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Diversification and Capital Gains Taxes with Multiple Risky Assets

Abstract

We examine the impact of capital gains taxes upon the structure of an investor’s optimal portfolio
in the presence of multiple risky assets. Our numerical solutions suggest that the diversification
benefits of reducing the exposure to a highly volatile concentrated position significantly outweigh
the tax costs of selling, even for elderly investors. The presence of multiple risky assets in which the
investor earns a substantial risk premium strongly increases the diversification incentive. We also
contrast the impact of capital gains taxes and traditional transaction costs on rebalancing decisions
and show that it can be optimal for the investor to reduce his overall equity exposure by selling
underweighted assets with relatively small capital gains. Finally, we discuss the general qualitative
features of the optimal investment policy in a broader context. Both our numerical and qualitative
analyses show how the realization decision on one asset depends upon the embedded gains on other

assets.



1. Introduction

A central problem confronting investors is how to rebalance their portfolios in the presence of
capital gains taxes. Our aim in this work is to examine portfolio rebalancing among multiple risky
assets. The optimal trade-off between diversification and taxes is a challenging problem because of
the endogeneity of the investor’s realization decisions and the large dimension of the state space upon
which the investor’s decision rules are defined. Recently numerical solutions have been obtained
and analyzed by Dammon, Spatt and Zhang (2000, 2001), focusing upon a model in which there is a
risk-free asset and a single risky asset for which capital gains taxes at the time of sale are determined
by the weighted average purchase price. These restrictions reduce the dimension of the underlying
state space, facilitating numerical solutions. This paper extends the analysis of Dammon, Spatt
and Zhang (2001) by analyzing the optimal asset allocation and rebalancing problem in the context
of multiple risky assets.! For example, we show how an investor with a large concentrated portfolio
position (which might arise as a by-product of his employment compensation) should rebalance

his asset allocation.?

More generally, we examine how the investor’s alternative diversification
opportunities and his tax costs influence his optimal realization behavior.

The phenomenon of an investor being overweighted in risky securities as a consequence of his
desire to defer the realization of capital gains often arises as a by-product of the investor’s holdings in
a particular company. Many successful individuals have their financial net worth strongly linked to

the stock price movements of their own firm as a result of their stock and option participation and the

strong increase in asset values in the last two decades.? While individuals with concentrated holdings

!Building upon the modeling strategy in Dammon, Spatt and Zhang (2001), recent papers by Garlappi, Naik
and Slive (2001) and Gallmeyer, Kaniel and Tompaidis (2001) also solve numerically portfolio problems with two
risky assets in the presence of capital gains taxes. These papers, however, have a slightly different focus than ours.
Garlappi, Nail and Slive (2001) focus upon the relationship between capital gains taxes and transaction costs and
highlight the nature of the “no-trade” region. Gallmeyer, Kaniel and Tompaidis (2001) focus upon the optimal
portfolio decisions when short-sale constraints are relaxed.

?Both moral hazard and adverse selection lead firms to provide a significant portion of the compensation offered to
key personnel in the form of restricted equity and options, tying much of the employee’s compensation and net worth
to the success of the firm. Consequently, in practice the compensation contract may constrain the executive’s ability
to liquidate his concentrated portfolio position, even absent taxes. In fact, Ofek and Yarmack (2000) document that
managers are anxious to shed exposure to their firms’ equity when they are able to do so.

3 A static treatment of the risk—return trade-off for concentrated holdings in the presence of taxes is given in Stein,
Siegel, Narasimhan and Appeadu (2000).



in a particular firm would like to reduce their holdings to limit their exposure to idiosyncratic
(nonpriced) risk, the tax cost of selling positions with low bases looms very large. Of course,
financial theory teaches that in the absence of tax costs or incentive constraints, the investor would
eliminate his idiosyncratic risk and hold his desired risk exposure through the market porttfolio. In
a taxed economy the trade-off between such diversification incentives and the desire to defer the
capital gains tax (and potentially avoid it at death) is central to the investor’s portfolio decision.
To address the problem confronting an investor with a concentrated (overexposed) holding in an
asset with substantial idiosyncratic risk, we solve a dynamic setting with a risk-free asset and two
risky assets. We set the parameters so that the risky assets have the same expected return, but quite
different standard deviations, and set the correlation between the assets to be such that the optimal
holding of the higher volatility asset is zero in a tax—free economy. (The standard deviation of the
risky asset portfolio is minimized with zero holding of the higher volatility asset by assumption. The
lower volatility asset can be interpreted as analogous to the market portfolio and as not possessing
idiosyncratic risk, while the higher volatility asset possesses substantial idiosyncratic risk.) Our
numerical solutions suggest that introducing capital gains taxes in such a specification leads the
investor to realize much of his capital gains on the high volatility asset, provided that the investor’s
life expectancy is more than several years. This suggests that the diversification effect may dominate
the tax disadvantage of selling provided that the investor’s horizon is sufficiently long. The horizon
(or investor’s age) plays a prominent role in this analysis because the diversification advantage
of selling (and rediversifying) increases with the investor’s horizon, while the tax advantage of the
potential reset of the investor’s tax basis to the current market value at death becomes more distant.
Selling much of the investor’s holding of the high volatility asset and potentially substituting the
lower volatility asset and leveraging up would allow the investor to enhance his (pre-tax) expected
portfolio return without increasing his overall portfolio variability. While Dammon, Spatt and
Zhang (2001) suggest in a single risky asset setting that the investor will optimally retain much

of his appreciated position to defer the capital gains tax liability, the presence of a substitute



risky security through which the investor can earn the pre-tax risk premium greatly enhances the
investor’s willingness to realize capital gains. This dramatically alters the extent to which investors
should incur capital gains taxes to rebalance their portfolios.

Surprisingly, we find that an investor may optimally sell both underweighted as well as over-
weighted assets in scaling back his overall equity exposure. For example, in our setting in which the
investor maximizes intertemporal expected utility we show that to reduce his overall exposure to
equity it may be optimal to sell an underweighted asset with a relatively small capital gain in order
to reduce the sale of an overweighted asset with a relatively larger capital gain.* Obviously, the
potential value of reducing the investor’s exposure to an underweighted security is sensitive to the
relative capital gains tax liabilities. Underweighted and overweighted assets can potentially serve
as substitutes for scaling back exposure in maximizing the investor’s expected utility objective,
unlike in a framework in which the investor is penalized for departures from an exogenous portfolio
target (see, for example, Leland (2000)). It can be optimal for the investor to adjust some or all of
his assets in solving his portfolio problem, depending upon the relative marginal valuations of the
investor’s positions.

We also consider an example with a riskless asset and symmetric return distributions for two
risky assets. In this situation the optimal portfolio in a tax-free economy (or in a taxable economy
with identical tax bases and initial holdings) weights the two assets equally. This allows us to quan-
tify how differences in bases across assets influence the composition of the investor’s portfolio. The
investor’s optimal portfolio is relatively skewed towards the asset with the larger gain and is sensi-
tive to the basis of the alternative risky asset, emphasizing the importance of cross- (substitution)
as well as own-basis effects in determining the structure of an investor’s optimal portfolio. While
for many parameter values the investor adjusts his optimal portfolio holdings for diversification

reasons, as in models with transaction costs, the capital gains tax costs triggered by sales lead to

4We describe an asset as underweighted (overweighted) if the investor owns relatively less (more) of it compared
to an optimal portfolio structure in an economy in which the investor did not face any capital gains tax liabilities
because his bases equaled the current market values.



a “no-trade” region in which the investor does not rebalance his portfolio or adjusts only a subset
of assets. We examine the dependence of the “no-trade” region upon the investor’s age and the
basis—price ratio of the underlying assets.

Because of the dimension of the state space, we are unable to obtain quantitative solutions for
problems with a large number of risky assets. Instead, we derive robust qualitative implications
for optimal portfolio holdings and trading in the presence of capital gains taxes. Of course, our
numerical examples with two risky assets illustrate quantitatively how the presence of multiple risky
assets influences the investor’s trade-off between the benefits of portfolio rebalancing and the tax
cost of capital gains realizations.

