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Abstract

This paper considers business cycle models with agents who are averse not only to
risk, but also to ambiguity (Knightian uncertainty). Ambiguity aversion is described
by recursive multiple priors preferences that capture agents’ lack of confidence in
probability assessments. While modeling changes in risk typically calls for higher order
approximations, changes in ambiguity in our models work like changes in conditional
means. Our models thus allow for uncertainty shocks but can still be solved and
estimated using simple 1st order approximations. In an otherwise standard business
cycle model, an increase in ambiguity (that is, a loss of confidence in probability
assessments), acts like an ’unrealized’ news shock: it generates a large recession
accompanied by ex-post positive excess returns.

1 Introduction

Recent events have generated renewed interest in the effects of changing uncertainty on

macroeconomic aggregates. The standard framework of quantitative macroeconomics is

based on expected utility preferences and rational expectations. Changes in uncertainty

are typically modeled as expected and realized changes in risk. Indeed, expected utility

agents think about the uncertain future in terms of probabilities. An increase in uncertainty

is described by the expected increase in a measure of risk (for example, the conditional

volatility of a shock or the probability of a disaster). Moreover, rational expectations implies

that agents’ beliefs coincide with those of the econometrician (or model builder). An expected

increase in risk must on average be followed by a realized increase in the volatility of shocks

or the likelihood of disasters.

This paper studies business cycle models with agents who are averse to ambiguity

(Knightian uncertainty). Ambiguity averse agents do not think in terms of probabilities

∗Preliminary and incomplete.
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– they lack the confidence to assign probabilities to all relevant events. An increase in

uncertainty may then correspond to a loss of confidence that makes it more difficult to

assign probabilities. Formally, we describe preferences using multiple priors utility (Gilboa

and Schmeidler (1989)). Agents act as if they evaluate plans using a worst case probability

drawn from a set of multiple beliefs. A loss of confidence is captured by an increase in the set

of beliefs. It could be triggered, for example, by worrisome news about the future. Agents

respond to a loss of confidence as their worst case probability changes.

The paper proposes a simple and tractable way to incorporate ambiguity and shocks to

confidence into a business cycle model. Agents’ set of beliefs is parametrized by an interval

of means for exogenous shocks, such as innovations to productivity. A loss of confidence is

captured by an increase in the width of such an interval; in particular it makes the “worst

case” mean even worse. Intuitively, a shock to confidence thus works like a news shock: an

agent who loses confidence responds as if he had received bad news about the future. The

difference between a loss of confidence and bad news is that the latter is followed, on average,

by the realization of a bad outcome. This is not the case for a confidence shock.

We study ambiguity and confidence shocks in economies that are essentially linear. The

key property is that the worst case means supporting agents’ equilibrium choices can be

written as a linear function of the state variables. It implies that equilibria can be accurately

characterized using first order approximations. In particular, we can study agents’ responses

to changes in uncertainty, as well as time variation in uncertainty premia on assets, without

resorting to higher order approximations. This is in sharp contrast to the case of changes in

risk, where higher order solutions are critical. We illustrate the tractability of our method

by estimating a medium scale DSGE model with ambiguity about productivity shocks.

The effects of a lack of confidence are intuitive. On average, less confident agents engage

in precautionary savings and, other things equal, accumulate more steady state capital.

A sudden loss of confidence about productivity generates a wealth effect – due to more

uncertain wage and capital income in the future, and also a substitution effect since the

return on capital has become more uncertain. The net effect on macroeconomic aggregates

depends on the details of the economy. In our estimated medium scale DSGE model, a

loss of confidence generates a recession in which consumption, investment and hours decline

together. In addition, a loss of confidence generates increased demand for safe assets, and

opens up a spread between the returns on ambiguous assets (such as capital) and safe assets.

Business cycles driven by changes in confidence thus give rise to countercyclical spreads or

premia on uncertain assets.

Our paper is related to several strands of literature. The decision theoretic literature on

ambiguity aversion is motivated by the Ellsberg Paradox. Ellsberg’s experiments suggest
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that decision makers’ actions depend on their confidence in probability assessments – they

treat lotteries with known odds differently from bets with unknown odds. The multiple

priors model describe such behavior as a rational response to a lack of information about

the odds. To model intertemporal decision making by agents in a business cycle model, we

use a recursive version of the multiple priors model that was proposed by Epstein and Wang

(1994) and has recently been applied in finance (see Epstein and Schneider (2010) for a

discussion and a comparison to other models of ambiguity aversion). Axiomatic foundations

for recursive multiple priors were provided by Epstein and Schneider (2003).

Hansen et al. (1999) and Cagetti et al. (2002) study business cycles models with robust

control preferences. Under the robust control approach, preferences are smooth – utility

contains a smooth penalty function for deviations of beliefs from some reference belief.

Smoothness rules out first order effects of uncertainty. Models of changes in uncertainty

with robust control thus rely on higher order approximations, as do models with expected

utility. In contrast, multiple priors utility is not smooth when belief sets differ in means.

As a result, there are first order effects of uncertainty – this is exactly what our approach

exploits to generate linear dynamics in response to uncertainty shocks.

The mechanics of our model are related to the literature on news shocks (for example

Beaudry and Portier (2006), Christiano et al. (2008), Schmitt-Grohe and Uribe (2008),

Jaimovich and Rebelo (2009), Blanchard et al. (2009), Christiano et al. (2010a) and Barsky

and Sims (2011)). In particular, Christiano et al. (2008) have considered the response to

temporary unrealized good news about productivity to study stock market booms. When

we apply our approach to news about productivity, a loss confidence works like a (possibly

persistent) unrealized decline in productivity. Recent work on changes in uncertainty in

business cycle models has focused on changes in realized risk – looking either at stochastic

volatility of aggregate shocks (see for example Fernández-Villaverde and Rubio-Ramirez

(2007), Justiniano and Primiceri (2008), Fernández-Villaverde et al. (2010) and the review

in Fernández-Villaverde and Rubio-Ramı́rez (2010)) or at changes in idiosyncratic volatility

in models with heterogeneous firms (Bloom et al. (2009), Bachmann et al. (2010)). We

view our work as complementary to these approaches. In particular, confidence shocks can

generate responses to uncertainty – triggered by news, for example – that is not connected

to later realized changes in risk.

The paper proceeds as follows. Section 2 describes a stylized business cycle model with

ambiguity. Section 3 presents a general framework for adapting business cycle models to

incorporate ambiguity aversion. Section 4 discusses the applicability of linear methods.

Section 5 describes the estimation of a DSGE model for the US.
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2 Ambiguous business cycles: a simple example

To illustrate the role of ambiguity in business cycles, we consider a stylized business cycle

model. Our main criterion for this model is simplicity. We abstract from internal propagation

of shocks through endogenous state variables such as capital or sticky prices or wages. For

uncertainty about productivity to have an effect on labor hours and output, we assume

that labor has to be chosen before productivity is known. This introduces an intertemporal

decision that depends on both risk and ambiguity. In fact, with the special preferences and

technology we choose, the effects of both ambiguity and risk can be read off a loglinear closed

form solution, which facilitates comparison.

A representative agent has felicity over consumption and labor hours

U (C,N) =
1

1− γ
C1−γ − βN

where γ is the coefficient of relative risk aversion (CRRA) or equivalently the inverse of the

intertemporal elasticity of consumption (IES). Agents discount the future with the discount

factor β. Setting the marginal disutility of labor equal to β simplifies some algebra below

by eliminating constant terms.

Output Yt is made from labor Nt according to the linear technology.

Yt = ZtNt−1,

where logZt is random. The fruits of labor effort made at date t − 1 thus only become

available at date t. One interpretation is that goods have to be stored for some time before

they can be consumed. It may be helpful to think of the period length as very short, such

as a week.

For simplicity, we assume that log productivity zt = logZt is serially independent and

normally distributed. The productivity process takes the form

zt+1 = µt −
1

2
σ2
u + ut+1 (2.1)

Here u is an iid sequence of shocks, normally distributed with mean zero and variance σ2
u.

The sequence µ is deterministic and unknown to agents – its properties are discussed further

below.

Agents perceive the unknown component µt to be ambiguous. We parametrize their one-

step-ahead set of beliefs at date t by a set of means µt ∈ [−at, at]. Here at captures agents’

lack of confidence in his probability assessment of productivity zt+1. We allow confidence
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itself to change over time to reflect, for example, news agents receive. We assume an AR(1)

process for at:

at+1 = (1− ρa) ā+ ρaat + εat+1 (2.2)

with ā > 0 and 0 < ρa < 1. The lack of confidence at thus reverts to a long run mean ā.

Periods of low at < ā represent unusually high confidence in future productivity, whereas at >

ā describes periods of unusual lack of confidence. We further assume that εat is independent

of ut. This is for simplicity only – more generally, it could may be interesting to allow for

confidence to be correlated with the level or the conditional variance of zt.

Consider now the Bellman equation of the social planner problem

V (Y, a) = max
N

{
U (Y,N) + β min

µ∈[−a,a]
Eµ
[
V
(
ez̃N, ã

)]}
where tildes indicate random variables. In particular, the conditional distribution of z̃ is

given by (2.1) with µt equal to the superscript µ on the expectation operator. The transition

law of the exogenous state variable a is given by the last line in (2.2).

It is natural to conjecture that the value function is increasing in output. The ”worst

case” mean is then always µ = −a. Combining the first order condition for labor with the

envelope condition, we obtain

β = E−a
[
β
(
Z̃N

)−γ
Z̃

]
(2.3)

The constant marginal disutility of labor is equal to the marginal product of labor, weighted

by future marginal utility because labor is chosen one period in advance.

