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1 Introduction

The two views in the title refer to alternative assumptions about what a Ramsey planner

thinks private agents believe. Hansen and Sargent (2008, ch. 16) described a discrete-time

setting in which a Ramsey planner or Stackelberg leader shares a common approximating

model with private agents. The private agents trust an approximating model and take as

given a history-dependent government policy when choosing their actions. Private agents’

Euler equations are implementability constraints that confront the government when at

time 0 it once-and-for-all chooses a history dependent strategy. In Hansen and Sargent

(2008, ch. 16), the government (or Stackelberg leader) confronts model uncertainty, rep-

resented in terms of the ‘multiplier preferences’ of Hansen and Sargent (2001). Hansen

and Sargent construct a Ramsey plan that is robust to alternative specifications of the

government’s model.

This paper deepens and extends our earlier analysis by (a) formulating continuous time

models by shrinking the discrete time increment to zero, and (b) comparing two alternative

assumptions about what the government knows. A continuous time formulation allows us

to make precise some approximations that Hansen and Sargent (2008, ch. 16) justified

informally by alluding to continuous time counterparts.

As for (b), we construct two models distinguished by what the government believes

about what the private sector believes.

1. In model 1, the government believes that the private sector knows a (‘correct’) prob-

ability model that is distinct from the government’s approximating model, but un-

∗We thank Anmol Bhandari for extraordinary research assistance and comments.
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known to the government. The government also knows that correct model is abso-

lutely continuous over finite intervals with respect to the government’s approximating

model and that its discounted relative entropy is limited. This structure leaves the

space of models that are unknown to the government but known to the private sector

so vast that the government cannot the private sector’s probability model from a his-

tory of observed outcomes. Therefore, the government constructs a robust Ramsey

problem by solving what Hansen and Sargent (2001, 2008) call a multiplier problem.1

2. Model 2 resembles a continuous time version of a related model of Hansen and Sargent

(2008, ch. 16) in which the government believes that the private sector completely

trusts the approximating model that it shares with the government. But the gov-

ernment distrusts it, again believing that the model that actually governs outcomes

differs from the approximating model. We seek a robust Ramsey plan under this set

of assumptions about beliefs.2 3

Several papers have proposed and implemented Stackelberg solutions to policy problems

in which the government seeks to be robust. See, for instance, Walsh (2004), Giordani and

Soderlind (2004), Dennis (2008), Leitemo and Soderstrom (2008), and our own flawed pa-

per Hansen and Sargent (2003) and its subsequent refinement Hansen and Sargent (2008,

ch. 16). While we may not be representative readers, we find it difficult to keep track

of the beliefs imputed to private agents in this most of this work. A problem is that a

single conditional expectations operator is often asked to do too much work. To help us

understand this literature better, it is pedagogically useful formally to represent what pri-

vate firms and the government believe and how their beliefs are related to their common

approximating model. We use two unit mean nonnegative martingales, ẑt and z̃t, as like-

lihood ratios relative to their common approximating model to represent the firm’s model

and the government’s model, respectively. The martingales appear in the firm’s first order

conditions and the government’s decision problems in ways that help us to be precise about

what the government believes about what the firm knows and believes.

1In his actual calculations, Dennis (2008, pages 2071-2072) features a model of this type, though his
verbal description says it is an equilibrium of the second type. In his words “the Stackelberg leader
believes that the followers will use the approximating model to form expectations and formulates policy
accordingly.”

2We load a lot into the term “resembles” here. Our formulation in this paper corrects an important
“sign error” in the model of Hansen and Sargent (2008, ch. 16).

3Karantounias (2011) studies a related but different problem, namely, that faced by a Ramsey planner
who does not fear model misspecification while knowing that private agents do.
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Our original model in Hansen and Sargent (2008, ch. 16) featured a monopolist and

competitive fringe, both facing quadratic costs of adjusting output. Here we adopt a

model with a similar but simpler structure, in particular, a streamlined New Keynesian

model formulated by Woodford (2010). The endogenous dynamics are governed by a New

Keynesian Phillips curve. Our wish to study versions of models 1 and 2 above impels us

to begin with a price-setting firm’s decision problem that gives rise to a New Keynesian

Phillips curve. We use our two types of models to reinterpret some of the existing robust

Stackelberg solutions proposed in Walsh (2004), Giordani and Soderlind (2004), Dennis

(2008), and Leitemo and Soderstrom (2008).

2 Firm behavior

Let pt be the log of a nominal price level, yt be the log of aggregate output, ct be a stochastic

cost-push shock. We follow Woodford (2010) and regard nature as setting the cost-push

shock, the government as choosing a strategy that controls yt, and a representative firm

as choosing pt+1 − pt in a way that can be described by a New Keynesian Phillips curve.

Because we focus on how the private firm’s beliefs influence its decisions, we begin by stating

an optimization problem that can be viewed as underlying Woodford’s New Keynesian

Phillips curve.

2.1 No model distrust

With no model distrust, under the approximating model the representative firm solves:

max
u

E

[
∞∑
t=0

βt
{
−(ut)

2

2
+ pt+1(κyt + ct + c∗)

}
|F0

]

subject to:

pt+1 − pt = ut

xt+1 − xt = Axt + C(wt+1 − wt)

where wt+1−wt is an iid sequence of standard normally distributed random variables. We

write this in first-difference form because we eventually consider a continuous-time version

of this model in which w is a standard Brownian motion. The firm treats y and c as
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processes that are exogenous to its decisions. In equilibrium these will depend linearly on

a state vector x, so ct = Hc · xt and yt = Hy · xt. The cost shock process c is

ct+1 − ct = νcct + σc(wt+1 − wt). (1)

We will focus on the case in which νc < 0.

