
rspa.royalsocietypublishing.org

Research

Article submitted to journal

Subject Areas:

Combinatorics, Optics, Electrical

Engineering

Keywords:

Photonics, Ising, QUBO, Max-Cut,

Number Partitioning

Author for correspondence:

Anil Prabhakar

e-mail: anilpr@ee.iitm.ac.in

Optimization with photonic
wave based annealers
A. Prabhakar1, P. Shah1, U. Gautham1,

V. Natarajan1, V. Ramesh1,

N. Chandrachoodan1 and S. Tayur2

1Indian Institute of Technology Madras, Chennai

600036, India.
2Carnegie Mellon University, Pittsburgh, PA 15213,

USA

Photonic Ising Machines (PIMs) offer alternatives to
quantum annealing and simulated annealing. An NP-
hard problem is cast as a quadratic unconstrained
binary optimization (QUBO) where the final spin
configuration in the Ising model is adiabatically
arrived at as a solution to a Hamiltonian, given
a known set of interactions between spins. We
describe two PIMs and compare their performance
against classical and quantum solvers. The temporal
multiplexed Ising machine uses the bistable response
of an electro-optic modulator to mimic the spin
up and down states, and solves the Max-Cut
problem on par with Gurobi for up to 1000 spins.
In a second construction, a spatial photonic Ising
machine convolves the wavefront of a coherent
laser beam with the pixel distribution of a spatial
light modulator (SLM) to adiabatically achieve a
minimum energy configuration, and solve a number
partitioning problem. The PIM easily partitions an
array of 214 integers, vastly outperforming both
Gurobi and the state-of-the-art D-Wave annealer.
The components used in our PIM implementations
continue to improve, making them viable alternatives
to other non von Neumann computing architectures.

1. Introduction
Many quadratic unconstrained binary optimization
(QUBO) problems can be cast as Ising Hamiltonians.
Solving these problems is motivated by a wide range
of applications in supply chain management, portfolio
optimization, operations management and machine
learning.
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The problem of minimising the Ising Hamiltonian is known to be an NP-complete problem, which
allows all other NP-complete problems to be recast in this form [1].

There are many examples of photonic Ising solvers, from injection locked lasers [2,3] and
optical parametric oscillators [4–10], to degenerate cavity lasers that solve the phase retrieval
problem [11] and simulate the XY model Hamiltonian [12]. In this article, we show improvements
on two photonic implementations, the time multiplexed coherent Ising machine [10] and the
spatial photonic Ising machine [13], and benchmark their performance against classical solver
Gurobi [14] on the Max-Cut and the number partitioning problem, respectively.

2. The Ising Model
The mathematical model consists of discrete variables that represent magnetic dipole moments
or atomic spins that can be in one of two states. The spins are arranged on an undirected graph,
G= (V,E), with a set of vertices or nodes V and a set of edges E. A vertex is denoted as i∈ V

and an edge as ⟨i, j⟩ ∈E. A binary variable si ∈ {±1} associated with each vertex i, represents
spin direction. The Hamiltonian (or energy function, or cost function) of the model is

H(s) =−
∑

⟨i,j⟩∈E

Jijsisj −
∑
i∈V

hisi, (2.1)

where Jij is the pairwise interaction constant or coupling constant and hi is the external magnetic
field acting on the spins. We attempt to find a particular spin configuration s, for which the
Hamiltonian energy becomes a minimum. (2.1) can also be cast as a problem without local fields
by adding an ancillary spin, sa, and coupling it to each spin:

H ′ =−
∑
ij

Jijsisj −
∑
i

hisisa. (2.2)

The first term in (2.2) is invariant to flipping all spins. Hence, the final solution is obtained as
{sasi} (Each spin is flipped based on the value of sa).

For a graph with N vertices representing the spin configuration s = (s1, s2, ..., sV ), the
coupling constant or connectivity matrix Jij is a square matrix of dimension N ×N , with each
element representing the interaction strength between the pairs of spins (si, sj). The external
magnetic field hi, of dimension N , represents an external magnetic field exerted on si.