The qualitative approach we take allows us to extend the framework in Dammon, Spatt and
Zhang (2001) to incorporate multiple risky assets and to distinguish the tax basis of different po-
sitions in a given stock owned by the investor. Allowing for multiple risky assets and multiple tax
bases for each asset enhances the value of the investor’s tax-timing option. In addition, the quali-
tative properties we derive are valid even in settings in which (a) the investor possesses stochastic
labor income that is imperfectly correlated with the returns on risky securities and/or (b) asset
returns are correlated over time (so that investment decision rules are conditional upon the an-
ticipated distribution of returns). Finally, the conclusions are largely robust to the specification
of investor preferences. The qualitative approach allows us to extend many of the intuitions from
two—asset models to multiple-asset settings and offers new insights about portfolio effects. For
example, one important feature is the cross—basis effect that increasing the distribution of bases on
one asset results in (weakly) reduced sales of the other assets.

Section 2 presents numerical solutions in a simplified framework in which the investor is overex-
posed to an asset with substantial idiosyncratic risk and also can invest in another risky portfolio
(such as the market portfolio) and a risk-free asset. Detailed discussion of the trade-off between
the diversification benefit and tax cost is provided. Section 2 also examines a symmetric two risky-

asset example to further illustrate the interaction between diversification and taxes and examine



the nature of the investor’s “no-trade region.” In Section 3 we examine broad qualitative insights
about the structure of the investor’s portfolio choices. Some concluding comments are offered in

Section 4. The formal model underlying the numerical solutions is detailed in the Appendix.

2. Numerical Examples — Two Risky Assets

We present numerical results for the optimal investment problem in the presence of capital gains
taxes and two risky assets to highlight distinctive findings that arise with multiple risky assets. Our
first example illustrates the situation confronting an investor with a highly concentrated portfolio
including investment in a volatile individual company stock as well as the market index. We then
describe a symmetric example with two risky assets in which there are genuine opportunities for
portfolio diversification in the construction of the investor’s portfolio, even absent taxes.

The investor makes optimal consumption and portfolio allocation decisions annually starting
at age 20 (¢t = 0) and lives for at most another 80 years until age 100 (7" = 80). The investor’s
preferences are represented by a constant relative risk averse utility function so that the investor’s
consumption and portfolio choices are homothetic with respect to his wealth. We assume that the
investor derives his income only from financial assets as the presence of labor income would require
additional state variable(s) in our formulation unless the investor’s labor income was proportional to
his wealth. Capital gains are taxed upon sale of the assets. To keep the state space from expanding,
the weighted average tax basis is used for both the company stock and the stock index. Our two
risky—asset economy then requires four continuous state variables: the basis—price ratios (p: and
p?) and initial asset proportions (s. and s;) for each of the risky assets. At the investor’s death, his
tax basis is reset to the current market price.® For simplicity we assume that the investor derives
utility from his bequest equal to the utility his beneficiary would derive if the bequest were used to
purchase an annuity contract offering a constant real consumption stream over H periods, where H

measures the strength of the bequest motive. Wash sales are permitted and transaction costs are

Following Dammon, Spatt and Zhang (2001), we assume in our numerical implementation that at death the
investor is forced to reset the tax basis on both gains and losses.



zero (so that investors can immediately repurchase shares). The detailed model description, which
extends the formulation developed in Dammon, Spatt and Zhang (2001), is given in the Appendix.

The annual mortality rate is calibrated to match the life expectancies for the U.S. population.®

2.1 Company Stock and Market Index

In the first numerical example, we assume that the investor can invest in three assets: a risk-free
bond, a highly volatile risky individual “company” stock, and a risky stock index. We assume that
the nominal pre-tax interest rate on the risk-free bond is 7 = 6% per year, the nominal dividend
yield on both the company stock and the stock index are d. = d; = 2% per year, and the annual
inflation rate is z = 3.5%. The nominal capital gain return on the individual company stock is
assumed to follow a binomial process with an annual mean and standard deviation of g. = 7% and
. = 40%, respectively. The nominal capital gain return on the stock index also is assumed to
follow a binomial process with an annual mean and standard deviation of g; = 7% and o; = 20%,
respectively. These volatilities are reflective of the volatilities of individual stocks and the market
portfolio, respectively. The correlation between the capital gain return of the company stock and
the stock index is assumed to be p = 0.5. The parameter values for the risky asset returns are
chosen so that the two assets have identical risk premia and a correlation coefficient such that
the investor would optimally hold no company stock in the absence of taxes. We assume that
the tax rate on dividends and interest is 7, = 36% and the tax rate on capital gains and losses
is 7, = 20%.7 The investor is assumed to have power utility with an annual subjective discount
factor of § = 0.96 and a risk aversion parameter of v = 3.0. We set H = oo so that the investor’s
utility is defined by providing his beneficiary a perpetual consumption stream from the bequest.
For numerical tractability, we solve the model using a grid of (31 x 31 x 31 x 31) over the following

ranges: s. € [0,1], pi € [0.05,1.05], s; € [0,1], and pf € [0.05,1.05]. Our numerical procedure is

5The mortality rates are calculated from the life expectancies in the 1980 Commissioners Standard Ordinary
Mortality Tables.

"Because of portfolio offset rules we assume that capital gains and losses are taxed identically. We set the tax
rate at 7, = 20%, because if the investor was overexposed to equity he could rebalance his position by selling some
stock and paying tax on his gain at that rate.



summarized at the end of the Appendix.

We begin the discussion of our numerical solutions with the optimal investment policy for the
investor at age 99 just before the terminal date. Since the investor dies with certainty next year,
this is a one-period optimization problem. Figure 1 shows the optimal overall equity proportion,
optimal company equity proportion, and optimal stock index proportion plotted against the basis-
price ratios for the company stock and the stock index. The initial company stock and stock index
holdings are set at s. = 0.9 and s; = 0.1 (for all three panels) to reflect a situation in which
the investor is substantially overexposed to a concentrated equity position and underexposed to
the market index. Because the company stock is much riskier than the stock index (o, = 20;)
and the diversification benefits are insufficient to induce the investor to own the high volatility
(company) stock in a tax-free economy, the investor always scales back substantially his holdings
of the company stock. Despite the efficiency of bearing risk through the index, the investor does
not add to his ownership of the index, when the investor retains more than 25% of his overall
assets in the company stock (which corresponds to a gain on the company stock of more than 80%).
This is because the investor is still overweighted in equity on an overall basis. As the gain on the
company stock and tax cost of selling it decline, the investor sells more of the company stock (and
purchases more of the index) to improve the risk—return trade—off of his portfolio. This shows that
the diversification benefit is so large that it outweighs the immediate tax costs of trading, even
though the tax on any embedded capital gain would be forgiven in the next period (at death).

The panel on the right shows the optimal company stock holding as a function of the tax bases
on the two assets. The optimal company stock proportion is approximately zero when the investor
has an embedded loss on the company stock (the right back edge of the panel, p* > 1). This is not
surprising because the parameter values were chosen so that the investor optimally holds none of
the company stock in his portfolio in the absence of capital gains taxes. Furthermore, since all gains
and losses are untaxed at the time of death there is no tax-timing option for investments made at

age 99. Although there is no tax-timing option, the investor takes advantage of the tax forgiveness



(reset provision) at death by retaining some of his shares of the company stock with very large
embedded gains. Because the investor is overweighted in the company stock, he also sells some of
his initial company stock holding to reduce his exposure. The extent that the investor liquidates
his company stock holding is inversely related to the size of its embedded gain (as in a single risky
asset model), but also is increasing in the size of the embedded gain on the stock index.

