Computing Equilibrium in a Model with School Competition and Educational VVouchers
Dennis Epple and Richard E. Romano
June 18, 2007
Introduction

These notes summarize the approach to computing equilibrium in our model of private
and public school competition.! The program is written for Gauss and is named
School_Competition.gss. It is a text file and can be edited by any text editor. The model
in this program is solved using the algorithm in Nlinsysl1.dne. Before running
School_Competition.gss, do a search and replace. Replace the following which appears
five times in the program:

d:\myfolder

with the drive and folder on your computer to which you wish your output directed. In
addition, replace

d:\gssmastr

with the drive and folder where you placed file Nlinsysl.dne.

The program is currently set to solve for equilibrium with six private schools and no
voucher. To solve for equilibrium with a flat rate voucher, set doact=1 where indicated
near the beginning of the program. The program will then solve for equilibria for
vouchers up to $2,000. As explained below, the program is calibrated assuming a half
student per household (the US average). Hence, the $2,000 voucher in the program is per
half student and corresponds to a per student voucher of $4,000.

Model

Let J denote the number of schools, and index schools in order of ascending quality. Let
k, 6, 1, and | be, respectively, the vectors of school sizes, peer qualities, shadow prices of
ability, and inputs. Let v and t respectively denote the voucher and tax rate. Place

[k, 6, m, I, v, t]into a (4J+2) vector denoted x. Equilibrium is computed by solving
(4J+2) nonlinear simultaneous equations for a fixed point, x. We now turn to defining
these equations.

To define the shadow value of peer quality, we will need the slope of an indifference
curve in the (6,p) plane. The utility function of type (b,y):

1. U=(y(1-t)-p)6"1°b"

The slope of an indifference curve in the (0 p) plane is given by:

! The model is in “Educational Vouchers and Cream Skimming,” and these notes use the notation there.

, o _rya-n-p)
00\,_5 %

We will also need the boundary loci that delineate admission spaces. The boundary loci

are derived from the indifference loci. The indifference locus between schools i and j is

the locus of types indifferent between the schools when price in each equals effective

marginal cost. An indifference locus is then:

(Y1) +v—eme, (B)gb” = (yL—t)+v—eme, (B))a,b”
3 (e (b)—)g, —(eme; (b) ~v)g,
= ¥;(b,x) =
(qi _qj)(l_t)

Lbj=1..,J-L1i#]
where effective marginal cost is:

4. emc;(b) =V '(k;)+ 1, +7,(6, —b)
The boundary loci are then determined by:?

yO (b’ X) = ymin; yJ (b’ X) = ymax
y; (b) = max[y,_, (b), min j>i Yij (b)] i=1..,3-1
where the support of y i [Ymin, Ymax]-

School sizes and peer qualities are:
o 0y (b.X))
6. k=] LHM f(y,bydbdy j=1,...,J

1 = pyi00) o
7. ej:?jo ijii(byx)bf(y,b)dbdy i=1..,3

Using (2), the shadow price of peer quality is:

8. __J' J‘VJ(bX) Iy@-t)—p;(b, y)l

(b.x)

f(y,b)dbdy j=1,2,..,J, = pub; 7,,=0
0,
Approximating using price equal to effective marginal cost, we substitute (4) into (8):

1 e ey y@-t-v '(kj)_nj(ej_b)_lj]
__.J' Iyﬁ(b’x) 7 f (y,b)dbdy
9.
1-t IR V) +11 :
7()j jyy (bvx)yf(y,b)dbdy—# i=12,..,3, j=pub; 7,,=0
The flrst-order condition for inputs is:
7l on0;, . . _
10. nj:w—e‘jznj:% =123, j=pub; 1, =1,

Z See the appendix to these notes for details.

