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Trading via dynamic order-splitting algorithms is a pervasive fact in today’s fi-

nancial markets.1 Informed investors use dynamic order-splitting to increase trading

profits by slowing the public revelation of their private information. Order-splitting is

not, however, limited to informed investors. Less informed investors — index mutual

funds and comparatively more passive pensions and insurance companies — rely on

order-splitting to minimize trading costs for hedging and portfolio rebalancing. As

described in O’Hara (2015), portfolio managers transmit parent orders — specifying

the total amount of a security to be bought or sold over a fixed trading horizon —

to brokers who use computer algorithms to break parent orders into sequences of

smaller child orders.2 While dynamic informed trading has been studied extensively

(see, e.g., Kyle 1985), order-splitting for portfolio rebalancing is less understood.

Our paper is the first to model a market equilibrium with dynamic trading given

both long-lived private information and portfolio rebalancing. We consider a multi-

period Kyle (1985) market in which there are two strategic investors with different

trading motives who each follow optimal dynamic trading strategies. One investor is

a standard Kyle strategic informed investor with long-lived private information. The

other investor is a strategic portfolio rebalancer who trades over multiple rounds to

minimize the cost of hitting a private parent terminal trading target.

Our model lets us investigate the economic motivations for dynamic order-splitting

for portfolio rebalancing and its equilibrium effects. Our analysis leads to three main

insights:

• Dynamic rebalancing and dynamic informed trading are structurally different

from each other. Child orders for dynamic rebalancing, like informed trading,

are timed to reduce the price-impact cost of trading, but rebalancing orders

also have components driven by sunshine trading, endogenous learning, and

constrained short-term speculative trading.

1Pension & Investments (2007) reported that in a survey of leading institutional investors 72%
said they used order-execution algorithms. Anecdotal evidence suggests that the use of order-
execution algorithms has grown further in subsequent years. Order-execution algorithms are different
from computer-based market making, latency arbitrage, and other high frequency trading strategies.

2Keim and Madhavan (1995) is the first empirical study of dynamic order-splitting by institutional
investors. Recently, van Kervel and Menkveld (2018) estimate an average of 156 child trades per
parent order for four large institutions trading on Nasdaq OMX. Korajczyk and Murphy (2016)
estimate an average of between 327 and 604 child orders per large parent order depending on whether
the parent order is nonstressful (lower three quartiles of large trades) or stressful (top quartile) for
Canadian equities. See Johnson (2010) for more on specific dynamic trading algorithms. The SEC
(2010) report also discusses the role of trading algorithms in the current market landscape.
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• Dynamic rebalancing affects the mix of information and trading noise in the ar-

riving order flow and, thereby, affects equilibrium price discovery and liquidity

provision.3 There are direct effects given the mixture of noise and information

in the rebalancer’s parent trading target and also because the rebalancer learns

endogenously through the trading process itself. In particular, the rebalancer

can filter the aggregate order flow better than market makers by incorporating

his knowledge about his own past order submissions. In addition, there are

indirect effects due to the equilibrium response of the informed investor to the

rebalancer’s trading, i.e., how aggressively she trades on her private informa-

tion given informational competition with the rebalancer and how she exploits

additional noise in prices due to price pressure from the rebalancer’s orders.

• Trading constraints induce autocorrelation in the aggregate order flow. In par-

ticular, dynamic rebalancing based on a parent target leads to autocorrelated

child order flow that is different from unpredictable informed-investor orders

and serially independent noise-trader orders. Autocorrelated rebalancing or-

ders lead to a type of sunshine trading with market makers trying to forecast

the remaining future latent trading demand of the rebalancer since predictable

orders have no price impact.

In addition, an extensive battery of numerical experiments identifies a number of

testable implications of dynamic rebalancing:

• Dynamic rebalancing induces U -shaped intraday patterns in expected trading

volume, price volatility, and order-flow autocorrelation and twists the price im-

pact of order flow over the day, where the magnitude of these intraday patterns is

increasing in the volatility of the rebalancing target. Thus, daily time-variation

in the volatility of rebalancing targets should induce comovement in a cross-

section of multiple intraday price and volume patterns.

• Rebalancer and informed-investor orders tend to become negatively correlated

over time as the informed investor trades against price pressure from past re-

balancer orders.

3Uninformed trading noise plays a critical role in markets with adverse selection. See Akerlof
(1970), Grossman and Stiglitz (1980), Kyle (1985), and Glosten and Milgrom (1985).
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Our analysis integrates two literatures on pricing and trading. The first literature

is about price discovery. Kyle (1985) describes equilibrium pricing and dynamic trad-

ing in a market with a single investor with long-lived private information. Subsequent

work by Holden and Subrahmanyam (1992), Foster and Viswanathan (1994, 1996),

and Back, Cao, and Willard (2000) allows for multiple informed investors with long-

lived information. Our model extends Foster and Viswanathan (1996) — who were

the first to model a dynamic equilibrium with multiple investors with heterogeneous

information and to solve the “forecasting the forecasts of others” problem — to al-

low for trading-target constraints. Given our interest in information aggregation and

intraday order-flow dynamics, the Kyle set-up lets us abstract from the arms race for

speed (Hoffmann 2014 and Biais, Foucault, and Moinas 2015), intermediation chains

linking multiple market makers (Weller 2013), limit order cancelation and flickering

quotes (Hasbrouck and Saar 2007 and Baruch and Glosten 2013), market fragmen-

tation and latency (Menkveld, Yueshen, and Zhu 2017), and other millisecond-level

high-frequency trading (HFT) phenomena.

A second literature studies optimal dynamic order execution for uninformed in-

vestors with trading targets. This includes Bertsimas and Lo (1998), Almgren and

Chriss (1999, 2000), Gatheral and Scheid (2011), Engel, Ferstenberg, and Russell

(2012), Predoiu, Shaikhet, and Shreve (2011), and Boulatov, Bernhardt, and Lari-

onov (2016) as well as models of predatory trading in Brunnermeier and Pedersen

(2005) and Carlin, Lobo, and Viswanathan (2007). This research takes the price im-

pact function for orders as an exogenous model input. In contrast, we model optimal

order execution in an equilibrium setting that endogenizes the effect of dynamic re-

balancing on pricing.4 A partial equilibrium analysis misses these equilibrium effects.

In addition, unlike in the predatory trading models, our rebalancer’s trading target is

not publicly known ex ante, but is random and private information. This is arguably

the usual situation on normal trading days, as opposed to special days (e.g., futures

rolls and index reconstitutions) on which the direction of rebalancing is predictable.

Models combining both informed trading and optimized uninformed rebalancing

have largely been restricted to static settings or to multi-period settings with short-

lived information and/or exogenous restrictions on rebalancer trading. Admati and

4In our model, order flow has a price impact due to adverse selection. Alternatively, price impacts
can be due to inventory costs and imperfect competition in liquidity provision (see Choi, Larsen,
and Seppi 2018).

3



Pfleiderer (1988) study a series of repeated one-period trading rounds with short-

lived information and uninformed discretionary traders who only trade once but who

decide when to time their trading. An exception is Seppi (1990) who models an

informed investor and a strategic uninformed investor with a trading target who both

can trade dynamically. He solves for separating and partial pooling equilibria with

upstairs block trading for a restricted set of model parameterizations.

Our paper is related to Degryse, de Jong, and van Kervel (DJK 2014). Both

papers model dynamic order-splitting by an uninformed rebalancer. Consequently,

both models have autocorrelated order flows. Order-flow autocorrelation is empiri-

cally significant but absent in previous Kyle models.5 However, there are two differ-

ences between our model and DJK (2014). First, informed investors in DJK (2014)

have short-lived private information; i.e., they only have one chance to trade on intra-

day signals before they become public. In contrast, our informed investor trades on

long-lived information over multiple intraday time periods. Consequently, it is harder

to distinguish cumulative order imbalances due to rebalancing from imbalances due

to information trading. This reduces the value of sunshine trading. Second, our re-

balancer orders depend adaptively on the realized path of aggregate order flow over

the day in addition to the trading target. Adaptive trading is absent in DJK (2014)

where the rebalancer trades deterministically over time to reach his target. In partic-

ular, our rebalancer learns endogenously about the informed investor’s information,

because he can filter the aggregate order flow better than the market makers. Our

analysis is possible because we adapt the approach of Foster and Vishwanathan (1996)

to circumvent the large state-space problem mentioned in DJK (2014).

Our analysis includes three types of sunshine trading. The first is the previously

discussed zero-price impact of predictable orders. In our model and in DJK (2014),

predictable orders have no incremental information content and, thus, absent frictions

in the supply of liquidity, no price impact.6 A second type of sunshine trading exploits

predictable market dynamics as liquidity is temporarily depleted and then replenished

over time (see, e.g., Predoiu, Shaikhet, and Shreve 2011). In our model, the informed-

investor trading corrects price pressure from past rebalancer orders, which lowers the

5For early empirical evidence on order flow autocorrelation in equity markets, see Hasbrouck
(1991a,b). More recently, Brogaard, Hendershott, and Riordan (2016) find autocorrelation in orders
from non-HFT investors (which is our focus) as well as in HFT orders.

6Predictable sunshine trading is statistically inferred in our model rather than publicly prean-
nounced as in Admiti and Pfleiderer (1991).
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rebalancer’s subsequent trading costs. The third type of sunshine trading exploits

predictable intraday variation in liquidity.

1 Model

We model a multi-period discrete-time market for a risky stock. A trading day is

normalized to the interval [0, 1] during which there are N ∈ N time points at which

trading occurs where ∆ := 1
N
> 0 is the time step. As in Kyle (1985), the stock’s

terminal value ṽ becomes publicly known at time N + 1 after the market closes at

the end of the day. The value ṽ is normally distributed with mean zero and volatility

σṽ > 0. Additionally, there is a money market account that pays a zero interest rate.

Four types of investors trade in the model:

• An informed investor (who we call a hedge fund portfolio manager) knows the

terminal stock value ṽ at the beginning of trading and has zero initial positions

in the stock and the money market account. The hedge fund manager is risk-

neutral and maximizes the expected value of her fund’s final wealth. The hedge

fund’s order for the stock at time n, n = 1, ..., N , is denoted by ∆θIn where θIn

is its accumulated total stock position at time n with θI0 := 0 initially.

• A constrained investor (who we call the rebalancer) needs to rebalance his port-

folio by buying or selling stock to reach a parent terminal trading-target con-

straint ã on his final stock position θRN by the end of the trading day. For

example, he might be a portfolio manager for a large index fund or a passive

pension plan or an insurance company, who needs to rebalance his portfolio or

to respond to fund inflows/outflows. The parent target ã is private knowledge

of the rebalancer. In practice, such investors trade dynamically using optimal

order execution algorithms to minimize their trading costs. He starts the day

with zero initial positions in the stock (θR0 := 0) and his money market account.7

The target ã is jointly normally distributed with the terminal stock value ṽ and

has a mean of zero, a volatility σã > 0, and a correlation ρ ∈ [0, 1] with ṽ.

When ρ is 0, the rebalancer is initially uninformed. If ρ > 0, we think of the

rebalancer as being initially informed about ṽ but subject to random binding

7This normalization simplifies the notation for their objective functions but is without loss of
generality. Both the hedge fund and the rebalancer finance their stock trading by borrowing/lending.
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non-public risk limits.8 Importantly, our rebalancer rationally understands the

extent to which he is uninformed.9 The rebalancer is risk-neutral and maximizes

the expected value of his final wealth subject to the parent-target constraint.

The rebalancer’s child order for the stock at time n, n = 1, ..., N , is denoted by

∆θRn , and the terminal constraint requires ∆θRN = ã− θRN−1 at time N .

• Noise traders (who we think of as small non-strategic retail investors) submit

net stock orders at times n, n = 1, ..., N , that are exogenous Brownian motion

increments ∆wn. These increments are normally distributed with zero means

and variances σ2
w∆ for a constant σw > 0 and are independent of ṽ and ã.

• Competitive risk-neutral market makers observe the aggregate net order flow

yn at times n, n = 1, ..., N , where

yn := ∆θIn + ∆θRn + ∆wn, y0 := 0. (1)

Given competition and risk-neutrality, market makers clear the market (i.e.,

trade −yn) at a stock price

pn = E[ṽ | y1, ..., yn], n = 1, 2, ..., N, p0 := 0. (2)

In the past, market makers were dealers on the floor of an exchange. Today,

market making is performed by high frequency firms running algorithms on

servers colocated near an exchange’s market-crossing engine. These market-

making algos process order-flow information in real-time when setting prices.

The presence of the rebalancer with a parent trading constraint is the main dif-

ference between our model and Kyle (1985) and the multi-agent settings in Holden

and Subrahmanyam (1992) and Foster and Viswanathan (1994, 1996). In particular,

at each time n, the rebalancer has a latent demand to trade the remaining ã − θRn−1

shares over the rest of the day. Previous microstructure theory says very little about

8The fact that the terminal value ṽ is measured in dollars while the trading target ã is measured
in shares is not problematic for ṽ and ã being correlated random variables.

9Alternatively, if some investors trade under the mistaken belief that they are informed, but the
signals they condition on are in fact just noise, then their orders should have the same functional
form as actual informed-investor orders (see Kyle and Obizhaeva 2016). In our model, informed
investors and rebalancers trade differently because their trading motives are different.
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markets with daily latent trading demand. As we shall see, this latent trading demand

produces new stylized market features such as autocorrelated order flow.

The hedge fund trades strategically to maximize its expected terminal wealth

E
[
θIN(ṽ − pN) + θIN−1∆pN + ...+ θI1∆p2

∣∣∣ ṽ] =
N∑
n=1

E
[
(ṽ − pn)∆θIn

∣∣∣ ṽ] , (3)

where ∆pn := pn−pn−1. Although at time n = 1 the hedge fund only knows ṽ in (3),

it knows that its orders at later times n ∈ {2, ..., N} will also be able to incorporate

information about the then-past aggregate orders y1, ..., yn−1. Thus, the hedge fund

maximizes (3) over measurable functions ∆θI1 in the sigma algebra σ(ṽ) induced by ṽ

at time n = 1 and measurable functions ∆θIn in the sigma algebras σ(ṽ, y1, ..., yn−1) at

times n ∈ {2, ..., N} where, as in Kyle (1985), the contemporaneous aggregate order

flow yn is not publicly known at time n but is publicly known starting at time n+1.10

The rebalancer also trades strategically to maximize his expected terminal wealth

E
[
ã(ṽ − pN) + θRN−1∆pN + ...+ θR1 ∆p2

∣∣∣ ã] =
ρσṽ
σã

ã2 −
N∑
n=1

E
[
(ã− θRn−1)∆pn

∣∣∣ ã] ,
(4)

but with the difference that now there is the terminal rebalancing constraint θRN =

ã relative to his initial position θR0 = 0. The equality in (4) follows from pN =∑N
n=1 ∆pn, p0 = 0, and E[ṽ | ã] = ρσṽ

σã
ã. The rebalancer’s problem in (4) is conditioned

on the rebalancer’s initial private information (here the target ã), but the rebalancer

also understands that his later orders can be conditioned on future aggregate order

flows. Thus, (4) is maximized over measurable functions ∆θR1 in the sigma algebra

σ(ã) at time 1 and ∆θRn in σ(ã, y1, ..., yn−1) at times n ∈ {2, ..., N}.
There are two points to note here: First, the information sets of the hedge fund

σ(ṽ, y1, ..., yn−1), the rebalancer σ(ã, y1, ..., yn−1), and market makers σ(y1, ..., yn−1, yn)

at time n ∈ {1, 2, ..., N} do not nest. Second, Appendix A shows that in equilibrium

10Alternatively, we can require ∆θIn to be in the sigma algebra σ(ṽ, p1, ..., pn−1) and then use
the one-to-one mapping between prices pn and aggregate order flows yn in Definition 1 below to
infer the aggregate order flows. This approach is taken in, e.g., Back (1992). Since in equilibrium
the orders y1, . . . , yn−1 can be inferred from the prices p1, . . . , pn−1 provided that λ1, . . . , λn−1 are
non-zero and vice versa, the sigma algebras σ(ṽ, y1, ..., yn−1) and σ(ã, y1, ..., yn−1) are equivalent to
σ(ṽ, p1, ..., pn−1) and σ(ã, p1, ..., pn−1). However, our model simply assumes that aggregate order
flows are directly observable via high-speed market data-feeds with a one-period lag.
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the hedge fund’s problem (3) and the rebalancer’s problem (4) are both quadratic in

the investors’ respective orders.

Definition 1. A Bayesian Nash equilibrium is a collection of functions {θIn, θRn , pn}Nn=1

such that:

(i) Given {θRn , pn}Nn=1, the strategy {θIn}Nn=1 maximizes the hedge fund’s objective

(3).

(ii) Given {θIn, pn}Nn=1, the strategy {θRn }Nn=1 maximizes the rebalancer’s objective

(4).

(iii) Given {θIn, θRn }Nn=1, the pricing rule {pn}Nn=1 satisfies (2).11

We construct a Bayesian Nash equilibrium with the following linear structure:

First, the hedge fund’s and rebalancer’s optimal trading strategies are12

∆θRn = βRn

(
ã− θRn−1

)
+ αRn qn−1, θR0 := 0, (5)

∆θIn = βIn

(
ṽ − pn−1

)
, θI0 := 0, (6)

where {βIn, βRn , αRn }Nn=1 are constants with βRN = 1 and αRN = 0 and the process qn is

the market makers’ expectation qn = E[ã − θRn | y1, ..., yn] of the rebalancer’s latent

trading demand ã− θRn for the rest of the day conditional on the history of aggregate

order flows up through time n. The rebalancer and hedge fund are not restricted to

use linear strategies, but they optimally choose linear strategies in the equilibrium

we construct.

Second, the qn process in (5) is a structural consequence of the rebalancing con-

straint in equilibrium. Much like pn gives the market-maker beliefs about the stock

valuation, qn gives the market-maker beliefs at time n about how much the rebalancer

still needs to trade to reach his parent target. The presence of qn in (5) means that

the rebalancer’s orders are not limited to be deterministic functions of his target ã.

11The Doob-Dynkin lemma clarifies Definition 1: For any random variable B and any σ(B)-
measurable random variable A, there is a deterministic function f such that A = f(B). Therefore,
we can write θRn = fRn (ã, y1, . . . , yn−1), θIn = f In(ṽ, y1, . . . , yn−1), and pn = fpn(y1, . . . , yn) for three
deterministic functions fRn , f In, and fpn. The functions fRn , f In, and fpn are fixed whereas the realization
of the aggregate order flow variables y1, ..., yn vary with the controls θI and θR.

12If an additional αI
nqn−1 term is included in the hedge fund’s strategy in (6), then αI

n = 0 in
equilibrium. Contact the authors for a proof of this result.
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Rather, they can depend adaptively on the prior order-flow history, which is in con-

trast to the deterministic rebalancer orders in DJK (2014). It follows from (5) that

the market makers’ expectation at time n− 1 of the rebalancer’s next order at time

n is

E[∆θRn | y1, ..., yn−1] = (αRn + βRn )qn−1. (7)

Consequently, the aggregate order flow is autocorrelated in this market:13

E[yn | y1, ..., yn−1] = E[∆θIn + ∆θRn + ∆wn | y1, ..., yn−1]

= (αRn + βRn ) qn−1.
(8)

The dynamics of qn are14

∆qn := E[ã− θRn | y1, . . . , yn]− qn−1

= E[ã− θRn | y1, . . . , yn−1] + rn(yn − E[yn | y1, . . . , yn−1])− qn−1 (9)

= E[−∆θRn | y1, . . . , yn−1] + rn(yn − E[yn | y1, . . . , yn−1])

= rnyn − (1 + rn)(αRn + βRn )qn−1.

for q0 := 0 and constants {rn}Nn=1.

