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The aggregation of private information and the dynamics of liquidity supply and demand are closely

intertwined in financial markets. In dealer markets, informed and uninformed investors trade via

market orders and, thus, take liquidity, while dealers provide liquidity and try to extract information

from the arriving order flow (as in Kyle (1985) and Glosten and Milgrom (1985)). However, in limit

order markets — the dominant form of securities market organization today — the relation between

who has information and who is trying to learn it and who supplies and demands liquidity is not

well understood theoretically.1 Recent empirical research highlights the role of informed traders

not only as liquidity takers but also as liquidity suppliers. O’Hara (2015) argues that fast informed

traders use market and limit orders interchangeably and often prefer limit orders to marketable

orders. Fleming, Mizrach, and Nguyen (2017) and Brogaard, Hendershott, and Riordan (2016) find

that limit orders play a significant empirical role in price discovery.2

Our paper presents the first rational expectations model of a dynamic limit order market with

asymmetric information and history-dependent Bayesian learning. In particular, learning is not

constrained to be Markovian. The model represents a trading day with market opening and closing

effects. Our model lets us investigate the information content of different types of market and limit

orders, the dynamics of who provides and demands liquidity, and the non-Markovian information

content of the trading history. In addition, we study how changes in the amount of adverse selection

— in terms of both asset-value volatility and the arrival probability of informed investors — affect

equilibrium trading strategies, liquidity, price discovery, and welfare. We have three main results:

• Increased adverse selection does not always worsen market liquidity as in Kyle (1985). Liquid-

ity can potentially improve if informed traders with better information trade more aggressively

by submitting limit-orders at the inside quotes rather than using market orders.

1See Jain (2005) for a discussion of the prevalence of limit order markets. See Parlour and Seppi (2008) for a
survey of theoretical models of limit order markets. See Rindi (2008) for a model of informed traders as liquidity
providers.

2Gencay, Mahmoodzadeh, Rojcek, and Tseng (2016) investigate brief episodes of high-intensity/extreme behavior
of quotation process in the U.S. equity market (bursts in liquidity provision that happen several hundreds of time
a day for actively traded stocks) and find that liquidity suppliers during these bursts significantly impact prices by
posting limit orders.
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• The relation between limit and market orders and their information content depends on the

size of private information shocks relative to the tick size. Indeed, the information content of

orders can even be opposite the order direction and aggressiveness.

• The learning dynamics are non-Markovian in that the order history has information in addi-

tion to the current state of the limit order book. In particular, the incremental information

content of arriving limit and market orders is history-dependent.

Dynamic limit order markets with uninformed investors are studied in a large literature. This

includes Foucault (1999), Parlour (1998), Foucault, Kadan, and Kandel (2005), and Goettler,

Parlour, and Rajan (2005). There is some previous theoretical research that allows informed traders

to supply liquidity. Kumar and Seppi (1994) is a static model in which optimizing informed and

uninformed investors use profiles of multiple limit and market orders to trade. Kaniel and Liu

(2006) extend the Glosten and Milgrom (1985) dealership market to allow informed traders to post

limit orders. Aı̈t-Sahalia and Saglam (2013) also allow informed traders to post limit orders, but

they do not allow them to choose between limit and market orders. Moreover, the limit orders

posted by their informed traders are always at the best bid and ask prices. Goettler, Parlour,

and Rajan (2009) allow informed and uninformed traders to post limit or market orders, but their

model is stationary and assumes Markovian learning. Roşu (2016b) studies a steady-state limit

order market equilibrium in continuous-time with Markovian learning and additional information-

processing restrictions. These last two papers are closest to ours. Our model differs from them

in two ways: First, they assume Markovian learning in order to study dynamic trading strategies

with order cancellation, whereas we simplify the strategy space (by not allowing dynamic order

cancellations and submissions) in order to investigate non-Markovian learning (i.e., our model has a

larger state space). Second, we model a non-stationary trading day with opening and closing effects

and history-dependent Bayesian learning. Market opens and closes are important daily events in

the dynamics of liquidity in financial markets. Bloomfield, O’Hara, and Saar (2005) show in an

experimental asset market setting that informed traders sometimes provide more liquidity than

uninformed traders. Our model provides equilibrium examples of liquidity provision by informed

investors.
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A growing literature investigates the relation between information and trading speed (e.g., Biais,

Foucault, and Moinas (2015); Foucault, Hombert, and Roşu (2016); and Roşu (2016a)). However,

these models assume Kyle or Glosten-Milgrom market structures and, thus, cannot consider the

roles of informed and uninformed traders as endogenous liquidity providers and demanders. We

argue that understanding price discovery dynamics in limit order markets is an essential precursor

to understanding speedbumps and cross-market competition given the real-world prevalence of limit

order markets.

1 Model

We consider a limit order market in which a risky asset is traded at five times tj ∈ {t1, t2, t3, t4, t5}

over a trading day. The fundamental value of the asset after time t5 at the end of the day is

ṽ = v0 + ∆ =


v̄ = v0 + δ with Pr(v̄) = 1

3

v0 with Pr(v0) = 1
3

v
¯

= v0 − δ with Pr(v
¯
) = 1

3

(1)

where v0 is the ex ante expected asset value, and ∆ is a symmetrically distributed value shock. The

limit order market allows for trading through two types of orders: Limit orders are price-contingent

orders that are collected in a limit order book. Market orders are executed immediately at the best

available price in the limit order book. The limit order book has a price grid with four prices,

Pi ∈ {A2, A1, B1, B2}, two each on the ask and bid sides of the market. The tick size is equal to

κ > 0, and the ask prices are A1 = v0 + κ
2 , A2 = v0 + κ, ; and by symmetry the bid prices are

B1 = v0 − κ
2 , B2 = v0 − κ. Order execution in the limit order book follows time and price priority.

Investors arrive sequentially over time to trade in the market. At each time tj one investor

arrives. Investors are risk-neutral and asymmetrically informed. A trader is informed with prob-

ability α and uninformed with probability 1−α. Informed investors know the realized value shock

∆ perfectly. Uninformed investors do not know ∆, but they use Bayes’ Rule and their knowledge

of the equilibrium to learn about ∆ from the observable market dynamics over time. An investor
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arriving at time tj may also have a personal private-value trading motive, which — we assume

for tractability — causes them to adjust their valuation of v0 to βtjv0 where the factor βtj may

be greater than or less than 1. Non-informational private-value motives include preference shocks,

hedging needs, and taxation. The absence of a non-informational trading motive would lead to the

Milgrom and Stokey (1982) no-trade result. The factor βtj at time tj is drawn from a truncated

normal distribution, Tr[N (µ, σ2)], with support over the interval [0, 2]. The mean is µ = 1, which

corresponds to a neutral private valuation. Traders with neutral valuations tend to provide liquid-

ity symmetrically on both the buy and sell sides of the market, while traders with extreme private

valuations provide one-sided liquidity or actively take liquidity. The parameter σ determines the

dispersion of a trader’s private-value factor βtj , as shown in Figure 1, and, thus, the probability of

large private gains-from-trade due to extreme investor private valuations.

The sequence of arriving investors is independently and identically distributed in terms of

whether they are informed or uninformed and in terms of their individual private-value factors

βtj . In one specification of our model, only uninformed investors have private valuations, while

in a second richer specification both informed and uninformed investors have private valuations.

A generic informed investor is denoted as I, where we denote the informed investor as Iv̄ if the

value shock is positive (∆ = δ), as Iv
¯

if the shock is negative (∆ = −δ), and as Iv0 if the shock is

zero (∆ = 0). Informed investors arriving at different times during the day all have the identical

asset-value information (i.e., there is only one realized ∆). Uninformed investors are denoted as U .

An investor arriving at time tj can take one of seven possible actions xtj : One possibility is

to submit a buy or sell market order MOAi,tj or MOBi,tj to buy or sell immediately at the best

available ask or bid respectively in the limit order book at time tj . A subscript i = 1 indicates that

the best quote at time tj is at the inside quote A1 or B1, and i = 2 means the best quote is at the

outside quote. Alternatively, the investor can submit one of four possible limit orders LOAi,tj and

LOBi,tj on the ask or bid side of the book, respectively. A subscript i = 1 denotes an aggressive

limit order posted at the inside quote, and i = 2 is a less aggressive limit order at the outside quote,

A2 or B2.3 Yet another alternative is for an investor to choose to do nothing (NTtj ).

3For tractability, it is assumed that investors cannot post buy limit orders at A1 and sell limit orders at B1. This
is one way in which the investor action space is simplified in our model.
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Figure 1: Distribution of Traders’ Private-Value Factors - β ∼ Tr[N (µ, σ2)].
This figure shows the truncated Normal probability density Function (PDF) of trader private-value factors βtj with
a mean µ = 1 and three different values of dispersion σ.
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For tractability, we make a few simplifying assumptions. Limit orders cannot be modified or

canceled after submission. Thus, each arriving investor has one and only one opportunity to submit

an order. There is also no quantity decision. Orders are to buy or sell one share. Lastly, investors

can only submit one order. Taken together, these assumptions let us express the traders’ action

space as Xtj = {MOBi,tj , LOA1,tj , LOA2,tj , NTtj , LOB2,tj , LOB1,tj ,MOAi,tj}, where each of the

orders denotes an order for one share.

In addition to the arriving informed and uninformed traders, there is a market-making trading

crowd that submits limit orders to provide liquidity. By assumption, the crowd just posts single

limit orders at the outside prices A2 and B2. The market opens with an initial book submitted

by the crowd at time t0. After each subsequent order-submission time tj for arriving informed and

uninformed investors, the crowd replenishes the book at the outside prices, if needed, when either

side of the book is empty. If there are still limit orders at prices A2 and B2 on both sides of the

book, then the crowd does not submit any limit orders. For tractability, we assume that public

limit orders by the arriving informed and uninformed investors have priority over limit orders from

the crowd. The focus of our model is on market dynamics involving information and liquidity given
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the behavior of optimizing informed and uninformed investors. The crowd is simply a modeling

device to insure it is always possible for arriving traders to submit market orders if they so choose.

Market dynamics over the trading day are intentionally non-stationary in our model in order

to capture market opening and closing effects. When the market opens at t1 there are no standing

limit orders in the book except from those at prices A2 or at B2 from the trading crowd.4 At the

end of the day all unexecuted limit orders are cancelled.

The state of the limit order book at time tj given orders from arriving investors is

Ltj = [qA2
tj
, qA1
tj
, qB1
tj
, qB2
tj

] (2)

where qAi
tj

and qBi
tj

indicate the depth at prices Ai and Bi at time tj . In addition, there are limit

orders from the crowd. While the crowd’s orders are in the book, we net them out when talking

about the informational “state” of the book, since they are perfectly predictable. Let ∆Ltj be the

change in the limit order book generated by an arriving informed and uninformed investor’s action

xtj ∈ Xtj at time tj :
5

∆Ltj = [∆qA2
tj
,∆qA1

tj
,∆qB1

tj
,∆qB2

tj
] =



[−1, 0, 0, 0] if xtj = MOA2,tj

[0,−1, 0, 0] if xtj = MOA1,tj

[+1, 0, 0, 0] if xtj = LOA2,tj

[0,+1, 0, 0] if xtj = LOA1,tj

[0, 0, 0, 0] if xtj = NT

[0, 0,+1, 0] if xtj = LOB1,,tj

[0, 0, 0,+1] if xtj = LOB2,tj

[0, 0,−1, 0] if xtj = MOB1,tj

[0, 0, 0,−1] if xtj = MOB2,tj

(3)

where “+1” with a limit order denotes the addition of an order at a particular limit price and “−1”

4In practice, daily opening limit order books include uncancelled orders from the previous day and new limit
orders from opening auctions. For simplicity, we abstract from these interesting features of markets.

5There are nine alternatives in (3) because we allow separately for cases in which the best bid and ask for market
sells and buys are at the inside and outside quotes.
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denotes execution of an earlier BBO limit order in the book. The resulting dynamics of the limit

order book are:

Ltj = Ltj−1 + ∆Ltj (4)

where j = 1, . . . , 5. An important source of information in our model is the observed trading

history of orders posted at times t1, .., tj in the market. We denote an order-flow history by

Ltj = {∆Lt1 , . . . ,∆Ltj}. When traders arrive in the market, they observe the history of market

activity up through the current standing limit order book at the time they arrive.

Investors trade using optimal order-submission strategies given their information and any private-

value motive. If an uninformed investor arrives at time tj , then his order xtj is chosen to maximize

his expected terminal payoff

max
x∈Xtj

ϕU (x |βtj ,Ltj−1) = E[(βtj v0 + ∆− p(x)) f(x)|βtj ,Ltj−1 ] (5)

= [βtj v0 + E[∆ |Ltj−1 , θ
x
tj ]− p(x)]Pr(θxtj |Ltj−1)

where p(x) is the price at which order x trades, and f(x) denotes the amount of the submitted order

that is actually “filled.” If x is a market order, then f(x) = 1 (i.e., all of the order is executed),

and the execution price p(x) is the best quote on the other side of the book at time tj . If x is a

non-marketable limit order, then the execution price p(x) is its limit price, but the fill amount f(x)

is random variable equal to 1 if the limit order is filled and zero if it is not filled. If the investor

does not trade — either because no order is submitted or because a limit order is not filled — then

f(x) is zero. In the second line of (5), the expression θxtj denotes the set of future trading states

in which order xtj is executed.6 This conditioning matters for limit orders because the sequence

of subsequent orders in the market, which may or may not result in the execution of a limit order

submitted at time tj , is correlated with the asset value shock ∆. For example, future market buy

orders are more likely if the ∆ shock is positive (since Iv investors will want to buy). Uninformed

investors rationally take the relation between future orders and ∆ into account when forming their

expectation E[∆ |Ltj−1 , θ
x
tj ] of what the asset will be worth in states in which their limit orders

6A market orders xtj is executed immediately at time tj and so is executed for sure.
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are executed. The second line of (5) also makes clear that uninformed investors use the prior

order history Ltj−1 in two ways: It affects their beliefs about limit order execution probabilities

Pr(θxtj |Ltj−1) and their execution-state-contingent asset-value expectations E[∆ |Ltj−1 , θ
x
tj ].

