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Abstract

We explore the impact of investment-specific technology (IST) shocks on the cross-

section of stock returns and firms’ investment using a production-based asset pricing

model. The key property of our model is that the present value of growth opportunities

has higher beta with respect to IST shocks than the value of assets in place, which leads

to three main implications. First, firms with a higher fraction of growth opportunities in

the firm value (high-growth firms) exhibit risk premia different from those of firms with

fewer growth opportunities (low-growth firms). Second, high-growth firms co-move

with each other, giving rise to a systematic factor in stock returns distinct from the

market portfolio and related to the value factor. Third, stock return betas with respect

to the IST shocks reveal cross-sectional heterogeneity in firms’ growth opportunities.

We find empirical support for qualitative predictions of the model. We calibrate our

model and show that its main predictions for investment dynamics, cashflows and

expected returns are quantitatively consistent with the data.
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1 Introduction

The recent literature on real determinants of economic growth has emphasized the role of

changes in the technology for producing and installing new capital goods as an important

driver of growth and fluctuations. We explore the implications of investment-specific tech-

nology (IST) shocks for the dynamics of stock returns. We base our analysis on the idea

that IST shocks have a larger impact on firms demanding new capital goods, which are likely

firms relatively rich with growth opportunities. Accordingly, we treat the firm value as a

sum of two fundamental parts, the value of assets in place and the value of future growth

opportunities, with the latter having higher exposure to IST shocks.

As a consequence of the heterogeneous exposure to IST shocks, three insights emerge.

First, if risk premia on growth opportunities and assets in place are different, firms with

a higher fraction of growth opportunities in the firm value (high-growth firms) exhibit risk

premia different from those of firms with fewer growth opportunities (low-growth firms).

Second, high-growth firms co-move with each other, giving rise to a systematic factor in

stock returns distinct from the market portfolio and related to the value factor. Third, stock

return betas with respect to the IST shocks reveal cross-sectional heterogeneity in firms’

growth opportunities.

We develop a structural model of firm investment and stock price dynamics. In our

model, firms are exposed to an exogenous sequence of neutral and IST shocks. In addition,

each firm is endowed with a stochastic sequence of investment opportunities which it can

implement by purchasing and installing new capital. The present value of the firm’s growth

opportunities rises in response to a positive neutral shock or a positive IST shock, where

the latter corresponds to a decline in the price of new capital goods. In contrast, the value

of assets in place responds only to the neutral productivity shock. Thus, in the model,

high-growth firms exhibit higher stock return betas with respect to IST shocks than low-

growth firms. Therefore, heterogeneity in firms’ growth opportunities creates cross-sectional
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differences in risk premia. These differences are not captured by the market risk alone, as

long as the two types of technology shocks are not perfectly correlated.

Our model generates heterogeneity in expected returns across firms with different book-

to-market ratios. This happens because firms with higher growth opportunities tend to

have lower book-to-market ratios. Since high-growth firms load more on the IST shocks,

our model predicts that stocks with lower book-to-market ratios should have higher IST

exposure. Thus, our model generates co-movement of firms with similar book-to-market

ratios, giving rise to a value factor.

In addition to its implications for stock returns, our model offers novel predictions for

the dynamics of firm investment. Specifically, firms with more growth opportunities should

invest relatively more in response to a favorable IST shock since they have more potential

projects to invest in. This prediction for firm investment behavior offers a natural direct test

of the model’s mechanism for generating dispersion in risk premia.

Our model suggests a natural observable proxy for IST shocks: the difference between

stock returns of investment-good producers and consumption-good producers. Thus, in our

empirical tests, we employ a zero-investment portfolio long the stocks of investment-good

producers and short the stocks of consumption-good producers (IMC). The key benefit of

our stock-return based measure of IST shocks is that it is available at high frequency. We

use this high-frequency measure to estimate the conditional stock return betas with respect

to IST shocks, capturing time variation in the share of growth opportunities in firm value.

We sort firms on their stock return betas with respect to IMC returns (βimc). This results

in a declining pattern in average returns and an increasing pattern of return volatility and

stock market betas, which implies a declining pattern of CAPM alphas. The difference

in average annualized returns and CAPM alphas between the high- and low-βimc decile

portfolios is −3.2% and −7.1% respectively. These empirical results suggest that the risk

premium for the IST shocks is negative.

We find that firms with lower book-to-market ratios have higher IMC betas. This confirms
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that heterogeneous exposure to IST shocks generates co-movement among stocks with similar

book-to-market ratios. Cross-sectional heterogeneity in IMC betas across the book-to-market

portfolios contributes to the spread in their average returns, although the historical premium

on the IMC portfolio is not sufficient to fully account for the observed value premium.

Our model generates differences in risk premia across the βimc portfolios through cross-

sectional differences in growth opportunities. To verify this mechanism empirically, we eval-

uate our model’s implications for firms’ investment behavior in relation to βimc. We find

that βimc portfolios exhibit a number of patterns consistent with cross-sectional differences

in growth opportunities. In particular, high-βimc firms tend to have higher Tobin’s Q, hold

more cash, pay less in dividends, and invest more in R&D.

As predicted by our model, IMC betas identify heterogeneity in firms’ investment re-

sponses to the IST shocks. High-βimc firms not only invest more on average, but their

investment increases more in response to a positive investment shock, as measured by high

returns on the IMC portfolio. This pattern is statistically and economically significant. The

difference in investment-goods price sensitivity between the high-beta and the low-beta firms

is two to three times larger than the sensitivity of an average firm. Our model replicates

these patterns quantitatively.

We perform a number of robustness tests. In particular, we find that IMC betas identify

heterogeneous investment responses to other aggregate shocks affecting the firms’ cost of

capital, including the shocks to the price of new equipment and credit spread shocks. We find

that IMC portfolio returns have the largest impact on the cross-section of firms’ investment

rates, suggesting that IMC returns are a useful empirical proxy for IST shocks.

Our model closely replicates many quantitative patterns in stock returns, including the

failure of the CAPM to price the βimc portfolios. Assuming a negative risk premium for the

IST shocks, the model implies that high-growth firms have relatively low average returns.

This, in turn, implies a positive premium on the value factor. Our model also produces

a strong increasing pattern in market betas across the βimc portfolios. This pattern is

3



formed because growth firms have relatively high exposure to IST shocks, resulting in higher

beta with respect to the market portfolio. Consequently, our model generates a negative

relationship between market betas and average returns, as documented by Fama and French

(1992).

In addition to its implications for stock returns, our model replicates the dynamics of cash

flows and profitability of value and growth firms documented by Fama and French (1995).

In the year of portfolio formation, growth firms have higher average profitability than value

firms. In the years following portfolio formation, the average profitability of growth firms

declines, whereas the average profitability of value firms rises. Despite the fall in average

profitability, in the model, as in the data, the earnings of growth firms grow faster than value

firms, controlling for size. This pattern of mean reversion in profitability is driven partly by

the fact that growth firms invest relatively more on average and, as they accumulate capital,

become similar to value firms.

In summary, our analysis highlights heterogeneous exposure of firms to IST shocks as

a source of cross-sectional heterogeneity in risk premia. This mechanism has a number of

implications for stock returns and firm investment behavior which we confirm empirically.

Finally, we verify that a parsimonious structural model is able to account for several key

empirical patterns quantitatively, providing additional support for our theory.

The rest of the paper is organized as follows. Section 2 relates our work to existing

literature. Section 3 develops the theoretical model. In Section 4, we calibrate the model

and test it empirically. Section 5 concludes.

2 Related Research

Our paper bridges and complements two distinct strands of the finance and macroeconomic

literature. The first argues that differences in a firm’s mix between growth options and assets

are important in understanding the cross-section of risk premia, and the second argues for
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the importance of investment-specific shocks for aggregate growth and fluctuations.

In financial economics, the idea that growth opportunities may have different risk charac-

teristics than assets in place is not new (e.g., Berk, Green, and Naik (1999); Gomes, Kogan,

and Zhang (2003); Carlson, Fisher, and Giammarino (2004); Zhang (2005)). Earlier stud-

ies have argued that decomposing firm value into assets in place and growth opportunities

may be useful in understanding the cross-section of risk premia. In these models, assets in

place and growth opportunities have different dynamics of systematic risk. Our work com-

plements this literature by illustrating how a different mechanism can generate differences

in risk premia between assets in place and growth options. Most of these models feature a

single aggregate shock and thus imply that the value factor is conditionally perfectly corre-

lated with the market portfolio. The model of Berk et al. (1999) is one of the few exceptions,

it incorporates both aggregate productivity and discount rate shocks. Santos and Veronesi

(2009) argue that discount rate shocks lead to value firms having lower risk premia than

growth firms since growth firms’ cash flows have longer duration and thus higher exposure

to discount rate shocks. Papanikolaou (2010) shows that in a two-sector general equilib-

rium model, investment shocks can generate a value premium as well as the value factor.

There is no firm-level heterogeneity within the sectors in his model, while we explicitly model

firm heterogeneity within the consumption-good sector in terms of the mix between growth

opportunities and assets in place.

In macroeconomics, a number of studies have shown that IST shocks can account for

a large fraction of the variability of output and employment, both in the long run and at

business cycle frequencies (e.g., Greenwood, Hercowitz, and Krusell (1997, 2000); Christiano

and Fisher (2003); Fisher (2006); Justiniano, Primiceri, and Tambalotti (2010)). Investment

shocks can be modelled as either shocks to the marginal cost of capital as in Solow (1960)

or as shocks to the productivity of a sector producing capital goods as in Rebelo (1991) or

Christiano and Fisher (2003). Given that investment shocks lead to an improvement in the

real investment opportunity set in the economy, they naturally have a differential impact on
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growth opportunities versus assets in place.

Our work is also connected to the literature relating asset prices and firm investment. In

this literature, Tobin’s Q is commonly used as a stock-market based predictor of investment

(e.g., Hayashi (1982); Abel (1985); Abel and Eberly (1994, 1996, 1998); Eberly, Rebelo, and

Vincent (2008)). Tobin’s Q measures the valuation of capital installed in the firm relative to

its replacement cost. Thus, Tobin’s Q is commonly considered an observable proxy for growth

opportunities. In our paper, we use an alternative empirical measure of growth opportunities

introduced in Kogan and Papanikolaou (2010), which relies on the stock return betas with

respect to IST shocks. Our tests demonstrate that this measure is incrementally informative

when controlling for Tobin’s Q and other standard empirical predictors of investment.

A growing branch of asset pricing literature in finance relates Q-based theories of in-

vestment to stock return behavior (e.g., Cochrane (1991, 1996); Lyandres, Sun, and Zhang

(2008); Liu, Whited, and Zhang (2009); Li, Livdan, and Zhang (2009); Chen, Novy-Marx,

and Zhang (2010); Li and Zhang (2010)). This literature focuses on the relationship between

expected stock returns and firms’ investment decisions, which follows from firm’s optimizing

behavior. Our focus is instead on the mechanism behind the joint determination of invest-

ment behavior and risk premia. Thus, our work complements the existing studies and offers a

potentially fruitful way of improving our understanding of the links between real investment

and stock returns.

3 The Model

In this section we develop a structural model of investment. We show that the value of

assets in place and the value of growth opportunities have different exposure to the IST

shocks. Thus, the relative weight of growth opportunities in a firm’s value can be identified

by measuring the sensitivity of its stock returns to IST shocks.

There are two sectors in our model: the consumption-good sector, and the investment-

6



good sector. IST shocks manifest as changes in the cost of new capital goods. We focus on

heterogeneity in growth opportunities among consumption-good producers.

3.1 Consumption-Good Producers

There is a continuum of measure one of infinitely lived firms producing a homogeneous

consumption good. Firms behave competitively, and there is no explicit entry or exit in this

sector. Firms are financed only by equity, hence the firm value is equal to the market value

of its equity.

Assets in Place

Each firm owns a finite number of individual projects. Firms create projects over time

through investment, and projects expire randomly.1 Let F denote the set of firms and J (f)

the set of projects owned by firm f .

Project j managed by firm f produces a flow of output equal to

yfjt = εftujtxtK
α
j , (1)

whereKj is physical capital chosen irreversibly at project j’s inception date, ujt is the project-

specific component of productivity, εft is the firm-specific component of productivity, such as

managerial skill of the parent firm, and xt is the economy-wide productivity shock affecting

output of all existing projects. We assume decreasing returns to scale at the project level,

α ∈ (0, 1). Projects expire independently at rate δ.

1Firms with no current projects may be seen as firms that temporarily left the sector. Likewise, idle firms
that begin operating a new project can be viewed as new entrants. Thus, our model implicitly captures
entry and exit by firms.
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The three components of projects’ productivity evolve according to

dεft = −θε(εft − 1) dt+ σε
√
εft dBft (2)

dujt = −θu(ujt − 1) dt+ σu
√
ujt dBjt (3)

dxt = µx xt dt+ σxxt dBxt, (4)

where dBft, dBjt and dBxt are independent standard Brownian motions. All idiosyncratic

shocks are independent of the aggregate shock: dBft · dBxt = 0 and dBjt · dBxt = 0. The

firm and project-specific components of productivity are stationary processes, while the

process for aggregate productivity follows a Geometric Brownian motion, generating long-

run growth.

Investment

Firms acquire new projects exogenously according to a Poisson process with a firm-specific

arrival rate λft. The firm-specific arrival rate of new projects is

λft = λf · λ̃ft (5)

where λ̃ft follows a two-state, continuous-time Markov process with transition probability

matrix between time t and t+ dt given by

P =

(
1− µL dt µL dt

µH dt 1− µH dt

)
. (6)

We label the two states as [λH , λL], with λH > λL. Thus, at any point in time, a firm can

be either in the high-growth (λf · λH) or in the low-growth state (λf · λL), and µH dt and

µL dt denote the instantaneous probability of entering each state respectively. We impose

that E[λ̃ft] = 1, which translates to the restriction

1 = λL +
µH

µH + µL
(λH − λL) (7)
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When presented with a new project at time t, a firm must make a take-it-or-leave-it decision.

If the firm decides to invest in a project, it chooses the associated amount of capital Kj and

pays the investment cost ztxtKj. The cost of capital relative to its average productivity, zt,

is assumed to follow a Geometric Brownian motion

dzt = µzzt dt+ σzzt dBzt (8)

where dBzt · dBxt = 0. The z shock represents the component of the price of capital that is

unrelated to its current level of average productivity (x), and is the IST shock in our model.

A positive realization of z increases the cost of new capital goods and is thus considered a

negative IST shock.2 Finally, at the time of investment, the project-specific component of

productivity is at its long-run average value, ujt = 1.

Valuation

Let πt denote the stochastic discount factor. The time-0 market value of a cash flow stream

Ct is then given by E
[∫∞

0
(πt/π0)Ct dt

]
. For simplicity, we assume that the aggregate produc-

tivity shocks xt and zt have constant prices of risk, βx and βz respectively, and the risk-free

interest rate r is also constant. Then,

dπt
πt

= −r dt− βx dBxt − βz dBzt. (9)

This form of the stochastic discount factor is motivated by a general equilibrium model

with IST shocks in Papanikolaou (2010). In Papanikolaou (2010), states with low cost of new

capital (positive IST shock or low z) are high marginal valuation states because of improved

investment opportunities. This is analogous to a positive value of βz. Our analysis below

shows that empirical properties of stock returns imply a positive value of βz. Finally, we

choose a positive price of risk of the aggregate productivity shock x, which is consistent with

2An alternative modeling strategy is to model IST shocks as productivity shocks in the production of new
capital goods, as in Papanikolaou (2010). In that case,a positive IST shock translates into a larger quantity
of investment goods produced and thus a lower equilibrium price.
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most equilibrium models and empirical evidence.

