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1 Introduction

Asset pricing has focused on specifying preferences and cash flow dynamics that are necessary to

reproduce the equity premium, its volatility, and its cyclical variation in the endowment economy

(e.g., Campbell and Cochrane (1999) and Bansal and Yaron (2004)). Explaining the equity premium

in the production economy with endogenous cash flows has proven more challenging. For the most

part, the prior literature treats cash flows as dividends. However, wages comprise about two thirds

of aggregate disposable income in the data, with dividends representing only a small fraction. As

such, an equilibrium macroeconomic model of asset pricing should take the labor market seriously.

As a fundamental departure from the prior asset pricing literature, we tackle the equity pre-

mium puzzle by incorporating search frictions in the labor market (e.g., Diamond (1982), Mortensen

(1982), and Pissarides (1985, 2000)) into an intertemporal general equilibrium production economy.

With recursive Epstein and Zin (1989) preferences, a representative household pools incomes from

its employed and unemployed members, and decides on optimal consumption and asset allocation.

The unemployed members search for job vacancies posted by a representative firm. The rate at

which a job vacancy is transformed into a filled position is affected by the degree of congestion in

the labor market. The congestion is measured by labor market tightness, defined as the ratio of

the number of job vacancies over the number of unemployed workers. Deviating from Walrasian

equilibrium, search frictions create rents to be divided between the firm and the workers through

wages, which are determined by the outcome of a generalized Nash bargaining process.

Our central message is that search frictions are important for understanding the equity premium

in the production economy. With reasonable parameter values, the search economy generates an

equity premium of 3.67% per annum and an average risk-free rate of 3.75%. The interest rate

also has a low volatility of 1.44% per annum. However, the model produces a market volatility of

7.83%, which is too low compared with 12.94% in the data. Also, the equity premium is strongly

countercyclical in the model. In particular, the vacancy-unemployment ratio forecasts stock market
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excess returns with a negative slope in the model, a pattern that we confirm in the data.

The model is also partially successful in replicating the cyclical behavior of unemployment,

vacancies, and labor market tightness. In particular, the standard deviation of the vacancy-

unemployment ratio is 0.16 in the model, albeit lower than 0.26 in the data. The model reproduces

a Beveridge curve with a negative vacancy-unemployment correlation of −0.51. However, the mag-

nitude of the correlation is lower than the correlation in the data, −0.91.

Why are search frictions important for asset prices? The challenge in reproducing the equity

premium in the production economy is that the representative household can smooth consumption

to alleviate the impact of shocks. In the standard production model, the amount of endogenous

risk is too small (e.g., Rouwenhorst (1995) and Kaltenbrunner and Lochstoer (2010)). Swings in

cyclical investment flows have little impact on the proportionally large capital stock. In contrast,

job creation and job destruction flows are substantially larger than investment flows. In particular,

the annual rate of capital depreciation is around 12%, but the annual job separation rate can be

as high as 60% (e.g., Davis, Faberman, and Haltiwanger (2006)).

When combined with search frictions, such large job flows create rare but deep disasters. In the

stationary distribution of the model, the unemployment rate is positively skewed with a long right

tail. The mean unemployment rate is about 12%. The 2.5 and 5 percentiles are nearby: 7.44% and

7.81%, but the 95 and 97.5 percentiles are far from the mean: 21.51% and 29.10%, respectively.

As a result, output and consumption in our production economy are negatively skewed with a long

left tail, giving rise to rare disaster risk emphasized by Rietz (1988) and Barro (2006).

Through comparative statics, we find that a high value of unemployment benefits is critical for

the search model to produce a high equity premium. Intuitively, a high value of unemployment

benefits means that the wage is less elastic to aggregate productivity. With the procyclical

covariation of the wage dampened, the procyclical covariation of the residual payments to

shareholders ais magnified, thereby raising the equity premium. We also find that high vacancy costs
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and a low bargaining weight for the workers in the wage determination are necessary for the model’s

fit of asset pricing moments. Finally, consistent with Tallarini (2000), risk aversion only affects asset

pricing moments, while leaving business cycle moments virtually unchanged in the search economy.

We connect the literature on asset pricing with production in financial economics and the search

literature in labor economics. In finance, Rouwenhorst (1995) shows that the equity premium in

the standard real business cycle framework is close to zero because of consumption smoothing.

With habit formation, Jermann (1998) uses capital adjustment costs, and Boldrin, Christiano, and

Fisher (2001) introduce across-sector immobility to reproduce a high equity premium in production

economies. However, both models struggle with excessively volatile risk-free rates. Danthine and

Donaldson (2002) and Uhlig (2007) show that wage rigidities are important for asset pricing in the

production economy, a theme we also echo in the search model. While curing the excess risk-free

rate volatility, Kaltenbrunner and Lochstoer (2010) show that a production economy with recursive

preferences and capital adjustment costs still fails to reproduce a high equity premium.1

In the recent search literature in labor economics, Shimer (2005) argues that the standard search

framework cannot explain the unemployment volatility in the data. Several authors including Hall

(2005), Hagedorn and Manovskii (2008), and Gertler and Trigari (2009) show that wage rigidities go

a long way toward resolving the Shimer puzzle. We introduce the search model into the asset pricing

literature, and show that the exact mechanism also works to resolve the equity premium puzzle.

The rest of the paper is organized as follows. Section 2 constructs the model. Section 3 dis-

cusses the quantitative results under the benchmark calibration. Section 4 reports an extensive set

of comparative statics. Finally, Section 5 concludes.

2 The Economy

To study the interaction between search frictions and asset prices, we embed the standard Diamond-

Mortensen-Pissarides search model into an intertemporal general equilibrium production economy.

1However, Guvenen (2009) shows how to achieve this task with limit market participation.
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2.1 Search and Matching

The model is populated by a representative firm that uses labor as the single productive input

and a representative household. Following Merz (1995), we use the representative family construct,

which implies perfect consumption insurance. In particular, the household has a continuum of

employed workers and unemployed workers, which are representative of the population at large. The

household pools their incomes together before choosing per capita consumption and asset holdings.

The representative firm posts a number of job vacancies, Vt, to attract unemployed workers,

Ut, at the unit cost of κ. Vacancies are filled via a constant returns to scale matching function,

G(Ut, Vt). The matching function is specified as:

G(Ut, Vt) =
UtVt

(U ιt + V ι
t )

1/ι
, (1)

in which ι > 0 is a constant parameter. This matching function from Den Haan, Ramey, and Watson

(2000) has the desirable property that matching probabilities fall naturally between zero and one.

Specifically, define θt ≡ Vt/Ut as the vacancy-unemployment (V/U) ratio. The probability for

an unemployed worker to find a job per unit of time (the job finding rate), denoted f(θt), is given by:

f(θt) ≡
G(Ut, Vt)

Ut
=

1
(

1 + θ−ιt
)1/ι

. (2)

In addition, the probability for a vacancy to be filled per unit of time (the vacancy filling rate),

denoted q(θt), is given by:

q(θt) ≡
G(Ut, Vt)

Vt
=

1

(1 + θιt)
1/ι
. (3)

As such, f(θt) = θtq(θt). Also, ∂q(θt)/∂θt < 0, meaning that an increase in the relative scarcity of

unemployed workers relative to job vacancies makes it more difficult for a firm to fill a vacancy. In

this sense, θt is a measure of labor market tightness from the perspective of the firm.

Once matched, jobs are destroyed at an exogenous and constant rate of s per period. As such,
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total employment, Nt, evolves as:

Nt+1 = (1− s)Nt + q(θt)Vt. (4)

We normalize the size of the work force to be one, meaning that Ut = 1−Nt. As such, Nt and Ut

can also be interpreted as the rates of employment and unemployment, respectively.

2.2 The Representative Firm

The firm faces aggregate productivity, Xt. The law of motion of xt ≡ log(Xt) is given by:

xt+1 = ρxt + σǫt+1, (5)

in which 0 < ρ < 1 is the persistence parameter, σ > 0 is the conditional volatility, and ǫt+1 is an

identically and independently distributed standard normal shock.

The firm uses labor as the only input to produce with a constant returns to scale production

technology, Yt = XtNt, in which Yt is output. The dividend to the firm’s shareholders is given by:

Dt = XtNt −WtNt − κVt, (6)

in which Wt is the wage rate (to be determined later in Section 2.4).

Let Mt+△t be the representative household’s stochastic discount factor from time t to t +△t.

Taking the matching probability q(θt) and the wage rate as given, the firm posts an optimal number

of job vacancies to maximize the market value of equity, denoted St:

St = max
{Vt+△t,Nt+△t+1}

∞
△t=0

Et





∞
∑

△t=0

Mt+△t(Xt+△tNt+△t −Wt+△tNt+△t − κVt+△t)



 , (7)

subject to equation (4) and an irreversibility constraint on job creation:

q(θt)Vt ≥ 0. (8)

Because q(θt) > 0, this constraint is equivalent to Vt ≥ 0. As such, the only source of job destruction
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in the model is the exogenous separation between the employed workers and the firm.

Let µt denote the Lagrange multiplier on the employment accumulation equation (4), and λt

the Lagrange multiplier on the irreversibility constraint (8). The first-order conditions with respect

to Vt and Nt+1 in maximizing the equity value are given by, respectively:

µt =
κ

q(θt)
− λt, (9)

µt = Et
[

Mt+1

[

Xt+1 −Wt+1 + (1− s)µt+1

]]

. (10)

Combining the two first-order conditions yields the intertemporal job creation condition:

κ

q(θt)
− λt = Et

[

Mt+1

[

Xt+1 −Wt+1 + (1− s)

(

κ

q(θt+1)
− λt+1

)]]

. (11)

The optimal vacancy policy also satisfies the Kuhn-Tucker conditions:

q(θt)Vt ≥ 0, λt ≥ 0, (12)

λtq(θt)Vt = 0. (13)

When the firm posts vacancies, Vt > 0 and λt = 0. Equation (9) says that the marginal cost,

κ, is equal to the marginal value of employment, µt, conditional on the probability of a successful

match, q(θt). When the irreversibility constraint is binding, Vt = 0 and λt > 0. In addition,

θt = Vt/Ut = 0, and q(θt) = 1 from equation (3). In this case, the marginal value of employment

µt = κ− λt. In all, κ/q(θt)− λt can be interpreted as the marginal cost of vacancy posting, taking

into account the matching probability and the irreversibility constraint.