2.2 No distrust, but altered measure

We induce a change of measure by multiplying the original joint density over outcomes

by a positive martingale ẑ with unit expectation. Multiplicative increments in ẑ evidently

satisfy

E

[(
ẑt+1

ẑt

)
|Ft
]

= 1

for all t, where ẑ0 = 1. We use this martingale as a likelihood ratio to represent beliefs that

are altered relative to a baseline approximating model. When it has beliefs indexed by ẑ,

the firm wants to maximize:

E

[
∞∑
t=0

βtẑt

{
−(ut)

2

2
+ pt+1(κyt + ct + c∗)

} ∣∣∣F0

]
.

Form the Lagrangian:

− E

(
∞∑
t=0

βtẑt

[
(ut)

2

2
− pt+1(κyt + ct + c∗)

]
|F0

)

− E

(
∞∑
t=0

βtẑtλt(pt+1 − pt − ut)|F0

)

− E

(
∞∑
t=0

βt+1ẑt+1ϕt+1 · [xt+1 − xt − Axt − C(wt+1 − wt)] |F0

)
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and solve the associated saddle point problem. The first-order conditions for u, p, and x,

respectively, are4

ut = λt (2)

λt = (κyt + ct + c∗) + βE

[(
ẑt+1

ẑt

)
λt+1|Ft

]
(3)

ϕt = (Hc + κHy)pt+1 + β(I + A′)E

[(
ẑt+1

ẑt

)
ϕt+1|Ft

]
. (4)

Focus on the Euler equation (3) for λ. Solve it forward and substitute the solution into

first-order condition (3) to represent ut. After that it is easy to compute ϕt by solving the

third equation forward.

Solving Euler equation (3) forward leads to

λt = E

[
∞∑
j=0

βj
(
ẑt+j
ẑt

)
(κyt+j + ct+j + c∗)

∣∣∣Ft] (5)

where
ẑt+j
ẑt

is used to model the conditional distribution of the private sector relative to our

benchmark specification over a j-period forecast horizon. Recalling that λt = (pt+1−pt), we

recognize (5) as a forward-looking version of a New Keynesian Phillips curve. The current

inflation rate is a geometric sum of a linear combination of output and the cost-push shock.

Many researchers take “Euler equation” (3) as a starting point sometimes combined

with a “consumption Euler equation” of a kind that we will discuss later.

Initially, we will take ẑ as given. It thereby represents an exogenous specification of

beliefs. Later we will describe a sense in which the government chooses ẑ. In that case, the

evolution of the co-state ϕ will play an important role in shaping the worst-case distributions

that the government uses to construct robust decision rules.

2.3 Continuous-time version

We study consequences of shrinking the discrete time increment. In the limit we will obtain

the continuous-time robust control problem analyzed in Hansen et al. (2006) for a single-

agent decision problem. Index the time increment by ε = 1
2j

for some positive integer j.

4Calculating first-order conditions for the uncontrollable process x is a device for obtaining laws of
motion for the multiplier vector φt on x.
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Replace β by exp(−δε) for δ > 0. Consider the following counterpart to (3):

λt = ε(κyt + ct + c∗) + exp(−δε)E [λt+ε|Ft]

and the following counterpart to (1) Suppose that

ct+ε − ct ≈ ενcct + σc(wt+ε − wt),

where νc < 0 and w is a scalar Brownian motion. Also suppose that

ẑt+ε − ẑt ≈ ẑtĥt(wt+ε − wt).

Represent the motion of λ as

λt+ε − λt ≈ εµλ,t + σλ,t(wt+ε − wt),

where

µλ,t = lim
ε↓0

E(λt+ε − λt|Ft)
ε

and E denotes a mathematical expectation.

Now use Ito’s Lemma to compute

µ̂λ,t = lim
ε↓0

1

ε
E

(
ẑt+ε
ẑt
λt+ε − λt|Ft

)
= µλ,t + σλ,tĥt. (6)

Next, approximate

λt = ε(κyt + ct + c∗) + exp(−δε)E
[
ẑt+ε
ẑt
λt+ε|Ft

]
as

0 = (κyt + ct + c∗)− δλt + µ̂λ,t.

The approximation becomes arbitrarily good as ε declines to zero. Thus, when the firm

has beliefs represented by the martingale ẑ, we can describe its optimal choices of (u, p) by

ut = λt

µ̂λ,t = δλt − (κyt + ct + c∗).
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If we integrate the second equation forward, we obtain the following counterpart to (5):

λt = E

[∫ ∞
0

exp(−δs)
(
ẑt+s
ẑt

)
(κyt+s + ct+s + c∗)ds

∣∣∣Ft] . (7)

3 Problem of government under belief heterogeneity

The government chooses processes y and λ to maximize

−1

2
E

(
∞∑
t=0

z̃tβ
t
[
λ2t + ζ(yt − y∗)2

]
|F0

)
(8)

subject to the following constraints:

λt = (κyt + ct + c∗) + βE

[
ẑt+1

ẑt
λt+1|Ft

]
ct+1 − ct = νcct + σc(wt+1 − wt) (9)

and z̃ and ẑ are positive martingales with mathematical expectations one conditioned on

F0. The presence of the martingale z̃t in the government’s objective (8) and the martingale

ẑt in firm’s Euler equation (9) indicates that the government and the firm can have different

beliefs. We focus on the following two situations:

1. ẑ = z̃. Here the government presumes that the firm knows a correct model ẑ that

differs from the approximating model except when ẑ ≡ 1. The Stackelberg leader does

not know the z̃ model and seeks to be robust. Part of the equilibrium computation

involves imposing ẑ = z̃.