2.1 The effect of uncertainty on hours

With our special preferences and technology, optimal hours are independent of current

productivity (or output). Taking logarithms and using normality of the shocks, we can

write the decision rule for hours as

n = − (1/γ − 1)

(
a+

1

2
γσ2

u

)
(2.4)

The first term describes the effect of uncertainty on aggregate hours. Here uncertainty works

the same way whether it is ambiguity, as measured by a, or risk, as measured by the product

of the quantity of risk σ2
u and risk aversion γ.

As usual, an increase in uncertainty has wealth and substitution effects. Consider first
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an increase in risk. On the one hand, higher risk lowers the certainty equivalent of future

production, which, in the absence of ambiguity, is given by N exp(−1
2
γσ2

u). Other things

equal, the resulting wealth effect leads the planner to reduce consumption of leisure and

increase hiring. However, higher risk also lowers the risk adjusted return on labor. Other

things equal, the resulting substitution effect leads the planner to reduce hiring. The net

effect depends on the curvature in felicity from consumption, determined by γ. With a strong

enough substitution effect, an increase in risk lowers hiring.

Consider now an increase in ambiguity. When a increases, the planner acts as if expected

future productivity has declined. Mechanically,. an increase in ambiguity thus entails wealth

and substitution effects familiar from the analysis of news shocks. The interpretation of these

effects, however, is the same as in the risk case. On the one hand, higher ambiguity lowers

the certainty equivalent of future production, which, in the absence of risk, is given by

N exp (−at). On the other hand, higher ambiguity lowers the uncertainty-adjusted return

on labor. Again, with a strong enough substitution effect an increase in uncertainty lowers

hiring.

Given separable felicity and the iid dynamics of zt, inspection of the Bellman equation

shows that the value function depends on current output only through the utility of

consumption – the other terms depend only on the state variable at, not on current

productivity or past hours. It follows that the value function is increasing in output, verifying

our conjecture above. Below, we argue that the ”guess-and-verify” approach to finding the

worst case belief that we have used here to solve the planner problem is applicable much

more widely.

The complete dynamics of the model are then given by the productivity equation (2.1)

as well as

yt = zt + nt,

nt = − (1/γ − 1)

(
at +

1

2
γσ2

u

)
,

at = (1− ρa) ā+ ρaat−1 + εat ,

The economy is driven by productivity and ambiguity shocks. Productivity shocks tem-

porarily change output but have no effect on hours. In contrast, ambiguity shocks have

persistent effects on both hours and output.

With a strong enough substitution effect (1/γ > 1), a loss of confidence (an increase in

a) generates a recession. During that recession, productivity is not unusually low. Hours

are nevertheless below steady state: since the marginal product of labor is more uncertain,
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the planner finds it optimal not to make people work. Conversely, an unusual increase in

confidence – a drop of at below its long run mean – generates a boom in which employment

and output are unusually high, but productivity is not.

2.2 Decentralization

Suppose that agents have access to a set of contingent claims. Write qt (z̃, ã) for the date

t price of a claim that pays one unit of consumption at date t + 1 if (zt+1, at+1) = (z̃, ã) is

realized and denote the spot wage by wt. The agent’s date t budget constraint is

Ct +

∫
qt (z̃, ã) θt (z̃, ã) d (z̃, ã) = wtNt + θt−1 (zt, at) ,

where θt (z̃, ã) is the amount of claims purchased at t that pays off one unit of the consumption

good if (z̃, ã) is realized at t+ 1. Since aggregate labor is determined one period in advance,

this set of contingent claims completes the market – claims on (z̃, ã) can be used to form

any portfolio contingent on the aggregate state (Y, a).

Assume that there are time invariant functions for prices q (z̃, ã;Y, a) and w (Y, a) as well

as aggregate labor N (Y, a) that depend only on the aggregate state (Y, a). Assume further

that the agent knows those price functions. The Bellman equation is

W (θ, Y, a) = max
C,N,θ′(.)

{
U (C,N) + β min

µ∈[−a,a]
Eµ
[
W
(
θ′ (z̃, ã) , ez̃N (Y, a) , ã

)]}
w (Y, a)N + θ = C +

∫
q (z̃, ã;Y, a) θ′ (z̃, ã) d (z̃, ã)

Conjecture again that utility depends negatively on the state variable Y . The worst case

mean is then once more µ = −a and the maximization problem becomes standard.

In particular, prices are related to the agent’s marginal rates of substitution through Euler

equations. Letting fµ (z̃, ã|a) denote the conditional density of the exogenous variables (z, a)

implied by (2.1) and (2.2) with µt = µ, we have

w = χC (θ, Y, a)γ (2.5)

q (z̃, ã;Y, a) = βf−a (z̃, ã|a)

(
C
(
θ′ (z̃, ã) , ez̃N (Y, a) , ã

)
C (θ, Y, a)

)−γ
(2.6)

The wage is equal to the marginal rate of substitution of consumption for hours. State
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prices are equal to the marginal rate of substitutions of current for future consumption.

Importantly, state prices are based on the worst case conditional density f−a. This is how

ambiguity aversion contributes to asset premia and how it shapes firms’ decisions in the face

of uncertainty.

For simplicity, we consider two-period lived firms that hire workers only at date t and

sell output only at date t + 1. To pay the wage bill at date t, they issue contingent claims

which they subsequently pay back out of revenue at date t + 1. The profit maximization

problem is

max
N,θ(.)

∫
q (z̃, ã;Y, a) (ez̃N − θ (z̃, ã))d (z̃, ã)

s.t. wN =

∫
q (z̃, ã;Y, a) θ (z̃, ã) d (z̃, ã)

As usual, the financial policy of the firm is indeterminate. Substituting the constraint

into the objective, the first order condition with respect to labor equates the wage to the

marginal product of labor

w =

∫
q (z̃, ã;Y, a) ez̃d (z̃, ã) (2.7)

Since labor is chosen one period in advance, the marginal product of labor involves state

prices, which in turn reflect uncertainty perceived by agents. Substituting for prices from

(2.5)-(2.6), we find that the planner’s first order condition for labor (2.3) must hold in any

equilibrium.

From the first order conditions, wages and state prices can be solved out in closed form.

Let Qf (Y, a) =
∫
q (z̃, ã;Y, a) d (z̃, ã) denote the price of a riskless bond. We can then write

w (Y, a) = βY γ,

Qf (Y, a) = βY γ exp
(
a+ γσ2

u

)
,

q (z̃, ã;Y, a) = Qf (Y, a) f 0 (z̃, ã|a) exp

(
−1

2
σ2
u

(
a/σ2

u + γ
)2 −

(
a/σ2

u + γ
)(

z̃ − 1

2
σ2
u

))
,

(2.8)

where f 0 is the density o the exogenous variables (z̃, ã) if µt = 0.

With utility linear in hours, labor supply is perfectly elastic at a wage tied to current

output. Since output does not react to uncertainty shocks on impact, neither does the wage.

Uncertainty shocks are transmitted to the labor market because asset prices affect labor

demand. The bond price increases with both ambiguity and risk. Intuitively, either type of
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uncertainty encourages precautionary savings and thereby lowers the riskless interest rate

rf (Y, a) = − logQf (Y, a) = − log β − γ log Y − a− γσ2
u

The price of a claim on a particular state (z̃, ã) is equal to the riskless bond price multiplied

by an “uncertainty neutral” density. We have written the latter as the density for µt = 0

times an exponential term that collects uncertainty premia.

If agents do not care about either type of uncertainty (a = γ = 0), then uncertainty

premia are zero and the exponential term is one. More generally, the relative price of a

“bad” state (that is, lower productivity z̃) is higher when confidence is lower (or a is higher).

Intuitively, when confidence is lower, then agents value the insurance provided by claims

on bad states more highly. This change in relative prices also affects firms’ hiring decision.

Indeed, since firms can pay out more in good (high z̃) states, a loss of confidence that makes

claims on good states less valuable increases firms’ funding cost. Conversely, an increase in

confidence makes claims on good states more valuable; lower funding costs then induce more

hiring.

The functional form of the state price density is that of an affine pricing model with “time-

varying market prices of risk” (that is, time varying coefficients multipling the shocks). This

type of pricing model is widely used in empirical finance. Here time variation in confidence

drives the coefficient a/σ2
u + γ on the shock z̃ and thus permits a structural interpretation

of the functional form. A convenient feature of affine models is that conditional expected

returns on many interesting assets are linear functions of the state variables. Consider, for

example, a claim to consumption next period. Its price and excess return are

Qc (Y, a) = βE−a
[(
ez̃N (Y, a)

)1−γ
Y γ
]

= Qf (Y, a)N (Y, a) exp
(
−a− γσ2

u

)
re (z̃, Y, a) = log

(
ez̃N (Y, a)

)
− logQc (Y, a)− logQf (Y, a)

= z̃ + a+ γσ2
u

Long run average excess returns have an ambiguity and a risk component. Moreover, the

conditional expected excess return depends positively on a. In other words, a loss of

confidence not only generates a recession, but also increases the conditional premium on

the consumption claim.
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2.3 Bounding ambiguity by measured volatility

Consider now the connection between the true dynamics of log productivity z in (2.1) and

the agents’ set of beliefs. In our model, productivity consists of two components, the iid

shock u that agents view as risky, and the deterministic sequence µ that agents view as

ambiguous. In line with agents’ lack of knowledge about µ, we do not impose a particular

sequence as “the truth”. Instead, we restrict only the long run average and variability of µ,

and thereby also of productivity z. We then develop a bound on the process at that ensures

that the belief set is “small enough” relative to the variability in the data observed by agents.

