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1. Introduction 

In a recent paper entitled “Simultaneous Equation Econometrics: The Missing 

Example,” Epple and McCallum (2006; E&M hereafter) begin by documenting that—

surprisingly—existing textbooks  include no example using actual data of a basic supply-

demand system in which simultaneous-equation estimation yields results that are 

satisfactory and superior to those provided by (inconsistent) ordinary least squares.1  

They then provide an example, based on the U.S. market for chicken broilers, that is 

claimed to satisfy these criteria.  Only a few specification tests were applied, despite the 

development in recent years of several valuable new types of tests.  Our contributions in 

the present paper are two-fold.  (a) We further the pedagogical enterprise begun by E&M, 

using their model as a platform for illustrative application of some specification tests 

relating to exogeneity and strength of instruments.  (b)  We employ their model to 

address some potential issues concerning the famous “spurious regression” concept.   

Exogeneity and weak-instrument tests are important in principle for studies of the 

type that the E&M paper presents.  It transpires, however, that in fact their paper’s 

chicken broiler example fares quite well when subjected to these (and other) tests, better 

than one might reasonably hope for.  With regard to the time-series tests of point (a), it is 

clear that in principle a number of researchers have concerns about issues related to those 

tests.  It will be argued below, however, that there is room for substantial reservation 

about any suggestion that the estimates reported in E&M (2006) are in this regard 

unsatisfactory.  It is the purpose of the present paper to develop substantive positions on 

both points (a) and (b).  In the process of doing so, this paper significantly extends and 

                                                 
1 What is here meant by “satisfactory” is that the results should “... feature theoretically appropriate signs 
on each of the estimated structural parameters with all of the important estimates being significantly 
different from zero at conventional significance levels” (Epple and McCallum, 2006, p. 374).  
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enriches the discussion provided in E&M (2006).  In what follows, we begin in Section 2 

by examining the posited exogeneity of instruments used in the two-stage least squares 

estimation and also their strength.  Next, we argue that limited-information maximum 

likelihood (LIML) estimation provides significant advantages over two-stage least 

squares, one being the possibility of admitting robust standard errors.  Accordingly, such 

estimation is conducted in Section 3, with encouraging results.  In Section 4, we turn to a 

different concern, namely, the possibility that the broiler industry time-series estimates 

for the supply equation suffer from the “spurious regression” malady.  We argue, 

however, that such is not the case—doing so by presenting a small Monte-Carlo study 

illustrating that such maladies typically arise under residual autocorrelation much differ-

ent from that of the study in question.  Finally, Section 5 provides a short conclusion. 

2. Instrument Tests (TSLS) 

 It is inarguable that a good simultaneous equations example should pass muster 

when evaluated by modern econometrics tests.  In addition, an example of the relevant 

type would be more valuable if it also illustrated the use of such tests. Consequently, this 

portion of the present paper seeks to do both. We will demonstrate that the estimates in 

the simultaneous-equation chicken broiler example are quite robust and, hence, that the 

example as presented in E&M (2006) can be used by instructors who choose not to cover 

some or all the various tests applied below. For those who do wish to use some or all of 

these tests, it will be shown that the model can productively be employed to illustrate the 

use and value of these tests. We proceed first with the system’s supply equation and then 

follow with the demand equation. Equations reproduced from E&M (2006) are reported 

with the same equation numbers used there. Other equations below are labeled with a 
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continuation of the numbers used in E&M (2006). The last equation in E&M (2006) is 

(16), and accordingly the first of the new equations below is numbered (17).  

Supply Equation 

 For a self-contained presentation, we reproduce here the broiler supply equation, 

which was in E&M (2006) numbered (13): 

(13) qprodA = 2.030 + 0.221 p − 0.146 pf + 0.0184 time + 0.631 qprodA(−1)  

             (0.695)   (0.106)    (0.052)      (0.0063)         (0.125) 

 R2 = 0.996 SE = 0.0351 DW = 2.011 T = 40 

Here qprodA,  p, and pf, and are respectively the natural logarithms of annual chicken 

production, the price index for chicken, and the price index for chicken feed. The 

remaining variable, time, is a time trend. This equation is estimated using annual data for 

1960 through 1999. We approximated exports as follows: expts = qprodA − qA, where qA 

is domestic consumption. Instruments included from the demand equation were then Δy, 

Δpb, Δpop, p(−1),  qA(−1), expts.  Here y, pb, and pop are respectively the natural 

logarithms of income, the price of beef, and population.  

