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Abstract

We study a model of the seller of an asset who is liable for damages to
buyers of the asset if, after the sale, the seller is discovered to have failed to
disclose an estimate of the asset’s value that the seller knew prior to sale.
The model yields some surprising predictions concerning how the seller’s
disclosure decision changes with changes in the severity of this liability,
and with other parameters of the model, including the precision of the
estimate and whether the seller behaves myopically or nonmyopically.

1 Introduction

This paper contains an economic model of voluntary disclosures where the seller

of an asset is presumed to have a duty to disclose whatever private information

he has about the asset’s value to potential buyers prior to the asset’s sale, and

where - if the seller violates that duty - the seller may be subject to damage

payments. Thus, the model studies situations in which the seller’s disclosure

is mandatory, but the seller’s compliance with the mandatory requirements is

voluntary. There are a variety of settings in which the theory applies, from

selling securities in IPO/investment settings to selling products in manufactur-

ing/consumer settings.

The model is founded on previous models of a seller’s optimal voluntary

disclosure behavior, where the premise is that the seller sometimes privately re-

ceives information about an asset’s value prior to the asset’s sale which the seller

∗The paper is currently undergoing revision. Comments welcome!
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may disclose or withhold (as in Dye [1985], Farrell [1986], Jung and Kwon [1988],

Shavell [1994], Hughes and Pae [2004], Hughes and Pae [forthcoming], among

others). In these prior works, when the seller makes no disclosure, potential

buyers of the asset are unsure whether the seller did not receive information

about the asset prior to sale or whether he elected to withhold information that

he received. This uncertainty regarding the reason for the seller’s nondisclosure

allows a seller who received unfavorable information about the asset’s value to

"pool" with sellers who received no pre-sale information about the asset’s value

by not making a disclosure. After the sale, if buyers discover that the seller

withheld information, then buyers will know that they overpaid for the asset

based on the information in the seller’s possession. In the prior literature, buy-

ers who made such a discovery were posited to have no recourse. The innovation

in the present paper is that we presume that buyers do have recourse: sellers

caught having previously withheld information are obliged to pay the buyers

damages.

We study a base model along with two variants. In the base model, the asset

being sold is indivisible and the seller cannot take any actions that influence the

subsequent value of the asset to buyer. In one variant, the asset continues to be

indivisible but the seller can enhance the asset’s value to buyers by taking some

action prior to sale; in the second variant, the seller can also enhance the asset’s

value prior to sale, but the asset is divisible and the seller can decide what

fraction of the asset to retain for his own use. In both the base model and its

variants, we assume that the seller’s penalties for withholding take the natural

form of being proportional to the buyer’s overpayment for the asset, where

"overpayment" is calculated based on the difference between what buyers paid

for the asset and what they would have paid for the asset had the seller disclosed

his information. The proportionality factor that determines what (possibly

fractional) multiple of this overpayment constitutes the damages penalty is a

parameter of the model that we refer to as the "damages multiplier."
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In the base model and its variants, we obtain a variety of results concerning

the seller’s equilibrium behavior. Among these results, at least four stand out.

To describe the first of these results, call the seller’s disclosure decision myopic

if he ignores the potential damage payments he is subject to if he is caught with-

holding information and instead bases his disclosure decision just on whether

the selling price of the asset is highest with or without disclosure. Call the

seller’s disclosure decision nonmyopic if in deciding whether to disclose infor-

mation he receives, he takes into account these damage payments. Our first

result is that for a wide range of the model’s parameter values, the seller’s opti-

mal myopic disclosure decision coincides with his optimal nonmyopic disclosure

decision. As part of this first result, besides demonstrating the robustness of

the coincidence of myopic and nonmyopic disclosure decisions for a wide range of

parameter values, we also show that myopic and nonmyopic disclosure policies

coincide both when the seller is subject to clawback provisions and when he is

not subject to them. (A "clawback provision" is a requirement that the seller

disgorge any overpayment made to him by buyers of the asset as a consequence

of his withholding, and is a source of reduction in the seller’s net receipts from

the asset’s sale distinct from the damage payments.)

In our second result, we show, also for a wide range of parameter values,

that the seller optimally discloses the information he receives less often as the

size of the damages multiplier increases. One might have expected that the

seller would disclose his information more often as this penalty increases, but

this turns out not to be the case. In our third result, we show that as the

damages multiplier increases, the seller chooses to sell a larger fraction of the

asset to buyers. One might have expected the seller to sell a smaller fraction

of the asset as the damages multiplier gets larger, since the seller is not liable

for failure to disclose information about portions of the asset that he retains for

himself, and so the benefits to the seller of retaining a large stake in the asset

would seem to increase with the seller’s liability for nondisclosure, but this also
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turns out not to be correct. We defer presenting the intuition for the preceding

results to the body of the paper.

In the last of the results we highlight here, we show that in the model

variant where the seller can both sell just a fraction of the asset and undertake

actions that enhance the value of the asset prior to sale, the seller optimally

retains a smaller stake in the asset as the quality or precision of the estimate

he receives, and sometimes discloses, increases. Among the four highlighted

results, this last is perhaps the most intuitive, since as the precision of the

estimate improves, the estimate provides a more accurate indicator of the seller’s

pre-sale activities to enhance the asset’s value, and so it becomes less important

to rely on the seller’s retention of the asset to motivate the seller to undertake

the pre-sale value-enhancing activities. When "the asset" is a firm that an

entrepreneur starts up and an increase in the precision of the disclosed estimate

is interpreted as an improvement in the quality of the entrepreneur’s firm’s

financial accounting reports, this last result suggests the empirically testable

implication that improvements in the quality of accounting information leads

entrepreneurs to retain smaller ownership stakes in the firms they found.

We deduce many other results besides those highlighted here from the model

in the paper, but we leave the presentation and discussion of those results to

the main text below.

This paper is part of the growing literature that studies firms’voluntary dis-

closure decisions that was initiated by the fundamental contributions of Gross-

man [1981] and Milgrom [1981] in their "unravelling" result. This literature is

too large to summarize here, but see for example, the surveys of Gertner [1988],

Milgrom [2008], and Dranove and Jin [2010]. Pae [2005] proposed an analysis

similar to the one contained here, but Pae did not carry out the analysis. There

is also a large empirical literature on voluntary disclosures, surveyed by Healy

and Palepu [2001]. The empirical work most closely tied to the present paper is

that of Heitzman, Wasley, and Zimmerman [2010] who study empirically firms’
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disclosure decisions in the presence of mandatory disclosure requirements.

The paper proceeds as follows. The next section, Section 2, introduces the

model. Section 3 describes the seller’s preferences along with a formal specifi-

cation of damages payments. Section 4 examines the seller’s optimal disclosure

policy, and it contains the general findings regarding the equilibrium disclosure

probability mentioned above. Section 5 extends the model to a setting where

the seller’s investment choice is endogenous. Section 6 contains a summary of

some of our main findings, and the appendix contains proofs of many of the

results not proven in the text or accompanying footnotes.

2 Base model setup

In the base model, S (for "seller") has an asset he wants to sell. There are

multiple homogenous potential buyers of the asset. The value of the asset

is uncertain to all of these potential buyers at the time S sells the asset and is

given by the realization z of the random variable z̃, which is taken to be normally

distributed with mean m and variance 1
τ , henceforth written as z̃˜N(m, 1

τ ). z̃′s

realization occurs after the sale. Before the sale takes place, with probability

p ∈ (0, 1) S privately receives an estimate ṽ of z̃. This estimate ṽ is taken to be

unbiased and given by

ṽ = z̃ + ε̃, where ε̃˜N(0,
1

r
) is independent of z̃. (1)

Here, r denotes the precision of the estimate ṽ. It is apparent that the prior

distribution of ṽ is normal, with mean m and variance σ2 ≡ 1
τ + 1

r . In the fol-

lowing, the prior density and cdf of ṽ are denoted by g(v) and G(v) respectively.

With probability 1− p, S receives no estimate before the sale.

Consistent with the now conventional assumptions of the voluntary disclo-

sure literature (see, e.g., Dye [1985] and Jung and Kwon [1988]), we assume

that: if S receives no information, he makes no disclosure; in particular, S is

presumed incapable of credibly disclosing that he did not receive information;
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and if S discloses information, the disclosure is confined to be truthful.

The new feature of the model is that, after the sale takes place, if S disclosed

nothing prior to the asset’s sale, then a fact finder (investor, reporter, auditor,

etc.) undertakes an investigation and, if the reason S disclosed nothing turns

out to be that S withheld information, then the fact finder with probability

q ∈ (0, 1) both detects and reports that S withheld information along with what

the withheld information was. In the latter event, S is forced to pay damages to

the buyer of the asset, as described below. Also, the fact finder fails to discover

that S withheld information with probability 1 − q, but the fact finder never

wrongly asserts that S withheld information when that was not the case.

3 Preferences and damage payments

S’s disclosure, or nondisclosure, is the only source of information about the

asset’s value to the asset’s potential buyers. All the of buyers are risk neutral,

and they all behave competitively. Consequently the equilibrium selling price

of the asset is its expected value based on what potential buyers learn or can

infer about the asset’s value prior to sale.

If S learns v and discloses it, the asset’s selling price is denoted P (v). Since

buyers are risk neutral, this price P (v) is the asset’s expected value conditional

on ṽ = v. By Bayes’ rule applied to normal distributions (see, e.g., DeGroot

[1970]), we know that this conditional expected value is given by:

P (v) ≡ E[z̃|v] =
τm+ rv

τ + r
. (2)

This price is a weighted average of buyers’initial beliefs about the asset’s value

m and the disclosed estimate v, with the weights τ
τ+r and

r
τ+r determined by

the relative precisions of the prior and the estimate.1

1Even though at this point in the expostion we have yet to describe what constitutes an
equilibrium of the model, it is worth pointing out for future reference that the specification
of the price P (v) in (2) implicitly entails making off-equilibrium specifications, because this
price is being specified for all v, and not just for those v that S is expected to disclose in
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We let Pnd denote the selling price of the asset when the seller makes no

disclosure. If S withheld v and the fact finder subsequently finds that out, then

the difference Pnd − P (v) constitutes the amount the buyer overpaid for the

asset based on the seller’s withheld information.2 In this event, we suppose

that S has to pay the damages payment

β × (Pnd − P (v)) (3)

to the buyer. β is formally what we referred to in the Introduction as the

"damages multiplier."

