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Abstract

Aggregate productivity growth in the U.S. has slowed down since the 2000s. We

relate this to differential productivity growth across multiple jobs (routinization) and

industries since the 1980s. In our model, complementarity across jobs and industries in

production leads to aggregate productivity slowdowns, as the relative size of those jobs

and industries that experienced high productivity growth shrinks, reducing their con-

tributions toward aggregate productivity. We find that this effect was countervailed by

extraordinarily high productivity growth in the computer industry (computerization)

during the 1980s and 1990s, whose employment did not shrink despite complemen-

tarity. At the same time, computer output became an increasingly more important

input in production across all industries. It was only as the productivity growth in

the computer industry slowed down in the 2000s that the negative effect of differen-

tial productivity growth across jobs became apparent for aggregate productivity. Our

quantitative results show that the decline in the labor share can also be explained by

computerization, which substitutes labor across all industries.
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1 Introduction

Amid the sluggish recovery following the Great Recession, much attention has been

given to the slowdown in productivity growth in the United States economy (some-

times referred to as “secular stagnation”). We dissect this trend in aggregate pro-

ductivity by developing a model in which technological progress is both sector- and

occupation-specific,1 to better understand which sectors and occupations contribute

most to the changes in aggregate productivity. In particular, we pay special atten-

tion to the computer sector (hardware and software), which has enjoyed an impressive

rise in its productivity even as the rest of the economy lagged behind. Moreover,

computer and software have become an important factor of production for all other

sectors since the 1990s (which we call “computerization”), so we separate computer

and software from other machinery equipment as a distinct type of capital. Using the

model, we quantify the importance of the computer sector (which is a specific indus-

try) and compare it against “routinization” (i.e., faster technological progress specific

to occupations that involve routine or repetitive tasks)—which has been found to be

an important driver of aggregate employment shifts—in explaining trends in aggregate

productivity.

In our model, individuals inelastically supply labor to differentiated jobs. Each

sector uses all these jobs, but with different intensities. Sectors are complementary

across one another for the production of the final good. Within each sector, jobs are

also complementary to one another, and labor is combined with capital for sectoral

production. Most important, we divide capital into computer capital (including soft-

ware) and the rest (i.e., all capital not produced from the computer sector), and assume

that the substitutability between labor and computer capital may differ across sectors.

We model computer and software as capital used by all other sectors rather than an

intermediate input, because the computer share of all investment is substantially larger

than its share of all intermediates (14 vs. 2 percent, averaged between 1980 and 2010).

We note that computerization and routinization are empirically distinct phenom-

ena. Computer and software usage increased the most for high-skill or cognitive occu-

pations, not middle-skill or routine occupations (Aum, 2017), justifying our choice to

model productivity growth in both dimensions. We then estimate the degree of comple-

mentarity across sectors, and calibrate the productivity growth rates, complementarity

1Throughout the text, we will use “sector” and “industry” interchangeably, as well as “occupations,”

“tasks” and “jobs.”
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across jobs, and substitutability between computer capital and labor, using detailed

data on employment shares and computer capital by industry and by occupation. We

verify that as long as productivity growths are positive, (i) sectors are complementary

to one another for final good production;2 (ii) jobs are complementary to one another

within sectors; and most importantly, (iii) computer capital is in fact substitutable

with labor in all sectors.

Given the structure of our model and estimated/calibrated parameters, when the

productivity of sectors or jobs grow at constant but different rates, aggregate produc-

tivity growth declines over time due to the two types of complementarity (across jobs

within sectors, and across sectors in final good production). As productivity growth

slows down, so does output growth.

The mechanics of our model is consistent with our empirical findings: Since the

1980s, sectors that rely heavily on routine jobs experienced the highest growth in

their productivities, as measured by conventional growth accounting. In our model,

this is a result of routinization or the relatively faster productivity growth specific

to routine-intensive jobs, rather than sector-specific technological progress. These

occupations, and the sectors that rely relatively more on them, saw their employment

shares decrease. In our model, this is a result of the complementarity across sectors and

occupations: Constant growth of occupation- and sector-specific productivity implies

that these jobs and sectors shrink in terms of employment and value added, which

results in aggregate productivity slowdowns.

Next, we compare the quantitative contributions of sectoral and occupational pro-

ductivity growth to this aggregate productivity slowdown in our model. We find that

the fall in aggregate TFP growth in the longer run is more due to the differential growth

across occupations (i.e., routinization) rather than differential growth across sectors.

In fact, if all occupation-specific productivities had grown at a common rate from 1980,

holding all else equal, aggregate productivity growth rates would have stayed nearly

constant through 2010.

The natural question is then why the downward trend in aggregate productivity

growth did not manifest itself until the 2000s. In our model, the slowdown in aggregate

productivity growth can be temporarily arrested and even reversed if certain sectors or

jobs experience faster-than-usual technological progress. We find that this is exactly

what happened during the 1990s, when the computer sector recorded an impressive

productivity growth. Without the technological progress specific to the computer

2Or consumption, which we do not model.
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industry, aggregate TFP growth during the 1990s would have been 0.5 percent per year,

instead of 0.8 percent. It is only after the subsequent slowdown in the computer sector’s

productivity growth in the 2000s that the longer-run downward trend in aggregate

productivity became apparent. Our analysis confirms that if productivity growth in

the computer sector had been completely absent, aggregate productivity growth would

have declined monotonically since 1980.