3. Temporal Multiplexed Ising Machine
The Poor Man’s Coherent Ising Machine (CIM) uses a suitably biased Mach-Zender-Modulator
(MZM) to produce bistable photonic states [9]. These are time multiplexed to represent the
spins si, and the optical output is detected, sampled and fed back to the modulator via a field
programmable gate array (FPGA). Given Jij , the FPGA estimates H(s) and updates the value of
si. This is run iteratively until all the values of si are unchanged.

There have been many CIMs benchmarked against commercially available state-of-the-art
solvers [15–18] . We use our CIM to solve different instances of the Max-cut problem [19],
generated from rudy [20]. We then solve the same problem instances using Gurobi [14], and
compare its performance against that of our CIM.
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Figure 1. A schematic of the experimental setup used.

(a) Setup and Methods
Fig. 1 shows a schematic of our experimental setup which is based on the work by Bohm et.
al [9,21], having a transfer function

xn[k + 1] = cos2(fn[k]−
π

4
+ ζn[k])−

1

2
(3.1)

fn[k] = αxn[k] + β
∑
m

Jmnxm[k], (3.2)

where k represents the iteration index. The “spin” values are encoded in the sign of the time
multiplexed photo-voltage σn[k] = sign(xn[k]), where xn is a particular time bin of the feedback
signal (see Fig. 2).

Figure 2. Piece-wise constant values of photo-voltage correspond to different spins, where the spin is up if V > 0 and

down if V < 0. This implementation gives rise to multiplexing of spin values in time.

Jmn in (3.2) is the coupling coefficient in the Ising Hamiltonian we want to minimize, and
α and β are gain parameters that need to be adjusted for each problem instance to reach near
optimal solutions. ζn[k] represents Gaussian noise added to the signal in the FPGA, to ensure
initial randomness. The non-linear cos2() and the bias of π

4 are implemented using a biased MZM,
while fn[k] + ζn[k] is calculated in the FPGA.
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The dynamical equations of this setup create a pitchfork bifurcation [9] as the parameter α

is varied. The bifurcation point with β = 0 is αbif, that is, when α<αbif, only values near 0 are
stable. At values of α>αbif, the spins randomly choose values ±a0, which are the new bistable
points (0 is now an unstable point, as seen in Fig. 3). When β ̸= 0, it can be shown [21] that only
near-optimal (low energy) solutions to the Ising Hamiltonian are stable for a given α, β.

Figure 3. A bifurcation of the final values that spins settle to, as we vary the gain parameter α, with β = 0. For α>

αbif ≈ 3.7, we have two bistable points, which is a suitable parameter space to operate in. At each value of α, we allow

60 spins (different colours) to evolve according to (3.1),(3.2) and plot their final value.

For each instance of the Max-cut problem, which we elaborate on below, our choice of α, β will
affect the quality of our solution. Instead of doing a brute-force search through a grid of different
values of α and β, we derive a bound that helps us to search only through different values of β
instead. Consider a positively weighted graph with adjacency matrix J . The goal of a Max-cut
problem is to partition the N vertices of the graph into two sets, P+ and P−, such that the cut
value C (the sum of the weights of edges connecting the P+, P−) is maximized. This also divides
the edges of the graph into three sets: E+, E− and EC , which are the edges between vertices in
P+, P− and those between P+ and P− respectively. The sum of the edges in EC gives us the
cut,

C =
∑

ij∈EC

Jij . (3.3)

If we label all the spins in P+ with σ= 1 and all the spins in P− with σ=−1, the above problem
can be recast as the Ising Problem, with the Hamiltonian

H =−
∑
ij

Jijσiσj =−
∑
E+

Jij −
∑
E−

Jij −
∑
EC

Jij + 2
∑
EC

Jij

=−D + 2
∑
EC

Jij .
(3.4)

Here, D is the sum of the weights of the graph and
∑

EC Jij gives you the cut value. Thus, if we
set Jij =−Jgraph, minimizing the Ising Hamiltonian gives us the Max-cut. However, the solutions
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obtained are stable only when we satisfy the condition [21]

α− αbif ≤
β

N

∑
mn

Jmnσmσn. (3.5)

Since we set Jmn to be negative, we can change the sign of the LHS and the inequality. Note that
this requires α<αbif for stability. The summation on the RHS is now positive (due to the sign
change), and we can upper bound it by the sum of edges of the graph. With that modification, we
can sweep β as

β =N
αbif − α

f |E| , f = 1, 0.9, 0.8, . . . (3.6)

where |E| is the sum off all edges in the graph. After we fix α to around 0.8 times αbif (chosen
empirically), we set f = 1 and extract β as a function of α. We plot this in a landscape of solution
accuracy with α, β, to get the red line in Fig. 4. The proximity of the yellow (stable) region to the
red line indicates that our bound is accurate enough for application.