The specification of the damages payment does not indicate the full conse-

quences to S of getting caught withholding information from buyers, because

it does not address the "clawback" question. If there is a clawback, S has

to return the overpayment Pnd − P (v) to buyers, so when S is caught having

withheld information, S will receive net (equivalently, the buyer will pay net3)

P (v)− β × (Pnd − P (v)). If β > 0, the buyer winds up owning an asset worth

(in expectation) P (v) but pays net only P (v)−β×(Pnd−P (v)) for it. If β = 0,

the buyer ends up paying P (v) for the asset which is exactly what the asset is

worth. If β ∈ (−1, 0), the buyer ends up losing on the purchase, because he

receives an asset worth P (v) but pays P (v) − β × (Pnd − P (v)) > P (v) for it.

Nevertheless, in this last event, conditional on having purchased the asset, the

buyer is better offhaving the fact finder detect the seller’s withholding (than not

having the withholding detected), because the buyer receives a positive amount

from the fact finder’s efforts. If β = −1, the buyer is stuck with paying Pnd

for the asset (since Pnd = P (v) − β × (Pnd − P (v)) when β = −1) and hence

equilibrium. Clearly, the off-equilibrium specification of P (v) in (2) is the uniquely natural
way to specify P (v) when v is disclosed, regardless of how other facets of the equilibrium are
defined.

2We shall show below that when the seller withholds information, it is the case that Pnd >
P (v), so Pnd − P (v) is indeed an overpayment.

3The equivalence between amounts paid for by the seller and received by the buyer holds
only when there is no "slippage" due to attorneys’fees or other legal costs. The analysis can
be extended to cover cases of slippage.
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is no better off than he would have been had the fact finder not detected S’s

withholding. In the following, when studying the clawback case, we confine

attention to damage multipliers bounded below by β ≥ −1 and bounded above

so that the inequality

q(1 + β) < 1 (4)

holds. Additional discussion concerning this bound may be found in the accom-

panying pair of footnotes.4 5 Before S knows whether or not he will receive the

estimate ṽ - S’s expected proceeds from the buyer net of his cost of damage

payments is given by:

E[(1− p)Pnd + pmax{P (ṽ), (1− q)Pnd + q(P (ṽ)− β(Pnd − P (ṽ)))}]. (5)

We conclude this section with a short discussion of the "no-clawback" case.

In this case, S keeps the original payment Pnd from buyers if he is caught

withholding information, and pays the damages payment β(Pnd−P (v)), and so

gets net Pnd−β(Pnd−P (v)). For there to be content for the damages payment

(3) to be a penalty in this case, the damages multiplier β must be positive. As

was true of the clawback case, our analysis of the no-clawback case also requires

imposing an upper bound on β. In this case, we require β to be positive and

that the following (weaker) upper bound hold:

qβ < 1. (6)

4 In the context of securities litigation, buyers/investors are typically not made even close to
being made whole by the damages payment when firms are found to have improperly withheld
information, but investors usually receive some payment following a fact finder’s discovery that
a firm withheld information, so in the securities litigation context, β ∈ (−1, 0). See, e.g., Ryan
and Simmons [2009].

5The inequality (4) has an intuitive economic motivation. If one combines the clawback
with the penality specified in (3), the total penalty (i.e., drop in price from Pnd) for S
derived from getting caught withholding information is Pnd − P (v) + β × (Pnd − P (v)) =
(1 + β)× (Pnd − P (v)), and since the fact finder detects S’s withholding with probability q,
the expected total penalty is q(1+β)×(Pnd−P (v)). The inequality (4) restricts S’s expected
total penalty for withholding to be no larger than the absolute amount by which the firm’s
market value is overstated as a consequence of S’s withholding.
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4 The equivalence of nonmyopic and myopic dis-
closure strategies

Suppose the seller receives information v. As we described in the Introduction,

we call the seller’s disclosure decision myopic if the seller decides whether to

disclose v solely based on whether P (v) is bigger or smaller than Pnd. That

is, the seller’s disclosure decision is myopic if the seller disregards the potential

damages he is subject to were he to withhold v and the fact finder subsequently

detects his withholding. In contrast, we call the seller’s disclosure decision

nonmyopic if he takes into account these potential damage payments when

making his disclosure decision. Our first result below asserts that:

Lemma 1 As long as the parameter restriction (4) holds in the clawback case,

or as long as the parameter restriction (6) holds in the no-clawback case, the

seller’s optimal nonmyopic disclosure decision coincides with the seller’s optimal

myopic disclosure decision.

The proof is simple for both cases. In the clawback case, the seller’s optimal

nonmyopic disclosure entails nondisclosure iff

(1− q)Pnd + q(P (v)− β(Pnd − P (v))) > P (v). (7)

Collecting terms in LHS(7) that involve Pnd together, and also collecting terms

in LHS(7) involving P (v) together, nondisclosure is S’s best nonmyopic choice

iff:: (1− q − qβ)Pnd + (q + qβ)P (v) > P (v),or equivalently, iff

(1− q − qβ)Pnd > (1− q − qβ)P (v).

When the bound (4) holds, this last inequality is obviously equivalent to:

Pnd > P (v). (8)

This proves the lemma in the clawback case.
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In the case of no-clawback, the seller’s optimal nonmyopic disclosure entails

nondisclosure iff

Pnd − qβ(Pnd − P (v)) > P (v),

i.e., iff

Pnd − P (v)− qβ(Pnd − P (v)) > 0,

i.e., iff

(Pnd − P (v))(1− qβ) > 0. (9)

Clearly, when the bound 1− qβ > 0 holds, this last inequality is equivalent to:

Pnd > P (v).

This proves the lemma in the no-clawback case.

The result in both cases obtains because when damage payments are propor-

tional to buyers’overpayments, then the optimal nonmyopic disclosure decision

is based on the difference between the "no disclosure" price of the asset and the

price of the asset had S disclosed his information, and so results in the optimal

nonmyopic disclosure decision coinciding with the optimal myopic disclosure

decision.6

To avoid studying a proliferation of cases in the following, for the most

part, we confine attention to the "non-clawback" case and, unless the contrary

is explicitly stated, we assume the bound (6) holds. Given those maintained

assumptions, it follows, in view of the preceding lemma, that we do not have

to provide additional separate analyses depending on whether S is believed to

behave myopically or nonmyopically in making his disclosure decision.

6 It is perhaps useful to mention what happens if the multiplier β is so large that exceeds
the upper bounds ((4) or (6)) referenced above. Consider the no-clawback case when qβ > 1.
Then according to (9), the optimal myopic and the optimal nonmyopic disclosure decisions are
the opposite of each other: when S behaves in the optimal nonmyopic fashion, it is optimal
for S to disclose v when P (v) is smaller than Pnd, and it is optimal for S to withold v when
P (v) is larger than Pnd.
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5 Determination of the equilbrium in the base
model

We now turn to a discussion of how the equilibrium no disclosure price Pnd is

set. Clearly, if S prefers to disclose rather than withhold v, then S will also

prefer to disclose rather than withhold any v′ > v, and so the nondisclosure set

is given (for both myopic andor nonmyopic sellers) by a left-tailed interval of

the form:

ND ≡ {v|Pnd > τm+ rv

τ + r
}, (10)

or equivalently by:

ND = {v|vc > v}. (11)

where vc is defined implicitly by the solution to the equation

τm+ rvc

τ + r
= Pnd. (12)

To specify Pnd more precisely, we next calculate buyers’perceptions of the

expected value of the asset given that S makes no disclosure and also given

that the buyer thinks S uses the cutoff vc in deciding whether to disclose the

private information he receives. There are three events related to the seller’s

nondisclosure that must be handled separately. (1). The seller did not receive

any information. (2). The seller received and withheld information and the fact

finder subsequently fails to detect that S withheld information. (3). The seller

received and withheld information and the fact finder subsequently detects that

S withheld information. Since buyers’ ex ante perceptions of the probability

S will make no disclosure is given by 1 − p + pG(vc) (this is the probability

S receives no information plus the probability that S receives information that

is below the cutoff vc), buyers can apply Bayes’ Rule to conclude that the

probability S received no information, conditional on S making no disclosure,

i.e., buyers’perceptions of the probability of event (1) as described above given
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no disclosure is:
1− p

1− p+ pG(vc)
. (13)

Likewise, the buyer’s perceptions of the probability of events (2) and (3) above,

given S makes no disclosure, are respectively:

p(1− q)G(vc)

1− p+ pG(vc)
(14)

and
pqG(vc)

1− p+ pG(vc)
. (15)

Next notice that, conditional on event (1), buyers expect to receive an asset

whose value is given by

E[z̃] = m. (16)

(Were buyers to know that the reason S made no disclosure was that S received

no information, buyers would have no reason to make a "lemons" inference about

the asset’s value from S’s nondisclosure, so the asset’s expected value in that

event is just the asset’s unconditional expected value.) Buyers’perceptions of

the asset’s expected value conditional on no disclosure and event (2) is given

by:

E[z̃|ṽ < vc] = E[E[z̃|ṽ]|ṽ < vc] = E[
τm+ rṽ

τ + r
|ṽ < vc]. (17)

(If buyers knew S withheld information and that withholding would not be

subsequently detected by the fact finder, buyers would calculate the conditional

expected value of the asset to be E[z̃|ṽ < vc].) Finally, to calculate buyers’

perceptions of the asset’s expected value conditional on no disclosure and event

(3), first fix a particular v < vc and suppose that buyers knew the fact finder

was going to discover that S withheld this particular v. Then, the value the

buyers would attach to purchasing the asset inclusive of the damage payments

they expect to receive in this case is given by:

E[z̃|v] + β(Pnd − E[z̃|v]) =
τm+ rv

τ + r
+ β(Pnd − τm+ rv

τ + r
).
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So, conditional only on no disclosure and event (3) (but not also conditioning on

a particular v < vc), the value buyers expect to receive, net of expected damage

payments, is given by:

E[
τm+ rṽ

τ + r
+ β(Pnd − τm̂+ rṽ

τ + r
)|ṽ < vc]. (18)

Thus, when buyers believes the seller uses the cutoff vc in deciding whether

to disclose the estimate he receives, the total value buyers expect to receive,

conditional only on no disclosure by the seller, consists of the sum of the products

of (13) and (16), (14) and (17), (15) and (18), i.e., consists of:

(1− p)m+ p(1− q)G(vc)E[ τm+rṽ
τ+r |ṽ < vc] + pqG(vc)E[ τm+rṽ

τ+r + β(Pnd − τm+rṽ
τ+r )|ṽ < vc]

1− p+ pG(vc)
,

which may be rewritten as:

(1− p)m+ pG(vc)E[ τm̂+rṽ
τ+r |ṽ < vc] + pqG(vc)βE[Pnd − τm̂+rṽ

τ+r |ṽ < vc]

1− p+ pG(vc)
. (19)

When S makes no disclosure, competition among the buyers will drive the price

Pnd that S receives to this conditional expected value (19). Thus, the no

disclosure price Pnd will satisfy:

Pnd = (19). (20)

Now, recalling the link between vc and Pnd described in (12) above, it follows

from (19) and (20) that in equilibrium, the cutoff vc must satisfy the equation:

τm+ rvc

τ + r
=

(1− p)m+ pG(vc)E[ τm+rṽ
τ+r |ṽ < vc] + pqG(vc)βE[ τm+rvc

τ+r − τm+rṽ
τ+r |ṽ < vc]

1− p+ pG(vc)
.

(21)

Rearranging this last equation (see the appendix for details) leads to the fol-

lowing theorem. In the statement of the theorem, φ(·) and Φ(·) refer to the

density and cdf of a standard normal random variable x̃ respectively, and α is

defined by α ≡ 1− qβ.
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Theorem 2 The vc that solves (21) is given by

vc = σxc +m, (22)

where x = xc is the unique solution to the equation

x(1− p+ αpΦ(x)) + αpφ(x) = 0. (23)

This theorem, combined with the next three corollaries below, constitutes the

main result of this section. It establishes the link between the equilibrium cutoff

vc and a "standardized" equilibrium cutoff xc defined in terms of the density

and cdf of a standard normal random variable associated with the solution to

(23).

The theorem has several consequences. First, since the equilibrium prob-

ability that S will make no disclosure, given that it received information, is

Pr(ṽ ≤ vc), and the transformed random variable ṽ−m
σ has a standard normal

distribution, it follows from (22) that

Pr(ṽ ≤ vc) = Pr(
ṽ −m
σ

≤ vc −m
σ

) = Φ(xc). (24)

Since both the cdf Φ(xc) and the density φ(xc) are defined independently of each

of: the mean m and variance σ2 of ṽ, and also the precision r of the estimate,

we conclude:

Corollary 3 The equilibrium probability of disclosure (and hence also the equi-

librium probability of no disclosure) is independent of each of: the mean m and

variance σ2(= 1
τ + 1

r ) of the estimate ṽ, and also independent of ṽ′s precision r.

In particular, this last corollary implies that were, say, the prior mean m of

ṽ (equivalently, the prior mean of the asset’s value z̃) to be made endogenous,

then the equilibrium probability of disclosure is unaffected by whatever turns

out to be the equilibrium value of that investment choice. This observation will

be important in extensions of the model to be presented in later sections of the

paper.
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The independence of the equilibrium cutoff highlighted in this last corollary

from the prior mean and variance of ṽ also implies that if the model were

altered so that additional public information, say ỹ, were disclosed before S

had an opportunity to receive or disclose the private estimate ṽ, and this public

information ỹ was such that buyers’posterior beliefs about ṽ were still normally

distributed (as would be true, for example, if ỹ = z̃+ ω̃ for some normal random

variable ω̃ that is independent of all other variables in the model), then the

release of this public information has no impact on S’s subsequent voluntary

disclosure decisions. That is to say, in this model:

Corollary 4 The disclosure of public information before S has an opportunity

to receive or disclose his private information has no effect on S’s disclosure deci-

sion, and hence public disclosures are neither complementary to nor a substitute

for voluntary disclosures.

This corollary speaks to a common concern in the disclosure literature as to

whether mandatory disclosures may "drive out" voluntary disclosures or more

generally how the release of public information may influence private informa-

tion production and/or disclosure decisions.7

Third, the theorem is the basis for the following additional comparative

statics.

Corollary 5 As long as the bound qβ < 1 holds, the unique xc that solves (23):

(i) is negative;

(ii) implies that the ex ante probability S will make a disclosure is at least

p/2;

(iii) is strictly decreasing in p;

(iv) is strictly increasing in β;

7 In models related to, but distinct from, the present model, where the emphasis is not on
voluntary disclosure but rather on the related phenomenon of traders’ costly private infor-
mation acquisition activities, sometimes very different conclusions emerge. E.g., Diamond
[1985] shows that public disclosures can reduce investors’incentives to acquire information on
private account if the public disclosures are suffi ciently informative.
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(v) is strictly increasing in q.

Before discussing these comparative statics individually, we make two ob-

servations that apply to all of them. First, in view of (24) and since Φ(·) is

an increasing function, each of these comparative statics is also a comparative

static about the probability that S does not make a disclosure in equilibrium.

Thus, for example, since part (iv) of the corollary asserts that xc increases in

β, it follows that the probability that S makes no disclosure in equilibrium also

increases in β.8 Second, each of these comparatives statics is also a compara-

tive static about how the equilibrium cutoff vc that solves (21) changes in any

parameter, in view of the monotone relationship between xc and vc described

in Theorem 2, namely that vc = σxc + m. Thus, for example, since the corol-

lary asserts that in equilibrium xc increases in β, it follows that the equilibrium

cutoff vc also increases in β.

Now, as to the individual conclusions of the corollary: part (i) implies that

the equilibrium cutoffxc is below the prior mean of x̃ (and hence the equilibrium

cutoff vc is below the prior mean of ṽ). Part (ii) then follows immediately: since

xc < 0, the symmetry of the density of a standard normal random variable

around x = 0 implies that p(1 − Φ(xc)) > p/2. In words, we obtain the

robust conclusion that for any probability p that S receives information, the ex

ante probability S discloses his information always exceeds p/2 regardless of the

precision of the information S receives, regardless of the damages multiplier β

applicable if S is caught withholding information, etc.

Part (iii) shows that the cutoff is decreasing in the prior probability S receives
8As applied to parameter p, the ex ante probability S receives information, this last state-

ment in the text is also true (that is, since (iii) asserts that xc is strictly decreasing in p,
it follows that the ex ante probability that S will not disclose information is also decreas-
ing in p), but the claim requires the following extra observation beyond what is stated in
the corollary to confirm it: the ex ante probability that S does not make a disclosure is
1−p+pG(xc(p)).We contend that this probability declines in p. The derivative of this proba-

bility with respect to p is given by: ∂
∂p

(1−p+pG(xc(p))) = −1+G(xc(p))+pg(xc(p))
∂xc(p)
∂p

=

−(1−G(xc(p)))+pg(xc(p))
∂xc(p)
∂p

. Since the corollary asserts that ∂x
c(p)
∂p

< 0, we can further

conclude that ∂
∂p

(1− p+ pG(xc(p))) < 0 too, which is the substance of the claim made in the
text.
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information. This result extends Jung and Kwon [1988] to situations where a

value-maximizing firm (or S) is subject to potential damage payments when the

(potentially disclosed) estimate of the firm’s cash flows is normally distributed.

Part (iv) of the corollary asserts that xc increases in β . At first blush, this

result seems so counterintuitive as to be wrong, as it asserts that an increase in

the damages multiplier β reduces the probability S will disclose the information

he receives. But, the result has an easy explanation. Recall from Lemma

1 that, as long as the inequality in (6) is maintained, S’s optimal nonmyopic

disclosure policy is determined by the (myopic) comparison of Pnd and P (v) in

(8). While the parameter β does not appear explicitly in (8), β does appear

implicitly in (8) through Pnd. Pnd increases in β (as long as the bound qβ < 1 is

preserved) because as β increases, buyers will receive a larger damages payment

in the event the fact finder catches S withholding information from them. Since

Pnd increases in β, it follows that inequality (10) will hold for more values of

v as β increases, and hence S will withhold the information he receives more

often.

The explanation for why ∂xc

∂q is positive in part (v) is similar to the expla-

nation for part (iv). When S makes no disclosure, the value buyers attaches

to purchasing the asset is the sum of the buyers’perceptions of the value of

the asset itself combined with the expected value of the damages claim. Since

the expected value of the damages claim increases as the probability q the fact

finder detects the withholding increases, it follows that Pnd increases with q, so

(as in part (iv)) of the corollary) inequality (10) will hold for more values of v

as q increases

5.1 Extension 1: When S can make a pre-sale investment
that affects the expected value of the asset

In this section, we extend the base model to a setting where the prior mean m

of the asset is endogenous and is affected by an investment I S selects prior to
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the asset’s sale. Examples of settings where m is naturally endogenous include:

the asset is a used car S drove prior to sale whose value is affected by how much

care S took in maintaining the car; the asset is a business started by S which

he wants to sell because he is retiring, and the value of that business is affected

by marketing, production, and other actions that S took while the business was

under his management, etc.

Formally, we now suppose that if S selects private investment I ≥ 0 at

personal cost .5I2, this investment results in the distribution of the asset’s value

at the time of sale z̃ being distributed z̃˜N(m(I), 1
τ ), for m(I) = w × I. Here,

w is the marginal productivity of investment. S’s actual investment I is taken

to be a private choice of S, so buyers must make a conjecture about I when

trying to assess the asset’s value. We let buyers’conjecture (assumed to be

common to all buyers) be denoted by Î . In equilibrium we require that buyers’

conjectures be correct: I = Î .

The rest of the model is the same as the base model described above: sub-

sequent to selecting I but before the sale of the asset, with probability p S

receives estimate v, the realization of the random variable ṽ distributed as in

(1) above. The prior density and cdf of ṽ are now written as g(v|I) and G(v|I)

to acknowledge their dependence on I. If S receieves v, S can elect whether to

disclose or withhold v. If S withholds v, a fact finder detects the withholding

with probability q, and if the fact finder does so, then S is liable for damages as

described above.