In the data, sectors with higher productivity growth saw their employment shares

decline, except for the computer sector. Our model explains this by letting all sec-

tors requiring computer capital in production. Then, because the computer sector’s

productivity growth reduces the price of computer capital, leading to an increase its

usage by all sectors, it contributes to output growth in addition to its contribution

to aggregate TFP growth. Indeed, if there had been no productivity growth in the

computer sector and hence no computerization, output per worker growth would have

been 1.5 percent per year during the 1990s, rather than the 3.5 percent as observed

in the data. In other words, the sluggish growth of aggregate productivity and output

in the 2000s was not abnormal. It was the faster-than-trend growth during the 1990s

driven by the outburst of the computer sector’s productivity that was extraordinary.

Treating computer capital as a separate production factor as we do also have im-

plications for the measurement of aggregate TFP. We find that the conventional way

of computing aggregate TFP by summing up all capital into one category overstates

the actual TFP growth by 0.4 percentage point per year on average between 1980 and

2010.

Lastly, we relate computerization to the decline in the labor income share. In our

model, the labor share decline is caused by the substitutability between labor and

computer capital, as the computer sector becomes more productive. We find that

computerization during the 1990s accounts for most of the decline in the labor share

between 1980 and 2010 (4 out of 5 percentage points). This implies that computer

capital alone is more important than all other machinery and equipment in explaining

the decline in the labor share.

Related literature In our model, employment shifts across sectors—or “structural

change”—occur due to differential sector- and occupation-specific productivity growth

as in Lee and Shin (2017). Most studies in the structural change literature that consider

sector-specific productivity growth, e.g., Ngai and Pissarides (2007), have paid little

attention to its implications for changes in aggregate productivity. In fact, most were
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interested in obtaining balanced growth. However, since as far back as Baumol (1967),

it was well known that complementarity between industries can lead to an increase in

the employment share of the low productivity growth sector, consequently leading to

a slowdown in aggregate productivity (also known as “Baumol’s disease”). We add

to this literature by investigating how useful our model of structural change can be

toward quantitatively explaining trends in aggregate productivity.

A recent study by Duernecker et al. (2017) is a notable exception. They explic-

itly consider Baumol’s disease in a model with structural change, and evaluates its

quantitative importance for explaining the aggregate productivity slowdown. In our

analysis, we model differential progress in occupational-specific technologies in addition

to heterogeneous sectoral productivity growth rates, and find evidence that heterogene-

ity across occupation-level productivities has been more important for the aggregate

productivity slowdown in the United States.

Our work also relates to studies on the importance of information technology (IT)

in explaining the evolution of productivity (e.g., Byrne et al., 2016; Gordon, 2016;

Syverson, 2017). In particular, Acemoglu et al. (2014) investigates the relationship

between multi-factor productivity growth and the use of IT by industry. They conclude

that IT usage has little impact on productivity. While we emphasize the role of

computerization, our analysis does not contradict theirs. While computerization is

important for shaping aggregate productivity shifts in our analysis, there is no direct

effect of computerization on the multi-factor productivity of other industries. Instead,

computerization affects industry level output and value added through an increase in

the use of computer capital.

In many empirical analyses related to routinization, the price of information and

communication technology (ICT) capital is often used as a proxy for routine-biased

technological change (e.g., Goos et al., 2014; Cortes et al., 2017). However, when we

break down computer usage by occupation, we find that computerization and routiniza-

tion are two different phenomena, with different implications for the macroeconomy.

Aum (2017) analyzes increasing investment in software in a model that also features

routinization. While Aum (2017) focuses on its impact on changes in occupational

employment, we focus on its implications for aggregate productivity.

Karabarbounis and Neiman (2014) suggests that the decline in the labor share

could be due to a decline in the price of capital. Since the decline in the price of

capital is mostly driven by the price of computer-related equipment, and it mirrors

the productivity increase in the computer industry, our analysis appears to concur
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Fig. 1: PC use by occupation and PC industry TFP

with their explanation on the cause of the fall of the labor share. Further, our results

show that a specific component of capital—computer hardware and software—can be

more important than all other types of capital. This is in line with Koh et al. (2016),

which emphasizes the importance of intellectual property products capital (including

software) in explaining the decline of the labor share.

2 Empirical Evidence

We begin by establishing that routinization and computerization are two distinct phe-

nomena. For the empirical analysis, occupational data is from the decennial censuses

and industrial data from the BEA industry accounts. We consider industries at the

2-digit level, resulting in 60 industries.

In Figure 1(a), the horizontal axis is occupational employment shares (percentile),

in increasing order of each occupation’s 1980 average wage.3 The figure shows that

the routine index of occupations is high for middle-wage occupations, as is well known

in the routinization/polarization literature, but that high-wage occupations tend to

use computers more.4 So at the occupational level, an increase in the use of comput-

3The ordering of occupational mean wages barely change from 1980 to 2010.
4Wages and employment by occupation are obtained from the decennial censuses. The routine index is

the one constructed by and used in Autor and Dorn (2013). Computer investment is approximated from the

BEA and O*NET. From the BEA, we know the total amount of investment for four categories of computer-

related equipment. In O*NET, each category is broken further down into detailed subcategories, and we
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ers (computerization) should be separately understood from routinization, typically

understood as faster productivity growth among middle-wage or routine-intense tasks.

Computerization in our model is a consequence of the fast productivity growth

of the computer industry. We first employ conventional accounting to compute each

industry’s TFP growth as the growth rate of real value-added, net of the growth of

factor inputs weighted by the income share of each factor. Specifically, industry i’s

TFP growth between time s and t is

log
TFPit
TFPis

= log
Yit
Yis
− αis + αit

2
· log

Lit
Lis
− 1− αis − αit

2
· log

Kit

Kis
,

where Y is real value-added, L is employment, K is the net real stock of non-residential

fixed capital, and α is the labor share (compensation of employees divided by value-

added).5

Figure 1(b) depicts the log-TFP of computer-related industries (BEA industry code

334 for hardware and 511 for software) and the average of the log-TFP of all industries

excluding agriculture and government (weighted according to the Törnqvist index).

