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This invited article reflects the particular preoccupations of the author, which concern the
parallel and connected development of academic models for managing inventories and their
actual applications in industry.

Some centralized production-inventory models that have been of service to contemporary
business practices in decentralized decision making settings are discussed here. | have
limited my examples to those in which I have had direct experience. | have attempted to
highlight four key points. (a) The strategic role of inventories in capturing revenue and
market share, in addition to their traditional role as buffers, in our contemporary
“customer-scarce Schumpeter’s market.” (b) Facilitating the acceptance of model outputs by
decision makers across organizational silos and even across firm boundaries using
“management mechanics.” (c) Development and use of a general-purpose algorithm
utilizing Infinitesimal Perturbation Analysis (IPA) derivatives. (d) The emergence of
Enterprise Inventory Optimization (EIO) as mainstream software.

Introduction

Edgar Allan Poe, The Murders in the Rue Morgue:

“I am not now writing a treatise, but simply prefacing a somewhat peculiar narrative by
observations very much at random.”

Several Operations Management (OM) issues in Fortune 500/Global 2000 (or
smaller) firms involve the production of physical goods in a repetitive manner to be
sold over a horizon of time. One prominent issue companies face is how best to
invest in working capital, in the form of inventories, to achieve a business purpose.
Some inventory models that have served useful purposes in such firms are the
subjects of this article.

Practical problems in Operations Management (PPOM), like other problems in
business faced by senior executives in their line of business (LOB), frequently have
three features: (1) decisions are made under uncertainty; (2) more than one
decision has to be made, either sequentially or jointly; and (3) several actors across



different organizations, sometimes in different firms, need to “weigh in” (or be
convinced, thus requiring “buy in”) prior to implementing a chosen set of decisions.

Before we get to the inventory models and the examples of their successful
application, it may help to place PPOM in a capitalist’s worldview -- that of Joseph
Schumpeter -- eloquently described by David Reisman in Schumpeter’s Market:
Enterprise and Evolution (2004):

“The market is supply and demand. Seen as statics, it is a gravitational field that produces
equilibrium price as if guided by an omniscient auctioneer. Seen as dynamics, it is a voyage
of discovery that, powered by profit or driven on by challenge, need never arrive at its final
point of rest.... Enterprise is relentless transformation. Newness is the leitmotiv. Capitalism

is newness.”

In this paper I will not discuss equilibrium models (although they are useful), but
rather highlight decision support models that have helped OM executives compete
in this dynamic world of relentless change. This is in line with Koopmans (1975):
“...the production programs of the individual plant or the enterprise for a short period
ahead.” A major difference, of course, is that we operate in a capitalist economy
where firms compete to create and capture demand in an industry vertical, not in
the planned socialist setting (or the central planner situation) for which
Kantorovich and Koopmans developed their models. Thus, the models that are
described here are not linear and deterministic, but non-linear and stochastic.

Also, over the years | have found Drucker’s (1955) view of the role of Management
Science has been very helpful:

“Management Science should not aim at showing the manager ‘one right solution.” It must
define the ‘right question,” and must bring out a full range of alternative
solutions...Management Science should aim at showing the Manager what to expect from a
given course of action and at warning him when events fail to live up to expectations. It
should supply him with the vision needed to make rational decisions in respect to the
business enterprise...The aim of Management Science should be to arm the manager’s
imagination.”

This capitalist viewpoint differs from that which guided some of the first set of
models after the Great Depression, around and after World War II. To see this,

consider the last sentence of the Foreword (by A. R. Marchenko) prefacing the

English translation of Kantorovich (1939) [Management Science (1960)]:

“We hope this monograph will play a very useful role in the development of our socialist
industry.”

Coincident with the difference in world-views, the “customer-friendly”
organizations that occupy the business world today reflect a fundamental shift from
the “production-scarce” economy of the past to the “customer-scarce” economy of
the present, where providing superior consumer convenience, personalization and



immediate gratification is a central component of competitive strategy in firms. I
coined the term “planned spontaneity” (in 1997, presented at Supply Chain Thought
Leaders Conference, Tayur, 1999) to describe what companies are doing on their
supply side to create (and capture) customer demand by making “product
availability” an important part of their business strategy.

Product availability has three components: (a) providing choices (through a broad
portfolio of products, called product variety), (b) providing access to the products
either as a “pick-up” or a “delivery” (measured by service time and service level)
and (c) fine tuning the price at which the product and access are offered. Therefore,
through choices, access and price, firms determine the strategic role of inventories
in creating and capturing demand. For an example, see the responsive supply chain
for Caterpillar in Rao, Scheller-Wolf and Tayur (2000): In order to meet uncertain
demand for a wide assortment of attachments, a dealer’s own inventory is
augmented with strategic inventory, pre-positioned (either at an upstream
Caterpillar location or at another dealer) to be sourced after demand occurs. This
allowed Caterpillar, a new entrant to this market segment, to grab market share
from the entrenched leader through product availability while also creating a larger
overall market.

Another example is the design of a postponement strategy (using vanilla boxes) to
effectively provide mass customization at IBM. In Swaminathan and Tayur (1998),
the inventories and structure of vanilla boxes are planned in advance so as to be
able to react to customer demands quickly, providing a dazzling array of options,
without having a large risk of unused inventory. A third example of planned
strategic inventory (at a GE plant) is achieved by designing stochastic cyclic
schedules that guarantee the availability of a set of components with correlated
demands. This allows GE to manufacture the products (after seeing the demands) -
make to order -- within a short lead time in a consistent manner, as described in
Anupindi and Tayur (1998) and Tayur (2000). The two preceding examples show
how companies manage their “push-pull” boundary: you “push” and stock
components and vanilla boxes based on forecasts (and their errors); you “pull” these
components and vanilla boxes to make the final products after demands are firm. A
fourth example (again at Caterpillar) describes how stable product availability to
customers, segmented by machine type, is achieved for various customer types.
Caterpillar accomplishes this by optimally positioning raw materials, semi-finished
products and ready to configure machines across a 4-stage supply chain spanning
their suppliers, their own factories producing “base-models” that are ready to be
configured, and independent dealers that carry fully configured machines. This
“extended multi-enterprise” approach to inventory management increased their
revenue by 2% while lowering the overall inventory investment by 15% (Keene et
al, 2006).

The above examples (Table 1) fit the definition of “planned spontaneity” - by
effectively planning inventory firms can “spontaneously” react to consumer
demands.