Weak instruments test: The weak instrument test employs the F-statistic for the null 

hypothesis that the coefficients of the instruments are zero in a regression of the RHS 

endogenous variable against the exogenous variables. That regression is: 

(17)     p =  

−1.05−.012time+1.45Δy+.21pf+.45Δpb +4.31Δpop+.61p(−1)+.21qprodA(−1)+.13 expts 

 (1.65)  (.01)        (.73)     (.08)       (.18)    (6.67)        (.14)       (.23)                  (.50) 

 The instruments in the supply equation are Δy, Δpb, Δpop, p(−1), and expts.  The null 

hypothesis that the coefficients of these five variables are zeros yields an F-value of 6.77. 
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Stock and Watson (2007) suggest that an F-value less than 10 may signal weak 

instruments.  In such cases, Stock and Watson suggest removing the weakest of the 

instruments.  In (17), these are Δpop and expts, which have p-values of 0.52 and 0.80 

respectively. We then re-estimate the equation in (17) without these two variables, 

obtaining 

(18) p = −1.75−.016time+1.35Δy +.19pf+.43Δpb +.64p(−1)+.32qprodA(−1) 

                  (1.07) (.009)        (.61)     (.07)   (.18)       (.12)       (.19)                

Testing the significance of the remaining instruments, we obtain an F-value equal to 

11.16, somewhat above the value of 10 suggested by Stock and Watson. Then re-

estimating our supply equation without Δpop and expts as instruments, we obtain: 

(19) qprodA =1.998 + 0.203 p − 0.141 pf + 0.0177 time + 0.640 qprodA(-1)  

             (0.684)   (0.106)    (0.0512)      (0.00626)         (0.124) 

 R2 = 0.996 SE = 0.0345 DW = 2.043  

A comparison of (19) with the original E&M (2006) supply equation (13) reveals that the 

results have changed relatively little. Thus, our supply equation estimates are evidently 

relatively robust to removal of the two weakest instruments. 

Testing Endogeneity of Price: To test the endogeneity of price in the supply equation, 

we retrieve the residuals from (18), denoting them 18ε̂ , and include them in an ordinary 

least squares regression along with the variables in (19). In this regression, variable 18ε̂  is 

highly significant, with a p-value of 0.0027. Hence, the test indicates that price is indeed 

endogenous in the supply equation. 

Testing Exogeneity of the Instruments: We next test exogeneity of instruments by 

testing the over-identifying restrictions in (19), using Hansen’s (1982) J-statistic. We first 
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regress the residuals from (19) against the exogenous variables (i.e., the set of variables 

on the right-hand-side of 18). We then compute the F-statistic obtained by testing the 

hypothesis that the coefficients of the three instruments (the last three variables in 18) are 

zeros, obtaining an F-value of 0.074. Multiplying by the number of over-identifying 

restrictions, two, we obtain the J-statistic value 0.148. Asymptotically, this statistic is 

distributed as a chi-square with two degrees of freedom. The associated p-value is 0.93. 

Thus, we find no evidence suggesting rejection of the hypothesis that the instruments are 

exogenous. 

Heteroskedasticity and Autocorrelation: Testing for the presence of heteroskedasticity 

utilizing the White (1980) test, we reject the null hypothesis of homoskedasticity of the 

residuals in (19) with p-values of 0.03 and 0.010 with and without cross terms. 

Estimating the model allowing for first-order serially correlated errors, we obtain a 

coefficient of −0.14 with p-value 0.54. However, testing for autocorrelation using the 

Breusch-Godfrey test (Breusch, 1978; Godfrey, 1978) with two lagged terms, we obtain a 

p-value of 0.046. Given the test results for heteroskedasticity and autocorrelation, it is 

prudent to compute the standard errors of the coefficients in (19) using Newey-West 

(1987) heteroskedasticity and autocorrelation consistent standard errors. Comparing the 

resulting standard errors in (20) to those in (19), we see that the change in standard errors 

is modest. 