The TFP of hardware shows an average annual growth rate of 16 percent, far higher

than the average. Software also features higher TFP growth compared to the average.

The TFP of the “computer industry”—the value- added weighted average of hardware

and software—shows that the hardware industry mostly determines the TFP of the

computer industry. Note that the exceptionally fast growth of the computer industry’s

TFP slowed down since around the early 2000s.

Reflecting the fast growth of the computer industry’s productivity, the use of com-

puter and software also rose substantially until the late 1990s. Figure 2(a) shows the

computer and software share of total intermediates over time. Figure 2(b) plots the

share of computers and software in total non-residential investment. In both figures,

it is clear that there was a steep rise in the importance of computers in the 1980s to

1990s, which stagnated starting in the 2000s.6

We now turn to disaggregated evidence at the industry level, which will support

our hypotheses of heterogeneous growth rates and complementarity across jobs and

industries. Because job or occupation-level productivity is not directly measurable,

know how many of these subcategories are used in each occupation, which we assume is proportionate to the

amount of computer investment into that occupation. While this is a crude measure, it is highly correlated

with data from the CPS, which reports computer usage by occupation.
5Later when we separately consider computer capital, TFP computed as here becomes misspecified.
6Data behind Figures 2(a) and (b) come from BEA’s Input-Output Tables and Fixed Assets Tables,

respectively.
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we first establish two new empirical patterns, utilizing the fact that industries differ

in the composition of their workers’ occupations. Figure 3(a) shows that the routine

job share of an industry is positively correlated with its TFP growth between 1980

and 2010 (consistent with routinization), and Figure 3(b) shows that its TFP growth

is negatively correlated with its employment growth (consistent with complementarity

across jobs and industries).7 Here, routine occupations are defined as occupations that

are above the 66 percentile in terms of the routine task index following Autor and Dorn

(2013).

However, note that the computer industry is a conspicuous outlier. In Figure

3(a), despite having a routine job share around the median, not only is the computer

industry’s productivity growth 10 times larger than other industries at similar levels

of routineness, it is in fact 2 to 4 times larger than the next two industries with the

highest levels of productivity growth overall. Despite this, as shown in Figure 3(b), its

employment barely fell, which cannot be explained by complementarity across jobs or

industries alone.

This suggests that other industries depend heavily on the computer industry, so

that even as its productivity grows the size of this sector would not shrink as long as

other industries rely on it enough. And then, the large rate of technological progress

specific to the computer industry may be able to offset the fall in aggregate output and

productivity growth incurred by routinization. If so, those industries with faster growth

in computer capital should grow faster than those that use computers less intensively.

Figure 4 confirms the positive relationship between the growth of computer capital

(hardware and software) for an industry and its value-added growth between 1980 and

2010.

3 Model

The model for our quantitative analysis builds on those in Goos et al. (2014) and

Lee and Shin (2017), both of which simultaneously analyze an economy’s occupational

and industrial structure. In particular, the latter explicitly models how workers of

heterogeneous skill sort into different occupations, and also industries that differ in

the intensity with which they combine workers of different occupations for production.

7Employment in this figure is full-time plus part-time workers (FTPT). Full-time equivalent (FTE)

employment shows similar patterns, but is only available by industry from 1997 onward: for this period,

there are level differences between the two measures, but dynamic patterns are similar for both.
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Fig. 4: Value added growth and computer capital growth

Here we ignore selection on skill, but instead expand previous models by letting all

industries use output from the computer sector as a capital good in production, an

important channel through which the productivity gains of the computer industry

affects aggregate production.

Environment A representative household maximizes its discounted sum of utility

∞∑
t=0

βtu(Ct)

subject to the sequence of budget constraints,

Ct + It + pI,tFt ≤ Yt,

where I is investment in traditional capital (machinery and equipment excluding com-

puter hardware and software), F investment in computer capital, and pI the price of

computers. The final good is the numeraire, which can be used for consumption and

traditional capital investment. The law of motion for each type of capital satisfies

Kt+1 = It + (1− δK)Kt, St+1 = Ft + (1− δS)St,

where (K,S) are traditional and computer capital, respectively, and (δK , δS) their

depreciation rates. In what follows, we drop the time subscript unless necessary, and

simply denote next period variables with a prime.

Within the representative household is a unit mass of identical individuals who

supply labor inelastically to one of J tasks, indexed by j ∈ {1, . . . , J}. The final good
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is produced by combining products from I sectors, which we index by i ∈ {1, . . . , I}. To

be specific, final good production combines industrial output using a CES aggregator

with the elasticity of substitution ε:

Y =

[
I∑
i=1

γ
1
ε
i Y

ε−1
ε

i

] ε
ε−1

.

In each sector, a representative firm organizes the J tasks to produce sectoral output

Yi according to

Yi = AiK
αi
i Z

1−αi
i ,

where Ai is sector i’s exogenous sector-specific TFP and Zi a labor component that

combines computer capital Si, and a task composite Xi:

Zi =

[
ω

1
ρi
i S

ρi−1

ρi
i + (1− ωi)

1
ρiX

ρi−1

ρi
i

] ρi
ρi−1

, Xi =

 J∑
j=1

ν
1
σ
ij (MjLij)

σ−1
σ

 σ
σ−1

.

Each Lij is the amount of task j labor (i.e., workers) used in sector i, and Mj is

the (exogenous) productivity of task j that differs across tasks but not sectors. The

parameters ωi and νij are CES weights that differ by sector, as well as ρi, the elasticity

of substitution between computers and labor in sector i. However, we assume that the

elasticity of substitution across tasks, σ, is identical across sectors.

