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ABSTRACT2

Early diagnosis of pneumonia is crucial to increase the chances of survival and to reduce3
the recovery time of the patient. Chest X-ray images, the most widely used method in practice,4
are challenging to classify. Our aim is to develop a machine-learning tool that can accurately5
classify images as belonging to normal or infected individuals. A support vector machine (SVM)6
is attractive because binary classification can be represented as an optimization problem, in7
particular as a Quadratic Unconstrained Binary Optimization (QUBO) model, which, in turn, maps8
naturally to an Ising model, thereby making annealing – classical, quantum and hybrid – an9
attractive approach to explore.10

In this paper, we offer a comparison between different methods: (1) a classical state-of-the-art11
implementation of SVM (LibSVM); (2) solving SVM with a classical solver (Gurobi), with and12
without decomposition; (3) solving SVM with simulated annealing; (4) solving SVM with quantum13
annealing (D-Wave); and (5) solving SVM using Graver Augmented Multi-seed Algorithm (GAMA).14
GAMA is tried with several different numbers of Graver elements and a number of seeds, using15
both simulating annealing and quantum annealing. We find that simulated annealing and GAMA16
(with simulated annealing) are comparable, provide accurate results quickly, competitive with17
LibSVM, and superior to Gurobi and quantum annealing.18

Keywords: Quantum Annealing, Quantum Machine Learning, Binary Classification, Graver Augmented Multi-seed Algorithm, Support19
Vector Machine20

1 INTRODUCTION

Pneumonia is a major disease prevalent across the globe. Caused by the bacteria and viruses in the air we21
breathe, the illness affects one or both of the lungs, creating difficulty in breathing. Pneumonia accounts22
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for more than 15% of deaths in children under the age of five (World Health Organization, 2022). Early23
and accurate diagnosis of pneumonia, therefore, is crucial to prevent deaths and ensure better treatment.24

There are many widely used tests to diagnose pneumonia, such as chest X-rays, chest MRI, and25
needle biopsy of the lung. Chest X-ray imaging is the most commonly used method, as it is relatively26
inexpensive and non-invasive. Figure 1 shows examples of healthy and pneumonic lung X-rays. However,27
the examination of chest X-rays is challenging and sensitive to subjective variability. Machine learning

Figure 1. The image on the left shows a normal chest X-ray whereas the one on the right shows lungs
with pneumonia opacity (Breviglieri, 2021).

28
(ML) techniques have gained popularity for solving the image classification problem, and so have found29
their use in pneumonia diagnosis as well. Support Vector Machine (SVM) is a widely used method for30
classification. We have the added advantage of being able to reframe the SVM as a Quadratic Unconstrained31
Binary Optimization (QUBO) problem, making it especially suitable for studying annealing methods. In32
this work, we computationally evaluate a variety of SVM methods, in the context of X-ray imaging for33
pneumonia, and compare our results against LibSVM, a state-of-the art implementation of SVM. Our main34
contributions include:35

1. Studying a QUBO formulation of an SVM using simulated annealing (SA) and quantum annealing36
(QA).37

2. Solving a QUBO with Gurobi, and comparing with annealing methods.38

3. Combining multiple weak SVMs to get a strong classification model to accommodate fewer qubits on39
NISQ quantum annealers.40

4. Studying a hybrid quantum-classical optimization heuristic technique, Graver Augmented Multi-seed41
Algorithm (GAMA).42

2 RELATED WORK WITH CNNS AND SVMS

Nagashree and Mahanand (2023) compared the performance of an SVM with a few other classification43
algorithms, namely, decision tree, naı̈ve Bayes, and K nearest neighbour. The comparison results indicate44
a better performance of SVMs for diagnosing pneumonia. Darici et al. (2020) and Kundu et al. (2021)45
developed an ensemble framework and implemented it with deep learning models to boost their individual46
performance.47