The intertemporal job creation condition (11) is intuitive. The marginal cost of vacancy posting

at period t should be equal to the marginal benefit of vacancy posting at period t+ 1, discounted

to period t with the stochastic discount factor. The marginal benefit includes the marginal product

of labor, Xt+1, net of the wage rate, Wt+1, and the marginal value of employment, µt+1, which in

turn equals the marginal cost of vacancy posting at t+ 1, net of separation.
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Define the stock return as Rt+1 = St+1/(St −Dt) (St is the cum dividend equity value). The

constant returns to scale assumption allows us to derive (see Appendix A for details):

Rt+1 =
Xt+1 −Wt+1 + (1− s) (κ/q(θt+1)− λt+1)

κ/q(θt)− λt
. (14)

As such, the stock return is the ratio of the marginal benefit of vacancy posting at period t + 1

divided by the marginal cost of vacancy posting at period t.

2.3 The Representative Family

The representative household maximizes utility, denoted Jt, over consumption using the Epstein

and Zin preferences. The household can buy risky shares on the representative firm’s dividends and

a risk-free bond. Let Ct denote consumption and χt denote the fraction of the household’s wealth

invested in the risky shares. The recursive utility function is given by:

Jt = max
{Ct,χt}

[

(1− β)C
1− 1

ψ

t + β
(

Et

[

J1−γ
t+1

])

1−1/ψ
1−γ

]
1

1−1/ψ

, (15)

in which β is time discount factor, ψ is the elasticity of intertemporal substitution, and γ is relative

risk aversion. The Epstein-Zin preferences separate the elasticity of intertemporal substitution from

the risk aversion. Intuitively, ψ measures the household’s willingness to postpone consumption over

time, and γ measures its aversion to atemporal risk across states. Separating the two parameters

helps the model to produce a high equity premium and a low interest rate volatility simultaneously.

Tradeable assets consist of risky shares and a risk-free bond. Let Rft+1 denote the risk-free

interest rate (known at the beginning of period t) and RΠ
t+1 the return on wealth, i.e., RΠ

t+1 =

χtRt+1+(1−χt)R
f
t+1. Let Πt denote the household’s financial wealth, b the value of unemployment

benefits, Tt the amount of taxes raised by the government to pay for the unemployment benefits

in lump-sum rebates. We can write the representative household’s budget constraint as:

Πt+1

RΠ
t+1

= Πt − Ct +WtNt + Utb− Tt. (16)
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Finally, the government balances its budget, meaning that Tt = Utb.

The household’s first order condition with respect to the fraction of wealth invested in the risky

asset, χt, implies the fundamental equation of asset pricing:

1 = Et[Mt+1Rt+1]. (17)

In particular, the stochastic discount factor, Mt+1, is given by:

Mt+1 = β

(

Ct+1

Ct

)− 1
ψ

(

Jt+1

Et[J
1−γ
t+1 ]

1
1−γ

)
1
ψ
−γ

. (18)

Finally, the risk-free rate is given by Rft+1 = 1/Et[Mt+1] in equilibrium.

2.4 Wage Determination

The wage rate is determined endogenously as the outcome of a generalized Nash bargaining process

between a worker and the firm. Let 0 < η < 1 be the workers’ relative bargaining weight. The

wage equation, derived in details in Appendix B, is given by:

Wt = η[Xt + κθt] + (1− η)b. (19)

The wage is increasing in productivity, Xt, and in labor market tightness, θt. Also, the workers’

bargaining weight, η, affects the elasticity of the wage to productivity. The lower η is, the more the

wage is tied with the constant unemployment benefit, b, inducing a higher degree of wage rigidity.

2.5 Competitive Equilibrium

In equilibrium, the capital market clears. The risk-free asset is in zero net supply, and the house-

hold holds all the shares of the representative firm, χt = 1. The return on wealth equals the return

on the risky asset, RΠ
t+1 = Rt+1, and the household’s wealth equals the equity value of the firm,

Πt = St. In addition, the goods market clearing condition implies the aggregate resource constraint:

Ct + κVt = XtNt. (20)
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The competitive equilibrium consists of vacancy, V ⋆(Nt, xt) ≥ 0, multiplier, λ⋆(Nt, xt) ≥ 0,

consumption, C⋆(Nt, xt), and indirect utility, J⋆(Nt, xt), such that (i) V ⋆(Nt, xt) and λ⋆(Nt, xt)

satisfy the intertemporal job creation condition (11) and the Kuhn-Tucker condition (13), while

taking the stochastic discount factor (18) and the wage equation (19) as given; (ii) C⋆(Nt, xt) and

J⋆(Nt, xt) satisfy the intertemporal consumption-portfolio choice condition (17), in which the stock

return is given by equation (14); and (iii) the goods market clears as in equation (20).

3 Quantitative Results

We calibrate the model in Section 3.1, examine the theoretical properties of the model’s solution

in Section 3.2, and present the quantitative results from the model in Section 3.3.

3.1 Calibration

We calibrate the model in monthly frequency. Table 1 lists the parameter values in the benchmark

calibration. Following Gertler and Trigari (2009), we set the time discount factor, β, to be 0.991/3,

and the persistence of the aggregate productivity, ρ, to be 0.951/3 = 0.983. We choose the condi-

tional volatility of the log aggregate productivity, σ, to be 0.0077 to target the standard deviation

of output growth in the data. Following Bansal and Yaron (2004), we set the relative risk aversion,

γ, to be 10, and the elasticity of intertemporal substitution, ψ, to be 1.5.

For the labor market parameters, we begin with the matching function, G(Ut, Vt). Den Haan,

Ramey, and Watson (2000) estimate the average monthly job filling rate to be q̄ = 0.71, and the

average monthly job finding rate in the United States to be f̄ = 0.45 (see also Shimer (2005)). The

constant returns to scale property of the matching function implies that the long-run average labor

market tightness is around θ̄ = f̄ /q̄ = 0.634. This value helps pin down the constant parameter

in the matching function, ι. Specifically, evaluating equation (3) at the long run average yields:

0.71 = (1 + 0.634ι)−1/ι, which in turn implies ι = 1.29.

The average rate of unemployment for the United States over the 1920–2009 period is approx-
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Table 1 : Parameter Values in the Benchmark Calibration

All the model parameters are calibrated at the monthly frequency.

Parameters Value Source

The rate of time preference, β 0.991/3 Gertler and Trigari (2009)
Relative risk aversion, γ 10 Bansal and Yaron (2004)
The elasticity of intertemporal substitution, ψ 1.5 Bansal and Yaron (2004)
Aggregate productivity persistence, ρ 0.983 Gertler and Trigari (2009)
Conditional volatility of productivity shocks, σ 0.0077 Gertler and Trigari (2009)

Worker’s bargaining weight, η 0.10 Hagedorn and Manovskii (2008)
Value of unemployment benefit, b 0.85 Hagedorn and Manovskii (2008)
Job destruction rate, s 0.05 Andolfatto (1996)
Elasticity of the matching function w.r.t. θ, ι 1.290 Den Haan, Ramey, and Watson (2000)
Cost of vacancy, κ 0.975 Job creation condition in steady state

imately 7%. However, important flows in and out of nonparticipation in the labor force as well as

discouraged workers not accounted for in the pool of individuals seeking employment suggest that

the unemployment rate should be calibrated higher in the model. As such, we adopt the target

average unemployment rate of Ū = 10%, which lies within the range between 7% in Gertler and Tri-

gari (2009) and 12% in Krause and Lubik (2007). This target pins down the monthly job separation

rate s. In particular, the steady state labor market flows condition, s(1− Ū) = f̄ Ū , sets s = 0.05.

This value of s, which is also used by Andolfatto (1996), is close to the estimate of 0.053 from Clark

(1990), and is within the range of estimates from Davis, Faberman, and Haltiwanger (2006).

The value of unemployment benefits, b, measures the total value of leisure, home production,

and unemployment insurance. Hagedorn and Manovskii (2008) argue that in a perfect competitive

labor market, b should equal the value of employment. In the long run, the average marginal prod-

uct of labor is unity, to which b should be close. Following Hagedorn and Manovskii, we choose

a relatively high value for b = 0.85, and a relatively low value for the workers’ bargaining weight,

η = 0.10. Doing so helps the model to match the volatility of labor market tightness and the elas-

ticity of wage to productivity in the data. Intuitively, by limiting the response of the marginal cost

of production to shocks, wage rigidity increases the sensitivity of the marginal profits to shocks.
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Finally, with all the other parameters determined, we pin down the vacancy cost parameter, κ, by

evaluating the job creation condition (11) at the steady state.2 This strategy yields κ = 0.975.

3.2 Theoretical Properties of the Model’s Solution

Armed with the calibrated parameters, we solve for the competitive equilibrium using a nonlinear

projection algorithm with parameterized expectations (see Appendix C for details). Before study-

ing the model’s quantitative results, we first examine qualitative properties of the model’s solution

on the two-dimensional grid of Nt and xt. (Additional qualitative results are in Appendix C.3.)

Panel A of Figure 1 shows that, sensibly, labor market tightness, θt, is increasing in employ-

ment, Nt, and in aggregate productivity, xt. The labor market is tighter from the perspective of

the firm when there are fewer unemployed workers searching for jobs (Nt is high), and when the

demand for workers is high (xt is high). Panel B confirms that congestion in the labor market is

most severe in the states with high Nt and high xt. In particular, the vacancy fill rate, q(θt), is the

lowest in these states, but hits the maximum of unity in the low Nt and low xt states.

From Panel A of Figure 2, the optimal vacancy, Vt, is procyclical (increasing with aggregate

productivity), and is hump-shaped in employment, Nt. Intuitively, operating profits, XtNt−WtNt,

increase with aggregate productivity, implying that the firm posts more vacancies in good times.

Conditional on Xt, low states of Nt mean low operating profits. As such, the firm posts fewer

vacancies to avoid high vacancy costs. At the other extreme, although high states of Nt mean high

operating profits, these states also imply more congestion and low vacancy filling rates, q(θt), which

the firm takes as given. The congestion deters the firm from posting more vacancies.

