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Abstract

This paper considers the role of monetary policy in mitigating the effects of financial crises.
I suppose that the economy occasionally but infrequently experiences crises, where financial
variables directly affect the broader real economy. However the likelihood and structure of
the economy during crises are highly uncertain. I analyze the formulation of monetary policy
under such financial uncertainty, where policymakers recognize the possibility of financial crises,
which leads to uncertainty about the transmission of financial market conditions to the broader
economy. I show how this uncertainty changes desirable monetary policies. In the model,
monetary policy does not affect the likelihood or magnitude of crises, but may cushion their
impact. In general, policy is affected both during the crisis itself and in normal times, as
policymakers guard against the possibility of crises. In the estimated model we consider, this
effect is quite small. Optimal policy does change substantially during a crisis, but uncertainty
about crises has relatively little effect.
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1 Introduction

The recent financial crisis and subsequent recession have illustrated how developments in credit
and financial markets may be transmitted to the economy as a whole. However prior to the crisis,
the baseline models for monetary policy analysis had no direct way to model such developments.
The potential importance of financial factors was recognized in the literature, but financial factors
were not present in the most widely-used models for policy analysis. One interpretation of this
state of affairs is that in “normal times” financial frictions and financial market stability are not
of primary importance for monetary policy. In such times, policy focuses on the consequences of
interest rate setting for inflation and output, reacting primarily to shocks which directly affect these
variables. However the economy may occasionally enter “crisis” periods when financial frictions are
of prime importance and shocks initially affecting financial markets may in turn impact the broader
economy. The transitions between normal and crisis period are difficult to predict, and a crisis may
be well underway before its effects become apparent in the broader economy. In this paper I develop
methods to provide guidance in assessing and responding to such financial uncertainty.

In this paper, I focus on monetary policy design when occasional crisis episodes impact on the
transmission mechanism. Importantly, we do not consider financial stability policy, which may have
distinct objectives (financial stability, appropriately defined) and instruments (bank supervision
and regulation, liquidity provision to banks, and so on). In our setting, monetary policy always
has as its objective the stabilization of inflation around a target and economic activity around a
target of a sustainable level, and sets a nominal interest rate as its instrument. Crises impact the
ability of monetary policymakers to attain these objectives, as they introduce additional shocks and
factors which affect inflation and output. Importantly, we take crises here as exogenous, reflecting
financial market developments beyond the control of monetary policy. Thus we focus on how
monetary policy may mitigate the effects of such crises, and how uncertainty about financial crises
affects the appropriate monetary policy response.

This paper encapsulates a stylized reading of the developments in monetary policy analysis
over the past decade. By the mid-2000s there had been influential work showing that larger New
Keynesian models that were able to successfully confront the aggregate data. In particular, the
work of Christiano, Eichenbaum, and Evans [4] and Smets and Wouters [24] showed that such
theoretically-based models were able to fit aspects of the data comparable to VARs. Building on

earlier work such as [?], such models incorporated a host of real and nominal frictions, but did not



discuss financial factors. In addition, there was a growing literature on monetary policy analysis
under uncertainty, some of which used these larger scale models.! This literature considered the
implications for policy of model uncertainty, including uncertainty about the specifications and
parameterizations of the models, and the types of nominal rigidities. But again financial factors
were notably (in hindsight) absent. Of course, the seminal contributions of Bernanke and Gerlter
[2], Kiyotaki and Moore [18], and Bernanke, Getler, and Glichrist [3] were recognized. There was
also ongoing work on financial frictions in monetary policy, including work by Christiano, Motto,
and Rostagno [5] and Gertler, Gilchrist, and Natalucci [15] among others. But the “consensus”
policy models had not yet incorporated these frictions. The turmoil of the past several years has
naturally spurred interest in models of financial frictions and the interaction of real and financial
markets more broadly.