Table 1 Some Practical Problems in Operations Management (PPOMs)

Business Company PPOM Inventory Model References
Problem
Enter anew | Caterpillar | PPOM-1: Rapid Discrete-time, stochastic, Rao, Scheller-
market response supply chain | dual lead time, partial lost Wolf and
sales, two customer classes | Tayur (2000)
Reduce $1b | Deere PPOM-2b: Operate a | Discrete time, 2-stage Troyer et al
of inventory multi-stage SC with distribution, non-stationary; | (2005)
without lowest inventory Postponement at upper
reducing investment while stage, independent dealers
service level meeting service at lower stage
levels
Stabilize Caterpillar | PPOM-2b Discrete-time, assembly Keene et al
availability and distribution, 2,3 and 4 (2006)
stages, non-stationary,
multiple customer classes
Manage IBM PPOM-3: Vanilla Discrete time, multi- Swaminathan
broad Boxes product, common and Tayur
product components, capacitated, (1998)
variety stochastic 2-stage stochastic
program with recourse
Quote GE PPOM-4: Stochastic | Continuous time, chance Anupindi and
accurate lead Cyclic Schedules constraints, multi-product, | Tayur (1998),
times changeover times and costs, | Tayur (2000)
stochastic

This strategic role of inventories is in stark contrast to the earlier literature in OM,
as observed by Arrow, Karlin and Scarf (1958):

“As we have already noted, virtually all work in inventory theory assumes that the demand
is independent of the firm’s control.”

Furthermore, the ubiquity of high performance computing today in the enterprise
information technology infrastructure that businesses have invested in (called the
“IT stack”) facilitates a complete re-imagining of what is possible with respect to
inventory models and algorithms to solve complex models. We must not be limited
by the conditions prior to the advent of computers. There is no need to develop

simple formulas (“closed-form” or otherwise) that can be quickly done on paper for
special situations like “stationary 3-stage un-capacitated, single item, serial systems
facing Poisson demands” (Whitin, 1953), or to “hand over the task of finding a
solution to a special computational assistant; then he can check the solution in 10 or
15 minutes with no difficulty at all” (Kantorovich, 1939). Instead, we can have a
general-purpose algorithm that can handle significant complexity and scale (and run
unattended by humans), providing solutions in seconds to several global locations



simultaneously across firm boundaries. This is called “extended” (or multi-
enterprise) inventory planning and optimization.

This article is the result of an opportunity to spend part of a summer in reading and
reflecting upon centralized production-inventory models as they pertain to aiding
decision-making in a decentralized setting. What is offered here is one person’s
perspective, based on experiences and observations in a journey spanning 20 years.

Two Practical Problems in Operations Management

Let me start with where Schumpeter may have begun, if he were to be interested in
PPOM, with an example of “competitive capitalism,” that is, entry. Asin Reisman
(2004):

“The interloper wins because he mounts a credible challenge. The incumbent loses because
he no longer has a capacity to compete. In general it is not the owner of stagecoaches who
builds railways. Rationality and bureaucracy stamp out initiative. Creative destruction
would disappear into the locked box of self-perpetuation.”

Caterpillar enters a new market

In 1997, Dr. George Cusack from Caterpillar’s Technical Services Division (TSD), at
the request of a senior executive in a line of business at Caterpillar, contacted me
with a marvelous request: could we, professors at Carnegie Mellon University,
design a responsive supply chain for their new line of products - smaller machines
as opposed to their large equipment -- so that they could penetrate a new market
segment (for them) that was growing at a very healthy rate but was currently
dominated by a competitor? Caterpillar executives had decided on a strategy to grab
market share from an entrenched leader: they were not going to compete on price
(consistent with their high quality brand image) but rather on availability, both in
terms of the product variety offered and off-the shelf (or within a very short time
window) service level.

How could we design a supply network with a make-to-stock strategy, possibly very
different from their existing physical footprint, material flows and operating policies
for their make-to-order large machines, but still take advantage of the supply base
and facilities, for sourcing, production, assembly and distribution? How could we
“piggy-back” exceptional skills in service parts distribution that they already
possessed, and leverage those skills and information technology? How would we
provide exceptional availability -- without charging a premium -- but still have good
profit margins? How to account for the variety of products (machines and
attachments) that differ in their complexity and margins, as well as various
customer segments with different characteristics? As they were going to be selling
these new products through their existing network of independent dealers (who
exclusively sold Caterpillar products), how could we get the dealers to co-operate in



this strategy, one that would require some to share their inventories and provide
lateral transshipment?

How could we operationalize a business strategy such as this?

Beyond the obvious importance of a project like this (to Caterpillar), what was
especially attractive to us was the mental delight that this could (and it did) bring
us. As Veblen accurately pointed out in The Instinct of Workmanship and the
Irksomeness of Labor (1898), we have “a taste for effective work, and distaste for
futile effort.”

We had to determine how to “design in” responsiveness in a physical supply chain.
Network design had always been done using (largely) deterministic models that
used mixed-integer-linear programming (MILP) to propose efficient (lowest cost)
solutions. But this was very different: responsiveness inherently supposes a certain
amount of ex-ante uncertainty in planning, followed by an ex-post reaction to
uncertainty resolution. What stochastic inventory (and other OR) models should we
use? What data was needed? If the data were to be available, how could we acquire
it? How would we know if the data were accurate? What if the data change over time
due to the dynamic nature of the business and the industry? What if the data were
not available? How could we get useful estimates? And then could we make rational
decisions with incomplete and imperfect data?

This reminded me of Sherlock Holmes in Arthur Conan Doyle’s The Adventure of the
Copper Beeches:

“Datal data! data!”, he cried impatiently. “I can’t make bricks without clay.”

How would we know that the “answer,” however found, is worth implementing?
How could we convince the executives to spend tens of millions of dollars, allocate
people and other resources towards our answer? How could we convince the
independent dealers to go along? Let us call this “PPOM-1: Designing a responsive
and efficient supply chain to which executives agree and their business partners co-
operate.” Let us get back to this later.

Fortunately, this was not the first time when a senior executive in the line of
business of a Fortune 500/Global 2000 company had requested a “solution” to a
pressing problem of importance (called “the burning platform”).

IBM Executive requests a “Inventory-Service level” trade-off curve

Earlier, in 1991, it was at IBM Worldwide Logistics Headquarters (Somers) when Dr.
Pasumarti Kamesam, a Member of Technical Staff, had brought me in for a summer
to develop an inventory-service level trade-off curve for their disk-drive business,
something that a very senior executive (a “Global EVP”) really wanted to see. Let us
call this “PPOM 2: Generating an Inventory-Service level tradeoff curve for an



existing supply chain and actually making changes to current parameters and
policies”. (A single-stage, stationary version had been studied as “stock-exchange”
curves by R. G. Brown, 1967.) Here too, implementation might require co-operation
from business partners, as well as other members in the firm not reporting to this
executive’s line of business. This practical problem was intended to solve two sets of
decisions: (a) what service level should IBM provide to its customers? (b) What
inventory strategy in their global network would achieve this service level with a
minimum investment in inventory? The service level metric can be fill rate or non-
stock out probability at an item level or at a product family level (“joint service
level”), this is measured based on the service time that is quoted to the customer.

