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Abstract

We study a general model of persuasion games when there is second-order uncer-

tainty about the sender’s knowledge of an uncertain state variable. Unlike situations

where such uncertainty is absent, we show that second-order uncertainty eliminates

truth-telling as an equilibrium. Instead, equilibrium consists of a convex interval of

states where either disclosure or complete non-disclosure occurs, depending on the

relative slopes of the ideal action lines of the sender and receiver. When choosing

between senders differing in both expertise and preference alignment, we offer condi-

tions where expertise dominates regardless of the degree of preference misalignment.

Absent second-order uncertainty, we provide an algorithm for constructing a truthful

equilibrium, as well as necessary and sufficient conditions for equilibrium uniqueness.

Keywords: Second-order uncertainty, persuasion, cheap talk, truth-telling, unrav-

eling, full revelation

JEL Codes: C72, D80, D83

1



1 Introduction

In the spring of 2004, Alberto Gonzales, then White House Counsel to President

George W. Bush, was on the cusp of achieving lifelong ambitions. Appointment

to the Supreme Court or as Attorney General seemed imminent. When the latter

position became vacant at the start of Bush’s second term of office, Bush submitted

Gonzales for confirmation in the Senate, a process that he breezed through to become

the first Latino Attorney General of the U.S.

Gonzales brought his customary energy and lawyer’s eye for detail to the post. One

of his first actions was the unusual decision to dismiss nine U.S. Attorneys, allegedly

for underperformance, but possibly for ideological reasons, as critics charged. It was

a typically bold action from Gonzales, but one that would come to haunt him as

complaints from the dismissed attorneys first led to press scrutiny and ultimately to

a formal Senate investigation.

By the spring of 2007, Gonzales’ sole preoccupation was preparing to testify under

oath before many of the same senators who confirmed him, a process that would

possibly make or break his career. Initially, Gonzales made a number of arguments

defending his actions, but by the second day of testimony a clear pattern emerged

in his responses. Virtually regardless of the question or questioner, Gonzales replied

that he could not recall the answer. Sixty-four times over the course of a four-hour

hearing he suffered such memory lapses. In the end, this would cost him his position

as Attorney General and, ultimately, his career in the upper echelons of public service.

Senators from Gonzales’ own Republican Party were perplexed at this perfor-

mance. How could Gonzales, a man esteemed for his mental acuity and superb

memory, have forgotten so much? One possibility is that Gonzales feared legal reper-
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cussions from any admissions he made; however, since this was a Senate hearing

rather than a criminal proceeding, the main legal risk was perjury, for which feign-

ing ignorance is no defense.1 Thus, a strategy of pretending lack of knowledge may

have carried more legal risk than one of disclosure. Even today, some ten years later,

Gonzales’ motives remain murky.2

Alberto Gonzalez’ situation is, by no means, unique. When evaluating the state-

ments of a sender/witness, the receiving party often faces uncertainty not just about

the facts of the situation, i.e. the state variable, but also about the sender’s knowl-

edge of those facts. That is, receivers must account for a second layer of uncertainty

in evaluating a sender’s statements and forming posterior beliefs. Our main contribu-

tion is to study how this second layer of uncertainty affects information transmission

in persuasion games.

Fundamental results, such as the phenomenon of unraveling, cease to operate when

this additional uncertainty is present. To see this, consider a quintessential persuasion

situation: A seller produces a good which may be of low or high quality and knows

the actual quality. The seller would like to persuade the buyer that the good is high

quality. The seller is limited, however, to making statements that cannot be shown

to be false. It is well known that persuasion is impossible in these situations–in the

unique equilibrium quality is truthfully revealed.

But now add a second layer of uncertainty–suppose that, in ascertaining quality,

the seller conducts a test. Most of the time, the test reveals the true quality but

1For example, when baseball pitcher Roger Clemens testified in the Senate concerning his use

of performance enhancing drugs, he was prosecuted for perjury and other obstruction charges but

ultimately acquitted in 2012 (Wilber and Marimow, 2012).
2For further details about this case see Eggen and Fletcher (2007), Eggen and Kane (2007), Lewis

(2008) and Milbank (2007).
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occasionally it produces inconclusive results. Now the seller can, and will, avail

himself of an opportunity to make ambiguous statements. When he knows the good

is high quality, he says so, but when he knows it to be low quality, he simply remains

silent, pooling these outcomes with inconclusive findings. Whereas in the former

situation, silence would be viewed as equivalent to low quality, here silence could be

taken at face value. Thus, the seller/sender is able to persuade the buyer/receiver

that a low quality good is, in fact, of slightly higher (expected) quality.

Such an example is highly stylized, but contains within it the general properties

of persuasion in the presence of second-order uncertainty: some information is always

withheld in equilibrium, and the nature of disclosure is a combination of full revela-

tion in some states and complete non-disclosure in others. While useful, it tells us

little about exactly what information is disclosed under such uncertainty. We offer

such a characterization for general preferences, and show how disclosure hinges fun-

damentally on the relative slopes of the lines describing the ideal actions of the sender

and receiver. Our main findings, ordered by importance, are the following:

1. When the sender’s knowledge state is private, i.e. receivers face second-order

uncertainty, then full revelation is never an equilibrium. Instead, senders choose

an interval or intervals of non-disclosure interlaced with full revelation.

2. The exact details of disclosure depend on the relative slopes of the “bliss” (ideal

action) lines of the sender and receiver. When the slope of the sender’s bliss

line is much smaller than the receiver’s, full revelation occurs over an interval.

When the reverse is true, non-disclosure occurs over an interval.

3. Absent second-order uncertainty, the sender’s loyalty is irrelevant to information

disclosure. With second-order uncertainty, however, this is no longer true. In
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choosing between senders strictly ranked by alignment or loyalty to the receiver,

the irrelevance result only applies under a boundary equilibrium, an equilibrium

where non-disclosure occurs at the endpoint of the state space; otherwise the

receiver strictly prefers to consult a more loyal sender under an interior equilib-

rium.

4. By way of comparison, we also analyze situations where second-order uncer-

tainty is absent. Our main findings here are: (a) an algorithm for constructing

a fully revealing equilibrium; (b) necessary and sufficient conditions for full rev-

elation to be the unique equilibrium; and (c) when multiple equilibria exist, the

sender and receiver always disagree as to the better equilibrium.

A key insight of the model is that information disclosure does not depend directly

on the amount of disagreement between the two parties, but on the relative slopes

of their bliss lines. Indeed, points where both parties agree as to the ideal action are

not necessarily associated with full disclosure in their neighborhood.

Since the paper’s main novelty is to study persuasion under second-order uncer-

tainty, we describe the related literature mainly in that context, and offer only a

cursory review of the vast literature where it is absent.

The nearest antecedents to our work are Dye (1985), Shin (1994a), and their

successors.3 They study situations where second-order uncertainty is present but

with preferences akin to the example; that is, where the receiver seeks to match

her action to the expected state and where all sender types wish to convince the

receiver that the state is at its highest possible level. We derive general conditions

on preferences where equilibrium takes the form found in these works–suppressing

3See, e.g., Jung and Kwon (1988), Penno (1997), Dye (1998), Pae (2005), Shin (2006), Guttman

et al. (2014), and Hummel et al. (2016).
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bad news and revealing good news. We also show how, by changing preferences,

equilibrium no longer takes this form–instead extremes on both ends of the state

space are suppressed and only moderate states are disclosed fully. More broadly, we

add to this literature by generalizing preferences, allowing for the possibility that the

sender and receiver agree on the optimal action in some states, and characterizing

the set of equilibria.

Shin (1994b), as well as Bhattacharya and Mukherjee (2013), study situations

of second-order uncertainty in the presence of multiple experts.4 In all cases, these

experts have “flat” bliss lines, having a most preferred action irrespective of the

state. Since we study single sender situations, there is no direct parallel between

their results and ours. However, like our study of how the receiver chooses among

senders, this literature also indicates that receivers are not necessarily well served by

always selecting, or listening to, more aligned senders.

While our main contribution is the study of persuasion games in the presence of

second-order uncertainty, we also consider situations where such uncertainty is ab-

sent, treating this as a benchmark. Milgrom (1981) and Grossman (1981) spawned a

vast literature studying persuasion under this assumption. The main finding is that,

under quite general circumstances, full revelation is an equilibrium (Seidmann and

Winter, 1997). Seidmann andWinter (1997) also offer sufficient conditions for unique-

ness. Giovannoni and Seidmann (2007) further note that, when multiple equilibria

are present, the sender might prefer a less informative equilibrium. We generalize

both results, identifying necessary and sufficient conditions for uniqueness and show-

ing that, when there are multiple equilibria, the sender and receiver always disagree

over their ranking. While initial persuasion models assumed that the sender’s mes-

4See also Bhattacharya et al.(2015) for further extensions of these situations.
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sage space was binary, consisting of truthful disclosure or no disclosure whatsoever,

considerable work examines the effects of weakening these message space restrictions.5

Here too the main finding is that full revelation is a robust phenomenon.

The paper proceeds as follows: Section 2 sketches the model. In Section 3, we

present findings when second-order uncertainty is absent, leading to finding 4. These

findings are included primarily as a benchmark and do not reflect our main contribu-

tion. Section 4 characterizes equilibrium with second-order uncertainty and contains

findings 1 and 2 above. Section 5 compares information transmission based on the

sender’s loyalty and shows that finding 3 holds. Finally, Section 6 concludes.

2 The Model

There are two players, a sender  and a receiver  The sender is possibly knowledge-

able about a payoff-relevant state variable, . He sends a message  to the receiver

who then takes an action  ∈ < that affects the payoffs of both parties. The state
variable  is commonly known to be drawn from an atomless distribution  () having

support
£
 ̄
¤
including, possibly, the entire real line.

Senders can differ in their knowledge state  ∈ {0 1}. With probability  ∈ (0 1), a
sender is knowledgeable, i.e.  = 1, and knows the realized state perfectly.6 Otherwise,

5Okuno-Fujiwara et al. (1990) first extended the unraveling result by relaxing the message state to

allow partially informative messages. Koessler (2003) further relaxes message space restrictions while

showing that full revelation still obtains. Mathis (2008) showed how unraveling extends to situations

of partial certifiability of messages. Most recently, Hagenbach et al. (2014) offered conditions for

full revelation in -player persuasion games.
6The model straightforwardly extends to a situation where the sender is either imperfectly in-

formed about the state or completely uninformed. In this case, reinterpret the state variable as the

sender’s signal and redefine bliss actions accordingly to use the existing framework.
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the sender is not knowledgeable, i.e.  = 0, and knows nothing more about the state

than the receiver.7 Formally, a sender receives a signal  whose distribution depends

on both the knowledge state, , and the state of nature, . Conditional on , a

knowledgeable sender receives the signal  =  A sender who is not knowledgeable

receives a signal drawn from an arbitrary distribution, 0, having the same support

as  but independent of its realized value. Since such a signal is uncorrelated with

the state, it is uninformative.

We will vary the receiver’s information as to the knowledge state of the sender.

Much of the extant literature implicitly assumes that the knowledge state is public, i.e.

it is common knowledge whether the sender is informed. Our main concern, however,

is with the case where the knowledge state  is private information, i.e., only the

sender knows whether he is informed. In this case, the receiver labors under second-

order uncertainty–she knows neither the realized state nor the sender’s knowledge

of the state.

A public knowledge state may arise when the sender must undertake certain ob-

servable procedures to learn the state, but the results require the sender’s expertise

to interpret. On the other hand, a private knowledge state can come about when no

explicit procedures are needed to acquire expertise or when such procedures might

produce inconclusive results. In the latter situation, even though the receiver knows

whether procedures were conducted, her ignorance of the results still leaves her in

doubt as to the sender’s knowledge state.

