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1 Introduction

Intraday trading targets play an important role in the dynamics of liquidity provision

and demand over the trading day in financial markets. For example, high-frequency

trading (HFT) market makers — who are the dominate source of intraday liquidity

on most exchanges1 — usually seek to maintain a neutral (e.g., zero) inventory level.

In addition, trade execution by large institutional investors is widely benchmarked

relative to a time-weighted average price (TWAP) or volume-weighted average price

(VWAP) reference price. Compensation schemes tied to such benchmarks can lead to

strategies with intraday targets to trade a constant amount per unit time (TWAP) or

an amount indexed to the average daily volume curve (VWAP). Deviations from the

intraday trading targets are then penalized. However, traders sometimes intentionally

deviate from their ideal trading targets in order to achieve trading profits (such as

HFT market makers) and price improvement (such as large institutions). We call op-

timized trading strategies that trade off trading profits and target-deviation penalties

smart TWAP or smart VWAP strategies.

Our paper solves for continuous-time equilibria in a market in which multiple

strategic investors with different trading targets follow optimal dynamic trading

strategies. To the best of our knowledge, our paper is the first to model the equi-

librium impact of intraday smart TWAP strategies on intraday trading and market

liquidity. Our results are as follows:

• An infinite number of equilibria exist with each equilibrium pinned down by

a continuous function giving the impact of the strategic investors’ orders on

prices.

• There is no predatory trading in equilibrium in our model. This is because all

intraday liquidity is provided by rational optimizing agents.

• The welfare-maximizing equilibrium differs from the competitive equilibrium.

For example, one functional difference is that the private trading target is irrel-

evant for the investors’ expectation of their target deviation in the competitive

equilibrium whereas for the welfare-maximizing equilibrium, the private target

plays a dominate role for how investors plan on deviating from it.

1Hagströmer and Nordén (2013) estimate that HFT market makers participate in the best bid
or ask quote 57% of the time on Nasdaq-OMX.
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The market in our model is incomplete in that there is only one stock and two

stochastic processes driving its price. We focus our discussion on preferences that are

linear in investor ending wealth and a penalty for deviations from target holdings over

the day. Proofs are in Appendix A. Appendix B extends the analysis to exponential

utilities.2

Our model is most closely related to previous research by Brunnermeier and Ped-

ersen (2005) and Carlin, Lobo, and Viswanathan (2007) on optimal rebalancing and

predatory trading. There are two main differences: First, our strategic agents are

subject to penalties tied to intraday trading targets. Second, there is no group of

outside ad hoc intraday liquidity providers in our model. As a result, in our model,

all intraday market liquidity is provided endogenously by strategic agents with trading

targets close to zero. We call these liquidity-providing investors HFT market makers.

We conjecture that there is no predatory trading in our model because all liquid-

ity is provided endogenously.3 In current work in progress, Capponi and Menkveld

are exploring liquidity provision when arriving strategic agents have different time

horizons over which their portfolio must be rebalanced. In contrast, the strategic in-

vestors in our model all have the same terminal rebalancing horizon. Lastly, there is

no asymmetric information about future asset cash-flow fundamentals in our model.

Thus, the analysis here on trading and the non-informational component of market

liquidity is complimentary to Choi, Larsen, and Seppi (2018), which studies order-

splitting and dynamic rebalancing in a Kyle (1985) style market in which a strategic

informed investor with long-lived private information and a strategic rebalancer with

a terminal trading target both follow dynamic trading strategies.

2Existence of continuous-time Radner equilibria with exponential utilities in an incomplete com-
petitive market has been proved in various levels of generality in Christensen, Larsen, and Munk
(2012), Žitković (2012), Christensen and Larsen (2014), Choi and Larsen (2015), Larsen and Sae-
Sue (2016), and Xing and Žitković (2018). To the best of our knowledge, there is no extension of
these models to a continuous-time incomplete market equilibrium with price impact (Vayanos (1999)
proves existence in a discrete-time model with an exogenous constant interest rate). Appendix B
contains such a continuous-time extension in which investors have trading targets.

3In Brunnermeier and Pedersen (2005), ad hoc liquidity providers do not rationally anticipate
future price changes given early trading.

2



2 Model

We develop a continuous-time equilibrium model with a unit horizon in which trade

takes place at each time point t ∈ [0, 1]. This can be interpreted as one trading day.

Our model has two securities: a money market account with a constant unit price (i.e.,

the account pays a zero interest rate) and a stock with an endogenously determined

price process S = (St)t∈[0,1]. The stock pays an exogenously specified random dividend

D1 at maturity that is generated by a publicly observable and exogenous Brownian

motion D = (Dt)t∈[0,1] with a given constant initial value D0 ∈ R. We view Dt as

a sufficient statistic at time t < 1 for the terminal dividend D1. In our continuous

setting, with an exogenous terminal dividend as in, e.g., Grossman and Stiglitz (1980),

a natural terminal stock price restriction is

S1 = D1. (2.1)

Ohasi (1991, 1992) shows that the validity of (2.1) relies on continuity of information

sets, which holds in our Brownian setting. While (2.1) is natural in our Brownian

setting, we also allow for a more general structure in (3.6) below that relaxes the

assumption of an exogenously specified terminal liquidating dividend.

Two types of investors trade in our model:

• There are M ∈ N strategic investors who each have three pieces of private

information: their initial money market account holdings (θ
(0)
1,−, ..., θ

(0)
M,−), their

initial stock holdings (θ1,−, ..., θM,−), and their terminal stock-holding targets

(ã1, ..., ãM). At this point we make no distributional assumptions about these

variables. The strategic investors incur a penalty if the intraday trajectory of

their cumulative stock trades θi,t − θi,− at time t ∈ [0, 1] deviates from a target

trajectory γ(t)(ãi−θi,−). Here γ(t) is a positive continuous function for t ∈ [0, 1].

The target trajectory γ(t)(ãi − θi,−) is the amount of the total target trading

ãi − θi,− the investor would ideally like to have completed by time t ∈ [0, 1].

For a TWAP target, for example, we have γ(t) := t. Alternatively, γ(t) for a

VWAP investor might follow the shape of the average cumulative volume curve

over the trading day.
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The penalty process for investor i ∈ {1, ...,M} is4

Li,t :=

∫ t

0

κ(s)
(
γ(s)(ãi − θi,−)− (θi,s − θi,−)

)2

ds, t ∈ [0, 1]. (2.2)

The severity of the penalty is controlled by κ(t) which is a deterministic strictly

positive function. Intuitively, the penalty severity for deviations from the target

trajectory is likely to be increasing over the trading day. Our results below allow

both for the possibility of penalty-severity functions κ(t) that explode towards

the end of the trading day as t → 1 as well as for a bounded penalty severity.

To keep the model as simple as possible, we assume that all strategic investors

are subject to the same deterministic functions γ(t) and κ(t), and we refer

to (5.4) below for specific examples. We differentiate between two types of

investors based on their realized trading targets ãi. We refer to investors with

targets ãi 6= θi,− as smart TWAP investors (see Chapter 5 in Johnson (2010) for

more about TWAP trading). Traders with ãi = θi,− do not need to trade, but

can provide liquidity. We call these traders HFT market makers or strategic

liquidity providers. Thus, smart TWAP traders and HFT market makers differ

in the target amount they want to trade but face the same penalties for diverging

from their trading target.