Moreover, unlike a “one-off” (or relatively infrequent) decision like designing a
responsive supply chain, operating an existing supply chain that meets a certain
service level target with low inventory investment (PPOM-2b) is an “on-going”
activity, performed every day/ week/ month, forever. The decision on what service
level (PPOM-2a) to provide can be an annual exercise reflecting business conditions
and competitive positioning. We will return to this story a bit later as well.

A leisurely stroll in the thick forest of inventory models

It is time to introduce some (more) vocabulary. A crucial modeling choice is how
time is represented: if it is important to represent events as they happen
continuously, and the solutions of such models can be expected to be reasonably
implemented in practice using real systems, then working with a “continuous time”
model may make sense. Otherwise, an alternative is to chop up time into “buckets,”
or periods, and use a “discrete-time” (or a “periodic review”) model. For solving
many practical problems in OM outside the factory shop floor, discrete-time models
have been useful. I have used continuous time models for problems inside a factory.

The earliest inventory models - mentioned in Fairfield E. Raymond, Quantity and
Economy in Manufacturing (1931) -- are those of F. W. Harris (1915) (what we now
call the economic order quantity EOQ model), with finite production rate analyzed
by Benjamin Cooper (1926), and a model with randomness studied in 1928 by
Thornton C. Fry. These researchers were inspired by F. W. Taylor, Shop Management
(1903) and had executive interest from folks at Westinghouse (in Pittsburgh) and
Henry Ford. (Hence you can understand why they were concentrating on single item
models with the objective of cost minimization.) It appears that they were not aware
of related models on managing money, such as Edgeworth (1888) (we now call this
the News-vendor model). In 1949, Arrow and Marschak were aware of both these
sets of papers, and they naturally did what was needed (see Arrow, 2002): join the
dynamic nature of the Harris model (1915) (deterministic and in continuous time)
with the stochastic (single period) model of Edgeworth (1888). At that time,
stochastic dynamic programming was not fully developed, so they recruited a newly
minted Math PhD student from Princeton named T.E. Harris (a student of William
Feller, different from the EOQ Harris), and we get Arrow, Harris and Marschak



(1951). This paper was considered as the “beginning of what may be called modern
analysis of inventory systems,” see Naddor (1966). The seductive mathematical
elegance of these stochastic, dynamic, discrete time inventory models attracted
more newly minted math PhDs (such as Karlin and Scarf) from where (the not-EOQ)
Harris came from. This was not without some undesired consequences. Hadley and
Whitin, in 1963, write in Analysis of Inventory Systems:

“At one extreme a considerable amount of work is concerned strictly with practical
applications, while, at the other extreme, work is being done on the abstract mathematical
properties of inventory models without regard to possible practical applications.”

They were airing their frustration about the discrete-time, single item, stochastic
models studied in Arrow, Karlin and Scarf (1958)! Also, see the plea from Conway,
Maxwell and Miller, Theory of Scheduling (1967):

“The theory of scheduling has not attracted the attention of scholars comparable to Arrow,
Karlin and Scarf; perhaps because the mathematical model which underlies the theory of
scheduling cannot compare in elegance with that which underlies inventory theory.
However, there is at least as much practical incentive to solve the problems of sequence...”

Models may consider the building of a product (“assembly network”) or the
servicing of customers with goods already produced (“distribution network”).
Models that consider interactions between inventory levels at multiple locations at
once are called “multi-echelon” (or “multi-stage”) if there is a precedence
relationship in the flow of materials between the locations or simply “multi-
location” if the locations are “parallel” to each other and can transship items
between each other if desired. Those that look at each inventory location in isolation
are called “single stage.” The lead time to obtain the material after placing an order
can be deterministic or stochastic, the number of sources from which supply can be
obtained can be one (“single sourcing”), two (“dual sourcing”) or more, the lead time
(and cost) can depend on the mode of transportation used (“truck load” or “less than
truck load;” rail or van or air or ship), multiple modes can be simultaneously
available (“regular” shipment versus “emergency” or “expedited” shipment), a
discount on cost may be available if the quantity purchased at any time (or over a
horizon) from a supplier is sufficiently large (“all units discount” or “incremental
discount above a threshold” with several “break points”). The inventory can belong
either to the customer or the supplier (“on consignment” or “vendor managed
inventory”). If discounts are available only for a short interval of time -- a promotion
of sorts - or if the price is expected to change sometime in the future, then
customers may time and batch their purchases accordingly. Items may be perishable
and so have a “shelf life.” If an item is unavailable, a customer may substitute, wait,
or forgo the purchase entirely.

Models typically aim to minimize the expected total cost: the holding cost of
inventory is usually modeled as a linear (or convex) function of the inventory level;
when a demand is not satisfied within a prescribed time window, either a “backlog”



costis incurred or there is a cost for lost margin if the customer leaves. An
alternative formulation replaces the cost of backlog or lost margins with a
constraint on (expected or probabilistically guaranteed) service level. Both
formulations are useful.

If a discrete time model considers a one-shot decision, it is called a “single period”
model; otherwise, it is “multi-period.” A multi-period model is called non-stationary
if the parameters may change with time; otherwise, “stationary.” Models have
inputs, constraints and objective functions; a solution to a model provides outputs.
As time evolves — we are in a dynamic operating environment -- new information
becomes available, consequences of past decisions become known and new
decisions have to be taken (constrained by past decisions).

The outputs of a discrete-time, stochastic dynamic inventory model are a form of
policy to follow with appropriate parameters. The simplest policy to study (also the
easiest to implement in practice) is a base-stock (or order up-to) policy with a base
stock (or order up-to) level -- by period, by item -- based on the inventory position -
- inventory on hand plus on order minus any backlog. These base stock parameters
are typically computed probabilistically and are recommended as target inventory
positions to maintain before the next demand occurrence. The actual production (or
order quantity) takes place after the next demand occurs with the aim to restore the
(now lowered) inventory position back to the target inventory position (or as close
to it as possible when constrained by available upstream inventory, capacity
constraints or batch-size restrictions).

A model can be “centralized” (meaning there is only one decision maker in charge of
all decisions) or “de-centralized” (there are at least two, not completely aligned,
decision makers). The latter class of models is used in the equilibrium analysis of
static models (using tools from game theory).

But: “All models are wrong. Some are useful,” said George Box (although this quote
has been frequently improperly attributed to Albert Einstein).

How to create useful models?