Figure 4. Variation of solution accuracy with α and β for a random 100 spin unweighted graph. The red line shows the

lower bound of β, i.e. we sweep β starting from a point on the red line and move right (since we keep α constant).

(b) Hardware
Computation of (3.1) is performed optically using the MZM, while (3.2) occurs either on an FPGA
or on the CPU. FPGAs are capable of performing large numbers of parallel multiplications, which
we can make use of to speed up the computation. In addition, the FPGA can be used to interface
with the high speed ADCs and DACs.1 We studied the use of two FPGA boards: A Zynq7020 chip
on a RedPitaya SIGNALlab 250-12 (250 MHz, 12 bit ADC and DAC) and a RedPitaya STEMlab
125-14 (125 MHz, 14 bit ADC and DAC). Only the SIGNALlab board was used for the experiment.
The STEMlab board was used to obtain solution accuracy and for comparisons with Gurobi.

The DAC and ADC buffers consist of 16384 samples, of which we use 500 to synchronise
the signals; the rest are uniformly distributed to each “spin”. The MZM (an Optilab IM-1550-12)
is biased at Vπ/4. The output power of the MZM at 0 bias is around −4dBm, which yields a
mean photovoltage of 150 mV. To synchronize the time multiplexed waveforms, we send known
waveforms to calibrate for delays.

Our main bottleneck in solution time is the matrix multiplication in (3.2). We optimize this
using a system of parallel multipliers on the FPGA to speed up the matrix vector multiplication.
Each matrix vector multiplication is decomposed into a set of parallel vector-vector products, or
1ADC, DAC: Analog to Digital and Digital to Analog Converters respectively
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dot products. Each such dot product is handled by a single DSP slice, which essentially acts as a
multiply accumulate unit. We parallelize as many dot products as we can by using multiple DSP
slices in parallel.

Each DSP slice handles one or many spins, depending on how many slices are in parallel. If
the number of DSP slices is less than the number of spins, we “fold” multiple operations onto a
single DSP slice. For example, for 16 spins and 8 DSP slices, the first DSP slice will handle spin 1
and spin 9. To allow for parallel access to the adjacency matrix J , we distribute the matrix across
multiple Block-RAMs present inside the FPGA. A single row’s elements are stored contiguously
in the Block-RAM, but different rows are distributed across multiple RAMs. A single Block-RAM
is associated with a single DSP slice, and hence may contain more than one row if the DSP slices
handles more than one spin. This promises a reduction in the clock cycles taken (originally ≈N2)
by a factor of the number of multipliers present in the FPGA board. Our results are showcased in
Fig. 6.

(c) Solving the Max-Cut Problem
We present the results of our CIM on various Max-Cut instances and compare them with
Gurobi [14], run on an Intel Core i3 processor, versus the CIM run with a ARM Cortex-A9
processor on the Zynq7020. We show the variation of results with Graph Size N and Graph
Density D. The graph instances were generated using rudy [20]. Performance variation with size
is shown in Fig. 5 and compared with the performance of the DWave quantum annealer. We can
see that the CIM performance is robust with graph size, while the Quantum Annealer is limited
by its size. Optimizing the anneal schedule will also improve the quantum annealer, which is
currently run for an anneal time of 20µs.

In Tables 1 and 2, we have shown the performance of the CIM against Gurobi. We measure
the time taken by our CIM (T ) and normalize all results against the solution found by Gurobi,
when run for time 10T . We also study the accuracy of the solutions obtained by Gurobi when
restricted to 0.1T, 0.5T, T, 5T . We see that the CIM performs well for under-constrained systems
(graphs with lower density) and loses performance slightly as the density increases (See Table 1).
Since finding the right set of parameters becomes harder for larger graphs, the CIM performance
is lower in Table 2. However, better bounds on the Max-Cut problem will alleviate this issue.

