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1. Introduction

Herbert Simon spent over half a century teaching at Carnegie-Mellon University. In his

classic 1962 study of �The Architecture of Complexity�, he laid the foundations for evaluating

the evolution and resilience of complex systems (Simon (1962)). Typically for Simon, his analysis

drew on a wide spectrum of systems thinking �from physical systems and biological systems as

well as social systems. Out of this, Simon drew a powerful conclusion.

Even complex systems tended to exhibit a basic simplicity. But this was simplicity in a

speci�c sense. These systems could be arranged in a natural hierarchy, comprising nested sub-

structures. Complex systems were naturally fractal. Simon saw the emergence of such simple,

yet complex, structures as an evolutionary one. Non-hierarchical structures would tend to be

deselected over time because of their ine¢ ciency or because of their lack of robustness relative

to simpler, hierarchical structures. Within complex systems (physical, biological, social), it was

a case of survival of the simplest.

Finance has bucked this evolutionary trend. Over the past century, the �nancial system has

evolved into a much more complex, concentrated and interconnected structure (Haldane (2010)).

In Simon�s words, it has become less modular, less hierarchical. In consequence, the �nancial

system may have become markedly more susceptible to systemic collapse. Recent events rather

attest to that. So why have Simon�s evolutionary forces not deselected such a system?

One possible answer is policy. Successive crises have seen a progressive broadening and

widening of the �nancial safety net: from last resort lending from the 19th century onwards, to

deposit insurance from the 1930s onwards, to the block-buster capital and liquidity support for

both banks and non-banks during this century (Alessandri and Haldane (2009)). Until the end

of the Bretton Woods era, increasing implicit support went hand-in-hand with tougher �nancial

regulation and greater restrictions on global capital �ows. The 25-year postwar period was

remarkable for its absence of systemic banking crises.

But widespread deregulation since the mid 1970s has resulted in increasing complexity and

concentration, and ever more frequent crises (Bordo et al, 2001). Far from deselecting the complex

and concentrated, the widening of the safety net in an era of deregulation may have caused them

to �ourish. There has been no better historical example than the policy interventions during this

crisis.

This paper develops a model of the interbank network in which repo markets, ampli�cation

from shocks to the haircuts applied to collateral, and liquidity hoarding by banks play a central

role in the spread of contagion and the collapse of interbank markets, similar to that experienced
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during 2007-8.1 The framework we develop is su¢ ciently rich to allow explicit consideration of

the role of complexity and concentration on the fragility of the �nancial system. It also facilitates

investigation of a range of policy measures aimed at addressing intra-�nancial system activity to

improve system resilience. In particular, our analysis suggests that tougher liquidity regulation,

macro-prudential policy and surcharges for systemically important �nancial institutions may all

help to make the system less prone to collapse.

The remainder of the paper is structured as follows. Section 2 presents stylised facts on

complexity and concentration and their evolution over time. It also brie�y discusses how the

interbank market collapse of 2007-8 unfolded. Section 3 relates our paper to the literature.

Section 4 outlines the modelling framework and section 5 applies an approximation to the setup

to demonstrate analytically how contagion can break out in the model and when it is most likely

to occur. We then turn to simulations: after outlining the methodology in section 6, section

7 presents simulations of liquidity crunches. Sections 8 explores the role of concentration in

contributing to contagion; while section 9 focuses on complexity. Section 10 then considers how

policy might be able to improve outcomes. Finally, section 11 concludes.

2. The Pre-Crisis Evolution of Complexity and Concentration

We motivate our approach with some stylized evidence on �nancial system complexity and

concentration. Network diagrams, such as those depicted in Figures 1 and 2, o¤er a convenient

way to describe the evolution of intra-�nancial system activity. Figure 1 shows the complexity

of the global �nancial network and its evolution since 1985. The nodes in the graph represent

countries, while the links re�ect the cross-border banking claims between them and their thickness

re�ects the value of these claims, normalised by world GDP. It is immediately evident that the

complexity of this network has increased considerably over time. And concentration is also

evident from the prominent role in the network of the major �nancial centres, including the UK,

US and, at various points in time, Germany and Japan.

Figure 2 illustrates the network of bilateral large exposures between the major UK banks. It

also points to signi�cant complexity and concentration at the national banking system level. The

data on bank interlinkages only re�ects large-scale interbank loans on banks�balance sheets. So

it is likely that the �true��nancial network may be signi�cantly more complex than the picture

presented. On concentration, the distribution of linkages and loan sizes between nodes in the

1A repo transaction entails borrowing money using securities as collateral. It is structured as the spot sale of
a security for cash coupled with an agreement to repurchase the same security at the initial price plus interest at
a particular date in the future. When the cash lent on repo trades is lower than the current market value of the
security used as collateral, the discount is referred to as the haircut.
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inter-bank market appears to exhibit a fat-tailed distribution. As our model demonstrates, this

opens the door for rare but catastrophic system-wide breakdowns of the kind seen in 2007-8.2

Complexity in the �nancial system is di¢ cult to quantify. But it is likely to go hand-in-hand

with increased intra-�nancial system activity. For example, as Shin (2009) notes, the advent

of securitization has markedly increased the complexity of �nancial systems by lengthening the

intermediation chain. In many cases, the same security is used repeatedly in repo lending, with

the lender using the security received as collateral with other lenders. Increased lending and

borrowing activity of this kind between intermediaries is re�ected in the dramatic rise in the

stock of repos and �nancial commercial paper as a percentage of broad money in the UK and the

US (Figure 3) and, for the US case at least, the subsequent dramatic fall.3 The nature of these

transactions can mean that they are subject to amplifying dynamics and cyclical �uctuations

linked to the variability of haircuts over the credit cycle.4 Figure 4 indicates that the growth

in intra-�nancial activity extended well beyond banks to non-bank �nancial intermediaries. For

example, �nancial corporate debt (which includes banks and non-banks) accounted for around

two-thirds of the total growth in UK debt between 2003 and 2007.

The period preceding the �nancial crisis was also characterized by increasing concentration

within national �nancial systems, from already high starting points. Figure 5 shows the marked

increase in concentration in the UK and US banking systems as measured by the combined assets

of the largest three banks by total assets as a percentage of total banking system assets (see also

King, 2010, for evidence on this). The size of the banking systems in these countries has also been

increasing dramatically, with UK banking system assets accounting for over 500% of GDP just

before the crisis (Figure 6). Signs of increasing concentration are also evident in the interbank

market. Figure 7 plots the Her�ndahl index for the UK interbank network between 2004 and

2008, drawing on the same data as used to construct Figure 2. Again, the results point to the

presence of increasingly important key players in the system.

The key aspect of the crisis that this paper tries to capture is the interbank market collapse.

This is illustrated clearly in Figure 8 which shows that the cost of unsecured interbank borrowing

rose dramatically at the onset of �nancial di¢ culties in August 2007, with the premium sought

by banks on 3-month interbank loans rising from 10 basis points to around 100 basis points.

Precautionary hoarding behaviour among banks combined with counterparty risk concerns to

2 In addition to complexity across countries and across individual banks, there is also a considerable amount
of complexity within banks. As Herring and Carmassi (2010) document, the largest eight banks in the world all
have over 1,000 subsidiaries and operate in anything between 16 and 84 countries. Such organisational complexity
clearly brings further risks as it makes it di¢ cult to resolve institutions when they get into distress and can greatly
amplify uncertainty on the part of counterparties.

3The US chart is taken from Adrian and Shin (2010b).
4For evidence on cyclicality in haircuts, see Geanakoplos (2010), CGFS (2010) and Krishnamurthy (2010).
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lead a freeze in interbank borrowing. The ensuing collapse of Lehman Brothers in September

2008 led the interbank premium to increase about 20-fold from pre-crisis levels. And, throughout

the crisis, prices did not tell the whole story � the quantity of funding available, especially at

maturities longer than overnight, declined dramatically. As a counterpart to this, banks�holdings

of reserves with central banks stepped up markedly during this period (Figure 9), as the �nancial

network e¤ectively collapsed to a star network with central banks at its centre.

3. Related Literature

Our paper contributes to a growing theoretical literature on contagion in �nancial systems.

This strand of work has taken two forms: one that emphasizes the role of bank behaviour in

driving contagion and a second that applies network techniques from mathematics and physics

to clarify the probability and spread of contagion.

