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Abstract

Theory suggests that the market’s uncertainty about managers’ reporting objectives is an important

source for reporting biases (Fischer and Verrecchia 2000), yet little empirical work exists on gauging such
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certainty. We show that investors’ uncertainty about reporting incentives, albeit non-zero, are generally
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1 Introduction

Theory suggests that the market’s uncertainty about managers reporting objectives affects biases in finan-

cial reports (Dye, 1988; Fischer and Verrecchia, 2000). The intuition is that when investors have imprecise

knowledge about a manager’s incentives, they are unable to back out biases, thereby allowing the manager

to add noise to reports. For example, Fischer and Verrecchia (2000) posit that investors could not always

know the precise nature of a manager’s compensation, time horizon, psychic costs related to biases, tolerance

towards litigation and reputation costs, etc. A growing empirical literature provides compelling arguments

for the existence of such uncertainty (Fang, Huang, and Wang 2017; Ferri, Zheng, and Zou 2018; Samuels,

Taylor, and Verrecchia 2018), showing that factors tied to incentives and monitoring intensity relate to

the quality of accounting information. Despite this active research agenda, there is still limited work on

quantitatively assessing the structural implications of this framework.

The purpose of our study is to fill this void and quantify investors’ uncertainty about managers’ incentives.

A vast accounting literature suggests that earnings manipulation is pervasive (Graham, Harvey, and Rajgopal

2005). This widely held belief among accounting researchers draws harsh criticism from other disciplines on

the integrity or competence of the accounting profession (Bazerman, Lowenstein, and Moore, 2002). However,

the sole existence of earnings manipulation is still controversial. Ball (2013, p. 851) asks: “[i]f a searcher has

reliable evidence of financial statement manipulation, is there not a moral obligation to inform the parties

affected by it as well as those responsible for acting on it?” The near-absence of academic whistleblowers

leads him to conjecture that manipulation may not be as rampant as what academic publications imply.

Because transparency about managers’ incentives helps investors detect biases and keeps manipulation in

check, a large sample empirical assessment of the market’s uncertainty could inform the ongoing debate

about the magnitude of reporting biases. Consequently, our exercise may shed light on what the accounting

research profession should do next (or more precisely, should not continue to do), both for theorists and for

empiricists.

Ex-ante, it is unclear whether the market’s uncertainty about a manager’s reporting objectives is as large

and pervasive as what the aforementioned arguments would suggest. There are several reasons that such

opacity could be low. First, corporate filings provide extensive disclosures about executive biography, com-

pensation, trading activities, as well as management discussion and analysis that reveal managers’ incentives.

Second, the Sarbanes-Oxley Act of 2002 provides a litigation environment less prone to earnings manipula-

tion. Third, advance in internet search, social media and social network facilitate the access to information

about managers’ personal lives, which further reduces the market’s uncertainty about their incentives. Fi-

nally, the burgeoning compensation and proxy advisors also help investors assess managers’ incentives. In
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sum, managers’ scope to maneuver and hide their incentives from investors is limited. To gauge this latent

construct of uncertainty, we derive an easy-to-use theory-based measure that remains closely anchored to the

classic models (Dye 1988; Fischer and Verrecchia 2000) and embeds information inherent in the cost-benefit

trade-off facing the manager.

A structural model is well-suited to examine this problem in that it uses theory to connect unobservable

drivers of incentives and unobservable manipulation choices to observable empirical features. We do not

observe incentives formally. If all incentives (and other sources of distortions) were perfectly known by

the market but for true fundamentals, investors would be able to perfectly back out any private information

known to the manager from accounting reports (Dye 1988; Stein 1989). Without directly observing incentives

as researchers or market participants, we need to answer this question within the scope of a theoretical

framework that connects unobservable incentives to empirical facts.

In this paper, we provide one attempt to answer such a question by fitting empirical facts about reported

earnings and restatements using the framework of Fischer and Verrecchia (2000). Managers have reporting

incentives unobserved to the market, and reported earnings reflect both uncertain incentives and fundamen-

tals - implying that the bias introduces noise as investors can only correct for the bias in expectation. We

enrich this model along various interesting empirical dimensions. First, we extend the theoretical model

to involve predictions about misstatement detection and misstated amounts, and use these properties to

identify the model. Second, we estimate from the data a non-linear relation between price and earnings, and

in one of the models, obtain a distribution of true earnings without pre-assuming any distributional form.

Third, our model allows us to obtain various measurements, such as the effect of manipulation on expected

value to investors, the effect of manipulation on manager welfare or the loss of information due to accounting

noise, as well as various counterfactuals in response to increases or decreases in incentives.

We adopt two estimation approaches in the analysis. The ‘parametric’ model assumes both earnings

and incentives are normally distributed. The second approach is semi-parametric because it only requires

reporting incentives to be normally distributed while the true earnings distribution is recovered from the

data. Both estimation procedures suggest the uncertainty about the manager’s reporting objective is small,

i.e., 1.94% of lagged assets in the parametric model and 0.52% in the semi-parametric model, while the

average reporting incentive is close to zero. The average manipulation bias is small about one quarter of

a percent upward, measured in ROA surprises in the parametric model while closer to zero in the semi-

parametric model. To analyze the real effects of these estimates, we evaluate the following three aspects:

the information loss due to the uncertainty about the manager’s reporting incentive, the welfare change for

investors and the ex-ante expected benefit for the manager. The information loss due to the uncertainty

about the manager’s reporting incentive is about one standard-deviation of true earnings surprise in the
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parametric model and about half of a standard- deviation in the semi-parametric model. The welfare loss

measured as the average difference between the actual price and the price if earnings had been reported

truthfully attains about 0.2% of lagged assets in the parametric model, that is, about one third of the

standard-deviation of true earnings. The semi-parametric model exhibits a lower loss of about 10% of a

standard deviation of the true earnings. Lastly, we find managers benefit from the reporting uncertainty at

about 85% of the standard deviation in the manager’s utility in presence of uncertainty in the parametric

model and about 40% in the semi-parametric model.

To capture the potential difference in the distribution across different settings, we estimate the two models

for various industries, firm sizes and growth opportunity groups. We find that larger firms have higher

true earnings, higher mean of reporting incentives, but also higher regulatory intensity. Firms with higher

growth opportunity have higher reporting incentives but also larger reporting uncertainty. High growth firms

exhibit a lower regulatory intensity. Our estimation by industry shows that Business Equipment has the

most incentives to manipulate and a large reporting uncertainty.

Two recent studies are very closely related to our model because they specifically focus on estimating a

model of noisy manipulation. Bird, Karolyi, and Ruchti (2016) examine, similarly to our study, a model in

which a manager subject to noisy incentives manipulates against market price. Like us, they estimate the

price response function and we build on their approach when we use simulated data to fit the model and

data. The results are also consistent with their findings: managers manipulate away from where the price

response is the steepest. However, there are several key differences between the two studies. First, they focus

on a ‘sharp’ identification via a discontinuity around zero rather than the entire distribution of reports - this

comes with benefits but also trade-offs since the core of their analysis is concentrated around zero. Second,

we also bring information about detected misstatements into the model and estimation, which allows us to

narrow down the identification via actual detections. Third, we model the mapping between true earnings

and price and extract the welfare implication of noise. Additionally, we perform several counterfactuals by

endogenously adjusting the price function to new parameter estimates. Lastly, we develop a semi-parametric

approach that requires little knowledge of the distribution of true earnings.