In Fig. 6, we compare the optimized version of matrix multiplication in our setup with different
numbers of multiplier units and we see the expected scaling.

Table 1. Cut values for a 100 node graph, with random unweighted edges. The cut values are normalized against that

obtained using Gurobi (10T ).

Graph CIM Gurobi Gurobi Gurobi Gurobi
Density (%) (T ) (0.1T ) (0.5T ) (T ) (5T )

10 1.014 0.975 0.975 0.975 0.992
20 1.006 0.873 0.984 0.989 0.995
30 1.008 0.862 0.862 0.862 0.991
40 1.019 0.884 0.884 0.884 0.993
50 0.994 1 1 1 1
60 0.986 1 1 1 1
70 0.991 1 1 1 1
80 0.951 0.999 0.999 0.999 0.999
90 0.927 1 1 1 1

100 0.974 1 1 1 1
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Figure 5. Success Probability of reaching the solution provided by Gurobi, when Gurobi is given a large time using (a)

our CIM (b) DWave-Advantage with an anneal time of 20µs.

Table 2. Cut values obtained for a 100-1000 node graphs, using randomly generated integral weighted edges from 1 to

10. The cut values obtained by the CIM and different runs of Gurobi are normalized against Gurobi (10T ).

Graph Time taken CIM Gurobi Gurobi Gurobi Gurobi
Size (CIM) (s) (T ) (0.1T ) (0.5T ) (T ) (5T )

100 15.500 1.019 0.884 0.884 0.884 0.993
200 21.300 0.985 0.996 0.996 0.998 1
300 31.400 0.982 0.999 1 1 1
400 46 0.990 0.998 0.998 0.998 1
500 65.100 0.979 0.997 0.999 0.999 1
600 85.900 0.960 1 1 1 1
700 112.600 0.961 0.999 0.999 1 1
800 143.800 0.940 0.999 1 1 1
900 179.700 0.977 1 1 1 1

1000 220.200 0.936 0.999 1 1 1

Our line search heuristic is robust against instance variability. This can be further improved
by using bounds on Max-cut values in (3.5), instead of using the sum off all edges in the graph.
Many studies with bounds have been extensively studied [22,23]. The algorithm can be further
improved by adaptively terminating it when the spins settle, instead of running it for a constant
number of iterations.
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Figure 6. A plot of the number of clock cycles (clock frequency of 100 MHz) taken for matrix multiplication versus instance

size, for different numbers of parallel units on the FPGA. The timing is done using the FPGA’s clock. In these runs, all the

attempts hit the perfect cut value, since the graph instance was small. Hence, the optimality is not represented.

Even without very careful optimization, our CIM is able to perform to reasonably high
standards, with accuracies comparable to the Gurobi optimizer. In fact, we do better than Gurobi
for graphs with 100 spins and densities less than 50%, as seen in Table 1.

4. Spatial Photonic Ising Machine
The Mattis spin glass [24,25] is a special case of the general Ising model, with the Hamiltonian

H =
∑
i,j

ζiζjσiσj , (4.1)

where σi is the binary spin at the ith lattice point and ζi is the amplitude contributing to the
coupling between spins. We constructed a spatial photonic Ising machine (SPIM) to solve (4.1)
and map it onto the number partitioning problem (NPP) for problem sizes up to over 16000 spins.
We benchmark the working of our system with other QUBO solvers, and show that adiabatically
tuning the Hamiltonian provides solutions which are on par with if not better than those achieved
by the D-Wave system.Our solution strategy scales linearly at worst with the problem size on our
current setup, and opens the door to parallel computing using photonic architectures.

