policy must change. (That is, the

AOP policy is always feasible in the BOP problem.) However, with forward-looking models, neither

of these conclusions holds. Under our assumption of symmetric information and beliefs between

the private sector and the policymaker, both the private sector and the policymaker learns. The

difference then comes from the way that private sector beliefs also respond to learning and to the
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experimentation motive. Having more reactive private sector beliefs may add volatility and make

it more difficult for the policymaker to stabilize the economy. Acknowledging the endogeneity of

information in the BOP case then need not be beneficial either, as it may induce further volatility

in agents’ beliefs.9

3 Uncertainty about the impact of financial variables

3.1 Overview

In this section we consider our simplest benchmark formulation of financial uncertainty, where

policymakers are uncertain about the impact of financial variables on the broader economy, and

show how to incorporate such uncertainty in a MJLQ model. This section implements one of the

scenarios outlined in the introduction, that in “normal times” financial market conditions are of

primary importance for monetary policy. We capture this assumption by taking one mode of our

MJLQ model to be a relatively standard New Keynesian model, in particular a version of the

model used by Lindé [21] in his empirical analysis of US monetary policy. However the economy

may occasionally enter “crisis” periods when financial market frictions and potential credit market

disruptions imply that financial variables may impact the broader economy. In this section we

take a fairly simple and direct approach to this, based on the work of Curdia and Woodford [7].

They develop a modification of the standard New Keynesian model which incorporates a credit

spread as an additional factor influencing output and inflation. Thus we assume that in the “crisis”

mode credit spreads matter for monetary policy, but in normal times they have no direct influence.

We then calibrate and estimate the model using recent US data, and analyze the optimal policies

under different informational assumptions. We are particularly interested in analyzing not only

how does the optimal monetary policy differ across modes, but how does the knowledge that crises

are possible affect the optimal policy in normal times.

3.2 The model

We now lay out the model in more detail. As discussed above, we take one mode to represent

“normal times,” and is meant to capture a typical small but empirically plausible model used

for monetary policy analysis. We consider a variation on the benchmark “three equation” New
9Technically, these results are manifest in fact that in the forward-looking case we solve saddlepoint problems. So

by going from AOP to BOP we are expanding the feasible set for both the minimizing and maximizing choices.
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Keynesian model, consisting of a New Keynesian Phillips curve, a consumption Euler equation,

and a monetary policy rule (see Woodford [29] for an exposition). We focus on a version of the

model of Lindé [21], which we also we estimated in Svensson and Williams [25]. Compared to the

standard New Keynesian model, this model includes richer dynamics for inflation and the output

gap than, which both have backward and forward-looking components. In particular, the model in

normal times is given by:

πt = ωfEtπt+1 + (1− ωf )πt−1 + γyt + cπεπt, (3.1)

yt = βfEtyt+1 + (1− βf )
[
βyyt−1 + (1− βy)yt−2

]− βr (it − Etπt+1) + cyεyt.

Here πt is the inflation rate, yt is the output gap, and it is the nominal interest rate, and the shocks

επt, εyt are independent standard normal random variables. For empirical analysis, we supplement

the model with flexible Taylor-type policy rule:

it = (1− ρ1 − ρ2)
(
γππt + γyyt

)
+ ρ1it−1 + ρ2it−2 + ciεit (3.2)

where the policy shock εit is also an i.i.d. standard normal random variable.

To this relatively standard depiction of monetary policy in normal times, we now add the

possibility of a “crisis” mode, or more precisely, a mode in which credit spreads matter for inflation

and output determination. As discussed above, we use a version of the Curdia-Woodford [7] model

which adds credit market frictions to the standard New Keynesian model. The model results in

a spread between borrowing and deposit interest rates (a credit spread), and heterogeneity across

borrowers and savers which is reflected in a marginal utility gap between them. We focus (at

least at first) on the version of the model where the credit spread is exogenous, although Curdia

and Woodford also consider a more general parameterization of the model which endogenizes the

spread. As we see below, the exogeneneity of the spread results in rather stark differences in policy

responses across modes, and allowing us to focus on the policy response to credit spreads.

In our specification of the crisis mode, we keep the dynamics of the Lindé model, but supplement

it with a credit spread ωt and the marginal utility gap Ωt between borrowers and savers. Thus the

model in crisis times is given by:

πt = ωfEtπt+1 + (1− ωf )πt−1 + γyt + ξΩt + cπεπt, (3.3)

yt = βfEtyt+1 + (1− βf )
[
βyyt−1 + (1− βy)yt−2

]− βr (it −Etπt+1) + θΩt + φωt + cyεyt.

Ωt = δEtΩt+1 + ωt

ωt+1 = ρωωt + cωεωt+1.
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Thus, in addition to the new variables entering the equations for inflation and the output gap,

we now have the endogenous dynamics of the marginal utility gap Ωt as well as the exogenous

dynamics of the interest spread ωt. We assume that the spread follows an AR(1) process, where

again the shock to the spread εωt is an i.i.d. normal random variable. For empirical purposes, in

the crisis mode we assume that the policy instrument may respond to the credit spread, and also

that there is no interest rate smoothing:

it = γππt + γyyt + γωωt + ciεit. (3.4)

Such an extended Taylor rule specification was proposed by Taylor, and analyzed by Curdia and

Woodford [9].

