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Introduction 
 
These notes summarize the approach to computing equilibrium in our model of private 
and public school competition.1 The program is written for Gauss and is named 
School_Competition.gss. It is a text file and can be edited by any text editor. The model 
in this program is solved using the algorithm in Nlinsys1.dne. Before running 
School_Competition.gss, do a search and replace. Replace the following which appears 
five times in the program: 
d:\myfolder 
with the drive and folder on your computer to which you wish your output directed. In 
addition, replace 
d:\gssmastr 
with the drive and folder where you placed file Nlinsys1.dne. 
 
The program is currently set to solve for equilibrium with six private schools and no 
voucher. To solve for equilibrium with a flat rate voucher, set doact=1 where indicated 
near the beginning of the program. The program will then solve for equilibria for 
vouchers up to $2,000. As explained below, the program is calibrated assuming a half 
student per household (the US average). Hence, the $2,000 voucher in the program is per 
half student and corresponds to a per student voucher of $4,000. 
 
Model 
 
Let J denote the number of schools, and index schools in order of ascending quality. Let 
k, θ, η, and I be, respectively, the vectors of school sizes, peer qualities, shadow prices of 
ability, and inputs. Let v and t respectively denote the voucher and tax rate. Place  
[k, θ, η, I, v, t ] into a (4J+2) vector denoted x. Equilibrium is computed by solving 
(4J+2) nonlinear simultaneous equations for a fixed point, x. We now turn to defining 
these equations. 
 
To define the shadow value of peer quality, we will need the slope of an indifference 
curve in the (θ,p) plane. The utility function of type (b,y):  
 
1.  U=(y(1-t)-p)θγIωbβ

 
The slope of an indifference curve in the (θ,p) plane is given by: 
 

                                                 
1  The model is in “Educational Vouchers and Cream Skimming,” and these notes use the notation there. 
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We will also need the boundary loci that delineate admission spaces. The boundary loci 
are derived from the indifference loci. The indifference locus between schools i and j is 
the locus of types indifferent between the schools when price in each equals effective 
marginal cost. An indifference locus is then: 
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where effective marginal cost is: 
 
4. ( ) '( ) ( )= + + −j j j j jemc b V k I bη θ  
The boundary loci are then determined by:2
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where the support of y is [ymin, ymax].   
 
School sizes and peer qualities are: 
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Using (2), the shadow price of peer quality is: 
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Approximating using price equal to effective marginal cost, we substitute (4) into (8): 
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The first-order condition for inputs is: 
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2 See the appendix to these notes for details. 



Public school expenditure, Ipub is set exogenously. The voucher is set to an exogenously 
determined value vexog: 
 
11. v = vexog 
 
The tax rate must pay the cost of public education plus the voucher. The number of 
public schools, m, is the integer value that minimizes the total cost of serving the public 
school population.  
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The system of equations to be solved is then given by (6), (7), (9), (10), (11), and (12).  

We now rewrite the integrals in (6), (7), and (9) to facilitate computation.  

Substitute f(b,y) = f1(b)f2(y/b) into (6): 
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We assume that the [ln(y),ln(b)] is normally distributed: 
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 Then rewrite (13) as: 
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To simplify computation we let: 
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Using the same approach to rewrite (7), we let: 

18. 10
/

ln( ( , )) - ( )1 ( )  
∞ ⎛ ⎞

Θ = Φ ⎜ ⎟⎜ ⎟
⎝ ⎠

∫ j y
j

j y b

y b x b
bf b db

k
μ

σ
 

Then 
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Similarly, the integral of after-tax income is: 
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We rewrite (9) as: 
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Program 

We will use superscript v to denote a vector and m for a matrix. Let 1 2[ ]= , , ,v
Lb b b … b  be 

a row vector of L ordinates to be used for numerical integration. Integration is by Gauss-
Legendre quadrature. We first discuss evaluation of the integral in (17).  
Let Γj(b) be the integrand in (17). Using Simpson’s rule, the integral will be 
approximated by the sum of L rectangles. Rectangle  has height Γi j(bi). Let  be the 
width of the base of the rectangle, hence the area of the rectangle is Γ

iw
j(bi)wi. Let 

1 2[= , , ,v ]Kw w w … w  be the column vector of widths associated with bv. In the program 
wv=(diffb/2)*wvec. 3
  Then the integral in (17) is approximated by:  
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The integrals for the J schools can be evaluated more compactly by placing the Γj(bv) into 
a JXL matrix: 
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The vector Kv is then obtained as: 
26. = Γ ⋅v m vK w . 
We now detail calculation of the integrand in (17). We begin with indifference 
loci:  is a 1XL row vector of points on the indifference locus between 

schools j and j+1. Similarly,  is a 1XL row vector of points on the boundary 
locus y

( , )=v v
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j(b,x).  Procedure (proc) bcross calculates the indifference loci (denoted iloc) and 
                                                 
3 The vector of weights wvec is normalized to sum to 2. Thus, when the integration is 
over an interval of width different from 2, the wvec are multiplied by the one half the 
width of the support of the variable over which integration is to be conducted. In this 
application, we set diffb = (bmax-bmin) = (150,000 - .0000001). 
 



the boundary loci (denoted yofb) and returns a JXL matrix of upper boundary loci of the J 
schools: 
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Taking ym as input, procedure kproc calculates kv. We denote as Kv the J-dimensional 
vector of Kj in (23). In kproc, the following three 1XL row vectors are calculated. The 
names used in the program to denote these vectors are indicated in parentheses: 
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where ./ denotes element-by-element division. The following JXL dimensional matrix 
then corresponds to Γm in (25): 
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multiplication. The vector Kv is then: 
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Similarly: 
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From these, procedure kproc calculates the J-dimensional vectors kv (denoted kvout) and 
θv (denoted thvout) using (18) and (20).  
Implementing the analogous approach with Equation (22), we obtain the vector of after-
tax incomes: 
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Using this result Equation (23), kproc calculates the vector ηv (etaout).  Procedure kproc 

returns the 3-dimensional column vector [kv, θv, ηv]. 