The most well-known work on contagion is that of Allen and Gale (2000) who study how the

banking system responds to contagion when banks are connected under complete and incomplete

network structures. In a stylized four bank model, banks insure themselves against liquidity

shocks by exchanging interbank deposits. The connections created by swapping deposits, how-

ever, expose the system to contagion. The more complete the network the more resilient it is,

since the proportion of the losses in one bank�s portfolio is more easily transferred to more banks

through interbank agreements.

Freixas, Parigi and Rochet (2000) present a related model in which the connections between

banks are realized through interbank credit lines that enable these institutions to hedge regional

liquidity shocks. As with Allen and Gale (2000), more interbank connections enhance the re-

silience of the system to the insolvency of a particular bank. Moreover, the stability of the

banking system depends crucially on whether many depositors choose to consume at the location

of a bank that functions as a money centre or not.

Dasgupta (2004) also explores how linkages between banks, represented by crossholding of

deposits, can be a source of contagious breakdowns. In his model, depositors receive a private

signal about banks�fundamentals and may wish to withdraw their deposits if they believe that

enough other depositors will do the same. Multiplicity of equilibria is eliminated using global

game techniques pioneered by Morris and Shin (1998) and a unique equilibrium, depending on

the value of the fundamentals, is identi�ed.

Despite the obvious parallels between �nancial systems and complex systems in other �elds

(May et al, 2008; Haldane, 2009), the use of network techniques from the mathematical and
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physical sciences to the study of �nancial contagion remains in its infancy. While these techniques

place relatively less emphasis on optimising behaviour in the way links are formed, they have

the strong advantage that they do not preclude any type of network from the analysis, including

those which might arise as the optimal outcome of a prior network formation game or real-world

networks such as those depicted in Figures 1 and 2. And they are particularly well suited for the

analysis of processes taking place on networks.

Gai and Kapadia (2010a) use these methods to develop a model of default contagion in

�nancial networks, adapting techniques primarily used in the statistical physics literature and

the epidemiological literature on spread of disease in networks (eg Newman, 2002; Watts, 2002)

to show that �nancial systems may exhibit phase transitions or �tipping points�. As with Allen

and Gale (2000), they �nd that greater connectivity can also reduce the likelihood of widespread

default. But the �tipping point�property underpins their �nding that when contagion does occur,

it has catastrophic consequences for the entire system. These results help to shed light on the

contagion dynamics reported by Nier et al (2007) in their earlier numerical analysis. Further

analytical insight is provided by May and Arinaminpathy (2010) in an important contribution

which draws on the framework used in both of these papers. In particular, through the application

of a mean-�eld approximation, they can identify the exact contribution of di¤erent parameters

in the model to the likelihood of contagion and its dynamics. Their paper also develops the

underlying framework considerably by providing a much deeper analysis of the in�uence of various

types of asset liquidity shocks on the dynamics of contagion.5

However, despite their importance during the crisis, this line of literature generally excludes

both funding contagion propagating through the asset side of balance sheets due to liquidity

hoarding and the impact of haircut shocks on repo markets. And although Gai and Kapadia

(2010b) develop a network model of liquidity hoarding, their focus is purely on the unsecured

market and their analysis of policy interventions is fairly limited.

One key contribution of this paper is to develop a broader network model of interbank market

collapse which integrates a role for repo markets, haircut shocks and spirals, and liquidity hoard-

ing in unsecured interbank markets to all contribute to systemic collapse. While this necessarily

involves sacri�cing some of the detail provided by Gai and Kapadia (2010b), it allows for a richer

story to be told both about the crisis and the role of complexity and concentration in contributing

to it. It also facilitates investigation of a much broader range of policy interventions �indeed a

5Related work that draws on network techniques to explore contagion includes Hatchett and Kuhn (2009),
Giesecke and Weber (2006), and Minguez-Afonso and Shin (2010). The latter use lattice-theoretic techniques
to study systemic risk in high-value payment systems. See also Soramaki et al (2006). There is also a related
empirical literature which exploits large exposure data to analyse default contagion in interbank markets � see
Upper (2007) for a survey.
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very strong focus on the analysis of policy is another key contribution of this paper. The �nal

main contribution of the paper is in its novel application of the mean-�eld approximation used

by May and Arinaminpathy (2010) to the context of liquidity hoarding and repo market activity

�as we shall see below, this is particularly useful in helping to understand the intuition which

underpins the subsequent simulations.

Our paper is also related to a number of recent papers that have sought to explain the

�freeze�in interbank markets. Unlike our analysis, these contributions are explicitly behavioural

and explore imperfections, other than network e¤ects, that in�uence banks�decisions to form

credit relationships and to generate potential collapses in interbank lending.6

Allen et al (2009) present a model of interbank liquidity without counterparty risk or infor-

mation asymmetry in which banks stop lending and hoard liquidity because incomplete �nancial

markets do not allow them to hedge aggregate liquidity shocks. In Diamond and Rajan (2009),

banks can only sell assets to realise cash but face a limited set of potential buyers. Faced with

a liquidity shock, banks are deterred from asset sales because the alternative of holding them is

more bene�cial. The induced illiquidity in the market for these assets acts to depress lending to

others in the interbank market, prompting a credit freeze.

Other papers invoke asymmetric information to generate a market breakdown. Heider et al

(2009) place counterparty risk at the centre of their analysis of liquidity hoarding. Banks become

privately informed about the risk of their illiquid assets after they choose their asset portfolios.

They show how the interbank market becomes impaired by adverse selection as suppliers of

liquidity attempt to protect themselves from lending to �lemons�. In Bolton et al (2008), long-

term investors cannot tell whether short-term investors sell because of adverse asset quality or

genuine liquidity needs. The price discount is exacerbated as potential sellers learn about the

asset. When confronted with a decision to sell now to meet a liquidity need or risk future sales

at a large discount, late trading equilibria that resemble a freeze become possible.

Exogenous shifts in information structure and Knightian uncertainty have also been empha-

sised as important factors in recent work. Caballero and Krishnamurthy (2008) suggest that

the recent bout of �nancial innovation in credit markets heightened Knightian uncertainty in

�nancial markets and use this to justify �ights to quality and hoarding. In Acharya et al (2009)

runs in short-term funding markets arise when the information structure in the market shifts

exogenously from being optimistic about asset quality to pessimistic. In their paper, �no news is

good news�becomes �no news is bad news�, and they show that if good news arrives at a slower
6Related papers that study the functioning of the interbank market also include Bhattacharya and Gale (1987),

who show how banks underinvest in liquid reserves in the face of moral hazard, and Repullo (2005) who highlights
banks�incentives to free-ride on central bank liquidity.
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rate than that at which debt is rolled over, interbank lending dries up.

In a related contribution, Cabellero and Simsek (2009) also explore the link between complex-

ity and �nancial crises. But whereas our paper uses a generalised random graph as a metaphor

for the complexity of real world �nancial networks, Caballero and Simsek appeal to the rising

costs of understanding the structure of the network as the basis for complexity and, ultimately,

the reason for hoarding. Their model adopts a �ring-like�network structure of identical banks

with only one neighbour serving as a funding counterparty. Banks must learn about the health of

the trading partners of the trading partners of their trading partners, and so on. If information

about the network structure is costless, there is no hoarding. But if, following a liquidity shock,

these information costs rise sharply, banks�inability to understand the structure of the network

to which they belong leads them to withdraw from their loan commitments.

Finally, our work is related to recent contributions that emphasise the role of collateral in

amplifying �nancial shocks. In their seminal work, Kiyotaki and Moore (1997) show how a shock

that lowers asset prices lowers the value of collateral, leading to a decline in net worth, less

borrowing, and further declines in the value of collateral. Geanakoplos (2010) discusses how

interest rates and collateral are jointly determined. This is in contrast to Kiyotaki and Moore,

where the level that can be borrowed against collateral is treated as given. Brunnermeier and

Pedersen (2009) also highlight the important role played by credit constraints in amplifying

�nancial shocks, demonstrating how capital and margin requirements of agents depend on the

market liquidity of the asset.

Our model takes on the lessons from this literature by recognising that a key risk in repo

transactions arises from the ease with which the value of collateral can be realized in a sale and

that the size of the �haircut�on the securities serving as collateral thus re�ects the market risk

of the collateral. In particular, following the implications of Brunnermeier and Pedersen (2009),

Adrian and Shin (2010a) and Geanakoplos (2010), some of our simulations allow for movements

in haircuts to create amplifying dynamics which can generate cycles in repo activity.