A sender, after learning his knowledge state  and receiving signal , transmits a

report  to the receiver consisting of a statement as to the signal received and, where

7Throughout, the terms knowledgeable and informed and the terms not knowledgeable and un-

informed are used as synonyms.
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relevant, the knowledge state. Let  denote the sender’s message as to the signal. We

treat this message as hard information in that it cannot be shown to have been false

once the state is revealed. Formally, a feasible message  is a (possibly degenerate)

closed subset  ⊆ £ ̄¤ that contains the true state .8 Thus, an uninformed sender
must send the message  =

£
 ̄
¤
, which we denote  = ∅, to be assured of sending a

message that contains the true state. Let  ∈ {0 1} denote the reported knowledge
state, where  = 0 indicates that the sender is uninformed and  = 1 indicates that

he is informed. Unlike , the message  is soft information and need not be truthful,

capturing the idea that knowledgeability is more subjective than the facts of the case.9

After receiving the message = ( )  the receiver selects an action  ∈ R based
on her preferences. Let  ( ) denote the payoffs of player  ∈ {} when action
 is chosen in state We assume that, for every , payoffs are continuous and single-

peaked in , with a unique payoff-maximizing action,  (), which we term ’s bliss

action. We assume  () is continuous and weakly increasing in , whereas  () is

continuous and strictly increasing in . When the receiver has no information,  (∅)
denotes her bliss action.

Bliss actions alone are not sufficient to define preferences. We assume that pref-

erences satisfy the distance property, which requires that payoffs are proportional to

the distance between the chosen action and the bliss action. Formally,

Definition 1 The preferences of agent  ∈ {} satisfy the distance property if
and only if  ( ) =  (| −  ()| ; ) for some strictly decreasing function .

8Examples of feasible messages include {}, [1 2], [1 2] ∪ [3 4] and
£
 ̄
¤
for any 1  4

satisfying  ≤ 1    2  3  4 ≤ ̄
9The inclusion of the message  is merely for completeness of the possible messages the sender

might convey. Since  is soft information, no credible signaling will be possible in equilibrium; hence

 effectively does not figure into the analysis.
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The distance property implies that, when the action chosen exceeds the agent’s

bliss action by a given amount, the agent evaluates it in the same fashion as when it

falls below the bliss action by the same amount. It does not imply that losses from

errors of a given magnitude are the same across states; for instance, in state , the

sender may suffer a quadratic loss as a function of the distance of the error whereas

in state 0 he may suffer a quartic loss.

Disagreement as to the bliss action between the sender and receiver constitutes

the key barrier to information transmission. We model this by assuming that  () 6=
 () except at finitely many agreement points. This disagreement creates an incen-

tive for the sender to try to persuade the receiver to follow his preferred action. The

receiver wants to avoid being misled.

We use the following solution concept to characterize the results: The receiver

uses Bayes’ rule wherever possible in formulating beliefs. We further restrict beliefs

such that, if the sender sends the (possibly degenerate) message  then the receiver

must believe that the state lies somewhere in , even if  lies off the equilibrium path.

Given her beliefs, the receiver chooses an action maximizing expected payoffs. The

sender chooses messages optimally given the receiver’s anticipated response.10

3 Sender Knowledge Is Public Information

We first study situations where the knowledge state is public. This serves mainly

as a benchmark for situations where the knowledge state is private. We offer three

main results. First, while it is known that full revelation is generally an equilibrium

in these situations, we offer a novel construction of such an equilibrium. Second, full

10Bhattacharya and Mukherjee (2013) use a similar solution concept.
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revelation is not always the unique equilibrium. Finally, we show that when partially

revealing equilibria exist, the sender always prefers these equilibria to full revelation.

Thus, unlike the situation of pure cheap talk, where there is a Pareto ranking of

equilibria by informativeness, the sender and receiver fundamentally disagree about

the equilibrium ranking under persuasion.

When the sender is known not to be knowledgeable, the game is trivial to analyze.

Since the sender knows nothing, the receiver takes the optimal action given her prior

beliefs. The remainder of the analysis concerns the case where the sender is known

to be knowledgeable.

Throughout the analysis, situations where the bliss actions cross, which we term

agreement points, play an important role.11 Formally,

Definition 2 State 0 ∈ ¡
 ̄
¢
is an agreement point if and only if  (0) =

 (
0) and there is a neighborhood of 0,  , such that  ( ()−  ()) 6=

 ( ()−  ()) for all   ∈  satisfying   0  .

It is known that the unraveling argument, first introduced by Grossman (1981)

andMilgrom (1981), generalizes substantially to produce a fully revealing equilibrium.

The idea underlying the argument is that for any pooling interval some positive

measure of sender types are disadvantaged by being pooled. Since these types then

have an incentive to deviate and fully reveal, this destroys the possibility of pooling

in equilibrium. Such intuition, while powerful, depends on certain key features to

operate. The following result shows that bounded state spaces are one such key

feature.

11An agreement point represents a state where the sender and receiver share an ideal action but

where this action does not represent a tangency point between their bliss lines.
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Proposition 1 Full revelation is never an equilibrium when:

(a) The state space is unbounded from above and  ()   () for  sufficiently

large; or

(b) The state space is unbounded from below and  ()   () for  sufficiently

small.

The unraveling intuition relies essentially on the presence of a worst sender type

following any deviation message, a type who could feasibly have sent the message but

with whom no other feasible sender type would wish to be confused. For instance,

when the sender’s bliss line lies strictly above the receiver’s, no other feasible sender

type would wish to be thought of as the lowest type that could have sent a given

deviation message. A receiver who believes that the worst type deviated will choose

an action that is lower than full revelation for anyone sending this message; hence,

such a deviation is unprofitable for the sender.

When the state space is unbounded, such a worst type no longer exists following

certain messages. In the situation described above, for example, the null message

always represents a profitable deviation. This message will induce some action 0

that is ideal for the receiver in some state 0. Sender types just below 0, which

always exist owing to the unbounded state space, find it profitable to deviate, as

the null message induces a slightly higher action than does full revelation. More

generally, although it is well known that full revelation is the unique equilibrium

when the state space is bounded and bliss lines never intersect, Proposition 1 implies

that, for this same preference configuration (and many others), full revelation is

never an equilibrium when the state space is unbounded. The key insight is that,

unless unraveling eventually produces a distinct worst sender type, persuasion game

restrictions on messages do not, in and of themselves, ensure full disclosure.
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Proposition 1 establishes the importance of bounded state spaces for the existence

of a fully revealing equilibrium. As in the model of Seidmann and Winter (1997),

we assume the necessary boundedness conditions hold throughout the remainder of

the paper. Since, absent second-order uncertainty, the two models differ little, the

commonality in the conditions for existence is not altogether surprising.

What does differ, however, is the method of proof. Most previous existence proofs

rely on a combination of contradiction and induction to show that there exists some

set of off-equilibrium beliefs and actions such that deviating from full revelation is

never optimal.12 Instead, we offer a constructive proof of the existence of a truth-

telling equilibrium, delineating the out of equilibrium beliefs and actions required to

support full disclosure.

We now describe the construction. Following any singleton message,  = , the

receiver believes the state equals  with probability one and hence plays the action

 (). By contrast, for any message  = , where  is a non-degenerate subset, the

receiver forms beliefs and chooses actions according to the Bifurcation Algorithm.

Bifurcation Algorithm

The point of the algorithm is to construct an action following any message  = 

such that all sender types  ∈  would prefer truth-telling than  (). The algorithm

first identifies the sender type who disagrees most vigorously with the receiver (i.e.

the type where the gap between bliss points is largest) in  (), the convex hull of .

It then identifies a set of receiver bliss actions, associated with states in  (), that

are worse than truth-telling for this sender type. Next, we study the subinterval of

12The exception is Hagenbach, et al. (2014) who delineate out of equilibrium beliefs supporting

full revelation for a broad class of games including persuasion. Our algorithm, however, differs from

theirs.
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 () consisting of the threatened actions described above and again find the sender

type with the greatest disagreement. Once more, we construct threats to induce

truth-telling for this type. This process continues until ultimately converging on a

feasible threatened action that induces all sender types in  () to tell the truth.

Formally, suppose the convex hull of the sender’s message,  () = [0 +1],

contains exactly  ≥ 0 agreement points {1 2  } where   +1. Parti-

tion the state space into intervals  = [−1 ] for  = 1 2   + 1. Define

the gap of interval  to be the largest value | ()−  ()| for  ∈ . Let

∗ ∈ argmax∈ | ()−  ()|.
The algorithm successively bifurcates this set of intervals into ever smaller subsets

up to the point where no further bifurcation is possible. Specifically:

Step 1: Let ̄ be an interval containing the largest gap, i.e. the largest value of

| ()−  ()|.

• Branch U: If  ()   () for  ∈ ̄, we will only consider intervals  =

{+1 +2   +1}.

• Branch D: If  ()   () for  ∈ ̄, we will only consider intervals  =

{1 2  −2 −1}.

For  appropriately defined (depending on the branch), let ̄0 be the interval

containing the largest value of | ()−  ()| conditional on  ∈ 

Step 2: Consider the intervals  for Branch  . We bifurcate this interval as

follows:

• Branch UU: If  ()   () for  ∈ ̄0, we will only consider intervals  =

{0+1 0+2   +1}.
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• Branch UD: If  ()   () for  ∈ ̄0, we will only consider intervals  =

{+1 +2  0−2 0−1}.

For Branch D, let branches DU and DD be analogously defined.

Steps 3 4 : Repeat this process performing an analogous bifurcation proce-

dure. Continue until a bifurcation leads to the empty set.

Definition 3 The sequence of bifurcation intervals is ̄ =
©
̄ ̄0  ̄00  ̄()0

ª


We now specify the receiver’s choice of action following message . There are

three possibilities:

Case (I): In every instance where a bifurcation occurred,  ()   (), i.e., the

terminal branch was UUU...U.

Case (II): In every instance where a bifurcation occurred,  ()   (), i.e., the

terminal branch was DDD...D.

Case (III): There exists at least one instance of a bifurcation where  ()   ()

and at least one instance where  ()   (), i.e., the terminal branch contains at

least one U and one D.

Given these possibilities, the receiver’s beliefs and actions are as follows:

In Case (I), let the receiver hold beliefs that place probability one on state +1

and choose  () =  (+1) 

In Case (II), let the receiver hold beliefs that place probability one on state 0

and choose  () =  (0) 

In Case (III), let the receiver choose an action  () =  () where  = ()0

if  ()   () for  ∈ ̄()0 and  = ()0−1 if  ()   () for  ∈ ̄()0 . The

receiver holds beliefs that place probability  on state 0 and (1− ) on state +1

where  is chosen so that  () is optimal.
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The following proposition shows that the sender can never profitably deviate by

sending messages that are non-degenerate intervals.

Proposition 2 If the knowledge state is public and sender preferences are bounded,

then full revelation is an equilibrium. Specifically, any message  = , where  is a

non-degenerate subset, is not a profitable deviation from full revelation when  () is

determined by the Bifurcation Algorithm.

Uniqueness and Equilibrium Selection

Although having an algorithm for constructing a fully revealing equilibrium is

useful, Proposition 2 plods familiar ground–it is known that under general persua-

sion games, full revelation is an equilibrium. Less well understood are conditions for

uniqueness and equilibrium selection in the face of multiplicity. The latter is partic-

ularly important given the emphasis on fully revealing equilibria (e.g. Hagenbach, et

al., 2014). We show, however, that fully revealing equilibria need not be unique and,

when multiple equilibria are present, the sender and receiver disagree as to which

should be played.

In this section, we offer two results. First, we identify necessary and sufficient

conditions for the full revelation to be the unique equilibrium. Second, we show

that, when multiple equilibria exist, senders and receivers fundamentally disagree

as to which should be played. In particular, senders always strictly prefer a less

informative to a fully revealing equilibrium.