• There are noise traders whose trading motives we do not model. We assume

that the stock supply that the strategic investors must absorb (i.e., the stock’s

fixed shares outstanding minus the aggregate noise traders’ holdings) is given

by wt at time t ∈ [0, 1]. Consequently, the stock market clears at time t ∈ [0, 1]

when the strategic investors’ holdings (θi)
M
i=1 satisfy

wt =
M∑
i=1

θi,t. (2.3)

4Quadratic penalization schemes constitute a cornerstone in research related to mean-variance
analysis and dates back to Markowitz (1952). We note that (2.2) penalizes the aggregate holdings
θi,t and not the buying/selling rates as in, e.g., Almgren (2012) and Gârleanu and Pedersen (2016)
whereas Bouchard et all (2018) penalize both rates and holdings. Penalizing the buying/selling rate
forces the optimal stock holdings to be given in terms of rates (i.e., the optimal holding process is
a finite variation process). Optimal buying/selling rates also exist in the continuous-time model in
Kyle (1985) as well as in its non-Gaussian extension in Back (1992). In contrast, as we shall see,
optimal holding processes in our model have infinite first variation (and only finite second variation).
This property allows our strategic investors to absorb the below noise trader orders (2.4).
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We assume that the stock supply has dynamics (Gaussian Ornstein-Uhlenbeck)

dwt := (α− πwt)dt+ σwdWt, w0 ∈ R. (2.4)

Gaussian noise traders have been widely used; see, e.g., Grossman and Stiglitz

(1980) and Kyle (1985). In (2.4), the parameters σw, α, and π are all con-

stants and W is another Brownian motion that is independent of the dividend

Brownian motion D. The specification (2.4) includes cumulative noise-trader

order-flow imbalances that follow an arithmetic Brownian motion (π = 0) as

well as possible mean-reverting dynamics (π 6= 0).

The information structure of our model is as follows: For tractability, we assume

that the strategic investors have homogeneous beliefs in the sense that they all believe

the processes (D,W ) are the same independent Brownian motions. Over time, the

realized dividend factor Dt and the noise trader orders wt are publicly observed (i.e.,

either directly or by inference from observations of St). At time t ∈ [0, 1], investor

i chooses a cumulative stock-holding position θi,t that satisfies the measurability re-

quirement5

θi,t ∈ Fi,t := σ(ãi, ãΣ,Wu, Du)u∈[0,t], (2.5)

where the total target for all M strategic investors is defined by

ãΣ :=
M∑
i=1

ãi. (2.6)

It might seem unclear why ãΣ is included in investor i’s information set. One possibil-

ity is that ãΣ may be directly observable in the market. However, public observability

is not necessary. As we shall see in the next section, in the equilibria we construct,

we have

Fi,t = σ(ãi, Su, Du)u∈[0,t]. (2.7)

In other words, although investors only know their own target ãi directly, they can

5As usual in continuous-time models, we also need to impose an integrability condition to ensure
that certain stochastic integrals are martingale; see Definition 2.1 below.
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infer the aggregate net target ãΣ in equilibrium from the initial stock price so that

σ(S0) = σ(ãΣ). (2.8)

Thus, our model lets us investigate the effects of known or inferable aggregate trading

targets on intraday trading and pricing.

Next, we turn to the strategic investors’ individual optimization problems. For a

strategy θi,t ∈ Fi,t, we let Xi,t denote investor i’s wealth process, which has dynamics

dXi,t := θi,tdSt, Xi,0 := θi,−S0 + θ
(0)
i,−. (2.9)

The set of admissible strategies Ai for investor i is defined as follows:

Definition 2.1. We deem a jointly measurable and Fi adapted process θi = (θi,t)t∈[0,1]

to be admissible and write θi ∈ Ai if the following integrability condition holds

E
[∫ 1

0

θ2
i,tdt

]
<∞. (2.10)

♦

It is well-known that an integrability condition like (2.10) rules out doubling strategies

(see, e.g., Chapters 5 and 6 in Duffie (2001) for a discussion of such conditions).

While all bounded processes satisfy the integrability condition (2.10), the optimal

stock holding process in (3.12) below is not a bounded process but does, however,

satisfy (2.10).

For simplicity, we assume that all strategic investors have linear utility functions:

Ui(x) := x for all i ∈ {1, ...,M}. For a given stock price process S, investor i seeks

an expected utility-maximizing holding strategy θ̂i ∈ Ai which attains

V (Xi,0, w0, ãi, ãΣ) := sup
θi∈Ai

E
[
Xi,1 − Li,1

∣∣∣σ(θ
(0)
i,−, θi,−, ãi)

]
. (2.11)

In (2.11), the variable Li,1 is the terminal penalty value from the penalty process

in (2.2), and the terminal wealth Xi,1 is defined from the wealth process in (2.9).

Section 6 and Appendix B extend our analysis to homogeneous exponential utilities

Ui(x) := −e−x/τ , x ∈ R, for a common risk-tolerance parameter τ > 0.
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3 Existence of Nash equilibria

We start by discussing the clearing conditions. First, the initial stock holdings (also

private information variables) satisfy in aggregate

w0 =
M∑
i=1

θi,−. (3.1)

This means that the amount of the total initial outstanding supply not held by the

noise traders is held by the strategic traders. Furthermore, at all later times t ∈ (0, 1],

the stock holdings (θ1,t, ..., θM,t) must also satisfy the intraday clearing condition (2.3).

Next, we turn to the stock-price dynamics. The price dynamics we consider are

described in terms of smooth deterministic functions

µ0, ..., µ5, σSW : [0, 1]→ R. (3.2)

The price process that investor i ∈ {1, ...,M} faces is given by

dSt = µi,tdt+ σSW (t)dWt + dDt, (3.3)

where

µi,t := µ0(t)ãΣ + µ1(t)θi,t + µ2(t)ãi + µ3(t)wt + µ4(t)w0 + µ5(t)θi,−. (3.4)

These price dynamics can be interpreted as follows: First, the prices move one-to-one

with the changes in the dividend factor Dt. Second, random shocks to the noise-trader

order imbalance dWt move prices linearly as given by the (deterministic) function

σSW (t). Third, the drift µi,t adjusts prices predictably (to each investor i) over time

to clear markets given public information (ãΣ, wt, and w0) and private information

for investor i (ãi, θi,t, and θi,−).

Definition 3.1 (Nash). The deterministic functions (µ0, ..., µ5, σSW ) constitute a

Nash equilibrium if, given the stock price dynamics (3.3), the resulting optimal con-

trols (θ̂i)
M
i=1 satisfy (i) the clearing condition

wt =
M∑
i=1

θ̂i,t (3.5)
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at all times t ∈ [0, 1], (ii) the terminal stock-price condition holds

S1 = D1 + ϕ0ãΣ + ϕ1w1 (3.6)

for given constants ϕ0, ϕ1 ∈ R, and (iii) when we replace θi,t by the maximizer θ̂i,t in

(3.4), the resulting drift µi,t does not depend on the investor-specific private informa-

tion variables (ãi, θi,−θ
(0)
i,−).

♦

Requirement (iii) in Definition 3.1 means that equilibrium prices only depend on

individual variables ãi, θi,−, and θi,t via their impact on the corresponding aggregate

variables. To understand the terminal requirement (3.6), we consider first the simpler

case in (2.1). In this case, it is clear that for St to converge to S1 = D1 that σSW (t)

in (3.3) must converge to zero as time approaches maturity (i.e., as t ↑ 1). However,

as we prove below, only one such smooth function σSW (t) will work.6 An additional

difficulty in constructing an equilibrium is that investors are penalized whenever they

deviate from their targets but that, because of (2.1), the price dynamics leave lit-

tle wiggle room to provide the investors with compensation (i.e., non-zero expected

returns when St 6= Dt) to entice them to hold w1 in aggregate.

Condition (3.6) allows for a more general terminal requirement than (2.1). When

our model is applied to a short time horizon (e.g., a trading day), then the end-of-day

stock valuation is not the value of an exogenously specified terminal dividend D1,

but rather the valuation attached to future stock cash flows by a group of unmodeled

overnight liquidity providers.7 The ϕ0ãΣ term in (3.6) with ϕ0 ≥ 0 represents the

amount the terminal stock valuation S1 is moved by price pressure from the net

trading-target imbalance of the strategic agents, and ϕ1w1 with ϕ1 ≤ 0 is the amount

S1 is moved by the ending cumulative noise-trader order imbalance.8

Theorem 3.4 below gives restrictions on the pricing functions in (3.2) for existence

of a Nash equilibrium. However, as we shall see, there is one degree of freedom, and

6The ODE for the equilibrium volatility function σSW (t) in (3.3) that achieves market clearing
is given below in (3.14).

7Our overnight liquidity providers are different from the ad hoc residue liquidity providers who
trade continuously over the day as in the Brunnermeier and Pedersen (2005) predatory trading
model.