An informed investor who arrives at tj chooses an order xtj to maximize her expected payoff

max
x∈Xtj

ϕI(x | v, βtj ,Ltj−1) = E[(βtj v0 + ∆− p(x)) f(x)| v, βtj ,Ltj−1 ] (6)

= [βtj v0 + ∆− p(x)]Pr(θxtj | v,Ltj−1)

The only uncertainty for informed investors is about whether any limit orders they submit will be

executed. Their belief about order-execution probabilities Pr(θxtj | v,Ltj−1) are conditioned on both

the trading history up through the current book and on their knowledge about the ending asset

value. Thus, informed traders condition on Ltj−1 , not to learn about the value shock ∆ (which

they already know) or about future investor private-value factors βtj (which are i.i.d. over time),

but because they understand that the trading history is an input in the trading behavior of future

uninformed investors with whom they might trade in the future. Our analysis considers two model

specifications for the informed investors. In one, informed investors have no private-value motive,

so that their β factors are equal to 1. In the second specification, their β factors are random

and are independently drawn from the same truncated normal distribution Tr[N (µ, σ2)] as the

uninformed investors.

The optimization problem in (5) defines sets of actions xtj ∈ Xtj that are optimal for the

uninformed investor at different times tj given different private-value factors βtj and order histories

Ltj−1 . These optimal orders can be unique, or there may be multiple orders which make the

uninformed investor equally well-off. The optimal order-submission strategy for the uninformed

investor is a probability function γUj (x|βtj ,Ltj−1) that is zero if the order x is suboptimal and equals

a mixing probability over optimal orders. If an optimal order x is unique, then γj(x|βtj ,Ltj−1) = 1.

Similarly, the optimization problem in (6) can be used to define an optimal order submission

strategy γIj (x|β, v,Ltj−1) for informed investors at time tj given their factor βtj , their knowledge

about the asset value v, and the order history Ltj−1 .
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1.1 Equilibrium

An equilibrium is a set of mutually consistent optimal strategy functions and beliefs for uninformed

and informed investors for each time tj , given each order history Ltj−1 , private-value factor βtj ,

and (for informed traders) private information v. This section explains what “mutually consistent”

means and then gives a formal definition of an equilibrium in our model.

A central feature of our model is asymmetric information. The presence of informed traders

means that, by observing prices and associated quantities (i.e., past and current states of the book),

uninformed traders can infer information about the asset value v and use it in their order-submission

strategies. More precisely, uninformed traders rationally learn from the trading history about the

probability that v will go up, stay constant, or go down. However, investors cannot learn about

the private values (β) or information status (I or U) of future traders since these are both i.i.d

over time. Informed traders do not need to learn about v since they know it. However, they do

condition their trading behavior on v (since that tells them what types of informed traders will

arrive in the future along with the uninformed traders), and they condition on the trading history

(since that is informative about the trading behavior of future uninformed traders since the trading

history is an input in their order-submission strategy functions).

The underlying economic state in our model is the realization of the asset value v and a realized

sequence of investors who arrive in the market. The investor who arrives at time tj is described

by two characteristics: their status as being informed or uninformed, Iv or U , and their private-

value factor βtj . The underlying economic state is exogenously chosen over time by Nature. More

formally, it follows an exogenous stochastic process described by the model parameters δ, α, µ, and

σ. A sequence of arriving investors together with a pair of strategy functions — which we denote

here as Γ = {γUj (x|βtj ,Ltj−1), γIj (x|βtj , v,Ltj−1)}— induce a sequence of trading actions xtj which

results in a sequence of observable changes in the state of the limit order book. Thus, the stochastic

process generating paths of trading outcomes (i.e., trading histories in the limit order book) is in-

duced by the economic state process and the strategy functions. Given the trading-outcome path

process, there are several things we can compute directly: First, we can compute the unconditional

probabilities of different paths Pr(Ltj ) and the conditional probabilities Pr(∆Ltj |Ltj−1) of par-
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ticular order book changes ∆Ltj given a prior history Ltj−1 . In particular, we can identify paths

of trading outcomes that are possible (i.e., have positive probability Pr(Ltj )) given the strategy

functions {γUj (x|β,Ltj−1), γIj (x|β, v,Ltj−1)} and paths of trading outcomes which are not possible

(i.e., for which Pr(Ltj ) = 0). Second, the trading-outcome path process also determines the order-

execution probabilities Pr(θxtj | v,Ltj−1) and Pr(θxtj |Ltj−1) for informed and uninformed investors

for orders submitted at time tj . Computing each of these probabilities is simply a matter of listing

all of the possible underlying economic states, mechanically applying the order-submission rules,

identifying the relevant outcomes path-by-path, and then taking expectations across paths.

Let ` denote the set of all feasible histories {Ltj : j = 1, . . . , 4} of physically available orders

of lengths up to four trading periods. A four-period long history is the longest history a order-

submission strategy can depend on in our model. In this context, feasible paths are simply sequences

of actions in the action choice set without regard to whether they are possible in the sense that

they can occur with positive probability given the strategy functions Γ. Let ` in,Γ denote the

subset of all possible trading paths in ` that have positive probability, Pr(Ltj ) > 0 given a pair

of order strategies Γ. Let ` off,Γ denote the complementary set of trading paths that are feasible

but not possible given Γ. This notation will be useful when discussing “off equilibrium” beliefs.

In our analysis, strategy functions Γ are defined for all feasible paths in `. In particular, this

includes all of the possible paths in ` in,Γ given Γ and also the paths in ` off,Γ. As a result, the

probabilities Pr(∆Ltj |Ltj−1), Pr(θxtj | v,Ltj−1) and Pr(θxtj |Ltj−1) are always well-defined, because

the continuation trading process going forward, even after an unexpected order-arrival event (i.e.,

a path Ltj−1 ∈ ` off,Γ), is still well-defined.

The stochastic process for trading-outcome paths and its relation to the underlying economic

state also determine the uninformed-investor expectations E[v |Ltj , θ
x
tj ] of the terminal asset value

given the previous order history (Ltj ) and conditional on future limit-order execution (θxtj ). These

expectations are determined as follows:

• Step 1: The conditional probabilities πvtj = Pr(v|Ltj ) of a particular final asset value v = v̄, v0

or v given a possible trading history Ltj ∈ ` in,Γ up through time tj is given by Bayes’ Rule.
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At time t1, this probability is

πvt1 =
Pr(v,Lt1)

Pr(Lt1)
=
Pr(Lt1 |v)Pr(v)

Pr(Lt1)
=
Pr(∆Lt1 |v)Pr(v)

Pr(∆Lt1)
(7)

=
Pr(∆Lt1 |v, I)Pr(I) + Pr(∆Lt1 |U)Pr(U)

Pr(∆Lt1)
Pr(v)

=
Eβ[γI1(xt1 |βIt1 , v)|v]α+ Eβ[γU1 (xt1 |βUt1)](1− α)

Pr(∆Lt1)
πvt0

where the prior is the unconditional probability πvt0 = Pr(v), xt1 is the trading action at time

t1 that leads to the order book change ∆Lt1 , and βIt1 and βUt1 are independently distributed

private-value β realizations for informed and uninformed investors at time t1.7 At time tj > t1,

this probability is given recursively by8

πvtj =
Pr(v,Ltj )

Pr(Ltj )
=
Pr(v,∆Ltj ,Ltj−1)

Pr(∆Ltj ,Ltj−1)
(8)

=

 Pr(∆Ltj |v,Ltj−1 , I)Pr(I|Ltj−1)Pr(v|Ltj−1)

+Pr(∆Ltj |v,Ltj−1 , U)Pr(U |Ltj−1)Pr(v|Ltj−1)


Pr(∆Ltj |Ltj−1)

=
Eβ[γIj (xtj |βItj , v,Ltj−1)|v,Ltj−1 ] α+ Eβ[γUj (xtj |βUtj ,Ltj−1)|Ltj−1 ] (1− α)

Pr(∆Ltj |Ltj−1)
πvtj−1

These probabilities are then used to compute the uninformed-investor expected asset value

conditional on the order history path

E[ṽ|Ltj−1 ] = πv̄tj−1
v̄ + πv0

tj−1
v0 + π

v
tj−1

v (9)

• Step 2: The conditional probabilities πvtj given a “feasible but not possible in equilibrium”

order history Ltj ∈ ` off,Γ in which a limit order book change ∆Ltj that is inconsistent with

7A trader’s information status (I or U) is independent of the asset value v, so P (I|v) = Pr(I) and Pr(U |v) =
Pr(U). Furthermore, uninformed traders have no private information about v, so the probability Pr(∆Lt1 |U) with
which they take a trading action ∆Lt1 does not depend on v.

8A trader’s information status is again independent of v, and it is also independent of the past trading history
Lt1 . While the probability with which an uninformed trader takes a trading action ∆Lt1 may depend on the past
order history Ltj , it does not depend directly on v which uninformed traders do not know.
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the strategies Γ at time tj are set as follows:

1. If the priors are fully revealing in that πvtj−1
= 1 for some v, then πvtj = πvtj−1

for all v.

2. If the priors are not fully revealing at time tj , then πvtj = 0 for any v for which πvtj−1
= 0

and the probabilities πvtj for the remaining v’s can be any non-negative numbers such

that πv̄tj + πv0
tj

+ π
v
tj

= 1.

3. Thereafter, until any next unexpected trading event, the subsequent probabilities πvtj′

for j′ > j are updated according to (8).

• Step 3: The execution-contingent conditional probabilities π̂vtj = Pr(v|Ltj−1 , θ
x
tj ) of a final

asset value v conditional on a prior path Ltj−1 and on execution of a limit order x submitted

at time tj is

π̂vtj =
Pr(Ltj−1)Pr(v|Ltj−1) Pr(θxtj−1

|v,Ltj−1)

Pr(θxtj ,Ltj−1)
(10)

=
Pr(θxtj |v,Ltj−1)

Pr(θxtj |Ltj−1)
πvtj−1

This holds when adjusting for a future execution contingency both when the probabilities

πvtj−1
given the prior history Ltj−1 are for possible paths in ` in,Γ (from (7) and (8) in Step 1)

and also for feasible but not possible paths in ` off,Γ (from Step 2). These execution-contingent

probabilities π̂vtj are used to compute the execution-contingent conditional expected value

E[ṽ|Ltj−1 , θ
x
tj ] = π̂v̄tj v̄ + π̂v0

tj
v0 + π̂

v
tj
v
¯

(11)

used by uninformed traders to compute expected payoffs for limit orders. In particular, the

probabilities in (11) are the execution-contingent probabilities π̂vtj from (10) rather than the

probabilities πvtj from (8) that just condition on the prior trading history but not on the future

states in which the limit order is executed.

Given these updating dynamics, we can now define an equilibrium.

Definition. A Perfect Bayesian Nash Equilibrium of the trading game in our model is a collec-
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tion {γU, ∗j (x|βtj ,Ltj−1), γI, ∗j (x|βtj , v,Ltj−1), P r∗(θxtj | v,Ltj−1), P r∗(θxtj |Ltj−1), E∗[ṽ|Ltj−1 , θ
x
tj ]} of

order-submission strategies, execution-probability functions, and execution-contingent conditional

expected asset-value functions such that:

• The equilibrium execution probabilities Pr∗(θxtj | v,Ltj−1) and Pr∗(θxtj |Ltj−1) are consistent

with the equilibrium order-submission strategies {γU, ∗j+1(x|βtj+1 ,Ltj ), . . . , γ
U, ∗
5 (x|βt5 ,Lt4)} and

{γI, ∗j+1(x|βtj+1 , v,Ltj ), . . . , γ
I, ∗
5 (x|βt5 , v,Lt4)} after time tj .

• The execution-contingent conditional expected asset values E∗[ṽ|Ltj−1 , θ
x
tj ]} agree with Bayesian

updating equations (7), (8), (10), and (11) in Steps 1 and 3 when the order x is consistent with

the equilibrium strategies γU, ∗j (x|βtj ,Ltj−1) and γI, ∗j (x|βtj , v,Ltj−1) at date tj and, when x is

an off-equilibrium action inconsistent with the equilibrium strategies, with the off-equilibrium

updating in Step 2.

• The positive-probability supports of the equilibrium strategy functions γU, ∗j (x|βtj ,Ltj−1) and

γI, ∗j (x|βtj , v,Ltj−1) (i.e., the orders with positive probability in equilibrium) are subsets of

the sets of optimal orders for uninformed and informed investors computed from their op-

timization problems (5) and (6) and the equilibrium execution probabilities and outcome-

contingent conditional asset-value expectation functions Pr∗(θxtj | v,Ltj−1), Pr∗(θxtj |Ltj−1),

and E∗[ṽ|Ltj−1 , θ
x
tj ].

The Appendix explains the algorithm used to compute the equilibria in our model. To help with

intuition, the next section walks through the order-submission and Bayesian updating mechanics

for a particular path in the extensive form of the model.

Our equilibrium concept differs from the Markov Perfect Bayesian Equilibrium used in Goettler

et al. (2009). Beliefs and strategies in our model are path-dependent; traders use Bayes Rule

given the full prior order history when they arrive in the market. In contrast, Goettler et al.