Many researchers have explored, using different data sets, comparing between classical and quantum48
machine learning algorithms. Willsch et al. (2020) introduced a method to train an SVM on a D-Wave49
quantum annealer and studied its performance in comparison to classical SVMs for both synthetic data and50
real data obtained from biology experiments. Wang et al. (2022) implemented an SVM, enhanced with51
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quantum annealing, for two fraud detection data sets. They observed a potential advantage of using an52
SVM with quantum annealing, over other classical approaches, for bank loan time series data. Delilbasic53
et al. (2021) implemented two formulations of a Quantum Support Vector Machine (QSVM), using IBM54
quantum computers and D-Wave quantum annealers, and compared the results for Remote Sensing (RS)55
images. Bhatia and Phillipson (2021) compared classical approach, simulated annealing, hybrid solver and56
fully quantum implementations for public Banknote Authentication dataset and the Iris Dataset.57

Researchers have also studied Convolutional Neural Networks (CNN) in this context. Although it is not58
the focus of our paper, we mention related literature. Sirish Kaushik et al. (2020) implemented four models59
of CNNs, and reached an accuracy of 92.3%. Youssef et al. (2020) and Nakrani et al. (2020), implemented60
deep learning models (different types of CNNs) to classify the data. Madhubala et al. (2021) extended the61
classification to more than two types of pneumonia. They used CNNs for classification and later performed62
augmentation to obtain final results. Ibrahim et al. (2021), considered bacterial pneumonia, non-COVID63
viral pneumonia, and COVID-19 pneumonia chest X-ray images. They performed multiple experiments64
with binary and multi-class classification and achieved a better accuracy in identifying COVID-19 (99%)65
than normal pneumonia (94%).66

3 BACKGROUND INFORMATION

3.1 QUBO formulation of SVM67

Recall that an SVM is a supervised machine learning model. The hyper-plane produced by the SVM68
maximizes its distance between the two classes. Figure 2 shows the support vectors and the hyper-plane69
that classifies data into two classes (labels +1 and -1).

Figure 2. Representation of hyperplane in SVM separating two classes of data.
70

Given training data X ∈ RN×d and training labels Y ∈ {−1,+1}N , where N is the number of training
data points, we look for a hyper-plane determined by weights, w ∈ Rd, and bias, b ∈ R, to separate the
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training data into two classes. Mathematically, the SVM is expressed as (Date et al., 2021):

min
w,b

1

2
∥w∥2, (1)

subject to yi(w
Txi + b) ≥ 1, ∀i = 1, 2, . . . , N.

Here, xi is the i-th row vector in X and yi is the i-th element in Y . The Lagrangian function of this71
optimization problem is72

L(w, b, λ) = 1

2
∥w∥2 −

N∑
i=1

λi[yi(w
Txi + b)− 1], (2)

where λ is the vector containing all the Lagrangian multipliers; that is, λ = [λ1, . . . , λN ]T , with λi ≥ 0, ∀i.73
Each Lagrange multiplier or support vector corresponds to one image and represents the significance of74
that particular image in determining the hyper-plane. Converting the above primal problem to its dual form75
yields a QUBO (Date et al., 2021)76

min
λ

L(λ) = 1

2

N∑
i=1

N∑
j=1

λiλjyiyj(x
T
i xj)−

N∑
i=1

λi, (3)

with the final weights determined as

w =
N∑
i=1

λiyixi, (4)

N∑
i=1

λiyi = 0, (5)

and λi, λj ≥ 0, ∀i, j. Since the data are linearly inseparable, we use a kernel function to plot the input data
to higher dimensions and then use the SVM on the higher dimensional data. The kernel matrix is defined as

Kij = ϕ(xi)ϕ(xj), ∀i, j, (6)

where ϕ(xi) is some function of the input vector xi. We have used the radial basis function (RBF), in this
paper, as it can project data efficiently. Mathematically, the RBF is defined as

K(x1, x2) = exp

(
−∥x1 − x2∥2

2σ2

)
. (7)

The value of σ was chosen as 50 by trial. Substituting the RBF from (7) in (3) yields the QUBO,

min
λ

L(λ) = 1

2

N∑
i=1

N∑
j=1

λiλjyiyj(Kij)−
N∑
i=1

λi. (8)
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The Lagrange multipliers should also satisfy the condition in (5). Writing (8) as a matrix yields

min
λ

L(λ) = 1

2
λT (K ⊙ Y Y T )λ− λT1N , λ ≥ 0N . (9)