8A natural restriction here is |ϕ0| < |ϕ1|. Noise traders trade inelastically, so the full noise-trader
order imbalance w1 must be held by the overnight liquidity-providers and the strategic investors.
In contrast, the strategic investors do not demand to achieve their aggregate ideal holdings ãΣ

inelastically.
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so there are multiple (indeed, infinitely many) equilibria. We find that leaving the

price-impact function µ1(t) as the free parameter produces the simplest expressions.

Next, we consider two possible examples of how one might choose the function µ1(t)

and thereby uniquely pin down the equilibrium.

Example 3.2 (Radner). In a fully competitive Radner equilibrium, the realization

of the price process S is unaffected by the choice of investor i’s strategy θi. This case

is recovered by setting the investor price-impact function in (3.3) to

µ1(t) := 0, for all t ∈ [0, 1]. (3.7)

♦

Example 3.3 (Welfare maximization). The certainty equivalent CEi ∈ R for TWAP

investor i is defined as

CEi := V (Xi,0, w0, ãi, ãΣ) (3.8)

where V is the value function defined in (2.11). The certainty equivalent (3.8) follows

from our assumption that all TWAP investors are risk neutral, (i.e., their utilities are

Ui(x) := x). We are interested in finding the price-impact function µ∗1 : [0, 1] → R
that maximizes the objective equal to total welfare

M∑
i=1

E[CEi]. (3.9)

The objective (3.9) is an ex ante perspective in sense that the expectation E is taken

over the private information variables (θ
(0)
1,−, ..., θ

(0)
M,−), (θ1,−, ..., θM,−), and (ã1, ..., ãM).

This example is discussed in detail in the next section. ♦

As mentioned above, our equilibria are parameterized in terms of an arbitrary con-

tinuous (deterministic) price-impact function µ1 : [0, 1] → R. The proof of Theorem

3.4 establishes that the second-order condition ensuring optimality of the investors’

conjectured optimal controls is given by

µ1(t) < κ(t), t ∈ (0, 1]. (3.10)

Our main existence result is the following:

9



Theorem 3.4. Let γ : [0, 1]→ [0,∞) be a continuous function, and let µ1, κ : [0, 1)→
(0,∞) be continuous and square integrable functions; i.e.,∫ 1

0

(
κ(t)2 + µ1(t)2

)
dt <∞, (3.11)

that satisfy the second-order condition (3.10). Then a Nash equilibrium exists in

which (i) investor optimal holdings θ̂i in equilibrium are given by

θ̂i,t =
2κ(t)γ(t)

2κ(t)− µ1(t)

(
ãi −

ãΣ

M

)
+
wt
M

+
2κ(t)

(
1− γ(t)

)
2κ(t)− µ1(t)

(
θi,− −

w0

M

)
, (3.12)

(ii) the equilibrium stock price is given by

St = g0(t) + g(t)ãΣ + σSW (t)wt +Dt, (3.13)

where the deterministic functions g0, g, and σSW : [0, 1]→ R are the unique solutions

of the following linear ODEs:

σ′SW (t) =
2κ(t)− µ1(t)

M
+ πσSW (t), σSW (1) = ϕ1,

g′(t) = −2γ(t)κ(t)

M
, g(1) = ϕ0,

g′0(t) =
2w0(γ − 1)κ

M
− ασSW (t), g0(1) = 0,

(3.14)

and (iii) the functions µ0, µ2, µ3, µ4, and µ5 in the price-impact relation (3.4) are

given in terms of µ1 by (A.11)-(A.15) in Appendix A.

Remark 3.1.

1. From (3.13), the initial stock price is

S0 = g0(0) + g(0)ãΣ + σSW (0)w0 +D0. (3.15)

Therefore, whenever the solution function g(t) in (3.14) satisfies g(0) 6= 0 we

have σ(S0) = σ(ãΣ). This identity is behind the measurability properties (2.7)

and (2.8) which means that the investors can infer ãΣ from the initial price S0

(recall that w0 and D0 are constants). From the ODE for g in (3.14), a sufficient

condition for the property g(0) 6= 0 is γ(t) > 0 and κ(t) > 0 for some t ∈ (0, 1],
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and ϕ0 ≥ 0.

2. The terminal ODE values in (3.14) produce the terminal stock price (3.6) at

t = 1. Because the ODEs in (3.14) are linear, their solutions are unique.

Consequently, there is a unique function σSW (t) that produces (3.6).

3. The difference St −Dt is the price effect of imbalances in liquidity supply and

demand. We call this the liquidity premium and note that it can be positive or

negative depending on whether the noise traders are buying or selling. From

(3.13), liquidity has a deterministic component g0(t) (due to predictable imbal-

ances from the noise traders), and effects due to the net investor imbalance ãΣ

and the current noise-trader imbalance wt.

4. Investor holdings in (3.12) have an intuitive structure. First, strategic investors

share the noise-trader order imbalance wt equally. Second, over time there is

some persistence in imbalances in the strategic investors’ initial holdings. In

particular, given (3.10) and γ(t) < 1, the coefficient 2κ(t)(1−γ(t))
2κ(t)−µ1(t)

is positive.

Third, the coefficient 2κ(t)γ(t)
2κ(t)−µ1(t)

is positive (given the second order condition

(3.10)) and so an investor with an above-average target ãi > ãΣ/M holds more

of the stock.

5. Investor i places a discrete order at time t = 0 (but trades continuously there-

after). From (3.12), investor i’s initial trade is

θ̂i,0 − θi,− =
2κ(0)γ(0)

2κ(0)− µ1(0)

(
ãi −

ãΣ

M

)
+

2κ(0)
(
1− γ(0)

)
2κ(0)− µ1(0)

(
θi,− −

w0

M

)
, (3.16)

which is non-zero when ãi 6= ãΣ/M and/or θi,− 6= w0/M .

6. From (3.13), the equilibrium price dynamics are given by

dSt =
(
g′0(t) + g′(t)ãΣ + σ′SW (t)wt

)
dt+ σSW (t)dwt + dDt, (3.17)
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where the drift of S is given by

drift(S)t = g′0(t) + g′(t)ãΣ + σ′SW (t)wt + σSW (t)(α− πwt)

=
2κ(t)− µ1(t)

M
wt +

2κ(t)
(
γ(t)− 1

)
M

w0 −
2κ(t)γ(t)

M
ãΣ

=: µ̂t.

(3.18)

The second equality in (3.18) follows from substitution of (3.14) into the first

line of (3.18). The quadratic variation of S, and the quadratic cross-variations

between S and (D,w) are given by

d〈S〉t =
(
σ2
SW (t)σ2

w + 1
)
dt, d〈S,D〉t = dt, d〈S,w〉t = σSW (t)σ2

wdt. (3.19)

7. In the case of an arithmetic Brownian motion imbalance process (π := 0) and

equal initial sharing θi,− := 1
M
w0 in (3.12), we get the conditional expectation

E[θ̂i,t|σ(ãi, ãΣ)] =
2κ(t)γ(t)

2κ(t)− µ1(t)

(
ãi −

ãΣ

M

)
+

1

M
(w0 + αt). (3.20)

The conditional variance is given by

V[θ̂i,t|σ(ãi, ãΣ)] =
1

M2
σ2
wt, (3.21)

which is independent of the private target ãi.

8. The presence of wt in (3.12) prevents the θ̂i holding paths from being differ-

entiable. Consequently, there is no dt-rate at which buying and selling occur.

However, when κ, γ, and µ1 are smooth functions, the equilibrium holding paths

have Itô dynamics

dθ̂i,t =

(
2κ(t)γ(t)

2κ(t)− µ1(t)

)′ (
ãi −

ãΣ

M

)
dt+

1

M

(
(α− πwt)dt+ σwdWt

)
+

(
2κ(t)

(
1− γ(t)

)
2κ(t)− µ1(t)

)′ (
θi,− −

w0

M

)
dt.