(20) qprodA =1.999 + 0.203 p − 0.141 pf + 0.0177 time + 0.640 qprodA(−1)  

             (0.751)   (0.107)    (0.077)      (0.0062)         (0.130) 

Stability: Finally we apply the Ramsey (1969) RESET test to (19). With one fitted term, 

we obtain a p-value of 0.89 and with two fitted terms a p-value of 0.91. Thus, we do not 
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find evidence against the specified functional form. 

Implications of Tests of the Supply Equation 

 We conclude that the amended supply equation in (20) satisfies all of the criteria 

that we have mentioned. Moreover, the instrumental-variable estimates in (20) do not 

differ in any important respect from the original supply equation (13) estimated by two-

stage least squares. Thus, the E&M (2006) supply equation can be used with reasonable 

confidence in teaching simultaneous econometrics and two-stage least squares estimation. 

The steps leading to the amended supply equation (19) provide an illuminating 

application of the weak-instruments test, and that equation in turn provides a useful 

framework for exhibiting modern econometric tests.2  

Demand Equation 

 The demand equation numbered (12) in E&M (2006) is repeated for convenience: 

 (12) Δq = 0.841 Δy − 0.397 Δp + 0.274 Δpb 

                    (0.142)       (0.086)       (0.093) 

 R2 = 0.299 SE = 0.0251 DW = 1.920   T = 40 

The instruments for this demand equation are pf, time, Δpop, p(−1), qprodA(−1), and 

expts. These variables have all been defined above.  

Weak instruments test: We regress the RHS endogenous variable in (12), Δp, against 

the exogenous variables (Δy,Δpb, pf, time, Δpop, p(−1), qprodA(−1), expts) and a 

constant. The instruments in the demand equation are the last six variables in the list in 

the preceding sentence and the constant.  The null hypothesis that the coefficients of 

                                                 
2 For a useful non-technical exposition concerning weak instruments, robust standard errors, and other 
related matters, the reader is referred to Hill, Griffiths, and Lim (2008), Murray (2006), or Stock and 
Watson (2007). 
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these six variables are zeros yields an F-value of 3.83, which is well short of the F-value 

of 10 suggested by Stock and Watson (2007).  From the p-values for these variables, we 

conclude that the five weakest are the constant, Δpop, time, qprodA, and expts. Repeating 

the weak instruments test after deleting these five variables, we obtain an F-value equal 

to 9.39, still somewhat short of the value of 10, though not markedly so. In E&M (2006, 

p. 379) the logarithm of meat exports, mx, is utilized as an instrument for the change in 

chicken exports. Using the change in this variable and the change in pf, we estimate the 

equation for the weak instrument test, regressing Δp against (Δy,Δpb, Δpf, p(−1),Δmx). 

Testing the three instruments, the last three variables in the preceding list, we obtain an 

F-value = 11.40, which exceeds the value of 10 suggested by Stock and Watson.  

 Re-estimating the demand equation with these instruments, we obtain: 

(21) Δq = 0.830 Δy − 0.336 Δp + 0.225 Δpb 

                    (0.138)       (0.076)       (0.088) 

 R2 = 0.289 SE = 0.0244 DW = 1.820   T = 39 

Comparing this result to equation (12) above, we see that estimating the demand equation 

with stronger instruments produces modestly lower price and cross-price elasticities. 

Testing Endogeneity of Price: To test the endogeneity of price in the demand equation, 

we retrieve the residuals from the first-stage equation, denoting them 21ε̂ , and include 

them in an ordinary least squares regression with variables in (21) together with the 

estimated residuals 21ε̂ .  We find that variable 21ε̂  is not significant (p-value = 0.82). 

Hence, we do not find evidence that price is endogenous in the demand equation. This 

result suggests that it would be acceptable to rely on the ordinary least squares estimates 

of the coefficients of the demand function, presented in E&M equation (6): 
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(6) Δq = 0.711 Δy − 0.375 Δp + 0.251 Δpb 

                    (0.150)       (0.058)       (0.068) 

This suggestion is reinforced by the strong similarity of these OLS estimates, the TSLS 

estimates in (8), and the IV estimates in (21).  