Here, K is the kernel matrix whose elements are defined by (6). 1N and 0N represent N -dimensional77
vectors of ones and zeros, respectively, and ⊙ is the element-wise multiplication operation. This QUBO78
matrix becomes the input to an annealer (Ising solver), that solves the minimization objectives and returns79
the Lagrange multipliers (binary), or the support vectors.80

The precision vector is introduced to have integer support vectors instead of only binary and the dimension
of the precision vector depends on the range of integer values for the support vector. The precision vector
has powers of 2 as elements, and here we use p = [20, 21] to get the final QUBO matrix. Now the
dimensions of the QUBO have doubled and our support vectors can be four integers (0,1,2,3) instead of just
being binary. Let λ̂ = [λ11, λ12, . . . , λN1, λN2] be the expanded Lagrange multipliers vector, which gives
us our final QUBO. We pass the QUBO matrix to an annealer (Ising solver). The final λ̂ vector obtained
minimizes the QUBO,

min
λ̂

L(λ̂) = 1

2
λ̂TP T (K ⊙ Y Y T )Pλ̂− λ̂TP T1N , (10)

where P = In ⊗ p and λ = Pλ̂. The annealer returns expanded Lagrange multipliers λ̂, which we use to
calculate support vectors λ. We can predict the labels for unseen data, using λ, as.

label(x) = sign

(
N∑
i=1

λiyi(Kxi) + b

)
, (11)

b = mean(yi − wTxi), where i ∈ [0, . . . , N ], (12)

wTxi =
N∑
j=1

λjyjKji,

with Kxi being the kernel between the new test point x and training data point i, as defined in (6).81

3.2 Graver Augmented Multiseed Algorithm (GAMA)82

Let our binary optimization problem be of the form:

objective function:min f(x)

constraints:Ax = b.

Alghassi et al. (2019a) introduced a novel fusion of quantum and classical methodologies for computation83
of Graver basis. In (Alghassi et al., 2019b), where the heuristic was named GAMA - Graver Augmented84
Multiseed Algorithm - was further studied the application of Graver basis (computed classically) as a85
means to attain good solutions. In this article, we explore the performance of GAMA in the context of86
solving an SVM.87

GAMA is a heuristic algorithm, in which we compute a partial Graver basis and obtain many feasible88
solutions, using Ising solvers. The motivation for GAMA comes from the theoretical foundation that a89
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complete Graver basis is a Test-Set for a wide variety of objective functions (Graver (1975) Murota et al.90
(2004) De Loera et al. (2009) Hemmecke et al. (2011) Murota et al. (2004) Lee et al. (2010)). Of course,91
finding a complete Graver basis (Pottier (1996)) is not realistic for most realistic size problems, but a partial92
Graver basis is significantly easier to obtain in certain situations, especially by solving QUBOs with Ising93
solvers. To make up for this incompleteness of the Graver basis, we rely on the availability of multiple94
feasible solutions. The GAMA heuristic, therefore, is performing a (partial) Graver walk from each of the95
feasible solutions as the seed (hence ”multiseed”), and then picking the best among the (potentially) local96
optimal solutions. For finding the Graver bases, we consider the QUBO form of the constraints matrix97
Ax = 0. The Ising solver gives us many kernel elements, and performing conformal filtration on these98
kernel elements gives us the partial Graver bases. To get feasible solutions, we take the QUBO form of the99
constraints matrix Ax = b (and solve it using an Ising solver). An alternative is to find kernel elements100
as differences of the feasible solutions and thus partial Graver bases and augment every feasible solution101
using the Graver bases to obtain solutions that are likely only a local optimum. To be clear, we have the102
following steps:103

1. Find (partial) Graver basis (either by finding several kernel elements by solving a QUBO for Ax = 0104
or by taking differences of feasible solutions found in step 2);105

2. Find feasible solutions by solving a QUBO for Ax = b;106

3. Augment the feasible solutions using partial Graver basis elements, computing the objective function107
value f(x) at each step, and choosing the best solution among all (potentially) local optimal solutions.108