For quantitative modeling, the bound imposes discipline on how much the process at can

vary relative to the volatility in the data measured by the modeler.

Consider first the long run behavior of µ. Let I denote the indicator function and let

Φ (.,m, s2) denote the cdf of a univariate normal distribution with mean m and variance s2.

We assume that the empirical distribution of µ converges to that of an iid normal stochastic

process with mean zero and variance σ2
µ. Formally, for any integers k, τ1, ..., τk and real

numbers µ̄1, ..., µ̄k,

lim
T→∞

1

T

T∑
t=1

I
({
µt+τj ≤ µ̄j; j = 1, .., k

})
=

k∏
j=1

Φ
(
µ̄j; 0, σ2

µ

)
.

For example, if we were to observe µ and record the frequency of the event {µt ≤ µ̄}
then that frequency would converge to Φ

(
µ̄, 0;σ2

µ

)
. For a two-dimensional example,

consider the frequency of the event {µt ≤ µ̄1, µt+τ ≤ µ̄2} – it is assumed to converge to

Φ
(
µ̄1, 0;σ2

µ

)
Φ
(
µ̄2, 0;σ2

µ

)
. Similarly, recording frequencies of any joint event that restricts

elements of µ spaced in time as described by the τjs always delivers in the long run the cdf

of and iid multivariate normal.distribution. At the same time, almost every draw from an

iid normal process with mean zero and variance σ2
µ would deliver a sequence µt that satisfies

the condition.

Our assumption on the long run empirical distribution of µ also has implications for

long run empirical distribution of log producitivity z. Indeed, given a true sequence µ that

satisfies the above condition, the law of large numbers says that, for almost every realization

of the shocks u, the empirical mean 1
T

∑
t zt converges to zero, the empirical variance 1

T

∑
t z

2
t

converges to σ2
z = σ2

µ + σ2
u, and the empirical autocovariances at all leads and lags converge

to zero. In other words, to an observer who sees a large sample, the data look iid with mean

zero and variance σ2
z regardless of the true sequence µ. If the observer tries to fit a stationary

statistical model, he recovers this iid process.

Ambiguity averse agents look at the data differently. Even though they know the limiting
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properties of µ and hence of z, when they make decisions at date t, they are concerned that

they do not know the current conditional mean µt needed to forecast zt+1. They understand

that statistical tools cannot help them learn µt in real time. They deal with their lack of

knowledge at date t by behaving as if they minimize over a set of forecasting rules (that is,

a set of one-step-ahead conditional probabilities) indexed by the interval [−at, at]. It makes

sense to assume that this interval should be smaller the less variable the data are (lower σ2
z)

and, in particular, the less variability in the data is attributed to ambiguity as opposed to

risk (lower σ2
µ).

We thus develop a bound on the process at, denoted amax, that is increasing in σ2
µ. The

basic idea is that even the boundary forecasts indexed by ±amax should be “good enough”

in the long run. To define “good enough”, we calculate the frequency with which one of

the boundary forecasting rules is the best forecasting rule in the interval [−amax, amax]. The

forecasting rule with mean amax is the best rule at date t if its mean amax − 1
2
σ2
u is closest

to the true conditional mean µt − 1
2
σ2
u, that is, if µt ≥ amax. Similarly, the rule −amax is the

best rule if µt ≤ −amax. We now require that the frequency with which µt falls outside the

interval [−amax, amax], thus making the boundary forecasts the best forecasts, converges in

the long run to a number α ∈ (0.1). Given our assumption on the long run behavior of µ

above, the bound is defined by

Φ
(
amax; 0, σ2

µ

)
= α/2

The number α determines the tightness of the bound. For example, α = 5% implies amax ≈
2σµ.

The bound amax restricts the variability in the worst case mean relative to measured

volatility in the data. Suppose the variance of the productivity is measured to be σ2
z . Denote

by ρ = σ2
µ/σ

2
z the share of the variability in the data that agents attribute to ambiguity. Then

with α = 5% we require at ≤ 2
√
ρσz. The bound is tighter if less of the variability in the data

is due to ambiguity. In the extreme case of ρ = 0, the process at must be identically equal

to zero – agents treat all variability in z as risk. In practice, the bound dictates parameter

restrictions on the law of motion for at. In a discrete time model, we cannot impose exactly

that at ∈ [0, 2
√
ρσz]. However, small enough volatility of εat in (2.2) ensures that those

conditions are virtually always satisfied – this is the approach we follow in our quantitative

work below.

It is interesting to compare how risk and ambiguity affect the long run behavior of business

cycles variables in our simple model. Consider, for example, the empirical mean and variance
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of output in a large sample

ȳ = −1

2
σ2
u − (1/γ − 1)

(
ā+

1

2
γσ2

u

)
σ̄2
y = σ2

z + (1/γ − 1)2 var (at)

Here we have used the law of large numbers for u together with our assumptions on µ, which

imply that the long run moments are the same for every possible sequence µ. The bound

puts discipline on the role of ambiguity in explaining business cycles. For example, suppose

that we assume ā > 3
√
var (at) and ā + 3

√
var (at) < 2

√
ρσz in order to keep a almost

always in the interval [0, 2
√
ρσz]. Together these conditions imply that var (at) < (ρ/9)σ2

z ,

which in turn bounds the share of σ̄2
y that can be contributed by time-varying ambiguity.

3 Ambiguous business cycles: a general framework

Uncertainty is represented by a period state space S. One element s ∈ S is realized every

period, and the history of states up to date t is denote st = (s0, ..., st).

3.1 Preferences

Preferences order uncertain streams of consumption C = (Ct)
∞
t=0, where Ct : St → <n and

n is the number of goods. Utility for a consumption process C = {Ct} is defined recursively

by

Ut
(
C; st

)
= u (Ct) + β min

p∈P(st)
Ep [Ut+1 (C; st, st+1)] , (3.1)

where P (st) is a set of probabilities on S.

Utility after history st is given by felicity from current consumption plus expected

continuation utility evaluated under a “worst case” belief. The worst case belief is drawn

from a set Pt (st) that may depend on the history st. The primitives of the model are the

felicity u, the discount factor β and the entire process of one-step-ahead belief sets Pt (st).

Expected utility obtains as a special case if all sets Pt (st) contain only one belief. More

generally, a nondegenerate set of beliefs captures the agent’s lack of confidence in probability

assessments; a larger set describes a less confident agent.

For our applications, we assume Markovian dynamics. In particular, we restrict belief

sets to depend only on the last state and write Pt (st). We also assume that the true law of

motion – from the perspective of an observer – is given by a transition probability p∗ (st).

The assumption here is that agents know that the dynamics are Markov, but they are not
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confident in what transition probabilities to assign. The true DGP is not relevant for decision

making, but it matters for characterizing the equilibrium dynamics.

3.2 Environment & equilibrium

We consider economies with many agents i ∈ I. Agent i’s preferences are of the form (3.1)

with primitives (βi, u
i, {P it (st)}). Given preferences, it is helpful to write the rest of the

economy in fairly general notation that many typical problems can be mapped into. Consider

a recursive competitive equilibrium that is described using a vector X of endogenous state

variables. Let Ai denote a vector of actions taken by agent i. Among those actions is the

choice of consumption – we write ci (Ai) for agent i′s consumption bundle implied when the

action is Ai. Finally, let Y denote a vector of endogenous variables not chosen by the agent

– this vector will typically include prices, but also variables such as government transfers

that are endogenous, but are neither part of the state space nor actions or prices.

The technology and market structure are summarized by a set of reduced form functions

or correspondences. A recursive competitive equilibrium consists of action and value

functions Ai and V i, respectively, for all agents i ∈ I, as well as a function describing

the other endogenous variables Y . We also write A for the collection of all actions (Ai)i∈I
and A−i for the collection of all actions except that of agent i. All functions are defined on

the state (X, s) and satisfy

W i (A,X, s; p) = ui
(
ci
(
Ai
))

+ βiE
p
[
V i(x′ (X,A, Y (X, s) , s, s′) , s′)

]
;i ∈ I (3.2)

Ai (X, s) = arg max
Ai∈Bi(Y (X,s),A−i,X,s)

min
p∈Pi(s)

W (A,X, s; p) i ∈ I (3.3)

V i (X, s) = min
p∈Pi(s)

W i (A (X, s) , X, s; p) (3.4)

0 = G (A(X, s), Y (X, s) , X, s) (3.5)

The first equation simply defines the agent’s objective in state (X, s) , while the second

and third equation provide the optimal policy and value. Here Bi is the agent’s budget set

correspondence and the function x′ describes the transition of the endogenous state variables.

The function G summarizes all other contemporaneous relationships such as market clearing

or the government budget constraint – there are enough equations in (3.5) to determine the

endogenous variables Y .
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3.3 Characterizing optimal actions & equilibrium dynamics

For every state (X, s), there is a measure p0i (X, s) that achieves the minimum for agent

i in (3.3). Since the minimization problem is linear in probabilities, we can replace P it by

its convex hull without changing the solution. The minimax theorem then implies that

we can exchange the order of minimization and maximization in the problem (3.3). It

follows that the optimal action Ai is the same as the optimal action if the agent held the

probabilistic belief p0i (X, s) to begin with. In other words, for every equilibrium of our

economy, there exists an economy with expected utility agents holding beliefs p0i that has

the same equilibrium.

