
Computing Equilibrium in a Model with School Competition and Educational Vouchers

Dennis Epple and Richard E. Romano

June 18, 2007

Introduction

These notes summarize the approach to computing equilibrium in our model of private
and public school competition.1 The program is written for Gauss and is named
School_Competition.gss. It is a text file and can be edited by any text editor. The model
in this program is solved using the algorithm in Nlinsys1.dne. Before running
School_Competition.gss, do a search and replace. Replace the following which appears
five times in the program:
d:\myfolder
with the drive and folder on your computer to which you wish your output directed. In
addition, replace
d:\gssmastr
with the drive and folder where you placed file Nlinsys1.dne.

The program is currently set to solve for equilibrium with six private schools and no
voucher. To solve for equilibrium with a flat rate voucher, set doact=1 where indicated
near the beginning of the program. The program will then solve for equilibria for
vouchers up to $2,000. As explained below, the program is calibrated assuming a half
student per household (the US average). Hence, the $2,000 voucher in the program is per
half student and corresponds to a per student voucher of $4,000.

Model

Let J denote the number of schools, and index schools in order of ascending quality. Let
k, θ, η, and I be, respectively, the vectors of school sizes, peer qualities, shadow prices of
ability, and inputs. Let v and t respectively denote the voucher and tax rate. Place
[k, θ, η, I, v, t] into a (4J+2) vector denoted x. Equilibrium is computed by solving
(4J+2) nonlinear simultaneous equations for a fixed point, x. We now turn to defining
these equations.

To define the shadow value of peer quality, we will need the slope of an indifference
curve in the (θ,p) plane. The utility function of type (b,y):

1. U=(y(1-t)-p)θγIωbβ

The slope of an indifference curve in the (θ,p) plane is given by:

1 The model is in “Educational Vouchers and Cream Skimming,” and these notes use the notation there.

2. ((1))

=

∂ −
=

∂ U U

−p y t pγ
θ θ

We will also need the boundary loci that delineate admission spaces. The boundary loci
are derived from the indifference loci. The indifference locus between schools i and j is
the locus of types indifferent between the schools when price in each equals effective
marginal cost. An indifference locus is then:

3.
((1) ()) ((1) ())

(()) (())
(,) , 1,..., 1;

()(1)

− + − = − + −

− − −
⇒ = = −

− −

i i j j

i i j j
ij

i j

y t v emc b q b y t v emc b q b

emc b v q emc b v q
y b x i j J i j

q q t

β β

≠

where effective marginal cost is:

4. () '() ()= + + −j j j j jemc b V k I bη θ
The boundary loci are then determined by:2

5. 0 min max

1

(,) ; (,)
() max[(),min ()] 1,..., 1− >

= =
= =

J

i i j i ij

y b x y y b x y
y b y b y b i J −

where the support of y is [ymin, ymax].

School sizes and peer qualities are:

6.
(,)

0 (,)
() 1,...,

−

∞
= , =∫ ∫

j

j i

y b x

j y b x
k f y b dbdy j J

7.
(,)

0 (,)

1 () 1,...,
−

∞
= ,∫ ∫

j

j i

y b x

j y b x
j

bf y b dbdy j J
k

θ =

Using (2), the shadow price of peer quality is:

8.
(,)

0 (,)

[(1) (,)]
() 1, 2,..., , ; 0j

j i

y b x j
j puby b x

j

y t p b y
f y b dbdy j J j pub

γ
η η

θ−

∞ − −
= , =∫ ∫ ≠ =

Approximating using price equal to effective marginal cost, we substitute (4) into (8):

9.

(,)

0 (,)

(,)

0 (,)

[(1) '() ()]1 ()

['()](1) () 1, 2,..., , ; 0

j

j i

j

j i

y b x j j j j
j y b x

j j

y b x j j
puby b x

j j j

y t V k b I
f y b dbdy

k

V k It y f y b dbdy j J j pub
k

γ η θ
η

θ

γγ η
θ θ

−

−

∞

∞

− − − − −
= ,

+−
= , − = ≠

∫ ∫

∫ ∫ =

The first-order condition for inputs is:

10. 1, 2,..., , ;= ⇒ = = ≠ =j j j
j j pub

j

I
exogI j J j pub I I

γ ωη θ
η

ωθ γ

2 See the appendix to these notes for details.

Public school expenditure, Ipub is set exogenously. The voucher is set to an exogenously
determined value vexog:

11. v = vexog

The tax rate must pay the cost of public education plus the voucher. The number of
public schools, m, is the integer value that minimizes the total cost of serving the public
school population.