[ will describe how to make the outputs of centralized models implementable in a
decentralized setting, thus making the models useful. This summarizes my approach
over the past 20 years: construct centralized production-inventory models in such a
way that demonstrates benefits of co-operation to the various parties. Thus, they
agree to make appropriate changes in their policies and so implement the model
outputs in the real world. See Erhun and Tayur (2003), where the merchandizing
group of a grocery retailer, incentivized to get the lowest unit cost, buys in large
quantities (from Heinz, Kellogg’s, ConAgra Foods and so on) to obtain discounts. But
the warehousing group of the same retailer, whose performance is measured by
inventory “turns” prefers lower inventories. And the logistics group that is
compensated based on transportation costs prefers full truckload shipments. All



three groups were brought together to achieve the lowest net landed cost (NLC) for
their firm. For a good discussion on organizational silos in the context of
inventories, see Killeen (1969). In Troyer et al (2005), you can see how the results
of a centralized 2-stage inventory model of distribution was used to drive inventory
targets across the five warehouse of Deere and 2500+ independent dealers. This
reduced the inventories by $1+Billion while increasing the service levels from 63%
to 92%. This resulted in an annual increase of $120 million in the shareholder value
added (SVA). In Keene et al (2006), you see an example where Tier-1 suppliers of
Caterpillar adopted the solutions of a centralized model for the “greater good” of the
entire chain, and the Caterpillar factories adjusted their component inventories
(upward) in discord with their “lean philosophy” mantra of inventory reduction, for
the same reason.

In the above three companies — and in several others - the senior executives
(including the CEO) were keen to see what was happening and the initiatives
required the approval of the Board of Directors. This was even more so during the
financial crisis in 2008 where the importance of working capital skyrocketed to a
top CEO initiative, triggering DuPont and Estee Lauder (among others) to accelerate
inventory oriented projects. During the implementation process, the CEOs/CFOs (of
publicly traded companies) have mentioned the use of inventory control models and
software in their quarterly earnings call to Wall Street analysts (an example is Q3
2010 call by Celestica). Privately held companies, such as Kohler, are usually quite
discreet about their initiatives and outcomes; however, they have presented the
value of these models in public forum, and I have been told that the Kohler family is
very pleased. This is in contrast to the frustration expressed by Herb Simon in
Simon and Newell (1958):

“Operations Research has more to do with the factory manager and the production-
scheduling clerk than it has to with the vice president and the Board of Directors.”

Why did Herb fail to engage senior executives using Operations Research? I think
what may have happened is that the executives had shifted from a “production
oriented” world into the “consumer scarce” world. He was prescient in other ways:

“We are now poised for a great advance that will bring the digital computer and the tools of
mathematics and the behavioral sciences to bear on the very core of managerial activity -
on the exercise of judgment and intuition; on the process of making complex decisions.”

Herb was looking for “executive centrifuges” so that we could have a science of
“judgment mechanics” to match quantum mechanics. Let us use the phrase
“management mechanics,” because it sounds similar to “management engineering”
(of the 1920s) and “management consulting” (coined in the 1930s and still in use).

Management Mechanics: The various functions of a model

Here is some advice that has helped me over the years:



(1) Even if the data exist, they are typically not easily accessible. One reason is
that data can be in several different locations, in different information
systems, or under the control of different organizational groups. It is
important to have the support of a senior executive who can “make things
happen” starting from, the “zero-th” task, namely, obtaining available data in
a timely fashion.

(2) Analyzing a (mathematical) model and creating outputs is not the same as
solving a (practical) problem in operations management. To be clear: if the
recommendation of a model is not implemented then no value has been
created (unless inaction was in fact the recommendation). To quote an
ancient philosopher: “Analysis without action is no different from day
dreaming.” (He also cautioned: “Action without analysis can create
nightmares.”) Recently, and bluntly, Lou Gerstner, a former CEO of IBM
writes in Who Says Elephants Can’t Dance? Inside IBM’s Historic Turnaround:
“Ideas that are not implemented are no different from hallucinations.”

(3) Work only on OM problems where senior executives are willing to spend a
lot of money and are willing to engage by allocating appropriate time on their
schedule. This is most likely the case when they have a “burning platform”
and a non-trivial part of their executive compensation depends on the
outcome of the implementation.

How to make sure that our modeling and analysis work is not futile, that we are not
day dreaming or hallucinating?

[ believe that before you model something and analyze the model, you should know
how the results of the analysis are going to be used, who are involved in making
decisions, how to overcome any impediments to their implementation and how to
measure the value created due to this implementation. That is, avoid “pre-mature
modeling.” Sherlock Holmes in Valley of Fear:

“The temptation to form pre-mature theories upon insufficient data is the bane of our
profession...I should like a few more facts before I get so far as a theory.”

Next, how does one put the recommendations of a model - a proposal of action --
into actual practice? In 1954, two Carnegie Mellon University professors, Charles
Holt and Herbert Simon described a framework that is still being used today in their
paper Optimal Decision Rules for Production and Inventory Control. Planning
organizations in manufacturing firms follow a three-step approach: (1) forecasting;
then (2) planning; and finally (3) reacting. Today, this is known as Sales Inventory &
Operations Planning (SIOP), and pretty much every planning group of every
manufacturing company in the world uses this process for ongoing operations. So, if
one wants to use the outputs of a mathematical model in practice, in a real PPOM-2b
situation, here is the process in which it can get imbedded.

Let us look at a realistic version of PPOM-2b that many senior executives at Global
2000/Fortune 500 manufacturing companies face. There are multiple stages of



production and assembly to make the products. For example, at GlaxoSmithKline,
several supply chains (such as the one that produces Paxil) have 11 stages of
production and assembly; Eastman Chemical has 9 or more stages, and Kohler has 6
stages. There is a capacity constraint on how much one can produce in a given
amount of time, all items are not produced in every period, and when produced, are
done so in specific lot sizes. There are multiple stages in the distribution network
that the (near final) product flows through from the final factory to the end
customer. Several end products can share common components or sub-assemblies,
likely in different quantities. As engineering changes occur, the bill-of-materials
(BOM) can change (and BOMs therefore have “effective” dates). It is common to
have at least two distribution stages, and many times there are three echelons.
Along the distribution chain, a nearly finished item (due to a “postponement”
strategy in place for effectively managing product variety) is configured before final
sale; thus even in the distribution network there is a bill-of-material involved.

How to operate such a supply chain? What is the policy that the planning group
should use? What are the parameters of the policy? How much inventory is needed
across the chain? Why? (Magee, 1956, is an example of a well written executive
communication on the role of inventories for single-stage models.) How does the
investment change as the type of service, the service level, forecast errors, batch
sizes, capacity constraints, lead times, schedule adherence, supply reliability and
review frequency change?

The “answer” to a practical problem such as the above, in my experience, requires
the following: (1) the ability to model several complexities at once; (2) the ability to
perform several “what-if” analyses from different points of view corresponding to
the various parties involved in decision making; and (3) the proposal of solutions
that are understandable (by the executive as well as the planner/user), trust worthy
(as their professional careers and compensation depends on it), sufficiently robust
(as the actual real world setting cannot be fully captured by the models anyway) and
implementable within (or with small modifications) of existing processes,
organizational structures and information technology infrastructure. Additionally,
depending on the risk averseness of the executive or inherent in the organizational
culture, a “roll out” plan, in waves, is also required so that the organization can
“walk” before they choose to “run.” (Sometimes folks want to “crawl” even before
they choose to “walk”.)