Since our crisis mode actually nests the normal times mode, it is easy to map the two modes

into an MJLQ model. In particular, we assume that most of the structural parameters are constant

across modes, but that the terms in the interest rate spreads and marginal utility gaps only enter

in the crisis mode. Moreover, the form of the policy rule differs somewhat across modes. To be

explicit, we analyze an MJLQ model of the following form:

πt = ωfEtπt+1 + (1− ωf )πt−1 + γyt + ξjt
Ωt + cπεπt, (3.5)

yt = βfEtyt+1 + (1− βf )
[
βyyt−1 + (1− βy)yt−2

]− βr (it −Etπt+1) + θjtΩt + φjt
ωt + cyεyt.

Ωt = δEtΩt+1 + ωt

ωt+1 = ρω,jt+1
ωt + cω,jt+1εωt+1.

it =
(
1− ρ1,jt

− ρ2,jt

) (
γπ,jt

πt + γy,jt
yt

)
+ γω,jt

ωt + ρ1,jt
it−1 + ρ2,jt

it−2 + ci,jtεit. (3.6)

Here jt ∈ {1, 2 } indexes the mode at date t, with mode 1 being normal times, and we assume that

a transition matrix P governs the switches between modes. Thus we have ξ1 = θ1 = φ1 = γω,1 = 0,

while ρ1,1 = ρ2,j = 0. Note that we allow the dynamics of the spread ω to differ across modes

both in terms of its persistence and volatility, which is key for explaining and interpreting the data.

Simply put, crises are times of substantially larger volatility in interest rate spreads.

3.3 Calibration and Estimation

In this section we discuss how we fit the model to the data. We wanted to be sure to obtain

estimates consistent with our interpretation of the modes, so we chose a mixture of calibration and

estimation. Thus we take these estimates as suggestive for our optimal policy exercises, but we

make no claim to providing a full empirical analysis of the model.
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Figure 3.1: The key economic data on inflation, the output gap, and interest rates, 1978:1-2011:2
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We obtained all data from the St. Louis Fed FRED website. For the basic time series, we use

the standard definitions: taking the growth of the GDP deflator as our measure of inflation, the

deviation between actual GDP and the CBO estimate of potential as our measure of the output

gap, and the federal funds rate as our policy interest rate. There were no significant trends overall

in the data, but we do take out their means. In Figure 3.1 we plot these quarterly data for the

period 1978:1-2011:2. We focus mostly on the Volcker-Greenspan-Bernanke era, but include a few

earlier periods for reasons that will be clear shortly. The data clearly show the overall downward

trend in inflation and nominal interest rates over this period, with the recessions of the early 1980s

and the most recent period showing as large negative output gaps. For the interest rate spread,

we consider two alternative indicators. The first is the gap between the yield on 3-month CDs and

the federal funds rate, which is one of the spreads considered by Taylor and Williams [27]. As a

somewhat broader measure of firm financing, we also consider the Option-Adjusted Spread of the

BofA Merrill Lynch US Corporate A Index. For the CD spreads, we removed the mean over the

whole sample. However the corporate spread data are only available from 1996 on, so for this series

we subtracted the mean over the 1996-2006 period. These data are shown in Figure 3.2. Both series
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Figure 3.2: Two interest rate spread time series, 1978:1-2011:2
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show a substantial increase in spreads starting in 2007 and peaking at the end of 2008. However

the longer CD spread series also shows an earlier episode with a substantial negative spread in mid-

1980. Although the spike in the corporate spread appears more dramatic, the corporate spread is

more volatile overall, so the CD spread spike is roughly as much of an outlier.

Clearly we only have at most two real observations on episodes with substantial interest rate

spreads, so the data won’t provide much guidance in choosing among alternative specifications. In

addition, it is arguable whether the large negative spreads in the 1980s were driven by similar factors

as the recent large positive spreads. Certainly our interpretation of the events as financial crises

does not fit with the early 1980s, when the large negative spreads were likely more the consequence

of an inverted term structure than increases in liquidity or default premiums. We choose to model

the interest rate spreads as AR(1) processes with switching persistence and variances, but certainly

alternative specifications are plausible. This highlights another dimension of uncertainty that is not

captured by our simple benchmark MJLQ model, uncertainty over the specification and evolution

of the credit spreads.

In order to estimate the model, we use the methods in Svensson and Williams [25] to solve
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Table 3.1: Estimates of the benchmark MJLQ model.