The observational equivalence just described suggests the following guess-and-verify

procedure to compute an equilibrium with ambiguity aversion:

1. guess the worst case beliefs p0i

2. solve the model assuming that the agents have expected utility and beliefs p0i

3. compute the value functions V i

4. verify that the guesses p0i indeed achieves the minimum in (3.4) for every i.

Suppose we have found the optimal action functions A as well as the response of the

endogenous variables Y and hence the transition for the states X. We are interested in

stochastic properties of the equilibrium dynamics that can be compared to the data. We

characterize the dynamics in the standard way by calculating (for example or simulating)

moments of the economy under the true distribution of the exogenous shocks p∗. The only

unusual feature is that this true distribution need not coincide with the distribution p0i that

is used to compute optimal actions.

3.4 Shocks to confidence

We now specialize a process of belief sets Pt to capture random changes in confidence. For

simplicity, assume that there is a single exogenous process z that directly affects the economy,

for example productivity or a monetary policy shock. In addition to z, the exogenous state

s has a second component at that captures time variation in confidence. Suppose the true

dynamics of exogenous state s can be represented by an AR(1) process

zt+1 = ρzzt + εzt+1,

at+1 = (1− ρa) ā+ ρaat + εat+1
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where the shocks εz and εa are iid and normally distributed shock with mean zero and

variances σ2
z and σ2

a, respectively.

The component at is a tool to describe the evolution of the belief set Pt. In particular,

we assume that the agent knows the evolution of at, but that he is not sure whether the

conditional mean of zt+1 is really ρzzt. Instead, he allows for a range of intercepts. The set

Pt can thus be represented by the family of processes

zt+1 = ρzzt + µt + εzt+1,

µt ∈ [−at,−at + 2|at|]

at+1 = (1− ρa) ā+ ρaat + εat+1 (3.6)

If at is higher, then the agent is less confident about the mean.of zt+1 – his belief set is larger.

The worst case belief p0 is now described by a worst case intercept a0
t . Changes in ambiguity

parametrized by at change the worst case conditional mean ρzzt + a0
t and therefore have 1st

order effects on behavior.

As long as at > 0, the interval of intercepts contemplated by the agent is centered around

zero – it can equivalently be described by the condition µt ≤ |at|. In contrast, if at becomes

negative, then all intercepts are positive - the agent is thus optimistic relative to the truth.

In applications, it is thus useful to parametrize the dynamics such that a does not become

negative very often. The advantage of the present parametrization is that the lower bound,

which plays a special role in the computation, is guaranteed to have linear dynamics.

4 Computation in essentially linear economies

The computation and interpretation of equilibria is particularly simple if all dynamics is

approximately linear. We start from the assumption that the environment (given by Bi,

x′ ui and G) is such that, under expected utility and rational expectations, a first order

solution provides a satisfactory approximation to the equilibrium dynamics. Under rational

expectations, the innovations to at are news shocks that provide information about zt

one period ahead. In many applications, standard tools will reveal whether a first order

approximation is satisfactory.

It is now natural to look for an equilibrium such that the worst case intercepts a0i
t are all

linear in the state variables. If such an equilibrium exists, we call the economy essentially

linear. In an essentially linear economy, the choices A and other endogenous variables Y will

all be well approximated by linear functions of the state variables. The equilibrium dynamics

is thus described by a linear state space system with all shocks – including uncertainty
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shocks – driven by the (true) linear laws of motion. In many interesting economies, it is

straightforward to establish essential linearity. Consider, for example, a baseline stochastic

growth model with a representative agent who perceives ambiguity about productivity. The

worst case is that the mean of productivity innovations is always as low as possible, so

a0
t = −at.

More generally, to check whether some general economy is essentially linear, we specialize

the guess-and-verify procedure described above. Step 2 of the procedure consists of solving

the model using the guesses p0i that sets a0i
t = −at or a0i

t = at. In other words, the worst case

for agent i is always either the highest or lowest bound of the interval. Since these guesses

just implies a linear shift of the shock, this step can also be done by first order methods.

In particular, we propose to linearize the model around a “zero risk” steady state that sets

the variance of the shocks to a very small number while retaining the effect of ambiguity on

decisions. Properties of zero risk steady states are described in more detail below.

To implement step 3 of the procedure, let V 0i denote the value function for the problem

with expected utility and µt at the guessed worst case mean for agent i in (3.6). For example,

consider an agent with a0i
t = −at. For this agent, we verify the guess by checking whether

for any X,A, s = (z, a) and a′, the function

Ṽ (z′) := V 0(x′ (X,A, Y (X, s) , s, z′, a′) , z′, a′)

is strictly increasing. We do the opposite check for an agent with a0i
t = at. At this stage,

nonlinearity of the value function could be important. We thus compute the value function

using higher order approximations and form the function Ṽ accordingly.

In what follows, we first describe the dynamics and then the calculation of the zero risk

steady state.

4.1 Dynamics

Let xt denote the endogenous variables of interest. Posit a linear equilibrium law of motion:

xt = Axt−1 +Bst,

where st are the exogenous variables. For notational purposes, split the vector st into the

technology shock ẑt ≡ log zt, the mean distortion (or news) at and the rest of the exogenous

variables, s∗t .
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Posit another linear relation for the exogenous variables:

st =

 s∗t

ẑt

at

 = P

 s∗t−1

ẑt−1

at−1

+

 εt

εzt

εat



Ξt =

 εt

εzt

εat

 ∼ N (0,Σ)

Ξt denotes the innovations to the exogenous variables st. They are defined to be zero mean.

We follow the method of undetermined coefficients of Christiano (2002) to solving

a system of linear equations with rational expectations. Let the linearized equilibrium

conditions be restated in general as:

Ẽt[α0xt+1 + α1xt + α2xt−1 + β0st+1 + β1st] = 0 (4.1)

where α0, α1, α2, β0, β1 are constants determined by the equilibrium conditions. Importantly

for us,

Ẽt

 s∗t+1

ẑt+1

at+1

 = P

 s∗t

ẑt

at

+ Ẽt

 εt+1

εzt+1

εat+1



Ẽt

 εt+1

εzt+1

εat+1

 = 0

To reflect the time t information (news, or mean distortion) about ẑt+1, recall that

Ẽtẑt+1 = ρz ẑt − at

17



so the matrix P satisfies the restriction:

P =

 ρ 0 0

0 ρz −1

0 0 ρa



Ẽt

 s∗t+1

ẑt+1

at+1

 =

 ρ 0 0

0 ρz −1

0 0 ρa


 s∗t

ẑt

at

+ Ẽt

 εt+1

εzt+1

εat+1


where ρ is a diagonal matrix reflecting the autocorrelation structure of the elements in

s∗t .Notice that without the “news” part, the standard form for P is:

P =

 ρ 0 0

0 ρz 0

0 0 ρa


Substitute the posited policy rule into the linearized equilibrium conditions:

0 = Ẽt[α0(Axt +Bst+1) + α1 (Axt−1 +Bst) + α2xt−1 + β0 (Pst + Ξt+1) + β1st]

to get:

0 =
(
α0A

2 + α1A+ α2

)
xt−1 + (α0AB + α0BP + α1B + β0P + β1) st + (α0B + β0)ẼtΞt+1

0 = ẼtΞt+1

Thus, A is the matrix eigenvalue of matrix polynomial:

α(A) = α0A
2 + α1A+ α2 = 0

and B satisfies the system of linear equations:

F = (β0 + α0B)P + [β1 + (α0A+ α1)B] = 0

The solution to the model obtained so far is one in which the mean distortion at to the

process for zt+1 is realized.

With this solution in hand, look at the variables when the negative mean distortion is
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not realized at each period t. In the equilibrium defined above:

xt = Axt−1 +Bst (4.2)

st =

 s∗t

ẑt

at

 =

 ρ 0 0

0 ρz −1

0 0 ρa


 s∗t−1

ẑt−1

at−1

+ Ξt

but now we have:

xt = Axt−1 +Bst

st =

 s∗t

ẑt

at

 =

 ρ 0 0

0 ρz 0

0 0 ρa


 s∗t−1

ẑt−1

at−1

+

 εt

εzt

εat



st =

 ρ 0 0

0 ρz −1

0 0 ρa


 s∗t−1

zt−1

at−1

+

 0 0 0

0 0 1

0 0 0


 s∗t−1

zt−1

at−1

+ Ξt

st = P

 s∗t−1

ẑt−1

at−1

+ C

 s∗t−1

ẑt−1

at−1

+ Ξt, C ≡

 0 0 0

0 0 1

0 0 0


so:

xt = Axt−1 +Bst

xt = Axt−1 +BP

 s∗t−1

ẑt−1

at−1

+B

 0 0 0

0 0 1

0 0 0


 s∗t−1

ẑt−1

at−1

+BΞt

or in other words, for every j element in the vector xt, where the superscript j refers to the

jth row of the corresponding matrix, we have:

xjt = Ajxt−1 +BjPst−1 +BjΞt +Bj
zat−1 (4.3)

where the element Bj
z refers to the coefficient of the matrix B that reflects the response of

the element xjt to the realized state ẑt.

Notice that the evolution in (4.3) defines the equilibrium law of motion for our economy.