2. ẑ = 1 but z̃ is not identically one. Here the firm trusts the approximating model

but the government believes another model, or at least acts as if it believes another

model.

For both cases, we eventually want to study the situation in which the government in effect

chooses (worst-case) beliefs z̃ in order to design a robust Ramsey plan.
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4 Government distrusts and does not know the pri-

vate sector beliefs

We first suppose that the private sector has (unique) beliefs represented by the martingale ẑ.

But the government does not know these beliefs. The government explores the consequence

of alternative probability specifications imposing that z̃ = ẑ. In effect, the government

believes that the private sector knows the correct model, which is different from the common

approximating model, but that the government itself does not know the correct model.

4.1 No robustness

Before studying a problem in which the government seeks robustness, we begin by tem-

porarily assuming that the government completely trusts z̃ and has no concerns about

robustness. We focus on case (1) in which the government believes that ẑ = z̃. To compute

the government’s Ramsey plan, form the Lagrangian

− 1

2
E

[
∞∑
t=0

z̃tβ
t
[
λ2t + ζ(yt − y∗)2

]
|F0

]

+E

[
∞∑
t=0

z̃t+1β
t {ψt+1 [λt − (κyt + ct + c∗)− βλt+1]} |F0

]

+E

[
∞∑
t=0

z̃t+1β
t+1 {φt+1 [(1 + νc)ct + σc(wt+1 − wt)− ct+1]} |F0

]
. (10)

Because the constraint is cast in terms of a mathematical expectation conditioned on time

t information, we restrict the Lagrange multiplier ψt+1 to depend on date t information.

The first-order conditions with respect to λt, yt, and ct, respectively, are:

ψt+1 − ψt − λt = 0

−ζ(yt − y∗)− κψt+1 = 0

β(1 + νc)E

[(
z̃t+1

z̃t

)
φt+1|Ft

]
− φt − ψt+1 = 0. (11)
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Combine these with

βE

[(
z̃t+1

z̃t

)
λt+1|Ft

]
= λt − (κy∗ + ct + c∗) +

κ2

ζ
ψt+1

E

[(
z̃t+1

z̃t

)
ct+1|Ft

]
= (1 + νc)ct + E

[(
z̃t+1

z̃t

)
σc(wt+1 − wt)|Ft

]
.

So far we have presumed that the z̃ is known by the government. We now turn to the

situation in which the government does not know z̃, though the government believes that

the firm knows z̃.

4.2 Measuring and managing ambiguity

To manage model ambiguity under this structure, the government chooses z̃ to minimize

and y and λ to maximize

−1

2
E

[
∞∑
t=0

z̃tβ
t
(
λ2t + ζ(yt − y∗)2

)
|F0

]
+ θE

[
∞∑
t=0

z̃t+1β
t+1 (log z̃t+1 − log z̃t) |F0

]
(12)

subject to the same constraints faced in the earlier problem and E
(
z̃t+1

z̃t
|Ft
)

= 1. To

analyze this problem, we add the term

θE

[
∞∑
t=0

z̃t+1β
t+1 (log z̃t+1 − log z̃t) |F0

]
(13)

to the Lagrangian (10) and minimize over z̃ while maximizing over plans for λ and y. But

this problem is formulated more easily and transparently in continuous time.

The term

E

[
∞∑
t=0

βt+1z̃t+1 (log z̃t+1 − log z̃t) |F0

]
= (1− β)E

[
∞∑
t=0

βt+1z̃t+1 (log z̃t+1) |F0

]

measures discounted relative entropy between the z̃ probability model and the approximat-

ing model. The component terms: E [z̃t+1 (log z̃t+1) |Ft] measures relative entropy for the

for assigning probabilities to date t+ 1 events conditioned on date zero information. Sim-

ilarly, E
[(

z̃t+1

z̃t

)
(log zt+1 − log zt) |Ft

]
measures conditional relative entropy for assigning

probabilities to date t + 1 events conditioned on date t information. Notice that relative

entropy measures an expected log-likelihood ratio where the expectation is computed using
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the altered probability distribution. The parameter θ penalizes the alternative probability

models when the governments explores the consequences of alternative probability specifi-

cations.

We acquire some simplifications by considering a continuous-time counterpart. Let the

sample interval ε shrink. For instance, index the interval by ε = 1
2j

for some positive integer

j. When we alter the probability model, the drift of the Brownian motion changes in a

way that we now describe. Use a multiplicative representation of the martingale z̃:

dz̃t = z̃th̃tdwt. (14)

Under the alternative model implied by the martingale z, the drift of dwt turns out to be

h̃tdt. From Ito’s lemma

d log z̃t = −1

2

(
h̃t

)2
dt+ h̃tdwt. (15)

By an application of Ito’s formula,

lim
ε↓0

E
[(

z̃t+ε
z̃t

)
(log z̃t+ε − log z̃t)|Ft

]
ε

= −1

2

(
h̃t

)2
+ (h̃t)

2 =
1

2
(h̃t)

2, (16)

which is the local measure of relative entropy used by Hansen et al. (2006). The resulting

discounted relative entropy measure in continuous time is:

1

2
E

[∫ ∞
0

exp(−δt)z̃t(h̃t)2dt|F0

]
= δE

[∫ ∞
0

exp(−δt)z̃t log z̃tdt|F0

]
Woodford (2010) solves a different robust Stackelberg problem in which the government

embraces the approximating model but does know not the beliefs of the private sector. He

uses:

E

[
∞∑
t=0

βt+1

(
z̃t+1

z̃t

)
(log z̃t+1 − log z̃t) |F0

]
multiplied by θ to penalize the search for alternative private sector beliefs. Notice that this

differs from our discrete-time measure. Whereas at date zero we weight (log z̃t+1 − log z̃t)

by z̃t, he weights it only by the ratio z̃t+1

z̃t
. Thus the continuous-time counterpart to his

measure is:
1

2
E

[∫ ∞
0

exp(−δt)(h̃t)2dt|F0

]
There is a different way to arrive at this same continuous time expression. In light of
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equation (15):

1

2
E

[∫ ∞
0

exp(−δt)(h̃t)2dt|F0

]
= −δE

[∫ ∞
0

exp(−δt) log z̃tdt|F0

]
where the right-hand side measure relative entropy by changing the roles of the z̃ model and

the approximating model. Thus the continuous-time limit of Woodford (2010)’s discrepancy

is a measure of relative entropy, although the discrete-time specification mixes the role of

approximating model and alternative model when weighting the one-period conditional

measure of entropy. Using −E (log z̃t|F0) as a discrepancy measure over an interval of time

t in discrete evidently does not give tractable solutions, but the continuous-time counterpart

may be more promising.

4.3 Robustness in continuous time

The preceding problem takes z̃ as given and known by the government. We now turn to

the situation in which the government does not know z̃, though the government believes

that the firm knows z̃. Suppose that

dct = νcctdt+ σcdwt

where νc < 0 and w is a scalar Brownian motion with drift. When we alter the probability

model, the drift of the Brownian motion changes in a way that we now describe. Pursuing

an argument like the one culminating in (6) leads to

µ̃c,t = lim
ε↓0

Ẽ(ct+ε − ct|Ft)
ε

= νcct + σch̃t

where the mathematical expectation Ẽ is computed using the martingale z̃.

When the firm adheres to the z̃ model:

ut = λt

µ̃λ,t = lim
ε↓0

Ẽ(λt+ε − λt|Ft)
ε

= δλt − (κyt + ct + c∗).

In continuous time the first-order conditions with respect to λ, y, c corresponding to the
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discrete time conditions (11) for the government’s problem are

dψt = λtdt (17)

yt = −κ
ζ
ψt + y∗ (18)

µ̃φ,t = lim
ε↓0

Ẽ(φt+ε − φt|Ft)
ε

= (δ − νc)φt + ψt (19)

We complete the government’s robust control problem by supposing that the government

does not know the actual model and wishes to adjust decisions for that ignorance. It does

that by minimizing the objective (12) with respect to the martingale z̃. Because this

martingale is characterized by the process h̃ in equation (14), we can think of h̃t as a date t

control for a minimizing agent. In light of (16), the date t contribution to relative entropy is
1
2
(h̃t)

2 under the distorted model. Consequently, the first-order conditions for minimization

are:

θh̃t + σcφt = 0,

or

h̃t = −1

θ
σcφt. (20)

Thus, the following system of equations characterizes the government’s choices when

the government believes that the private sector adheres to a model z̃ that the government

does not know:

µ̃c,t = νcct − (σc)2

θ
φt

µ̃λ,t = δλt + κ2

ζ
ψt − κy∗ − ct − c∗

µ̃φ,t = (δ − νc)φt + ψt
dψt
dt

= λt

The last equation resembles a state equation (it is a co-state equation associated with a

co-state). An equivalent to represent this system is

dct = νcctdt−
σ2
c

θ
φtdt+ σcdw̃t

dλt = δλtdt+
κ2

ζ
ψtdt− κy∗dt− ctdt− c∗dt+ σλ,tdw̃t

dφt = (δ − νc)φtdt+ ψtdt+ σφ,tdw̃t

dψt = λtdt
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dw̃t =
1

θ
σcφtdt+ dwt. (21)

Two observations about (21) are pertinent. First, σλ,t and σφ,t are not prespecified. They

are shock exposures of Lagrange multipliers that are governed by forward-looking expec-

tational differential equations that emerge from the firm’s first-order conditions. We can

simplify the task of computing these by solving a deterministic counterpart of system (21),

subject to a stability constraint and initial conditions on c and ψ. We can think of w as

an exogenous input with an unknown probability distribution; it is a Brownian motion

only under the approximating model. The process w̃ depends on h̃t = −1
θ
σcφt. Since h̃

is associated with a change of measure, what is important for calculation is that w̃ is a

standard Brownian motion under this alternative probability measure.

We can compute the government’s decision rules by solving the deterministic version of

this system that emerges upon setting w̃ ≡ 0. We want to find the stabilizing solution of

the deterministic system

d

dt


ct

λt

φt

ψt

 = H


λt

φt

ct

ψt

+G (22)

where H− δ
2
I is a Hamiltonian matrix, ψt and ct and state variables (with initial conditions)

and φt and λt are “jump variables” (with initializations to be determined). The stabilizing

solution has representation [
φt

ψt

]
= L

[
ct

λt

]
+K

d

dt

[
ct

ψt

]
= N

[
ct

ψt

]
+M (23)

where L is a symmetric matrix and N has eigenvalues with real parts that are less than δ
2
.

With these objects in hand, equations (18) and (20) can be used to get the government’s

decision rules for yt and h̃t as functions of the state

[
ct

ψt

]
.

Recall that the instantaneous shock exposure for the “multiplier on the multiplier”,

ψt, is zero and that the shock exposure for the cost shock, ct is specified exogenously. To
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determine the remaining shock exposures, we solve:[
σφ

0

]
= L

[
σc

σλ

]

Given the solution for L, this equation determines σφ and σλ as a function of σc.