Firms’ investment decisions are based on a tradeoff between the market value of a new

project and the cost of physical capital. The time-t market value of an existing project j,

p(εft, ujt, xt, Kj), is computed using the discounted cash flow formula:

p(εft, ujt, xt, Kj) = Et

[∫ ∞
t

e−δ(s−t)
πs
πt
εfsujsxsK

α
j ds

]
= A(εft, ujt)xtK

α
j , (10)

where

A(ε, u) =
1

r + δ − µX
+

1

r + δ − µX + θε
(ε− 1) +

1

r + δ − µX + θu
(u− 1)

+
1

r + δ − µX + θε + θu
(ε− 1)(u− 1) (11)

Firms’ investment decisions are straightforward because the arrival rate of new projects

is exogenous and does not depend on their previous decisions. Thus, optimal investment

decisions are based on the NPV rule. Firm f chooses the amount of capital Kj to invest in

project j to maximize

p(εft, ujt, xt, Kj)− ztxtKj (12)

Proposition 1 The optimal investment Kj in project j undertaken by firm f at time t is

K∗(εft, zt) =

(
αA(εft, 1)

zt

) 1
1−α

. (13)

The scale of a firm’s investment depends on firm-specific productivity, εft, and the price

of investment goods relative to average investment-specific productivity, zt. Because our

economy features decreasing returns to scale at the project level, it is always optimal to

invest a positive and finite amount.

The value of the firm can be computed as a sum of market values of its existing projects

and the present value of its growth opportunities. The former equals the present value of

cash flows generated by existing projects. The latter equals the expected discounted NPV of

future investments. Following the standard convention, we call the first component of firm
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value the value of assets in place, V APft, and the second component the present value of

growth opportunities, PV GOft. The value of the firm then equals

Vft = V APft + PV GOft (14)

The value of a firm’s assets in place is simply the value of its existing projects:

V APft =
∑
j∈Jf

p(eft, ujt, xt, Kj) = xt
∑
j∈Jf

A(εft, uj,t)K
α
j . (15)

The present value of growth options is given by the following proposition.

Proposition 2 The value of growth opportunities for firm f is

PV GOft = z
α
α−1

t xtG(εft, λft) (16)

where

G(εft, λft) = C · Et
[∫ ∞

t

e−ρ(s−t) λfsA(εfs)
1

1−α ds

]

=

 λf

(
G1(εft) + µL

µL+µH
(λH − λL)G2(εft)

)
, λ̃ft = λH

λf

(
G1(εft)− µH

µL+µH
(λH − λL)G2(εft)

)
, λ̃ft = λL,

(17)

and

ρ = r +
α

1− α
(µz − σ2

z/2)− µx −
α2σ2

z

2(1− α)2
, (18)

and

C = α
1

1−α
(
α−1 − 1

)
. (19)

The functions G1(ε) and G2(ε) solve

C · A(ε, 1)
1

1−α − ρG1(ε)− θε(ε− 1)
d

d ε
G1(ε) +

1

2
σ2
e ε

d2

d ε2
G1(ε) = 0 (20)

C · A(ε, 1)
1

1−α − (ρ+ µH + µL)G2(ε)− θε(ε− 1)
d

d ε
G2(ε) +

1

2
σ2
e ε

d2

d ε2
G2(ε) = 0. (21)

In addition to aggregate and firm-specific productivity, the present value of growth op-
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portunities depends on the IST shock, z, because the net present value of future projects

depends on the cost of new investment. In summary, the firm value in our model is

Vft = V APft + PV GOft = xt
∑
j

A(εft, ujt)K
α
j + z

α
α−1

t xtG(εft, λft) (22)

Risk and Expected Returns

Both assets in place and growth opportunities have constant exposure to systematic shocks

dBxt and dBzt. However, their betas with respect to the productivity shocks are different.

The value of assets in place is independent of the IST shock and loads only on the aggregate

productivity shock. The present value of growth option depends positively on aggregate

productivity and negatively on the unit cost of new capital. Thus, firms’ stock return betas

with respect to the aggregate shocks are time-varying and depend linearly on the fraction

of firm value accounted for by growth opportunities. Since, by assumption, the price of risk

of aggregate shocks is constant, the expected excess return of a firm is an affine function of

the weight of growth opportunities in firm value, as shown in the following proposition:

Proposition 3 The expected excess return on firm f is

ERft − rf = βxσx −
α

1− α
βzσz

PV GOft

Vft
(23)

Many existing models of the cross-section of stock returns generate an affine relationship

between expected stock return and firms’ asset composition similar to (23) (e.g., Berk et al.

(1999), Gomes et al. (2003)). It is easy to see, in the context of our model, how the relation-

ship (23) can give rise to a value premium. Assume that both prices of risk βx and βz are

positive, which we justify in the following sections. Then growth firms, which derive a rel-

atively large fraction of their value from growth opportunities, have relatively low expected

excess returns because of their exposure to IST shocks. To the extent that firms’ book-to-

market (B/M) ratios are partially driven by the value of firms’ growth opportunities, firms

with high B/M ratios tend to have higher average returns than firms with low B/M ratios.
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3.2 Investment-Good Producers

There is a continuum of firms producing new capital goods. We assume that these firms

produce the demanded quantity of capital goods at the current unit price zt. We assume that

profits of investment firms are a fraction φ of total sales of new capital goods. Consequently,

profits accrue to investment firms at a rate of Πt = φ zt xt λ
∫
F Kftdf , where λ =

∫
F λft is

the average arrival rate of new projects among consumption-good producers. Even though

λft is stochastic, it has a stationary distribution, so λ is a constant.

Proposition 4 The price of the investment firm satisfies

VIt = Γxt z
α
α−1

t

1

ρI
(24)

where we assume

ρI ≡ r − µX +
α

1− α
µZ −

1

2

α

1− α
σ2
Z −

1

2

α2 σ2
Z

(1− α)2
> 0 (25)

and

Γ ≡ φλα
1

1−α

(∫
A(ef , 1)

1
1−αdf

)
. (26)

The value of the investment firms will equal the present value of their cash flows. If we

assume that these firms incur proportional costs of producing their output, and given that

the market price of risk is constant for the two shocks, their value will be proportional to

cash flows or the aggregate investment expenditures in the economy. The stock returns of

the investment firms will then load on the IST shock (z) as well as the common productivity

shock (x).

Here, we note that a positive IST shock, defined as a drop in z, benefits the investment-

good producers. Even though the price of their output drops, the elasticity of investment

demand with respect to price is greater than one, so their profits increase. An equivalent

formulation of the model would be to specify a production function for investment firms

subject to IST shocks as in Papanikolaou (2010). A positive productivity shock in the
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investment sector would lead to a drop in the price of new equipment (z) and an increase in

profitability of investment goods producers. In Papanikolaou (2010), profits of investment-

good producers are a constant fraction of total sales of capital goods.

We define an IMC portfolio in the model as a portfolio that is long the investment sector

and short the consumption sector. The beta of firm f with respect to the IMC portfolio

return is given by

βimcft =
covt(Rft, R

I
t −RC

t )

vart(RI
t −RC

t )
(27)

where RI
t −RC

t is the return on the IMC portfolio.

Proposition 5 The beta of firm i with respect to the IMC portfolio return is given by

βimcft = β0t

(
PV GOft

Vft

)
(28)

where

β0t =
V t

V AP t

(29)

Proposition 5 is the basis of our empirical approach to measuring growth opportunities.

This approach was first used in Kogan and Papanikolaou (2010). The beta of firm f ’s return

with respect to the IMC portfolio return is proportional to the fraction of firm f ’s value

represented by its growth opportunities. Firms that have few active projects but expect

to create many projects in the future derive most of their value from their future growth

opportunities. These firms are anticipated to increase their investment in the future, and

their stock price reflects that. There is also an aggregate term in (28) that depends on

the fraction of aggregate value that is due to growth opportunities, which affects the IMC

portfolio’s beta with respect to the z-shock.
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4 Empirical Analysis and Calibration

4.1 Data and Procedures

Investment-specific shocks

Following the model developed in Section 3, we use the IMC portfolio as an observable proxy

for IST shocks. We first classify industries as producing either investment or consumption

goods according to the NIPA Input-Output Tables. We then match firms to industries

according to their NAICS codes. Gomes, Kogan, and Yogo (2009) and Papanikolaou (2010)

describe the details of this classification procedure.

Our model also implies that a value factor, defined as a portfolio long firms with high

book-to-market and short firms with low book-to-market in the consumption sector, also

loads on the IST shock. We construct the equivalent of the HML portfolio in Fama and

French (1993) using only firms in the consumption industry. We construct a 2×3 sort, sorting

firms first on their market value of equity (CRSP December market capitalization) and then

on their ratio of Book-to-Market (Compustat item ceq). We construct the breakpoints using

NYSE firms only. We construct our value factor in the consumption sector (CHML) as

1/2(SV − SG) + 1/2(LV − LG), where SG, SV, LG and LV refer to the corner portfolios.

Our CHML portfolio has a correlation of −47% with the IMC portfolio and a correlation

of 92% with the Fama and French (1993) HML factor.

Estimation of βimc

We use the firm’s stock return beta with respect to the IMC portfolio returns as a measure

of this firm’s IST shock sensitivity. For every firm in Compustat with sufficient stock return

data, we estimate a time-series of (βimcft ) from the following regression

rftw = αft + βimcft rimctw + εftw, w = 1 . . . 52. (30)
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Here rftw refers to the (log) return of firm f in week w of year t, and rimcftw refers to the log

return of the IMC portfolio in week w of year t. Thus, βimcft is constructed using information

only in year t.

We omit firms with fewer than 50 weekly stock-return observations per year, firms in

their first three years following the first appearance in Compustat, firms in the investment

sector, financial firms (SIC codes 6000-6799), utilities (SIC codes 4900-4949), firms with

missing values of CAPEX (Compustat item capx), PPE (Compustat item ppent), Tobin’s

Q, CRSP market capitalization, firms whose investment rate exceeds 1 in absolute value,

firms with Tobin’s Q greater than 100, firms with negative book values and firms where the

ratio of cash flows to capital exceeds 5 in absolute value. Our final sample contains 6,831

firms and 62,495 firm-year observations and covers the 1965-2007 period.

Our estimates of βimc are persistent even though they are estimated using non-overlapping

data. Table 1 reports transition probabilities among the βimc quintiles. Estimates of βimc also

exhibit sufficient variation over time, so we can distinguish the effect of βimc from firm-level

fixed effects.

[Table 1]

Summary statistics

We focus our analysis on firms in the consumption-good sector, following our theoretical

analysis above. Every year we split the universe of consumption-good producers into 10

portfolios based on their estimate of βimc. We summarize data definitions in the Appendix.

The top panel of Table 2 reports the summary statistics for firms in different βimc deciles.

The table shows a declining pattern of risk premia across the βimc deciles. At the same time,

there is a clear positive relationship between βimc and market betas. Thus, cross-sectional

differences in risk premia among high- and low-growth stocks are not captured by their

market risk. Moreover, as we show below, the increasing profile of market betas across the

βimc deciles is consistent with cross-sectional heterogeneity in growth opportunities and is
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present in our model.

The patterns of investment and firm characteristics across the deciles are also consistent

with our interpretation of βimc as measuring heterogeneity in growth opportunities. The

portfolio of high-βimc firms has a higher investment rate (22.4%) than the low-βimc firms

(16.5%). Moreover, high-βimc firms tend to have higher Tobin’s Q (1.38 vs 1.13), higher

R&D expenditures (6.0% vs 1.4%), and pay less in dividends (2.8% vs 9.0%) than low-

βimc firms, although the latter relationship is hump-shaped. Furthermore, high βimc firms

tend to be smaller, both in terms of market capitalization as well as book value of capital.

The highest βimc portfolio accounts for a fraction of 3.9% and 2.8% of the total market

capitalization and book value of capital versus 8.8% and 9.8% for the low βimc portfolio.

[Table 2]

Calibration

We calibrate our model to approximately match moments of aggregate dividend growth and

investment growth, accounting ratios, and asset returns. Thus, most of the parameters are

chosen jointly based on the behavior of financial and real variables. Table 4 summarizes our

parameter choices.

[Table 4]

We pick α = 0.85, the parameters governing the projects’ cash flows (σε = 0.2, θε =

0.35, σu = 1.5, θu = 0.5) and the parameters of the distribution of λf jointly, to match the

average values and the cross-sectional distribution of the investment rate, the market-to-book

ratio, and the return to capital (ROE).

We model the distribution of mean project arrival rates λf = E[λft] across firms as

λf = µλ δ − σλδ log(Xf ) Xf ∼ U [0, 1], (31)
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We pick σλ = µλ = 2. Regarding the dynamics of the stochastic component of the firm-

specific arrival rate, λ̃ft, we pick µH = 0.075 and µL = 0.16. We pick λH = 2.35, which

according to (7) implies λL = 0.35. These parameter values ensure that the firm grows at

about twice than the average rate in its high growth phase and about a third as fast than

average in the low growth phase.

We set the project expiration rate δ to 10%, to be consistent with commonly used values

for the depreciation rate. We set the interest rate r to 2.5%, which is close to the historical

average risk-free rate (2.9%). We choose the parameters governing the dynamics of the shocks

xt and zt to match the first two moments of the aggregate dividend growth and investment

growth. We choose φ = 0.07 to match the relative size of the consumption and investment

sectors in the data.

Finally, the parameters of the pricing kernel, βx = 0.69 and βz = 0.35 are picked to match

approximately the average excess returns on the market portfolio and the IMC portfolio.

Given our calibration, the model produces a somewhat lower average return on the IMC

portfolio equal to −3.9% vs −1.9% in the 1965 − 2008 sample. However, investment firms

tend to be quite a bit smaller than consumption firms, so the size effect may bias the

estimated return of the IMC portfolio upwards. Two pieces of evidence support this: when

excluding the month of January, which is when the size effect is strongest, the average return

on the IMC portfolio is −3.5%; in addition, its α with respect to the Small-minus-Big (SMB)

portfolio of Fama and French (1993) is −3.7%.

We simulate the model at a weekly frequency (dt = 1/52) and time-aggregate the data

to form annual observations. Each simulation sample contains 2,500 firms for 100 years. We

drop the first half of each simulated sample to eliminate the dependence on initial values.

We simulate 1,000 samples and report medians of parameter estimates and t-statistics across

simulations. In the simulated data, we estimate firm-level βimc using the same methodology

as in our empirical results, namely by estimating equation (30) using weekly data every year.

In the model, our estimates of βimc are slightly more persistent than the data.
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[Table 3]

The bottom panel of Table 2 reports the summary statistics for different βimc deciles using

simulated model output. Similarly to the empirical results in the top panel of the table, the

model generates a declining pattern of risk premia across the βimc deciles accompanied by

an increasing pattern of market betas. In the model, market betas are higher for firms with

more growth opportunities. The aggregate stock market value consists of the aggregate value

of assets in place and the aggregate value of growth opportunities. Both assets in place and

growth opportunities have unit beta with respect to neutral technology shocks. At the same

time, only growth opportunities load on the IST shocks. Thus, firms with higher fraction of

growth opportunities in their value have higher market betas in the model.

The patterns of investment and firm characteristics across the deciles are also similar to

the empirical patterns. High-βimc firms tend to have higher investment rates as measured by

the aggregate investment rate of the portfolio. High-βimc firms tend to have higher Tobin’s

Q and smaller size, measured either by their market capitalization or capital stock.

Next, we test the predictions of our model for the dynamics of stock returns and firms’

investment. We compare our empirical findings to the output of the calibrated model and

evaluate both the qualitative features and the magnitude of the patterns generated by the

model.