(3.22)
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Consequently, when π := 0 and θi,− := w0

M
, the drift in investor i’s holdings is(

2κ(t)γ(t)

2κ(t)− µ1(t)

)′ (
ãi −

ãΣ

M

)
+

α

M
, (3.23)

which is a deterministic function of investor i’s private target ãi and the public

aggregate variable ãΣ defined in (2.6). Additionally, in the Radner equilibrium

in Example 3.2 where µ1 := 0, the drift (3.23) of θ̂i,t simplifies even further to

γ′(t)
(
ãi −

ãΣ

M

)
+

α

M
. (3.24)

4 Welfare analysis

This section examines the welfare-maximizing equilibrium in Example 3.3 and pro-

vides an objective to determine the associated function µ1(t). The following result

guarantees the existence of a welfare maximizer µ∗1(t). Furthermore, its proof shows

that µ∗1(t) is linear in the value of κ(t) controlling the penalty severity in (2.2).

Theorem 4.1. We assume that E[ã2
i ] <∞ for i ∈ {1, ...,M}. For the parameters

π := 0, θi,− :=
w0

M
,

and under the two parameter restrictions

4γ(t)2
(
E[ã2

Σ]−M
M∑
i=1

E[ã2
i ]
)
< t(σ2

w + α2t+ αw0) < 0, t ∈ (0, 1], (4.1)

there exists a unique continuous price-impact function µ∗1(t) ∈
(
0, κ(t)

)
, t ∈ (0, 1],

which attains

sup
µ1(t)

M∑
i=1

E[CEi], (4.2)

where the supremum is taken over all continuous functions µ1 : [0, 1] → R satisfying

the second-order condition (3.10). Furthermore, the maximizer µ∗1(t) is linear in κ(t).

The two restrictions in (4.1) are sufficient conditions for a maximizer µ∗1(t) to

exist. The first inequality ensures that µ∗1(t) stays strictly below κ(t) which is needed
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for the second-order condition (3.10). The second inequality in (4.1) is a coercivity

condition which ensures that very negative values of µ∗1(t) can never be optimal.

While the standard TWAP target trajectory γ(t) := t is included in Theorem 3.4, the

first restriction in (4.1) prevents it from being included in Theorem 4.1.

5 Numerics

This section compares model outcomes of the welfare-maximizing equilibrium (see

Example 3.3 and Theorem 4.1) and the fully competitive Radner equilibrium (see

Example 3.2). The objects of interest are first, the welfare-maximizing price-impact

function µ1(t); second, properties of the equilibrium prices St that equate the aggre-

gate strategic investor demand
∑M

i=1 θi,t with the available inelastic supply wt from

the noise traders; third, how the smart TWAP traders and the HFT market makers

share the available supply given their individual target holdings ãi; and four, welfare.

Our analysis uses the terminal stock price restriction (2.1) with an initial dividend

factor D0 := 0 and M := 10 strategic investors. For the strategic investors’ private

information variables, we use

θ
(0)
i,− := 0, θi,− :=

w0

M
, ãi ⊥ ãj for i 6= j, E[ãi] = 0, E[ã2

i ] = 1. (5.1)

Under these assumptions, the aggregate variable ãΣ in (2.5) has the moments

E[ãΣ] = 0, E[ã2
Σ] = M. (5.2)

For the dynamics of the noise-trader process w = (wt)t∈[0,1] in (2.4), we use the

parameter values

w0 := 10, α := −1, π := 0, σw := 1. (5.3)

Finally, in the penalty process Li,t in (2.2), we use the deterministic functions

κ1(t) := 1, κ2(t) := 1 + t, κ3(t) :=
1

(1− t)0.25
, γ(t) := 0.1 + 0.9t, (5.4)

for t ∈ [0, 1]. The target ratio function γ(t) in (5.4) can be interpreted as a modified

TWAP target trajectory in which traders are initially impatient to get part of their

14



trading done quickly, but then become more patient during the rest of the day.

Figure 1 below shows the welfare-maximizing function µ∗1 for three different penalty-

severity functions κ(t). Comparing µ∗1(t) for penalties κ1(t) and κ2(t), we note that

the stronger the penalty, the larger is the welfare-maximizing µ∗1 function. This sug-

gests a reason for why the welfare-maximizing equilibrium differs from the competitive

equilibrium. In the competitive equilibrium with µ1 = 0, the strategic investors act

like price-takers. Put differently, they act as if there is infinite liquidity. However,

with only M strategic investors, liquidity is actually limited rather than infinite. The

welfare-maximizing equilibrium forces investors to recognize that liquidity is finite

via a positive personal price-impact function µ∗1(t). As the penalty-severity function

κ(t) increases, investors, all things the same, want to trade more aggressively on their

own personal targets and, hence, become less willing to provide liquidity to other in-

vestors. Thus, the welfare-maximizing price-impact function µ∗1(t) increases to make

investors recognize the reduced liquidity available in the market. The positive slopes

of κ2(t) and κ3(t) in (5.4) mean that the penalty intensity is greater later in the day.

As a result, we see that the welfare-maximizing µ∗1(t) gets larger later in the day, the

steeper the slopes are of the penalty-severity function. This effect is most apparent

for κ3(t) which explodes toward the end of the day.

Figure 1: Plot of welfare-maximizing µ∗1(t) for the objective (4.2). The parameters
are given by (5.1)-(5.4), and the discretization uses 100 trading rounds.
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κ1 (———), κ2 (−−−), κ3 (− · − · −).

Our second topic is pricing. Figure 2 shows the price-loading function σSW (t) in

(3.13). The sign of σSW (t) is negative because a larger value of wt means that the
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strategic investors need to buy more (i.e., our sign convention is that wt is the amount

that noise traders want to sell). The greater the penalty severity κ(t) is, the more

sensitive prices are to shocks from the amount wt that the strategic investors must

absorb to accommodate the inelastic trades from the noise traders. For example,

larger imbalances wt depress prices more (in order to induce the strategic traders to

buy), and the amount prices need to be depressed is larger, the greater the penalty

is for the strategic traders to deviate from their intraday target trading trajectory.

Figure 2: Plot of equilibrium price loading σSW (t) on noise-trader imbalance in the
maximizing-welfare equilibrium (Plot A) and in the competitive Radner equilibrium
with µ1 := 0 (Plot B). The parameters are given by (5.1)-(5.4) and the discretization
uses 100 trading rounds.
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A: [Welfare] κ1 (———), B: [Radner] κ1 (———),
κ2 (−−−), κ3 (− · − · −). κ2 (−−−), κ3 (− · − · −).

The liquidity-premium St−Dt is the impact of liquidity and order-flow imbalances

on prices. Figure 3 shows the expected liquidity premium over the trading day, where

the expectation is taken over the noise-trader imbalance wt paths. The expected

liquidity premium is positive here because it is common knowledge in this numerical

example that the noise traders will be buying over the course of the day (i.e., the drift

α of the available supply wt of stock for the strategic investors to own is negative)

whereas the strategic investors are on average content with their initial positions∑M
i=1 θi,− = ãΣ = 10. As is intuitive, the expected premium is larger when the penalty

severity κ(t) is greater since the strategic investors require more compensation (i.e.,

larger price discounts for buying and price premiums when selling) for deviating from

their target trajectory. However, as the end of the day approaches, the terminal price
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constraint (2.1) forces the expected liquidity premium to converge to 0. In particular,

this is even true for the exploding penalty κ3(t).

Figure 3: Plots of the expected liquidity premium E[St−Dt|σ(ãΣ)] with the welfare-
maximizing µ∗1(t) (Plot A) and the competitive equilibrium with µ1 := 0 (Plot B). The
parameters are given by (5.1)-(5.4), and the discretization uses 100 trading rounds.
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A: [Welfare] κ1 (———), B: [Radner] κ1 (———),
κ2 (−−−), κ3 (− · − · −). κ2 (−−−), κ3 (− · − · −).

Figure 4 shows the volatility of the intraday liquidity premium induced by the

random noise-trader imbalances. Initially, as expected, when the penalty severity

κ(t) is greater, prices need to move more to compensate investors for deviating from

their target trajectories, which magnifies the effect of randomness in the noise-trader

imbalances wt. The liquidity premium volatility initially increases due to the growing

volatility of wt, but eventually the terminal price condition (2.1) causes the liquidity

premium volatility to converge to zero.