Testing Exogeneity of the Instruments: Before concluding that OLS estimation is 

appropriate for the demand function, we investigate exogeneity of the instruments by 

testing the over-identifying restrictions in (21). We regress the residuals from (21) against 

the exogenous variables (Δy,Δpb, pf, p(−1),Δmx). Testing the hypothesis that the 

coefficients of the three instruments (the last three variables) are zero, we obtain an F-

value of 0.747. Multiplying by the number of over-identifying restrictions, two, we obtain 

a value of 1.49 for Hansen’s (1982)  J-statistic value. Asymptotically, this statistic is 

distributed as a chi-square with two degrees of freedom, and the associated p-value 

equals 0.48. Thus, we find no evidence to reject the hypothesis that the instruments are 

exogenous. 

Heteroskedasticity and Autocorrelation: Testing for the presence of heteroskedasticity 

utilizing the White (1980) test, we obtain p-values of 0.59 and 0.60 with and without 

cross terms. Thus, we do not reject the null hypothesis of homoskedasticity of the 

residuals. Estimating the model allowing for first-order serially correlated errors, we 

obtain a coefficient of −0.21 with p-value 0.17.  Testing for autocorrelation using the 

Bruesch-Godfrey test (Bruesch, 1978; Godfrey, 1978) with two lagged terms, we obtain a 

p-value of 0.54. Given the test results for heteroskedasticity and autocorrelation, there is 

no evidence of departures from the classical assumptions regarding the error terms. 

However, for completeness, we report below the results obtained by using the Newey-
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West (1987) heteroskedasticity and autocorrelation consistent standard errors for 

equation (6).  Comparing the resulting standard errors in (6), we see, as expected, that the 

change in standard errors is modest. 

(22) Δq = 0.711 Δy − 0.374 Δp + 0.251 Δpb 

                    (0.127)       (0.067)       (0.053) 

Stability: Applying the Ramsey (1969) RESET test, we obtain p-values of 0.47 and 0.74 

respectively with one and two fitted terms. Thus, we find no evidence against the 

functional form we have chosen. 

Implications of Tests of the Demand Equation 

Based on our tests of the demand equation, we conclude that ordinary least squares is an 

appropriate estimation procedure for the demand equation. Moreover, there is no 

evidence of heteroskedasticity, autocorrelation, or model instability.  It is of interest to 

note that equation (13) can be used as a demand estimation example in elementary 

treatments of OLS estimation. In using such an example, the instructor need not be 

concerned that the estimates are subject to simultaneity bias that is being “swept under 

the rug.”  Moreover, the estimates provide highly significant and plausible income, price 

and cross-price elasticities, illustrating three key concepts of elementary demand theory. 

While the demand equation can be used as a stand-alone example, in more extended 

treatments the supply-demand example in E&M can then later be employed in developing 

TSLS and IV estimation.  

3. Limited-Information Maximum Likelihood and Robust Standard Errors 

 As we have shown above, two-stage least squares coefficient and standard error 

estimates are robust to the presence of absence of the weaker instruments. This is quite 
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reassuring. A further method for enhancing robustness is to adopt an approach to 

estimation that is less sensitive to the presence of weak instruments. The Limited 

Information Maximum Likelihood (LIML) estimator of the coefficients has been found to 

be much less sensitive to the presence of weak instruments than estimators obtained by 

two-stage least squares (Imbens and Wooldridge, 2007). In addition, standard errors for 

endogenous variables can be obtained that are robust to the presence of weak instruments 

(Moreira, 2003). Hence, we now provide results obtained using LIML. 

 Our supply equation estimated by LIML is: 

(23) qprodA = 2.140 + 0.286 p − 0.163 pf + 0.0205 time + 0.600 qprodA(−1)  

             (0.703)   (0.114)    (0.053)      (0.0065)         (0.128) 

Comparing these coefficient estimates to those in (13) above, we see that the own-price 

and cross-price elasticities have increased somewhat in magnitude. Overall, the 

coefficient estimates are reassuringly similar to those in equation (13).  Beneath the 

coefficients, we have reported the standard errors obtained using the conventional normal 

approximation. Using the conventionally calculated standard error, the p-value for the 

endogenous variable, p, is 0.017. The p-value for this endogenous variable using 

Moreira’s (2003) robust Conditional Likelihood Ratio test is 0.0019. Thus, the 

endogenous variable is even more significant using this robust test. 