Public school expenditure, Iy, is set exogenously. The voucher is set to an exogenously
determined value Vexog:

11, V= Vexgg
The tax rate must pay the cost of public education plus the voucher. The number of

public schools, m, is the integer value that minimizes the total cost of serving the public
school population.

k
12. t7=kpub|pub+min[m£F+v(pubn}rv(l—kpub) forme{L,2,..}
m m

The system of equations to be solved is then given by (6), (7), (9), (10), (11), and (12).
We now rewrite the integrals in (6), (7), and (9) to facilitate computation.
Substitute f(b,y) = f1(b)f2(y/b) into (6):

by ;(b.x)
18 k= [fl(b)jy%_l(blx) f,(y/b) dydb
We assume that the [In(y),In(b)] is normally distributed:
1 Iny _N Ly | 0'5 ,00'y20'b
Inb) \ po,o, o,

Then rewrite (13) as:

15. k, = J‘O“’ fl(b){cb {In(yj(b,x))-,uy(b)]_q) (In(yjl(b,x))-ﬂy(b))]db

Oyp Oy

where 41,(b) = 41, - p(0, /) (In (b) - 41,) and oy=5(1-p)°

To simplify computation we let:

In(y,-(b,x»-uy(b)J i

Oyp

16. K, = jo‘” fl(b)CD(

Then, from (15) and (16):
17. k=K,-K,,
Using the same approach to rewrite (7), we let:

In(y, (b,x))-uy(b)J i

Oy

1 ¢
18 0= — jo bf, (b)® (
J

Then

19. 0,=0,-0,,
Similarly, the integral of after-tax income is:
 0Y;(b,x)
Y, =(@1-1) jo jo y f (y,b)dydb

22. o2,) L
:(1_t)eﬂY(b)+Tj: fl(b)q)(ln (yj(b,X)) ,Uy(b) Gy/b]db

Oy

We rewrite (9) as:

_ 7(1_t)(Yj _Yj—l) _ v l(kj)+ Ij]
T ke, 0

J

23.

1=2,...,3; n,=0

Program

We will use superscript v to denote a vector and m for a matrix. Let b* =[b,,b,,...,b,] be
a row vector of L ordinates to be used for numerical integration. Integration is by Gauss-
Legendre quadrature. We first discuss evaluation of the integral in (17).
Let 7;j(b) be the integrand in (17). Using Simpson’s rule, the integral will be
approximated by the sum of L rectangles. Rectangle i has height 7j(b;). Let w; be the
width of the base of the rectangle, hence the area of the rectangle is 7;(bi)w;. Let
W' =[W,,W,,...,w,] be the column vector of widths associated with b". In the program
w'=(diffb/2)*wvec. *
Then the integral in (17) is approximated by:

L
24, Zl“j(bi)-wi=1"j(bv)'wV

i=1

The integrals for the J schools can be evaluated more compactly by placing the 75(b") into
a JXL matrix:

I, (0% x)
25. "= :

I, (b%,x)
The vector K" is then obtained as:
26. K'=r"-w'.
We now detail calculation of the integrand in (17). We begin with indifference
loci: §| = ¥;(b", x) is a 1XL row vector of points on the indifference locus between
schools j and j+1. Similarly, yj = y;(b", x) is a 1XL row vector of points on the boundary
locus yj(b,x). Procedure (proc) bcross calculates the indifference loci (denoted iloc) and

¥ The vector of weights wvec is normalized to sum to 2. Thus, when the integration is
over an interval of width different from 2, the wvec are multiplied by the one half the
width of the support of the variable over which integration is to be conducted. In this
application, we set diffb = (bmax-bmin) = (150,000 - .0000001).

the boundary loci (denoted yofb) and returns a JXL matrix of upper boundary loci of the J
schools:

y,(b*, X)
217. y" =

y, (b*, x)

Taking y™ as input, procedure kproc calculates k'. We denote as K" the J-dimensional
vector of Kj in (23). In kproc, the following three 1XL row vectors are calculated. The
names used in the program to denote these vectors are indicated in parentheses:

u,(0") =, ~plo, /) (In (6")~) (muyofb)
1 ~(In(b")-p)?

Inb") = e
#(Inb") N

(bdenb)
f,(b")=¢(Inb")./b" (denb)
where ./ denotes element-by-element division. The following JXL dimensional matrix
then corresponds to 7™ in (25):

In my bv _ =2
fl(bv).*q)((y")~ 1, (0") aj
Oy
In my bv =2
where @() =py(0) Gy’insaJXL matrix, and .* denotes element-by-element
Oy/p

multiplication. The vector K" is then:
In (y™)- w1, (07) - O-ilb

Oyp

28. KV=fAW)*®(}*wv (cumk)

Similarly:
In (y")-p,(b") -0y,
Oy

29. O =¢(In bV).*q)[j*wv (cumth)

From these, procedure kproc calculates the J-dimensional vectors k" (denoted kvout) and
¢ (denoted thvout) using (18) and (20).