Parameter Mode 1 Mode 2
ωf 0.5827 0.5827
γ 0.0137 0.0137
ξ 0 0.6468
βf 0.2449 0.2449
βy 0.9533 0.9533
βr 0.0614 0.0614
θ 0 0.2802
φ 0 -1.6152
δ 0.2932 0.2932
ρw 0.4930 0.4959
ρ1 0.8715 0
ρ2 0.0044 0
γπ 1.6897 0.8039
γy 1.1033 0.4320
γω 0 -0.6819
cπ 0.4646 0.4646
cy 0.4349 0.4349
cω 0.1889 0.5688
ci 0.4484 1.2034

for an equilibrium in an MJLQ model with an arbitrary instrument rule. When we estimate the

model we assume that policymakers and the public observe the current mode, although later we use

these same structural parameter estimates to consider cases when the modes are unobservable. We

estimate the model with Bayesian methods, finding the maximum of the posterior distribution.10

The priors we use are discussed in Appendix A. However, rather than simply fitting the full model

to the data, in order to be sure the estimates aligned with our interpretation, we used the following

approach. First, we fit the Lindé model with constant coefficients to the data for the period 1985-

2006. Note that the credit spread has no interaction with the inflation and output in this mode,

and thus the parameter δ is irrelevant. We deliberately cut off the beginning and end of the sample

when the CD spreads were largest and most volatile, so this period represents the mode in “normal

times.” In addition, our model has difficulty accounting for the Volcker disinflation, which is why

we chose to start only in 1985. One alternative would be to use a longer sample but to take out

the trends in the data. We also estimated the model over the 1980-2006 period on detrended data,

which yielded similar results.
10We avoid saying “posterior mode” since we use “mode” in a different sense throughout the paper.
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Figure 3.3: Probability of being in a crisis mode and 0.5*CD spread, 2001-2011:2
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In our next step, we fix these estimates from the constant coefficient model as the coefficients for

mode 1 (as well as the structural coefficients in mode 2) in our MJLQ model. Then we estimate the

remaining parameters of the MJLQ model over the full sample from 1985-2011. As in our discussion

above, we view the early 1980s episode with high interest rate spreads as arising from a separate

mechanism, and so only focus on obtaining estimates of the most recent crisis. In this latter stage

we are only estimating (ξ2, θ2, φ2, δ, ρω,2, cω,2, γy,2, γπ,2, γω,2, ci,2) and the transition matrix P . Our

estimates are given in Table 3.1. Our estimated transition matrix is:

P =
[

0.9961 0.0039
0.0352 0.9648

]
.

Thus we see that the baseline model has a significant weight on forward looking expectations

for inflation, but quite a bit less for output. The standard deviations of the shocks to inflation and

the output gap are roughly equal, as is the interest rate shock in normal times. However in the

crisis mode the interest rate shocks are substantially more volatile. As we’ll see below, this is likely

at least in part due to the fact that we do not impose the zero bound on interest rates, and thus the

estimated policy rule implies negative nominal rates for the past couple of years. In the crisis mode,

ξ is fairly substantial, meaning that the marginal utility gap Ωt has a sizeable instantaneous effect
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on inflation, while θ is somewhat smaller. Both are positive, so Ωt increases inflation and the output

gap. The interest spread ωt has a large negative impact on the output gap through φ, and spreads

are substantially more volatile (and of nearly the same persistence) in the crisis mode. Finally, the

crisis mode is much less persistent than the normal times mode, and the stationary distribution

implied by the Markov transition matrix puts probability 0.8995 on normal times and 0.1005 on

crises. In Figure 3.3 we plot the estimated (filtered) probability of being in the crisis mode at each

date, conditional on observations up to that date. For comparison, we also plot the CD spread

once again (here scaled by 0.5 to make the scales commensurable), and for ease of interpretation we

focus on the last fifteen years of data. We also plot the smoothed (two-sided) probabilities, which

use the full sample to estimate the chance that the economy was in a crisis state at any given date.

Here we see that these probabilities pick out exactly the crisis episode of very large magnitude

spreads that we highlighted above. Although the filtered probabilities are rather sharp, with only

small some fluctuations, but in the recent crisis there appears to be somewhat of a delay. The

initial run-up in CD spreads begins in mid-2007 and is interrupted by one negative observation, so

the probability of a crisis mode is not clear until nearly the peak in CD spreads. Inference on the

modes sharpens somewhat more when using the smoothed (two-sided)probabilities. Here we see

that with the benefit of hindsight, the estimates suggest that the crisis mode began in late 2007

and ended in early 2009. These results highlight that even though the probabilities of the modes

appear rather sharply estimated, that there still may be uncertainty and delay in the detection of a

crisis. In our initial policy analysis we will assume that all agents, both public and private, observe

the current mode. But later we show how uncertainty over the current modes can change policy

decisions.