In hindsight, it is clear that the much of the previous literature on monetary policy analysis
missed a big source of uncertainty: uncertainty about financial sector impacts on the broader
economy. Under one reading, this was simply an omission, and monetary policymakers should have
been more focused on financial factors throughout. In this paper we suggest another interpretation,
namely that there may be significant variation over time in the importance of financial shocks for
monetary policy. In normal times, defaults and bank failures are rare, sufficient liquidity is provided
for businesses, and monetary policy focuses responding to shocks to inflation and output. However
in crisis periods, defaults and bank failures increase, liquidity may be scarce, and shocks to the
financial sector may impact the transmission of monetary policy. I assume that the economy
switches stochastically between the “normal times” and “crisis” regimes, and consider the design
of monetary policy in an environment where policymakers and private sector agents recognize the
possibility of such switches.

As a model of “normal times” I use a small empirical New Keynesian model. In particular, I
use a version of the model of Lindé [21], which adds some additional exogenous persistence in the
form of lagged dynamics to the standard New Keynesian model. For the model of crises, I use a
version of the model of Curdia and Woodford [7], which is a tractable extension of the standard New
Keynesian model to incorporate financial frictions. As in the standard model, the key equilibrium
conditions of the model include a log-linearized consumption Euler equation (governing aggregate

demand) and a New Keynesian Phillips curve (reflecting price setting with nominal rigidities).

' A very brief and highly selective list of references includes work by Onatski and Stock [23], Giannoni [17], Levin,
Wieland, and Williams [20], and Levin, Onatski, Williams, and Williams [19].



However the allocative distortions associated with imperfect financial intermediation gives rise to
a spread between borrowing and lending interest rates, and a gap in the marginal utility between
borrowers and lenders. These factors only matter for inflation and output determination in a crisis,
and an exogenous Markov chain governs the switches of the economy between normal and crisis
periods. Importantly, I focus on a simple specification of the model where the key interest rate
spread is exogenous. I first suppose that crises are observable, so the main source of uncertainty is
over the future state of the economy. I then consider the case where agents must infer the current
state of the economy from their observations, so uncertainty and learning about the current state
becomes additional considerations. Thus even in normal times, the optimal policy differs from the
prescriptions of a model without such crises. The optimal policy under uncertainty reflects the
possibility that the economy may transit into a crisis in the future, as well as the uncertainty about
whether the economy may already have switched into such a state. Thus the results imply variation
over time in the policy response to shocks to real and financial factors, with learning about the
state of the economy potentially playing a role in moderating fluctuations.

The policy analysis in this paper relies on the methods developed in Svensson and Williams
[25] and [26]. There we have developed methods to study optimal policy in Markov jump-linear-
quadratic (MJLQ) models with forward-looking variables: models with conditionally linear dynam-
ics and conditionally quadratic preferences, where the matrices in both preferences and dynamics
are random.? In particular, each model has multiple “modes,” a finite collection of different pos-
sible values for the matrices, whose evolution is governed by a finite-state Markov chain. In our
previous work, we have discussed how these modes could be structured to capture many different
types of uncertainty relevant for policymakers. Here I put those suggestions into practice, by an-
alyzing uncertainty about financial factors and the transmission of financial shocks to the rest of
the economy.

In a first paper, Svensson and Williams [25], we studied optimal policy design in MJLQ models
when policymakers can or cannot observe the current mode, but we abstracted from any learning
and inference about the current mode. Although in many cases the optimal policy under no learn-
ing (NL) is not a normatively desirable policy, it serves as a useful benchmark for our later policy
analysis. In a second paper, Svensson and Williams [26], we focused on learning and inference in

the more relevant situation, particularly for the model-uncertainty applications which interest us,
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in which the modes are not directly observable. Thus, decision makers must filter their observations
to make inferences about the current mode. As in most Bayesian learning problems, the optimal
policy thus typically includes an experimentation component reflecting the endogeneity of informa-
tion. This class of problems has a long history in economics, and it is well-known that solutions are
difficult to obtain. We developed algorithms to solve numerically for the optimal policy. Due to the
curse of dimensionality, the Bayesian optimal policy (BOP) is only feasible in relatively small mod-
els. Confronted with these difficulties, we also considered adaptive optimal policy (AOP).3 In this
case, the policymaker in each period does update the probability distribution of the current mode
in a Bayesian way, but the optimal policy is computed each period under the assumption that the
policymaker will not learn in the future from observations. In our setting, the AOP is significantly
easier to compute, and in many cases provides a good approximation to the BOP. Moreover, the
AQP analysis is of some interest in its own right, as it is closely related to specifications of adaptive
learning which have been widely studied in macroeconomics (see Evans and Honkapohja [14] for
an overview). Further, the AOP specification rules out the experimentation which some may view
as objectionable in a policy context.? In this paper, I apply our methodology to study optimal
monetary-policy design under what I call “financial uncertainty.”