(a) Setup and Methods
The experimental setup employed comprises a laser source, linear optical elements and an
imaging system, as shown in a schematic given in Fig. 7. A Gaussian laser beam from a 633 nm
He-Ne laser is aligned with the help of 2 mirrors in kinematic mounts. The light is linearly
polarized by a polarization beam splitter (PBS) aligned to the axis of the SLM. The beam profile
is then expanded as it passes through 2 convex lenses. The intensity of the beam is reduced after
passing through a beam splitter (BS). The resulting light is incident onto the screen of the SLM
(Holoeye PLUTO-2-VIS-016). The wavefront at the SLM plane undergoes a Fourier Transform
upon reflection by passing through a convex lens of focal length 50 mm, and this Fourier object
(captured at the back-focal plane of the lens) is then magnified using a second convex lens of the
same focal length. Finally, the magnified object is captured on a screen and imaged by a CMOS
camera (Basler acA2000-165um).
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Figure 7. Schematic of the experimental setup. The laser is linearly polarized by a PBS cube and using a beam expander,

we fill out the active area of the SLM. The light reflected from the SLM undergoes a Fourier Transform after passing

through a convex lens and subsequent magnification by a second convex lens increases the spatial resolution of the

Fourier plane. At the top left of the figure the superimposed phase masks are indicated. These represent the binary

checkerboard (cj =±1), phase mask of spins (sj = π/2 or 3π/2), and phase mask corresponding to the normalised

numbers in the set (αj = cos−1 ζj ). These phase masks are superimposed as θj = sj + cjαj .

Let us take the electric field at the plane of the SLM to be E⃗(r⃗). Assume a polarized incident
laser beam such that the incoming wavefront is

E⃗in(r⃗) =

N2−1∑
j=0

ζjrectj(r⃗)x̂, (4.2)

where ζj gives the complex amplitude of the electric field at the jth pixel of the SLM. We also
assume that the active area of the SLM comprises N ×N pixels of side length L, and that the
laser spot is approximately a plane wave of constant amplitude E0 over this active area and zero
elsewhere. The x-component of the electric field at the SLM plane is written as

Ex(r⃗) =E0

N2−1∑
j=0

ϕjrectj(r⃗), (4.3)

where rectj(r⃗) is the rectangular function and ϕj = exp (iθj). Here, θj is the phase delay imparted
by the jth SLM pixel to the laser beam. The field given in (4.3) undergoes a Fourier Transform to
become Ẽx(k⃗) at the camera plane [26]:

Ẽx(k⃗) =E0

∫ N2−1∑
j=0

ϕjrectj(r⃗) exp (i⃗k · r⃗)d2r. (4.4)

The intensity Ĩ(k⃗) at the readout plane is hence given by

∣∣∣Ẽx(k⃗)
∣∣∣2 =L2sinc2

(
k⃗ · L⃗
2

)
N2−1∑
m,n=0

ζmζnϕmϕn exp
[
i⃗k · (r⃗m − r⃗n)

]
. (4.5)

We now set a target intensity and define the cost function

Cost =
∑
x′, y′

[
I(x′, y′)− ITarget(x

′, y′)
]2

, (4.6)

where x′ and y′ are spatial coordinates in the camera plane. These represent the components
of k⃗∝ x′x̂+ y′ŷ. The constant of proportionality is given by 1

λf , where λ is the wavelength

of the laser and f is the focal length of the Fourier lens. Since ITarget(x
′, y′)2 = constant and
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∑
x′, y′ I(x

′, y′)2 ≈ constant over iterations, we can take the Hamiltonian to be the cross product
term such that

H =−2L2
∫

sinc2
(
k⃗ · L⃗
2

)
N2−1∑
m,n=0

ζmζnϕmϕn exp [i⃗k · (r⃗m − r⃗n)]ITarget(k)d
2k. (4.7)

If we consider a binary phase modulation by the SLM, i.e. ϕm =±1, then H represents an all-to-all
coupling in the Ising model, with coupling constants

Jmn =−2L2F

[
ĨTarget(k)sinc2

(
k⃗ · L⃗
2

)]
ζmζn. (4.8)

The coupling constant of two sites on the SLM depends on the chosen target intensity that we
desire to settle to. To encode problems of our choice, we choose the target intensity to be a 2D
delta function with peak at the central pixels of the camera, so that its effect after a Fourier
transformation is constant, and we have a coupling term that depends on ζmζn.

