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1 Introduction

A central issue in macroeconomic policy analysis is the need to take account

of the likely changes in peoples expectations about the future — not just

what they expect is most likely to happen, but also the degree of certainty

that they attach to that expectation — that should result from the adoption

of one policy or another, and also from one way or another of explaining that

policy to the public. This is a key issue because expectations are a crucial

determinant of rational behavior, and to the extent that one seeks to analyze

the consequences of a policy by asking how it changes the behavior that

one expects from rational decisionmakers, one must consider the question

of how one expects the policy to expect peoples expectations about their

future conditions and the future consequences of the alternative actions (for

example, alternative investment decisions) available to them now.

The most common approach to this question in analyses of macroeco-

nomic policy over the past 30-40 years has been to assume “rational” (or

model-consistent) expectations on the part of all economic agents. In the

case of each of some set of contemplated policies, one determines the out-

come (meaning, the predicted state-contingent evolution of the economy over

some horizon that may extend far, or even indefinitely, into the future) that

would represent a rational expectations equilibrium (REE) according to ones

model, under the policy in question. One then compares the outcomes under

these different REE associated with the different policies, in order to decide

which policy is preferable. Yet there are important reasons to doubt the

reliability of policy evaluation exercises that are based — or at least that are

solely based — on models that assume that whatever policy may be adopted,

everyone in the economy will necessarily (and immediately) understand the

consequences of the policy commitment in exactly the same way as the policy

analyst does.

While this is certainly a hypothesis of appealing simplicity and general-

ity, it is both a very strong (i.e., restrictive) hypothesis and one of doubtful

realism. Even if one is willing to suppose that people are thoroughly rational
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and possess extraordinary abilities at calculation, it is hardly obvious that

they must forecast the economys evolution in the same way as an economists

own model forecasts it; for even if the model is completely correct, there will

be many other possible models of the economys probabilistic evolution that

are (i) internally consistent, and (ii) not plainly contradicted by observa-

tions of the economys evolution in the past (in particular, over the relatively

short sample of past observations that will be available in practice). The

assumption is an even more heroic one in the case that a change in policy is

contemplated, relative to the pattern of conduct of policy with which people

will have had experience in the past. Hence one should be cautious about

drawing strong conclusions about the character of desirable policies solely on

the basis of an analysis that maintains this assumption.

Here we explore a different approach, under which the policy analyst

should not pretend to be able to model the precise way in which people

will form expectations if a particular policy is adopted. Instead, under our

recommended approach, the policy analyst recognizes that the publics be-

liefs might be anything in a certain set of possible beliefs, satisfying the

requirements of (i) internal consistency, and (ii) not being too grossly incon-

sistent with what actually happens in equilibrium, when people act on the

basis of those beliefs. These requirements reduce to the familiar assumption

of model-consistent (“rational”) expectations if the words “not too grossly

inconsistent” are replaced by “completely consistent.” (The more general

proposal is termed an assumption of “near-rational expectations” in Wood-

ford, 2010.) The weakening of the standard requirement of model-consistent

expectations is motivated by the recognition that it makes sense to expect

peoples beliefs to take account of patterns in their environment that are clear

enough to be obvious after even a modest period of observation, while there

is much less reason to expect them to have rejected an alternative hypothe-

sis that is not easily distinguishable from the true model after only a series

of observations of modest length. (Of course, the content of the proposal

depends on the precise definition that is proposed for the criterion of “not

being too grossly inconsistent” with the true pattern — or more precisely,

the pattern predicted by the economic analysts own model.)

Under this approach, the economic analysts model will associate with
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each contemplated policy not a unique prediction about what people in the

economy will expect under that policy, but rather a range of possible fore-

casts; and there will correspondingly be a range of possible predictions for

economic outcomes under the policy, rather than a unique prediction. In

essence, it is proposed that ones economic model be used to place bounds on

what can occur under a given policy, rather than expecting a point prediction.

This does not mean that there will be no ground for choice among alternative

policies. While the economic analyst will not able to assert with confidence

that a better outcome must occur if a given policy is adopted, one may well

prefer the range of possible outcomes associated with one policy rather than

another. Woodford (2010) proposes, in the spirit of the literatures on “ambi-

guity aversion” and on “robust control”1 that one should choose a policy that

ensures as high as possible a value of ones objective under any of the set of

possible outcomes associated with that policy (or alternatively, that ensures

that a certain “satisficing” level of the policy objective can be ensured under

as broad as possible a range of possible departures from model-consistent

expectations). Under a particular precise definition of what it means for ex-

pectations to be sufficiently close to model-consistency, this criterion again

allows a unique policy to be recommended. It will, however, differ in gen-

eral from the one that would be selected if one were confident that peoples

expectations would have to be fully consistent with the predictions of ones

model.

As in Woodford (2010), we explore the consequences of such a concern

for robustness under a particular interpretation of the requirement of “near-

rational expectations.” We suppose that the policy analyst assumes that

peoples beliefs will be absolutely continuous with respect to the measure im-

plied by her own model (so that people correctly identify zero-probability

events as having zero probability, though they may differ in the probability

they assign to events that occur with positive probability according to her

model); and that she furthermore assumes that their beliefs will not be too

different from the prediction of her model, where the distance is measured by

a relative entropy criterion. A policy can then be said to be “robustly opti-

1See Hansen and Sargent (2007, 2011) for discussion of these ideas and their application

to decision problems arising in macroeconomics.
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mal” if it guarantees as high as possible a value of the policymakers objective,

under any of the subjective beliefs consistent with the above criterion. This

very non-parametric way of specifying the range of beliefs that are “close

enough” to the policy analyst’s own beliefs to be considered as possible is

based on the approach to bounding possible model mis-specifications in the

robust policy analysis of Hansen and Sargent (2005).2 It has the advantage,

in our view, of allowing us to be fairly agnostic about the nature of the pos-

sible alternative beliefs that may be entertained by the public, while at the

same time retaining a high degree of theoretical parsimony. Even given the

proposed definition of “near-rationality,” there remains a decision to be made

about how large a value of the relative entropy should be contemplated by

the policy analyst; but this simply defines a one-parameter family of robustly

optimal policies, indexed by a parameter that can be taken to measure the

policy analysts degree of concern for the robustness of the policy to possible

departures from model-consistent expectations.

Woodford (2010) illustrates the possibility of policy analysis in accordance

with this proposal, in the context of a familiar log-linear New Keynesian

model of the tradeoff between inflation and output stabilization.3 Here we

re-examine some of the conclusions of that paper, in the context of a model

with explicit choice-theoretic foundations. It is not obvious from the analysis

in the earlier paper whether the allowance for near-rational expectations in a

more explicit, non-linear model of the decision problems of economic agents

would yield similar conclusions; for while the solution to the linear-quadratic

policy problem assumed in Woodford (2010) can be shown to provide a local

approximation to the dynamics under an optimal policy commitment in a mi-

2Our use of this measure of departure from model-consistent expectations is somewhat

different from theirs, however. Hansen and Sargent assume a policy analyst who is herself

uncertain that her model is precisely correct as a description of the economy; when the

expectations of other economic agents are an issue in the analysis, these are typically as-

sumed to share the policy analyst’s model, and her concerns about mis-specification and

preference for robustness as well. We are instead concerned about potential discrepancies

between the views of the policy analyst and those of the public; and the potential depar-

tures from model-consistent beliefs on the part of the public are not assumed to reflect a

concern for robustness on their part.
3See section 7.xx below for further discussion of the earlier paper.
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crofounded New Keynesian model under rational expectations (Benigno and

Woodford, 2005), it is not obvious that the proposed modification of these

equations when expectations are allowed not to be model-consistent can sim-

ilarly be justified as a local approximation.4 Here we derive exact, nonlinear

equations that characterize a robustly optimal policy commitment in the

context of our microfounded model, before log-linearizing those equations to

provide a local linear approximation to the solution to those equations; this

is intended to guarantee that the linear approximations that are eventually

relied upon to obtain our final, practical characterizations are invoked in an

internally consistent manner.

The analysis in Woodford (2010) also optimizes over only a family of

linear policy rules of a particular restrictive form (involving an advance com-

mitment to a particular inflation target that depends solely on the history of

exogenous disturbances, assumed to be observed by the central bank). While

a restriction of attention to this particular class of rules is known not to mat-

ter in the case of an analysis of optimal policy (in the log-linear approximate

model) under rational expectations,5 it is not obvious that there may not be

advantages to alternative types of rules when one allows for departures for

rational expectations. For example, one might expect it to be desirable for

policy to respond to observed departures of public expectations from those

that the central bank regards as correct — something that has no advantage

under an REE analysis, since no such discrepancy can ever exist in an REE.

Here we consider robustly optimal policy choice from among a much more

flexibly specified class of policies, including allowance for the possibility of

explicit response to measures or indicators of private-sector expectations. In

fact — to the extent that our criterion for robustness is simply one of en-

suring that the highest possible lower bound for welfare (across alternative

“near-rational” beliefs) is achieved6 — we find that there is no benefit from

4Benigno and Paciello (2010) criticize the analysis of Woodford (2010) on this ground.

Tack Yun has raised the same issue, in a discussion of Woodford (2010) at a conference at

the Bank of Korea.
5See, e.g., Clarida, Gali and Gertler (1999), or Woodford (2011), sec. 1.
6In section xx below, we discuss a stronger form of robustness that is more difficult to

achieve, and argue that robustness in this stronger sense would require a commitment to

respond to fairly direct measures of belief distortions.
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expanding the set of candidate policy commitments to include ones that are

explicitly dependent on private-sector expectations. But it is an important

advance of the current analysis that this can be shown rather than simply

being assumed.

In section 2, we explain our general approach to the characterization of

robustly optimal policy. In addition to introducing our proposed definition

of “near-rational expectations,” this section explains in general terms how it

is possible for us to characterize robustly optimal policy without having to

restrict the analysis to a parametric family of candidate policy rules, as is

done in Woodford (2010). Section 3 then sets out the structure of the mi-

crofounded New Keynesian model, showing how the model’s exact structural

relations are modified by the allowance for distorted private-sector expecta-

tions. Section 4 begins the analysis of robustly optimal policy in the New

Keynesian model by characterizing an evolution of the economy that repre-

sents an upper bound on what can possibly be achieved. Section 5 provides

an approximate analysis of the upper-bound dynamics by log-linearizing the

exact conditions established in section 4; section 6 then shows that (at least

up to the linear approximation introduced in section 5) the upper-bound

dynamics are attainable by a variety of policies, and hence solve the robust

policy problem stated earlier. Section 7 then considers a stronger form of

robustness; section 8 considers robustly optimal policy when policy must be

conducted subject to partial information on the part of the central bank; and

section 9 concludes.

2 Robustly Optimal Policy: Preliminaries

Here we first describe our general way of representing distorted expectations,

our measure of the degree of departure from model-consistent expectations,

and the general strategy of the approach that we use to characterize ro-

bustly optimal policy. These general ideas are then applied to a specific New

Keynesian model, beginning in section 3.
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2.1 Distorted Private Sector Expectations

Let (Ω,B,P) denote a standard probability space with Ω denoting the set of

possible realizations of an exogenous stochastic disturbance process {ξ0, ξ1, ξ2, ...},
B the σ−algebra of Borel subsets of Ω, and P a probability measure assigning

probabilities to any set B ∈ B. We consider a situation in which the policy

analyst assigns probabilities to events using the probability measure P but

fears that the private sector may make decisions on the basis of a potentially

different probability measure denoted by P̂ .

We let E denote the policy analyst’s expectations induced by P and Ê

the corresponding private sector expectations associated with P̂ . A first

restriction on the class of possible distorted measures that the policy analyst

is assumed to consider — part of what we mean by the restriction to “near-

rational expectations” — is the assumption that the distorted measure P̂ ,

when restricted to events over any finite horizon, is absolutely continuous

w.r.t. the correspondingly restricted version of the policy analyst’s measure

P . The Radon-Nikodym theorem then allows us to express the distorted

private sector expectations of some t + j measurable random variable Xt+j

as

Ê[Xt+j|ξt] = E[
Mt+j

Mt

Xt+j|ξt]

for all j ≥ 0 where ξt denotes the partial history of exogenous disturbances

up to period t. The random variable Mt+j is the Radon-Nikodym derivative,

and completely summarizes belief distortions.7 The variable Mt+j is mea-

surable w.r.t. the history of shocks ξt+j, non-negative and is a martingale,

i.e., satisfies

E[Mt+j|ωt] = Mt

for all j ≥ 0. Defining

mt+1 =
Mt+1

Mt

one step ahead expectations based on the measure P̂ can be expressed as

Ê[Xt+1|ξt] = E[mt+1Xt+1|ξt],
7See Hansen and Sargent (2005) for further discussion.
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where mt+1 satisfies

E[mt+1|ξt] = 1 and mt+1 ≥ 0. (2.1)

This representation of the distorted beliefs of the private sector is useful in

defining a measure of the distance of the private-sector beliefs from those of

the policy analyst. As discussed in Hansen and Sargent (2005), the relative

entropy

Rt = Et[mt+1 logmt+1]

is a measure of the distance of (one-period-ahead) private sector beliefs from

the central bank beliefs with a number of appealing properties.