From the sectoral production technology, we see that each industry can use all types

of tasks but at different intensities given by νij . Hence any changes in Mj would have

differential effects on sectoral production through Xi.

Computer capital Si is also an input used in all sectors, and we let the computer

industry be industry i = I. So the total amount of computer capital in the economy

is S =
∑I

i=1 Si and F is the total amount of newly produced computers. The model

essentially is assuming that computer capital is used for the production of all industrial

goods, but there is no other input-output linkage among the rest. Each industry rents

traditional capital and computer capital at rates RK and RS .

Equilibrium The final good firm takes prices pi as given and solves

max

{
Y −

I∑
i=1

piYi

}
. (1)

Each sector i firm takes all prices as given and chooses capital, computer capital and

labor to solve

max

piYi −RKKi −RSSi − w
J∑
j=1

Lij

 , (2)
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where pi is the price of the sector i good, RK the rental rate of traditional capital, RS

the rental rate of computer capital, and w the wage rate (which is equal across jobs

since individuals do not differ in skill). In a competitive equilibrium,

1. Final good producers choose Yi to maximize profits (1), so

γiY/Yi = pεi for i ∈ {1, . . . , I}. (3)

Since we normalized the final good price to 1,

I∑
i=1

γip
1−ε
i = 1

1
1−ε = 1

is the ideal price index.

2. All sector i firms maximize profits (2). The first-order necessary conditions are

RKKi = αipiYi, (4a)

RS = (1− αi) · (piYi/Zi) · (ωiZi/Si)
1
ρi , (4b)

w = (1− αi) · (piYi/Zi) · [(1− ωi)Zi/Xi]
1
ρi ·
[
νijM̃jXi/Lij

] 1
σ
. (4c)

where M̃ ≡Mσ−1.

3. Capital, computer and labor markets clear:

K =

I∑
i=1

Ki, S =

I∑
i=1

Si, L =

I∑
i=1

 J∑
j=1

Lij

 .
4. The rental rates satisfy

u′(C)

βu′(C ′)
= 1 + r = R′K + (1− δK) =

[
R′S + (1− δS)p′I

]
/pI , (5)

and the transversality conditions hold.

lim
t→∞

βtu′(Ct)Kt = 0, lim
t→∞

βtu′(Ct)St = 0.

Equilibrium Characterization From (3) and (4a), we find that

αipiYi/αIpIYI = Ki/KI = (γi/γI)
1
ε · (Yi/YI)

ε−1
ε

⇒ αipiyi/αIpIyI = ki/kI = (γi/γI)
1
ε · (yi/yI)

ε−1
ε · (Li/LI)−

1
ε

⇒ Ai
AI

=

(
αI
αi

) ε
ε−1

·
k

ε
ε−1
−αi

i

k
ε
ε−1
−αI

I

·
z1−αII

z1−αii

·
(
γILi
γiLI

) 1
ε−1

(6)
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where yi ≡ Yi/Li is output per worker and ki ≡ ki/Li is capital per worker. Similarly,

(zi, si) is the labor productivity and computer per worker in sector i. From (4c),

holding i fixed we obtain

Lij/Li1 = νijM̃j/νi1M̃1, so Li = Ṽ σ−1
i · Li1/νi1M̃1 and Xi = ṼiLi, (7)

where Li is the total amount of labor used in sector i and Ṽi ≡
(∑J

j=1 νijM̃j

) 1
σ−1

, so

we can express the equilibrium allocations of Lij , Zi as

Lij/Li = νijM̃j Ṽ
1−σ
i , and (8)

Zi =

[
ω

1
ρi
i S

ρi−1

ρi
i + V

1
ρi
i L

ρi−1

ρi
i

] ρi
ρi−1

⇒ zi ≡ Zi/Li =

[
ω

1
ρi
i s

ρi−1

ρi
i + V

1
ρi
i

] ρi
ρi−1

where Vi ≡ (1− ωi)Ṽ ρi−1
i . Plugging these expressions in (4) we obtain

RS = (1− αi) · (piyi/zi) · (ωizi/si)
1
ρi , (9)

w = (1− αi) · (piyi/zi) · (Vizi)
1
ρi (10)

⇒ (1− αi)αI
(1− αI)αi

· ki
kI

=
z
ρi−1

ρi
i

z
ρI−1

ρI
I

·
(
si
ωi

) 1
ρi

·
(
ωI
sI

) 1
ρI

=
z
ρi−1

ρi
i

z
ρI−1

ρI
I

·
V

1
ρI
I

V
1
ρi
i

. (11)

The second equality implies

(Vi/ωi) · si = [(VI/ωI) · sI ]
ρi
ρI (12)

zi = V
1

ρi−1

i

[
1 + (ωi/Vi) [(VI/ωI) · sI ]

ρi−1

ρI

] ρi
ρi−1

. (13)

We can find the equilibrium from equation (6), (11), and (12) subject to the market

clearing conditions.

Discussion In our model, exogenous productivities are task-specific (Mj) or sector-

specific (Ai). Though we call Ai as sector-specific productivity, it should be distin-

guished from “sectoral productivity” which refers to the measured productivity of a

sector in an accounting sense. As the task-specific productivities affect sectoral pro-

ductivity through Vi := (1−ωi)(
∑

j νijM̃j)
ρi−1

σ−1 , sectoral productivity depends on Mj ’s

as well as Ai. Specifically, sectoral productivity is obtained by decomposing output

into factors:

ŷi =

Âi + (1− αi)
1

ρi − 1

V
1
ρi
i

z
ρi−1

ρi
i

V̂i


︸ ︷︷ ︸

Sectoral (measured) TFP

+ αi︸︷︷︸
K share

k̂i + (1− αi)
ω

1
ρi
i s

ρi−1

ρi
i

z
ρi−1

ρi
i︸ ︷︷ ︸

S share

ŝi, (14)
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where x̂ := d log x.