By way of background, Seidmann and Winter (1997), among others, offer suffi-

cient conditions for full revelation to be the unique equilibrium. The degree to which

these conditions might be weakened remains an open question; however, we can re-

purpose the Bifurcation Algorithm to strengthen results on uniqueness. The required

condition, it turns out, permits an if and only if answer to the uniqueness question.
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The basic idea of the proof is to operate the Bifurcation Algorithm in reverse–if

the receiver chooses a non-extreme action following a pooling message  =  under

what preferences will the sender prefer this non-extreme action to full revelation? The

key condition is “conservatism”–a sender is conservative (relative to the receiver) in

the neighborhood of an agreement point if his bliss line is much less responsive to

changes in the state, in a sense to be made precise below. For instance, suppose that

the sender’s bliss line is relatively flat and cuts the receiver’s bliss line from above at

an agreement point. Now, the gap between the sender’s bliss line and the agreement

action is smaller than the gap between bliss lines away from the agreement point.

Hence, so long as pooling near the agreement point induces an action close to the

agreement action, all senders will prefer this to full revelation. To ensure that full

revelation is the unique equilibrium, such circumstances must be ruled out, i.e. the

sender must not be conservative. Formally,

Condition 1 A sender is conservative in state  if there exists an agreement point,

0, such that  ( (
0)  )   ( ()  ). If, for every agreement point 

0 and

(almost) all states ,  ( (
0)  )   ( ()  ), a sender is not conservative.

Note that conservatism only occurs in reference to agreement points. When the

sender and receiver always disagree as to the ideal action, full revelation is indeed the

unique equilibrium. Ironically, it is the presence of points where conflict is absent–

points where full revelation can hardly be in doubt, that create the possibility of

equilibrium information withholding. Specifically,

Proposition 3 If the sender is not conservative, then full revelation is the unique

equilibrium. However, if the sender is conservative for some positive measure of states

, then a partial pooling equilibrium exists.
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We now turn to equilibrium selection when the sender is conservative. It might

seem obvious that, since full revelation is an equilibrium, both parties ought to prefer

its selection. Indeed, such an informativeness selection criterion is common in the

cheap talk literature. Crawford and Sobel (1982) first showed that, under pure cheap

talk, such a selection could be justified by an ex ante Pareto ranking–both sender

and receiver ex ante prefer the more informative equilibrium in their setting.

Persuasion games, however, do not have this structure. Instead, senders strictly

prefer a less informative equilibrium when one is present whereas receivers prefer full

revelation. To see why, note that, in such a partially revealing equilibrium, the sender

could, if desired, induce the receiver to play the actions associated with full revela-

tion merely by revealing truthfully. But, since partial revelation is an equilibrium,

the sender’s payoff from doing so must be lower than that obtained by withhold-

ing information. Therefore, senders always prefer less informative equilibria to full

revelation.

The same holds more generally when comparing equilibria with differing levels

of informativeness. Specifically, if we compare an equilibrium in which some set of

states is revealed with one in which those states are not revealed, the same argument

implies that the sender will prefer the latter equilibrium to the former.13

Before proceeding to the formal result, it is useful to define a strict informativeness

ordering over equilibria which consist of either full revelation or no revelation in each

state. We say that an equilibrium is strictly more informative than another if, in

every situation of the latter where there is full revelation, the sender fully reveals in

the former. Furthermore, there exist some positive measure of states in the latter

13The limiting case of this argument implies that full pooling is the sender’s most preferred dis-

closure regime. However full pooling is generically not an equilibrium in this setting.
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where the sender offers the null message and fully reveals in the former. With this

ordering in mind, we have shown:

Proposition 4 If there are multiple equilibria strictly ordered by informativeness, the

sender strictly prefers the least informative equilibrium whereas the receiver prefers

the most informative equilibrium.

An important corollary of the proposition concerns fully revealing equilibria:

Corollary 1 The sender strictly prefers any equilibrium with partial pooling to one

producing full revelation. The receiver prefers the opposite.

Proposition 4 does not imply that focusing on the receiver’s preferred equilibrium

is unreasonable, merely that it cannot be justified on Pareto grounds. The appropriate

equilibrium selection in these circumstances remains an open question.

Before proceeding to our main results, context is important. The situation where

the sender’s knowledge state is public has been much more widely studied than set-

tings where the knowledge state is private. The main findings here show the robust-

ness of full revelation. We modestly add to this collection of results by strengthening

conditions for uniqueness and noting difficulties in equilibrium selection favoring full

revelation. Nonetheless, it should be emphasized that these are mere benchmarks

for our main concerns–situations where the receiver has doubts about whether the

sender is informed, which we turn to next.

4 Sender Knowledge Is Private Information

We now turn to the heart of the paper, the study of situations where the knowledge

state is private. As mentioned above, such situations arise whenever there is room
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for doubt as to the “expertise” of the sender. This might be due to the possibility of

forgetfulness on the sender’s part or to situations where the signals about the state are

possibly uninformative, as when a test or experiment designed to measure the state

delivers an ambiguous or inconclusive outcome. Expert witness testimony represents

a canonical case of such situations.

Equilibrium disclosure in this setting is the polar opposite of that when the knowl-

edge state is public. There it is well known that full revelation is an equilibrium. When

the knowledge state is private, however, this is never the case or, to be more precise,

for generic parameters of the model, all equilibria entail some degree of information

loss. By generic, we mean all cases save for the knife-edge situation where there is an

agreement point whose action corresponds exactly to the optimal action the receiver

would undertake given her prior beliefs.

With a private knowledge state, non-disclosure is always on the equilibrium path

since uninformed senders have no recourse but to send the null message. This, in

turn, limits the ability of the receiver to strategically respond to such a message so

as to create incentives for the informed types to disclose. To see why this wrecks full

revelation, notice that the null message produces an action that differs from the fully

revealing action. Since the sender and receiver disagree as to the ideal action, it then

follows that, by deviating to the null message, certain sender types can profitably

shift the action in a favorable direction. Formally,

Theorem 1 If the knowledge state is private, then full revelation is generically not

an equilibrium.

Dye (1985) offered a version of this result for the special case where the receiver

chooses an action equal to the expected state, and the sender always prefers the high-
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est possible action.14 Analogous to Seidmann and Winter (1997), who extended the

full revelation findings of Milgrom (1981) and Grossman (1981) to arbitrary prefer-

ences when the knowledge state is public, Theorem 1 extends the non-existence result

to a broad class of preferences when the knowledge state is private. Since one can no

longer focus on full revelation, it remains to determine the nature of equilibrium and

the degree of information loss in these settings. We do this next.

4.1 Convex Disclosure Equilibrium

Initially, we restrict attention to a type of equilibrium we label a convex disclosure

equilibrium. This is an equilibrium where the disclosure region is convex and where

complete non-disclosure occurs elsewhere. We will later show that, for a certain class

of preferences, the restriction to this type of equilibrium is without loss of generality–

all equilibria are of this form. The precise condition on preferences where this is the

case is when preferences satisfy what we term the gradual slope ordering property,

which holds when the slope of the sender’s bliss line is less than half that of the

receiver’s bliss line. Formally,

Definition 4 The bliss lines  () and  () satisfy the gradual slope ordering prop-

erty if for all 0  , we have  (
0)−  () 

1
2
( (

0)−  ()) 

Much of the applied literature (e.g. Dye, 1985) studies a special case of this

form of preferences, assuming that all sender types prefer the highest possible action

while receivers prefer to match the action to the state. This literature typically finds

14Dye (1985) also allows for the possibility that the shareholders commit to a disclosure policy,

but assumes that this option is not exercised. See Hummel, et al. (2016) for an analysis of disclosure

with commitment.
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that “good news” is revealed whereas “bad news” is suppressed. In this section, we

contribute by showing how this good news-bad news feature of equilibria generalizes

and what conditions are required for equilibria of this form.

Critical to the analysis is the receiver’s response following the null message  = ∅,
which now occurs in equilibrium. Let  (∅; = [1 2]) denote the equilibrium action

following the null message when the sender discloses over the interval [1 2]. Absent

agreement points, a sharp result is available:

Proposition 5 If there are no agreement points and the gradual slope ordering prop-

erty holds, then there is a unique equilibrium. In this equilibrium, full disclosure

occurs over some interval [1 2] and non-disclosure results otherwise. Moreover, in

this equilibrium either 1 =  or 2 = ̄ but not both.

The proof follows as a consequence of three propositions. The first shows that a

convex disclosure equilibrium exists under the gradual slope ordering property regard-

less of whether there is an agreement point. The second shows that when agreement

points are absent, there is a unique convex disclosure equilibrium. The third shows

that, in these circumstances, all equilibria are convex disclosure equilibria. We now

establish the first result:

Proposition 6 If the gradual slope ordering property holds, then there exists a convex

disclosure equilibrium.

Proposition 6 is illustrated in Figure 1. While existing work studies how the

threshold for revelation varies with the chance that the sender is informed in a model

where sender bliss lines are flat, little is known about how differing sender preferences

affect disclosure. An implication of Proposition 6 is that, when agreement points
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Figure 1: Convex Disclosure Equilibrium: If the gradual slope ordering property holds,

then a convex disclosure equilibrium exists.

are absent and the gradual slope ordering property holds, equilibrium information

disclosure is independent of the particulars of sender preferences. We return to this

point in more detail in Section 5, but the basic idea is the following: disclosure

begins at the point where the receiver’s bliss line equals the action taken following

the null message. As neither expression depends on sender preferences, equilibrium

is undisturbed when these preferences change.

The notion that the two parties might agree in certain states represents a novelty

in the modeling of preferences absent from most extant work causing equilibria to

differ in fundamental ways from earlier characterizations.15 Rather than dividing the

state space into good news, which is disclosed, and bad news, which is withheld, when

preferences exhibit some agreement, a second cutoff can arise. Each cutoff satisfies a

15Note though that Bhattacharya and Mukherjee (2013) also allow for agreement points in their

analysis but restrict attention to flat sender bliss lines.
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similar indifference condition to the more usual case, but together these cutoffs imply

the suppression of “extreme” news, consisting of both extremely high and extremely

low states, rather than the simple good versus bad news dichotomy. This leaves the

receiver in the perplexing situation that, when faced with non-disclosure, the state

might be extremely high, extremely low, or simply unknown to all. Thus, unlike

the more standard situations where agreement points are absent, a receiver’s action

following non-disclosure is fraught with considerable risk.

Having identified circumstances where convex disclosure equilibria exist, the next

proposition shows that, so long as agreement points are absent, the gradual slope

ordering property also guarantees that there is a unique equilibrium cutoff supporting

a convex disclosure equilibrium. Formally,

Proposition 7 If the gradual slope ordering property holds and there are no agree-

ment points, then there is a unique convex disclosure equilibrium.

The Severity of Information Loss

The contrast between Theorem 1 and Proposition 2 suggests that second-order

uncertainty leads to entirely different disclosure regimes. When agreement points are

absent and the gradual slope ordering property holds, we can trace how equilibrium

disclosure varies in the two regimes. Specifically, the parameter  reflects the degree

of second-order uncertainty. In the limit as  → 1, where second-order uncertainty

vanishes, we show that the sequence of convex disclosure equilibria converges to full

revelation. Formally,

Proposition 8 If the gradual slope ordering property holds and there are no agree-

ment points, then the unique convex disclosure equilibrium converges to full revelation

as → 1.
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Agreement Points

The presence of agreement points may create additional complexity in that, in

some cases, the equilibrium configuration must satisfy two indifference conditions

(corresponding to the endpoints of the interior disclosure interval) rather than one.

This, in turn, leads to the possibility of equilibrium multiplicity.