Taking as given buyers’conjecture Î about S’s initial investment choice, then

equation (21) above still uniquely defines the cutoff vc —now denoted by vc(Î)

—that S will use in deciding whether to disclose the information he receives,

provided the prior mean m is replaced by m(Î) ≡ m̂ and G(vc) is replaced by
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G(vc(Î)|Î). That is, the cutoff vc(Î) is now defined by the equation:

τm̂+ rvc(Î)

τ + r
(25)

=
(1− p)m̂+ pG(vc(Î)|Î)E[ τm̂+rṽ

τ+r |ṽ < vc(Î), m̂] + pqG(vc(Î)|Î)βE[ τm̂+rvc

τ+r − τm̂+rṽ
τ+r |ṽ < vc(Î), m̂]

1− p+ pG(vc(Î)|Î)
.

The "no disclosure" price of the asset, now written as Pnd(Î), is connected to

the cutoff vc(Î) just as the no disclosure price Pnd was connected to the cutoff

vc in the base model above via (12), i.e.,

Pnd(Î) =
τm̂+ rvc(Î)

τ + r
. (26)

At the time S initially chooses I, S takes buyers’conjecture Î , along with both

the cutoff vc(Î) and the no disclosure price Pnd(Î) implied by that conjecture,

as given when deciding what investment I actually to adopt. Specifically, S will

choose I so as to maximize:

OBJ(I|Î)

≡ (1− p+ pG(vc(Î)|I))Pnd(Î) + p

∫ ∞
vc(Î)

τm̂+ rv

τ + r
g(v|I)dv (27)

−pqβ
∫ vc(Î)

−∞
(Pnd(Î)− τm̂+ rv

τ + r
)g(v|I)dv − .5I2.

The first term in (27), (1 − p + pG(vc(Î)|I)) × Pnd(Î), is the product of the

ex ante probability S will make no disclosure (taking into account both buyers’

conjectures and S’s actual investment choice) and the price S will get if he

makes no disclosure; the second term in (27), p
∫∞
vc(Î)

τm̂+rv
τ+r g(v|I)dv, is the ex

ante probability S will make a disclosure, p(1−G(vc(Î)|I)), times the conditional

expected value of the asset if he makes a disclosure, E[ṽ|ṽ > vc(Î), I].9 The third

term in (27), pqβ
∫ vc(Î)
−∞ (Pnd(Î) − τm̂+rv

τ+r )g(v|I)dv, is the ex ante probability

S will be subject to damages payments, pqG(vc(Î)|I), times the conditional

expected value of those damages payments E[β × (Pnd(Î)− ṽ)|ṽ ≤ vc(Î), I].10

9Since, when multiplied out: p(1 − G(vc(Î)|I)) × E[ṽ|ṽ > vc(Î), I] =

p
∫∞
vc(Î)

τm̂+rv
τ+r

g(v|I)dv)
10Since, when multiplied out: pqG(vc(Î)|I) × E[β(Pnd(Î) − ṽ)|ṽ ≤ vc(Î), I] =

pqβ
∫ vc(Î)
−∞ (Pnd(Î)− v)g(v|I)dv.
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Given the preceding definition of OBJ(I|Î), an equilibrium is given as fol-

lows.

Definition 6 An equilibrium investment level consists of an I∗ that satisfies:

I∗ = arg maxI OBJ(I|I∗).

Identifying the equilbrium investment level I∗ leads to a complete specifi-

cation of the equilibrium since it determines both the equilibrium cutoff vc(I∗)

and the equilibrium no disclosure price Pnd(I∗).

Recalling that α ≡ 1 − qβ and that xc was specified in Theorem 2 above,

and setting

X ≡ pr (1− αΦ(xc))

τ + r
, (28)

we prove in the appendix the following theorem, which fully characterizes the

equilibrium value I∗.

Theorem 7 The equilibrium value I∗ is given by:

I∗ = wX. (29)

The theorem is best understood in terms of its comparative statics implica-

tions, summarized in the following corollary.

Corollary 8 I∗ is:

(a) increasing in r;

(b) increasing in p;

(c) decreasing in τ ;

(d) increasing in β;

(e) increasing in q.

All the results in the corollary intuitive: consider part (a). It asserts that

S’s investment optimally increases in the precision r of the estimate ṽ. As the

precision of the estimate increases, ṽ reflects more accurately the action I S took
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when S makes a disclosure. Anticipating this, S is encouraged to choose a higher

level of investment. Virtually the same explanation applies to explain part (b):

as the probability S receives the estimate ṽ increases, S is more likely to disclose

the estimate, and anticipating this, S is more inclined to pick a high value for I.

Next, consider the result in part (c): as buyers’priors beliefs about the asset’s

value become tighter (τ goes up), then buyers will place relatively less weight

on the estimate S sometimes discloses to them and more weight on their prior

beliefs about the asset’s value when valuing the asset after S makes a disclosure.

Since S can do nothing to affect buyers’prior beliefs about the asset’s value,

increases in τ discourage S from choosing a high level of investment.

Consider part (d). Increases in β increase the liability S has to pay in the

event his withholding gets caught. S can reduce the probability of having to

pay any damages if he works harder, i.e., chooses a higher level of investment,

because the realized value of ṽ is more likely to be above the cutoff, and hence S

is less likely to have an incentive to withhold the information and be subject to

the liability payment. Likewise, as part (e) reports, increases in q increase the

likelihood that S will have to pay damages, holding I fixed. As was the case for

the explanation of part (d), S can reduce the likelihood of having to pay such

damages by increasing I.

5.2 Extension 2: When S sells a divisible asset

In this section, we consider another variant of the first extension above, where

now the asset S sells is divisible, and so S can choose, if he so desires, to sell

only a fraction of the asset. We now also suppose that the realized value of the

asset is determined far into the future after the sale takes place, so discounting

becomes important to assess the expected present value of the asset. This

extension is appropriate for considering, among other things, disclosures in an

IPO setting, where S is viewed as an entrepreneur who sells some fraction of

his asset/firm to outsider investors, and these outside investors share with him
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in the eventual cash proceeds generated by the firm. In this extension, unlike

the first extension, no sale need take place: S can retain all of the asset for

himself. Since we continue to assume that both S and the buyers of the asset

are risk neutral, we need to introduce some additional feature to the model to

motivate S to sell a nonzero fraction of the asset to the buyers. The feature

we now add is that we suppose that S discounts the cash flows generated by

the asset at a higher rate than do the buyers.11 Specifically, we assume that the

eventually realized cash flows z produced by the asset have present value δz to

S, for some positive constant δ < 1. Without loss of generality, we normalize

the present value of those same cash flows to buyers of the asset to be z, and we

further assume that the cash flows received or paid by S related to the (possibly

fractional) sale of the asset and ensuring liability assessed on S for withholding

information, if any, arrive or are paid suffi ciently close in time to S’s disclosure

decision that S evaluates those receipts and payments at their undiscounted

values. These latter conventions are irrelevant to the conclusions we reach below

and are adopted solely to eliminate the notational clutter associated with the

introduction of additional discount factors were these conventions not adopted.

With these assumptions and conventions in place, we see that if S decides to

retain fraction f of the asset, chooses investment I, learns ṽ = v and withholds

it, then his expected utility before knowing whether his withholding will be

detected is given by:

δ(1− f)× E[z̃|I, v] + f × Pnd − qfβ(Pnd − P (v))− .5I2.

Similar expressions hold for other possible scenarios, e.g., if S decides to retain

fraction f of the asset, chooses investment I, learns ṽ = v and discloses it, then

his expected utility at the time of disclosure is given by δ(1 − f) × E[z̃|I, v] +

11The difference between S’s and buyers’discount rates is natural, and can be motivated
by S’s life cycle or liquidity demands or S’s relative lack of diversification.
Demarzo and Duffi e [1999] use this same exogenous assumption in their liquidity based

model of security design.
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f × P (v)− .5I2, etc.

In ongoing work, we allow for S’s decision about the fraction of the asset to

sell to buyers to be delayed until S learns the realization of the estimate ṽ or

learns that he is not going to learn the realization of the estimate. In the present

analysis, we adopt the simplification that S chooses the fraction f of the asset

to sell at the same time he makes his investment choice I. The tradeoff S faces

in deciding what fraction of the asset to retain is the following: since buyers

attach a higher present value to the cash flows eventually produced by the asset

than S does (because of their lower discount rate), that encourages S to sell a

large fraction of the asset so as to, in effect, arbitrage the difference between his

and buyers’discount rates. But, offsetting that pressure to sell most or all of

the asset is the pressure to retain the asset due to the positive incentive effects

on S’s pre-sale investment choice arising from retention (due to the fact that

the cash flows eventually produced by the asset are more informative about S’s

initial investment choice than is the estimate S occasionally discloses, and the

extra informativeness of those cash flows influences S’s pre-sale investment only

when S retains ownership of those cash flows). S’s optimal fractional sales of

the asset balances these two competing effects.

We start the analysis of this extension by observing that the ex ante value

to S of choosing investment I when buyers conjecture he has chosen investment

Î, and selling fraction f of the asset to the buyers is given by:

OBJ ≡ δ(1− f)m(I) + f ×Ψ(I, Î)− .5I2, (30)

where

Ψ(I, Î) ≡ (1− p+ pG(vc(Î)|I))× τm(Î) + rvc(Î)

τ + r
+ (31)

p

∫ ∞
vc(Î)

τm(Î) + rv

τ + r
g(v|I)dv − pqβ

∫ vc(Î)

−∞
(
τm(Î) + rvc(Î)

τ + r
− τm(Î) + rv

τ + r
)g(v|I)dv.

Here, f × Ψ(I, Î) is the price S anticipates receiving from buyers when they
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purchase fraction f of the asset from him net of the expected damage payments

he subsequently expects to pay buyers.12

The equilibrium value of OBJ in (30) can be obtained in two steps: first

determine the equilibrium value of the investment I∗(f) for any fixed f , and

second, determine the optimal f. Using derivations similar to those which led

to Theorem 7 of the previous section, one can show that the solution to this

first step yields the following natural parallel to Theorem 7.

