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ABSTRACT2

In this mini-review, we introduce and summarize research - at Quantum Technologies Group3
(QTG) at Carnegie Mellon University, in collaboration with several other institutions, including4
IIT-Madras and NASA (QuAIL) - related to computational experience with quantum annealing. We5
present a novel hybrid quantum-classical heuristic algorithm (GAMA, Graver Augmented Multi-6
seed Algorithm) for non-linear, integer optimization, and illustrate it on an application (in cancer7
genomics). We then present an algebraic geometry based algorithm for embedding a problem8
onto a hardware that is not fully connected, along with a companion Integer Programming (IP)9
approach. Next, we discuss the performance of two photonic devices - the Temporal Multiplexed10
Ising Machine (TMIM) and the Spatial Photonic Ising Machine (SPIM)- on Max-Cut and Number11
Partitioning instances. We close with an outline of current work.12

1 INTRODUCTION

Quantum annealing has emerged as a promising approach because a variety of Combinatorial Optimization13
(CO) problems that arise in practical situtations (Tanahashi et al., 2019; Smelyanskiy et al., 2012; Hauke14
et al., 2020) can be formulated as a Quadratic Unconstrained Binary Optimization (QUBO) problem, which15
maps naturally to an Ising model, and solved on specially constructed quantum and semi-classical hardware16
(Glover et al., 2018; Lucas, 2014; Mohseni et al., 2022; King et al., 2018; Harris et al., 2018; Wang and17
Roychowdhury, 2019; Chou et al., 2019; McMahon et al., 2016; Wang et al., 2013). A lucid introduction18
on quantum annealing can be found in (McGeoch, 2014).19

Figure 1. Some computational quantum annealing initiatives at Quantum Technology Group (QTG).
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At Carnegie Mellon University’s Quantum Technologies Group (QTG), we have been working on several20
initiatives1 related to computational aspects of quantum annealing. See Figure 1.21

1. While unconstrained optimization problems expressed as QUBO can be directly passed to an annealer22
solver, it is also of practical interest to develop scalable decomposition methods that solve general non-23
linear constrained optimization problems. We describe a novel quantum-classical algorithm, Graver24
Augmented Multiseed Algorithm (GAMA) (Alghassi et al., 2019a,b) for solving such optimization25
problems, building on previous work on the use of algebraic geometry for Integer Optimization with26
a linear objective function (Tayur et al., 1995). GAMA is motivated by test sets, and (a) uses partial27
Graver bases (Graver, 1975) instead of the complete Graver basis and (b) many feasible solutions as28
starting points (rather than just one) for augmentation. Both the partial Graver basis and a number of29
feasible solutions are obtained from the constraint equation expressed as QUBOs (that is solved by an30
annealer). A particular advantage of this algorithm is that it separates the constraints from the objective31
function, allowing us to tackle situations where the computation of objective function value may need32
an oracle call (such as a simulation).33

2. Many devices such as D-Wave have limited coupling connectivity between qubits. For a dense problem34
graph, it is therefore necessary to develop a mapping - minor embedding - to the sparse hardware35
graph. We have developed two methods, based on algebraic geometry and Integer Programming (Dridi36
et al., 2018a; Bernal et al., 2020).37

3. Building fully connected Ising hardware is another exciting area of current research. We have re-38
constructed (with some refinements) two Photonic Ising Machines (PIM), building on the time39
multiplexed coherent Ising machine (TMCIM) (Böhm et al., 2019) and the spatial multiplexed Ising40
machine (SPIM) (Pierangeli et al., 2020). We have studied the performance of the annealers on41
Max-Cut and Number Partitioning Problem with D-Wave (McGeoch, 2014) and Gurobi (Gurobi42
Optimization, LLC, 2023).43

The rest of the review is organized as follows. In Section 2, we describe GAMA. In Section 3, we illustrate44
the application of the GAMA on identifying altered pathways in cancer genomics as a proof-of-principle45
and recover known results. An algebraic geometry based embedding algorithm and its Integer Programming46
reformulation are outlined in Section 4 and compared to the default heuristic that is used by D-Wave. The47
performance of two Photonic Ising Machines is discussed in Section 5. We conclude in Section 6.48