To see why, notice that the receiver’s response to non-disclosure is non-linear in

the parameters 1 and 2 of the disclosure region. Nonlinearities arise both from the

Bayes’ rule calculation weighing the likelihood that the sender is uninformed and from

the calculation of the conditional expectation of  under strategic non-disclosure. In

general, such non-linear two equation systems produce multiple solutions. Indeed,

even in the canonical case where bliss lines are linear and the state is uniformly

distributed, multiple equilibria can arise:

Example 1 Suppose the state is uniformly distributed on [−50 50] and the proba-
bility the sender is informed is  = 1

2
. The receiver’s bliss line is  () =  while

the sender’s is  () =
9
20
 + 3

16
; thus, the bliss lines satisfy the gradual slope or-

dering property and there is an agreement point at  ≈ 034. Finally, suppose the

receiver’s payoffs are quadratic in the distance from the bliss action. This specifica-

tion yields exactly two convex disclosure equilibria, one in which the sender discloses

if and only if  ∈ [−258 2954] and one in which the sender discloses if and only if
 ∈ [−005 420].

The example demonstrates that the presence of agreement points destroys the

possibility of equilibrium uniqueness. It also offers two other lessons. First, much

like cheap talk games, persuasion games can also produce multiple equilibria with

very different informational characteristics. Second, it shows that the presence of

agreement points need not prevent considerable information loss.

25



Thus far, we have limited the search for multiple equilibria to other convex dis-

closure equilibria. Our next proposition shows that restricting the search in this way

captures all possible equilibria, provided there are no agreement points.

Proposition 9 If the gradual slope ordering property holds and there are no agree-

ment points, then every equilibrium is a convex disclosure equilibrium.

The intuition for why disclosure intervals must be convex can be most readily

seen when the sender’s bliss line lies above the receiver’s. The key to the result is

the structure of how the conflict between the sender and receiver evolves with the

state, i.e. the changes in the two bliss lines. Recall that disclosure is preferred if

and only if the gap between the two bliss points is smaller than the gap between the

sender’s bliss action and the non-disclosure action, i.e., the “non-disclosure gap”. If,

at any two points, the former gap is smaller, then it remains smaller everywhere in

between. This is easily seen when the non-disclosure action lies below the sender’s

bliss action at both points. Since, in these circumstances, the receiver’s bliss action

must lie between the non-disclosure action and the sender’s bliss action, disclosure

remains optimal everywhere in between. When the non-disclosure action lies above

the sender’s bliss action at both points, incentives to disclose depend on the speed

with which the bliss line gap closes compared to the non-disclosure gap. The gradual

slope ordering property ensures that the bliss line gap closes faster, ensuring disclosure

remains optimal in between.

Non-Convex Disclosure

If we restrict the message space, as in Dye (1985), so that the sender can either

fully disclose or send the null message, then Proposition 9 extends to cases where

an agreement point is present–all equilibria entail a convex disclosure interval. But
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relaxing this restriction on messages permits the possibility of non-convex disclosure

equilibria as the following result shows.

Proposition 10 If the gradual slope ordering property holds and there is an agree-

ment point 0, then there exists an equilibrium characterized by cutoffs 1  01  02 

2, where 
0 ∈ (01 02), such that partial disclosure occurs when  ∈ [01 02], full dis-

closure occurs when  ∈ [1 2]  [01 02], and non-disclosure occurs when  ∈ (1 2).

Notice that, when an agreement point is present, the gradual slope ordering prop-

erty also implies that the sender is conservative in the neighborhood of the agreement

point. As was the case when the knowledge state was public, conservatism gives rise

to multiple equilibria, and fundamentally alters some features of disclosure in persua-

sion settings. Ironically, the effect of an agreement point in this situation is to reduce

disclosure by the sender. Indeed, using arguments identical to those in the public

knowledge setting for comparing equilibria, it follows that the sender strictly prefers

an equilibrium with non-convex disclosure to the convex disclosure equilibrium.

To conclude, despite the potential complexity of messaging and response strategies

when the sender is privately informed, there exist equilibria with a simple and intuitive

form–the sender hides bad news (from his perspective) and discloses good news.

Moreover, when agreement points are absent, the equilibrium is unique. Adding

agreement points and enriching the message space, however, can admit radically

different types of equilibria.

4.2 Convex Non-Disclosure Equilibrium

We now study equilibria where the non-disclosure region is a convex set. Let  (∅; = [1 2])

denote the equilibrium action following the null message when the non-disclosure in-
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terval is [1 2]. A sufficient condition for such equilibria to exist is that the slope of

the sender’s bliss line is more than half that of the receiver’s bliss line; we call this

the steep slope ordering property. Formally,

Definition 5 The bliss lines  () and  () satisfy the steep slope ordering prop-

erty if for all 0  , we have  (
0)−  () 

1
2
( (

0)−  ()) 

One might wonder why a cutoff of 1
2
is used in defining whether the bliss lines

satisfy the gradual slope ordering property or the steep slope ordering property. The

reason is that if the slope of the sender’s bliss line is more than half that of the

receiver’s, then the difference between the sender’s bliss action and the receiver’s

bliss action changes less rapidly as a function of the state than the difference between

the sender’s bliss action and the action taken upon non-disclosure. But if the slope of

the sender’s bliss line is less than half that of the receiver’s then the opposite holds.

Hence 1
2
represents the critical value dividing the two cases.

Unlike the gradual slope ordering property, under the steep slope ordering prop-

erty there may be multiple agreement points. Among other things, this property

implies that the sender is not conservative at any agreement point. Thus, our ear-

lier arguments ruling out partially informative messages when the knowledge state

is public apply here. Hence, without loss of generality, we restrict attention to full

disclosure versus no disclosure.

When preferences satisfy the steep slope ordering property, we first establish that a

convex non-disclosure equilibrium always exists and then that all equilibria are convex

non-disclosure equilibria. Therefore, restricting equilibrium search to this class is of

no consequence. One might then be tempted to conjecture that, like convex disclosure

equilibria, the absence of agreement points leads to uniqueness. Sadly, this is not the
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case–regardless of the presence or absence of agreement points, multiple equilibria

can arise.

To establish equilibrium existence, the following definition and lemma are helpful.

Definition 6 Let ∅ be the state  solving  () =  (∅), where  (∅) is the receiver’s
optimal action given her prior beliefs.

Lemma 1 Define  to be the largest agreement point 
0  ∅, if such a point exists,

and  =  otherwise. Likewise, define  to be the smallest agreement point 
00  ∅,

if such a point exists, and  = ̄ otherwise. When the steep slope ordering property

holds and  ()   () for all  ∈ ( ), there exists a non-disclosure equilibrium
[1 2] ⊆ [  ] solving

| (∅; = [1 2])−  (1)| ≤ | (1)−  (1)| (1)

 (∅; = [1 2]) =  (2) (2)

where (1) holds with equality if 1  .

We now establish the existence result.

Proposition 11 If the steep slope ordering property holds, then there exists a convex

non-disclosure equilibrium.

Proposition 11 is illustrated in Figure 2. There are many plausible situations

where the steep slope ordering property arises. Perhaps the most obvious is the

canonical cheap talk specification wherein a decision maker consults a biased expert

who may report freely her views as to the state. The most explored case of this model

occurs when the bliss lines of the decision maker and expert are parallel. Comparing

the situation of cheap talk with persuasion, we see that they share in common the
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Figure 2: Convex Non-Disclosure Equilibrium: If the steep slope ordering property

holds, then a convex non-disclosure equilibrium exists.

inevitable loss of information, but that this loss occurs via a convex non-disclosure

interval under persuasion rather than partitional equilibria under cheap talk.

Perhaps more interesting are situations where the sender’s bias switches direction;

that is, where there is an agreement point. For instance, suppose  is drawn from

a distribution with mean   0. The receiver wishes to match the state while the

sender prefers an action equal to , where   1. Such a setting might occur when

a policy maker consults an expert to deliver a fact-laden report, and the expert is

more ideologically polarized than the policy maker. Proposition 11 reveals that, even

though incentives grow arbitrarily misaligned as the state becomes extreme in either

direction, the expert discloses for extreme values of . By contrast, in states over a

subset of [0 ] where there is little conflict, no disclosure occurs.

Why does the steep slope ordering property change the nature of equilibrium

disclosure so starkly compared to the gradual slope ordering property? The differing
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workings of these properties are most easily seen for extreme states. Under the

gradual slope ordering property, the receiver prefers more extreme actions than the

sender, at least near one of the endpoints. Hence, the sender resorts to non-disclosure,

which produces a moderate action in response. By contrast, under the steep slope

ordering property, preferences are not as misaligned at the extremes. Indeed, the

sender may even prefer more extreme actions than the receiver. Accordingly, the

option of moderation holds no interest and disclosure is best. The opposite is true

for moderate states, where non-disclosure itself can represent the extreme choice. As

a consequence, it offers a useful counter for senders that are relatively responsive to

the state, but not for those that are relatively unresponsive.

We now characterize the qualitative properties of all equilibria when the steep

slope ordering property holds.

Proposition 12 If the steep slope ordering property holds, then every equilibrium is

a convex non-disclosure equilibrium.

Examples of Multiple Convex Non-Disclosure Equilibria

Unlike the situation of convex disclosure equilibria, where equilibrium was unique

in the absence of agreement points, no such property obtains for convex non-disclosure

equilibria. To illustrate this, suppose the state is uniformly distributed on [−50 50],
the receiver suffers quadratic losses in the difference between her action and the state,

the sender is informed with probability  = 3
4
 and has a bliss line:

 () =

⎧⎪⎨⎪⎩  + 1 if  ≥ −206
0528 41 + 0028 525 if   −206

(3)

Notice that the slope of  () is greater than half the slope of  () and therefore

the steep slope ordering property holds. Moreover, there are no agreement points.
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It may be readily verified that non-disclosure over the interval [−206−0060] and
disclosure elsewhere comprises a convex non-disclosure equilibrium. This construction

depends only on preferences in the upper region,  ≥ −206. But there is another
non-disclosure equilibrium that has an upper bound 2 = −0061. Since a necessary
condition in any equilibrium is that  (∅; = [1 2]) =  (2), the lower bound

of the non-disclosure interval must be 1 = −20776 Equilibrium also requires that

the sender is indifferent between disclosing and revealing when  = 1. To ensure this

relation, we identified sender preferences to satisfy this condition while maintaining

continuity. This accounts for the part of the sender’s bliss line where   −206.
The choice of 2 = −0061 was arbitrary. For any 2 slightly lower than −0061,

a similar construction of sender preferences below −206 produces a second equi-
librium without disturbing the equilibrium characterized by non-disclosure over the

interval [−206−0060]. In short, the example represents neither a knife-edge nor a
pathological case.

Although the example does not feature any agreement points, adding agreement

points in no way eliminates multiple equilibria. For instance, if we modify preferences

for sufficiently high values of  such that one or more agreement points arise (while

maintaining the steep slope ordering property), the equilibria we identified remain

undisturbed because adding agreement points does not alter the incentives to disclose.

5 Choosing Among Senders

While the model thus far envisages an exogenous assignment of a sender to a receiver,

in many settings the receiver can choose between senders. For instance, when the

sender represents a consultant and the receiver a CEO, the receiver will typically
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interview several senders before deciding on one. We study a receiver’s choice of a

sender when senders are equally likely to be informed (have the same value of )

but differ in their preferences. Taking a mechanism design perspective, we resolve

situations where there are multiple equilibria by choosing the equilibriummost favored

by the principal/receiver. To capture preference differences, suppose the receiver can

consult with exactly one of two senders, labeled 1 and 2, and ordered by their

alignment with the receiver.

Definition 7 Sender 1 is more aligned with the receiver than sender 2 if and

only if 1 () falls strictly between  () and 2 () for all non-agreement points .

While intuitive, alignment is a strong ordering property–it requires that, for all

states where the sender and receiver disagree, the gap between bliss points of the

more aligned sender and the receiver is smaller than that of the less aligned sender

and the receiver. The strength of this condition is that the ordering between the two

senders is insensitive to the state distribution.