Procedure func defines the equations to be solved, naming the resulting 3J+2 vector fun. 

Proc func calls the proc’s discussed above (bcross and kproc). The first 3J equations in 

fun correspond to (6), (7), and (8). The next J equations correspond to (10). The final two 



equations correspond to (11) and (12). 

Proc func is called by the algorithm for solving nonlinear simultaneous equations. This 

algorithm is in file Nlinsys1.dne. When a solution to the equations is found for a given 

number of schools, profit is calculated for each private school. If the sum of profits is 

positive, entry occurs. Proc newx0 is called, and new starting values are created. The 

starting values are based on the solution just obtained. 

Profits are calculated by Monte Carlo simulation in procedure profn. A large sample (y,b) 

is drawn. Sample size is set by smpl. This calculation requires determining the price that 

a school charges to each student. That price equates utility in the chosen school to utility 

at p=emc in the next-best alternative school. Hence, in profn, utility of each element of 

the sample is calculated in every school with price set equal to effective marginal cost. 

The utility of each type in the type’s next-best alternative school is calculated and placed 

in vector ordstat2. The price charged to each type is then calculated, followed by 

calculation of profit for each school. 

Welfare and achievement in an equilibrium are compared to those in a benchmark 

allocation using Monte Carlo simulation in procedure welfn. For each (y,b) type, utility 

and achievement are calculated in the benchmark allocation. Compensating variation and 

achievement for the equilibrium being studied are then calculated relative to the 

benchmark allocation.  

Computation 

The algorithm uses Newton’s method. Newton’s method is fast, but can be fragile. The 

fragility arises in part because Newton’s method may take a step sufficiently large that it 

moves to a portion of the parameter space where one or more functions is undefined, or 

one or more of the functions is so “flat” that the matrix of derivatives is singular. This 

fragility tends to become more pronounced when there are a large number of schools. 

The program contains some features that help facilitate convergence. 

1.  Constraining Parameter Values 

In the course of searching, numerical search routines may choose parameter values that 

violate constraints  on  the  signs  or  magnitudes  of parameter values.  It is useful to 

transform parameters to impose constraints that parameters must satisfy.  Three types of 

constraints are imposed in our program.  Each type is illustrated below.    



Suppose a parameter must be non-negative, such as the θj in our model.  Let  denote 

a parameter that must be non-negative. Let 

ux
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Conduct the numerical search over parameter , which can take any values on the real 

line.  Regardless of the value of  that is chosen,  will be non-negative.  We refer to 

 as the transformed parameter and  the untransformed parameter (i.e., the parameter 

of interest).  In our program, we use the above to assure that θ
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tx ux
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j,  Ij, and the tax rate are 

non-negative.  

Suppose a parameter must lie in the interval (0,1), such as the k's in our model.  Let 

be a parameter that must satisfy such a constraint.   Then the appropriate transformed 

parameter is: 
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For any value of  on the real line,  satisfies the desired constraints.  In our program, 

we use the above transformation to assure that all k

tx ux

j, and the ηj for private schools, are in 

the interval (0,1). 

The proc trans performs the transformations described above. The proc untrans reverses 

the transformations. 

2. Adjusting Step Size 

The program contains a parameter named nlfac. This parameter is the fraction of a 

Newton step that is taken on a given iteration. For example, if nlfac=.05, then the step 

that is actually taken is 5% of the Newton step. After each 100 function evaluations, the 

program adjusts the step size to nlfac=nladj*nlfac, where nladj is greater than one. For 

example, if nladj =1.05, then nlfac will be increased by a factor of 1.05 after each 100 

function evaluations, until nlfac reaches a value of 1.0.  

3. Incremental change 

If it is possible to move incrementally from a known equilibrium to a desired equilibrium, 

this is often the best way to proceed. The do loop near the end of the program can be used 

to do such calculations. For example, the do loop is currently set to incrementally 

increase the voucher. (This do loop is activated by setting doact=1 near the beginning of 



the program.)  This do loop uses the result on each cycle through the loop to start the next 

cycle. The do loop can be amended to incrementally change other features of the model. 

For example, holding the voucher constant, one might want to explore the effects of 

varying a cost function parameter (e.g. fixcst). This can be done by incrementing the 

parameter while holding the voucher constant.  

 



Dictionary of Variables 

 

Variable                                    Symbol Above         Program Name 

Number of Schools                   J                 nsch 
# Ordinates for Integration       L                 ordnum 
Exogenous voucher setting vx         vouex 
Exogenous public expenditure Ipub           iexog 
Lower support of y ymin ylolim 
Upper support of y ymax yuplim 
Lower support of b bmin blolim 
Upper support of b bmax buplim 



Miscellaneous 
 
1.  In the U.S., there is approximately one student for each two households. Thus, the 
program assumes one half student per household. Price, average cost, marginal cost, and 
the voucher are then per half student and must be multiplied by two to convert to a per 
student basis in year 2000 dollars.  
 
2.  The “custodial” cost function is quadratic:  
 
C(k)= F+V(k) = fixcst +cfac2*kv +cfac*kv^2/2 
 