4.2 Stock Returns

As we show in Proposition 3, cross-sectional differences in the fraction of growth opportu-

nities in firms’ values lead to cross-sectional differences in equity risk premia. Furthermore,

we show in Proposition 5 that unobservable growth opportunities can be measured empiri-

cally using the firms’ stock return betas with respect to the IMC portfolio returns. We now

verify that our model implies empirically realistic behavior of stock returns in relation to the

differences in growth opportunities (captured by βimc) across firms.
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IMC-beta sorted portfolios

We sort firms annually into 10 value-weighted portfolios based on the past value of βimc. Both

in the actual and simulated data, we estimate βimc using weekly returns and rebalance the

portfolios at the end of every year. In each simulation and for each portfolio p, we estimate

average excess returns E[Rpt]− rf , return standard deviations σ(Rpt), and regressions

Rpt − rf = αp + βmktp (RMt − rf ) + εpt, (32)

Rpt − rf = αp + βmktp (RMt − rf ) + βimcp (Rimc
t ) + εpt, (33)

Rpt − rf = αp + βmktp (RMt − rf ) + βchmlp (Rchml
t ) + εpt, (34)

where Rimc
t and Rchml

t denote returns on the IMC and CHML portfolios respectively.

[Table 5]

Table 5 compares the properties of returns in historical and simulated data. The top panel

replicates the findings of Papanikolaou (2010), who shows that sorting firms into portfolios

based on βimc results in i) a declining pattern in average returns; ii) an increasing pattern

of return volatility and market betas; and iii) a declining pattern of CAPM alphas. The

difference in average returns and CAPM alphas between the high- and low-βimc portfolios is

−3.2% and −7.1% respectively. The high-βimc portfolio has a standard deviation of 29.7%

and a market beta of 1.6 versus 15.8% and 0.75 respectively for the low-βimc portfolio.

Furthermore, a two-factor model that includes either the IMC portfolio or the CHML

factor in addition to the market portfolio reduces the difference in alphas to −3.0% and

−2.6% respectively. In addition, there is a monotonically decreasing pattern in βchml across

the βimc deciles, suggesting that IMC and CHML capture common sources of co-movement

in the data.

The bottom panel of Table 5 contains the same regressions performed in simulated data.

The difference in average returns and CAPM alphas between the high- and low-βimc portfolios
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is −3.5% and −5.7% respectively. Moreover, as in the data, the high-βimc portfolio has both

a higher standard deviation (20%) and market beta (1.2) than the low-βimc portfolio (14%

and 0.8 respectively). In simulated data, a two factor model that includes market portfolio

returns and IMC or CHML successfully prices the spread across decile portfolios. The

estimates of αp in (33) and (34) are both close to zero and not statistically significant.

Book-to-market sorted portfolios

We now assess the ability of our model to replicate the empirical relationship between stock

returns and the book-to-market ratio. As we show in Section 3, the book-to-market ratio

in our model is correlated with expected stock returns because it is inversely related to

PV GO/V . We perform the same exercise as Fama and French (1993) and sort firms in the

consumption industry on their ratio of Book Equity (Compustat item ceq) to Market Equity

(CRSP December market capitalization) into 10 portfolios.

[Table 6]

The top panel in Table 6 estimates equations (32-34) in historical data. In the consumption-

good sector, the difference in average returns and CAPM alphas between value firms and

growth firms is 6.1% and 5.9% respectively. When estimating equation (33), with the ex-

ception of the extreme value portfolios, there is a declining pattern in βimc across book-to-

market deciles. Similarly, when estimating equation (34), there is an increasing pattern in

βchml across deciles. As before, these results suggest that IMC and CHML may be captur-

ing common sources of co-movement among stocks with similar book-to-market ratios. The

difference in estimated alphas across the decile portfolios in equations (33-34) is 6.0% and

0.9% with t-statistics of 2.4 and 0.5 respectively.

The bottom panel in Table 6 presents estimates of equations (32-34) in simulated data.

The difference in average returns and CAPM alphas between the two extreme book-to-

market portfolios is 4.3% and 6.3% respectively. Moreover, the CAPM betas decline across
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the book-to-market deciles. Thus, our model replicates the failure of the CAPM to price the

cross-section of book-to-market portfolios. When estimating equations (33-34), the difference

in alphas across the extreme book-to-market deciles is 0.8% and −0.1% respectively. Inter-

estingly, even though the two-factor unconditional specification works very well in simulated

data, CHML works marginally better than IMC in pricing the cross-section of book-to-

market portfolios. The reason why this happens in the model is that both IMC and CHML

exhibit time-variation in their loading on the IST shock, even though both are perfectly con-

ditionally correlated. By construction, CHML explains the cross-section of book-to-market

portfolios slightly better unconditionally.

Size and book-to-market sorted portfolios

Next we assess the model’s ability to match the properties of portfolio returns sorted first

on market equity and then on book-to-market. In the model, this is an informative sort

because controlling for firm size increases the informativeness of the book-to-market ratio

about PV GO/V . Focusing on firms in the consumption industry, we first sort stocks into five

size quintiles on their market capitalization, as in Fama and French (1993). Then, we further

divide each size quintile into five book-to-market quintiles. We use NYSE breakpoints. In

the data, the interquintile spread in book-to-market in the small quintile portfolio is roughly

two times the interquintile spread in book-to-market in the large portfolio. In the model,

the proportional difference in interquintile book-to-market spreads across the extreme size

portfolios is about one and a half. In the model, there is greater dispersion in PV GO/V

among small firms. Part of the reason is that small firms tend to have fewer projects, which

implies lower diversification of the project specific shocks (u), and thus tend to have greater

heterogeneity in assets in place relative to total firm value. In addition, small firms in the

model tend to have low productivity and low value of assets in place. As a result, their

growth opportunities can account for a large fraction of firm value, creating larger dispersion

in PV GO/V than large firms.
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[Table 7]

Table 7 shows the properties of the portfolios obtained by the two-dimensional sort of

firms in the data and in the model. The top panel summarizes empirical statistics for

the lowest and the highest size quintile of firms. For both the small and large quintile

portfolios there is a positive relationship between average returns and book-to-market, but

the difference is larger for smaller firms. Moreover, conditional on size, there is a declining

relationship between CAPM betas and book-to-market, more so for small firms than for

large. In equation (32), the estimated CAPM alphas are 9.5% and 2.5% for small and large

firms respectively. When we estimate equations (33-34), we find that, conditional on size,

there is a monotone pattern between the book-to-market sort and either βimc or βchml. The

two-factor model with IMC and CHML works well in pricing the cross-section of book-

to-market among large firms, but not among small firms. The difference in estimated αp

coefficients across book-to-market for the smallest quintile is 8.3% and 5.4% respectively.

Interestingly, the dispersion in both the book-to-market characteristic and βimc is two times

larger in the smallest quintile than in the largest, but risk premia are four times larger.

The bottom panel contains the corresponding numbers based on model output. The

model is able to reproduce the pattern of co-movement in the data rather well. First, the

model accurately captures the profile of declining market betas across book-to-market sorts

very accurately, as well as the level and dispersion of βimc across the size and book-to-

market portfolios. In the model, the cross-sectional spread in risk premia and market betas

is much larger among small stocks because they exhibit larger dispersion in the ratio of

growth opportunities to firm value. This can be seen from the cross-section dispersion in

βimc, which is higher among small stocks.

The two-shock structure of the model implies that conditional expected returns are per-

fectly explained by the conditional betas with respect to two non-degenerate aggregate risk

factors. In the model, the combination of the market portfolio with either the IMC portfolio

or the CHML portfolio also explains the cross-section of expected returns on the double-
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sorted portfolios very well unconditionally. In the data, the two factors lead to statistically

significant pricing errors, particularly for small size portfolios. Moreover, the fraction of

portfolio return variance captured by the factors is significantly lower than in the model. Fi-

nally, with the exception of the extreme value portfolio, the CAPM beta tend to be negatively

related to the book-to-market ratio.

4.3 Response of firm-level investment to IST shocks

Since growth opportunities are not observable directly, we base our empirical tests on ob-

servable differences between firms with high and low growth opportunities. In particular, our

model makes an intuitive prediction that firms with high growth opportunities, being better

positioned to take advantage of positive IST shocks, should increase investment more in re-

sponse to a positive investment shock than firms with low growth opportunities. While this

prediction is easy to verify in our model, one would expect it to hold much more generally.

Investment response to IMC returns

We compare quantitative implications of the model for firm-level investment sensitivity to

IST shocks to the empirical patterns. A subset of the following empirical results has been

reported in Kogan and Papanikolaou (2010). We reproduce these results here to facilitate a

comparison with the model’s output.

We use returns on the IMC portfolio as our benchmark measure of IST shocks. Empir-

ically, we estimate the sensitivity of firms’ investment to IST shocks using the econometric

specification

ift = a1 +
5∑
d=2

adD(βimcf,t−1)d + b1 R̃
imc
t +

5∑
d=2

bdD(βimcf,t−1)d × R̃imc
t + cXf,t−1 + γf + ut, (35)

where it ≡ It/Kt−1 is the firm’s investment rate, defined as capital Expenditures (Compustat

item capx) over Property Plant and Equipment (Compustat item ppent), R̃imc
t = Rimc

t +Rimc
t−1

refers to accumulated log returns on the IMC portfolio and D(x)d is a βimc-quintile dummy

24



variable (D(βimci,t−1)n = 1 if the firm’s βimc belongs to the quintile n in year t− 1). Xf,t−1 is a

vector of controls which includes the firm’s Tobin’s Q, its lagged investment, leverage, cash

flows and log of its capital stock relative to the aggregate capital stock. Definitions of these

variables are standard and are summarized in the Appendix. We standardize all independent

variables to zero mean and unit standard deviation using unconditional moments. The

sample covers the 1962-2007 period.

The coefficients (a1, . . . , a5) and (b1, . . . , b5) on the dummy variables measure differences

in the level of investment and response of investment to IST shocks respectively. We estimate

the investment response both with and without firm- and industry-level fixed effects, and

both with and without controlling for commonly used predictors of firm-level investment.

When computing standard errors, we account for the fact that investment may contain an

unobservable firm and time component. Following Petersen (2009), we cluster standard

errors both by firm and time.3

[Table 8]

We summarize the results in Table 8. For all specifications, firms with high βimc in-

vest more on average, and their investment rate responds more to an investment-specific

shock. Thus stock-return betas with respect to IMC translate into investment-rate betas.

A single-standard-deviation IMC return shock changes firm-level investment by 0.096 stan-

dard deviations on average. This number varies between 0.053 for the low-βimc firms and

0.176 for the high-βimc firms. The spread between quintiles is economically significant and

equal to 0.123 standard deviations, which is larger than the average sensitivity of investment

rate to IST shocks. In response to a single-standard-deviation IMC return shock, the level

of the investment rate of low-βimc firms changes by 0.9% compared to the 3.1% response

by the high-βimc firms. Fluctuations of this magnitude are substantial compared to the

3Petersen (2009) suggests following Cameron, Gelbach, and Miller (2006) and Thomson (2006) who
estimate the variance-covariance matrix by combining the matrices obtained by separately clustering by firm
and by time.
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unconditional volatility of the aggregate investment rate changes in our sample, which is

2.4%.

When controlling for industry fixed effects and Tobin’s Q, lagged investment rate, lever-

age, cash flows and log capital, the difference in coefficients on our proxy for the IST shock

between the extreme βimc quintiles of firms diminishes somewhat to 0.086, and it is at 0.089

once firm fixed effects are included in the specification.

In the model, we define firm-level investment during year t as a sum of the investment

expenses incurred throughout that year, i.e. Ift =
∑

s∈t xszsK
∗
fs, where K∗fs refers to the

scale of a project acquired by firm f at time s.4

We define the book value of the firm as the replacement cost of its capital, Bft =

zt xt
∑

j∈JftKjt, where Kj refers to capital employed by project j, and Jft denotes the

set of projects owned by firm f at the end of year t.5

Table 9 shows that in simulated data, a single-standard-deviation investment shock leads

to an increase in firm-level investment of 0.053 standard deviations. However, as in the actual

data, the impact of investment shocks varies in the cross-section of firms from 0.026 to 0.110

between the low- and high-βimc firms respectively. The difference in coefficients between the

high- and low-βimc firms drops to 0.029 when we include Tobin’s Q and cash flows in the

specification. Thus, the magnitude of investment response to IST shocks (approximated by

IMC returns) in the model is very similar to the empirical estimates in Table 8.

[Table 9]

Investment response to CHML returns

Our model implies that IST shocks give rise to a value factor in stock returns. Thus, it is

natural to ask whether CHML also predicts heterogenous investment behavior among firms

4We simulate the model at a weekly frequency and aggregate to form annual observations. Thus, firms
can acquire multiple projects in a year.

5As a robustness check, we also perform simulations with the book value of the firm defined as the
cumulative historical investment cost of its current portfolio of projects. Our results are essentially the same
under the two definitions.
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with different growth opportunities. We estimate equation (35) while replacing R̃imc
t with

−R̃chml
t = −Rchml

t −Rchml
t−1 . We summarize the results in Table 10.

[Table 10]

For all specifications, the investment rate of firms with high βimc responds more to

CHML. CHML does not predict average investment very well, but it does predict het-

erogenous investment rates in the cross-section. The spread between quintiles is economically

and statistically significant, and ranges from 0.046 to 0.073 standard deviations, depending

on controls. The magnitude of the difference in investment responses to CHML is smaller

than that to IMC. In response to a single-standard-deviation CHML return shock, the level

of the investment rate of low-βimc firms changes by -0.3%, compared to a 1.6% response for

the high-βimc firms. Given that the unconditional volatility of the aggregate investment

rate change in our sample is 2.4%, the difference in investment responses is economically

significant. Replacing CHML with the HML factor of Fama and French (1993) results in

very similar results. Finally, given that in our model the unconditional correlation between

CHML and IMC is over 95% in absolute terms, the equivalent of Table 10 in the model is

very similar to Table 9.

The results of this section provide direct support for the model’s mechanism behind the

value factor in stock returns and behind the differences in risk premia between value and

growth firms. The fact that both IMC and CHML returns forecast firm-level investment

in agreement with the model’s predictions highlights the impact of IST shocks on the cross-

section of stock returns.

Investment response to price of equipment shocks

As an additional robustness check, we consider the quality-adjusted series of new equipment

prices as an alternative proxy for IST shocks. This provides an additional test of the model’s

mechanism as well as a test of βimc as an empirical measure of growth opportunities. One-

sector macroeconomic models with IST shocks often imply that the relative price of new

27



equipment is directly inversely related to the investment shock (e.g., Greenwood et al. (1997,

2000); Fisher (2006)). In more elaborate models (e.g., Fisher (2009); Papanikolaou (2010);

Justiniano et al. (2010)) the price of new equipment is endogenous and responds negatively

to positive IST shocks.

As a measure of the price of new equipment, we use the quality-adjusted price series of

new equipment constructed by Gordon (1990), Cummins and Violante (2002) and Israelsen

(2010).6 To compute the price of equipment relative to consumption goods, we normalize

the price of new equipment by the NIPA consumption deflator. As Fisher (2006) points

out, the real equipment price experiences an abrupt increase in its average rate of decline in

1982, which could be due to the effect of more accurate quality adjustment in more recent

data (e.g., Moulton (2001)). To address this issue, we remove the time trend from the series

of equipment prices and define investment-specific technological changes as changes in the

detrended log relative price of new equipment goods.