(2009) restricts Bayesian updating to the current state of the limit order book but do not allow for

conditioning on the previous order history. Roşu (2016b) also assumes a Markov Perfect Bayesian

Equilibrium. The quantitative importance of the order history is an issue that is considered when

we discuss our results in Section 2.
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1.2 Illustration of order-submission mechanics and Bayesian updating

This section uses an excerpt of the extensive form of the trading game in our model to illustrate

order-submission and trading dynamics and the associated Bayesian updating process. The partic-

ular trading history path in Figure 2 is from the equilibrium for the model specification in which

informed and uninformed investors both have random private-value motives. The parameter values

are κ = 0.10, σ = 1.5, α = 0.8, and δ = 0.16, which is a market with a relatively high informed-

investor arrival probability and large value shocks. In this example, Nature has chosen an economic

state in which there is good news (v) about the asset, and the realized sequence of arriving traders

over time is {I, U, U, I, I}. Given the purpose of this discussion, Figure 2 just shows the “public”

portion of the total book Ltj due to orders from arriving informed and uninformed investors without

the additional orders from the crowd. Trading starts at t1 with an incoming empty public book,

[0, 0, 0, 0] (shown here) plus the additional limit orders from the trading crowd (i.e., 1 at the outside

prices A2 and B2). For simplicity, our discussion here only reports a few nodes of the trading game

with their associated equilibrium strategies. For example, we do not include NT at the end of t1,

since, as we show later in the paper, NT is not an equilibrium action at t1 for these parameters.

The path in Figure 2 also illustrates Bayesian updating in the model. After the investor at

t1 has been observed submitting a limit order LOA2,t1 , the uninformed trader who arrives in

this example at time t2 — who just knows the submitted order at time t1 but not the identity

or information of the trader at time t1 — updates his equilibrium conditional valuation to be

E[ṽ|LOA2,t1 ] = 1.056 and his execution-contingent expectation given his limit order LOA1,t2 at time

t2 to be E[ṽ|LOA2,t1 , θ
LOA1,t2 ] = 1.089.9 In subsequent periods, later investors observe additional

realized orders and then further update their beliefs.

Investors in our equilibrium choose from a discrete number of possible orders given their respect-

ive information and any private-value trading motives. Along the equilibrium path considered here,

the optimal strategies do not involve any randomization across different orders. Optimal orders are

unique given the inputs. Figure 2 shows below each order type at each time the probabilities with

which the different orders are submitted by the trader who arrived. For example, if an informed

9The numerical values of the expected values and the order-submission probabilities discussed here are all taken
from our equilibrium calculations.
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trader Iv arrives at t1, she chooses a limit order LOA2,t1 to sell at A2 with probability 0.118. Each

of these unique optimal orders is associated with a different range of β types (for both informed

and uninformed investors) and value signals (for informed investors). Figure 3 illustrates where

the order-submission probabilities come from by superimposing the upper envelope of the expected

payoffs for the different optimal orders at time t1 on the truncated Normal β distribution. It shows

how different β ranges correspond to a discrete set of optimal orders delimited by the β thresholds.

At each trading time, as the trading game progresses along this path, traders submit orders (or do

not trade) following their equilibrium order-submission strategies. The equilibrium execution prob-

abilities of their orders depend on the order-submission decisions of future traders, which, in turn,

depend on their trading strategies and the input information (i.e., their β realizations, any private

knowledge about v, and the order history path at the times they arrive). At time t1, the initial

trader has rational-expectation beliefs that the execution probability of her LOA2,t1 order posted

at t1 is 0.644. This equilibrium execution probability depends on all of the possible future trading

paths from the submission time t1 up through time t5. For example, one possibility is that the

LOA2,t1 order will be hit by an investor arriving at time t2 who submits a market order. Another

possibility (which is what happens along this particular path) is that the next period (at t2) an

uninformed trader could arrive and post a limit order LOA1,t2 to sell at A1, thereby undercutting

the LOA2,t1 order — so that the public portion of the book at the end of t2 is [1, 1, 0, 0]). In this

scenario, the initial LOA2,t1 order from t1 will only be executed provided that the LOA1,t2 order

submitted at t2 is executed first. For example, the probability of a market order MOA1,t3 hitting

the limit order at A1 at t3 is 0.365, and then the probability of another market order hitting the

initial limit sell at A2 is 0.423 at t4 or 0.505 at t5.10 Therefore, there is a chance that the LOA2,t1

order from t1 will still be executed after it is undercut by the order LOA1,t2 at t2.

10Due to space constraints, we do not include the t4 node in Figure 2.

15



Figure 2: Excerpt of the Extensive Form of the Trading Game. This figure shows one of the
possible trading paths of the trading game with parameters α = 0.8, δ = 0.16, µ = 1, σ = 1.5, κ = 0.10, and 5
time periods. Before trading starts at time t1, the incoming book from time t0 consists of an empty public book
[0, 0, 0, 0] at all price levels (Ai and Bi with i = 1, 2) plus the limit orders from the crowd (at A2 and B2). Nature
selects a realized final value v = {v̄, v0, v} with probabilities { 1

3
, 1

3
, 1

3
}. At each trading period nature also selects

an informed trader (I) with probability α and an uninformed trader (U) with probability (1− α). Arriving traders
choose the optimal order at each period which may potentially include limit orders LOAt (LOBt) or market orders
at the best ask, MOAi,t, or at the best bid, MOBi,t. Below each optimal trading strategy we report in italics its
equilibrium order-submission probability. Boldfaced equilibrium strategies and associated states of the book (within
double vertical bar) indicate the states of the book that we consider at each node of the chosen trading path.

tj = t0
A2 0 TC
A1 0
B1 0
B2 0 TC

v̄

tj = t1
I

MOA2 LOB1 LOB2 LOA2 LOA1 MOB2

0.256 0.282 0.030 0.118 0.314 0.000
0 0 0 ‖ 1 ‖ 0 0
0 0 0 ‖ 0 ‖ 1 0
0 1 0 ‖ 0 ‖ 0 0
0 0 1 ‖ 0 ‖ 0 0

tj = t2

I
...

α

tj = t2
U

MOA2 LOB1 LOB2 LOA2 LOA1 MOB2

0.164 0.296 0.083 0.000 0.457 0.000
0 1 1 2 ‖ 1 ‖ 1
0 0 0 0 ‖ 1 ‖ 0
0 1 0 0 ‖ 0 ‖ 0
0 0 1 0 ‖ 0 ‖ 0

tj = t3
I
...

α

tj = t3
U

MOA1 LOB1 LOB2 LOA2 LOA1 MOB2

0.365 0.000 0.219 0.000 0.058 0.358
‖ 1 ‖ 1 1 2 1 1
‖ 0 ‖ 1 1 1 2 1
‖ 0 ‖ 1 0 0 0 0
‖ 0 ‖ 0 1 0 0 0

tj = t4
I
...

tj = t5
I

MOA2 MOB2 NT
0.505 0.345 0.150
‖ 0 ‖ 1 1
‖ 0 ‖ 0 0
‖ 0 ‖ 0 0
‖ 0 ‖ 0 0

α

tj = t5
U
...

1− α

α

tj = t4
U
...

1− α

1− α

1− α

α
tj = t1
U
...

1− α

1
3

v0

...

1
3

v
...

1
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Figure 3: β Distribution and Upper Envelope for Informed Investor Iv̄ at time t1.
This figure shows the private-value factor β ∼ Tr[N (µ, σ2)] distribution superimposed on the plot of the expected
payoffs the informed investor Iv̄ with good news at time t1 for each equilibrium order type MOA2, MOB2, LOA2,
LOA1, LOB1, LOB2, NT , (solid colored lines) when the total book (including crowd limit orders) opens Lt0 = [1
0 0 1]. The dashed line shows the investor’s upper envelope for the optimal orders. The vertical black lines show
the β-thresholds at which two adjacent optimal strategies yield the same expected payoffs. For example LOA1 is
the optimal strategy for values of β between 0 and the first vertical black line; LOA2 is instead the optimal strategy
for the values of beta between the first and the second vertical lines. The parameters are α = 0.8, δ = 0.16, µ = 1,
σ = 1.5, and κ = 0.10.
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2 Results

Our analysis investigates how liquidity supply and demand decisions of informed and uninformed

traders and the learning process of uninformed traders affect market liquidity, price discovery, and

investor welfare. This section presents numerical results for our model. We first consider a model

specification in which only uninformed investors have a random private-value trading motive. In a

second specification, we generalize the analysis and show the robustness of our findings and extend

them. The tick size κ is fixed at 0.10, and the private-value dispersion σ is 1.5 throughout. We

investigate comparative statics for the amount of adverse selection. We also show that our model

has significant non-Markovian learning that would be missed in constrained Markovian equilibria.

Our analysis focuses on two time windows. The first is when the market opens at time t1.
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The second is over the middle of the trading day from times t2 through t4. We look at these

two windows because our model is non-stationary over the trading day. Much like actual trading

days, our model has start-up effects at the beginning of the day and terminal horizon effects at the

market close. When the market opens at time t1, there are time-dependent incentives to provide

rather than to take liquidity: The incoming book is thin (with limit orders only from the crowd),

and there is the maximum time for future investors to arrive to hit limit orders from t1. There

are also time-dependent disincentives to post limit orders. Information asymmetries are maximal

at time t1, since there has been no learning from the trading process. Over the day, information

is revealed (lessening adverse selection costs), but the book can also become fuller (i.e., there is

competition in liquidity provision from earlier limit orders), and the remaining time for market

orders to arrive and execute limit orders becomes shorter. Comparing these two time windows

shows how market dynamics change over the day. The market close at t5 is also important, but

trading then is straightforward. At the end of the day, investors only submit market orders (or do

not trade), because the execution probability for new limit orders submitted at t5 is zero given our

assumption that unfilled limit orders are canceled once the market closes.

We use our model to investigate three questions: First, who provides and takes liquidity, and how

does the amount of adverse selection affect investor decisions to take and provide liquidity? Second,

how does market liquidity vary with different amounts of adverse selection? Third, how does the

information content of different types of orders depend on an order’s direction, aggressiveness, and

on the prior order history?

The amount of adverse selection can change in two ways: The expected number of informed

traders can change, and the magnitude of asset value shocks can change. We consider four different

combinations of parameters with high and low informed-investor arrival probabilities (α = 0.8

and 0.2) and high and low value-shock volatilities (δ = 0.16 and 0.02). We call markets with

δ = 0.02 low-volatility markets and markets with δ = 0.16 high-volatility markets, because the

arriving information is small relative to the tick size κ = 0.10 in the former parameterization and

large relative to the tick size in the later. In high-volatility markets, the final asset value v given

good or bad news is beyond the outside quotes A2 or B2, and so even market orders at the outside
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prices are profitable for informed traders. However, in low-volatility markets, v is always within

the inside quotes A1 and B1, and so market orders are never profitable for informed investors.

2.1 Uninformed traders with random private-value motives

In our first model specification, only uninformed traders have random private values. Informed

traders have fixed neutral private-value factors β = 1. Thus, as in Kyle (1985), there is a clear

differentiation between investors who speculate on private information and those who trade for

purely non-informational reasons. Our model differs from Kyle (1985) in that informed and un-

informed investors can trade using both limit and market orders rather than being restricted to

market orders.

2.1.1 Trading strategies

We begin by investigating who supplies and takes liquidity and how these decisions change with the

amount of adverse selection. Table 1 reports results about trading early in the day at time t1 using a

2×2 format. Each of the four cells corresponds to a different combination of parameters. Comparing

cells horizontally shows the effect of a change in the value-shock size δ while holding the arrival

probability α for informed traders fixed. Comparing cells vertically shows the effect of a change

in the informed-investor arrival probability while holding the value-shock size fixed. In each cell

corresponding to a set of parameter values, there are four columns reporting conditional results for

informed investors with good news, neutral news, and bad news about the asset (Iv, Iv0 , Iv) and for

an uninformed investor (U) and a fifth column with the unconditional market results (Uncond). The

table reports the order-submission probabilities and several market-quality metrics. Specifically,

we report expected bid-ask spreads conditioning on the three informed-investor types E[Spread |Iv]

and on the uninformed trader E[Spread |U ], the unconditional expected market spread E[Spread],

and expected depths at the inside prices (A1 and B1) and total depths (A1 +A2 and B1 +B2) on

each side of the market.
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Table 1: Trading Strategies, Liquidity, and Welfare at Time t1 in an Equilibrium with Informed
Traders with β = 1 and Uninformed Traders with β ∼ Tr[N (µ, σ2)]. This table reports results for
two different informed-investor arrival probabilities α (0.8 and 0.2) and two different value-shock volatilities δ (0.16
and 0.02). The private-value factor parameters are µ = 1 and σ = 1.5, and the tick size is κ = 0.10. Each cell
corresponding to a set of parameters reports the equilibrium order-submission probabilities, the expected bid-ask
spreads and expected depths at the inside prices (A1 and B1) and total depths on each side of the market at time
t1 as well as the welfare expectation of market participants. The first four columns in each parameter cell are for
informed traders with positive, neutral and negative signals, (Iv̄,Iv0 ,Iv

¯
) and for uninformed traders (U). The fifth

column (Uncond.) reports unconditional results for the market.

δ = 0.16 δ = 0.02

Iv̄ Iv0 Iv
¯

U Uncond. Iv̄ Iv0 Iv
¯

U Uncond.