Following Hansen and Sargent (2005) and Woodford (2010), the overall

degree of distortion of private sector probability beliefs about possible histo-

ries over the indefinite future can furthermore be measured by a discounted

relative entropy criterion

V (m) = E0

[
∞∑
t=0

βt+1mt+1 logmt+1

]
,

where m denotes the state contingent sequence of expectations distortions

characterizing private sector beliefs. We shall suppose that the policy analyst

wishes to guard against the outcomes that can result under any private sector

beliefs that do not involve too large a value of this criterion.

2.2 The Robustly Optimal Policy Problem

We now describe the kind of policy problem that we wish to consider. Our

general strategy for characterizing robustly optimal policy can be usefully

explained in a fairly abstract setting, before turning to an application of the

approach in the context of a specific model. In particular, we wish to explain

how it is possible to characterize robustly optimal policy without restricting

consideration to a particular parametric family of policy rules, as is done in

Woodford (2010).

Let us suppose in general terms that a policymaker cares about economic

outcomes that can be represented by some vector x of endogenous variables,

the values of which will depend both on policy and on private-sector belief
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distortions, with the latter parameterized by some vector m. (We will even-

tually parameterize belief distortions in the way discussed in the previous

subsection, but this is degree of specificity is not necessary in the present

discussion.) Among the determinants of x are a vector of structural equa-

tions, that we write as

F (x,m) = 0. (2.2)

We assume that the equations (2.2) are insufficient to completely determine

the vector x, under given belief distortions m, so that the policymaker has a

non-trivial choice.

We further assume that in absence of any concern for possible belief dis-

tortions on the part of the private sector (i.e., if it were possible to be con-

fident that m = 0), the policymaker would wish to achieve as high a value

as possible of some objective U(x). (In the application below, this objec-

tive will correspond to the expected utility of the representative household.)

In the presence of a concern for robustness, we instead assume, following

Hansen and Sargent (2005) and Woodford (2010), that alternative policies

are evaluated according to the value of

min
m∈M

[U(x) + θV (m)], (2.3)

where the minimization is over the set of all possible belief distortions M ;

V (m) is a measure of the size of the belief distortions, with V (0) = 0, such

as the one proposed in the previous subsection; θ > 0 is a coefficient that in-

dexes the policymaker’s degree of concern about potential belief distortions;

and (2.3) is evaluated taking into account the way in which belief distortions

affect the determination of x. Here a small value of θ implies a great degree

of concern for robustness, while a large value of θ implies that only mod-

est departures from model-consistent expectations are considered plausible.

In the limit as θ → ∞, criterion (2.3) reduces to U(x), and the rational

expectations analysis is recovered.

More specifically, let us suppose that the policymaker must choose a pol-

icy commitment c from some set C of feasible policy commitments. (Our goal

is to show that we can obtain results about robustly optimal policy that do

not depend on the precise specification of the set C; for now, we assume that

there exists such a set, but we make no specific assumption about what its
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boundaries may be. We make only two general assumptions about the nature

of the set C. First, we assume that each of the commitments in the set C can

be defined independently of what the belief distortions may be. And second,

we shall require that for any c ∈ C, there exists an equilibrium outcome for

any choice of m ∈ M . We thus rule out policy commitments that would

imply non-existence of equilibrium for some m ∈ M , and thereby situations

in which one might be tempted to conclude that belief distortions must be

of a particular type under a given policy commitment, simply because no

other beliefs would be consistent with existence of equilibrium. Instead of

assuming that private-sector beliefs will necessarily be consistent with some

equilibrium that allows the intended policy to be carried out, we assume that

it is the responsibility of the policymaker to choose a policy commitment that

can be executed (so that an equilibrium exists in which it is fulfilled), regard-

less of the beliefs that turn out to be held by the private sector. (If under

certain beliefs, the policy would have to be modified on ground of infeasibil-

ity, then a credible description of the policy commitment should specify that

the outcome will be different in the case of those beliefs.)8 Note that the set

C may involve many different types of policy commitments. For example, it

may include policy commitments that depend on the history of exogenous

shocks; commitments that depend on the history of endogenous variables,

as is the case with Taylor rules; and commitments regarding relationships

between endogenous variables, as is the case with so-called targeting rules.

Also, the endogenous variables in terms of which the policy commitment is

expressed may include indicators of private-sector expectations, as long as

the requirement is satisfied that the policy commitment must be consistent

with belief distortions of an arbitrary form.

In order to define the robustly optimal decision problem of the policy-

maker, we further specify an outcome function that identifies the equilibrium

outcome x associated with a given policy commitment and a given belief dis-

tortion.

8Alternatively, instead of ruling out commitments that give rise to non-existence of

equilibrium under some belief distortions, it is equivalent to allow for such commitments

and to assign a value of −∞ to the policymaker’s objective when an equilibrium does not

exist.
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Definition 1 The economic outcomes associated with belief distortions m

and commitments c are given by an outcome function

O :M × C → X

with the property that for all m ∈ M and c ∈ C, the outcome O(m, c) and

m jointly constitute an equilibrium of the model. In particular, the outcome

function must satisfy

F (O(m, c),m) = 0

for all all m ∈M and c ∈ C.

Here we have not been specific about what we mean by an “equilibrium,”

apart from the fact that (2.2) must be satisfied. In the context of the spe-

cific model presented in the next section, equilibrium has a precise meaning.

For purposes of the present discussion, it does not actually matter how we

define equilibrium; only the definition of the outcome function matters for

our subsequent discussion.9

Note also that we do not assume that there is necessarily a unique equilib-

rium associated with each policy commitment c and belief distortion m. We

simply suppose that the policymaker’s robust policy problem can be defined

relative to some assumption about which equilibrium should be selected in

order to evaluate a given policy. For example, consistent with the desire for

robustness, one might specify that the outcome function O(c,m) selects the

worst of the equilibria (in the sense of yielding the lowest value for U(x))

consistent with the pair (c,m). Our approach to the characterization of ro-

bustly optimal policy, however, does not depend on such a specification; it

can also be used to determine the robustly optimal policy for a policymaker

who is willing to assume that the best equilibrium will occur, among those

consistent with the given belief distortion.

We are now in a position to define the robustly optimal policy problem

as the choice of a policy commitment to solve

max
c∈C

min
m∈M

Λ(m, c) (2.4)

9If the set of equations (2.2) is not a complete set of requirements for x to be an

equilibrium, this only has the consequence that the upper bound outcome defined below

might not be a tight enough upper bound; it does not affect the validity of the assertion

that it provides an upper bound.
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where we define

Λ(m, c) = E0 [U(O(m, c)) + θV (m)] .

2.3 An Upper Bound on What Policy Can Robustly

Achieve

We shall now determine an upper bound for the economic outcomes that

robustly optimal policy can achieve in the decision problem (2.4), that does

not depend on the choice of the set C of feasible commitments or the outcome

function O(·, ·). We proceed in three incremental steps.

First, we use the min-max inequality (see appendix A.1 for a proof) to

obtain

max
c∈C

min
m∈M

Λ(m, c) ≤ min
m∈M

max
c∈C

Λ(m, c). (2.5)

This inequality captures the intuitively obvious fact that it is no disadvantage

to be the second mover in the “game.”

Second, using the right-hand side in (2.5), we free the policymaker from

the restriction to choose commitments from the strategy space C and from

the restrictions imposed by the outcome function O(·, ·). Instead, we al-

low the policymaker to choose directly the preferred economic outcomes x

consistent with an equilibrium. This yields

min
m∈M

max
c∈C

Λ(m, c)

≤ min
m∈M

max
x∈X

[U(x) + θV (m)] (2.6)

s.t. : F (x,m) = 0,

where the constraint F (x,m) = 0 captures the restrictions required for x to

be an equilibrium.10

In a third step, we define a Lagrangian optimization problem associated

with problem (2.6):

min
m∈M

max
x∈X

L(m,x, γ), (2.7)

10The constraint represents a restriction on the choice of the second mover, i.e., the

policymaker choosing x. The restriction (2.1) is incorporated in the set M here.

12



where L is the Lagrange function, defined as

L(m,x, γ) = U(x) + θV (m) + γF (x,m),

and γ is a given state-contingent vector of Lagrange multipliers. We will

now state conditions under which the outcome of the Lagrangian problem

(2.7) generates weakly higher utility to the policymaker than problem (2.6).

Under these conditions it will also be the case that the solution of the La-

grangian problem represents an upper bound on what policy can achieve in

the robustly optimal policy problem (2.4).

Suppose we have found a point (m∗, x∗, γ∗) and the Lagrange function

has a saddle at this point, i.e., satisfies

L(m∗, x, γ∗) < L(m∗, x∗, γ∗) ∀x ̸= x∗ (2.8a)

L(m,x∗, γ∗) > L(m∗, x∗, γ∗) ∀m ̸= m∗ (2.8b)

L(m∗, x∗, γ) ≥ L(m∗, x∗, γ∗) ∀γ. (2.8c)

Appendix (A.1) then proves the following result:

Proposition 2 Suppose (m∗, x∗, γ∗) satisfies the saddle point conditions (2.8)

and let (xR,mR) denote the solution of the robustly optimal policy problem

(2.4), then (x∗,m∗) is an equilibrium and

U(xR) + θV (mR) ≤ U(x∗) + θV (m∗).

The solution to the Lagrangian optimization problem thus delivers an upper

bound on what policy can achieve in the robustly optimal policy problem,

provided the saddle point conditions hold.

Assuming differentiability, it follows from conditions (2.8a) and (2.8b)

that the solution to the Lagrangian game necessarily satisfies the first order

conditions

Ux(x
∗) + θV (m∗) + γ∗Fx(x

∗,m∗) = 0 (2.9)

θVm(m
∗) + γ∗Fm(x

∗,m∗) = 0. (2.10)

Moreover, condition (2.8c) holds if and only if

F (x∗,m∗) = 0. (2.11)
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Conditions (2.9)-(2.11) represent necessary conditions that allow us to gen-

erate candidate solutions for the Lagrangian game. If a candidate solution

satisfies (2.8a)-(2.8b), then proposition 2 implies that one has found an up-

per bound to the value of the robustly optimal policy game (2.4).11 For

simplicity we will refer to the solution of the Lagrangian problem as the

“upper-bound solution” in the remaining part of the paper. We now apply

these results to a specific New Keynesian DSGE model of the options for

monetary stabilization policy.

3 A New Keynesian Model with Distorted

Private Sector Expectations

We shall begin by deriving the exact structural relations of a New Keyne-

sian model that is completely standard, except that the private sector holds

potentially distorted expectations. The exposition here follows and extends

Woodford (2011), who writes the exact structural relations in a recursive

form for the case with model-consistent expectations.

3.1 Private Sector

The economy is made up of identical infinite-lived households, each of which

seeks to maximize

U ≡ Ê0

∞∑
t=0

βt

[
ũ(Ct; ξt)−

∫ 1

0

ṽ(Ht(j); ξt)dj

]
, (3.12)

subject to a sequence of flow budget constraints12

PtCt +Bt ≤
∫ 1

0

wt(j)PtHt(j)dj +Bt−1(1 + it−1) + Σt + Tt,

where Ê0 is the common distorted expectations held by consumers condi-

tional on the state of the world in period t0, Ct an aggregate consumption

11Condition (2.8c) is implied by the necessary condition (2.11).
12We abstract from state contingent assets in the household budget constraint because

the representative agent assumption implies that in equilibrium there will be not trade in

these assets. We consider the prices of state contingent assets in section 7.2 below.
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good which can be bought at nominal price Pt, Ht(j) is the quantity sup-

plied of labor of type j and ωt(j) the associated real wage, Bt nominal bond

holdings, it the nominal interest rate, and ξt is a vector of exogenous distur-

bances, which may include random shifts of either of the functions ũ or ṽ.