4. Modelling Framework

We start by outlining our general modelling framework. While the analytical results on

tipping points presented in section 5 are derived by applying a mean-�eld approximation and

other simplifying assumptions to the setup, the simulations of liquidity crunches which follow use

all features of the full model.
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4.1. The Financial Network

The �nancial network consists of n �nancial intermediaries, �banks�for short, which are linked

together randomly by their unsecured claims on each other. Each bank is represented by a node on

the network, and the interbank exposures of bank i de�ne the links with other banks. These links

are directed, re�ecting the fact that interbank connections comprise both assets and liabilities.

Figure 10 illustrates a directed �nancial network with �ve banks.

More formally, let the links that point into a bank (or node) represent the unsecured interbank

assets of that bank (i.e. money owed to the bank by a counterparty) and the outgoing links be the

unsecured interbank liabilities (i.e. money borrowed by the bank from a counterparty). Denoting

the number of incoming links, or in-degree, to bank i by ji, and the number of outgoing links,

or out-degree, by ki, we de�ne the joint degree distribution of in- and out-degree, pjk, to be the

probability that a randomly chosen bank simultaneously has in-degree j and out-degree k.

The joint distribution of in- and out-degree and, hence, the network structure of interbank

exposures plays a key role in determining how shocks spread through the network. Except

when applying the mean-�eld approximation in section 5, we allow for an arbitrary joint degree

distribution, though we focus on the Poisson and (more fat-tailed) geometric distributions in our

simulations. We also assume that there is no statistical correlation between nodes and mixing

between nodes is proportionate (i.e. there is no statistical tendency for highly connected nodes

to be particularly connected with other highly connected nodes or with poorly connected nodes).

Unlike more stylised network models which assume a particular form, these assumptions imply

that no network structures, including those which might arise as the optimal outcome of a prior

network formation game or real-world networks such as those depicted in Figures 1 and 2, are

precluded.

Since every unsecured interbank asset of a bank is an unsecured interbank liability of another,

every outgoing link for one node is an incoming link for another node. This means that the average

in-degree in the network, 1
n

P
i ji =

P
j;k jpjk, must equal the average out-degree,

1
n

P
i ki =P

j;k kpjk. We refer to this quantity as the average degree and denote it by

z =
X
j;k

jpjk =
X
j;k

kpjk: (1)

4.2. Balance Sheets and Repo Haircuts

Figure 11 presents the composition of individual bank balance sheets in the model. The total

liabilities of each bank, LTi , are comprised of unsecured interbank liabilities, L
IB
i ; repo liabilities

(ie borrowing secured with collateral), LRi ; retail deposits, Di; and capital, Ki. We assume that
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the total unsecured interbank liability position of every bank is evenly distributed over each of its

outgoing links and is independent of the number of links the bank has (if a bank has no outgoing

links, LIBi = 0 for that bank). These assumptions do not a¤ect any of our main results. But

they serve to maximise diversi�cation for a given number of links and the extent to which banks

can diversify themselves by forming new outgoing links.

Since every interbank liability is another bank�s asset, unsecured interbank assets, AIBi , are

endogenously determined by the network links. So, although total unsecured interbank assets

equal total unsecured interbank liabilities in aggregate across the entire system, each individual

bank can have a surplus or de�cit in their individual unsecured interbank position. Apart from

unsecured interbank assets, banks hold four further asset classes which make up their total assets,

ATi . These di¤er in their suitability for use as collateral in repo transactions: �xed assets (eg

individual corporate loans or mortgages), AFi , which are completely illiquid and cannot ever be

used as collateral; assets which may be used as collateral in repo transactions (�collateral assets�),

ACi ; reverse repo assets (ie collateralised lending), A
RR
i ; and unencumbered fully liquid assets

(eg cash, central bank reserves, high-quality government bonds), ALi .

We assume that fully liquid assets can always be used as collateral to obtain repo �nancing

if required without any haircut (or alternatively sold without any price discount) ie borrowing

can be obtained against the full value of the asset. By contrast, we suppose that the aggregate

haircut associated with using collateral assets to obtain repo funding is denoted by h 2 [0; 1] �

note that this is equivalent to assuming alternatively that ACi is made up of many di¤erent asset

types with an average haircut of h. This haircut is to protect the lender against price moves in

the underlying collateral, given that the lender may be left with the collateral if the counterparty

defaults. Therefore, it may partly be taken as re�ecting the underlying probability of default on

the securities used as collateral. It will also be dependent on the market liquidity of the assets

as this will a¤ect price discounts upon any sale.

We also allow for the possibility of an additional bank-speci�c haircut, hi, so that (1� h� hi)ACi
re�ects the maximum amount of repo funding that can be obtained from collateral assets. This

could be interpreted as stemming from the fact that a particular borrower o¤ers lower-quality

collateral than the typical bank. Or it could be due to the greater default probability of a partic-

ular bank �even if a bank is o¤ering identical collateral to another bank, if the lender perceives

that there is a higher chance it will fail, then it might demand a higher haircut as extra protection

both because it is more likely to end up with the collateral in practice, and because there may

be some legal risk in accessing the collateral in a timely fashion.
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We assume that reverse repo is secured with collateral that has the same aggregate haircut as

on ACi . Abstracting for simplicity from idiosyncratic haircuts on banks other than bank i, this

implies that the amount of collateral that bank i receives on its reverse repo assets is given by

ARRi = (1� h). We allow for this collateral to be fully rehypothecated to obtain repo funding with

the same aggregate haircut, h. The maximum amount of repo funding that can be obtained from

rehypothecating collateral obtained in reverse repo transactions is then given by (1� hi)ARRi .7

Finally, since �xed assets cannot be used as collateral in repo transactions, the haircut on these

assets is one; we also assume that unsecured interbank assets cannot be used as collateral.

4.3. The Liquidity Condition

Throughout this paper, we assume that there are never any systematic retail deposit in�ows

or out�ows (though idiosyncratic in�ows and out�ows in a given period are one interpretation of

the exogenous liquidity shock which is introduced below). We also assume that the central bank

never takes collateral at more generous terms than the market in its liquidity operations. For

expositional purposes, let us also start by assuming that unsecured interbank deposits are always

rolled over but that there is no possibility for banks to recall unsecured interbank loans or sell

�xed assets. Under these assumptions, a bank will remain liquid in each period provided that the

amount of collateral it has available to obtain repo funding (which includes its unencumbered

liquid assets) plus any new unsecured interbank borrowing, LNi , is su¢ cient both to exceed the

amount of repo funding it has and to meet any idiosyncratic liquidity shock, "i. Given the balance

sheet and haircut assumptions above, this implies that the bank is liquid if:

ALi + (1� h� hi)ACi + (1� hi)ARRi + LNi � LRi + "i > 0 (2)

From this expression, we can immediately see that exogenous liquidity shocks, or shocks to

aggregate or idiosyncratic haircuts (perhaps due to shifts in the underlying quality of assets,

changes in market liquidity or changes in bank-speci�c risk), have the potential to trigger a

liquidity crisis at bank i if it is unable to raise a su¢ cient amount of new unsecured interbank

borrowing. It is also evident that a su¢ ciently large shock to aggregate haircuts has the potential

to trigger widespread liquidity stress, a point which we return to below.

But it is also through this condition that we can see how liquidity hoarding in unsecured

interbank markets may emerge. In particular, if a bank does not meet condition (2), then it

7Depending on the motivation for the idiosyncratic haircut term on collateral assets, it may not be present
here � in particular if the term is motivated by a bank having lower quality collateral on its own balance sheet
than the average, that argument cannot extend to the collateral it is receiving on its reverse repo transactions
(given that these are the �typical�transactions). But we retain this term to keep the model as general as possible.
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needs to take action to avoid defaulting on required payments. One seemingly obvious option

might be for the bank to increase the interest rate that it is prepared to o¤er on new interbank

liabilities until it obtains a su¢ cient amount of new funding. But as well as being directly

costly in terms of future pro�tability, this may be associated with adverse stigma e¤ects �if a

bank is seen to be �paying up�signi�cantly in interbank markets, it may actually exacerbate the

liquidity problem that the bank is trying to resolve as wholesale lenders may view it as a signal

of underlying di¢ culties and run on the bank. In a sense, if banks �pay up�too much, there may

be adverse selection in the spirit of Stiglitz and Weiss (1981) so that the quantity of funding that

may be obtained through this route could be constrained.