Another study related to ours is Beyer, Guttman, and Marinovic (2018) which, to our knowledge, is the

only other study focusing on noisy signalling, albeit in the framework of the (related) Dye and Sridhar (2004)

in which it is the uncertainty about the acceptable GAAP earnings that introduce accounting noise. Yet our

approaches are very different. They focus on a linear-normal model in which prices are linear in reported

earnings. Linearity implies a simple closed-form identification of the structural parameters even though the

manager is forward-looking (which we cannot accommodate in our model). Identification in their model

relies on a relationship between price and the net discounted value of true earnings. By contrast, we do not
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make this assumption but instead rely on detections to identify manipulation. Linearity in this approach

also precludes implications of noise on ex-ante price. Also, as is usual in learning processes, only a ratio

of accounting noise to fundamentals can be identified. Interestingly, albeit a very different approach, their

estimates of accounting noise are within the same magnitudes as ours, therefore, suggesting that different

methods appear to converge in terms of principal magnitudes.

There are other studies focusing on manipulation and reviewing them in their entirety goes beyond our

current focus. A precursor to this study is Bertomeu, Cheynel, Li, and Liang (2018) and focuses on estimating

a version of this model when there is no incentive noise and without using misstatement information. Other

studies apply structural estimation to other environments, such as conservatism (Breuer and Windisch, 2019),

investment in intangibles (Terry, Whited, and Zakolyukina, 2018), contracting (Li, 2018), auditing (Gerakos

and Syverson, 2015), general equilibrium (Choi, 2018), disclosure (Zhou, 2017) and analyst forecasts (Xiao,

2015). Relative to this literature, we hope that our study contributes to building more knowledge about

using structural estimation in classic accounting problems.

2 Model

The model is adapted from the noisy reporting framework developed in Fischer and Verrecchia (2000) and

Frankel and Kartik (2019). We briefly summarize this setting below without any formalism. A manager

privately observes two random variables: a value-relevant true earnings signal and a personal incentive to

increase market value. Then, the manager reports accounting earnings for a cost that depends on the

difference between accounting and true earnings. The market observes the report and forms expectations

about the value of the firm rationally. Our interest here is to estimate this framework using observables about

the distribution of earnings and restatements and the empirical relationship between prices and earnings.

The details of the the timeline and notations are given below.

Environment. Consider a one-period game with a firm and a mass of risk-neutral investors. There is

an unobserved value-relevant state of the world s̃. if a realization s̃ = s were perfectly observable, this

economic state would map into market value according to some function α(s). In practice, however, the

true state of the world will not be fully known at a point in time where market prices form. If there is

uncertainty, we assume that the market can price the firm using the expected state, i.e., α(E(s̃|I)), where

I is a public information set. This assumption is borrowed from Ganuza and Penalva (2010) and can be

thought as a linear approximation in which decisions can be made based on the first moment of the state.

Various decision problems that yield this representation are given in Bertomeu, Cheynel, and Cianciaruso
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(2018) and Marinovic, Skrzypacz, and Varas (2018).

Within this framework, value-relevant earnings must be signals about the expected state by construc-

tion. Therefore, we assume that true earnings ṽ ≡ E(s̃|Ĩ), where Ĩ is a latent random variable indicating

information collected by the firm, before any management bias. Thereafter, we work directly with ṽ and

assume that it has a p.d.f. f(.) with realizations denoted v. It then follows that the market price of a firm

conditional on true earnings ṽ = v is α(v), and the corresponding market price for any noisy signal r̃ = r

about true earnings, from the law of iterated expectations, is:

γ(r) ≡ α(E(s̃|r)) = α(E(E(s̃|I)|r)) = α(E(ṽ|r)), (1)

so that the market prices a signal in terms of posterior expectations about earnings.

Note that we assume no a-priori theoretical knowledge about the true mapping α(.) given that differ-

ent decision problems would imply different functional forms. We will seek to identify this function from

observations about biased reports and price, i.e., from observing γ(.). This requires additional theoretical

structure about observed accounting reports, which we discuss below.

Manager’s Problem. The manager privately observes true earnings ṽ and a random preference shock x̃

which is normally distributed with a p.d.f. h(x), mean μx and variance σ2
x. The manager chooses a report

R(v, x) to maximize

R(v, x) ∈ arg max
r

xγ(r) −
(r − v)2

2
. (2)

The preference shock x̃ represents the marginal benefit from the market’s valuation relative to the

marginal cost of earnings management by imposing one extra unit of bias in the report. Following Fischer

and Verrecchia (2000), we do not rule out negative values of x. For example, a manager might be willing to

increase the price prior to a security offering, or manage earnings downwards to reduce the exercise price on

a new grant (Aboody and Kasznik 2000).

Market Pricing. The market conjectures a reporting strategy R(v, x). Upon observing a report r, the

price γ(r) rationally infers a posterior expectation E(v|r = R̄(ṽ, x̃)), that is,

γ(r) = α(E(ṽ|R(ṽ, x̃) = r)). (3)

Note that Fischer and Verrecchia (2000) assume that α(.) is linear and (ṽ, x̃) are normally distributed,

which can be shown to imply the existence of a linear conjecture γ(.) - that is, market prices are proportional

to both true earnings and reported earnings. In our model, we allow for non-linear functions α(.) and γ(.) to
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accommodate features of the data in the observed γ(.) is non-linear. For example, the mapping between price

and earnings can also be S-shaped, when there is uncertainty in the precision of earnings (Subramanyam,

1996; Kirschenheiter and Melumad, 2002).

Equilibrium. A Bayesian equilibrium is such that the manager reporting strategy R(v, x) is optimal

given the market pricing function and the market pricing function γ(r) correctly conjectures the manager’s

reporting strategy:

(i) The manager optimally selects R(v, x) by solving the optimization problem in Equation (2) for any v

and x.

(ii) The market conjecture manager’s reporting strategy correctly and prices the firm at γ(r) according to

Equation (3).

To use additional information from observed misstatements, note that (r−v)2/2 in the manager’s problem

is the total perceived cost by the manager. We decompose this total cost in terms of a probability of detection

1 − e−d|r−v| and an incurred cost conditional on detection ψ(r − v) where

(r − v)2

2
= (1 − e−d|r−v|)ψ(r − v).

3 A Closed-Form Approach

We develop next a simplified parametric approach that follows closely (i.e., to the notation) the linear-

normal framework of Fischer and Verrecchia (2000) but will also illustrate some of the estimation steps

further developed in the general model. Assume that the relationship between true earnings and value is

linear, that is, α(v) = kv, where k may be interpreted as a true earnings multiple which is positive and

not directly observable. True earnings ṽ ∼ N(μv, σ2
v) and incentives x̃ ∼ N(μx, σ2

x) are independently and

normally distributed.

Denote r as the expected accounting report in order to express the model in returns and earnings surprises.

We know from Fischer and Verrecchia (2000) that there is a unique linear equilibrium with

γ(r) − γ(r) = βk(r − r) (4)

R(v, x) − r = v − μv + βk(x − μx), (5)
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Using that

β(r − r) = E(v|r = v − μv + βk(x − μx)) − μv =
σ2

v(r − r)
σ2

v + (βk)2σ2
x

and identifying coefficients yields a third-order polynomial (βk)3 σ2
x

σ2
v

+ βk − k = 0 which can written as

σ2
x

σ2
v

=
k − βk

(βk)3
. (6)

Similarly, the variance of accounting earnings V ar(R(v, x)−r) can be derived in the model using (5) and

(6) as

V ar(R(v, x) − r0)︸ ︷︷ ︸
VR

= σ2
v + (βk)2σ2

x =
(βk)2

1 − β
σ2

x. (7)

Note that βk can be directly estimated from a regression of returns on earnings surprise and VR can be

estimated as the unconditional variance of earnings surprises. However, there are only two equations (6) and

(7) for four unknowns (k, σv, σx, β) so the model is not identified by these equations alone.

Let us assume that for any report r = R(v, x), the probability of detection is given by 1−e−d|r−r−(v−μv)|.