Overall, I find that in the estimated model the optimal monetary policy does change substan-
tially during a crisis, but uncertainty about crises has relatively little effect. In crises, it is optimal
for to cut interest rates substantially in response to increases in the interest rate spread. However
the size of this response is nearly the same in our MJLQ model as in the corresponding constant
coefficient model. In addition, the possibility that the economy may enter a crisis means that even
in normal times policy should respond to interest rate spreads. But again, this effect is fairly negli-
gible. These results seem to rely on the exogeneity of the interest rate spreads, as well as the rarity
of crises. In regards to the first point, policy cannot affect spreads in our model, so responding to
interest rate spreads in normal times has no effect on the severity of crises. If policy could affect
spreads, then there may be more of a motive for policy to react before a crisis would appear, as
stabilizing interest spreads may make crises less severe. On the second point, note that by re-
sponding to spreads in normal times policymakers are effectively trading off current performance
for future performance. The greater the chance of transiting into a crisis, the larger the weight

that the uncertain future would receive in this tradeoff. As the normal times mode is very highly

3 What we call optimal policy under no learning, adaptive optimal policy, and Bayesian optimal policy has in the
literature also been referred to as myopia, passive learning, and active learning, respectively.

4 In addition, AOP is useful for technical reasons as it gives us a good starting point for our more intensive
numerical calculations in the BOP case.



persistent in our estimates, there is little reason to sacrifice much current performance.

The paper is organized as follows: Section 2 presents the MJLQ framework and summarizes our
earlier work. Section 3 then develops and estimates our benchmark model of financial uncertainty,
while Section 4 analyzes optimal policy in the context of this model under different informational

assumptions. Section 5 presents some conclusions and suggestions for further work.

2 MJLQ Analysis of Optimal Policy

This section summarizes our earlier work, Svensson and Williams [25] and [26]. Here we outline

the approach that we use to structure and analyze uncertainty in this paper.

2.1 An MJLQ model

We consider an MJLQ model of an economy with forward-looking variables. The economy has
a private sector and a policymaker. We let X; denote an nx-vector of predetermined variables
in period t, x; an ng-vector of forward-looking variables, and i; an n;-vector of (policymaker)

instruments (control variables).?

We let model uncertainty be represented by n; possible modes
and let j; € N; = {1,2,...,n;} denote the mode in period ¢t. The model of the economy can then

be written

Xi+1 = A1y Xt + Ar2j, 2 + Buj, i + Chyjy 1 €41, (2.1)

EiHj, vip1 = A1, Xt + Asoj, i + Baj, iy + Cojeq, (2.2)

where ¢; is a multivariate normally distributed random i.i.d. n.-vector of shocks with mean zero
and contemporaneous covariance matrix I,,.. The matrices Aq15, A19;, ..., Co; have the appropriate
dimensions and depend on the mode j. As a structural model here is simply a collection of matrices,
each mode can represent a different model of the economy. Thus, uncertainty about the prevailing
mode is model uncertainty.®

Note that the matrices on the right side of (2.1) depend on the mode j;4+1 in period ¢ + 1,
whereas the matrices on the right side of (2.2) depend on the mode j; in period t. Equation (2.1)
then determines the predetermined variables in period t+ 1 as a function of the mode and shocks in

period ¢t + 1 and the predetermined variables, forward-looking variables, and instruments in period

5 The first component of X; may be unity, in order to allow for mode-dependent intercepts in the model equations.
5 See also Svensson and Williams [25], where we show how many different types of uncertainty can be mapped
into our MJLQ framework.



t. Equation (2.2) determines the forward-looking variables in period ¢ as a function of the mode and
shocks in period t, the expectations in period t of next period’s mode and forward-looking variables,
and the predetermined variables and instruments in period ¢. The matrix Asy; is non-singular for
each j € N;.