The last panel shows the stock index proportion as a function of the bases on the two assets.
The optimal costless rebalancing stock index proportion is given by the right front edge (the edge
corresponding to p; > 1). The optimal costless rebalancing stock index proportion decreases as
the embedded gain on the company stock increases. When the embedded gain on the company
stock is large and the embedded gain on the stock index is small, the investor reduces his stock
index holding (potentially to zero) to maintain an overall balanced equity proportion and retains
more of his company stock holding to minimize his tax costs. When the basis-price ratio on the
company stock is less than 0.4 (the corresponding embedded capital gain is greater than 150%),
the investor only holds the company stock and not the stock index. This example provides the
interesting observation that because of differential tax costs of altering his exposure on different
assets due to differences in the basis—price ratios on these assets, an investor overexposed to equity
on an overall basis may choose to sell an asset to which he is underexposed, while retaining more of
the asset to which he is overexposed. In contrast, in examining a model with a fixed target portfolio
and transaction costs (or capital gains taxes) Leland (2000) finds that the investor does not reduce
his exposure to an underweighted asset due to the exogenous portfolio targets assumed. In our
setting the optimal portfolio structure is endogenously (simultaneously) determined across assets.
Note that when the embedded gain on the stock index is large, the investor retains his initial stock
index holding. This is illustrated by the flat stock index proportion in much of the figure.

Our discussion above points to the cost of diversification and the reset of the tax basis at death
as the reasons for the investor to hold the much riskier company stock. In particular, at age 99

the investor retains much of his initial company stock holding with a large embedded gain to take



advantage of tax forgiveness at death. At younger ages, the investor’s mortality rate decreases
dramatically, making the benefits of tax forgiveness at death relatively small. This should increase
the investor’s willingness to sell assets that are overweighted. To see how much the tax deferral
influences the investor’s decision to liquidate the risky company stock, we examine the portfolio
decisions at age 90. In Figure 2 we plot the overall equity proportion, the company stock proportion,
and the stock index proportion as a function of the tax bases on the two assets. The initial company
stock and the stock index holding are set at s. = 0.9 and s; = 0.1, respectively, as in Figure 1.
The overall equity proportion is relatively flat in the basis—price ratio of the company stock and
the stock index at age 90. The investor liquidates a large proportion of his initial holdings of the
company stock to rebalance his portfolio (he retains only about 10% of his assets in the company
stock, even when his embedded gain is very large (p* = .05)). Examining the plots for the company
stock and the stock index proportions indicates that the decline in the total equity proportion at
age 90 is primarily due to the liquidation of the investor’s initial company stock holding. The
investor is willing to retain a small amount of the concentrated highly appreciated position despite
its higher own volatility, because at the margin the investor would prefer to avoid the tax cost, but
the nonlinear nature of the diversification costs makes those costs too large for substantial holdings
of the company stock.® In addition to selling most of his position in the company stock when the
capital gains tax cost is small (company stock basis near one), the investor purchases the index
since it is the efficient way to bear risk. A cross-basis effect arises since the sale of larger amounts
of company stock for higher values of the company stock basis (due to the lower tax cost) results
in a larger proportion of the investor’s wealth being used to purchase the index. Intuitively, the

investor sells much of his exposure to the company stock with an embedded gain in order to use

®8In the special case in which there is a single risky asset, the concavity of the investor’s optimization problem
implies that if the investor is greatly overexposed to the risky asset and needs to scale back, his optimal policy is then
independent of the investor’s incoming holding of the risky asset. This is a consequence of the increasing marginal
disutility of being further from the optimal holding of the risky asset. In this region the optimal investment holding
is a function of the basis—price ratio and investor’s age, but not the incoming exposure. This is analogous to the
result in a model with one risky asset and a riskless asset as well as proportional transaction costs that investors
with convex disutility for deviations from an exogenous target portfolio adjust the weight on the risky asset to an

optimal boundary (e.g., as illustrated by Leland (2000)).



the index to achieve his desired equity exposure.?

An interesting contrast at age 90 is offered by Figure 3 in which the investor’s initial portfolio
is 50% stock index and 50% company stock. In this case the investor retains substantially less
company stock than the 10% holding retained above at age 90, when he has large embedded gains
on the stock index. This reflects the investor’s greater holdings of the index and the tax costs of
the index position. For example, if the investor’s basis were .05 on both the company stock and
the index, then the investor would adjust his holding of the company stock to near zero because to
the extent that the investor retains risk exposure he prefers to hold the lower volatility asset (the
index). Notice that the lower the investor’s basis in the index, the greater the investor’s holding of
the index and the lower his retention of the company stock, again illustrating the cross—basis effect
on asset ownership.

Our example reflects a situation in which the investor is overexposed to a stock in which he would
bear considerable idiosyncratic risk if retained. However, it is still striking that even for investors
with relatively short horizons (i.e., age 90 in our example) the diversification benefits outweigh
the tax cost of selling the high—volatility asset, despite the tax forgiveness on the appreciation
if the investor retains that position until his own death.!’® By selling the company stock and
using the proceeds along with leverage to reestablish the overall risk of the investor’s portfolio, the
expected return on the portfolio could be substantially increased. This additional expected return
understates substantially the risk-bearing cost because it is not optimal for an investor to leverage
up his exposure to the stock index in this fashion. This example suggests the potential value for an
investor with a concentrated holding to scale back substantially that exposure to avoid excessive

risk bearing, as long as the investor is more than a few years from his anticipated death. In fact,

9Note that the figure suggests that the investor will purchase slightly more of the index when his existing gain
on the index is small (large index basis). This is a result of the averaging in purchases at unfavorable bases and
the wealth effect of smaller embedded tax liabilities. (Dammon, Spatt and Zhang (2001) provides more detailed
discussion of this in the context of a single-asset model.)

100f course, in practice investors may have other mechanisms available to reduce the idiosyncratic (nonpriced)
exposure of an investor with a large concentrated and highly appreciated position. Wall Street has created a variety
of transactional mechanisms to transform the customer’s risk and reduce the idiosyncratic risk that the customer

needs to bear, while continuing to defer the capital gains taxes.
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the incentive to scale back his large exposure to idiosyncratic risk is even stronger at younger ages
due to the lower mortality risk and greater diversification benefit.

Our conclusion that the investor should desire to rebalance his portfolio despite capital gains
taxes on the appreciation is sensitive to the structure of incremental risk being borne. For example,
in the context of a relatively diversified portfolio structure, it would be beneficial for the investor to
bear some incremental additional idiosyncratic risk in order to defer capital gain tax realizations.
The idea that an investor with a concentrated exposure should be anxious to realize his gain to
rediversify as long as the investor has more than a few years of life expectancy seems to contrast
sharply with the analysis in Dammon, Spatt and Zhang (2001) with a single risky asset in which
an investor with substantial gains may retain much of his equity position in order to continue to
defer the implicit capital gains tax liability. However, an important feature of that setting (as a
by-product of the assumption of a single risky asset) is the absence of substitute risky assets through
which the investor can earn the pre-tax risk premium. In contrast, the presence of alternative risky
portfolio opportunities allows the investor to sell appreciated positions to diversity without limiting
the investor’s opportunity to earn the risk premium, making the sale of appreciated assets much

more attractive.

2.2 Diversification: A Symmetric Example

The overall structure of the second example reflects symmetric opportunities across the assets.
We assume g = 10% and o = 30% for each of the two assets. The parameter values and assumptions
are otherwise identical with those in the example in Section 2.1, including the assumed correlation
of 0.5. In our illustration we will focus on a situation in which the incoming holding of each asset
is 0.5. In Figures 4 and 5 we plot the holdings at ages 99 and 40, respectively, given the basis—price
ratios on the two assets. Given the assumed parameter values the investor is overexposed to equity
when he holds 50% of his portfolio in each of the two risky assets. The only potential asymmetry

in the example is due to differential tax bases, allowing us to highlight the effects of capital gains
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taxes.
taxable economy (or in a tax-free benchmark economy) for the two assets because of the symmetry
of the underlying example. The total equity holdings also are symmetric in the two bases.