Theorem 9 If S chooses to retain fraction f of the asset, then S’s equilibrium

investment level is unique and given by:

I∗(f) = δw + fw × (X − δ). (32)

Note that when δ = 1 and f = 1, then I∗(f) = wX, which is the same

as the equilibrium level of investment in the first extension above of the base

model above. It is easy to show that all of the comparative statics associated

with Theorem 7 hold here too, and in addition, in the present setting we get

two additional comparative statics: I∗(f) increases in δ, and I∗(f) increases

or decreases in f depending on whether X is bigger or smaller than δ. The

former result is straightforward: as S’s discount rate falls (or equivalently, as

S’s discount factor rises), the present value of the portion of the asset S retains

increases in present value, which causes S to work harder. The latter result

indicates that when S discounts the future more than buyers (i.e., when δ < 1),

then it is not always true that S has a greater incentive to work hard as his

retained ownership stake in the asset increases. Whether that result obtains

depends, as (32) shows, on how big S’s discount factor δ is relative to X.

The next theorem completely characterizes S’s optimal choice of what frac-

tion f of the asset to sell to buyers. The statement of the theorem makes use

12Each of the components of Ψ(I, Î) has a natural counterpoint to each of the components

in (27) above, when we substitute τm(Î)+rv
c(Î)

τ+r
for Pnd(Î), and so we forego explaining each

of the components of Ψ(I, Î) here.
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of the function:

ψ(r) ≡ (1−X(r))2 for all r > 0.

Here, X(r) is the same X as defined in (28) above, where the dependence of X

on r is now emphasized.13

Theorem 10 (A) If (1 − p(1 − αΦ(xc)))2 < 1 − δ, then there exists a unique

r > 0, call it rδ, such that ψ(rδ) = 1− δ.

(Ai) For all r < rδ, the equilibrium f is given by

f∗ =
(1− δ)δ

(1−X)2 − (1− δ)2
; (33)

(Aii) for all r > rδ, the optimal f is f = 1.

(B) If (1− p(1− αΦ(xc)))2 ≥ 1− δ, then for all r > 0, the equilibrium f is

given by (33).

Using the theorem, we can make specific predictions about how S’s opti-

mal share retention 1 − f∗ varies with various parameters of the model, as

summarized in the following corollary.

Corollary 11 S’s equilibrium retained ownership stake in the asset, 1 − f∗,

always (at least weakly):

(i) declines as the precision r of the estimate ṽ increases;

(ii) declines as the probability p S receives information increases;

(iii) declines as the damages multiplier β increases.

The first two comparative statics (i) and (ii) are intuitive. Holding his invest-

ment choice fixed, as we already noted, S has an incentive to sell 100% of the

13The critical observation that underlies this next theorem is the calculation of the derivative
of OBJ with respect to f , when evaluated at the equilibrium value Î(f) = I∗(f). It can be
shown to be given by:

∂

∂f
OBJ = (1− δ)δw2 + (2− δ −X)w2f(X − δ).
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asset to buyers, since they value the asset more than he does (because of their

lower discount rates). But, since S’s investment choice is endogenous, and de-

pends in part on what fraction of the asset he retains, his ex ante investment

choice may be ineffi ciently low unless he retains a substantial ownership stake

in the asset. However, as the quality of the estimate ṽ (as measured by the

precision of the estimate) S receives increases, or as the probability S receives

the estimate increases, the estimate ṽ can be relied on more to ensure that S has

good incentives to work hard to invest in the asset even if he sells some fraction

of his original ownership stake. Hence, S can profitably sell a larger stake in

the asset as either r or p increases.

As increases in the precision r of the estimate can be interpreted in prac-

tice as an improvement in the quality of the accounting information S provides

to investors, the first result has the empirically testable implication that im-

provements in financial reporting result in lower retained equilibrium ownership

stakes by entrepreneurs who found a company.

The explanation for the third comparative static (that S’s optimal retained

ownership stake declines as the damages multiplier β increases) is somewhat

more complicated. One might think that an increase in β would increase

S’s optimal retained ownership stake in the asset, since an increased ownership

stake, i.e., a reduced sale to buyers, economizes on S’s liability risk. For example,

S is obviously exposed to no liability for nondisclosure if he sells none of the

asset to buyers. Further reinforcing this effect is that, as was noted above in

Corollary 5 (iv), an increase in β leads to an increase in the threshold xc, 14

and hence a reduction in S’s propensity to disclose information, and in turn,

more exposure to liability for having withheld information. Call these effects

combined "the liability effect."

But, there is an offsetting benefit to selling a higher fraction of the asset to

14 It is easy to check that that corollary remain valid if we replace the assumption there that
S sells 100% of the asset by the assumption that S sells any fixed fraction of the asset.
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buyers when β increases, because of the tight connections between xc and vc

(recall (22)), and between vc and Pnd (recall (12)). These connections imply that

an increase in the damages multiplier β increases the no disclosure price Pnd.

This latter effect, which we shall call "the price effect," by itself encourages S to

increase the fraction of the asset he sells to buyers.15 Thus whether increasing β

will lead to an increase in the optimal fraction f of the asset S sells to outsiders

depends on which of the "liability effect" or the "price effect" is larger. The

proof of part (c) shows that the price effect is the larger of these two effects,

and so S optimally increases the fraction of the asset he sells as β increases.

6 Summary

We have studied a disclosure problem where the seller of an asset sometimes

receives private information regarding an estimate of the asset’s value prior to

sale, which he may decide to disclose to, or withhold from, potential buyers of

the asset. If the seller elects to withhold the estimate from buyers, he is liable

for damage payments in the event his withholding is subsequently detected after

the sale. These damage payments are taken to be SEC 10b-5 like in that they

are proportional to the amount the buyer(s) of the asset overpaid for the asset

(calculated based on what the asset would have sold for were the seller’s estimate

made public). The analysis shows that for a broad range of parameter values,

the seller’s optimal disclosure policy is the same whether the seller is myopic and

chooses to disclose his estimate just based on whether the disclosure increases or

decreases the asset’s market value at the time of the disclosure, or whether the

seller is nonmyopic and also takes into account the possible damage payments

he may be liable for if his withholding is subsequently detected. A collection of

comparative statics were obtained, some of which are unexpected. For example,

if the damages multiplier determining what fraction of the buyer’s overpayment

15 I wish to thank Xu Jiang of Duke University for providing me with intuition for this last
result.
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must be reimbursed by the seller goes up, the analysis shows that it is often

the case that the seller’s propensity to withhold the information he receives

increases.

In an extension of the base model where the seller of the asset can influence

the distribution of the asset’s value by making an investment, we show that the

seller’s optimal investment increases in each of: the precision of the estimate;

the probability the seller receives the estimate, the damages multiplier, and -

conditional on having withheld information - the probability that fact finder

will detect that the seller withheld information.

When the asset is divisible, we showed that the fraction of the asset the

seller optimally retains decreases in each of: the precision of the estimate the

seller sometimes discloses, the probability the seller receives the information

that he sometimes discloses, and the damages multiplier. When interpreted

in the context of an entrepreneur who starts up a firm and then subsequently

engages in an IPO, these last results lead to the testable predictions that an

entrepreneur will retain a smaller fraction of the IPO for himself as the quality

of the firm’s accounting system increases, as the probability the entrepreneur

receives the estimate increases, and as the damages multiplier increases.

7 Appendix: Proofs

The following lemma is instrumental in simplifying some of the expressions that

arise in various proofs.

Lemma 12 If ũ is normally distributed with mean m(I) and variance σ2, den-

sity g(u|I) and cdf G(u|I), then:

(i)
∫ uc

(uc − u)g(u|I)du =
∫∞
−∞max{uc, u}g(u|I)du−m(I) = G(uc|I)(uc −

m(I)) + σ2g(uc|I);

(ii)
∫∞
−∞max{uc, u}g(u|I)du = G(uc|I)(uc −m(I)) + σ2g(uc) +m(I);

(iii)
∫ uc

ug(u|I)du = −σ2g(uc|I) +m(I)G(uc|I);
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(iv)
∫
uc
ug(u|I)du = m(I)(1−G(uc|I)) + σ2 × g(uc);

(v) GI(uc|I) = −m′(I)g(uc|I);

(vi)
∫∞
−∞max{uc, u}gI(u|I)du = m′(I)(1−G(uc|I)).

Proof of Lemma 12 Start by recalling the definitions: g(u|I) = 1
σ
√

2π
e−

(u−m(I))2

2σ2

and G(uc|I) =
∫ uc
−∞ g(u|I)du and so

dg(u|I)

du
= −u−m(I)

σ2
× g(u|I).

Thus, for any uc :∫ uc

−∞
(u−m(I))g(u|I)du = −σ2 ×

∫ uc

−∞
(−u−m(I)

σ2
)g(u|I)du = −σ2g(uc|I).

(34)

so∫ uc

ug(u|I)du =

∫ uc

(u−m(I))g(u|I)du+m(I)G(uc|I) = −σ2g(uc|I)+m(I)G(uc|I).

This proves (iii). Next observe

gI(u|I) =
u−m(I)

σ2
×m′(I)× g(u|I),

and so,

GI(u
c|I) =

∫ uc

−∞
gI(u|I)du =

∫ uc

−∞

u−m(I)

σ2
×m′(I)× g(u|I)du

=
m′(I)

σ2
×
∫ uc

−∞
(u−m(I))× g(u|I)du = −m

′(I)

σ2
× σ2g(uc|I) = −m′(I)g(uc|I).

(The second to last equality follows from (34).) This proves (v).