Implementing the analogous approach with Equation (22), we obtain the vector of after-
tax incomes:

In (y;(b",x))- 1, (b") -0y

Oyp

2
0,

bY)+ y/b

4y ()T

30, Y'=(-t)e

.*Q@0®(

Using this result Equation (23), kproc calculates the vector 7" (etaout). Procedure kproc

]*WV (cuminc)

returns the 3-dimensional column vector [k', &, 1"].
Procedure func defines the equations to be solved, naming the resulting 3J+2 vector fun.
Proc func calls the proc’s discussed above (bcross and kproc). The first 3J equations in

fun correspond to (6), (7), and (8). The next J equations correspond to (10). The final two

equations correspond to (11) and (12).

Proc func is called by the algorithm for solving nonlinear simultaneous equations. This
algorithm is in file Nlinsys1l.dne. When a solution to the equations is found for a given
number of schools, profit is calculated for each private school. If the sum of profits is
positive, entry occurs. Proc newxO0 is called, and new starting values are created. The
starting values are based on the solution just obtained.

Profits are calculated by Monte Carlo simulation in procedure profn. A large sample (y,b)
is drawn. Sample size is set by smpl. This calculation requires determining the price that
a school charges to each student. That price equates utility in the chosen school to utility
at p=emc in the next-best alternative school. Hence, in profn, utility of each element of
the sample is calculated in every school with price set equal to effective marginal cost.
The utility of each type in the type’s next-best alternative school is calculated and placed
in vector ordstat2. The price charged to each type is then calculated, followed by
calculation of profit for each school.

Welfare and achievement in an equilibrium are compared to those in a benchmark
allocation using Monte Carlo simulation in procedure welfn. For each (y,b) type, utility
and achievement are calculated in the benchmark allocation. Compensating variation and
achievement for the equilibrium being studied are then calculated relative to the
benchmark allocation.

Computation

The algorithm uses Newton’s method. Newton’s method is fast, but can be fragile. The
fragility arises in part because Newton’s method may take a step sufficiently large that it
moves to a portion of the parameter space where one or more functions is undefined, or
one or more of the functions is so “flat” that the matrix of derivatives is singular. This
fragility tends to become more pronounced when there are a large number of schools.
The program contains some features that help facilitate convergence.

1. Constraining Parameter Values

In the course of searching, numerical search routines may choose parameter values that
violate constraints on the signs or magnitudes of parameter values. It is useful to
transform parameters to impose constraints that parameters must satisfy. Three types of

constraints are imposed in our program. Each type is illustrated below.

Suppose a parameter must be non-negative, such as the 4 in our model. Let x, denote
a parameter that must be non-negative. Let

X, = Ln(x,)

Conduct the numerical search over parameter x,, which can take any values on the real
line. Regardless of the value of x, that is chosen, x, will be non-negative. We refer to
X, as the transformed parameter and X, the untransformed parameter (i.e., the parameter

of interest). In our program, we use the above to assure that 4, I;, and the tax rate are
non-negative.

Suppose a parameter must lie in the interval (0,1), such as the k's in our model. Let X,

be a parameter that must satisfy such a constraint. Then the appropriate transformed
parameter is:

X, = Ln(x,/1-x,))

For any value of x, on the real line, x, satisfies the desired constraints. In our program,

we use the above transformation to assure that all k;, and the #; for private schools, are in
the interval (0,1).

The proc trans performs the transformations described above. The proc untrans reverses
the transformations.

2. Adjusting Step Size

The program contains a parameter named nlfac. This parameter is the fraction of a
Newton step that is taken on a given iteration. For example, if nlfac=.05, then the step
that is actually taken is 5% of the Newton step. After each 100 function evaluations, the
program adjusts the step size to nlfac=nladj*nlfac, where nladj is greater than one. For
example, if nladj =1.05, then nifac will be increased by a factor of 1.05 after each 100
function evaluations, until nlfac reaches a value of 1.0.