Panel B shows that the dynamics of dividend are more complex. First, the dividend dynamics

are closely related to the vacancy dynamics. When xt is high, dividend shows a U-shape in em-

ployment, Nt. Dividend is positive and procyclical when Nt is around its long run average (close to

2Specifically, after we substitute the wage equation (19), the job creation condition at the steady state

becomes: 1
β
κ
q̄
= X̄ − η(X̄ + κθ̄)− (1− η)b+ (1− s)κ

q̄
, in which X̄ = 1. Solving for κ yields:κ = (X̄−b)(1−η)q̄

1/β−(1−s)+ηθ̄q̄
.
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Figure 1 : Labor Market Tightness and the Vacancy Filling Rate

We plot labor market tightness, θ(Nt, xt), and the vacancy filling rate, q(θt) on the Nt-xt grid.

Panel A: θ(Nt, xt) Panel B: q(θt)
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0.90). However, dividend can be negative and countercyclical when Nt is in the middle range on the

grid. The absolute values of negative dividends can be seen as positive equity issues in the model.

The countercyclicality of dividend is the mirror image of the procyclicality of vacancy because the

firm posts more vacancies in the middle range of the Nt grid.

Panel A of Figure 3 plots the multiplier on the irreversibility constraint, λt. We observe that λt is

strongly countercyclical: λt equals zero for most values of xt, but increases rapidly as xt approaches

its lowest level. The multiplier is also convex in employment, Nt: λt is flat across most values of Nt,

but rises with an increasing speed as Nt approaches zero. To obtain some intuition, Panel B plots

the conditional expectation, denoted E(Nt, xt), which is defined as the right-hand side of equation

(11), Et

[

Mt+1

[

Xt+1 −Wt+1 + (1− s)
(

κ
q(θt+1)

− λt+1

)]]

. As noted, when the irreversibility con-

straint is binding, Vt = 0, θt = 0, and q(θt) = 1. As such, λt = κ − E(Nt, xt). From Panel B,

E(Nt, xt) is increasing in both Nt and xt. More important, E(Nt, xt) shows strong nonlinearity as

it drops swiftly as the economy approaches the lowest levels of Nt and xt simultaneously. This

nonlinearity is a natural result of the nonlinear stochastic discount factor, Mt+1. As consumption
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Figure 2 : Vacancy and Dividend

We plot the optimal vacancy, V (Nt, xt), and dividend, D(Nt, xt), on the grid of Nt and xt.

Panel A: V (Nt, xt) Panel B: D(Nt, xt)
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approaches zero, marginal utility blows up, causing E(Nt, xt) to drop and λt to rise precipitously.

Figure 4 reports two key financial moments: the equity risk premium and the conditional market

volatility. Both moments exhibit similar dynamic patterns as the multiplier on the irreversibility

constraint, λt. In particular, both moments are strongly countercyclical, and are largely convex

in employment as it approaches zero. Intuitively, the irreversibility constraint binds only in bad

times. The binding constraint prevents the household from smoothing consumption, giving rise to

high risk and high risk premiums. Conversely, the irreversibility constraint does not bind in good

times, consumption is smooth, giving rise to low risk and low risk premiums.

3.3 Quantitative Results

Before evaluating the model’s quantitative performance, we first examine its stationary distribution.

Stationary Distribution

We simulate 1,006,000 monthly periods from the model. The initial condition consists of a value

of zero for aggregate productivity, xt, and a value of 0.90 for employment, Nt. We discard the first
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Figure 3 : The Multiplier on the Irreversibility Constraint of Vacancy and the Conditional

Expectation in the Intertemporal Job Creation Condition

On the Nt-xt grid, we plot the multiplier on the irreversibility constraint on vacancy, λ(Nt, xt), and
the conditional expectation defined as the right-hand side of equation (11), E(Nt, xt).

Panel A: λ(Nt, xt) Panel B: E(Nt, xt)
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Figure 4 : The Equity Risk Premium and the Conditional Market Volatility

On the Nt-xt grid, we plot the conditional equity risk premium, Et[Rt+1 − Rft+1](Nt, xt), and the
conditional market volatility, σR(Nt, xt), both of which are in annualized percent.
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6,000 periods, and treat the remaining one million months as from the model’s stationary distri-

bution. Figure 5 reports the empirical cumulative distribution functions (ECDF ) and simulated

paths for unemployment, output, and consumption. (Appendix C.3 reports additional ECDF s.)

Most important, the economy shows infrequent but deep crashes. From Panels A and B, unem-

ployment, Ut, is positively skewed with a long right tail. The mean unemployment rate is 12.14%,

the median is 10.29%, and the skewness coefficient is 5.09. (Although we target an unemployment

rate of 10% in the calibration, the skewed distribution of Ut implies that its mean is slightly above

its median around 10%.) The 2.5 and 5 percentiles are close to the median: 7.44% and 7.81%,

respectively. In contrast, the 95 and 97.5 percentiles are far away from the median: 21.51% and

29.10%, respectively. As a mirror image, the employment rate, Nt = 1 − Ut, is negatively skewed

with a long left tail. As a result, output and consumption also exhibit infrequent but severe dis-

asters (see Panels C to F). With small probabilities, the economy falls off the cliff in simulations,

exhibiting the behavior modeled by Rietz (1988) and Barro (2006).

The disasters reflect in asset prices as rare upward spikes in the equity premium. From Figure

6, the stationary distribution of the equity premium is positively skewed with a long right tail. The

mean equity premium is 3.87% per annum, and its 2.5 and 97.5 percentiles are 1.86% and 5.40%,

respectively. With small probabilities the equity premium can reach very high levels. In particular,

the 99.99 and 99.995 percentiles of its stationary distribution are 15.51% and 21.12%, respectively.

Unconditional Financial Moments

Panel A of Table 2 reports the standard deviation and autocorrelations of (log) consumption growth

and (log) output growth, as well as unconditional financial moments in the data. Consumption is

annual real personal consumption expenditures and output is annual real gross domestic product

from 1929 to 2010 from Bureau of Economic Analysis at U.S. Department of Commerce. The an-

nual consumption growth in the data has a volatility of 3.04%, and a first-order autocorrelation of

0.38. The autocorrelation drops to 0.08 at the two-year horizon, and turns negative, −0.21, at the
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Figure 5 : Empirical Stationary Distribution of the Model: Unemployment, Output, and

Consumption

We simulate 1,006,000 monthly periods from the model, discard the first 6,000 periods, and treat
the remaining one million months as forming the model’s stationary distribution. In Panels A,
C, and E, we plot the empirical cumulative distribution functions, ECDF (·), for unemployment,
output, and consumption. In Panels B, D, and F, we plot their simulated paths.
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Figure 6 : Empirical Stationary Distribution of the Model: The Equity Premium

We simulate 1,006,000 monthly periods from the model, discard the first 6,000 periods, and treat
the remaining one million months as from the model’s stationary distribution. Panel A plots the
empirical cumulative distribution function, ECDF , and Panel B plots the simulated path for the
equity premium, Et[Rt+1 −Rft+1].
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three-year horizon. The annual output growth has a volatility of 4.93%, and a high first-order au-

tocorrelation of 0.54. The autocorrelation drops to 0.18 at the two-year horizon, and turns negative

afterward: −0.18 at the three-year horizon and −0.23 at the five-year horizon.

We obtain monthly series of the value-weighted market returns including all NYSE, Amex, and

Nasdaq stocks, one-month Treasury bill rates, and inflation rates (the rates of change in Consumer

Price Index) from Center for Research in Security Prices (CRSP). The sample is from January

1926 to December 2010 (1,020 months). The mean of real interest rates (one-month Treasury bill

rates minus inflation rates) is 0.59% per annum, and the annualized volatility is 1.87%. The equity

premium (the average of the value-weighted market returns in excess of one-month Treasury bill

rates) in the 1926–2010 sample is 7.45% per annum. Because we do not model financial leverage,

we adjust the equity premium in the data for leverage before matching with the equity premium

implied from the model. Frank and Goyal (2008) report that the aggregate market leverage ratio

of U.S. corporations is fairly stable around 0.32. As such, we calculate the leverage-adjusted equity
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Table 2 : Unconditional Financial Moments

In Panel A, consumption is annual real personal consumption expenditures (series PCECCA),
and output is annual real gross domestic product (series GDPCA) from 1929 to 2010 (82 annual
observations) from Bureau of Economic Analysis at U.S. Department of Commerce. σC is the
volatility of log consumption growth, and σY is the volatility of log output growth. Both volatilities
are in percent. ρC(j) and ρY (j), for j = 1, 2, 3, and 5, are the j-th order autocorrelations of log
consumption growth and log output growth, respectively. We obtain monthly series from January
1926 to December 2010 (1,020 monthly observations) for the value-weighted market index returns
including dividends, one-month Treasury bill rates, and the rates of change in Consumer Price Index
(inflation rates) from CRSP. E[R−Rf ] is the average (in annualized percent) of the value-weighted
market returns in excess of the one-month Treasury bill rates, adjusted for the long-term market
leverage rate of 0.32 reported by Frank and Goyal (2008). (The leverage-adjusted average E[R−Rf ]
is the unadjusted average times 0.68.) E[Rf ] and σRf are the mean and volatility, both of which are
in annualized percent, of real interest rates, defined as the one-month Treasury bill rates in excess
of the inflation rates. σR is the volatility (in annualized percent) of the leverage-weighted average
of the value-weighted market returns in excess of the inflation rates and the real interest rates. In
Panel B, we simulate 1,000 artificial samples, each of which has 1,020 monthly observations, from
the model in Section 2. In each artificial sample, we calculate the mean market excess return,
E[R−Rf ], the volatility of the market return, σR, as well as the mean, E[Rf ], and volatility, σRf ,
of the real interest rate. All these moments are in annualized percent. We also time-aggregate
the first 984 monthly observations of consumption and output into 82 annual observations in each
sample, and then calculate the volatilities and autocorrelations of log consumption growth and log
output growth. We report the mean and the 5 and 95 percentiles across the 1,000 simulations. The
p-values are the percentages with which a given model moment is larger than its data moment.