Thus a modeling framework and solution proposal should allow for partial changes
in the decisions in a sub-network holding the rest somewhat constant, and then,
increase the range and scope of decisions being changed. What is needed is a
comprehensive model that allows for what I call “staged optimization” deliberately
restricting some variables to be within a certain range for the time being. That is, a
“controlled release” in concert with the organization’s capacity to absorb change, in
rhythm with their existing processes and compatible with their IT systems.



What is described here is an essential aspect of “management mechanics,”
facilitating the implementation of (centralized) model outputs in the (decentralized,
multi-agent) real world.

Now let us move to the analysis of models.

“Optimal” policies versus “implementable” policies

A policy is considered “optimal” for a chosen model if no other policy dominates it
according to a specified objective. The point is that “optimality” is a feature of a
solution to a mathematical model and may not have anything to do with the
executive’s or the firm’s problem. It is believed that if one chooses a “realistic”
model and finds good solutions to that model, these translate into useful solutions to
the practical problem. Thus, we must first agree on a mathematical model to
represent reality that is considered “satisfactory” by the eventual decision makers
and users. Next, we have to find the optimal (or simply a good) policy for the model,
crank through the data, and see if the outputs that are created are worth
implementing. Outputs that are worth implementing are those that executives
believe will create significant improvement in the key operating metrics of their
firm (compared to what they are doing now) at this time when used by their people
(or those that can be reasonably hired) using computers that they have (or can
purchase at reasonable cost).

Einstein, “Models should be as simple as possible, but no simpler.” Also as Joseph E.
Stiglitz has warned:

“Models help guide our thinking, but we should never let the analysis of simple models
replace our thinking, or let us lose touch with reality.”

Although a stylized mathematical model has an elegant solution, it is of no value to
the decision maker if it is unrealistic. At the same time, “too realistic” models may be
very difficult to solve. Thus what is needed is a “sufficiently accurate” representation
of the real world, balancing decision relevant criteria with tractability, and
providing understandable results that can be implemented.

“Optimality” of a policy in a mathematical inventory model is typically proved using
dynamic programming. For several single-stage, discrete time production-inventory
models, with complete backlogging of unsatisfied demand, a time varying “base
stock” policy (perhaps modified due to capacity constraints or lot-size constraints)
can be shown to optimal. If a fixed cost (for any production or procurement event)
exists in addition to the usual variable per-item costs, but there is no capacity
constraint, a (min,max) policy (with time varying parameters as needed) is optimal.
That is good news as most planning systems in practice that are part of the
information technology (IT) infrastructure can handle time varying versions of



these two policies, at an (item, location) level of granularity. This means that the
outputs of models can be inputs into IT systems that drive execution.

The bad news is any additional complexity (such as lost sales or multiple
distribution stages or a capacitated assembly network) makes the “optimal” policy
too complex to be implemented in any realistic setting. Thus most practical
implementations require that the policy structure to be either base-stock or min-
max. In some respect, you can think of adding a cost term to the typical academic
models that ignore implementation: significant costs are incurred if the policy
structure deviates from what the mental model is, or if changes are needed in the IT
systems. This “total cost” optimization will get you close to the two implementable
policies, as it is highly unlikely, in practice, that the “optimal policy without these
costs” will perform so much better in inventory savings than the best policy within
this class. (In case it is, an executive may be persuaded to consider a major upheaval
of the IT systems.) Thus academic inventory models are not complete (to use the
term from Little, 1970) if they do not account for these implementation costs. Thus,
one can sympathize with Hadley and Whitin’s complaint -- of (some papers in)
Arrow, Karlin and Scarf (1958) -- that they assume unrealistic and simplistic model
settings and/or propose complex un-implementable policies, exactly the opposite of
what is needed. (These models can have other uses.)

So, where is such a comprehensive modeling framework that we require (as
discussed earlier) and a computational procedure that allows for staged
optimization accommodating the needs of various decision makers? In 1991, I could
not find one. That was bad news for the IBM executive looking for answers. There
was, however, some consolation for me, as his parting comments were something
like:

“If your model were more realistic in capturing our capacity constraints, changing patterns
of demand and supply, and could account for the fact that we have common components
that are shared by many products whose demands are correlated, and that these are
produced and distributed using a physical network with shared resources and multiple
production choices, it would have been so useful. We could have done so many interesting
what-if's and decided how IBM can compete better. Call me when you get there.”

This was great news for a new assistant professor about to join a university. One
could not have asked for a better research plan!

My garden of inventory models and solution methods
Paul Samuelson:

“Each new theorem, each new insight, is like money in the bank, waiting to be drawn in
some unexpected connection.”



In 1991, there was no known method to compute the optimal base stock level even
for the simplest setting: a capacitated, stationary, discrete time, single stage, single
item stochastic model being operated by a (modified) base stock policy. But I made
an unexpected connection: a capacitated, production-inventory system, operated
under a base stock policy is equivalent to a model of a dam, previously studied by P.
A.P. Moran in 1954. In fact, the stochastic process - called “shortfall” to distinguish
it from “backlog” - of the amount that one is below the base stock level due to the
capacity constraint follows Lindley’s equation identical to a D/G/1 queue. (See N. U.
Prabhu’s 1965 Queues and Inventories.) This allows for a recursive method to
efficiently compute the optimal base stock policy; see Tayur (1993a).

And you get more! Beyond the dam model connection, I realized that complex
capacitated, multi-stage stochastic systems could be studied via sample paths, not
necessarily through distributions. Glasserman and Tayur (1995) provides optimal
base stock levels for a capacitated multi-echelon production-inventory network
(assembly, distribution, combined or any network that is an acyclic directed graph).
Here we use Infinitesimal Perturbation Analysis (IPA), a simulation-based
optimization method that is valid under a wide range of complexities that one
encounters in practice. This works because Lindley type recursions can be written
and analyzed in these situations as well (Glasserman and Tayur, 1994, that uses a
method from Loynes, 1962). Simulation is used not only to compute the expected
cost at any base stock level, but the same sample path can be used to compute a
valid estimate of all the gradients (of expected cost with respect to each base stock
level, one for each stage regardless of the number of stages in the supply chain).
Thus, this is a very effective computational procedure: it can handle many
complexities of the model and the computational time does not grow very much
with scale. Although the expected cost function is not convex, it is uni-modal; a
gradient search procedure converges to the minimum cost quite quickly. IPA can be
used to compute base stock levels for both service level constrained models and
expected total cost models, in stationary and time varying conditions, in single
period, finite horizon and infinite horizon settings. By varying service levels, one can
compute the inventory investment needed at each service level, and construct the
inventory-service level curve for PPOM-2.