Third, the pricing rule in our linear equilibrium has dynamics

∆pn = λn
(
yn − E[yn | y1, ..., yn−1]

)
= λn

(
yn − (αRn + βRn )qn−1

)
,

(10)

for n = 1, ..., N where {λn}Nn=1 are constants.15 The price at time n is not affected by

the part of the order flow at time n that is predictable given past orders. Thus, the

(αRn + βRn )qn−1 term in (10) represents a type of predictable sunshine trading.

13The second equality in (8) follows from i) the independence of ṽ−pn−1, and, thus, ∆θIn from (6),
and the past aggregate order flows, ii) the assumption that the noise-trader orders are zero–mean
and i.i.d. over time, and iii) the expression for expected rebalancer orders in (7).

14The second equality in (9) follows from the definition of qn and the projection theorem where
rn is a projection coefficient. The third equality follows from E[ã− θRn |y1, . . . , yn−1] = E[ã− θRn−1−
∆θRn |y1, . . . , yn−1] = qn−1 − E[∆θRn |y1, . . . , yn−1]. The fourth equality follows from (7) and (8).

15The first equality in (10) follows because conditional expectations are linear projections given
the jointly Gaussian structure of the linear equilibrium. In particular, the projection theorem is
used to update price pn relative to price pn−1 given the innovation in the aggregate order flow yn
relative to its expectation given past orders. The second equality follows from (8).
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Optimal trading for portfolio rebalancing reflects a number of considerations:

First, the rebalancer needs to reach his parent trading target ã at time N . Sec-

ond, he wants to reach this target at the lowest cost possible. Cost minimization

occurs through several channels:

• The rebalancer splits up his child orders to spread their price impact over time

taking into account intraday patterns of the price-impact coefficients λn.

• The rebalancer takes advantage of sunshine trading. Early orders signal pre-

dictable future orders at later dates, which, from (10), have no price impact.

• The rebalancer trades strategically on information about the stock value ṽ to

reduce his costs and even, sometimes, to earn a trading profit. If ρ > 0, the

rebalancer starts out with private stock-valuation information. However, even

if the rebalancer is initially uninformed about ṽ (i.e., ρ = 0), he still learns

information endogenously over time via the trading process (see (12) below).

• The rebalancer reduces his trading costs using the fact that, on average, the

hedge fund trades against price pressure induced by the rebalancer’s past orders.

If, for example, early uninformed rebalancer buy orders raise prices, then, in

expectation, the hedge fund should buy less/sell more in the future, thereby

putting downward pressure on later prices which, in turn, reduces the expected

cost of subsequent rebalancer buying.

Despite the complexity of the multiple drivers of rebalancing trading, the rebal-

ancer’s equilibrium orders take the simple linear form in (5). To gain intuition, we

rearrange the rebalancer’s order at time n from (5) as follows:

∆θRn = (αRn + βRn ) qn−1 + βRn (ã− θRn−1 − qn−1). (11)

The first component, (αRn + βRn )qn−1, as noted in (7), is the market makers’ expec-

tation of the rebalancer’s order at time n. From the sunshine-trading property in

(10), this amount is traded with no price impact at time n. The second component,

βRn (ã−θRn−1−qn−1), in (11) is due to two effects: First, ã−θRn−1−qn−1 is mechanically

the amount the rebalancer still needs to trade beyond the market makers’ expectation

of his remaining latent trading demand in order to reach his parent target ã. Sec-

ond, ã − θRn−1 − qn−1 summarizes the private information of the rebalancer provided

10



that the lagged rebalancer strategy coefficients βR1 , . . . , β
R
n−1 are all different from 1.

The proviso about the rebalancer coefficients is a knife-edge technical condition that

ensures information about ã is not lost when θRn−1 is subtracted from ã. Given this

proviso, ã− θRn−1− qn−1 is informative about two factors that allow the rebalancer to

speculate on future price changes. The first is current stock-price misvaluation after

trading at time n− 1 in the market:16

E[ṽ − pn−1 | ã, y1, ..., yn−1] = E[ṽ − pn−1 | ã− θRn−1 − qn−1, y1, ..., yn−1]

= E[ṽ − pn−1 | ã− θRn−1 − qn−1].
(12)

In general, ã − θRn−1 − qn−1 is informative about ṽ − pn−1 at times n − 1 ≥ 2, even

if ρ = 0 (i.e., ã and ṽ are ex ante independent), because knowledge about his own

past orders lets the rebalancer filter the prior order-flow history to learn about ṽ

better than the market makers. This dynamic learning is absent from deterministic

rebalancing as in DJK (2014). The second speculative factor is that ã−θRn−1−qn−1 is

also informative about forecast errors in market-maker sunshine-trading expectations

(αRn + βRk )qk for dates k ≥ n given that

E[qk − E[qk|y1, . . . , yn−1] | ã, y1, . . . yn−1] = E[qk − E[qk | y1, . . . , yn−1] | ã− θRn−1 − qn−1]

(13)

which, via (10), lets the rebalancer forecast the next price pn at time n and also

subsequent prices pk at k > n. The predictability of the order-flow impacts on these

prices is important — in addition to the predictability of v — because the rebalancer

cannot hold stock positions to time N + 1 and liquidate them at ṽ. Rather, his

speculative positions must be liquidated at endogenous future market prices at time

N or earlier to satisfy the parent target ã at time N .

Turning to the informed investor, the term ṽ − pn−1 in (6) plays two roles in the

hedge fund’s strategy: It is private information about both the stock value and also,

16The first equality in (12) follows from qn−1, θ
R
n−1 ∈ σ(ã, y1, ..., yn−1), which produces

σ(ã, y1, ..., yn−1) = σ(ã − θRn−1 − qn−1, y1, ..., yn−1) given the proviso about the rebalancer strat-
egy coefficients and using (5) to compute θRn−1. The independence, given multivariate normality,
between ṽ−pn−1 and (y1, ..., yn−1) and between ã−θRn−1−qn−1 and (y1, ..., yn−1) allow us to discard
(y1, ..., yn−1) when computing E[ṽ−pn−1 | ã−θRn−1−qn−1, y1, ..., yn−1] in the second equality in (12).
As a practical matter, the strategy coefficient proviso was never relevant in the numerical analysis
presented in Section 3.
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in equilibrium, about the rebalancer’s remaining latent trading demand ã− θRn−1:17

E[ã− θRn−1 | ṽ, y1, ..., yn−1]

= qn−1 + E[ã− θRn−1 − qn−1 | ṽ − pn−1, y1, ..., yn−1]

= qn−1 + E[ã− θRn−1 − qn−1 | ṽ − pn−1].

(14)

Summary: There are three qualitative ways in which the equilibrium structure of

a market changes with order-splitting from dynamic portfolio rebalancing. First,

rebalancer child orders are structurally different from informed-investor orders. For

example, the rebalancer orders in (5) have a two-factor structure depending on qn−1

and ã− θRn−1 whereas the informed-investor orders in (6) have a one-factor structure

depending on v− pn−1. Second, aggregate order flow becomes autocorrelated. Third,

the aggregate order flow now has two components, one predictable and one a random

innovation. Only the latter has a price impact.

2 Equilibrium

In this section we give sufficient conditions for a linear Bayesian Nash equilibrium

as in (5) through (10). Our analysis extends the logic of Foster and Viswanathan

(1996) to allow for a trading constraint. Their approach solves the “forecasting the

forecasts of others” problem when showing deviations from equilibrium strategies are

suboptimal. Appendix A presents the analysis in greater detail.

To begin, consider a set of possible candidate values for the equilibrium constants

λn, rn, β
R
n , α

R
n , β

I
n, n = 1, . . . , N, (15)

with

βR1 6= 1, . . . , βRN−1 6= 1 (16)

βRN = 1, αRN = 0. (17)

The restrictions in (16) for times 1, . . . , N − 1 are the technical proviso discussed in

17The logic for (14) is similar to the logic for (12) in footnote 16. The only difference is that no
condition is needed on the informed-investor strategy coefficients since here there is no analogue in
(14) to the subtraction of θRn−1 in (12).
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regards to the representation of the rebalancer’s information in (12), and the restric-

tions in (17) at time N follow because the rebalancer must reach his target ã after his

last round of trade. Given a set of candidate constants (15)-(17), we define a system

of “hat” price and order-flow processes

∆θ̂In := βIn(ṽ − p̂n−1) θ̂I0 := 0, (18)

∆θ̂Rn := βRn (ã− θ̂Rn−1) + αRn q̂n−1, θ̂R0 := 0, (19)

ŷn := ∆θ̂In + ∆θ̂Rn + ∆wn, ŷ0 := 0, (20)

∆p̂n := λn(ŷn − (αRn + βRn )q̂n−1), p̂0 := 0, (21)

∆q̂n := rnŷn − (1 + rn)(αRn + βRn )q̂n−1, q̂0 := 0, (22)

which denote the processes that agents conjecture that other agents follow. In equi-

librium, conjectured beliefs must be correct in that pn = p̂n (the price process is

the conjectured price process), θRn = θ̂Rn (the rebalancer orders follow the conjectured

strategy), etc. The conjectured processes (18)-(22) make problems (3) and (4) analyt-

ically tractable in that the hedge-fund and rebalancer problems can both be described

with low-dimensional state variable processes (see (35) and (42) below).

The conjectured system {∆θ̂In,∆θ̂Rn , ŷn,∆p̂n,∆q̂n} is fully specified (autonomous)

by the coefficients (15). Given the zero-mean and joint normality of ṽ, ã, and w,

the conjectured system (18)-(22) is zero-mean and jointly normal. The variances and

covariance for the conjectured dynamics over time are denoted18

Σ(1)
n := V

[
ã− θ̂Rn − q̂n

]
, (23)

Σ(2)
n := V[ṽ − p̂n

]
, (24)

Σ(3)
n := E

[(
ã− θ̂Rn − q̂n

)
(ṽ − p̂n)

]
. (25)

These moments are “post-trade” at time n in that they reflect trading up-through

and including the time-n order flow yn. In other words, they are inputs for trading

decisions and pricing in round n + 1. The initial variances and covariance at n = 0

18The variance Σ
(2)
n of ṽ and the conditional variance of ã by itself are, by definition, non-increasing

over time. However, the variance Σ
(1)
n of the latent trading demand ã−θRn might not be monotonely

decreasing. The stock positions θRn in ã − θRn are random variables that change stochastically over
different times n rather than a fixed random variable. In particular, the possibility of speculative
trading means that θRn can, at some dates, move randomly away from ã before eventually moving
towards ã later in the day and thereby driving ã− θRn to 0.
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are exogenously given by

Σ
(1)
0 = σ2

ã, Σ
(2)
0 = σ2

ṽ , Σ
(3)
0 = ρ σãσṽ. (26)

In equilibrium, the constants (15) must satisfy consistency restrictions, which we

explain in two steps:

Step 1: The first set of restrictions on the pricing coefficients {λn, rn}Nn=1 is that in

equilibrium p̂n and q̂n must be consistent with Bayesian updating. For the conjectured

prices p̂n to be conditional expectations E[ṽ | ŷ1, . . . , ŷn] for the conjectured system,

the same logic as for the equilibrium prices pn in (10), implies

∆p̂n = λn
(
ŷn − E[ŷn | ŷ1, ..., ŷn−1]

)
= λn

(
ŷn − (αRn + βRn )q̂n−1

)
,

(27)

for n = 1, ..., N where λn equals the projection coefficient

Cov(ṽ − p̂n−1, ŷn − E[ŷn | ŷ1, ..., ŷn−1])

V(yn − E[ŷn | ŷ1, ..., ŷn−1])
. (28)

This is a restriction on the price-process coefficients in terms of the hedge-fund and

rebalancer strategy coefficients. A similar logic gives restrictions on rn for q̂n to be the

conditional expectation E[ã− θ̂Rn | ŷ1, . . . , ŷn] over time. The resulting two restrictions

on the equilibrium constants for n = 1, ..., N (see Lemma 1 in Appendix A.1) are

λn =
βInΣ

(2)
n−1 + βRn Σ

(3)
n−1

(βIn)2Σ
(2)
n−1 + (βRn )2Σ

(1)
n−1 + 2βInβ

R
n Σ

(3)
n−1 + σ2

w∆
, (29)

rn =
(1− βRn )

(
βInΣ

(3)
n−1 + βRn Σ

(1)
n−1

)
(βIn)2Σ

(2)
n−1 + (βRn )2Σ

(1)
n−1 + 2βInβ

R
n Σ

(3)
n−1 + σ2

w∆
. (30)

The conditional variances and covariance in (23)-(25) are computed recursively as

Σ(1)
n = (1− βRn )

(
(1− βRn − rnβRn )Σ

(1)
n−1 − rnβInΣ

(3)
n−1

)
, (31)

Σ(2)
n = (1− λnβIn)Σ

(2)
n−1 − λnβRn Σ

(3)
n−1, (32)

Σ(3)
n = (1− βRn )

(
(1− λnβIn)Σ

(3)
n−1 − λnβRn Σ

(1)
n−1

)
. (33)

Note the “block” structure here: The updating coefficients λn and rn just depend on

14



the strategy coefficients βRn and βIn and the prior variances and covariance from time

n−1 (along with the exogenous noise-trading variance σ2
w). The post-trade variances

and covariance Σ
(1)
n , Σ

(2)
n , and Σ

(3)
n just depend on the updating coefficients λn and

rn, the strategy coefficients βRn and βIn, and the prior variances and covariance from

time n− 1.

Step 2: The second set of restrictions is that the coefficients {βIn, βRn , αRn }Nn=1 give

optimal trading strategies for the hedge fund and the rebalancer.

Consider first the hedge fund at a generic time n. For a conjectured strategy

θ̂I to be the hedge fund’s equilibrium strategy, deviations from θ̂I cannot be prof-

itable. Proving this requires modeling the effects of possible past suboptimal play.

The hedge fund knows not only the terminal stock value ṽ, but also, as in Foster and

Viswanathan (1996), the extent to which the actual prices, quantity expectations,

and rebalancer positions (i.e., pn, qn, and θRn in (10), (9), and (5) given its actual

orders ∆θI1, . . . ,∆θ
I
n) deviate from their conjectured values (i.e., p̂n, q̂n, and θ̂Rn from

(21), (22), and (19) given the conjectured orders ∆θ̂I1, . . . ,∆θ̂
I
n in (18)). In particular,

the actual “un-hatted” processes depend on actual past orders whereas the conjec-

tured “hat” processes depend on conjectured past orders. Although the rebalancer’s

strategy is fixed by the sequences of coefficients βR1 , . . . , β
R
N and αR1 , . . . , α

R
N in (5), its

actual holdings θRn are subject to the hedge fund’s choice of θI because the aggregate

order flows affect the rebalancer’s orders. Similar statements apply to the prices pn

and latent trading-demand expectations qn.

A natural set of state variables to consider for the hedge fund’s problem in (3) is

ṽ − p̂n, q̂n, θ̂In − θIn, θ̂Rn − θRn , q̂n − qn, p̂n − pn. (34)

The first two quantities in (34) describe market pricing errors (given the hedge fund’s

private valuation information) and the predicted future latent rebalancer trading

demand (given market information) in the conjectured equilibrium. The next four

quantities describe the hedge fund’s private information about its actual holdings

and about deviations its actual past orders have induced in the rebalancer’s holdings,

market expectations about the future rebalancer latent trading demand, and market

prices relative to the conjectured processes in (18)-(22). However, the state space for

the hedge fund can be simplified, because in equilibrium some of these state variables

only matter in combination for the hedge fund’s optimization problem. Appendix
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A shows that two composite state variables are sufficient for the hedge fund’s value

function:

X(1)
n := ṽ − pn, X(2)

n := (θ̂Rn − θRn ) + (q̂n − qn) + Σ
(3)
n

Σ
(2)
n

(
ṽ − p̂n

)
, n = 0, ..., N. (35)

From a technical point of view, this is a substantial reduction from the six state

variables in (34). Two seems likely to be the minimum number of state variables

necessary for the hedge fund’s problem. Lemma 2 in Appendix A ensures that the

X
(1)
n and X

(2)
n processes are observable for the hedge fund. In equilibrium, with

θIn = θ̂In and, thus, pn = p̂n, qn = q̂n, and θRn = θ̂Rn , it follows from (35) that

X(2)
n = Σ

(3)
n

Σ
(2)
n

X(1)
n , n = 0, 1..., N. (36)

Thus, on the equilibrium path, the hedge fund’s state space reduces to just ṽ − pn,

which is consistent with the form of its equilibrium orders in (6).

Lemma 2 in Appendix A shows that the hedge fund’s value function at each time

n = 1, ..., N has the quadratic form

max
∆θI
k
∈σ(ṽ,y1,...,yk−1)

n+1≤k≤N

E
[ N∑
k=n+1

(ṽ − pk)∆θIk
∣∣∣ ṽ, y1, ..., yn

]
= I(0)

n + I(1,1)
n (X(1)

n )2 + I(1,2)
n X(1)

n X(2)
n + I(2,2)

n (X(2)
n )2,

(37)

where I
(0)
n , I

(1,1)
n , I

(1,2)
n , and I

(2,2)
n are constants. Lemma 2 also shows that the hedge

fund’s problem (37) is quadratic in its orders ∆θIn. The first-order condition for (37)

gives the hedge fund’s optimal orders

∆θIn = γ(1)
n X

(1)
n−1 + γ(2)

n X
(2)
n−1, n = 1, ..., N, (38)

where the coefficients γ
(1)
n and γ

(2)
n depend on the hedge-fund value-function coeffi-

cients and on the parameters of the conjectured price, latent trading demand, and

rebalancer strategy processes given in (A.28) and (A.29) in Appendix A. The second-

order condition for the strategy in (38) to be optimal for the hedge fund is

I(2,2)
n r2

n + I(1,2)
n rnλn + I(1,1)

n λ2
n < λn, n = 1..., N. (39)
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By inserting the hedge fund’s candidate strategy (38) and (A.28)-(A.29) into the

expectation in (37), we can determine the hedge fund’s value-function coefficients

recursively as in equations (A.42)-(A.44) in Appendix A.5.

Equating the coefficients in (38) with (6) and using the equilibrium condition (36)

gives the following restriction on the hedge fund’s strategy coefficients:

βIn = γ(1)
n + γ(2)

n

Σ
(3)
n−1

Σ
(2)
n−1

, n = 1..., N. (40)

For fixed moments Σ
(1)
n ,Σ

(2)
n , and Σ

(3)
n , we can use the linear equations (31)-(33) to

express Σ
(1)
n−1,Σ

(2)
n−1, and Σ

(3)
n−1 in terms of rn, λn, β

I
n, β

R
n . Equations (A.28)-(A.29) and

(29)-(30) can then be used to see that (40) is a fifth–degree polynomial in {βRn , βIn}
whenever Σ

(i)
n , i = 1, 2, 3, and I

(i,j)
n , i = 1, 2 and i ≤ j ≤ 2, are fixed.