Panel A: Data Panel B: Model

Mean 5% 95% p-value

σC 3.036 4.643 2.691 8.473 0.846
ρC(1) 0.383 0.243 0.013 0.530 0.168
ρC(2) 0.081 −0.131 −0.328 0.110 0.068
ρC(3) −0.206 −0.135 −0.346 0.111 0.697
ρC(5) 0.062 −0.082 −0.301 0.140 0.145

σY 4.933 4.945 3.024 8.639 0.342
ρY (1) 0.543 0.236 0.018 0.521 0.038
ρY (2) 0.178 −0.127 −0.324 0.112 0.025
ρY (3) −0.179 −0.131 −0.337 0.113 0.636
ρY (5) −0.227 −0.082 −0.295 0.135 0.866

E[R −Rf ] 5.066 3.669 2.951 4.324 0.000
E[Rf ] 0.588 3.751 3.235 4.143 1.000
σR 12.942 7.829 7.147 8.572 0.000
σRf 1.872 1.439 0.928 2.267 0.125
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premium as (1−0.32)×7.45% = 5.07% per annum. The annualized volatility of the market returns

in excess of inflation rates is 18.95%. Adjusting for leverage (taking the leverage-weighted average

of real market returns and real interest rates) yields an annualized volatility of 12.94%.3

Panel B of Table 2 reports the model moments. From the initial condition of zero for aggregate

productivity, xt, and 0.90 for employment, Nt, we first simulate the economy for 6,000 monthly

periods to reach its stationary distribution. We then repeatedly simulate 1,000 artificial samples,

each with 1,020 months. On each artificial sample, we calculate the annualized monthly averages of

the equity premium and the real interest rate, as well as the annualized monthly volatilities of the

market returns and the real interest rate. We also take the first 984 monthly observations of con-

sumption and output, and time-aggregate them into 82 annual observations. (We add up 12 monthly

observations within a given year, and treat the sum as that year’s annual observation.) For each data

moment, we report the average as well as the 5 and 95 percentiles across the 1,000 simulations. The

p-values are the frequencies with which a given model moment is larger than its data counterpart.

Because we target the (log) output growth volatility (σY ) in calibration, the model implied σY

is 4.95% per annum, which is fairly close to 4.93% in the data. The model also reproduces a positive

first-order autocorrelation of 0.24 for the output growth, but its magnitude is substantially lower

than 0.54 in the data. As such, the propagation mechanism in the model is weaker than what we

observe in the data. The model also predicts a consumption growth volatility of 4.64% per annum,

which is higher than 3.04% in the data. However, this data moment lies within the 90% confidence

interval of the model’s bootstrapped distribution. The model also implies a positive first-order au-

tocorrelation of 0.24 for consumption growth. The model’s performance in matching unconditional

financial moments seems fair. The equity premium is 3.67% per annum, and the market volatility

is 7.83%. The real interest rate is on average 3.75% per annum, and its volatility is 1.44%.

3Albeit simple, our leverage adjustment for the equity premium and the volatility of real market returns is crude.
The aggregate debt of U.S. corporations is risky, but our adjustment implicitly assumes that the debt is riskless.
However, modeling risky debt in our framework would take us too far afield.
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Labor Market Moments

In Panel A of Table 3, we update Hagedorn and Manovskii’s (2008) Table 3 using a sample from

January 1951 to June 2006. We obtain seasonally adjusted monthly unemployment (thousands of

persons 16 years of age and older) from the Bureau of Labor Statistics (BLS) at U.S. Department of

Labor, and seasonally adjusted help wanted advertising index from the Conference Board. We take

quarterly averages of the monthly series to obtain quarterly observations. The average labor produc-

tivity is seasonally adjusted real average output per person in the nonfarm business sector from BLS.

Hagedorn and Manovskii (2008) report all variables in logs as deviations from the Hodrick-

Prescott (1997, HP) trend with a smoothing parameter of 1,600. In contrast, we detrend all

variables as the HP-filtered cyclical component of proportional deviations from the mean with the

same smoothing parameter.4 We do not use log deviations because vacancies can be zero in the

model’s simulations when the irreversibility constraint is binding. In the data, the two detrending

methods yield quantitatively similar results, which are in turn similar to Hagedorn and Manovskii’s

Table 3. In particular, the standard deviation of the V/U ratio is 0.255, and the V/U ratio is also

procyclical with a positive correlation of 0.299 with the labor productivity in the data. Finally,

vacancy and unemployment are negatively correlated, with a coefficient of −0.913.

To examine the model’s performance in matching labor moments in Panel A of Table 3, we sim-

ulate 1,000 artificial samples, each with 666 months. We take the quarterly averages of the monthly

unemployment U , vacancy, V , and labor productivity X to obtain 222 quarterly observations for

each series. We then implement the same empirical procedures as in Panel A on the artificial data,

and report the cross-simulation averages (and standard deviations) for the model moments.

Panel B reports the model’s quantitative fit for the labor moments. The model implies a stan-

dard deviation of 0.16 for the V/U ratio, which is lower than 0.26 in the data. The bootstrapped

4Specifically, for a variable X, the HP-filtered cyclical component of proportional deviations from the mean is
calculated as (X − X̄)/X̄ − HP((X − X̄)/X̄, 1600), in which X̄ is the mean of X, and HP((X − X̄)/X̄, 1600) is the
HP trend of (X − X̄)/X̄ with a smoothing parameter of 1,600.
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Table 3 : Labor Market Moments

In Panel A, seasonally adjusted monthly unemployment (U , thousands of persons 16 years of age
and older) is from the Bureau of Labor Statistics. The seasonally adjusted help wanted advertising
index, V , is from the Conference Board. The series are monthly from January 1951 to June 2006
(666 months). Both U and V are converted to quarterly averages of monthly series. The average
labor productivity, X, is seasonally adjusted real average output per person in the nonfarm business
sector from the Bureau of Labor Statistics. All variables are in hpfiltered proportional deviations
from the mean with a smoothing parameter of 1,600. For example, for the variable X, its cyclical
component is calculated as (X − X̄)/X̄ − HP((X − X̄)/X̄, 1600), in which X̄ is the mean of X,
and HP((X − X̄)/X̄, 1600) is the HP trend of (X − X̄)/X̄ with a smoothing parameter of 1,600.
In Panel B, we simulate 1,000 artificial samples, each of which has 666 monthly observations. We
take the quarterly averages of monthly U, V , and X to convert to 222 quarterly observations, and
implement the same empirical procedures as in Panel A on these quarterly series. We report the
cross-simulation averages and standard deviations (in parentheses) for all the model moments.

Panel A: Data

U V V/U X

Standard deviation 0.119 0.134 0.255 0.012
Quarterly autocorrelation 0.902 0.922 0.889 0.761

1 −0.913 −0.801 −0.224 U
Correlation matrix 1 0.865 0.388 V

1 0.299 V/U
1 X

Panel B: Model

U V V/U X

Standard deviation 0.143 0.095 0.158 0.016
(0.051) (0.019) (0.030) (0.002)

Quarterly autocorrelation 0.879 0.617 0.804 0.773
(0.040) (0.066) (0.036) (0.040)

1 −0.510 −0.704 −0.655 U
(0.081) (0.116) (0.128)

Correlation matrix 1 0.857 0.915 V
(0.055) (0.023)

1 0.988 V/U
(0.018)

1 X
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standard deviation of this model moment is 0.03. As such, the data moment is more than three

standard deviations away from the model moment. The standard deviations of U and V in the

model are 0.14 and 0.10, which are close to 0.12 and 0.13 in the data, respectively. The model also

generates a Beveridge curve with a negative U -V correlation of −0.51. However, its magnitude is

lower than −0.91 in the data. Finally, the correlation between Vt/Ut and the labor productivity is

0.99 in the model, which is substantially higher than 0.30 in the data.

The model implies an average unemployment rate of 0.12, an job finding rate of 0.42, a va-

cancy filling rate of 0.73, and an average V/U ratio of 0.61 (untabulated). These moments are

close to those in the data. Hagedorn and Manovskii (2008) report the elasticity of wage to labor

productivity to be 0.45, while taking log deviations of wage and productivity from their HP trends

with a smoothing parameter of 1,600. Using the same procedure, we calculate this elasticity to be

0.71 in the model with a cross-simulation standard deviation of 0.03. This higher elasticity is not

surprising because we use less extreme parameter values for the value of unemployment benefits,

b, and the workers’ bargaining power, η, than those used by Hagedorn and Manovskii.

The Linkage between the Labor Market and the Financial Market

The equity premium is time-varying and countercyclical in the data (e.g., Lettau and Ludvigson

(2001)). Because vacancy is procyclical and unemployment is countercyclical, labor market tight-

ness (the V/U ratio) exhibits strong procyclical movements (e.g., Shimer (2005), see also Panel A

of Table 3). As such, labor market tightness should forecast stock market excess returns with a

negative slope. Panel A of Table 4 documents such predictability in the data.5

Specifically, we perform monthly long-horizon regressions of log excess returns on the CRSP

value-weighted market returns,
∑H

h=1Rt+3+h − Rft+3+h, in which H = 1, 3, 6, 12, 24, and 36 is the

forecast horizon in months. When H > 1, we use overlapping monthly observations of H-period

5In related work, Chen and Zhang (2011) document that payroll growth forecasts market excess returns with a
negative slope at business cycle frequencies in the U.S. data.
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Table 4 : Long-Horizon Regressions of Market Excess Returns on Labor Market Tightness

Panel A reports long-horizon regressions of log excess returns on the value-weighted market index
from CRSP,

∑H
h=1Rt+3+h −Rft+3+h, in which H is the forecast horizon in months. The regressors

are two-month lagged values of the V/U ratio. We report the ordinary least squares estimate of the
slopes (Slope), the Newey-West corrected t-statistics (tNW ), and the adjusted R2s. The seasonally
adjusted monthly unemployment (U , thousands of persons 16 years of age and older) is from the
Bureau of Labor Statistics, and the seasonally adjusted help wanted advertising index (V ) is from
the Conference Board. The sample is from January 1951 to June 2006 (666 monthly observations).
We multiply the V/U series by 50 so that its mean is 0.622, close to that in the model. In Panel
B, we simulate 1,000 artificial samples, each of which has 666 monthly observations. On each
sample we implement the same empirical procedures as in Panel A, and report the cross-simulation
averages and standard deviations (in parentheses) for all the model moments.