The mode j; follows a Markov process with the transition matrix P = [P; ].7 The shocks &
are mean zero and i.i.d. with probability density ¢, and without loss of generality we assume that
¢; is independent of ;.8 We also assume that Cije¢r and Copey are independent for all j,k € V.
These shocks, along with the modes, are the driving forces in the model. They are not directly
observed. For technical reasons, it is convenient but not necessary that they are independent. We
let p; = (p1¢, -, Pnyt)’ denote the true probability distribution of j; in period t. We let p; |, denote
the policymaker’s and private sector’s estimate in the beginning of period ¢ of the probability

distribution in period t + 7. The prediction equation for the probability distribution is

Dit1e = P,pt\t- (2.3)

We let the operator E;[-] in the expression E;Hj,, x:+1 on the left side of (2.2) denote expec-

t+1
tations in period ¢ conditional on policymaker and private-sector information in the beginning of
period ¢, including X, i¢, and py, but excluding j; and &;. Thus, the maintained assumption is
symmetric information between the policymaker and the (aggregate) private sector. Since forward-
looking variables will be allowed to depend on j;, parts of the private sector, but not the aggregate
private sector, may be able to observe j; and parts of ;. Note that although we focus on the
determination of the optimal policy instrument ¢;, our results also show how private sector choices
as embodied in z; are affected by uncertainty and learning. The precise informational assumptions

and the determination of p;; will be specified below.

We let the policymaker’s intertemporal loss function in period ¢ be

o0
Ey Z 0" L(Xiyrs Ty Utrs Jtgr) (2.4)

7=0
where § is a discount factor satisfying 0 < § < 1, and the period loss, L(X¢, x¢, i, ji), satisfies

!/

X X
L(Xtaxtaitajt) = Tt W]t Tt ) (25)
n 1

" Obvious special cases are P = I;, when the modes are completely persistent, and P;, = P (j € N;), when the
modes are serially i.i.d. with probability distribution p.

8 Because mode-dependent intercepts (as well as mode-dependent standard deviations) are allowed in the model,
we can still incorporate additive mode-dependent shocks.



where the matrix W; (j € N;) is positive semidefinite. We assume that the policymaker optimizes
under commitment in a timeless perspective. As explained below, we will then add the term

1

5EtHjtxt (2.6)

St—1

to the intertemporal loss function in period ¢t. As we shall see below, the n,-vector Z;_; is the
vector of Lagrange multipliers for equation (2.2) from the optimization problem in period t — 1.
For the special case when there are no forward-looking variables (n, = 0), the model consists of
(2.1) only, without the term Ajgj,,,x;; the period loss function depends on X, i;, and j; only; and

there is no role for the Lagrange multipliers Z;_; or the term (2.6).

2.2 Approximate MJLQ models

While in this paper we start with an MJLQ model, it is natural to ask where such a model comes
from, as usual formulations of economic models are not of this type. However the same type of
approximation methods that are widely used to convert nonlinear models into their linear counter-
parts can also convert nonlinear models into MJLQ models. We analyze this issue in Svensson and
Williams [25], and present an illustration as well. Here we briefly discuss the main ideas. Rather
than analyzing local deviations from a single steady state as in conventional linearizations, for an
MJLQ approximation we analyze the local deviations from (potentially) separate, mode-dependent
steady states. Standard linearizations are justified as asymptotically valid for small shocks, as an
increasing time is spent in the vicinity of the steady state. Our MJLQ approximations are asymp-
totically valid for small shocks and persistent modes, as an increasing time is spent in the vicinity of
each mode-dependent steady state. Thus, for highly persistent Markov chains, our MJLQ provide

accurate approximations of nonlinear models with Markov switching.