From the perspective of the economy in (4.2) it is interpreted as the response to an “unusual”

innovation to εzt whose value is not zero (on average) but rather at−1. However, conditional
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on this “innovation” and state of the economy xt the expectations are still governed by the

equation (4.1) where the expectation about zt+1 is:

Ẽtẑt+1 = ρz ẑt − at

4.2 Zero risk steady state

We now describe an approach to find the stochastic steady state of our model using the

linearized law of motion of the endogenous variables. Take the perceived law of motion:

ẑt+1 = ρz ẑt + εzt+1 − a

where a is the steady state level of at. We can summarize our procedure in the following

steps:

1. Find the deterministic ’distorted’ steady state in which the intercept is actually −a.

The steady state technology level is then

zo = exp

(
−a

1− ρz

)
Using zo, one can compute the deterministic ’distorted’ steady state, by analyzing the FOC

of these economy. Denote these steady state values of the m variables as a vector xo

xom×1

2. Linearize the model around this deterministic ’distorted’ steady state.

For example, in the above notations, look for matrices A,B that describe the evolution

of the variables as:

xt − xo = A(xt−1 − xo) +BP (st−1 − so) +B(Ξt − Ξo) (4.4)

st =

 s∗t

ẑt

at

 =

 ρ 0 0

0 ρz −1

0 0 ρa


 s∗t−1

ẑt−1

at−1

+ Ξt

where Ξt are the innovations to the stochastic shock processes. Let the size of this vector be

n× 1, where the first element refers to the innovation of the technology shock.

Notice for example that when innovations are equal to their expected values, set to zero,

i.e. that Ξo = 0n×1 and st−1 = so, the law of motion recovers that xt = xo.

So, in step 2 we need to find the matrices A and B. This is done by standard solution
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techniques of forward looking rational expectations model.

3. Correct for the fact that, from the perspective of the agent’s ex-ante beliefs, the average

innovation of the technology shock at time t is not equal to 0. The average innovation is

equal to a. Indeed:

Ẽt−1ẑt = ρz ẑt−1 − a

but the realized average log zt is

ẑt = ρz ẑt−1

Thus, from the perspective of the time t− 1 expectation:

ẑt = Ẽt−1ẑt + εt

εt = a

So, take the law of motion in (4.4) and impose that the first element of Ξt is equal to a,

while keeping the rest equal to 0 :

Ξ̂ =

[
a

0(n−1)×1

]

4. Find the steady state of the variables xt, given that the law of motion is:

xt − xo = A(xt−1 − xo) +BP (st−1 − so) +B(Ξ̂t − Ξo)

The steady state version for the exogenous variables is:

sSS − so = P (sSS − so) + (Ξ̂− Ξo)

where sSS are the steady state values of the exogenous variables under their true DGP. So:

sSS = so +

[
a

0(n−1)×1

]
(I − P )−1

Then solve for the rest of the endogenous variables by using:

xSS − xo = A(xSS − xo) +B(sSS − so)

where xSS are the steady state values of the variables under ambiguity. Thus, xSS can be

found as:

xSS = xo +B(sSS − so) (I − A)−1
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5 An estimated model with ambiguity

This section describes the model that we use to describe the US business cycles. The model

is based on a standard medium scale DSGE model along the lines of Christiano et al. (2005)

and Smets and Wouters (2007). The key difference in our model is that decision makers are

ambiguity-averse. We now describe the model structure and the shocks.

5.1 The model

5.1.1 The goods sector

The final output in this economy is produced by a representative final good firm that

combines a continuum of intermediate goods Yj,t in the unit interval by using the following

linear homogeneous technology:

Yt =

[∫ 1

0

Yj,t
1

λf,t dj

]λf,t
,

where λf,t is the markup of price over marginal cost for intermediate goods firms. The

markup shock evolves as:

log(λf,t/λf ) = ρλf log(λf,t−1/λf ) + λxf,t,

where λxf,t is i.i.d.N(0, σ2
λf

). Profit maximization and the zero profit condition leads to to

the following demand function for good j:

Yj,t = Yt

(
Pt
Pj,t

) λf,t
λf,t−1

(5.1)

The price of final goods is:

Pt =

[∫ 1

0

P
1

1−λf,t
j,t dj

](1−λf,t)

.

The intermediate good j is produced by a price-setting monopolist using the following

production function:

Yj,t = max{ztKα
j,t (εtLj,t)

1−α − Φε∗t , 0},

where Φ is a fixed cost and Kj,t and Lj,t denote the services of capital and homogeneous

labor employed by firm j. Φ is chosen so that steady state profits are equal to zero. The

intermediate goods firms are competive in factor markets, where they confront a rental rate,

Ptr
k
t , on capital services and a wage rate, Wt, on labor services.
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The variable, εt, is a shock to technology, which has a covariance stationary growth rate.

The variable, zt, is a stationary shock to technology. The fixed costs are modeled as growing

with the exogenous variable, ε∗t :

ε∗t = εtΥ
( α

1−α t)

with Υ > 1. If fixed costs were not growing, then they would eventually become irrelevant.

We specify that they grow at the same rate as ε∗t , which is the rate at which equilibrium

output grows. Note that the growth of ε∗t , i.e. µ∗ε,t ≡ ∆ log(ε∗t ), exceeds that of εt, i.e.

µε,t ≡ ∆ log(εt) :

µ∗ε,t = µε,tΥ
α

1−α .

This is because we have another source of growth in this economy, in addition to the

upward drift in εt. In particular, we posit a trend increase in the efficiency of investment. We

discuss this process as well as the time series representation for the the transitory technology

shock further below. The process for the stochastic growth rate is:

log(µ∗ε,t) = (1− ρµ∗ε ) log µ∗ε + ρµ∗ε log µ∗ε,t−1 + µx∗ε,t,

where µx∗ε,t is i.i.d.N(0, σ2
µ∗ε

).

We now describe the intermediate good firms pricing opportunities. Following Calvo

(1983), a fraction 1− ξp, randomly chosen, of these firms are permitted to reoptimize their

price every period. The other fraction ξp cannot reoptimize. Of these, a (randomly selected)

fraction (1− ιP ) must set Pit = π̄Pi,t−1 and a fraction ιP set Pit = πt−1Pi,t−1, where π̄ is

steady state inflation. The jth firm that has the opportunity to reoptimize its price does so

to maximize the expected present discounted value of the future profits:

Ep0

t

∞∑
s=0

(βξp)
s λt+s
λt

[
Pj,t+sYj,t+s −Wt+sLj,t+s − Pt+srkt+sKj,t+s

]
, (5.2)

subject to the demand function (5.1), where λt is the marginal utility of nominal income for

the representative household that owns the firm.

It should be noted that the expectation operator in these equations is, in the notation of

the general representation in section 3, the expectation under the worst-case belief p0. This

is because state prices in the economy reflect ambiguity. We will describe the household’s

problem further below.

We now describe the problem of the perfectly competitive ”employment agencies”. The

households specialized labor inputs are aggregated by these agencies into a homogeneous
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labor service according to the following function:

Lt =

[∫ 1

0

(li,t)
1
λw di

]λw
.

These employment agencies rent the homogeneous labor service Lt to the intermediate goods

firms at the wage rate Wt. In turn, these agencies pay the wage Wi,t to the household

supplying labor of type i. Similarly as for the final goods producers, the profit maximization

and the zero profit condition leads to to the following demand function for labor input of

type i:

li,t = Lt

(
Wt

Wi,t

) λw
λw−1

, (5.3)

We follow Erceg et al. (2000) and assume that the household is a monopolist in the supply

of labor by providing li,t and it sets its nominal wage rate, Wi,t. It does so optimally with

probability 1 − ξw and with probability ξw is does not reoptimize its wage. In case it does

not reoptimize, it sets the wage as:

Wi,t = πιwt−1π̄
1−ιwµz∗Wi,t−1,

where µz∗ is the steady state growth rate of the economy. When household i has the chance

to reoptimize, it does do by maximizing the expected present discounted value of future net

utility gains of working:

Ep0

t

∞∑
s=0t

∞∑
s=0

(βξw)s
[
λt+sWi,t+sli,t+s −

ψL
1 + σL

l1+σL
i,t+s

]
. (5.4)

subject to the demand function (5.3).

5.1.2 Households

The model described here is a special case of the general formulation of recursive multiple

priors of section 3. In particular, recall the recursive representation in (3.1), where preferences

were defined over uncertain streams of consumption C = (Ct)
∞
t=0, where Ct : St → <n and n

is the number of goods. In the model described here, there are 2 goods, the consumption of

the final good Yt and leisure. We then only have to define the per-period felicity function,

which for agent i is:

ui (ct) = log(Ct − θCt−1)− ψL
1 + σL

l1+σL
i,t . (5.5)
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Here, θ is an internal habit parameter, Ct denotes individual consumption of the final good

and li,t denotes a specialized labor service supplied by the household. Also, ψL > 0 is a

parameter.1

Utility follows a recursion similar to (3.1):

Ut
(
C; st

)
= ui (Ct, Ct−1) + β min

p∈P(st)
Ep [Ut+1 (C; st, st+1)] , (5.6)

Let the solution to the minimization problem in (5.6) be denoted by p0. This minimizing

p0 is the same object that appears in the expectation operator of equations (5.4) and (5.2).