LOA2 0 0.500 0.650 0.143 0.335 0 0.500 1.000 0.052 0.410
LOA1 0 0 0.350 0 0.093 0 0 0 0.079 0.016
LOB1 0.350 0 0 0 0.093 0 0 0 0.079 0.016
LOB2 0.650 0.500 0 0.143 0.335 1.000 0.500 0 0.052 0.410

MOA2 0 0 0 0.357 0.071 0 0 0 0.369 0.074
MOA1 0 0 0 0 0 0 0 0 0 0
MOB1 0 0 0 0 0 0 0 0 0 0
MOB2 0 0 0 0.357 0.071 0 0 0 0.369 0.074
NT 0 0 0 0 0 0 0 0 0 0

α = 0.8
E[Spread |·] 0.265 0.300 0.265 0.300 0.281 0.300 0.300 0.300 0.284 0.297
E[Depth A2+A1 |·] 1.000 1.500 2.000 1.143 1.429 1.000 1.500 2.000 1.131 1.426
E[Depth A1 |·] 0 0 0.350 0 0.093 0 0 0 0.079 0.016
E[Depth B1 |·] 0.350 0 0 0 0.093 0 0 0 0.079 0.016
E[Depth B1+B2 |·] 2.000 1.500 1.000 1.143 1.429 2.000 1.500 1.000 1.131 1.426

E[Welfare LO |·] 0.034 0.053 0.034 0.018 0.029 0.069 0.029 0.015
E[Welfare MO |·] 0 0 0 0.337 0 0 0 0.339
E[Welfare |·] 0.034 0.053 0.034 0.355 0.029 0.069 0.029 0.354

LOA2 0 0.500 0.110 0.063 0.091 0 0.500 1.000 0.063 0.150
LOA1 0 0 0.890 0.374 0.358 0 0 0 0.397 0.318
LOB1 0.890 0 0 0.374 0.358 0 0 0 0.397 0.318
LOB2 0.110 0.500 0 0.063 0.091 1.000 0.500 0 0.063 0.150

MOA2 0 0 0 0.064 0.051 0 0 0 0.040 0.032
MOA1 0 0 0 0 0 0 0 0 0 0
MOB1 0 0 0 0 0 0 0 0 0 0
MOB2 0 0 0 0.064 0.051 0 0 0 0.040 0.032
NT 0 0 0 0 0 0 0 0 0 0

α = 0.2
E[Spread |·] 0.211 0.300 0.211 0.225 0.228 0.300 0.300 0.300 0.221 0.236
E[Depth A2+A1 |·] 1.000 1.500 2.000 1.436 1.449 1.000 1.500 2.000 1.460 1.468
E[Depth A1 |·] 0 0 0.890 0.374 0.358 0 0 0 0.397 0.318
E[Depth B1 |·] 0.890 0 0 0.374 0.358 0 0 0 0.397 0.318
E[Depth B1+B2 |·] 2.000 1.500 1.000 1.436 1.449 2.000 1.500 1.000 1.460 1.468

E[Welfare LO |·] 0.273 0.146 0.273 0.316 0.081 0.150 0.081 0.360
E[Welfare MO |·] 0 0 0 0.099 0 0 0 0.064
E[Welfare |·] 0.273 0.146 0.273 0.415 0.081 0.150 0.081 0.424
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In addition, we report the probability-weighted contributions to the different investors’ gains-

from-trade coming from limit orders, market orders, and their total expected gains-from-trade.

Table B1 in the Numerical Appendix provides additional results about conditional and uncondi-

tional future execution probabilities for the different orders (PEX(xt1)) and also the uninformed

investor’s updated expected asset value E[v|xt1 ] given different types of buy orders xt1 at time t1.

Expectations given sell orders are symmetric on the other side of E[v] = 1.

Table 2 shows average results for times t2 through t4 during the day using a similar 2×2 format.

The averages are across time and trading histories. Comparing results for time t1 with the trading

averages for t2 through t4 shows intraday changes in properties of the trading process. There is no

table for time t5, because only market orders are used at the market close.

Result 1 Changes in adverse selection due to the value-shock size δ affect trading strategies

differently than changes in the informed-investor arrival probability α.

One aspect of this result is about how different forms of adverse selection affect investors’

liquidity taking decisions. This can been seen theoretically from first principles. Suppose the

informed-investor arrival probability α is close to zero. If the value-shock volatility δ is close to

zero, then directionally informed investors Iv̄ and Iv with good or bad news never use market

orders, since the final asset value v is always between the inside bid and ask prices. However, if

δ is increased sufficiently, then at some point investors with good and bad news will start to use

market orders given the guaranteed execution of market orders. Thus, the set of orders used by

directionally informed investors can change in these small α scenarios when δ changes. In contrast,

consider instead a market in which δ is close to zero. Now informed investors with good or bad news

never use market orders regardless of how large or small the informed-investor arrival probability α

is. Thus, the set of orders used by directionally informed investors never changes to include market

orders in these small δ scenarios when α changes.
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Table 2: Averages for Trading Strategies, Liquidity, and Welfare across Times t2 through t4 for
Informed Traders with β = 1 and Uninformed Traders with β ∼ Tr[N (µ, σ2)]. This table reports results
for two different informed-investor arrival probabilities α (0.8 and 0.2) and for two different asset-value volatilities
δ (0.16 and 0.02). The private-value factor parameters are µ = 1 and σ = 1.5, and the tick size is κ = 0.10. Each
cell corresponding to a set of parameters reports the equilibrium order-submission probabilities, the expected bid-ask
spreads and expected depths at the inside prices (A1 and B1) and total depths on each side of the market at time
t1 as well as the welfare expectation of market participants. The first four columns in each parameter cell are for
informed traders with positive, neutral and negative signals, (Iv̄,Iv0 ,Iv

¯
) and for uninformed traders (U). The fifth

column (Uncond.) reports unconditional results for the market.

δ = 0.16 δ = 0.02

Iv̄ Iv0 Iv
¯

U Uncond. Iv̄ Iv0 Iv
¯

U Uncond.

LOA2 0 0.191 0.051 0.157 0.096 0.399 0.255 0.108 0.026 0.209
LOA1 0 0.258 0.257 0.023 0.142 0.192 0.239 0.288 0.064 0.205
LOB1 0.257 0.258 0 0.023 0.142 0.288 0.239 0.192 0.064 0.205
LOB2 0.051 0.191 0 0.157 0.096 0.108 0.255 0.399 0.026 0.209

MOA2 0.493 0 0 0.286 0.189 0 0 0 0.347 0.069
MOA1 0.001 0 0 0.031 0.006 0 0 0 0.058 0.012
MOB1 0 0 0.001 0.031 0.006 0 0 0 0.058 0.012
MOB2 0 0 0.493 0.286 0.189 0 0 0 0.347 0.069
NT 0.198 0.061 0.198 0.007 0.124 0.013 0.010 0.013 0.011 0.012

α = 0.8
E[Spread |·] 0.217 0.212 0.217 0.251 0.223 0.227 0.228 0.227 0.278 0.237
E[Depth A2+A1 |·] 1.047 2.276 2.480 1.755 1.899 2.165 2.300 2.433 1.608 2.161
E[Depth A1 |·] 0 0.438 0.829 0.243 0.387 0.226 0.362 0.506 0.131 0.318

E[Depth B1 |·] 0.829 0.438 0 0.243 0.387 0.506 0.362 0.226 0.131 0.318
E[Depth B1+B2 |·] 2.480 2.276 1.047 1.755 1.899 2.433 2.300 2.165 1.608 2.161
E[Welfare LO |·] 0.010 0.020 0.010 0.106 0.014 0.013 0.014 0.005
E[Welfare MO |·] 0.009 0 0.009 0.298 0 0 0 0.354
E[Welfare |·] 0.019 0.020 0.019 0.405 0.014 0.013 0.014 0.359

LOA2 0 0.358 0.508 0.102 0.139 0.375 0.389 0.443 0.093 0.155
LOA1 0 0.122 0.258 0.056 0.070 0.044 0.096 0.116 0.066 0.070
LOB1 0.258 0.122 0 0.056 0.070 0.116 0.096 0.044 0.066 0.070
LOB2 0.508 0.358 0 0.102 0.139 0.443 0.389 0.375 0.093 0.155

MOA2 0.130 0 0 0.219 0.184 0 0 0 0.218 0.175
MOA1 0.088 0 0 0.119 0.101 0 0 0 0.120 0.096
MOB1 0 0 0.088 0.119 0.101 0 0 0 0.120 0.096
MOB2 0 0 0.130 0.219 0.184 0 0 0 0.218 0.175
NT 0.016 0.035 0.016 0.006 0.010 0.022 0.030 0.022 0.005 0.009

α = 0.2
E[Spread |·] 0.205 0.190 0.205 0.280 0.264 0.221 0.217 0.221 0.300 0.284
E[Depth A2+A1 |·] 1.305 2.089 2.512 1.583 1.660 1.932 2.091 2.257 1.576 1.680
E[Depth A1 |·] 0.194 0.451 0.740 0.301 0.333 0.346 0.414 0.442 0.262 0.290
E[Depth B1 |·] 0.740 0.451 0.194 0.301 0.333 0.442 0.414 0.346 0.262 0.290
E[Depth B1+B2 |·] 2.512 2.089 1.305 1.583 1.660 2.257 2.091 1.932 1.576 1.680

E[Welfare LO |·] 0.119 0.086 0.119 0.052 0.060 0.064 0.060 0.050
E[Welfare MO |·] 0.018 0 0.018 0.343 0 0 0 0.342
E[Welfare |·] 0.137 0.086 0.137 0.394 0.060 0.064 0.060 0.392
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Our numerical analysis demonstrates this first result and also other facets of how adverse selec-

tion affects investor trading strategies. Consider again the directionally informed investors Iv̄ and

Iv with good or bad news. First, hold the informed-investor arrival probability α fixed and increase

the amount of adverse selection by increasing the value-shock volatility δ. In a low-volatility market

in which value shocks ∆ are small relative to the tick size, informed traders with good and bad

news are unwilling to pay a large tick size to trade on their information and instead act as liquidity

providers who supply liquidity asymmetrically depending on the direction of their information.

This can be seen in Table 1 where in both of the two parameter cells on the right (with α = 0.8

and 0.2 and a small δ = 0.02) informed investors Iv̄ and Iv at time t1 use limit orders at the outside

quotes A2 and B2 exclusively. In contrast, in a high-volatility market where value shocks are large

relative to the tick size, informed investors with good or bad news trade more aggressively. This

can be seen in the left two parameterization cells (with α = 0.8 and 0.2 and a large δ = 0.16) where

informed investors Iv̄ and Iv use limit orders at both the inside quotes A1 and B1 as well at the

outside quotes with positive probability at time t1.

Now compare this to the effect of a change in the amount of adverse selection due to a change

in the informed-investor arrival probability α while holding the value-shock size δ fixed. In this

case, changing the amount of adverse selection does not affect which orders informed investors with

good and bad news use at time t1. This can be seen by comparing the lower two parameter cells

(with δ = 0.02 and 0.16 and a small α) with the upper two parameter cells (with the same δs and

a larger α).

The average order-submission probabilities at times t2 through t4 in Table 2 are qualitatively

similar to those for time t1. When δ is small, informed investors with good and bad news tend

to supply liquidity via limit orders following strategies that are somewhat asymmetric on the two

sides of the market given the direction of their small amount of private information Iv̄ and Iv.

In contrast, when the value-shock volatility δ is larger in a high-volatility market, informed

investors with good or bad news at times t2 to t4 switch from providing liquidity on both sides of

the market to using a mix of taking liquidity via market orders and supplying liquidity via limit

orders on the same side of the market as their information. Thus, once again, the trading strategies
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for informed investors Iv̄ and Iv are qualitatively similar holding δ fixed and changing α, but their

trading strategies change qualitatively when α is held fixed and δ is changed.

Next, consider informed investors I0 who know that the value shock ∆ is 0 and, thus, that

the unconditional prior v0 is correct. Tables 1 and 2 show that their liquidity provision trading

strategies are qualitatively the same at time t1 and on average over times t2 through t4. In constrast,

uninformed investors U become less willing to provide liquidity via limit orders at the inside quotes

as the adverse selection problem they face using limit orders worsens. Rather, they increasingly

take liquidity via market orders or supply liquidity by less aggressive limit orders at the outside

quotes. The reduction in liquidity provision at the inside quotes by uninformed investors is true at

time t1 (Table 1) and at times t2 through t4 (Table 2) both when the value shocks become larger

and when the arrival probability of informed investors increases.

In this context, there are two noteworthy equilibrium effects. First, while the uninformed U

investors reduce their liquidity provision at the inside quotes as adverse selection increases, the

I0 informed investors increase their liquidity provision at the inside quotes. This is because I0

informed investors have an advantage in liquidity provision over the uninformed U investors in

that there is no adverse selection risk for them. These results are qualitatively consistent with the

intuition of Bloomfield, O’Hara and Saar (BOS, 2005). Informed traders are more likely to use

limit orders than market orders when the value-shock volatility is low (and, thus, the profitability

from trading on information asymmetries is low), and to use market orders when the reverse is

true.

Second, uninformed U investors are unwilling to use aggressive limit orders at the inside quotes

when the adverse selection risk is sufficiently high as in the upper left parametrization (α = 0.8 and

δ = 0.16). This explains the fact that informed investors Iv̄ and Iv use aggressive limit orders at

the inside quotes with a higher probability in the lower left parametrization (α = 0.2 and δ = 0.16)

than in the upper left parameterization. At first glance this might seems odd since competition

from future informed investors (and the possibility of being undercut by later limit orders) is greater

when the informed-investor arrival probability is large (α = 0.8) than when α is smaller. However,

in equilibrium there is camouflage from the uninformed U investors limit orders at the inside quotes
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in the lower left parametization, whereas limit orders at the inside quotes are fully revealing in the

upper right parametrization.

2.1.2 Market quality

Market liquidity changes when the amount of adverse selection in a market changes. The standard

intuition, as in Kyle (1985), is that liquidity deteriorates given more adverse selection. For example,

Roşu (2016b) also finds worse liquidity (a wider bid-ask spread) given higher value volatility. How-

ever, we find that the standard intuition is not always true.