Given this ordering, it seems apparent that the receiver will always confer with the

more aligned sender, even if required to pay a small cost to do so. Results under cheap

talk games reinforce this conclusion. Indeed, a key finding from Crawford and Sobel

(1982) is that the receiver should confer with the least biased agent possible. Under

persuasion, however, this is not necessarily the case. In some cases, the intuitive result

applies, yet in surprisingly many situations the receiver would not pay any amount,

even if arbitrarily small, to consult with a more aligned rather than a less aligned

sender.
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5.1 Sender Knowledge Is Public Information

When the sender’s knowledge state is public, the comparison between senders is

straightforward. Since full revelation is an equilibrium regardless of preferences, the

receiver gains nothing by consulting with the more aligned sender.

Proposition 13 If the knowledge state is public and sender preferences are bounded,

then the receiver is indifferent over all senders, regardless of the degree of alignment.

5.2 Sender Knowledge Is Private Information

When the knowledge state is private, full revelation is no longer possible and, as we

established in Section 4, the qualitative features of equilibrium vary intricately with

whether sender preferences satisfy the gradual slope ordering property or the steep

slope ordering property. Throughout we assume one of these two properties holds

for both senders. The question of whom to consult depends on the properties of the

sender preferences. Accordingly, we divide the analysis into two parts.

5.2.1 Gradual Slope Ordering Property

Under the gradual slope ordering property, the best equilibrium for the receiver is a

convex disclosure equilibrium. We divide the analysis by equilibrium types, boundary

or interior. A boundary convex disclosure equilibrium is one in which one of the

endpoints of the disclosure interval is also an endpoint of the state space. An interior

convex disclosure equilibrium is one in which the disclosure interval lies in the strict

interior of the state space. An analogous definition holds for boundary and interior

convex non-disclosure equilibria.
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Boundary Equilibrium

When the equilibrium under the less aligned sender is a boundary equilibrium, the

analysis is stark. The receiver derives no additional benefit from consulting a more

aligned sender, just as when the knowledge state was public information.

Proposition 14 If the knowledge state is private, the gradual slope ordering property

holds, and there is a boundary equilibrium when consulting the less aligned sender 2,

then the receiver cannot do any better by consulting a more aligned sender 1.

We prove this proposition in two parts. The first shows that, given a boundary

equilibrium under the less aligned sender 2, there are no better boundary equilibria

under the more aligned sender 1, regardless of how closely aligned this sender is with

the receiver. The second part shows that the receiver strictly prefers a boundary

equilibrium to any interior equilibrium under a given sender. Together, these two

findings imply Proposition 14.

While the presence of a boundary equilibrium is sufficient, it is not necessary for

the observation that the receiver gains nothing by consulting a more aligned sender.

Suppose that we weaken the alignment property to a weak inequality; that is, the gap

between bliss points for a more aligned sender is at least as small as that of the less

aligned sender, but need not be strictly smaller for all states. With this weakening,

this finding can arise even with interior equilibria.

Proposition 15 If the knowledge state is private, the gradual slope ordering property

holds, there is an agreement point 0,  (∅)  ()  (0), and 1 () = 2 () for all

 ≥ (≤) 0, then the receiver is indifferent between the senders.

Proposition 15 demonstrates that it is not the presence of boundary equilibria per

se, that produces neutrality; rather it is the fact that the sender’s preferences only
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matter in a subset of the state space. Such a situation cannot arise under alignment

as we have defined it, where a strict ordering holds for all states. Proposition 15

illustrates why that condition cannot be easily weakened.

Now suppose that, instead of choosing among senders by alignment, the receiver’s

choice concerns sender expertise, reflected by differences in . In this situation, we

can show:

Proposition 16 If the senders share the same bliss line  (), there are no agree-

ment points, the gradual slope ordering property holds, and 1 has more expertise than

2 in that 1  2, then the receiver strictly prefers to consult sender 1.

An implication of this result is that a receiver obtains more value from consulting

a more informed sender than a sender with more aligned preferences. Consulting

a more informed sender improves the receiver’s payoff whereas consulting a more

aligned sender does not.

Interior Equilibrium

We now study interior equilibria when senders are ordered by alignment. In con-

trast to our earlier findings, neutrality no longer holds. Instead, the receiver strictly

prefers to consult the more aligned sender. To establish this result, we require that

the receiver’s preferences be well-behaved in the following sense:

Definition 8 The receiver’s indifference condition is said to be regular if, for any

2, the value of 1 solving  (1) =  (∅; = [1 2]) has the property that
1
2

 0

where the disclosure interval is [1 2].

The regularity condition says that, if disclosure occurs over slightly higher states

(i.e., 2 goes up), the receiver’s optimal action under non-disclosure falls and hence
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the point at which the receiver is indifferent between the disclosure and non-disclosure

action also falls. It ensures the receiver’s optimal action under non-disclosure behaves

in a sensible fashion. Commonly used expressions of receiver preferences satisfy the

regularity condition. For instance, regularity holds whenever  (∅; = [1 2]) =

 [| = ∅], which occurs, among other cases, when the receiver has quadratic pref-
erences.16

Proposition 17 If the knowledge state is private, the gradual slope ordering property

holds, there is an agreement point, and the receiver’s preferences are regular, then for

any interior equilibrium under the less aligned sender, 2, there exists a strictly more

informative equilibrium under the more aligned sender, 1.

5.2.2 Steep Slope Ordering Property

We again divide the analysis by whether the equilibria are boundary or interior.

Boundary Equilibrium

Whereas in the previous section, the presence of a boundary equilibrium under

2 implied that such an equilibrium arose when consulting 1, this is no longer the

case for convex non-disclosure equilibria. Instead, the opposite implication holds.

The other key difference is that boundary equilibria need not be preferred to interior

equilibria for convex non-disclosure equilibria. Despite these differences, there are

settings where the receiver derives no incremental benefit from consulting the more

aligned sender.

16Proof that  (∅; = [1 2]) =  [| = ∅] implies the regularity of receiver preferences is avail-
able on request.
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Proposition 18 If the unique equilibrium under the more aligned sender, 1, is a

boundary equilibrium, then the same strategies are also an equilibrium when consulting

the less aligned sender, 2.

The following example demonstrates that the opposite implication, i.e. the pres-

ence of a unique boundary equilibrium under 2 does not imply that there is no value

to consulting a more aligned sender.

Example 2 Suppose the state is uniformly distributed on the unit interval, the re-

ceiver’s preferences satisfy ( ) = −( − )2, and the sender’s bliss line satisfies

() = + for some   0. When  ≥ 1
2
− 1
2
+
√
1−
2

 the unique equilibrium is char-

acterized by non-disclosure in
h
0 1− 1


+
√
1−


i
. When   1

2
− 1

2
+
√
1−
2
, the unique

equilibrium is characterized by non-disclosure in
h
1
2
− 22 

1− − 2 12 − 22 
1−
i
.

In this example, lower values of  indicate more aligned senders. If 2  1
2
−

1
2
+

√
1−
2

 1, then there is a unique boundary equilibrium under 2 and there is

a unique, and more informative, interior non-disclosure equilibrium under 1. Thus,

the receiver benefits by consulting the more aligned sender.

Interior Equilibrium

We now study situations where there is an interior convex non-disclosure equilib-

rium when consulting the more aligned sender 1. As we will show, this situation is

analogous to that under the gradual slope ordering property, but no longer requires

the regularity condition. Such a weakening occurs even though comparing equilib-

ria between senders is less straightforward than under the opposite slope ordering.

Whereas interior convex disclosure equilibria were always subsets or supersets of one

another, and hence directly comparable, this is not the case with non-disclosure equi-

libria. Instead, changes in sender preferences provoke shifts in the location of the
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non-disclosure interval as well as adjustments in the length of the interval. In prin-

ciple, this makes comparison difficult or even ambiguous; however, a key feature of

the equilibrium conditions enables us to resolve the comparison unambiguously. In

particular, when the sender’s bliss actions lie above those of the receiver in the rele-

vant non-disclosure interval, then the receiver’s action at the right-hand endpoint of

the interval coincides with her bliss action. This implies that small changes to this

endpoint have only second-order effects on the receiver’s payoffs while shifts in the

left-hand endpoint have first-order effects.

We study non-disclosure intervals of the form [1 2 (1)] where 2 (1) solves

 (∅; = [1 2 (1)]) =  (2 (1)); that is, the right-hand endpoint satisfies the

equilibrium condition (provided  ()   ()), but the left-hand endpoint is treated

as a parameter. This class nests all interior equilibrium intervals. We show in the

next lemma that as long as the non-disclosure interval shifts to the right, the receiver

is better off.

Lemma 2 If the knowledge state is private and the steep slope ordering property

holds, then for any non-disclosure interval [1 2 (1)], the receiver’s utility is in-

creasing in 1.

We now prove that, when consulting with the more aligned sender, a non-disclosure

equilibrium that lies to the right of that under a less aligned sender always exists.

Proposition 19 If the knowledge state is private, the steep slope ordering property

holds, and the receiver’s preferred equilibrium under the less aligned sender, 2, is

interior, then the receiver strictly prefers to consult with the more aligned sender, 1.

To summarize, when considering boundary equilibria, sender loyalty is irrelevant.

By contrast, under an interior equilibrium, the receiver strictly prefers a more aligned
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sender. The latter also contrasts with the situation where sender knowledge is public,

in which case alignment is irrelevant as well.

6 Conclusion

Since the early 1980s, persuasion games have been widely studied. General models

have been offered in situations of information transmission where the receiver knows

exactly how knowledgeable the sender is concerning the issue of interest. Yet in many

situations the sender’s knowledge is unclear. Here, the receiver is not only uncertain

about the realized state, but also about the degree to which the sender knows the

realized state. Our main contribution is to offer a general model of persuasion games

exhibiting this type of second-order uncertainty. We show that the presence of such

uncertainty qualitatively changes conclusions about the degree to which hard infor-

mation facilitates information transfer.

Most notably, such uncertainty destroys the possibility that truthful revelation is

an equilibrium when the preferences of the sender and receiver conflict. Instead, equi-

librium consists of non-trivial intervals of disclosure and non-disclosure that depend

not just on the degree of conflict, but on the relative sensitivity of the sender and re-

ceiver bliss actions to changing information. When the sender is relatively insensitive

to information, disclosure occurs over a interval and non-disclosure otherwise. When

the sender’s bliss action is relatively sensitive to the state, equilibria take the reverse

form, with non-disclosure occurring over a interval.

Information loss stems from two sources: the degree of preference misalignment

and the likelihood that the sender is informed about the realized state. When the

sender is highly likely to be well-informed, information loss is minor, even when
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preferences are badly misaligned. When the receiver is maximally uncertain about

the sender’s expertise, however, information loss can be severe–even when preferences

are relatively well-aligned.

Equilibria also differ in another key respect: whether they are interior or boundary.

This distinction proves crucial in examining situations where the receiver must choose

whom to consult. When sender alignment can be strictly ranked in that one sender’s

bliss line is strictly closer to the receiver’s than another sender for all states, the

choice of sender would seem to be obvious–the receiver should choose the more

aligned sender. But when boundary equilibria arise, this proves mistaken. In these

situations, the amount of disclosure is independent of preference alignment, but not of

sender expertise. Thus, the receiver should choose the more expert sender, regardless

of preference alignment. Moreover, the requirements for boundary equilibria are quite

mild: So long as the sender and receiver never agree on the ideal action and the

sender’s bliss actions are relatively insensitive to new information, then all equilibria

are boundary. Only under an interior equilibrium does closer alignment provide more

information.