For the purposes of mapping this analysis into conventional statistical methods, let us assume, for any r that

is sufficiently large: |r − r − (v − μv)| ≈ r − r − (v − μv).1 Note that:

E(v − μv|r = R(v, x)) = γ(r)/k = β(r − r) (8)

V ar(v − μv|r = R(v, x)) =
β2k2σ2

vσ2
x

σ2
v + β2k2σ2

x

= (1 − β)σ2
v . (9)

Therefore, the average probability of detection conditional on r = R(v, x) is

ξ(r) ≈ 1 − E(e−d(r−r−(v−μv))|r) (10)

≈ 1 − e−d(1−β)(r−r)+ d2

2 (1−β)σ2
v (11)

≈
1

1 + e−(ξ0+ξ1r)
. (12)

where ξ0 = −d2

2 (1 − β)σ2
v and ξ1 = d(1 − β) can be estimated via a logistic regression of misstatements on

earnings surprises on the upper quantiles of the distribution of earnings. Then the other parameters can be

1The detection probability is slightly different from the baseline model, in that it is stated in terms of surprises; while not
critical for the analysis, this formulation implies a simpler estimation procedure in the linear model.
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recovered in closed-form as

β = −
2ξ0

2ξ0 − VRξ2
1

(13)

σ2
v = max(

2ξ0VR

2ξ0 − VRξ2
1

, 0) (14)

σ2
x = max(

V 2
Rξ2

1

(βk)2(2ξ0 − VRξ2
1)

, 0) (15)

d = max(ξ1 −
2ξ0

VRξ1
, 0), (16)

and, finally, k can be recovered by dividing the estimated βk by the β in (13).

We fit in Table 1 below this set of equations for accounting earnings in the top quintile, subject to the

model restriction that ξ0 ≤ 0 ≤ ξ1 in the logit regression. We can also estimate the model when r is small,

in which case the analysis is similar except that |r − r − (v − μv)| ≈ v − μv − (r − r), and thus ξ′0 = −ξ0 and

ξ′1 = −ξ1.2 All these estimates imply a corner solution with limited uncertainty about reporting incentive

σx, i.e., noise unobserved to investors but observable to the manager. For example, it could be that investors

have a reasonably good idea of managerial incentives. As we will see in the general model, part of this

observation is due to the simplified nature of the linear-normal model but this provides a general insight of

accounting noise.

Table 1: Linear-Normal Model

Model β σv σx d k corner

Top quintile earnings 1.0001 0.0125 0.0001 0 1.0354 yes

Bottom quintile earnings .9952 0.0125 0 1,078 1.0406 yes

Data used in the estimation are summarized in Table 2.

4 Sample Construction

Our model implies three observable variables: the accounting report r, the market price γ(r) and the

occurrence of a misstatement d. We construct an empirical sample for these variables below.

We obtain financial reporting data from Compustat, analyst forecast and companies non-GAAP earnings

from IBES, stock price data from CRSP and restatement data from AuditAnalytics. Although the Audit

Analytics database started collecting restatements prior to 2000, collections are only systematically conducted

afterwards. Further, we start the sample in 2003 to focus on the post Sarbanes-Oxley regulatory environment.

2The results are identical for other quantiles, or estimating the exponential form directly without the logistic approximation.
These are corner solutions where some of the parameters lie at the boundary of the parameter space.
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We divide earnings by lagged assets, and subtract the analyst consensus by dividing the IBES earnings

consensus by lagged assets - with a slight abuse in language, we denote this as ROA surprise or, in short,

ROA.

Note that we scale by assets (versus earnings) to avoid firms dropped due to negative equity (i.e., following

histories of losses) or, if scaling by lagged market values, to somewhat mitigate possible effects of earnings

announcement drift or momentum. Another downside of using market values as a scaling variable in our model

is that a structural model is much more sensitive to noise in variables than a linear regression (since the noise

need not average out even with a large sample). As will be shown later, we project returns on accounting

variables, so when measuring γ(r) the noise in stock price can be averaged out in the pre-estimation step. For

the corresponding stock reaction, we use a three-day cumulative value-weighted portfolio-adjusted abnormal

return. In order to make sure the restatement data reflects reporting bias as in our model, we only use

restatement cases that have income effect, i.e., the variable “include in income calculations” equals one in

AuditAnalytics. A misstatement that is a simple misclassification or with some reporting issue that is distinct

from income is classified as not detected in the model, so our model does not speak to this type of restatement.

We calculate Restated ROA as ROA plus restatement amount scaled by lagged total assets in the sample

of restated years. The Corrected ROA is defined as Restated ROA if there was restatement occurrence and

equals ROA if not. Naturally, Corrected ROA need not be equal to true ROA if a misstatement was not

detected.

We keep in the sample both large and small restatements. This requires some discussions as it is known

in the literature that many restatements are not legally classified as intentional frauds, i.e., they do not have

large effects on the firm and do not come with verifiable evidence of management intent (Hennes, Leone,

and Miller 2008). Within the context of our model, we cannot remove small restatements because the model

predicts a large fraction of small restatements. More importantly, the model does not presume that there

is a legal case against management or even that the restatement itself, while possibly too conservative or

liberal relative to GAAP, would be against the law. For this reason, it is important to interpret our results

in terms of accounting quality lost due to discretion, and what we call restatements are not all serious frauds

that would involve criminal prosecution or even SEC investigation and fines. As is implied by theories such

as Fischer and Verrecchia (2000) and Dye and Sridhar (2004), this does not mean that small restatements

are unimportant given that, if widespread, they can reduce the ability of investors to understand the true

state.

We report summary statistics in Table 2. The median firm in our sample is moderately large, with 721

million USD in assets, but there is significant variation in size with a lower quartile at 217 million USD

and an upper quartile at 2.54 billion USD. The average ROA is close to zero which indicates that the IBES
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Table 2: Descriptive Statistics

Variable N Mean Std. Dev Lower Quartile Median Upper Quartile

Total Assets 27,806 4,504.437 21,883.488 217.408 721.769 2,540.300

ROA 27,806 -0.001 0.013 -0.002 0.001 0.003

CAR 27,806 0.000 0.078 -0.043 -0.003 0.041

Restated ROA 3,067 -0.005 0.021 -0.006 -0.001 0.003

Corrected ROA 27,806 -0.001 0.015 -0.002 0.000 0.003

BTM 27,617 0.518 86.409 0.259 0.439 0.690

Mktcap 27,622 4949.626 20136.266 256.037 782.953 2598.43

ROA is the return on asset, calculated using the company reported ROA minus analyst forecast consensus. CAR
is the difference between the buy-and-hold return of a firm and that of CRSP value-weighted market portfolio over
the three-day window from Day -1 to Day +1 centered on annual earnings announcement dates. Restated ROA is
the change of ROA due to restatement, calculated as change in net income scaled by lagged total asset. Corrected
ROA is the sum of ROA and Restated ROA (zero if no detected misstatement). BTM is book-to-market equity ra-
tio, computed as book value of common equity scaled by market capitalization (CEQ/(CSHO × PRCC F )). The
last variable Mktcap is the market capitalization in the end of the fiscal year. It is the product of common shares
outstanding (Compustat item CSHO) and fiscal year end closing price (Compustat item PRCC F ).

consensus does not have a very strong bias and the average 3-day return is almost zero, as expected from

the expected abnormal return in a 3-day period. On average, we find that the restated ROA is lower than

the reported ROA but, overall in the entire sample, the correction to ROA is not large. The distribution of

restatements shows some negative skewness with a larger proportion of negative restatements than positive

ones.