12. min (1) {1,2,...}
⎡ ⎤⎛ ⎞⎛ ⎞

= + + + − ∈⎢ ⎥⎜ ⎟⎜ ⎟
⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

pub
pub pub pubm

k
ty k I m F V v k for m

m

The system of equations to be solved is then given by (6), (7), (9), (10), (11), and (12).

We now rewrite the integrals in (6), (7), and (9) to facilitate computation.

Substitute f(b,y) = f1(b)f2(y/b) into (6):

13.
-1

(,)

1 20 (,)
 () () = ∫ ∫

x j

j

b y b x

j y b x
k f b f y b dydb

We assume that the [ln(y),ln(b)] is normally distributed:

14.
2

2

ln
,

ln
⎡ ⎤⎛ ⎞⎛ ⎞⎡ ⎤

= ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

y y y b

b y b b

y
N

b
μ σ ρσ σ
μ ρσ σ σ

 Then rewrite (13) as:

15. 1
10

/ /

ln((,)) - () ln((,)) - ()
 ()

∞ −
⎡ ⎤⎛ ⎞ ⎛

= Φ − Φ⎢ ⎥⎜ ⎟ ⎜⎜ ⎟ ⎜⎢ ⎥⎝ ⎠ ⎝⎣ ⎦
∫ j y j y

j
y b y b

y b x b y b x b
k f b

μ μ
σ σ

⎞
⎟⎟
⎠

db

where () () (ln ())= − −y y y bb bbμ μ ρ σ σ μ and σy/b=σy(1-ρ2).5

To simplify computation we let:

16. 10
/

ln((,)) - ()
 ()

∞ ⎛ ⎞
= Φ ⎜ ⎟⎜ ⎟

⎝ ⎠
∫ j y

j
y b

y b x b
K f b

μ
σ

db

Then, from (15) and (16):

17. 1−= −j j jk K K

Using the same approach to rewrite (7), we let:

18. 10
/

ln((,)) - ()1 ()
∞ ⎛ ⎞

Θ = Φ ⎜ ⎟⎜ ⎟
⎝ ⎠

∫ j y
j

j y b

y b x b
bf b db

k
μ

σ

Then

19. 1−= Θ − Θj j jθ

Similarly, the integral of after-tax income is:

22. 2
/

(,)

0 0

2
() /2

10
/

(1) ()

ln ((,)) - () -
(1) ()

∞

∞+

= − ,

⎛ ⎞
= − Φ ⎜ ⎟⎜ ⎟

⎝ ⎠

∫ ∫

∫

j

y b
y

y b x

j

b j y y b

y b

Y t y f y b dydb

y b x b
t e f b db

σ
μ μ σ

σ

We rewrite (9) as:

23. 1
1

(1)() ['()]
2,..., ; 0−− − +

= − =j j j j
j

j j j

t Y Y V k I
j J

k
=

γ γ
η η

θ θ

Program

We will use superscript v to denote a vector and m for a matrix. Let 1 2[]= , , ,v
Lb b b … b be

a row vector of L ordinates to be used for numerical integration. Integration is by Gauss-
Legendre quadrature. We first discuss evaluation of the integral in (17).
Let Γj(b) be the integrand in (17). Using Simpson’s rule, the integral will be
approximated by the sum of L rectangles. Rectangle has height Γi j(bi). Let be the
width of the base of the rectangle, hence the area of the rectangle is Γ

iw
j(bi)wi. Let

1 2[= , , ,v]Kw w w … w be the column vector of widths associated with bv. In the program
wv=(diffb/2)*wvec. 3
 Then the integral in (17) is approximated by:

24.
1

() ()
=

Γ ⋅ = Γ ⋅∑
L

v v
j i i j

i
b w b w

The integrals for the J schools can be evaluated more compactly by placing the Γj(bv) into
a JXL matrix:

25. .
1(,)

...
(,)

⎡ ⎤Γ
⎢ ⎥Γ = ⎢ ⎥
⎢ ⎥Γ⎣ ⎦

v

m

v
J

b x

b x
The vector Kv is then obtained as:
26. = Γ ⋅v m vK w .
We now detail calculation of the integrand in (17). We begin with indifference
loci: is a 1XL row vector of points on the indifference locus between

schools j and j+1. Similarly, is a 1XL row vector of points on the boundary
locus y

(,)=v v
j jy y b x

(,)=v v
j jy y b x

j(b,x). Procedure (proc) bcross calculates the indifference loci (denoted iloc) and

3 The vector of weights wvec is normalized to sum to 2. Thus, when the integration is
over an interval of width different from 2, the wvec are multiplied by the one half the
width of the support of the variable over which integration is to be conducted. In this
application, we set diffb = (bmax-bmin) = (150,000 - .0000001).

the boundary loci (denoted yofb) and returns a JXL matrix of upper boundary loci of the J
schools:

27. .
1(,)

...
(,)

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

v

m

v
J

y b x
y

y b x

Taking ym as input, procedure kproc calculates kv. We denote as Kv the J-dimensional
vector of Kj in (23). In kproc, the following three 1XL row vectors are calculated. The
names used in the program to denote these vectors are indicated in parentheses:

() () (ln ())= − −v v
y y y bb b bμ μ ρ σ σ μ (muyofb)

2

2
(ln())

21(ln)
2

−
−

=

v
b

b

b
v

b

b e
μ

σφ
πσ

 (bdenb)
1() (ln). /=v v vf b bφ b (denb)

where ./ denotes element-by-element division. The following JXL dimensional matrix
then corresponds to Γm in (25):

2
/

1
/

ln () ()
().*

⎛ ⎞− −
Φ ⎜ ⎟⎜ ⎟

⎝ ⎠

m v
y yv

y b

y b
f b

μ σ
σ

b

where
2

/

/

ln () ()⎛ ⎞− −
Φ ⎜⎜

⎝ ⎠

m v
y y

y b

y bμ σ
σ

⎟⎟
b is a JXL matrix, and .* denotes element-by-element

multiplication. The vector Kv is then:

28.
2

/
1

/

ln () ()
().* *

⎛ ⎞− −
= Φ ⎜ ⎟⎜ ⎟

⎝ ⎠

m v
y y bv v

y b

y b
K f b w

μ σ
σ

v (cumk)

Similarly:

29.
2

/

/

ln () ()
(ln).* *

⎛ ⎞− −
Θ = Φ ⎜ ⎟⎜ ⎟

⎝ ⎠

m v
y y bv v

y b

y b
b w

μ σ
φ

σ
v (cumth)

From these, procedure kproc calculates the J-dimensional vectors kv (denoted kvout) and
θv (denoted thvout) using (18) and (20).
Implementing the analogous approach with Equation (22), we obtain the vector of after-
tax incomes:

30.
2

/ 2
() /2

1
/

ln ((,)) - () -
(1) .* () *

+ ⎛ ⎞
= − Φ⎜ ⎟⎜ ⎟

⎝ ⎠

y bv
y

v v
b j y y bv v

y b

y b x b
Y t e f b

σ
μ μ σ

σ
vw (cuminc)

Using this result Equation (23), kproc calculates the vector ηv (etaout). Procedure kproc

returns the 3-dimensional column vector [kv, θv, ηv].

Procedure func defines the equations to be solved, naming the resulting 3J+2 vector fun.

Proc func calls the proc’s discussed above (bcross and kproc). The first 3J equations in

fun correspond to (6), (7), and (8). The next J equations correspond to (10). The final two

equations correspond to (11) and (12).

Proc func is called by the algorithm for solving nonlinear simultaneous equations. This

algorithm is in file Nlinsys1.dne. When a solution to the equations is found for a given

number of schools, profit is calculated for each private school. If the sum of profits is

positive, entry occurs. Proc newx0 is called, and new starting values are created. The

starting values are based on the solution just obtained.