Similarly, six natural state variables for the rebalancer’s problem in (4) are

ã− θ̂Rn , q̂n, θ̂Rn − θRn , θ̂In − θIn, q̂n − qn, p̂n − pn. (41)

The first two quantities in (41) describe the rebalancer’s latent trading demand (give

his private information about his target and past orders) and the market-maker pre-

diction of his future latent trading demand (given the public order-flow history) in

a conjectured equilibrium. The next four quantities describe the rebalancer’s private

information about its own past orders and how they caused the hedge fund’s hold-

ings, the market’s latent trading demand predication, and prices to deviate from the

conjectured equilibrium. However, the rebalancer’s state space can also be simplified.

Just three composite state variable are sufficient for the rebalancer’s value function:

Y (1)
n := ã− θRn , Y (2)

n := (p̂n − pn) + Σ
(3)
n

Σ
(1)
n

(ã− θ̂Rn − q̂n), Y (3)
n := qn, n = 0, 1, ..., N.

(42)

Lemma 3 in Appendix A ensures these processes are observable for the rebalancer.

In equilibrium, with pn = p̂n, qn = q̂n, and θIn = θ̂In, it follows from (42) that

Y (2)
n = Σ

(3)
n

Σ
(1)
n

(Y (1)
n − Y (3)

n ), n = 1, ..., N. (43)

Thus, on the equilibrium path, the state space for the rebalancer at time n reduces to

just two state variables, ã− θRn and qn, which is consistent with (5). When the hedge
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fund’s strategy is fixed as in (6), Lemma 3 in Appendix A shows that the rebalancer’s

value function is quadratic in the rebalancer state variables

max
∆θR
k
∈σ(ã,y1,...,yk−1)

n+1≤k≤N−1

− E
[ N∑
k=n+1

(ã− θRk−1)∆pk

∣∣∣ ã, y1, ..., yn

]
= L(0)

n +
∑

1≤i≤j≤3

L(i,j)
n Y (i)

n Y (j)
n ,

(44)

where L
(0)
n , ..., L

(3,3)
n are constants. Lemma 3 also ensures that the rebalancer’s prob-

lem (44) is quadratic in his orders ∆θRn . The corresponding first-order-condition gives

the rebalancer’s optimal orders

∆θRn = δ(1)
n Y

(1)
n−1 + δ(2)

n Y
(2)
n−1 + δ(3)

n Y
(3)
n−1, n = 1, ..., N, (45)

where the coefficients δ
(1)
n , δ

(2)
n , and δ

(3)
n depend on the rebalancer’s value-function

coefficients, and the parameters of the conjectured price, latent trading demand and

hedge fund’s strategy processes given in (A.38)–(A.40) in Appendix A. The associated

second-order condition for the rebalancer’s optimal strategy is

L(1,1)
n + L(3,3)

n r2
n + L(1,2)

n λn + L(2,2)
n λ2

n < L(1,3)
n rn + L(2,3)

n rnλn, n = 1, ..., N. (46)

Similar to the hedge fund’s problem, by inserting the rebalancer’s candidate strategy

(45) and (A.38)-(A.40) into the expectation in (44), we can find the rebalancer’s

value-function coefficients recursively as in equations (A.45)-(A.50) in Appendix A.5.

By equating the coefficients in (45) with (5) and using the equilibrium condition

(43), we get two restrictions:

βRn = δ(1)
n + δ(2)

n

Σ
(3)
n−1

Σ
(1)
n−1

, αRn = δ(3)
n − δ(2)

n

Σ
(3)
n−1

Σ
(1)
n−1

, n = 1, ..., N. (47)

Similarly to (40), the first equation in (47) is a fifth–degree polynomial in {βRn , βIn}
whenever Σ

(i)
n , i = 1, 2, 3, and L

(i,j)
n , i = 1, 2, 3 and i ≤ j ≤ 3, are fixed. The

second equation in (47) is a linear equation in αRn once all of the other parameters

are determined.

Our main theoretical result is the following:

Theorem 1. Constants {λn, rn, βRn , αRn , βIn}Nn=1 satisfying restrictions (16)-(17) de-
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scribe a linear Bayesian Nash equilibrium of the form in (5), (6), (9), and (10) if,

for all times n = 1, . . . , N , the following restrictions hold:

i) The pricing and latent-trading prediction restrictions in (29)-(30) hold where

the moments Σ
(1)
n ,Σ

(2)
n , and Σ

(3)
n are given in (26) and (31)-(33).

ii) The equilibrium strategy conditions (40) and (47) are satisfied with the second-

order-conditions (39) and (46) holding where the value-function coefficients

{I(i,j)
n }1≤i≤j≤2 and {L(i,j)

n }1≤i≤j≤3 for n = 1, ..., N − 1 are computed via the

recursions (A.42)-(A.44) and (A.45)-(A.50) in Appendix A.5.

Theorem 1 is a verification result for a set of model parameters to constitute a

linear equilibrium. It extends Proposition 1 in Foster and Viswanathan (1996) to allow

for an investor with a trading constraint. As with most discrete-time Kyle models,

including Foster and Viswanathan (1996), we do not have analytic expressions for the

equilibrium. Equilibria must be computed numerically. Section A.6 in the Appendix

describes our numerical algorithm. However, there is an existence and comparative-

static result for the asset-value variance σ2
ṽ .

Proposition 1. If an equilibrium exists with

λn, rn, β
I
n, β

R
n , α

R
n ,Σ

(1)
n−1,Σ

(2)
n−1,Σ

(3)
n−1, n = 1, ..., N, (48)

given a parameterization

Σ
(1)
0 = σ2

ã, Σ
(2)
0 = σ2

ṽ , Σ
(3)
0 = ρ σã σṽ (49)

where σã > 0, σṽ > 0, ρ ≥ 0, then for any parameterization

Σ
(1)
0 = σ2

ã, Σ
(2)
0 = h2σ2

ṽ , Σ
(3)
0 = ρ σã hσṽ (50)

for any constant h > 0, an equilibrium exists with

hλn, rn,
βIn
h
, βRn , α

R
n ,Σ

(1)
n−1, h

2 Σ
(2)
n−1, hΣ

(3)
n−1, n = 1, ..., N. (51)

This result follows immediately from verifying that, if the set of equations and in-

equalities for the equilibrium conditions hold for (48), then they also hold for (51).19

19The value function coefficients change from I
(1,1)
n , I

(1,2)
n , I

(2,2)
n , L

(1,1)
n , L

(1,2)
n , L

(1,3)
n , L

(2,2)
n , L

(2,3)
n ,
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As is expected, greater asset-value volatility makes prices more sensitive to order flow

(λn is increasing in σ2
ṽ), and this reduction in the absolute level of liquidity causes

informed investors to trade less aggressively (βIn is decreasing in σ2
ṽ). Perhaps more

surprisingly, the rebalancer’s strategy coefficients are unaffected by σ2
ṽ . One piece of

intuition is the following: The rebalancer has to reach his target ã at time N and

relative trade-offs between liquidity at different dates (λn/λn′) are unaffected by σ2
ṽ .

3 Numerical results

Our analysis in this section investigates two quantitative questions: What do dynamic

rebalancing strategies look like in our market? And what are the equilibrium effects

of the rebalancing constraint on price discovery, liquidity, and order flow? To answer

these questions, we conduct an extensive battery of numerical experiments over the

model parameter space.

Our numerical specification has N = 10 rounds of trading and the total variance of

the Brownian motion noise-trading order flow over the day (N periods) is normalized

at σ2
w = 1. The variance of the terminal stock value ṽ is set to σ2

ṽ = 1. We do not

numerically vary σ2
ṽ , because Proposition 1 gives analytic comparative statics. In

particular, intraday patterns in the strategy and price coefficients are either invariant

to σ2
ṽ or scale proportionally with σṽ, σ

2
ṽ , or 1/σṽ. The target variance σ2

ã and target

informativeness ρ are varied over a 2 × 2 grid with σ2
ã taking values 0.2, 0.4, . . . , 2

(i.e., from one fifth up to twice the daily noise-trading variance) and with ρ taking

values 0, 0.05, 0.10, . . . , 0.45. Over this range of σ2
ã and ρ parameters, our results

are numerically well-behaved. However, when ρ is greater than 0.45 and the target

variance σ2
ã is small (e.g., typically 0.2 or 0.4), our numerical results are sometimes

less well-behaved.20 Our discussion focuses on results in the numerically well-behaved

region. While our numerical findings are not necessarily global properties, they hold

for a large portion of the parameter space. Moreover, given the prevalence of order-

splitting in real-world markets by passive and less informed institutions, a low ρ and

a high σ2
ã are, arguably, the empirically relevant cases.

Most of our analysis is presented visually in figures showing intraday patterns. In

our standard template, Figure “A” is for the case of uninformative targets (ρ = 0)

and L
(3,3)
n to

I(1,1)
n

h , I
(1,2)
n , h I

(2,2)
n , hL

(1,1)
n , L

(1,2)
n , hL

(1,3)
n ,

L(2,2)
n

h , L
(2,3)
n , and hL

(3,3)
n for n = 1, . . . , N .

20Some variables occasionally take large values quite different from their values at adjacent times.
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with target variances σ2
ã equal to 0.2, 1, and 2. Figure “B” is for the case of informative

targets (ρ = 0.45) with the same three target variances. The various intraday patterns

are qualitatively similar for other parameterizations in between those shown here, and

the patterns change relatively smoothly in the target variance σ2
ã and correlation ρ.

Thus, one can interpolate between the cases in the figures to infer the patterns for

other variances σ2
ã and correlations ρ. These patterns are also qualitatively similar

outside of our parameter grid for correlations ρ > 0.45 so long as σ2
ã is not too small.

We assess the impact of portfolio rebalancing by comparing our model with two

alternative models. For ρ = 0, we compare our equilibrium with Kyle (1985). For

ρ > 0, we compare our model with a variant of the Foster and Viswanathan (1994)

model, which we call the modified FV model. In the modified FV model, one investor

has superior information in that she knows the terminal stock value ṽ, while a less-

informed investor receives a noisy signal ã with a correlation ρ > 0 with ṽ.21 The

signal ã in the modified FV model has the same distribution as the target ã in

our rebalancing model. However, in the modified FV model there is no trading

constraint. The one difference between our modified FV model and the original Foster

and Viswanathan (1994) model is that our better-informed investor does not know

the less-informed investor’s information (whereas in Foster and Viswanathan 1994

the better-informed investor knows both ṽ and ã). Hence, our dynamic rebalancing

model and the modified FV model have identical information structures. Comparing

equilibria in the two models shows the effect of the parent-target constraint when

ρ > 0. The modified FV model is described in more detail in Appendix B and in the

Internet Appendix. One feature of the modified FV model to note is that the signal

variance σ2
ã does not affect the informativeness of the less-informed investor’s signal.

Thus, many properties of the modified FV model are unaffected by changes in σ2
ã. In

contrast, changing σ2
ã has an effect in our rebalancing model because σ2

ã is an ex ante

measure of the size of the parent constraint on the rebalancer’s trading.

3.1 Overview of numerical results

Our numerical analysis produces a variety of empirical predictions. One set of results

describes quantitative properties of equilibrium rebalancing orders and the impor-

tance of various economic considerations in the rebalancer trading strategy.

21The modified FV model reduces to the Kyle (1985) model when ρ = 0 since then the less-
informed investor has no private information and, thus, in equilibrium does not trade.
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• The mean and standard deviation of rebalancer orders have intraday patterns

that are U -shaped for parameterizations within our numerically well-behaved

set. In addition, the magnitude of the U -shape increases when the target vari-

ance σ2
ã increases and becomes skewed when the correlation ρ increases. Thus,

the model not only predicts the existence of U -shaped intraday rebalancer order

flow patterns, but also predicts how these intraday patterns vary with time-

variation in the volatility of rebalancing targets.

• The realized parent target ã has a large effect on the rebalancer child orders

relative to adaptive trading. In addition, predictable interactions with informed-

investor orders have an important impact on the U -shaped timing of optimal

rebalancing orders.

A second set of findings describes the equilibrium effects of dynamic rebalancing on

the price and order-flow processes.

• Trading volume, price volatility, and order-flow autocorrelation have U -shaped

intraday patterns that are increasing in target variance σ2
ã.

22 This prediction

is testable by looking at whether these intraday patterns increase for stocks on

days for which rebalancing-target uncertainty is greater (e.g., days with highly

volatile mutual fund inflows/outflows).

• Daily order-flow autocorrelation (estimated using intraday data) can be used —

given its low sensitivity to changes in ρ and insensitivity to σ2
ṽ — as an empirical

proxy to track time-variation in rebalancing volatility. Thus, time-variation

in the size of the various intraday patterns and in the aggregate order-flow

autocorrelation level should be positively correlated.

• Autocorrelation of the aggregate order flow is linked to autocorrelation in the

orders of individual investors who are rebalancing. This is in contrast to order-

flow autocorrelation due to cross-autocorrelation across different investors due

to front-running and back-running (see Yang and Zhu 2015).

We have a few more observations about testability. First, the aggregate order-

flow and pricing predictions are testable using standard intraday price and order-flow

22Order-splitting is certainly not the only cause of U -shaped intraday patterns, since many of the
empirically documented intraday patterns predate the widespread use of order-splitting algorithms.
However, the magnitude of these U -shaped patters should co-vary with rebalancing volatility.
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data. On the other hand, predictions about rebalancing strategies and structural

differences between rebalancers and informed investors require investor-level order-

flow data (e.g., IIROC). Second, since rebalancer order flows are autocorrelated, while

informed-investor orders are not, this difference can be used to identify individual

institutions in an investor-level order database as being likely rebalancers (if their

orders have above-average autocorrelation) or likely informed investors (if their orders

are less autocorrelated). Third, we can use a direct (or inferred as above) classification

of individual investors to test whether the orders of likely rebalancers become more

negatively correlated with orders from likely informed investors over the day. Fourth,

our comparative static predictions are not just about individual patterns, but rather

about the co-movement of a cross-section of multiple intraday patterns. Fifth, our

predications about time-variation in the volatility (i.e., second moment) of non-public

portfolio-rebalancing trading demand are different from predictions about changing

means (i.e., first moments) of publicly predictable trading demand investigated in

Bessembinder, Carrion, Tuttle, and Venkatarman (2016).

3.2 Dynamic rebalancing

The rebalancer’s orders are described by the strategy coefficients βRn and αRn . Figures

1A and 1B show intraday patterns for these coefficients. The fact that βRn is positive

means, from (11), that the rebalancer trades in the direction of his private information

ã − θRn−1 − qn−1. Intuitively, the larger ã − θRn−1 is relative to qn−1, the more the

rebalancer must trade mechanically to achieve his target. It is also intuitive that the

βRn coefficient increases as the end of the day (and the binding rebalancing deadline)

approaches. When the target ã is informative (i.e., ρ = 0.45), Figure 1B shows that

the rebalancer trades more aggressively on his target (i.e., βRn is larger) early in the

day. There is also a scaling effect with informative targets. When the target variance

σ2
ã is smaller, the information content of a given absolute realization of ã is larger,

and, thus, the rebalancer trades more aggressively to exploit the information in ã.

Next, consider the sunshine-trading component (αRn + βRn )qn−1 from (11). The

fact that αRn + βRn is positive (if the two coefficients in Figure 1 are added together)

means that, on average, the rebalancer buys more when market makers believe he

has a large latent buying demand. Again, this is intuitive. The sum αRn +βRn is small

for most of the day, but increases towards the end of the day, when the rebalancer
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engages in more sunshine trading to close the predictable part qn−1 (as well as the

unpredictable part ã− θRn−1 − qn−1) of his remaining gap ã− θRn .

The coefficient αRn captures the incremental impact of trading motives that are

present when trading on the private information ã − θRn−1 − qn−1 but absent when

trading on qn−1. In particular, when trading on ã − θRn−1 − qn−1, the rebalancer is

motivated in part by opportunities for speculation and the fact that non-sunshine

trading has price impacts in addition to the mechanical effects of trading towards

his target. A negative value of αRn means that non-mechanical motives increase the

rebalancer’s trading on his information ã−θRn−1−qn−1 relative to his trading on qn−1.

Intuitively, the larger the rebalancer’s actual future latent trading demand ã − θRn−1

is relative to the market-maker forecast, qn−1, the more the market underestimates

future aggregate buying relative to the rebalancer’s private information. This pre-

dictability causes the rebalancer to anticipate rising future prices and, thereby, leads

him to buy more/sell less at time n. Since sunshine-trading-forecast-error predictabil-

ity causes the rebalancer to trade more in the direction of his information ã−θRn−qn−1,

it makes αRn smaller or negative. In contrast, the intuition for predictability about

current mispricing ṽ − pn−1 is more complicated.23 However, it can be shown that

impact of current mispricing predictability potentially can have the opposite sign of

the impact of sunshine-trading forecast error predictability. As a result, the net im-

pact measured by αRn cannot be signed unambiguously a priori. In our numerical

analysis, however, αRn is consistently negative, even when ρ > 0. This suggests that

the sunshine-trading-forecast-error motive is dominant here.

The rebalancer’s strategy coefficients αRn and βRn reflect the combined effects of

the economic considerations described in Section 1. We disentangle these various

economic considerations and assess their quantitative importance using two different

decompositions. The first decomposes the rebalancer orders into their dependence on

the underlying variables. The second, considered in the Internet Appendix, is based

on a set of ad hoc strategies that include and omit various economic considerations.

Decomposition into underlying variables: The latent trading-demand expecta-

tion qn and cumulative holdings θRn−1 in (11) are endogenous processes, so we further

decompose the rebalancer’s orders into linear functions of the underlying exogenous

23For example, at time 1, the direction of the mispricing predictability is determined by cov[ṽ −
p1, ã− θR1 − q1] = −(1− βR

1 )λ1β
R
1 σ

2
ã + (1− βR

1 )(1− λ1β
I
1)σãσṽρ. If ρ = 0 and given 0 < βR

1 < 1 and
λ1 > 0, then cov[ṽ − p1, ã− θR1 − q1] is negative.
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Figure 1: Intraday patterns for the rebalancer strategy coefficients αRn (lines with
•, N, �) and βRn (lines with ◦, M, �) for times n = 1, 2, ..., 10. The parameters are
N = 10, σ2

ṽ = 1, σ2
w = 1, and σ2

ã = 0.2 (−− with ◦ or •), 1 (− · − with M or N), 2 (− ·
· − with � or �).
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random variables — the rebalancing target ã, the terminal value ṽ, and noise-trader

orders ∆wj — in the market:

∆θRn = ARn ã+BR
n ṽ +

∑
j=1,...n−1

cRj,n ∆wj. (52)

This decomposition follows from the joint linearity of prices, orders, and the qn pro-

cess. The dependence on ṽ and the noise-trader orders ∆wj comes through the qn

process and its dependence on lagged aggregate orders. The dependence on the tar-

get ã is both direct and also indirect through the lagged θRn−1 and qn−1 terms in (11).

This decomposition is then used to relate statistical properties of the rebalancer child

orders to the statistical properties of ã, ṽ, and the noise trader orders.

Figure 2 shows the linear decomposition coefficients from (52) for the rebalancer

orders over time for our six reference parameterizations. Similar patterns hold for

other parameterizations in our parameter-space analysis. One fact affecting these

intertemporal patterns is the terminal parent constraint (θRN = ã), which, by con-

struction, requires
∑

n=1,...N A
R
n = 1,

∑
n=1,...N B

R
n = 0, and

∑
n=j+1,...N c

R
j,n = 0 for

j = 1, . . . , N −1. Thus, the rebalancer trades on price effects from ṽ and noise-trader

orders but then must eventually unwind these positions. Note that the coefficients

cRj,n on noise-trader orders ∆wj in the lower two plots in Figure 2 do not start until
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one period after time j when an order ∆wj arrives and is cleared in the market.