A second option would be for the bank to try to liquidate its �xed assets, AFi , in a �re sale.

But selling assets cheaply is unlikely to be an attractive option because if real losses are incurred

on the sales, then the capital position of the bank will weaken. Further, as Diamond and Rajan

(2009) note, banks may be hesitant to enter a �re sale because the alternative of holding on to

assets may be more bene�cial. And given that �re sales are highly visible (especially if in high

volume), potential stigma e¤ects are again a deterrent.

A third option is for the bank to hoard liquidity by withdrawing its unsecured interbank

lending, AIBi , from others it is connected to in the market and converting these deposits into

liquid assets. Hoarding in this context is purely due to the bank�s own liquidity needs; concerns

over the solvency of its counterparty play no role in its decision. While hoarding may entail

reputational costs, it is likely to be less directly costly than �paying up�for funds or selling assets

in a �re sale. And since unsecured interbank transactions are over-the-counter and are sometimes

withdrawn even in normal times, adverse stigma e¤ects can be kept to a minimum. It is also

worth noting that during the recent crisis, liquidity hoarding was frequently and widely observed,

whereas there was less evidence of signi�cant �paying up�or widespread �re sales.

Finally, the bank may try to cut lending to the real economy, AFi . While this was certainly

observed during the crisis, we abstract from this possibility as it is only likely to generate liquidity

slowly over the long-term. But the potential for this type of credit crunch e¤ect is precisely one

of those things which can make systemic liquidity crises so costly for society.

Given this, if a bank does not meet condition (2), we assume that its �rst course of action

will be to raise resources by hoarding liquidity and withdrawing interbank assets held against

other banks in the system. Clearly, it is possible that hoarding alone may not allow banks to

raise su¢ cient resources to meet their obligations, at which point �re sales or �paying up�become

options. [And we brie�y discuss the possible systemic consequences of �re sales later in the paper
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�possibly to be added to the simulation section by linking the aggregate haircut to the number of

banks who have insu¢ cient resources even after hoarding, on the grounds that �re sales are likely

to cause a margin spiral]

But once we recognise that liquidity hoarding may be a response to a failure to meet (2),

we can immediately see how network e¤ects come to the fore. In particular, let us suppose that

a fraction � of banks connected to bank i in the network �hoard�liquidity from it that is, they

withdraw a portion of their deposits held at bank i. In the model presented here, we assume

that this represents a genuine drain on the liquidity of the entire banking system which �ows

outside, for example, ending up as increased reserves at central banks. But, as discussed by Gai

and Kapadia (2010b) in a similar model which completely abstracts from repo market activity,

hoarding behaviour can also be interpreted as a switch from lending at long maturities (e.g. for

three months or one year) to lending at much shorter maturities (e.g. overnight).

Further, let us suppose that, on average, hoarding banks withdraw a fraction � of the deposits

that they hold at bank i. In principle, the proportionate amount that each bank hoards will

depend on how much liquidity it needs to raise to meet its liquidity condition, ie on its liquidity

shortfall. If this shortfall were the only determinant of the amount of liquidity hoarding, then �

would be fully endogenous within the model. At the other extreme, � = 1 would correspond to

full withdrawal in all circumstances (i.e. lending banks withdraw their entire deposit irrespective

of what their liquidity shortfall is).

Clearly, the value of � is a key determinant of the strength of ampli�cation of shocks in the

model �in particular, the higher the value of �, the larger the shocks that can hit banks further

down the chain of contagion. In reality, the value of � is likely to lie somewhere between the

two extremes identi�ed above. In particular, immediate full withdrawal may be unlikely not only

because current liquidity needs may not necessitate it but also because contractual obligations

may prevent banks from withdrawing their entire deposit straight away. On the other hand, a

bank which has su¤ered a haircut shock may fear larger shocks to come. And if a bank has a

liquidity shortfall because it has lost some portion of its deposits from a hoarding counterparty,

it may consider it to be only a matter of time before the full amount is lost. In particular, further

withdrawals may occur when contractual obligations expire. And time consistency issues make

it di¢ cult for the lender to commit not to making further withdrawals in future. Moreover, even

if current withdrawal is only partial, a forward looking bank may choose to act immediately as if

it had lost its entire deposit, in order to limit the prospect of su¤ering liquidity problems in the

future. As such, assuming a value of � at or close to 1 o¤ers a simple mechanism for capturing
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a rich set of dynamics which may operate through forward-looking expectations.

Under these assumptions, bank i loses ��LIBi of its liabilities due to liquidity hoarding by its

counterparties in the network. Therefore, its liquidity condition now becomes:

ALi + (1� h� hi)ACi + (1� hi)ARRi + LNi � LRi � ��LIBi + "i > 0 (3)

4.4. The Dynamics of Contagion

From (3), it is immediately clear that the decision by any one bank to hoard liquidity makes

it harder for the banks which were previously borrowing from it to meet their own liquidity

condition without resorting to hoarding themselves. In particular, as each successive bank fails

to meet its liquidity condition, its hoarding behaviour has the potential to trigger liquidity stress

at any of the banks to which it is connected via an interbank lending relationship, and this process

only dies out if either no neighbours to newly distressed banks become distressed themselves or

when every bank in the network is in distress.

Thus hoarding can potentially spread across the system, with the structure and connectivity

of the unsecured interbank network playing a key role in determining the evolution of contagion.

As noted above, the dynamics of contagion also depend crucially on the value of �. In principle,

they also depend on whether, when a bank hoards liquidity, its withdrawals are concentrated on

particular counterparties or more evenly distributed. But in all of what follows, we assume that

banks raise any resources needed by withdrawing funding equally and proportionately from all

of their counterparties. As well as being necessary for the analytical solution in section 5 and

making the simulations computationally simpler, this assumption also seems reasonably plausible

as immediately accessible deposits are only likely to be available in relatively small amounts from

each counterparty.

To illustrate the contagion dynamics at work, let us �rst simplify the structure slightly by

assuming that in the initial state

(1� h� hi)ACi + (1� hi)ARRi = LRi (4)

for all banks so that all of the collateral obtained via a bank�s own reverse repo lending plus

all of its collateral assets are pledged as collateral to obtain repo funding. Then changes in the

aggregate or idiosyncratic haircuts, �h or �hi, are equivalent to liquidity shocks of ��hACi and

��hi
�
ARRi +ACi

�
respectively. So we can rewrite the liquidity condition as:

ALi ��hACi ��hi
�
ARRi +ACi

�
+ LNi � ��LIBi + "i > 0 (5)
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Rewriting gives:

� <
ALi ��hACi ��hi

�
ARRi +ACi

�
+ LNi + "i

�LIBi
(6)

Now suppose that a single bank su¤ers a haircut or idiosyncratic liquidity shock which is su¢ -

ciently large to cause it to start hoarding liquidity. Recalling that interbank liabilities are evenly

distributed over di¤erent counterparties in the network and that we take bank i to have ki bor-

rowing links, if a single counterparty to bank i hoards, � = 1=ki. Therefore, bank i will continue

to meet its liquidity condition provided that:

1

ki
<
ALi ��hACi ��hi

�
ARRi +ACi

�
+ LNi + "i

�LIBi
(7)

Therefore, for contagion to spread beyond the �rst bank, there needs to be at least one neigh-

bouring bank for which:

ALi ��hACi ��hi
�
ARRi +ACi

�
+ LNi + "i

�LIBi
<
1

ki
(8)

If this holds, then contagion starts to spread more widely. And, if we allow for the possibility

of banks being exposed to multiple hoarding counterparties, similar equations then determine

whether it spreads more widely across the network,

5. Analytical Solution under a Mean-Field Approximation

The structure presented above fully characterises the model that is at the core of our simu-

lations and policy analysis. But to obtain a better intuitive understanding of the dynamics of

the system, we �rst apply a mean-�eld approximation which, along with some other simplifying

assumptions, allows us to obtain stark analytical results.