Result 2 Liquidity need not always deteriorate when adverse selection increases.

Markets can become more liquid given greater value-shock volatility if, given the tick size, high

volatility makes the value shock ∆ large relative the price grid. In addition, different measures of

market liquidity — expected spreads, inside depth, and total depth — can respond differently to

changes in adverse selection.

The impact of adverse selection on market liquidity follows directly from the trading strategy

effects discussed above. Two intuitions are useful in understanding our market liquidity results.

First, different investors affect liquidity differently. Informed traders with neutral news (Iv0) are

natural liquidity providers. Thus, their impact on liquidity comes from whether they supply li-

quidity at the inside (A1 and B1) or outside (A2 and B2) prices. In contrast, informed traders

with directional news (Iv̄ and Iv) and uninformed traders (U) can have a large impact on liquidity

depending on whether they opportunistically take or supply liquidity. Second, the most aggressive

way to trade (both on directional information and private values) is via market orders, which takes

liquidity. However, the next most aggressive way to trade is via limit orders at the inside prices.

Thus, changes in market conditions (i.e., δ and α) that make investors trade more aggressively

(i.e., that reduce their use of limit orders at the outside prices A2 and B2) can potentially improve

liquidity if this stronger trading interest migrates to aggressive limit orders at the inside quotes,

A1 and B1, rather than to market orders.

Our analysis shows that the standard intuition that adverse selection reduces market liquidity
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depends on the relative magnitudes of asset value shocks and the tick size. In Table 1, the expected

spread narrows at time t1 (markets become more liquid) when the value-shock volatility δ increases

(comparing parameterizations horizontally so that α is kept fixed). Liquidity improves in these

cases because the informed traders Iv and Iv submit limit orders at the inside quotes in these high-

volatility markets, whereas they only use limit orders at the outside quotes in low-volatility markets.

In constrast, the expected spread at time t1 widens when the informed-investor arrival probability

α increases holding the value-shock size δ constant, as predicted by the standard intuition. The

evidence against the standard intuition is even stronger in Table 2. At times t2 through t4, the

expected spread narrows both when information becomes more volatile (δ is larger) and when there

are more informed traders (when α is larger). The qualitative results for the expected depth at the

inside quotes goes in the same direction as the results for the expected spread. This is because both

results are driven by limit-order submissions at the inside quotes. The results for adverse selection

and total depth at both the inside and outside quotes are mixed. For example, Table 1 shows that

total depth at time t1 increases when value-shock volatility δ increases when the informed-investor

arrival probability α is high (comparing horizontally the two parametrizations on the top), but

decreases in δ when the informed α is low. In contrast, average total depth at times t2 through t4

in Table 2 is decreasing in the value-shock volatility (comparing parameterizations horizontally).

This is opposite the effect on the inside depth. Thus, these different liquidity results are mixed.

The main result in this section is that the relation between adverse selection and market liquidity

is more subtle than the standard intuition. Increased adverse selection can improve liquidity.

The ability of investors to choose endogenously whether to supply or demand liquidity and at

what limit prices is what can overturn the standard intuition. The results from this specification

are comparable with Goettler et al. (2009). Goettler et al. (2009) have endogenous information

acquisition and therefore they have no regimes with both informed and uninformed traders having

an intrinsic motive to trade. However, they have a regime with informed traders having no private-

value trading motive and uninformed having only private-value motives. In this regime, when

volatility increases, informed traders reduce their provision of liquidity and increase their demand

of liquidity; with the opposite holding for uninformed traders. Our results are more nuanced.
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Increased value-shock volatility is associated with increased liquidity supply in some cases and with

decreased liquidity in others. This is because the tick size of the price grid constrains the prices at

which liquidity can be supplied and demanded.

2.1.3 Information content of orders

Traders in real-world markets and empirical researchers are interested in the information content

of different types of arriving orders.11 A necessary condition for an order to be informative is that

informed investors use it. However, the magnitude of order informativeness is determined by the

mix of equilibrium probabilities with which both informed and uninformed traders use an order. If

uninformed traders use the same orders as informed investors, they add noise to the overall price

discovery process, and orders become less informative. In our model, the mix of information-based

and noise-based orders depends on the underlying proportion of informed investors α and and the

value-shock volatility δ.

We expect different market and limit orders to have different information content. A natural

conjecture is that the sign of the information revision associated with an order should agree with the

direction of the order (e.g, buy market and limit orders should lead to positive valuation revisions).

Another natural conjecture is that the magnitude of information revisions should be greater for

more aggressive orders. However, while the sign conjecture is true in our first model specification,

the order aggressiveness conjecture does not alway hold here.

Result 3 Order informativeness is not always increasing in the aggressiveness of an order.

This, at-first-glance surprising, result is another consequence of the impact of the tick size on how

informed investors trade on their information. As a result, the relative informativeness of different

market and limit orders can flip in high-volatility and low-volatility markets given a fixed tick size.

The result is immediate for market orders versus (less aggressive) limit orders in low-volatility

markets in which informed investors avoid market orders (see Table 1). However, we show here

11Fleming et al. (2017) extend the VAR estimation approach of Hasbrouck (1991) to estimate the price impacts of
limit orders as well as market orders. See also Brogaard et al. (2016).
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that it can also hold for aggressive limit orders at the inside quotes A1 and B1 versus less aggressive

limit orders at the outside quotes A2 and B2.

Figure 4 shows the informativeness of different types of orders at time t1. Informativeness at

time t1 is measured here as the Bayesian revision E[v|xt1 ] − E[v] in the uninformed investor’s

expectation of the terminal value v after observing different types of orders xt1 at time t1. The

informational revisions for the different orders are plotted against the respective order-execution

probabilities on the horizontal axis. Orders with higher execution probabilities are statistically more

aggressive than orders with low execution probabilities. The results for the four parameterizations

are indicated using different symbols: high vs low informed-investor arrival probabilities (circles vs

squares), and high vs low value-shock volatility (large vs small symbols). These are described in the

figure legend. For example, in the low α and high δ scenario (large squares), the informativeness

of a limit buy order at B1 at time t1 is 0.026 and the order-execution probability is 78.9 percent

(see Table B1 in the Numerical Appendix).

Consider first the cases with high informed-investor arrival probabilities. The case with a high

informed-investor arrival probability and high value-shock volatility is denoted with large circles.

Informed investors in this case use limit orders at both the outside quotes (LOA2 and LOB2) and

inside quotes (LOA1 and LOB1) at time t1, so these are therefore the only informative orders.

Since uninformed investors also use the outside limit orders, they are not fully revealing, however

the inside limit orders are fully revealing. Thus, the price impacts for the inside and outside limit

orders here are consistent with the order aggressiveness conjecture. The market orders (MOB2

and MOA2) are also used in equilibrium, but only by uninformed investors (U). Thus, they are

not informative. While market orders would be profitable for the informed investors, the potential

price improvement with the limit orders leads informed investors to use the limit orders despite

the zero price impact and guaranteed execution probability of the market orders. Since both inside

and outside limit orders have larger price impacts than the market orders, this case is inconsistent

with the aggressiveness conjecture.

Next, consider the case of low value-shock volatility and high informed-investor arrival prob-

ability, denoted here with small circles. Once again, the order-aggressiveness conjecture is not
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Figure 4: Informativeness of Orders after Trading at Time t1 for the Model with Informed Traders
with β = 1 and Uninformed Traders with β ∼ Tr[N (µ, σ2)]. This figure plots the Informativeness of
the equilibrium orders at the end of t1 against the probability of order execution. Four different combinations of
informed-investor arrival probabilities and value-shock volatilities are considered. The informativeness of an order is
measured as E[v|xt1 ]− E[v], where xt1 denotes one of the different possible orders that can arrive at time t1.

true. The most informative orders are now, not the most aggressive orders, but rather the most

patient limit orders posted at A2 and B2 (since these are the only orders used by informed in-

vestors). The market orders and more aggressive inside limit orders are non-informative here (since

only uninformed investors with extreme βs use them). In this case, this — again at first glance

perhaps counterintuitive — result is a consequence of the fact that the tick size is large relative

to the informed trader’s potential information. Low-volatility makes market orders unprofitable

for informed traders given good and bad news, and it increases the price improvement attainable

through limit orders deeper in the book relative to limit orders at the inside quotes.

Similar results hold when the proportion of insiders is low (α = 0.2). When the asset-value

volatility is high (large squares), the most aggressive orders (LOB1 and LOA1) are again the
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most informative ones in contrast to the market orders. However, when volatility is low (small

squares), the most informative orders, as before, are the least aggressive orders (LOB2 and LOA2).

Therefore, the potential failures of the order-aggressiveness conjecture are robust to variation in

informed-investor arrival probabilities and value-shock volatility.

2.1.4 Non-Markovian learning

This section investigates the role of the order history on Bayesian learning. The first question we

consider is whether the prior order history has information about the asset value v in excess of the

information in the current limit order book.

The candlestick plots in Figure 5 measure the incremental information content of order histories

as the difference E[v|Ltj (Ltj )]−E[v|Ltj ], which is the uninformed investors’ expected asset value

conditional on an order history path Ltj (Ltj ) ending with a particular limit order book Ltj at time

tj net of the corresponding expectation conditional on just the ending book Ltj . In particular,

we are interested in books Ltj that are preceded in equilibrium by more than one different prior

history. If learning is Markov, then order histories Ltj (Ltj ) preceding a book Ltj should convey

no additional information beyond Ltj ; in which case the difference in expectations should be zero.

The candlestick plots show the maximum and minimum values, the interquartile range, and the

median of the incremental information of the prior history. The horizontal axis in the plots shows

the times t1 through t4 at which different orders xtj are submitted. Time t1 is included in the plot

because books at t1 can potentially be produced by different sequences of investor actions xtj and

resulting crowd responses. Each plot is for a different combination of adverse-selection parameters.

The main result from Figure 5 is that there is substantial informational variation in the Bayesian

revisions conditional on different trading histories. Thus, we have

Result 4 The price discovery dynamics can be significantly non-Markovian.

As expected, the variation in the incremental information content of the prior trading history in

Figure 5 is greater when the shock volatility δ is greater (note differences in vertical scales).

Given that learning is non-Markov, our next question is about how the size of the valuation
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Figure 5: Informativeness of the Order History for the Model with Informed Traders with β = 1
and Uninformed Traders with β ∼ Tr[N (µ, σ2)] for Times t1 through t4. This Figure shows the
incremental information content of the past order history in excess of the information in the current limit order book
observed at the end of time tj as measured by E[v|Ltj (Ltj )] − E[v|Ltj ] where Ltj (Ltj ) is a history ending in the
limit order book Ltj . We only consider books Ltj when they occur in equilibrium in the different trading periods.

The candlesticks indicate for each of these two metrics the maximum, the minimum, the median and the 75th (and
25th) percentile respectively as the top (bottom) of the bar.
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revisions depends on the prior trading history. In Figure 6, the horizontal axis shows the price

impact of different equilibrium orders at t1, and the vertical axis gives the corresponding cumulative

price impact of the sequence of a given action at time t1 and different subsequent equilibrium actions

at time t2. Consistently with our previous analysis, the size of the valuation revision crucially

depends on the insiders’ equilibrium strategies. As informed investors do not use market orders

at t1 (see Table 1), market orders do not have a price impact at t1 which is also the reason why

the price impact of any order at t2 conditional on a market order at t1 lays on the vertical axis.
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Figure 6: Order Informativeness for the Model with Informed Traders with β = 1 and Uninformed
Traders with β ∼ Tr[N (µ, σ2)] for times t1 to t2 and parameters α = 0.8, δ = 0.16. The horizontal
axis reports E(v|xt1)−E(v) which shows how the uninformed traders’ Bayesian value-forecast changes with respect
to the unconditional expected value of the fundamental when uninformed traders observe at t1 an equilibrium order
xt1 . The vertical axis reports E(v|xt2 , xt1)−E(v) which shows how the uninformed traders’ Bayesian value-forecast
changes with respect to the unconditional expected value of the fundamental when uninformed traders observe at
xt2 at t2. We consider all the equilibrium strategies at t1 and t2 which are symmetrical. Red (green) circles show
equilibrium sell (buy) orders at t2.

Interestingly, there are no observations in the second and fourth quadrants in our model, which

means there are no sign reversals in the direction of the cumulative price impacts. The first and

third quadrants (which are perfectly symmetrical) show the duplets of orders which have a positive

and a negative price impact, respectively. The duplets with the highest price impact are driven

by the insiders’ equilibrium strategies at t1 and are limit orders at the inside quotes followed any

other order. In fact, Table 1 shows that insiders’ limit orders at the inside quotes at t1 are fully

revealing. So once more the price impact does not depend on the aggressiveness of the orders but

on the informed investors’ orders choice. Overall, Figure 6 also confirms that the price impact is

32



non-Markovian: for example the price impact of MOB2 at t2 may be either positive or negative

depending on whether it is preceded by LOB2 or LOA2 at t1.

2.1.5 Summary

The analysis of our first model specification has identified a number of empirically testable predic-

tions. First, liquidity and the relative information content of different orders differ in high-volatility

markets in which value shocks are large relative to the tick size vs. in low-volatility markets in

which value shocks are small relative to the tick size. Second, the price impact of order flow should

vary conditional on different trading histories and the current book at the time new orders are

submitted.

2.2 Informed and uninformed traders both have private-value motives

Our second model specification generalizes our earlier analysis so that now informed investors

also have random private-valuation factors β with the same truncated Normal distribution β ∼

Tr[N (µ, σ2)] as the uninformed investors. Hence, informed traders not only speculate on their

information, but they also have a private-value motive to trade. As a result, informed investors

with the same signal may end up buying and selling from each other. We use this second model

specification to show the robustness of the results in Section 2.1 and to extend them.