The variable Tt denotes lump sum taxes levied by the government and Σt

profits accruing to households from the ownership of firms.

The aggregate consumption good is a Dixit-Stiglitz aggregate of consump-

tion of each of a continuum of differentiated goods,

Ct ≡
[∫ 1

0

ct(i)
η−1
η di

] η
η−1

, (3.13)

with an elasticity of substitution equal to η > 1. Each differentiated good

is supplied by a single monopolistically competitive producer. There are

assumed to be many goods in each of an infinite number of “industries”; the

goods in each industry j are produced using a type of labor that is specific to

that industry, and suppliers in the same industry also change their prices at

the same time, but are subject to frictions in price adjustment as described

below.13 The representative household supplies all types of labor as well as

consuming all types of goods. To simplify the algebraic form of the results,

it is convenient to assume isoelastic functional forms

ũ(Ct; ξt) ≡
C1−σ̃−1

t C̄ σ̃−1

t

1− σ̃−1 , (3.14)

ṽ(Ht; ξt) ≡
λ

1 + ν
H1+ν

t H̄−ν
t , (3.15)

where σ̃, ν > 0, and {C̄t, H̄t} are bounded exogenous disturbance processes

which are both among the exogenous disturbances included in the vector ξt.

There is a common technology for the production of all goods, in which

(industry-specific) labor is the only variable input,

yt(i) = Atf(ht(i)) = Atht(i)
1/ϕ, (3.16)

13The assumption of segmented factor markets for different “industries” is inessential

to the results obtained here, but allows a numerical calibration of the model that implies

a speed of adjustment of the general price level more in line with aggregate time series

evidence. For further discussion, see chapter 3 in Woodford (2003).
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where At is an exogenously varying technology factor, and ϕ > 1. The

Dixit-Stiglitz preferences (3.13) imply that the quantity demanded of each

individual good i will equal14

yt(i) = Yt

(
pt(i)

Pt

)−η

, (3.17)

where Yt is the total demand for the composite good defined in (3.13), pt(i)

is the (money) price of the individual good, and Pt is the price index,

Pt ≡
[∫ 1

0

pt(i)
1−ηdi

] 1
1−η

, (3.18)

corresponding to the minimum cost for which a unit of the composite good

can be purchased in period t. Total demand is given by

Yt = Ct + gtYt, (3.19)

where gt is the share of the total amount of composite good purchased by

the government, treated here as an exogenous disturbance process.

3.2 Government Sector

We assume that the central bank can control the riskless short-term nom-

inal interest rate it,
15 and that the zero lower bound on nominal interest

rates never binds.16 We equally assume that the fiscal authority ensures in-

tertemporal government solvency regardless of what monetary policy may be

14In addition to assuming that household utility depends only on the quantity obtained

of Ct, we assume that the government also cares only about the quantity obtained of

the composite good defined by (3.13), and that it seeks to obtain this good through a

minimum-cost combination of purchases of individual goods.
15This is possible even though we abstract from monetary frictions that would account

for a demand for central-bank liabilities that earn a substandard rate of return, as ex-

plained in chapter 2 in Woodford (2003).
16This can be shown to be true in the case of small enough disturbances, given that

the nominal interest rate is equal to r̄ = β−1 − 1 > 0 under the optimal policy in the

absence of disturbances. Consequences of a binding zero lower bound for the case with

non-distorted private sector expectations are explored in Eggertson and Woodford (2003)

and Adam and Billi (2003a), for example.
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chosen by the monetary authority. This allows us to abstract from the fiscal

consequences of alternative monetary policies and to ignore the bond versus

lump sum tax financing decision of the fiscal authority in our consideration

of optimal monetary policy, as is implicitly done in Clarida et al.(1999), and

much of the literature on monetary policy rules. Finally, we assume that the

fiscal authority implements a bounded path for the real value of outstand-

ing government debt, so that the transversality conditions associated with

optimal private sector behavior are automatically satisfied.

3.3 Household Optimality Conditions

Each household maximizes utility by choosing state contingent sequences

{Ct, Ht(j), Bt} taking as given the process for {Pt, wt(j), it,Σt, Tt}. The first
order conditions give rise to an optimal labor supply relation

wt(j) =
ṽh(Ht(j); ξt)

ũc(Ct; ξt)
, (3.20)

and a consumption Euler equation

ũC(Ct; ξt) = βÊt

[
ũC(Ct; ξt)

1 + it
Πt+1

]
, (3.21)

which characterize optimal household behavior.

3.4 Optimal Price Setting by Firms

The producers in each industry fix the prices of their goods in monetary units

for a random interval of time, as in the model of staggered pricing introduced

by Calvo (1983) and Yun (1996). Let 0 ≤ α < 1 be the fraction of prices

that remain unchanged in any period. A supplier that changes its price in

period t chooses its new price pt(i) to maximize

Êt

∞∑
T=t

αT−tQt,TΠ(pt(i), p
j
T , PT ;YT , ξT ), (3.22)

where Êt is the distorted expectations of price setters conditional on time t

information, which are assumed identical to the expectations held by con-

sumers, Qt,T is the stochastic discount factor by which financial markets dis-

count random nominal income in period T to determine the nominal value of
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a claim to such income in period t, and αT−t is the probability that a price

chosen in period t will not have been revised by period T . In equilibrium,

this discount factor is given by

Qt,T = βT−t ũc(CT ; ξT )

ũc(Ct; ξt)

Pt

PT

. (3.23)

Profits are equal to after-tax sales revenues net of the wage bill. Sales

revenues are determined by the demand function (3.17), so that (nominal)

after-tax revenue equals

(1− τ t)pt(i)Yt

(
pt(i)

Pt

)−η

.

Here τ t is a proportional tax on sales revenues in period t; {τ t} is treated

as an exogenous disturbance process, taken as given by the monetary policy-

maker. We assume that τ t fluctuates over a small interval around a non-zero

steady-state level τ̄ . We allow for exogenous variations in the tax rate in

order to include the possibility of “pure cost-push shocks” that affect equi-

librium pricing behavior while implying no change in the efficient allocation

of resources.

The real wage demanded for labor of type j is given by equation (3.20) and

firms are assumed to be wage-takers. Substituting the assumed functional

forms for preferences and technology, the function

Π(p, pj, P ;Y, ξ) ≡ (1− τ)pY (p/P )−η

−λP
( p
P

)−ηϕ
(
pj

P

)−ηϕν

H̄−ν

(
Y

A

)1+ω (
(1− g)Y

C̄

)1/σ̃

(3.24)

then describes the after-tax nominal profits of a supplier with price p, in

an industry with common price pj, when the aggregate price index is equal

to P and aggregate demand is equal to Y . Here ω ≡ ϕ(1 + ν) − 1 > 0 is

the elasticity of real marginal cost in an industry with respect to industry

output. The vector of exogenous disturbances ξt now includes At, gt and τ t,

in addition to the preference shocks C̄t and H̄t.

Each of the suppliers that revise their prices in period t chooses the same

new price p∗t , that maximizes (3.22). Note that supplier i’s profits are a

concave function of the quantity sold yt(i), since revenues are proportional to
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yt(i)
η−1
η and hence concave in yt(i), while costs are convex in yt(i). Moreover,

since yt(i) is proportional to pt(i)
−η, the profit function is also concave in

pt(i)
−η. The first-order condition for the optimal choice of the price pt(i) is

the same as the one with respect to pt(i)
−η; hence the first-order condition

with respect to pt(i),

Êt

∞∑
T=t

αT−tQt,TΠ1(pt(i), p
j
T , PT ;YT , ξT ) = 0,

is both necessary and sufficient for an optimum. The equilibrium choice p∗t
(which is the same for each firm in industry j) is the solution to the equation

obtained by substituting pt(i) = pjt = p∗t into the above first-order condition.

Under the assumed isoelastic functional forms, the optimal choice has a

closed-form solution
p∗t
Pt

=

(
Kt

Ft

) 1
1+ωη

, (3.25)

where Ft and Kt are functions of current aggregate output Yt, the current

exogenous state ξt, and the expected future evolution of inflation, output,

and disturbances, defined by

Ft ≡ Êt

∞∑
T=t

(αβ)T−tf(YT ; ξT )

(
PT

Pt

)η−1

, (3.26)

Kt ≡ Êt

∞∑
T=t

(αβ)T−tk(YT ; ξT )

(
PT

Pt

)η(1+ω)

, (3.27)

where

f(Y ; ξ) ≡ (1− τ)C̄ σ̃−1

(Y (1− g))−σ̃−1

Y, (3.28)

k(Y ; ξ) ≡ η

η − 1
λϕ

1

A1+ωH̄ν
Y 1+ω. (3.29)

Relations (3.26)–(3.27) can instead be written in the recursive form

Ft = f(Yt; ξt) + αβÊt[Π
η−1
t+1Ft+1] (3.30)

Kt = k(Yt; ξt) + αβÊt[Π
η(1+ω)
t+1 Kt+1], (3.31)
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where Πt ≡ Pt/Pt−1.
17

The price index then evolves according to a law of motion

Pt =
[
(1− α)p∗1−η

t + αP 1−η
t−1

] 1
1−η , (3.32)

as a consequence of (3.18). Substitution of (3.25) into (3.32) implies that

equilibrium inflation in any period is given by

1− αΠη−1
t

1− α
=

(
Ft

Kt

) η−1
1+ωη

. (3.33)

Equations (3.30), (3.31) and (3.33) jointly define a short-run aggregate supply

relation between inflation and output, given the current disturbances ξt, and

expectations regarding future inflation, output, and disturbances.

3.5 Summary of the Model Equations and Equilibrium

Definition

For the subsequent analysis it will be helpful to express the model in terms

of the endogenous variables (Kt, Ft, Yt, it,∆t,mt) only, where mt is the belief

distortions of the private sector and

∆t ≡
∫ 1

0

(
pt(i)

Pt

)−η(1+ω)

di ≥ 1 (3.34)

a measure of price dispersion at time t. The vector of exogenous disturbances

is given by ξt =
(
At, gt, τ t, C̄t, H̄t

)′
.

We begin by expressing expected household utility (evaluated under the

objective measure P) in terms of these variables. Inverting the production

function (3.16) to write the demand for each type of labor as a function of

the quantities produced of the various differentiated goods, and using the

17It is evident that (3.26) implies (3.30); but one can also show that processes that

satisfy (3.30) each period, together with certain bounds, must satisfy (3.26). Since we

are interested below only in the characterization of bounded equilibria, we can omit the

statement of the bounds that are implied by the existence of well-behaved expressions

on the right-hand sides of (3.26) and (3.27), and treat (3.30)–(3.31) as necessary and

sufficient for processes {Ft,Kt} to measure the relevant marginal conditions for optimal

price-setting.
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identity (3.19) to substitute for Ct, where gt is treated as exogenous, it is

possible to write the utility of the representative household as a function of

the expected production plan {yt(i)}. One thereby obtains

U ≡ E0

∞∑
t=0

βt

[
u(Yt; ξt)−

∫ 1

0

v(yjt ; ξt)dj

]
, (3.35)

where

u(Yt; ξt) ≡ ũ(Yt(1− gt); ξt)

and

v(yjt ; ξt) ≡ ṽ(f−1(yjt/At); ξt).

In this last expression we make use of the fact that the quantity produced of

each good in industry j will be the same, and hence can be denoted yjt ; and

that the quantity of labor hired by each of these firms will also be the same,

so that the total demand for labor of type j is proportional to the demand

of any one of these firms.

One can furthermore express the relative quantities demanded of the dif-

ferentiated goods each period as a function of their relative prices, using

(3.17). This allows us to write the utility flow to the representative house-

hold in the form

U(Yt,∆t; ξt) ≡ u(Yt; ξt)− v(Yt; ξt)∆t.

Hence we can express the household objective (3.35) as

U = E0

∞∑
t=0

βtU(Yt,∆t; ξt). (3.36)

Here U(Y,∆; ξ) is a strictly concave function of Y for given ∆ and ξ, and a

monotonically decreasing function of ∆ given Y and ξ.