(b) Hardware
Using 256× 256 pixels as the active area of the SLM, we group adjacent pixels as a spin. This
aggregation is done to create sufficient contrast to be detected by the camera. We choose an
active area of 256× 256 pixels as it fills the laser spot on the SLM. Initializing a random spin
distribution within the active area, we keep a constant binary checkerboard in the inactive area.
Using this setup, we ran iterative algorithms to move from the random spin distribution to the
target distribution. Flipping d= 1 spins within the active area at each iteration, we capture the
resulting pattern with a CMOS camera.

The camera exposure time is set to give a maximum range for the intensity detection. The
cost function, (4.6), of this pattern is then calculated with respect to the target image. At the ith

iteration, Cost[i] − Cost[i-1] =∆E, and a Metropolis-Hastings (M-H) algorithm [27] is run with
an annealing schedule until the cost function converged to a minimum [28,29].

We see a steady decrease in the cost function as the experiment ran. As shown in Fig. 8, the cost
function for the M-H algorithm decrease to within a 100th of its initial value within 800 iterations
for a 16× 16 spin lattice.

(c) Solving the number-partitioning problem
The Mattis Hamiltonian can be exactly mapped to the objective function to be minimized to solve
the NPP [1], subject to a proportionality constant. With the same experimental setup from Sec. 4,
we take the electric field at the plane of the SLM to be E⃗(r⃗), polarized along x̂. Suppose the SLM
active area comprises N ×N pixels of side length l. Let M ×M pixels be one spin, so we have a
lattice of S × S spins, with N =MS. As shown in Sec. 4, and using the same approximations and
notations, the x-component of the electric field at the camera plane is given by

Ẽx(k⃗) =E0

∫ N2−1∑
j=0

ϕjrectj(r⃗) exp (i⃗k · r⃗)d2r. (4.9)

k⃗= 0⃗ gives the field at the origin of the readout plane as in [30]:

Ẽx(⃗0)∝−E0l
2
N2−1∑
j=0

ϕj . (4.10)

where ϕj = σje
i(−1)jαj . A similar idea was used in [31]. Here σj gives the spin value and αj =

cos−1 ζj , with ζj as the numbers normalized by dividing over the largest number in the set. These



11

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

Figure 8. Ising machine results for 16× 16 spins. We flip d= 1 spins at each iteration. The checkerboard is almost

entirely reproduced, as the cost function decreases to 0.04 of its initial value within around 800 iterations. The Hamiltonian

function is correlated with the cost function defined in (4.6) and similarly decreases. On the top right graph, the variable

β = 1
kBT

, where kB = 1.38× 10−23JK−1 and T is the temperature of the system.

two terms are constant over an area of adjacent M ×M pixels on the SLM, or within one spin.
Hence, the electric field at the center of the camera plane is

Ẽx(⃗0)∝−E0l
2
S2−1∑
a=0

σa
[
eiαa + e−iαa ....M2 terms

]
(4.11)

We choose M to be even, which allows us to group pairs of exponentials and obtain:

Ẽx(⃗0)∝−E0l
2M2

S2−1∑
a=0

σa cos (αa). (4.12)

The intensity at the center of the camera plane becomes

Ĩ (⃗0)∝
S2−1∑
m=0

S2−1∑
n=0

σmσ̄n cos (αm) cos (αn). (4.13)

Comparing (4.1) and (4.13), we find that Ĩ (⃗0) maps onto H .
With the experimental setup given in Fig. 7, the laser intensity is recorded at the central 64×

64 pixels on the image plane. The aim here is to minimize the total intensity captured at each
iteration. A recurrent feedback loop is therefore setup between the camera and SLM through a
Python program on a computer.