Quantitatively, the target ã is a major driver of the rebalancer’s orders. In ad-

dition, the trajectory of the ARn decomposition coefficients on ã have a U -shaped

intraday pattern. These U -shaped coefficients for rebalancer orders mean that the

trading target induces U -shapes in both the mean volume and volatility of rebalancer

trading over the day. Perhaps surprisingly, the decomposition coefficient on ṽ is ini-

tially negative at time 2. A partial intuition follows from the rebalancer order in (5).

At time n = 2, the loadings on ṽ and ∆w1 come from the dependence of ∆θR2 on q1.

Given a positive informed-investor strategy coefficient βI1 , the sign of the rebalancer

loadings on ṽ and ∆w1 are, by construction, the same and are controlled by the co-

efficient αR2 in (5). Since αR2 at time 2 is consistently negative in all of our numerical

examples, the rebalancer trades against price pressure from the noise traders rather

than with the informed investor and ṽ, and so the decomposition coefficients on ṽ

and ∆w1 are both negative. Later in the day, the coefficient on ṽ switches sign when

the rebalancer unwinds his speculative positions given his trading target constraint.

Deterministic and adaptive components: The decomposition in (52) lets us

break the rebalancer’s orders into a deterministic component24.

E[∆θRn | ã] = ARn ã+BR
n E[ṽ | ã] =

(
ARn +BR

n ρ
σṽ
σã

)
ã (53)

that depends on the target ã and a separate random adaptive component

∆θRn − E[∆θRn | ã] = BR
n (ṽ − E[ṽ | ã]) +

∑
j=1,...n−1

cRj,n ∆wj (54)

that depends on the portion of ṽ that the rebalancer cannot predict given ã and on the

noise orders {∆w1, . . . ,∆wn−1}. The deterministic component is due to price-impact

smoothing, predictable sunshine trading, and predictable interactions with orders

from the informed investor who, on average, trades to reverse price pressure caused

by the rebalancer orders. The adaptive component comes from the qn term in (11)

after controlling for the target ã. This component reflects realtime sunshine trading

(i.e., reactions to fluctuations in qn induced by the arriving aggregate order flow over

24The expectation E[∆θRn | ã] in (53) is taken over the stock value ṽ (which is mean-zero but can
be correlated with ã) and the noise-trader orders ∆wj (which are mean-zero and uncorrelated with
ã). The second equality follows from the joint normality of ã and ṽ
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Figure 2: Intraday patterns for the linear-decomposition coefficients for the rebalancer
orders for times n = 1, 2, ..., 10. The top figures show the coefficients ARn on the
target ã (lines with ◦, M, �) and BR

n on the asset value ṽ (lines with •, N, �), and
the lower figures show the coefficients cRj,n on the noise-trader orders ∆wj with arrival
times j = 1, 3, 5, and 7. The parameters are N = 10, σ2

ṽ = 1, σ2
w = 1, and σ2

ã =
0.2 (−− with ◦ or •), 1 (− · − with M or N), 2 (− · · − with � or �).
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the day) and speculation on information learned through the trading process. Here we

use the decomposition in (53) and (54) to identify direct effects of rebalancing trading

on market volume. Later, in Section 3.3, it is used to understand the equilibrium

effects of rebalancing on pricing and on the informed-investor orders.

The separation here is not just algebraic; rather it has meaning in terms of sepa-

rability of the rebalancer’s optimization problem in (4). The deterministic expected

orders in (53) give the optimal strategy for an rebalancer who precommits at time 0

to using deterministic child orders given by functions {xn(ã)}Nn=1.

Proposition 2. The expected equilibrium orders E[∆θRn | ã] are the optimal orders x∗n

for a rebalancer who is constrained to trade deterministically over time.
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The adaptive order component in (54) shows how our rebalancer, who is not con-

strained to trade deterministically, optimally deviates over time from the optimal

deterministic strategy x∗n to respond to changes in market beliefs due to the arriving

aggregate order flow.

Figure 3 shows the expected rebalancer orders over the day conditional on the

target ã scaled as a ratio E[∆θRn | ã]/ã relative to the target ã 6= 0. From the linearity

in (53), the ratio does not depend on the realized target ã. If ρ = 0, then the ratio

E[∆θRn | ã]/ã has the identical intraday pattern as the decomposition coefficients ARn

on ã (e.g., compare the U -shaped pattern for the ratio in Figure 3A with the ARn

coefficients in Figure 2A).25 If ρ > 0, then, the ratios are shifted by the BR
n ρ

σṽ
σã

term

in (53). This U -shape volume pattern is common to all of the parameterizations we

consider. For example, Figure 3B shows the U -shaped pattern for the ρ = 0.45 case.

These intraday patterns for rebalancer orders are conceptually different from those

for the less-informed investor’s orders in the modified FV model.26 Because of the

rebalancing constraint and the dynamics of sunshine trading, the rebalancer trading

has an upturn in expected volume at the end of the day. In the Internet Appendix,

the rebalancer orders are decomposed further to identify the specific portion due to

predictable sunshine trading.

The second component of the rebalancer orders is the adaptive component in (54)

that responds to fluctuations in the aggregate order flow over the trading day. The

randomness is due to speculative trading by the rebalancer (given his endogenous

learning through trading over time) and realtime sunshine trading (given fluctuations

in the market-maker expectations qn). The size of adaptive trading is measured using

the standard deviation SD[∆θRn | ã] given the target ã. Figures 4A-B show that the

standard deviation is initially zero at time n = 1 (when the rebalancer only knows ã

and has not yet observed any lagged aggregate order flows) but then is roughly U -

shaped over the rest of the trading day (i.e., higher at times 2 and 10). The U -shape

becomes more pronounced when the correlation ρ is large. In contrast, the standard

deviation is hump-shaped in the modified FV model. Our parameter-space analysis

25DJK (2014) obtains a similar U -shaped pattern but with both short–lived information and de-
terministic rebalancing. Optimal order execution models can also have U -shaped optimal strategies
(see, e.g., Predoiu, Shaikhet, and Shreve (2011)), but our model endogenizes the liquidity resilience
and replenishment dynamics that drive this result.

26Unlike other plots in which the modified FV model is insensitive to σ2
ã, the ratio here is decreasing

in σ2
ã because the order size in the numerator of this ratio is invariant to how the information in the

signal ã is scaled, but the denominator in this ratio is the scaled signal ã.
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Figure 3: Intraday patterns for the ratio E[∆θRn | ã]/ã of the conditional expected
rebalancer order relative to the target ã 6= 0 at times n = 1, ..., 10. The parameters are
N = 10, σ2

ṽ = 1, σ2
w = 1, and σ2

ã = 0.2 (−−with ◦), 1 (−·− with M), 2 (−· ·−with �).
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finds that the U -shape increases as σ2
ã increases. This is consistent with increased

endogenous learning (since the rebalancer’s orders are a larger part of the noise in

the aggregated order flow and since the rebalancer can filter his larger orders better

than the market makers) and a larger realtime sunshine component (as market-maker

expectations about the rebalancer’s latent trading demand become more sensitive to

aggregate order-flows).27

Figure 4C shows an example of 10 simulated paths of the rebalancer’s order flows

over time in the case of σ2
ã = 1 and ρ = 0. The realized stock value ṽ here is 1,

and the realized trading target ã is 0, but the noise-trader order paths are random.

Along these paths, the rebalancer buys/sells more than his terminal parent target ã

at early times (e.g., n = 2) and then unwinds his position later to achieve his trading

target. This is not manipulation. Rather, it is constrained short-term speculation

due to the combination of endogenous learning about ṽ and the trading constraint

ã. The rebalancer does not trade at time n = 1 because, given ã = 0, he does not

need to rebalance, and because, initially, he does not have any valuation information

given ρ = 0. However, at time n = 2 the rebalancer trades based on whether —

given the stock-value information gleaned from filtering the order flow y1 better than

27The rebalancer and the informed trader acquire information at different times than each other
(as in Foucault, Hombert, and Rosu 2016), and the rebalancer endogenously engages in short-term
speculation (as in Froot, Scharfstein, and Stein 1992), since he must unwind his speculative positions
before the definitive public value revelation of ṽ at time N + 1.
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the market makers — the stock appears over- or under-valued. Later, however, he

unwinds these positions to achieve his parent target θRN = ã = 0 at the end of the

day. The dispersion across the paths is consistent with the intraday pattern of the

rebalancer order-flow standard deviation. Paths for non-zero targets ã involve shifting

the means of these paths from zero to the appropriate deterministic path given ã.28

This is illustrated in Figure 4D for a target ã = 1.

Interactions with informed-investor orders: Another factor that reduces rebal-

ancing costs is that the rebalancer’s orders tend to become negatively correlated with

the hedge fund’s orders over time. Figure 5A shows that, if ρ = 0, then the correla-

tion between the hedge fund’s orders and the rebalancer’s orders is negative at times

n > 1. This negative correlation is mutually beneficial for the rebalancer and the

hedge fund. By trading in opposite directions (in expectation), they symbiotically

provide liquidity to each other (i.e., their orders partially offset each other). If ρ > 0,

then, as illustrated in Figure 5B, the order correlation starts out positive, but later

turns negative. In contrast, orders for better-informed and less-informed investors in

the modified FV model are always positively correlated.29

Additional analysis in the Internet Appendix shows that the predictable interac-

tion with the informed-investor orders has a significant impact on the rebalancer’s

trading. First, a large part of the negative correlation between informed-investor and

rebalancer orders is due to the informed investor trading against price pressure due to

the rebalancer’s orders. As the rebalancer trades towards his (uninformative or imper-

fectly informative) target ã, the hedge fund trades opposite the noise that rebalancing

induces in prices.30 Second, the predictable interactions with the informed-investor

orders are a quantitatively important driver of the U -shape in the deterministic com-

ponent of the rebalancer’s orders. The intuition is that the rebalancer trades less

28When the realized target ã is large, the rebalancer’s orders tend to be in the same direction
over time (e.g., a large positive target ã is associated with a series of buy orders). Randomness in
his orders due to the qn process (connected with sunshine trading and endogenous learning) usually
just causes the rebalancer to speed up or slow down his trading relative to his expected orders given
his target.

29In the modified FV model, iterated expectations gives

cov(∆θ̂In,∆θ̂
R
n ) = βI

nβ
R
n E[(ṽ − p̂n−1)(ŝn−1 − p̂n−1)] = βI

nβ
R
n V[ŝn−1 − p̂n−1],

which is positive given βI
n > 0 and βR

n > 0, where ŝn−1 = E[ṽ|ã, y1, . . . , yn−1].
30Foster and Viswanathan (1996) also has negative cross-investor order correlation when both

investors have symmetric noisy signals. However, our price-pressure correction mechanism is different
from their Bayesian learning mechanism.

30



Figure 4: Plots A and B show intraday patterns for the conditional standard deviation
SD[∆θRn | ã] of the rebalancer’s orders at times n = 1, . . . , 10. Plots C and D show
examples of 10 sample paths of rebalancer orders ∆θRn for two particular target values.
The parameters are N = 10, σ2

ṽ = 1, σ2
w = 1, and σ2

ã = 0.2 (− − with ◦), 1 (− ·
− with M), 2 (− · · − with �) (A and B only). For C and D, σ2

ã = 1 and ρ = 0.
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during the middle of the day to give the informed investor time to offset price pres-

sure from the rebalancer’s orders early in the day before the rebalancer then trades

again later in the day.

Summary: The rebalancer orders have a large deterministic component — that de-

pends on the parent target ã — that reflects price-impact smoothing, predictable sun-

shine trading, and anticipated reactions from the informed investor’s trading. There

is also an adaptive component due to learning and realtime sunshine trading. The

adaptive component is relatively small except when the target variance and informa-

tiveness are high. These observations follow from the large rebalancer decomposition
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Figure 5: Intraday patterns for the unconditional corr(∆θIn,∆θ
R
n ) for times n =

1, . . . , 10. The parameters are N = 10, σ2
ṽ = 1, σ2

w = 1, and σ2
ã = 0.2 (− −

with ◦), 1 (− · − with M), 2 (− · · − with �).
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loadings on ã (in Figure 2A) and the rebalancer order standard deviations SD[∆θRn | ã]

(in Figure 4). They are confirmed further in the Internet Appendix based on a sec-

ond decomposition using ad hoc strategies. Thus, equilibrium rebalancing strategies

are more complicated than simple TWAP (time-weighted average price) strategies.31

These features of rebalancing orders also drive the equilibrium impact of dynamic

rebalancing on prices, liquidity, informed-investor trading, and the aggregate order

flow. In particular, the U -shaped patterns in the deterministic and adaptive compo-

nents of the rebalancer orders are connected with U -shaped patterns in prices and

market volume.

3.3 Equilibrium effects

Stock markets have a variety of significant empirical intraday patterns in prices and

order flows.32 We now consider how dynamic rebalancing affects the equilibrium prop-

erties of pricing and the trading behavior of other investors and, thus, the resulting

intraday patterns in prices, liquidity, and order flows in our model.

The economics underlying these equilibrium effects follows from how dynamic

rebalancing affects the mix of information and noise in the aggregate order flow.

31The ability to reduce costs on parent orders benchmarked to TWAP and VWAP (value-weighted
average price) is part of the business model for agency order execution.

32Intraday patterns are robust properties of volume and price volatility in equity markets that
were first documented in Wood, McInish, and Ord (1985) and Jain and Joh (1988).
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There are two direct channels for this effect: First, the trading target ã can be

written as a combination of noise and valuation information

ã = σã

[
ρ

σṽ
ṽ +

√
1− ρ2 ε̃

]
(55)

where (given the joint multivariate normality) ε̃ is a standard Normal random variable

that is independent of ṽ, and where ρ controls the information content in ã, and σã

scales the volatility of ã (but not its informativeness) and, thus, scales the magnitude

of the constraint on the rebalancer’s trading. The second direct channel is that

the rebalancer speculates on private information about ṽ learned endogenously over

time by filtering the aggregate order flow better than market makers. There are

also indirect channels involving equilibrium effects of information-competition and

rebalancing noise on how the hedge fund trades on its private information about ṽ.

Price dynamics: Figure 6 shows how dynamic rebalancing affects the price impact

of order-flow parameter λn over the trading day. This relation is complicated because

it is the net effect of all of the direct and indirect channels through which rebalancing

affects the order-flow mix of information and noise. It is further complicated because

the relation between λn and the aggressiveness βIn of informed trading in (29) is

non-monotone. However, individual channels can be isolated in a few special cases.

Consider the ρ = 0 case in Figure 6A. At time n = 1, there has been no endogenous

learning by the rebalancer, and, given ρ = 0, the target ã is uninformative noise.

From (29), the direct effect of the rebalancing noise at n = 1 is, therefore, to lower

the price impact λ1. Hence, the fact that the equilibrium λ1 with rebalancing (non-

black lines) actually increases relative to Kyle (solid black line) is entirely due to the

indirect effect of rebalancing on the informed-investor trading at time n = 1. At later

times n > 2, the price impacts in Figure 6A are lower than in Kyle. The result is

a twist in the slope of λn over time. Figure 6B shows similar twists relative to the

modified FV model (same black line given the independence from σ2
ã in the modified

FV model) when ρ > 0. The twist in λn consistently increases when there is more

trading target volatility σ2
ã, as shown in both Figures 6A and 6B. The price-impact

twist in our model differs from DJK (2014) in which intraday price impacts have an

inverted U -shape (see their Figure 1). This difference is due to the direct and indirect

effects of endogenous learning given long-lived information and, when ρ > 0, of the

fact that rebalancing targets in our model are then also informative.
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Figure 6: Intraday patterns for price impacts λn for times n = 1, . . . , 10. The param-
eters are N = 10, σ2

ṽ = 1, σ2
w = 1, and σ2

ã = 0.2 (−− with ◦), 1 (− · − with M), 2 (− ·
· − with �).
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Figure 7 shows the variance Σ
(2)
n of the market pricing errors ṽ − pn over time,

which measures the quality of price discovery. When ρ = 0, more information is

revealed at early times compared to the Kyle model (due to more aggressive informed

trading by the hedge fund, see below), but pricing accuracy is reduced later in the

day. When ρ > 0 (so that ã is ex ante informative), the trading target constrains

the aggressiveness of the rebalancer’s orders relative to the unconstrained purely

informational orders of the less-informed investor in the modified FV model. This

constraint, depending on the parameterization, can cause the rebalancer’s orders to

be larger or smaller than in the modified FV model. For example, holding fixed the

informativeness of the target at ρ = 0.45, a larger target variance σ2
ã increases the size

of the rebalancer’s orders induced by a target realization with a given amount of asset-

value information, which leads to faster information aggregation in Figure 7. This is

due to both the direct effect of larger information-based rebalancer trades and also an

indirect information-competition race-to-trade effect that increases the aggressiveness

of the informed hedge funds’ orders (see Figure 9 below). The Internet Appendix

shows further that these price-discovery dynamics lead to U -shaped intraday patterns

in price volatility that are increasing in the rebalancing target variance σ2
ã.

A novel feature of dynamic rebalancing is sunshine trading, since predictable or-

ders do not have price impacts (see (10)). The key variable here is the market-maker

expectation qn of the reblancer’s remaining latent trading demand ã − θRn−1. Figure
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Figure 7: Intraday patterns for the variance Σ
(2)
n of the pricing error ṽ − pn for

times n = 0, 1, ..., 9. The parameters are N = 10, σ2
ṽ = 1, σ2

w = 1, and σ2
ã =

0.2 (−− with ◦), 1 (− · − with M), 2 (− · · − with �).
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8 shows the market makers’ uncertainty Σ
(1)
n = V[ã− θRn − qn] about the rebalancer’s

remaining latent trading demand. Although a priori Σ
(1)
n need not be monotone over

time (see footnote 18), Figure 8 shows that uncertainty about the remaining latent

trading demand is monotonely decreasing for a wide range of values of σ2
ã and ρ.

Figure 8: Intraday patterns for the variance Σ
(1)
n of uncertainty about remaining latent

trading-demand ã − θRn − qn for times n = 0, 1, ..., 9. The parameters are N = 10,
σ2
ṽ = 1, σ2

w = 1, and σ2
ã = 0.2 (−− with ◦), 1 (− · − with M), 2 (− · · − with �).
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Informed investor: Figure 9 shows the hedge fund’s strategy coefficients βIn, which

determine how aggressively the hedge-fund manager trades on her private information
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ṽ− pn−1 over time. As in Kyle (1985), the intensity of informed trading in our model

increases as time approaches the terminal time N . This is consistent with the fact

that the incentive to delay trading on information becomes weaker later in the day

as the remaining time left for trading becomes shorter. We also see that the effect of

increased rebalancing target variance σ2
ã on informed trading is U -shaped. Increasing

σ2
ã increases βIn (i.e., causes the informed investor to trade more aggressively) earlier

and later in the day but leaves βIn relatively unchanged in the middle of the day.

In addition, if ρ > 0, hedge-fund trading aggressiveness increases somewhat due to

the information-competition effect. The apparent size of the changes in βI1 — which

are on the order of 10 percent — is visually understated in Figure 9 because of the

vertical scaling (due to the size of βI10).