Speci�cally, rather than taking the network to be random, we assume that each bank is

connected to exactly z other banks as both a lender and borrower (which implies that ji = ki = z

for all banks). Further, we assume that all banks have identical balance sheets, which allows us

to drop all i subscripts except for the ones on hi and "i. Given that every interbank asset must be

another bank�s interbank liability, taken together, these assumptions also imply that LIB = AIB

for all banks. We also assume that banks can never raise new unsecured interbank funding (so

that LNi = 0) and that � = 1 so that whenever a bank hoards, it withdraws its lending from

its counterparties completely (full withdrawal assumption). Under these assumptions, we can

rewrite (8) as:

AL ��hAC ��hi
�
ARR +AC

�
+ "i

AIB
<
1

z
(9)
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And if we were to abstract further from idiosyncratic shocks, this would reduce to:

z <
AIB

AL ��hAC (10)

This expression is particularly illuminating because under the above assumptions, it is iden-

tical for every bank in the network. If it is satis�ed, then provided that z is greater than or equal

to 1 so that there is su¢ cient connectivity on the network, any initial case of liquidity hoarding

will cause all neighbouring banks to become distressed and start hoarding. But since neighbours

of neighbours also have the same liquidity condition, hoarding behaviour will cascade through

the entire network. By contrast, if equation (10) is violated, an initial case of liquidity hoarding

will have no systemic consequences at all. This starkly illustrates the phase transition or �tip-

ping point�which is embedded in the model, whereby a very small change in the parameters can

lead to a fundamentally di¤erent outcome �indeed, as Gai and Kapadia (2010b) demonstrate,

although a precise threshold in the mould of equation (10) cannot normally be identi�ed, it is

possible to prove the existence of such phase transitions in this type of model without making

the mean-�eld approximation and while still maintaining heterogeneous balance sheets (though

the � = 1 assumption is still necessary in their formal analysis).

Equation (10) also provides important initial insights on the conditions under which systemic

liquidity crises may occur. In particular, it points to the fact that low liquid asset holdings, large

adverse aggregate haircut shocks, a high volume of assets used as collateral in repo transactions,

and high level of unsecured interbank lending are all likely to contribute to the susceptibility of

the system to a widespread liquidity crisis. As we shall demonstrate below, all of these results

are borne out in the simulations conducted under more general assumptions.

6. Simulation Methodology

The mean-�eld approximation used in section 5 imposes some stark assumptions. It is there-

fore natural to consider what happens in more general settings. So we now return to the more

general framework developed in section 4 and simulate it under a range of assumptions to demon-

strate how systemic liquidity crises may occur and to explore the role of concentration and com-

plexity in contributing to them. In this analysis, we focus on two main degree distributions for

the network: the simple Poisson distribution and the more fat-tailed geometric distribution.

To keep the number of simulations manageable and to retain focus on the key areas of interest,

we assume throughout that banks can never raise any new deposits in the unsecured interbank

market (ie LNi = 0 for all banks). As Gai and Kapadia (2010b) show, although allowing for

replacement of lost interbank deposits can signi�cantly reduce the likelihood of systemic liquidity
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crises, provided that the probability of replacement is not always very close to 1, it does not

otherwise change the fundamental properties of the model and its funding contagion dynamic

� in particular, the phase transition is still present and contagion can still to spread to the

entire system on some occasions. Apart from in one of the policy experiments, we also assume

that � = 1 throughout, though, as noted above, this may be a reasonably plausible benchmark

assumption. And, although the model readily applies to networks of fully heterogeneous banks,

we treat the repo liabilities, interbank liabilities, capital bu¤ers, liquid asset holdings, reverse

repo assets, and collateral assets of each bank to be identical for the purpose of illustration.

The interbank network in the simulation comprises 250 banks. We take the liability side

of the balance sheet to be comprised of 15% interbank liabilities and 4% capital, with repo

liabilities determined as described below and the remainder being retail deposits. Since each

bank�s interbank liabilities are evenly distributed over their outgoing links, interbank assets are

determined endogenously within the network structure which is drawn from a distribution as

speci�ed below. And when drawing the network, we allow for the possibility that two banks can

be linked to each other in both directions �no netting of exposures is assumed. Liquid assets

are set to be 2% of total assets, with reverse repo and collateral assets determined as described

below and the asset side being �topped up�by �xed assets until the total asset position equals

the total liability position.

In terms of the repo parts of the balance sheet, we assume that (4) applies in the initial state

ie that all collateral assets and assets received as part of reverse repo transactions are used as

collateral to obtain repo funding. We also suppose that reverse repo assets are 11% of the balance

sheet, collateral assets are 10%, and the initial aggregate haircut, h, is 0.1. This implies that

repo liabilities comprise 20% of the balance sheet.

In our simulations, we vary the average degree, z, drawing 1000 realizations of the network for

each value and then shock the network in di¤erent ways according to the experiment in question.

The dynamics of contagion follow the process described in section 4.4., with the liquidity condi-

tion at the centre of the propagation dynamics. For each realisation, we follow these dynamics

iteratively until no new banks are forced into hoarding liquidity or until every bank is hoarding.

We count as �systemic�those episodes in which at least 10% of banks are forced into hoarding

liquidity, and our results identify the frequency of systemic liquidity crises and their scale in

terms of the average fraction of the system a¤ected in each systemic outbreak (ie how widely

contagion spreads, conditional on it spreading to at least 10% of banks in the system).
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7. Liquidity Crunches: Basic Experiments

In our �rst set of experiments, we assume that the joint degree distribution for the network

takes the simple Poisson form. Under this distribution, each possible directed link in the network

is present with independent probability p. So the network is constructed by looping over all

possible directed links and choosing each one to be present with probability p.

Figure 12 shows what happens when there is no aggregate haircut shock and only a single

bank receives a very large adverse idiosyncratic haircut shock which causes it to start hoarding

liquidity. Contagion occurs for values of z between 0 and 20 and its probability is non-monotonic

in connectivity, at �rst increasing before falling. But when contagion breaks out, it invariably

spreads to the entire network. These results accord well with the analytical solution from the

mean-�eld approximation, which is not surprising because this approximation is most reasonable

for a Poisson network. Speci�cally, given that there are no aggregate haircut shocks, equation

(10) suggests that when banks have seven and a half times more interbank assets than liquid

assets, contagion will occur for z < 7:5 but not for z > 7:5. From Figure 12, it is evident that

z = 7:5 is the point around which the probability of contagion starts to fall from one. The reason

it remains positive for higher values of z is due to the randomness of the network structure which

means that contagion can still break out under certain con�gurations. And the reason contagion

is not always certain for very small values of z is that the initial shock may hit a bank which either

has no interbank assets and is therefore unable to trigger any contagion by hoarding liquidity, or

is in an isolated subset of the network.

Figure 13 shows the impact of combining the large idiosyncratic haircut shock with an ag-

gregate haircut shock that increases the haircut from 0.1 to 0.2. Given that collateral assets

represent 10% of the balance sheet, it is clear from (10) that this shifts the phase transition

to around z = 15. And this is borne out by the results. Arguably, this type of experiment

re�ects the behaviour of interbank markets in the early part of the crisis during August and

September 2007. In light of bad news on subprime mortgages and other types of collateral which

were being used to back repo and other secured forms of funding, aggregate haircuts increased,

possibly ampli�ed by asymmetric information because nobody knew which banks were holding

the tainted securities. As a result, some banks found themselves short of liquidity. And this was

especially true of banks which were also forced to take back assets from o¤-balance sheet vehicles

for which liquidity had dried up. In response to funding liquidity stress, banks started to hoard

in the unsecured interbank market. This led to a collapse in this market as re�ected by the sharp

increase in spreads depicted in Figure 8. And this may have increased counterparty risk which
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may have exacerbated problems for some institutions. Although this framework abstracts from

the counterparty risk dimension, it makes clear how a seemingly small shock to a limited set of

assets which are being used as collateral can lead to a collapse in both secured and unsecured

interbank markets.8 And provided the fundamental shock to aggregate haircuts is su¢ ciently

large, this is true even in a world without any asymmetric information.

8. The Role of Concentration

As is evident from Figure 2, real-world �nancial networks do not appear to be Poisson; instead

they appear to exhibit fat tails, with a small number of key nodes who are very highly connected

both in terms of the number of interbank relationships they have and in terms of the overall

value of those relationships. This re�ects the underlying concentration in the banking sector.