4.4 Worst-case model

How do we interpret the equilibrium outcomes obtained in the previous subsection? Many

match those of Walsh (2004), Leitemo and Soderstrom (2008) as well as a main outcome

emphasized by Dennis (2008). If we take the computed equilibrium, plug it back into the

firm’s optimization, this gives what Walsh (2004) predicts will be the choice for pt+1−pt as

a function of the aggregate state vector. Walsh (2004) argues that the private agents share

the government’s concern about robustness, so when the government chooses beliefs in a

robust fashion, agents act on these same beliefs. We think that interpretation is incorrect

and prefer another one. We are not quite sure we understand what Walsh means by the

private sector ‘sharing the government’s concern about robustness’, because in selecting a

worst-case model the private firm should look at its own objective function and constraints,

not the government’s. That reasoning implies that the government’s worst-case model

would differ from the government’s. Even if the government and the private agents were

to share the same value of θ, they would typically compute different worst-case models.

We do not mean to pick unfairly on Walsh (2004). In fact, we regard it as a strength that

his interpretation is more transparent and criticizable than those provided by most other

papers in this line of work.

We have a rather different interpretation of Walsh’s robust Stackelberg equilibrium.

Like Woodford (2010), we suppose that government does not know the beliefs of the private

agents, but that private agents are committed to those beliefs, whatever they are. Private

agents know the correct probability model but the government does not. The government

cannot correctly infer private agents’ model from observing their decisions. Even though

we solved the Stackelberg equilibrium while imposing ẑ = z̃, we did this as part of a device

to impose robustness. The resulting z̃ is intended to be the government’s robust or cautious

inference about the private agents’ beliefs. However, the firm’s decision rule as a function

of the aggregate states, obtained by solving the right-hand side (7) with the minimizing

z̃ used for ẑ, will not produce the observed value of pt+1 − pt. This discrepancy will not
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unduly concern the government because it understands that the fact that the government

can observe that deviation is not enough to reveal the process ẑ actually believed by the

firm. Thus, the minimization on the part of the government is a device to design a robust

government policy, but it is not a prediction of the beliefs of private agents.

To elaborate, there is too little structure on the perturbation z̃ defining firm’s model for

the government to infer it from observed outcomes on pt+1 − pt, ct, yt. All the government

knows is that the perturbation gives the firm a model that is absolutely continuous over

finite intervals and has constrained discounted entropy with respect to the approximating

model. This leaves the immense set of models so unstructured that it would be a daunting

if not impossible task for the government to infer the private sector’s model from histories

of outcomes for y, c, and λ and its knowledge of (5) or (7). Therefore, our government does

not attempt to reverse engineer z̃ from observed outcomes.

To be more concrete, consider for instance the discrete time specification and suppose

that after observing inflation the government solving an Euler equation forward to infer a

discounted expected sum of output and a cost shock. The government could compare this

to the outcome of the analogous calculation using the approximating model. Comparing

outcomes from these calculations would reveal a distorted expectation. There would be

many ways to rationalize this distortion. One among many possibilities is that the distortion

is concentrated on only the next period transition but not on the transitions to other future

time periods. But many other possibilities are also consistent with the same observed

inflation. The computed worst-case model is only one among many distortions consistent

with observed data.

4.5 Representation of worst-case model

Our solution for the condition mean distortion ht for dwt depends on φt and hence implicitly

on the endogenous state variable ψt. We now construct a worst-case model specification of

the cost shock dynamics with an interesting property that we describe in the following:

Claim 4.1. Suppose that both the private firm and the government agree on this particular

model of cost shock. Under these common beliefs about the cost shock process, compute a

rational expectations equilibrium in the usual way. Then along the equilibrium path, the

inflation and output gap will be the same as in our model with a government that seeks to

be robust.5

5This inflation could be different that what will be observed as the outcome of the firm decision making

15



Construction: First suppose that the cost shock evolves as:

d

[
ct

Ψt

]
= N

[
ct

Ψt

]
dt+Mdt+

[
σc

0

]
dw̃t

where Ψ is viewed as an exogenous forcing process. Initialize Ψ0 = ψ0. Let both private

agents and the government take this as the correct model for the evolution of the cost shock

process. In computing the rational expectations equilibrium referred to in the proposition,

there will now be two exogenous state variables, ct and Ψt, and an endogenous state variable,

ψt. Along the equilibrium path Ψt = ψt, but this will emerge as an endogenous outcome

given our choice of initialization.

Notice that under this rational expectations formulation, we can give a precise descrip-

tion of private agents’ actions as function of the states because of the way we have taken

a precise stand on the private sector beliefs. In contrast the observed inflation rate

4.6 Dynamic programming formulation

It is computationally convenient to use the following dynamic programming formulation

that is applicable in this setup in which the government and firm both use the z̃ model that

the firm believes and the government distrusts. This dynamic programming problem allows

us to compute the government’s decision rule and worst-case model by solving a matrix

Riccati equation, then swapping states and co-states in a fashion described, for example,

by Hansen and Sargent (2008, ch. 16).

The dynamic programming problem under the z̃ model is:

min
h̃

max
λ,y

1

2
E

{∫ ∞
0

exp(−δt)
[
−λ2t − ζ(yt − y∗)2 + θh̃2t

]
dt
∣∣∣F0

}
subject to

dλt = δλdt− (κyt + ct + c∗)dt+ σλ,tdw̃t

dct = νcctdt+ σch̃tdt+ σcdw̃t

(dw̃t = −htdt+ dwt)

under the Robust Stackelberg equilibrium.
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where we can exploit the fact that the w̃ is a standard Brownian motion and solve the

model ignoring the equation in parentheses. We can also employ certainty equivalence,

and thereby solve by setting w̃ to zero and so solve the certainty counterpart to the robust

Ramsey plan. We can do this without knowing σλ,t. However, when we turn to model 2,

things are not so simple.