 The broiler demand equation estimated by LIML is: 

(24) Δq = 0.881 Δy − 0.546 Δp + 0.373 Δpb 

                    (0.163)       (0.134)       (0.121) 

The LIML estimates of the coefficients are somewhat larger in magnitude than the two-

stage least squares estimates. Overall, as with the supply equation, the coefficients are 
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reassuringly similar to their two-stage least squares counterparts. The conventionally 

calculated standard errors are in parentheses. The endogenous variable, Δp, has a p-value 

of .000 using either the conventionally calculated standard error or Moreira’s robust test. 

The results from LIML estimation provide further support for our simultaneous equations 

model.  

4. Time Series Issues 

 We now turn to a different topic, namely, a concern relating to the time series 

properties of the data and implications for estimated relationships.  The issue is whether 

the supply function represents a case of the much-discussed “spurious regression” 

phenomenon (Granger and Newbold, 1974).  This possibility must be carefully 

considered, however, because the Granger-Newbold examples—and others prominent in 

the literature—typically feature strong serial correlation in the residuals of the estimated 

equations.  The E&M supply function, by contrast, has a DW statistic of 1.87 and shows 

no significant residual autocorrelation in a LM test (as noted in E&M footnote 7).     

 In a paper that considers related issues, McCallum (1993) has implicitly argued 

that concern for autocorrelated residuals is crucial in alleged cases of spurious 

correlation.  His position is that in any time series study an investigator with even 

elementary training in econometrics should not be satisfied with a time series regression 

in which strong serial correlation of the residuals is apparent—especially in cases in 

which the estimated relation includes a lagged endogenous variable as a regressor.  At a 

minimum, a conscientious and competent investigator would re-estimate the relation 

while including some “correction” for autocorrelated disturbances such as the iterated 

Cochrane-Orcutt (1949) procedure or related procedure such as those employing non-
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linear constraints, as outlined in Davidson and MacKinnon (1993, pp. 331-341).  In cases 

similar to the basic Granger-Newbold examples, McCallum (1993) implies, the spurious 

findings of nonexistent relationships will tend to be eliminated by this procedure. 

 To provide support for McCallum’s argument, which was more suggestive than 

conclusive, consider the simulation results reported in Table 19.1 of Davidson and 

MacKinnon (1993, p. 672).  There the standard case of a spurious regression between two 

independently-generated random-walk variables is examined in that table’s column 2, 

which shows much greater rejection frequencies than the actual 0.05 for the true 

hypothesis of a zero slope coefficient—this is the “spurious” finding.3  For convenience, 

we report some of the Davidson and MacKinnon frequencies in the first row of Table 1, 

where T designates sample size for the regressions studied via numerous replications.  Of 

course we cannot use the same data as that generated by Davidson and MacKinnon, but  

Table 1 
Simulation Results Regarding Spurious Regression: 
Relative frequency of rejections of tested hypotheses 

 
 T = 50  T = 100  T = 250  T = 500  T = 1000 
D&M, Table 
19.1, col.2 

0.662 0.760 0.847 0.890 0.928 

BEM, repl. 
[frac DW<1] 

0.668 
[0.997] 

0.769 
[1.000] 

0.859 
[1.000] 

0.896 
[1.000] 

0.920 
[1.000] 

BEM,  
 with AR(1) 

0.0875 0.0659 0.0571 0.0537 0.0527 

BEM,  non- 
RW case (.8) 

0.339 0.350 0.360 0.360 0.358 

BEM,  
with AR(1) 