Forecast horizon (H) in months

1 3 6 12 24 36

Panel A: Data

Slope −1.425 −4.203 −7.298 −10.312 −9.015 −10.156
tNW −2.575 −2.552 −2.264 −1.704 −0.970 −0.861
Adjusted R2 0.950 2.598 3.782 3.672 1.533 1.405

Panel B: Model

Slope −0.758 −2.231 −4.321 −8.108 −14.407 −19.463
(0.456) (1.329) (2.553) (4.767) (8.282) (10.866)

tNW −1.929 −2.021 −2.131 −2.377 −2.977 −3.503
(0.850) (0.903) (0.977) (1.161) (1.555) (1.889)

Adjusted R2 0.555 1.628 3.130 5.859 10.419 14.142
(0.433) (1.245) (2.361) (4.375) (7.575) (10.013)

holding returns. The regressors are two-month lagged values of labor market tightness.6 The BLS

takes less than one week to release monthly employment and unemployment data. The Conference

Board takes about one month to release monthly help wanted advertising index data.7 We impose

the two-month lag between labor market tightness and market excess returns to guard against

look-ahead bias in predictive regressions. Also, to make the regression slopes comparable to those

in the model, we also scale the V/U series in the data by multiplying it by 50. As a result, its

average is 0.62, close to the average of 0.61 in the model. This scaling is necessary because the

6Per our timing convention, returns such as Rt+1 are observed at the end of period t, but labor market tightness,
Vt/Ut, is observed at the beginning of period t, even though Vt occurs during the course of period t.

7We verify this practice through a private correspondence with the Conference Board staff.
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vacancy and unemployment series in the data have different units.

Panel A of Table 4 shows that labor market tightness is a reliable negative forecaster of market

excess returns at business cycle frequencies. In forecasting two-month ahead market returns, the

slope is −1.42, which is more than 2.5 standard errors from zero. The standard errors are adjusted

for heteroscedasticity and autocorrelations of 12 lags per Newey and West (1987). Also, the ad-

justed R2 is close to 1%. The slopes remain significant at the three-month and six-month horizons,

but become insignificant afterward. In particular, the slopes at the two-year and three-year horizons

are within one standard error of zero. The adjusted R2 peaks at 3.78% at the six-month horizon,

and declines to 3.67% at the one-year horizon and further to 1.41% at the three-year horizon.

Panel B of Table 4 reports the model’s fit for the predictive regressions. Consistent with the

data, the model predicts that labor market tightness forecasts market excess returns with a negative

slope. In particular, at the one-month horizon, the predictive slope is −0.76 with a t-statistic of

−1.93. At the six-month horizon, the slope is −4.32 with a t-statistic of −2.13. The slopes in the

model are smaller in magnitude than those in the data because the equity premium in the model is

lower. However, the model implies a stronger predictive power for labor market tightness than that

in the data. Both the t-statistics and the adjusted R2s increase monotonically with the forecast

horizon. In contrast, both measures peak at the six-month horizon in the data.

Panel A of Figure 7 provides further evidence on time-varying risk premiums. The panel plots

the cross-correlations (and their two standard errors bounds) between labor market tightness, θt,

and stock market excess returns, Rt+△t −Rft+△t, for △t = 1, 2, . . . , 36 in the data. No overlapping

observations are used in calculating these cross-correlations. We observe that the correlations are

negative and significant for △t up to six months. Panel B plots the cross-correlations and their

two standard deviations bounds from the model’s bootstrapped distribution. Although the cross-

correlations are insignificant beyond the seven-month horizon, they decay more slowly to zero over

the forecast horizon than those in the data. The pattern is consistent with Panel B of Table 4,
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Figure 7 : Cross-Correlations between Labor Market Tightness and Future Market Excess

Returns

We report the cross-correlations between labor market tightness, θt, and stock market excess
returns, Rt+△t−R

f
t+△t, for△t = 1, 2, . . . , 36, both in the data (Panel A) and in the model (Panel B).

In Panel A, θt is the seasonally adjusted help wanted advertising index from the Conference Board
divided by the seasonally adjusted monthly unemployment (thousands of persons 16 years of age
and older) from the BLS. The sample is from January 1951 to June 2006. The stock market excess
returns are the CRSP value-weighted market returns in excess of one-month Treasury bill rates.
The two standard errors bounds for the cross-correlations are also plotted. In Panel B, we simulate
1,000 artificial samples, each of which has 666 monthly observations. On each artificial sample,
we calculate the cross-correlations between θt and Rt+△t − Rft+△t, and plot the cross-simulation
averaged correlations and their two cross-simulation standard errors bounds.

Panel A: Corr(θt, Rt+∆t −Rft+∆t) in the data Panel B: Corr(θt, Rt+∆t −Rft+∆t) in the model
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which shows that the predictive power of θt in the model increases over the forecast horizon.

4 What Drives the Equity Risk Premium?

To understand the driving forces behind the equity premium in the model, we conduct an extensive

set of comparative statics by varying the model’s key parameters.

4.1 The Value of Unemployment Benefits

We reduce the value of unemployment benefits, b, from 0.85 in the benchmark calibration to 0.40,

which is the value used in Shimer (2005). All the other parameters are fixed. Because unemploy-
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ment is less valuable to workers, the average unemployment rate drops to 5.46%. A lower b also

means that, from equation (19), wage is more sensitive to exogenous shocks. In particular, the

wage elasticity to labor productivity increases to 0.80 from 0.71 in the benchmark calibration.

Figure 8 reports the stationary distribution from the low-b economy. Unlike the benchmark

economy, the low-b economy exhibits no disasters. The unemployment rate varies within a narrow

range between 5.2% and 5.8%. Neither output nor consumption has a long left tail in its empirical

cumulative distribution function. The equity premium hovers within a narrow range around 0.09%

per annum, and shows no upward spikes. Figure 9 reports the equity premium and the market

volatility on the grid of employment and aggregate productivity. Comparing Figures 4 and 9 shows

that the low-b economy produces substantially lower equity premium and market volatility than

the benchmark economy. Unlike the benchmark economy, in which the two financial moments are

strongly countercyclical, they are largely invariant to aggregate productivity in the low-b economy.

In addition, the irreversibility constraint is never binding (untabulated).

Table 5 reports the quantitative results from the low-b economy. As noted, a lower b means

that wage is more elastic to productivity. As such, the marginal profits of hiring are less sensitive

to shocks, and the sensitivities of employment and output to shocks are lowered as well. The

low-b model produces a lower output growth volatility, 2.07% per annum, and a lower consump-

tion growth volatility, 1.90%. The propagation mechanism is also weakened as the persistence of

the output growth drops from 0.24 to 0.13. Because both the volatility and the persistence of

consumption growth are lower, the equity premium decreases from 3.67% per annum in the bench-

mark calibration to 0.05%. The market volatility drops from 7.83% per annum to 3.52%. And

labor market tightness shows no predictive power for market excess returns.

Consistent with Shimer (2005), Panel B shows that the standard deviation of labor market

tightness in the model is substantially smaller than that in the data, 0.03 versus 0.26. As such,

a high value of unemployment benefits is critical for producing reasonable values for both the un-
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Figure 8 : Empirical Stationary Distribution, the Model with a Low Value of Unemployment

Benefits, b = 0.40

We simulate 1,006,000 monthly periods from the model with the value of unemployment benefits
b = 0.40, discard the first 6,000 periods, and treat the remaining as from the stationary distribution.
We plot the empirical cumulative distribution functions, ECDF (·), for unemployment (Ut), output

(Yt), consumption (Ct), and the equity premium (Et[Rt+1 −Rft+1]).
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Figure 9 : The Equity Risk Premium and the Conditional Market Volatility, the Model with

a Low Value of Unemployment Benefits, b = 0.40

For the model with a low value of unemployment benefits, b = 0.40, we plot the conditional equity
risk premium, Et[Rt+1 − Rft+1](Nt, xt), and the conditional market volatility, σR(Nt, xt), on the
Nt-xt grid. Both moments are in annualized percent.
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employment volatility and the equity premium. In effect, the operating leverage mechanism helps

alleviate both puzzles simultaneously. Intuitively, by dampening the procyclical covariation of the

wage with output, a high value of b magnifies the procyclical covariation of the residual payments

to shareholders, thereby raising the equity risk premium and stock market volatility.

4.2 The Vacancy Cost

Table 6 reports the comparative statics with the vacancy cost parameter, κ, changed from 0.975

in the benchmark calibration to 0.20, which is close to the value in Shimer (2005). All the other

parameters are fixed. Because lower vacancy costs make hiring cheaper, the average unemployment

rate falls from 12.14% in the benchmark model to 5.37%. The job finding rate is on average 0.88,

which is twice as high as that in the benchmark economy, 0.42. Because vacancy is more abundant,

the labor market is more congested with a vacancy filling rate of only 0.22. In contrast, the vacancy

filling rate is 0.73 in the benchmark economy. The average V/U ratio is 4.24 in the low-κ economy,
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Table 5 : Quantitative Results from the Model with a Low Value of Unemployment Benefits,

b = 0.40

Quantitative results are from the model with the parameter b changed from 0.85 in the benchmark
calibration to 0.40. All the other parameters remain unchanged. See Table 2’s caption for the
explanation of Panel A, Table 3’s caption for Panel B, and Table 4’s caption for Panel C.

Panel A: Unconditional financial moments

Mean 5% 95% p-value

σC 1.901 1.602 2.199 0.000
ρC(1) 0.134 −0.035 0.294 0.006
ρC(2) −0.119 −0.282 0.055 0.036
ρC(3) −0.093 −0.281 0.086 0.834
ρC(5) −0.067 −0.248 0.130 0.137

σY 2.066 1.741 2.388 0.000
ρY (1) 0.133 −0.036 0.294 0.000
ρY (2) −0.119 −0.281 0.054 0.006
ρY (3) −0.093 −0.282 0.088 0.782
ρY (5) −0.067 −0.248 0.131 0.915

E[R −Rf ] 0.047 −0.485 0.590 0.000
E[Rf ] 4.033 3.917 4.149 1.000
σR 3.519 3.223 3.827 0.000
σRf 0.127 0.115 0.139 0.000

Panel B: Labor market moments

U V V/U X

Standard deviation 0.004 0.022 0.026 0.016
(0.001) (0.002) (0.003) (0.002)

Quarterly autocorrelation 0.781 0.759 0.775 0.772
(0.038) (0.042) (0.039) (0.039)

1 −0.941 −0.958 −0.953 U
(0.011) (0.008) (0.008)

Correlation matrix 1 0.999 0.999 V
(0.000) (0.000)

1 1.000 V/U
(0.000)

1 X

Panel C: Long-horizon regressions of market excess returns on labor market tightness

Forecast horizon (H) in months

1 3 6 12 24 36

Slope −0.230 −0.680 −1.324 −2.510 −4.528 −6.323
(0.219) (0.632) (1.212) (2.282) (4.082) (5.606)

tNW −1.047 −1.111 −1.178 −1.331 −1.687 −2.018
(0.926) (0.968) (1.023) (1.178) (1.532) (1.838)

Adjusted R2 0.268 0.780 1.497 2.833 5.140 7.265
(0.314) (0.884) (1.672) (3.087) (5.423) (7.448)
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which is substantially higher than 0.61 in the benchmark economy.