Figure 9: Intraday patterns for the hedge-fund strategy coefficient βIn at times
n = 1, . . . , 10. The parameters are N = 10, σ2

ṽ = 1, σ2
w = 1, and σ2

ã =
0.2 (−− with ◦), 1 (− · − with M), 2 (− · · − with �).
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A linear decomposition for the informed hedge fund’s orders

∆θIn = AInã+BI
nṽ +

∑
j=1,...n−1

cIj,n∆wj. (56)

lets us break the hedge fund’s orders into a deterministic component given the signal

ṽ and an adaptive component that depends on the rebalancer target ã and the noise-

trader orders. This decomposition is considered further in the Internet Appendix.

Aggregate order-flow and volume: Autocorrelation in the aggregate order flow

is one of the novel effects of dynamic rebalancing. Figure 10 shows the unconditional
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autocorrelation of the (signed) aggregate order flow over the trading day. Although

the absolute level of autocorrelation is not high, there is a clear U -shaped pattern of

higher order-flow autocorrelation at the beginning and end of the day (when, from

Figure 3, the rebalancer trades more) and lower autocorrelation during the middle

of the day (when the rebalancer trades less). Our parameter-space analysis shows

that the order-flow autocorrelation level and the magnitude of the U -shape are both

increasing in the target variance σ2
ã.

Figure 10: Intraday patterns for the aggregate order-flow autocorrelation E[yn−1yn]√
E[y2

n−1]E[y2
n]

for times n = 2, 3, ..., 10. The parameters are N = 10, σ2
ṽ = 1, σ2

w = 1, and σ2
ã =

0.2 (−− with ◦), 1 (− · − with M), 2 (− · · − with �).
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Market trading volume over the day is also affected by dynamic rebalancing. Our

proxy for trading volume is

max(0,∆θRn ) + max(0,∆θIn) + max(0,∆wn) + max(0,−yn), (57)

which is buy-side volume except that it ignores crosses among the noise traders.

Figure 11 confirms that the U -shaped intraday patterns of rebalancer volume carry

over and induce U -shaped patterns in the intraday means and standard deviations

of market volume in the rebalancing model and also relative to Kyle (1985) and the

modified FV model. As can be seen, these U -shaped volume patterns are increasing

in the parent target variance σ2
ã.
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Figure 11: Plots A and B show intraday patterns in the unconditional means of
market volume, and plots C and D show the unconditional standard deviations of
market volume at times n = 1, . . . , 10. The parameters are N = 10, σ2

ṽ = 1, σ2
w = 1,

and σ2
ã = 0.2 (−− with ◦), 1 (− · − with M), 2 (− · · − with �).
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3.4 Asset-value variance and intraday patterns

A variety of intraday patterns in pricing and order flows are documented in the

previous sections. Proposition 1 can be extended to show that these intraday patterns

are either insensitive to asset-value volatility or scale simply relative to σṽ.

Proposition 3. Given a market parameterization {σ2
ã, σ

2
ṽ , ρ σã σṽ} as in (49) with an

equilibrium, if the parameterization changes to {σ2
ã, h

2σ2
ṽ , ρ σã hσṽ}, then in the new

equilibrium the intraday patterns in market characteristics change as follows:

• The order-decomposition coefficients ARn and cRj,n for the rebalancer and AIn and

cIj,n for the informed investor on ã and ∆wj are unaffected by h.
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• The order-decomposition coefficients BR
n and BI

n on ṽ become BR
n /h and BI

n/h.

• The expectation E[∆θRn |ã], sunshine-trading ratio, SD[∆θRn |ã], order correlation

corr[∆θIn,∆θ
R
n ], and aggregate order-flow autocorrelation are all unaffected by

h.

• The informed-investor expected volume E[∆θIn|ṽ] becomes 1
h
E[∆θIn|ṽ].

• The price-change volatility SD[∆pn] becomes h SD[∆pn].

The proposition follows from algebraic substitution of the scaling factor h in the

expressions for the various quantities of interest. As in Proposition 1, the rebalancer’s

trading strategy is relatively unaffected by the stock-value variance. One exception is

the coefficient BR
n , but this is just a pass-through from the informed-investor orders

in the aggregate order flow.

4 Robustness

The qualitative properties of our model are likely to be robust to relaxing our modeling

assumptions. First, our model assumes a hard rebalancing constraint. Alternatively,

the rebalancing constraint could be soft with a quadratic penalty for deviations from

the target, or investors could have a random private value for the asset that is de-

creasing in their terminal holdings. In either case, the rebalancer should still engage

in order-splitting to reduce their trading costs. These alternative rebalancing motives

should result in some amount of price elasticity in the total amount traded by rebal-

ancers. This should increase the importance of the adaptive part of rebalancer orders

that responds to the prior order-flow history.

Second, informed investors and rebalancers only use market orders in our model.

In practice, however, order-splitting algorithms also use limit orders (see O’Hara

2015). While the mathematics of the dynamic programming problems and the rational-

expectations fixed point would be complicated, we still expect rebalancing to result

in order-flow autocorrelation and for predictable components of market and limit or-

der flows to have no persistent price impacts. Empirically, limit order flows are also

autocorrelated (see Biais, Hillion, and Spatt 1995).

Third, our market makers are competitive, risk-neutral, and have no order pro-

cessing costs. As a result, prices are martingales in our model. We do not expect
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market-making frictions and transitory price effects to eliminate the informational as-

pects of rebalancing. It would be interesting to investigate empirically how transitory

market frictions and persistent informational aspects of order-splitting interact.

5 Conclusion

This paper has explored dynamic order-splitting for portfolio rebalancing and its equi-

librium interactions with price discovery, order-flow dynamics, and market liquidity.

Our paper is the first to investigate these issues with both long-lived information and

dynamic rebalancing given a terminal parent trading target. Dynamic rebalancing

does not just inject additional trading noise in the market; rather it affects the struc-

ture of the market equilibrium. Order flow becomes autocorrelated and liquidity and

price-discovery dynamics change because of sunshine trading. In addition, dynamic

rebalancing affects equilibrium prices and also the process for arriving orders from

the informed investor. Our model has a variety of empirically testable implications

for intraday market patterns and their comovement with rebalancing target volatility.

Our model has many interesting possible extensions for future theory. One possible

extension is to model dynamic rebalancing in continuous-time. Another extension is

to relax the assumption that all investors are risk-neutral. For example, exponential

utility is a natural specification to consider. Finally, our model could be extended to

include multiple informed investors and rebalancers.

A Proofs and algorithms for rebalancing model

A.1 Kalman filtering

Lemma 1. Consider the conjectured system (18)-(22) corresponding to arbitrary co-

efficients {βIn, βRn , αRn }Nn=1. Whenever (29)-(30) hold, we have

p̂n = E[ṽ | ŷ1, ..., ŷn], (A.1)

q̂n = E[ã− θ̂Rn | ŷ1, ..., ŷn], (A.2)

where p̂ is defined by (21) and q̂ is defined by (22). Furthermore, the recursions for

the variances and covariance (31)-(33) hold.
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Proof. For n = 1, ..., N , we have the moment definitions in (23)-(25) where the start-

ing values are given in (26). We then define the process ẑMn as

ẑMn :=ŷn − (αRn + βRn )q̂n−1

=βIn(ṽ − p̂n−1) + βRn (ã− θ̂Rn−1 − q̂n−1) + ∆wn. (A.3)

These Gaussian variables ẑM1 , ẑ
M
2 , ...., ẑ

M
N are mutually independent and satisfy σ(ẑM1 ,

..., ẑMn ) = σ(ŷ1, ...ŷn). The projection theorem for Gaussian random variables gives

∆p̂n =E[ṽ | ẑM1 , ..., ẑMn ]− E[ṽ | ẑM1 , ..., ẑMn−1]

=
E[ṽ ẑMn ]

V[ẑMn ]
ẑMn , (A.4)

∆q̂n =E[ã− θ̂Rn | ẑM1 , ...ẑMn ]− E[ã− θ̂Rn−1 | ẑM1 , ..., ẑMn−1]

=E[ã− θ̂Rn−1 | ẑM1 , ...ẑMn ]− E[ã− θ̂Rn−1 | ẑM1 , ..., ẑMn−1]− E[∆θ̂Rn | ẑM1 , ..., ẑMn ]

=
E[(ã− θ̂Rn−1)ẑMn ]

V[ẑMn ]
ẑMn − E

[
βRn (ã− θ̂Rn−1 − q̂n−1) + (αRn + βRn )q̂n−1

∣∣ ẑM1 , ..., ẑMn ]
=
E[(ã− θ̂Rn−1 − q̂n−1)ẑMn ]

V[ẑMn ]
ẑMn − βRn E[ã− θ̂Rn−1 − q̂n−1 | ẑMn ]− (αRn + βRn )q̂n−1

=(1− βRn )
E[(ã− θ̂Rn−1 − q̂n−1)ẑMn ]

V[ẑMn ]
ẑMn − (αRn + βRn )q̂n−1. (A.5)

To proceed, we first compute

V[ẑMn ] =E
[(
βIn(ṽ − p̂n−1) + βRn (ã− θ̂Rn−1 − q̂n−1) + ∆wn

)2]
=(βIn)2Σ

(2)
n−1 + (βRn )2Σ

(1)
n−1 + 2βInβ

R
n Σ

(3)
n−1 + σ2

w∆, (A.6)

E[ṽẑMn ] =E[(ṽ − p̂n−1)ẑMn ]

=E
[
(ṽ − p̂n−1)

(
βIn(ṽ − p̂n−1) + βRn (ã− θ̂Rn−1 − q̂n−1) + ∆wn

)]
=βInΣ

(2)
n−1 + βRn Σ

(3)
n−1, (A.7)

E[(ã− θ̂Rn−1 − q̂n−1)ẑMn ] =E
[
(ã− θ̂Rn−1 − q̂n−1)

(
βIn(ṽ − p̂n−1) + βRn (ã− θ̂Rn−1 − q̂n−1)

+ ∆wn

)]
=βInΣ

(3)
n−1 + βRn Σ

(1)
n−1. (A.8)

Combining these expressions and by matching coefficients with (21) and (22), we
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find the lemma’s statement equivalent to the restrictions (29)-(30). Based on these

expressions, the recursion for Σ
(1)
n , n = 1, ..., N , in (31) is

Σ(1)
n : = V[ã− θ̂Rn − q̂n]

= V[ã− θ̂Rn−1 − q̂n−1 −∆θ̂Rn −∆q̂n]

= V[ã− θ̂Rn−1 − q̂n−1 −∆θ̂Rn − rnŷn + (1 + rn)(αRn + βRn )q̂n−1]

= V
[
ã− θ̂Rn−1 − (1− (1 + rn)(αRn + βRn ))q̂n−1 − (1 + rn)(βRn (ã− θ̂Rn−1) + αRn q̂n−1)

− rn
(
βIn(ṽ − p̂n−1)

)
− rn∆wn

]
= V

[(
1− (1 + rn)βRn

)
(ã− θ̂Rn−1)−

(
1− (1 + rn)βRn

)
q̂n−1

− rnβIn(ṽ − p̂n−1)− rn∆wn

]
= V

[(
1− (1 + rn)βRn

)
(ã− θ̂Rn−1 − q̂n−1)− rnβIn(ṽ − p̂n−1)− rn∆wn

]
=
(
1− (1 + rn)βRn

)2
Σ

(1)
n−1 + (rnβ

I
n)2Σ

(2)
n−1 + r2

nσ
2
w∆− 2

(
1− (1 + rn)βRn

)
rnβ

I
nΣ

(3)
n−1

= (1− βRn )
(
(1− βRn − rnβRn )Σ

(1)
n−1 − rnβInΣ

(3)
n−1

)
, (A.9)

where the last equality uses (30). The recursions for Σ
(2)
n and Σ

(3)
n , n = 1, ..., N , in

(32) and (33) are found similarly.

♦

A.2 Informed investor’s optimization problem

We start with the following lemma which contains most of the calculations we will

need later. Recall the hedge fund’s state processes {X(1)
n , X

(2)
n } are defined by (35).

Lemma 2. Fix the constants (15) subject to the pricing-coefficient restrictions (29)-

(30) holding and use them to define ∆θRn by (5) and to define the moments (31)-(33)

with initial values (26). Let ∆θIn ∈ σ(ṽ, y1, ..., yn−1), n = 1, ..., N , be arbitrary for the

hedge fund. We can then define the Gaussian random variables

ẑIn :=ŷn −∆θ̂In − (αRn + βRn )q̂n−1 − βRn
Σ

(3)
n−1

Σ
(2)
n−1

(ṽ − p̂n−1), n = 1, ..., N (A.10)

where the conjectured “hat” processes are defined in (18)-(22). The variable ẑIk is

independent of {ṽ, ŷ1, ...., ŷk−1} for k ≤ N , and the following measurability properties
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are satisfied:

θ̂Rn − θRn ∈ σ(ṽ, y1, ..., yn) = σ(ṽ, ŷ1, ..., ŷn) = σ(ṽ, ẑI1 , ...ẑ
I
n), n = 1, ..., N. (A.11)

Furthermore, the state variables X
(1)
n and X

(2)
n defined in (35) for n = 1, ..., N have

Markovian dynamics

∆X(1)
n = −λn

(
∆θIn + βRnX

(2)
n−1

)
− λnẑIn, X

(1)
0 = ṽ, (A.12)

∆X(2)
n = −rn∆θIn − (1 + rn)βRnX

(2)
n−1 −

Σ
(3)
n

Σ
(2)
n

λnẑ
I
n, X

(2)
0 =

ρσã
σṽ

ṽ. (A.13)

Finally, for any constants I
(1,1)
n , I

(1,2)
n , and I

(2,2)
n , we have the conditional expectation

E
[
(ṽ − pn)∆θIn + I(1,1)

n

(
X(1)

n

)2

+ I(1,2)
n X(1)

n X(2)
n + I(2,2)

n

(
X(2)

n

)2 ∣∣∣ ṽ, y1, ..., yn−1

]
= X

(1)
n−1∆θIn − (∆θIn)2λn −∆θInλnβ

R
nX

(2)
n−1

+ I(1,1)
n

((
X

(1)
n−1

)2

− 2λnX
(1)
n−1

(
∆θIn + βR

nX
(2)
n−1

)
+ λ2

n

(
∆θIn + βR

nX
(2)
n−1

)2

+ λ2
nV[ẑIn]

)
+ I(1,2)

n

(
X

(1)
n−1X

(2)
n−1 −X

(1)
n−1

(
rn∆θIn + (1 + rn)βR

nX
(2)
n−1

)
−X(2)

n−1λn

(
∆θIn + βR

nX
(2)
n−1

)
(A.14)

+ λn

(
∆θIn + βR

nX
(2)
n−1

)(
rn∆θIn + (1 + rn)βR

nX
(2)
n−1

)
+ λ2

n
Σ(3)

n

Σ
(2)
n

V[ẑIn]
)

+ I(2,2)
n

((
X

(2)
n−1

)2

− 2X
(2)
n−1

(
rn∆θIn + (1 + rn)βR

nX
(2)
n−1

)
+
(
rn∆θIn + (1 + rn)βR

nX
(2)
n−1

)2

+ λ2
n

(
Σ(3)

n

Σ
(2)
n

)2

V[ẑIn]
)
,

which is quadratic in ∆θIn, and where the variance V[ẑIn] can be computed to be

V[ẑIn] = (βRn )2
(

Σ
(1)
n−1 −

(
Σ

(3)
n−1

)2

Σ
(2)
n−1

)
+ σ2

w∆. (A.15)

Proof. The joint normality claim follows by an induction argument. To see the inde-

pendence claim for ẑIn in (A.10), notice that ẑIn is the order-flow innovation process

43



for the informed investor

ŷn − E[ŷn|ṽ, ŷ1, ..., ŷn−1]

= βRn

(
ã− θ̂Rn−1 − q̂n−1 − E

[
ã− θ̂Rn−1 − q̂n−1 | ṽ, ŷ1, ..., ŷn−1

] )
+ ∆wn

= βRn

(
ã− θ̂Rn−1 − q̂n−1 −

Σ
(3)
n−1

Σ
(3)
n−1

(ṽ − p̂n−1)
)

+ αRn q̂n−1 − αRn q̂n−1 + ∆wn

= ŷn −∆θ̂In − (αRn + βRn )q̂n−1 − βRn
Σ

(3)
n−1

Σ
(3)
n−1

(
ṽ − p̂n−1

)
= ẑIn. (A.16)

Let k ≤ n−1 be arbitrary, and then iterated expectations produce the zero-correlation

property:

E[ŷkẑ
I
n] = E[E[ŷkẑ

I
n | ṽ, ŷ1, ..., ŷk]] = E[ŷkE[ẑIn | ṽ, ŷ1, ..., ŷk]] = 0. (A.17)

Independence follows then from the joint normality.

Next, we observe that the last equality in (A.11) follows directly from (A.10). We

proceed by induction and observe

σ(ṽ, y1) = σ(ṽ, βR1 ã+ ∆w1) = σ(ṽ, ŷ1), (A.18)

θ̂R1 − θR1 = 0, (A.19)

which follows from θ̂I1, θ
I
1 ∈ σ(ṽ). Suppose that (A.11) holds for n. Then,

θ̂Rn+1 − θRn+1 = (1− βRn+1)(θ̂Rn − θRn ) + αRn+1(q̂n − qn) ∈ σ(ṽ, y1, ..., yn),

σ(ṽ, ŷ1, ..., ŷn+1) = σ(ṽ, y1, ..., yn, ŷn+1)

= σ(ṽ, y1, ..., yn, yn+1 + ∆θ̂In+1 −∆θIn+1 + ∆θ̂Rn+1 −∆θRn+1)

= σ(ṽ, y1, ..., yn+1), (A.20)
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which proves (A.11). The dynamics (A.12) can be seen as follows

∆X(1)
n = −∆pn

= −λn
(

∆θIn + βRn (ã− θRn−1) + αRn qn−1 + ∆wn

)
+ λn(αRn + βRn )qn−1

= −λn
(

∆θIn + βRn (ã− θRn−1) + αRn qn−1 + ŷn −∆θ̂In −∆θ̂Rn

)
+ λn(αRn + βRn )qn−1

= −λn
(

∆θIn + βRn (θ̂Rn−1 − θRn−1) + ẑIn + βRn (q̂n−1 − qn−1) + βRn
Σ

(3)
n−1

Σ
(2)
n−1

(
ṽ − p̂n−1

))
= −λn

(
∆θIn + βRnX

(2)
n−1 + ẑIn

)
, (A.21)

The dynamics (A.13) follow similarly using expressions (29)-(30) and (32)-(33).