4 Optimal monetary policy with financial uncertainty

4.1 Optimal policy: Observable modes (OBS)

Our MJLQ model (3.5) fits into the general form (2.1)-(2.2) discussed above. In particular, we have

three forward-looking variables (xt ≡ (πt, yt,Ωt)′) and consequently three Lagrange multipliers

(Ξt−1 ≡ (Ξπ,t−1,Ξy,t−1)′,Ξω,t−1)′) in the extended state space. We can write the system with

seven predetermined variables: Xt ≡ (πt−1, yt−1, yt−2, it−1, επt, εyt, ωt)′. We use the following loss

function:

L(Xt, xt, it) = π2
t + λy2

t + ν(it − it−1)2, (4.1)
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Figure 4.1: Impulse response of selected variables to inflation and output gap shocks
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Figure 4.2: Impulse response of selected variables to an interest spread shock, starting in mode 1

(left column) or mode 2 (right column).
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Mode πt−1 yt−1 yt−2 it−1 επt εyt ωt Ξπ,t−1 Ξy,t−1

Constant: Mode 1 0.1467 0.7290 0.6484 0.0337 0.3516 0.9551 0 0.0053 0.0161
Constant: Mode 2 0.1467 0.7290 0.6484 0.0337 0.3516 0.9551 -1.4715 0.0053 0.0161
MJLQ: Mode 1 0.1467 0.7290 0.6484 0.0337 0.3516 0.9551 -0.0013 0.0053 0.0161
MJLQ: Mode 2 0.1467 0.7290 0.6484 0.0337 0.3516 0.9551 -1.4600 0.0053 0.0161

Table 4.1: Optimal policy functions of the constant-coefficient models (with parameters fixed in

each mode) and the MJLQ model.

which is a common central-bank loss function in empirical studies, with the final term expressing

a preference for interest rate smoothing. We set the weights to λ = 0.5 and ν = 0.5, and fix the

discount factor in the intertemporal loss function to δ = 1. We briefly discuss the role of alternative

preference parameterizations below.

Then using the methods described above, we solve for the optimal policy functions

it = FjX̃t,

where now X̃t ≡ (πt−1, yt−1, yt−2, it−1, επt, εyt, ωt, Ξπ,t−1, Ξy,t−1, Ξω,t−1)′. Thus the optimal policy

consists of mode-dependent linear policy functions, which are reported in Table 4.1. Table 4.1

also reports the optimal policy functions for the constant coefficient models which would result if

the economy were to always remain in mode 1 or mode 2. In all cases the policy response to the

multiplier Ξω,t−1 was zero, so we do not report these. This follows because the forward-looking

variable Ωt is driven entirely by the exogenous variable ωt and thus is independent of policy. The

impulse responses of inflation, the output gap, and the interest rate to inflation and output gap

shocks are shown in Figure 4.1, while the responses to shocks to the interest rate spread are shown

in Figure 4.2. In particular, Figure 4.2 shows the distribution of responses from two sets of 10,0000

simulations of the MJLQ model. We initialize the Markov chain in one of the two modes and then

draw simulated values of the Markov chain, plotting the median and 90% probability bands from

the simulated impulse response distribution. The distribution is not apparent in the left column,

as there we initialize in mode 1 which is very highly persistent, and very few of the 10,000 runs

experienced a switch in the mode within the first 30 periods. The average duration of the crisis

mode 2 is significantly shorter, so the right column shows the effects of some of the mode switches.

The table and figures illustrate very directly that the only policy-relevant uncertainty in this

model is in the response to interest rate spreads ωt. These spreads are exogenous, and in mode 1

they do not affect inflation or the output gap. Thus in the constant-coefficient model corresponding

to mode 1, there is no response of policy to the interest spread. In the constant-coefficient model
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corresponding to mode 2, interest rate spreads lead to a very sharp reduction in the output gap,

and policy responds to interest rate spread shocks by sharply cutting interest rates. However as

the spreads are directly observable, no other policy response is affected. The impulse responses to

inflation and output gap shocks, as shown in Figure 4.1, are the same across modes. Inflation and

the output gap both jump with their own shocks, while they follow hump-shaped responses to each

other’s shocks. The optimal policy response is to increase interest rates in response to shocks to

inflation and the output gap, with the peak response coming after three quarters.

The MJLQ optimal policies effectively average over the two constant-coefficient policies. The

table shows that in mode 1 of the MJLQ model there is a very small negative policy response to

interest spread shocks, owing to the fact that there is a small probability in each period that the

economy will switch into the crisis mode. Similarly, the response to spread shocks in mode 2 is only

slightly more muted than in the corresponding constant-coefficient model, as crises are expected

to be shorter lived. The impulse responses in Figure 4.2 show the dynamic implications of these

results. The left column of panels shows the responses in normal times, where we clearly see that

there is no response in the constant-coefficient case and very small responses (note the scale) in the

MJLQ model. Interest rates are cut in normal times in response to an interest spread shock, but

by hundredths of a basis point. By contrast, in the crisis mode interest rates are cut sharply in

response to a shock, with the output gap falling and inflation increasing. We see that the median

MJLQ response is nearly identical to the constant-coefficient case, but some of the mass of the

distribution incorporates exits from the crisis mode, and thus corresponds to smaller responses.

4.2 Counterfactual policy simulations

In order to get a better sense of how the estimated and optimal policies may have resulted in

different economic performance, we now consider some counterfactual policy experiments. To do

so, we first extract estimates of the observed Markov chain jt and the structural shocks (επt, εyt, εωt)

and the policy shock εit given our estimated policy rule and structural parameters. To do so, we set

the chain jt = 1 if the smoothed probability (using the full sample inference) of mode 1 is greater

than 0.5 and jt = 2 otherwise. Then given the estimated Markov chain jt series, we define the εt

shocks as the residuals between the actual data and the predictions of our MJLQ model using the

estimated policy rule. To consider the implications of alternative policies, we then feed the series

for the Markov chain and the structural shocks through the model, zeroing out the policy shocks.