Specifically, we construct a de-trended equipment price series zt by regressing the log-

arithm of the quality-adjusted price of new equipment relative to the NIPA personal con-

sumption deflator on a piece-wise linear time trend:

pt = a0 + b011982 + (a1 + b111982) · t+ zt (36)

where 11982 is an indicator function that takes the value 1 post 1982. We then define

investment-specific technology shocks as increments of the de-trended series

∆zt = zt − zt−1, (37)

Innovations in investment technology lead to a decline in the quality-adjusted price of new

equipment, so we refer to a negative realization of ∆zt as a positive IST shock. Our results

remain similar when, instead of using first log differences of the zt series, we compute AR(1)

6Cummins and Violante (2002) extrapolate the quality adjustment of Gordon (1990) to construct a price
series for the period 1943-2000. Israelsen (2010) extends the price series through 2006.
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residuals, use simple first differences or apply the HP-filter to the relative price series. The

series ∆zt is weakly positively correlated with the series of returns on the IMC portfolio.

The historical correlation between the two series is 22.3% with a HAC-t-statistic of 2.31.

Using the new measure of investment-specific technological changes, we estimate equa-

tion (35) with ∆zt replacing R̃imc. We present the results in Table 11. A one-standard

deviation shock to ∆zt increases firm-level investment on average by 0.035 standard devi-

ations, but the response differs in the cross-section and ranges from 0.007 to 0.069 for the

low- and high-βimc quintiles respectively. Thus, high-βimc firms invest more in response to

a decline in equipment prices, which further supports our interpretation of these firms as

having more growth opportunities.

[Table 11]

In the model, z-shocks are perfectly conditionally correlated with IMC returns, and the

absolute unconditional correlation is over 95%. Thus, the impact of shocks to the price of

capital on investment is very similar to the impact of IMC returns. We therefore compare

the model implications from Table 9 to the empirical patterns in Table 11. The two are very

similar qualitatively and quantitatively.

Investment response to credit shocks

We have shown that three theoretically motivated measures of IST shocks, namely IMC,

CHML and the relative price of equipment, predict cross-sectional differences in investment

rates between firms with high and low βimc. Using the same methodology, one can estimate

investment response to a variety of economic shocks affecting the willingness of firms to

invest. Here we consider one important example: investment response to unexpected changes

in aggregate credit or liquidity conditions, measured by aggregate credit spreads. Tightening

credit conditions should have a similar effect on investment as a negative investment-specific

shock, effectively leading to increased cost of investment. Thus, states with tight credit
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are effectively states with low real investment opportunities. This is related to the findings

in Justiniano, Primiceri, and Tambalotti (2009), who estimate a medium-scale dynamic

stochastic general equilibrium model (DSGE) allowing for two types of investment shocks.

One of their investment shocks is a shock to the marginal efficiency of investment (MEI),

which affects the marginal rate of transformation of investment goods to installed capital.

Justiniano et al. (2009) find that the filtered MEI shock exhibits negative correlation with

credit spreads. Their finding is related to Philippon (2009), who finds that a measure

of Tobin’s Q constructed using bond market data, which to a first order is equal to the

corporate bond spread, predicts aggregate investment quite well. The economic source of

this MEI shock is unclear, but it seems to capture time-variation in aggregate investment

opportunities.

Given the above, we consider the innovation in the spread between Baa and Treasury

bonds as an additional measure of the investment shock. Specifically, we use an AR(1) model

of credit spread dynamics to define innovations (∆st) in credit spreads:

∆st = crt − 0.784 crt−1, (38)

where crt is the yield spread between Baa and Treasury bonds. We consider an increase

in the aggregate credit spread (∆s > 0) as an adverse investment shock. The correlation

between ∆st and our two measures of investment shocks, R̃imc and ∆z, is equal to -0.36 and

0.14 respectively in the 1963-2008 sample.

We estimate cross-sectional differences in the firm-level investment response to changes

in credit spreads across the βimc-quintiles. Specifically, we estimate equation (35) with ∆st

replacing R̃imc. Table 12 reports the results. On average, firms increase investment when

credit spreads fall, and the sensitivity of investment rate to credit shocks increases across

the βimc-quintiles. A single-standard-deviation positive credit shock increases the average

firm-level investment rate by 0.078 standard deviations. The difference in investment rate

responses between high- and low-βimc quintiles of firms is statistically significant and equal to
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0.064 standard deviations. With various additional controls, the latter estimate falls between

0.049 and 0.061.

[Table 12]

Tobin’s Q and growth opportunities

Next, we investigate how well Tobin’s Q performs as an alternative measure of growth

opportunities. Tobin’s Q, defined as the market value of the firm divided by the replacement

cost of its capital, is commonly used as an empirical proxy for growth opportunities. The

underlying intuition is well known: firms with abundant growth opportunities have relatively

high market value compared to their physical assets and thus tend to have high Tobin’s Q.

We estimate equation (35) using Tobin’s Q instead of βimc. When doing so, we drop

Tobin’s Q as a control. The results are qualitatively similar but noticeably weaker than

those obtained with βimc, as we show in Table 13. The difference in the response of the

investment rate to the IMC return between high- and low- Tobin’s Q firms is between 0.054

and 0.068, depending on the controls.

[Table 13]

In the model, Tobin’s Q, or the market-to-book ratio, also contains information about

growth opportunities. To verify this, we estimate equation (35) in simulated data. We

report simulation averages of coefficients and t-statistics in Table 14. In simulated data, the

effect of a single-standard-deviation investment shock on firm investment varies from 0.12

for the top Q-quintile to 0.02 for the bottom quintile. From this, we conclude that in the

model Tobin’s Q is a good proxy for growth opportunities. Of course, this is partly because

it is measured accurately in simulations, whereas in the data it might be contaminated by

measurement errors.

[Table 14]
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We conclude that our model replicates the key empirical properties of firms’ investment,

both qualitatively and quantitatively. In particular, we find that firm’s IMC beta and Tobin’s

Q contain information about its growth opportunities, and IMC returns predict significant

heterogeneity in firms’ investment rates, thus providing a useful observable proxy for IST

shocks.

Additional robustness checks

We perform a number of additional robustness checks. First, it is possible that βimc captures

firms’ financial constraints and not the differences in their real production opportunities.

This possibility is consistent with our approach, since financially constrained firms, defined

as firms with insufficient cash holdings and limited access to external funds, cannot take

advantage of investment opportunities and as such have effectively low growth opportunities.

Thus, future growth opportunities depend both on the firm’s financial constraints and its

real investment opportunities. To sharpen the interpretation of our empirical results, we

attempt to distinguish financial constraints from real effects. We replicate our empirical

analysis on a sample of firms relatively less likely to be constrained, namely firms that have

been assigned a credit rating by Standard and Poor’s. This restricts our sample to 1, 336

firms and 13, 456 firm-year observations. We find that our results hold in this sample, with

the difference in the response of investment to R̃imc between the extreme βimc-quintiles of

0.205. This estimate is in fact greater than the one obtained for the entire sample of firms,

indicating that our findings are unlikely to be explained by financial constraints alone.

Second, we estimate βimc using stock return data, while the theory suggests using returns

on the total firm value. Our findings could be explained by investment of highly levered firms

being relatively sensitive to investment shocks. The results in Table 2 suggest that this is not

likely to be the case, as there does not seem to be systematic differences in leverage across

portfolios. Furthermore, as a robustness check, we approximate βimc at the asset level (de-

lever the equity-based estimates) under the assumption that firms’ debt is risk-free. We
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re-estimate equation (35) using de-levered βimc. We find that the difference in investment

responses between the high- and low-βimc firms is statistically significant and equal to 0.097

and 0.118, depending on whether we use book or market leverage.

Third, we consider whether βimc may be capturing inter-industry differences in technol-

ogy instead of capturing meaningful differences in growth opportunities.7 We investigate

this possibility by defining βimc quintiles based on the firm’s intra-industry βimc ranking,

where we use the 30 industry classification of Fama and French (1997). We find that our

results are driven by intra- rather than inter-industry variation. The difference in investment

responses between the firms in high- and low-βimc quintiles relative to their industry peers

is statistically significant and equal to 0.121.

Finally, we check whether the sort on βimc is informative because it indirectly generates

dispersion in market betas. As we show in Table 2, there is a large difference in market betas

between the βimc decile portfolios, ranging from 0.75 for the low-βimc decile to 1.61 for the

high-βimc decile. This dispersion in market betas is consistent with the model. Empirically,

we find that intra-industry ranking of firms on market betas leads to largely insignificant

response differences between the βmkt quintiles. This shows that IMC betas are superior to

market betas at identifying cross-sectional differences in growth opportunities.

To conserve space, we do not report the full details of the above robustness checks and

refer the reader to the web Appendix.

4.4 Cash flow properties of value and growth firms

In this section we analyze the dynamics of cash flows implied by our model.8 In particular, we

compare model output to the empirical properties of cash flows patterns of value and growth

firms studied by Fama and French (1995). Fama and French (1995) find that, at the time

7This possibility is not addressed by the controls we use in estimation, since we do not allow the loadings
on quintile dummies to interact with the industry fixed effects.

8We focus on firms’ cash flows rather than their dividends because the payout policy is not uniquely
determined in the model.
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of portfolio formation, growth firms are more profitable in terms of return on equity (ROE)

than value firms. In the years following portfolio formation, profitability of growth firms

declines whereas the profitability of value firms increases. Post-portfolio formation, earnings

of growth firms grow faster than those of value firms; however, their book value grows

faster as well. As growth firms acquire more capital, their average profitability, measured

by the earnings-to-book ratio, declines. We thus observe mean-reversion in profitability: the

profitability gap between value and growth firms is at its highest value in the year of portfolio

formation, and declines steadily in the following years.

We first reproduce the findings of Fama and French (1995) for the subset of firms produc-

ing consumption goods. We sort firms into size portfolios based on their market capitaliza-

tion and the ratio of book-to-market equity using NYSE breakpoints. For each portfolio, we

compute the portfolio’s earnings-to-book ratio and the ratio of portfolio earnings to market

earnings for a period of five years before and five years after the year of portfolio formation.

The portfolio’s earnings-to-book ratio is defined as the sum of cash flows of firms in the

portfolio divided by their lagged book value of equity. The ratio of the portfolio’s earnings

to market is defined as the sum of cash flows of all firms in the portfolio divided by the sum

of all cash flows of firms in the consumption sector. We normalize this ratio by its value

in the formation year. We construct cash flows as the sum of income before extraordinary

items (Compustat item ib) plus depreciation (Compustat item dp) minus preferred dividends

(Compustat item dvp).

We present our empirical findings in the top two panels of Table 15. Similar to Fama

and French (1995), growth firms have a higher ratio of earnings-to-book than value firms at

the time of portfolio formation (0.25 for small growth firms and 0.35 for large growth firms

versus 0.11 and 0.18 for small and large value firms respectively). Over the next five years

the average profitability of growth firms declines to 0.23 and 0.31 for small and large firms

respectively, while the average profitability of value firms increases to 0.17 and 0.22 for small

and large firms respectively. In addition, controlling for size, the earnings of growth firms
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grow faster than value firms, implying that the fall in the average profitability of growth

firms is driven by an increase in book value rather than a fall in earnings. In the 5 years

before portfolio formation, the average profitability of value firms drops, whereas the average

profitability of growth firms increases.

Our model captures the above empirical patterns. In the bottom two panels of Table 15

we apply the same empirical procedures as above to simulated model output. In the model,

growth firms have higher earnings-to-book than value firms at the time of portfolio formation

(0.32 for small growth firms and 0.31 for large growth firms, 0.17 for small value firms and

0.21 for large value firms). Over the next five years the average profitability of growth

firms declines to 0.27 and 0.26 for small and large firms respectively, whereas the average

profitability of value firms rises to 0.23 and 0.24 for small and large firms respectively.

In the model, this convergence in profitability between growth and value firms arises for

two reasons. First, it is due the mean-reversion in project productivity. Projects of growth

firms tend to be more productive in the formation period, but this productivity gap dissipates

over time. Second, growth firms tend to invest at a relatively high rate, accumulating book

value relatively fast and becoming value-like over time. The end result is that, despite the

declining productivity of growth firms, conditional on firm size, earnings of growth firms

grow faster than those of value firms following portfolio formation. The reverse patterns are

observed for value firms.

In summary, our model closely replicates the dynamics of earnings and profitability of

value and growth firms. We view this as additional evidence supporting the model’s mech-

anism for stock returns and firm investment dynamics.

5 Conclusion

In this paper we show that investment-specific technology shocks are an important driver of

the cross-section of stock returns. Our theoretical model predicts that IST shocks generate
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heterogeneity in risk premia and co-movement in the cross-section of stock returns. The key

property of the model is that firms with abundant growth opportunities benefit more from

positive investment-specific shocks than firms with few growth opportunities, and therefore

stock returns of high-growth firms have higher exposure to IST shocks. Thus, cross-sectional

differences in growth opportunities generate differences in risk premia and co-movement

among stock returns. In particular, our model gives rise to a value factor in returns and a

positive relationship between expected returns and the book-to-market ratio.

Our empirical findings confirm the model’s predictions. High-growth firms have lower

returns on average. Moreover, investment rates of high-growth firms, as identified by our

measure, are relatively high on average and more sensitive to investment-specific shocks than

investment rates of low-growth firms. We calibrate our structural model and show that it can

quantitatively replicate the observed empirical patterns in expected returns, firm investment

behavior and cashflow dynamics.
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Table 1: Portfolio Transition Probabilities: 5 Portfolios sorted on βimc

Sort(t-1)
Lo 2 3 4 Hi

Sort(t)

Lo 30.4% 23.1% 18.8% 15.0% 12.5%
2 24.2% 25.2% 23.1% 18.7% 11.7%
3 18.7% 23.3% 22.6% 22.3% 14.7%
4 15.1% 17.9% 21.9% 24.3% 21.7%

Hi 11.7% 10.5% 13.6% 19.7% 39.5%

Table 1 reports the transition probabilities across portfolio quintiles. Stocks are sorted into 5 portfolios based

on βimc
t−1 . βimc

t refers to the firm’s beta with the investment minus consumption portfolio (IMC) in year t,

estimated using non-overlapping weekly returns within year t. The sample period is 1965-2007 and excludes

firms producing investment goods, financial firms (SIC6000-6799) and utilities (SIC4900-4949).
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Table 2: Summary Statistics: βimc sorted portfolios

DATA
IMC Beta Lo 2 3 4 5 6 7 8 9 Hi

E(Ri)− rf 5.62 5.51 6.36 6.72 5.43 5.15 4.84 4.83 4.15 2.42
βmkt 0.75 0.77 0.79 0.85 0.92 1.02 1.06 1.2 1.4 1.61

Ī/K̄ 16.5% 17.0% 16.6% 17.5% 17.3% 18.6% 18.7% 19.3% 20.1% 22.4%
Tobin’s Q 1.13 1.08 1.09 1.10 1.10 1.11 1.14 1.19 1.23 1.38
k/K 9.8% 16.0% 15.9% 13.0% 11.9% 10.0% 8.9% 7.0% 4.9% 2.8%
m/M 8.8% 15.7% 14.4% 12.6% 10.8% 11.0% 9.2% 7.6% 6.0% 3.9%

CASH/ASSETS 6.6% 6.0% 6.0% 6.1% 6.0% 6.3% 6.6% 7.3% 8.9% 11.4%
DEBT/ASSETS 16.1% 17.2% 17.5% 17.5% 17.6% 17.7% 17.7% 17.3% 17.2% 14.6%
R&D/SALES 1.4% 1.2% 1.2% 1.3% 1.5% 1.5% 1.8% 2.4% 3.7% 6.0%
DIV/CF 9.0% 16.6% 18.4% 18.1% 17.4% 16.9% 13.7% 10.3% 7.3% 2.8%