In the quantitative analysis, we refer to sectoral productivity instead as “measured

productivity,” as it corresponds to the usual multi-factor productivity one would com-

pute directly from the data.8 If Mj , the productivity of task j, increases, sectoral

productivity also goes up through changes in Vi. In this case, the TFP’s of all sec-

tors would move in the same direction (either up or down), but their rates of growth

will be different depending on their task-sector specific weights νij , the share of labor

employed by each sector.

Since the production technology is homogeneous of degree one (HD1), aggregate

productivity is a sectoral production-weighted average of the measured productivities.

Hence changes in the exogenous productivities Ai or Mj affect aggregate productivity

both directly through changes in measured productivity by sector, but also indirectly

by altering sectoral shares of production.

Last but not least, changes in AI , the computer industry’s productivity, has further

repercussions on aggregate output. As other industries, changes in AI alter aggregate

productivity both directly (through measured sectoral productivity) and indirectly (by

altering the output share of the computer industry). But in addition, computerization

also lowers the rental rates of computers (RS), leading to a rise in the use of computers

by all industries if the elasticity of substitution between computers and labor is larger

than one. Consequently, not only because it raises aggregate productivity, but also

because it increases the use of computers in all sectors, a rise in AI will contribute

more to an increase in aggregate output than any other sector.

4 Quantitative Analysis

For the quantitative analysis, we classify industries into ten groups as summarized in

Table 1. We exclude the agricultural sector and government. In Table 2, we classify

occupations into ten groups which broadly correspond to one-digit occupation groups

in the census.

8This still differs from the conventional ways of measuring sector-level TFP using only capital and labor,

because we are taking out computer capital as a distinct type of capital with its own income share.
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Table 1: Industry classification

Industry BEA industry code

Mining 211, 212, 213

Construction 23

Durable goods manufacturing 311FT, 313TT, 315AL, 322, 323, 324, 325, 326

Non-durable goods manufacturing 321, 327, 331, 332, 333, 335, 3361MV, 3364OT, 337, 339

FIRE 521CI, 523, 524, 531, 532RL

Health 621, 622HO

Other high-skill services 512, 513, 514, 5411, 5412OP, 5415, 55, 61

Trade (Retail & Wholesale) 42, 44RT

Other low-skill services 22, 481, 482, 483, 484, 485, 486, 487OS, 493, 561, 562, 624,

711AS, 713, 721, 722, 81

Computer 334, 511

Table 2: Occupation classification

Occupation Occupation code

High skill

Management 4 - 37

Professionals 43 - 199

Middle skill

Mechnics & Construction 503 - 599

Miners & Precision workers 614 - 699

Technicians 203 - 235

Sales 243 - 283

Transportation 803 - 889

Machine operators 703 - 799

Administrative support 303 - 389

Low skill services 405 - 498

Consistent occupation code (occ1990dd) constructed following Autor and Dorn (2013).
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4.1 Calibration

Aggregate production function The parameters of the final good production

function are estimated outside of the model using real and nominal value-added data

by industry. Specifically, we estimate the industry weights γi and complementarity

parameter ε from

log(piYi/pIYI) =
1

ε
(γi/γI) +

ε− 1

ε
log(Yi/YI), for i = 1, · · · , I − 1. (15)

The system of equations (15) is estimated by iterated feasible generalized nonlinear

least squares method. To reflect constraints on the parameters (γi > 0 and 0 < ε < 1),

we estimate the unconstrained coefficents b and ci’s in

log(pi,tYi,t/pI,tYI,t) = (1 + eb)ci + eb log(Yi,t/YI,t) + εi,t,

where ε = 1/(1 + eb) and γi = eci/(1 +
∑
eci).

Each industry i in the model consists of several industries in the BEA data, to

which we apply the Törnqvist index to obtain the price index of industry i. Real

quantities Yi are similarly aggregated up from the detailed BEA data. The price index

is normalized to 1 in 1963, the initial year in the data. The sample period for the

estimation covers 1980 to 2010, which is our main interest. The point estimates for ε

and γi are presented in Table 3.

Parameters calibrated without simulation In the calibration, we fix the tra-

ditional capital share of only the computer industry (αI) from the data. Though com-

puting the total capital share is straightforward (i.e., 1 minus labor share), computing

the traditional capital share according to our model is not. To obtain this number for

the computer industry, we follow Koh et al. (2016), which we briefly describe below.

We begin by specifying an empirical no-arbitrage condition for rental prices. The

return on both types of capital must be equal to the interest rate 1 + r′, so

[R′K + (1− δ′K)p′K ]/pK = [R′S + (1− δ′S)p′I ]/pI

where pK is the price of traditional capital and pI the price of computers. Note that

this is different from the model’s no-arbitrage condition (5), because we have included

the price of capital, which in the model we had normalized to be equal to the price of

consumption. Next, since sectoral production is HD1 in all factor inputs (traditional

and computer capital, and labor), for the computer industry we have

1− labor sharei =
RKKI

pIYI
+
RSSI
pIYI

.
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Table 3: Estimation results

Parameters Estimates

ε 0.765
∗∗∗

(0.002)

γ1 0.084
∗∗∗

(0.001)

γ2 0.159
∗∗∗

(0.002)

γ3 0.099
∗∗∗

(0.003)

γ4 0.124
∗∗∗

(0.002)

γ5 0.142
∗∗∗

(0.001)

γ6 0.087
∗∗∗

(0.002)

γ7 0.057
∗∗∗

(0.002)

γ8 0.094
∗∗∗

(0.003)

γ9 0.117
∗∗∗

(0.002)

AIC -1001.432

Standard errors in parentheses.
∗
p < 0.10,

∗∗
p < 0.05,

∗∗∗
p < 0.01

We solve for RK and RS from these two equations assuming a steady state (R′K =

RK , R
′
S = RS), plugging in for all other variables using data on labor shares, prices

and depreciation rates of each type of capital which are obtained from the National

Income and Product Accounts (NIPA) and Fixed Asset Table (FAT).9

Although the above procedure can be used for all industries, in our calibration

we only use the computer industry’s traditional capital share computed as such. All

other industries’ traditional capital shares are calibrated directly from the model as

explained below. Figure 8 compares the traditional capital shares obtained using the

above procedure against those predicted by the calibration, which confirms that they

are generally consistent.