Using this notation, the consumption Euler equation (3.21) can be ex-

pressed as

uY (Yt; ξt) = βEt

[
mt+1uY (Yt+1; ξt+1)

1 + it
Πt+1

1− gt
1− gt+1

]
. (3.37)
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Using (3.33) to substitute for the variable Πt equations (3.30) and (3.31) can

be expressed as

Ft = f(Yt; ξt) + αβEt [mt+1ϕF (Kt+1, Ft+1)] (3.38)

Kt = k(Yt; ξt) + αβEt [mt+1ϕK(Kt+1, Ft+1)] , (3.39)

where the functions ϕF , ϕK are both homogeneous degree 1 functions of K

and F .

Because the relative prices of the industries that do not change their prices

in period t remain the same, one can use (3.32) to derive a law of motion for

the price dispersion term ∆t of the form

∆t = h(∆t−1,Πt),

where

h(∆,Π) ≡ α∆Πη(1+ω) + (1− α)

(
1− αΠη−1

1− α

) η(1+ω)
η−1

.

This is the source of welfare losses from inflation or deflation. Using once

more (3.33) to substitute for the variable Πt one obtains

∆t = h̃(∆t−1, Kt/Ft). (3.40)

Equation (3.37)-(3.40) represent four constraints on the equilibrium paths of

the six endogenous variables (Yt, Ft, Kt,∆t, it,mt). For a given sequence of

belief distortions mt satisfying restriction (2.1) there is thus one degree of

freedom left, which can be determined by monetary policy. We are now in a

position to define the equilibrium with distorted private sector expectations:

Definition 3 (DEE) A distorted expectations equilibrium (DEE) is a stochas-

tic process for {Yt, Ft, Kt,∆t, it,mt}∞t=0 satisfying equations (2.1) and (3.37)-

(3.40).

4 Upper Bound in the New Keynesian Model

We shall now formulate the Lagrangian game (2.7) for the nonlinear New

Keynesian model with distorted private sector expectations, and derive the

nonlinear form of the necessary conditions (2.9)-(2.11).
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The Lagrangian game (2.7) for the New Keynesian model is given by

min
{mt+1}∞t=0

max
{Yt,Ft,Kt,∆t}∞t=0

E0

∞∑
t=0

βt


U(Yt,∆t; ξt) + θβmt+1 logmt+1

+γt

(
h̃(∆t−1, Kt/Ft)−∆t

)
Γ′
t[z(Yt; ξt) + αβmt+1Φ(Zt+1)− Zt]

+βψt (mt+1 − 1)

+ αΓ′
−1Φ(Z0),(4.41)

where γt,Γt, ψt denote Lagrange multipliers and we used the shorthand no-

tation

Zt ≡

[
Ft

Kt

]
, z(Y ; ξ) ≡

[
f(Y ; ξ)

k(Y ; ξ)

]
, Φ(Z) ≡

[
ϕF (K,F )

ϕK(K,F )

]
, (4.42)

and added the initial pre-commitment αΓ′
−1Φ(Z0) to obtain a time-invariant

solution. The Lagrange multiplier vector Γt is associated with constraints

(3.38) and (3.39) and given by Γ′
t = (Γ1t,Γ2,t). The multiplier γt relates to

equation (3.40) and the multiplier ψt to constraint (2.1). We also eliminated

the interest rate and the constraint (3.37) from the problem. Under the as-

sumption that the zero lower bound on nominal interest rates is not binding,

constraint (3.37) imposes no restrictions on the path of the other variables.

The path for the nominal interest rates can thus be computed ex-post using

the solution for the remaining variables and equation (3.37).

The nonlinear FOCs for the policymaker (2.9) are then given by

UY (Yt,∆t; ξt) + Γ′
tzY (Yt; ξt) = 0 (4.43)

−γth̃2(∆t−1, Kt/Ft)
Kt

F 2
t

− Γ1t + αmtΓ
′
t−1D1(Kt/Ft) = 0 (4.44)

γth̃2(∆t−1, Kt/Ft)
1

Ft

− Γ2t + αmtΓ
′
t−1D2(Kt/Ft) = 0 (4.45)

U∆(Yt,∆t; ξt)− γt + βEt[γt+1h̃1(∆t, Kt+1/Ft+1)] = 0 (4.46)

for all t ≥ 0. The nonlinear FOC (2.10) defining the worst-case belief distor-

tions takes the form

θ(logmt + 1) + αΓ′
t−1Φ(Zt) + ψt−1 = 0 (4.47)
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for all t ≥ 1. Above, h̃i(∆, K/F ) denotes the partial derivative of h̃(∆, K/F )

with respect to its i-th argument, and Di(K/F ) is the i-th column of the

matrix

D(Z) ≡

[
∂FϕF (Z) ∂KϕF (Z)

∂FϕK(Z) ∂KϕK(Z)

]
. (4.48)

Since the elements of Φ(Z) are homogeneous degree 1 functions of Z, the

elements of D(Z) are all homogenous degree 0 functions of Z, and hence

functions of K/F only. Thus we can alternatively write D(K/F ). Finally,

the structural equations (2.11) are given by equations (3.38)-(3.40). This

completes the description of the necessary conditions equations (2.9)-(2.11)

for the New Keynesian model.

5 Locally Optimal Dynamics under the Up-

per Bound Policy

We shall be concerned solely with optimal outcomes that involve small fluc-

tuations around a deterministic optimal steady state. An optimal steady

state is a set of constant values (Ȳ , Z̄, ∆̄, γ̄, Γ̄, ψ̄, m̄) that solve the structural

equations (3.38)-(3.40) and the FOCs (4.43)-(4.47) in the case that ξt = ξ̄ at

all times and initial conditions consistent with the steady state are assumed.

We now compute the steady-state, then derive the local dynamics implied

by these FOCs and show that the saddle point conditions (2.8) are locally

satisfied.

5.1 Optimal Steady State

In a deterministic steady state, restriction (2.1) implies m̄ = 1, so that the

optimal steady state is the same as derived in Benigno and Woodford (2005)

for the case with non-distorted private sector expectations. Specifically, it

satisfies F̄ = K̄ = (1−αβ)−1k(Ȳ ; ξ̄), which implies Π̄ = 1 (no inflation) and

∆̄ = 1 (zero price dispersion), and the value of Ȳ is implicitly defined by

f(Ȳ , ξ̄) = k(Ȳ , ξ̄).
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Because h̃2(1, 1) = 0 (the effects of a small non-zero inflation rate on the

measure of price dispersion are of second order), conditions (4.44)–(4.45)

reduce in the steady state to the eigenvector condition

Γ̄′ = αΓ̄′D(1). (5.49)

Moreover, since when evaluated at a point where F = K,

∂ log(ϕK/ϕF )

∂ logK
= −∂ log(ϕK/ϕF )

∂ logF
=

1

α
,

and we observe that D(1) has a left eigenvector [1 −1], with eigenvalue 1/α;

hence (5.49) is satisfied if and only if Γ̄2 = −Γ̄1. Condition (4.43) provides

then one additional condition to determine the magnitude of the elements of

Γ̄1. It implies

UY (Y , 1; ξ̄) + Γ̄1(fY (Ȳ ; ξ̄)− kY (Ȳ ; ξ̄)) = 0. (5.50)

Since ky − fy = ω + σ̃−1 > 0 we have that

Γ̄1 > 0,

whenever UY > 0, i.e., whenever steady state output Ȳ falls short of the first

best or efficient steady state level Y
e
defined as

UY (Y
e
, 1; ξ̄) = 0.

In the limiting case Y → Y
e
we have Γ̄1 = 0. Finally, condition (4.46)

provides a restriction allowing to determine the steady state value of γ̄ :

U∆(Y , 1; ξ̄)− γ̄ + βγ̄h̃1(1, 1) = 0.

Since U∆ < 0 and h̃1(1, 1) = α, we have

γ̄ =
U∆(Y , 1; ξ̄)

(1− βα)
< 0.
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5.2 Optimal Dynamics

Let us define the endogenous variables

πt ≡ log Πt

m̂t ≡ logmt

xt ≡ Ŷt − Ŷ ∗
t , (5.51)

where xt denotes the ‘output gap’ with Ŷt = log Yt/Ȳ , Ŷ ∗
t = log Y ∗

t /Ȳ and

Y ∗
t being the ‘target level of output’, which is a function of the exogenous

disturbances only and implicitly defined as

UY (Y
∗
t , 1; ξt) + Γ̄′zY (Y

∗
t ; ξt) = 0. (5.52)

The following proposition characterizes the first order accurate local dynam-

ics implied by the nonlinear structural equations (3.38)-(3.40) and the non-

linear first order conditions (4.43)-(4.47) for these variables:

Proposition 4 If initial price dispersion ∆−1 is small (of order O(||ξ||2))
and the initial precommitments such that Γ1,0 = −Γ2,0 > 0, then equations

(3.38)-(3.40) and (4.43)-(4.47) imply up to first order that

πt = κxt + βEtπt+1 + ut (5.53)

0 = ξππt + λx(xt − xt−1) + ξmm̂t (5.54)

m̂t = λm (πt − Et−1[πt]) . (5.55)

The constants (κ > 0, ξπ, ξm, λx, λm) are functions of the deep model param-

eters (explicit expressions are provided in Appendix A.2). In the empirically

relevant case in which steady state output falls short of its efficient level

(Y < Y
e
) we have ξπ > 0, ξm > 0, λm > 0 and if the steady state output

distortion is sufficiently small also λx > 0.

The proof of the proposition is given in appendix A.2. The disturbance

ut above denotes a ‘cost-push’ term and is defined as

ut ≡ κ[Ŷ ∗
t + u′ξ ξ̃t], (5.56)

where uξ is defined in equation (A.76) in Appendix A.2. It is straightforward

to generalize the above proposition to the case with larger degrees of initial
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price dispersion (∆−1 of order O(||ξ||)). As becomes clear from Appendix

A.2, this would add additional deterministic dynamics to the optimal path.

Also, in the case that the initial precommitments fail to imply the condition

stated in the proposition, the results of the proposition would still become

valid asymptotically, as the effects of the initial conditions vanishes with

time.

The following proposition shows that the economic outcomes character-

ized by proposition 4 indeed constitute a local solution to the upper bound

problem (2.6):

Proposition 5 If steady state output falls short of its efficient level (Y <

Ȳ e) and the steady state output distortions are sufficiently small, then the

Lagrangian (4.41) locally satisfies the saddle point properties (2.8a)-(2.8b) at

the solution implied by equations (5.53)-(5.55).

The proof of the proposition can be found in appendix A.2.

5.3 The Optimal Inflation Response to Cost-Push Dis-

turbances

In this section we derive a closed form solution for the optimal inflation

response to a cost push disturbance, as implied by equations (5.53)-(5.55).

For simplicity, we assume that the evolution of the cost-push disturbances is

described by

ut = ρut−1 + ωt, (5.57)

where ρ ∈ [0, 1) captures the persistence of the disturbance and ωt is an

iid innovation. We then use the relationship (5.55) to substitute for m̂t in

(5.54), and equation (5.53) to substitute for xt. This delivers a second order

expectational difference equation describing the worst-case inflation evolution

under a robustly optimal policy commitment:

0 = ξππt +
λx(πt − βEtπt+1 − ut − πt−1 + βEt−1πt + ut−1)

κ
+ξmλm (πt − Et−1[πt]) .
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We now consider the impulse response dynamics to an unexpected cost

push shock ωt0 in some period t0 that are implied by this equation. Because

of the linearity of our system, we can calculate the dynamic response to an

individual shock independently of any assumptions about the shocks that

occur in other periods, so let us consider the case in which no shocks have

occurred in the past and none will occur in any later periods either; in this

case we need only solve for the perfect-foresight dynamics after the occurrence

of the one-time shock. We suppose, then, that we start from the deterministic

steady state, so that the initial conditions are given by πt0−1 = Et0−1πt0 =

ut0−1 = 0. The previous equation then implies

0 = (ξπ + ξmλm +
λx
κ
)πt0 −

λx
κ

(βπt0+1 + ut0) , (5.58)

0 = (ξπ +
λx(1 + β)

κ
)πt −

λx
κ

(βπt+1 + πt−1 + ut − ut−1) for t > t0,(5.59)

where the second equation applies for all t > t0. (All variables in these

equations refer to the expected values of the variables after the shock is

realized in period t0.)