To conclude then, the practical implication of our analysis is that the knowledge-

ability of a sender, his likelihood of being informed as to the state, matters much

more than preference alignment, especially in situations where sender bliss actions

are relatively insensitive to the state. Thus, decision makers should focus on knowl-

edge over loyalty when interviewing prospective senders. More broadly, settings with

second-order uncertainty behave quite differently from the standard analysis, where

the informedness of the sender is commonly known. Full revelation no longer prevails,

and equilibrium structure changes dramatically depending on the relative slopes of

the bliss lines.
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Appendix

Proof of Proposition 1: Suppose not. Consider case (a) in which  ()   ()

for all  ≥ ∗ for some ∗. Suppose the sender sends a message  = [∗∞) and
the receiver’s response is  () = 

³
̂
´
for some ̂ ≥ ∗. All sender types with

 ∈
³
̂ ̂ + 

´
for some small   0 prefer to send the message  rather than fully

reveal yielding a contradiction. Case (b) is analogous. ¥

Proof of Proposition 2: Consider the following three cases:

Case I (terminal branch was UUU...U). Since  () =  (+1), for all  ∈
[0 +1] where  ()   (), we have  ()   ()   (+1). Hence, these

types have no incentive to deviate. Now consider  ∈  where  ()   ()  Since

 ∈ ̄ and ̄()0 = +1, there exists some interval  for    whose gap is at least

as large as the gap in . Thus, for  ∈ , | ()−  ()| ≤ | (∗ )−  (
∗
 )| ≤

| (+1)−  (
∗
 )|  | (+1)−  ()|. The first inequality follows because the

gap in  is at least as large as that in  The second inequality follows because

 (+1) ≥  (
∗
 ) and because, for any interval in the set of bifurcation intervals,

 ()   (). The third inequality follows because 
∗
   for all  ∈ . Therefore,

deviating to  is not profitable.

Case II (terminal branch was DDD...D). This case is analogous to Case I.

Case III (terminal branch contains at least one U and one D). Recall that  ∈©
()0−1 ()0

ª
. We prove that full revelation is an equilibrium when, for  ∈ ̄()0 ,

 ()   (), and hence  () =  (()0 ). The case where  ()   () for

 ∈ ̄()0 is analogous.

Case IIIA: Suppose    = ()0  If  ()   (), then full revelation is

incentive compatible since  ()   ()   (()0 ) =  (). It remains to show
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incentive compatibility for  ∈  where  ()   (). Notice that there exists some

interval  with    ≤  with a larger gap than  and with the property that, for

 ∈ ,  ()   ()  The reason is that at some prior bifurcation we selected an

interval  with    ≤  such that for  ∈ ,  ()   (). When  was selected

 was available but not chosen implying that the gap in  is less than that in .

For  ∈ , observe that | ()−  ()| ≤ | (∗ )−  (
∗
 )| ≤ | ()−  (

∗
 )| 

| ()−  ()|. The first inequality follows because the gap in  is at least as

large as that in  The second inequality follows because  () ≥  (
∗
 ) and

 (
∗
 )   (

∗
 ). And the third inequality follows because   ∗ for all  ∈ .

Therefore, deviating to  is not profitable.

Case IIIB: Suppose    = ()0 . The argument establishing that deviating is

not profitable is analogous to that of Case IIIA.

Since this exhausts all of the possibilities, the proof is complete. ¥

Proof of Proposition 3: We first show that if the sender is not conservative, then

full revelation is the unique equilibrium. When there are no agreement points, the

not conservative condition is satisfied vacuously. Moreover, it follows from Seidmann

and Winter (1997), Theorem 3 (part a) that the equilibrium is unique. When there

are one or more agreement points, Proposition 2 showed that full revelation is an

equilibrium. We now show that, when the sender is not conservative, no equilibrium

exists in which partial pooling of information occurs.

Suppose, contrary to the proposition, that there exists an equilibrium without full

revelation. Fix a message  = , where  consists of a non-degenerate interval [0 1].

Define a set of positive measure Θ () such that, for all  ∈ Θ (), the message  is

sent in equilibrium. Let  (Θ ()) be the convex hull of Θ (). Let 0 be the largest

agreement point in  (Θ ()) such that the set { :   0 and  ∈ Θ ()} has positive
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measure if such an agreement point exists, and let 0 = inf  (Θ ()) otherwise.

Case 1: Suppose that for (almost) all   0 in  (Θ ()),  ()   (). Then,

since the receiver believes that all types are contained in  (Θ ()) following the

equilibrium message  it then follows that  () =  (
00) for some value of 00 strictly

in the interior of  (Θ ()) and furthermore, there exist a positive measure of values

of  ∈ Θ () such that   max {0 00}  These sender types can deviate by revealing
truthfully, thus inducing an action  ()   ()  which is strictly profitable since

 ()   ()   () 

Case 2: Suppose that for (almost) all   0 in  (Θ ()),  ()   (). As in

the previous case, the putative equilibrium action  () lies strictly in the interior of

 (Θ ()). If  () ≤  (
0), then for a positive measure of types  where  ∈ Θ ()

and   0, we have  ( ()  )   ( (
0)  ) ≥  ( ()  ). Hence, they

prefer full revelation to  (
0) 

If  ()   (
0), then either there exists a positive measure of sender types 

where  ∈ Θ () and   0 or there exists a positive measure of sender types 

where  ∈ Θ () and  ∈ ¡0 −1 ( ())
¢
. In the former case,  ()   (

0)   ()

for any such types , and hence,  ( ()  )   ( (
0)  )   ( ()  ).

In the latter case,  ()   ()   () for any such sender type , and hence

 ( ()  )   ( ()  ). Thus, in either case, a positive measure of senders can

profitably deviate by revealing truthfully. Since this exhausts all possibilities, the

result follows.

We now show that if at some agreement point a positive measure of sender types

are conservative, then there exists a partial pooling equilibrium. We do this by

construction.

First, suppose that a positive measure of conservative senders lie on both sides
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of agreement point 0. Let  = { :   0 and sender is conservative} and  =

{ :   0 and sender is conservative}.
We will construct an interval  containing a positive measure of conservative

senders on both sides of 0 such that, when the message  =  is sent, in equilibrium,

the action  () =  (
0) is chosen. Formally, choose an interval  such that  ∩ 

and ∩ are of positive measure. Suppose that in equilibrium, for all  ∈ ( ∩ )∪
( ∩ ) senders send the message  =  All other senders fully reveal.

We now show that one can choose  such that, given equilibrium posterior be-

liefs, the action  () =  (
0) maximizes the receiver’s payoffs. Clearly  may be

constructed to contain a positive measure of conservative senders on both sides of

0. To show that it produces the action  (
0) in equilibrium, notice that, if  ∩ 

is sufficiently small, then the receiver will optimally choose  ()   (
0), while if

 ∩ is sufficiently small, then the receiver will optimally choose  ()   (
0). By

continuity of the receiver’s best response, there exists  containing a positive measure

of conservative senders on both sides of 0 such that  () =  (
0). Thus, such a

construction is feasible.

To see that this construction is incentive compatible, suppose that the receiver

uses the Bifurcation Algorithm to respond to out-of-equilibrium messages. For non-

conservative senders, this ensures that deviation is unprofitable. For conservative

senders where  ∈  the message  is not feasible and, by construction, they prefer

full revelation to any feasible deviation. Finally, for conservative senders such that

 ∈ , by construction, full revelation is weakly preferred to any deviation and, by the

definition of conservatism, pooling and obtaining  (
0) is strictly preferred to full

revelation. Therefore, choosing  =  is incentive compatible. Finally, the receiver

is acting optimally given beliefs on and off the equilibrium path. Thus, we have
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constructed an equilibrium.

Next, suppose that a positive measure of senders are conservative on only one side

of agreement point 0 Suppose that a positive measure of sender types below 0 are

conservative while a zero measure of senders above 0 are conservative; that is, 

is of positive measure and  of zero measure. Consider a point 00  0 but close

to it. Notice that, for  in the interval (00 00 + ] for some small   0, we have

the ordering  ()   (
00)   () since  () is strictly increasing. Therefore,

in this interval  ( (
0)  ) ≤  ( ()  )   ( (

00)  ). Moreover, since 00

is close to 0, then, by continuity, for a positive measure   0 where the sender is

conservative with respect to 0, the sender is also conservative with respect to 00. We

can then use an analogous construction to the case where senders are conservative on

both sides of an agreement point to establish a partial pooling equilibrium.

The case where there are a positive measure of conservative senders above 0 and

not below is analogous. ¥

Proof of Theorem 1: Suppose to the contrary that full revelation is an equilibrium.

We will derive a contradiction by constructing a profitable deviation. Clearly there

exists a state 0 where  (0) =  (∅). Since, generically  (
0) 6=  (

0) and  ()

is continuous and strictly increasing, there is a positive measure of sender types near

0 who will prefer to report that they are uninformed and induce action  (∅), than
informed and induce action  (). Therefore, full revelation is not an equilibrium. ¥

Proof of Proposition 6: The gradual slope ordering property implies that there

is no more than one agreement point. We can assume that the sender either fully

discloses or engages in complete non-disclosure. If the sender selects a message  = 

where  is a non-degenerate interval, then this message immediately reveals the
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sender’s information state. Thus, arguments analogous to those supporting Propo-

sition 2 imply that the receiver can respond in such a way that the sender prefers

full disclosure to partial disclosure. As a result, the remainder of the proof restricts

attention to incentive compatibility of full versus no disclosure.

First, assume there are no agreement points. Suppose  ()   () for all ;

the opposite case is analogous. Define ∗ as follows: An informed sender sends the

message  = ∅ for   ∗ and sends the message  =  for  ≥ ∗. Following the

message  = ∅, the receiver’s action  ¡∅; =
£
∗ ̄

¤¢
maximizes her expected payoff

conditional on the message coming from a sender who is uninformed with probability

1−
1−+ (∗) , and from a sender who is informed and where the state is   ∗ with the

remaining probability. The value of ∗ is defined to satisfy 
¡∅; =

£
∗ ̄

¤¢
=  (

∗).

To establish that such a ∗ exists, notice that when ∗ →  or ∗ → ̄, the

action 
¡∅; =

£
∗ ̄

¤¢
reflects the optimal action conditional on the sender being

uninformed and, therefore, lim∗→ 
¡∅; =

£
∗ ̄

¤¢
 lim∗→  (

∗) and

lim∗→̄ 
¡∅; =

£
∗ ̄

¤¢
 lim∗→̄  (

∗). Since 
¡∅; =

£
∗ ̄

¤¢
is continuous in

∗, it follows that a value of ∗ satisfying 
¡∅; =

£
∗ ̄

¤¢
=  (

∗) exists.

Next, we show the sender can do no better than to send the message  = ∅ for
all   ∗ and  =  for all  ≥ ∗. For  ≥ ∗, notice that  ()   () ≥

¡∅; =

£
∗ ̄

¤¢
; therefore disclosure is preferred to non-disclosure by an informed

sender in this state.

For   ∗, when not disclosing, a sender earns  (| (∗)−  ()|) and when
disclosing, a sender earns  (| ()−  ()|). We claim that for all   ∗,

| ()−  ()|  | (∗)−  ()|.
Case 1:  (

∗)   (). Then | ()−  ()|  | (∗)−  ()| holds if and
only if  () −  ()   () −  (

∗) or  ()   (
∗), and since   ∗, this
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condition holds.

Case 2:  (
∗)   (). Then | ()−  ()|  | (∗)−  ()| holds if

and only if  () −  ()   (
∗) −  (). To establish this inequality, ob-

serve that  () −  ()   () −  (
∗) +  (

∗) −  ()   () −  (
∗) +

2 ( (
∗)−  ()) =  (

∗)−  ()   (
∗)−  () where the first inequality fol-

lows because  ()   () while the second inequality follows from the gradual slope

ordering property. This establishes that non-disclosure is preferred to disclosure, and

completes the proof for the case where there are no agreement points.

Next, assume there is a single agreement point occurring in state 0. Suppose

that  (∅)   (
0) (the situation where  (∅)   (

0) follows an analogous line of

proof). We will show that there is an interval [1 2] where disclosure occurs. In the

remaining states, an informed sender chooses not to disclose.