In univariate analyses presented in Table 3, we show that, as expected, ROA surprises are positively

associated to returns - a key reason to manipulate accounting reports in our model. We do not find a

directional association between D misstate and ROA, which is consistent with restatements occurring at

intermediate levels of earnings but with no clear pattern over high or low reported earnings. Corrected ROA

is negatively associated to D misstate, indicating that restatements tend to be income decreasing. Finally, we

observe restatement amount Restated ROA is positively correlated with ROA, suggesting low performance

firms tend to bias upward and high performance firms on average bias downward.
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Table 3: Pearson Correlation

ROA Restated ROA D misstate Corrected ROA CAR

ROA
1

(27,806)

Restated ROA
0.5818* 1

(3,067) (3,067)

D misstate
-0.0048 . 1

(27,806) . (27,806)

Corrected ROA
0.8941* 0.9417* -0.1021* 1

(27,806) (3,067) (27,806) (27,806)

CAR
0.1657* 0.1195* -0.0024 0.1528* 1

(27,806) (3,067) (27,806) (27,806) (27,806)

This table presents the pairwise correlation coefficients between variables in each column and row.
D misstate is an indicator variable with value being 1 if there is a restatement in the firm-year observation
and 0 otherwise. The rest variables are defined in Table 2. Number of observations are in parentheses.
Asterisks specify the significance levels of correlation coefficients: * p < .001.

5 Estimation Method

This section discusses the empirical procedure to estimate the model. The dataset is composed of observations

(ri, di, γi)N
i=1 where ri is an accounting report, di is the occurrence of a restatement and γi is the corresponding

return. Each of these observables corresponds to an endogenous variable in the theoretical model but the

realizations of the primitives that caused these observables, i.e., the true earnings vi and the price incentive

xi are not observable to the econometrician. In what follows, we use hats to indicate estimated objects.

First, we estimate two theoretical constructs directly from the data and model restriction without knowl-

edge of the parameters to be estimated. The market response γ(r) is estimated from a non-parametric fit

of values of γi on ri. We use cubic spline to fit this relationship in order to ensure that the fitted market

response has continuous first and second derivatives.

Figure 1 presents the price response function to earnings surprise. This plot is consistent with a non-

linear empirical relation between accounting reports and stock price. Consistent with the prior literature

(Burgstahler and Dichev, 1997; Degeorge, Patel, and Zeckhauser, 1999; Bird, Karolyi, and Ruchti, 2016),

manipulation incentives provided by capital market are highest around zero earnings surprise. Although we

do not assume monotonicity, the empirical mapping suggests a monotonic relation between earnings and

price reaction. Furthermore, the price response function has a distinctive S-Shape, steeper in the middle

and flatter for extreme earnings. This shape may be driven by two forces: (i) the price response function to

the true earnings can be itself S-shaped, in line with theories in Freeman and Tse (1992) and Subramanyam
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(1996); (ii) manipulation might contribute to an S-shape if manipulation to meet the threshold is interpreted

as stronger fundamentals. To distinguish the two potential explanations, we will later examine the non-linear

mapping between true earnings and price from the theoretical model.

Figure 1: Earnings Response Functions

The graph displays the fitted earnings-response function (γ̂) that maps ROA to CAR. ROA is the ROA surprise adjusted by
analyst forecast consensus. CAR is the three-day abnormal return surrounding earnings earnings announcement.

According to Figure 1, when reported earnings are zero, that is meeting analyst forecast, three-day

abnormal returns are very close to zero, at 0.41%. On one hand, markets strongly penalize reported earnings

missing the consensus by only 2% by yielding an abnormal return of −2.82%. Reported earnings missing

the consensus by 5% are associated with an even lower three day abnormal return of −3.25%. On the other

hand, when firms beat the consensus by 2%, markets reward them with a three day abnormal return of

2.83%. If they beat the consensus by 5%, the reward is even higher attaining abnormal returns of 4 .76%,

To gain additional intuition as to how this market response produces incentives to manipulate, differen-

tiating the manager’s problem in Equation (2) and using the estimated market response yields

r − v︸ ︷︷ ︸
reporting bias

= xγ̂′(r). (17)

Hence, the bias is proportional to the realized reporting incentive x and the slope of the market response

γ′. We plot the first derivative of the earnings response function γ′(.), as in Figure 2. The market incentive

peaks at a value of 2 when reported earnings is zero. This derivative remains positive over the range of

reported earnings but flattens for reported earnings in the tails. The derivative is up to 10 times lower for
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accounting reports that lie away from the consensus indicating muted incentives to manipulate.

Figure 2: Market Incentive Functions
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The graph displays the first derivative of the earnings-response function ( γ̂′) . ROA is the ROA surprise adjusted by analyst
forecast consensus and CAR is the three-day abnormal return surrounding earnings earnings announcement.

Building on this intuition, for the next step of the analysis, we numerically solve for the agent’s reporting

strategy

R̂(v, x) ∈ arg max xγ̂(r) −
(r − v)2

2

by choosing a grid of (vj , xj), computing R̂(vj , xj) and interpolating for the R(v, x) that are not on the grid.

The resulting reporting functions are plotted next, for different values of the private incentive x.
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Figure 3: Reporting functions

The graph displays the numerical solution to the manager’s problem for various v (horizontal axis) and different incentives
(x = −0.005 , x = 0, x = 0.005 and x = 0.012).

Note that the manager over-reports when x > 0 and under-reports when x < 0. Interestingly, for

any x 6= 0, the bias is not necessarily maximal near zero true earnings because managers with earnings

significantly below the steepest point may attempt to reach positive earnings. Indeed, the maximal bias is

reached for lower true earnings when x is higher. The reverse occurs when x < 0 as managers with higher

true earnings choose more downward bias as x increases.

Having recovered (γ̂, R̂(.)), we are now equipped to recover the parameters of the distributions of true

earnings ṽ and reporting incentives x̃. We present first a fully parametric approach to recover the distribution

of earnings and incentives. Assume that ṽ ∼ N(μv, σ2
v) and x̃ ∼ N(μx, σ2

x) are independent and normally

distributed random variables, so that the possible parameters of the model are vectors θ = (μv, σv, d, μx, σx).

Our estimation procedure will be to simulate a dataset of reports and restatement occurrences for a given θ

and find the parameters such that the joint distribution of these variables in the simulation closely matches

the distribution of these variables in the empirical sample.

Formally, for a given θ, we draw true earnings vθ
i and reporting incentives xθ

i , and compute an accounting

report rθ
i = R̂(vθ

i , xθ
i ). We then draw a restatement dθ

i from a Bernoulli distribution with success rate

1− ed|rθ
i −vθ

i |. This procedure generates, for any given θ, a simulated dataset (rθ
i , dθ

i ). We use the method of

moments to identify the five parameters of interest, matching the following moments: the mean and standard-

deviation of reported earnings, the average probability of detection and the mean and standard-deviation of

detected restatements.
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One limitation of the parametric model is that the distribution of reports as predicted by the model will

be generally inconsistent with the distribution of reports in the data because true earnings are unlikely to

be normally distributed (Hemmer and Labro 2019; Breuer and Windisch 2019). This may cause the model

to attribute manipulation to any non-normality in the original distribution of true earnings.

To illustrate this point further, we plot below the distribution of reported earnings in the sample, and

compare a kernel fit of the density to the best normal approximation. As can be seen, reported earnings

appear to feature both more skewness and kurtosis than the normal distribution, and have heavier tails, as

shown by the much larger probability mass near zero or small positive earnings jointly with many extreme

observations. Within our framework, the mismatch between the two distributions can be explained by

manipulation which, given that actual restatements cannot be too large due to the moderate probabilities

of restatements (and their size), translates into a significant amount of potential misspecification.

Figure 4: Histogram of ROA surprises

The graph displays a histogram of the reported ROA surprises, and overlays a non-parametric kernel fit as well as a parametric
normal distribution.