2.3 Types of optimal policies

We will distinguish four cases of optimal policies: (1) Optimal policy when the modes are observable
(OBS), (2) Optimal policy when there is no learning (NL), (3) Adaptive optimal policy (AOP), and
(4) Bayesian optimal policy (BOP). Here we briefly discuss the different cases, deferring to Svensson
and Williams [25] and [26] for details. In all cases we consider equilibrium under commitment from
a timeless perspective, although our methods extend directly to other approaches.

In all cases we use the recursive saddlepoint method of Marcet and Marimon [22] to extend the

methods for MJLQ models developed in the control theory literature to allow for forward looking



endogenous variables. As mentioned above, this requires supplementing the state vector X; with the
vector Z;_1 of lagged Lagrange multipliers for equation (2.2). The current values of the Lagrange
multipliers, which we denote 7, becomes an additional control vector, and thus the state vector is

supplemented with the additional equation:

o = ’Yt.

Additionally, the period loss function is supplemented with the Lagrangian terms in the multiplier
v, and the constraint (2.2). On this expanded state space, system (2.1)-(2.2) can be solved as a
MJLQ model, where the objective is minimized with respect to i; but maximized with respect to
(Tt 7e)-

The most direct optimal policy case is when the policymaker and the private sector directly
observe the modes (OBS). This is typically the case studied in the econometric literature on regime
switching, where agents implicitly observe the current regime although the econometrician does not.
Similar approaches have also been used in the literature on “policy switching”. Under OBS, the
optimal policy conditions on the current mode, taking into account that the mode may switch in the
future. Svensson and Williams [25] show that optimal policies in this case consist of mode-dependent
linear policy rules, which can be computed efficiently even in large models. The conditionally linear-
quadratic structure that the MJLQ approach provides great simplicity in this setting.

The other three cases all suppose that the modes are not observable by the policymakers (and
the public). The cases differ in their assumptions about how policymakers use observations to make
inferences about the mode, and how they use that information to form policy. By NL, we refer to
a situation when the policymaker and the aggregate private sector have a probability distribution
pyj¢ over the modes in period ¢ and updates the probability distribution in future periods using the

transition matrix only, so the updating equation is

Pt41jt+1 = P/Pt|t- (2.7)

That is, the policymaker and the private sector do not use observations of the variables in the
economy to update the probability distribution. The policymaker then determines optimal policy
in period t conditional on py, and (2.7). This is a variant of a case examined in Svensson and
Williams [25]. Since the beliefs evolve exogenously, the tractability of the MJLQ structure is again
preserved, and computations are quite simple.

By AOP, we refer to a situation when the policymaker in period ¢ determines optimal policy

as in the NL case, but then uses observations of the realization of the variables in the economy to



update its probability distribution according to Bayes Theorem. In this case, the instruments will
generally have an effect on the updating of future probability distributions, and through this channel
separately affect the intertemporal loss. However, the policymaker does not exploit that channel in
determining optimal policy. That is, the policymaker does not do any conscious experimentation.
The AOP case is simple to implement recursively, as we have already discussed how to solve for the
optimal decisions, and the Markov structure allows for simple updating of probabilities. However,
the ex-ante evaluation of expected loss is more complex, as it must account for the nonlinearity of
the belief updating.

By BOP, we refer to a situation when the policymaker acknowledges that the current instruments
will affect future inference and updating of the probability distribution, and calculates optimal
policy taking this separate channel into account. Therefore, BOP includes optimal experimentation,
where for instance the policymaker may pursue policy that increases losses in the short run but
improves the inference of the probability distribution and therefore lowers losses in the longer run.
Although policymakers sometimes express skepticism about policy experimentation, it is a natural
byproduct of optimal policy. In practical terms, the fact that the updating equation for beliefs is
nonlinear means that more complex and detailed numerical methods are necessary in this case to
find the optimal policy and the value function. Practically speaking, computational considerations
mean that BOP is only feasible in relatively small models.