To explore the impact of concentration on our results, we repeat our �rst simulation exercise

but use a geometric rather than Poisson degree distribution. This distribution exhibits fat tails,

with some banks having substantially more connections than the average degree. In the version

implemented, we draw in-degree and out-degree separately from the same distribution, implying

that there is no correlation between the number of counterparties a bank lends to and borrows

from.9

Figure 14 presents the results. Contagion is less likely and less severe for low values of z

than under the Poisson distribution, which re�ects the well-known result that fat-tailed networks

tend to be more robust to random shocks (Anderson and May, 1991; Albert et al, 2000). On

the other hand, it is also clear that contagion outbreaks can occur for much higher values of

z, albeit rarely. So, for a broad range of connectivity, increasing concentration in the network

(which would translate in a movement away from a Poisson distribution and towards a geometric

one) makes the system slightly more susceptible to a systemic liquidity crisis.

However, this analysis masks what is perhaps the key di¤erence between contagion dynamics

under Poisson and geometric distributions. Thus far, we have assumed that when the initial

idiosyncratic haircut shock occurs, it hits any bank in the network at random. Now suppose

instead that the initial shock hits the bank with the largest number of unsecured interbank

lending relationships. Figures 15 and 16 show the results for Poisson and geometric degree

distributions. As might be expected, when the shock is targeted at the most connected interbank

8 In the model, hoarding entails withdrawal of funds while in reality, much of the hoarding behaviour early in
the crisis involved banks dramatically reducing the maturity of their lending. But, as noted above, the broad
framework can be interpreted as speaking to this behaviour as well.

9To construct the graph, we also need to ensure that the total number of outgoing links drawn equals the total
number of incoming links. We follow the algorithm outlined by Newman et al (2001) to achieve this.
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lender, contagion occurs more frequently in both cases. But what is striking is that for the Poisson

distribution, a targeted shock only makes a relatively small di¤erence to the results (compare

Figures 12 and 15); on the other hand, compared to the random shock case, a targeted shock

under a geometric distribution has absolutely catastrophic consequences, making contagion a

near certainty for a very wide range of z. Again, this is consistent with the results of Anderson

and May (1991) and Albert et al (2000) who both demonstrate how fat-tailed networks are

particularly susceptible to shocks targeted at key nodes. The intuition for this is that in the

Poisson network, the most connected bank is not that much more connected than the typical

bank; on the other hand, under a geometric distribution, the most connected bank is likely to be

connected to a very large portion of the other banks in the network, so if it becomes distressed,

it has the potential to spread contagion very widely.

If we also consider aggregate haircut shocks in this context, then it is clear that banks who

are heavily involved in repo activity are more likely to su¤er from this type of shock ie for

a given size shock, a bank concentrated in repo activity is more likely to become distressed.

Given this, we can see that the most dangerous banks for the stability of the network are likely

to be those which are both heavily involved in repo activity and big lenders in the unsecured

interbank market �the former because it makes them highly susceptible to the initial shock; the

latter because they propagate the shock widely. When we consider that banks that are heavily

involved in repo activity are often the same large, complex �nancial institutions that are also big

players in the unsecured interbank market, we can immediately see how the �nancial system may

be particularly prone to collapse. And it also becomes clear why the seemingly small shocks of

early / mid 2007 could have had such catastrophic consequences �they a¤ected banks that were

both highly susceptible and central to the network. When we further realise that many of these

same banks were also heavily involved in lending to the real economy, then we can start to see

how credit crunch e¤ects subsequently emerged as well.

9. Complexity, Cycles and Contagion

As discussed above, complexity is di¢ cult to measure but greater complexity in the �nancial

system seems likely to be re�ected in greater intra-�nancial system activity, both in terms of

unsecured and secured markets. In Figure 17, we consider a random shock under a geometric

distribution but suppose that unsecured interbank liabilities comprise 25% rather than 15% of

the balance sheet. As we would expect, contagion occurs more frequently than in Figure 14.

But it is perhaps more interesting to consider complexity in a dynamic setting in which there is
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a feedback between falling aggregate haircuts, greater repo market activity and associated balance

sheet expansion in an upswing. [Simulation to be added which does the following: Draws an initial

network, hits it with an aggregate haircut shock it to determine the frequency of contagion in that

period, then goes to the next period in which the initial aggregate haircut falls a bit allowing

repo borrowing and balance sheets more broadly to grow, and then hits the network with another

aggregate haircut shock. This should demonstrate how the frequency of a collapse increases as

the cycle evolves. Possibly also to be augmented with cyclicality in unsecured interbank lending to

enrich the story eg a low aggregate haircut might go hand-in-hand with high unsecured interbank

lending]

10. Policy Implications

At the heart of the systemic collapses modelled in this paper is an underlying network exter-

nality, whereby banks fail to internalise the consequences of their hoarding behaviour on others in

the network with potentially devastating system-wide repercussions. The extent of the externality

depends on the network and balance sheet structure and some of the assumptions, including over

the amount of liquidity hoarding (the value of �) when a bank is in distress. As the simulations

involving targeted shocks make clear, it also varies across banks. Under these circumstances,

there is a clear case for public policy intervention, possibly along a range of di¤erent dimensions.

These include:

(a) Tougher Microprudential Liquidity Regulation One immediate implication of our

results is that banks need to have a larger stock of genuinely high-quality liquid assets than

they would naturally choose given their own individual incentives. It is clear from equation (10)

that an increase in liquid asset holdings makes the system directly less susceptible to systemic

liquidity crises. This is supported by the simulation presented in Figure 18, in which 3.5% of

assets are assumed to be liquid rather than 2% as in Figure 14. But to the extent that greater

liquid asset bu¤ers also reduce the amount of repo activity and overall balance sheet size, then

they may also indirectly improve the resilience of the system as banks become less susceptible to

haircut shocks �in equations (4) and (10), this would show up via a reduction in the amount of

collateral assets and repo liabilities. Implicitly, tougher liquidity requirements may have an ex

ante bene�t on system resilience by dampening the money multiplier.

In terms of the quality of liquid assets, the model takes liquid assets to be those which can

either be sold without any price discount or used as collateral to obtain repo �nancing without any



Complexity, Concentration and Contagion 22

haircut, clearly distinguishing them from �collateral assets�which can only be used to obtain repo

funding at a positive haircut. This implies that any asset which is likely to have a large haircut

in times of stress is much less useful as a bu¤er against systemic liquidity crises, pointing to

the need for microprudential liquidity regulation to maintain a relatively tight de�nition of what

constitutes a liquid asset. In particular, it suggests that holdings of bank debt (eg certi�cates

of deposit; covered bonds etc.) should not be permitted to constitute part of banks�prudential

liquid asset requirements because it is precisely when there is systemic liquidity stress that such

assets are likely to have large haircuts and thus relatively little value in helping to avert the

stress �by contrast, genuine �outside�liquidity is likely to prove much more useful. From an ex

ante perspective, the model also suggests that maturing interbank assets should not be allowed to

contribute to liquid asset requirements because if they are, then there is again less overall �outside�

liquidity available in stress � indeed, one of the central points of the model is to demonstrate

how withdrawals of interbank assets may be a key ampli�er in precipitating a systemic liquidity

crisis.10

(b) Macro-prudential Policy and Systemic Surcharges The results on concentration

and complexity starkly highlight two di¤erent dimensions of risk linked to intra-�nancial system

activity. In particular, it is clear that for a given level of concentration, a more complex network is

more likely to be prone to collapse; similarly, for a given level of complexity, a more concentrated

network is more vulnerable to shocks to key banks. Further, it is evident both from the underlying

dynamics and the stylised facts that �uctuations in the complexity of the network are likely to be

at least partially cyclical, while changes in network concentration are likely to be more structural.

This has two important implications: �rst, by the Tinbergen principle, two distinct policy

instruments (one time-varying and one structural) are likely to be needed to help address network

risks; second, to be most e¤ective, time-varying macro-prudential policy should not just be

targeted at real economy lending but should also react to changes in intra-�nancial system activity

given its inherent cyclicality (and perhaps greater cyclicality than real economy lending � see

Figure 4).

Macro-prudential policy aims to lean against the wind of the credit cycle, much like monetary

policy does in respect of the business cycle (Bank of England (2009), Hanson et al (2010)). There

are a variety of instruments that might be used, including varying headline regulatory capital and

10This second issue is less clear-cut ex post once a liquidity crisis has begun. In this case, again for reasons
made clear by the model, it is better from a systemic perspective for banks to use their �outside�liquidity to meet
liquidity needs rather than withdrawing interbank funding. Therefore, care is needed to ensure that banks do not
have strong incentives to withdraw interbank funding rather than run down liquid assets ex post, for example
because such action helps to maintain their prudential liquid asset bu¤er at a high level.
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liquidity ratios, changing the risk weights which attach to some of the components of lending,

and adjusting haircuts on secured �nancing to �nancial institutions (CGFS (2010)). With the

advent of the Financial System Oversight Committee in the US, the European Systemic Risk

Board in the EU and the Financial Policy Committee in the UK, macro-prudential policy is

about to become a reality.