We develop next an alternative empirical approach that draws information from the observed distribution

of earnings. A brief description of this method is given below. We proceed iteratively starting from a guess

about the distribution of true earning, estimating the parameters of the model for this given distribution,

and then updating the distribution of true earnings by inverting the distribution of observed reports given

the estimated parameters. We compare the updated distribution to the current guess and, if the updated

distribution has not converged yet, we repeat the procedure with the new distribution of true earnings (until

a convergence criterion is satisfied).
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Formally, the procedure is iterative starting at iteration i = 0. At this point, we initialize the distribution

of true earnings f̂0 to the distributed of restated earnings. Note that this starting point is intuitive since,

for example, if detections are sufficiently accurate, only small manipulations will be undetected and the

remaining restated earnings will be mapped back to true earnings by subtracting the manipulation (observed

when there is a restatement). Interestingly, observed manipulations also feature heavy tails, as can be seen

in the following histogram of restatements. Figure 5 reports the proportion of restatements as a function

of the magnitude of the restatements. Figure 5 exhibits dispersion in incentives around zero in Fischer and

Verrecchia (2000) since restatements can be positive or negative.

Figure 5: Histogram of restatements (ROA)

The graph displays a histogram of restatement in % of ROA.

The next step of our analysis is identical to the parametric approach except that ṽ is drawn from the

empirical distribution F̂0 instead of N(μv, σ2
v). As in the previous approach, we estimate the model using

(generalized) method of moments, matching the mean and standard deviation of earnings and restatements,

and the probability of detection. There are fewer parameters than moments, so we weight moments using

the bootstrapped variance-covariance matrix of the moments.

Naturally, this need not be the correct parameter if the distribution of true earnings is different from

our starting conjecture - which, as noted earlier, is only valid to the extent that there aren’t too many large

undetected misstatements. However, the estimate θ̂0 can be used to recover an improved estimate of the

distribution of true earnings. Specifically, for any sample report ri, we can form a simulated true earnings

vs
i = ri − bθ̂0

i (18)
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where the bias bθ
i is drawn randomly from the simulated conditional distribution rθ̂0

i − vθ
i |r

θ̂0
i = ri.3

It is clear that, if θ̂0 is equal to the true parameter, the distribution of vs
i will be the distribution of

vi even though it is not possible to recover the true vi in the sample without knowing the true xi. From

this property, a necessary condition for θ0 to be the true parameter is the c.d.f. of vs
i , which we denote

F̂1(.) should coincide with the c.d.f. F̂0(.). We use a stopping condition such that the maximal difference

between the two c.d.f. should be less than 0.001. If this is not the case, we update the conjecture about the

distribution of true earnings to F1(.) and repeat the steps above, simulating ṽ from F1(.) and re-estimating

θ̂1, updating the distribution of true earnings to F2(.). We repeat this procedure iteratively until the stopping

condition is met.4

6 Estimation Results

Table 4 reports estimation results for the two estimation approaches. In the first model (“parametric”), earn-

ings and incentives are assumed to be normally-distributed, while in the second model (“semi-parametric”),

only the incentive noise is assumed to be normally-distributed and the distribution of true earnings is recov-

ered from the estimation procedure described in section 5.

In the parametric model, the mean of true earnings is μ̂v = −0.28%. Given that reported earnings are

expressed in surprises, this suggests a small upward bias of a quarter of a percent, which is about one third

of the estimated standard deviation of true earnings of σ̂v = 0.78%. The regulation intensity is d̂ = 8.89,

which roughly corresponds to a manipulation of 1% being detected with probability 8 .5%. The mean of the

incentive μ̂x = 0.08% is very close to zero and suggests that on average managers are about equally likely

to be biasing upwards or downwards; hence, most of the manipulation is driven by the noise component

σ̂x = 1.94%.

Perhaps unsurprisingly, the semi-parametric model implies less evidence of bias. In the parametric

model results, the structural model explains deviations from the normal distribution in terms of earnings

management choices which may overstate the actual level of earnings management if the true distribution is

not normal for reasons entirely separate from managerial discretion (Hemmer and Labro 2019). We find that

the average reporting bias is close to zero and the incentive noise is about one fourth of the level found in

the parametric model, at σ̂x = 0.52%. To fit the observed likelihood of detection, the intensity of detection

3Specifically, we simulate 10, 000 draws of (rθ̂0
j , vθ̂0

j ), choose the draw i with minimal |rθ̂0
i −ri| and compute bθ̂0

i = rθ̂0
i −vθ̂0

i .
4While, in principle, this procedure yields an empirically-driven distribution of true earnings, it does come with a downside.

Because the procedure is a fixed point over a distribution, this problem could have multiple solutions that depend on the starting
point. While we did not find convergence to other plausible solutions, this possibility cannot be fully ruled out computationally.
Having noted this, we believe that the initializing true earnings to restated earnings provides a plausible starting point and
could not find convergence to other empirically reasonable distributions with other starting point.
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is also higher at d̂ = 23.95. For a manipulation of 1%, this estimated intensity maps to a probability of

detection of 21.3%.

Table 4: Estimation Result

Model
Mean x Std.Dev.x Intensity Meanv Std.Dev.v

μx σx d μv σv

Parametric Model
0.0008 0.0194 8.8876 -0.0028 0.0078

(0.0004) (0.0017) (0.4890) (0.0004) (0.0009)

Semi-parametric Model
-4.40E-05 0.0052 23.9540

(0.0003) (0.0005) (1.9010)

Bootstrapped standard errors are in parenthesis.

We report the conditional reporting bias r − E(ṽ|r) in Table 6 in both models. The plot shows that,

even if the bias is on average positive, there is a fair amount of variation across biases with, typically,

positive (negative) surprises implying positive (negative) biases as implied by observed bunching around

zero earnings surprise. As expected from Fischer and Verrecchia (2000), the parametric model implies a

relationship between bias and reported earnings that is close to linear. In the semi-parametric model, by

contrast, the bias is U-shaped and has a lower magnitude given large losses. For such losses, the market

incentives are usually too low to manipulate earnings to become positive implying that firms with large losses

tend to report more truthfully.

Figure 6: Implied Manipulation

Panel A: Parametric Model
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Panel B: Semi-parametric Model
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The x-axis is reported earnings, measured by ROA surprise and y-axis is the predicted implied manipulation given reported

earnings.

In Figure 7, we plot the estimated relation between true earnings and stock price α̂(v), which characterizes

how prices would form if there were no manipulation. This function is recovered in several steps. First, we
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simulate a sample (vi, xi, ri, γi)N
i=1 at the estimated parameters of the model, where ri ≡ R̂(vi, xi) is the

optimal report and γi ≡ γ̂(ri) is the estimated market response to the manager report, as plotted in Figures

3 and 1 respectively. We then fit vi on ri to estimate vi ≡ E(ṽ|ri) and finally, fit γi on vi to recover the

mapping between true earnings and stock price α(.) since γ(r) = α(E(ṽ|r)). In the parametric model, the

non-linearity in the price response requires non-linearities in α(.), implying that this relation tends to be

markedly S-shaped. In the semi-parametric model, interestingly, we find that the mapping is much more

linear.

Figure 7: Observed and underlying market response functions γ(.) and α(.)

Panel A: Parametric Model Panel B: Semi-Parametric Model

The x-axis of the figures is the ROA surprise and y-axis is three-day CAR.The solid blue curve is the fitted market response
function γ(r), which is the same as in Figure (1). and the dotted curve is the fitted mapping between true earnings and stock
price α(v).

Next, we use the estimates of the model to answer three questions. First, how much information is lost

due to the co-mingling of the incentive noise into the accounting report (Frankel and Kartik 2019)? Second,

does accounting noise appear to benefit or hurt investors? Third, in equilibrium, do managers benefit ex-ante

from manipulation?

To motivate the first question, note that the conditional reporting bias can always be adjusted by the

market, so that a report can be debiased by subtracting the conditional bias r. While it may be important

to do so if the true earnings need to be used in a fundamental valuation model or for the purposes of deciding

the merits of an enforcement case, investors can debias true earnings in models such as Dye (1988) or Stein

(1989). But in our framework, reported earnings are contaminated by incentive noise, implying that reported

earnings are less precise than the true earnings.