0.0645 0.0564 0.0484 0.0503 0.0516 

 
we have generated results using the same simulation setup.  Our rejection frequencies, 

analogous to those of Davidson and MacKinnon, are shown in row 2; they indicate  
 

                                                 
3 The innovations are standard normal variates. 
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clearly that our simulation study reproduces the drastically incorrect rejection tendency  
 
noted by Davidson and MacKinnon.4  Also in row 2, we report in brackets the fraction of 

times in which the regression’s DW (Durbin-Watson, 1951) statistic is below 1.0, a value 

that implies extremely strong autocorrelation of the estimated residuals.  As is clear from 

these values, almost all of the regressions in the Davidson and MacKinnon version of the 

basic Granger-Newbold example feature very strong autocorrelation.  So next we ask, 

what would happen if the econometrician re-estimated his equation using some standard 

technique of the iterated Cochrane-Orcutt (1949) type, i.e., one designed to take account 

of first order serial correlation of residuals.  In row 4, we report our results based on 

calculations provided by the “AR(1)” procedure built into EViews.5  As can be seen, 

when the simulated equation is estimated with EViews while specifying an AR(1) 

disturbance, rather than presuming white noise disturbances, the proportion of rejection 

frequencies falls to 0.0875 and 0.0659—rather than 0.668 and 0.769—for sample sizes of 

T = 50 and T = 100, and to values very close to the true 0.050 for larger sample sizes.  

 In a fairly recent expository paper, Granger (2001) has emphasized that spurious 

estimated relationships occur not only between (or among) random-walk or “integrated” 

variables, but also stationary but strongly autocorrelated time series variates.  We 

illustrate this point in row 4 of Table 1 by means of two independent series each of which 

is generated by an autoregressive process, specifically, a first-order autoregression with 

AR parameter value of 0.8.  The rejection frequencies shown in row 4 do not rise with 

sample size, as in rows 1 and 2, but the frequency of hypothesis rejections is greater than 

                                                 
4 We have followed Davidson and MacKinnon in using n = 10,000 as our number of replications over 
which to average the results.  
5 The EViews AR(1) estimation procedure differs somewhat from the iterative Cochrane-Orcutt procedure.  
In particular, it assumes an AR(1) disturbance process and then uses nonlinear estimation of parameters, 
including the AR parameter, as mentioned above.   
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1/3 in all of our cases, over six times as large as the true rejection probability.  But, as 

before, almost all of the test regressions have DW statistic values smaller than 1.0.  

Accordingly, we again consider the outcomes that occur when the investigator employs 

the EViews AR(1) procedure.  Clearly, row 5 shows that in this case the rejection 

frequencies become very close to the true values built into our simulation study.  Thus 

these results, like those of row 3, support the suggestion that the “spurious regression” 

phenomenon is actually not a matter of concern when there is no evidence of 

autocorrelated disturbances—as in the supply function estimation.   

 Also of concern are unit root tests on individual variables and the popular concept 

of cointegration.  Of course, many interesting econometric issues exist that involve unit 

roots and cointegration, but relevant tests are problematic and for some of these issues the 

actual difficulties have to do with stochastic behavior that involves autoregressive roots 

close to, but not exactly equal to, 1.0.  In any case, the issues are of doubtful relevance in 

terms of the findings reported in the E&M (2006) study.  The main issues in the context 

of that study would seem to be (i) whether the E&M supply function is sensibly specified 

and (ii) whether that equation’s residuals indicate serial correlation of the disturbances.  

The latter has already been discussed.  Regarding the former, it should be noted that the 

supply function is not misspecified due to the inclusion of TIME.  That variable is 

included in the supply equation not for detrending purposes but as a proxy for the state of 

technology in broiler production, an unobservable variable that is theoretically of great 

importance in the relationship in question.  While use of the TIME proxy is certainly not 

fully satisfactory, it seems greatly preferable to the alternative of omitting the technology 

variable altogether.  Moreover, the inclusion of TIME as an exogenous variable creates 
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no statistical problems such as inconsistent standard errors and non-standard 

distributions.  The discussion in Chapter 16 of Hamilton (1994) indicates that while 

different modes of convergence are needed in the study of asymptotic distributions, the 

usual tests and confidence intervals are appropriate when time trends are included in 

linear models.  Hamilton’s results pertain to OLS regressions, but the logic would appear 

to carry over to instrumental variable estimators as well.   

5. Conclusions 

 The goal in E&M (2006) was to provide a pedagogically useful example of a 

simultaneous equation supply-demand system featuring results with actual market data.  