2 GRAVER AUGMENTED MULTISEED ALGORITHM (GAMA)

We begin with three definitions, taken verbatim from (Alghassi et al., 2019b).49

DEFINITION 1. A set S ∈ Zn is a Test Set or an optimality certificate, if for every non-optimal, feasible50
solution, x0, there exists t ∈ S and λ ∈ Z+ such that f(x0 + λt) < f(x0). The vector, t is called the51
augmenting direction.52

The following partial order is defined on Rn.53

DEFINITION 2. Given x, y ∈ Rn, we define x is conformal to y, written as x ⊑ y, if xiyi ≥ 0 (x and y lie54
in the same orthant), and |xi| ≤ |yi|, ∀ i ∈ {1..n}. A sum u =

∑
i vi is called conformal if vi ⊑ u, ∀i.55

1 QTG is also engaged in theoretical research on understanding speed up in adiabatic quantum computing (Dridi et al., 2018b, 2019a), and other connections
between algebraic geometry and Ising models (Dridi et al., 2019b), topics not covered here.
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For a matrix A ∈ Zm×n, define the lattice56

L∗(A) = {x|Ax = 0, x ∈ Zn, A ∈ Zm×n}\{0}. (1)

DEFINITION 3. The Graver basis, G(A) ⊂ Zn, of an integer matrix A is defined as the finite set of ⊑57
minimal elements in L∗(A).58

The Graver basis (Graver, 1975) of an integer matrix, A ∈ Zm×n is known to be a test set for integer59
linear programs. Graver basis is also a test set for certain non-linear objective functions including Separable60
convex minimization (Murota et al., 2004), Convex integer maximization (De Loera et al., 2009), Norm p61
minimization (Hemmecke et al., 2011), Quadratic (Lee et al., 2010; Murota et al., 2004) and Polynomial62
minimization (Lee et al., 2010). It has also been shown that for these problem classes, the number of63
augmentation steps needed is polynomial (Hemmecke et al., 2011; De Loera et al., 2009). Graver basis can64
be computed (only for small size problems) using classical methods such as the algorithms developed by65
Pottier (1996) and Sturmfels and Thomas (1997).66

At QTG, we are exploring (a) the effectiveness of computing partial Graver basis using annealers by67
solving a QUBO (for kernel elements), and, (b) instead of relying on just one feasible solution as the seed68
for augmentation, using multiple feasible solutions (that are also obtained via annealing, by solving a69
second QUBO), as parallel starting points. The GAMA heuristic (Alghassi et al., 2019a,b) thus aims to find70
good solutions to constrained non-linear optimization problems of the form in Equation 2, using multiple71
seeds as starting points for augmentation, with partial Graver basis elements as the augmenting directions:72

(IP )A,b,l,u,f =


min f(x)

Ax = b l ≤ x ≤ n x, l, u ∈ Zn

A ∈ Zm×n b ∈ Zn

(2)

where f : Rn− > R is a real valued function.73

2.1 QUBO for kernel calculation74

In order to find a sample of the kernel elements for the constraint matrix A, we solve the Quadratic75
Unconstrained Integer Optimization (QUIO), given by76

min xTQIx, QI = ATA, x ∈ Zn

xT = [x1, x2...xn], xi ∈ Z.
(3)

Since the inputs to the annealer are binary variables, we create a binary encoding of the integer variable.77
Writing78

x = L+ EX, (4)

with L as the lower bound vector and E as the encoding matrix, the QUIO is equivalent to the QUBO79

min XTQBX, QB = ETQIE + diag(2LTQIE),

X ∈ {0, 1}nk, QI = ATA.
(5)
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The above QUBO is solved by an annealer to obtain kernel elements. A partial Graver basis can be80
obtained from the kernel elements in a classical post processing step by ⊑-minimal filtering (Alghassi81
et al., 2019a).82

2.2 QUBO for feasible solutions83

Similar to the kernel sampling, the Ax = b constraint can be expressed in the QUIO form as84

min xTQIx− 2bTAx

QI = ATA, x ∈ Zn.
(6)

After binary encoding, we get the QUBO given by85

min XTQBX, QB = ETQIE + 2diag[(LTQI − bTA)E]

X ∈ {0, 1}nk, QI = ATA.
(7)

The above QUBO can be solved by an annealer to obtain a sample of feasible solutions.86