Following Beyer, Guttman, and Marinovic (2018) and Bertomeu, Ma, and Marinovic (2019), we measure
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the information loss in terms of the residual uncertainty about true earnings

σv|r ≡

√
V ar[ṽ − E(ṽ|r̃)]

σv
(19)

and the residual uncertainty about the firm value

σα(v)|r ≡

√
V ar[α(ṽ) − α(E(ṽ|r̃))]

V ar(α(ṽ))
. (20)

The results are reported in Table 5. The information loss is larger in the parametric model than in

the non-parametric model. In the latter, a little less than half of the information is lost due to accounting

noise. These are large but note that, because of true earnings are unobservable, they describe a theoretical

counter-factual where enforcement might perfect and the information known to managers would be always

perfectly known to the market.

Table 5: Information Loss

Model
Info loss (earnings)

σv|r

Parametric Model 0.86

(0.003)

Semi-Parametric Model 0.40

(0.001)

bootstrap standard errors are in parenthesis.

To motivate the second question, agents in our model do not directly value the information loss but

may indirectly benefit or be hurt by the accounting noise. We first calculate a welfare metric, we define the

absolute change in expected price as

ΔW = E[γ(r̃) − α(ṽ)], (21)

which corresponds as the average difference between the actual price γ(r) and the price if earnings had been

reported truthfully. We can estimate this expression by simulating (ri, vi) and applying the estimated γ̂(.)

and α̂(.). We also report a scaled version of this number, dividing ΔW by the estimated standard error

of α(ṽ). Note that, in Fischer and Verrecchia (2000), the linearity in γ(.) and α(.) implies that ΔW = 0

since the expected price E(γ(r̃)) must equal the expected fundamental E(α(r̃)). If α(.) is convex, accounting

noise will increase expected price, while if α(.) is concave, accounting noise will decrease expected price.

Several models with decision-making can provide examples in which the price may be convex (Bertomeu,

Cheynel, and Cianciaruso 2018), or neither concave nor convex (Friedman, Hughes, and J Michaeli 2019).
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In our model, while we do not specifically need to model the underlying decision problem, we empirically

recover the form of α(.).

Table 6 reports the estimates. We show that accounting noise actually causes a (small) reduction in firm

value in the parametric model, at about 0.2%, that is, about one third of the standard-deviation of true

earnings. The semi-parametric model reveals a much smaller estimate, which is consistent with both the

lower estimated incentive noise and the more pronounced linearity in α(.). In this model, the loss is about

0.1%, that is, 10% of a standard deviation of earnings.

Table 6: Investor and Manager Welfare

Model ΔW ΔW/σv ΔM ΔM/σM

Parametric Model -0.002 -0.293 2.726e-04 0.856

(0.0012) (0.1579) (3.78e-05) (0.0413)

Semi-Parametric Model -0.001 -0.098 3.176e-05 0.403

(0.0001) (0.0417) (5.21e-06) (0.0224)

σM is the standard deviation of the manager’s utility in presence of reporting uncer-

tainty. Bootstrap standard errors are in parenthesis.

To motivate the third question, we ask whether manager might be interested in lobbying for less infor-

mative earnings. Fischer and Verrecchia (2000) show that managers are better-off with incentive noise than

they would be without noise, since they can strategically manipulate when x is large. In our model, however,

this benefit creates a decrease in expected price as noted in Table 6. We define the manager payoff as

ΔM = E
(
x̃γ(r̃) −

1
2
(r̃ − ṽ)2

)
− μxE

(
α(ṽ)

)
, (22)

that is the difference between the expected utility of the manager in the equilibrium and the expected utility

of the manager in a model where fundamentals must always be reported truthfully. Consistent with Fischer

and Verrecchia (2000), we show that managers remain better-off with accounting noise despite the lower

expected price, in both the parametric and semi-parametric models. The benefit of noise to the manager is

about 85% of the standard deviation in the manager’s utility in presence of uncertainty in the parametric

model, and about 40% in the semi-parametric model, indicating small to moderate private benefits of noise.

7 Model Fit

We examine the goodness of fit by examining the data moment and simulated moments by both models

evaluated at the estimates. Table 7 reports the empirical moments that we target and the predicted values
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from the two models, with their standard errors in parentheses. The moment include the mean of reported

earnings (ROA surprise), standard deviation of reported earnings, ratio of observations with a restatement

to total observations, mean of the restated amount and standard deviation of restated amount. Both models

show good fits between sample data and the model-implied moments.

Table 7: Model and Data Moments

# Moments Data Parametric Model Semi-Parametric Model

1 Mean of reported earnings -0.0005 -0.0006 -0.0007

(0.0000) (0.0004) (0.0002)

2 Std of reported earnings 0.0125 0.0155 0.0131

(0.0002) (0.0005) (0.0002)

3 Ratio of restatement cases 0.1103 0.1103 0.1097

(0.0036) (0.0036) (0.0042)

4 Mean of restated amount -0.0049 -0.0045 0.0004

(0.0005) (0.0006) (0.0008)

5 Std of restated amount 0.0207 0.0182 0.0087

(0.0009) (0.0005) (0.0005)

bootstrap standard errors are in parenthesis.

Figure 8 compares the simulated distributions of various types of earnings using the estimates in the

two models. Panel A plots the histogram of reported earnings simulated by the two model estimates,

with sample reported earnings as a benchmark. Ideally, we expect the simulated distribution of reported

earnings similar to the sample distribution if the model is a good fit. The simulated data distribution

using parametric model is more dispersed than the sample reported earnings distribution. We do not

find the peak on zero earnings, and instead the distribution has two peaks around zeros. Note that the

parametric model assumes a normal distribution for true earnings as shown in Figure 4, which as discussed

before, inherently translates a significant amount of misspecification. Compared to a normal distribution,

the simulated earnings distribution indicates misreporting has translate the earnings around zero to the

adjacent areas around -0.02 and 0.02. The non-parametric approach produces a distribution much closer to

the sample distribution, more skewed than a normal distribution and closer to the sample distribution.
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Figure 8: Simulated Distribution

Panel A: Reported Earnings

Panel B: Misstated Earnings

Panel C: Corrected Earnings

We also explore the distribution of misstated amount in Panel B and corrected earnings in Panel C of

Figure 8. The semi-parametric model generated data distribution is closer to the sample distribution in

both two panels. For the parametric model, both the simulated misstated earnings and corrected earnings
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are more dispersed than the sample. As for the semi-parametric approach, our estimates simulate very close

distribution of misstated amount, shown in Panel B of Figure 8, with a concentrated peak at around 0.005.

We assess the performances of the two models by comparing a range of non-targeted moments. These

moments are not utilized in our estimations but they capture important features of the financial reporting

and regulatory quantities. Panel A focuses on misstating firms which only contains observations that has a

restatement in the specific firm-year, while the non-misstating firms in Panel B only use observations that

do not have a restatement. We investigate both the mean and standard deviation of the reported earnings,

as well as the covariance of reported earnings and misstated amount.

Table 8: Non-Targeted Moments

Moments Data Parametric Model Semi-parametric model

Panel A. Misstating Firms

Mean of reported earnings -0.00050 -0.0009 -0.0008

(0.0001) (0.0004) (0.0002)

std of reported earnings 0.01257 0.0153 0.0135

(0.0002) (0.0005) (0.0002)

cov. reported earnings and misstated earnings 0.0002 -0.0003 -0.0001

(0.0000) (0.0000) (0.0000)

Panel B. Non-misstating Firms

mean of reported earnings -0.0007 0.0015 0.0003

(0.0003) (0.0008) (0.0003)

std of reported earnings 0.01224 0.0170 0.0096

(0.0005) (0.0006) (0.0004)

8 Nested Models

We consider two special cases of the baseline models to study the extent to which our model can explain the

data. First, we set the mean of reporting incentive μx = 0, so that the chances of a manager preferring a

higher or lower stock price are equally half. Second, we change reporting incentive x̃ from random variable

to a constant by setting σx = 0 - in this case, as is well-known, the market can reverse engineer the true bias

- note that this model is estimated structurally in Bertomeu, Cheynel, Li, and Liang (2018) in the case of

normal distributions but without restatement data. Table 9 reports the analysis of the nested models.