The expression for the variance (A.15) is found as follows:

V[ẑIn] = V
[
βRn

(
ã− θ̂Rn−1 − q̂n−1 − E

[
ã− θ̂Rn−1 − q̂n−1 | ṽ, ŷ1, ..., ŷn−1

] )
+ ∆wn

]
= V

[
βRn

(
ã− θ̂Rn−1 − q̂n−1 −

Σ
(3)
n−1

Σ
(2)
n−1

(ṽ − p̂n−1)
)]

+ σ2
w∆

= (βRn )2
(

Σ
(1)
n−1 −

(
Σ

(3)
n−1

)2

Σ
(2)
n−1

)
+ σ2

w∆. (A.22)

To compute the conditional expectation (A.14), we compute the four individual

terms. The first term in (A.14) equals

E[(ṽ − pn)∆θIn | ṽ, y1, ..., yn−1]

= (ṽ − pn−1)∆θIn −∆θInE[∆pn | ṽ, y1, ..., yn−1]

= X
(1)
n−1∆θIn −∆θInλnE[∆θIn + βRn (ã− θRn−1 − qn−1) | ṽ, y1, ..., yn−1]

= X
(1)
n−1∆θIn − (∆θIn)2λn

−∆θInλnβ
R
n

(
θ̂Rn−1 − θRn−1 + q̂n−1 − qn−1 + E[ã− θ̂Rn−1 − q̂n−1 | ṽ, y1, ..., yn−1]

)
= X

(1)
n−1∆θIn − (∆θIn)2λn −∆θInλnβ

R
n

(
θ̂Rn−1 − θRn−1 + q̂n−1 − qn−1 +

Σ
(3)
n−1

Σ
(2)
n−1

(ṽ − p̂n−1)
)

= X
(1)
n−1∆θIn − (∆θIn)2λn −∆θInλnβ

R
nX

(2)
n−1. (A.23)
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The second term in (A.14) is

E[
(
X(1)
n

)2 | ṽ, y1, ..., yn−1]

=
(
X

(1)
n−1

)2

+ 2X
(1)
n−1E[∆X(1)

n | ṽ, y1, ..., yn−1] + E[
(
∆X(1)

n

)2 | ṽ, y1, ..., yn−1]

=
(
X

(1)
n−1

)2

− 2λnX
(1)
n−1

(
∆θIn + βRnX

(2)
n−1

)
+ λ2

n

(
∆θIn + βRnX

(2)
n−1

)2

+ λ2
nV[ẑIn].

(A.24)

The third term in (A.14) is

E[X(1)
n X(2)

n | ṽ, y1, ..., yn−1]

= X
(1)
n−1X

(2)
n−1 +X

(1)
n−1E[∆X(2)

n | ṽ, y1, ..., yn−1] +X
(2)
n−1E[∆X(1)

n | ṽ, y1, ..., yn−1]

+ E[∆X(1)
n ∆X(2)

n | ṽ, y1, ..., yn−1]

= X
(1)
n−1X

(2)
n−1 −X

(1)
n−1

(
rn∆θIn + (1 + rn)βRnX

(2)
n−1

)
−X(2)

n−1λn

(
∆θIn + βRnX

(2)
n−1

)
+ λn

(
∆θIn + βRnX

(2)
n−1

)(
rn∆θIn + (1 + rn)βRnX

(2)
n−1

)
+ λ2

n
Σ

(3)
n

Σ
(2)
n

V[ẑIn]. (A.25)

Finally, the last term in (A.14) is

E[
(
X(2)
n

)2 | ṽ, y1, ..., yn−1]

=
(
X

(2)
n−1

)2

+ 2X
(2)
n−1E[∆X(2)

n | ṽ, y1, ..., yn−1] + E[
(
∆X(2)

n

)2 | ṽ, y1, ..., yn−1]

=
(
X

(2)
n−1

)2

− 2X
(2)
n−1

(
rn∆θIn + (1 + rn)βRnX

(2)
n−1

)
+
(
rn∆θIn + (1 + rn)βRnX

(2)
n−1

)2

+ λ2
n

(
Σ

(3)
n

Σ
(2)
n

)2

V[ẑIn]. (A.26)

♦

Remark: The dynamics (A.12) and (A.13) show that the pair (X(1), X(2)) form

a Markov process. This implies that for any continuous function f : R2 → R with

f(X
(1)
n , X

(2)
n ) integrable, the conditional expectation

E[f(X(1)
n , X(2)

n )|ṽ, ẑI1 , ..., ẑIn−1] (A.27)

is again a function g of (X
(1)
n−1, X

(2)
n−1). Furthermore, (A.14) shows i) if f is a second-

degree polynomial, the resulting function g is also a second-degree polynomial, and
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ii) the conditional expectation of pn is also a quadratic function of (X
(1)
n−1, X

(2)
n−1).

In other words, the pair (X(1), X(2)) is the state process for the informed investor’s

optimization problem.

Theorem 2. Fix the constants (15) subject to the pricing-coefficient restrictions (29)-

(30) holding and use them to define ∆θRn by (5), define the moments (31)-(33) with

initial values (26), and compute the value-function coefficients {I(i,j)
n }1≤i≤j≤2, n =

0, ..., N using recursions (A.42)-(A.44) with I
(i,j)
N = 0, subject to the second-order-

condition (39) holding. Then the hedge fund’s value function has the quadratic form

(37) where X
(1)
n and X

(2)
n are defined in (35) and ∆pn is defined by (10). Furthermore,

the hedge fund’s optimal trading strategy is given by (38) with coefficients

γ(1)
n := −1+I

(1,2)
n rn+2I

(1,1)
n λn

2(I
(2,2)
n r2

n+λn(−1+I
(1,2)
n rn+I

(1,1)
n λn))

, (A.28)

γ(2)
n := −βRn + −2I

(2,2)
n rn(−1+βRn )+I

(1,2)
n λn−βRn λn(I

(1,2)
n +1)

2(I
(2,2)
n r2

n+λn(−1+I
(1,2)
n rn+I

(1,1)
n λn))

. (A.29)

Proof. We prove the theorem by the backward induction. Suppose that (37) holds

for time n+ 1. The hedge fund’s value function in the n’th iteration then becomes

max
∆θI
k
∈σ(ṽ,y1,...,yk−1)

n≤k≤N

E
[ N∑
k=n

(ṽ − pk)∆θIk
∣∣∣ ṽ, y1, ..., yn−1

]
= max

∆θIn∈σ(ṽ,y1,...,yn−1)
E
[
(ṽ − pn)∆θIn + I(0)

n +
∑

1≤i≤j≤2

I(i,j)
n X(i)

n X(j)
n

∣∣∣ ṽ, y1, ..., yn−1

]
.

(A.30)

Because (39) holds, Lemma 2 shows that the coefficient in front of (∆θIn)2 appearing

in (A.30) is strictly negative. Consequently, the first-order condition is sufficient for

optimality and the maximizer is (38). By inserting the optimizer (38) into (A.30), we

obtain the quadratic expression (37) for time n,

I
(0)
n−1 +

∑
1≤i≤j≤2

I
(i,j)
n−1X

(i)
n−1X

(j)
n−1, (A.31)

where the value-function coefficient recursions for I
(i,j)
n−1 are in (A.42)-(A.44).

♦
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A.3 Rebalancer’s optimization problem

The following analogue of Lemma 2 uses the rebalancer’s state variables {Y (1)
n , Y

(2)
n , Y

(3)
n }

defined in (42).

Lemma 3. Fix constants (15) satisfying (16)-(17) and subject to the pricing-coefficient

restrictions (29)-(30) holding and use them to define ∆θIn by (6) and define the mo-

ments (31)-(33) with initial values (26). Let ∆θRn ∈ σ(ã, y1, ..., yn−1), n = 1, ..., N , be

arbitrary for the rebalancer. We can then define the Gaussian random variables

ẑRn := ŷn −∆θ̂Rn − βIn
Σ

(3)
n−1

Σ
(1)
n−1

(ã− θ̂Rn−1 − q̂n−1), n = 1, ..., N (A.32)

where the conjectured “hat” processes are defined in (18)-(22). The variable ẑRk is

independent of {ã, ŷ1, ...., ŷk−1} for k ≤ N and the following measurability properties

are satisfied

σ(ã, y1, ..., yk) = σ(ã, ŷ1, ..., ŷk) = σ(ã, ẑR1 , ..., ẑ
R
k ). (A.33)

Furthermore, the state variables Y
(1)
n , Y

(2)
n and Y

(3)
n defined in (42) n = 1, ..., N have

Markovian dynamics

∆Y (2)
n = −λn

(
∆θRn + βInY

(2)
n−1 − (αRn + βRn )Y

(3)
n−1

)
− rnΣ

(3)
n

Σ
(1)
n

ẑRn , Y
(2)

0 =
σṽρ

σã
ã, (A.34)

∆Y (3)
n = rn

(
∆θRn + βInY

(2)
n−1

)
− (1 + rn)(αRn + βRn )Y

(3)
n−1 + rnẑ

R
n , Y

(3)
0 = 0. (A.35)

For constants L
(1,1)
n , L

(1,2)
n , L

(1,3)
n , L

(2,2)
n , L

(2,3)
n , and L

(3,3)
n we have the conditional ex-
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pectation

E[−(ã− θRn−1)∆pn +
∑

1≤i≤j≤3

L(i,j)
n Y (i)

n Y (j)
n | ã, y1, ..., yn−1]

= −Y (1)
n−1

(
λn(∆θRn + βI

nY
(2)
n−1)− λn(αR

n + βR
n )Y

(3)
n−1

)
+ L(1,1)

n

(
(Y

(1)
n−1 −∆θRn )2

)
+ L(1,2)

n (Y
(1)
n−1 −∆θRn )

(
Y

(2)
n−1 − λn

(
∆θRn + βI

nY
(2)
n−1 − (αR

n + βR
n )Y

(3)
n−1

))
+ L(1,3)

n (Y
(1)
n−1 −∆θRn )

(
Y

(3)
n−1 + rn

(
∆θRn + βI

nY
(2)
n−1

)
− (1 + rn)(αR

n + βR
n )Y

(3)
n−1

)
+ L(2,2)

n

(
(Y

(2)
n−1)2 − 2Y

(2)
n−1λn

(
∆θRn + βI

nY
(2)
n−1 − (αR

n + βR
n )Y

(3)
n−1

)
+ λ2

n

(
∆θRn + βI

nY
(2)
n−1 − (αR

n + βR
n )Y

(3)
n−1

)2

+ r2
n

(
Σ(3)

n

Σ
(1)
n

)2

V[ẑRn ]
)

(A.36)

+ L(2,3)
n

(
Y

(2)
n−1Y

(3)
n−1 + Y

(2)
n−1

(
rn
(
∆θRn + βI

nY
(2)
n−1

)
− (1 + rn)(αR

n + βR
n )Y

(3)
n−1

)
− Y (3)

n−1λn

(
∆θRn + βI

nY
(2)
n−1 − (αR

n + βR
n )Y

(3)
n−1

)
− r2

n
Σ(3)

n

Σ
(1)
n

V[ẑRn ]

− λn
(

∆θRn + βI
nY

(2)
n−1 − (αR

n + βR
n )Y

(3)
n−1

)(
rn
(
∆θRn + βI

nY
(2)
n−1

)
− (1 + rn)(αR

n + βR
n )Y

(3)
n−1

))
+ L(3,3)

n

(
(Y

(3)
n−1)2 + 2Y

(3)
n−1

(
rn
(
∆θRn + βI

nY
(2)
n−1

)
− (1 + rn)(αR

n + βR
n )Y

(3)
n−1

)
+
(
rn
(
∆θRn + βI

nY
(2)
n−1

)
− (1 + rn)(αR

n + βR
n )Y

(3)
n−1

)2

+ r2
nV[ẑRn ]

)
,

which is quadratic in ∆θRn , and where the variance V[ẑRn ] is given by

V[ẑRn ] = (βIn)2
(

Σ
(2)
n−1 −

(
Σ

(3)
n−1

)2

Σ
(1)
n−1

)
+ σ2

w∆. (A.37)

Proof. The proof is similar to the proof of Lemma 2 and is therefore omitted. The

one difference is that restrictions (16)-(17) are used to change the sigma algebra

σ(ã, y1, ..., yn−1) into σ(ã−θ̂Rn−1−q̂n−1, y1, . . . , yn−1) in the derivation of the expectation

in (A.36).

♦

Theorem 3. Fix the constants (15) satisfying (16)-(17) and subject to the pricing-
coefficient restrictions (29)-(30) holding and use them to define ∆θIn by (6), define
the moments (31)-(33) with initial values (26), and compute the the value-function

coefficients {L(i,j)
n }1≤i≤j≤3, n = 0, ..., N using recursions (A.45)-(A.50) with L

(i,j)
N =

0 subject to the second-order-condition (46) holding. Then the rebalancer’s value

function has the quadratic form (44) where {Y (1)
n , Y

(2)
n , Y

(3)
n } are defined by (42) and

∆pn is defined by (10). Furthermore, the rebalancer’s optimal trading strategy is given
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by (45) with coefficients

δ(1)
n :=

2L
(1,1)
n − L(1,3)

n rn + λn + L
(1,2)
n λn

2
(
L

(1,1)
n − L(1,3)

n rn + L
(3,3)
n r2

n + λn(L
(1,2)
n − L(2,3)

n rn + L
(2,2)
n λn)

) , (A.38)

δ(2)
n := −βI

n +
L

(1,2)
n − rn(L

(2,3)
n + L

(1,3)
n βI

n) + L
(1,2)
n βI

nλn + 2(L
(1,1)
n βI

n + L
(2,2)
n λn)

2
(
L

(1,1)
n − L(1,3)

n rn + L
(3,3)
n r2

n + λn(L
(1,2)
n − L(2,3)

n rn + L
(2,2)
n λn)

) , (A.39)

δ(3)
n :=

(
− 2L

(3,3)
n rn − L(1,3)

n (−1 + αR
n + rnα

R
n + βR

n + rnβ
R
n ) + L

(2,3)
n λn

+(αR
n + βR

n )
(
2L

(3,3)
n rn(1 + rn) + λn(L

(1,2)
n − L(2,3)

n − 2L
(2,3)
n rn + 2L

(2,2)
n λn)

))
2
(
L

(1,1)
n − L(1,3)

n rn + L
(3,3)
n r2

n + λn(L
(1,2)
n − L(2,3)

n rn + L
(2,2)
n λn)

) .
(A.40)

Proof. The proof is similar to the proof of Theorem 2 and is therefore omitted.

♦

A.4 Remaining proof

Proof of Theorem 1. Part (iii) of Definition 1 holds from Lemma 1. Parts (i)-(ii)

of Definition 1 hold from Theorem 2 and Theorem 3 as soon as we show that the

optimizers (38) and (45) agree with (18) and (19). This, however, follows from the

equilibrium conditions (40) and (47).

♦

A.5 Value-function coefficients

Set the terminal coefficients

I
(1,1)
N := ... := I

(2,2)
N := L

(1,1)
N := ... := L

(3,3)
N := 0. (A.41)

The recursion for the hedge fund’s value-function coefficients is given by
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I
(1,1)
n−1 =

−1 + rn(2I
(1,2)
n − (I

(1,2)
n )2rn + 4I

(1,1)
n I

(2,2)
n rn)

4(I
(2,2)
n r2

n + λn(−1 + I
(1,2)
n rn + I

(1,1)
n λn))

, (A.42)

I
(1,2)
n−1 = −

(
(−1 + I

(1,2)
n rn)(I

(1,2)
n (−1 + βR

n ) + βR
n )λn

+2I
(2,2)
n rn(−1 + βR

n + rnβ
R
n − 2I

(1,1)
n (−1 + βR

n )λn)
)

2(I
(2,2)
n r2

n + λn(−1 + I
(1,2)
n rn + I

(1,1)
n λn))

, (A.43)

I
(2,2)
n−1 =

λn

(
− (I

(1,2)
n (−1 + βR

n ) + βR
n )2λn

−4I
(2,2)
n (−1 + βR

n )(−1 + I
(1,1)
n λn + βR

n (1 + rn − I(1,1)
n λn))

)
4(I

(2,2)
n r2

n + λn(−1 + I
(1,2)
n rn + I

(1,1)
n λn))

. (A.44)

The recursion for the rebalancer’s value-function coefficients is given by

L
(1,1)
n−1 = −

(
(L

(1,3)
n )2r2

n − 2(1 + L
(1,2)
n )L

(1,3)
n rnλn + (1 + L

(1,2)
n )2λ2

n

+4L
(1,1)
n (−L(3,3)

n r2
n + λn + L

(2,3)
n rnλn − L(2,2)

n λ2
n)
)

4
(
L

(1,1)
n − L(1,3)

n rn + L
(3,3)
n r2

n + λn(L
(1,2)
n − L(2,3)

n rn + L
(2,2)
n λn)

) , (A.45)

L
(1,2)
n−1 = −

(
(L

(1,3)
n rn − λn)(L

(2,3)
n rn + L

(1,3)
n rnβ

I
n − 2L

(2,2)
n λn)

+(L
(1,2)
n )2λn(−1 + βI

nλn) + L
(1,2)
n (rn(L

(1,3)
n − 2L

(3,3)
n rn) + λn

+rn(L
(2,3)
n − 2L

(1,3)
n βI

n)λn + βI
nλ

2
n) + 2L

(1,1)
n (−rn(L

(2,3)
n + 2L

(3,3)
n rnβ

I
n)

+(2L
(2,2)
n + βI

n + 2L
(2,3)
n rnβ

I
n)λn − 2L

(2,2)
n βI

nλ
2
n)
)

2
(
L

(1,1)
n − L(1,3)

n rn + L
(3,3)
n r2

n + λn(L
(1,2)
n − L(2,3)

n rn + L
(2,2)
n λn)

) , (A.46)

L
(1,3)
n−1 =

[
(L

(1,3)
n )2rn((1 + rn)(αR

n + βR
n )− 1) + (1 + L

(1,2)
n )λn

(
2L

(3,3)
n rn(1− αR

n − βR
n )

−L(2,3)
n λn + (L

(1,2)
n + L

(2,3)
n )(αR

n + βR
n )λn

)
+2L

(1,1)
n

(
2L

(3,3)
n rn(1− (1 + rn)(αR

n + βR
n ))

−L(2,3)
n λn + (αR

n + βR
n )λn(1 + L

(2,3)
n + 2L

(2,3)
n rn − 2L

(2,2)
n λn)

)
+L

(1,3)
n λn

(
αR
n − 1 + βR

n + L
(2,3)
n rn(αR

n + βR
n − 1)− (αR

n + βR
n )(rn + 2L

(2,2)
n λn)

−L(1,2)
n (−1 + αR

n + 2rnα
R
n + βR

n + 2rnβ
R
n ) + 2L

(2,2)
n λn

)]
2(L

(1,1)
n − L(1,3)

n rn + L
(3,3)
n r2

n + λn(L
(1,2)
n − L(2,3)

n rn + L
(2,2)
n λn))

, (A.47)

L
(2,2)
n−1 = −

[
(L

(1,2)
n )2(−1 + βI

nλn)2 − 2L
(1,2)
n rn

(
L

(2,3)
n − L(2,3)

n βI
nλn

+βI
n(−L(1,3)

n + 2L
(3,3)
n rn + L

(1,3)
n βI

nλn)
)

+ rn

((
(L

(2,3)
n )2 − 4L

(2,2)
n L

(3,3)
n

)
rn

+(L
(1,3)
n )2rn(βI

n)2 + L
(1,3)
n (4L

(2,2)
n + 2L

(2,3)
n rnβ

I
n − 4L

(2,2)
n βI

nλn)
)

−4L
(1,1)
n

(
L

(2,2)
n (−1 + βI

nλn)2 + rnβ
I
n(L

(2,3)
n + L

(3,3)
n rnβ

I
n − L

(2,3)
n βI

nλn)
)]

4(L
(1,1)
n − L(1,3)

n rn + L
(3,3)
n r2

n + λn(L
(1,2)
n − L(2,3)

n rn + L
(2,2)
n λn))

, (A.48)
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L
(2,3)
n−1 =

[(
L

(1,3)
n rn(L

(2,3)
n + L

(1,3)
n βI

n)

−2L
(1,1)
n (L

(2,3)
n + 2L

(3,3)
n rnβ

I
n)
)
((1 + rn)(αR

n + βR
n )− 1)

+
(

(L
(2,3)
n )2rn(αR

n + βR
n − 1) + 2L

(1,1)
n L

(2,3)
n βI

n(αR
n + 2rnα

R
n + βR

n + 2rnβ
R
n − 1)