In Figure 4.3 we plot the simulated time series for inflation, the output gap, and the policy
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Figure 4.3: Simulation of the economy under the estimated policy rule (solid line) using the esti-

mated shocks, along with actual data (dashed line).
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interest rate under the estimated monetary policy rule using the estimated shock series. For com-

parison, we also plot the actual data. To make the figures more interpretable, we add back in the

unconditional means of the time series which we had taken out for estimation and policy analy-

sis. Here we see that the model tracks the data reasonably well, apart from the mid-2000s which

experienced higher inflation, higher interest rates, and a higher level of the output gap than the

model predicts. In general, the output gap fluctuations are more severe under the estimated policy

than in the data, with the model seeming to track the fluctuations in interest rates with a lag. The

model does match the decline in output and inflation over the crisis quite well, and also captures

the rapid fall in interest rates. The violation of the zero lower bound is apparent over the last

several quarters, as the estimated policy rule implies a fairly substantial negative interest rate.

In Figure 4.4 we plot similar series, but now showing the results under the optimal policy as well

as those under the estimated policy rule. Here we see that the optimal policy leads to a substantial

reduction in fluctuations. This is particularly true for the inflation rate, which is unsurprising since

inflation fluctuations receive the largest weight in the loss function, but the cyclical fluctuations in

the output gap are much more moderate as well. In the mid-1990s and again in the mid-2000s,
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Figure 4.4: Simulation of the economy under the optimal policy rule (solid line) and the estimated

policy rule (dashed line) using the estimated shocks.
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the optimal policy calls for an earlier tightening, with interest rates beginning to increase several

quarters earlier than under the estimated policy, which contributes to the lessening of inflation and

output fluctuations. In the most recent crisis, the optimal policy largely follows the estimated one,

with interest rates falling rapidly from mid-2008 through 2009. Under the optimal policy, this large

reduction in rates leads to a massive violation of the zero lower bound on nominal rates, as the

federal funds rate falls to a low of -4.36% in mid 2009. This rapid interest rate reduction under the

optimal policy leads to a sharp increase in inflation, and a more moderate decline in output than

under the estimated policy rule. The overall implications of the optimal policy seem to be largely

to increase rates more rapidly in times of expansion, but then cut them dramatically and rapidly in

crisis episodes. However the failure to incorporate the zero bound seems to be a severe constraint

in taking these implications too seriously. In the next section we address one way to deal with the

zero bound, and so to provide more credible policy implications.
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Mode πt−1 yt−1 yt−2 it−1 επt εyt ωt Ξπ,t−1 Ξy,t−1

Constant: Mode 1 0.0950 0.5374 0.3027 0.0248 0.2276 0.7028 0 0.0015 0.0066
Constant: Mode 2 0.0900 0.5144 0.2708 0.0237 0.2158 0.6726 -1.1930 0.0012 0.0059
MJLQ: Mode 1 0.0952 0.5385 0.3026 0.0248 0.2281 0.7043 -0.0025 0.0015 0.0066
MJLQ: Mode 2 0.0883 0.5044 0.2713 0.0232 0.2116 0.6596 -1.1523 0.0012 0.0059

Table 4.2: Optimal policy functions of the constant-coefficient models (with parameters fixed in

each mode) and the MJLQ model with a mode-dependent penalty on interest rate volatility.

4.3 Coping with the zero lower bound on nominal interest rates

It is difficult to directly incorporate the zero lower bound on nominal interest rates in our setting.

As is well-known, the zero bound would necessitate the use of alternative solution methods. For

example, Eggertsson and Woodford [11] illustrate one means of incorporating the zero bound and

still using largely linear methods. However it is difficult to adapt their approach to our setting and

incorporate it into our MJLQ approach. Thus rather than directly addressing the zero bound, we

instead follow the approach of Woodford [29] and incorporate an additional interest rate volatility

penalty term in the loss function as a means of making the zero bound less likely to be violated.11

Moreover, as the zero bound is much more of a problem in crisis states, we specify that this penalty

increases in the crisis mode. Thus we now use the following loss function:

L(Xt, xt, it) = π2
t + λy2

t + ν(it − it−1)2 + ψjt
i2t , (4.2)

where ψj is now the mode-dependent penalty on interest rate volatility (rather than interest smooth-

ing). We keep the other loss function parameters the same as previously, but now set ψ1 = 0.7,

and ψ2 = 0.875. Thus the penalty for interest rate volatility is 25% larger in the crisis state.

Admittedly, giving interest rate volatility a symmetric penalty is not an entirely satisfying way to

deal with the inherent asymmetries that zero bound introduces. Nonetheless, this penalty does

ensure that the bound is satisfied in the sample we consider.