Since our baseline estimate for μx is close to zero, the results do not change compared to the baseline

estimates in both models. By contrast, the constant incentive model fits significantly less. The estimate

for μx in the parametric model is 0.0083, lower than in the baseline model since all firms must be over-

reporting. The distribution of true earnings is also different, with larger mean and standard deviation.

24



In the semi-parametric model, the estimated detection intensity is 53.51, more than twice of the baseline

estimates.

Table 9: Nested Models

Panel A. μx = 0

Model
Std.Dev.x Intensity Meanv Std.Dev.v

σx d μv σv

Parametric Model 0.0198 8.8344 -0.0033 0.0071

(0.0018) (0.4844) (0.0005) (0.0008)

Semi-parametric Model 0.0054 23.2819

(0.0005) (2.0073)

Panel B. σx = 0

Model
Mean x Intensity Meanv Std.Dev.v

μx d μv σv

Parametric Model 0.0083 9.9990 -0.0111 0.0135

(0.0023) (8.2394) (0.0028) (0.0008)

Semi-parametric Model -0.0003 53.5146

(0.0002) (3.6826)

Bootstrap standard errors are in parentheses.

9 Counterfactuals

In the model, the market’s uncertainty about managers reporting objectives is the key factor on both

manager and investor’s welfare. In Table 10, we quantify the effect of reporting incentives based on counter-

factual analysis. The market response to true earnings α(.) stays unchanged in the counterfactual analysis,

while γ(.) should change due to the change of parameters. Thus, we first numerically solve for γ(.) given

the new set of parameters. Second, given the set of parameters and the new γ(.), we solve the manager’s

optimal reporting strategy and calculate the information loss and investor and manager welfare change the

same way as in Table 5 and Table 6.

The counterfactual analyses are conducted based on the parameter estimates from Table 4. The baseline

column reports the result computed using the estimates in Table 4. We first increase the mean of reporting

incentive μx by 100 times and Column ‘High Incentive’ reports the analyses. In this case, μx = 0.08 for

the parametric model and 0.004 for the semi-parametric model. We find that the residual uncertainty σv|r

increases significantly, especially in the parametric model. When the manager has higher incentive to issue a

higher report, the information on v and α(v) contained in the report is much lower. Investor welfare becomes
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negative in the parametric model, but does not change much in the semi-parametric model. Manager’s welfare

increases by twice in both models. In the last column, we reduce the uncertainty of reporting incentive to

only 1% of the estimate. The new σx is 0.0002 for the parametric model and less than 0.0001 for the second

one. The residual uncertainty on v is 0.623, about 27.8% reduction compared to the baseline, while the

residual uncertainty on α(v) is reduced by 73%. We do not find a significant change in investor welfare

change ( ΔW and ΔW/σv), but there is a large drop in manager’s welfare, as expected from Fischer and

Verrecchia (2000) since the manager is exploiting variability in incentives.

Table 10: Counterfactual Analysis

Panel A. Parametric Model

Baseline High Incentive Low Uncertainty

(Estimated) μx = 100μ̂x σx = 0.01σ̂x

Info loss σv|r 0.863 0.954 0.623

Investor welfare
ΔW 2.58E-04 -0.002 7.30E-06

ΔW/σv 0.033 -0.293 9.41E-04

Manager welfare
ΔM 5.76E-05 2.73E-04 -3.35E-07

ΔM/σv 0.493 0.856 -0.052

Panel B. Semi-parametric Model

Baseline High Incentive Low Uncertainty

(Estimated) μx = 100μ̂x σx = 0.001σ̂x

Info loss σv|r 0.398 0.425 0.364

Investor welfare
ΔW -3.09E-04 -4.99E-05 -2.18E-04

ΔW/σv -0.025 -0.004 -0.017

Manager welfare
ΔM 2.52E-06 5.60E-07 9.30E-09

ΔM/σv 0.054 0.010 0.024

The table reports information loss and investor and manager welfare changes, computed under
alternative parameters. The market response function γ(.) is estimated given α(.) and the al-
ternative set of parameters. We then compute the welfare and information changes using the
fitted γ(.) and alternative parameters. The baseline column results are computed with estimated
parameters reported in Table 4. Results in Column ‘High Incentive’ are calculated with μx in-
creases by 100 times. That is μx = 0.08 for parametric model and 0.004 for semi-parametric
model. The Column ‘Low Uncertainty’ reports result that reduces σx by 100 times, which are
very close to zero in both models. The last column reduces the regulation intensity by 100 times.
The new d is 0.009 in Panel A and 0.24 in Panel B.

10 Subsamples

In this section we address the potential heterogeneity across firms and industries by dividing our sample

into subgroups. We explore two firm characteristics that may influence firms’ reporting incentive x: size and

growth opportunity. We later estimate the model by industry.

To study whether firms of different sizes exhibit differences in their estimates, we divide the sample into
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three groups according to their market value of equity (mktvalue) each year. Table 11 reports the results. We

find that estimates from the two models share some common trends. First, the mean of reporting incentive x

is largest in the large firms and lowest in the small firms. This suggests that larger firms overall have higher

benefit of misreporting. Second, the trend is the same for regulatory intensity d. In the parametric model, d

is 5.99 for small firms portfolio and 15.19 for large firms, more than twice larger. In Semi-parametric model,

although d estimates are higher than that of the aggregate sample due to the limit of estimation method,

the trend persists with d equal to 54.22 for large firms and 39.04 for smaller firms. This is consistent with

the previous finding that larger firms are subject to more stringent regulatory monitoring. Lastly, we notice

a monotonic increasing mean of true earnings in the parametric approach. The mean of true earnings for

small firms is slightly negative, -0.0058, while larger firms have an average realized true earnings very close

to zero.

Table 11: Estimation by Size

Panel A. Parametric Model

Portfolio
Mean x Std.Dev.x Intensity Meanv Std.Dev.v

μx σx d μv σv

Aggregate 0.0008 0.0194 8.8876 -0.0028 0.0078

(0.0004) (0.0017) (0.4890) (0.0004) (0.0009)

Small -0.0009 0.0362 5.9925 -0.0058 0.0075

(0.0019) (0.0028) (0.4370) (0.0008) (0.0002)

Medium 0.0005 0.0182 10.8254 -0.0023 0.0003

(0.0007) (0.0027) (0.7464) (0.0004) (0.0044)

Large 0.0006 0.0076 15.1930 0.0000 0.0055

(0.0007) (0.0037) (1.4022) (0.0006) (0.0045)

Panel B. Semi-parametric Model

Portfolio
Mean x Std.Dev.x Intensity

μx σx d

Aggregate -4.40E-05 0.0052 23.9540

(0.0003) (0.0005) (1.9010)

Small 2.56E-05 0.000 39.042

(0.0008) (0.0008) (1.3027)

Medium 6.69E-05 0.001 37.056

(0.0004) (0.0013) (4.9907)

Large 0.0003 0.000 54.216

(0.0004) (0.0011) (2.9923)

We next explore whether firms with different growth opportunities share the same reporting incentives

and external regulation. We sort the sample into three portfolios by book-to-market equity ratios (bm) and
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update the portfolio each year. We use bm to avoid the situation where book value of equity is zero. The

high book-to-market ratio portfolio contains firms with lower growth opportunity, and thus the results are

tabulated in the “Low” portfolio. In Panel A, portfolio with high growth opportunity on average has a higher

but more dispersed reporting incentive. The high growth opportunity portfolio reports a μx of 0.0038, σx of

0.0269, compared to the low portfolio with μx of -0.0009 and σx of 0.0168. We find high growth firms have a

relatively smaller regulatory intensity, with d of 7.5461 compared to 10.5764. In terms of the true earnings,

we find low growth firms have a much more concentrated distributions with σv of 0.0019, four times smaller

than the aggregate sample result. Panel B reports the semi-parametric results and the findings are consistent

with the parametric estimation. Reporting incentives for high growth firms have a slightly higher mean and

higher standard deviation. We also find that high growth firms face less regulatory intensity, as d for high

portfolio is 187564 and 30.4650 for low portfolio, consistent with the result in Panel A. Overall, we find that

high growth firms have higher and more dispersed reporting incentives and face lower regulatory intensity.