17



Figure 4: Plots of the liquidity-premium volatility SD[St−Dt|σ(ãΣ)] with the welfare-
maximizing µ∗1(t) (Plot A) and the competitive equilibrium with µ1 := 0 (Plot B). The
parameters are given by (5.1)-(5.4), and the discretization uses 100 trading rounds.
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Our third topic is the strategic investor holdings. Their aggregate holdings are,

in equilibrium, constrained by market clearing to equal the inelastic supply wt from

the noise traders. However, there is heterogeneity in individual investors’ holdings

given imbalances in their initial holdings θi,− and differences in their trading targets

ãi. Figure 5 shows numerical values for the two coefficients in the strategic trader

holdings in equation (3.12). Plot 5A shows the magnitude of the difference between

the sensitivity of investor holdings to relative target imbalances in the two equilibria.

As is intuitive, the difference increases over time as the penalty for target deviations

increases. Plot 5B shows the corresponding difference for imbalances in the initial

investor holdings. As expected, this difference decreases over time. Theorem 4.1

ensures that all plots in Figure 5 are independent of the severity function.

Next, we turn to investor i’s expected trades. By combining (3.20) with the initial

position θi,− := w0

M
from (5.3) we get

E[θ̂i,t|σ(ãi, ãΣ)]− θi,− =
2κ(t)γ(t)

2κ(t)− µ1(t)

(
ãi −

ãΣ

M

)
+
αt

M
. (5.5)
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Figure 5: Plots of 2γ(t)κ(t)
2κ(t)−µ1(t)

(Plot A) and 2κ(t)(1−γ(t))
2κ(t)−µ1(t)

(Plot B). The parameters are

given by (5.1)-(5.4), and the discretization uses 100 trading rounds.

20 40 60 80 100
n

0.2

0.4

0.6

0.8

1.0

1.2

20 40 60 80 100
n

0.2

0.4

0.6

0.8

1.0

1.2

A: [Welfare] (———) B: [Welfare] (———),
[Radner] (- - - -) [Radner] (- - - -)

Consequently, trader i expects to deviate from the target holding path according to

E[θ̂i,t|σ(ãi, ãΣ)]−
(
θi,− + γ(t)

(
ãi − θ̂i,−)

)
=

2κ(t)γ(t)

2κ(t)− µ1(t)

(
ãi −

ãΣ

M

)
+
αt

M
− γ(t)

(
ãi −

w0

M
).

(5.6)

In the fully competitive equilibrium from Example 3.2 where µ1 := 0, the difference

(5.6) does not depend on the target ãi when ãΣ is fixed and does not depend on the

severity κ(t) of the penalty. Remarkably, for the welfare-maximizing function µ∗1(t),

Theorem 4.1 ensures that the difference (5.6) also remains independent of κ(t). Figure

6 shows the expected deviation between a strategic investor’s cumulative trading up

through time t and their corresponding target trading. In this figure, we change the

target ãi of a particular individual investor i while holding the targets of the other

M − 1 = 9 investors fixed at ãj := 1. Thus, both ãi and ãΣ = ãi + 9 change in these

plots. The figure shows that if investor i wants to hold a large target quantity (e.g.,

ãi = 5 or 15), she trades ahead of her target early in the day but then eventually falls

behind.

Lastly, we turn to the sub-optimality of the choice of µ1(t) := 0 (Radner) rela-

tive to the welfare maximizer µ∗1(t). Table 1 illustrates how the Radner equilibrium

performs in the welfare objective (4.2).
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Figure 6: Plots of expected trade deviation (5.6). The parameters are given by (5.1)-
(5.4), ãj := 1 for j 6= i, ãΣ := 9 + ãi, and the discretization uses 100 trading rounds.
In the competitive Radner equilibrium, the realization of ãi is irrelevant.
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Table 1: Expected welfare objective (4.2). The parameters are given by (5.1)-(5.4)
and D0 := 0.

κ(t) Welfare maximizer µ∗1(t) Example 3.2 (Radner) µ1(t) := 0
1 -4.00155 -4.04341

1 + t -6.91678 -6.98449
(1 + t)−0.25 -6.28596 -6.34491

As discussed above, we conjecture that the welfare losses in the Radner equilibrium are

due to failure of investors to recognize that liquidity is actually limited in equilibrium.

Figure 7 shows the certainty equivalents CEi for the strategic investors as a func-

tion of their trading target ãi. The figure shows that there are meaningful differences

in the welfare of investors in the Radner and welfare-maximizing equilibria when their

targets are large. The figure also shows that the sensitivity of an investor’s CEi to

their target ãi is increasing in the penalty intensity κ(t).

6 Extension to exponential utilities

Appendix B extends our model with linear preferences for the strategic investors as

in (2.11) to exponential preferences. The analysis there shows that prices and stock
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Figure 7: Plots of certainty equivalents for investor i with the welfare-maximizing
µ∗1(t) (Plot A) and the competitive equilibrium with µ1 := 0 (Plot B) seen as a
function of the trading target ãi. The parameters are given by (5.1)-(5.4), ãΣ := 10,
and the discretization uses 100 trading rounds.
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A: [Welfare] κ1 (———), B: [Radner] κ1 (———),
κ2 (−−−), κ3 (− · − · −). κ2 (−−−), κ3 (− · − · −).

holdings are linear and that there are again an infinite number of equilibria associ-

ated with different price-impact functions µ1(t). One new feature of our exponential

preference model is that it distinguishes trading risk aversion — as reflected by the

penalty severity κ(t) for divergences from the target trading trajectory — and general

risk aversion to both wealth and trading risk — as captured by the exponential risk

tolerance parameter τ > 0.

7 Conclusion

This paper has solved for continuous-time equilibria with endogenous liquidity pro-

vision and intraday trading targets. We show how intraday target trajectories in

trading induce intraday patterns in investor positions and in the liquidity premium

in prices. There are also potential extensions of our model. For example, it would be

interesting to extend the model to allow for heterogeneity in the strategic investors’

γ(t) and κ(t) penalty functions. Perhaps the most pertinent extension would be to

allow for randomness in w0 appearing in (2.4) in which case the initial equilibrium

stock price S0 cannot fully reveal the aggregate target ãΣ.
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A Proofs

We start with a technical lemma, which will be used in the proof of Theorem 3.4. The

arguments used in lemma’s proof are standard and can be found in, e.g., Chapter 7

in Lipster and Shiryeav (2001) as well as in the appendix of Cheridito, Filipović, and

Kimmel (2007). We include the lemma for completeness.

Lemma A.1. Let the functions γ, κ, µ1, and σSW be as in Theorem 3.4. The strictly

positive local martingale N = (Nt)t∈[0,1] defined by

Nt := e−
∫ t
0 λudZu−

1
2

∫ t
0 λ

2
tdt, t ∈ [0, 1], (A.1)

is a martingale with respect to the filtration σ(ãΣ, Du,Wu)u∈[0,t] where µ̂ is defined by

(3.18) and

λt :=
µ̂t√

σSW (t)2 + 1
, (A.2)

dZt :=
σSW (t)σwdWt + dDt√

σSW (t)2σ2
w + 1

, Z0 := 0. (A.3)

Proof. For (t, x, a) ∈ [0, 1]× R2 we start by defining the linear function

H(t, x, a) :=
2κ(t)− µ1(t)

M
x+

2κ(t)
(
γ(t)− 1

)
M

w0 −
2κ(t)γ(t)

M
a, (A.4)

and then we note that µ̂t = H(t, wt, ãΣ) from (3.18). We define the process

dvt := (α− πvt)dt+ σwdWt −
H(t, vt, ãΣ)

σSW (t)2σ2
w + 1

σSW (t)σ2
wdt, v0 := w0, (A.5)

which is an Ornstein-Uhlenbeck process (Gaussian). Inserting H from (A.4) into

(A.5) produces the various drift-coefficient functions in dvt to be

constant : α−
2κ(t)

(
γ(t)− 1

)
M

σSW (t)σ2
w

σSW (t)2σ2
w + 1

w0,

vt : − 2κ(t)− µ1(t)

M

σSW (t)σ2
w

σSW (t)2σ2
w + 1

− π,

ãΣ :
2κ(t)γ(t)

M

σSW (t)σ2
w

σSW (t)2σ2
w + 1

.