The optimal policies are largely similar to our previous results. However because the loss

function now varies across modes, policy responses to all variables change with the mode, if only

slightly. Thus the switching penalty slightly muddies our previous result that only the response to

interest rate spreads changed in crises. The increased interest rate penalty in crisis times means

that the responses to all variables except the interest rate spread are more muted in mode 2 than
11Woodford [29] considers a nonzero target interest rate i∗∗, which is distinct from nominal rate i∗ in the zero

inflation steady state. Thus in his case, the penalty term is (i− i∗∗)2.
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Figure 4.5: Impulse response of selected variables to inflation, output gap, and interest spread

shocks. Simulations are initialized in mode 2.
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in mode 1. In the MJLQ model policymakers also now anticipate that the penalty for interest

rate volatility will switch with the mode, which affects (at least slightly) their responses to all

variables. However it remains the case that the mode-dependent MJLQ responses are very similar

to the corresponding constant-coefficient responses, especially in the highly persistent normal times

mode.

In Figure 4.5, we plot the impulse responses initialized in mode 2. The shapes of the impulse

responses are very similar to those in Figure 4.1 and 4.2, except that the policy responses are

somewhat more muted. In addition, because there is now more variability in the responses of

all variables across modes, the distributions of responses are now more visible, even though the

probability bands remain rather narrow. We now take this specification with a switching interest

rate volatility penalty as our baseline.

In Figure 4.6 we show the counterfactual time series for inflation, the output gap, and the

nominal interest rate for the two optimal policies: the previous case with only an interest smoothing

term in the loss function and the current case with a switching interest rate volatility penalty as

well. We also show the results under the estimated policy rule and the actual data for comparison.

Overall, adding the interest rate volatility penalty dampens the fluctuations in the nominal interest

24



Figure 4.6: Simulation of the economy under the optimal policy rule with an interest volatility

penalty (black solid line), the optimal policy with an interest smoothing penalty (blue dot-dash),

and the estimated policy rule (red dash) using the estimated shocks, along with the actual data

(green dash).
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rate, just as one would expect. However the effects on inflation are quite modest for most of

the sample. The interest rate path for the optimal policy with the interest volatility penalty

actually seems to match the actual data fairly well, especially over the period from about 2000-

2009. However as inflation increases in the crisis under the optimal policies, and the output gap

declines are more moderate than in the data, the optimal policies call for increases in interest rates

over the last couple of years of the sample.

Overall, we have seen that the switches in modes from normal times to crises has a large effect

on policy, but the uncertainty about the future switches has relatively little effect. In crises, it is

optimal for to cut interest rates substantially in response to increases in the interest rate spread.

However the size of this response is nearly the same in our MJLQ model as in the corresponding

constant coefficient model. In addition, the possibility that the economy may enter a crisis means

that even in normal times policy should respond to interest rate spreads. But again, this effect

is fairly negligible. These results seem to rely on the exogeneity of the interest rate spreads, as

well as the rarity of crises. In regards to the first point, policy cannot affect spreads in our model,

so responding to interest rate spreads in normal times has no effect on the severity of crises. If

policy could affect spreads, then there may be more of a motive for policy to react before a crisis

would appear, as stabilizing interest spreads may make crises less severe. On the second point,

note that by responding to spreads in normal times policymakers are effectively trading off current

performance for future performance. The greater the chance of transiting into a crisis, the larger

the weight that the uncertain future would receive in this tradeoff. As the normal times mode is

very highly persistent in our estimates, there is little reason to sacrifice much current performance.

Later we show how uncertainty about the severity and duration of crises affects policy, but next

we turn to the case where there is uncertainty about the current state of the economy and agents

must learn whether a crisis has begun.

4.4 Optimal simple policy rules

Thus far we have focused on the implications of the optimal policy under commitment, which

is a natural benchmark to consider. However the policy reaction functions are high dimensional

objects which are difficult to interpret directly, which is why we have focused on presenting impulse

response functions and counterfactual simulations. An alternative is to consider simpler, sub-

optimal instrument rules, such as the Taylor rule, which may be easier to interpret. In this section

we illustrate the implications of financial uncertainty for such optimal simple policy rules. In
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Model Mode γpi γy γw Loss
Constant 1 0.5509 1.8858 – 6.0299
Constant 2 0.7394 2.1105 – 31.3077
Constant 2 0.7181 2.1202 0.1315 31.3039
MJLQ 1, 2 0.5600 1.9508 – 8.4747
MJLQ 1, 2 0.5519 1.9590 0.1225 8.4736
MJLQ 1 0.5436 1.9169 -0.0001 8.4561
MJLQ 2 0.6813 2.0990 0.2288 8.4561

Table 4.3: Optimal Taylor-type policy rules for the constant-coefficient and MJLQ models, along

with their corresponding losses.

particular, Table 4.3 lists the optimal Taylor rules for different versions of the model, using the

same loss function as above (with the interest volatility penalty). Note that we did not impose the

Taylor principle, which is in fact violated in all of these rules. Thus all of the rules are subject to

indeterminacy, so implementation of such rules may be problematic. Nonetheless, the comparison

across models and interest settings is instructive, and is consistent with our results above.