The type of Knightian uncertainty we consider in this model is over the transitory

technology level. In section 5.1.1, we described the production side of the economy and

showed where technology enters this economy. Ambiguity here is reflected by the set of one-

step ahead conditional beliefs P (st) about the future transitory technology. We follow the

description in section 3 to describe the stochastic process. Specifically, we will assume that

there is time-varying ambiguity about the future technology. This time-variation is captured

by an exogenous component at. The true dynamics of the transitory productivity shock zt

can be represented by an AR(1) process:

log zt = ρz log zt−1 + σzz
x
t . (5.7)

The set Pt of one step conditional beliefs about future technology can then be represented

by the family of processes:

log zt+1 = ρz log zt + σzz
x
t+1 + µt (5.8)

µt ∈ [−at,−at + 2|at|] (5.9)

at+1 = (1− ρa) a+ ρaat + σaa
x
t+1 (5.10)

where the shocks zx and ax are standard normal iid shocks. As in Section 3, we assume that

the agent knows the evolution of at, but that he is not sure whether the conditional mean of

log zt+1 is really ρz log zt. Instead, the agent allows for a range of intercepts. If at is higher,

then the agent is less confident about the mean of log zt+1 – his belief set is larger.

In this model, it is easy to what is the worst-case scenario, i.e. what is the belief about µt

that solves the minimization problem in (5.6). In section 4 we described a general procedure

to find the worst-case belief. In the present model, the environment (given by B, x′ u and

G in the general formulation of section 3) is such that, under expected utility and rational

1Note that consumption is not indexed by i because we assume the existence of state contingent securities
which implies that in equilibrium consumption and asset holdings are identical across households.
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expectations, a first order solution provides a satisfactory approximation to the equilibrium

dynamics. In this environment, it is easy to check that the value function, under expected

utility, is increasing in zt. This monotonicity implies that the worst-case scenario belief that

solves the minimization problem in (5.6) is given by the lower bound of the set [−at,−at +

2|at|]. Intuitively, it is natural that the agents take into account that the worst case is always

that the mean of productivity innovations is as low as possible.

The laws of motion in (5.8) and (5.10) are linear. To maintain the interpretation that µt

is the worst-case scenario solution to the minimization problem, at should be positive. Thus,

it is useful not to have at become negative very often. We are then guided to parameterize

the ambiguity process in the following way. We compute the unconditional variance of the

process in (5.10) and insist that the mean level of ambiguity is high enough so that even a

large negative shock to at of m unconditional standard deviations away from the mean will

remain in the positive domain. We can write this constraint as:

a ≥ m
σa√

1− ρ2
a

(5.11)

The formula in (5.11) provides a constraint on our parameterization. If the constraint is

binding, then, for a given m, there is a fixed relationship on our parameterization between

a, σa and ρa. In that case, we are left with essentially choosing two out of three parameters.

The household accumulates capital subject to the following technology:

K̄t+1 = (1− δ)K̄t +

[
1− S

(
ζt

It
It−1

)]
It,

where ζt is a disturbance to the marginal efficiency of investment with mean unity, K̄t is the

beginning of period t physical stock of capital, and It is period t investment. The function S

reflects adjustment costs in investment. The function S is convex, with steady state values

of S = S ′ = 0, S ′′ > 0. The specific functional form for S(.) that we use is:

S

(
ζt

It
It−1

)
= exp

[√
S ′′

2

(
ζt

It
It−1

− 1

)]
+ exp

[
−
√
S ′′

2

(
ζt

It
It−1

− 1

)]
− 2

The marginal efficiency of investment follows the process:

log(ζt) = ρζ log(ζt−1) + ζxt ,

where ζxt is i.i.d.N(0, σ2
ζ ).

Households own the physical stock of capital and rent out capital services, Kt, to a
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competitive capital market at the rate Ptr̃
k
t , by selecting the capital utilization rate ut:

Kt = utK̄t,

Increased utilization requires increased maintenance costs in terms of investment goods per

unit of physical capital measured by the function a (ut) . The function a(.) is increasing and

convex, a (1) = 0 and ut is unity in the nonstochastic steady state. We assume that a′′ (u) =

ϑrk, where rk is the steady state value of the rental rate of capital. Then, a′′ (u) /a′ (u) = ϑ

is a parameter that controls the degree of convexity of utilization costs.

The ith household’s budget constraint is:

PtCt + Pt
It

µΥ,tΥt
+Bt = Bt−1Rt−1 + PtKt[r̃

k
t ut − a(ut)Υ

−t] +Wt,ilt,i − TtPt

where Bt are holdings of government bonds, Rt is the gross nominal interest rate and Tt is

net lump-sum taxes.

When we specify the budget constraint, we will assume that the cost, in consumption

units, of one unit of investment goods, is (ΥtµΥ,t)
−1
. Since the currency price of consumption

goods is Pt, the currency price of a unit of investment goods is therefore, Pt (ΥtµΥ,t)
−1
. The

stationary component of the relative price of investment follows the process:

log(µΥ,t/µΥ) = ρµΥ
log(µΥ,t−1/µΥ) + µxΥ,t,

where µxΥ,t is i.i.d.N(0, σ2
µΥ

).

5.1.3 The government

The market clearing condition for this economy is:

Ct +
It

µΥ,tΥt
+Gt = Y G

t

where Gt denotes government expenditures and Y G
t is our definition of measured GDP, i.e.

Y G
t ≡ Yt − a(ut)Υ

−tKt. We model government expenditures as Gt = gtε
∗
t , where gt is a

stationary stochastic process. This way of modeling Gt helps to ensure that the model has a

balanced growth path. The fiscal policy is Ricardian. The government finances Gt by issuing

short term bonds Bt and adjusting lump sum taxes Tt.The law of motion for gt is:

log(gt/g) = ρg log(gt−1/g) + gxt
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where gxt is.i.d.N(0, σ2
g).

The nominal interest rate Rt is set by a monetary policy authority according to the

following feedback rule:

Rt

R
=

(
Rt−1

R

)ρR [(πt
π

)aπ (Y G
t

Y ∗t

)ay ( Y G
t

µ∗zY
G
t−1

)agy]1−ρR

exp(εR.t),

where εR.t is a monetary policy shock i.i.d.N(0, σ2
εR

).

5.1.4 Model Solution

The model economy fluctuates along a stochastic growth path. Some variables are station-

ary: the nominal interest rates, the long-term interest rate, inflation and hours worked.

Consumption, real wages and output grow at the rate determined by ε∗t . The capital stock

and investment grow faster, due to increasing efficiency in the investment producing sector,

at a rate determined by ε∗tΥ
t, with Υ > 1. The solution of our model with ambiguity follows

the general steps described in section 4. The solution builds on the standard approach to

solve for a rational expectations equilibrium with the difference that we need to take into

account that the worst-case scenario expectations do not materialize on average ex-post.

Therefore, the solution involves the following procedure. First, we solve the model as a

rational expectations model in which expectations are correct on average. Here we follow

the standard approach of solving these type of models: we rewrite the model in terms of

stationary variables by detrending each variable using its specific trend growth rate. Then

we find the non-stochastic steady state for this detrended system and construct a log-linear

approximation around it. We then solve the resulting linear system of rational expectations

equations. With that law of motion in hand, we then correct for the fact that the true

dynamics of the productivity process follow the process in (5.7) in which µt = 0.

The model has 7 fundamental shocks:

[
zxt , µ

x,∗
ε,t , εR.t, g

x
t , µ

x
Υ,t, λ

x
f,t, ζ

x
t

]
and the ambiguity shock axt .

5.1.5 Estimation and Data

The linearity of the state space representation of the model and the assumed normality of

the shocks allow us to estimate the model using standard Bayesian methods as discussed

for example in An and Schorfheide (2007) and Smets and Wouters (2007). We estimate the
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posterior distribution of the structural parameters by combining the likelihood function with

prior information. The likelihood is based on the following vector of observable variables:

[
∆ log Y G

t ,∆ log It,∆ logCt, logLt, log πt, logRt,∆ logPI,t
]

where ∆ denotes the first difference operator. The vector of observables refers to data for US

on GDP growth rate, investment growth rate, consumption growth rate, real wage growth

rate, log of hours per capita, log of gross inflation rate, log of gross short term nominal

interest rate and price of investment growth rate. The sample period used in the estimation

is 1984Q1-2010Q1. In the state space representation we do not allow for a measurement

error on any of the observables.

We now discuss the priors on the structural parameters. The only parameter we calibrate

is the share of government expenditures in output which is set to match the observed

empirical ratio of 0.22. The rest of the structural parameters are estimated. The priors on

the parameters not related to ambiguity and thus already present in the standard medium

scale DSGE are broadly in line with those adopted in previous studies (e.g. Justiniano et al.

(2011), Christiano et al. (2010b)). The prior for each of the autocorrelation parameter of

the shock processes is a Beta distribution with a mean of 0.5 and a standard deviation of

0.15. The prior distribution for the standard deviation of the 7 fundamental shocks is an

Inverse Gamma with a mean of 0.01 and a standard deviation of 0.01.

Regarding the choice over the ambiguity parameters, recall the discussion in 5.1.2 and

in 2.3. There are two constraints on the process for at that come out of those arguments.

One is that at should not be negative too often which then implies the constraint in (5.11).