To construct [1 2], we require (1) 1  0  2, (2)  (1) =  (∅; = [1 2]),

and (3) | (2)−  (2)| ≤ | (∅; = [1 (2)  2])−  (2)| with equality if 2  ̄.

To see that such a construction is possible, fix 2  0 and find a value 1 (2) solving

condition (2) Notice that, for 1 sufficiently small,  (1)   (∅; = [1 2]) while

for 1 close to 0  (1)   (∅; = [1 2])  Therefore a solution 1 (2) exists.

Similarly, by varying 2 one can show that there exists a value of 2  0 satisfying

condition (3). Therefore, such a construction is feasible.

When   1, we claim the sender prefers non-disclosure. To establish this

claim, we show | (∅; = [1 2])−  ()| ≤ | ()−  ()|. The combination of
  0 and the gradual slope ordering property implies that  ()   (). Thus,

| ()−  ()| =  () −  () =  () −  (1) +  (1) −  ()   () −
 (1) +  (1)−  ()   ()−  (1) + 2 ( (1)−  ()) =  (1)−  () 

 (1) −  () =  (∅; = [1 2]) −  (), where the first and third inequalities
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follow because  ()   () for   0 while the second inequality follows from the

slope property.

Next, when   2, we also claim the sender prefers non-disclosure. To estab-

lish this claim, we show | (∅; = [1 2])−  ()| ≤ | ()−  ()|. In this case
 ()   () for all   0. Therefore, | ()−  ()| =  ()− () =  (2)−
 (2)+( ()−  (2))−( ()−  (2)) ≥  (2)− (2)+2 ( ()−  (2))−
( ()−  (2)) =  (2)− (2)+ ()− (2) =  (2)− (∅; = [1 (2)  2])+

 () −  (2) =  () −  (∅; = [1 (2)  2]), where the weak inequality follows

from the slope property and the penultimate equality follows from condition (3).

Finally, for  ∈ (1 2), we claim the sender prefers to reveal. To establish

this claim, we show | ()−  ()| ≤ | (∅; = [1 2])−  ()|. We consider two
cases:   0 and   0. When   0,  ()   ()   (1) =  (∅; [1 2]).
Hence, the required inequality holds. Alternatively, when   0, we know  () −
 () =  (2)−  (2)+ ( ()−  (2))− ( ()−  (2)) ≤  (2)−  (2)+

2 ( ()−  (2))−( ()−  (2)) =  (2)− (2)+ ()− (2) =  (2)−
 (∅; = [1 (2)  2]) +  () −  (2) =  () −  (∅; = [1 (2)  2]), where the

inequality follows from the gradual slope ordering property and because   2. ¥

Proof of Proposition 7: Recall that an equilibrium consists of a value of ∗ that

solves  (
∗) = 

¡∅; =
£
∗ ̄

¤¢
. We will show that, at any such solution, it must

be the case that
(

∗)
∗  

∗
¡∅; =

£
∗ ̄

¤¢
. Recall that 

¡∅; =
£
∗ ̄

¤¢
is the

argument  which maximizes

 (∗)
1− +  (∗)

1

 (∗)

Z ∗



 ( )  ()  +
1− 

1− +  (∗)

Z ̄



 ( )  () 

Our assumptions imply 
¡∅; =

£
∗ ̄

¤¢
satisfies the first-order condition, Ψ ( ∗) ≡



1− +  (∗)

Z ∗



 ( )


 ()  +

1− 

1− +  (∗)

Z ̄



 ( )


 ()  = 0
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where Ψ ( ∗)   0 since  is a maximum.

Using the Implicit Function Theorem and that
()


|=∗ = 0, we have


¡∅; =

£
∗ ̄

¤¢
∗

= −Ψ ( 
∗)

∗

Ψ ( ∗)



=
 (∗)

1− +  (∗)

⎡⎣ 
1−+ (∗)

R ∗


()


 ()  + (1−)
1−+ (∗)

R ̄


()


 () 

Ψ ( ∗) 

⎤⎦
=

 (∗)
1− +  (∗)

∙
Ψ ( ∗)

Ψ ( ∗) 

¸
= 0

Since
(

∗)
∗  0, it then follows that (

∗)
∗  

∗
¡∅; =

£
∗ ̄

¤¢
at any intersection

point. Hence, there is a unique solution, ∗. ¥

Proof of Proposition 8: To see this, suppose, without loss of generality, that the

sender’s bliss line lies above the receiver’s bliss line. In that case, the equilibrium

equation, defining the cutoff ∗ where information revelation takes place, is given by


¡∅; =

£
∗ ̄

¤¢
=  (

∗). We claim that lim→1 ∗ () = . To see this, suppose to

the contrary that lim sup→1 
∗ () = 0  . Then lim sup→1 

¡∅; =
£
∗ ()  ̄

¤¢
=

lim
→1


¡∅; =

£
0 ̄

¤¢
= (̂), where ̂  0. But this is a contradiction since, in

equilibrium lim
→1


¡∅; =

£
0 ̄

¤¢
=  (

0). Thus, the sequence of convex disclosure

equilibria converges to full revelation in the limit. ¥

Proof of Proposition 9: First, we rule out partial disclosure in any equilibrium. To

see this, suppose to the contrary that, for some set of states having positive measure,

the message  = , where  consists of an interval not including the entire state

space, is sent in equilibrium. For states where this message is sent in equilibrium, the

situation is identical to one in which the knowledge state is public. As a consequence,

our previous arguments for that case imply that some positive measure of sender
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types can profitably deviate, contradicting the notion that  is sent in equilibrium.

Next, we consider the situation where disclosure regions are non-convex as a

result of non-disclosure. Then there exist states 0 and 00 where 0  00 such

that disclosure occurs in equilibrium in each of these states, but, for some  ∈
(0 1), non-disclosure occurs in state 000 = 0 + (1− ) 00 Disclosure in states 0

and 00 implies that | (∅;)−  (
0)| ≥ | (0)−  (

0)| and | (∅;)−  (
00)| ≥

| (00)−  (
00)|, where  denotes the set of states in which disclosure occurs. To

show that non-disclosure will not occur in state 000 we show that | (∅;)−  (
000)| 

| (000)−  (
000)| cannot occur. We prove this for two separate cases:

Case 1: Suppose  ()   () for all  ∈ (0 00). Then | (∅;)−  (
000)| 

| (000)−  (
000)| can only hold if  (∅;)   (

000), and hence,  (∅;)− (000) 
 (

000)− (000), or equivalently, 2 (000)− (000)   (∅;). By the gradual slope
ordering property, this implies 2 (

0) −  (
0)   (∅;), which may be rewritten

as  (
0) −  (

0)   (∅;) −  (
0). But this contradicts our previous finding

that | (∅;)−  (
0)| ≥ | (0)−  (

0)| (regardless of whether  (∅;)   (
0))

because if  (∅;)   (
0), then we have  (

0)   (∅;)   (
0). Thus,

| (∅;)−  (
000)|  | (000)−  (

000)| cannot hold in this case.
Case 2: Suppose  ()   () for all  ∈ (0 00). The proof establishing that

| (∅;)−  (
000)|  | (000)−  (

000)| cannot hold is analogous to Case 1. ¥

Proof of Proposition 10: The proof is by construction. Let 0 be an agreement

point. Recall that there exists a convex disclosure equilibrium with disclosure interval

[1 2] satisfying 1  0 and 2  0. Consider an interval  0 = [01 
0
2], where

0 ∈ [01 02] ⊂ [1 2], and the sender sends message  =  0 in equilibrium with the

resulting action  ( 0) =  (
0). To see that such a construction is feasible, notice that,

by continuity of the receiver’s bliss line, there exists a continuum of pairs (01 
0
2) that
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induce  ( 0) =  (
0). Moreover, these pairs can be made arbitrarily close to 0 and

hence [01 
0
2] ⊂ [1 2]. Finally, since the non-disclosure region remained unchanged

by this amendment, the equilibrium conditions for (1 2) are undisturbed.

It remains to show that this strategy is incentive compatible. By our previous ar-

guments, we know that disclosure is preferred to non-disclosure in the region [1 2]

and vice-versa. Since the gradual slope ordering property implies the sender is con-

servative in the neighborhood of 0, it follows that there exists an interval sufficiently

close to 0 where the sender prefers the action  (
0) to the disclosure action. Thus

sending the message  0 in the interval [01 
0
2] is preferred to full disclosure. ¥

Proof of Lemma 1: We first show that there exists some 1 and 2 satisfying con-

ditions (1) and (2). To see this, fix 1  ∅. Since  (∅)   (∅; = [1 ∅])

and  (1)   (∅; = [1 1]), it follows from the Intermediate Value Theo-

rem that there exists some 2 ∈ (1 ∅) satisfying  (∅; = [1 2]) =  (2).

Let 2 (1) denote this value of 2. For values of 1 close to ∅, we have  (1) 

 (∅; = [1 2 (1)])   (1), and thus | (∅; = [1 2 (1)])−  (1)| 
| (1)−  (1)|. But this implies that when lim1→ | (∅; = [1 2])−  (1)|
 lim1→ | (1)−  (1)|, there exists some 1 ∈ ( ∅) such that
| (∅; = [1 2 (1)])−  (1)| = | (1)−  (1)|. Thus, there exists some 1
and 2 satisfying conditions (1) and (2).

It remains to show that for such 1 and 2, it is incentive compatible for the sender

not to disclose if and only if  ∈ [1 2]. First, consider   2. If  ()   (),

then  ()   ()   (∅; = [1 2]). It follows immediately that disclosure

is strictly preferred to non-disclosure. Conversely, if  is such that  () ≤  (),

define 00 to be the largest agreement point where 00  . (Since  ()   () in the

region [  ], then such an agreement point 
00 must exist for it to be the case that
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 () ≤  ().) For  such that   00, we have  ()−  () =  ()−  (
00)−

( () −  (
00))   () −  (

00)   () −  (∅; = [1 2]), where the first

equality follows from  (
00) =  (

00), the first inequality follows from the steep slope

ordering property, and the second inequality follows because  (∅; = [1 2]) =

 (2)   (
00) =  (

00) ≤  (). Therefore, the sender prefers disclosure in this

region. Thus, for all   2, disclosure is preferred.

Next, consider  ∈ (1 2). We claim that | (∅; = [1 2])−  ()|
 | ()−  ()|. For  close to 2,  () ≥  (∅; = [1 2])   () and hence

non-disclosure is strictly preferred to disclosure. For  close to 1,  (∅; = [1 2]) 

 ()   (). It follows that  ()−  () =  (1)−  (1) +

{( ()−  (1))− ( ()−  (1))}   (1)−  (1)− { ()−  (1)}
≥  (∅; = [1 2]) −  (1) − { ()−  (1)} =  (∅; = [1 2]) −  (),

where the inequality follows from the steep slope ordering property, and the next

substitution follows from the equilibrium properties of 1 and 2. Since this exhausts

the space of possibilities for  ∈ (1 2), we have shown that the sender prefers
non-disclosure to disclosure in this region.

For   1, if  ()   (), a similar argument shows  ()−  ()

=  (1) −  (1) + {( ()−  (1))− ( ()−  (1))}   (1) −  (1) −
{ ()−  (1)} =  (∅; = [1 2])−  (1)− { ()−  (1)}
=  (∅; = [1 2]) −  (), so disclosure is preferred to non-disclosure in this

region. Conversely, if  () ≤  (), then  () ≤  ()   (∅; = [1 2]), and

thus disclosure is preferred. ¥

Proof of Proposition 11: When there are no agreement points and  ()   (),

existence follows from Lemma 1. The case where  ()   () is analogous.

When there is one agreement point, 0, where for   0,  ()   () and
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 (∅)   (
0), then, setting  = 0 and  = ̄, we can invoke Lemma 1 to show

existence. The case where  (∅)   (
0) is analogous. Conversely, when for   0,

 ()   () and  (∅)   (
0), then, setting  =  and  = 0, we can invoke

Lemma 1. The case where  (∅)   (
0) is analogous.