The value for the complementarity parameter across jobs, σ is fixed from Lee and

Shin (2017).

Method of Moments The rest of parameters are recovered from simulating model

moments to match corresponding data moments. Whenever possible, we plug the data

9 We take the weighted average across industries 334 and 511 (software and hardware) to obtain this

value for the computer industry, which in our quantitative model comprises both.
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Table 4: Parameters

Parameters Value Obtained from

σ 0.700 Lee and Shin (2017)

r + δS 0.300 Average depreciation rate of computer capital from FAT

directly into the equilibrium equations. The detailed procedure is as follows.

1. Fix αI as above, and guess AI,1980 and ρi’s.

2. For 1980: obtain (νij , ωi, αi, Ai,1980) given guess.

(a) Set Mj = 1 for all j. Then the industry-specific occupational weights (νij ’s)

are recovered from (8) using data on 1980 employment shares. Then we can

also compute Ṽi in (7).

(b) From (9) of industry I, ωI must solve

RS = (1−αI) ·AIkαII ·

[
ω

1
ρI
I s

ρI−1

ρI
I + (1− ωI)

1
ρI Ṽ

ρI−1

ρI
I

] 1−ρIαI
ρI−1

· (ωI/sI)
1
ρI ,

given data on kI and sI in 1980. The solution ωI ∈ (0, 1) if 1 < (1 −
αI)AI(kI/sI)

αI .

(c) Given ωI , obtain αi’s from (11)-(13) using data on (ki, si) for all i 6= I, which

also yields the ωi’s.

(d) Exogenous sectoral TFP’s Ai,1980’s are recovered from (6) and AI,1980.

3. For 2010: obtain Mj,2010 and updated guesses for the substitutability between

computers and workers, ρnewi .

(a) Choose the Mj ’s that yields the best fit of (8) across all i given 2010 em-

ployment shares:

Mj

M1
=
∑
i

[
Lij
Li1
· νi1
νij

]/
I,

where I is the number of industries. Using this we can compute Ṽi for 2010

using (7).

(b) From (11), we set ρnewI to get the best fit of

ρnewI =
∑
i

 log(ωI ṼI)− log((1− ωI)sI)

log
[(

1− αI(1−αi)ki
αi(1−αI)kI

)
ṼI

]
− log

(
sIαI(1−αi)ki
αi(1−αI)kI − si

)

/
I

18



given data on (ki, si) in 2010.

Note that we need si/sI < (1 − αi)αIki/(αi(1 − αI)kI) < 1 or si/sI >

(1 − αi)αIki/(αi(1 − αI)kI) > 1 for ρnewI to be a real number. We exclude

those industries with (ki, si) for which this condition is not satisfied only

when we compute ρnewI .

(c) Compute the implied ρnewi ’s that are consistent with the 2010 si’s, i.e.,

ρnewi =
ρnewI log

(
1−ωi
ωisiṼi

)
ρnewI log

(
ṼI
Ṽi

)
+ log

(
1−ωI
ωIsI ṼI

)
4. Iterate over ρi’s till ρi ≈ ρnewi .

5. Set AI,1980 so that yI = yI in data. Iterate over AI,1980 till convergence.

Once we have recovered all the parameters,

1. Get Ai,2010’s to match measured TFP by industry in (14) to the 2010 data.

2. Between 1980 and 2010, we assume that the Mj,t’s, and all Ai,t’s except AI , grow

at constant rates, so:

Mj,t = Mj,1980(Mj,2010/Mj,1980)
(t−1980)/30,

Ai,t = Ai,1980(Ai,2010/Ai,1980)
(t−1980)/30.

3. The productivity of the computer industry (AI) for other years are chosen so that

the measured TFP of the computer industry in the data and model are equal.

Results The calibration results are summarized in Tables 5 to 7. Since changes in

Mj affect occupational employment across all industries, we can identify task-specific

productivities separately from the measured TFP’s by industry. In other words, occu-

pational employment data alone gives enough information to identify the Mj ’s. In turn,

the Mj ’s, together with the measured sectoral TFP’s from the data, provide enough

information to identify the sector-specific Ai’s. The calibrated values for Mj ’s show

that routine intensive occupations, such as machine operators or mechanics, indeed

experienced much faster growth in their task-specific productivities. And as expected,

the sector-specific productivity of the computer industry (AI) grew exceptionally fast

especially during the 1990s.

It is also noteworthy that the ρi’s are identified from how computer capital per

worker (si) and traditional capital per worker (ki) evolve differently across industries.
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Table 5: Industry specific parameters

Param/Target Const FIRE Health
High

serv.