2.2.1 Trading strategies

Tables 3 and 4 report numerical results for our second model specification for time t1 by itself and

for averages over times t2 through t4. Since all investors have private-value motives to trade, we see

that now all investors use all of the possible limit orders at time t1 and that directionally informed

and uninformed investors also use market orders. Over times t2 through t4, all investors again

use all types of limit orders and also market orders. In particular, directionally informed investors

trade sometimes opposite their asset-value information because their private-value motive adds

non-informational randomness to their orders. Informed investor with neutral news Iv0 no longer
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Table 3: Trading Strategies, Liquidity, and Welfare at Time t1 in an Equilibrium with Informed and
Uninformed Traders both with β ∼ Tr[N (µ, σ2)]. This table reports results for two different informed-investor
arrival probabilities α (0.8 and 0.2) and two different value-shock volatilities δ (0.16 and 0.02). The private-value
factor parameters are µ = 1 and σ = 1.5, and the tick size is κ = 0.10. Each cell corresponding to a set of parameters
reports the equilibrium order-submission probabilities, the expected bid-ask spreads and expected depths at the
inside prices (A1 and B1) and total depths on each side of the market at time t1 as well as the welfare expectation
of market participants. The first four columns in each parameter cell are for informed traders with positive, neutral
and negative signals, (Iv̄,Iv0 ,Iv

¯
) and for uninformed traders (U). The fifth column (Uncond.) reports unconditional

results for the market.

δ = 0.16 δ = 0.02

Iv̄ Iv0 Iv
¯

U Uncond. Iv̄ Iv0 Iv
¯

U Uncond.

LOA2 0.118 0.054 0.031 0.064 0.067 0.054 0.048 0.042 0.048 0.048
LOA1 0.314 0.446 0.282 0.426 0.363 0.438 0.452 0.466 0.452 0.452
LOB1 0.282 0.446 0.314 0.426 0.363 0.466 0.452 0.438 0.452 0.452
LOB2 0.031 0.054 0.118 0.064 0.067 0.042 0.048 0.054 0.048 0.048

MOA2 0.256 0 0 0.009 0.070 0 0 0 0 0
MOA1 0 0 0 0 0 0 0 0 0 0
MOB1 0 0 0 0 0 0 0 0 0 0
MOB2 0 0 0.256 0.009 0.070 0 0 0 0 0
NT 0 0 0 0 0 0 0 0 0 0

α = 0.8
E[Spread |·] 0.240 0.211 0.240 0.215 0.227 0.210 0.210 0.210 0.210 0.210
E[Depth A2+A1 |·] 1.432 1.500 1.312 1.491 1.430 1.492 1.500 1.508 1.500 1.500
E[Depth A1 |·] 0.314 0.446 0.282 0.426 0.363 0.438 0.452 0.466 0.452 0.452
E[Depth B1 |·] 0.282 0.446 0.314 0.426 0.363 0.466 0.452 0.438 0.452 0.452
E[Depth B1+B2 |·] 1.312 1.500 1.432 1.491 1.430 1.508 1.500 1.492 1.500 1.500

E[Welfare LO |·] 0.259 0.445 0.259 0.410 0.446 0.446 0.446 0.446
E[Welfare MO |·] 0.187 0 0.187 0.015 0 0 0 0
E[Welfare |·] 0.446 0.445 0.446 0.425 0.446 0.446 0.446 0.446

LOA2 0.063 0.051 0.042 0.051 0.051 0.049 0.048 0.046 0.048 0.048
LOA1 0.356 0.449 0.476 0.449 0.445 0.441 0.452 0.464 0.452 0.452
LOB1 0.476 0.449 0.356 0.449 0.445 0.464 0.452 0.441 0.452 0.452
LOB2 0.042 0.051 0.063 0.051 0.051 0.046 0.048 0.049 0.048 0.048

MOA2 0.063 0 0 0 0.004 0 0 0 0 0
MOA1 0 0 0 0 0 0 0 0 0 0
MOB1 0 0 0 0 0 0 0 0 0 0
MOB2 0 0 0.063 0 0.004 0 0 0 0 0
NT 0 0 0 0 0 0 0 0 0 0

α = 0.2
E[Spread |·] 0.217 0.210 0.217 0.210 0.211 0.210 0.210 0.210 0.210 0.210
E[Depth A2+A1 |·] 1.419 1.500 1.518 1.500 1.496 1.490 1.500 1.510 1.500 1.500
E[Depth A1 |·] 0.356 0.449 0.476 0.449 0.445 0.441 0.452 0.464 0.452 0.452
E[Depth B1 |·] 0.476 0.449 0.356 0.449 0.445 0.464 0.452 0.441 0.452 0.452
E[Depth B1+B2 |·] 1.518 1.500 1.419 1.500 1.496 1.510 1.500 1.490 1.500 1.500

E[Welfare LO |·] 0.394 0.445 0.394 0.442 0.447 0.446 0.447 0.446
E[Welfare MO |·] 0.059 0 0.059 0 0 0 0 0
E[Welfare |·] 0.453 0.445 0.453 0.442 0.447 0.446 0.447 0.446
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Table 4: Averages for Trading Strategies, Liquidity, and Welfare across Times t2 through t4 for
Informed and Uninformed Traders both with β ∼ Tr[N (µ, σ2)]. This table reports results for two different
informed-investor arrival probabilities α (0.8 and 0.2) and for two different asset-value volatilities δ (0.16 and 0.02).
The private-value factor parameters are µ = 1 and σ = 1.5, and the tick size is κ = 0.10. Each cell corresponding to a
set of parameters reports the equilibrium order-submission probabilities, the expected bid-ask spreads and expected
depths at the inside prices (A1 and B1) and total depths on each side of the market at time t1 as well as the
welfare expectation of market participants. The first four columns in each parameter cell are for informed traders
with positive, neutral and negative signals, (Iv̄,Iv0 ,Iv

¯
) and for uninformed traders (U). The fifth column (Uncond.)

reports unconditional results for the market.

δ = 0.16 δ = 0.02

Iv̄ Iv0 Iv
¯

U Uncond. Iv̄ Iv0 Iv
¯

U Uncond.

LOA2 0.140 0.121 0.090 0.114 0.117 0.127 0.123 0.119 0.123 0.123
LOA1 0.108 0.058 0.050 0.067 0.071 0.057 0.053 0.048 0.053 0.053
LOB1 0.050 0.058 0.108 0.067 0.071 0.048 0.053 0.057 0.053 0.053
LOB2 0.090 0.121 0.140 0.114 0.117 0.119 0.123 0.127 0.123 0.123

MOA2 0.275 0.192 0.113 0.195 0.194 0.207 0.194 0.181 0.194 0.194
MOA1 0.158 0.127 0.062 0.122 0.117 0.133 0.128 0.124 0.129 0.128
MOB1 0.062 0.127 0.158 0.122 0.117 0.124 0.128 0.133 0.129 0.128
MOB2 0.113 0.192 0.275 0.195 0.194 0.181 0.194 0.207 0.194 0.194
NT 0.003 0.003 0.003 0.005 0.004 0.004 0.003 0.004 0.004 0.004

α = 0.8
E[Spread |·] 0.253 0.259 0.253 0.274 0.259 0.268 0.269 0.268 0.269 0.268
E[Depth A2+A1 |·] 1.599 1.600 1.537 1.563 1.576 1.590 1.593 1.596 1.593 1.593
E[Depth A1 |·] 0.301 0.339 0.338 0.314 0.324 0.324 0.333 0.344 0.333 0.334
E[Depth B1 |·] 0.338 0.339 0.301 0.314 0.324 0.344 0.333 0.324 0.333 0.334
E[Depth B1+B2 |·] 1.537 1.600 1.599 1.563 1.576 1.596 1.593 1.590 1.593 1.593

E[Welfare LO |·] 0.089 0.071 0.089 0.072 0.067 0.067 0.067 0.067
E[Welfare MO |·] 0.328 0.332 0.328 0.331 0.336 0.336 0.336 0.336
E[Welfare |·] 0.418 0.403 0.418 0.404 0.403 0.403 0.403 0.403

LOA2 0.131 0.123 0.114 0.122 0.122 0.124 0.123 0.122 0.123 0.123
LOA1 0.059 0.054 0.049 0.053 0.054 0.053 0.053 0.052 0.053 0.053
LOB1 0.049 0.054 0.059 0.053 0.054 0.052 0.053 0.053 0.053 0.053
LOB2 0.114 0.123 0.131 0.122 0.122 0.122 0.123 0.124 0.123 0.123

MOA2 0.257 0.194 0.137 0.196 0.196 0.202 0.194 0.186 0.194 0.194
MOA1 0.160 0.127 0.090 0.127 0.127 0.133 0.128 0.124 0.128 0.128
MOB1 0.090 0.127 0.160 0.127 0.127 0.124 0.128 0.133 0.128 0.128
MOB2 0.137 0.194 0.257 0.196 0.196 0.186 0.194 0.202 0.194 0.194
NT 0.004 0.003 0.004 0.004 0.004 0.004 0.003 0.004 0.004 0.004

α = 0.2
E[Spread |·] 0.266 0.267 0.266 0.269 0.269 0.269 0.269 0.269 0.269 0.269
E[Depth A2+A1 |·] 1.547 1.595 1.636 1.591 1.591 1.587 1.593 1.599 1.592 1.592
E[Depth A1 |·] 0.288 0.334 0.378 0.332 0.332 0.327 0.333 0.339 0.333 0.333
E[Depth B1 |·] 0.378 0.334 0.288 0.332 0.332 0.339 0.333 0.327 0.333 0.333
E[Depth B1+B2 |·] 1.636 1.595 1.547 1.591 1.591 1.599 1.593 1.587 1.592 1.592

E[Welfare LO |·] 0.068 0.068 0.068 0.067 0.067 0.067 0.067 0.067
E[Welfare MO |·] 0.348 0.334 0.348 0.335 0.336 0.336 0.336 0.336
E[Welfare |·] 0.416 0.403 0.416 0.402 0.403 0.403 0.403 0.403
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just provide liquidity using limit orders. Now, due to their private-value motive, they sometimes

also take liquidity using market orders.

Consider next the impact of the amount of adverse selection on trading behavior. Tables 3

and 4 show for time t1 and for trading averages over t2 through t4 respectively that the effects of

an increase in value-shock volatility on the strategies of informed traders with good or bad news

differs if we consider traders’ own or opposite side of the market. In particular, the “own” side of

the market for an informed investor with good news is the bid (buy) side of the limit order book.

The effect on the informed trader’s own-side behavior is similar to the previous model specification

in Section 2.1. With higher value-shock volatility, the private information about the asset value

is more valuable, and both Iv̄ and Iv
¯

investors change some of their aggressive limit orders into

market orders. Table 3 shows that, at time t1 when α = 0.8, the Iv̄ investors reduce the strategy

probability for LOB1 orders from 0.466 to 0.282 and increase the strategy probability for MOA2

orders from 0 to 0.256, and symmetrically Iv
¯

investors shifts from LOA1 to MOB2.

The effects of higher volatility on uninformed traders slightly differs if we consider t1 as opposed

to times t2 through t4. At t1 uninformed traders post slightly more aggressive orders when they

demand liquidity (the strategy probabilities for MOA2 and MOB2 increase from 0 to 0.009), and

more patient orders when they supply liquidity (the strategy probabilities for LOB2 and LOA2

increase slightly from 0.048 to 0.064). This change in order-submission strategies is the consequence

of uninformed traders now perceiving higher adverse selection costs. They feel safer hitting the

trading crowd at A2 and B2 and offering liquidity at more profitable price levels to make up for the

increased adverse selection costs. In later periods t1 through t4, as uninformed traders learn about

the fundamental value of the asset, they still take liquidity at the outside quotes (the probabilities

of MOA2 and MOB2 increase slightly to 0.195 in Table 4), but move to the inside quotes to supply

liquidity (LOA1 and LOB1 increase to 0.067 for times t2 through t4). As they learn about the

future value of the asset, uninformed traders perceive less adverse selection costs and can afford to

offer liquidity at more aggressive quotes. In contrast, the effects of increased value-shock volatility

on the trading behavior of Iv0 investors are relatively modest both at time t1 and at times t2

through t4.
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The effects of an increase in volatility on the opposite side is different than on the own side. For

example, when asset-value volatility δ increases from 0.02 to 0.16, Iv̄ investors at time t1 switch

on the own side from LOB1 limit orders to aggressive MOA2 market orders and at the same time

they switch on the opposite side from aggressive limit orders to more patient limit orders. The

reason why Iv̄ investors with low private-values become more patient when selling via limit orders

on the opposite side is that they know that the execution probability of limit sells at A2 is higher

because other Iv̄ investors in future periods will hit limit sell orders at A2 more aggressively given

that v̄ is much bigger (see the increased order submission probabilities for MOA2 in Table 4).

2.2.2 Market quality

The effect of value-shock volatility on market liquidity is mixed in our second model specification.

This is not surprising given the nuanced effect of increased volatility on investor trading behavior,

particularly on informed trading behavior on the own and opposite sides of the market. At time

t1, holding the informed-investor arrival probability α fixed, increased value-shock volatility leads

to wider spreads and less total depth. However, the average effects over times t2 through t4 is

the opposite with increased asset-value volatility leading to narrower spreads and smaller depth.

This is due — in particular in the high α framework — to uninformed traders perceiving greater

adverse selction costs and therefore being less willing to supply liquidity. Interestingly, the effects

of an increase in the proportion of informed investors (α) on the equilibrium strategies of market

participants is qualitatively similar to that of an increase in volatility (δ) in this model.