4 DATA AND PRE-PROCESSING

The data set used is from Kaggle (Breviglieri, 2021) (Kaggle,RRID: SCR 013852): 1000 images from each109
of the normal and opacity classes are used for training the SVM, while 267 images from the normal class110
and 1000 images from the opacity class are used to test the trained model for evaluation of performance.111
Originally the images are of different sizes and dimensions. Therefore, the images are first resized to 200112
× 200 pixels. The resized images are then flattened to give 1-dimensional arrays of 40,000 pixels.113

Although the original data set in Kaggle contains more than 4000 images, we have considered only 2000114
training images. In the dataset we observed 1082 normal images available for training, while there are115
more than 3000 images with signs of pneumonia. To get unbiased results from the ML models, we began116
our training with a balanced dataset. Thus we considered 1000 normal images and 1000 opacity images, as117
the data set in our studies.118

5 METHODS

We begin with a discussion of each method.119

5.1 Method 1: LibSVM (Benchmark)120

LibSVM is a state-of-the-art library that implements support vector machines (Chang and Lin (2011))121
using the input data sets directly, without going through the formulation of a QUBO. The results from122
LibSVM are typically considered to be a benchmark to compare other newer methods against.123
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5.2 Method 2: SVM using Gurobi124

An SVM modelled as QUBO, as in (10), can be solved using a state of the art classical solver, such as125
Gurobi (version 9.5.0). This is implemented in two ways:126

1. All 2000 training images are taken at once and incorporated in the QUBO. The solver returns expanded127
Lagrange multipliers as an array of 4000 elements, using which we construct 2000 support vector values128
and make predictions on test data.129

2. The training set is divided into 40 sets, each of 50 images. Every set represents an SVM. The 40 SVMs130
are solved separately and combined using majority voting bagging (Kim et al., 2002). This approach is131
discussed in detail in section 5.3.132

5.3 Method 3: SVM using Annealing133

We used the D-Wave neal simulated annealer, digital annealer from IITM, and the Advantage system 6.2134
from D-Wave with 5614 qubits with the Pegaus connectivity between them (Dattani et al., 2019) as our135
three Ising solver options. Among these, the first two are simulated annealers, while the latter is a quantum136
annealer.137

With additional lenience given for the Lagrange multipliers using a precision vector, the QUBO matrix138
for 2000 input images has a size of 4000 × 4000. This is beyond the processing capacity of simulated139
annealing using D-Wave neal and D-Wave quantum annealing. To overcome this, we opted to partition the140
images into 20 distinct sets, each comprising 100 images, giving a QUBO matrix of size 200 × 200, which141
can be solved with simulated annealers, while still remaining challenging for quantum annealing platforms.142

Subsequently, we refined our strategy by further dividing the images into 40 sets, each encompassing143
50 images (25 from each class). As a result, there are 40 SVMs (40 QUBO matrices) of size 100 × 100.144
These 40 SVMs are trained separately, and their outputs are combined using the majority voting bagging145
technique (Kim et al., 2002) to obtain the final decision boundary for classification. This framework is146
summarised in Figure 3.147

5.3.1 Method 3(a): Simulated Annealing148

Simulated annealing using the D-Wave neal package:149
The 40 QUBOs corresponding to 40 SVMs are solved individually using a simulated annealer, with 1000150
iterations each per SVM. The output of the annealer is the set of expanded Lagrange multipliers for all151
the 1000 iterations. We filter the one which gives the minimum energy among 1000 iterations for every152
SVM, and thus obtain 40 sets of expanded Lagrange multipliers for 40 SVMs, using which we get our153
final support vectors. The 40 SVMs are combined using the majority voting bagging technique, and the154
prediction of unseen test data is done by (11). The simulated annealer was configured using the default155
parameter values specified by D-Wave neal in our study.156

Simulated annealing using the Digital Annealer of IITM:157
In the utilization of the Digital Annealer for simulated annealing, it was essential to designate parameter158
values, that is, the starting and ending temperature and iterations to perform at every temperature while159
descending. We converted all 40 QUBOs to Ising formulations and gave them as input to the digital160
annealer. The annealer performs one round of annealing from starting temperature to ending temperature161
with a specified number of iterations at every step. We took the initial temperature to be 6.4K, the final162
temperature to be 0.001K, and iterations at every step to be 20. The output we get would be the final spin163
values of the Ising formulation and its final energy value. We take the spin values output for all 40 SVMs164
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Figure 3. Flowchart of the steps involved in our proposed method for utilizing SVM using annealing.