The structure of the investor’s portfolio at age 99 (Figure 4) illustrates a variety of important
effects. In this example the investor is overexposed to each of the two assets (the optimal holding
for an asset can be obtained by settings its basis to one given the basis of the other asset) and does
not have any incentive to purchase either asset. However, the investor does not necessarily scale
back his holding of either asset. In fact, if the bases of both assets are below 0.55, neither asset
is sold. There is an interesting cross-basis effect in the example in that if the investor has a small
gain on one asset he sells a larger proportion of this asset relative to the asset with the higher gain
(however, because of diversification he does hold positive amounts of both assets). There is a large
combination of bases for which the investor does not rebalance his portfolio or adjusts only one
of the two assets. The shape of the region also exhibits the “cross-basis” effect. Interestingly, the
“cross-basis” effect is quite dramatic in that it the investor has no gain on one of the assets and a
gain of at least 30% on the second asset, then the investor holds almost his entire equity exposure
through the second asset (e.g., as illustrated by the right edge of the figure in the bottom panel).
Notice that in this symmetric example in which the investor is overexposed to both assets, there
are no basis combinations for which the investor purchases either asset.

Figure 5 illustrates that at age 40 the investor scales back his holdings of both assets for all
basis combinations. This reflects the strength of the diversification incentives given the investor’s
overexposure to equity and remaining horizon. Of course, the tax costs limit the extent of the
investor’s trading, despite the diversification benefit. The cross (and own basis) effects are quite
strong in this situation. For example, at age 40 (Figure 5) if it is costless to sell both assets (pf > 1
and p7 > 1), then the investor will hold 22.4% of his portfolio in each, while if the basis on one of

the assets is .05 (and the other is again one) then the investor will hold 32.8% of his portfolio in the

UTn the figure we refer to one of the assets as the “index” and the other as the “company” stock (as in Section
2.1), but here the assets are interchangeable.
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asset with a basis of .05 and 15% of his portfolio in the asset whose basis is one. This illustrates
the considerable sensitivity of investor decisions to taxes and provides an interesting example of
how optimal diversification is distorted by taxes. Similar effects arise at other ages. For example,
at age 80 (not shown) the investor holds 22% of his portfolio in each of the two assets if their bases
are both one, while if the basis on one of the assets is .05 (and the other asset has a basis of one)
then the investor will hold 41.2% of his portfolio in the asset with the low basis and 11.8% of his
portfolio in the asset whose basis is one.'? Interestingly, much of the holdings of an asset as its
capital gain increases is offset by a reduction in the holding of the other asset.

While Figure 5 is cast in terms of the investor’s bases on the two assets, the traditional “no-
trade” region in models of transaction costs (e.g., as illustrated by Leland (2000)) is expressed
in terms of the investor’s holdings of the assets.!®> In Figure 6 we present a counterpart to the
traditional “no-trade” region in our example with symmetric returns distributions. For an investor
at age 80, Figure 6 provides bounds on the “no-trade” region in terms of the investor’s holdings for
a given combination of bases (identical basis—price ratios for the assets of .05, .5 and .8 are depicted
in the figure). The “no—trade” region is largest for an investor with a low basis—price ratio (large
capital gains tax liabilities), since an investor with large transaction costs will have a relatively wide
“no-trade” band. In contrast, when the basis—price ratio is high (the capital gains tax liability is
small when the basis—price ratio is .8), the “no-trade” interval will be relatively tight as the investor

will typically adjust his holdings.!* The diamond-shaped nature of the region in which the investor

12We increased the capital gains tax rate to 7, = 36% (not shown) to examine the sensitivity of the investor’s
holdings and diversification decisions to his tax rate. At age 80 (not shown) the investor holds 23.9% of his portfolio
in each of the two assets if their bases are both one, while if the basis of one of the assets is .05 (and other asset
has a basis of one) then the investor will hold 50% of his portfolio in the asset with the low basis and 11.5% of his
portfolio in the asset whose basis 1s one. Not surprisingly, there is greater sensitivity of the investor’s holdings to
each asset’s own basis as well as the cross basis of the other asset when higher capital gains taxes make sale of an

appreciated position and diversification more costly.

13For each asset, the “no-trade” region is defined as the region for which the incoming stock holding and the
outgoing stock holding are the same as a fraction of beginning-of-period wealth. For each asset, the “no-trade”
region 1s defined by two boundaries. If the incoming stock holding is below the lower boundary or above the upper
boundary, the investor will adjust his holding of this asset. Otherwise, he will retain his current holding. For the
two-dimensional plot, the two relatively steep lines show the lower and upper bounds for the company stock (the

first stock) and the two relatively flat lines show the lower and upper bounds for the stock index (the second stock).
1 The size of the “no-trade” region is slightly narrower for an investor at age 40 (not shown) than at age 80, since
the incentive to adjust one’s portfolio holdings at age 40 will be somewhat greater.
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does not alter his holding of either asset (this shape also arises in Leland’s (2000) “no-trade” region)

reflects the cross-basis effect in the optimal portfolio structure.

3. General Qualitative Features

We now analyze the impact of capital gains taxes upon the structure of an investor’s optimal
portfolio with multiple risky assets from a broader perspective. In this section we examine general
qualitative features of capital gains realization behavior and portfolio choice in the presence of
capital gains taxes, extending the framework in Section 2. The investor can allocate his financial
wealth among .J risky assets (rather than two risky assets) and a risk-free asset. We also now permit
(though do not require) the capital gains tax liability to be determined by the specific tax basis
of the positions sold, rather than requiring the tax liability to be calculated using the investor’s
average basis. In addition, unlike Dammon, Spatt and Zhang (2001) and the framework in Section
2, we allow labor income to be stochastic and imperfectly correlated with asset returns and the
investor’s wealth, allow asset returns and labor income to be correlated over time, and do not
restrict the investor to possess constant relative risk averse preferences (of course, the preferences
must satisfy non-satiation and concavity conditions).

As in Dammon, Spatt and Zhang (2000, 2001) and Section 2 of this paper we assume that
wash sales are permitted (so that investors can realize tax losses and immediately repurchase their
desired exposure) and transaction costs are zero (so that investors can rebalance their portfolio
without cost absent capital gains taxes).'® We assume that tax rates are constant over time and
that taxation of capital gains (or losses) occurs at the time of sale. In addition, we assume that the
capital gains tax rate is not influenced by the investor’s holding period for the asset.

In light of these assumptions, the investor’s portfolio choice problem can be formalized as a

15The analysis in this section is robust to the presence of tax—deferred (retirement) investing. Dammon, Spatt and
Zhang (2000) point out that optimal investment of retirement wealth (and taxable wealth) is not influenced directly
by the incoming composition of retirement assets because the investor can costlessly adjust his portfolio composition
in the tax—deferred account given the tax treatment of the account and the assumed absence of transaction costs.
Under the additional assumption of constant relative risk-averse preferences, only the proportion of the investor’s
wealth that is tax-deferred and the investor’s relative holdings of taxable assets and the extent of any taxable gains
and losses influence the optimal relative holdings of the investor’s wealth.
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dynamic programming problem in which the investor’s dollar ownership and corresponding basis
(or basis-price ratio) for each distinct lot of shares are the principal state variables. In addition,
the investor’s age and variables relevant to predicting the distribution of future asset returns and
labor income also are state variables.'®

In this general framework a number of interesting qualitative conclusions emerge.!” While some

of these properties are relatively obvious, others are more subtle.

Property 1 The investor optimally realizes all losses.*®

On any position in which the investor’s tax basis is above the current market price, the investor
will realize the loss and repurchase shares to reestablish his optimal holdings. Since by assumption
there are no wash sale restrictions or transaction costs in our framework, the investor can realize
all available losses (speeding up their recognition for tax purposes) without constraining his desired
exposure to the specific asset.!®

The investor would lose the time value on the tax reduction and could lose the opportunity to
take the loss by delaying the realization. While we permit the investor to have distinct per-share
basis values for different holdings of the asset (in which case the investor would sell those lots with
a loss), the result also would apply to situations in which the investor is unable to distinguish the
per-share tax bases of his holdings. Not only is it optimal for the investor to realize all his losses, it
also may be optimal for the investor to realize small capital gains if the investor desires to reduce

his exposure to equity (e.g., for portfolio rebalancing).?