MODEL
IMC Beta Lo 2 3 4 5 6 7 8 9 Hi

E(Ri)− rf 7.50 7.29 7.03 6.78 6.50 6.20 5.83 5.41 4.84 3.99
βmkt 0.82 0.87 0.89 0.92 0.95 0.98 1.02 1.06 1.11 1.19

Ī/K̄ 7.0% 7.5% 7.8% 8.1% 8.4% 8.8% 9.2% 9.8% 10.8% 14.0%
Tobin’s Q 1.05 1.09 1.15 1.21 1.30 1.40 1.54 1.74 2.11 3.30
k/K 18.2% 17.2% 14.9% 12.7% 10.6% 8.7% 7.0% 5.3% 3.6% 1.7%
m/M 14.3% 14.6% 13.5% 12.1% 10.8% 9.5% 8.3% 7.1% 5.8% 3.9%

Table 2 shows summary statistics for 10 portfolios of firms sorted by βimc
t−1 . βimc

t refers to the firm’s beta

with the investment minus consumption portfolio (IMC) in year t, estimated using non-overlapping weekly

returns within year t. I/K is investment over capital, CASH/A refers to cash holdings over assets, D/A

is debt over assets, Q refers to Tobin’s Q, k/K refers to the sum of property plant and equipment (PPE)

within each portfolio as a fraction of the total PPE, m/M refers to each portfolio’s market capitalization as a

fraction of total market capitalization, R&D/A refers to research and development over sales, DIV/CF refers

to dividends plus share repurchases over cashflows, and βmkt refers to the portfolio’s market beta estimated

using monthly returns. When computing DIV/CF, we drop firms with negative cashflows. For the firm-level

variables we report the time series averages of a portfolio’s median characteristic, except for the investment

rate I/K where we report the average investment rate of the portfolio defined as Ī
K̄
≡=

∑
i∈P Ii∑
i∈P Ki

. The

sample period is 1965-2007 and excludes firms producing investment goods, financial firms (SIC6000-6799)

and utilities (SIC4900-4949).
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Table 3: Model: Portfolio Transition Probabilities: 5 Portfolios sorted on βimc

Sort(t-1)
Lo 2 3 4 Hi

Sort(t)

Lo 49.1% 28.3% 14.4% 6.2% 1.9%
2 27.6% 32.6% 24.4% 12.0% 3.4%
3 14.0% 23.8% 30.7% 23.7% 8.0%
4 6.4% 11.4% 22.8% 36.6% 22.9%

Hi 2.7% 3.7% 7.7% 21.4% 63.6%

Table 1 plots the estimated transition probabilities across βimc portfolio quintiles in the model. We simulate

2,500 firms for 50 years and repeat the procedure 1,000 times. We report median estimates of the transition

probabilities across simulations. Data are simulated at weekly frequency (dt = 1/52) and then aggregated to

form annual values. βimc
t refers to the firm’s beta with the investment minus consumption portfolio (IMC)

in year t, estimated using non-overlapping weekly returns within year t.
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Table 4: Parameter values and Calibration

Moment Data Model Parameter Value
Median 5% 95%

µ(dD/D) 0.025 0.017 -0.056 0.073 µx 0.010
σ(dD/D) 0.118 0.150 0.105 0.476 σx 0.13
µ(dI/I) 0.047 0.035 -0.042 0.067 µz -0.005
σ(dI/I) 0.157 0.223 0.169 0.253 σz 0.035
ρ(dI/I, dD/D) 0.201 -0.055 -0.319 0.270 δ 0.10
rf 0.025 0.025 r 0.025
E(RM)− rf 0.059 0.056 0.047 0.117 βx 0.69
σ(RM) 0.161 0.165 0.132 0.205 βz 0.40
E(RIMC) -0.019 -0.039 -0.090 -0.012 α 0.85
σ(RIMC) 0.112 0.115 0.088 0.155 σε 0.20
ρ(RIMC , RM − rf ) 0.267 0.522 0.261 0.734 θε 0.35
VI/VC 0.149 0.140 0.088 0.197 φ 0.07
I/K (mean) 0.202 0.128 0.073 0.251 θu 0.50
I/K (IQR) 0.187 0.168 0.074 0.200 σu 1.50
CF/K (mean) 0.293 0.248 0.187 0.281 µλ 2.00
CF/K (IQR) 0.361 0.223 0.161 0.252 σλ 2.00
Market-to-Book Eq (median) 1.569 1.988 1.558 2.627 µH 0.075
Market-to-Book Eq (IQR) 1.437 1.564 0.722 1.937 λH 2.35

β̂imc (median) 0.683 0.731 0.457 1.074 µL 0.160

β̂imc (IQR) 0.990 0.639 0.378 0.846
Vi/V̄ (median) 0.201 0.701 0.669 0.721
Vi/V̄ (IQR) 0.830 0.882 0.858 0.940

The top panel of Table 4 shows the parameters in our calibration. The bottom panel shows sample moments.

We report mean and standard deviation of dividend growth [µ(Dt), σ(Dt)], mean and standard deviation

of investment growth [µ(It), σ(It)], mean and standard deviation of excess returns on the market portfolio

[E(RM )−rf , σ(RM )], mean and standard deviation of the investment minus consumption portfolio [E(Rimc),

σ(Rimc)], and the ratio of the market capitalization of the investment sector relative to the consumption

sector. Investment is real private nonresidential investment in equipment and software. We report time

series averages of the mean and inter-quintile range (IQR) of the investment rate and cashflows over capital,

and the median and inter-quintile range of the market to book ratio. Stock return moments are estimated

over the sample 1963-2008. The moments of investment growth are estimated over the sample 1927-2008.

Moments of firm-specific variables are estimated using Compustat data over the 1963-2007 period. Moments

of dividend growth are from the long sample in Campbell and Cochrane (1999).
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Table 5: 10 portfolios sorted on IMC beta

Data
βimc Lo 2 3 4 5 6 7 8 9 Hi Hi - Lo
E(R)− rf (%) 5.62 5.51 6.36 6.72 5.43 5.15 4.84 4.83 4.15 2.42 -3.20

(2.31) (2.51) (2.89) (2.96) (2.26) (1.98) (1.76) (1.52) (1.10) (0.53) (-0.80)
σ (%) 15.78 14.23 14.27 14.74 15.61 16.86 17.80 20.56 24.36 29.70 25.88

βmkt 0.75 0.77 0.79 0.85 0.92 1.02 1.06 1.20 1.40 1.61 0.86
(17.74) (27.77) (29.86) (36.37) (41.10) (59.01) (54.44) (50.65) (34.57) (27.40) (9.81)

α(%) 2.22 2.01 2.78 2.88 1.26 0.55 0.04 -0.61 -2.19 -4.88 -7.10
(1.40) (1.74) (2.56) (2.96) (1.48) (0.68) (0.04) (-0.53) (-1.37) (-2.10) (-2.13)

R2(%) 56.75 73.75 77.31 83.30 87.62 91.44 89.05 85.77 82.99 74.00 27.87

βmkt 0.86 0.86 0.88 0.92 0.99 1.04 1.06 1.14 1.27 1.39 0.53
(21.17) (34.96) (42.91) (54.68) (56.58) (58.23) (56.46) (62.21) (44.73) (36.52) (8.28)

βimc -0.48 -0.39 -0.41 -0.33 -0.29 -0.08 -0.01 0.28 0.59 1.00 1.48
(-9.71) (-10.67) (-14.66) (-7.16) (-11.05) (-2.66) (-0.17) (4.42) (10.86) (10.99) (17.40)

α(%) 0.88 0.92 1.63 1.97 0.45 0.31 0.02 0.16 -0.55 -2.11 -2.99
(0.61) (0.97) (2.03) (2.56) (0.64) (0.40) (0.02) (0.13) (-0.45) (-1.26) (-1.25)

R2(%) 67.56 82.62 87.02 89.03 91.65 91.73 89.05 87.87 89.82 87.06 65.73

βmkt 0.84 0.82 0.84 0.88 0.96 1.04 1.07 1.18 1.34 1.53 0.69
(21.27) (38.61) (31.74) (39.52) (50.16) (62.38) (52.81) (49.10) (37.96) (28.57) (8.97)

βchml 0.56 0.34 0.31 0.22 0.22 0.13 0.04 -0.15 -0.41 -0.55 -1.11
(7.38) (5.87) (5.03) (3.77) (4.67) (3.74) (0.74) (-3.28) (-5.20) (-6.03) (-7.87)

α(%) -0.05 0.64 1.53 2.01 0.38 0.02 -0.10 0.01 -0.50 -2.63 -2.58
(-0.04) (0.59) (1.50) (2.20) (0.47) (0.02) (-0.12) (0.01) (-0.33) (-1.25) (-0.90)

R2(%) 66.91 78.30 81.03 85.03 89.19 91.92 89.08 86.22 85.33 76.80 42.80

Model
βimc Lo 2 3 4 5 6 7 8 9 Hi Hi - Lo
E(R)− rf (%) 7.52 7.30 7.04 6.78 6.50 6.20 5.83 5.40 4.84 3.97 -3.55

(3.72) (3.51) (3.30) (3.10) (2.89) (2.67) (2.42) (2.14) (1.81) (1.34) (-2.50)
σ(%) 14.36 14.81 15.16 15.55 15.99 16.47 17.04 17.75 18.72 20.39 10.53

βmkt 0.83 0.87 0.89 0.92 0.95 0.98 1.02 1.06 1.11 1.19 0.36
(23.51) (30.68) (38.90) (49.83) (68.62) (94.21) (105.80) (77.51) (49.93) (31.73) (5.15)

α(%) 2.71 2.25 1.82 1.38 0.93 0.44 -0.13 -0.79 -1.65 -2.99 -5.70
(4.82) (5.00) (4.93) (4.65) (4.07) (2.49) (-0.85) (-3.46) (-4.57) (-4.89) (-5.05)

R2(%) 91.27 94.69 96.56 97.81 98.70 99.21 99.30 98.91 97.63 94.49 34.59

βmkt 0.96 0.98 0.99 0.99 1.00 1.01 1.01 1.02 1.02 1.03 0.07
(53.74) (70.54) (82.43) (89.78) (96.72) (95.19) (91.74) (90.18) (86.67) (86.23) (2.54)

βimc -0.33 -0.27 -0.22 -0.17 -0.11 -0.05 0.02 0.10 0.21 0.38 0.71
(-11.69) (-12.75) (-12.44) (-11.09) (-8.27) (-3.97) (1.03) (6.15) (12.03) (21.72) (18.42)

α(%) 0.29 0.28 0.21 0.14 0.09 0.03 -0.04 -0.08 -0.11 -0.08 -0.37
(0.97) (1.12) (0.98) (0.67) (0.43) (0.09) (-0.22) (-0.39) (-0.48) (-0.26) (-0.84)

R2(%) 97.79 98.77 99.13 99.30 99.36 99.38 99.35 99.31 99.21 99.18 91.73

βmkt 0.98 0.99 0.99 0.99 1.00 1.00 1.01 1.01 1.02 1.03 0.05
(74.21) (85.55) (88.05) (87.92) (90.66) (90.29) (91.70) (95.04) (89.51) (65.15) (2.11)

βchml 0.75 0.59 0.47 0.36 0.23 0.10 -0.05 -0.23 -0.46 -0.81 -1.56
(21.22) (19.60) (15.74) (11.74) (7.75) (3.33) (-1.73) (-7.88) (-14.41) (-16.14) (-25.47)

α(%) -0.18 -0.05 -0.02 -0.01 0.02 0.04 0.05 0.08 0.12 0.18 0.36
(-0.77) (-0.35) (-0.20) (-0.15) (0.02) (0.13) (0.25) (0.44) (0.63) (0.71) (0.97)

R2(%) 98.74 99.11 99.24 99.29 99.32 99.35 99.37 99.39 99.29 98.92 93.43

The top panel of Table 5 reports asset-pricing tests on 10 portfolios sorted on βimct−1 . βimct refers to the firm’s beta with the

investment minus consumption portfolio (IMC) in year t, estimated using non-overlapping weekly returns within year t. The

construction of the IMC portfolio is detailed in Papanikolaou (2010). We construct the value factor in the consumption sector

(CHML) as 1/2(LV − LG) + 1/2(SV − SG) where LV , LG, SV , LG refer to the corner portfolios of a 2-by-3 sort on ME and

BE/ME using consumption firms only and NYSE breakpoints. The sample period is 1965-2008 and excludes firms producing

investment goods, financial firms (SIC6000-6799) and utilities (SIC4900-4949). Standard errors are computed using Newey-West

with 1 lag to adjust for autocorrelation in returns. t-statistics are reported in parenthesis. Estimation is done using monthly

data. We report annualized estimates of mean returns and alphas by multiplying the monthly estimates by 12. The bottom

panel reports the corresponding estimates for simulated data. Each simulation sample contains 2,500 firms and has a length of

50 years. We simulate 1,000 samples and report medians across simulations of coefficients and t statistics (in parenthesis). The

market portfolio includes the investment and the consumption sector.
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Table 6: 10 portfolios sorted on BE/ME (consumption firms)

Data
BE/ME Lo 2 3 4 5 6 7 8 9 Hi Hi - Lo
E(R)− rf (%) 3.41 5.61 4.44 5.51 5.63 6.07 5.37 7.96 7.88 9.53 6.12

(1.27) (2.24) (1.76) (2.36) (2.35) (2.57) (2.20) (3.04) (2.88) (3.10) (2.62)
σ (%) 17.36 16.26 16.35 15.12 15.53 15.31 15.84 16.95 17.71 19.91 15.12

βmkt 1.01 0.97 0.97 0.87 0.88 0.85 0.86 0.91 0.95 1.05 0.04
(42.71) (47.36) (49.48) (33.94) (33.33) (26.10) (23.34) (24.28) (23.45) (22.54) (0.67)

α(%) -1.16 1.21 0.06 1.56 1.64 2.23 1.45 3.83 3.57 4.77 5.93
(-1.06) (1.46) (0.08) (1.53) (1.59) (1.94) (1.11) (2.63) (2.35) (2.67) (2.41)

R2(%) 84.92 90.01 87.94 83.34 81.05 76.97 74.84 72.66 72.52 69.90 0.18

βmkt 1.04 1.01 1.02 0.93 0.95 0.92 0.92 0.99 1.01 1.07 0.03
(42.30) (55.17) (56.68) (38.83) (35.58) (29.38) (27.02) (28.67) (24.68) (23.92) (0.50)

βimc -0.14 -0.17 -0.23 -0.26 -0.31 -0.30 -0.26 -0.35 -0.27 -0.09 0.04
(-4.79) (-7.69) (-5.94) (-7.60) (-7.32) (-7.39) (-5.08) (-6.51) (-4.72) (-1.62) (0.59)

α(%) -1.55 0.73 -0.57 0.85 0.79 1.39 0.74 2.86 2.82 4.51 6.06
(-1.44) (0.94) (-0.76) (0.93) (0.86) (1.39) (0.61) (2.21) (1.99) (2.54) (2.44)

R2(%) 85.66 91.30 90.22 86.68 85.56 81.53 77.89 77.52 75.23 70.16 0.29

βmkt 0.95 0.96 0.99 0.91 0.94 0.92 0.97 1.03 1.07 1.18 0.23
(46.09) (47.59) (52.01) (36.98) (38.18) (36.72) (45.86) (46.07) (40.79) (32.56) (5.30)

βchml -0.42 -0.10 0.17 0.27 0.38 0.50 0.66 0.74 0.76 0.82 1.24
(-6.00) (-2.33) (2.87) (5.24) (6.64) (11.24) (15.61) (19.63) (17.64) (9.52) (8.73)