4.7 Why not infer ẑ?

There is too little structure on the perturbation z̃ defining firm’s model for the govern-

ment to infer it from observed outcomes on λ, c, y. All the government knows is that the

perturbation gives the firm a model that is absolutely continuous over finite intervals and

has constrained discounted entropy with respect to the approximating model. This leaves

the immense set of models so unstructured that it would be a daunting if not impossible

task for the government to infer the private sector’s model from histories of outcomes for

y, c, and λ and its knowledge of (5) or (7). Therefore, our government does not attempt to

reverse engineer z̃ from observed outcomes.

Consider for instance the discrete time specification and suppose that the government by

observing inflation infers a discounted expected sum of output and a cost shock by solving

an Euler equation forward. The government could compare this to the same calculation

using the approximating model. This reveals a distorted expectation. One among many

possibilities is that the distortion is concentrated on only the next period transition but

not on the transitions to other future time periods. But many other possibilities are also

consistent with the same observed inflation. The computed worst-case model is one among

many distortions consistent with observed data.

5 Government distrusts but knows firms trust approx-

imating model

We change assumptions about the beliefs that the government imputes to the competitive

firm. The government now believes that the firm adheres to the approximating model,

which we express by setting ẑ ≡ 1. But because the government distrusts the approximating

model, z̃ 6= 1, we find it convenient to use governments’ z̃ beliefs when computing an

equilibrium. To represent the firms’ beliefs under the z̃ model, note that the process

{1
z̃ t

: t ≥ 0} is a martingale with unit expectation (under the z̃ probablity distribution)
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given date zero information. Since under the approximating model:

µλ,t = δλt +
κ2

ζ
ψt − κy∗ − ct − c∗,

in solving the model from the perspective of the government we use

lim
ε↓

Ẽ
[(

z̃t
z̃t+ε

)
λt+ε − λt|Ft

]
ε

= δλt +
κ2

ζ
ψt − κy∗ − ct − c∗ − σλ,th̃t

Notice that the coefficient σλ,t has a minus sign. This corrects for the belief heterogeneity

between the firms and the government. Specifically, it imposes the private sector commit-

ment to the approximating model and is needed because the equation we solve the the

expectations associated with z̃.

The first-order conditions for the government’s minimization with respect to h̃ are:

θh̃t + σcφt − σλ,tψt = 0.

Hence

h̃t = −σc
θ
φt +

σλ,t
θ
ψt. (24)

Notice the appearance of σλ,t here and its absence from the corresponding equation (20) in

our earlier model. Thus, the robust Ramsey plan satisfies the following system of differential

equations:

µ̃c,t = νcct − (σc)2

θ
φt +

σcσλ,t
θ
ψt

µ̃λ,t = δλt + κ2

ζ
ψt − κy∗ − ct − c∗ +

σcσλ,t
θ
φt − (σλ,t)

2

θ
ψt

µ̃φ,t = (δ − νc)φt + ψt
dψt
dt

= λt.

As earlier, another way to represent this equation includes the exposures of variables to

shocks:

dct = νcctdt−
σ2
c

θ
φtdt−

σcσλ,t
θ

ψtdt+ σcdw̃t

dλt = δλtdt+
κ2

ζ
ψtdt− κy∗dt− ctdt− c∗dt+

σcσλ,t
θ

φtdt−
(σλ,t)

2

θ
ψt + σλ,tdw̃t

dφt = (δ − νc)φtdt+ ψtdt+ σφdw̃t

dψt = λtdt
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dw̃t =
σc
θ
φtdt−

σλ,t
θ
ψtdt+ dwt (25)

where w̃ is again a Brownian motion under the change of measure.

Comparing (25) with our earlier system (21) reveals that σλ,t now appears in the sys-

tematic part of the right hand side of system (25), while it does not in the systematic part

of the right side of (21). By systematic we mean the parts other than the terms in dw̃t.

This makes it more challenging to solve system (25) than it was to solve system (21). In a

related discrete time problem, Hansen and Sargent (2008) proposed and implemented the

following iterative algorithm. Guess σλ constant. Solve the differential equation system

under the worst case conditional means but without shocks

dct
dt

= νcct −
σ2
c

θ
φt +

σcσλ,t
θ

ψt

dλt
dt

= δλt +
κ2

ζ
ψt − κy∗ − ct − c∗ +

σcσλ,t
θ

φt −
(σλ,t)

2

θ
ψt

dφt
dt

= (δ − νc)φt + ψt

dψt
dt

= λt (26)

This differential equation system has initial conditions for ct and ψt. Again, we can use

invariant subspace methods to find the stabilizing solution given by (23) and (23). The

candidate stochastic counterpart has representation

d

[
ct

ψt

]
= N(σλ)

[
ct

ψt

]
dt+M(σλ)dt+

[
σc

0

]
dw̃t

Since [
φt

ψt

]
= L(σλ)

[
ct

λt

]
+K(σλ)

where L(σλ) is a symmetric matrix. The implied shock exposure coefficients σ∗φ and σ∗λ for

φt and λt satisfy: [
σ∗φ
0

]
= L(σλ)

[
σc

σ∗λ

]
.

We are particularly interested in σ∗λ which is typically is different from our previous guess

σλ. We search for a fixed-point for this problem in which the σλ we feed in agrees with

the outcome of this calculation: σ∗λ. Thus, we are heavily exploiting the restriction that ψt
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is locally predictable in our iterative algorithm for finding a σλ. Instead of solving for all

objects simultaneously, we iterate to convergence on a time-invariant σλ.