The eigenvalues of the characteristic equation imply that equation (5.59)

has a unique non-explosive solution for πt (t > t0) for a given initial value πt0

and a given bounded exogenous sequence for ut. In the case that (as implied

by (5.57)) ut+j = ρjut for all j ≥ 0, so that at each date ut is a sufficient

statistic for the entire anticipated future evolution of the disturbance term,

this solution takes the simple form

πt = aπt−1 + but−1, (5.60)

where 0 < a < 1 is the smaller of the two real roots of

βµ2 − (1 + β + ξπκ/λx)µ+ 1 = 0,

and

b = −(1− ρ)a < 0.

Note that the coefficients a and b are independent of the policymaker’s con-

cern for robustness θ. Thus the optimal dynamics for t > t0 depend in the

same way on the lagged inflation rate and the path of the exogenous distur-

bance as in a pure RE analysis of the model. The result is different, though,
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for the initial period t0 when inflation jumps unexpectedly in response to the

shock.

Combining equation (5.58) with equation (5.60) for t = t0 + 1 delivers a

solution of the form πt0 = b0ut0 for the initial impact of the shock, where

b0 ≡
b+ β−1

κ
λxβ

(
ξπ + ξmλm + λx

κ

)
− a

.

Note that the numerator and denominator of this fraction are both posi-

tive for all ξmλm ≥ 0, so that b0 > 0. With robustness concerns we have

ξmλm > 0, so that the optimal immediate impact effect of the shock on infla-

tion is smaller than under the RE analysis. And in the limiting case where

robustness concerns increase without bound (θ → 0), we have ξmλm → ∞,

so that it becomes optimal to prevent any unexpected jump in inflation at all

in response to a shock. (Under an optimal policy, inflation will be completely

forecastable one period in advance.)

It follows that the cumulative price level response to a shock is given by

∞∑
t=t0

πt =
b0ut0
1− a

+
∞∑

t=t0+1

but
1− a

=

[
b0 +

(
ρ

1− ρ

)
b

]
ut0

1− a
.

In the absence of robustness concerns, this implies that
∑∞

t=0 πt = 0, so that

cost-push shocks have no effect on the long-run price level under an optimal

commitment. (This results in the familiar conclusion from the RE literature

that price-level targeting is optimal.) Since a and b are independent of ro-

bustness concerns, but the initial response b0 is dampened under robustness

concerns, the term in square brackets is negative when robustness is taken

into account. Hence robustness concerns make it optimal to plan to decrease

(increase) the price level in the long run following a positive (negative) cost-

push shock.

Because of certainty-equivalence, the above results translate directly to

the case with a random shock each period, as specified in (5.57). Under the

upper-bound dynamics, in any period t0, the conditional expectation Et0πt

(for any t ≥ t0) depends linearly on ut0 through precisely the coefficient ob-

tained in the perfect-foresight calculation, so that the sequence of coefficients

describes the impulse response function of inflation to a cost-push shock. The
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law of motion for inflation in the general case is given by

πt = Et−1πt + (πt − Et−1πt)

= (aπt−1 + but−1) + b0(ut − ρut−1

= aπt−1 + b0ut + b1ut−1, (5.61)

where b1 ≡ b − ρb0 < 0. Thus inflation evolves according to the stationary

ARMA(2,1) process

(1− aL)(1− ρL)πt = b0ωt + b1ωt−1.

5.4 Comparison with Results in Woodford (2010)

As noted in the introduction, Woodford (2010) considers a similar problem,

but assuming a quadratic loss function

minE0

∞∑
t=t0

βt[π2
t + λ(xt − x∗)2] (5.62)

with coefficients λ, x∗ > 0 for the policy objective, and a New Keynesian

Phillips curve that depends on subjective private-sector expectations,

πt = κxt + Êtπt+1 + ut. (5.63)

The structural relation (5.63) is assumed to be linear in the (potentially)

distorted expectations, but when written in terms of the policymaker’s ex-

pectation operator,

πt = κxt + Et[mt+1πt+1] + ut, (5.64)

the structural relation includes a quadratic term.

It is known from the results in Benigno and Woodford (2005) that the

characterization of the optimal policy commitment obtained from such a

linear-quadratic analysis coincides with the linear approximation to the dy-

namics under an optimal policy commitment that can be derived (as in the

present paper) by log-linearizing the exact equations that characterize an op-

timal commitment in a microfounded New Keynesian model.18 Here we com-

ment on the extent to which a similar justification for the linear-quadratic

18See Woodford (2011), section 2, for further discussion of the relation between the two

approaches.
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analysis is valid when policy is required to be robust to departures from

model-consistent expectations.

In Woodford (2010), worst-case dynamics under the robustly optimal pol-

icy commitment are described by linear equations, as they are here, but the

linearity is obtained not from a local linear approximation to the exact op-

timal dynamics, but rather as a consequence of only optimizing over a class

of linear policy rules. The analysis in Woodford (2010) therefore leaves open

the question of the extent to which nonlinear policy rules could improve upon

the constrained-optimal policy characterized in that paper, while our present

analysis leaves open the question of the extent to which the optimal policy

commitment should be different in the case of larger shocks than those as-

sumed in our local analysis. Hence we should not expect the results of the

two analyses to coincide, except in the case to which both are intended to

give a solution, which is the case of small enough shocks for terms other

than those of first order in the amplitude of the shocks to be neglected. (In

fact, the results obviously do not coincide more generally, since the coeffi-

cients of the robustly optimal linear dynamics derived in Woodford (2009)

are functions of the parameter σu, indicating the standard deviation of the

“cost-push shocks,” whereas they are independent of all shock variances in

the local linear approximation calculated in this paper.) Woodford (2010)

also presents an explicit solution for the dynamics under robustly optimal

policy only in the case of i.i.d. cost-push disturbances, corresponding to the

special case ρ = 0 of the process (5.57) considered in the previous section.

We can, however, compare the results obtained here to those obtained in

Woodford (2010) for the case ρ = 0 in the small-shock limit (i.e., the limiting

values of the coefficients that describe the robustly optimal dynamics as σu →
0). In that limiting case, the results presented in Woodford (2010) coincide

with those derived here, with a suitable interpretation of the coefficients λ, x∗

of the policy objective (5.62) in terms of the parameters of our microfounded

model.

In Woodford (2010), as here, the dynamics of inflation under the robustly

optimal policy commitment19 are given by a law of motion of the form (5.61);

19Under the kind of policy assumed in Woodford (2010), the dynamics of inflation are

determined solely by the policy commitment and are independent of private-sector belief
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in the earlier paper, the coefficient a is referred to as µ, the coefficient b0 is

referred to as p̄1/σu, and the coefficient b1 (which is equal to −a in the case

that ρ = 0) is written as −µ. The characteristic equation defining a in the

present solution is furthermore seen to coincide with the quadratic equation

defining µ in Woodford (2010) if the coefficient λ in that paper is defined as

λ ≡ λxκ

ξπ

in terms of our current notation. (Note that as long as steady-state distor-

tions are not too large, the value of λ implied by this formula is positive, as

assumed in the earlier paper.) Moreover, the nonlinear equation that implic-

itly defines p̄1 in Woodford (2010) implies that p̄1 → 0 as σu → 0, but that

the ratio p̄1/σu converges to a non-zero limit. That limiting value is given

by an equation identical to the one given above for b0, if x
∗ is the positive

quantity20 such that (
βλ

κ
x∗
)2

=
ξm
ξπ
λmθ > 0.

Hence with these identifications of the parameter values, the linear dynamics

for inflation derived in Woodford (2010) are identical to those obtained here

as a linear approximation to the upper-bound dynamics.

A local linear approximation to the implied dynamics of the output gap

under the robustly optimal policy commitment can be derived from the dy-

namics of inflation, by substituting the predicted evolution of inflation into

the aggregate-supply relation and solving for the implied path of the out-

put gap. In the method employed here, the solution (5.61) for inflation is

substituted into the linearized structural relation (5.53), whereas in Wood-

ford (2010) the path of inflation is substituted into the relation (5.64), which

involves the expectation distortion factor. It might seem, then, that our cur-

rent method should not predict the same upper-bound dynamics of output,

even if the dynamics of inflation are the same; indeed, in the earlier paper it

was shown that under the kind of linear policy rule that is considered there,

distortions. As discussed in the next section, this is also one possible way of implementing

the upper-bound dynamics in our model as well, though not the only one.
20Here we assume, as in our discussion above, that steady-state output is inefficiently

low, so that Γ̄1 > 0.
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the implied fluctuations in the output gap are amplified (divided by a con-

stant factor ∆̄ < 1) as a result of the worst-case belief distortions, relative to

the prediction of the log-linear New Keynesian Phillips curve in the absence

of distorted beliefs. But in the limit as σu → 0, the optimal value of the

coefficient p̄1 → 0, as just noted, and this implies that ∆̄ → 1. Hence in

the small-noise linear approximation, the predicted output dynamics are the

same using both methods. This is just what one should expect, given that

in the small-noise linear approximation,

Et[mt+1πt+1] = Etm̃t+1 + Etπt+1 = Etπt+1,

so that (5.53) and (5.64) are equivalent, to that order of approximation.

Hence the problem considered in Woodford (2010) has the same solution

as the robustly optimal dynamics of our microfounded model, up to a lin-

ear approximation of these respective characterizations in the limiting case

of small-enough exogenous disturbances. We have no reason, however, to

expect that the characterization in Woodford (2010) of the way in which

robustly optimal policy changes as σu is increased should also be correct for

the microfounded model. There is no reason to expect even that the calcu-

lations in the earlier paper describe robustly optimal policy within the class

of linear policy rules; for in this sort of calculation for the large-shock case,

nonlinearities of the various structural equations become relevant, and we

have no reason to suppose that the particular nonlinearity that is considered

in Woodford (2010) — the effect of the distorted expectations in (5.64) —

is the only that is quantitatively significant. But we leave the quantitative

investigation of this issue for future work.

6 Implementing the Upper Bound

We now study whether a monetary policymaker can achieve the upper bound

defined in the previous section, so that it represents the solution to the ro-

bustly optimal monetary policy problem (2.4). We show that (local) imple-

mentation is feasible, and present a variety of policy commitments, each of

which would suffice for this purpose. In this section, we limit consideration

to a class of policy commitments C, which is defined as follows:
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Definition 6 A policy commitment belongs to the class C if the policymaker

commits to insure that some relationship c(·) = 0 holds each period, where

the function c(·) depends only on the paths of the variables {Πt, Yt, it} and

the paths of the exogenous shocks {ξt}, with c(·) being twice continuously

differentiable in the neighborhood of the steady state values of its arguments.

The class C rules out commitments that involve any direct reference to

the path of the private sector belief distortions {mt}. Monetary policy may

nevertheless indirectly depend on the private sector belief distortions, via

its dependence on the endogenous variables. Restricting consideration to

commitments from the class C has the advantage that such commitments

do not require that the policymaker does not have to commit to a specific

empirical measure for the private sector belief distortions when stating its

policy commitment. The proposition below provides sufficient conditions

insuring that policy commitments from the class C implement the upper

bound solution:

Proposition 7 Suppose monetary policy commits to a policy c ∈ C. If

1. the log-linear approximation to c is consistent with the log linear approx-

imation to the upper bound solution dynamics (as implied by equations

(5.53)-(5.55)),and

2. the log-linear approximation to c implies a locally determinate outcome

under rational expectations,

then the upper bound solution is the locally unique outcome of the robust

monetary policy problem (2.4).

The previous result implies that by choosing a policy commitment from

the class C that satisfies the additional conditions stated in the proposition,

monetary policy can implement the upper bound outcome independently of

the assumed outcome function O(·, ·), as long as the outcome function selects

only equilibria in the neighborhood of the optimal steady state. The proof

of proposition 7 is given in appendix A.3.

The corollaries below present a number of specific policy commitments

from the class C that satisfy the conditions stated in the previous proposition:
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Corollary 8 If monetary policy commits to implement the state contingent

inflation sequence of the upper bound solution (as implied by the solution to

equations (5.53)-(5.55)), then the upper bound is the locally unique outcome

of the robust monetary policy problem (2.4).

For the commitment considered in the previous corollary, condition 1 in

proposition 7 holds by assumption; and as is easily shown, the commitment

also implies a locally determinate outcome under rational expectations, so

that the second condition in proposition 7 equally holds.