16The specific state space depends upon the precise model specification. For example, under the assumptions of
labor income being proportional to wealth and constant relative risk averse preferences the investor’s wealth is not a
state variable and in fact, important choice variables are the proportions of investor wealth allocated to the various
assets. Variables for predicting the future distribution of asset returns are not relevant when returns are identically
and independently distributed over time. Under the assumption that the investor’s tax liability depends only upon
his average basis, the portfolio decision rules do not need to be conditioned upon the full distribution of investor
bases for each asset.

1"The existence of a solution to the optimization problem follows from continuity of the investor’s objective function
and the compactness of the choice set (which is satisfied as long as the investor’s potential borrowing is bounded).

18In various contexts this observation has been made by a number of authors including Constantinides and Scholes
(1980), Constantinides (1983), and Dybvig and Koo (1996), among others.

19Note that Dammon and Spatt (1996) show that it need not be optimal for an investor to realize losses prior to
the end of the short-term region, if there is asymmetric treatment of short-term and long-term realizations.

20The investor’s optimal portfolio policy is independent of the specific composition of his losses (or gains that it
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In solving the portfolio optimization problem in the presence of capital gains taxes, it is helpful
to cast the portfolio adjustments in terms of shadow prices. In scaling back the exposure to equity,
one should first scale back the asset whose position has the smallest marginal value if retained
(lowest shadow price), taking into account the capital gains tax cost. Of course, the shadow prices
change as we alter the positions. In particular, as we reduce a position its shadow price (marginal
value) increases (reflecting the concavity of the portfolio optimization problem) and the shadow
price of other assets declines. In a portfolio context it may be optimal to adjust the holdings of
only a single asset if there is enough difference in the shadow prices among the assets.?’ We only
would begin to scale back a second asset when the shadow prices of the assets with the two largest
shadow prices are equated. The same logic can be extended to additional assets.??,%® Of course,
these adjustments are not really sequential, but a heuristic/intuitive interpretation.

One simple illustration of the shadow price principle arises when some risky assets are identically
distributed (same mean, variance, common cross-correlation) and the investor is overexposed to
these assets. If there is an identical gain on these assets in an average basis setting (i.e., the
investor’s average basis determines the tax consequences of a realization), then the investor sells

his largest position until it reaches the size of the next largest position, etc. Of course, if the larger

is optimal to realize) given the after—tax proceeds of his realizations and the remaining locked-in positions of the
investor. For example, since it is costless to adjust a position whose basis—price ratio i1s one, the investor’s optimal
portfolio is independent of his incoming holdings of such positions. As the examples in Section 2 illustrate, the
investor’s optimal portfolio proportions are not influenced by the basis—price ratio of an asset in the region in which
the basis—price ratio exceeds one.

2n a context with an exogenous portfolio target, Leland (2000) demonstrates that it often is optimal to adjust
the holdings of only a single asset.

22The shadow price principle can be applied to other settings with multiple assets and taxes. For example, in
a departure from our framework consider an investor who has made a charitable commitment. Assuming identical
return distributions the investor would donate the asset with a relatively large overexposure or relatively large gain.
As long as the donation is small relative to the donor’s wealth, it 1s optimal to donate shares of just a single asset.
Only for larger donations would donating multiple assets be optimal because of changing shadow prices. As an aside
we observe that the charitable donation issue is somewhat different than the rebalancing issue, because capital gains
taxes are not paid in the donation case. Therefore, the investor donates low basis shares (this does not depend upon
the assumption about future tax rates as the investor always prefers to retain high basis shares), whereas he sells
high basis shares to rebalance his portfolio. Consequently, the relevant notion of shadow price in a donation context
is different than in the basic diversification problem with capital gains taxes.

Z3In problems with trading frictions such as capital gains taxes, the frictions may lead to a wedge that makes
it infeasible to equate shadow prices and instead a corner solution results. This is illustrated by the flat regions
for the ownership of the assets (corresponding to retaining the incoming position or corresponding to the short-sale
constraint being binding) in the examples in Section 2.

16



holding had a relatively smaller gain, then the investor would keep selling it until that holding’s
size was substantially below the other asset’s (to equate the shadow prices). If the larger position

had the larger gain, then it would be ambiguous which asset to sell first.

Property 2 (High—Basis, First—Out): The investor will optimally realize positions if and only
if the bases for these positions are at least equal to a critical value b*, where b* varies by asset and
depends upon the current vector of state variables and the parameters describing the evolution of

the economy.**

For any future realized path of asset returns and corresponding vector of the number of shares sold
today and at the respective future nodes in the tree, the investor’s utility will be at least as large
if the investor selects the lots to sell in order to maximize the losses (minimizes the gains) realized
at the present time. If the investor realized a position with a lower basis (and larger immediate tax
gain), while retaining one with a higher basis (and smaller immediate tax gain), the incremental
future benefits (including time value cost) of retaining the higher basis position could not exceed
that of immediately realizing the higher (rather than lower) basis position.

One way to interpret the conclusion in Property 2 is in terms of shadow prices. If we allow
distinct shadow prices for each distinct lot of a given asset, the highest basis (lowest gain) positions,
which have the lowest shadow prices, always would be the most valuable to sell. This suggests a
complementary intuition for High—Basis, First—Out.

The High—Basis, First—-Out characterization implies that only a single decision variable and
shadow price is needed for each asset in the investor’s portfolio optimization problem.?® This

suggests a sense in which multiple tax bases for a given asset represent a less fundamental feature

24This observation was noted in various contexts previously by Balcer and Judd (1987) and Dybvig and Koo
(1996), among others.

Z50f course, high-basis, first—out (or even realizing losses as soon as they become available) may not be an optimal
decision rule if the tax rate is anticipated to rise. As a result, the constant tax rate assumption is very useful in
limiting the number of decision variables (e.g., to one per risky asset) as well as preventing the investor from realizing
gains (at relatively low marginal rates) for the purpose of raising his tax basis (somewhat akin to the argument in
Constantinides (1984) and Dammon and Spatt (1996) that investors may find it optimal to realize long-term gains
in order to create the option to be able to realize future losses short-term).
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of the portfolio optimization with taxes than multiple assets (each using the average basis for that
asset). In the presence of multiple bases for a single asset, unlike multiple assets, the ranking of

which positions are the most valuable to realize (or defer) is not altered by shocks to asset values.?®

Corollary 1 High—Basis, First—-Out implies that it is never optimal to sell positions with an em-
bedded capital gain and simultaneously repurchase shares in the same stock at the current market

price.

Selling shares with capital gains while simultaneously repurchasing shares would violate the
argument underlying the high—basis, first—out condition. The investor would be better off deferring

the realization of the gain on those shares that he repurchases.

Property 3 The investor’s value function is increasing as the distribution of investor tax bases
shifts upward (in the sense of “First-Order Stochastic Dominance”) for each asset, holding constant

the shares of each asset owned by the investor.

If an investor with relatively higher bases in an asset replicates the optimal decisions of an investor
with uniformly lower bases in an asset, the investor with the relatively higher bases would be
strictly better off than the investor with lower bases (and can do even better by making the optimal
decisions, given his actual bases).?”

Note that the argument applies even if the distribution of bases for various assets shifts simul-
taneously in the sense of first-order stochastic dominance. Of course, increasing the investor’s tax
bases makes the investor effectively wealthier. Since the investor with a higher distribution of bases
is effectively wealthier, the investor will consume more than an investor with a lower distribution

of bases.?®

Z6Multiple bases can be represented as a special case of the multiple asset setting with average bases by treating
distinct bases for a given holding as distinct assets (whose prices are perfectly correlated, but whose bases differ).

2TOf course, this same idea applies in a setting in which the investor’s “average” basis is the relevant basis for
tax calculations, as in the setting in Section 2 or Dammon, Spatt and Zhang (2001). Consequently, in a single-basis
setting the investor’s value function increases in the basis.