Time varying characteristics are analyzed in Kapuscinski and Tayur (1998) in the
single stage setting. The proof of optimal policy - it is time varying modified base
stock policy -- is through stochastic dynamic programming. The optimal base stock
parameters are computed by the use of IPA. Multiple products sharing common
capacity, re-entrant flow structure through multiple stages and loops, with several
different capacity allocation rules are discussed in Bispo and Tayur (2001).

Thus, there are three different things going on in the analysis of models: (1)
searching for an optimal policy of the model; (2) devising a computational
procedure to obtain parameters for the policy chosen, which may or may not be
optimal, for that model; and (3) showing that the computational procedure is valid.
We can use different mathematical methods for each of the three things: Dynamic



programming for (1), sample path derivatives via [PA for (2) and methods from real
analysis (such as the dominated convergence theorem, Lipschitz continuity, Harris
ergodicity, positive recurrence and so on) for (3).

Although IPA was originally developed for PPOM-2, it is also used to compute
inventory parameters for the responsive supply chain (PPOM-1), vanilla boxes for
postponement (let us call it PPOM-3) and stochastic cyclic schedules (call it PPOM-
4), thus proving it to be a very versatile technique to solve complex models at
industrial scale in a variety of situations. PPOM-3 is formulated as a two-stage
stochastic program with recourse in Swaminathan and Tayur (1998), a framework
developed by Dantzig (1955). PPOM-4 is modeled using chance-constrained
programs in Anupindi and Tayur (1998), a framework developed by (Carnegie
Mellon professors) Charnes and Cooper (1959).

[ do want to emphasize one point here. Hilbert:
“A perfect formulation of a problem is already half its solution.”

For an entirely different method to solve chance-constrained programs where
derivatives are not used, see Kannan, Mount and Tayur (1995), where a carefully
selected random walk procedure leads us close to the optimal solution (in
polynomial time) with high probability. The proof involves showing that the Markov
Chain created by this walk mixes rapidly. A lower bound on the conductance of the
Markov Chain provides the complexity result. If integer variables are involved, we
can use the lattice walk procedure generated by “test sets” of an integer program,
computed as Grobner Basis of certain polynomial ideals, an idea from Algebraic
Geometry; see Tayur, Thomas and Natraj (1995) and Scarf (1997). An entirely
different method of solving integer programs via Grobner Basis is in Bertsimas,
Perakis and Tayur (1999), which looks at a different construct of a polynomial ideal,
and obtains a weak duality result by an application of Hilbert’s Nullstellensatz. This
can be viewed as Farkas lemma for Integer Programs.

[ will readily admit that these procedures that utilize random walks and Grobner
Basis have not been of much use thus far in solving PPOMs. However, they have
satisfied my “inner mathematician” needs for pure intellectual elegance
uncorrupted by any desire to be of immediate practical use. | am reminded of a
comment made by Hermann Weyl:

“My work always tried to unite the true with the beautiful; but when I had to chose one or
the other, I usually chose the beautiful.”

These then are some of the contributions (beyond IPA derivatives for inventory
models that have been immediately useful) to the “bank,” hoping that someone,
somewhere, sometime in the future, for some purpose, will find some unexpected
connection and take off in an entirely different direction. Indeed, as G.H. Hardy
concludes in A Mathematician’s Apology:



“...that I have added something to knowledge, and helped others to add more..”

Enterprise Inventory Optimization

Let us return to the real world of today. How to implement multi-stage inventory
models not just in a handful of companies, but in virtually every company where
there is sufficient benefit in doing so?

Quoting again from Reisman (2004):

“The entrepreneur is a person who implements innovations to make his undertakings a
success. Entrepreneurship is the propensity to pioneer new innovations....”

And, quoting Schumpeter directly on the entrepreneurial type (Thomas K. McCraw,
Prophet of Innovation):

“...the joy of creating, of getting things done, or simply of exercising one’s energy and
ingenuity; our type seeks out difficulties, changes in order to change, delights in ventures.
The entrepreneur is a driven man because that is what he is. Neither consideration of the

effort nor satiation of his hedonic needs tames his lust for action.”

In 2000, I founded SmartOps Corporation (and served as its CEO for 12 years) to
bring new intellectual property to the market. We created a new segment called -
we coined the phrase -- Enterprise Inventory Optimization (EIO). We designed our
EIO software to work in concert with Enterprise Resource Planning (ERP) and
Advanced Planning and Optimization (APS) systems. It was important that we had
one product, not a custom product for each customer, both from a profit margin
perspective and also for scaling the company and having a replicative machinery of
pre-sales consulting, sales, implementation, and post-sale support for on-going use
by the customer. Thus a key proprietary innovation was the creation of a discrete-
time, stochastic, multi-stage inventory model that could handle the possible and
conceivable complexity of any situation (within reason). A fast algorithm computes
good outputs quickly. This model also allows for staged optimization and several
what-if analyses and scenario planning. To make it convenient for executives, we
created iPad compatible analytics and “apps.” To increase IT convenience and
reduce operating costs, we have architected EIO to work on a “cloud,” and to provide
a rapid response to what-if questions, we have architected it to run on an “in-
memory database.”

In the beginning, it seemed that prudent businessmen followed Alexander Pope’s
precept, also encountered by Herbert Simon as he discussed in his 1991

autobiography, Models of my Life:

“Be not the first by whom the new are tried; nor yet the last to lay the old aside.”



This resistance to new technology is not specific to production-inventory planning.
Indeed, as W. Brian Arthur notes in The Nature of Technology:

“Still another reason is psychological. The old principle lives on because practitioners are
not comfortable with the vision - and promise - of the new. Origination is not just a new
way of doing things, but a new way of seeing things. And the new threatens. It threatens to
make the old expertise obsolete.”

Fortunately, there are always “innovators” and “early adopters” in Industry (these
terms were used in Rogers, 1962, and formed the basis for Bass, 1969), we did
benefit from those executives who were looking for something new. Recall from
before that “Capitalism is newness.”

But it is important to “cross the chasm” (Geoffrey Moore) between the “early
adopters” and the “leading majority” to really become mainstream. There was
another key innovation that was needed. A major hurdle that a “technically correct
solution that can create huge practical value” needs to overcome to be of
mainstream use by non-technical people is the abstraction step. (This issue is also
mentioned in Bixby, 2002, with respect to the adoption of mixed integer linear
programming, MILP.) Recall that we first translate the real world into a
mathematical model (“the abstraction step”), then solve the mathematical model,
and then output numbers. It is not possible to eliminate the abstraction step as it
creates the “model!” But then, if you don’t, you need experts around and this limits
the companies in which the models will be implemented. So what we did was to
make the abstraction step invisible to the typical users (but make it available to a
few “super-users” in any firm to review and modify if needed) by creating an
automated, transformation module that reads transactional data (in the form that
the user knows and is comfortable with) from the ERP system, creates the
mathematical model automatically (no human being involved!), solves the model,
and outputs the answers in a form (absorbable and viewable in the APS system) that
the user already is comfortable navigating.