It is not di¢ cult to see how macro-prudential policy, appropriately executed, could deliver a

less fragile �nancial network. For example, raising the risk weights which attach to intra-�nancial

system exposures would serve as a disincentive to network complexity. Increasing the amount

of liquidity held by banks in the face of higher complexity would reduce the e¤ects of liquidity

hoarding in the event of stress and, as noted above, may also help to mitigate the cyclical build-up

in complexity by dampening the money multiplier. Similarly, adjusting the haircuts on secured

�nancing in a pro-cyclical fashion would probably neutralise some of the adverse feedback e¤ects

of haircut contagion. In particular, increasing haircuts in good times may help to break the

feedback loop between falling haircuts and rising leverage described in section 9.: with higher

initial haircuts, the likelihood of a big positive shock to haircuts falls; and with less repo activity

and smaller balance sheets, any shocks that do occur are less likely to trigger initial liquidity

stress at a set of institutions.

It is possible to simulate the e¤ects of such a policy in the model. [Simulation of time-varying

haircut to be added]

In terms of the structural risks in the network, one regulatory response to the too concentrated

to fail problem has been to explore levying a tax on institutions in line with their contribution

to systemic risk. Because systemic risk is an externality, such an approach is equivalent to the

imposition of a Pigouvian tax. Various governments, including in the UK, France and Germany,

have already announced their intention to impose a direct �scal tax on �nancial institutions,

levied in line with their size and the riskiness of their balance sheet. This is in the spirit of an

externality tax and would tend to nudge in the direction of a less concentrated system.

Within the international regulatory community, the G20 and FSB are drawing up a blue-

print for dealing with so-called systemically important �nancial institutions (SIFIs). Among the

options on the table are additional, graduated capital charges for SIFIs (�capital surcharges�)

and regulatory limitations on the extent of exposures between these SIFIs (a �large exposures�

regime). To target concentration e¤ectively and achieve a clean separation from any time-varying

requirement linked to intra-�nancial system activity, such capital or liquidity surcharges could be

set according to banks�market shares in interbank activity (eg the share of a bank�s interbank
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assets as a fraction of total interbank assets across all banks) and potentially other markets

which are deemed to be systemically important �note that since market shares cannot be time-

varying in aggregate by de�nition, this would ensure that such surcharges were not time-varying

in aggregate. These surcharges would then help both to enhance the resilience of SIFIs to shocks

and should create incentives for the network as a whole to become less concentrated.

To gauge the e¤ects of such policies on network stability, we simulate the model under a

liquidity surcharge rule where the extent of the surcharge is related to the amount of interbank

assets a bank has. Speci�cally, we assume that each bank holds a minimum of 2% liquid assets

plus an amount equal to 10% of its total interbank assets. Since interbank assets comprise

15% of total assets on average, this implies that the average liquid asset holding is 3.5% (thus

making the experiment directly comparable to the one in Figure 18) but banks with higher-

than-average interbank asset positions will hold more liquid assets and banks with lower-than-

average positions will hold less. Figure 19 presents the results. Comparing with Figure 18,

it is clear that the surcharge rule is more e¤ective in reducing the probability and spread of

contagion than an equivalent across-the-board increase in liquid asset requirements. The intuition

is simple � targeting the requirements at the banks which are most instrumental in spreading

contagion is more potent than requiring peripheral players to hold extra liquid assets. And

this experiment understates the potential bene�ts of systemic liquidity surcharges because it

only considers the bene�ts from enhanced resilience of key players and does not account for any

reduction in concentration that might be incentivised by them.11

(c) Network Transparency At present, very little is known about the dynamic properties of

the �nancial network. This is in part a result of data de�ciencies. Historically, �nancial data has

tended to be collected and analysed on an institution by institution basis (Haldane (2009)). That

is the essence of micro-prudential regulation. Such data do not allow an e¤ective mapping of

the entire �nancial web or a simulation of its properties, though small parts of its sub-structures

such as the domestic payments and interbank networks have been mapped in some countries.

This may be all about to change. There are e¤orts internationally to begin collecting sys-

tematically much greater amounts of data on evolving �nancial network structure, potentially

in close to real time. This would allow the topology of the �nancial system to be mapped and,

11There is an interesting analogy to be drawn here with the use of targeted vaccination programmes to control
the outbreak of disease. It is a well-known result in the epidemiology literature that if vaccine stocks are limited,
programmes should be targeted at the most highly connected individuals [insert reference]. The same logic applies
to banks here. But there is also an important di¤erence: while vaccinating particular individuals is unlikely to
reduce the size of their social networks, applying surcharges to SIFIs may create real costs for them which may
a¤ect the structure of the network in a desirable way. Thus targeted approaches are likely to be even more useful
in relation to �nancial networks than they are in epidemiology.
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in principle, simulated. The introduction of the O¢ ce of Financial Research (OFR) under the

Dodd-Frank Act is sure to nudge the United States in this direction. Indeed, one of the motiva-

tions for the OFR was precisely to allow such a mapping, enabling �nance to catch up with the

technology and techniques which are already applied to the dynamics of transport, weather and

utility networks.

This transformation in the authorities�capacity to map and simulate the �nancial network

is likely to bring at least two signi�cant bene�ts. First, it ought to provide the authorities with

a much better early warning on emerging vulnerabilities in the �nancial network; it will allow

�nancial tipping points and cli¤ edges to be charted. This provides a much sounder, quantitative

basis for taking ex-ante remedial policy action to avoid these cli¤ edges. Over time, this ought to

reduce policymakers�reliance on ex-post interventions to prevent the system crash-landing once

already over the cli¤-edge.

Second, if more data is made available on network structures, this ought to have positive

spin-o¤ e¤ects on the behaviour of �nancial institutions in the network. Armed with greater

information on counterparty risk, banks may feel less need to panic and hoard following a dis-

turbance. Banks�liquidity decisions would become less hair-trigger. This would have a collective

bene�t, lessening the potential for destabilising liquidity spirals. Network information would

serve as a public good, reducing the externality of liquidity contagion.

More speci�cally in the context of the model, greater transparency might mean that haircuts

are less volatile. With less severe initiating shocks, this would reduce the frequency of contagion.

Alternatively, greater transparency might reduce the value of �. To illustrate how this can

improve outcomes, Figure 20 presents results from a simulation in which, rather than withdrawing

all their interbank lending when under liquidity stress, banks only withdraw an amount equal

to their liquidity shortfall (i.e. their outstanding shortfall after their liquid asset bu¤er has been

used up) plus half of any remaining interbank assets. As is evident, this greatly diminishes the

frequency of contagion.

(d) Netting and Central Clearing The �nancial system is a dense cats-cradle of exposures.

These gross exposures can easily exceed a bank�s capital. And it is gross exposures which matter

when gauging the virulence of contagion through a network. So one means of reducing this

contagion is by netting-o¤ gross exposures between participants within the �nancial system as

this would lower the value of interbank connections relative to balance sheet size (ie it would have

a similar e¤ect to moving from Figure 17 to Figure 14). There have already been some attempts

to do so in respect of derivatives contracts. In particular, regulators have sought to eliminate,
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or net-down, outstanding derivatives contracts which are e¤ectively redundant because they are

two o¤setting sides of a transactions. This has reduced notional values outstanding in the OTC

derivatives markets considerably.

A more ambitious, and far-reaching, regulatory initiative is the drive to centrally clear a much

larger proportion of, in particular, OTC products through central counterparties (CCPs). This is

one of the stated aims of the G20 and Financial Stability Board (FSB (2010)). The rationale for

such action is well-captured by the model developed here. CCPs have two e¤ects, which speak

directly to concentration and complexity. On complexity, a CCP radically simpli�es the cats-

cradle of bilateral exposures, condensing it down to a simple hub-and-spoke con�guration. Higher-

order, unobservable counterparty credit risk, is replaced by �rst-order, observable counterparty

risk with respect to the CCP. This, too, ought to reduce the sensitivity of banks�liquidity hoarding

to disturbance, thereby lowering the fragility of the system as a whole.

On concentration, a CCP also alters radically the structural con�guration of the network.