Profits are calculated by Monte Carlo simulation in procedure profn. A large sample (y,b)

is drawn. Sample size is set by smpl. This calculation requires determining the price that

a school charges to each student. That price equates utility in the chosen school to utility

at p=emc in the next-best alternative school. Hence, in profn, utility of each element of

the sample is calculated in every school with price set equal to effective marginal cost.

The utility of each type in the type’s next-best alternative school is calculated and placed

in vector ordstat2. The price charged to each type is then calculated, followed by

calculation of profit for each school.

Welfare and achievement in an equilibrium are compared to those in a benchmark

allocation using Monte Carlo simulation in procedure welfn. For each (y,b) type, utility

and achievement are calculated in the benchmark allocation. Compensating variation and

achievement for the equilibrium being studied are then calculated relative to the

benchmark allocation.

Computation

The algorithm uses Newton’s method. Newton’s method is fast, but can be fragile. The

fragility arises in part because Newton’s method may take a step sufficiently large that it

moves to a portion of the parameter space where one or more functions is undefined, or

one or more of the functions is so “flat” that the matrix of derivatives is singular. This

fragility tends to become more pronounced when there are a large number of schools.

The program contains some features that help facilitate convergence.

1. Constraining Parameter Values

In the course of searching, numerical search routines may choose parameter values that

violate constraints on the signs or magnitudes of parameter values. It is useful to

transform parameters to impose constraints that parameters must satisfy. Three types of

constraints are imposed in our program. Each type is illustrated below.

Suppose a parameter must be non-negative, such as the θj in our model. Let denote

a parameter that must be non-negative. Let

ux

)(xLn x ut =

Conduct the numerical search over parameter , which can take any values on the real

line. Regardless of the value of that is chosen, will be non-negative. We refer to

 as the transformed parameter and the untransformed parameter (i.e., the parameter

of interest). In our program, we use the above to assure that θ

tx

tx ux

tx ux

j, Ij, and the tax rate are

non-negative.

Suppose a parameter must lie in the interval (0,1), such as the k's in our model. Let

be a parameter that must satisfy such a constraint. Then the appropriate transformed

parameter is:

ux

))x-1 /(xLn x uut =

For any value of on the real line, satisfies the desired constraints. In our program,

we use the above transformation to assure that all k

tx ux

j, and the ηj for private schools, are in

the interval (0,1).

The proc trans performs the transformations described above. The proc untrans reverses

the transformations.

2. Adjusting Step Size

The program contains a parameter named nlfac. This parameter is the fraction of a

Newton step that is taken on a given iteration. For example, if nlfac=.05, then the step

that is actually taken is 5% of the Newton step. After each 100 function evaluations, the

program adjusts the step size to nlfac=nladj*nlfac, where nladj is greater than one. For

example, if nladj =1.05, then nlfac will be increased by a factor of 1.05 after each 100

function evaluations, until nlfac reaches a value of 1.0.

3. Incremental change

If it is possible to move incrementally from a known equilibrium to a desired equilibrium,

this is often the best way to proceed. The do loop near the end of the program can be used

to do such calculations. For example, the do loop is currently set to incrementally

increase the voucher. (This do loop is activated by setting doact=1 near the beginning of

the program.) This do loop uses the result on each cycle through the loop to start the next

cycle. The do loop can be amended to incrementally change other features of the model.

For example, holding the voucher constant, one might want to explore the effects of

varying a cost function parameter (e.g. fixcst). This can be done by incrementing the

parameter while holding the voucher constant.

Dictionary of Variables

Variable Symbol Above Program Name

Number of Schools J nsch
Ordinates for Integration L ordnum
Exogenous voucher setting vx vouex
Exogenous public expenditure Ipub iexog
Lower support of y ymin ylolim
Upper support of y ymax yuplim
Lower support of b bmin blolim
Upper support of b bmax buplim

Miscellaneous

1. In the U.S., there is approximately one student for each two households. Thus, the
program assumes one half student per household. Price, average cost, marginal cost, and
the voucher are then per half student and must be multiplied by two to convert to a per
student basis in year 2000 dollars.

2. The “custodial” cost function is quadratic:

C(k)= F+V(k) = fixcst +cfac2*kv +cfac*kv^2/2