Hansen and Sargent (2008, ch. 16) suggested this approach in a discrete-time formula-

tion, but their analysis has an important difference in the sign of σλ. We use this parameter

to offset the government’s distortion in beliefs, which induces a minus sign that is missing

in Hansen and Sargent (2008, ch. 16). Woodford (2010) also adopted a similar approach.

He solved his model by first conditioning on the shock exposure for a counterpart to λt.
6

5.1 Representation of worst-case model

In contrast to the analysis in section 4.4 where we constructed a corresponding rational

expectations Stackelberg equilibrium, in this setting we construct a corresponding hetero-

geneous belief economy.

Our solution for the condition mean distortion ht for dwt depends on φt and hence

implicitly on the endogenous state variable ψt. We now construct a worst-case model

specification of the cost shock dynamics with an interesting property that we describe in

the following:

Claim 5.1. Suppose that both the private sector firms commit to the approximating model

and that the governments to an alternative particular model of cost shock. Under these

heterogeneous beliefs about the cost shock process, compute a Stackelberg equilibrium. Then

along the equilibrium path, the inflation and output gap will be the same as in our model

with a government that seeks to be robust.

Construction: First suppose that the cost shock evolves as:

d

[
ct

Ψt

]
= N

[
ct

Ψt

]
dt+Mdt+

[
σc

0

]
dw̃t

where Ψ is viewed as an exogenous forcing process. Initialize Ψ0 = ψ0. Let the government

take this as the correct model for the evolution of the cost shock process while the firms take

the approximating model as correct. In computing the rational expectations equilibrium

referred to in the proposition, there will now be two exogenous state variables, ct and Ψt,

and an endogenous state variable, ψt. Along the equilibrium path Ψt = ψt, but this will

emerge as an endogenous outcome given our choice of initialization.

6As a second robust Stackelberg equilbrium, Dennis (2008) adopts that the same sign convention as
used in the Hansen and Sargent (2008, ch. 16). We are uncertain how to interpret this equilibrium.
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5.2 Dynamic programming formulation

For computational convenience, it is again convenient to use a dynamic programming for-

mulation. The following approach works applicable in this setup in which the government

distrusts the approximating model while the firm adheres to it. As before, a key step is

to solve a matrix Riccati equation, then swap states and co-states appropriately. However,

now we have to iterate over σλ as well.

The dynamic programming problem under the z̃ model is:

min
h̃

max
λ,y

1

2
E

{∫ ∞
0

exp(−δt)
[
−λ2t − ζ(yt − y∗)2 + θh̃2t

]
dt
∣∣∣F0

}
subject to

dλt = δλdt− (κyt + ct + c∗)dt− σλ,th̃tdt+ σλ,tdw̃t

dct = νcctdt+ σch̃tdt+ σcdw̃t

(dw̃t = −htdt+ dwt)

We will use this formulation of a dynamic programming problem together with an

iterative algorithm over a time invariant σλ,t = σλ. At each step of the algorithm, we employ

certainty equivalence by setting w̃ to zero and thereby solving the certainty counterpart to

the robust Ramsey plan.

6 An additional Euler equation

Often new Keynesian models include a consumption Euler equation. In discrete time this

equation is given by:

yt = E(yt+1|Ft)−
1

ρ
(it+1 − pt+1 − pt)

where it+1 is the one period nominal interest rate set at date t. In continuous time this

specification becomes:

it = µp,t − ρµy,t.

For a robust counterpart we would include an additional z process to model the beliefs of

consumers/investors. For such a model, we are led to consider the interplay among three

collections of conditional expectations, those of the firm, those of the consumers, and those
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of the government. If we constrain firms and consumers to have the same beliefs, we could

obtain counterparts to our two types of models. Following Leitemo and Soderstrom (2008)

we expect the consequences to be very modest unless we directly enter nominal interest

rates into the government objective.
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A Computational Appendix

This appendix contains details of the computational algorithm and the impulse responses

of various endogenous objects with and without concerns for robustness. The endogenous

objects are

A. State Variables -

• ct - Cost Push Shock

• ψt - The multiplier on multiplier in the Government’s Problem

• λt - The firms multiplier

B. Controls

• yt - Output

• ht - Belief distortion

Finally for each model we plot the impulse responses under the worst case model and the

approximating model separately

B Algorithm

This section details the algorithm for implementing the Dynamic programing formulation

described in section 5.2 for Model 2 . The key difference is to note that σλ,t is endogenous

and has to be determined in equilibrium. This is achieved by iterating on the following

steps

1. Guess the shock exposures - Start with some guess for σλ

2. Formulate the quadratic form for the Government’s problem

This step involves restating the Government’s problem as follows

min
h

max
y,λ
−1

2
E

∫ ∞
0

e−δt

{[
ct

λt

]′
Q̄

[
ct

λt

]
+

[
yt

ht

]′
R̄

[
yt

ht

]}

s.t

D

[
ct

λt

]
= A

[
ct

λt

]
+B(σλ)

[
yt

ht

]
+ Cwt
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In this case the matrices involved are as follows

Q̄ =

[
0 0

0 1

]
R̄ =

[
ζ 0

0 −θ

]

A =

[
νc 0

−1 δ

]
B(σλ) =

[
0 σc

−κ −σλ

]
C =

[
σc

σλ

]

3. Obtain the solution to Robust LQR problem

This step involves solving for the value function and the decision rules for the Robust

LQR problem

Let V (ct, λt) be the maximum present discounted value for the Government defined

as follows

V (ct, λt) = min
h

max
y,λ
−1

2
E

∫ ∞
0

e−δt

{[
ct

λt

]′
Q̄

[
ct

λt

]
+

[
yt

ht

]′
R̄

[
yt

ht

]}

The LQ structure implies that

V (ct, λt) = −1

2

[
ct

λt

]′
P

[
ct

λt

]
− ρ

and P solves the algebraic matrix Riccati equation.