We now recall the notation as in the text: φ(x) and Φ(x) denote the density

and cdf of a standard normal random variable. It is a standard observation

concerning expectations of truncated normal random variables that:

E[ũ|ũ > uc] = m(I) + σ ×
φ(u

c−m(I)
σ )

1− Φ(u
c−m(I)
σ )

.
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Hence, since φ(u
c−m(I)
σ ) = σg(uc|I) and 1− Φ(u

c−m(I)
σ ) = 1−G(uc|I) :∫

uc
ug(u|I)du = Pr(ũ > uc)× E[ũ|ũ > uc] = (1−G(uc|I))m(I) + (1−G(uc|I))× σ ×

φ(u
c−m(I)
σ )

1− Φ(u
c−m(I)
σ )

m(I)(1−G(uc|I)) + σ × φ(
uc −m(I)

σ
)

= m(I)(1−G(uc|I)) + σ2 × g(uc|I).

This proves (iv). This also shows that∫ ∞
−∞

max{uc, u}g(u|I)du = Pr(ũ ≤ uc)uc +

∫
uc
ug(u|I)du

= G(uc|I)uc +m(I)(1−G(uc|I)) + σ2g(uc|I)

= G(uc|I)(uc −m(I)) +m(I) + σ2g(uc|I).

This proves (ii). This further implies:

∫ uc

(uc − u)g(u|I)du =

∫ ∞
−∞

max{uc − u, 0}g(u|I)du∫ ∞
−∞

max{uc − u, u− u}g(u|I)du

=

∫ ∞
−∞

(max{uc, u} − u)g(u|I)du

=

∫ ∞
−∞

max{uc, u}g(u|I)du−
∫ ∞
−∞

ug(u|I)du

=

∫ ∞
−∞

max{uc, u}g(u|I)du−m(I)

= G(uc|I)(uc −m(I)) + σ2g(uc|I).
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This proves (i). From this, it also follows that:∫ ∞
−∞

max{uc, u}gI(u|I)du =
∂

∂I

∫ ∞
−∞

max{uc, u}g(u|I)du

=
∂

∂I

(
G(uc|I)(uc −m(I)) +m(I) + σ2g(uc|I)

)
(from (ii))

=
∂

∂I

(
G(uc|I)(uc −m(I)) +m(I) + σφ(

uc −m(I)

σ
)

)
= GI(u

c|I)(uc −m(I))−m′(I)G(uc|I) +m′(I) + σ
∂

∂I
φ(
uc −m(I)

σ
)

= GI(u
c|I)(uc −m(I))−m′(I)G(uc|I)

+m′(I) +m′(I)
uc −m(I)

σ2
σφ(

uc −m(I)

σ
)

= GI(u
c|I)(uc −m(I))−m′(I)G(uc|I) +m′(I)

+m′(I)(uc −m(I))g(uc|I)

= −m′(I)g(uc|I)(uc −m(I))−m′(I)G(uc|I) +m′(I)

+m′(I)(uc −m(I))g(uc|I) (from (v))

= m′(I)(1−G(uc|I)).

This proves (vi).�

Proof of Theorem 2 Start by observing that (21) can be rewritten using

the definition of conditional expectation and the obvious fact that m = τm+rm
τ+r

as:

τm+ rvc

τ + r
=

(1− p) τm+rm
τ+r + p

∫ vc τm+rv
τ+r g(v)dv + p rqβτ+r

∫ vc
(vc − v)g(v)dv

1− p+ pG(vc)
,

or alternatively as:

τm+ rvc

τ + r
=

(1− p+ pG(vc)) τmτ+r + r
τ+r

(
(1− p)m+ p

∫ vc
vg(v)dv + pqβ

∫ vc
(vc − v)g(v)dv

)
1− p+ pG(vc)

.

(35)

Now, multiply both sides of equation (35) by the denominator of RHS(35) to

get:

τm+ rvc

τ + r
× (1− p+ pG(vc))

= (1− p+ pG(vc))
τm

τ + r
+

r

τ + r

(
(1− p)m+ p

∫ vc

vg(v)dv + pqβ

∫ vc

(vc − v)g(v)dv

)
,

31



or equivalently,

vc × (1− p+ pG(vc)) = (1− p)m+ p

∫ vc

vg(v)dv + pqβ

∫ vc

(vc − v)g(v)dv,

or equivalently

(vc −m)(1− p) + pvcG(vc) = p

∫ vc

vg(v)dv + pqβ

∫ vc

(vc − v)g(v)dv. (36)

From Lemma 12 parts (iii) and (i) we know:∫ vc

vg(v)dv = −σ2g(vc) +mG(vc)

and ∫ vc

(vc − v)g(v)dv = G(vc)(vc −m) + σ2g(vc),

so (36) can be written as:

(vc−m)(1−p)+pvcG(vc) = −pσ2g(vc)+pmG(vc)+pqβG(vc)(vc−m)+pqβσ2g(vc),

i.e., as:

(vc −m)(1− p+ p(1− qβ)G(vc)) + p(1− qβ)σ2g(vc) = 0.

Dividing this last equation by σ and recalling the definition of α, we note that

this last equation can be rewritten:

(
vc −m
σ

)(1− p+ αpG(vc)) + αpσg(vc) = 0. (37)

Now define xc by

xc ≡ vc −m
σ

, (38)

and substitute this xc into (37), after observing thatG(vc) = Φ(xc) and σg(vc) =

φ(xc), to conclude that (37) can be rewritten as:

xc(1− p+ αpΦ(xc)) + αpφ(xc) = 0.

This last equation is what was labeled (23) in the statement of the theorem.
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Next notice that since - throughout - we have restricted attention to those

β for which both β ≥ −1 and q(1 +β) < 1, we know that α = 1− qβ is positive.

(This follows since α can be written as α = (1 − q(1 + β)) + q, and so α is

positive as the sum of two positive terms.) We also note that α is bigger than

1 when β is negative, and α is smaller than 1 when β is positive (the preceding

is clear since α = 1− qβ).

Since α is always positive, we know that LHS(23) is positive for all x ≥ 0, so

if (23) has a solution, that solution must be negative. Also notice that LHS(23)

is strictly increasing in x fo all x, since φ′(x) = −xφ(x) and so

∂LHS(23)

∂x
= 1−p+αpΦ(x)+xαpφ(x)−αpφ(x)x = 1−p+αpΦ(x) > 0. (39)

Thus, from (39) we know that if equation (23) has a solution, that solution is

unique. Also notice that LHS(23) goes to −∞ (and hence, in particular, turns

negative) as x→ −∞, since x(1−p)→ −∞ as x→ −∞. Obviously, LHS(23) is

continuous in x. Thus, by the intermediate value theorem, (23) has a negative

solution. This proves the theorem.

�

Proof of Corollary 5

Part (i) follows from the observations made in the course of proving that

(23) has a unique negative solution.

Part (ii) follows part (i) since if xc < 0 implies Φ(xc) < .5, and so p(1 −

Φ(xc)) > p
2 .

Part (iii) Differentiate (23) totally with respect to p, using φ′(x) = −xφ(x)

to get:
∂LHS(23)

∂x

∂xc

∂p
+
∂LHS(23)

∂p
= 0, (40)

or equivalently, using (39):

[1− p+ αpΦ(xc)]
∂xc

∂p
= xc(1− αΦ(xc))− αφ(xc). (41)
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Now, notice that when evaluated at its solution xc, (23) can be written as

xc − p{xc(1− αΦ(xc))− αφ(xc)} = 0,

so

xc(1− αΦ(xc))− αφ(xc) =
xc

p
< 0.

Hence, RHS(41) is negative. Thus, ∂x
c

∂p < 0.

We now prove ∂xc

∂α < 0. (Once we do this, then parts (iv) and (v) will

follow directly, since α = 1− qβ, and hence sgn∂xc∂β = sgn∂x
c

∂α
∂α
∂β = −sgn∂xc∂α q =

−sgn∂xc∂α ; similarly sgn∂x
c

∂q = sgn∂x
c

∂α
∂α
∂q = −sgn∂xc∂α β, and so sgn

∂xc

∂q is positive

if β > 0 and sgn∂x
c

∂q is negative if β < 0.) Differentiate (23) totally with respect

to α, in a fashion analogous to (40) above, to get:

[1− p+ αpΦ(xc)]
∂xc

∂α
+ xcpΦ(xc) + pφ(xc) = 0,

or equivalently:
∂xc

∂α
= −px

cΦ(xc) + φ(xc)

1− p+ αpΦ(xc)
. (42)

Now, we claim that f(x) defined by:

f(x) ≡ xΦ(x) + φ(x) (43)

is positive for all x ∈ R. To see this, first note that notice that φ′ = −xφ,

so that f ′(x) = xφ + Φ − xφ = Φ(x) > 0, so f(·) is strictly increasing in x

for all x. Thus, if limx→−∞ f(x) = 0, we will be done, as this will show that

f(x) > 0 for all x. But notice that xΦ(x) can be written as xΦ(x) = Φ(x)
1
x

, and

limx→−∞Φ(x) = 0, and limx→−∞
1
x = 0, so L’Hospitals rule applies to establish

that

lim
x→−∞

xΦ(x) = lim
x→−∞

Φ(x)
1
x

= lim
x→−∞

φ(x)

− 1
x2

= − 1√
2π

lim
x→−∞

x2e−x
2/2 = 0. (44)

Since limx→−∞ φ(x) = 0 too, it follows from (44) that limx→−∞ xΦ +φ(x) = 0,

too. That is, limx→−∞ f(x) = 0. This completes the proof of the claim that
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f(x) > 0 for all finite x. Notice using the notation (43) that we can write ∂xc

∂α

in (42) as ∂x
c

∂α = −p f(xc)
1−p+αpΦ(xc) . Since f(x) is now known to be positive for all

x, it follows that ∂x
c

∂α < 0. �

Proof of Theorem 7

Initially, we take Î as fixed, and so, to save space, we write vc in place of

vc(Î).