Low

serv.
Dur Mine

Non-

durable
Trade

Comp-

uter

γ estimated 0.084 0.159 0.099 0.124 0.142 0.087 0.057 0.094 0.117 0.037

ρ si,2010 1.655 1.228 1.446 1.515 1.429 1.517 1.450 1.241 1.456 1.857

ω si,1980 0.001 0.093 0.003 0.023 0.006 0.010 0.020 0.029 0.008 0.019

α ki,1980 0.167 0.374 0.301 0.454 0.475 0.402 0.793 0.333 0.186 0.322

Roughly speaking, when an industry that increases computer per worker more than

other industries also uses more traditional capital per worker, the elasticity of sub-

stitution ρ tends to be greater than one (Equation 11). Since traditional capital is a

constant share of production in our model, the model is likely to have ρ > 1 when

output growth and computer growth have a roughly positive relationship as in Figure

4. All calibrated ρi’s are indeed greater than one, implying that computerization leads

to a decline in the labor share.

Table 6: Industry-occupation specific weights on labor (νij)

Target: employment share by industry and occupation in 1980

L serv. Admin. Mach Sales Trans Tech Mech Mine. Prof. Mngm

Const 0.008 0.055 0.028 0.011 0.203 0.018 0.564 0.016 0.024 0.074

FIRE 0.040 0.410 0.004 0.243 0.012 0.014 0.013 0.004 0.022 0.236

Health 0.298 0.164 0.005 0.004 0.005 0.121 0.010 0.012 0.322 0.059

H serv. 0.085 0.209 0.010 0.020 0.018 0.046 0.046 0.008 0.424 0.134

L serv. 0.295 0.148 0.027 0.036 0.150 0.014 0.095 0.028 0.075 0.132

Durable 0.026 0.115 0.363 0.040 0.130 0.024 0.056 0.113 0.038 0.094

Mining 0.016 0.092 0.046 0.012 0.193 0.047 0.122 0.321 0.066 0.085

Non-dur 0.020 0.110 0.355 0.022 0.097 0.028 0.083 0.145 0.052 0.087

Trade 0.020 0.142 0.022 0.390 0.136 0.006 0.076 0.048 0.023 0.138

Computer 0.015 0.156 0.298 0.047 0.040 0.065 0.044 0.077 0.131 0.128
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Table 7: Industry and occupation specific productivity

Target: emp. share by ind. and occ. in 2010 Target: measured TFP in 1980 and 2010

Mj 1980 1990 2000 2010 Ai 1980 1990 2000 2010

Low serv. 1.000 1.000 1.000 1.000 Const 14.124 10.775 8.219 6.270

Admin. 1.000 1.325 1.755 2.324 FIRE 17.940 16.393 14.978 13.686

Machine 1.000 1.815 3.293 5.976 Health 6.156 6.001 5.850 5.703

Sales 1.000 0.732 0.536 0.393 High serv. 1.386 1.513 1.651 1.803

Trans 1.000 1.193 1.424 1.699 Low serv. 0.050 0.052 0.054 0.056

Tech 1.000 0.849 0.722 0.613 Durable 0.504 0.525 0.546 0.569

Mechanics 1.000 1.466 2.150 3.152 Mining 3.048 3.090 3.132 3.175

Mine. 1.000 1.420 2.016 2.863 Non-durable 0.274 0.273 0.272 0.271

Prof. 1.000 0.729 0.532 0.388 Trade 0.270 0.341 0.431 0.545

Mngm 1.000 0.658 0.434 0.286 Computer 1.946 3.651 13.368 25.501

4.2 Model Fit

The model-implied employment share changes fit the data better by occupation than

by industry (Figure 5). This is because the Mj ’s directly affect occupational employ-

ment through (8), whereas once we match measured TFP by industry, employment by

industry is pinned down by (6). Nonetheless, employment share changes by industry

are still generally consistent with the data. Moreover, the model prediction of output

per worker by industry is remarkably close to the data (Figure 6).

The model fits generally well even for variables not directly targeted in the calibra-

tion. Most importantly for our purposes, the model generates a slowdown in aggregate

output and productivity growth starting in 2000, similarly as in the data (Figure 7).

The fit to aggregate productivity is especially remarkable considering that we assume

constant productivity growth rates for Mj and Ai—other than AI—and do not target

aggregate variables in 2010.

Lastly, the model-implied factor income shares by industry are also generally con-

sistent with the data (Figure 8). Partly because of this, the aggregate labor share in

the model closely tracks the trend in the data, both in direction and magnitude (Figure

9), despite not being targeted at all at the sectoral nor aggregate levels. Recall that our

production technology assumes that traditional capital’s income share is constant by

construction. Thus, our results suggest that computer hardware and software, which is

a subset of total capital that accounts for 14 percent of all investment, can be respon-
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Cons FIRE Hlth Hser Lser ManD Mine M−ND Trad Comp
−2

0

2

4

6

8

10

12

14

 

 
Data
Model

(a) Output per worker

Cons FIRE Hlth Hser Lser ManD Mine M−ND Trad Comp
−1

0

1

2

3

4

5

 

 

Data
Model

(b) Capital per worker
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Fig. 7: Aggregate production

sible for the vast majority of the fall in the labor share (4 out of 5 percentage points)

since 1980.

4.3 Counterfactual Analysis

In this section, we investigate the underlying factors that shape aggregate output

and productivity, focusing on routinization and computerization. Routinization in our

model is captured by faster increases in certain occupations’ productivity terms, Mj .

Computerization is driven by the computer industry-specific TFP term (AI), which

propagates through all industries because computer capital is used in the production

of all industrial goods.

In our model equilibrium, this propagation happens by shifting the price of com-

puter capital. When AI is high, the computer sector shrinks in employment because of

complementarity, but also lowers the relative price of computers. This, in turn, leads

to a drop in the rental rate of computer capital, which induces all sectors to use more

computers. This prevents the computer sector from shrinking as much as it would in

the absence of computer capital.