Q̄+ A′P + PA− δP − PBR̄−1B′P = 0

Adjust Riccati equation for discounting (Magill, JET, 1977). Define

Aa = A− δ

2

The Riccati equation can be reformulated as

Q̄+ A′aP + PAa − PBR̄−1B′P = 0

Finally the robust decision rule for output and belief distortion is given by
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[
yt

ht

]
= −G

[
ct

λt

]
where

G = R̄−1B′P

Define the closed loop for state as Ã = A−BG

To obtain the outcomes under the approximating model, in the calculations that

follow just replace Ã with

Ǎ = A−BG(1, :).

This choice sets the mean distortion ht ≡ 0 but incorporates the robust decision rule

for the Government.

Note that explicit dependence of B and intrun P on σλ is dropped for notational

convenience.

4. Flip roots

This step involves making the co-state variable ψt ( ‘multiplier on multiplier’ ) as a

state variable and the λt as a jump variable. This keeps the solution in a stabilizing

subspace

The envelope theorem implies

ψt = P21Zt + P22λt

We flip the roots to obtain

λt = −P−122 P21ct + P−122 ψt

Dψ =
[
P21 P22

] [Dc
Dλ

]

=
[
P21 P22

]
Ã

[
c

λ

]
+
[
P21 P22

] [σc
σλ

]
w
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But since ψ has no contemporaneous shock exposure it should be that

[
P21 P22

] [σc
σλ

]
= 0

and so

σλ = −P−122 P21σc.

5. Update for σλ

The preceding step points towards a new guess for σλ

Let σ̂λ = −P−122 P21σc. For some relaxation parameter γ ∈ (0, 1)

σ∗λ = γσ̂λ + (1− γ)σλ

Now repeat the iteration with σ∗λ

B.1 Equilibrium Representation

We can represent the equilibrium under the stable state space. Continuing from step 4, we

have

Dψt = Fψcct + Fψψψt

where

Fψc = P21(Ãcc − ÃcλP−122 P21) + P22(Ãλc − ÃλλP−122 P21)

Fψψ = P21ÃZλP
−1
22 + P22ÃλλP

−1
22

Thus,

D

[
ct

ψt

]
= F

[
ct

ψt

]
.

Assembling our findings, the law of motion is

D

[
ct

ψt

]
= F

[
ct

ψt

]
+ C̃wt

26



where

C̃ =

[
σc

0

]
Form the state-space system

D

[
ct

ψt

]
= F

[
ct

ψt

]
+ C̃wtctψt

λt

 = M

[
ct

ψt

]
(27)

where

M =

[
I 0

−P−122 P21 P−122

]
.

We can use this representation to compute the impulse responses as shown below

C Calibration

For the computations we use the following set of calibrations

Parameter Value Description
κ 0.05 Inflation - Output trade off
y∗ 0 Target output
ζ 0.08 Government’s relative penalty for output fluctuation
δ 0.01 Time Discount Rate
νc -0.2 Persistence of the cost-push shock
σc 1 Volatility of the cost-push shock
θ 1000(2500) Concerns for Ambiguity - Model 1(Model 2)

Table 1: Parameter Values
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D Model 1

D.1 Worst Case model

D.1.1 State Variables

Figure 1: Response of state variables : Cost shock - ct, multiplier on muliplier - ψt and

inflation λt to w under Model 1 - Worst case. The dashed line is the response without

concerns for robustness and the solid line is with concerns for robustness
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D.1.2 Control Variables

Figure 2: Response of control variables : Output - yt and belief distortion ht to w under

Model 1 - Worst case. The dashed line is the response without concerns for robustness and

the solid line is with concerns for robustness
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D.2 Approximating model

D.2.1 State Variables

Figure 3: Response of state variables : Cost shock - ct, multiplier on muliplier - ψt and

inflation λt to w under Model 1 - Approximating Model. The dashed line is the response

without concerns for robustness and the solid line is with concerns for robustness
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D.2.2 Control Variables

Figure 4: Response of control variables : Output - yt and belief distortion ht to w under

Model 1 - Approximating Model. The dashed line is the response without concerns for

robustness and the solid line is with concerns for robustness
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E Model 2

E.1 Worst Case model

E.1.1 State Variables

Figure 5: Response of state variables : Cost shock - ct, multiplier on muliplier - ψt and

inflation λt to w under Model 2 - Worst case. The dashed line is the response without

concerns for robustness and the solid line is with concerns for robustness
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E.1.2 Control Variables

Figure 6: Response of control variables : Output - yt and belief distortion-ht to w under

Model 2 - Worst case. The dashed line is the response without concerns for robustness and

the solid line is with concerns for robustness
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E.2 Approximating model

E.2.1 State Variables

Figure 7: Response of state variables : Cost shock - ct, multiplier on muliplier - ψt and

inflation λt to w under Model 2 - Approximating Model. The dashed line is the response

without concerns for robustness and the solid line is with concerns for robustness
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E.2.2 Control Variables

Figure 8: Response of control variables : Output - yt and belief distortion - ht to w under

Model 2 - Approximating Model. The dashed line is the response without concerns for

robustness and the solid line is with concerns for robustness
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