The second is that the upper bound on the amount of ambiguity is related to how much

variability is there in the zt process. In section 2.3 we argued that this upper bound is equal

to 2
√
ρσz, where ρ ∈ [0, 1] is the share of the variability in the data that agents attribute to

ambiguity. When ρ = 1 we obtain the largest upper bound, i.e. at ≤ 2σz. Then, a similar

argument as for the lower bound in (5.11) leads us to consider a process for at such that

a realization which is higher by m unconditional standard deviations than the mean is still

below this upper bound:

a+m
σa√

1− ρ2
a

≤ 2σz (5.12)

In preliminary estimations of the model, we find that the constraint in (5.11) between the

amount of unconditional volatility and mean ambiguity is binding.2 When that constraint

2More precisely, if the three parameters characterizing ambiguity are separately estimated we find that the
implied unconditional volatility of the at process is so large that it implies very frequent negative realizations
to at. Additionally there are further issues of identification: if we do not fix other structural parameters, such
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holds with equality it means that we can estimate two parameters out of the three: a, σa

and ρa. Notice also that in that case, the constraint in (5.12) implies that

a ≤ σz. (5.13)

For computational reasons, we choose to work with the following scaling between the mean

amount of ambiguity and the standard deviation of the technology shock:

a = nσz (5.14)

where (5.13) implies that n ∈ [0, 1]. Given this scaling, the binding constraint in (5.11)

implies that:

σa = nσz

√
1− ρ2

a

m

We fix m = 3 so that a negative shock of three unconditional standard deviations is still in

the positive domain and a positive shock of three unconditional standard deviations will still

be below the upper bound of ambiguity given by 2σz. So, the structural parameters to be

estimated are n and ρa.

Alternatively, instead of the scaling in (5.14), we could estimate directly the parameters

ρa and σa. The mean ambiguity would then be given by the binding constraint in (5.11). We

find that the results are very robust to this choice. An advantage of the scaling in (5.14) is

that it shows a direct link between how much ambiguity about the mean innovation σzz
x
t

and the standard deviation of that innovation. Another advantage is that the parameter n

belongs to the unit interval which is computationally convenient.

In the benchmark model, the prior on the scaling parameter n is a Beta distribution

with mean 0.5 and standard deviation equal to 0.25. The prior is loose and it allows a wide

range of plausible values. The prior on ρa follows the pattern of the other autocorrelation

coefficients and is a Beta distribution with a mean of 0.5 and a standard deviation of 0.15.

The prior and posterior distributions are described in Table 2. The posterior estimates

of our structural parameters that are unrelated to ambiguity are in line with previous

estimations of such medium scale DSGE models (Del Negro et al. (2007), Smets and Wouters

(2007), Justiniano et al. (2011), Christiano et al. (2010b)). These parameters imply that

there are significant ‘frictions’ in our model: price and wage stickiness, investment adjustment

costs and internal habit formation are all substantial. The estimated policy rule is inertial

and responds strongly to inflation but also to output gap and output growth. Given that

as β, we can easily run into identification problems of a. This is a further reason to impose a relationship
between the ambiguity parameters.
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these parameters have been extensively analyzed in the literature, we now turn attention to

the role of ambiguity in our estimated model.

5.2 Results

We evaluate the importance of ambiguity in our model along two dimensions: the steady

state effect of ambiguity and its role in business cycle fluctuations. We will argue that

ambiguity plays an important part along both of these dimensions.

5.2.1 Steady state

The posterior mode of the structural parameters of ambiguity implies that the mean level of

ambiguity is

a = nσz = 0.963× 0.0045 = 0.00435

which means that the ambiguity averse agent is on average concerned about a mean one-step

ahead future technology level that is 0.435% lower than the true technology, normalized to

1. In the long run, the agent expects the technology level to be z∗, which solves:

log z∗ = ρz log z∗ − a.

For the estimated ρz = 0.955, we get that z∗ = 0.903. Thus, the ambiguity-averse agent

expects under his worst-case scenario evaluations the long run mean technology to be

approximately 9% lower than the true mean. Based on these estimates and using (5.11) we

can directly find that the standard deviation of the innovations to ambiguity is σa = 0.000405.

Our interpretation of the reason why we find a relatively large a is the following: the

estimation prefers to have a large σa because the ambiguity shock provides a channel in the

model that delivers dynamics that seem to be favored by the data. Indeed, as detailed in the

next section, the ambiguity shocks generate comovement between variables that enter in the

observation equation. This is a feature that is strongly in the data and is not easily captured

by other shocks. Given the large role that the fit of the data places on the ambiguity shock,

the implied estimated σa is relatively large. Because of the constraint on the size of the

mean ambiguity in (5.11), this results also in a large required steady state ambiguity. Thus,

given also the estimated σz, the posterior mode for n is relatively large. The picture that

comes out of these estimates is that ambiguity is large in the steady state, it is volatile and

persistent.

The estimated amount of ambiguity has substantial effects on the steady state of

endogenous variables. To describe these effects we perform the following calculations. We fix
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all the estimated parameters of the model but change the estimated standard deviation of

the transitory technology shock, σz, from its estimated value of σz = 0.0045 to being equal to

0. When σz = 0, then the level of ambiguity a is also equal to 0. By reporting the difference

between the steady states with σz = σz > 0 and with σz = 0 we calculate the effect on steady

states of fluctuations in transitory technology that goes through the estimated amount of

ambiguity. In Table 1 we present the net percent difference of some variables of interest

between the two cases, i.e. for a variable X we report 100[XSS,(σz=σz)/XSS,(σz=0)− 1], where

XSS,(σz=σz) and XSS,(σz=0) are the steady states of variable X under σz = σz and respectively

σz = 0.3

Table 1: Steady state percent difference from zero fluctuations

Variable Welfare Output Capital Consumption Hours Nom.Rate

-13.1 -15 -14 -16.4 -14.8 -42.5

As evident from Table 1, the effect of fluctuations in the transitory technology shock

that goes through ambiguity is very substantial. Output, capital, consumption, hours

are all significantly smaller when σz = σz. The nominal interest rate is smaller by 42%,

which corresponds to the quarterly steady state interest rate being lower by 73 basis points.

Importantly, the welfare cost of fluctuations in this economy is also very large, of about

13% of steady state consumption. These effects are much larger than what it is implied

by the standard analysis featuring only risk. By standard analysis we mean the strategy of

shutting down all the other shocks except the transitory technology and computing a second

order approximation of the model in which there is no ambiguity but σz = σz. For such

a calculation, we find that the welfare cost of business cycle fluctuations is around 0.01%

of steady state consumption. The effects on the steady state values of the other variables

reported in Table 1 is negligible. This latter result is consistent with the conclusions of the

literature on the effect of business cycle fluctuations and risk.

5.2.2 Business cycle fluctuations

In this section we analyze the role of time-varying ambiguity in generating business cycles.

We highlight the role of ambiguity by discussing three main points: a theoretical variance

decomposition of variables; a historical variance decomposition based on the smoothed shocks

and impulse responses experiments.

3Note that for welfare, we report the difference between WelfSS,(σz=σz) and WelfSS,(σz=0) in terms of
steady state consumption under σz = 0.
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Variance decomposition Table 3 reports the theoretical variance decomposition of

several variables of interest. For each structural shock we compute the share of the total

variation in the corresponding variable that is accounted by that shock at two horizons:

one is at the business cycle frequency which incorporates periodic components with cycles

between 6 and 32 quarters, as in Stock and Watson (1999). The second is at a long-run

horizon which is the theoretical variance decomposition obtained by solving the dynamic

Lyapunov equation characterizing the law of motion of the model. These two shares are

reported in the first two rows of Table 3. In the third row, we also report for comparison

the variance decomposition in an estimated model without ambiguity.

The main message of this exercise is that ambiguity shocks can be a very influential factor

in explaining the variance of key economic variables. At business cycle frequency this shock

accounts for about 27% of GDP variability and it simultaneously explains a large share of real

variables such as consumption (52%), investment (14%), hours (31%) and less for inflation

(2%) and the nominal interest rate (7%). The long-run theoretical decomposition implies

that the shock is even more important. It explains about 55% of GDP variability and it is

a very significant driver of the rest of the variables: consumption (62%), investment (51%),

hours (52%), inflation (29%) and the nominal interest rate (38%). Based on these two sets of

numbers we can conclude that the ambiguity shock is an important driver of business cycle

fluctuations while also having a low-frequency component that magnifies its role in the total

variance decomposition. The simultaneous large shares of variation explained by ambiguity

suggest that time-variation in the confidence of the agents about transitory technology shocks

can be a unified source of macroeconomic variability.

For comparison, we can analyze the estimated model without ambiguity. The business

cycle frequency variance decomposition for a model that sets the level of ambiguity to zero,

i.e. n = 0, is reported in the third row of Table 3. There the largest share of GDP variability

is explained by the marginal efficiency of investment shock, confirming the results of many

recent studies, such as Christiano et al. (2010b) and Justiniano et al. (2011). Introducing

time-varying ambiguity reduces the importance of the other shocks, except for the transitory

technology shock zt, in explaining the decomposition of the level of observed variables. The

reduction in effects are especially strong for the marginal efficiency of investment and growth

rate shocks. With ambiguity, the shock zt becomes more important. The reason is that

ambiguity enters in the model indirectly through the variance of σz. Thus, with ambiguity

the estimated variance of zt affects the likelihood evaluation through two channels: one

direct, through the shock zt, and one indirect through the variance of the shock at.
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Impulse response We now turn to analyzing the impulse responses for the ambiguity

shock in the estimated model. As suggested already in the discussion, an increase in

ambiguity generates a recession, in which hours worked, consumption and investment fall.

The fact that this shock predicts comovement between this variables is an important feature

that helps explain why the estimation prefers in the likelihood maximization such a shock.

Figure 3 plots the responses to a one standard deviation increase in ambiguity for the

estimated model. On top of the mentioned comovement, the model also predicts a fall

in the price of capital, a fall in the real interest rate and a countercyclical excess return.