Rewrite OBJ(I|Î) as:

OBJ(I|Î) = (1− p+ pG(vc|I))
τm̂+ rvc

τ + r
+ p

∫ ∞
vc

τm̂+ rv

τ + r
g(v|I)dv

−pqβ
∫ vc

−∞
(
τm̂+ rvc

τ + r
− τm̂+ rv

τ + r
)g(v|I)dv − .5I2

= (1− p)τm̂+ rvc

τ + r
+ pG(vc|I)

τm̂+ rvc

τ + r
+ p

∫ ∞
vc

τm̂+ rv

τ + r
g(v|I)dv

−pqβ
∫ vc

−∞
(
τm̂+ rvc

τ + r
− τm̂+ rv

τ + r
)g(v|I)dv − .5I2. (45)

Now observe that∫ vc

−∞
(
τm̂+ rvc

τ + r
− τm̂+ rv

τ + r
)g(v|I)dv =

∫ ∞
−∞

max{τm̂+ rvc

τ + r
− τm̂+ rv

τ + r
, 0}g(v|I)dv

=

∫ ∞
−∞

max{τm̂+ rvc

τ + r
− τm̂+ rv

τ + r
,
τm̂+ rv

τ + r
− τm̂+ rv

τ + r
}g(v|I)dv

=

∫ ∞
−∞

(
max{τm̂+ rvc

τ + r
,
τm̂+ rv

τ + r
} − τm̂+ rv

τ + r

)
g(v|I)dv

=

∫ ∞
−∞

max{τm̂+ rvc

τ + r
,
τm̂+ rv

τ + r
}g(v|I)dv −

∫ ∞
−∞

τm̂+ rv

τ + r
g(v|I)dv

=

∫ ∞
−∞

max{τm̂+ rvc

τ + r
,
τm̂+ rv

τ + r
}g(v|I)dv − τm̂+ rm

τ + r
. (46)

(Notice that the last equality invokes
∫∞
−∞

τm̂+rv
τ+r g(v|I)dv = τm̂+rm

τ+r , where

m = m(I).) Also notice that

τm̂+ rvc

τ + r
G(vc|I) +

∫ ∞
vc

τm̂+ rv

τ + r
g(v|I)dv =

∫ vc

−∞

τm̂+ rvc

τ + r
g(v|I)dv +

∫ ∞
vc

τm̂+ rv

τ + r
g(v|I)dv

=

∫ ∞
−∞

max{τm̂+ rvc

τ + r
,
τm̂+ rv

τ + r
}g(v|I)dv. (47)
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Substitute (46) and (47) into (45) to get

OBJ(I|Î) = (1− p)τm̂+ rvc(Î)

τ + r
+ p

∫ ∞
−∞

max{τm̂+ rvc

τ + r
,
τm̂+ rv

τ + r
}g(v|I)dv

−pqβ
(∫ ∞
−∞

max{τm̂+ rvc

τ + r
,
τm̂+ rv

τ + r
}g(v|I)dv − τm̂+ rm

τ + r

)
− .5I2

= (1− p)τm̂+ rvc(Î)

τ + r
+ p(1− qβ)

∫ ∞
−∞

max{τm̂+ rvc

τ + r
,
τm̂+ rv

τ + r
}g(v|I)dv(48)

+pqβ
τm̂+ rm

τ + r
− .5I2.

Differentiate this last expression with respect to I to get:

∂OBJ(I|Î)

∂I
= p(1−qβ)

∫ ∞
−∞

max{τm̂+ rvc(Î)

τ + r
,
τm̂+ rv

τ + r
}gI(v|I)dv+pqβ

rm′(I)

τ + r
−I.

Recall from Lemma 12(vi) that:
∫∞
−∞max{vc, v}gI(v|I)dv = m′(I)(1−G(vc|I)).

Combined with
∫∞
−∞ gI(v|I)dv = 0, it follows that:∫ ∞

−∞
max{τm̂+ rvc

τ + r
,
τm̂+ rv

τ + r
}gI(v|I)dv =

∫ ∞
−∞

(
τm̂

τ + r
+

r

τ + r
max{vc, v}

)
gI(v|I)dv

=

∫ ∞
−∞

τm̂

τ + r
gI(v|I)dv +

r

τ + r

∫ ∞
−∞

max{vc, v}gI(v|I)dv =
r

τ + r

∫ ∞
−∞

max{vc, v}gI(v|I)dv

=
rm′(I)(1−G(vc|I))

τ + r
,

and hence recalling α = 1− qβ it further follows that

∂OBJ(I|Î)

∂I
= pα

rm′(I)(1−G(vc|I))

τ + r
+ pqβ

rm′(I)

τ + r
− I

=
prm′(I)

τ + r
{α(1−G(vc|I)) + qβ} − I

=
prm′(I)

τ + r
{α(1−G(vc|I))− (1− qβ) + 1} − I

=
prm′(I)

τ + r
{α(1−G(vc|I))− α+ 1} − I

=
prm′(I)

τ + r
{1− αG(vc|I)} − I

=
prm′(I)

τ + r
{1− αΦ(xc)} − I.

The second-to-last equality follows from Theorem 2. The equilibrium I is

obtained by setting this last expression equal to zero, which proves the theorem.

�
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Proof of Theorem 10

The first part of the proof entails establishing when OBJ, as expressed in

(??), is evaluated at the equilibrium value I∗(f) specified in Theorem 9, that

d

df
OBJ = (1− δ)δw2 + (2− δ −X)w2f(X − δ). (49)

This will take several steps to oprove. First step. Compute this derivative by

applying the envelope theorem to it. Note that while the envelope theorem

allows us to ignore the effect of changes in f onS’s equilibrium choice I∗(f), the

envelope theorem does not allow us to disregard the effect of changes in f on

buyers’conjectureÎ(f), since S controls (and can adjust) I∗(f) as he f changes,

but he does not control how investors’conjectures Î(f) change with f. When

we evaluate this derivative at the equilibrium investment level I∗(f) = Î(f), we

get:
∂

∂f
OBJ = −δm(I∗(f)) + Ψ + f × ∂Ψ

∂Î
|I=Î=I∗(f) ×

∂Î(f)

∂f
. (50)

(Each instance of Ψ in this derivative is evaluated at I = Î = I∗(f).)

OBJ ≡ δ(1− f)m(I) + f ×Ψ(I, Î)− .5I2, (51)

where

Ψ(I, Î) ≡ (1− p+ pG(vc(Î)|I))× τm(Î) + rvc(Î)

τ + r
+ (52)

p

∫ ∞
vc(Î)

τm(Î) + rv

τ + r
g(v|I)dv − pqβ

∫ vc(Î)

−∞
(
τm(Î) + rvc(Î)

τ + r
− τm(Î) + rv

τ + r
)g(v|I)dv.

Second step. Simplify this derivative. To that end, notice that

f ×Ψ(I∗(f), I∗(f)) = f ×m(I∗(f)) = fwI∗(f). (53)

That is, the net proceeds S expects to receive from buyers for selling them

fraction f of the asset, f × Ψ(I, I), equals fraction f of the asset’s total value

m(I). This result follows because in expectation the damage payments constitute

a net wash to S in equilibrium: competition among buyers drives the price they
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pay for the fraction of the asset they buy up to the total value they anticipate

receiving from their purchase. So, in expectation, whatever amount buyers

expect S to pay them in damages after the asset’s sale equals the extra amount

the buyers offer S "up front" at the time of the asset’s sale. (This claim can be

derived formally following (35), but we omit its simple proof.)

Next, calculate ∂
∂Î

Ψ(I, Î)|I=Î=I∗(f). Following the same steps that allowed

us to write OBJ in (27) as (48), we can write Ψ(I, Î) as

Ψ(I, Î) = (1− p)τm̂+ rvc(Î)

τ + r
+ p(1− qβ)

(∫ vc(Î)

−∞

τm̂+ rvc(Î)

τ + r
g(v|I)dv +

∫ ∞
vc(Î)

τm̂+ rv

τ + r
g(v|I)dv

)

+pqβ
τm̂+ rm

τ + r
.

Hence:

∂

∂Î
Ψ(I, Î) =

∂

∂vc
Ψ(I, Î)

∂vc

∂Î
+

∂

∂m̂
Ψ(I, Î)

∂m̂

∂Î

= {(1− p) r

τ + r
+ p(1− qβ)G(vc(Î)|I)

r

τ + r
}∂v

c

∂Î

+{(1− p) τ

τ + r
+ p(1− qβ)

τ

τ + r
+ pqβ

τ

τ + r
}∂m̂
∂Î

= {1− p+ p(1− qβ)G(vc(Î)|I)} r

τ + r

∂vc

∂Î
+ {1− p+ p(1− qβ) + pqβ} τ

τ + r

∂m̂

∂Î

= {1− p+ p(1− qβ)G(vc(Î)|I)} r

τ + r

∂vc

∂Î
+

τ

τ + r

∂m̂

∂Î

= {1− p+ p(1− qβ)G(vc(Î)|I)} rw

τ + r
+

τw

τ + r
.

In this last line, we utilized (22) (with m̂ replacing m) to conclude ∂vc

∂m̂ = 1, and

hence ∂vc

∂Î
= ∂vc

∂m̂
∂m̂
∂Î

= m′(Î) = w. Hence, when Î = I :

∂

∂Î
Ψ(I, I) = ({1− p+ p(1− qβ)G(vc(I)|I)} r

τ + r
+

τ

τ + r
)w

= (
r

τ + r
− pr

τ + r
(1− (1− qβ)G(vc(I)|I)) +

τ

τ + r
)w

= (1− pr

τ + r
(1− αG(vc(I)|I)))w

= (1− pr

τ + r
(1− αΦ(xc)))w

= (1−X)w. (54)

38



(In the second to last line, we employed Theorem 2 to conclude that the equi-

librium probability of no disclosure is given by Φ(xc).)

Next, we observe that, expressed in the notation (28), the result in (32) can

be stated as

I∗(f) = δw + fw × (X − δ), (55)

and so
∂I∗(f)

∂f
= w(X − δ),

and we can write I∗(f) alternatively as:

I∗(f) = δw + f × ∂I∗(f)

∂f
. (56)

Since f is public information, I∗(f) ≡ Î(f) is an identity in f , so:

∂I∗(f)

∂f
=
∂Î(f)

∂f
. (57)

Thus, putting (54) to (57) together, we can express the derivative (50) as:

∂

∂f
OBJ = −δm(I∗(f)) + Ψ + f × ∂Ψ

∂Î
|I=Î=I∗(f) ×

∂Î(f)

∂f

= (1− δ)wI∗(f) + f × ∂Ψ

∂Î
|I=Î=I∗(f) ×

∂Î(f)

∂f

= (1− δ)w(δw + f × ∂I∗(f)

∂f
) + f × (1−X)w × ∂I∗(f)

∂f

= (1− δ)δw2 + (1− δ + 1−X)wf
∂I∗(f)

∂f

= (1− δ)δw2 + (2− δ −X)w2f(X − δ). (58)

Note that this last line is (49), so the first part of proof of Theorem 10 is

complete.