α(%) 0.54 1.63 -0.61 0.48 0.09 0.21 -1.21 0.81 0.48 1.44 0.90
(0.55) (1.99) (-0.71) (0.49) (0.10) (0.24) (-1.45) (0.86) (0.47) (1.10) (0.51)

R2(%) 89.59 90.34 88.77 85.84 85.89 85.51 88.72 88.14 87.42 83.65 54.43

Model
BE/ME Lo 2 3 4 5 6 7 8 9 Hi Hi - Lo
E(R)− rf (%) 3.62 4.65 5.26 5.72 6.12 6.46 6.78 7.06 7.40 7.90 4.28

(1.21) (1.76) (2.12) (2.40) (2.66) (2.89) (3.11) (3.31) (3.53) (3.83) (2.98)
σ(%) 20.49 18.49 17.48 16.83 16.30 15.87 15.50 15.18 14.91 14.67 10.65

βmkt 1.19 1.09 1.04 1.00 0.97 0.94 0.92 0.90 0.87 0.84 -0.34
(29.75) (48.67) (75.39) (98.94) (87.67) (64.14) (48.75) (38.70) (31.12) (24.01) (-4.71)

α(%) -3.35 -1.76 -0.85 -0.17 0.42 0.92 1.40 1.83 2.31 2.98 6.34
(-5.16) (-4.88) (-3.70) (-1.01) (2.22) (3.85) (4.60) (4.94) (5.18) (5.33) (5.41)

R2(%) 93.81 97.65 98.93 99.29 99.14 98.59 97.71 96.56 94.90 91.60 31.02

βmkt 1.02 1.01 1.01 1.00 1.00 1.00 0.99 0.99 0.98 0.98 -0.04
(78.45) (76.73) (81.33) (88.22) (92.69) (93.95) (90.01) (81.18) (69.01) (54.13) (-1.30)

βimc 0.41 0.20 0.09 0.00 -0.06 -0.12 -0.17 -0.22 -0.26 -0.33 -0.74
(20.54) (9.92) (4.84) (0.11) (-4.58) (-8.78) (-11.19) (-11.97) (-12.06) (-11.42) (-17.24)

α(%) -0.23 -0.30 -0.23 -0.17 -0.07 0.01 0.13 0.23 0.38 0.57 0.80
(-0.92) (-1.22) (-1.09) (-0.89) (-0.43) (0.01) (0.63) (1.06) (1.47) (1.83) (1.69)

R2(%) 99.22 99.13 99.27 99.34 99.39 99.37 99.27 99.12 98.77 97.88 91.17

βmkt 1.01 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 1.00 -0.01
(70.85) (92.98) (89.78) (88.13) (85.68) (86.75) (87.95) (90.54) (95.92) (85.91) (-0.72)

βchml -0.89 -0.46 -0.22 -0.04 0.11 0.25 0.37 0.48 0.60 0.76 1.66
(-19.83) (-15.76) (-7.33) (-1.35) (3.42) (7.89) (12.03) (16.27) (21.73) (23.92) (32.79)

α(%) 0.13 0.03 -0.01 -0.02 -0.02 -0.05 -0.02 -0.02 -0.00 0.02 -0.10
(0.51) (0.13) (-0.08) (-0.14) (-0.17) (-0.32) (-0.21) (-0.18) (-0.10) (0.22) (-0.29)

R2(%) 99.19 99.43 99.42 99.37 99.33 99.31 99.28 99.28 99.30 99.09 95.87

The top panel of Table 6 reports asset-pricing tests on 10 portfolios sorted on Book to Market Equity. The data come from

Kenneth French’s website. The construction of the IMC portfolio is detailed in Papanikolaou (2010). We construct the value

factor in the consumption sector (CHML) as 1/2(LV −LG)+1/2(SV −SG) where LV , LG, SV , LG refer to the corner portfolios

of a 2-by-3 sort on ME and BE/ME using consumption firms only and NYSE breakpoints. The sample period is 1965-2008

and excludes firms producing investment goods, financial firms (SIC6000-6799) and utilities (SIC4900-4949). Standard errors

are computed using Newey-West with 1 lag to adjust for autocorrelation in returns. t-statistics are reported in parenthesis.

Estimation is done using monthly data. We report annualized estimates of mean returns and alphas. The bottom panel reports

the corresponding estimates for simulated data. Market Equity equals the value of the firm, Vft, and book to market equals

Book Value divided by Market Equity. Book Value is computed as the replacement cost of capital, Bft = zt xt
∑
j∈Jft

Kjt,

where Kj refers to capital employed by project j, and Jft denotes the set of projects owned by firm f at the end of year t. Each

simulation sample contains 2,500 firms and has a length of 50 years. We simulate 1,000 samples and report medians across

simulations of coefficients and t-statistics (in parenthesis). The market portfolio includes the investment and the consumption

sector.
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Table 7: 25 portfolios sorted on ME and BE/ME (consumption firms)

Data
SMALL (20 pctile) LARGE (80 pctile)

BE/ME Lo 2 3 4 Hi Hi-Lo Lo 2 3 4 Hi Hi - Lo
E(R)− rf (%) 4.05 9.85 10.74 11.32 12.41 8.36 3.38 5.03 4.48 4.92 5.63 2.25

(1.03) (3.15) (3.57) (3.57) (3.65) (3.97) (1.31) (1.98) (1.91) (2.16) (2.22) (1.10)
σ (%) 25.38 20.24 19.52 20.54 22.06 13.63 16.66 16.48 15.20 14.80 16.44 13.22

βmkt 1.31 1.03 0.98 1.04 1.05 -0.26 0.93 0.97 0.87 0.79 0.88 -0.05
(27.29) (22.26) (19.49) (20.45) (18.56) (-5.63) (32.28) (37.99) (37.16) (30.95) (25.41) (-1.02)

α(%) -1.89 5.17 6.31 6.63 7.64 9.53 -0.83 0.66 0.53 1.34 1.67 2.50
(-0.81) (2.70) (3.33) (3.27) (3.19) (4.31) (-0.67) (0.67) (0.55) (1.13) (1.18) (1.18)

R2(%) 67.20 65.54 63.34 64.07 57.26 9.09 78.19 86.29 82.92 72.14 71.22 0.43

βmkt 1.21 1.01 0.97 1.02 1.05 -0.16 0.97 1.02 0.93 0.87 0.97 -0.00
(20.96) (19.81) (18.58) (19.82) (18.88) (-3.43) (31.36) (42.91) (41.87) (32.05) (28.49) (-0.04)

βimc 0.47 0.12 0.05 0.08 0.03 -0.44 -0.18 -0.24 -0.27 -0.33 -0.41 -0.23
(3.52) (1.20) (0.63) (1.18) (0.35) (-3.53) (-4.63) (-7.17) (-9.95) (-7.52) (-8.06) (-3.50)

α(%) -0.59 5.51 6.44 6.85 7.72 8.31 -1.34 -0.00 -0.23 0.40 0.52 1.86
(-0.25) (2.83) (3.35) (3.34) (3.19) (3.84) (-1.11) (-0.00) (-0.26) (0.37) (0.42) (0.90)

R2(%) 71.14 65.96 63.41 64.24 57.28 21.13 79.59 88.72 86.66 78.09 78.58 3.96

βmkt 1.27 1.06 1.05 1.12 1.17 -0.10 0.87 0.96 0.90 0.87 1.00 0.13
(21.85) (21.14) (22.07) (25.52) (24.44) (-3.06) (34.51) (36.79) (33.50) (37.21) (60.53) (4.49)

βchml -0.27 0.19 0.46 0.57 0.75 1.02 -0.41 -0.02 0.18 0.48 0.79 1.20
(-1.41) (1.30) (3.87) (5.05) (5.96) (10.77) (-4.78) (-0.33) (3.05) (9.09) (21.06) (16.82)

α(%) -0.79 4.40 4.44 4.33 4.59 5.37 0.84 0.74 -0.21 -0.62 -1.55 -2.39
(-0.32) (2.22) (2.47) (2.43) (2.27) (3.38) (0.71) (0.73) (-0.21) (-0.63) (-1.91) (-1.92)

R2(%) 68.13 66.25 67.81 70.19 66.64 54.65 83.07 86.30 84.08 80.70 90.04 67.32

Model
SMALL (20 pctile) LARGE (80 pctile)

BE/ME Lo 2 3 4 Hi Hi-Lo Lo 2 3 4 Hi Hi - Lo
E(R)− rf (%) 3.09 4.18 4.96 5.75 6.80 3.71 5.61 6.53 6.99 7.35 7.86 2.25

(0.96) (1.47) (1.88) (2.32) (2.92) (3.02) (2.35) (2.95) (3.27) (3.52) (3.84) (2.88)
σ(%) 21.81 19.72 18.48 17.48 16.52 8.90 16.92 15.74 15.19 14.84 14.58 6.02

βmkt 1.25 1.15 1.09 1.04 0.98 -0.27 1.01 0.93 0.89 0.87 0.83 -0.17
(24.34) (33.78) (44.85) (52.84) (42.39) (-4.34) (70.14) (52.97) (37.59) (29.25) (22.51) (-3.97)

α(%) -4.21 -2.57 -1.43 -0.32 1.09 5.30 -0.29 1.06 1.76 2.30 3.00 3.29
(-4.91) (-4.48) (-3.36) (-0.83) (2.93) (5.23) (-1.43) (3.63) (4.58) (4.89) (5.06) (4.77)

R2(%) 90.70 94.87 96.89 97.80 97.07 27.53 98.74 97.89 96.25 94.15 90.34 26.24

βmkt 1.02 1.01 1.01 1.01 1.01 -0.01 1.00 0.99 0.99 0.98 0.98 -0.03
(64.94) (53.61) (49.98) (46.57) (41.31) (-0.41) (67.93) (78.12) (71.55) (61.44) (48.67) (-0.92)

βimc 0.54 0.33 0.19 0.07 -0.08 -0.62 0.00 -0.15 -0.22 -0.27 -0.34 -0.35
(25.59) (13.11) (7.23) (2.42) (-2.28) (-16.01) (0.11) (-8.79) (-11.31) (-11.58) (-11.09) (-7.40)

α(%) -0.00 -0.00 0.08 0.26 0.60 0.60 -0.34 -0.05 0.14 0.29 0.48 0.83
(-0.05) (-0.03) (0.20) (0.68) (1.43) (1.25) (-1.33) (-0.28) (0.56) (1.04) (1.43) (1.62)

R2(%) 99.38 98.91 98.58 98.23 97.47 88.06 98.89 99.07 98.88 98.39 97.26 65.74

βmkt 1.03 1.02 1.02 1.02 1.02 -0.01 0.99 0.99 0.99 0.99 0.99 0.01
(41.84) (46.96) (46.13) (45.14) (43.27) (-0.20) (68.98) (69.00) (69.71) (73.45) (68.59) (0.09)

βchml -1.12 -0.70 -0.40 -0.13 0.20 1.32 -0.06 0.30 0.47 0.61 0.79 0.86
(-13.75) (-10.63) (-6.17) (-1.83) (3.33) (14.78) (-2.00) (7.16) (12.27) (17.24) (20.08) (14.35)

α(%) 0.17 0.16 0.13 0.18 0.32 0.15 -0.05 -0.09 -0.05 -0.07 -0.07 -0.02
(0.46) (0.43) (0.32) (0.44) (0.76) (0.25) (-0.25) (-0.41) (-0.27) (-0.36) (-0.17) (0.06)

R2(%) 98.15 98.50 98.34 98.11 97.64 85.53 98.89 98.91 98.87 98.83 98.57 81.64

The top panel of Table 7 reports asset-pricing tests on 10 portfolios of firms in the consumption sector, sorted first on Market
Equity (ME) and then on Book to Market (BE/ME), using NYSE breakpoints. Market Equity is December market capitalization
from CRSP and Book Equity is item ceq from COMPUSTAT. We rebalance firms in June every year. We report results for
the top and bottom quintile of Market Equity, (SMALL and LARGE). The construction of the IMC portfolio is detailed in
Papanikolaou (2010). We construct the value factor in the consumption sector (CHML) as 1/2(LV − LG) + 1/2(SV − SG)
where LV , LG, SV , LG refer to the corner portfolios of a 2-by-3 sort on ME and BE/ME using consumption firms only and
NYSE breakpoints. The sample period is 1965-2008 and excludes firms producing investment goods, financial firms (SIC6000-
6799) and utilities (SIC4900-4949). Standard errors are computed using Newey-West with 1 lag to adjust for autocorrelation
in returns. t-statistics are reported in parenthesis. Estimation is done using monthly data. We report annualized estimates
of mean returns and alphas. The bottom panel reports the corresponding estimates for simulated data. Market Equity equals
the value of the firm, Vi,t, and book to market equals Book Value divided by Market Equity. Book Value is computed as the
replacement cost of capital, Bit = zt xt

∑
j∈Jit

Kjt, where Kj refers to capital employed by project j, and Jit denotes the set
of projects owned by firm i at the end of year t. Each simulation sample contains 2,500 firms and has a length of 50 years.
We simulate 1,000 samples and report medians across simulations of coefficients and t-statistics (in parenthesis). The market
portfolio includes the investment and the consumption sector.
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Table 8: Response of I/K to Rimc: firms sorted by βimc

Dependent variable it (1) (2) (3) (4) (5) (6)

Constant -0.1190 -0.1039 -0.0909 -0.0815 -0.0440
(-6.18) (-5.52) (-4.34) (-4.06) (-2.30)

D(βimc)2 0.0380 0.0361 0.0361 0.0339 0.0275
(2.85) (2.84) (3.00) (2.83) (2.59)

D(βimc)3 0.0870 0.0818 0.0691 0.0658 0.0411
(5.26) (5.28) (5.02) (4.99) (3.15)

D(βimc)4 0.1794 0.1572 0.1385 0.1247 0.0676
(8.66) (7.69) (8.02) (7.35) (4.21)

D(βimc)5 0.2908 0.2448 0.2113 0.1833 0.0841
(11.00) (9.45) (9.26) (8.41) (4.10)

R̃imct−1 0.0959 0.0532 0.0491 0.0634 0.0592 0.0571
(4.90) (4.52) (4.01) (4.10) (3.88) (4.13)

D(βimc)2 × R̃imct−1 0.0014 0.0023 -0.0008 0.0004 0.0027
(0.12) (0.21) (-0.07) (0.04) (0.28)

D(βimc)3 × R̃imct−1 0.0256 0.0247 0.0125 0.0132 0.0144
(1.68) (1.79) (0.83) (0.96) (1.09)

D(βimc)4 × R̃imct−1 0.0641 0.0610 0.0411 0.0413 0.0394
(2.76) (2.85) (2.10) (2.25) (2.48)

D(βimc)5 × R̃imct−1 0.1226 0.1169 0.0862 0.0855 0.0885
(4.88) (5.59) (4.38) (5.13) (6.20)

Observations 62495 62495 62495 62495 62495 62495
R2 0.009 0.022 0.077 0.162 0.192 0.438

Industry/Firm FE N N N I I F
Controls (it−1) N N Y N Y N
Controls (Qt−1, CFt−1,Kt−1, Et−1/At−1) N N N Y Y Y