(A.6)
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Because these deterministic coefficient functions (A.6) are integrable (indeed, the

functions are square integrable), the SDE (A.5) has a (unique) non-exploding strong

solution.

For n ∈ N, we define the stopping times

τwn := inf{t > 0 :

∫ t

0

H(t, ws, ãΣ)2ds ≥ n} ∧ 1, (A.7)

τ vn := inf{t > 0 :

∫ t

0

H(s, vs, ãΣ)2ds ≥ n} ∧ 1. (A.8)

Because the functions (µ1, κ) are assumed to be square integrable, we have

lim
n→∞

P(τ vn = 1) = 1.

By Novikov’s condition, the processes Nt∧τwn are martingales for n ∈ N, and so we

can define on Fτwn the P-equivalent probability measure Q(n) by the Radon-Nikodym

derivative

dQ(n)

dP
:= Nτwn . (A.9)

For each n ∈ N, Girsanov’s theorem produces a Q(n) Brownian motion W
(n)
t such

that

dwt = (α− πwt)dt+ σwdW
(n)
t − H(t, wt, ãΣ)

σSW (t)2σ2
w + 1

σSW (t)σ2
wdt, t ∈ [0, τwn ]. (A.10)

Because

Q(n)(τwn ≤ x) = P(τ vn ≤ x), x > 0.

we have

E[N1] = lim
n→∞

E[Nτwn 1τwn =1] = lim
n→∞

Q(n)(τwn = 1) = lim
n→∞

P(τ vn = 1) = 1.

Consequently, N defined in (A.1) is a positive supermartingale with constant expec-

tation and is therefore also a martingale.

♦
Proof of Theorem 3.4: We conjecture (and verify) the following equilibrium drift
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functions in (3.4) defined in terms of a continuous function µ1(t) satisfying (3.10):

µ0(t) :=
4κ(t)γ(t)

(
µ1(t)− κ(t)

)
M
(
2κ(t)− µ1(t)

) , (A.11)

µ2(t) := −2κ(t)γ(t)µ1(t)

2κ(t)− µ1(t)
, (A.12)

µ3(t) :=
2
(
κ(t)− µ1(t)

)
M

, (A.13)

µ4(t) :=
4
(
γ(t)− 1

)
κ(t)

(
κ(t)− µ1(t)

)
M
(
2κ(t)− µ1(t)

) , (A.14)

µ5(t) :=
2
(
γ(t)− 1

)
κ(t)µ1(t)

2κ(t)− µ1(t)
. (A.15)

We split the proof into two steps.

Step 1 (individual optimality): Given the price-impact function µ1(t) and the

conjectured associated functions (A.11)-(A.15) for the price-impact relation (3.3), we

derive the individual investor’s value function V for the maximization problem (2.11)

as well as the corresponding optimal control θ̂i,t. To this end, for ai, aΣ, Xi, w ∈ R,

t ∈ [0, 1], and Li ≥ 0, we define the quadratic function

V (t,Xi, w, Li, ai, aΣ)

:= Xi − Li −
(
β0(t) + β1(t)a2

i + β2(t)aiaΣ + β3(t)a2
Σ + β4(t)w2

+ β5(t)wai + β6(t)aΣw + β7(t)w + β8(t)ai + β9(t)aΣ

)
,

(A.16)
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where the deterministic coefficient functions (βj)
9
j=0 are given by the ODEs

β′0 = −αβ7 − β4σ
2
w +

(γ − 1)2κ2(κ− µ1)(4w2
0 − 8Mw0θi,−)−M2(γ − 1)2θ2

i,−κµ
2
1

M2(µ1 − 2κ)2
,

β′1 = − γ2κµ2
1

(µ1 − 2κ)2
,

β′2 =
8γ2κ2(µ1 − κ)

M(µ1 − 2κ)2
,

β′3 =
4γ2κ2(κ− µ1)

M2(µ1 − 2κ)2
,

β′4 =
κ− µ1

M2
+ 2β4π, (A.17)

β′5 =
4γκ(κ− µ1)

M(2κ− µ1)
+ β5π,

β′6 =
4γκ(µ1 − κ)

M2(2κ− µ1)
+ β6π,

β′7 = −2αβ4 + β7π +
4(γ − 1)(w0 −Mθi,−)κ(κ− µ1)

M2(2κ− µ1)
,

β′8 = −αβ5 +
2(γ − 1)γκ(4w0κ(κ− µ1) +Mθi,−µ

2
1)

M(µ1 − 2κ)2
,

β′9 = −αβ6 +
8(γ − 1)γκ2(Mθi,− − w0)(κ− µ1)

M2(µ1 − 2κ)2
,

together with the terminal conditions βj(1) = 0 for j ∈ {0, ..., 9}. We start by showing

that V is investor i’s value function. The terminal conditions for the ODEs describing

(βj)
9
j=0 produce the terminal condition

V (1, Xi, w, Li, ai, aΣ) = Xi − Li, ai, aΣ, Xi, w ∈ R, Li ≥ 0. (A.18)

For an arbitrary strategy θi ∈ Ai, Itô’s lemma produces the dynamics

dV = Vtdt+ VXθi,t(µi,tdt+ σSWdWt + dDt) +
1

2
VXXθ

2
i,t(σ

2
SW + 1)dt

+ VXwθi,tσSWσwdt+ Vw
(
(α− πwt)dt+ σwdWt

)
+

1

2
Vwwσ

2
wdt

+ VLκ(t)
(
γ(t)(ãi − θi,−)− (θi,t − θi,−)

)2
dt

≤ VXθi,t(σSWdWt + dDt) + VwσwdWt. (A.19)
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The inequality in (A.19) is from the HJB-equation

0 = sup
θi,t∈R

(
Vt + VXθi,tµi,t +

1

2
VXXθ

2
i,t(σ

2
SW + 1) + VXwθi,tσSWσw

+ Vw(α− πwt) +
1

2
Vwwσ

2
w + VLκ(t)

(
γ(t)(ãi − θi,−)− (θi,t − θi,−)

)2
)
,

(A.20)

which the function V defined in (A.16) satisfies. In integral form, (A.19) reads

V (1, Xi,1, w1, Li,1, ãi, ãΣ)− V (0, Xi,0, w0, Li,0, ãi, ãΣ)

≤
∫ 1

0

(
VXθi,t(σSWdWt + dDt) + VwσwdWt

)
.

(A.21)

To see that the Brownian integral (which is always a local martingale) on the right-

hand-side in (A.21) is indeed a martingale, we first compute the partial derivatives

of V defined in (A.16). These derivatives are

VX = 1, Vw = −
(
2β4w + ãiβ5 + ãΣβ6 + β7

)
. (A.22)

Because the coefficient functions βj are bounded, the integrability condition (2.10) in

the definition of the admissible set Ai (see Definition 2.1) ensures the needed mar-

tingality. Consequently, the terminal condition (A.18) and the inequality in (A.21)

produce

E[Xi,1 − Li,1] = E[V (1, Xi,1, w1, Li,1, ãi, ãΣ)] ≤ V (0, Xi,0, w0, Li,0, ãi, ãΣ). (A.23)

Therefore, because the right-hand side does not depend on θi,t ∈ Ai, we have

sup
θi∈Ai

E[Xi,1 − Li,1] ≤ V (0, Xi,0, w0, Li,0, ãi, ãΣ). (A.24)

From this we see that V is an upper bound for the maximization problem (2.11). To

get equality in (A.24), we show that θ̂i,t defined in (3.12) is optimal. To this end, we

re-write (3.12) as

θ̂i,t = G0(t)ãΣ +G1(t)wt +G2(t)ãi +G3(t)θi,− +G4(t)w0, (A.25)
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where we have defined the deterministic functions

G0(t) := − 2κ(t)γ(t)

2κ(t)− µ1(t)

1

M
,

G1(t) :=
1

M
,

G2(t) :=
2κ(t)γ(t)

2κ(t)− µ1(t)
,

G3(t) :=
2κ(t)

(
1− γ(t)

)
2κ(t)− µ1(t)

,

G4(t) := −
2κ(t)

(
1− γ(t)

)
2κ(t)− µ1(t)

1

M
.