+4L
(2,2)
n (−L(3,3)

n rn(−1 + αR
n + βR

n ) + L
(1,1)
n (αR

n + βR
n ))

+L
(1,3)
n (L

(2,3)
n rnβ

I
n(αR

n + βR
n − 1)− 2L

(2,2)
n (1− (1− rn)(αR

n + βR
n ))
)
λn

−2L
(2,2)
n βI

n(L
(1,3)
n (−1 + αR

n + βR
n ) + 2L

(1,1)
n (αR

n + βR
n ))λ2

n

+(L
(1,2)
n )2(αR

n + βR
n )λn(−1 + βI

nλn) + L
(1,2)
n (L

(2,3)
n λn

−2L
(3,3)
n rn(−1 + αR

n + rnα
R
n + βR

n + rnβ
R
n + βI

n(−1 + αR
n + βR

n )λn)

+L
(2,3)
n λn((−1 + rn)(αR

n + βR
n ) + βI

n(−1 + αR
n + βR

n )λn)

+L
(1,3)
n (−1 + αR

n + rnα
R
n + βR

n + rnβ
R
n + βI

nλn − (1 + 2rn)βI
n(αR

n + βR
n )λn))

]
2
(
L

(1,1)
n − L(1,3)

n rn + L
(3,3)
n r2

n + λn(L
(1,2)
n − L(2,3)

n rn + L
(2,2)
n λn)

) , (A.49)

L
(3,3)
n−1 = −

[
(L

(1,3)
n )2((1 + rn)(αR

n + βR
n )− 1)2 + 2L

(1,3)
n λn

(
((1 + rn)(αR

n + βR
n )− 1)×(

L
(2,3)
n (αR

n + βR
n − 1)− L(1,2)

n (αR
n + βR

n )
)

−2L
(2,2)
n (αR

n + βR
n − 1)(αR

n + βR
n )λn

)
−4L

(1,1)
n

(
L

(3,3)
n (−1 + αR

n + rnα
R
n + βR

n + rnβ
R
n )2 + (αR

n + βR
n )λn×(

− L(2,3)
n (−1 + αR

n + rnα
R
n + βR

n + rnβ
R
n ) + L

(2,2)
n (αR

n + βR
n )λn

))
+λn

((
(L

(2,3)
n )2 − 4L

(2,2)
n L

(3,3)
n

)
(−1 + αR

n + βR
n )2λn + (L

(1,2)
n )2(αR

n + βR
n )2λn

−2L
(1,2)
n (αR

n + βR
n − 1)(2L

(3,3)
n ((1 + rn)(αR

n + βR
n )− 1)

−L(2,3)
n (αR

n + βR
n )λn)

)]
4
(
L

(1,1)
n − L(1,3)

n rn + L
(3,3)
n r2

n + λn(L
(1,2)
n − L(2,3)

n rn + L
(2,2)
n λn)

) . (A.50)

A.6 Algorithm

This section describes an algorithm for searching numerically for a linear Bayesian

Nash equilibrium. The algorithm is similar in logic to the algorithm in Section V in

Foster and Viswanathan (1996), except that our algorithm requires three constants as

inputs (due to the presence of two strategic agents) whereas Foster and Viswanathan

(1996) only has one constant as an input.

The algorithm starts by taking as inputs three conjectured conditional moments

for the final time N round of trading:33

Σ
(1)
N−1 > 0, Σ

(2)
N−1 > 0, Σ

(3)
N−1 ∈ R such that

(
Σ

(3)
N−1

)2 ≤ Σ
(1)
N−1Σ

(2)
N−1. (A.51)

33We do not take the post-trade time-N moments (Σ
(1)
N ,Σ

(2)
N ,Σ

(3)
N ) as inputs because they are

after the last round of trading. In addition, (31) and (33) together with the terminal condition

βR
N = 1 imply that Σ

(1)
N = Σ

(3)
N = 0.
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The algorithm then proceeds through backward induction.

Starting step for trading time N : We need {λN , βIN} to satisfy (29) for n = N

where

βIN =
1

2λN
−

Σ
(3)
N−1

2Σ
(2)
N−1

(A.52)

from the hedge fund’s equilibrium strategy coefficient in (40) with λN > 0 in order

to satisfy (39). Given those two constants {λN , βIN}, we set

βRN := 1, αRN := rN := 0. (A.53)

Because of the rebalancer’s terminal constraint, his last round of trading (i.e., at time

N) does not involve any optimization, and so we have

E
[
−(ã− θRN−1)∆pN | ã, y1, ..., yN−1

]
= −Y (1)

N−1

(
λN(Y

(1)
N−1 + βINY

(2)
N−1)− λNY (3)

N−1

)
.

(A.54)

This relation implies the rebalancer’s value-function coefficients for n = N − 1 are

L
(1,1)
N−1 = −λN , L(1,2)

N−1 = −λNβIN , L
(1,3)
N−1 = λN , L

(2,2)
N−1 = L

(2,3)
N−1 = L

(3,3)
N−1 = 0. (A.55)

On the other hand, the hedge fund’s problem in the last round of trading is similar

to her problem in any other round of trading. By inserting the boundary conditions

I
(1,1)
N = I

(1,2)
N = I

(2,2)
N = 0 (A.56)

into the recursions (A.42)-(A.44), we produce the value-function coefficients I
(i,j)
N−1.

Induction step: At each time n the algorithm takes the following terms as inputs:

Σ(1)
n ,Σ(2)

n ,Σ(3)
n , {I(i,j)

n }1≤i≤j≤2, {L(i,j)
n }1≤i≤j≤3. (A.57)

We first find the constants {λn, rn,Σ(1)
n−1,Σ

(2)
n−1,Σ

(3)
n−1, β

I
n, β

R
n } by requiring that (29)-

(30), (31)-(33) with Σ
(1)
n−1 > 0,Σ

(2)
n−1 > 0 and (Σ

(3)
n−1

)2 ≤ Σ
(1)
n−1Σ

(2)
n−1, monotonicity of

Σ
(2)
n−1, (40), the first part of (47), as well as the second-order conditions (39)-(46)
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hold. These are seven polynomial equations in seven unknown constants. We can

then subsequently define αRn by the second part of (47).

Next, the value-function coefficients {I(i,j)
n−1}1≤i≤j≤2 and {L(i,j)

n−1}1≤i≤j≤3 at time n−1

are found by the recursions (A.42)-(A.44) and (A.45)-(A.50).

Termination: The iteration above is continued back to time n = 0. If the resulting

values at time n = 0 do not satisfy (26), then we adjust the conjectured starting

input values in (A.51) and start the algorithm all over. If the resulting values at time

n = 0 do satisfy (26), then the algorithm terminates. If the rebalancer coefficients

satisfy (16), then the computed constants produce a linear Bayesian Nash equilibrium.

Otherwise, no equilibrium was found.

B Modified Foster and Viswanathan (1994)

Our modification of the Foster and Viswanathan (1994) model has N periods of

trade after which the traded security pays off ṽ ∼ N(0, σ2
ṽ) at time N + 1. Four

types of investors trade: First, a strategic risk-neutral investor who knows ṽ at time

0 and who trades dynamically over time using orders ∆θIn. Second, a strategic risk-

neutral less-informed investor who receives an initial signal ã ∼ N(0, σ2
ã) with ã and

ṽ being jointly normally distributed random variables with corr(ã, ṽ) = ρ ∈ (0, 1)

and who trades dynamically using orders ∆θLn . The “L” superscript here denotes

that this second investor is “less” informed than the first (better-informed) investor

with superscript “I”. Third, noise traders submit random orders ∆wn ∼ N(0, σ2
w∆)

which are independent of (ṽ, ã). Fourth, competitive risk-neutral market makers see

the aggregate order flow at each time

yn := ∆θIn + ∆θLn + ∆wn, y0 := 0, (B.1)

and set prices pn at which they then clear the market.

In our modified FV model, the better-informed investor does not know ã, whereas

in the original Foster and Viswanathan (1994) the better-informed investor knows

both ṽ and ã. Thus, except for the rebalancing constraint, the modified FV model

has the identical information structure as in our model of strategic rebalancing.

A Bayesian Nash Equilibrium for the modified FV model consists of: (i) Or-

der strategies that, at each time n, maximize the expected profits of the better-
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informed and less-informed investors given their their respective information sets

σ(ṽ, y1, . . . , yn−1) and σ(ã, y1, . . . , yn−1), and (ii) A pricing rule that sets prices to

be conditional expectations

pn = E[ṽ | y1, ..., yn], n = 1, ..., N. (B.2)

Our goal is to find a linear equilibrium in which the price dynamics are given by

∆pn = λnyn, p0 := 0. (B.3)

The two informed investors’ optimal orders take the form:

∆θIn = βIn(ṽ − pn−1), θI0 := 0, (B.4)

∆θLn = βLn (sn−1 − pn−1), θL0 := 0. (B.5)

In (B.5) the process sn denotes the less-informed investor’s expectation of the stock

payoff ṽ after trade at time n; that is,

sn = E[ṽ | ã, y1, ..., yn], s0 := ρ
σṽ
σã
ã. (B.6)

The dynamics of sn are given by

∆sn = φn

(
yn − E(yn | ã, y1, . . . , yn−1

)
= φn

(
yn − (βLn + βIn)(sn−1 − pn−1)

)
= φn

(
∆wn + βIn(ṽ − sn−1)

)
. (B.7)

In particular, the less-informed investor learns about ṽ by updating on the observed

order flow. Because the better-informed investor knows ṽ initially, she does not

update her expectations about ṽ over time. The Internet Appendix presents sufficient

conditions for a linear Bayesian Nash equilibrium to exist in the modified FV model.

Finally, we remark that, unlike in our dynamic rebalancing model, there are no

predictable components of the order-flow process (i.e., given the aggregate order-flow

history) in the modified FV model. Consequently, no qn process is present and the

aggregate order-flow process becomes a martingale with respect to the flow of public

information.
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C Expected Rebalancer Orders

Proof of Proposition 2. Let ∆θIn be defined by (6) throughout this proof, and let

{λn, rn} be the linear equilibrium coefficients for n = 1, . . . , N . The rebalancer’s

value function, when he is restricted to using only deterministic controls, is given by

V R,a
m := max

∆θRn∈σ(ã),m+1≤n≤N−1
−E
[ N∑
n=m+1

(ã− θRn−1)∆pn

∣∣∣ã], m = 0, ..., N. (C.1)

This definition is the restriction of (44) to deterministic controls. It is straightfor-

ward to show that the value function in (C.1) is quadratic, and that the optimal

deterministic control — denoted here as x∗n — is linear in ã and is unique.

We define the sets of random variables An by

An :=
{
Z ∈ σ(ã, y1, ..., yn−1) : Z is independent of ã

}
, n = 1, 2, ..., N. (C.2)

Given an arbitrary strategy ∆θRn = gnã+ Zn with gn ∈ R and Zn ∈ An, we define

pan := E[pn|ã], pZn := pn − pan, θR,an := E[θRn |ã], θR,Zn := θRn − θR,an . (C.3)

We also define qan := E[qn|ã] and qZn := qn − qan. We then have the following recursive

relations:

∆pan = λn

(
βIn
(
ρσṽ
σã
ã− pan−1

)
+ gnã

)
− λn(αRn + βRn )qan−1, (C.4)

∆pZn = λn

(
βIn
(
ṽ − ρσṽ

σã
ã− pZn−1

)
+ ∆wn + Zn

)
− λn(αRn + βRn )qZn−1, (C.5)

∆qan = rn

(
βIn
(
ρσṽ
σã
ã− pan−1

)
+ gnã

)
− (1 + rn)(αRn + βRn )qan−1, (C.6)

∆qZn = rn

(
βIn
(
ṽ − ρσṽ

σã
ã− pZn−1

)
+ ∆wn + Zn

)
− (1 + rn)(αRn + βRn )qZn−1. (C.7)

Expression (C.4)-(C.7) imply that pan, q
a
n ∈ σ(ã), and that pZn and qZn are independent
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of ã. This observation produces the following decomposition:

max
gn∈R, Zn∈An,

∆θRn=gnã+Zn, 1≤n≤N−1

−E
[ N∑
n=1

(ã− θRn−1)∆pn

∣∣∣ã]

=
(

max
gn∈R, 1≤n≤N−1

−
N∑
n=1

(ã− θR,an−1)∆pan

)
+
(

max
Zn∈An, 1≤n≤N−1

E
[ N∑
n=1

θR,Zn−1∆pZn
])
.

(C.8)

We know that the rebalancer’s equilibrium optimal strategy is given by ∆θ̂Rn in

(19), which is linear in ã, y1, ..., yn−1 and, therefore, can be written as ∆θ̂Rn = ĝnã+ Ẑn

with ĝn ∈ R and Ẑn ∈ An. Inserting the equilibrium optimal strategy into (C.8) we

see that (ĝn)n=1,...,N is the solution to

max
gn∈R, 1≤n≤N−1

−
N∑
n=1

(ã− θR,an−1)∆pan. (C.9)

Since (C.1) is equivalent to the optimization problem in (C.9), we conclude that

x∗n = ĝnã = E[∆θ̂Rn |ã], where, in equilibrium, ∆θ̂Rn = ∆θRn .

♦
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This Internet Appendix provides supporting proofs and additional numerical results

for our paper “Information and Trading Targets in a Dynamic Market Equilibrium”

in the Journal of Financial Economics.

D.1 Sufficient conditions for the modified FV model

Our derivation of sufficient conditions for a linear Bayesian Nash equilibrium for

the modified FV model follows the same logic as in our dynamic-rebalancing model.

Given a set {λn, φn, βIn, βLn}Nn=1 of model parameters, we define the following set of

conjectured “hat”processes:

∆θ̂In := βIn(ṽ − p̂n−1), θ̂I0 := 0, (D.1)

∆θ̂Ln := βLn (ŝn−1 − p̂n−1), θ̂L0 := 0, (D.2)

ŷn := ∆θ̂In + ∆θ̂Ln + ∆wn, ŷ0 := 0, (D.3)

∆p̂n := λnŷn, p̂0 := 0, (D.4)

∆ŝn := φn

(
ŷn − (βLn + βIn)(ŝn−1 − p̂n−1)

)
, ŝ0 := ρ

σṽ
σã
ã. (D.5)

These processes must satisfy a variety of restrictions to be a linear Bayesian equilib-

rium. We derive these restrictions in two steps.

Step 1: The conjectured price and less-informed investor expectation processes

must satisfy:

p̂n = E[ṽ | ŷ1, ..., ŷn], (D.6)

ŝn = E[ṽ | ã, ŷ1, ..., ŷn]. (D.7)

1



We define the conditional moments for n = 1, . . . N :

Σ(1)
n := V

[
ṽ − p̂n

]
, (D.8)

Σ(2)
n := V

[
ŝn − p̂n

]
, (D.9)

Σ(3)
n := E

[(
ŝn − p̂n

)
(ṽ − p̂n)

]
= Σ(2)

n , (D.10)

where the last equality follows from iterated expectations. The starting values are:

Σ
(1)
0 = σ2

ṽ , Σ
(2)
0 = V

[
ρ
σṽ
σã
ã
]

= ρ2σ2
ṽ . (D.11)

Furthermore, Σ
(1)
n ≥ Σ

(2)
n because we have

0 ≤ V
[
ṽ − ŝn

]
= V

[
ṽ − p̂n + p̂n − ŝn

]
= Σ(1)

n + Σ(2)
n − 2Σ(3)

n = Σ(1)
n − Σ(2)

n . (D.12)

The filter dynamics are given by:

Σ(1)
n = V

[
ṽ − p̂n−1 −∆p̂n

]
= V

[
ṽ − p̂n−1 − λn(βIn(ṽ − p̂n−1) + βLn (ŝn−1 − p̂n−1) + ∆wn)

]
(D.13)

= (1− λnβIn)2Σ
(1)
n−1 + (λnβ

L
n )2Σ

(2)
n−1 − 2λnβ

L
n (1− λnβIn)Σ

(3)
n−1 + λ2

n∆σ2
w,

Σ(2)
n = V

[
ŝn−1 + ∆ŝn − (p̂n−1 + ∆p̂n)

]
= V

[
ŝn−1 + φn(βIn(ṽ − p̂n−1 + p̂n−1 − ŝn−1) + ∆wn)

− p̂n−1 − λn(βIn(ṽ − p̂n−1) + βLn (ŝn−1 − p̂n−1) + ∆wn)
]

= (βIn)2(φn − λn)2Σ
(1)
n−1 + (1− βInφn − βLnλn)2Σ

(2)
n−1

+ 2βIn(φn − λn)(1− βInφn − βLnλn)Σ
(3)
n−1 + (φn − λn)2∆σ2

w.

(D.14)

To find the equations for the constants λn and φn appearing in (D.4) and (D.5)

we need the investors’ innovation processes. The informed investor (who knows ṽ)

has innovations defined by

zIn : = ŷn −
(
βIn + βLn

Σ
(3)
n−1

Σ
(1)
n−1

)
(ṽ − p̂n−1)

= ∆wn + βLn (ŝn−1 − p̂n−1)− βLn
Σ

(3)
n−1

Σ
(1)
n−1

(ṽ − p̂n−1).