28 As an aside, note that the consequences of the investor’s tax bases for his marginal utility of consumption and
asset pricing models are typically not emphasized in finance. One exception to this is Bossaerts and Dammon (1994).
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Property 4 Increasing the distribution of investor tax bases in a specific asset (in the sense of
“First-Order Stochastic Dominance”) and fizing the investor’s bases and holdings in other assets

will cause the investor to retain (weakly) less (and sell more) of the asset.*

Increasing the basis distribution reduces the distribution of embedded capital gains and lowers the
current cost of selling a fixed amount of appreciated stock. The marginal condition characterizing
the optimal amount of the asset that the investor sells (which equates the marginal diversification
benefits and tax costs) implies that the investor sells at least as much of the asset (due to the lower
marginal tax costs of selling an identical number of shares) and retains no more of the asset after
the distribution of bases is increased. Shifting upward the distribution of tax bases (and shifting
downward the distribution of embedded capital gains) decreases the shadow price of the investor’s
holding of the asset so that the investor will sell (weakly) more of the asset and retain (weakly) less
of it.

The application of Property 4 to a situation with multiple assets is subtle (unlike Property 3).
Property 4 does apply to shifting the distribution of bases for a single asset, including shifting the
distribution of bases for one asset in a setting in which there are many other assets. However,
suppose that we increase simultaneously the distribution of bases in several assets. We can no
longer conclude then that the investor will retain less (sell more) of all the assets subject to these
first-order dominance shifts in the distribution of bases. The reason is that in addition to the
direct impact of the shift in the distribution of bases upon the holdings of that asset, the shift of
the distributions of bases of other assets also influences the sales of the initial asset. In fact, our
analysis below suggests that such “cross” effects will work in the opposite direction because of the
substitution decisions by investors owning multiple assets.

An interesting issue is how do larger gains on one asset influence the optimal holdings of the

other assets? There is no direct counterpart of this issue in option pricing theory since the issue

29The result examines the impact of the investor’s basis upon his selling decision (i.e., when he is overexposed),
but not his purchase decision (i.e., when he is underexposed). In fact, in the case of the average basis rule footnote
9 illustrates a situation in which the purchase decision when the investor is underweighted in the asset actually
increases in its basis.
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concerns the impact of a change in the exercise price of one asset upon exercise decisions of other
assets. Our conclusion focuses upon the idea that assets are substitutes due to the diversification

effects and the wealth effect of changes in the distribution of gains.

Property 5 Fizing the incoming asset allocation and increasing the distribution of bases on one of
the assets (in the sense of “First-Order Stochastic Dominance”), the investor will retain (weakly)

more (and sell less) of the other assets (both the other risky assets and the risk-free asset).

By Property 4 the investor sells more of the asset with smaller gains (weakly). The other risky
assets are a substitute for diversification reasons. In addition to the substitution effect, there also is
a wealth effect induced from the impact of smaller gains on the original risky asset (see Property 3).
These tax impacts of the smaller gains make the investor effectively wealthier, which would increase
the demand for the other risky assets and the risk-free asset. Consequently, the overall sales of the
other risky assets and the risk-free asset will decrease. The examples in Section 2 illustrate that
increasing the gain (decreasing the basis) on a risky asset to which the investor is overexposed will
cause the investor to retain (weakly) more of that position and (weakly) less of other risky assets
to which the investor is overexposed and the riskless asset.

An important related issue is the cross effect of the impact of increases in the incoming holding
of an asset upon the holdings of other assets. As the size of the holding of a risky asset with
embedded capital gains increases (with a corresponding reduction in the holdings of the risk-free
asset), the investor will possess more of an incentive to scale back the other risky assets. This again
is a consequence of the assets serving as substitutes due to portfolio diversification.

An interesting issue is the nature of the bias in our framework when we restrict attention to a
limited set of assets or bases. To explore the issue we use traditional option pricing arguments to
consider the impact of spreading the distribution of bases, while fixing the number of shares owned

by the investor.

Property 6 If the distribution of gains is made more dispersed in the sense of “Second-Order

20



Stochastic Dominance,” the investor will have a (weakly) larger value function and will be at least

as well off.

An investor with a more dispersed distribution of bases can mimic the optimal decisions of an
investor with the more concentrated distribution (the argument is analogous to that for our “High—
Basis, First—-Out” conclusion in Property 2), but has the advantage of additional flexibility by being
able to realize only the positions with the largest bases (smallest gains).

Notice that the preference for a more dispersed distribution of bases is robust to the investor
being risk averse because the argument relies upon replication. A special case of the second-order
stochastic dominance shift is the comparison between the full distribution of bases and the average

basis.

Corollary 2 The investor who uses the full distribution of bases (Specific Share Identification)

possesses a more valuable option than an investor using his average purchase price as his tax basis.

This result is in a similar vein to a portfolio of options being at least as valuable as an option on
the corresponding portfolio (e.g., Merton, 1973). Consequently, the value function is greater when
there are distinct options on different bases rather than a single option on the overall basket. In
particular, it may be optimal to exercise the option on some positions (i.e., those with the highest
bases, as in Property 2) and not others.

Because the value of the tax-timing options are understated by the average basis method (used
to simplify the problem numerically by Dammon, Spatt and Zhang, 2001) the demand for equity
would typically be higher (using the full distribution of bases) than the average basis method would
suggest. This would be particularly strong at old ages because the tax-related advantage of equity
is then largest (due to the reset provision at death). For example, while the Dammon, Spatt
and Zhang (2001) model predicts that the elderly would not be adding additional equity exposure
once they had substantial gains (because when using the average price rule, new shares would

not provide much ability to benefit from realizing tax losses), in practice elderly investors would
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have a tax-related incentive to add exposure whose basis equaled the current price to exploit the
ability to realize losses while potentially bequeathing appreciated assets without payment of capital
gains taxes. This incentive would gradually increase with the investor’s age and mortality risk
(as illustrated when the investor’s average basis equals the current market value by the numerical
solutions in Dammon, Spatt and Zhang, 2001).

Investor decisions are much more sensitive to the basis—price ratio for those tax realization
options that are “near-the-money” (basis—price ratio close to one). When the basis—price is small
there is already considerable lock-in and little remaining sensitivity of investor decisions as there is
not much of an option to generate losses.

Analogous to the discussion concerning multiple bases (Property 6), an investor who can invest in
individual assets rather than a market index has a larger value function and is better off. Considering
the tax realization options, the demand for risky assets in the presence of multiple assets should
be relatively larger than suggested by a single risky asset model. The bias may be particularly
large for elderly investors because of the value associated with the ability to increase the tax basis
on shares left to his heirs and the investor’s ability to always realize losses during his lifetime, as
well as the larger ability to exploit this option if the investor acquires a diverse set of underlying
assets. Together with our argument about diverse bases, this suggests that the single asset and
basis framework may understate the demand by the elderly for acquiring risky assets to benefit
from the reset provision.