3. Incremental change

If it is possible to move incrementally from a known equilibrium to a desired equilibrium,
this is often the best way to proceed. The do loop near the end of the program can be used
to do such calculations. For example, the do loop is currently set to incrementally
increase the voucher. (This do loop is activated by setting doact=1 near the beginning of

the program.) This do loop uses the result on each cycle through the loop to start the next
cycle. The do loop can be amended to incrementally change other features of the model.
For example, holding the voucher constant, one might want to explore the effects of
varying a cost function parameter (e.g. fixcst). This can be done by incrementing the

parameter while holding the voucher constant.

Dictionary of Variables

Variable Symbol Above

Number of Schools J

Ordinates for Integration L
Exogenous voucher setting vy
Exogenous public expenditure Iy

Lower support of y Ymin
Upper support of y Ymax
Lower support of b Bmin

Upper support of b Bmax

Program Name

nsch
ordnum
vouex
iexog
ylolim
yuplim
blolim
buplim

Miscellaneous
1. Inthe U.S., there is approximately one student for each two households. Thus, the
program assumes one half student per household. Price, average cost, marginal cost, and

the voucher are then per half student and must be multiplied by two to convert to a per
student basis in year 2000 dollars.

2. The “custodial” cost function is quadratic:

C(k)= F+V(Kk) = fixcst +cfac2*kv +cfac*kv"2/2

School Boundary Loci when Indifference Loci Cross

Let I;;(b) be the locus of households indifferent between schools i and
J (which may, but need not, be adjacent in quality). Let y;(b) be the upper
boundary locus of school i. Let schools be indexed in ascending order of
quality.

If indifference loci don’t cross,

1. yi(b) = I y4+1(b).

If indifference loci cross, then the y;(b) can be obtained by solving

the following in ascending order of school quality:

a) yo(b) = Min Io(b)
2. 30
b) yi(b) = Max [y;_s(b),Min I;5(b)] 1 >0

J>1

Figure 1 illustrates Equations (2) with a three-school example.
The admission space of School O is reglon OABC. The admission space
of School 1 is ABD. The admisslon space of School 2 is the reglon above CBD.
Equation (2) includes line segment BC as part of the admission space of
School 1. This is lnnocuous since this line segment has zero measure, but it
is convenient computationally to include this line seqment as part of
School 1.

The following results provide the foundation for Equations (2).

Result 1: No point in the interior of School i can be on the
indifference locus between School i and any higher-theta school.
Proof: Let (b’,y’) in Figure 2 be interior to School i and on the
indifference locus between School 1 and School k with k > i. Let (b’,y”) be
in the neighborhood of (b’,y’) with y” > y’. Then (b’,y”) prefers School k
to School i1 contradicting that (b’,y’) is in the interior of i.]

It follows that an indifference locus between School i and School k with

k > 1 must lie on or above the upper boundary locus of School i.

Result 2: A point on the upper boundary locus of School i cannot lie

below all indifference locli between School i ahd School k, k > 1

Proof: Let A denote a point (household) on the upper boundary locus of
School i. Now A must at least weakly prefer School i to all others to be on
the upper bounary of 1. If the preference is strict, then we have a
contradiction to the claim that A is on the boundary of i. Hence, A is
indifferent between i and some higher-theta school. =

The above two claims establish that any point on the the upper boundary
locus of School 1 is on the lower envelope of the indifference loci

between School i and all higher schools, i.e., on Min I;;(b).
J>i

The lower envelope of the indifference loci between School i and all
higher schools may also contain points that are not on the upper indifference
locus of School i. For example, the lower envelope of the indifference locus
between School 1 and School 2 in Figure 1 includes segment BE. Points on BE
are Interior to School 0. This follows from a single-crossing argument
similar to that in Figure 2. Since any point on BF is indifferent between
Schools 0 and 1, a point on BC with the same ability and lower income will
prefer School 0 to School 1. Similarly, any point on BE with the same
ability will have lower income still and will prefer School 0 to School 2.
This logic applies to show that any point on BE strictly prefers School 0 to
either School 1 or School 2. In short, line segment BE is not on the upper
boundary locus of School 1 or any other school. The Max operator in Equation
(2b) removes this line segment by requiring that the upper boundary locus of

School 1 lie on or above the upper boundary locus of School 0.