which are expanded Lagrange multipliers and calculate support vectors. These are combined using majority165
voting and prediction for unseen test data is done by (11)166

5.3.2 Method 3(b): Quantum Annealing167

The procedure employed resembles that of simulated annealing with D-Wave neal. Here, instead of 1000,168
we have taken 500 iterations of the D-Wave quantum annealer. It’s important to note that, unlike simulated169
annealing, quantum annealers often have substantial queue times.170

5.4 Method 4: SVM using GAMA171

GAMA can be a very efficient method when the objective function is complex but the constraints are172
simple (Alghassi et al., 2019b). We give the simpler constraints to the annealer, obtain partial Graver173
elements and feasible solutions, and do a walkback using the initial objective function to obtain a final174
solution. The constraint equation is given by (5).175

To ensure that the algorithm does not get stuck in a local minimum while performing augmentation, we176
implement a Metropolis-Hastings version of GAMA. In this case, we consider the probability of moving177
in any of the directions according to the ratio in the objective function value, and not just in the direction178
of improvement. We end the augmentation iterations if the change in objective function value remains179
constant for more than ten iterations.180

5.4.1 Method 4(a): GAMA using Simulated Annealing181

We tested simulated annealing from D-Wave and the Digital Annealer from IITM. Similar to method 3
(sec 5.3), the images are divided into 40 sets (40 SVMs). Recall that we use the constraint mentioned in (5)
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to get Graver bases and feasible solutions:

N∑
i=1

λiyi = 0. (13)

The constraint matrix (QUBO matrix framed from the above equation) remains the same for all SVMs as182
the Y vector (labels vector) remains the same for all 40 SVMs (each SVM first has 25 normal and then 25183
opacity images). As the right-hand part of constraints is zero, kernel elements and the feasible solutions are184
also the same. This special structure implies that a single execution of the annealer is sufficient to address185
the optimization requirements for all 40 SVMs. Thus, the Graver bases and feasible solutions are obtained186
once and used for augmentation in all SVMs.187

A total of 500 feasible solutions (also kernel elements) were obtained using simulated annealing using the188
D-Wave neal package (from dwave-ocean-sdk). For simulated annealing using the digital annealer of IITM,189
we have taken the QUBO of constraint mentioned above in (5) and converted it to an Ising formulation.190
The annealer performs one round of annealing at a time as mentioned in method 3(a). We took the initial191
temperature to be 6.4K, the final temperature to be 0.001K, and iterations at every step to be 20. The entire192
annealing is performed for 500 times. Here, also, 500 feasible solutions (also kernel elements) are obtained.193
When conformal filtration is performed we obtained 499 partial Graver bases.194

Detailed experimentation of this method is done using D-Wave neal simulated annealing. We195
experimented with three different sets of Graver bases and feasible solutions. The following cases are196
considered for augmentation:197

1. 50 Graver elements + 50 feasible solutions198

2. 100 Graver elements + 100 feasible solutions199

3. 200 Graver elements + 200 feasible solutions200

We obtain 40 sets of Lagrange multipliers corresponding to 40 SVMs for each of the three cases above.201
The majority voting bagging is used to combine 40 SVMs, and the final output is tested on the test data set202
according to (11). Using the digital annealer from IITM, we have utilized all 499 partial Graver bases and203
feasible solutions and performed the augmentation.204

5.4.2 Method 4(b): GAMA using D-Wave quantum annealing205

The GAMA with quantum annealing process follows a methodology akin to that of GAMA involving206
simulated annealing. The number of feasible solutions was 127 (as compared to 500 in the earlier method).207
Note that out of 500 calls to D-Wave, only 127 gave the minimum energy solution. All 127 feasible208
solutions and corresponding (partial) Graver elements (computed via conformal filtration, which happened209
to also be 127, likely due to the fact that the kernel elements are short to begin with) were included in the210
augmentation process.211