4. Conclusions

An important determinant of the investor’s liquidation policy and optimal portfolio holding is
the shadow price (the marginal value) associated with the positions currently held. If the investor
is overweighted in equity, he should always first scale back the position of risky stock(s) with the
smallest marginal value if retained. The idea that the investor adjusts his portfolio based on the
shadow price of the positions held is reflected in our first numerical example with two risky assets:

a highly volatile risky company stock and a less volatile stock index. When overexposed to equity,
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the investor first liquidates the volatile company stock because the investor derives a high marginal
diversification benefit. This finding has an important implication for investors with a concentrated
portfolio holding (such as company executives who receive a significant amount of company stock
as compensation). It may be beneficial for these investors to reduce substantially their company
stock holdings when permitted, even though sales of their holdings may entail sizable tax costs.
However, when the embedded gain on the company stock is very large and the benefit of the reset
provision is imminent, the investor reduces the sale of the company stock and sells the stock index
instead when the gain on the index is small. This is because the marginal value of retaining the
company stock with a large embedded gain is higher than the marginal value of retaining the stock
index with a relatively small gain when the investor’s life expectancy is short and the investor
will benefit from the reset of the tax basis at death. Analogously, in our numerical example with
symmetric return distributions and holdings the investor scales back substantially more his holdings
of the asset with smaller capital gains, thereby equating the shadow prices of his marginal holdings
across assets. Our numerical and qualitative results illustrate how the investor’s bases among assets
interact in the optimal portfolio structure. The larger the investor’s gains on an asset, the greater

the investor’s sales of substitute risky securities.
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Appendix. The Economic Model Underlying Numerical Examples

The specification of the model is a multiple risky asset version of the framework in Dammon, Spatt
and Zhang (2001). The economy consists of investors living for at most T' periods, where T' is a
positive integer. This allows us to directly consider the impact of the investor’s age (and increasing
mortality) upon his optimal consumption, investment, and realization behavior. Let A; be the
single-period hazard rate for period k. We assume that Ay > 0 for all k£ and that Ay = co. The
probability that an individual investor lives through period t (¢ < T') is given by the following

survival function:
¢
F(t) = exp(=)_ M) (1)
k=0

where 0 < F/(t) < 1 forall 0 <t < T, and F(T)=0.

Investors in the economy derive utility from consuming a single consumption good. For simplic-
ity, we assume that all income for consumption is derived from financial assets. Investors can trade
(J + 1) assets in the financial markets: a riskless one-period bond and .J risky stocks. The pre-tax
nominal return on the riskless bond is denoted r and is assumed to be constant over time. The
nominal payoff to holding one share of stock j from date t — 1 to date t is (1 +d;) Py, j=1,--+,J,
where d; is a constant pre-tax dividend yield and Pj; is the nominal stock price at date . We
assume that the pre-tax nominal capital gain returns on the stocks are serially independent and
follow exogenous binomial processes with a covariance matrix of ¥. No transaction costs are in-
curred for trading assets. We denote by nj; the number of shares of stock j held after trading at
time ¢, and assume that short sales are not allowed (nj; > 0, j =1,---,.J). Nominal dividend and
interest payments are taxed at a constant rate of 7.

The tax treatment of capital gains and losses is as follows. Any realized capital gains are subject
to a constant capital gains tax rate of 7,, while realized capital losses are credited at the same rate.
To calculate an investor’s nominal capital gain, we assume that the tax basis for shares of stocks

currently held is the weighted average purchase price of those shares. Denote by P7, the nominal
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tax basis on stock j after trading at time ¢. The nominal tax basis follows the law of motion:

*
Njr—1 P]t—l +max(nj;—njzs—1,0) Py

. " 4
njt—1+max(nss—njr—1,0) ’ if Pjt—l < P]t

Py = (2)
Py, it Py > P

7t—1

The above specification indicates that the updating rule for the investor’s tax basis depends upon
whether there is an embedded capital gain or loss on the shares currently held, and whether the
investor buys or sells shares in period 7. In the case of an embedded capital gain (i.e., P;_; < Pj),
the investor’s tax basis is unchanged from the previous period (i.e., P} = P%_;) if the investor
sells shares in period ¢ (i.e., nj; < nji—1). However, if the investor buys shares in period ¢ (i.e.,
nj: > nji—1), then the investor’s tax basis is equal to a weighted average of the previous tax basis
and the purchase price of the new shares, with the weights determined by the number of old and
new shares. In the case of an embedded capital loss (i.e., P;_; > Pj), the investor’s tax basis
after trading at date ¢ is equal to the current stock price, Pj;,. This is due to the fact that, without
transaction costs or wash sale rules, it is optimal for the investor to liquidate all shares for tax
purposes before rebalancing his portfolio. Hence, any shares held after trading at date ¢ will have
been bought at the current stock price.

The investor’s problem is to maximize his discounted expected utility of lifetime consumption,
given his initial endowment and asset holdings, subject to the intertemporal budget constraint.
Since at any given time ¢ an investor has a positive probability of death, the treatment of his
terminal wealth is an issue. In this model, we assume that at the time of death the investor’s
asset holdings are liquidated without payment of the capital gains tax and the proceeds are used to
purchase an H-period annuity for the benefit of the investor’s beneficiary. This forgiveness of the
capital gains tax at death is consistent with the reset provision of the current U.S. tax code. We

assume that the H-period annuity provides the investor’s beneficiary with nominal consumption of

r(1+ )" . .
th(l + Z)k ¢ = AHWt(l + Z)k t
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at date k,t+ 1 < k <t+ H, where ¢ is the constant rate of inflation, r* = [(1 — 74)r — ¢]/(1 +¢)
is the after-tax real bond return, W; is the investor’s wealth at the time of death, and Ay =
[ (1 + r)H]/[(1 + 7*)H — 1] is the H-period annuity factor. We assume that the investor and his
beneficiary have identical preferences and that the utility derived by the investor from his bequest
is equal to the utility derived by the beneficiary. This specification allows us to examine the
sensitivity of the investor’s optimal consumption and investment policies to the number of periods
that the investor wishes to provide consumption support to his beneficiary, with higher values for
H indicating a stronger bequest motive.

The investor’s problem can now be represented as follows:

max  F {éﬁt F(t)u (%) +[F(t—1) = F(1)] tff Bty (ﬂ)

Ct,Bi,nig, - n gy 1—|—Z) kett1 (1 —|—Z)t
s.t.
J
Wt = Znﬁ—l[l + (1 - Td)dj]Pﬁ + Bt—l[l + (1 - Td)r]v = 07 e 7T7 (4)
7=1
J J
Ct:Wt_TgZGjt_antPjt_Bt7 tZO,“',T—l, (5)
7=1 7=1
nﬁZO? jzlv"'vjv andt:ov"'vT_lv (6)
an:(),j:l,---,J, andBT:(), (7)

given the initial bond and stock holdings, B_; and n;_y,5 = 1,---,J, and the initial tax basis,
Pry,j=1,---,J. In Eq. (3), F(—1) is set equal to one to indicate that the investor has survived
up to period 0, u(-) denotes the investor’s utility function, C} is the investor’s nominal consumption
at date ¢, By is his nominal investment in bonds at date ¢, and [ is the subjective discount factor for
utility. The expression inside the square brackets in Eq. (3) is the investor’s probability weighted
utility at date t. The first term measures the investor’s utility of consumption in period ¢ weighted

by the probability of living through period ¢, while the second term is the investor’s utility of his

bequest weighted by the probability of dying in period .
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Eq. (4) defines the investor’s beginning-of-period wealth, W;, as the value of the investor’s
portfolio holdings before trading at date ¢, including the after-tax interest and dividend income but
prior to capital gains taxes. Eq. (5) is the investor’s time-f budget constraint, where G; is the

realized nominal capital gain (or loss) at date ¢ on stock j and is given by:
Gio = {I(Pjiy > Pi)njia + [1 = 1(Pf_y > Pj)lmax(nje—y —nje, 0)}(Pye — P q),  (8)

where I(P}_; > Pj;) is an indicator function that takes the value of one if there is an embedded
capital loss (i.e., P5;_; > Pj) and zero otherwise. This formulation exploits the fact that the
investor optimally sells all shares with an embedded capital loss to benefit from the tax rebate in
the absence of transaction costs and wash sale rules. Hence, with an embedded capital loss on
the nj;_; shares held coming into period ¢, I(P},_; > P;;) = 1 and G}y = nj—1(Py — P_;) < 0.
Since there are no wash sale rules, the sale of stock with an embedded capital loss does not prevent
the investor from repurchasing stock in period ¢ (nj; > 0) to rebalance his portfolio. With an
embedded capital gain, I(P}_; > Pj;) = 0 and the investor pays a capital gains tax only on those
shares that are actually sold in period . In this case, the total realized capital gain in period ¢ is
Gji = max(nj—1 — nje, 0)(Pj; — P5_y) > 0, where max(nj;—1 — nj;,0) is the number of shares sold

in period t.