As we discuss in Svensson and Williams [26], Bayesian updating makes beliefs respond to
information, and thus increases their volatility. Thus the curvature of the value function will
influence whether learning is beneficial or not. In some cases the losses incurred by increased
variability of beliefs may offset the expected precision gains. This may be particularly true in
forward-looking models where policymakers and the private sector share the same beliefs. Learning
by the private sector may induce more volatility, thus making it more difficult for policymakers to
stabilize the economy. We show below how these issues manifest themselves in the applications.

What makes models with forward-looking variables different? One difference is that with
backward-looking models, the BOP is always weakly better than the AOP, as acknowledging the
endogeneity of information in the BOP case need not mean that policy must change. (That is, the
AOP policy is always feasible in the BOP problem.) However, with forward-looking models, neither
of these conclusions holds. Under our assumption of symmetric information and beliefs between
the private sector and the policymaker, both the private sector and the policymaker learns. The

difference then comes from the way that private sector beliefs also respond to learning and to the



experimentation motive. Having more reactive private sector beliefs may add volatility and make
it more difficult for the policymaker to stabilize the economy. Acknowledging the endogeneity of
information in the BOP case then need not be beneficial either, as it may induce further volatility

in agents’ beliefs.”

3 Uncertainty about the impact of financial variables

3.1 Overview

In this section we consider our simplest benchmark formulation of financial uncertainty, where
policymakers are uncertain about the impact of financial variables on the broader economy, and
show how to incorporate such uncertainty in a MJLQ model. This section implements one of the
scenarios outlined in the introduction, that in “normal times” financial market conditions are of
primary importance for monetary policy. We capture this assumption by taking one mode of our
MJLQ model to be a relatively standard New Keynesian model, in particular a version of the
model used by Lindé [21] in his empirical analysis of US monetary policy. However the economy
may occasionally enter “crisis” periods when financial market frictions and potential credit market
disruptions imply that financial variables may impact the broader economy. In this section we
take a fairly simple and direct approach to this, based on the work of Curdia and Woodford [7].
They develop a modification of the standard New Keynesian model which incorporates a credit
spread as an additional factor influencing output and inflation. Thus we assume that in the “crisis”
mode credit spreads matter for monetary policy, but in normal times they have no direct influence.
We then calibrate and estimate the model using recent US data, and analyze the optimal policies
under different informational assumptions. We are particularly interested in analyzing not only
how does the optimal monetary policy differ across modes, but how does the knowledge that crises

are possible affect the optimal policy in normal times.

3.2 The model

We now lay out the model in more detail. As discussed above, we take one mode to represent
“normal times,” and is meant to capture a typical small but empirically plausible model used

for monetary policy analysis. We consider a variation on the benchmark “three equation” New

9Technically, these results are manifest in fact that in the forward-looking case we solve saddlepoint problems. So

by going from AOP to BOP we are expanding the feasible set for both the minimizing and maximizing choices.
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Keynesian model, consisting of a New Keynesian Phillips curve, a consumption Euler equation,
and a monetary policy rule (see Woodford [29] for an exposition). We focus on a version of the
model of Lindé [21], which we also we estimated in Svensson and Williams [25]. Compared to the
standard New Keynesian model, this model includes richer dynamics for inflation and the output
gap than, which both have backward and forward-looking components. In particular, the model in

normal times is given by:

T = WfEtﬂ't—i-l + (1 — wf)rrt_l + VYt + Cr€rt, (31)
yo = BB+ (1= 8y) [Byyr—1 + (1= By)ye—2] = B, (it — Eemey1) + cyeye.

Here 7; is the inflation rate, y; is the output gap, and 4; is the nominal interest rate, and the shocks
Ext, €yt are independent standard normal random variables. For empirical analysis, we supplement

the model with flexible Taylor-type policy rule:

it = (1 —py — pa) (’Yﬂﬂt + Wyyt) + prit—1 + poit—2 + Cigit (3.2)

where the policy shock ¢;; is also an i.i.d. standard normal random variable.