6 RESULTS AND ANALYSIS

The results of the various methods are compared through confusion matrix representation and associated212
metrics as we detail next. A confusion matrix is a tabular representation used to assess the performance213
of classification models. It provides a comprehensive overview of how well the model’s predictions align214
with actual outcomes for different classes or categories. The matrix is constructed by comparing predicted215
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Method True +ve False +ve True −ve False −ve Time taken

LibSVM 917 19 248 83 3 mins 30 sec
Gurobi1 712 11 256 288 30 mins
Gurobi2 860 111 156 140 2.44 sec

SimAnn-Dn 927 22 245 73 6 mins 29 sec
SimAnn-Di 884 20 247 116 20 sec

QuantumAnn 924 46 221 76 12 sec
GAMA1 862 28 239 138 10s(anneal) + 7s(aug)
GAMA2 900 36 231 100 10s(anneal) + 36s(aug)
GAMA3 924 33 234 76 10s(anneal) + 153s(aug)

GAMA-Di 885 67 200 115 256s(anneal) + 1196(aug)
GAMA-Q 875 9 258 125 0.3s(anneal) + 92sec(aug)

Table 1. Confusion matrix values and time taken for following methods respectively: LibSVM (Classical
state-of-the-art implementation of SVM), Gurobi1 (Gurobi using all images at once), Gurobi2 (Gurobi with
images split into 40 sets), SimAnn-Dn (Simulated Annealing using D-Wave neal), SimAnn-Di (Simulated
Annealing using the Digital Annealer from IITM), QuantumAnn (Quantum Annealing with D-Wave),
Simulated Annealing using D-Wave neal with GAMA (50 Graver + 50 feasible solutions), Simulated
Annealing using D-Wave neal with GAMA (100 Graver + 100 feasible solutions), Simulated Annealing
using D-Wave neal with GAMA (200 Graver + 200 feasible solutions), Simulated Annealing using the
Digital annealer from IITM with GAMA (499 Graver + 499 feasible solutions), Quantum Annealing with
GAMA run on D-Wave quantum annealer (127 feasible solutions + 127 Graver elements). In the table
”aug” represents augmenting time. Note: Quantum annealer time represents only quantum processor time.
We are reporting the best of three runs for all annealing methods.

class labels with true class labels for data points. It represents a breakdown of the predictions into four216
categories: True Positives (TP) represent correctly predicted positive instances, True Negatives (TN)217
represent correctly predicted negative instances, False Positives (FP) represent instances that are incorrectly218
predicted as positive when they are actually negative, and False Negatives represent instances that are219
incorrectly predicted as negative when they are actually positive. The confusion matrix helps in evaluating220
metrics like accuracy, precision, recall, and F1-score, which help with a deeper understanding of the221
model’s performance across various classes.222

We evaluate the various methods on four metrics:

Accuracy =
TP+TN

TP+TN+FP+FN
, (14)

Precision =
TP

TP+FP
, (15)

Recall =
TP

TP+FN
, (16)

F1 score =
2TP

2TP+FP+FN
. (17)

For all the methods, the results are noted from the confusion matrix, which is as shown in Table1 (Recall223
that +ve means opacity, and −ve is normal). For quantum annealing, the annealing time including queue224
time and post-processing for 40 SVMs is 3 hours 16 minutes. In the table, we have removed all these and225
only provided annealing time. The metrics of comparison for all the methods are in Table2.226

Frontiers 10



Sai Sakunthala Guddanti et al.

Method Accuracy Precision Recall F1 score

LibSVM 91.9 97.9 91.7 94.6
Gurobi1 76.4 98.4 71.2 82.6
Gurobi2 79.8 88.2 86 87

SimAnn-Dn 92.5 97.6 92.7 95
SimAnn-Di 89.2 97.7 88.4 92.8

QuantumAnn 90.3 95.2 92.4 93.7
GAMA1 86.8 96.8 86.2 91.2
GAMA2 89.2 96.1 90 92.9
GAMA3 91.3 96.5 92.4 94.4

GAMA-Di 85.6 92.9 88.5 90.6
GAMA-Q 89.4 98.9 87.5 92.8

Table 2. Accuracy, Precision, Recall, and F1 score for all methods. We have highlighted, in red, the
maximum values in each column for easy comparison.