In the present paper, we have suggested that application of modern econometric tests to 

that model is appropriate.  As it transpires, the results of such tests serve to enhance the 

pedagogical value of the E&M (2006) chicken broiler example.  In particular, we see the 

results leading to the following conclusions: 

 (i) The coefficient and standard-error estimates from two-stage least squares 

estimation of the supply-demand model are quite robust. Thus, the model is well-suited to 

its original purpose of illustrating two-stage least squares estimation of a simple supply-

demand model. 

 (ii) Both the supply and demand equations prove to be useful in illustrating the 

application of weak-instrument tests. For the supply equation, the weak-instrument test 

suggests dropping two of the weaker instruments that are included when two-stage least 

squares is used. For the demand equation as well, the weak-instrument test suggests 

dropping the weaker instruments. In addition, that test suggests inclusion of an instrument 

for exports that E&M (2006) had introduced in their paper. When the model is estimated 
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retaining only the stronger instruments, the coefficients and standard errors exhibit only 

minor change relative to those obtained with two-stage least squares. 

 (iii) The value of the test for endogeneity of price is well illustrated by the two 

equations in the model. The test strongly suggests that price is endogenous in the supply 

equation while providing no evidence of endogeneity in the demand equation. Thus, the 

two together provide a particularly illuminating application of the test for endogeneity. 

The tests of instrument exogeneity are well illustrated in both equations, and support the 

presumed exogeneity of regressors in both. 

 (iv) Tests for heteroskedasticity and autocorrelation are also well illustrated by the 

two equations. The White (1980) test points to the presence of heteroskedasticity of the 

residuals in the supply equation but not in the demand equation. The Breusch-Godfrey 

Lagrange multiplier test suggests that autocorrelation may be present in the supply but 

not in the demand equation. Estimation allowing for either AR(1) or MA(1) error 

components reveals that neither is close to significant in the supply equation. Thus, 

correction of the standard errors of the coefficients for heteroskedasticity is clearly called 

for in the supply equation, and prudence suggests correcting for autocorrelation as well. 

Those corrections result in little change in the estimated standard errors of the 

coefficients in the supply equation.  

 (v) The demand equation is apparently a near-ideal vehicle for elementary 

presentation of ordinary least squares. Having applied the impressive arsenal of tests 

offered by modern econometrics, we have found no evidence to suggest departing from 

the use of ordinary least squares estimation with conventional calculation of standard 

errors of the coefficients. Moreover, the equation provides estimates of three demand 
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elasticities that are instructive for elementary presentations of demand theory. 

 (vi) The supply equation, by contrast, provides an attractive example for 

illustrating the value of tests of endogeneity and exogeneity. These tests both demonstrate 

the need for instrumental variable estimation and the validity of the instruments used. The 

weak instrument test is also instructive as are tests for heteroskedasticity and 

autocorrelation. The former illustrates selection among potential instruments. The latter 

two tests motivate use of standard errors that are corrected for the possible presence of 

heteroskedasticity and autocorrelation. 

 As a further investigation of robustness, we presented limited information 

maximum likelihood estimates of the coefficients and significance tests for the 

endogenous variables using Moreira’s (2003) robust Conditional Likelihood Ratio test. 

These results further support the specification developed in E&M (2006). 

 All in all, the simultaneous equation system proposed in E&M (2006) seems well 

suited to illustrate estimation of a supply-demand system with two-stage least squares or 

with limited information maximum likelihood.  Additional issues relating to time-series 

properties of the system’s variables are discussed in Section 4. Here we will not attempt  

a full summary of that rather terse discussion.  The main point, however, is that “spurious 

regression” relationships between random-walk or strongly autoregressive variables are 

generally accompanied by signs of severe autocorrelation in the residuals of the estimated 

relationships; re-estimation taking account of potential autocorrelation tends to eliminate 

the appearance of non-existent relationships.  In the broiler market case at hand, however, 

there is no indication of such autocorrelation in the first place.  Accordingly, despite the 

strongly autoregressive nature of broiler price and quantity series, there is no reason 
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based on Granger-Newbold (1974) analysis to suspect that the estimated supply-demand 

relationships for chicken broilers are spurious. 
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