(A.26)

The second-order condition (3.10) comes from requiring negativity of the coefficient

in front of θ2
i,t in (A.20). Because µ1(t) is assumed to satisfy (3.10), we see that θ̂i,t

defined in (3.12) belongs to the admissible set Ai as defined in Definition (2.1). Fur-

thermore, θ̂i,t produces equality in (A.20) and (A.21). Therefore, the upper bound

(A.24) ensures that θ̂i,t is optimal.

Step 2 (equilibrium): This step of the proof establishes the equilibrium prop-

erties in Definition 3.1. We start with the clearing condition (2.3), which gives us

the following three restrictions for the wt-coefficients, the ãΣ-coefficients, and the

constants:

1 = MG1(t), 0 = MG0(t) +G2(t), 0 = G3 +MG4. (A.27)

To ensure that the last restriction (iii) in Definition 3.1 holds, we define

µ∗t := µ0(t)ãΣ + µ1(t)θ̂i,t + µ2(t)ãi + µ3(t)wt + µ4(t)w0 + µ5θi,−. (A.28)

The requirement in (iii) that the ãi and θi,− coefficients in µ∗t are zero in equilibrium

can be stated as

0 = µ1(t)G2(t) + µ2(t), 0 = µ1G3 + µ5. (A.29)

The formulas for µ0, µ2, µ3, µ4 and µ5 in (A.11)-(A.15) ensure that the five re-

quirements in (A.27) and (A.29) hold. In particular, by inserting θ̂i,t into µ∗t , (A.28)
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becomes (3.18). Because the private information variables (ãi, θi,−, θ
(0)
i,−) do not appear

in (3.18), we see that requirement (iii) in Definition 3.1 holds.

Finally, we need to establish the terminal condition (3.6). To this end, we need

the ODEs for (g0, g, σSW ) in (3.14). Lemma A.1 above ensures that the minimal P-

equivalent martingale measure Q can be defined on σ(ãΣ, wu, Du)u∈[0,1] by the Radon-

Nikodym derivative
dQ
dP

:= e−
∫ 1
0 λ

2
udZu− 1

2

∫ 1
0 λ

2
udu,

where (λ, µ∗, Z) are defined by (3.18), (A.2), and (A.3). The Q-dynamics of the

P-Brownian motions (D,W ) can be found using Girsanov’s theorem to be

dDQ
t := dDt +

µ∗t
σSW (t)2σ2

w + 1
dt,

dWQ
t := dWt +

µ∗t
σSW (t)2σ2

w + 1
σSW (t)σwdt.

The Q-dynamics of (D,w) then become

dDt = dDQ
t −

µ∗t
σSW (t)2σ2

w + 1
dt, (A.30)

dwt = (α− πwt)dt+ σwdW
Q
t −

µ∗t
σSW (t)2σ2

w + 1
σSW (t)σ2

wdt. (A.31)

These dynamics (A.30)-(A.31) ensure that the pair (D,w) remains a Markov process

under Q. We now have all the needed quantities to see

EQ[D1 + ϕ0ãΣ + ϕ1w1|Ft] = g0(t) + g(t)ãΣ + σSW (t)wt +Dt, t ∈ [0, 1]. (A.32)

The terminal conditions for the ODEs listed in (3.14) ensure that (A.32) holds for

t = 1. Furthermore, the conditional expectation on the left-hand-side of (A.32) is a

martingale under the minimal martingale measure Q. Therefore, to see that (A.32)

also holds for t ∈ [0, 1), it suffices to show that the right-hand-side of (A.32) is a

martingale under Q. To this end, we apply Ito’s lemma to the right-hand-side of

(A.32) to produce the P-dynamics

d
(
g0(t) + g(t)ãΣ + σSW (t)wt +Dt

)
=
(
g′0(t) + g′(t)ãΣ + σ′SW (t)wt

)
dt+ dDt + σSW (t)dwt.
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The risk-neutral drift (i.e., the drift under the minimal martingale measure Q) is

given by

g′0(t) + g′(t)ãΣ + σ′SW (t)wt −
µ∗t

σSW (t)2σ2
w + 1

+
(
α− πwt −

µ∗t
σSW (t)2σ2

w + 1
σSW (t)σ2

w

)
σSW (t)

= g′0(t) + g′(t)ãΣ + σ′SW (t)wt − µ∗t + (α− πwt)σSW (t)

= g′0(t) + g′(t)ãΣ + σ′SW (t)wt + (α− πwt)σSW (t)

−
(
µ0(t)ãΣ + µ1(t)θ̂i,t + µ2(t)ãi + µ3(t)wt + µ4(t)w0 + µ5θi,−

)
= 0,

where the last equality follows from inserting θ̂i,t from (3.12) and using the ODEs in

(3.14).

♦

Remark A.1. The above proof is that of a “backward engineer’s”. Instead of (A.11)-

(A.15), we could alternatively let µj(t), j ∈ {0, 2, 3, 4, 5}, be arbitrary functions and

adjust (A.26) appropriately. Then (A.27) and (A.29) would produce five restrictions

which would in turn produce (A.11)-(A.15).

Proof of Theorem 4.1: We will write ... for terms that do not depend on µ1. We

first need

M∑
i=1

Xi,0 = S0

M∑
i=1

θi,0

=
(
g0(0) + g(0)ãΣ + σSW (0)w0 +D0

)
w0

= ...+ αw0

∫ 1

0

u
µ1 − 2κ

M
du+ w2

0

∫ 1

0

µ1 − 2κ

M
du,
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where the second equality follows from
∑M

i=1 θi,0 = w0. Then we have

M∑
i=1

CEi =
M∑
i=1

Xi,0 −
(
Mβ0(0) + β1(0)

M∑
i=1

ã2
i +

(
β2(0) +Mβ3(0)

)
ã2

Σ

+Mβ4(0)w2
0 +

(
β5(0) +Mβ6(0)

)
w0ãΣ +Mβ7(0)w0 + (β8(0) +Mβ9(0))ãΣ

)
= ...+

∫ 1

0

{
− u
(
σ2
w + α2u+ αw0

)µ1

M
− γ2κµ2

1

(µ1 − 2κ)2

M∑
i=1

ã2
i −

4γ2κ2(κ− µ1)

M(µ1 − 2κ)2
ã2

Σ

}
du.

We define the constants

c1 := E[ã2
Σ]−M

M∑
i=1

E[ã2
i ], c2 := t(σ2

w + α2t+ αw0), (A.33)

in which case the two conditions in (4.1) become

4γ(t)2c1 < c2 < 0, t ∈ (0, 1]. (A.34)

Based on the above, we seek to maximize

−c2
µ1

M
− γ2κµ2

1

(2κ− µ1)2

M∑
i=1

E[ã2
i ]−

4γ2κ2(κ− µ1)

M(2κ− µ1)2
E[ã2

Σ] (A.35)

By changing variables to y := 2κγ
2k−µ1

so that µ1 = 2(y−γ)κ
y

, we see that the maximization

problem becomes

max
y∈(0,2γ)

G(y), where G(y) :=
(c1y

2 − 2c2)(y − 2γ)− 2c2γ

My
κ− γ2κ

M∑
i=1

E[ã2
i ]. (A.36)

The inequalities in (A.34) produce

G′′(y) =
2κ

My3

(
c1y

3 + 2c2γ) < 0, y ∈ (0, 2γ). (A.37)

Therefore, the first-order condition is sufficient. We observe that

G′(y) =
2κ

My2

(
c1y

3 − γ(c1y
2 + c2)

)
. (A.38)
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Then, (A.34) produces

G′(γ) = −2κc2

Mγ
> 0, (A.39)

G′(2γ) =
κ

2Mγ
(4γ2c1 − c2) < 0. (A.40)

By the intermediate value theorem and the strict concavity of G, we conclude that the

unique solution of G′(y) = 0 satisfies γ < ŷ < 2γ. This ŷ corresponds to 0 < µ̂1 < κ.

Finally, (A.38) says that ŷ = 2κγ
2k−µ̂1

is the solution of c1y
3− γ(c1y

2 + c2) = 0 and here

κ does not appear.