Lastly, our model shows how an increase in volatility and in the proportion of insiders affect

the welfare of market participants. When volatility increases, directional informed investors are

generally better off as their signal is stronger and hence more profitable: At t1 their welfare is

unchanged with high proportion of insiders (0.446), whereas it increases in all the other scenarios,

with low proportion of insiders (0.453) and in later periods with both high and low α (0.418 and

0.416). At t1 uninformed traders are worse off because liquidity deteriorates with higher volatility.

At later periods the result is ambiguous: there are cases in which the uninformed investors are

better off and cases in which they are worse off.
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2.2.3 Information content of orders

Figure 7 plots the Bayesian revisions for different orders at time t1 against the corresponding order-

execution probabilities for our second model specification. Once again, the magnitudes and signs

of the Bayesian updates depends on the mix of informed and uninformed investors who submit

these orders. Consider, for example, the market with both high value-shock volatility and a high

informed-investor arrival probability (large circles). The most informative orders are the market

orders MOA2 and MOB2 as they are chosen much more often by informed investors than by

uninformed investors (See Table 3). However, the next most aggressive orders are the inside limit

orders LOB1 and LOA1, and they are less informative than the LOB2 and LOA2 limit orders. Even

though the aggressive limit orders LOB1 and LOA1 are posted with a relatively high probability

(0.282 and 0.314) by informed investors Iv̄ and Iv, they are also submitted with a high probability by

uninformed investors (0.426), and an even higher submission probability by Iv0 investors (0.446). As

a result, they are less informative.12 Thus, this is another example in which order informativeness

is not increasing in order aggressiveness.

Perhaps more surprising, the order-sign conjecture need not hold in our second model specific-

ation:

Result 5 The Bayesian value expectation revision can be opposite the direction of an order.

This is to say that the direction of orders is sometimes different from the sign of their information

content. For example, a limit sell LOA1 is informative of good news (rather than bad news as one

might expect) because limit sells at A1 are used by informed investor to trade on the opposite side

of their information (i.e., due to their private-value β factors) more frequently than these orders

are used to trade on the same side of their information. In particular, Iv investors usually sell using

market orders at MOB2 rather than using limit sells. This goes back to our previous discussion of

how informed investors trade differently on the own side of their information (when their private

value β reinforces the trading direction from their information) and on the opposite side of their

information (when their β reverses the trading incentive from their information).

12The informativeness of limit orders LOA1 and LOB1 in Table B2 in the Numerical Appendix are 0.004 and
−0.004 respectively, whereas the informativeness of limit orders LOA2 and LOB2 are 0.056 and −0.056 respectively.
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Figure 7: Informativeness of Orders at the End of t1 for the Model with Informed and Uninformed Traders both with β ∼
Tr[N (µ, σ2)]. This figure plots the Informativeness of the equilibrium orders at the end of t1 against the probability of execution. We consider four
different combinations of informed investors arrival probability. The informativeness of an order is measured as E[v|xt1 ]− E[v], where xt1denotes one of
the different possible orders that can arrive at time t1.
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2.2.4 Non-Markovian price discovery

This section continues our investigation of the importance of non-Markovian effects in information

aggregation. Figure 8 shows once again the variation in the incremental information E[v|Ltj (Ltj )]−

E[v|Ltj ] of the prior order history Ltj (Ltj ). The plots here confirm our earlier results about non-

Markovian learning.

Figure 8: History Informativeness for Informed and Uninformed Traders both with
β ∼ Tr[N (µ, σ2)] for times t2 through t4. This Figure shows the incremental information content of
the past order history in excess of the information in the current limit order book observed at the end of time tj
as measured by E[v|Ltj (Ltj )] − E[v|Ltj ] where Ltj (Ltj ) is a history ending in the limit order book Ltj . We only
consider books Ltj when they occur in equilibrium in the different trading periods. The candlesticks indicate for

each of these two metrics the maximum, the minimum, the median and the 75th (and 25th) percentile respectively
as the top (bottom) of the bar.
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Goettler et al. (2009) and Roşu (2016b) assume that information dynamics are Markovian and

that the current limit order book is a sufficient statistic for the information content of the prior
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trading history. Figure 8 shows the uninformed investor’s expectation of the asset value conditional

on the path and various books. It also shows the expectation of these expectations across the paths,

which, by iterated expectation, is the expectation conditional on the book. Again, we see that the

trading history has substantial information content above and beyond the information in the book

alone. The figure also shows the standard deviation of the valuation forecast errors. Here again,

the results are non-Markovian.

2.3 Summary

The results for our second model specification — with a richer specification of the informed investors’

trading motives — confirm and extent the analysis from our first model specification. The main

findings are

• When all market participants trade not only to speculate on their signal but also to satisfy

their private-value motive, all investors use both market and limit orders in equilibrium.

• Increased value-shock volatility and an increased informed-investor arrival probability can

affect informed investor trading behavior differently when they trade with their information

or (because of private-value shocks) against their information.

• The effect of asset-value volatility and informed investor arrival probability on market liquidity

is mixed.

• The informativeness of an order can again be opposite the order direction and aggressiveness.

• The information content of order arrivals is history-dependent.

• Both order informativeness and the dispersion of believes increase with volatility and the

proportion of insiders. With higher volatility the insiders’ signal becomes stronger, whereas

with a higher proportion of insiders uninformed traders have more opportunities to learn.
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3 Robustness

Our analysis makes a number of simplifying assumptions for tractability, but we conjecture that our

qualitative results are robust to relaxing these assumptions. We consider two of these assumptions

here. First, our model of the trading day only has five periods. Relatedly, our analysis abstracts

from limit orders being carried over from one day to the next. However, our results about the impact

of adverse selection on investor trading strategies and about order informativeness are driven in

large part by the relative size of information shocks and the tick size rather than by the number

of rounds of trading. In addition, increasing the trading horizon just leads to longer histories that

are potentially even more informative. Second, arriving investors are only allowed to submit single

orders that cannot be cancelled or modified subsequently. However, it seems likely that order flow

histories will still be informative if orders at different points in time are correlated due to correlated

actions of returning investors.

4 Conclusions

This paper has studied the information aggregation and liquidity provision processes in dynamic

limit order markets. We show a number of interesting theoretical properties in our model. First, in-

formed investors switch between endogenously demanding liquidity via market orders and supplying

liquidity via limit orders. Second, the information content/price impact of orders is non-monotone

in the direction of the order and in the aggressiveness of their orders. Third, the information ag-

gregation process is non-Markovian. In particular, the prior trading history has information content

beyond that in the current limit order book. We also show that the price impact of orders depends

on the prior trading history. In other words, a given order may have a very different price impact

following one trading history and another.

Our model suggests several interesting directions for future research. First, the model can

be enriched by allowing investors to trade dynamically over time (rather than just submitting an

order one time). In addition, if traders had a quantity decision, they might want to use multiple

orders. Second, the model could be extended to allow for trading in multiple co-existing limit order
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markets. This would be a realistic representation of current equity trading in the US. Third, the

model could be used to study high frequency trading and the effect of different investors being able

to process and trade on different types of information at different latencies.

5 Appendix A: Algorithm for computing equilibrium

The computational problem to solve for a Perfect Bayesian Nash equilibrium in our model is

complex. Given investors’ equilibrium beliefs, the optimal order-submission problems in (5) and

(6) require computing limit-order execution probabilities and stock-value expectations conditional

on both the past trading history and on future state-contingent limit-order execution at each time tj

at each node of the trading game. For an informed trader (who knows the future value of the asset),

there is no uncertainty about the payoff of a market order. However, the payoff of a market order for

an uninformed trader entails uncertainty about the future asset value and therefore computing the

optimal order requires computing the expected stock value conditional on the prior trading history

up to time tj . For limit orders, the expected payoff depends on the future execution probability of

that limit order, which depends, in turn, on the optimal order-submission probabilities for future

informed and uninformed traders. In addition, the uninformed investors have a learning problem.

They extract information about the expected future stock value from both the past trading history

and also from state-contingent future order execution given that the future states in which limit

orders are executed are correlated with the stock value. Thus, optimal actions at each date t depend

on past and future actions where future actions also depend on the prior histories at future dates

(which included the action at date t) as traders dynamically update their equilibrium beliefs as the

trading process unfolds. In addition, rational expectations involves finding a fixed point so that

the equilibrium beliefs underlying the optimal order-submission strategies are consistent with the

execution probabilities and value expectations that those optimal strategies produce in equilibrium.

Our numerical algorithm uses backwards induction to solve for optimal order strategies given

a set of asset-value beliefs for all dates and nodes in the trading game and an iterative recursion

to solve for RE asset-value beliefs. The backwards induction makes order-execution probabilities
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consistent with optimal future behavior by later arriving investors. It also takes future state-

contingent execution into account in the uninformed investors’ learning problem. We start at time

t5 — when traders only use market orders which allows us to compute the execution probabilities

of limit orders at t4 — and recursively solve the model for optimal trading strategies back to time

t1. We then embed the optimal order strategy calculation in an iterative recursion to solve for a

fixed point for the RE asset-value beliefs. In this recursion, the asset-value probabilities πv,r−1
t from

round r− 1 are used iteratively as the asset-value beliefs in round r. In particular, these beliefs are

used in the learning problem of the uninformed investor to extract information about the ending

stock value v from the prior trading histories. They also affect the behavior of informed investors

whose order-execution probability beliefs depend in part on the behavior of uninformed traders.

We iterate this recursion to find a RE fixed point in investor beliefs.

In a generic round r of our recursion, investors’ asset-value beliefs are set to be the asset-value

probabilities from the previous recursive round r− 1. In particular, at each time tj in each node of

the trading process, the round r−1 probabilities are used as priors in computing traders’ conditional

payoffs in round r when computing expected order payoffs and optimal orders:

max
x∈Xtj

ϕI, r(x | v,Ltj−1) = [β v0 + ∆− p(x)]Prr−1(θxtj | v,Ltj−1) (12)

and

max
x∈Xtj

ϕU, r(x |Ltj−1) = [β v0 + Er−1[∆ |Ltj−1 , θ
x
tj ]− p(x)]Prr−1(θxtj |Ltj−1) (13)

where

Er−1[∆|Ltj−1 , θ
x
tj ] = (π̂v̄, r−1

tj
v̄ + π̂v0, r−1

tj
v0 + π̂

v, r−1
tj

v)− v0 (14)

π̂v, r−1
tj

=
Prr−1(θxtj |v,Ltj )

Prr−1(θxtj |Ltj )
πv, r−1
tj

(15)

The resulting order-submission strategies xtj ,r in round r are then used to to compute new asset-

value asset value beliefs for the next recursive round r + 1.

44



The recursion is started in round r = 1 by setting the beliefs of uninformed traders about the

fundamental value of the asset at each time tj in the backwards induction to be the unconditional

priors given in (1). In particular, the algorithm starts by ignoring conditioning on history in the

initial round r = 1. Hence traders’ expected payoffs on an order x in round r = 1 simplify to:

max
x∈Xtj

ϕUr=1(x |Ltj−1) = [β v0 + E[∆]− p(x)]Pr(θxtj ) (16)

max
x∈Xtj

ϕIr=1(x | v,Ltj−1) = [β v0 + ∆− p(x)]Pr(θxtj | v) (17)

In each round r given the asset-value beliefs in that round, we solve for investors’ optimal

trading strategies by backward induction. Starting at t5, the execution probability of new limit

orders is zero, and therefore optimal order-submission strategies only use market orders. Given the

linearity of the expected payoffs in the private-value factor β (equations (16) and (17)), the optimal

trading strategies for an informed trader at t5 are13

xt5,I,r(β|Lt4 , v) =


MOBi,t5 if β ∈ [0, β

MOBi,t5
,NT

t5,I,r
)

NT if β ∈ [β
MOBi,t5

,NT

t5,I,r
, β

NT,MOAi,t5
t5,I,r

)

MOAi,t5 if β ∈ [β
NT,MOAi,t5
t5,I,r

, 2]

(18)

where

β
MOBi,t5

,NT

t5,I,r
=

Bi,t5 −∆

v
(19)

β
NT,MOAi,t5
t5,I,r

=
Ai,t5 −∆

v

are the critical thresholds that solve ϕt5,r(MOBi,t5) = ϕt5,r(NT ) and ϕt5,r(NT ) = ϕt5,r(MOAi,t5),

respectively. The optimal trading strategies and β thresholds for an uninformed traders are similar

13For instance, an informed trader would post a MOA1 only if the payoff is positive and thus outperforms the NT
payoff of zero, i.e, βv + ∆−A1 > 0 or β > A1−∆

v
.
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but the conditioning set does not include the signal on v:

xt5,U,r(β|Lt4) =


MOBi,t5 if β ∈ [0, β

MOBi,t5
,NT

t5,U,r
)

NT if β ∈ [β
MOBi,t5

,NT

t5,U,r
, β

NT,MOAi,t5
t5,U,r

)

MOAi,t5 if β ∈ [β
NT,MOAi,t5
t5,U,r

, 2]

(20)

where

β
MOBi,t5

,NT

t5,U,r
=

Bi,t5 − Er−1[∆|Lt4 ]

v
(21)

β
NT,MOAi,t5
t5,U,r

=
Ai,t5 − Er−1[∆|Lt4 ]

v

Once we know the β ranges associated with each strategy, we compute the submission prob-

abilities associated with each optimal order at t5 using the distribution of β. At time t4 these

probabilities are the execution probabilities for limit orders at the best bid and ask, Bi,t4 and Ai,t4

respectively at time t5:

Prr(θ
LOBi,t4 |Lt3 , v) =


∫
β∈
[
0, β

MOBi,t4
,NT

t5,I,r

) n(β) dβ where i indexes the best bid and if q
Bi,t4
t3

= 0

0 otherwise

(22)

Prr(θ
LOAi,t4 |Lt3 , v) =


∫
β∈
[
β
NT,MOAi,t4
t5,I,r

, 2
] n(β) dβ where i indexes the best ask and if q

Ai,t4
t3

= 0

0 otherwise

(23)

where q
Bi,t4
t3

= 0 and q
Ai,t4
t3

= 0 means that the incoming limit order book from time t3 is empty at

the best bid and ask at time t4. The execution probabilities of uninformed at the best bid and the

best ask:

Prr(θ
LOBi,t4 |Lt3) =


∫
β∈
[
0, β

MOBi,t4
,NT

t5,U,r

) n(β) dβ where i indexes the best bid and if q
Bi,t4
t3

= 0

0 otherwise

(24)
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Prr(θ
LOAi,t4 |Lt3) =


∫
β∈
[
β
NT,MOAi,t4
t5,U,r , 2

] n(β) dβ where i indexes the best ask and if q
Ai,t4
t3

= 0

0 otherwise

(25)

where n(·) is the truncated normal density function. At t4 there is only one period before the end

of the trading game. Thus, the execution probability of a limit order is positive if and only if the

order is posted at the best price on its own side of the market (Pi,tj ), and if there are no limit

orders already standing in the limit order book at that price at the time the limit order is posted

(q
Bi,t4
t3

= 0 and q
Ai,t4
t3

= 0).