This worked like magic in line with Arthur C. Clarke’s observation:
“Every sufficiently advanced technology is indistinguishable from magic.”

But how can we make this “invisible secret sauce” available to hundreds of
companies? What if the folks who sell ERP and APS systems, like SAP AG, also were
allowed to sell EIO from SmartOps? In 2009, we signed a worldwide reseller
agreement with SAP allowing their sales force (several hundred of them) to sell our
EIO software along with theirs. A case study (for MBA students and for executives)
on SmartOps Corporation discusses our “go-to-market” and channel strategy (with
SAP AG); see Wilcox (2011).

Over the past twelve years, | have had the good fortune of working with nearly 100
companies, across the world, in several industry verticals who have now



incorporated PPOM2-b into their on-going operations by imbedding our enterprise
software (with proprietary algorithms). The software periodically (and
automatically) calculates operational inventory targets, for each item, at each
location, for each period, in their complex multi-stage global network spanning
several continents.

Designing and implementing a responsive supply chain at
Caterpillar

Let us return to PPOM-1 faced by Caterpillar that I mentioned earlier. The key
inventory model to “build in” responsiveness had the following features: (1)
discrete time, (2) stochastic demand, (3) two customer classes, (4) partial
backlogging, (5) dual modes of supply with different lead times, (6) supply
uncertainty, and (7) operated by a two-parameter base stock policy, with a level
(say 10) for emergency shipments (using faster mode of transportation) and a level
(say 35) for regular shipments. Thus, at the end of each period, after satisfying
(partial or complete) demand, accounting for customer backlogging or
abandonment, we look at the inventory position. If it is lower than 10 units, we
order enough using the emergency mode to reach 10 and order (35-10=25)
through the regular mode. If the inventory position was above 10, we only order
using the regular mode to restore the inventory position to 35. This is not an
optimal policy to the model; but it is implementable, and using IPA, we computed
the pair of levels for all items and locations in the network, across several different
network choices, and across a variety of parameter settings for robustness. The
details are in Rao, Scheller-Wolf and Tayur (2000). Our proposals were
implemented. A business article in Fortune (Seikman, 2000) New Victories in the
Supply Chain Revolution:

“Among the techniques the Carnegie-Mellon group used to attack this complex problem was
so-called infinitesimal perturbation analysis, for which no complete explanation is possible
for the faint-hearted or mathematically disadvantaged.”

Continuing, the article quotes a senior executive from Caterpillar:

“...the Carnegie-Mellon solutions are not what Cat would have come up with on its own. A
couple of special tool-distribution centers, which the company had planned to build, were
found unnecessary. Just as important, the response time in the system was sufficiently fast
that the inventories that the dealers would have to carry were not high enough to require a
subsidy from Caterpillar. ...[Carnegie Mellon] gave us the highest response, lowest cost,
lowest inventory [solution]...”

This Fortune article attracted the attention of several executives at Deere in 2001.
received a call on August 6th, 2001: “Can you help us reduce $1 billion of inventory,
over the next 5 years, without sacrificing service levels?” A SmartOps team did a
“proof of value” consulting project - “How low can you go?” -- between October and



December 2001. We showed that through EIO and operational discipline in PPOM2-
b they can “fix their mix” of inventories, reduce the total investment while not
reducing service levels. We met with CEO Bob Lane (and his senior staff of CFO and
the Presidents of each division) in January 2002. We did a controlled roll out - a
pilot limited to certain product families and key dealers from their dealer council --
in the spring of 2002 before launching the full implementation in June 2002. Four
years into it, more than $1.1 billion of inventory was either eliminated or avoided,
$100 million more than planned and one full year ahead of schedule while
increasing service levels (Troyer et al 2005).

Dantzig (1963):

“The final test of any theory is its capacity to solve the problems that originated it.”

Concluding remarks

[ have highlighted some academic papers and books - Holt and Simon (1954), P.A.P.
Moran (1954), Dantzig (1955), Drucker (1955), Magee (1956), Charnes and Cooper
(1959), Loynes (1962), Prabhu (1965), R. G Brown (1967) and Killeen (1969) - as
an attempt to rescue them from undeserved neglect by our inventory research
community today. Also, if the industrial examples have concentrated on situations
described in my papers, it is not because I consider them the only (or even the most
important) set of problems and models, but rather because, on the one hand, they
are more within my own special competence, and on the other, it seems to me,
based on my 20 years of interactions with nearly 100 firms in several continents
and industry verticals (Table 2 provides some examples), that they likely constitute
situations that many thousands of companies face.

Table 2 Industry Verticals and Representative Companies

Industry Vertical Representative Companies

Chemicals Bayer, PPG, Dow, Dupont, Eastman, Cabot,
Monsanto, Lubrizol, Rohm & Haas

Consumer packaged goods (CPG) | Kellogg's, ConAgra, Unilever, Smuckers, Clorox, J&J,
Scherring-Plough, Kohler, Estee Lauder, Campbell’s

Hi-tech Cisco, Celestica, Jabil, HP, LSI, Micron
Industrial machinery/components | Caterpillar, Deere, Danfoss, Honeywell
Retail/Distribution Cardinal Health, Shaw’s Supermarkets

Pharmaceuticals, Medical devices | GSK, Wyeth, Pfizer, Medtronic

[ have cherry picked the quotations to advance my narrative. Similarly, | have
intentionally constructed contrasts: (1) capitalism versus socialism; (2) stochastic,
non-linear models versus linear, deterministic ones; (3) decision support in a
dynamic environment versus static equilibrium models; (4) customer versus
production scarcity; (5) general purpose computational methods rather than
specifically constructed formulas; (6) real world implementation across silos and



firm boundaries versus analysis of simplistic models; (7) staged optimization with
exploration of several alternatives versus providing one solution; (8) enterprise
software that runs on a cloud and renders analytics on an iPad for automated global
planning versus manual or spreadsheet calculations done at a local level; (9)
executive engagement and Board of Directors approval versus production-clerk
support; and (10) a lust for action versus pure intellectual pursuits without concern
for practical implications.

[ want to emphasize that “management mechanics” through staged optimization is
not dependent on a particular model (nor restricted to the use of IPA). It is not
limited to global multi-enterprise inventory planning nor is to “planned
spontaneity.” This approach has facilitated the implementation of centralized model
outputs in the multi-silo, multi-firm settings, outside the “direct control” of the
executive. It is simply a way of developing models and “getting the outputs
implemented” in the real world. Benjamin Franklin:

“Wisdom is knowing what to do. Virtue is actually doing it.”