3 AN APPLICATION OF GAMA: CANCER GENOMICS

As a proof-of-principle testing of GAMA, we describe an application (Alghassi et al., 2019) to identify87
cancer pathways de novo (Vogelstein and Kinzler, 2004; Haber and Settleman, 2007; Ciriello et al., 2012;88
Vandin et al., 2012a,b; Zhao et al., 2012) from mutation co-occurrence and mutual exclusivity (Leiserson89
et al., 2013; Weinberg and Weinberg, 2013).90

Data from The Cancer Genome Atlas (TCGA) are now available for a variety of cancers providing91
information about which genes are mutated for which patient for any given cancer. With this, we can create92
a matrix. The rows of the matrix are patients, the columns are the genes, and the elements of the matrix93
(row i, column j) are zero or one (so this is a binary matrix), where “one” in (row i, column j) means that94
gene j is mutated for patient i.95

However, not all mutations matter. The mutations that do not matter are called passengers. Those96
mutations that matter are called drivers. We want to isolate drivers from passengers. (Most mutations are97
passengers.) Furthermore, the same cancer can manifest itself due to different driver mutations, because98
different mutated driver genes can impact different cellular signaling and regulatory pathways. This99
mutational heterogeneity complicates efforts to identify drivers solely by their frequency of occurrence.100

A pathway is a collection of genes. To find k pathways means finding k different collections of genes.101
Each collection of genes can be of a different size. To make the discovery of these pathways computationally102
manageable, we also make two commonly accepted simplifications:103

Simplification 1: A pathway has at most one mutated driver gene. This is because driver genes are quite104
rare. Thus, two different pathways will not likely share a common driver gene. This is called (mutual)105
exclusivity.106

Simplification 2: A pathway should apply to many patients. This is called coverage. The important thing107
to note is that even though two patients share a pathway, they can have a different mutated gene from that108
shared pathway as an explanatory reason for their cancer.109
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Another complexity that we need to handle is that real data are noisy because of measurement errors110
and passenger mutations. This means that we cannot impose exclusivity as a hard constraint. Instead, we111
allow for some overlap or “approximate exclusivity” and this is a parameter in our formulation. Similar112
considerations force a modification of Simplification 2 as well, in the sense that we now can only reasonably113
hope that most patients have at least one mutation in a pathway. Recall that mutual exclusivity problems114
even without the modification above are NP-hard (Karp, 1972).115

3.1 Multiple-Pathway QUBO formulation for GAMA116

Alghassi et al. (2019) developed a novel formulation tailored for GAMA to discover the cancer pathways.117
Consider a hypergraph Hg = (Vg, Ep) with incidence matrix B, where each gene (gi) is represented by118
a vertex vi ∈ Vg, i = 1, 2, ..., n and the mutation list of each patient Pi is represented by a hyperedge119
ei ∈ Ep, i = 1, 2, ...,m.120

The incidence matrix is mapped to its primal graph (G). This is a graph with the same vertices as that of121
the hypergraph and with edges between all pairs of vertices contained within the same hyperedge. The122
primal graph can be expressed in terms of the (positive) Laplacian matrix:123

L+(G) = BBT = D(G) + A(G). (8)

The weighted adjacency matrix A = [a(i, j)]n×n is symmetric and has zero as the diagonal elements. The124
number of patients that have gene pairs (gi, gj) mutated is given by a(i, j). The number of patients with125
gene gi mutated is given by the element, di in the degree matrix, D = diag{d1, d2, ..., dn}, where di is the126
degree of the vertex vi in the primal graph.127

A k-pathway QUBO formulation simultaneously finds k pathways in a single optimization run. The128
solution vector is represented by the binary vector xi = [xi1, xi2, ..., xin]

T , i = 1, 2, ..., k where, each129
element xij indicates if a vertex vj belongs to the ith pathway. Let X = [x1, x2, ..., xk]

T . The QUBO130
formulation is given by the following (where L = (D − A) is the negative Laplacian matrix).131

min XT (Qmain + αQorth)X

Qmain = −Ik ⊗ L

Qorth = (Jk − Ik)⊗ In

(9)

Note that Ik and In are k × k and n× n identity matrices. Jk is the k × k matrix with all entries equal to 1.132

Rewriting the system of equations( 9) as133

min XTQX

(1Tk ⊗ In)X ≤ 1n
Q = −Ik ⊗ L

(10)

brings it in the form suitable for GAMA (Alghassi et al., 2019a).134

This is a non-linear (quadratic) non-convex integer problem and of a Quadratic Semi Assignment Problem135
(QSAP) form. We can alternatively extract Graver basis and generate feasible solutions systematically in136
this case (Alghassi et al., 2019a) instead of solving QUBOs on a quantum annealer.137
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3.2 Numerical Results138