(D.15)
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The less-informed investor (who knows ã) learns about ṽ over time by filtering the

aggregate order-flow process to construct the estimate process sn given by (D.7). His

innovations are defined by

zLn : = ŷn − (βIn + βLn )(ŝn−1 − p̂n−1)

= ∆wn + βIn(ṽ − ŝn−1).
(D.16)

Finally, the market makers’ innovations are defined by

zMn := ŷn, (D.17)

because all trades of the forms (D.1) and (D.2) are unpredictable for the market mak-

ers. Based on the requirement (D.6), we can use (D.17) to obtain the representation

∆p̂n =
E[(ṽ − p̂n−1)zMn ]

V[zMn ]
zMn . (D.18)

We then use the projection theorem for multivariate normals to see that the price

coefficient in (D.4) is given by

λn =
βInΣ

(1)
n−1 + βLnΣ

(2)
n−1

(βIn)2Σ
(1)
n−1 + (βLn )2Σ

(2)
n−1 + 2βInβ

L
nΣ

(2)
n−1 + ∆σ2

w

. (D.19)

Similarly, we can use the less-informed investor’s innovation process (D.16) to

re-write (D.7) as

∆ŝn =
E[(ṽ − ŝn−1)zLn ]

V[zLn ]
zLn . (D.20)

Consequently, we find the coefficient requirement

φn =
βIn(Σ

(1)
n−1 − Σ

(2)
n−1)

(βIn)2(Σ
(1)
n−1 − Σ

(2)
n−1) + ∆σ2

w

. (D.21)

Step 2: The price and updating processes as well as the order-flow coefficients also

need to be consistent with the two informed investors’ optimization problems. First,

we consider the better-informed investor where the less-informed investor’s strategy

is fixed to be the conjectured strategy (B.5). Then, for ∆θIn ∈ σ(ṽ, y1, ..., yn−1), we

3



have

E[(ṽ − pn)∆θIn|ṽ − p̂n−1]

= ∆θInE[ṽ − pn−1 − λn∆θIn − λnβLn (sn−1 − pn−1)|ṽ − p̂n−1]

= ∆θIn(ṽ − pn−1)− λn(∆θIn)2

− λnβLn∆θInE[sn−1 + ŝn−1 − ŝn−1 + p̂n−1 − p̂n−1 − pn−1|ṽ − p̂n−1]

= ∆θIn(ṽ − pn−1)− λn(∆θIn)2 − λnβLn∆θIn

(
sn−1 − ŝn−1 + p̂n−1 − pn−1 +

Σ
(2)
n−1

Σ
(1)
n−1

(ṽ − p̂n−1)
)

= ∆θInX
(1)
n−1 − λn(∆θIn)2 − λnβLn∆θInX

(2)
n−1, (D.22)

where we have defined the two state-variables:

X(1)
n := ṽ − pn, X(2)

n := sn − ŝn + p̂n − pn +
Σ

(2)
n

Σ
(1)
n

(ṽ − p̂n). (D.23)

The dynamics of the first state-variable are given by

∆X(1)
n = −∆pn

= −λn
(

∆θIn + βLn (sn−1 − pn−1) + ∆wn

)
= −λn

(
∆θIn + βLn (sn−1 − pn−1) + zIn − βLn (ŝn−1 − p̂n−1) + βLn

Σ
(2)
n−1

Σ
(1)
n−1

(ṽ − p̂n−1)
)

= −λn
(

∆θIn + βLnX
(2)
n−1 + zIn

)
. (D.24)

Similarly, by using (D.13)-(D.14) and (D.19)-(D.21) we find the dynamics of the

second state-variable to be:

∆X(2)
n = (φn − λn)∆θIn − (φnβ

I
n + λnβ

L
n )X

(2)
n−1 − λn

Σ
(2)
n

Σ
(1)
n

zIn. (D.25)

Second, we consider the less-informed investor and here the better-informed in-
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vestor’s strategy is fixed as in (B.4). Then, for ∆θLn ∈ σ(ã, y1, ..., yn−1), we have

E[(ṽ − pn)∆θLn |ã− p̂n−1] = ∆θLnE[(ṽ − pn−1 − λn∆θLn − λnβIn(ṽ − pn−1)|ã− p̂n−1]

= −λn(∆θLn )2 + (1− λnβIn)∆θLnE[ṽ − pn−1|ã− p̂n−1]

= −λn(∆θLn )2 + (1− λnβIn)∆θLn

(
ŝn−1 − pn−1

)
= −λn(∆θLn )2 + (1− λnβIn)∆θLn (Y

(2)
n−1 + Y

(1)
n−1), (D.26)

where we have defined the two state-variables:

Y (1)
n := sn − pn, Y (2)

n := ŝn − sn. (D.27)

Similarly to the better-informed investor considered before, we find the dynamics

∆Y (1)
n = φn

(
zLn + βInY

(2)
n−1 + ∆θLn − βLnY

(1)
n−1

)
− λn

(
βIn(Y

(1)
n−1 + Y

(2)
n−1) + ∆θLn + zLn

)
,

(D.28)

∆Y (2)
n = −φn

(
βInY

(2)
n−1 + ∆θLn − βLnY

(1)
n−1

)
. (D.29)

The above dynamics of the state-variables (D.23) and expression for the con-

ditional expectation (D.22) ensure that the better-informed investor’s problem (not

stated for brevity) is a quadratic maximization problem. Therefore, subject to second-

order conditions, the optimal orders ∆θ̂In are linear in the state-variables (D.23). Sim-

ilarly, given the above dynamics of the state-variables (D.27) and the expression for

the conditional expectation (D.26) ensure that the less-informed investor’s problem

is also quadratic with linear optimal orders ∆θ̂Ln . By inserting the respective optimal

linear orders into their respective quadratic optimization problems, we find recursions

for the coefficients describing the two quadratic value functions.

D.2 Intraday patterns in sunshine trading

The rebalancer’s expected orders given his target ã can be further decomposed to

isolate predictable sunshine trading relative to the other expected drivers of the re-

balancer’s strategy. We do this by computing the ratio of the rebalancer’s expectation

5



of his sunshine trading relative to his total expected orders given ã 6= 0

E[E[∆θRn | y1, . . . , yn−1] | ã]

E[∆θRn | ã]
=

(αRn + βRn )E[qn−1 | ã]

E[∆θRn | ã]
. (D.30)

Figures 12A and B show that expected sunshine trading is increasing in the target

variance σ2
ã and correlation ρ.34 When the target ã is ex ante uninformative (i.e.,

ρ = 0), sunshine trading accounts for between 5% and 30% of the rebalancer’s total

expected orders. However, when ã is informative, then sunshine trading can account

for an even larger portion of trading later in the day. Interestingly, Figure 12B shows

that the impact of greater target variance σ2
ã can be non-monotone at later dates

(e.g., at time n = 9, the intermediate target variance (− · −) line is below both the

lower variance (−−) line and the higher variance (− · ·−) line). However, the main

point here is that other deterministic trading components can also be large.

Figure 12: Intraday patterns for the ratio of expected sunshine trading relative to
the rebalancer’s total expected orders given a target ã 6= 0 for times n = 1, . . . , 10.
The parameters are N = 10, σ2

ṽ = 1, σ2
w = 1, and σ2

ã = 0.2 (− − with ◦), 1 (− ·
− with M), 2 (− · · − with �).
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D.3 Intraday patterns in price volatility

Figure 13 shows the unconditional standard deviation for the price changes pn− pn−1

over time. Price volatility is monotonely increasing over time in the Kyle model

(solid black line) in Figure 13A, whereas our rebalancing model produces U -shaped

34In the modified FV model, with no trading constraint, there is no sunshine trading.
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price volatility (dotted lines). In addition, the U -shape becomes larger when rebal-

ancing volatility is higher. When ρ > 0, Figure 13B shows that price volatility has

a downward-sloping U -shape in both the modified FV model and in our dynamic

rebalancing model.

Figure 13: Intraday patterns for the unconditional price-change standard deviations
SD[pn − pn−1] for times n = 1, 2, ..., 10. The parameters are N = 10, σ2

ṽ = 1, σ2
w = 1,

and σ2
ã = 0.2 (−− with ◦), 1 (− · − with M), 2 (− · · − with �).
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A: ρ = 0, [Kyle]: (—–) B: ρ = 0.45, [FV]: (—–)

D.4 Intraday patterns in informed-investor trading

Equation (56) gives the linear decomposition for the informed-investor orders in terms

of the asset value ṽ (which the informed investor knows), the trading target ã (which

she does not know), and the noise-trader orders. Figure 14 shows the informed

investor’s decomposition coefficients for our six reference parameterizations. As ex-

pected, the informed-investor orders load positive on the stock value ṽ and load nega-

tively on the target ã and the noise-trader orders ∆wj since both inject price-pressure

noise in prices.

D.5 Negative cross-correlation of orders

The rebalancer and hedge-fund order decompositions (52) and (56) can be used to

understand our correlation results by dividing the order correlations into components
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Figure 14: Intraday patterns for the linear-decomposition coefficients for the
informed-trader orders for times n = 1, . . . , 10. The top figures show the coefficients
AIn on the rebalancer’s target ã (lines with ◦, M, �) and BI

n on the asset value ṽ (lines
with •, N, �), and the lower figures show the coefficients cIj,n on ∆wj for for noise-
trader order arrival times j = 1, 3, 5, and 7. The parameters are N = 10, σ2

ṽ = 1,
σ2
w = 1, and σ2

ã = 0.2 (−− with ◦ or •), 1 (− · − with M or N), 2 (− · · − with � or �).
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due to the two investors’ loadings on ã, ṽ, and the noise-trading orders

corr(∆θRn ,∆θ
I
n) =

ARnA
I
n σ

2
ã

SD[∆θRn ] SD[∆θIn]
+

(ARnB
I
n +BR

nA
I
n)σãσṽρ

SD[∆θRn ] SD[∆θIn]

+
BR
nB

I
n σ

2
ṽ

SD[∆θRn ] SD[∆θIn]
+

∑
j=1,...n−1

cRj,nc
I
j,nσ

2
w∆

SD[∆θRn ] SD[∆θIn]
.

(D.31)

Figure 15 shows for the case of σ2
ã = 1 and ρ = 0 that the negative correlation

component due to the target ã can account for a large part of the negative correlation

between the rebalancer and informed hedge-fund orders. The rebalancer trades in

the direction of his target ã while the hedge fund trades opposite the noise that
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rebalancing induces in prices (i.e., see the negative loading AIn in Figure 14).

Figure 15: Intraday patterns for the correlation components for times n = 1, 2, ..., 10.
The parameters are N = 10, σ2

ṽ = 1, σ2
w = 1, and σ2

ã = 1. The four terms in (D.31)
are expressed by (——), (−−−), (− · −) and (− · ·−), respectively.
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D.6 Analysis using ad hoc strategies

The relative importance of different economic considerations driving the rebalancer

orders can be quantified using a second decomposition. This approach takes the

equilibrium pricing rule {pn} and informed-investor strategy {θIn} as given, and then

computes a number of ad hoc rebalancer trading strategies that ignore various combi-

nations of the different economic considerations for the rebalancer’s optimal equilib-

rium strategy. Specifically, we consider five ad hoc strategies in which the rebalancer

1. Trades just once to reach his full target ã but optimizes the time he trades so

as to minimize his expected trading cost. This is the Admati and Pfleiderer

(1988) strategy.

2. Trades deterministically to reach his target ã by splitting his orders equally over

time (i.e., trading ã/N at each time n). This is the time-weighted average price

(TWAP) strategy.

3. Trades deterministically to reach his target ã and minimizes his expected cost

taking into account the time pattern of the equilibrium price-impacts λn, but
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ignoring the effects of trading by the informed investor and sunshine trading.35

4. Trades deterministically to reach his target ã and minimizes his expected cost

taking into account the time pattern of the equilibrium λns and predictable

effects of the informed investor’s trading but ignoring sunshine-trading.36

5. Trades to reach his target ã using the optimal deterministic strategy in Propo-

sition 2.

The orders for these strategies j = 1, . . . , 5 at time n are denoted here by xjn. These ad

hoc strategies are off-equilibrium deviations from the rebalancer’s equilibrium orders.

Comparing different ad hoc strategies and the equilibrium strategy disentangles the

impacts of various omitted and included economic considerations in the rebalancer’s

trading behavior. Conveniently, each of the ad hoc strategies is linear in the target

ã.

Table 1 measures the distance between the ad hoc strategies and the equilibrium

rebalancer strategy using mean squared errors (MSEs). We average the squared er-

rors (∆θRn − xjn)2 at each time n given a target level ã across different simulated

values of ṽ and noise trader orders and then sum them across all N dates. The ta-

ble also includes the expected total sum-of-squares (TSS) for the equilibrium strategy∑N
n=1 E[(∆θ̂Rn )2|ã] for some context about size. Note, first, that the TSS intercepts —

which are the contribution of the adaptive component to the total sum-of-squares of

the equilibrium strategy — are small.37 This indicates that the adaptive component

has a quantitatively small impact on rebalancer orders. Second, the MSE coefficients

multiplying ã2 for the ad hoc strategies measure suboptimality due to omitted deter-

ministic trading considerations. Not surprisingly, these coefficients are large for the

single-date Admati-Pfleiderer strategy #1 but can be quite small for the multiperiod

strategies. However, strategy #3 is an outlier and deviates from strategy #4 by a

large amount. This shows that predictable interactions with the informed-investor

orders can have a quantitatively important effect on the rebalancer’s trading strategy.

35These orders are optimized for a perceived pricing rule ∆pn = λn(∆θRn + ∆wn) that excludes
the informed investor’s orders ∆θIn and the sunshine-trading adjustment −λn (αR

n + βR
n ) qn−1.

36These orders are optimized for a perceived price rule ∆pn = λn(∆θRn + ∆θIn + ∆wn) with the
correct aggregate order flow but missing the sunshine-trading adjustment −λn (αR

n + βR
n )qn−1.

37In particular, the TSS intercepts are small relative to the variability induced by a one standard
deviation rebalancing shock a = σã. The intercepts are also the same in all the MSEs since all of
the ad hoc strategies are deterministic and thus omit the adaptive order variability.
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Table 1: Mean squared errors for ad hoc strategies x1
n, . . . , x

5
n relative to the equilib-

rium rebalancer strategy ∆θRn and the equilibrium total sum of squares.

ρ = 0, σ2
ã = 0.2 ρ = 0, σ2

ã = 1 ρ = 0, σ2
ã = 2

MSE for strategy #1 0.0001 + 0.6213 ã2 0.0007 + 0.6097 ã2 0.0008 + 1.0615 ã2

MSE for strategy #2 0.0001 + 0.0324 ã2 0.0007 + 0.0375 ã2 0.0008 + 0.0410 ã2

MSE for strategy #3 0.0001 + 0.0259 ã2 0.0007 + 0.1205 ã2 0.0008 + 0.3540 ã2

MSE for strategy #4 0.0001 + 0.0003 ã2 0.0007 + 0.0068 ã2 0.0008 + 0.0256 ã2

MSE for strategy #5 0.0001 0.0007 0.0008
Equilibrium TSS 0.0001 + 0.1324 ã2 0.0007 + 0.1375 ã2 0.0008 + 0.1410 ã2

ρ = 0.45, σ2
ã = 0.2 ρ = 0.45, σ2

ã = 1 ρ = 0.45, σ2
ã = 2

MSE for strategy #1 0.0062 + 0.8508 ã2 0.0093 + 1.0005 ã2 0.0093 + 1.0211 ã2

MSE for strategy #2 0.0062 + 0.0411 ã2 0.0093 + 0.0242 ã2 0.0093 + 0.0300 ã2

MSE for strategy #3 0.0062 + 0.3991 ã2 0.0093 + 0.8027 ã2 0.0093 + 1.4935 ã2

MSE for strategy #4 0.0062 + 0.0015 ã2 0.0093 + 0.0045 ã2 0.0093 + 0.0084 ã2

MSE for strategy #5 0.0062 0.0093 0.0093
Equilibrium TSS 0.0062 + 0.1411 ã2 0.0093 + 0.1242 ã2 0.0093 + 0.1300 ã2

Table 2 shows the rebalancer’s expected trading profits conditional on the target

ã for each of the ad hoc strategies x1
n, . . . , x

5
n and for the rebalancer’s equilibrium

strategy ∆θRn (“Equilibrium”). Given risk neutrality and the linearity of the prices

and informed orders, the rebalancer’s value function is quadratic in ã. We average

over ṽ and the noise trader orders for the various parameterizations.

There are several things to note in Table 2: First, the rebalancer’s value function

based on his equilibrium strategy includes a positive constant that reflects the contri-

bution of adaptive sunshine trading and speculation based on endogenous learning.

However, the incremental impact of adaptive trading is often numerically small rela-

tive to the contribution from deterministic trading. This reinforces the earlier point

in Table 1 about adaptive trading being economically small. Second, when ρ is zero

(or sufficiently small), there is a negative coefficient on the ã2 term indicating that the

contribution to the rebalancer’s expected profits from trading towards the target ã

is negative. This is because the uninformed deterministic part of the rebalancer’s or-

ders on average push the price away from ṽ. However, when the target has significant

information content (i.e., when ρ is large), then the coefficient on ã can be positive

or negative. In particular, reducing the size of the target relative to its information

content — i.e., when σã is small — can make the rebalancer’s expected profit be

positive by not constraining him to trade larger quantities than he would optimally
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choose to trade given the information in ã. This can be seen by comparing the re-

balancer expected profit when ρ = 0.45 in the case σ2
ã = 0.2 (when the rebalancer is

constrained to trade less than he would like given his information and his equilibrium

expected profit from trading on ã is actually positive) and the cases of σ2
ã = 1 and

2 (when the rebalancer has a negative expected profit from trading on ã because his

orders are constrained to be too large relative to the informativeness of his target).

Third, the rebalancer’s expected profit increases significantly when the rebalancer

splits his orders over time relative to just trading once at an optimally chosen single

time. Taking the intraday pattern of price impact and predictable interactions with

the informed-investor orders into account also has significant positive effects. How-

ever, the incremental impact of sunshine trading (comparing the expected profits for

strategies #4 and #5) seems small.

Table 2: Expected profit for ad hoc rebalancer strategies x1
n, . . . , x

5
n and using the

equilibrium strategy ∆θRn conditional on a parent target ã.

Strategy ρ = 0, σ2
ã = 0.2 ρ = 0, σ2

ã = 1 ρ = 0, σ2
ã = 2

1 -0.7343 ã2 -0.7159 ã2 -0.6657 ã2

2 -0.2844 ã2 -0.2575 ã2 -0.2336 ã2

3 -0.2754 ã2 -0.3131 ã2 -0.4592 ã2

4 -0.2560 ã2 -0.2304 ã2 -0.2182 ã2

5 -0.2558 ã2 -0.2255 ã2 -0.2013 ã2

Equilibrium 0.0001 - 0.2558 ã2 0.0007 - 0.2255 ã2 0.0007 - 0.2013 ã2

ρ = 0.45, σ2
ã = 0.2 ρ = 0.45, σ2

ã = 1 ρ = 0.45, σ2
ã = 2

1 -0.1323 ã2 -0.4990 ã2 -0.5128 ã2

2 0.2469 ã2 -0.0233 ã2 -0.0659 ã2

3 -0.1713 ã2 -1.0306 ã2 -2.0148 ã2

4 0.2913 ã2 -0.0104 ã2 -0.0516 ã2

5 0.2925 ã2 -0.0072 ã2 -0.0448 ã2

Equilibrium 0.0062 + 0.2925 ã2 0.0095 - 0.0072 ã2 0.0095 - 0.0448 ã2

Our ad hoc trading strategy analysis identifies two sources of the U -shape in

the deterministic component of the equilibrium rebalancer orders in Figure 3. This

can be seen in Figure 16. First, ad hoc strategy #5 (which, from Proposition 1,

gives the expected equilibrium orders) is slightly more U -shaped than strategy #4.

Thus, sunshine trading (which is omitted in strategy #4) is one source of the U -

shape in the equilibrium orders. In particular, the rebalancer trades more early

in the day so as to be able to trade more later in the day with no price impact.
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Second, predictable interactions between rebalancer and informed-investor orders are

a quantitatively significant reason for the U -shape in expected rebalancer orders. This

can be seen by comparing ad hoc strategies #3 and #4. The expected orders given the

target ã for strategy #3 (which excludes consideration of both sunshine trading and

interactions with the informed-investor orders) are not U -shaped at all, but rather

increasing over the trading day. In contrast, the expected orders in strategy #4

(which also excludes consideration of sunshine trading but does include consideration

of predictable responses in informed-investor orders to the rebalancer’s orders) are

U -shaped. Thus, another reason for the U -shape in the rebalancer orders is that

the rebalancer optimally trades a large amount early in the day and then gives the

informed investor time to correct the price pressure from these early trades before

trading more later in the day.38

38The negative portion of the strategy #3 orders indicates that — given the equilibrium price
impacts and given an assumption that the price-correction mechanism from informed investor trading
is missing — the rebalancer tries to manipulate prices in the opposite direction before then trading
to meet his target. This explains the large negative coefficients on ã2 for strategy #3 in the expected
profits in Table 2 where informed trading, contrary to the ad hoc assumption, is actually present.
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Figure 16: Intraday patterns of the ratio E[∆θRn | ã]/ã for ã 6= 0 for three ad hoc
deterministic strategies for times n = 1, . . . , 10. The strategies are x3

n (—–), which
ignores sunshine trading and order interactions with the informed investor, x4

n (−−),
which just ignores sunshine trading, and the optimal deterministic strategy x5

n (−·−).
The parameters are N = 10, σ2

ṽ = 1, and σ2
w = 1.
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