The following result shows that monetary policy can alternatively imple-

ment the upper bound outcome by committing to a Taylor rule:21

Corollary 9 Suppose monetary policy commits to follow the Taylor rule

1 + it = (1 + i∗t )

(
Πt

Π∗
t

)ϕΠ
(
Yt
Y ∗
t

)ϕY

, (6.65)

where (i∗t ,Π
∗
t , Y

∗
t ) denotes the evolution of the interest rate, inflation and

output in the upper bound solution. If the coefficients (ϕΠ, ϕY ) satisfy the

local determinacy conditions under rational private sector expectations, then

the upper bound is the locally unique outcome of the robust monetary policy

problem (2.4).

Finally, monetary policy could implement the upper bound outcome in-

stead by committing to a targeting rule. In this case somewhat more stringent

conditions apply:

Corollary 10 Suppose steady state output falls short of its efficient level

(Y < Ȳ e) and the steady state output distortions are sufficiently small. If

monetary policy commits to insure that the target criterion

ξππt + λx(xt − xt−1) + ξmλm (πt − Et−1[πt]) = 0 (6.66)

holds each period, then the upper bound is the locally unique outcome of the

robust monetary policy problem (2.4).

21Conditions 1 and 2 in proposition 7 are satisfied by assumption in corollary 9.
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Condition 1 in proposition 7 holds because the targeting rule (6.66) is

implied by the log linear upper bound equations (5.54) and (5.55). Appendix

A.3 shows that condition 2 in proposition 7 also holds provided the additional

conditions stated in the corollary are satisfied.

Summing up, this section has shown that monetary policy can implement

the upper bound solution as the locally unique outcome of the robustly opti-

mal policy game by making an appropriate policy commitment. Importantly,

the required policy commitments do not need to make explicit reference to

private sector belief distortions, thus are not fundamentally more difficult

to explain to the public than policy commitments that would be desirable

under the assumption of rational private sector expectations.

7 Extensions of the Basic Analysis

Here we address two possible extensions of the analysis above. The first

considers a possible strengthening of our definition of robustly optimal policy,

under which the policies just described would no longer suffice. The second

considers the consequences of additional restrictions on the class of feasible

policies, as a result of which the policies just described would not necessarily

be available.

7.1 Maximally Robust Optimal Policy

The previous sections were concerned with monetary policy rules that im-

plement the best possible level of policymaker objective under worst-case

private sector beliefs. We now ask whether one can find monetary policy

rules that improve robustness in the sense that they perform better than the

robust policy considered thus far in the case of some possible private sector

beliefs other than the worst-case beliefs, while doing equally well in the case

of the worst-case beliefs.

The best that monetary policy can do in response to general belief dis-

tortions is to bring about the highest-welfare equilibrium consistent with the

given belief distortions, regardless of what those belief distortions may be.

This is the outcome that would result if, purely hypothetically, the private
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sector had to commit to particular belief distortions before the policymaker’s

choice of its policy commitment, and the policymaker could observe those dis-

tortions before making its decision. Again, this defines a problem that can

be formulated and solved without reference to any particular class of pol-

icy commitments — it is simply necessary to optimize over the set of paths

for the endogenous variables that constitute a DEE under the given belief

distortions — and again this provides an upper bound for what can conceiv-

ably be achieved by any policy. If a policy commitment can then be found

that achieves this upper bound, it would necessarily be a maximally robustly

optimal policy.

Under the present, stronger criterion for robustness, it is less obvious that

we should expect that the upper bound can be attained; certainly a much

more complex type of policy commitment will have to be contemplated if this

is to be possible. Nonetheless, here we restrict our discussion to a derivation

of the state-contingent evolution corresponding to this upper bound. The

following proposition locally characterizes the best response dynamics for

output and inflation for a general belief distortion process:22

Proposition 11 If initial price dispersion ∆−1 is small (of order O(||ξ||2))
and the initial precommitments such that Γ1,0 = −Γ2,0 > 0, then equations

(3.38)-(3.40) and (4.43)-(4.47) imply up to first order that the best response

dynamics of output and inflation for any given process of belief distortions

satisfy

πt = κxt + βEtπt+1 + ut (7.67)

0 = ξππt + λx(xt − xt−1) + ξmm̂t, (7.68)

where the constants (κ > 0, ξπ, ξm, λx, λm) satisfy the conditions stated in

Proposition 4.

For the particular case that private sector belief distortions are given by

worst-case belief distortions, the previous result reduces to the one given in

Proposition 4. For a general process of belief distortions and if the evolution

22The proof of Proposition 11 follows directly from the steps of the proof of Proposition

4 up to equation (A.86).
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of mark-up shocks is of the autoregressive form (5.57), Proposition 11 implies

that the best response dynamics are given (to first order) by the following

recursion

(
xt

πt

)
=

(
e2

λx(1−e2)
ξπ

)
xt−1+

(
− ξπ

βλx(e1−ρ)
1

β(e1−ρ)

)
ut+

(
−1 ξm

e1βλx
1−e1β
e1β

ξm
ξπ

)
m̂t, (7.69)

where e1 > β−1 and e2 ∈ (0, 1). This is shown in Appendix A.4. Since

e1β > 1, the best response dynamics imply that monetary policy optimally

reduces inflation in states to which private agents assign higher than objective

likelihood (m̂t > 0) and increases it in states whose likelihood private agents

underpredict (m̂t < 0).

We also have the following result, which is proven in Appendix A.4:

Proposition 12 Consider a robust monetary policy game in which monetary

policy commits to implement the state contingent best response dynamic for

inflation and thereafter the remaining variables are chosen so as to minimize

the augmented objective (2.3). The outcome of this game is given by the

upper bound solution.

This shows that committing to the best-response dynamic for inflation

instead of to the upper bound process for inflation comes at no cost if the

private-sector beliefs happen to correspond to the worst-case belief distor-

tions. If instead the belief distortions are of a different nature, then the

best-response commitment will in general deliver a higher value for the pol-

icymaker’s objective than that guaranteed by the upper-bound dynamics,

and in all likelihood a higher value than would result from committing to a

policy that is robustly optimal only in the weaker sense proposed earlier.

7.2 Implications of Central Bank Information Constraints

In the previous sections we assumed that the policymaker has perfect infor-

mation about the state of the economy at time t. One implication of this
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- clearly unrealistic - assumption is that monetary policy can contempora-

neously and costlessly undo any distortion in private sector output expec-

tations by appropriately adjusting the nominal interest rate.23 As a result,

someone seeking to choose the private-sector belief distortions that will most

embarrass the policymaker has no incentives to distort output expectations,

and focuses instead on distorting inflation expectations. One may wonder

whether this exclusive concern with distorted inflation expectations in the

worst-case scenario is itself robust to assuming a more realistic information

set for the monetary policymaker. If monetary policy cannot react contem-

poraneously to distortions in output expectations, because of information

lags for example, then perhaps the worst-case belief distortions should also

distort expectations about states in which there are unexpected movements

in output. This would in turn provide incentives for the policymaker to stabi-

lize output movements, thereby potentially overturning our previous results,

which require policy to dampen unexpected movements in inflation.

In order to investigate this possibility, we consider now a setting where

at time t the policymaker has only information available up to time t − 1,

and study the resulting upper bound outcome under this information setting.

As we show below, our baseline results turn out to be robust. Worst case

belief distortions continue to be associated - to a first order approximation -

exclusively with unexpected movements in inflation.

Under the assumed lagged information set, the Lagrangian game deter-

mining the upper bound outcome is given by

min
{mt+1}∞t=0

max
{Yt,Ft,Kt,∆t,it}∞t=0

(7.70)

E0

∞∑
t=0

βt



U(Yt,∆t; ξt) + θβmt+1 logmt+1

+γt

(
h̃(∆t−1, Kt/Ft)−∆t

)
Γ′
t[z(Yt; ξt) + αβmt+1Φ(Zt+1)− Zt]

+βψt (mt+1 − 1)

+Ωt

(
uY (Yt; ξt)− βmt+1uY (Yt+1; ξt+1)

1+it−1

Πt+1

1+gt
1+gt+1

)


+αΓ′

−1Φ(Z0) + Ω−1uY (Y0; ξ0)
1 + i−2

Π0

1 + g−1

1 + g0
,

23This assumes that the zero lower bound on nominal interest rates is not binding.
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where unlike in problem (4.41) we can no longer drop the constraint (3.37),

because the interest rate now has to be determined based on one period lagged

information.24 We also added the last term, which is an initial commitment

useful for obtaining a time-invariant solution.

The following proposition summarizes the main finding:

Proposition 13 Suppose in period t the policymaker has access to infor-

mation up to period t − 1 only. The worst case belief distortions associated

with the upper bound outcome then continues to be given up to first order by

equation (5.55).

The proof of the proposition can be found in appendix A.5. It shows that

the effects of unexpected movements in output have at most second order

effects on the worst case belief distortions. This finding is ultimately due

to the fact that the Lagrange multiplier Ωt associated with constraint (3.37)

is zero in steady state, which results from the fact that the deterministic

steady-state information set of the policymaker is unbiased.

8 Conclusions

We have shown how it is possible to analyze optimal monetary stabilization

policy, taking into account the possibility that private-sector expectations

may not be precisely model-consistent. Our approach shows how one can

choose a policy that is intended to be as good as possible in the case of any

beliefs close enough to model-consistency. Moreover, we have shown how

to characterize robustly optimal policy without restricting consideration a

priori to a particular parametric family of candidate policy rules.

One of our key goals in this reconsideration of the results of Woodford

(2010) has been to consider whether policy rules that allow direct dependence

of the central bank’s policy targets on measures of private-sector expectations

may have superior robustness properties relative to policy rules of the kind

shown to be optimal in the literature that assumes rational-expectations

24The timing convention is that it denotes the interest rate between period t + 1 and

t+ 2, as chosen in period t.
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equilibrium. We have found that even if we were to consider rules involv-

ing arbitrary dependence of that kind on private-sector forecasts, it would

not be possible to choose a policy commitment that could ensure a higher

lower bound for welfare (across the set of belief distortions that satisfy our

criterion for “near-rationality”) than the one that can be achieved by a pol-

icy of the kind considered by Woodford (2010), in which the central bank’s

state-contingent inflation target is expressed as a function of the history of

exogenous disturbances.

Among the policy commitments that we have shown should suffice to

achieve this greatest lower bound is a commitment to a particular target

criterion, that maintains a linear relationship between the paths of inflation

and of a suitably defined output gap. This particular characterization of the

robustly optimal policy commitment has the advantage that it can be stated

without any reference to any exogenous disturbances, and the coefficients

of the optimal target criterion are independent (in the linear approximation

used here) of all parameters describing the properties of the exogenous dis-

turbance processes as well, just as in the optimal target criteria derived by

Giannoni and Woodford (2010) under the assumption of rational expecta-

tions.

The form of the optimal target criterion is similar to the one derived by

Giannoni and Woodford in the RE case, except that it no longer refers solely

to variations in inflation, regardless of the extent to which these may be

anticipated in advance. Instead, under the robustly optimal target criterion,

“objective” inflation surprises (by which we mean the component of inflation

that is understood by the policy analyst to differ from what should have

been predicted the period before) receive a greater weight — and so require

a greater output reduction in order to be justifiable — than do variations in

inflation that are predicted in advance by the central bank. As a consequence,

shocks will not be allowed to cause unexpected movements in inflation as

large in magnitude as those that would be considered optimal if the central

bank could be certain that the private sector would share its expectations

about the economy’s future evolution.

Among the further implications of this change in the target criterion are

the fact that an optimal policy commitment no longer implies complete sta-
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tionarity of the long-run price level, as is true of the optimal policy prescrip-

tion under rational expectations. However, we do not feel that this result

does much to weaken the case for the desirability of a (suitably flexible) price-

level target. By comparison with the type of forward-looking inflation targets

actually adopted by inflation-targeting central banks — under which tem-

porary departures of the inflation rate from its long-run target are allowed

to persist for a time and are certainly never reversed — a price-level target,

which would require temporary departures from the price-level target path

to eventually be reversed, would still be closer to the policy recommended

by our analysis. For while we show that the robustly optimal policy commit-

ment implies that there should be a unit root in the price level, the central

bank’s forecasted change in the long-run price level in response to a shock

should have the opposite sign to the short-run effect on prices, rather than

allowing a further cumulative change in prices that is in the same direction

as (and larger than) the initial effect on prices. A commitment to maintain

a fixed target path for the price level — so that at least short-run departures

from the path would eventually be reversed — would represent a change to

something much closer to the robustly optimal policy, and would most likely

raise the welfare lower bound (even if not quite to its theoretical maximum

level), though we do not provide any explicit calculation of this gain here.