The first three rows of Table 4.3 list optimal Taylor rules (with no smoothing) for constant

coefficient versions of the model. The first row considers the case where the coefficients are fixed

in the normal times mode, while the next two rows fix the coefficients at the crisis mode. In the

second row we do not allow a reaction to the interest rate spread, while the third row allows it.

Here we see that, as expected, losses are much higher in the crisis mode that in normal times, and

the optimal policy rule is more aggressive in response both to inflation and the output gap in the

crisis. Allowing the reaction to interest rate spreads the crisis mode has only a minor effect on

losses, and only slightly changes how the policy reacts to the other indicators.

The remaining rows of the table list the optimal Taylor rules for the MJLQ model. In rows four

and five, we constrain the policy rule to be the same across modes, and consider rules which do

and do not respond to the interest spread. Rows five and six consider the optimal mode-dependent

Taylor rule, allowing for different reactions to all the variables in the different modes. Again, we

see that allowing the reaction to the interest spread has a minor effect on losses, and leads to little

change in the optimal policy rules. Tailoring the Taylor rules to the prevailing mode leads to a very

modest increase in performance, and a slightly more aggressive policy rule in the crisis mode. The

reaction to the interest spread is essentially zero in normal times and relatively strong in the crisis.

Overall, this reinforces our earlier results and is largely consistent with the message in Curdia and

Woodford [7], as the policy response to interest rate spreads is largely independent of the response
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Figure 4.7: Policy function components representing response of selected variables to the interest

spread ωt.
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to other variables. In addition, as in our results above the financial uncertainty has relatively little

effect on policy, as the optimal policies in the MJLQ model are close to their constant coefficient

counterparts.

4.5 Optimal policy: Unobservable modes (NL and AOP)

When we focused on the observable case above, we assumed that the shocks (επt, εyt, εωt were

observable and policy could respond directly to the shocks to inflation and the output gap. However,

to focus on the role of learning, we now assume that those shocks are unobservable. If they were

observable, then agents would be able to infer the mode from their observations of the forward-

looking variables and the interest rate spread.

Using the methods described above, we solve for the optimal policy functions

it = Fi(pt|t)X̃t,

where now X̃t ≡ (πt−1, yt−1, yt−2, it−1, ωt, Ξπ,t−1, Ξy,t−1, Ξω,t−1)′w. In addition, we must track the

estimated mode probabilities (pt|t ≡ (p1t|t, p2t|t)′) (of which we only need keep track of one, p1t|t).

Thus, the value and policy functions are nine dimensional. Computational constraints thus prohibit

us from solving for the full value functions in the AOP case, and prevent us from considering the

BOP case at all. However we can still fully solve for the NL case and implement the AOP case
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Figure 4.8: Impulse response of selected variables to inflation, output gap, and interest spread

shocks. Impulses when the modes are unobservable (blue line) and 90% probability bands (red

dash), along with observable modes (green dot dash). Simulations are initialized in mode 2, and

beliefs are initialized at the stationary distribution.

0 10 20 30

0

0.2

0.4

0.6

Response of π to π shock

0 10 20 30

−0.05

0

0.05

Response of y to π shock

0 10 20 30
−0.05

0

0.05

0.1

0.15

Response of i to π shock

0 10 20 30

−0.1

−0.05

0

0.05
Response of π to y shock

0 10 20 30

0

0.2

0.4

Response of y to y shock

0 10 20 30

0

0.2

0.4

Response of i to y shock

0 10 20 30

0.2
0.4
0.6
0.8

1
1.2
1.4

Response of π to ω shock

0 10 20 30

−1

−0.5

0

Response of y to ω shock

0 10 20 30
−1

−0.5

0

Response of i to ω shock

recursively. Additionally, Monte Carlo simulation allows us to evaluate losses under NL and AOP

rather easily as well.

Some slices of the policy functions are shown in Figure 4.7, which plots the linear terms in

F (pt|t) representing the responses of different variables to ωt versus the probability pt|t of being in

the crisis state. We show the policy responses for the interest rate, inflation (with flipped sign),

and the output gap. As expected, when the probability of being in a crisis is near zero, there is no

response in any of these variables to the interest spread, and as the probability increases to near

one the responses increase. The increases are all nearly linear in the probabilities, with only slight

curvature.

In Figure 4.8, we plot the impulse responses initialized in mode 2. The figure plots the results

of 10,0000 simulations (of the Markov chain) of the impulse responses to shocks when the modes

are unobservable. We initialize the Markov chain in the crisis mode 2, and set the initial beliefs

p0|0 at the stationary distribution of the Markov chain P . Since there is only a single shock to

learn from, the AOP and NL impulse responses were all essentially identical, so we only plot the

29



AOP responses. For comparison, we also plot the responses with observable modes, as in Figure

4.5 above. Overall, we see that the responses of most of the variables are more sluggish and muted

when the current mode is unobservable. This is perhaps most clear in the response of the interest

rate to a credit spread shock. Rather than cutting interest rates upon impact of the shock, as

happens in the observable case, there is initially essentially no response because the beliefs put

very high probability of being in normal times. Only after the shock works its way through the

economy, starting with the decline in output and increase in inflation on impact, does the interest

rate respond. Note also that the response of inflation to the credit spread shock when the modes

are unobservable is only about half as large as in the observable case. This suggests the importance

of uncertainty for private sector behavior as well as policy decisions.