♦

B Equilibrium with exponential utilities

This appendix extends our equilibrium analysis to strategic investors with exponential

utilities Ui(x) := −e−x/τ with common risk tolerance parameter τ > 0. In other

words, we replace the risk-neutral objective (2.11) with

inf
θi∈Ai

E
[
e−

1
τ

(Xi,1−Li,1)
∣∣∣σ(θ

(0)
i,−, θi,−, ãi)

]
. (B.1)

Here the processes (Li, Xi) are still defined by (2.2) and (2.9); however, the admissible

set Ai needs to be altered (see Definition B.1 below). Unlike risk-neutral utilities,

exponential utilities produce coupled non-linear ODEs (see (B.4) and (B.5) below),

which potentially explode in finite time. While it is possible to work out the expo-

nential utility model without the parameter restrictions

α := 0, π := 0, θi,− :=
w0

M
, (B.2)

these restrictions greatly simplify the following presentation.

We will consider continuous functions µ1 : [0, 1] → R which satisfy the following

two conditions. First, in the exponential case, the second-order condition (3.10)

becomes

µ1(t) <
1 + σSW (t)2

2τ
+ κ(t), t ∈ [0, 1). (B.3)
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Second, the following coupled Riccati ODEs

β′4 =
1 + σ2

SW + 2κτ − 2τ(µ1 + 2M2β2
4σ

2
wτ)

2M2τ 2
, β4(1) = 0, (B.4)

σ′SW =
1 + σ2

SW + 2κτ − µ1τ − 2Mβ4σSWσwτ

Mτ
, σSW (1) = ϕ1, (B.5)

must have non-exploding solutions for t ∈ [0, 1]. Whenever the ODEs (B.4) and (B.5)

have well-defined non-exploding solutions, we can define the function

V (t,Xi,w, Li, ai, aΣ) :=

e−
1
τ

(Xi−Li)+β0(t)+β1(t)a2
i+β2(t)aiaΣ+β3(t)a2

Σ+β4(t)w2+β5(t)wai+β6(t)aΣw+β8(t)ai .
(B.6)

This function V turns out to be the value function for the optimization problem (B.1)

when the deterministic coefficient functions are given by the following linear ODEs

β′0 = −β4σ
2
w −

w2
0(γ − 1)2κ

M2τ
,

β′1 =
1

2τ(1 + 2τκ− τµ1 + σ2
SW )2

(
4τσwβ5γκσSW (1 + 2τκ− 2τµ1 + σ2

SW )

− τσ2
wβ

2
5

(
(1 + 2τκ− τµ1)2 + (1 + 2τκ)σ2

SW

)
− 2γ2κ

(
2τκ(1 + σ2

SW ) + (1− τµ1 + σ2
SW )2

))
,

β′2 = −σ2
wβ5β6 −

(2γκ+ σwβ5σSW )2(1 + 2τκ− 2τµ1 + σ2
SW )

M(1 + 2τκ− τµ1 + σ2
SW )2

,

β′3 = −σ
2
wβ

2
6

2
+

(2γκ+ σwβ5σSW )2(1 + 2τκ− 2τµ1 + σ2
SW )

2M2(1 + 2τκ− τµ1 + σ2
SW )2

, (B.7)

β′5 = −2σ2
wβ4β5 +

(2γκ+ σwβ5σSW )(1 + 2τκ− 2τµ1 + σ2
SW )

τM(1 + 2τκ− τµ1 + σ2
SW )

,

β′6 = −2σ2
wβ4β6 −

(2γκ+ σwβ5σSW )(1 + 2τκ− 2τµ1 + σ2
SW )

τM2(1 + 2τκ− τµ1 + σ2
SW )

,

β′8 =
2w0(γ − 1)γκ

τM
,

with zero terminal conditions (i.e., βj(1) = 0 for j ∈ {0, 1, 2, 3, 5, 6, 8}). Finally, we

can adjust the notion of admissibility given in Definition 2.1 to the case of exponential

utilities.

Definition B.1. We deem a jointly measurable and Fi adapted process θi = (θi,t)t∈[0,1]
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admissible and write θi ∈ Ai if the local martingale∫ s

0

(
VXθi,t(σSWdWt + dDt) + VwσwdWt

)
, s ∈ [0, 1], (B.8)

is well-defined and is a martingale. In (B.8), the terms VX and Vw denote the partial

derivatives of the function V defined in (B.6).

♦

We adjust the deterministic pricing coefficients (A.11)-(A.15) to

µ0 := −(2γκ+ σSWσwβ5)(1 + 2τ(κ− µ1) + σ2
SW

M
(
1 + σ2

SW + 2κτ − µ1τ
) − σSWσwβ6,

µ2 := −µ1(2κγ + β5σSWσw)τ

1 + σ2
SW + 2κτ − µ1τ

,

µ3 :=
1 + σ2

SW + 2(κ− µ1 −Mβ4σSWσw)τ

Mτ
, (B.9)

µ4 :=
2κ(γ − 1)

M
,

µ5 := 0.

The analogue of Theorem 3.4 for the case of exponential utilities is:

Theorem B.2. Let the parameter restrictions (B.2) hold and let γ : [0, 1]→ [0,∞) be

a continuous function. Let µ1, κ : [0, 1)→ (0,∞) be continuous and square integrable

functions (i.e., (3.11) holds), satisfy the second-order condition (B.3), and ensure that

the coupled Riccati ODEs (B.4) and (B.5) have well-defined non-explosive solutions

on [0, 1]. Define the deterministic functions g0 and g as the unique solutions of the

following linear ODEs:

g′(t) = −
2γ(t)κ(t) +

(
β5(t) +Mβ6(t)

)
σSW (t)σw

M
, g(1) = ϕ0,

g′0(t) =
2w0(γ(t)− 1)κ(t)

M
, g0(1) = 0.

(B.10)

Then the functions µ0, µ2, µ3, µ4, and µ5 defined in (B.9) together with σSW defined in

(B.5) form a Nash equilibrium in which (i) investor optimal holdings in equilibrium
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are given by

θ̂i,t =

(
2κ(t)γ(t) + β5(t)σSW (t)σw

)
τ(

2κ(t)− µ1(t)
)
τ + 1 + σSW (t)2

(
ãi −

ãΣ

M

)
+
wt
M
, (B.11)

and (ii) the equilibrium stock price is given by (3.13).

Proof. The proof of Theorem B.2 is similar to the proof of Theorem 3.4 and here we

only outline the two needed changes. First, to verify that (B.11) is admissible in the

sense of Definition B.1, we re-write the local martingale dynamics (A.19) appearing

in (B.8) as

dV (t,Xi,w, Li, ãi, ãΣ) = V (t,Xi, w, Li, ãi, ãΣ)
(
JtdWt − 1

τ
θ̂i,tdDt

)
, (B.12)

where θ̂i,t is defined in (B.11) and

Jt :=
(
2β4(t)wt + ãiβ5(t) + ãΣβ6(t) + β7(t)

)
σw − 1

τ
θ̂i,tσSW (t). (B.13)

Because the deterministic functions appearing in front of wt, ãi, and ãΣ in (B.11)

and (B.13) are uniformly bounded, and because wt defined in (2.4) is Gaussian, the

representation (B.12) combined with Corollary 3.5.16 in Karatzas and Shreve (1991)

produces the wanted martingality of V .

Second, we need to verify that the local martingale N = (Nt)t∈[0,1] in (A.1) is a

martingale when µ̂t in (3.18) is replaced by

µ̂t :=
1 + σSW (t)2 +

(
2κ(t)− µ1(t)

)
τ − 2Mβ4(t)σSW (t)σwτ

Mτ
wt

+
2
(
γ(t)− 1

)
κ(t)

M
w0 −

2γ(t)κ(t) +
(
β5(t) +Mβ6(t)

)
σSW (t)σw

M
ãΣ.

(B.14)

To this end, we note that wt remains a non-exploding Gaussian Ornstein-Uhlenbeck

process under the P-equivalent probability measures (Q(n))n∈N defined in (A.9). Con-

sequently, the proof of Lemma A.1 carries over to the current exponential utility case

where µ̂t is defined in (B.14).

♦
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