Our specific conclusions depend, of course, on a specific conception of

which kinds of departures from model-consistent expectations should be re-

garded as most plausible. We have proposed a non-parametric specification of

the possible belief distortions that is intended to be fairly flexible. Nonethe-

less, we are well aware that in some ways our specification remains fairly

restrictive. In particular, our assumption that the only belief distortions that

are contemplated in the robust policy analysis are ones that are absolutely

continuous with respect to the policy analyst’s own probability measure —

a restriction that was necessary in order for our relative entropy measure

of the “size” of belief distortions to be defined — is hardly an innocuous

one. We are concerned that this assumption may have an important effect

on our results. It implies that a determination on the part of the central

bank to ensure that a certain relation among variables will hold in all states

of the world is sufficient to ensure that the private sector cannot doubt that
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it will hold in all states of the world; and such an assumption may well still

exaggerate the extent to which central bank policy commitments can shape

private-sector expectations, even if not to the extent that an assumption of

fully model-consistent expectations would. This may lead us to exaggerate

the value of a policy commitment to inflation stabilization. An extension

of our analysis to allow for alternative definitions of “near-rational expecta-

tions” would accordingly be of great value in further clarifying the nature of

a robust approach to the conduct of monetary policy.
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A Appendix

A.1 Proofs for Section 2.3

Proof of the minmax inequality. Let us define

m∗(c) ≡ argmin
m

Λ(m, c)

c∗(m) ≡ argmax
c

Λ(m, c)

m ≡ argmin
m

Λ(m, c∗(m)),

then

max
c

min
m

Λ(m, c) ≤ max
c

Λ(m, c)

= Λ(m, c∗(m))

= min
m

Λ(m, c∗(m))

= min
m

max
c

Λ(m, c).

Proof of proposition 2. We first show that (x∗,m∗) is a DEE. This

follows directly from (2.8c), which only holds if F (x∗,m∗) = 0. Next, we

show that a triple (x∗,m∗, γ∗) satisfying (2.8) delivers a weakly higher value

than problem (2.6). Let
(
xU ,mU

)
denote the solution to (2.6), then

U(xU) + θV (mU) = min
m

max
x

U(x) + θV (m) s.t. F (x,m) = 0

≤ max
x

U(x) + θV (m∗) s.t. F (x,m∗) = 0 (A.71)

= U(x∗) + θV (m∗).

The last equality follows from the fact that any alternative solution x̃ with

x̃ ̸= x∗ achieves a strictly lower value than x∗: using F (x̃,m∗) = 0 and (2.8a),

we have

U(x̃) + θV (m∗) = U(x̃) + θV (m∗) + γ∗F (x̃,m∗)

= L(m∗, x̃, γ∗)

< L(m∗, x∗, γ∗)

= U(x∗) + θV (m∗).

It then follows from (2.6) and (2.5) that (x∗,m∗) also delivers a weakly higher

value than the the robustly optimal policy problem (2.4).

46



A.2 Proofs for Section 5

Proof of Proposition 4. We start by log-linearizing the constraints

(3.38)-(3.40) around the deterministic steady state. Using Etm̂t+1 = 0 this

delivers

F̂t = (1− αβ)[fyŶt + f ′
ξ ξ̃t] + αβEt[(η − 1)πt+1 + F̂t+1]

K̂t = (1− αβ)[kyŶt + k′ξ ξ̃t] + αβEt[η(1 + ω)πt+1 + K̂t+1]

∆̂t = α∆̂t−1, (A.72)

using the notation

F̂t ≡ log(Ft/F̄ ), fy ≡
∂ log f

∂ log Y
, f ′

ξ ≡
∂ log f

∂ξ
,

and corresponding definitions when K replaces F and ξ̃t for ξt− ξ̄. Subtract-
ing the first of these equations from the second, one obtains an equation that

involves only the variables K̂t − F̂t, πt, Ŷt, and the vector of disturbances ξt.

Log-linearization of (3.33) yields

πt =
1− α

α

1

1 + ωη
(K̂t − F̂t); (A.73)

and using this to substitute for K̂t − F̂t in the relation just mentioned, we

obtain

πt = κ[Ŷt + u′ξ ξ̃t] + βEtπt+1 (A.74)

as an implication of the log-linearized structural equations, where

κ ≡ (1− α)(1− αβ)

α

ω + σ̃−1

1 + ωη
> 0, (A.75)

and

u′ξ ≡
k′ξ − f ′

ξ

ky − fy
. (A.76)

This last expression is well-defined, since ky − fy = ω + σ̃−1 > 0. Finally,

using the definition of the output gap (5.51) and of the mark-up disturbance

(5.56), one can rewrite equation (A.74) as

πt = κxt + βEtπt+1 + ut. (A.77)
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Next, we log-linearize the FOCs (4.43)–(4.46) around the steady-state values.

Log-linearizing (4.44)–(4.45) yields the vector equation

− γ̄

K̄

1− α

α

η(1 + ω)

1 + ωη
[(K̂t − F̂t) + α∆̂t−1]

[
1

−1

]
−Γ̃t + αD(1)′Γ̃t−1 + αCẐt + αD(1)′Γ̄m̂t = 0, (A.78)

where Γ̃t ≡ Γt − Γ̄, Ẑ ′
t ≡ [F̂t K̂t]

′, m̂t = logmt, and C is K̄ times the Hessian

matrix of second partial derivatives of the function Φ̄(Z) ≡ Γ̄′Φ(Z). The

fact that Φ̄(Z) is homogeneous of degree 1 implies that its derivatives are

homogeneous of degree 0, and hence functions only of K/F ; it follows that

the matrix C is of the form

C = c

[
1 −1

−1 1

]
, (A.79)

where c is a scalar given by

c = Γ̄1
F̄

K̄

(
−(1− α)

α

η(1 + ω)

1 + ωη
−
(
(1− α)

α

)2
η(1 + ω)

1 + ωη

)
(A.80)

and satisfies c < 0 whenever steady state output falls short of its first best

level, as then Γ̄1 > 0. Similarly, the fact that each element of Φ(Z) is

homogeneous of degree 1 implies that

D(1) e = e,

where e′ ≡ [1 1].

Pre-multiplying (A.78) by e′ therefore yields

e′tΓ̃ = αe′t−1Γ̃t−1 (A.81)

for all t ≥ 0, which implies that e′tΓ̃t converges to zero with probability 1,

regardless of the realizations of the disturbances; hence under the optimal

dynamics, the asymptotic fluctuations in the endogenous variables are such

that

Γ̃2,t = −Γ̃1,t (A.82)

at all times. And if we assume an initial commitment of the kind that (A.82)

is satisfied also t = 0, as we do, then (A.82) will hold for all t ≥ 0.
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There must also exist a vector v such that v2 ̸= v1 and such that D(1)v =

α−1v, since 1/α is one of the eigenvalues of the matrix D(1). (The vector

v must also not be a multiple of e, as e is the other right eigenvector, with

associated eigenvalue 1.) Pre-multiplying (A.78) by v′ then yields

− γ

K̄

1− α

α

η(1 + ω)

1 + ωη
[(K̂t−F̂t)+α∆̂t−1]−Γ̃1,t+Γ̃1,t−1−αc (K̂t−F̂t)+Γ̄1m̂t = 0.

(A.83)

Here the common factor v1 − v2 ̸= 0 has been divided out from all terms,

and Γ̃2,t has been eliminated using (A.82). Note that conditions (A.81) and

(A.83) exhaust the implications of (A.78), and hence of conditions (4.44)–

(4.45).

We now use the FOC (4.43) to eliminate Γ̃1 in equation (A.83). Log-

linearizing this FOC yields

Ȳ [UY Y + Γ̄′zY Y ]Ŷt + [U ′
Y ξ + Γ̄′zY ξ]ξ̃t + UY∆∆̂t −

K̄

Ȳ
(ky − fy)Γ̃1,t = 0.

Again using (A.82) to eliminate Γ̃2,t and a log-linear approximation to (5.52)

to eliminate ξ̃t we can equivalently write this as

Ȳ [UY Y + Γ̄′zY Y ](Ŷt − Ŷ ∗
t ) + UY∆∆̂t −

K̄

Ȳ
(ky − fy)Γ̃1,t = 0. (A.84)

Using (A.84) to eliminate Γ̃1 in (A.83), (A.73) to express K̂t− F̂t in terms of

πt, and (5.51) one obtains

ξππt + λx(xt − xt−1) + ξmm̂t + ξ∆∆̂t−1 + λ∆

(
∆̂t − ∆̂t−1

)
= 0 (A.85)

and

ξπ ≡ −
(
γ̄

K̄

1− α

α

η(1 + ω)

1 + ωη
+ αc

)
α (1 + ωη)

1− α

ξ∆ ≡ − γ̄

K̄

1− α

α

η(1 + ω)

1 + ωη
α

λx ≡ − Ȳ [UY Y + Γ̄′zY Y ]
K̄
Ȳ
(ky − fy)

λ∆ ≡ − UY∆

K̄
Ȳ
(ky − fy)

ξm ≡ Γ̄1.
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Since γ̄ < 0 and c < 0 when steady state output falls short of its first best

level
(
Y < Y

e)
, we have ξπ > 0. In this case we also have Γ̄1 > 0, so that

ξm > 0. Moreover, in the case with sufficiently small steady state distortions,

UY Y + Γ̄′zY Y < 0. Since ky − fy = ω + σ̃−1 > 0, it then follows that λx > 0.

Since the initial degree of price dispersion ∆̂−1 is assumed to be of sec-

ond order and since equation (A.72) implies that price dispersion remains of

second order independently of the realization of the stochastic disturbances,

the first order accurate optimal relationship (A.85) simplifies to

ξππt + λx(xt − xt−1) + ξmm̂t = 0. (A.86)

For the sake of brevity, we skip the log-linearization of the FOC (4.46), which

only serves to determine the value of the Lagrange multiplier γt.

Finally, it remains to log-linearize the FOC (4.47)

αΦ(Z̄)′Γ̃t−1 + K̄αΓ̄′D(1)Ẑt + θm̂t + ψ̃t−1 = 0.

Applying the expectations operator Et−1 to the previous equation, subtract-

ing the result from it, and using αΓ̄′D(1) = Γ̄′ and Γ̄1 = Γ̄2 yields

m̂t =
K̄Γ̄1

θ

((
K̂t − F̂t

)
− Et−1[K̂t − F̂t]

)
.

Using once more (A.73) gives

m̂t = λm (πt − Et−1[πt]) , (A.87)

with

λm =
K̄Γ̄1

θ

α (1 + ωη)

1− α
.

Again in with Y < Y
e
it follows from Γ̄1 > 0 that λm > 0. Equations (A.86),

(A.87), and (A.77) are those stated in the proposition.

Proof of Proposition 5. We prove that the saddle point properties

(2.8a) and (2.8b) hold at the steady state. Continuity then insures that the

same applies in a small enough neighborhood around the steady state.

Since mt = 1 in steady state, inequality in (2.8a) follows from results de-

rived in Benigno and Woodford (2005) who show that the Lagrangian (4.41)
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is locally concave (on the set of paths consistent with the model structural

relations) near the optimal steady state if the difference between steady state

output and the efficient output level is sufficiently small.

Since the Lagrangian (4.41) is locally convex in mt+1 (it contains only

terms linear in mt+1 and the convex term mt+1 logmt+1) the first order con-

ditions for the optimal choice (A.87) indeed determine a minimum for the

Lagrangian, so that inequality (2.8b) also holds.

A.3 Proofs for Section 6

To prove proposition 7, we use the following auxiliary result, that we prove

below:

Lemma 14 Under a policy rule that satisfies the assumptions of proposition

7, the equilibrium dynamics of {Ỹt, Π̃t, F̃t, K̃t, ∆̃t} are unaffected to first order

by the belief distortions; to second order the equilibrium dynamics depend at

most linearly on the belief distortions {mt} but are otherwise independent of

them.