The next part of the proof entails establishing the following lemma.

Lemma 13 Case 1 If δ ≤ X, then the optimal f is f = 1

Case 2a If δ > X and 1− δ < (1−X)2, then the optimal f is

f∗ =
(1− δ)δ

(1−X)2 − (1− δ)2
. (59)

Case 2b δ > X and 1− δ ≥ (1−X)2, then the optimal f is f = 1.

39



Proof of Lemma 13

First, we note that since

(2− δ −X)(−δ +X) = −δ(2− δ) +X(2− δ) +Xδ −X2

= −δ(2− δ) + 2X −X2

= (1− δ)2 − (1−X)2,

(58) can be rewritten as:

∂

∂f
OBJ = (1− δ)δw2 + w2f{(1− δ)2 − (1−X)2}.

Next, notice that since both δ and X are positive and less than 1, Case 1 of the

lemma occurs iff (1− δ)2 ≥ (1−X)2. Thus, in view of (??), ∂
∂fOBJ is positive

for all f ≥ 0. Hence, the optimal f is f∗ = 1.

Notice in Case 2 of the lemma, (1 − δ)2 < (1 − X)2. Thus, in Case 2 the

ratio in (59) is positive. In this case, this ratio is less than 1 iff

(1− δ)δ < (1−X)2 − (1− δ)2 iff

(1− δ)2 + δ − δ2 < (1−X)2

1− δ < (1−X)2. (60)

When inequality (60) holds - Case 2(a) - ∂
∂fOBJ is positive for f < f∗, where

f∗ is as given in (59), and ∂
∂fOBJ is negative for f > f∗. Hence, in Case 2(a),

the f∗ as defined in (59) is the global maximum of OBJ defined in (??). When

inequality (60) is reversed - Case 2(b) - ∂
∂fOBJ is positive for all f < f∗ where

f∗ is as defined in (59). In particular, since in Case 2(b) the f∗ defined in (59)

exceeds 1, it follows that for all f < 1 in Case 2b, ∂
∂fOBJ is positive. Hence,

in Case 2(b), the optimal f is f = 1. This proves the lemma.�

Next, we recall the function ψ(r) for r > 0 defined by ψ(r) ≡ (1− pr
τ+r (1−

αΦ(x)))2.

We now prove Case B (in the statement of Theorem 10). We begin by

observing that the function ψ(r) is strictly continuously decreasing in r for all
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r > 0, ψ(0) = 1, and limr→∞ ψ(r) = (1− p(1− αΦ(x))).2

In Case B, ψ(r) > 1 − δ for all r > 0. In this case, p(1 − αΦ(x)) ≤ δ

must hold, since if p(1 − αΦ(x)) > δ, then 1 − p(1 − αΦ(x)) < 1 − δ, and so

(1 − p(1 − αΦ(x)))2 < 1 − δ, contrary to this case. Since p(1 − αΦ(x)) ≤ δ

obviously implies X = pr
τ+r (1 − αΦ(x)) < δ holds for any r > 0, we have both

X < δ and (1−X)2 = φ(r) > 1− δ for all r > 0 in this case. Thus, in Case A,

we conclude that the conditions of Case 2(b) of the previous lemma are satisfied

for all r > 0. By that lemma, we conclude that the optimal f is given by f∗ as

defined in (59) for all r > 0 in Case B.

In Case A (in the statement of Theorem 10), first note that by the properties

of ψ(·) identified above, it is clear that there is a unique rδ > 0 as identified

in the statement of the theorem. notice that since 1 − δ = ψ(rδ) = (1 −
prδ

τ+rδ
(1−αΦ(xc)))2 < 1− prδ

τ+rδ
(1−αΦ(xc)), it follows that prδ

τ+rδ
(1−αΦ(xc)) < δ.

Hence, if r < rδ, then both X = pr
τ+r (1 − αΦ(xc)) < δ and 1 − δ < ψ(r) =

(1 − pr
τ+r (1 − αΦ(xc)))2 = (1 − X)2. That is, if r < rδ, the conditions of

Case 2A of the previous lemma are satisfied. Thus, f∗ as defined in (60)

is optimal. Finally, consider Case A with r > rδ. For all such r, we have

(1−X)2 = ψ(r) < 1− δ. Now, in this case, either δ ≤ X or δ > X. If δ ≤ X,

then the conditions of Case 1 are satisfied, so we conclude that the optimal f is

f = 1. Alternatively, if δ > X then the conditions of Case 2a of the previous

lemma are satisfied, and once again we conclude that the optimal f is f = 1.

This completes the proof of Theorem 10.�

Proof of Corollary 11

(i) First, suppose Case A characterizes f∗, i.e., (1−p(1−αΦ(xc)))2 < 1− δ.

Further suppose r < rδ, i.e., Case Ai applies. That is, suppose f∗ is defined by
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(33). For such r, observe that as r increases:

r ↑ =⇒ (ψ = (1− pr

τ + r
(1− αΦ(xc)))2) ↓=⇒

(
w2((1− δ)2 − (1− pr

τ + r
(1− αΦ(xc)))2)

)
↑

=⇒
(

(1− δ)δw2

w2((1− δ)2 − (1− pr
τ+r (1− αΦ(xc)))2)

)
↓=⇒

(
− (1− δ)δw2

w2((1− δ)2 − (1− pr
τ+r (1− αΦ(xc)))2)

)
↑ .

This shows that an increase in r leads to an increase in f∗ in Case Ai. Also

notice that if, by increasing r, the relevant case goes from Case Ai to Case Aii,

it remains true that f∗ increases, since as r increases from being below rδ to

being above rδ, f∗ goes from some amount less than 1 to 1, So the corollary

remains true when the case that characterizes f∗ goes from Case Ai to Case

Aii. If Case B applies, then f∗ is also defined by (33), and so, by what has

been shown previously, we are done.

(ii) The essential step of this demonstration is to show that (33) is strictly

increasing in p. To see this, first recall from the corollary to Theorem 2 that

xc(p) declines in p, so X increases in p, and hence ψ as defined prior to the

statement of Theorem 10 decreases in p. Then, similar to the steps taken in

the proof of part (i) above, it is easy to show that (33) is strictly increasing in

r. The remainder of the proof (where we consider whether Case Ai or Case Aii

or Case B applies) is straightforward and omitted.

(iii) The essential step is to show that as β increases, f∗ as defined in (33)

strictly increases.

Note that f∗ can be written as f∗ = − (1−δ)δw2
w2((1−δ)2−ψ) , where ψ was defined just

before the statement of Theorem 10. We intend to prove that αΦ(x(α)) always

increases in α for the equilibrium cutoff x(α). This will show that αΦ(xc(α)) is

decreasing in β (because ∂
∂βαΦ(xc(α)) = ∂

∂ααΦ(xc(α))∂α∂β = −q ∂
∂ααΦ(xc(α))).

Since X decreases in αΦ(xc(α)), it will follow that X increases in β. Since ψ

decreases in X, this will in turn show that ψ decreases in β. Since f∗ decreases

in ψ, this will in turn show that f∗ increases in β, as was to be shown.
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We begin by computing the derivative

∂

∂α
αΦ(xc(α)) = Φ(xc) + αφ(xc)

∂xc(α)

∂α

= Φ(xc) + αφ(xc)×
(
−px

cΦ(xc) + φ(xc)

1− p+ αpΦ(xc)

)
= Φ(xc) + αφ(xc)×

(
p

(xcΦ(xc) + φ(xc))xc

αpφ(xc)

)
= Φ(xc) + (xcΦ(xc) + φ(xc))xc

= Φ(xc)× (1 + (xc)2) + φ(xc)xc.

(The second line comes from the computation (42) in the Appendix; the third

line comes from the equilibrium condition (23) that xc satisfies, namely xc(1−

p + αpΦ(xc)) + αpφ(xc) = 0 which - since we know xc < 0 - can be writ-

ten alternatively as 1 − p + αpΦ(xc) = −αpφ(xc)
xc , and so −px

cΦ(xc)+φ(xc)
1−p+αpΦ(xc) =

p (xcΦ(xc)+φ(xc))xc

αpφ(xc) ). Now define Ξ(x) ≡ Φ(x) × (1 + (x)2) + φ(x)x. We claim

Ξ(x) is positive for all x ∈ R. To see that, note that, since ∂φ(x)
∂x = −ξφ(x) :

∂Ξ(x)

∂x
= φ(x)× (1 + (x)2) + 2Φ(x)x+ φ(x)− φ(x)(x)2

= 2(φ(x) + Φ(x)x).

We have shown in the Appendix, at line (43) that φ(x) + Φ(x)x is positive

for all x. Thus, Ξ(x) is increasing in x. So, Ξ(x) is positive for all x if

limx→−∞ Ξ(x) = 0. Obviously, limx→−∞ φ(x)x = 0 and limx→−∞Φ(x) =

0. So, it suffi ces to show limx→−∞ Φ(x)(x)2 = 0. Write Φ(x)(x)2 = Φ(x)
1
x2

and apply L’Hospital’s rule to conclude limx→−∞ Φ(x)(x)2 = limx→−∞
Φ(x)
1
x2

=

limx→−∞
φ(x)

− 2
x3

= − 1
2 limx→−∞(x)3φ(x) = 0. This completes the demonstration

that limx→−∞ Ξ(x) = 0 and hence that Ξ(x) > 0 for all x and hence that

αΦ(xc(α)) is increasing in α for all potential equilibrium cutoffs xc.

Finally, it is easy to check (using logic similar to that above) that the in-

equality defining case A of the theorem is more likely (and so the inequality

defining case B of the theorem is less likely to occur) as β increases. Since when

case B holds, f∗ is always characterized by (33) whereas in case A, the optimal
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f is sometimes equal to one (and when the optimal f is not 1, it is also given

by (33)), so it is always true that, as β increases, the optimal f always weakly

increases.�
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