Where there are multiple agreement points, define 0 and 00 to be adjacent agree-

ment points relative to  (∅) as set out in Lemma 1. When  ()   () in

(0 00)  the result follows immediately. An analogous argument shows existence when

 ()   () in (
0 00). ¥

Proof of Proposition 12: Suppose to the contrary that non-disclosure regions

are non-convex. Then there exist states 0 and 00 where 0  00 such that non-

disclosure occurs in equilibrium in each of these states, but, for some  ∈ (0 1) 
disclosure occurs in state 000 = 0 + (1− ) 00. Non-disclosure in state 0 and 00

implies that | (∅;)−  (
0)| ≤ | (0)−  (

0)| and | (∅;)−  (
00)| ≤

| (00)−  (
00)|, where denotes the set of states in which there is non-disclosure.

To show that non-disclosure occurs in 000, we show that | (∅;)−  (
000)| 

| (000)−  (
000)| cannot occur. We prove this for three separate cases.

Case 1: Suppose that for all  ∈ (0 00),  ()   (). This implies that

 (
0) ≤  (∅;) and  (

00) ≤  (∅;), since if either of these inequalities were

reversed, we would have  ()   ()   (∅;), implying the sender would

prefer to disclose. It follows that  (
000)   (∅;) since  (

000)   (
00).

Non-disclosure at 0 implies that  (∅;)−  (
0) ≤  (

0)−  (
0) or, equiv-

alently 2 (
0) −  (

0) ≥  (∅;). And disclosure at 000 implies  (∅;) −
 (

000) ≥  (
000) −  (

000) or, equivalently 2 (000) −  (
000) ≤  (∅;). How-

ever, by the steep slope ordering property, 2 (
000) −  (

000)  2 (
0) −  (

0) ≥
 (∅;). Thus, | (∅;)−  (

000)|  | (000)−  (
000)| cannot hold.
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Case 2: Suppose that, for all  ∈ (0 00)   ()   ()  The proof of this case

is analogous to that of Case 1.

Case 3: Suppose that some 000 ∈ (0 00) is an agreement point (possibly one of
many). We will show that in equilibrium there cannot exist non-disclosure intervals

[0 
00
] and [

0
  

00
 ] such that 

00
  000  0 . Suppose to the contrary that such

intervals exist. There are four cases to consider.

Case 3(a): Suppose that, for all  ∈ [0 00] ∪ [0  00 ],  ()   (). Then it

must be that | (∅;)−  (
0
)| ≤ | (0)−  (

0
)| and | (∅;)−  (

00
)| ≤

| (00)−  (
00
)|.

When  (
000)   (∅;), it follows that, since  (

000) =  (
000)   (∅;),

then for  ∈ [0  00 ], we have that  ()   ()   (∅;) and hence disclosure

is strictly preferred in the interval [0  
00
 ], which is a contradiction.

Conversely, when  (
000) ≤  (∅;), then  (∅;) −  (

000)   (
000) −

 (
000) or, equivalently, 2 (000) −  (

000)   (∅;). From the steep slope or-

dering property, it follows that 2 () −  ()   (∅;) for  ∈ [0 00]. Hence
| ()−  ()|  | (∅;)−  ()| and disclosure is strictly preferred in states
 ∈ [0 00], which is a contradiction
Case 3(b): Suppose that  ()   () for all  ∈ [0 00] ∪ [0  00 ]. A proof

analogous to Case 3(a) establishes a contradiction.

Case 3(c): Suppose that  ()   () for  ∈ [0 00]while  ()   () for  ∈
[0  

00
 ]. When  (

000)   (∅;), it then follows immediately that, since  (
000) =

 (
000)   (∅;), then ()   ()   (∅;) for  ∈ [0  00 ], and therefore,

disclosure is strictly preferred in the interval [0  
00
 ], which is a contradiction. In

contrast, when  (
000) ≤  (∅;), then, since  (

000) =  (
000) ≤  (∅;), it

follows that  ()   ()   (∅;) for  ∈ [0 00]. Consequently, disclosure is
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strictly preferred in the interval [0 
00
], which is a contradiction.

Case 3(d): Suppose that  ()   () for  ∈ [0 00] while  ()   () for

 ∈ [0  00 ]  The proof is analogous to the proof where in Case 3(c).
Since this exhausts all of the possibilities, the proof is complete. ¥

Proof of Proposition 14: The proof follows from the following two lemmas.

Lemma 3 If the knowledge state is private, the gradual slope ordering property holds,

and there is a boundary equilibrium under 2, then any boundary equilibrium under

1 is identical.

Proof. First, suppose
£
1 ̄

¤
is the equilibrium disclosure interval under 2. Such

an equilibrium satisfies  (1) = 
¡∅; =

£
1 ̄

¤¢
and 

¡
̄
¢ − 2

¡
̄
¢ ≤ 2

¡
̄
¢ −


¡∅; =

£
1 ̄

¤¢
. Since 1 is more aligned than 2, 

¡
̄
¢ − 1

¡
̄
¢
 1

¡
̄
¢ −


¡∅; =

£
1 ̄

¤¢
when 1 discloses on the same interval. The equilibrium equation

 (1) = 
¡∅; =

£
1 ̄

¤¢
is independent of the sender preferences, and so also

holds under 1. Therefore, if
£
1 ̄

¤
is a boundary equilibrium under 2, it is also a

boundary equilibrium under 1. We know from the proof of Proposition 7 that the

solution to the equation  (1) = 
¡∅; =

£
1 ̄

¤¢
is unique, so

£
1 ̄

¤
is the unique

boundary equilibrium under 1.

Next, we show that the receiver strictly prefers a boundary equilibrium under 2

to any interior equilibrium.

Lemma 4 If the knowledge state is private, the gradual slope ordering property holds,

and a boundary equilibrium exists, then it is the most informative equilibrium.

Proof. A boundary equilibrium consists of disclosure in the interval
£
1 ̄

¤
where

 (1) = 
¡∅; = [1 ̄]

¢
. Suppose, contrary to the lemma, that an interior equi-

librium [01 
0
2] exists and [

0
1 

0
2] * [1 ̄]. First, by construction, 

0
2  ̄. If 01 ≤ 1,
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then this implies that  (∅; = [01 
0
2])  

¡∅; = [1 ̄]
¢
and  (

0
1) ≤  (1).

But, in equilibrium  (
0
1) =  (∅; = [01 

0
2]), so this is a contradiction. Hence, it

must be the case that, in any interior equilibrium, 01  1. But this implies that

[01 
0
2] ⊆ [1 ̄], which is a contradiction.
This claim completes the proof. ¥

Proof of Proposition 15: We will establish the result when  (∅)   (
0) and

1 () = 2 () for  ≥ 0. The opposite case is analogous. We claim that, for any

pair of senders 1 and 2 satisfying the above preferences, every equilibrium under

1 is an equilibrium under 2. To see this, fix a convex disclosure equilibrium under

1 [
∗
1 

∗
2]  and recall that such an equilibrium solves  (

∗
1) =  (∅; = [∗1 

∗
2]) and

 (
∗
2)−  (

∗
2) =  (

∗
2)−  (∅; = [∗1 

∗
2]). For a fixed ∗2 the solution ∗1 given

by the first equation is independent of sender preferences. And given ∗1, any solution

∗2  0 found for 1 is also a solution for 2, because sender preferences are identical

in this region. Finally, the proof of Proposition 6 shows that all convex disclosure

equilibria have the property that ∗2  0. ¥

Proof of Proposition 16: Suppose  ()   () for all ; the opposite case

is analogous. When consulting 2, the resulting equilibrium is characterized by ∗

solving  (
∗) = 

¡∅; =
£
∗ ̄

¤
 2
¢
, where 

¡∅; =
£
∗ ̄

¤
 2
¢
denotes the action

taken following the null message when disclosure occurs on the interval
£
∗ ̄

¤
and

the sender’s expertise is 2. If, instead, the receiver consulted 1, then  (
∗) 


¡∅; =

£
∗ ̄

¤
 1
¢
since 

¡∅; =
£
∗ ̄

¤
 1
¢
 

¡∅; =
£
∗ ̄

¤
 2
¢
, where this

inequality follows because the receiver now considers the null message as more likely

to emanate from an informed sender. Moreover, since  ()  
¡∅; =

£
 ̄
¤
 1
¢
,

it follows that, for some ∗1 ∈ ( ∗),  (∗1) = 
¡∅; =

£
∗1 ̄

¤
 1
¢
. This implies
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strictly more disclosure occurs when the receiver consults 1 than 2 , so the receiver

strictly prefers to consult 1. ¥

Proof of Proposition 17: We will construct a more informative equilibrium under

1. Let [1 2] be an interior equilibrium under 2 Then 1 and 2 satisfy  (1) =

 (∅; = [1 2]) and  (2)−2 (2) = 2 (2)− (∅; = [1 2]). Since 1 is more

aligned than 2, it follows that  (2)− 1 (2)  1 (2)−  (∅; = [1 2]). Now,

let 2 vary and let 1 (2) solve  (1) =  (∅; = [1 2]) implicitly. By regularity,

we know that 1 (2) is strictly decreasing in 2. There are then two cases to consider:

Case 1: Suppose 
¡
̄
¢ − 1

¡
̄
¢ ≤ 1

¡
̄
¢ − 

¡∅; =
£
1
¡
̄
¢
 ̄
¤¢
. Then, the

boundary equilibrium
£
1
¡
̄
¢
 ̄
¤
is an equilibrium under 1 and is strictly more in-

formative than the equilibrium under 2.

Case 2: Suppose 
¡
̄
¢ − 1

¡
̄
¢
 1

¡
̄
¢ − 

¡∅; =
£
1
¡
̄
¢
 ̄
¤¢
. By the In-

termediate Value Theorem, there exists 02 ∈
¡
2 ̄

¢
such that  (

0
2) − 1 (

0
2) =

1 (
0
2)−  (∅; = [1 (

0
2)  

0
2]). Hence, [1 (

0
2)  

0
2] is an equilibrium. Further, since

02  2 and 1 (
0
2)  1 by regularity, this equilibrium is more informative than that

under 2. ¥

Proof of Proposition 18: The receiver’s preferences solely determine the convex

non-disclosure region in a boundary equilibrium. Suppose  ()   () for  in the

neighborhood of ; the opposite case is analogous. Then non-disclosure occurs in the

region [ 2], where 2 satisfies  (2) =  (∅; = [ 2]). Since this is a boundary

equilibrium under 1, it follows that  (∅; = [ 2]) − 1 () ≤ 1 () −  ().

Since 2 is less aligned than 1,  (∅; = [ 2])− 2 ()  2 ()−  (). Hence

[ 2] is a boundary equilibrium under 2. ¥

Proof of Lemma 2: Let  ([1 2]) denote the receiver’s expected utility when the
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non-disclosure interval is [1 2]. Since  (∅; = [1 2]) =  (2), it follows that

when 2 = 2 (1), we have  ([1 2]) 2 = 0. However, increasing 1 makes the

receiver better off because of increased disclosure. Since  ([1 2]) 1  0 while

 ([1 2]) 2 = 0 the result follows. ¥

Proof of Proposition 19: Suppose without loss of generality that  (∅)   (∅)

for  ∈ {1 2}. Since 1 is more aligned than 2, we have  (∅; = [1 2]) −
1 (1)  1 (1) −  (1) at the original equilibrium under 2. Also note that

2(∅) = ∅ since  (∅; = [∅ ∅]) = (∅). Hence  (∅; = [∅ 2(∅)]) −
1(∅)  0  1(∅) − (∅). Thus there exists some 01 in (1 ∅) for which

(∅; = [01 2(
0
1)]) − 1(

0
1) = 1(

0
1)− (

0
1), meaning [

0
1 2(

0
1)] constitutes

a non-disclosure equilibrium under 1. The result then follows from Lemma 2. ¥
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