GAMA algorithm is used to solve k-pathway problem using the mutation data of 33 genes for Acute139
Myeloid Leukemia (AML) for 200 patients (Network, 2013). By construction, he number of binary140
variables required is lower than available methods (?). For k = 3, the pathways discovered by GAMA are141
consistent with those reported by the TCGA authors. For k = 6, three additional pathways are discovered142
by GAMA albeit with lower coverage.143

4 EMBEDDING ALGORITHMS

If an annealer hardware is not fully connected (e.g. the D-Wave system), it is necessary to map the logical144
graph, Y associated with the optimization problem into the processor graph, X (Boothby et al. (2016),145
Choi (2011)). We describe embedding algorithms2 based on algebraic geometry (Dridi et al., 2018a).146

DEFINITION 4. Let X be a hardware graph. A minor-embedding of the the graph, Y is a map, ϕ :147
V ertices(Y )− > connectedSubtrees(X) such that, ∀(y1, y2) ∈ Edges(Y ), there exists at least one edge148
connecting the subtrees, ϕ(y1) and ϕ(y2).149

Given an embedding of a logical graph, Y into a physical graph, X , the Y minor is a subgraph of X150
given by151

ϕ(Y ) = ∪y∈V ertices(Y )ϕ(y) (11)

This is the input graph to the quantum processor. The information regarding the mapping of each logical152
qubit is stored in a hash map,153

id× ϕ : V ertices(Y )× V ertices(Y )− > V ertices(Y )× Subtrees(X) (12)

which can be used to unembed desired solution returned by the processor.154

4.1 Algebraic Geometry method155

The set of embeddings can be viewed as an algebraic variety, which is the set of zeros of a system156
of polynomial equations (Cox et al., 2007). Given an embedding the mapping, π : V ertices(X)− >157
V ertices(Y ) ∪ {0}, where the pre-image (fiber) π−1(y) = ϕ(y), ∀y ∈ V ertices(Y ) has the form:158

π(xi) =
∑
j

αijyj

with
∑
j

αij = βi, αij(αij − 1) = 0

αij1αij2 = 0, for j1 ̸= j2

(13)

where βi ∈ {0, 1} is equal to 1, if the physical qubit xi is used, and 0 otherwise. Now, the conditions159
on the embedding ϕ in Definition 4 along with a limit on the number of usable physical qubits can be160
translated into a system of polynomial constraints on αij and βi. This system defines an algebraic ideal I,161
and the embeddings can be obtained using the Groebner basis of I.162

2 Note that X can be any graph in general, not just the hardware graph, which is the focus here.
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4.2 Integer Programming (IP) method163

An IP formulation of the embedding algorithm (Bernal et al., 2020) is developed by expressing the164
polynomial conditions in Dridi et al. (2018a) as linear constraints involving integer variables. This165
formulation includes constraints for Minimum and Maximum size. Embeddings are obtained by optimizing166
the Embedding size within the feasible region. A decomposition approach, iterating between a qubit167
assignment master problem and a fiber condition checking subproblem is also developed.168

Bernal et al. (2020) tested these methods using random graphs that vary in structure, size and density.169
The results are compared with the the D-Wave default heuristic, minorminer (Cai et al., 2014). The170
IP-based approaches are found to be slower whenever the heuristic can find an embedding. However, it is171
possible to obtain infeasibility proofs and bounds on solution quality with the IP methods, but not from the172
heuristics. The decomposition approach outperforms the monolithic IP approach.173

5 HARDWARE

Two fully connected Coherent Ising Machines (CIM) - the Temporal Multiplexed Coherent Ising Machine174
(TMCIM) (based on (Böhm et al., 2019, 2021)) and the Spatial Photonic Ising Machine (SPIM) (an175
enhancement of that of Pierangeli et al. (2019)) - were built by collaborators at IIT-Madras (Prabhakar176
et al., 2023).177

5.1 Temporal Multiplexed Ising Machine178

The TMCIM was tested on the Max-Cut problem (Karp, 1972) and the results on various instances are179
compared with Gurobi run on Intel Core i3 processor and also with a D-Wave machine. The graph instances180
for the problem are generated using rudy (Rendl et al., 2010). See Prabhakar et al. (2023) for details.181