The Hamiltonian given by (4.1) is adiabatically changed from a problem instance of all equal
numbers, to the desired problem instance, according to:

H(t)∝
S2−1∑
m=0

S2−1∑
n=0

σmσn cos

(
tθm
T

)
cos

(
tθn
T

)
. (4.14)

The interpretation here is that the Hamiltonian initially represents a scenario where all the
numbers to be partitioned are equal when t= 0; hence, the checkerboard pattern for the spins
is a ground state solution. These spins are rotated in phase on the SLM, which causes a change in
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H to shift to represent the original Hamiltonian as we rotate the phase. For t= T , H is the same
as in (4.13). Since the rotation here is cosine and not linear, the intermediate problem instances
of the Hamiltonian are different from the target Hamiltonian. This phase imparted is to create
the amplitudes that encode the number, and is superposed with the phase mask representing the
spins as described in Sec. ((c)). The value of t is not changed continuously, but in steps determined
by the precision of the SLM. At each instance where the phases are changed, few iterations are
given to let the SLM settle to the changed Hamiltonian, as can be observed in Fig. 9.

The SLM active area is chosen as 256× 256 pixels or 512× 512 pixels, depending on the size
of the problem. Within this active area, we utilize the full analogue range of the SLM (8 bits) to
simultaneously perform amplitude and phase modulation to get a Mattis model Hamiltonian at
the readout plane. In our implementation, the range of problem instances depends on the size
of the floating point variables sent to the SLM, which is 24 bits after the decimal place. For any
number ζ = cosα, we have dζ =− sinα dα. Since the increment limit for the floating point is
dα= 10−8, and | sinα| ≤ 1, we get the upper limit as dζ ≤ 10−8. Hence, we can generate problem
instances where each number has 8 significant digits at best.

Taking N ×N adjacent pixels as a spin, a ground state is initialized, which for our initial
Hamiltonian is any configuration that is 50% phase π/2 and 50% phase 3π/2. The SLM is also
divided into macropixels of size 2× 2 pixels each. An additional phase of (−1)j cos−1 ζm is
applied onto the jth macropixel of the SLM active area, where m is the index of the spin. Since the
coupling constants are all positive in the problem instances we consider, adiabatically tuning them
results in a dip in the cost function. The exposure time of the camera is chosen for each problem
instance as the value required to just reach saturation of the intensity reading upon initializing
a problem instance. This allows us to maximize the range of intensity values and hence the cost
function change that the camera can detect, which leads to improved results.

At each stage in the adiabatic process [32], the M-H algorithm is run by flipping d spins at each
iteration and deciding whether to keep the flip based on the change in intensity, where the value
of d depends on the number of spins. Generally, we expect a lower value of d to provide better
convergence. We find an adiabatic solution by minimizing H ∝ I (⃗0) continuously as β = (kBT )−1

decreases, until a solution is reached. This way of encoding the problem onto a SPIM gives us an
efficient means to get approximate solutions to the NPP.

Adiabatically tuning the Mattis coupling coefficients improves the results, and the system
consistently performs well for problem sizes ranging from 16 spins to 16384 spins. A sample
plot for a problem instance of size 16384 spins is shown in Fig. 9. The plot at the top right of the
figure shows the cost function decreasing throughout the experiment, with sharp dips whenever
the coupling constants are changed. The quality of our solution is quantified by a fidelity,

η=

∣∣∣∣∣
∑

j ζjσj∑
j ζj

∣∣∣∣∣ , (4.15)

where ζj and σj are the values of the jth number and spin. Squaring the fidelity gives:

η2 =

∣∣∣∣∣
∑

i,j ζiσiζjσj∑
i,j ζiζj

∣∣∣∣∣ . (4.16)

The denominator in the above equation remains constant through all the iterations. Therefore,
the square of the fidelity is proportional to the Mattis model Hamiltonian given in (4.1) and by
extension, the intensity at the center of the camera plane as well. The fidelity is thus positively
correlated with the Hamiltonian throughout the energy landscape. In the plot shown on the
bottom left of Fig. 9, we can see that the fidelity escapes a local minima quite easily; hence, we
are able to sample a large solution space. This is partly due to the intrinsic intensity noise of
the laser source, and partly due to the algorithm employed. The same plot also reveals that the
number of accepted flips is a lot lower than the number of rejected flips. This is due to the Fourier
transform, an all-to-all operation, which results in a spin flip causing only a tiny change to the
detected intensity. A plot of the solution quality with problem size is shown in Fig. 10, where the
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Figure 9. Results for a problem instance of size 16384 spins. The periodic sudden dips in the cost function are a signature

of the adiabatic tuning of the coupling constants. As shown in the plot on the bottom right of the figure, the fidelity escapes

a local minima fairly easily, allowing us to sample a large energy landscape. Further, we can see that the number of

accepted flips is lower than the number of rejected flips. Insets on the colourmaps shown in the left show an expanded

view of a section of 10× 10 spins.