Lower vacancy costs mean that the representative household is more capable of smoothing the

impact of exogenous productivity shocks by varying vacancy postings. As such, the volatility of

output growth falls from 4.94% to 2.18%, and the volatility of consumption growth falls from 4.64%

to 1.72% per annum. The autocorrelations of both fall from 0.24 to 0.14. As a result of consumption

smoothing, the equity premium is even slightly negative, −0.69% per annum. The equity premium is

also largely time-invariant, and is not forecastable by labor market tightness. Also, because vacancy

is more responsive to shocks, so is the shadow value of an additional unit of labor, µt, from period

to period. From equation (14), the sensitivity of µt translates to a high market volatility, 15.80%

per annum, which is almost twice as large as the market volatility in the benchmark economy.

At the quarterly frequency, the standard deviation of labor market tightness is 0.11 in the low-κ

model, which is lower than that in the benchmark model, 0.16. The standard deviation of vacancy

is 0.09 in the low-κ economy, which is close to 0.10 in the benchmark economy. However, relative

to output growth, vacancy has become more volatile in the low-κ economy. Because of the high job

finding rate, the low unemployment rate fluctuates less with a low standard deviation of only 0.02.

4.3 The Workers’ Bargaining Weight

Table 7 reports the comparative statics with the parameter of the workers’ bargaining weight, η,

increased from 0.10 in the benchmark economy to 0.25. A higher η makes the wage more cyclical

and economic profits less cyclical. The elasticity of wage to labor productivity rises from 0.71 to

0.81. This effect weakens the operating leverage mechanism, and depresses the equity premium.

Also, the wage eats up a higher portion of profits, and reduces firms’ incentives to hire. The

unemployment rate goes up to 23.33% from 12.14% in the benchmark economy.

The high-η economy shows more volatile and more persistent consumption growth and output

growth than the benchmark economy. Intuitively, because a higher η makes wages more cyclical

and profits less cyclical, firms are less responsive to shocks by varying vacancies. As such, unem-
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Table 6 : Quantitative Results from the Model with a Low Vacancy Cost Parameter, κ = 0.20

Quantitative results are from the model with the κ parameter changed from 0.975 in the benchmark
calibration to 0.20. All the other parameters remain unchanged. See Table 2’s caption for the
explanation of Panel A, Table 3’s caption for Panel B, and Table 4’s caption for Panel C.

Panel A: Unconditional financial moments

Mean 5% 95% p-value

σC 1.715 1.440 2.004 0.001
ρC(1) 0.142 −0.030 0.312 0.008
ρC(2) −0.125 −0.299 0.055 0.025
ρC(3) −0.093 −0.286 0.095 0.845
ρC(5) −0.067 −0.252 0.121 0.116

σY 2.176 1.834 2.543 0.000
ρY (1) 0.142 −0.030 0.310 0.000
ρY (2) −0.125 −0.299 0.055 0.002
ρY (3) −0.093 −0.289 0.095 0.782
ρY (5) −0.067 −0.251 0.121 0.914

E[R −Rf ] −0.688 −3.468 1.691 0.000
E[Rf ] 4.026 3.925 4.123 1.000
σR 15.802 13.697 18.348 0.990
σRf 0.213 0.147 0.323 0.001

Panel B: Labor market moments

U V V/U X

Standard deviation 0.022 0.091 0.105 0.016
(0.017) (0.013) (0.016) (0.002)

Quarterly autocorrelation 0.765 0.762 0.775 0.775
(0.056) (0.041) (0.038) (0.039)

1 −0.780 −0.817 −0.812 U
(0.098) (0.093) (0.096)

Correlation matrix 1 0.999 0.999 V
(0.002) (0.002)

1 1.000 V/U
(0.000)

1 X

Panel C: Long-horizon regressions of market excess returns on labor market tightness

Forecast horizon (H) in months

1 3 6 12 24 36

Slope −0.174 −0.512 −0.991 −1.905 −3.515 −4.877
(0.211) (0.620) (1.190) (2.216) (3.955) (5.348)

tNW −0.840 −0.884 −0.938 −1.086 −1.418 −1.703
(1.016) (1.075) (1.143) (1.293) (1.659) (1.938)

Adjusted R2 0.252 0.742 1.404 2.662 4.863 6.705
(0.333) (0.960) (1.726) (3.117) (5.484) (7.311)
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Table 7 : Quantitative Results from the Model with a High Bargaining Weight for the

Worker, η = 0.25

Quantitative results are from the model with the η parameter changed from 0.10 in the benchmark
calibration to 0.25. All the other parameters remain unchanged. See Table 2’s caption for the
explanation of Panel A, Table 3’s caption for Panel B, and Table 4’s caption for Panel C.

Panel A: Unconditional financial moments

Mean 5% 95% p-value

σC 7.557 4.592 13.443 1.000
ρC(1) 0.433 0.207 0.680 0.625
ρC(2) −0.024 −0.259 0.295 0.236
ρC(3) −0.130 −0.350 0.121 0.689
ρC(5) −0.129 −0.353 0.100 0.086

σY 7.637 4.710 13.491 0.907
ρY (1) 0.423 0.200 0.676 0.212
ρY (2) −0.025 −0.257 0.293 0.119
ρY (3) −0.129 −0.350 0.118 0.616
ρY (5) −0.127 −0.348 0.103 0.765

E[R−Rf ] 0.880 0.581 1.220 0.000
E[Rf ] 3.537 3.059 3.973 1.000
σR 3.741 3.285 4.262 0.000
σRf 1.846 1.210 2.979 0.389

Panel B: Labor market moments

U V V/U X

Standard deviation 0.116 0.107 0.164 0.016
(0.023) (0.023) (0.031) (0.002)

Quarterly autocorrelation 0.926 0.680 0.835 0.773
(0.021) (0.062) (0.032) (0.039)

1 −0.402 −0.697 −0.566 U
(0.046) (0.087) (0.105)

Correlation matrix 1 0.768 0.903 V
(0.041) (0.025)

1 0.955 V/U
(0.033)

1 X

Panel C: Long-horizon regressions of market excess returns on labor market tightness

Forecast horizon (H) in months

1 3 6 12 24 36

Slope −0.715 −2.096 −4.053 −7.580 −13.472 −18.337
(0.450) (1.306) (2.494) (4.634) (8.180) (10.869)

tNW −1.732 −1.806 −1.899 −2.117 −2.687 −3.191
(0.830) (0.875) (0.935) (1.095) (1.497) (1.860)

Adjusted R2 0.490 1.429 2.749 5.148 9.247 12.686
(0.407) (1.164) (2.190) (4.088) (7.356) (9.761)
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ployment (and employment) become more responsive to shocks. It follows that output is more

responsive to shocks. Also, because vacancy is less responsive, consumption must absorb more

shocks and become more volatile and persistent.

In untabulated results, we verify that across one million simulated monthly periods, the stan-

dard deviation of unemployment is 6.17% in the benchmark economy but 10.94% in the high-η

economy. Vacancy, in contrast, is more volatile in the benchmark economy: 1.26% versus 0.95%.

The V/U ratio is also more volatile in the benchmark economy than in the high-η economy, 0.25

versus 0.11, in (unfiltered) simulated data. However, once we remove low frequency variations via

the HP-filter, the standard deviation of the V/U ratio is largely similar across the two economies.

4.4 Risk Aversion

We conduct two more comparative static experiments by varying risk aversion, γ, from ten in the

benchmark calibration to zero and then to 25. We again fix all the other parameters. In particular,

the elasticity of intertemporal substitution, ψ, is pegged at 1.5, because a high value of ψ keeps the

interest rate volatility low. We find that consistent with Tallarini (2000), risk aversion only affects

asset pricing moments, while leaving business cycle moments largely unchanged.

Table 8 reports the quantitative results for the economy with a risk aversion of zero. The

equity premium drops from 3.67% in the benchmark economy to −0.33% in the zero-γ economy

(Panel A). And the equity premium is largely time-invariant (Panel C). Panel A also shows that

the volatility and persistence of consumption growth and output growth are quantitatively close to

the benchmark economy. Panel B shows further that the labor market moments barely change. In

particular, the standard deviation of the V/U ratio and the V -U correlation are 0.15 and −0.52,

which are close to 0.16 and −0.51 in the benchmark calibration, respectively.

Table 9 reports the quantitative results for the economy with a high risk aversion of 25. The

equity premium rises drastically from 3.67% in the benchmark economy to 12.75% in the high-γ

economy (Panel A). The volatility and persistence of consumption growth and output growth are
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Table 8 : Quantitative Results from the Model with Low Risk Aversion, γ = 0

Quantitative results are from the model with risk aversion, γ, changed from ten in the benchmark
calibration to zero. All the other parameters remain unchanged. See Table 2’s caption for the
explanation of Panel A, Table 3’s caption for Panel B, and Table 4’s caption for Panel C.

Panel A: Unconditional financial moments

Mean 5% 95% p-value

σC 4.445 2.584 9.411 0.768
ρC(1) 0.233 0.003 0.554 0.139
ρC(2) −0.134 −0.337 0.119 0.076
ρC(3) −0.128 −0.337 0.092 0.736
ρC(5) −0.084 −0.307 0.134 0.137

σY 4.752 2.916 9.631 0.279
ρY (1) 0.227 0.000 0.546 0.052
ρY (2) −0.129 −0.330 0.119 0.031
ρY (3) −0.125 −0.334 0.091 0.658
ρY (5) −0.082 −0.302 0.129 0.856

E[R−Rf ] −0.326 −1.389 0.720 0.000
E[Rf ] 3.975 3.712 4.200 1.000
σR 7.792 7.096 8.454 0.000
σRf 1.325 0.839 2.355 0.107

Panel B: Labor market moments

U V V/U X

Standard deviation 0.139 0.091 0.150 0.016
(0.056) (0.019) (0.028) (0.002)

Quarterly autocorrelation 0.876 0.619 0.804 0.774
(0.042) (0.064) (0.034) (0.038)

1 −0.518 −0.704 −0.648 U
(0.087) (0.129) (0.148)

Correlation matrix 1 0.862 0.913 V
(0.056) (0.027)

1 0.989 V/U
(0.019)

1 X

Panel C: Long-horizon regressions of market excess returns on labor market tightness

Forecast horizon (H) in months

1 3 6 12 24 36

Slope −0.478 −1.410 −2.752 −5.226 −9.559 −13.238
(0.445) (1.302) (2.524) (4.657) (8.339) (11.386)

tNW −1.137 −1.193 −1.260 −1.415 −1.779 −2.095
(0.889) (0.947) (1.014) (1.156) (1.536) (1.868)

Adjusted R2 0.275 0.800 1.552 2.936 5.479 7.682
(0.343) (0.965) (1.846) (3.288) (5.821) (7.839)
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only slightly higher than those in the benchmark economy. Panel B shows further that the labor

market moments are again largely similar to those in the benchmark economy with γ = 10.