Table 8 shows estimates of

ift = a1 +

5∑
d=2

adD(βimc
f,t−1)d + b1 R̃

imc
t−1 +

5∑
d=2

bdD(βimc
f,t−1)d × R̃imc

t−1 + cXf,t−1 + γf + uft, (39)

where it ≡ It/Kt−1 is firm investment over the lagged capital stock, on cumulative log returns on the IMC

portfolio, R̃imc
t−1 ≡

∑2
l=1R

imc
t−1, and a vector of controls Xt which includes lagged values of log Tobin’s Q,

cashflows over lagged capital, log book equity over book assets, and log capital. D(βimc
i,t−1)d is a dummy

variable which takes the value of 1 if the firm falls in the d-th quintile in term of βimc
t−1 . βimc

t refers to the

firm’s beta with respect to the investment minus consumption portfolio (IMC) in year t, estimated using non-

overlapping weekly returns within year t. Industries are defined at the 2-digit SIC code level. All variables

have been standardized to zero mean and unit standard deviation. We report t-statistics in parenthesis using

standard errors clustered by firm and year. The sample period is 1965-2007 and excludes firms producing

investment goods, financial firms (SIC6000-6799) and utilities (SIC4900-4949).
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Table 9: Model: Response to Rimc: sorted by βimc

Dependent variable it (1) (2) (3) (4) (5)

Constant -0.122 -0.119 -0.063 0.072
(-18.34) (-19.01) (-5.35) (4.14)

D(βimc)2 0.026 0.024 0.015 -0.032
(7.41) (7.23) (3.84) (-4.63)

D(βimc)3 0.058 0.055 0.019 -0.071
(12.31) (11.84) (3.16) (-5.65)

D(βimc)4 0.113 0.109 0.036 -0.125
(15.85) (15.12) (3.63) (-5.87)

D(βimc)H 0.384 0.375 0.221 -0.152
(15.65) (14.86) (11.53) (-4.18)

R̃imct−1 0.053 0.026 0.025 0.017 -0.022
(4.40) (4.07) (4.05) (2.25) (-3.02)

D(βimc)2 × R̃imct−1 0.006 0.006 0.004 -0.005
(2.21) (2.18) (1.40) (-1.42)

D(βimc)3 × R̃imct−1 0.014 0.014 0.011 -0.008
(3.16) (3.13) (2.74) (-1.48)

D(βimc)4 × R̃imct−1 0.026 0.025 0.023 -0.008
(3.86) (3.81) (3.55) (-1.13)

D(βimc)H × R̃imct−1 0.084 0.083 0.082 0.029
(3.74) (3.71) (3.73) (1.91)

R2 0.003 0.025 0.026 0.037 0.074

Controls (it−1) N N Y Y Y
Controls (CFt−1,Kt−1) N N N Y Y
Controls (Qt−1) N N N N Y

Table 9 shows median coefficients and t-statistics across 1,000 simulations. We estimate a regression of
the ratio of the firm investment to its book value, it ≡ Ift/Bf,t−1, on cumulative log returns on the IMC

portfolio, R̃imc
t−1 ≡

∑2
l=2R

imc
t−1 and a vector of controls Xt, which includes lagged values of log Tobin’s Q, cash

flows over lagged capital, and log capital:

ift = a1 +

5∑
d=2

adD(βimc
f,t−1)d + b1 R̃

imc
t−1 +

5∑
d=2

bdD(βimc
f,t−1)d × R̃imc

t−1 + cXf,t−1 + uft, (40)

Data are simulated at weekly frequency (dt = 1/52) and then aggregated to form annual values. βimc
t refers

to the firm’s beta with the investment minus consumption portfolio (IMC) in year t, estimated using non-

overlapping weekly returns within year t. D(βimc
f,t−1)d is a dummy variable which takes the value of 1 if the

firm f falls in the d-th quintile in terms of βimc
t−1 . Investment by firm is computed as the sum of the market

value of new investment, i.e. Ift =
∑

s∈t xszsK
∗
fs, where K∗fs is the capital of project acquired by firm f

at time s. Book Value is computed as the replacement cost of capital, Bft = zt xt
∑

j∈Jft
Kjt, where Kj

refers to capital employed by project j, and Jft denotes the set of projects owned by firm f at the end of

year t.All variables have been standardized to zero mean and unit standard deviation. We report averages

across simulations of coefficients and t-statistics (in parenthesis). Standard errors are clustered by firm and

time. Each simulation sample contains 2,500 firms for 50 years. We simulate 1,000 samples.
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Table 10: Response of I/K to Rhml: firms sorted by βimc

Dependent variable it (1) (2) (3) (4) (5) (6)

Constant -0.1190 -0.1037 -0.0908 -0.0813 -0.0445
(-5.72) (-5.27) (-3.82) (-3.63) (-2.06)

D(βimc)2 0.0380 0.0360 0.0351 0.0330 0.0274
(2.93) (2.96) (3.00) (2.86) (2.60)

D(βimc)3 0.0870 0.0818 0.0681 0.0649 0.0407
(5.36) (5.36) (4.98) (4.94) (3.09)

D(βimc)4 0.1794 0.1569 0.1383 0.1243 0.0677
(8.08) (7.17) (7.62) (6.96) (4.02)

D(βimc)5 0.2908 0.2443 0.2128 0.1844 0.0866
(9.74) (8.27) (8.78) (7.92) (4.00)

−R̃chmlt−1 0.0097 -0.0221 -0.0246 -0.0163 -0.0187 -0.0132
(0.40) (-1.01) (-1.21) (-0.68) (-0.83) (-0.58)

D(βimc)2 × (−R̃chmlt−1 ) 0.0187 0.0208 0.0147 0.0168 0.0095
(1.55) (1.91) (1.26) (1.54) (0.89)

D(βimc)3 × (−R̃chmlt−1 ) 0.0297 0.0273 0.0106 0.0106 0.0075
(1.64) (1.69) (0.70) (0.77) (0.61)

D(βimc)4 × (−R̃chmlt−1 ) 0.0377 0.0352 0.0197 0.0199 0.0179
(1.81) (1.90) (1.25) (1.38) (1.11)

D(βimc)5 × (−R̃chmlt−1 ) 0.0730 0.0679 0.0526 0.0510 0.0466
(2.92) (3.03) (3.27) (3.45) (2.82)

Observations 62495 62495 62495 62495 62495 62495
R2 0.000 0.012 0.068 0.153 0.183 0.431

Industry/Firm FE N N N I I F
Controls (it−1) N N Y N Y N
Controls (Qt−1, CFt−1,Kt−1, Et−1/At−1) N N N Y Y Y

Table 10 shows estimates of

ift = a1 +

5∑
d=2

adD(βimc
f,t−1)d + b1 (−R̃chml

t−1 ) +

5∑
d=2

bdD(βimc
f,t−1)d × (−R̃chml

t−1 ) + cXf,t−1 + γf + uft, (41)

where it ≡ It/Kt−1 is firm investment over the lagged capital stock, on cumulative log returns on the CHML

portfolio, R̃chml
t−1 ≡

∑2
l=1R

chml
t−1 , and a vector of controls Xt which includes lagged values of log Tobin’s Q,

cashflows over lagged capital, log book equity over book assets, and log capital. D(βimc
i,t−1)d is a dummy

variable which takes the value of 1 if the firm falls in the d-th quintile in term of βimc
t−1 . βimc

t refers to the

firm’s beta with respect to the investment minus consumption portfolio (IMC) in year t, estimated using non-

overlapping weekly returns within year t. Industries are defined at the 2-digit SIC code level. All variables

have been standardized to zero mean and unit standard deviation. We report t-statistics in parenthesis using

standard errors clustered by firm and year. The sample period is 1965-2007 and excludes firms producing

investment goods, financial firms (SIC6000-6799) and utilities (SIC4900-4949).
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Table 11: Response of I/K to equipment price shocks: firms sorted by βimc

Dependent variable it (1) (2) (3) (4) (5) (6)

Constant -0.1190 -0.1038 -0.0908 -0.0813 -0.0442
(-5.63) (-5.11) (-3.84) (-3.62) (-2.05)

D(βimc)2 0.0380 0.0361 0.0353 0.0332 0.0274
(2.91) (2.91) (3.03) (2.85) (2.56)

D(βimc)3 0.0870 0.0818 0.0683 0.0650 0.0406
(5.23) (5.26) (5.11) (5.09) (3.15)

D(βimc)4 0.1794 0.1570 0.1383 0.1244 0.0673
(8.02) (7.15) (7.88) (7.22) (4.18)

D(βimc)5 0.2908 0.2445 0.2124 0.1843 0.0856
(9.27) (7.87) (8.72) (7.82) (4.20)

−∆zt−1 0.0355 0.0070 0.0029 0.0170 0.0131 0.0156
(2.13) (0.55) (0.24) (0.76) (0.64) (0.60)

D(βimc)2 × (−∆zt−1) 0.0169 0.0155 0.0173 0.0162 0.0099
(1.66) (1.78) (2.22) (2.32) (0.99)

D(βimc)3 × (−∆zt−1) 0.0249 0.0241 0.0240 0.0236 0.0241
(2.40) (2.42) (2.85) (2.89) (2.46)

D(βimc)4 × (−∆zt−1) 0.0382 0.0360 0.0354 0.0340 0.0361
(2.66) (2.57) (3.74) (3.59) (2.96)

D(βimc)5 × (−∆zt−1) 0.0623 0.0541 0.0432 0.0386 0.0367
(3.13) (2.85) (2.61) (2.33) (2.24)

Observations 62495 62495 62495 62495 62495 62495
R2 0.001 0.013 0.068 0.155 0.184 0.432

Industry/Firm FE N N N I I F
Controls (it−1) N N Y N Y N
Controls (Qt−1, CFt−1,Kt−1, Et−1/At−1) N N N Y Y Y

Table 11 shows estimates of

ift = a1 +

5∑
d=2

adD(βimc
i,t−1)d + b1 (−∆zt−1) +

5∑
d=2

bdD(βimc
i,t−1)d × (−∆zt−1) + cXit−1 + γi + uit, (42)

it ≡ It/Kt−1 is firm investment over the lagged capital stock. ∆zt is the first difference of the detrended

quality-adjusted price of investment goods divided by the consumption deflator from Cummins and Violante

(2002) and extended by Israelsen (2010). Vector of controls Xt includes lagged values of log Tobin’s Q,

cashflows over lagged capital, log book equity over book assets, and log capital. βimc
t is the firm’s beta with

respect to the investment minus consumption portfolio (IMC) in year t, estimated using non-overlapping

weekly returns within year t. D(βimc
i,t−1)d is a dummy variable which takes the value of 1 if the firm falls in

the d-th quintile in terms of βimc
t−1 . Industries are defined at the 2-digit SIC code level. All variables have

been standardized to zero mean and unit standard deviation. We report t-statistics in parenthesis using

standard errors clustered by firm and year. The sample period is 1965-2007 and excludes firms producing

investment goods, financial firms (SIC6000-6799) and utilities (SIC4900-4949).
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Table 12: Response of I/K to Credit Spreads: firms sorted by βimc

Dependent variable it (1) (2) (3) (4) (5) (6)

Constant -0.1190 -0.1038 -0.0911 -0.0816 -0.0911
(-6.27) (-5.74) (-4.07) (-3.88) (-4.07)

D(βimc)2 0.0380 0.0360 0.0356 0.0334 0.0356
(2.85) (2.85) (3.00) (2.83) (3.00)

D(βimc)3 0.0870 0.0818 0.0687 0.0654 0.0687
(5.15) (5.15) (5.02) (4.98) (5.02)

D(βimc)4 0.1794 0.1570 0.1387 0.1248 0.1387
(7.85) (6.92) (7.64) (6.91) (7.64)

D(βimc)5 0.2908 0.2444 0.2128 0.1844 0.2128
(9.34) (7.78) (8.82) (7.77) (8.82)

−∆st−1 0.0781 0.0565 0.0540 0.0476 0.0464 0.0476
(3.56) (3.27) (3.33) (1.96) (2.03) (1.96)

D(βimc)2 × (−∆st−1) 0.0046 0.0052 0.0121 0.0120 0.0121
(0.43) (0.51) (1.18) (1.20) (1.18)

D(βimc)3 × (−∆st−1) 0.0145 0.0157 0.0163 0.0170 0.0163
(0.99) (1.15) (1.52) (1.67) (1.52)

D(βimc)4 × (−∆st−1) 0.0247 0.0241 0.0192 0.0194 0.0192
(0.94) (0.95) (0.97) (0.98) (0.97)

D(βimc)5 × (−∆st−1) 0.0643 0.0612 0.0503 0.0491 0.0503
(2.12) (2.27) (2.33) (2.48) (2.33)

Observations 62495 62495 62495 62495 62495 62495
R2 0.006 0.018 0.073 0.158 0.188 0.158

Industry/Firm FE N N N I I F
Controls (it−1) N N Y N Y N
Controls (Qt−1, CFt−1,Kt−1, Et−1/At−1) N N N Y Y Y

Table 12 shows estimates of the regression of the ratio of firm investment to its capital stock, it ≡ It/Kt−1,
on the innovation in the spread between Baa and Aaa bonds, ξt, and a vector of controls Xit which includes
lagged values of log Tobin’s Q, cashflows over lagged capital, log Book Equity over Book Assets, and log
capital:

ift = a1 +
5∑

d=2

adD(βimc
f,t−1)d + b1 (−∆st−1) +

5∑
d=2

bdD(βimc
f,t−1)d × (−∆st−1) + cXf,t−1 + γf + uft, (43)

The innovation ∆st is computed as the innovation of an AR(1) model on the difference between Baa and

Treasury bond yields. The data on bond yields are from the St. Louis Federal Reserve. βimc
t refers to

the firm’s beta with the investment minus consumption portfolio (IMC) in year t, estimated using non-

overlapping weekly returns within year t. D(βimc
f,t−1)d is a dummy variable which takes the value of 1 if

the firm falls in the d-th quintile in terms of βimc
t−1 . Industries are defined at the 2-digit SIC code level.

All variables have been standardized to zero mean and unit standard deviation. We report t statistics in

parenthesis using standard errors clustered by firm and year. The sample period is 1965-2007 and excludes

firms producing investment goods, financial firms (SIC6000-6799) and utilities (SIC4900-4949).
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Table 13: Response of I/K to Rimc: firms sorted by Tobin’s Q

Dependent variable it (1) (2) (3) (4) (5) (6)

Constant -0.2491 -0.2217 -0.2588 -0.2371 -0.3211
(-12.01) (-11.26) (-12.02) (-11.47) (-13.85)

D(Q)2 0.0202 0.0107 0.0666 0.0560 0.1320
(1.54) (0.85) (4.66) (4.10) (7.92)

D(Q)3 0.1495 0.1295 0.2036 0.1847 0.2841
(8.42) (8.22) (11.73) (11.53) (13.08)

D(Q)4 0.3607 0.3246 0.3675 0.3394 0.4430
(16.88) (14.41) (18.18) (15.89) (15.59)

D(Q)5 0.7158 0.6448 0.6573 0.6064 0.7477
(25.81) (21.72) (25.93) (21.91) (22.72)

R̃imct−1 0.0959 0.0688 0.0635 0.0621 0.0584 0.0611
(4.90) (3.16) (3.01) (2.86) (2.78) (3.10)

D(Q)2 × R̃imct−1 0.0147 0.0139 0.0162 0.0153 0.0239
(0.99) (0.99) (0.95) (0.93) (1.70)

D(Q)3 × R̃imct−1 0.0364 0.0346 0.0338 0.0325 0.0321
(3.69) (3.78) (3.33) (3.37) (2.84)

D(Q)4 × R̃imct−1 0.0280 0.0302 0.0338 0.0351 0.0267
(1.36) (1.59) (1.64) (1.81) (1.53)

D(Q)5 × R̃imct−1 0.0563 0.0567 0.0677 0.0670 0.0536
(2.02) (2.05) (2.30) (2.30) (2.30)

Observations 62495 62495 62495 62495 62495 62495
R2 0.009 0.080 0.125 0.174 0.202 0.447

Industry/Firm FE N N N I I F
Controls (it−1) N N Y N Y N
Controls (CFt−1,Kt−1, Et−1/At−1) N N N Y Y Y

Table 13 shows estimates of

ift = a1 +

5∑
d=2

adD(Qf,t−1)d + b1 R̃
imc
t−1 +

5∑
d=2

bdD(Qf,t−1)d × R̃imc
t−1 + cXf,t−1 + γf + uft, (44)

where it ≡ It/Kt−1 is firm investment over lagged capital, on cumulative log returns on the IMC portfolio,

R̃imc
t−1 ≡

∑2
l=1R

imc
t−1, and a vector of controls Xt which includes lagged values of log Tobin’s Q, cashflows over

lagged capital, log book equity over book assets, and log capital. D(Qi,t−1)d is a dummy variable which

takes the value of 1 if the firm falls in the d-th quintile in terms of Tobin’s Q. Industries are defined at

the 2-digit SIC code level. All variables have been standardized to zero mean and unit standard deviation.