Figure 10. Scaling of the solution quality with problem size. The mostly downward trend, which shows that solution quality

increases on average with problem size. The experimental scheme is hence favourable in time complexity.

solution is averaged over several randomly generated problem instances. Unlike similar work
done previously, we do not use the Hamming distance as a metric for the solution quantity [33].
The NPP typically has several approximate solutions which may be degenerate, and yet of starkly
different spin configurations. The Hamming distance gives us information on how many spins
need to be flipped to achieve the true ground state, but from an application point of view, the aim
here is to benchmark the quality and utility of the achieved solution against other solvers.
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The performance of our SPIM in solving the NPP is compared with that of the D-Wave 5000+
qubit Advantage_system1.1 Annealer (DWA) [34] and the classical solver, Gurobi [14], by running
multiple problem instances on both devices.

• Table 3 compares the best fidelity achieved over a single run for different problem
instances of a fixed size.

• Table 4 shows average fidelity achieved and its corresponding runtime, for the maximum
problem size.

Table 3. Performance of size 64 spins on different problem instances, with the best fidelity achieved in each trial.

Trial Gurobi DWA SPIM
1 4.38E-05 2.89E-05 5.34E-04
2 3.58E-05 1.78E-04 1.28E-04
3 4.53E-05 2.41E-03 2.74E-04
4 1.07E-05 1.27E-05 1.47E-04
5 9.74E-05 1.16E-04 5.89E-04

Table 4. Benchmarking the SPIM with the DWA and Gurobi. *The SPIM runtime indicated is the maximum required for

all problem sizes. **The DWA runtime indicated includes the embedding time for 121 spins for different problem instances.

Solver Max. Problem Size Avg. Fidelity for 64 spins Runtime
SPIM 16384 6E-04 9 min.*
DWA 121 5.49E-04 ∼ 10 min.**

Gurobi 1024 4.66E-05
< 1 min. for 64 spins

∼ 10 min. for 1024 spins

We observe from Table 3 that the SPIM achieves fidelity values of O(10−4) for different
problem instances as opposed to the D-Wave device. Despite the fact that D-Wave has a 5000+
qubit system, the number of spins that can be embedded is capped at a 11× 11 grid for the
NPP. This is due to the large overhead in embedding a coupling between spins for a graph of
density 100%. The runtime of the SPIM also scales favourably for larger problem instances when
compared to other systems as we see in Table 4. For smaller problem sizes, up to 1024 spins, the
performance of Gurobi is consistently better than both the D-Wave system and the SPIM and
serves as a good benchmark. However, as the size of the problem gets larger, Gurobi is unable to
fetch a solution, and the D-Wave annealer can’t embed problem sizes greater than a 11x11 grid, of
121 spins, due to limited connectivity. For larger problem sizes, the SPIM provides us a scalable
method to solve the NPP.

5. Summary
We have successfully demonstrated two photonic Ising machines with off the shelf optical
components. The time multiplexed coherent Ising machine and the spatial multiplexed Ising
machine were each benchmarked against the Gurobi optimizer.

The CIM gave better results than Gurobi for the Max-Cut problem with 100 nodes (spins) with
a graph density less than 50%. Its performance was on par with Gurobi for graphs with up to
1000 nodes. Over an order of magnitude speed-up can be expected from further optimization of
the FPGA used in the CIM.



15

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

The SPIM could tackle the number partition problem with 214 spins, whereas both Gurobi
and D-Wave were limited to running with 210 spins. Future implementations of SPIMs will be
more compact, with a digital lens programmed into the SLM [35]. They can also operate at higher
speeds using fast adaptive optics technologies such as digital micromirror devices (DMDs) [36].

Data Accessibility. Data underlying the results presented in this paper are available under a Creative
Common License [37]
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