We assume that agents’ preferences can be expressed as follows:

(%) - (wéy) o)

L+1d)t

where 7 is the relative risk aversion coefficient. Note that the summation appearing in the second

term of the objective function can be rewritten as follows:

0 B

—)

2 T\ ) T A

k=t+1

e ( AgWi ) B(1— M) (4

Letting X; denote the vector of state variables at date ¢, we can write the Bellman equation for the
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above maximization problem as follows:

MR (1= B — g (4e)' T

(1+2)° (1+2)° -2

Xy) = ‘BE X

Vi(Xy) copmax [ + 0= A=) + e BEViga (Xega )]
(10)

for t = 0,---,T — 1, subject to Equations (2) and (4)-(8). The sufficient state variables for the
investor’s problem at date t consists of the stock price at date ¢, the tax basis before trading at
date t, the stock holdings before trading at date ¢, and the total wealth before trading at date ¢.

We represent the vector of state variables as follows:
X = [Pltv Pl*t—lv ni—1, -, P, Pjt—lv NJt—1, Wt]/- (11)

The above problem can be simplified by using beginning-of-period wealth, W;, as the numeraire.
Let sj: = nji—1 Pjt/W; be the fraction of beginning-of-period wealth invested in stock j prior to
trading in period t, f;; = nj Pj:/W; be the fraction of beginning-of-period wealth allocated to stock
J after trading in period ¢, b, = B,;/W; be the fraction of beginning-of-period wealth allocated to
bonds after trading in period ¢, p5,_, = P%_,/Pj; be the investor’s basis-—price ratio on stock j
applicable to trading in period ¢, g;: = Pj:/ Pji—1 — 1 be the pre-tax nominal capital gain return on

stock j from period ¢ — 1 to period ¢, and

i Jill + (1= 7a)dj](1 + gjer) + [1+ (1 — a)r]by

Ryt —
i Z}Izl fie + b

be the gross nominal return on the investor’s portfolio from period ¢ to period ¢ 4+ 1 after payment
of the tax on dividends and interest but prior to the payment of capital gains taxes. Using this

notation, Eq. (4) can be written as a linear dynamic wealth equation:

J
Wit = Rt-l—l(z fie + b)) W (12)

i=1
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Similarly, the budget constraint in Eq. (5) can be written as follows:
J J
Ct:1—7g25jt_2fjt_bt (13)
7=1 7=1

where ¢, = /W, is the consumption-wealth ratio for period ¢,
Ojt = Gt/ Wy = {I(pfey > Vsje + [L = 1(pfy_y > 1) max(sje — f1,0) (1 = pj,_y)  (14)

is the fraction of beginning-of-period wealth that is taxable as realized capital gains on stock j in

period ¢, and p}, ; is given by

[s5¢e—1P],_ptmax(fjr—1—55:-1,0)]/(1+g;1) . "
" sjr—1+max(f;i_1—5;0-1,0) ’ if Dji—2 <1
Pji—q = (15)

1 -
T it pf_, > L

The linearity of the dynamic wealth equation and the assumption of constant relative risk
averse preferences ensures that our two-asset model has the property that the consumption and
portfolio decision rules, {¢, by, fie, -+, foe}, are independent of wealth, W;. Furthermore, with
the above transformation, the relevant state variables for the investor’s problem become x; =
{816, 0515 Sae, Py - Defining vy(z,) = Vi(X,)/[Wi/(1 4 ©)]'™7 to be the normalized value
function and w1 = Wigr/[Wi(1 4 7)] to be the gross real growth rate in wealth from period ¢ to

period t + 1, the investor’s optimization problem can now be stated as follows:

e e L A=em)B0 - AL
1 -~ (1 =8)(1—=7)

ctybe 1t f o

o) = max { + G_AtﬁEt[UH-l(II?tH)w;;]} )

s.t.
Rt-l—l J
wH_l (1 — Tg 25]15 Ct), t = 0, . 71—‘ — 1, (17)
fjtzovj: 7"'7‘]7 t:()v"'vT_lv (18)



where Riyy is given by Eq. (12), é;; is given by Eq. (15), and p},_, is given by Eq. (16).
The above problem can be solved numerically using backward recursion. To do this, we discretize
the lagged endogenous state variables, @; = {s1;, pi,_1, "+ SJ, P71}, into a grid. At the terminal

date T, the investor’s value function takes the value

31— gy AL
= A=) (19)

at all points in the state space. The value function at date 7' is then used to solve for the optimal
decision rules and value function for all points on the grid at date T'— 1. Multilinear interpolation
is used to calculate the value function for points in the state space that lie between the grid points.

The procedure is repeated recursively for each time period until the solution for date ¢ = 0 is found.
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Figure Legends

Figure 1. The top left panel shows the optimal overall equity proportion at age 99. The top
right panel depicts the optimal company stock proportion at age 99. The bottom left panel presents
the optimal stock index proportion at age 99. All three equity proportions are plotted against the
company stock basis—price ratio and the stock index basis—price ratio. The initial company stock
and the stock index holdings are set at s, = 0.9 and s; = 0.1, respectively. The capital gain returns
for both the company stock and the stock index are set at 7%. The standard deviation of the
company stock and the stock index are set at 40% and 20%, respectively. The correlation between
the stock returns is set at 0.5.

Figure 2. The top left panel shows the optimal overall equity proportion at age 90. The top
right panel depicts the optimal company stock proportion at age 90. The bottom left panel presents
the optimal stock index proportion at age 90. All three equity proportions are plotted against the
company stock basis—price ratio and the stock index basis—price ratio. The initial company stock
and the stock index holdings are set at s, = 0.9 and s; = 0.1, respectively. The capital gain returns
for both the company stock and the stock index are set at 7%. The standard deviation of the
company stock and the stock index are set at 40% and 20%, respectively. The correlation between
the stock returns is set at 0.5.

Figure 3. The top left panel shows the optimal overall equity proportion at age 90. The top
right panel depicts the optimal company stock proportion at age 90. The bottom left panel presents
the optimal stock index proportion at age 90. All three equity proportions are plotted against the
company stock basis—price ratio and the stock index basis—price ratio. The initial company stock
and the stock index holdings are set at s, = 0.5 and s; = 0.5, respectively. The capital gain returns
for both the company stock and the stock index are set at 7%. The standard deviation of the
company stock and the stock index are set at 40% and 20%, respectively. The correlation between
the stock returns is set at 0.5.

Figure 4. The top left panel shows the optimal overall equity proportion at age 99. The top
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right panel depicts the optimal company stock proportion at age 99. The bottom left panel presents
the optimal stock index proportion at age 99. All three equity proportions are plotted against the
company stock basis—price ratio and the stock index basis—price ratio. The initial company stock
and the stock index holdings are set at s, = 0.5 and s; = 0.5, respectively. The capital gain returns
for both the company stock and the stock index are set at 10%. The standard deviation of both
the company stock and the stock index are set at 30%. The correlation between the stock returns
is set at 0.5.

Figure 5. The top left panel shows the optimal overall equity proportion at age 40. The top
right panel depicts the optimal company stock proportion at age 40. The bottom left panel presents
the optimal stock index proportion at age 40. All three equity proportions are plotted against the
company stock basis—price ratio and the stock index basis—price ratio. The initial company stock
and the stock index holdings are set at s, = 0.5 and s; = 0.5, respectively. The capital gain returns
for both the company stock and the stock index are set at 10%. The standard deviation of both
the company stock and the stock index are set at 30%. The correlation between the stock returns
is set at 0.5.

Figure 6. The no—trade regions for the company stock and the stock index at age 80 for the
basis—price ratio of 0.05 (top left panel), the basis—price ratio of 0.5 (top right panel), and the
basis—price ratio of 0.8 (bottom left panel). For the company stock, the steep solid line at the left
depicts the lower bound of the no—trade region, while the line at the right shows the upper bound
of the no—trade region. For the stock index, the flat solid line at the bottom represents the lower

bound of no—trade region, while the line at the top shows the upper bound of no—trade region.
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