In Figure 4.9 we show the counterfactual time series for inflation, the output gap, and the

nominal interest rate when the modes are observable and the two unobservable cases of no learning

and adaptive optimal policy. Overall, the fluctuations in variables are larger in the observable

case, which is particularly noticeable for the output gap and interest rates. As the economy was in

normal times throughout most of the sample, there is essentially no difference between the NL and

AOP results until late 2007 when the economy switched into the crisis mode. Interestingly, the no

learning case seemed to perform best in that episode, as the increase in inflation was substantially

smaller and the fall in output slightly lower than under AOP or in the observable case. As the

beliefs of both private agents and the central bank remain constant at the stationary distribution

in the NL case, there is much less responsiveness of all variables to the crisis. In the AOP case, the

switch gets discovered relatively quickly, and inflation and the output gap more closely follow the

observable counterpart. Surprisingly however, the interest rate responds the least in AOP case.

5 Conclusion

This paper has illustrated how to formulate and analyze monetary policy with uncertainty about

the impact of the financial sector on the broader economy. We have found that uncertainty about

financial crises differs causes substantial changes in optimal monetary policies, but such changes

are mostly due to the crises and not the uncertainty. In our estimated model, crises are infrequent,

exogenous events and so policy in normal times is affected relatively little by the possibility of

crises. In addition, even if crises are not directly observable, they are relatively easy to detect, so

uncertainty and learning about the state of the economy play a relatively minor role. We find that

30



Figure 4.9: Simulation of the economy under the optimal policies when the modes are observable

(OBS, black dot-dash) as well as when they are unobservable but agents do not learn (NL, blue

solid) or when they update beliefs and use the adaptive optimal policies (AOP, red dash).
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policy should indeed by tailored to crises, but that such considerations are largely independent of

how policy should be conducted in normal times.

Of course, these conclusions are most certainly specific to the particular model that we analyze.

In addition, even in the context of this model, the dimensions of uncertainty we consider are

rather limited. Policymakers and private agents know the form and severity of crises, and they

know the expected frequency and durations of crisis episodes. Thus we build in a high degree of

knowledge, which certainly understates the degree of uncertainty that policymakers face. We have

carried out some preliminary exercises analyzing uncertainty about the duration of crises, which

we implemented by having separate crisis modes of different persistence, and uncertainty about the

severity of crises, implemented by having separate crisis modes with different values for the key

parameters governing the financial frictions. While these increased the impact of uncertainty, the

changes were rather slight. More important is likely to be a consideration of a broader role for

financial frictions.

While the version of the model of Curdia and Woodford [7] that we use is a simple staring

point, it incorporates financial frictions in a limited way. Most prominently, we have focused on

a version of the model where the key credit spread is exogenous. Curdia and Woodford develop

a more general version in which this spread evolves endogenously and is dependent on the level

of private borrowing, which in turn depends on interest rates. The role of monetary policy in

mitigating crises may be larger when policymakers have some control over interest spreads. More

broadly, the model abstracts from investment, which is a key channel in the financial acclerator

model of Bernanke, Gertler, and Gilchrist [3]. In their model financial frictions entail an important

role for business balance sheets, which in turn makes aggregate net worth a key state variable. The

financial frictions thus play a more prominent role in the transmission mechanism in that model,

and so the policy reactions to financial variables may be even more crucial in such settings. More

recent work by Christiano, Motto, and Rostagno [6], which includes many of the real and nominal

frictions studied by Smets and Wouters [24] and Christiano, Eichenbaum, and Evans [4], along

with the financial frictions of Beranke, Gertler, and Glichrist [3] embedded into an explicit banking

sector.

There are many related issues which can also be addressed in our setting. For example, while

we have just discussed uncertainty about the impact of financial frictions, there is also uncertainty

about the type of frictions which best describes the economy. For example, using the models just

discussed, we could have one mode represent the model of Curdia and Woodford [7] and another
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be the model of Christiano, Motto, and Rostagno [6]. The types of frictions – real, nominal, and

financial – and their interactions vary substantially across these models, and thus policy implications

may differ substantially as well. Thus it would be useful to develop policies which account for the

uncertainty across alternative models.

Finally, one important aspect of the current crisis has been that policymakers have engaged in

“unconventional” policies, including purchases of a broad range assets and direct lending to the

private sector. The models of Curdia and Wooford [?] and Gertler and Karadi [16] allow for such

additional channels of policy response. By embedding such models in our setting we can analyze

how these unconventional instruments should be used in an uncertain environment, and how they

would interact with the more conventional policies.

In all of these cases, the MJLQ approach provides a simple and flexible way of structuring

and analyzing optimal policy under uncertainty. By appropriately specifying the structure, the

MJLQ framework can provide guidance to policymakers on how to deal with the broad forms of

uncertainty they face.
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