Figure 4. Comparative analysis of Accuracy, Precision, Recall, and F1 score for all methods.

6.1 Comparison of Methods227

Since the running time for each method is different, we cannot draw direct comparisons based just on the228
values of the four metrics. However, Tables1 and 2 provide insight on some key points. All the metrics229
from Table 2 are plotted in the graph in Figure 4 for visual convenience. We use LibSVM as the classical230
solver to compare our SVM implementations against. As we observe in Table 2, the results from other231
methods, especially SimAnn-Dn, compare favourably against those from LibSVM.232

• Gurobi, when given data divided into 40 SVMs, takes the least time (2.44 sec), but the performance is233
weak. When all images are input at once and trained for 30 minutes, there is no significant improvement234
in the performance.235

• Simulated annealing performed using D-Wave neal takes around 6.5 minutes to run and the results236
obtained are good. The best accuracy (92.5%) and F1 score (95%) are achieved with simulated237
annealing.238

• In case of GAMA, the performance improves as we increase the number of Graver elements taken for239
augmentation. The augmentation time taken also increases accordingly. (It reaches a threshold value of240
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performance as seen in Figures 10 and 12. See appendix.) Indeed, using 200 feasible solutions and 200241
Graver elements appears sufficient to reach good performance relatively quickly.242

• GAMA when implemented using quantum annealing takes around 8.5 minutes (including queue time)243
and provides accuracy similar to that of SVM using quantum annealing (Method 3(b)). Here, we can see244
a massive speed-up as method 3(b) takes more than 3 hours to run. Thus, despite limited connectivity,245
GAMA provides a significant time improvement for quantum annealing, without compromising on the246
metrics.247

• Quantum annealers often have a lower precision for encoding QUBO coefficients. However, we found248
that this did not affect the results because the QUBO matrix elements ranged between 0 and 2, or249
between 0 and 4 when we used GAMA.250

Among our approaches, for a given time budget (of training), the best methods are:251

1. 5 minutes: GAMA 3 (200 Graver elements + 200 feasible solutions).252

2. 10 minutes: Simulated annealing (method 3(a)) and GAMA 3 (200 Graver elements + 200 feasible253
solutions).254

3. 20 minutes: Simulated annealing (method 3(a)) and GAMA 3 (200 Graver elements + 200 feasible255
solutions).256

Not much improvement is seen by increasing training time.257

6.2 Bagging and Probability Distribution258

Majority voting bagging (Kim et al., 2002), the method used to combine SVMs, also improves the259
performance of the combined SVM. The accuracy of annealing methods (method 3(a) and method 3(b))260
without bagging and with bagging is compared in plots 5 and 6.261

We can observe that the accuracy improved to 92.5% (Red line in 5) in the case of simulated annealing262
using D-Wave neal and to 90.3% (Red line in 6) in the case of D-Wave quantum annealing using majority263
voting bagging.264

Many iterations of annealing are taken to find the Lagrange multipliers that best minimize the objective265
function value. It is instructive to know how often we might get the parameters that give the minimum266
objective function value. From Figure 5 and Figure 6, we also observe that some of the individual SVMs267
also give sufficiently good results. Thus, there maybe an opportunity to reduce computational time (by only268
solving a few SVMs rather than all 40) and obtain good results.269

To understand the probability of obtaining the best solution, we plot the probability distribution for best270
performing SVMs (for simulated annealing using D-Wave neal and for quantum annealing, respectively).271
Figure 7 shows the probability distribution for all obtained solutions over 10000 iterations of simulated272
annealing for SVM number 31, which gave us the best individual SVM accuracy. We can see that although273
our desired low-energy solution occurred with low probability, the median solutions also give good accuracy.274
Figure 8 shows the probability distribution for all obtained solutions over 8000 iterations of D-Wave for275
SVM number 27, which gave us the best individual SVM accuracy. The distribution is similar to that of276
simulated annealing, but did not reach the quality of solutions of simulated annealing.277
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Figure 5. The yellow lines represent the accuracy metric for all the 40 SVMs we divided the data into.
The red line shows the maximum accuracy achieved using weighted average bagging as 92.5%. All the
SVMs are solved with simulated annealing using D-Wave neal.