5 Conclusion

We study the equity premium with production by embedding the standard Diamond-Mortensen-

Pissarides search and matching model of the labor market into a dynamic stochastic general equi-

librium economy. The representative household has recursive Epstein-Zin preferences. With rea-

sonable parameter values, the model reproduces an equity risk premium of 3.67% per annum and

a low interest rate volatility of 1.44%. Also, the equity premium is time-varying, and is predictable

by the vacancy-unemployment ratio in the model. We also confirm this predictability in the data.

Intuitively, large job destruction flows, combined with search frictions, create rare but deep crashes

in the model economy. As such, search frictions produce endogenously in the production economy

rare disaster risk, as emphasized in the endowment economy by Rietz (1988) and Barro (2006).
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A The Stock Return Equation

We prove equation (14) following an analogous proof in Liu, Whited, and Zhang (2009) in the

context of the q-theory of investment. Rewrite the equity value maximization problem as:

St = max
{Vt+△t,Nt+△t+1}

Et







∞
∑

△t=0

Mt+△t







Xt+△tNt+△t −Wt+△tNt+△t − κVt+△t

−µt+△t[Nt+△t+1 − (1− s)Nt+△t

−Vt+△tq(θt+△t)] + λt+△tq(θt+△t)Vt+△t












, (A.1)

in which µt is the Lagrange multiplier on the employment accumulation equation, and λt is the

Lagrange multiplier on the irreversibility constraint on job creation. The first order conditions are

equations (9) and (10), and the Kuhn-Tucker condition is equation (13).

Define dividends as Dt = XtNt−WtNt−κVt and the ex-dividend equity value as Pt = St−Dt.

Expanding St yields:

Pt +XtNt −WtNt − κVt = St = XtNt −WtNt − κVt − µt [Nt+1 − (1− s)Nt − Vtq(θt)] + λtq(θt)Vt

+EtMt+1

[

Xt+1Nt+1 −Wt+1Nt+1 − κVt+1 − µt+1 [Nt+2 − (1− s)Nt+1 − Vt+1q(θt+1)]

+λt+1q(θt+1)Vt+1] + . . . (A.2)

Recursively substituting equations (9) and (10) yields: Pt +XtNt −WtNt − κVt = XtNt −WtNt +

µt(1−s)Nt. Using equation (9) to simplify further: Pt = κVt+µt(1−s)Nt = µt[(1−s)Nt+q(θt)Vt]+

λtq(θt)Vt = µtNt+1, in which the last equality follows from the Kuhn-Tucker condition (13).

To show equation (14), we expand the stock returns:

Rt+1 =
St+1

St −Dt
=
µt+1Nt+2 +Xt+1Nt+1 −Wt+1Nt+1 − κVt+1

µtNt+1

=
Xt+1 −Wt+1 − κ Vt+1

Nt+1
+ µt+1

[

(1− s) + q(θt+1)
Vt+1

Nt+1

]

µt

=
Xt+1 −Wt+1 + (1− s)µt+1

µt
+

1

µtNt+1

[

µt+1q(θt+1)Vt+1 − κVt+1

]

=
Xt+1 −Wt+1 + (1− s)µt+1

µt
, (A.3)

in which the last equality follows because µt+1q(θt+1)Vt+1 − κVt+1 = −λt+1q(θt+1)Vt+1 = 0 from

the Kuhn-Tucker condition.

B Wage Determination under Nash Bargaining

Let 0 < η < 1 denote the relative bargaining weight of the worker, JNt the marginal value of an em-

ployed worker to the representative family, JUt the marginal value of an unemployed worker to the
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representative family, φt the marginal utility of the representative family, SNt the marginal value

of an employed worker to the representative firm, and SV t the marginal value of an unemployed

worker to the representative firm. Let Λt ≡ (JNt − JUt)/φt + SNt − SV t be the total surplus from

the Nash bargain. The wage equation (19) is determined via the Nash worker-firm bargain:

max
{Wt}

(

JNt − JUt
φt

)η

(SNt − SV t)
1−η , (B.1)

The outcome of maximizing equation (B.1) is the surplus-sharing rule:

JNt − JUt
φt

= ηΛt = η

(

JNt − JUt
φt

+ SNt − SV t

)

. (B.2)

As such, the worker receives a fraction of η of the total surplus from the wage bargain. In what

follows, we derive the wage equation (19) from the sharing rule in equation (B.2).

B.1 Workers

Let φt denote the Lagrange multiplier for the household’s budget constraint (16). The household’s

maximization problem is given by:

Jt =

[

(1− β)C
1− 1

ψ

t + β
[

Et

(

J1−γ
t+1

)]

1−1/ψ
1−γ

]
1

1−1/ψ

−φt

(

Πt+1

RΠ
t+1

−Πt + Ct −WtNt − Utb+ Tt

)

, (B.3)

The first-order condition for consumption yields:

φt = (1− β)C
− 1
ψ

t

[

(1− β)C
1− 1

ψ

t + β
[

Et

(

J1−γ
t+1

)]

1−1/ψ
1−γ

]
1

1−1/ψ
−1

, (B.4)

which gives the marginal utility of consumption.

Recalling Nt+1 = (1 − s)Nt + f(θt)Ut and Ut+1 = sNt + (1 − f(θt))Ut, we differentiate Jt in

equation (B.3) with respect to Nt:

JNt = φtWt +
1

1− 1
ψ

[

(1− β)C
1− 1

ψ

t + β
[

Et

(

J1−γ
t+1

)]

1−1/ψ
1−γ

]
1

1−1/ψ
−1

×
1− 1

ψ

1− γ
β
[

Et

(

J1−γ
t+1

)]

1−1/ψ
1−γ

−1
Et

[

(1− γ)J−γ
t+1[(1− s)JNt+1 + sJUt+1]

]

. (B.5)
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Dividing both sides by φt:

JNt
φt

=Wt +
β

(1− β)C
− 1
ψ

t







1
[

Et

(

J1−γ
t+1

)]
1

1−γ







1
ψ
−γ

Et

[

J−γ
t+1[(1− s)JNt+1 + sJUt+1]

]

. (B.6)

Dividing and multiplying by φt+1:

JNt
φt

= Wt + Et









β

(

Ct+1

Ct

)− 1
ψ







Jt+1
[

Et

(

J1−γ
t+1

)]
1

1−γ







1
ψ
−γ
[

(1− s)
JNt+1

φt+1

+ s
JUt+1

φt+1

]









= Wt + Et

[

Mt+1

[

(1− s)
JNt+1

φt+1

+ s
JUt+1

φt+1

]]

. (B.7)

Similarly, differentiating Jt in equation (B.3) with respect to Ut yields:

JUt = φtb+
1

1− 1
ψ

[

(1− β)C
1− 1

ψ

t + β
[

Et

(

J1−γ
t+1

)]

1−1/ψ
1−γ

]
1

1−1/ψ
−1

×
1− 1

ψ

1− γ
β
[

Et

(

J1−γ
t+1

)]

1−1/ψ
1−γ

−1
Et

[

(1− γ)J−γ
t+1[f(θt)JNt+1 + (1− f(θt))JUt+1]

]

. (B.8)

Dividing both sides by φt:

JUt
φt

= b+
β

(1− β)C
− 1
ψ

t







1
[

Et

(

J1−γ
t+1

)]
1

1−γ







1
ψ
−γ

Et

[

J−γ
t+1[f(θt)JNt+1 + (1− f(θt))JUt+1]

]

. (B.9)

Dividing and multiplying by φt+1:

JUt
φt

= b+ Et









β

(

Ct+1

Ct

)− 1
ψ







Jt+1
[

Et

(

J1−γ
t+1

)]
1

1−γ







1
ψ
−γ
[

f(θt)
JNt+1

φt+1

+ (1− f(θt))
JUt+1

φt+1

]









= b+ Et

[

Mt+1

[

f(θt)
JNt+1

φt+1

+ (1− f(θt))
JUt+1

φt+1

]]

. (B.10)

B.2 The Firm

We start by rewriting the infinite-horizon value-maximization problem of the firm recursively as:

St = XtNt −WtNt − κVt + λtq(θt)Vt + Et[Mt+1St+1], (B.11)
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subject to Nt+1 = (1− s)Nt + q(θt)Vt. The first-order condition with respect to Vt says:

SV t = −κ+ λtq(θt) + Et[Mt+1SNt+1q(θt)] = 0 (B.12)

Equivalently,
κ

q(θt)
− λt = Et[Mt+1SNt+1] (B.13)

In addition, differentiating St with respect to Nt yields:

SNt = Xt −Wt + Et[Mt+1(1− s)SNt+1]. (B.14)

Combining the last two equations yields the intertemporal job creation condition in equation (11).

B.3 The Wage Equation

From equations (B.7), (B.10), and (B.14), the total surplus of the worker-firm relationship is:

Λt = Wt + Et

[

Mt+1

[

(1− s)
JNt+1

φt+1

+ s
JUt+1

φt+1

]]

−b− Et

[

Mt+1

[

f(θt)
JNt+1

φt+1

+ (1− f(θt))
JUt+1

φt+1

]]

+Xt −Wt +Et[Mt+1(1− s)SNt+1]

= Xt − b+ (1− s)Et

[

Mt+1

(

JNt+1 − JUt+1

φt+1

+ SNt+1

)]

− f(θt)Et

[

Mt+1
JNt+1 − JUt+1

φt+1

]

= Xt − b+ (1− s)Et [Mt+1Λt+1]− ηf(θt)Et [Mt+1Λt+1] , (B.15)

in which the last equality follows from the definition of Λt and the surplus sharing rule (B.2).