This now resembles a star formation. From a resilience perspective, this is a double-edged sword.

On the one hand, concentration among the key �nancial institutions is e¤ectively eliminated,

reducing the contagion risk from too-big-to-fail. On the other, concentration risk in an important

sense is relocated, rather than eliminated, from too-big-to-fail �rms to the CCP. In the language

of the model, a world of centrally cleared transactions might be more susceptible to targeted

attack.

This underscores the importance of ensuring that CCPs are bullet-proof moving forward as

they clear larger numbers of transactions. This is the only way of ensuring systemic resilience

is bolstered by the enhanced role for CCPs. That means CCPs may need to be operate as

quasi or actual public utilities. Risk management and default arrangements will need to be

many times stronger than that of even the largest �nancial �rm. It is for this reason that the

regulatory community is currently upgrading its risk management standards for CCPs (CPSS-

IOSCO (2010)). Provided these standards are su¢ ciently high, the e¤ect will be to boost systemic

resilience.

At the height of the crisis, the �nancial network degenerated to a hub-and-spoke con�guration

with the central bank the de facto central counterparty. To avoid that outcome ex post, a set

of bullet-proof CCPs could enforce a simpli�ed hub-and spoke con�guration ex ante. From an

incentives and counterparty uncertainty perspective, this change in ex ante (rather than ex post)

structures is much the preferable.
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(e) System Structure With the exception of a tougher large exposures regime among SIFIs

and the ideas on netting and central clearing, all of the above measures seek to alter the structure

and transparency of the �nancial system by acting on price incentives �for example, capital or

liquidity requirements or taxes. A more directive approach would involve intervening in the

underlying structure of bank�s balance sheets �a quantity rather than price approach. In line

with Weiztman (1974), this directive approach may be optimal if there is uncertainty about the

elasticities associated with price-based instruments.

In the spirit of Simon (1962), the aim of such structural interventions would be to create a

�nancial system that was ultimately decomposable and modular. In other words, disruption to

one part of the network posed less risk to the network as a whole. To be e¤ective, this modularity

would need to operate both within �nancial �rms, especially those comprising many thousands

of legal entities, as well as across �rms. This is the essence of Simon�s hierarchy for complex

systems if they are to exhibit simplicity and resilience. A number of regulatory initiatives and

ideas are currently in train which speak to this agenda.

One is �living wills�or, more formally, recovery and resolution plans (RRPs). These require

a bank to draw up plans for how they would be wound-down in an orderly fashion in the event

of failure. The newly-passed Dodd-Frank Act in the US requires that US �rms draw up credible

RRPs, or else face a set of possible sanctions including break-up of the group. Pilot RRPs are

currently being drawn up for the world�s largest �nancial institutions, with a view to determining

whether existing institutional structures would allow continuity of banks�key operational func-

tions, while allowing the remainder of the business to be detached and liquidated. The evidence

in section 2 suggests that considerable structural adjustment of global banks�business models

may be necessary to deliver credible RRPs.

A second idea, which is being debated within academic and policymaking circles, is the

potential for ring-fencing of �nancial activities, either within �rms or across them. The Volcker

rule, enacted in US Legislation recently, is one example of such a forced separation, in this case

in respect of proprietary trading activity. The Glass-Steagall Act, which separated investment

and commercial banking in the US between 1933 and 1999, is a second. The McFadden Act,

which limited interstate banking in the US from the 1930s, would be a third. Narrow banking,

as proposed by a range of academic economists over the past eighty years (including Irving

Fisher (1936), Milton Friedman (1960) and James Tobin (1987)), would be a fourth. And limited

purpose banking, with banking assets separately hypothecated and backed fully by equity, would

be a �fth (Kotliko¤ (2010)).
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Enacting any of these structural solutions unilaterally would be di¢ cult for a single coun-

try. That presents an operational obstacle. Against that, these structural measures have the

advantage that they act directly on the topology of the network. As such, they are less subject

to implementation error. Firebreaks and �rewalls are familiar fail-safe devices against systemic

problems in other networks, from infectious diseases spreading across people to infectious viruses

spreading across the web, from transport networks to meteorology maps, from forest-�re control

to military control (Haldane (2009)). These disciplines have found ways round the operational

obstacles.

11. Conclusion

[To be added]
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Figure 2 : Network of large exposures(a) between UK 
banks, 2008 (b)(c) 

               
Source:  FSA returns. 
(a)  A large exposure is one that exceeds 10% of a lending bank’s eligible capital 
during a period.  Eligible capital is defined as Tier 1 plus Tier 2 capital, minus 
regulatory deductions.   
(b)  Each node represents a bank in the United Kingdom.  The size of each node is 
scaled in proportion to the sum of (1) the total value of exposures to a bank, and (2) 
the total value of exposures of the bank to others in the network.  The thickness of a 
line is proportionate to the value of a single bilateral exposure. 
(c)  Based on 2008 Q1 data. 

 

 

 
 

Figure 3a:  Repos and Financial CP as a 
proportion of M2 in the US 
 

Figure 3b:  Repos and Financial CP as a 
proportion of M2 in the UK 
 

Source:  Adrian, T and Shin, H S (2010b), “The changing nature of 
financial intermediation and the financial crisis of 2007-09” Annual 
Reviews: Economics, 2, 603-618.  
 

Source:  Bank of England and Bank calculations 
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Figure 4:  Breakdown of UK Debt 
 

 
Source: Bank of England calculations and ONS Blue Book  
 

 

 

 

 

 

 

Figure 5:  Concentration of the UK and US banking 
systems 

Source:  FDIC and Bank calculations.  
Top 3 banks by total assets as a percentage of total banking sector assets.  
Data is to January 2009 
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Figure 6:  Size of the UK and US banking systems (a)

 

Source: Sheppard, D. K (1971), FDIC and Bank of England calculations. 
Top 3 banks by assets as a percentage of National GDP 
 
Note: The definition of UK banking sector assets used in the series is broader after 
1966, but using a narrower definition throughout gives the same growth profile. 
 
(a)  Red line shows US banking assets as a percentage of US GDP (left-hand scale). 

 

 
 
 
 
 
 
 

Figure 7: Herfindahl Index of Concentration in UK Interbank Market, 2004-2008 
 

 
Source: FSA returns and Bank calculations 
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Figure 8 Three-month interbank rates relative to expected 
policy rates(a) 
 

 
Sources:  Bloomberg and Bank calculations. 
(a) Spread of three-month Libor to three-month overnight index swap (OIS) rates.   
Five-day moving average. 

 

 

 

 

 
Figure 9: Reserve Holdings at Central Banks   

  
Source:  Federal Reserve Bank and Bank of England calculations 
Data is to March 2009 before the introduction of Quantitative Easing 
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Figure 10: A Directed Network with Five Nodes 

 
 
Figure 11: Stylised Balance Sheet 
 

 



 

 

Figure 12: Systemic Liquidity Hoarding (Poisson Distribution; Single Random Idiosyncratic 
Haircut Shock) 

 

 
 

 
Figure 13: Systemic Liquidity Hoarding (Poisson Distribution; Aggregate Haircut Shock and 
Single Random Idiosyncratic Haircut Shock) 
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Figure 14: Systemic Liquidity Hoarding (Geometric Distribution; Single Random Idiosyncratic 
Haircut Shock) 

 

 
 
 

Figure 15: Systemic Liquidity Hoarding (Poisson Distribution; Single Haircut Shock Targeted 
to Bank with Highest In-Degree) 
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Figure 16: Systemic Liquidity Hoarding (Geometric Distribution; Single Haircut Shock 
Targeted to Bank with Highest In-Degree) 

 

 
 

 
Figure 17: Systemic Liquidity Hoarding (Geometric Distribution; Single Random Idiosyncratic 
Haircut Shock; 25% Unsecured Interbank Liabilities) 
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Figure 18: Systemic Liquidity Hoarding (Geometric Distribution; Single Random Idiosyncratic 
Haircut Shock; 3.5% Liquid Asset Holdings) 
 

 
 
 
 
Figure 19: Systemic Liquidity Hoarding (Geometric Distribution; Single Random Idiosyncratic 
Haircut Shock; 3.5% Average Liquid Asset Holdings but set via Systemic Liquidity Surcharge 
Rule) 
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Figure 20: Systemic Liquidity Hoarding (Geometric Distribution; Single Random Idiosyncratic 
Haircut Shock; Partial Withdrawal) 
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