Figure 6. The yellow lines represent the accuracy metric for all the 40 SVMs we divided the data into.
The red line shows the maximum accuracy achieved using weighted average bagging as 90.3%. All the
SVMs are solved using quantum annealing.
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Figure 7. Probability distribution of simulated annealing solutions for SVM number 31. The best solution
has energy around -59.

Figure 8. Probability distribution of D-Wave quantum annealing solutions for SVM number 27. Note that
the best solution has energy of around -20, not as good as that found in simulated annealing.
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7 CONCLUDING REMARKS

In this work, we explored binary classification through classical, quantum and hybrid methods, using X-ray278
imaging data for pneumonia, and used LibSVM as our benchmark. To have a balanced data set for SVM,279
we selected 1000 images, each, with and without pneumonia as our input data set. We partitioned the280
data into 40 sets. We formulated the SVM as a QUBO, and solved the QUBOs using simulated annealing,281
Gurobi and quantum annealing. Additionally, we studied GAMA heuristic, where the (different) QUBOs282
were solved using simulated annealing and quantum annealing. Each of our data sets yielded an SVM. We283
used bagging to combine the 40 SVMs, which improved the overall accuracy.284

For binary classification of X-ray images, SVM can be an alternative to CNN, especially when considering285
pathways to implementations on a quantum annealer. The classical solver, LibSVM, shows a 92% accuracy286
in classification. However, Simulated Annealing using DWave neal (SimAnn-Dn) has comparable or better287
performance. GAMA provides a speed-up over quantum annealing with similar performance on metrics.288
Quantum annealing is not competitive in terms of time taken, but provides solutions of quality that are near289
the best obtained. We expect that the performance will improve as quantum annealers with more qubits290
and better connectivity come online, noting that the classical hardware and software also are expected to291
improve. This suggests that periodic comparisons should be encouraged. We hope that our work adds to the292
literature on the benchmarking of quantum, classical and hybrid approaches to solve a variety of important293
combinatorial optimization problems arising from practical applications (Metriq, 2023).294
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APPENDIX

GAMA with larger set of Graver elements377

We extend method 4(a) (D-Wave neal simulated annealing) by considering a larger number of Graver378
elements and feasible solutions for augmentation. This expanded approach aims to provide a more379
comprehensive and detailed understanding of the obtained results. We consider 250 and 499 feasible380
solutions and analyse results by increasing the number of Graver elements:381

1. 500 Graver elements382

2. 1000 Graver elements383

3. 1500 Graver elements384

4. 2000 Graver elements385

5. 2500 Graver elements386

As we can see in figure 9, all cases reach approximately the same final objective function value, although387
initial objective values for each case can be different. It can also be seen that the augmentation time varies388
linearly with the number of Graver elements considered. The metrics are almost flat with a larger number389
of Graver elements, and similar to method 4(a) with 200 Graver elements and 200 feasible solutions. In390
Figure11, with 499 feasible solutions instead of 250, all cases gave approximately the same final objective391
value, although initial objective values for each case differed, as before. The augmentation time increases392
non-linearly. However, the performance on the four metrics is not substantially improved.393
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Figure 9. Graph shows how the objective function value changes when using method 4(a) (simulated
annealing solutions using GAMA) with 250 feasible solutions and increasing number of Graver elements
along with the augmentation time to reach the final solution.

Figure 10. Graph shows the values of Accuracy, Precision, Recall, and F1 score using method 4(a) for
250 feasible solutions and increasing number of Graver elements.
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Figure 11. Graph shows how the objective function value changes when using method 4(a) (simulated
annealing solutions using GAMA) with 499 feasible solutions and increasing number of Graver elements
along with the augmentation time to reach the final solution.

Figure 12. Graph shows the values of Accuracy, Precision, Recall, and F1 score using method 4(a) for
499 feasible solutions and increasing number of Graver elements.
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