Aggregate productivity Note that the growth rates of task- and sector-specific

productivities (Mj and Ai) were assumed to be constant for the entire sample period

except for the computer sector (AI). Nonetheless, in the benchmark calibration, aggre-

gate TFP increases almost linearly from 1980 to 2000, slowing down in the last decade
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(Figure 10).10 We now show that the high growth rate of the computer sector’s pro-

ductivity (AI) prevented a potential slowdown in aggregate productivity that would

have appeared between 1990 and 2000. Figure 10 shows that, if we assume AI were

constant between 1980 and 2010, aggregate productivity growth would have slowed

down since 1990. Without the growth in AI , aggregate productivity would have grown

by only 13 percent from 1980 to 2010, one-third lower than the benchmark growth rate

of 20 percent over the same period. This magnitude is surprising considering the fact

that the computer industry share of aggregate output is only 3 percent.

When all task- and sector-specific productivities grow at constant rates over time,

complementarity across jobs and sectors leads to faster growing tasks and sectors to

shrink in relative size, reducing their weights in the computation of aggregate produc-

tivity. Hence, as long as task- and sector-specific productivities grow at different rates,

aggregate productivity growth must slow down over time. So both the dispersions

in the growth rates of task-specific productivities (Mj) and in sector-specific produc-

tivities (Ai’s) contribute to the aggregate productivity slowdown. To find out which

dispersion is more important for the slowdown, we conduct the following exercises.

In the first exercise, we force all Mj ’s to grow at the same rate m for all j (i.e., no

routinization) while leaving the growth rates of Ai’s to be different from one another

as in the benchmark. Second, we force all Ai’s to grow at a common rate a while

10Aggregate productivity growth is measured as d log(y) − (traditional capital share) · d log(k) −

computer share · d log(s).
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Fig. 11: Aggregate productivity

leaving the growth rates of Mj ’s heterogeneous as in the benchmark. The common

growth rates m and a are set so that aggregate productivity grows at the same rate

as in the first decade of our benchmark calibration. The results are shown in Figure

11, which shows that routinization or the dispersion in the growth rates of Mj is

more important in explaining the decline in the growth rate of aggregate productivity.

Without routinization, the growth rate of aggregate productivity remains near 0.8

percent per year throughout the three decades. In contrast, even when all sector-

specific productivities grow at a common rate, aggregate productivity growth falls

almost as much as in the benchmark. Of course for the latter exercise, we are also

ruling out the faster growth of the computer sector, which partially explains the gap

between the benchmark growth rate and this counterfactual growth rate in the 1990s.

Output Fast-growing computer sector-specific productivity directly boosts aggre-

gate productivity, which leads to an acceleration of aggregate output growth. Fur-

thermore, there is an additional effect on aggregate output, through increases in the

computer capital used by all industries. Figure 12 shows the total computerization

effect on aggregate output. If AI were to remain constant between 1980 and 2010,

aggregate output growth from 1980 to 2010 is 51 percent, or only about half of the

growth rate in the benchmark. This is an even larger impact than that on aggregate

productivity.

Figure 13 shows output growth by industry with and without AI growth. Due to

the substitutability between computer and labor, all industries benefit from computer-
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Fig. 12: Aggregate output

ization. Unsurprisingly, the computer industry itself is affected the most, followed by

finance and high-skilled services. The construction industry has the least to gain (in

terms of output growth) from computerization.

Labor share Because the model calibration gives us industry-specific elasticities of

substitution between labor and computer capital (ρi) that are larger than 1, computer-

ization results in the decline of labor shares in all industries. Figure 14 shows changes

in labor shares by industry for various counterfactual exercises. Among all these ex-

ercises, the only two that affect labor shares are when we eliminate computerization

either explicitly (in red) or by assuming common growth rates across all industries (in

sky-blue). So we can conclude that the growth in AI is the only important driving

force behind the decline of the labor share.

Summary of quantitative analysis There are two main findings from our quan-

titative analysis. First, constant task- and sector-specific technological progress nec-

essarily slows down aggregate productivity growth over time, given complementarity

across industries and jobs. Second, it was the dispersion in the growth rates across tasks

(i.e., routinization) that was most responsible for the aggregate productivity slowdown.

This negative impact of routinization on the growth rate of aggregate productivity was

more or less perfectly counterbalanced by the impressive technological progress specific

to the computer industry and its spillover through inter-industry linkages during the

1980s and the 1990s. The slower pace of the computer sector productivity growth in
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recent years—and the significant deceleration of computer usage by other industries

since 2000—is finally revealing the negative impact that decades of routinization has

had on aggregate productivity growth.

5 Concluding Remarks

We presented a model in which productivities grow at heterogeneous rates across oc-

cupations (routinization), and also across industries. In particular, to understand the

effect of the rise of the computer industry on aggregate productivity, we let its output

be used in the production of all industries as a distinct type of capital.

We showed that when occupations and industries are complementary to one an-

other and task- and sector-specific productivities grow at different rates, routinization

in particular causes a slowdown in aggregate productivity. But such a slowdown was

averted prior to the 2000s in the U.S., thanks to the rapid rise of the computer indus-

try’s productivity. It was only after the productivity of this sector slowed down that

routinization began to reveal its negative impact on aggregate productivity growth.

The main message of our model is that multiple layers of the economy (i.e., occu-

pations and sectors) can interact to generate interesting time trends that can help us

reconcile evidence at the occupation and sector levels with aggregate trends. More-
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over, we have also highlighted the importance of inter-industry linkages by showcasing

that a single industry—in our case the computer industry—can have large effects on

aggregate variables once such a propagation mechanism is taken into account.

In reality, all industries are interlinked, not only by providing intermediate inputs

to one another as emphasized in some recent models (Acemoglu et al., 2012; Carvalho,

2014; Atalay, 2017) but also by serving different types of capital in which all industries

need to invest (as we have modeled here). Modeling such additional layers of complexity

is left for future research.
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