Acknowledgements. There are so many people who have helped make inventory
models useful to practice -- ranging from my PhD students, faculty colleagues, co-
authors and collaborators, SmartOps’ employees and channel partners, executives,
IT staff and planners from Fortune 500/Global 2000 firms -- that to list them
individually by name will exceed any reasonable page limit. | would like to thank
Alan Scheller-Wolf, Mustafa Akan, Tinglong Dai, Steve Graves, Jack Muckstadt, Soo-
Haeng Cho, Mike Trick, Nicola Secomandi, Jay Swaminathan, Paul Glasserman and
David Simchi-Levi for their help and suggestions in the preparation of this
manuscript.

End Notes

1. Itissaid that imitation is the sincerest form of flattery. The style of the article
- especially the extensive use of quotes - pays homage to the thoughtful
articles of S. Chandrasekhar collected in Truth and Beauty: Aesthetics and
Motivations in Science (1987). The use of some language in the article is
borrowed from the preface of Tjalling C. Koopmans (1957), Three essays on
the state of Economic Science, while some language in the concluding section
is from Milton Freidman, from his conclusion section of a 1955 report found
in Two Lucky People, by Milton and Rose Friedman. I also benefited from
reading the personal narratives in the collection of articles in 50t
Anniversary Issue of Operations Research (Jan-Feb, 2002) and of
Management Science (December 2004).

2. The desire for academics to “help senior management solve their most
pressing problems” is not new. James O’ McKinsey, a professor at U. Chicago
GSB (now called Booth) founded McKinsey & Company in 1926. He wanted to



do more than what “efficiency experts” were doing under the banner of
“management engineering.” Marvin Bower later coined the term
“management consulting” which has remained in use since the 1930s. You
should now understand why I prefer “management mechanics.”

. The earliest reference I could find that seems to have put F. W. Taylor on the
path towards Scientific Management, the precursor to “management
engineering” - and looking at management from a scientific perspective,
leading to the creation of the fields of Industrial Engineering, Industrial
Administration and Operations Management -- is a 1886 paper by Henry R.
Towne “The Engineer as an Economist.” Towne was the President of the Yale
and Towne Manufacturing Company and a President of American Society of
Mechanical Engineers (ASME). The young Taylor (who became a ASME
member in 1885), impatient with what he called “just management of
initiative and incentive”, wanted to think about how to “increase productivity
and lighten labor’s efforts.”

. The phrases “production scarce” and “customer scarce” are borrowed from
Yuji ljiri’s chapter in The Innovative University (2004).

My PhD advisor’s PhD advisor - my “academic grandfather” so to say - is
Arthur F. Veinott Jr, whose academic grandfather is none other than T. E.
Harris! I discovered this through the Mathematical Genealogy Project.

One of my “minors” in graduate study was queuing theory and N. U. Prabhu
was on my thesis committee. The other “minor” was Operations
Management, and Dick Conway was also a committee member. My PhD
advisor was Robin Roundy. My PhD thesis was on stochastic models of serial
production lines operated by kanban systems; see Tayur (1992,1993b) and
Muckstadt and Tayur (1995ab). The stochastic cyclic schedules in Tayur
(2000) at GE are operated using kanban cards. My first introduction to
inventory models was in a class taught by Jack Muckstadt at Cornell using
Hadley and Whitin as a reference text. Bill Maxwell taught a course on
scheduling. My first OR course was taught by T.T. Narendran at Indian
Institute of Technology, Madras. Moving in the other direction, Nihat Altintas,
Carlos Bispo, Feryal Erhun, Srinagesh Gavirneni, Roman Kapuscinski, Pinar
Keskinocak and Jay Swaminathan are some of my PhD students.

[ met Paul Glasserman in 1988 at Bell Labs in Holmdel, N]. Beyond IPA, Paul
and I have developed a large deviation approximation (based on extreme
value theory) for capacitated multi-echelon inventory models (Glasserman
and Tayur, 1996, Glasserman, 1998). A single stage formula connects
inventory levels, service levels, excess capacity and variability in closed form.
This “Glasserman-Tayur” formula (for discrete time, capacitated inventory
model) can be considered a “cousin” of Pollaczek-Khinchin (M/G/1 queues).



8.

10.

11.

12

13.

14.

15.

Rekha Thomas was a PhD student at Cornell and her PhD thesis is on
Grobner Basis and Integer Programs. Dimitris Bertsimas and Georgia Perakis
were hosts during my 1997 sabbatical at MIT.

Holt and Simon worked closely with PPG. Magee (and Arthur D. Little)
worked closely with Johnson & Johnson. Both PPG and Johnson & Johnson
have integrated SmartOps EIO software into their IT stack, connected it to
Oracle and SAP ERP and APS, and have made multi-stage inventory planning
part of their monthly global SIOP process.

[ have limited my discussion to four or so PPOMs in this article. Just as
grocery retailers are optimizing NLC, their suppliers (like Heinz) are
optimizing quantity discount schedules (see Altintas, Erhun and Tayur, 2008)
and, like ConAgra Foods, are making their own production planning more
flexible while reducing total costs (see Mehrotra et al, 2011).

[ have not discussed the role of information (Gavirneni, Kapuscinski and
Tayur, 1999), limited history of data (Akcay, Biller and Tayur, 2011),
operations reversal as a strategy to manage variety (Kapuscinski and Tayur,
1999), guaranteed lead times (Kapuscinski and Tayur, 2007, Keskinocak,
Ravi and Tayur, 2001) international operations affected by exchange rates
(Scheller-Wolf and Tayur, 2009), real (capacity) options (Erhun, Keskinocak
and Tayur, 2008a), supply chain co-ordination (Erhun, Keskinocak and
Tayur, 2008b) or the role of the internet and e-business (Keskinocak and
Tayur, 2003, Swaminathan and Tayur, 2004).

. have also not discussed the choice of the product portfolio itself. See Yunes

et al (2007) for what Deere has. Deere has also tailored its distribution
logistics by season to further improve operations performance with respect
to responsiveness and cost; see Tardif et al (2010).

In 2005, we tested a massively parallel version of our algorithm on IBM Blue
Gene (using their on-demand Deep Computing offering). An industrial
instance with about a million inventory targets - one for each item, location
and week -- solved in 0.04 seconds on a “half-rack” system of 512 parallel
processors.

[ have discussed monetizing the value of operations research in Camm and
Tayur (2010). I presented EIO (and entrepreneurship) at UCLA’s Marschak
Colloquium, along with Private Equity and Lean Operations (January 2012).

Entrepreneurship and significant contributions to practice (in diverse areas)
by OR/OM professors have a long history: Harry Markowitz, Egon Balas, Art
Geoffrion, Jack Muckstadt, Don Ratliff, Marshall Fisher, Bob Bixby, Morris
Cohen, Steve Graves, Sunder Kekre, Hau Lee, David Simchi-Levi, Larry Wein
and Dimitris Bertsimas, to name a few.
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