First, at a fixed graph size (100 nodes), and varying density, TMCIM performed better than Gurobi up182
to a graph density of 40%. However, above 50%, the performance of TMCIM degraded. Next, the results183
with a fixed graph density of 40% and varying size of the graph from 100 to 1000 were obtained. For larger184
graphs, the performance of TMCIM was found to be considerably lower than Gurobi.185

Second, the results are compared with the D-Wave Advantage 1.1 (DWA) annealer with the graph size186
varying from 20 to 100 nodes and the graph density fixed at 10%. For all the graph sizes, TMCIM is able187
to always give a Max-Cut value which is at least 96% of the value obtained using Gurobi (See Figure 6 in188
Prabhakar et al. (2023)). A solution accuracy of 99% can be attained up to 30 nodes. For DWA, the solution189
accuracy degrades beyond 20 nodes. This can be attributed to the limited connectivity of its Pegasus graph.190

5.2 Spatial Photonic Ising Machine191

The SPIM was tested on Number Partitioning Problem (NPP) with instance sizes varying from 16 to192
16384 variables. The performance of the SPIM was compared with that of Gurobi and DWA. See Tables193
3 and 4 in Prabhakar et al. (2023). For DWA, the number of variables that can be embedded is limited194
to 11× 11 fully connected graph and is not competitive. For problem sizes up to 1024 variables, Gurobi195
performs better than SPIM. However, Gurobi is unable to find solutions as the problem size gets larger196
while SPIM can handle up to 16384 variables.197
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6 CONCLUSION

We have developed GAMA (Graver Augmented Multi-seed Algorithm), a novel hybrid quantum-classical198
algorithm for non-linear constrained integer optimization. As an application, we have explored a new199
formulation for the the discovery of de-novo cancer pathways. This tailored formulation is found to require200
fewer binary variables when compared with existing methods, and the pathways detected have been found201
to be consistent with previously published results.202

For minor embedding that is usually required in Ising hardware that does not have an all-to-all connectivity,203
we have developed algebraic geometry and IP based algorithms. The IP algorithm is found to perform well204
for highly structured source graphs, when compared with the currently employed heuristic, minorminer205
and the Groebner basis method. While slower overall when compared with the heursitic, the algorithm can206
detect instance infeasibility and obtain bounds on solution quality.207

We have built two photonic Ising machines, TMCIM and SPIM. We have studied their performance208
on Max-Cut and NPP problems, respectively, by comparing with D-Wave and Gurobi. For the Max-Cut,209
TMCIM gave better results than Gurobi at smaller graph size (< 100 nodes) and lower densities (< 40%),210
while its accuracy is lower for larger problems. However, the performance is better than D-Wave, which211
can be attributed to better connectivity. SPIM can solve NPP problems up to 16384 spins, which is larger212
than the problem sizes solved by D-Wave and Gurobi. Gurobi’s performance is better at smaller sizes, but213
cannot exceed more than 1024 spins.214

We conclude by noting some current work in quantum annealing. We are testing GAMA3 against state-of-215
the-art classical approaches for an application in disaster preparation, in collaboration with researchers at216
Koc University, as part of an initiative of the Turkish Ministry of Transportation and Infrastructure, focused217
on probable earthquake in Istanbul. As noted earlier, the performance of the annealers depends crucially on218
connectivity in the hardware. We are in the process of building another fully connected annealer, based on219
Floquet Theory, collaborating with researchers at Cornell University and Raytheon BBN Technologies, that220
is implemented using superconducting circuits (Onodera et al., 2020), adding to a growing set of devices221
with all-to-all connectivity being developed on other technologies (such as trapped ions or cold Rydberg222
atoms, such as QuEra processor). Nevertheless, we expect that the size of complete connectivity in any223
hardware in the forseeable future to be limited. It is therefore necessary to develop additional decomposition224
techniques for efficiently partitioning (and then recombining) large scale optimization problems, an area of225
active algorithmic research at QTG.226
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Böhm, F., Vaerenbergh, T. V., Verschaffelt, G., and Van der Sande, G. (2021). Order-of-magnitude247
differences in computational performance of analog Ising machines induced by the choice of nonlinearity.248
Communications Physics 4, 149249
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