Having obtained the execution probabilities for limit orders at t4, we next derive the optimal

order-submission strategies at t4. The book can open in many different ways at t4 depending on the

prior path of the trading game. As the payoffs of both limit and market orders are functions of β,

we rank all the payoffs of adjacent optimal strategies in terms of β and equate them to determine

the β thresholds at time t4.14

Consider for example, a path of the game such that the book opens empty; so both limit and

market orders are optimal strategies at t4. For an informed trader, these strategies are:

xt4,I,r(β|Lt3 , v) =



MOB2,t4 if β ∈ [0, β
MOB2,t4 ,LOA1,t4
t4,I,r

)

LOA1,t4 if β ∈ [β
MOB2,t4 ,LOA1,t4
t4,I,r

, β
LOA1,t4 ,LOA2,t4
t4,I,r

)

LOA2,t4 if β ∈ [β
LOA1,t4 ,LOA2,t4
t4,I,r

, β
LOA2,t4 ,NT

t4,I,r
)

NT if β ∈ [β
LOA2,t4 ,NT

t4,I,r
, β

NT,LOB2,t4
t4,I,r

)

LOB2,t4 if β ∈ [β
NT,LOB2,t4
t4,I,r

, β
LOB2,t4 ,LOB1,t4,t4
t4,I,r

)

LOB1,t4 if β ∈ [β
LOB2,t4 ,LOB1,t4
t4,I,r

, β
LOB1,t4 ,MOA2,t4
t4,I,r

)

MOA2,t4 if β ∈ [β
LOB1,t4 ,MOA2,t4
t4,I,r

, 2]

(26)

and for an uninformed trader the optimal strategies are qualitatively similar but with different

values for the β thresholds given the uninformed investor’s different information.15 As the payoffs

of both limit and market orders are functions of β, we can rank all the payoffs of adjacent optimal

14Recall that the upper envelope only includes strategies that are optimal.
15If the book opened with some liquidity on any level of the book, the equilibrium strategies would be different.

For example, if the book opened with a LOA1 then no limit orders on the ask side would be equilibrium strategies.
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strategies in terms of β and equate them to determine the β thresholds at t4. For example, for the

first threshold we have:

β
MOB2,t4 ,LOA1,t4
t4,I,r

= β ∈ R s.t. ϕIt4,r (MOB2,t4 | v, β,Lt3) = ϕIt4,r (LOA1,t4 | v, β,Lt3) (27)

and we obtain the other thresholds similarly.

The next step is to use the β thresholds together with the truncated Normal cumulative dis-

tribution N(�) for β to derive the probabilities of the optimal order-submission strategies at each

possible node of the extensive form of the game at t4. For example, the submission probability of

LOAi,t4 is:

Prr[LOA1,t4 |Lt3 , v] = N(β
LOA1,t4 ,LOA2,t4
t4,I,r

|Lt3 , v)− N(β
MOB2,t4 ,LOA1,t4
t4,I,r

|Lt3 , v) (28)

and the submission probabilities of the equilibrium strategies can be obtained in a similar way.

Next, given the market-order submission probabilities at t4 (which are the execution probabilities

of limit orders at t3), we can solve the optimal orders at t3 and recursively we can then solve the

model by backward induction back to time t1.

At each node of the trading game, the algorithm considers all feasible orders that traders may

choose. Off-equilibrium orders are those that are never chosen as part of the optimal trading

strategies. Suppose that in round r an order that is off-equilibrium in round r− 1 is considered for

time tj . For example, consider in round r the path of the trading game ending with LOA1,t3 formed

by the sequence of orders: {MOA2,t1 ,MOB2,t2 , LOA1,t3}, where LOA1,t3 was not an equilibrium

strategy at t3 in round r− 1 and where MOA2,t1 and MOB2,t2 are equilibrium strategies at times

t1 and t2 respectively. Within the convergence process, for each strategy which is reconsidered

in the subsequent round, uninformed traders generally use their previous round beliefs. For an

off-equilibrium strategy at tj in r − 1, however, they cannot use their r − 1 updated belief for

that time and therefore they use their most recent equilibrium belief up to tj still for round r − 1.

Considering the example above, uninformed traders cannot use their updated belief conditional

on the sequence of orders {MOA2,t1 ,MOB2,t2 , LOA1,t3} at t3 for round r − 1 as LOA1,t3 was
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not an equilibrium strategy. Therefore we assume that for this off-equilibrium belief, uninformed

traders use the most updated equilibrium belief before t3, formed by using the sequence of orders

{MOA2,t1 ,MOB2,t2}. If instead in round r − 1, MOB2,t2 is still not an equilibrium strategy at

t2, we assume that uninformed traders use their belief at t1 conditional on MOA2,t1 . Finally, if

neither MOA2,t1 were an equilibrium strategy at t1 we assume that traders use their unconditional

prior belief.

We allow for both pure and mixed strategies in our Perfect Bayesian Nash equilibrium. When

different orders have equal expected payoffs, we assume that traders randomize with equal probabil-

ities across all such optimal orders. By construction, the expected payoffs of two different strategies

are the same in correspondence of the β thresholds; however because we are considering single points

in the support of the β distribution, the probability associated with any strategy that corresponds

to those specific points is equal to zero. This means that mixed strategies that emerge in cor-

respondence of the β thresholds, although feasible, have zero probability. Mixed strategies may

also emerge in the framework in which informed traders have a fixed neutral private-value factor

β = 1 (section 2.1). More specifically it may happen that the payoffs of two perfectly symmetrical

strategies of Iv0 are the same, and in this case Iv0 randomizes between these two strategies.

RE beliefs for a Perfect Bayesian Nash equilibrium are obtained by solving the model recursively

for multiple rounds. In particular, the asset-value probabilities from round r = 1 above are used as

the priors to solve the model in round r = 2 (i.e., the round 1 probabilities are used in place of the

unconditional priors used in round 1).16 The asset-value probabilities from round r = 2 are then

used as the priors in round r = 3 and so on. We continue the iteration until the updating process

converges to a fixed point, which are the REE beliefs. In particular, the recursive process has

converged to the RE beliefs when uninformed traders do not revise their asset-value beliefs. Opera-

tionally, we consider convergence to the RE beliefs to have occurred when the execution-contingent

conditional probabilities π̂v, rtj
, π̂v0, r

tj
and π̂

v, r
tj

in round r are almost equal to the corresponding

16In the second round of solutions we again solve the full 5-period model.
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probabilities from round r − 1:

π̂v, ∗tj when
∣∣∣π̂v, rtj

− π̂v, r−1
tj

∣∣∣ < 10−7

π̂v0, ∗
tj

when
∣∣∣π̂v0, r
tj
− π̂v0, r−1

tj

∣∣∣ < 10−7

π̂
v, ∗
tj

when
∣∣∣π̂v, rtj

− π̂v, r−1
tj

∣∣∣ < 10−7

(29)

The fixed point is such that conditional on the most recent pieces of information, uninformed

traders can extract from the limit order book, they do not wish to revise their beliefs on π̂vtj , π̂
v0
tj

and π̂
v
tj

. A fixed-point solution to this recursive algorithm is an equilibrium in our model.
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6 Appendix B: Additional numerical results

The tables is this section provide additional information on the execution probabilities of limit or-

ders for informed investor with positive, neutral and negative signals, (Iv̄,Iv0 ,Iv
¯
) and for uninformed

traders. The tables also report the asset value expectations of the uninformed investor at time t2

after observing all the possible buy orders submissions at time t1 (the expectations for sell orders

are symmetric with respect to 1). Table B1 reports results for the model specification in which

only uninformed traders have a random private value factor, Table B2 instead reports results for

the model in which both the informed and the uniformed traders have private-value motives.

Table B1: Order Execution Probabilities and Asset-Value Expectation for Informed Traders with
β = 1 and Uninformed Traders with β ∼ Tr[N (µ, σ2)]. This table reports results for two different values of
the informed-investor arrival probability α (0.8 and 0.2) and for two different values of the asset-value volatility δ (0.16
and 0.02). σ = 1.5. For each set of parameters, the first four columns report the equilibrium limit order probabilities
of executions for informed traders with positive, neutral and negative signals, (Iv̄,Iv0 ,Iv

¯
) and for uninformed traders

(U). The fifth column (Uncond.) reports the unconditional order-execution probabilities in the market. Next, the
columns report conditional and unconditional future order execution probabilities and the asset-value expectations
of an uniformed investor at time t2 after observing different order submissions at time t1.

δ = 0.16 δ = 0.02

Iv̄ Iv0 Iv
¯

U Uncond. Iv̄ Iv0 Iv
¯

U Uncond.

PEX(LOA2|·) 0.955 0.175 0.055 0.395 0.395 0.180 0.229 0.170 0.193 0.193
PEX(LOA1|·) 0.989 0.125 0.078 0.397 0.397 0.323 0.323 0.323 0.323 0.323
PEX(LOB1|·) 0.078 0.125 0.989 0.397 0.397 0.323 0.323 0.323 0.323 0.323
PEX(LOB2|·) 0.055 0.175 0.955 0.395 0.395 0.170 0.229 0.180 0.193 0.193

α = 0.8
E[v|LOB1 |·] 1.160 1.000
E[v|LOB2 |·] 1.083 1.013
E[v|MOA1 |·]
E[v|MOA2 |·] 1.000 1.000

PEX(LOA2|·) 0.651 0.487 0.394 0.511 0.511 0.514 0.499 0.476 0.496 0.496
PEX(LOA1|·) 0.886 0.766 0.717 0.789 0.789 0.792 0.792 0.790 0.791 0.791
PEX(LOB1|·) 0.717 0.766 0.886 0.789 0.789 0.790 0.792 0.792 0.791 0.791
PEX(LOB2|·) 0.394 0.487 0.651 0.511 0.511 0.476 0.499 0.514 0.496 0.496

α = 0.2
E[v|LOB1 | ·] 1.026 1.000
E[v|LOB2 | ·] 1.013 1.009
E[v|MOA1 | ·]
E[v|MOA2 | ·] 1.000 1.000

51



Table B2: Order Execution Probabilities and Asset-Value Expectation for Informed and Uninformed
Traders both with β ∼ Tr[N (µ, σ2)]. This table reports results for two different values of the informed-investor
arrival probability α (0.8 and 0.2) and for two different values of the asset-value volatility δ (0.16 and 0.02). σ = 1.5.
For each set of parameters, the first four columns report the equilibrium limit order probabilities of executions for
informed traders with positive, neutral and negative signals, (Iv̄,Iv0 ,Iv

¯
) and for uninformed traders (U). The fifth

column (Uncond.) reports the unconditional order-execution probabilities in the market. Next, the columns report
conditional and unconditional future order execution probabilities and the asset-value expectations of an uniformed
investor at time t2 after observing different order submissions at time t1.

δ = 0.16 δ = 0.02

Iv̄ Iv0 Iv
¯

U Uncond. Iv̄ Iv0 Iv
¯

U Uncond.

PEX(LOA2|·) 0.644 0.502 0.410 0.519 0.135 0.502 0.487 0.472 0.487 0.116
PEX(LOA1|·) 0.913 0.834 0.702 0.817 0.392 0.849 0.837 0.824 0.836 0.470
PEX(LOB1|·) 0.702 0.834 0.913 0.817 0.392 0.824 0.837 0.849 0.836 0.470
PEX(LOB2|·) 0.410 0.502 0.644 0.519 0.135 0.472 0.487 0.502 0.487 0.116

α = 0.8
E[v|LOB1 |·] 0.996 1.000
E[v|LOB2 |·] 0.944 0.999
E[v|MOA1 |·]
E[v|MOA2 |·] 1.156

PEX(LOA2|·) 0.525 0.494 0.470 0.496 0.402 0.490 0.487 0.483 0.487 0.394
PEX(LOA1|·) 0.853 0.833 0.813 0.833 0.737 0.839 0.837 0.834 0.837 0.745
PEX(LOB1|·) 0.813 0.833 0.853 0.833 0.737 0.834 0.837 0.839 0.837 0.745
PEX(LOB2|·) 0.470 0.494 0.525 0.496 0.402 0.483 0.487 0.490 0.487 0.394

α = 0.2
E[v|LOB1 |·] 1.003 1.000
E[v|LOB2 |·] 0.996 1.000
E[v|MOA1 |·]
E[v|MOA2 |·] 1.160
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Roşu, Ioanid, 2016b, Liquidity and information in order driven markets.

54