To this relatively standard depiction of monetary policy in normal times, we now add the
possibility of a “crisis” mode, or more precisely, a mode in which credit spreads matter for inflation
and output determination. As discussed above, we use a version of the Curdia-Woodford [7] model
which adds credit market frictions to the standard New Keynesian model. The model results in
a spread between borrowing and deposit interest rates (a credit spread), and heterogeneity across
borrowers and savers which is reflected in a marginal utility gap between them. We focus (at
least at first) on the version of the model where the credit spread is exogenous, although Curdia
and Woodford also consider a more general parameterization of the model which endogenizes the
spread. As we see below, the exogeneneity of the spread results in rather stark differences in policy
responses across modes, and allowing us to focus on the policy response to credit spreads.

In our specification of the crisis mode, we keep the dynamics of the Lindé model, but supplement
it with a credit spread w; and the marginal utility gap 2; between borrowers and savers. Thus the

model in crisis times is given by:

Tt = watﬂ-t—i—l + (1 — wf)ﬂ't_l + YYt + th + CrEnt, (33)
yr = BpEwea+ (1= 8p) [Byye—1 + (1= By)yi—a] — B, (it — Ermipr) + 0Q + ¢wr + cyeye.

Q = 0B +wy

Wir1 = Powt + CoEuttl-

11



Thus, in addition to the new variables entering the equations for inflation and the output gap,
we now have the endogenous dynamics of the marginal utility gap §2; as well as the exogenous
dynamics of the interest spread w;. We assume that the spread follows an AR(1) process, where
again the shock to the spread e, is an i.i.d. normal random variable. For empirical purposes, in
the crisis mode we assume that the policy instrument may respond to the credit spread, and also

that there is no interest rate smoothing:
U = YTt + V¥t + Vowt + Ciit (3.4)

Such an extended Taylor rule specification was proposed by Taylor, and analyzed by Curdia and
Woodford [9].

Since our crisis mode actually nests the normal times mode, it is easy to map the two modes
into an MJLQ model. In particular, we assume that most of the structural parameters are constant
across modes, but that the terms in the interest rate spreads and marginal utility gaps only enter
in the crisis mode. Moreover, the form of the policy rule differs somewhat across modes. To be

explicit, we analyze an MJLQ model of the following form:

T = wrEBmp + (1 —wp)m—1 + vy + ‘ftht + Crért, (3.5)
v = BrEyi + (1—0y) [ﬁyytfl +(1— 5y)l/t—2] — By (it — Ermegr) + 05, + ¢, w0t + cyeyt.
Q = 0By +wy

Wi+1 Puwjes1 Wt T Cojiyr Ewt1-

it = (1= prj = paj,) (Ve e+ Yy Ut) + VoWt + 1,01 + pojie—2 + Cij it (3.6)

Here j; € {1,2 } indexes the mode at date ¢, with mode 1 being normal times, and we assume that
a transition matrix P governs the switches between modes. Thus we have {; =601 = ¢y =,,; =0,
while p; ; = py; = 0. Note that we allow the dynamics of the spread w to differ across modes
both in terms of its persistence and volatility, which is key for explaining and interpreting the data.

Simply put, crises are times of substantially larger volatility in interest rate spreads.

3.3 Calibration and Estimation

In this section we discuss how we fit the model to the data. We wanted to be sure to obtain
estimates consistent with our interpretation of the modes, so we chose a mixture of calibration and
estimation. Thus we take these estimates as suggestive for our optimal policy exercises, but we

make no claim to providing a full empirical analysis of the model.
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Figure 3.1: The key economic data on inflation, the output gap, and interest rates, 1978:1-2011:2
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We obtained all data from the St. Louis Fed FRED website. For the basic time series, we use
the standard definitions: taking the growth of the GDP deflator as our measure of inflation, the
deviation between actual GDP and the CBO estimate of potential as our measure of the output
gap, and the federal funds rate as our policy interest rate. There were no significant trends overall
in the data, but we do take out their means. In Figure 3.1 we plot these quarterly data for the
period 1978:1-2011:2. We focus mostly on the Volcker-Greenspan-Bernanke era, but include a few
earlier periods for reasons that will be clear shortly. The data clearly show the overall downward
trend in inflation and nominal interest rates over this period, with the recessions of the early 1980s
and the most recent period showing as large negative output gaps. For the interest rate spread,
we consider two alternative indicators. The first is the gap between the yield on 3-month CDs and
the federal funds rate, which is one of the spreads considered by Taylor and Williams [27]. As a
somewhat broader measure of firm financing, we also consider the Option-Adjusted Spread of the
BofA Merrill Lynch US Corporate A Index. For the CD spreads, we removed the mean over the
whole sample. However the corporate spread data are only available from 1996 on, so for this series