The surplus sharing rule implies SNt = (1−η)Λt, which, combined with equation (B.14), yields:

(1− η)Λt = Xt −Wt + (1− η)(1− s)Et [Mt+1Λt+1] . (B.16)

Combining equations (B.15) and (B.16) yields:

Xt −Wt + (1− η)(1− s)Et [Mt+1Λt+1] = (1− η)(Xt − b) + (1− η)(1− s)Et [Mt+1Λt+1]

−(1− η)ηf(θt)Et [Mt+1Λt+1]

Xt −Wt = (1− η)(Xt − b)− (1− η)ηf(θt)Et [Mt+1Λt+1]

Wt = ηXt + (1− η)b+ (1− η)ηf(θt)Et [Mt+1Λt+1]
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Using equations (B.2) and (B.13) to simplify further:

Wt = ηXt + (1− η)b+ ηf(θt)Et [Mt+1SNt+1] (B.17)

Wt = ηXt + (1− η)b+ ηf(θt)

(

κ

q(θt)
− λt

)

(B.18)

Using the Kuhn-Tucker condition, when Vt > 0, then λt = 0, and equation (B.18) reduces

to the wage equation (19) because f(θt) = θtq(θt). On the other hand, when the irreversibility

constraint is binding, λt > 0, but Vt = 0 means θt = 0 and f(θt) = 0. Equation (B.18) reduces to

Wt = ηXt + (1− η)b. Because θt = 0, the wage equation (19) continues to hold.

C The Projection Algorithm with Parameterized Expectations

We solve the model using the projection method, combined with parameterized expectations.

C.1 The Projection Method

The state space for the model is (Nt, xt), in which Nt ∈ (Nmin, Nmax) and xt ≡ log(Xt). A tra-

ditional projection algorithm would be to solve for the optimal vacancy function: Vt = V (Nt, xt),

the Lagrange multiplier: λt = λ(Nt, xt), and an indirect utility function: Jt = J(Nt, xt) from the

following two functional equations:

J(Nt, xt) =

[

(1− β)C(Nt, xt)
1− 1

ψ + β
(

Et
[

J(Nt+1, xt+1)
1−γ
])

1−1/ψ
1−γ

]
1

1−1/ψ

(C.1)

κ

q(θt)
− λ(Nt, xt) = Et

[

Mt+1

[

Xt+1 −Wt+1 + (1− s)

(

κ

q(θt+1)
− λ(Nt+1, xt+1)

)]]

. (C.2)

V (Nt, xt) and λ(Nt, xt) must also satisfy the Kuhn-Tucker condition: Vt ≥ 0, λt ≥ 0, and λtVt = 0.

In the numerical implementation, the two functional equations should be expressed only in

terms of state variables Nt and xt. To this end, we perform the following set of substitutions:

Nt+1 = (1− s)Nt +
UtVt

(U ιt + V ι
t )

1/ι
; (C.3)

Ut = 1−Nt; (C.4)

xt+1 = ρxt + σǫt+1; (C.5)

C(Nt, xt) = exp(xt)Nt − κV (Nt, xt); (C.6)

q(θt) =

[

1 +

(

V (Nt, xt)

1−Nt

)ι]− 1
ι

; (C.7)

Mt+1 = β

[

C(Nt+1, xt+1)

C(Nt, xt)

]− 1
ψ

[

J(Nt+1, xt+1)

Et[J(Nt+1, xt+1)1−γ ]
1

1−γ

]
1
ψ
−γ

; (C.8)

43



and

Wt = η

[

exp(xt) + κ
V (Nt, xt)

1−Nt

]

+ (1− η)b. (C.9)

The traditional projection method parameterizes the vacancy policy function, V (Nt, xt), and

the multiplier function, λ(Nt, xt), such that the parameterized functions solve the two functional

equations, while obeying the Kuhn-Tucker condition. As pointed out by Christiano and Fisher

(2000), with occasionally binding constraints, this traditional approach is tricky and cumbersome.

C.2 Parameterized Expectations

We follow Christiano and Fisher (2000) in parameterizing a conditional expectation function in the

job creation equation. This parameterized expectations approach exploits a convenient mapping

from the conditional expectation function to policy and multiplier functions, thereby eliminating

the need to separately parameterize the multiplier function. Specifically, we parameterize:

Et ≡ E(Nt, xt) = Et

[

Mt+1

[

Xt+1 −Wt+1 + (1− s)

(

κ

q(θt+1)
− λ(Nt+1, xt+1)

)]]

. (C.10)

With the parameterized Et, we first calculate:

q̄(θt) =
κ

Et
. (C.11)

If q̄(θt) < 1, the irreversibility constraint is not binding, we set λt = 0 and q(θt) = q̄(θt). We

solve θt = q−1(κ/Et), in which q−1(·) is the inverse function of q(·) given by equation (3), and

Vt = θt(1 − Nt). If q̄(θt) ≥ 1, the irreversibility constraint is binding, we set Vt = 0, θt = 0,

q(θt) = 1, and λt = κ− Et. This approach is convenient in practice because it enforces the Kuhn-

Tucker condition automatically, and eliminates the need of parameterizing the multiplier function.

C.3 Additional Qualitative Properties of the Model’s Solution

We approximate the first-order autoregressive process of log(Xt) based on the discrete state space

method of Rouwenhorst (1995) with 15 grid points. Kopecky and Suen (2010) show that this

method is more reliable and accurate than other methods in approximating highly persistent pro-

cesses. We use cubic splines with 40 basis functions on the N space to approximate E(Nt, xt) on

each grid of x. We set Nmin = 0.03 and Nmax = 0.99. With x on the discrete state space, conditional

expectations are implemented as matrix multiplication. Our projection programs use extensively

the approximation took kit in the CompEcon Toolbox of Miranda and Fackler (2002). In practice,

we use the numerical solution to the social planner’s problem solved via value function iteration as

the initial guess for the projection algorithm. The social planner takes into account the congestion

effect of posting a new vacancy on labor market tightness, whereas the firm in the decentralized

economy does not. In particular, the firm takes q(θt) as given, but the social planner does not.

44



Figure C.1 : Errors in the J and E Functional Equations

The J function error is J(Nt, xt)
1− 1

ψ − (1− β)C(Nt, xt)
1− 1

ψ − β
(

Et
[

J(Nt+1, xt+1)
1−γ
])

1−1/ψ
1−γ , and

the E function error is E(Nt, xt)−Et

[

Mt+1

[

Xt+1 −Wt+1 + (1− s)
(

κ
q(θt+1)

− λ(Nt+1, xt+1)
)]]

. See

Section C.1 for variable definitions. We plot the errors on the two-dimensional grid of Nt and xt.

Panel A: The J function error Panel B: The E function error
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Figure C.1 reports the error in the J functional equation (C.1) and the error in the E functional

equation (C.10), defined as J(Nt, xt)
1− 1

ψ − (1 − β)C(Nt, xt)
1− 1

ψ −β
(

Et
[

J(Nt+1, xt+1)
1−γ
])

1−1/ψ
1−γ

and E(Nt, xt) − Et

[

Mt+1

[

Xt+1 −Wt+1 + (1− s)
(

κ
q(θt+1)

− λ(Nt+1, xt+1)
)]]

, respectively. These

errors, in the magnitude of 10−14, are extremely small. As such, the projection algorithm with

parameterized expectations does an accurate job in solving the two functional equations that char-

acterize the competitive equilibrium in the search economy.

Figure C.2 reports additional properties of the model’s solution not shown in Section 3.2. The

indirect utility function, J(Nt, xt), is increasing in both Nt and xt (Panel A). The multiplier on

the employment accumulation equation (4), µ(Nt, xt), is identical to the conditional expectation,

E(Nt, xt) (Panel B). Not surprisingly, optimal consumption, Ct, is weakly procyclical, and is de-

creasing in employment, Nt (Panel C). Sensibly, the stock price, Pt, is procyclical, and is increasing

in Nt (Panel D). The job finding rate, f(θt), is procyclical, and is increasing in employment, Nt

(Panel E). Finally, wage is also procyclical, and is increasing in employment (Panel F).

Figure C.3 reports additional results for the model’s stationary distribution not reported in Sec-

tion 3.3. Panel A shows that dividend largely inherits the same disaster-like behavior as output and

consumption. From Panel B, the irreversibility constraint on vacancy binds only infrequently. The

remaining panels show that vacancy, labor market tightness, the job-filling rate, and wage largely in-

herit the shape of cumulative distribution function of the exogenous aggregate productivity, log(Xt).
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Figure C.2 : Additional Qualitative Properties of the Model: Indirect Utility, the Multiplier

on Employment Accumulation, Consumption, Stock Price, Job Finding Rate, and Wage

We plot the following variables on the two-dimensional grid of Nt and xt: J(Nt, xt) is the indirect
utility in equation (C.1); µ(Nt, xt) is the multiplier on the employment accumulation equation (4);
C(Nt, xt) is consumption; P (Nt, xt) = µtNt+1 is the stock price; f(Nt, xt) is the job finding rate in
equation (2); and W (Nt, xt) is the wage rate in equation (C.9).
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−0.2

0

0.2

0

0.5

1
0

0.2

0.4

0.6

0.8

x
t

N
t

−0.2

0

0.2

0

0.5

1
0

1

2

3

x
t

N
t

Panel C: C(Nt, xt) Panel D: P (Nt, xt)

−0.2

0

0.2

0

0.5

1
0

0.5

1

1.5

x
t

N
t

−0.2

0

0.2

0

0.5

1
0

1

2

3

x
t

N
t

Panel E: f(Nt, xt) Panel F: W (Nt, xt)

−0.2

0

0.2

0

0.5

1
0

0.2

0.4

0.6

0.8

x
t

N
t

−0.2

0

0.2

0

0.5

1
0.8

1

1.2

1.4

1.6

x
t

N
t

46



Figure C.3 : Empirical Stationary Distribution of the Model: Dividend, the Multiplier on

the Irreversibility Constraint of Vacancy, Vacancy, Labor Market Tightness, the

Vacancy-Filling Rate, and Wage

We simulate 1,006,000 monthly periods from the model, discard the first 6,000 periods, and treat
the remaining as from the stationary distribution. We plot the empirical cumulative distribution
functions, ECDF (·), for dividend (Dt), the multiplier on the irreversibility constraint of vacancy
(λt), vacancy (Vt), labor market tightness (θt), the vacancy-filling rate (qt), and wage (Wt).
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Panel C: ECDF (Vt) Panel D: ECDF (θt)
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