We report t-statistics in parenthesis using standard errors clustered by firm and year. The sample period

is 1965-2007 and excludes firms producing investment goods, financial firms (SIC6000-6799) and utilities

(SIC4900-4949).
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Table 14: Model: Response to Rimc: sorted by Tobin’s Q

(1) (2) (3) (4)

Constant -0.162 -0.159 -0.096
(-28.15) (-30.37) (-7.19)

D(Q)2 0.052 0.049 0.026
(16.97) (16.03) (5.37)

D(Q)3 0.096 0.091 0.041
(21.61) (20.46) (5.02)

D(Q)4 0.154 0.149 0.066
(24.07) (22.56) (-0.01)

D(Q)H 0.483 0.477 0.321
(17.64) (17.01) (14.04)

R̃imct−1 0.053 0.020 0.018 0.013
(4.40) (3.63) (3.64) (2.19)

D(Q)2 × R̃imct−1 0.011 0.011 0.009
(3.75) (3.75) (3.14)

D(Q)3 × R̃imct−1 0.018 0.018 0.016
(4.36) (4.36) (3.77)

D(Q)4 × R̃imct−1 0.028 0.029 0.026
(4.76) (4.76) (4.34)

D(Q)H × R̃imct−1 0.100 0.102 0.100
(4.00) (3.98) (3.95)

R2 0.003 0.035 0.037 0.041
Controls (it−1) N N Y Y
Controls (CFt−1,Kt−1) N N N Y

Table 14 shows median coefficients and t-statistics across 1,000 simulations. We estimate a regression of
the ratio of the firm investment to its book value, it ≡ Ift/Bf,t−1, on cumulative log returns on the IMC

portfolio, R̃imc
t−1 ≡

∑2
l=2R

imc
t−1 and a vector of controls Xt which includes cash flows over lagged capital, and

log capital:

ift = a1 +

5∑
d=2

adD(Qf,t−1)d + b1 R̃
imc
t−1 +

5∑
d=2

bdD(Qf,t−1)d × R̃imc
t−1 + cXf,t−1 + uft, (45)

Data are simulated at weekly frequency (dt = 1/52) and then aggregated to form annual values. Tobin’s Q

is computed as the ratio of the market value of the firm divided by Book Value. D(Qf,t−1)d is a dummy

variable which takes the value of 1 if the firm f falls in the d-th quintile in terms of Tobin’s Q. Investment

by firm is computed as the sum of the market value of new investment, i.e. Ift =
∑

s∈t xszsKfs, where Kfs

denotes the capital of project acquired by firm f at time s. Book value is computed as the replacement cost

of capital, Bft = zt xt
∑

j∈Jft
Kjt, where Kj refers to capital employed by project j, and Jft denotes the set

of projects owned by firm f at the end of year t. All variables have been standardized to zero mean and unit

standard deviation. Each simulation sample contains 2,500 firms for 50 years. We simulate 1,000 samples

and report medians across simulations of coefficients and t-statistics (in parenthesis). Standard errors are

robust to heteroscedasticity and clustered at the firm level.
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Table 15: Cashflows around portfolio formation

DATA

-5 -4 -3 -2 -1 0 1 2 3 4 5
Panel A: Et/Bt−1

SG 0.213 0.212 0.217 0.229 0.240 0.250 0.221 0.231 0.226 0.225 0.226
SV 0.158 0.151 0.144 0.131 0.116 0.112 0.127 0.153 0.162 0.170 0.171
LG 0.318 0.324 0.326 0.332 0.341 0.345 0.317 0.318 0.311 0.307 0.305
LV 0.200 0.201 0.199 0.194 0.188 0.182 0.183 0.201 0.204 0.209 0.215

Panel B: Et/E
m
t

SG 0.620 0.626 0.658 0.717 0.780 1.000 1.042 1.076 1.118 1.125 1.177
SV 1.534 1.492 1.443 1.335 1.071 1.000 1.106 1.144 1.159 1.140 1.162
LG 0.895 0.895 0.919 0.926 0.968 1.000 1.007 1.019 1.060 1.081 1.101
LV 1.103 1.116 1.151 1.066 1.022 1.000 1.007 1.008 0.955 0.947 0.955

MODEL

-5 -4 -3 -2 -1 0 1 2 3 4 5
Panel A: Et/Bt−1

SG 0.240 0.243 0.246 0.254 0.280 0.320 0.296 0.284 0.276 0.271 0.269
SV 0.241 0.234 0.223 0.205 0.177 0.174 0.201 0.219 0.229 0.235 0.239
LG 0.242 0.246 0.254 0.268 0.300 0.311 0.288 0.276 0.269 0.265 0.263
LV 0.262 0.257 0.248 0.235 0.217 0.208 0.218 0.225 0.230 0.232 0.233

Panel B: Et/E
m
t

SG 1.229 1.139 1.058 0.998 0.977 1.000 1.069 1.174 1.297 1.421 1.552
SV 1.354 1.327 1.279 1.183 1.023 1.000 1.124 1.181 1.207 1.222 1.226
LG 0.854 0.842 0.846 0.877 0.964 1.000 0.973 0.982 1.009 1.042 1.075
LV 1.115 1.131 1.129 1.105 1.036 1.000 1.007 0.992 0.969 0.945 0.918

In panel A, we calculate the evolution of portfolio cashflows to portfolio book equity Ēp
t+i/B̄

p
t+i−1 for size-BM

portfolios formed in June every year. The four portfolios LV , LG, SV , LG refer to the corner portfolios of

a 2-by-3 sort on ME and BE/ME using consumption firms only and NYSE breakpoints. For instance, for

portfolio p, Ēp
t+i equals the sum of earnings at time t+ i of firms assigned to portfolio p in year t. In panel

B, earnings are measured relative to the values of the market portfolio constructed using only consumption

firms (Em
t ), and then standardized so the ratios are 1.0 in the portfolio formation date. For instance, for

portfolio p we compute Ēp
t+i/Ē

m
t+i and Ēp

t /Ē
m
t for each portfolio formation year t and lead/lag i using firms

that have data in years t and t+ 1. The two ratios are then averaged separately across portfolio formation

years. Our procedure closely mimics Fama and French (1995). In the data, cashflows equals operating income

before extraordinary items plus depreciation minus preferred dividends. Book Equity is book common equity.

The sample period is 1965-2007 and excludes firms producing investment goods, financial firms (SIC6000-

6799) and utilities (SIC4900-4949). In the model, we simulate at weekly frequency (dt = 1/52) and then

aggregated to form annual values. Earnings is computed as the sum of cashflows from existing projects,

Eft =
∑

j∈Jft
yjft. Book value is computed as the replacement cost of capital, Bft = zt xt

∑
j∈Jft

Kjt,

where Kj refers to capital employed by project j, and Jft denotes the set of projects owned by firm f at the

end of year t. All variables have been standardized to zero mean and unit standard deviation. We report

means across simulations of coefficients and t-statistics (in parenthesis). Each simulation sample contains

2,500 firms for 50 years. In each simulation, we exclude firms with book values of zero (zero active projects).
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6 Appendix

6.1 Data

Variable Definitions

Variable Source
Investment (I) Compustat item capx
capital (K) Compustat item ppent
Book Assets (A) Compustat item at
Book Debt (D) Compustat item dltt
Book Preferred Equity (EP) Compustat item pstkrv
Book Common Equity (EC) Compustat item ceq
Operating cashflows (CF) Compustat item dp + item ib
Inventories (INV) Compustat item invt
Deferred Taxes (T) Compustat item txdb
Market capitalization (MKCAP) CRSP December market cap
R&D Expenditures (R&D) Compustat item xrd
Cash Holdings (CASH) Compustat item che
Dividends (DIV) Compustat item dvc +item dvp
Share Repurchases (REP) Compustat item prstkc
Tobin’s Q (Q) (MKCAP + EP + D - INV - T)/(EC+EP + D)
Quality Adjusted Price of Investment Goods Israelsen (2010)
Consumption Deflator NIPA
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6.2 Proofs and Derivations

Proof of Proposition 1. That is, Kf is the solution to the problem:

max
Kf

A(εft, 1)xtK
α
f − zt xtKf . (46)

The first order condition is

αA(εft, 1)Kα−1
f = zt. (47)

Proof of Proposition 2. The value of growth options depends on the NPV of future projects.

When a project is financed, the value added net of investment costs is[
α

α
1−α − α

1
1−α
]
z

α
α−1

t xtA(εft, 1)
1

1−α = Cz
α
α−1

t xtA(εft, 1)
1

1−α . (48)

The value of growth options for firm f equals the sum of the net present value of all future projects

PV GOft = EQt

[∫ ∞
t

e−r(s−t)λfsCz
α
α−1
s xsA(εfs, 1)

1
1−α ds

]
= Cz

α
α−1

t xtE
Q
t

[∫ ∞
t

e−ρ(s−t)λfsA(εfs, 1)
1

1−α ds

]
= Cz

α
α−1

t xtEt

[∫ ∞
t

e−ρ(s−t)λfsA(εfs, 1)
1

1−α ds

]
= z

α
α−1

t xtG(εft, λft),

where EQt denotes expectations under the risk-neutral measure Q, where

dQ
dP

= exp

(
−βxBxt − βzBzt −

1

2
β2
x t−

1

2
β2
z t

)
. (49)

The second to last equality follows from the fact that λft and εft are idiosyncratic, and thus have

the same dynamics under P and Q.

Let M be the infinitesimal matrix associated with the transition density (Karlin and Taylor

(1975)) of λft:

M =

(
−µL µL

µH −µH

)
(50)

The eigenvalues of M are 0 and −(µL + µH). Let U be the matrix of the associated eigenvectors,

and define

Λ(u) =

(
1 0

0 e(−µL+µH)u

)
(51)
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Then

Et[λfs] = λf ·UΛ(s− t)U−1

[
λH

λL

]
= λf ·

[
1 + µL

µL+µH
(λH − λL)e−(µL+µH)(s−t)

1− µH
µL+µH

(λH − λL)e−(µL+µH)(s−t)

]
(52)

and

G(εft, λft) = C · Et
[∫ ∞

t
e−ρ(s−t) λfsA(εfs, 1)

1
1−α ds

]
= C · Et

[∫ ∞
t

e−ρ(s−t)Et[λfs]A(εfs, 1)
1

1−α ds

]
(53)

=

 λf

(
G1(εft) + µL

µL+µH
(λH − λL)G2(εft)

)
, λ̃ft = λH

λf

(
G1(εft)− µH

µL+µH
(λH − λL)G2(εft)

)
, λ̃ft = λL

(54)

The second equality uses the law of iterated expectations and the fact that λft is independent

across firms. The functions G1(ε) and G2(ε) are defined as

G1(εt) = C · Et
∫ ∞
t

e−ρ(s−t)A(εs, 1)
1

1−α ds (55)

G2(εt) = C · Et
∫ ∞
t

e−(ρ+µL+µH)(s−t)A(εs, 1)
1

1−α ds. (56)

G1(ε) and G1(ε) will satisfy the ODEs:

C ·A(ε, 1)
1

1−α − ρG1(ε)− θε(ε− 1)
d

d ε
G1(ε) +

1

2
σ2
e ε

d2

d ε2
G1(ε) = 0 (57)

C ·A(ε, 1)
1

1−α − (ρ+ µH + µL)G2(ε)− θε(ε− 1)
d

d ε
G2(ε) +

1

2
σ2
e ε

d2

d ε2
G2(ε) = 0. (58)

Proof of Proposition 3. The risk premium on assets in place will be determined by the

covariance with the pricing kernel:

EtR
vap
ft − rf = −cov

(
dV APft
V APft

,
dπt
πt

)
= βxσx (59)

Similarly for growth options:

EtR
gro
ft − rf = −cov

(
dPV GOft

PV GOft

,
dπt
πt

)
= βxσx −

α

1− α
βzσz (60)

The risk premium on growth options will be lower than assets in place as long as βz > 0.

Consequently, expected returns excess returns of the firm are a weighted average of the risk

premia of its components

EtRft − rf =
V APft
Vft

(ERvap
ft − rf ) +

PV GOft

Vft
(ERgro

ft − rf ) (61)
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Proof of Proposition 4. Profits accruing to the I-sector can be written as

Πt = φ zt xt

∫
Kftdf

= φ

(∫
A(eft, 1)

1
1−αdf

)
λ̄α

1
1−α xt z

α
α−1

t

= Γ · xt z
α
α−1

t

Kft is the solution to the first order condition 47. Because εft has a stationary distribution,

Γ = φ λ̄α
1

1−α

(∫
A(eft, 1)

1
1−αdf

)
is a constant.

The price of the investment firm satisfies

VIt = EQt

∫ ∞
t

exp {−r(s− t)} φΠsds

= ΓEQt

∫ ∞
t

exp {−r(s− t)} xs z
α
α−1
s ds

= Γ xt z
α
α−1

t EQt

∫ ∞
t

exp

{(
−r + µX −

1

2
σ2
X −

αµZ
1− α

+
1

2

α

1− α
σ2
Z

)
(s− t)+

+σX(Bxs −Bxt) +
ασZ
α− 1

(Bzs −Bzt)

}
= Γxt z

α
α−1

t

∫ ∞
t

exp

{(
−r + µX −

α

1− α
µZ +

1

2

α

1− α
σ2
Z +

1

2

α2 σ2
Z

(1− α)2

)
(s− t)

}
VIt = Γ xt z

α
α−1

t

1

ρI

where

ρI ≡ r − µX +
α

1− α
µZ −

1

2

α

1− α
σ2
Z −

1

2

α2 σ2
Z

(1− α)2
> 0 (62)

Proof of Proposition 5. Returns on the IMC portfolio follow:

RI
t −RC

t = (·) dt+ σXdBxt +
α

α− 1
σZdBzt − σXdBxt −

PV GOt

V t

α

α− 1
σZdBzt (63)

= (·) dt+
V AP t

V t

α

α− 1
σZdBzt (64)

58



whereas the return of firm f in the consumption sector is:

Rft = (·) dt+
V APft
Vft

σX dBxt +

(
1− V APft

Vft

)(
σXdBxt +

α

α− 1
σZdBzt

)
+ (·)dBft +

∑
j

(·)dBjt

= (·) dt+ σXdBxt +

(
1− V APft

Vft

)(
α

α− 1
σZdBzt

)
+ (·)dBft +

∑
j

(·)dBjt

so

covt(Rft, R
I
t −RC

t ) =

(
PV GOft

Vft

)(
V AP ft

V ft

)
α2

(1− α)2
σ2
Z (65)

and

vart(R
I
t −RC

t ) =

(
V AP ft

V ft

)2
α2

(1− α)2
σ2
Z (66)

which implies that the beta of firm f with the IMC portfolio is increasing in firm f’s growth

options.
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