we subtracted the mean over the 1996-2006 period. These data are shown in Figure 3.2. Both series
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Figure 3.2: Two interest rate spread time series, 1978:1-2011:2
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show a substantial increase in spreads starting in 2007 and peaking at the end of 2008. However
the longer CD spread series also shows an earlier episode with a substantial negative spread in mid-
1980. Although the spike in the corporate spread appears more dramatic, the corporate spread is
more volatile overall, so the CD spread spike is roughly as much of an outlier.

Clearly we only have at most two real observations on episodes with substantial interest rate
spreads, so the data won’t provide much guidance in choosing among alternative specifications. In
addition, it is arguable whether the large negative spreads in the 1980s were driven by similar factors
as the recent large positive spreads. Certainly our interpretation of the events as financial crises
does not fit with the early 1980s, when the large negative spreads were likely more the consequence
of an inverted term structure than increases in liquidity or default premiums. We choose to model
the interest rate spreads as AR(1) processes with switching persistence and variances, but certainly
alternative specifications are plausible. This highlights another dimension of uncertainty that is not
captured by our simple benchmark MJLQ model, uncertainty over the specification and evolution
of the credit spreads.

In order to estimate the model, we use the methods in Svensson and Williams [25] to solve
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Table 3.1: Estimates of the benchmark MJLQ model.

Parameter | Mode 1 Mode 2
wy 0.5827  0.5827
~y 0.0137  0.0137
13 0  0.6468
B 0.2449  0.2449
By 0.9533  0.9533
B, 0.0614 0.0614
0 0 0.2802
10) 0 -1.6152
) 0.2932  0.2932
Puw 0.4930  0.4959
1 0.8715 0
P2 0.0044 0
Yo 1.6897  0.8039
Yy 1.1033  0.4320
Yo 0 -0.6819
Cr 0.4646  0.4646
Cy 0.4349  0.4349
Cu 0.1889  0.5688
C; 0.4484  1.2034

for an equilibrium in an MJLQ model with an arbitrary instrument rule. When we estimate the
model we assume that policymakers and the public observe the current mode, although later we use
these same structural parameter estimates to consider cases when the modes are unobservable. We
estimate the model with Bayesian methods, finding the maximum of the posterior distribution.!”
The priors we use are discussed in Appendix A. However, rather than simply fitting the full model
to the data, in order to be sure the estimates aligned with our interpretation, we used the following
approach. First, we fit the Lindé model with constant coefficients to the data for the period 1985-
2006. Note that the credit spread has no interaction with the inflation and output in this mode,
and thus the parameter § is irrelevant. We deliberately cut off the beginning and end of the sample
when the CD spreads were largest and most volatile, so this period represents the mode in “normal
times.” In addition, our model has difficulty accounting for the Volcker disinflation, which is why
we chose to start only in 1985. One alternative would be to use a longer sample but to take out

the trends in the data. We also estimated the model over the 1980-2006 period on detrended data,

which yielded similar results.

1 . . . . . .
9We avoid saying “posterior mode” since we use “mode” in a different sense throughout the paper.
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Figure 3.3: Probability of being in a crisis mode and 0.5*CD spread, 2001-2011:2
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In our next step, we fix these estimates from the constant coefficient model as the coefficients for
mode 1 (as well as the structural coefficients in mode 2) in our MJLQ model. Then we estimate the
remaining parameters of the MJLQ model over the full sample from 1985-2011. As in our discussion
above, we view the early 1980s episode with high interest rate spreads as arising from a separate
mechanism, and so only focus on obtaining estimates of the most recent crisis. In this latter stage
we are only esti