Proof of proposition 7:. Let c ∈ C denote a policy commitment

satisfying the conditions of proposition 7, worst-case belief distortions are

defined by the problem

min
{mt+1,Yt,Ft,Kt,it,∆t}∞t=0

E0

∞∑
t=0

βt [U(Yt,∆t; ξt) + θβmt+1 logmt+1](A.88)

+αΓ′
−1Φ(Z0)

s.t. :

uY (Yt; ξt) = βEt

[
mt+1uY (Yt+1; ξt+1)

1 + it
Πt+1

1− gt
1− gt+1

]
(A.89)

Ft = f(Yt; ξt) + αβEt

[
mt+1Π

η−1
t+1Ft+1

]
(A.90)

Kt = k(Yt; ξt) + αβEt

[
mt+1Π

η(1+ω)
t+1 Kt+1

]
(A.91)

∆t = h̃(∆t−1, Kt/Ft) (A.92)

Etmt+1 = 1

c(·) = 0,
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where αΓ′
−1Φ(Z0) captures an initial precommitment to achieve a time-

invariant solution, as in problem (4.41). By assumption, the upper bound

solution satisfies the first-order conditions characterizing worst-case beliefs.25

Proving proposition 7 thus only requires showing that the worst-case belief

distortion problem is convex, so that the second order sufficient conditions

hold at the upper bound solution, and that locally no other solution exists.

Local uniqueness follows directly from lemma 14 which shows that belief

distortions have only second order effects, thus cannot alter the local de-

terminacy property of equilibrium outcomes that c insures under rational

private sector expectations. It thus only remains to prove the local convex-

ity of the worst-case belief problem (A.88). From lemma 14 we know that

the variables (Ỹt, Π̃t, F̃t, K̃t, ∆̃t) are to first order independent of the belief

distortions. A second order accurate approximation of the objective for the

worst-case belief distortion problem is thus given by

E0

∞∑
t=0

βt
[
U(Yt,∆t; ξt) + θβmt+1 logmt+1 + αΓ′

−1Φ(Z0)
]

= E0

∞∑
t=0

βt

[
UY Ỹt + U∆∆̃t +

1

2
θβ (m̃t+1)

2 + αΓ′
−1D(1)

(
F̃0

K̃0

)]
+t.i.b.+O(∥ξ∥3), (A.93)

where t.i.b. captures (first and higher order) terms that are independent of

the choice of the belief distortions. Lemma 14 also implies that the endoge-

nous variables
{
Ỹt, ∆̃t, F̃0, K̃0

}
showing up in (A.93) depend up to second

order accuracy only linearly on the chosen process for the belief distortions

{m̃t+1}, but are otherwise independent of the belief distortions (to second

order accuracy). Strict convexity of (A.93) is thus implied by the quadratic

term in m̃, so that second order conditions for the worst-case belief distortion

problem necessarily hold at the upper bound solution.

Proof of lemma 14:. We first prove that the solution for {Ỹt, Π̃t, F̃t, K̃t, ∆̃t}
is unaffected by the belief distortion up to first order. To do so, we linearize

25This is the case because the upper bound solves the first order conditions of prob-

lem (4.41) and because the Lagrange multiplier on the constraint (A.89) and and on the

constraint c(·) = 0 are zero at this point.
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the constraints showing up in the optimization problem (A.88) that defines

the worst-case belief distortion. Defining the exogenous process Ȳt = Ct

1−gt

and noting that uY (Yt; ξt) = (Yt/Ȳt)
−1/σ̃ (1− gt) we can rewrite equation

(A.89) as (
Yt

Y t

)−1/σ̃

= βEt

[
mt+1

(
Yt+1

Y t+1

)−1/σ̃
1 + it
Πt+1

]
.

Denoting exogenous terms by e.t., using Etm̂t+1 = 0 and (1 + ı̄)β = 1, a

linear approximation to this equation is given by

− σ̃−1

Ȳ
Ỹt = Et[−

σ̃−1

Ȳ
Ỹt+1 + βı̃t − Π̃t+1] + e.t.+O(∥ξ∥2). (A.94)

Next, we linearize (A.90) and (A.91):

F̃t = fY Ỹt + αβEt

[
(η − 1)F Π̃t+1 + F̃t+1

]
+ e.t+O(∥ξ∥2) (A.95)

K̃t = kY Ỹt + αβEt

[
(η(1 + ω))KΠ̃t+1 + K̃t+1

]
+ e.t.+O(∥ξ∥2).(A.96)

Subtracting the first from the second equation and using K̄ = F̄

K̃t − F̃t = (kY − fY ) Ỹt + αβEt

[
(1 + ηω)KΠ̃t+1 +

(
K̃t+1 − F̃t+1

)]
+e.t+O(∥ξ∥2).

A linear approximation to (A.92) delivers

Π̃t =
(1− α)

α

1

1 + ωη

1

K̄

(
K̃t − F̃t

)
+O(∥ξ∥2),

so that

Π̃t = (kY − fY )
1− α

K̄ (1 + ωη)α
Ỹt + βEt

[
Π̃t+1

]
+ e.t+O(∥ξ∥2). (A.97)

Note that equations (A.94)-(A.97) are independent of the belief distortions

up to first order, and thus identical as in the case with rational private sector

expectations. Since the policy commitment c is also assumed independent

of the belief distortions and because c insures a locally determinate outcome

under rational expectations, equations (A.94)-(A.97) have a locally unique

solution that - to first order accuracy - is independent of the choice of belief

distortions.
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We now show that to second order, the solution for
{
Ỹt, Π̃t, F̃t, K̃t, ∆̃t

}
de-

pends only linearly on {m̃t}. Since up to first order the solution
{
Ỹt, Π̃t, F̃t, K̃t, ∆̃t

}
evolves independently of the belief distortions, a quadratic approximation to

equation (A.89) is given by

− σ̃
−1

Ȳ
Ỹt = Et[−

σ̃−1

Ȳ
Ỹt+1 + βı̃t − Π̃t+1 −

σ̃−1

Ȳ
Ỹt+1m̃t+1 − Π̃t+1m̃t+1 +

σ̃−1

Ȳ
Ỹ t+1m̃t+1]

+t.i.b.+ e.t.+O(∥ξ∥3).

The only new terms appearing in a quadratic approximation are thus either

independent of the worst-case belief distortions (as they involve squares of the

variables Ỹt, Π̃t, F̃t, K̃t, ∆̃t and exogenous terms) or of the form EtX̃t+1m̃t+1,

where X̃t+1 is a variable independent of the belief distortions. The same

can be noted when quadratically approximating (A.90), (A.91) and (A.92).

Moreover, a quadratic approximation to the policy commitment involves no

terms in m̃. We can thus perform the same steps as in the linearization above

and solve for a unique non-explosive solution for
{
Ỹt, Π̃t, F̃t, K̃t,∆t

}
, which

is accurate to second order. The only newly appearing terms will be t.i.b. and

terms linear in m̃, which completes the proof.

Proof of corollary 10:. Suppose policy commits to the targeting

rule (6.66) from date t onwards. To establish determinacy of the solution

under rational expectations with such a commitment, we have to analyze the

system of equations

ξππt+j + λx(xt+j − xt+j−1) + ξmλm (πt+j − Et+j−1[πt+j]) = 0 (A.98)

πt+j − κxt+j − βEt+jπt+j+1 − ut+j = 0,(A.99)

which holds for all j ≥ 0. Taking the expectation Et−1[·] and rearranging

terms delivers a system describing the dynamics of the t− 1 dated expecta-

tions of the endogenous variables(
Et−1πt+j

Et−1xt+j

)
=

(
β−1

(
1 + κ ξπ

λx

)
−κ

β

− ξπ
λx

1

)(
Et−1πt+j

Et−1xt+j−1

)
+

(
−β−1

0

)
Et−1ut+j.

Under the additional assumptions stated in the corollary, we have λx > 0,

λπ > 0, and κ > 0, so that the characteristic polynomial of the autoregressive
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matrix in the preceding equation implies that both roots are positive with one

root being explosive and one being stable. Since Et−1xt−1 is predetermined

at date t, the previous equation system has a unique non-explosive solution

for the dynamics of Et−1Πt+j and Et−1xt+j for all j ≥ 0, given any bounded

path for Et−1ut+j for all j ≥ 0. Repeating this procedure for any date

h ≥ t−1 determines also unique non-explosive values for EhΠt+j and Ehxt+j

for all j > h − t. Taking the expectation Et−1[·] of equations (A.98) and

(A.99) and subtracting the corresponding results from equations (A.98) and

(A.99), respectively, delivers for j = 0

(ξπ + ξmλm) (πt − Et−1[πt]) + λx(xt − Et−1xt) = 0

πt − Et−1[πt]− κ(xt − Et−1xt)− β (Etπt+1 − Et−1πt+1)− (ut − Et−1ut) = 0,

which uniquely determines πt and xt as a linear function of the already de-

termined expectations (Et−1πt, Et−1πt+1, Etπt+1, Et−1xt) and the exogenous

terms (ut+j − Et−1ut+j). Repeating this last step for each j > 0 determines

the locally unique state contingent path for {πt+j, xt+j} and completes the

proof of local determinacy of the outcome under rational expectations.

A.4 Proofs of Section 7.1

Derivation of the best response dynamics (7.69). Equation (7.68)

implies

ξππt = −λx(xt − xt−1)− ξmm̂t (A.100)

and substituting into (7.67)delivers

Et

(
βxt+1 − (1 + β +

ξπκ

λx
)xt + xt−1

)
=
ξπ
λx
ut +

ξm
λx
m̂t. (A.101)

The lag polynomial on the l.h.s. can be expressed as

L

(
βL−2 − (1 + β +

ξπκ

λx
)L−1 + 1

)
= −βe1(1− (e1L)

−1)(1− e2L),

where e1 and e2 solve βe2 − (1 + β + ξπκ
λx

)e + 1 and satisfy e1 > β−1 and

e2 ∈ (0, 1). Using the lag polynomial, we can write (A.101) as

−βe1Et

[
(1− (e1L)

−1)(1− e2L)xt
]

=
ξπ
λx
ut +

ξm
λx
m̂t

−βe1(1− e2L)xt =
ξπ
λx
Et

[
(1− (e1L)

−1)−1ut
]
+
ξm
λx
Et

[
(1− (e1L)

−1)−1m̂t

]
.

55



Assuming that ut evolves according to (5.57) and using Et[m̂t+j] = 0 for all

j ≥ 1 we have

−βe1(1− e2L)xt =
ξπ
λx

1

1− ρ/e1
ut +

ξm
λx
m̂t.

Solving for x1 gives

xt = e2xt−1 −
ξπ
βλx

1

e1 − ρ
ut −

1

e1

ξm
βλx

m̂t,

which is the upper row in (7.69). Substituting this into (A.100) delivers the

lower row in (7.69).

Proof of Proposition 12. Let m denote a state contingent belief

distortion and π a state contingent inflation commitment. Similarly, let

(m∗, π∗) the corresponding contingent sequences of the the upper bound so-

lution. Letting BR denote the best response function for inflation, we have

that π∗ = BR(m∗). Furthermore, letting O(π,m) denote the objective func-

tion of the policymaker (that also defines worst-case beliefs), we know from

corollary 8 that

O(π∗,m∗) < O(π∗,m),

for all m ̸= m∗. Since

O(π∗,m) ≤ max
π

O(π,m) = O(BR(m),m),

this implies that

O(π∗,m∗) < O(BR(m),m)

for all m ̸= m∗. This shows that the worst-case beliefs are given by m∗ when-

ever the policymaker has committed to the best response function BR(·).

A.5 Proofs of Section 7.2

Proof of Proposition 13. Consider problem (7.70). The first order

condition for it−1 is given by

Et−1[Ωtmt+1uY (Yt+1; ξt+1)
1

Πt+1

1 + gt
1 + gt+1

] = 0
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and linearizing this around the optimal steady state where Ω = 0 delivers

Et−1

[
Ω̃t

]
= 0. (A.102)

The first order condition for mt is given by

θ(1 + logmt) + αΓ′
t−1Φ(Zt) + ψt−1 + Ωt−1uY (Yt; ξt)

1 + it−2

Πt

1 + gt−1

1 + gt
= 0

and its linearization by

θm̂t + αK̄Γ
′
D(1)Ẑt + αΦ(Z)′Γ̃t−1 + ψ̃t−1 + β−1Ω̃t−1 = 0.

Applying the operator Et−1 [·] to this equation, subtracting the result from

it and using (A.102) gives

θm̂t + αK̄Γ
′
D(1)

(
Ẑt − Et−1Ẑt

)
= 0.

Using a log-linearization of (3.33) then delivers (5.55).
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