We briefly explain these results. The main intuition in understanding the effect of this

shock is to relate it to its interpretation of a news shock. An increase in ambiguity makes the

agent act under a more cautious forecast of the future technology. From an outside observer

that analyzes the agent’s behavior, it seems that this agent acts under some negative news

about future productivity. This negative news interpretation of the increase in ambiguity

helps explain the mechanics and economics of the impulse response. As described in detail

in Christiano et al. (2008), Christiano et al. (2010a), in a rational expectations model, a

negative news about future productivity can produce a significant bust in real economy

while simultaneously generating a fall in the price of capital. This result is reflected in our

impulse response. In our model, the negative news is on average not materialized, because

nothing changed in the true process for technology, as shown in the first panel of Figure

3. However, because of the persistent effect of ambiguity, the economy continues to go

through a prolonged recession. The ex-post excess return, defined as the difference between

the realized return on capital and the risk-free rate, is positive following the period of the

initial increase in ambiguity. The ex-ante excess return is always equal to zero, as we solve a

linearized model. The explanation for the countercyclical excess returns is that the negative

expectation about future productivity does not materialize, so ex-post, capital pays more.

The ex-post excess return is a rational uncertainty premium that ambiguity-averse agents

require to invest in the uncertain asset.

Historical shock decomposition We conclude the description of the role of ambiguity

shocks in business cycle fluctuations by section by discussing the historical variance decom-

position and the smoothed shocks that result from the estimated model. In Figure 1 we plot

the smoothed ambiguity shock, as a deviation from its steady state value. The figure first

shows that ambiguity is very persistent. After an initial increase around 1991, which also

corresponds to an economic downturn, the level of ambiguity was low and declining during

the 90’s, reaching its lowest values around 2000. It then increases back to levels close to

steady state until 2005. Following a few years of relatively small upward deviations from its
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mean, ambiguity spikes starting in 2008. Ambiguity rapidly increases, so that throughout

2008 it doubles over each quarter. Ambiguity reaches its peak in 2008Q4 when it is 8 times

larger than its 2008Q1 value. The figure shows a dotted vertical line at 2008Q3, which

corresponds to the Lehman Brothers bankruptcy. Our model interprets the period following

2008Q1 as one in which ambiguity about future productivity has increased dramatically.

Based on these smoothed path of ambiguity shocks we can now calculate what the model

implies for the historical evolution of endogenous variables. In Figure 2 we compare the

observed data with the hypothetical historical evolution for the growth rate of output,

consumption, investment and the level of hours worked when the ambiguity shock is the

only shock active in the model economy. The ambiguity shock implies a path for variables

that come close to matching the data, especially for output, consumption and hours. The

model implied path of investment is less volatile but the correlation with the observed data

is still significantly large. It is interesting that the ambiguity shock helps explain some of the

business cycle frequency of these variables but also the low-frequency component as present

in hours worked.4

The ambiguity shock generates the three large recessions observed in this sample. Indeed,

if we analyze the smoothed path of the shock in figure 2, the time-varying ambiguity helps

explain the recession of the 1991, the large growth of the 1990’s (as a period of low ambiguity),

and then the recession of 2001. Given that the estimated ambiguity still continues to rise

through 2005, the model misses by predicting a more prolonged recession than in the data,

where output picks up quickly. The rise in ambiguity in 2008 predicts in the model that

output, investment and consumption fall. The model matches the fall in consumption, but

fails to generate a large fall in investment. It is important to highlight that the ambiguity

shock implies that in the model consumption and investment comove. Indeed, in the

historical decomposition, recessions are times when both of these variables fall. This is an

important effect because standard shocks that have been recently found to be quantitatively

important, such as the marginal efficiency of investment or intertemporal preference shocks

imply a weak, and most often a negative comovement between these two components.

Overall, we draw the conclusion that an increase in Knightian uncertainty (ambiguity)

generates in our estimated model a recession, in which consumption, investment and price of

capital fall, while producing countercyclical ex-post excess returns. Given these dynamics,

we believe that time-varying ambiguity can be an important source of observed business

cycle dynamics.

4Usually the low-frequency movement in hours worked is attributed to exogenous labor supply shocks,
corresponding to shocks to ψL in our model. See for example Justiniano et al. (2011).
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Figure 1: Smoothed ambiguity shock
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Figure 2: Historical shock decomposition
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Table 2: Priors and Posteriors for structural parameters

Parameter Description Prior Posterior

Typea Mean St.dev Mode [ .5 , .95]b

α Capital share B 0.4 0.02 0.322 0.291 0.353
δ Depreciation B 0.025 0.002 0.0237 0.0206 0.0279
100(β−1 − 1) Discount factor G 0.3 0.05 0.353 0.2586 0.4728
100(µ∗ε − 1) Growth rate N 0.4 0.1 0.5 0.4 0.6
100(µΥ − 1) Price of investment growth rate N 0.4 0.1 0.46 0.43 0.49
100(π̄ − 1) Net inflation N 0.6 0.2 0.85 0.66 1.17
ξp Calvo prices B 0.5 0.1 0.743 0.681 0.841
ξw Calvo wages B 0.5 0.1 0.938 0.912 0.953
S
′′

Investment adjustment cost G 10 5 13.92 6.157 27.962
ϑ Capacity utilization G 2 1 1.959 0.433 4.279
aπ Taylor rule inflation N 1.7 0.3 2.09 1.771 2.473
ay Taylor rule output N 0.15 0.05 0.059 0.013 0.188
agy Taylor rule output growth N 0.15 0.05 0.209 0.116 0.294
ρR Interest rate smoothing B 0.5 0.15 0.808 0.751 0.842
λf − 1 SS price markup N 0.2 0.05 0.22 0.134 0.314
λw − 1 SS wage markup N 0.2 0.05 0.135 0.069 0.22
θ Internal habit B 0.5 0.1 0.661 0.535 0.729
σL Curvature on disutility of labor G 2 1 1.886 1.64 2.288
n Level ambiguity scale parameter B 0.5 0.25 0.963 0.827 0.999
ρz Transitory technology B 0.5 0.15 0.955 0.928 0.974
ρµ∗ε Persistent technology B 0.3 0.15 0.132 0.014 0.509
ρζ Marginal efficiency of investment B 0.5 0.15 0.494 0.351 0.722
ρλf Price mark-up B 0.5 0.15 0.907 0.62 0.961
ρg Government spending B 0.5 0.15 0.954 0.923 0.977
ρµΥ

Price of investment B 0.5 0.15 0.957 0.929 0.983
ρa Level Ambiguity B 0.5 0.15 0.96 0.936 0.981
σz Transitory technology IG 0.01 0.01 0.0045 0.0041 0.0058
σµ∗ε Persistent technology IG 0.01 0.01 0.0044 0.0029 0.0064
σζ Marginal efficiency of investment IG 0.01 0.01 0.0183 0.016 0.0231
σλf Price mark-up IG 0.005 0.01 0.0102 0.007 0.033
σg Government spending IG 0.01 0.01 0.0195 0.017 0.0236
σµΥ

Price of investment IG 0.01 0.01 0.003 0.0026 0.0034
σεR Monetary policy shock IG 0.005 0.01 0.0015 0.0013 0.0017

a B refers to the Beta distribution, N to the Normal distribution, G to the Gamma distribution, and IG

to the Inverse-gamma distribution.
b Posterior percentiles obtained from 2 chains of 200,000 draws generated using a Random walk Metropolis

algorithm. We discard the initial 50,000 draws and retain one out of every 5 subsequent draws.
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Table 3: Theoretical variance decomposition

Shock\Variable Output Cons. Invest. Hours Inflation Int. rate

TFP Ambiguity (at) 27.2 52.1 14.4 31.1 2 7.4
(55.4) (62.7) (51.4) (52.1) (29.6) (38.5)
[-] [-] [-] [-] [-] [-]

Transitory technology (zt) 12.1 13.5 9.6 2.5 23.8 15.9
(5.5) (5) (5.7) (6.5) (15.2) (10.5)
[4.1] [7.3] [3.1] [3.1] [17.2] [15.4]

Persistent technology (µ∗ε,t) 5.9 5.7 5.3 10.4 5.1 1.9
(8.1) (7.1) (8.4) (9.3) (7.7) (6.7)
[18.8] [37.4] [12.8] [29.8] [14.2] [5.9]

Government spending (gt) 3.4 2.1 0.22 3.3 0.75 1.4
(0.6) (0.3) (0.1) (0.8) (0.5) (0.8)
[4.8] [4.1] [0.3] [3.9] [0.3] [0.7]

Price mark-up (λf,t) 13.1 12.5 13.3 14.4 61.6 46.8
(8.4) (8.6) (8.4) (8.9) (32.1) (18.9)
[16.2] [27.2] [14.2] [15.2] [65.8] [58.2]

Monetary policy (εR,t) 3.6 5.7 2.3 4.1 1 13.1
(1.7) (1.8) (1.7) (1.8) (1.2) (6.3)
[4.1] [8.8] [2.1] [4] [0.3] [11.4]

Price of investment (µΥ,t) 1.7 0.5 2.3 1.6 0.3 0.7
(5.1) (4.2) (6.1) (5) (3.3) (4.4)
[2.2] [1.3] [2.2] [1.8] [0.1] [0.4]

Efficiency of investment (ζt) 32.8 7.6 52.5 32.3 5.3 12.6
(15) (10.1) (18) (15.4) (10.3) (13.9)
[49.6] [13.8] [65.1] [42.1] [2] [7.7]

Note: For each variable, the first two rows of numbers refer to the variance decomposition
in the estimated model with ambiguity. The first row is the business cycle frequency and
the second row is the long-run decomposition. The third row, in squared brackets, refers to
the business cycle frequency decomposition in the estimated model without ambiguity.
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Figure 3: Impulse response: ambiguity
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