Table 12: Estimation by Growth Opportunity

Panel A. Parametric Model

Portfolio
Mean x Std.Dev.x Intensity Meanv Std.Dev.v

μx σx d μv σv

Aggregate 0.0008 0.0194 8.8876 -0.0028 0.0078

(0.0004) (0.0017) (0.4890) (0.0004) (0.0009)

Low -0.0009 0.0168 10.5764 -0.0026 0.0019

(0.0009) (0.0022) (0.7537) (0.0004) (0.0028)

Medium 0.0006 0.0159 9.4809 -0.0022 0.0103

(0.0018) (0.003) (0.8777) (0.0004) (0.0007)

High 0.0038 0.0269 7.5461 -0.0035 0.0105

(0.0024) (0.0037) (0.4619) (0.0007) (0.0045)

Panel B. Semi-Parametric Model

Portfolio
Mean x Std.Dev.x Intensity

μx σx d

Aggregate -4.40E-05 0.0052 23.9540

(0.0003) (0.0005) (1.9010)

Low -0.0005 0.0040 30.4650

(0.0003) (0.0004) (2.4734)

Medium 6.69E-05 0.0009 37.0557

(0.0005) (0.0014) (4.8196)

High -8.83E-05 0.0072 18.7564

(0.0006) (0.0013) (2.1568)
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Table 13: Estimation by Industry

Panel A. Parametric Model

FF 12
Industry

Mean x Std.Dev.x Intensity Meanv Std.Dev.v
Industries μx σx d μv σv

Aggregate Sample 0.0008 0.019 8.888 -0.0028 0.0078

(0.0004) (0.0017) (0.4890) (0.0004) (0.0009)

1 Consumer NonDurables -0.0006 0.0103 12.3145 -0.0022 0.0001

(0.0062) (0.0068) (11.3599) (0.0051) (0.0006)

2 Consumer Durables 0.0098 0.0656 4.9970 -0.0050 0.0141

(0.0151) (0.0038) (10.9876) (0.01) (0.0101)

3 Manufacturing -0.0047 0.0290 9.0231 -0.0039 0.0000

(0.0096) (0.0154) (2.5817) (0.004) (0.0063)

4 Oil, Gas, and Coal -0.0014 0.0057 20.3675 -0.0019 0.0050

Extr. and Prod. (0.009) (0.0281) (3.5103) (0.0073) (0.008)

5 Chemicals and Allied -0.0003 0.0114 10.8386 -0.0033 0.0114

Products (0.003) (0.0105) (5.1519) (0.0033) (0.0074)

6 Business Equipment 0.0392 0.0682 3.8445 -0.0105 0.0117

(0.0176) (0.0403) (1.9131) (0.0018) (0.0074)

9 Wholesale, Retail, -0.0015 0.0119 10.2768 -0.0012 0.0022

and Some Services (0.008) (0.0093) (5.0219) (0.0043) (0.0048)

10 Healthcare, Medical 0.0014 0.0147 11.1282 -0.0007 0.0122

Equipment, and Drug (0.0058) (0.0355) (1.1046) (0.0026) (0.0038)

12 Other 0.0020 0.0135 17.6952 0.0036 0.0000

(0.0063) (0.0507) (2.4614) (0.0027) (0.0054)

Panel B. Semi-Parametric Model

FF 12
Industry

Mean x S.D. x Intensity

Industries μx σx d

Aggregate Sample -4.40E-05 0.005 23.954

(0.0003) (0.0005) (1.9010)

1 Consumer NonDurables -0.0004 0.0033 27.8092

(0.5022) (0.0078) (10.46)

2 Consumer Durables -0.0017 0.0181 11.9593

(0.0013) (0.0026) (18.4)

3 Manufacturing -0.0012 0.0003 48.2605

(0.0057) (0.0007) (38.27)

4 Oil, Gas, and Coal -0.0013 0.0001 53.0732

Extr. and Prod. (0.0132) (0.0091) (11.97)

5 Chemicals and Allied 4.31E-05 0.0003 29.0716

Products (0.0065) (0.0036) (15.6)

6 Business Equipment 0.0017 0.0159 11.8253

(0.0057) (0.0069) (17.63)

9 Wholesale, Retail, -0.0008 7.71E-05 29.8053

and Some Services (0.0057) (0.0002) (23.52)

10 Healthcare, Medical 0.0004 3.98E-05 27.6476

Equipment, and Drug (0.0033) (0.0002) (1.83)

12 Other -0.0012 0.0001 26.0470

(0.007) (0.0019) (19.08)
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Lastly we investigate whether certain industries display different behaviors in earnings manipulation. We

use Fama-French 12 industry classification and since we exclude firms in financial and regulated industries,

there are nine groups of industries in the subsample analysis. Table 13 has the parameter estimates. Some

industries stand out and the results are consistent in both models. We find that Business Equipment –

Computers, Software, and Electronic Equipment has the highest mean of reporting benefit μx among all

industries. Both Business Equipment and Consumer Durables have similarly high standard deviation of x.

As for regulation intensity, the Oil, Gas and Coal Extraction and Production industry has the highest d in

both models.

11 Concluding Remarks

In this study, we develop a simple approach to estimate the noisy earnings management model of Fischer

and Verrecchia (2000), bringing together information about reported earnings, price and detected misstate-

ments. The model requires limited a-priori theoretical knowledge about the relation between price and

earnings, or the distribution of true earnings, and may allow researchers to interpret cross-sectional evidence

about restatements in terms of accounting noise. Our approach adds a few novelties to the literature. First,

we try to keep the analysis simple, by offering a model that does not require to numerically solve the model

- and, hence, the analysis requires limited code or computational intensity and may be easily fitted to many

samples. Second, we try to lift as many assumptions as we can about functional forms, using the observed

relation between price and earnings as a building block for the estimation, and, in a semi-parametric model,

assuming no knowledge about the distribution of true earnings. Third, we write a model that can bring in

this semi-parametric framework information about detection probabilities and actual misstastements, based

on the idea that identification is likely to be greatly improved from ex-post information about restatements.

Fourth, we use the model to measure the effect of manipulation on average market price or manager welfare,

showing who benefits ex-ante from accounting noise. In terms of primary conclusion, we find that reporting

uncertainty is real, but its consequences on biases, prices and welfare are not large; we also observe that

the average bias is quite small because a very significant of firms each period actually behaves as if they are

willing to decrease earnings.

Yet, one may not view this approach as a finalized perspective on estimating manipulation and keeping

the model simple is, on our opinion, an invitation to expand on the many simplifications that we have

made along this process - some of which we develop next. We have focused on a purely static model in

which managers focus on price each year. One could plausibly extend the analysis to estimating the dynamic

relation between price and reported earnings and use this relation to solve for a dynamic manipulation
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strategy; empirically, we do not know yet if such complex dynamic manipulation strategies are likely to

be first-order or if managers use heuristics to look at current price. We also left aside the interaction of

contracting and manipulation, which suggests that the distribution of the incentive x may be endogenous; it

is yet unclear whether boards target manipulation as their main concern when choosing contracts. We have

also observed anomalous patterns that are not well-explained by the model, which seems to suggest that

some functional forms, specifically relating to manipulation cost or the distribution of incentives may need

to be examined and relaxed. The empirical data that would allow us to pin down these functional forms is

still to be found.
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